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ABSTRACT 

The emerging digital cellular system in North America is a narrow band TDMA 

system with 2-QPSK as modulation scheme. The digital cellular channel exhibits 

frequency-selective Rayleigh fading phenomena. This thesis studies the error perfor- 

mance of conventional differential detection and multisymbol differential detection of 

QPSK signals in a %ray frequency selective Rayleigh fading channel with additive 

white Gaussian noise. We investigate the performance of the conventional differential 

detector (CDD) but find that it breaks down under some channel conditions. Then we 

suggest using multisymbol differential detector (MSDD) and discover that its bit error 

rate (BER) can be controlled below under almost all the channel conditions as 

long as proper transmitted pulses are adopted. It is found that channel coding helps to  

improve the error ~erformance when the BER of the corresponding uncoded systems 

is at least below lo-'. We also provide proofs to the validity of the piece-wise-constant 

assumption in differential detection using analytical derivation and numerical results 

under practical channel conditions. 
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Chapter 1 

Introduction 

Mobile radio communication has a long history beginning with early maritime use for 

disaster and safety communications. However, progress in mobile radio communica- 

tions for public use has lagged behind until the last twenty years. In recent years, 

the technique of high-density geographical co-channel, that is cellular, has enabled 

the reuse of channels thus helping achieve efficient spectrum utilization for accom- 

modation of large demands, and the advanced very large scale integration (VLSI) 

technology has greatly assisted the development of mobile communications. 

The usual digital cellular system works in the range of frequency from 400-900 

MHz, depending on different countries in the world. In Europe, for instance in Ger- 

many, the fully cellular radiotelephone set up by Siemens company works in the 450 

MHz range. In the USA, however, the allocation of 115 MHz of spectrum is in the 

range between 806-947 MHz among several land mobile radio services. Radio com- 

munication is carried out with a channel spacing of 30 kHz. 



The digital cellular systems transmit signals over mobile channels. At the receiver, 

differential detection is widely used to detect the transmitted information. Compared 

with the additive white Gaussian noise (AWGN) channel, there are multiplicative ran- 

dom fading gains in the received signals after being transmitted over mobile channels. 

Therefore quality of communication is generally worse than that in the pure AWGN 

channel. Due to the limited bandwidth of each channel and the presences of multiple 

propagation paths, different frequency components of the transmitted signal are sub- 

ject to different fading effects. Thus there exists intersymbol interference (ISI) in the 

received samples, which make the communication system suffer more. The subject 

of this thesis is the analyses and evaluation of the error performance of differential 

detection in communication systems and to improve it using different techniques in 

the frequency-selective Rayleigh fading channel. 

In the following sections, we will go over some terminologies commonly used in 

mobile communications, then carry on the literature review, and finally give a brief 

description of contribution and organization. 

1.1 Background and Literature Review 

In a mobile radio channel, there are three main factors which have significant ef- 

fects on the performance of a communication system: 1) fading,  due to  mul t ipa th ;  

2) Dopp le r  effect, due to time variation of the channel; 3) Selectivity, due to 



bandwidth of the channel. We will describe these phenomena briefly in the followi~~g 

subsection. 

1.1.1 Some Common Terminologies in Mobile Communica- 

t ion 

Before proceeding, let us explain some common terminologies. 

To understand the concept of multipath in mobile communications, refer to Fig- 

ure 1.1 (a).  At the transmitter, we send an extremely short pulse. Then at the 

receiver we can receive a train of pulses due to many transmitting paths between 

the transmitter and the receiver. In most cases, as discussed in [I], the equivalent 

amplitude and phase fluctuations of the sum of received signals have the same statis- 

tical characters as those of narrow-band AWGN, and the corresponding envelope is 

Rayleigh-distributed, so the transmitting channel is called Rayleigh fading channel. 

Owing to its time variation, its limited bandwidth and the multipath effect, the 

channel exhibits time- and frequency-selective behavior. The time-selective channel 

has so called Doppler effects. Due to the relative motion between the transmitter 

and the receiver, there are additional frequency components contributed to the power 

spectrum of the transmitted signals so that the spectrum is broaden. The doppler fre- 

quency shift depends on how fast the mobile vehicle goes. For example, the maximum 

Doppler frequency is approximately 6.7 Hz if a car travels at the speed of 10 km per 



Transmitted signd Received signd 

Figure 1.1: Examples of the responses of a time-variant multipath channel to a very 
narrow pulse. 



hour while the maximum Doppler frequency is approximately 80 Hz  at the speed of 

100 krn per hour. A formula is shown in Chapter 2 to calculate the maximum Doppler 

frequency. Consequently the fading gains of received signals at different instants are 

not fully correlated any more and we also refer to it as the dynamic channel. The 

phenomena is that if we repeat the experiment of sending an extremely short pulse, we 

would observe changes in the received pulse train, which include changes in the sizes 

of the individual pulses, in the relative delays among the pulses, and in the number 

of ~ u l s e s  observed in the received pulse train as shown in Figure 1.1 (a) ,  (b) and (c). 

To the contrary, the so called time-flat fading channel, or static fading channel 

may be represented as random but time-invariant when the doppler frequency shift is 

zero, or say the vehicle is at rest. The fading gains of the received signal are random 

but fully correlated, that is the gain of the first received signal is a random number 

and the gains of the successive signals are almost the same as the first one. This is a 

kind of classic fading channel and its behavior has been studied in details, see [I].  

In frequency non-selective Rayleigh fading channels, or flat Rayleigh fading 

channels, the coherent bandwidth of the channel is larger than that of transmitted 

signals, thus the amplitude and phase fluctuations of the response to a sinusoid, ob- 

served at the receiver, are the same for any excitation frequency component. On the 

other hand, in the frequency-selective Rayleigh fading channel the different fre- 

quency components of t he transmitted signals are subject to different fading effects. 

For example, when two sinusoids with frequency separation greater than the band- 

width of the channel are sent through the channel, they are affected differently. As we 



know, the transmitted signal usually contains many sinusoid components of various 

frequencies, therefore it is severely distorted by the channel. 

In this thesis, the emphasis will be on the dynamic and frequency-selective 

Rayleigh fading channel although the flat or static fading channel will be treated as 

a special case. In the following, we begin our literature review for flat fading channel. 

1.1.2 Literature Review 

In recent years, mobile communication has been a very popular subject in Commu- 

nication Engineering. In order to use the bandwidth efficiently, people have designed 

a number of digital modulation schemes as well as detection methods for the mobile 

radio channel. For example, for phase-shift keying (PSK) modulation, the two com- 

mon detection schemes are pilot symbol assisted modulation (PSAM) and differential 

detection (DD). As for PSAM, the system has to insert a known symbol periodi- 

cally into the transmitted sequence so that the fading distortion, or channel state 

information (CSI), can be estimated a t  the receiver. Thus the effective transmitting 

bandwidth will be reduced and complexity of the system is high. However, PSAM 

provides better error performance due to better channel estimate, compared with DD. 

In the case of DD, the detector uses only successive received samples as reference to 

make decisions. Since it requires very little information about the channel, the DD is 

simpler to implement. The advantages of DD are summarized as follows: 

Easy and economical realization; 



No expansion of bandwidth for channel state estimation; 

Very little delay in detection. 

Various schemes have also been designed to enhance the performance of DD, see ['L], 

[3] ,  [4], [lj], and [6], such as Trellis Coding Modulation (TCM), in [2] and [3], Multi- 

symbol differential detection in 161, etc.. Unfortunately, these studies only concentrate 

on the additive white Gaussian noise (AWGN) channel and the flat fading channels. 

As we mentioned earlier, digital cellular systems in North America are narrow band 

TDMA systems working in the ultra high frequency (UHF) band. Much work has 

already been done to characterize UHF mobile radio channels by researchers world 

wide. They demonstrate that the digital cellular channel exhibits the frequency- 

selective fading behavior. Zogg [13] provides multipath profiles measured between 

a base and mobile in many types of terrain. For example in hilly terrain, Zogg 

indicates that signal components typically arrive 10 to 25 us after the direct signal and 

have amplitudes 10 to  20 dB weaker than the direct signal. Building facades induce 

multipath signals which have excess delays of less than 10 us and amplitudes 10 dB 

below the direct signal. In mountainous regions, significant multipath have amplitudes 

within 10 dB of the direct signal a t  excess delays of 20 us or more. Summarizing the 

research and measurements in recent years, Telecommunications Industry Association 

(TIA) characterize the digital cellular channel as a frequency-selective Rayleigh fading 

channel. The North American digital cellular system document IS 54 indicates that 

a 2-ray channel model is a reasonably good model for the reality. 



The study of the frequency-selective Rayleigh fading channel began as early as 

1960s. P.A. Bello, B.C. Nelin, C.C. Bailey and M.B. Pursley studied in details the per- 

formance of communication systems transmitting binary signals over the frequency- 

selective Rayleigh fading channel, see [7] [8], [9], [lo], and [ l l ] .  They considered the 

dependence of the error probability on the shapes of the data-pulse waveform used 

in the differential binary phase-shift keying (DBPSK) signals and on the different 

frequency spectrums in the channel models. 

The analysis and results mentioned above in [7] - [ l l ]  for the frequency-selective 

Rayleigh fading channel are applicable for binary signaling only. In order to accomo- 

date the projected ten-fold increase in users and the need for data as well as voice 

transmission, M-ary digital modulation and speech coding techniques are used to ex- 

ploit digital communications efficiencies. According to current standards for cellular 

mobile radio system for North America [12], the digital modulation method chosen is 

a modified version of differential Quadrature Phase Shift Keying (PSK) scheme with 

differentially coherent detection, known as $-DQPSK. 

This thesis focuses on studying the DD of QPSK signals in the frequency-selective 

Rayleigh fading represented by a 2-ray channel model. It shows the effects of dif- 

ferent statistical channel parameters on the performance of conventional differential 

detection. It is found that the DD works well when the delay between the two rays 

is small as long as a suitable transmitted pulse is chosen. It also shows that the 

piece-wise-constant assumption of fading gain on the transmitted signal is valid and 

accurate for the DD. 



As we will see, conventional differential detection does not work well all the time. 

As the delay spread becomes larger, IS1 is the main factor which makes performancv 

deteriorate rapidly. It is shown in the thesis that even channel coding does not help 

when the delay spread is large, say, more than half a symbol interval. Therefore 

various techniques are suggested to combat ISI. In [14], Noneaker and Pursley use 

diversity to improve the performance of DD in the doubly selective (time selective 

and frequency selective) rayleigh fading channel. It works well at low delay spread, 

say 0.1. In [15] Cavers suggests that PSAM works better than DD when the delay is 

small, at the expense of a small expansion of bandwidth for using pilot symbol. 

Generally if IS1 is mentioned, people consider equalization. Today, "equalizer" 

is used to describe any device or signal processing algorithm that is de- 

signed to deal with intersymbol interference [I] .  Until now, no paper is found 

to apply equalization to solve IS1 in the DD in a frequency-selective Rayleigh fading 

channel. There are many papers which implement equalization in coherent PSK de- 

tection [22]. Linear equalizers experience noise enhancement in channels with severe 

frequency-selective fading, and therefore cannot be used. Nonlinear equalizers uti- 

lize decisions to either cancel the interference or enhance the signal. In [22], Baum, 

Borth and Mueller consider Decision feedback equalizer (DFE) as well as maximum 

likelihood sequence estimator(MLSE). It is found that adaptive DFE with the rapidly 

adapting algorithm can track the fast fading channel but with some error propagation 

problems. MLSE equalizers works better than DFE but its complexity is higher. 



We propose in this thesis the use of multi-symbol differential detection with de- 

cision feedback (DF) to improve the performance of differential detection in the 

frequency-selective Rayleigh fading channel. Compared with coherent PSK detec- 

tion, DD is easier to implement since it does not need much information about the 

channel. It makes decisions mostly by using received samples and without expan- 

sion of bandwidth so it is cheaper to implement. Divsalar and Simon [l8] used the 

maximum likelihood sequence estimation technique to analyze the performance of 

multiple-symbol differential detection for uncoded MPSK signals in the AWGN chan- 

nel. They demonstrated t hat the amount of improvement over conventional D PSK 

depends on the number of phases and the number of additional symbol intervals added 

to the observation. The first investigation of multiple-symbol differential detection 

in the Rayleigh fading channel was shown in [19] where two or more differential de- 

tectors were jointly utilized to take advantage of the redundancy introduced by the 

differential encoder. Later on Ho and Fung show in [6] the true optimal multiple 

symbol differential detector for uncoded PSK modulation transmitted over flat and 

dynamic Rayleigh fading channels with AWGN. An exact expression for the pairwise 

error event probability of this detector is derived there. In addition, it is found that 

this decoding strategy is not very sensitive to the mismatch between fade rates of the 

channel fading process and the one used in decoding metrics. 

In this thesis, sequence detection of differentially encoded PSK signals transmitted 

over a 2-ray frequency-selective Rayleigh fading channel is considered. The detector 

in our system is a multisymbol differential detector (MSDD) with decision feedback, 

processing N consecutive received samples and making a decision about the symbol 

in the middle (N  = 2 for conventional differential detector). It was found that with 



.V = rj. if the statistical channel parameters are estimated correctly at the receiver, 

the performance of the decoder is superior to conventional differential detection, es- 

pecially for the case of large delay between the two rays, say one symbol interval. 

We call this decoder as matched decoder. In nearly all cases that we examined, 

there are no noticeable irreducible error floors within the range of the investgated bit 

signal to noise ratio (SNR). The decoder can also provide satisfactory performance 

even when channels conditions are misinterpreted as long as a suitable transmitted 

pulse shape is chosen. We use the term mismatched decoder for the decoder using 

misinterpreted channel conditions. Of course, the smaller the mismatch is, the better 

the results are. The optimum 32-state convolution code combined with hard decision 

of the output from the MSDD gives us good results. Assuming certain channel condi- 

tions, BER goes down to for most matched and mismatch cases at SNR = 25dB 

even for fast fading channels. Since MSDD can combat IS1 in the frequency-selective 

Rayleigh fading channel, it can be referred to as a kind of equalizer in the sense of 

the defination of equalizer on Page 554 in [I]  

1.2 Contributions of The Thesis 

The major contributions of this thesis are summarized as follows: 

1. Examination of effects of channel parameters and transmitting pulses on the per- 

formance of the conventional differential detector (CDD) in a 2-ray frequency- 

selective Rayleigh fading channel. 



2. Suggestion of the multisymbol differential detection as a possible way of com- 

bating IS1 and improving the performance of differential detector in a 2-ray 

frequency-selective Rayleigh fading channel without expansion of bandwidth. 

3. Relaxation of the piece-wise constant assumption of fading gains in Rayleigh 

fading channel, concluding that piece-wise-constant is a good assumption for 

differential detection in Rayleigh fading channel. 

Thesis Outline 

In Chapter 2, a general description of the system block diagram for the CDD and the 

MSDD is given; the assumptions made in this thesis are clearly stated; and applica- 

tion of the channel coding scheme is shown. 

In Chapter 3, firstly we will analyze the performance of the CDD in a 2-ray 

frequency-selective Rayleigh fading channel. In the following sections we show the 

effects of various channel parameters and different transmitted pulses on its perfor- 

mance. The effect of optimal sampling time instants on its performance is also shown. 

In addition, we show the piece-wise-constant assumption usually used to model fading 

gain is a valid assumption to analyze the performance of differential detection. 

In Chapter 4, the MSDD is proposed to improve the performance of differential 

detector. The performance of this decoder, under both matched and mismatched 

conditions, with rectangular and raised-cosine pulse, are presented. 



In Chapter 5 ,  convolutional coding schemes are applied in both the C D D  and the 

MSDD. The comparison of the performance in the two cases is shown. 

Finally, we draw conclusions of this study in Chapter 6. 



Chapter 2 

Introduction to Differential 

Detection of QPSK Signals in a 

Frequency- Selective Rayleigh 

Fading Channel 

In this chapter, first we define the system notation and introduce the mobile commu- 

nication system, then describe the structure of the conventional differential detector 

(CDD) and the multisymbol differential detector(MSDD), and finally the application 

of coding scheme in communication systems. 



2.1 Assumptions and Notations 

The following assumptions are made in the whole thesis unless otherwise specified. 

First, the channel is assumed to be a doubly (time and frequency) selective Rayleigh 

fading channel. Second, sampling the received signal at the integer timing is assumed 

in most part of this thesis, and the effect of sampling the received signal at optimal 

timing is discussed in Section 3.5 and Section 4.1.2. 

This thesis uses E[o]  to represent statistical average, (0) '  to represent complex 

t conjugate, ( o ) ~  to represent the transpose of a matrix or a vector, and ( 0 )  to repre- 

sent the Hermitian transpose of a matrix. 

2.2 System and Channel Model 

The System block diagram of the uncoded communication system used in the thesis 

is given in Figure 2.2 while the diagram of the coded one is treated in Section 2.4. 

Complex baseband notation is used throughout the thesis. 

2.2.1 Transmitter 

First, let's consider the structure of the transmitter, which is the upper part of Figure 

2.2. A sequence of binary digits ik from the source coder is fed into the transmitter. 

In the uncoded system, the data PSK symbol ck is obtained after modulation and 
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then sent into the differential encoder. The output is a sequence of transmitted PSK 

symbols xk's. The emphasis is on QPSK throughout the thesis. 

Figure 2.2: QPSK constellation 

The constellation of QPSK is shown in Figure 2.2. Due to the differential encoding 

process, the kth transmitted symbol 21, is related to the kth  data symbol ck by the 

following equation: 

where both ck and r k  are QPSK symbols chosen from the set { e o p [ F ] ,  n = 0,1,2,3 

17 



). or equivalently (1, j, -1, - j ) .  While the sequence of transmitted PSK symbols x k  

is inputed to the pulse shaping filter, the transmitted signal x(t),  the output of the 

~ u l s e  shaping filter, is transmitted over the channel. 

Based on the above description, the baseband equivalent of the transmitted signal 

x(t)  can be written as 

where A is a constant, p(t) is the transmitted pulse, is the pulse rate. The pulse 

p(t)  is a unit energy Nyquist's pulse, ie. 

Two kinds of pulse shaping filters are considered: rectangular pulse filter and square 

root raised-cosine pulse filter. Usually we are more interested in the impulse response 

q( t )  of the combination of the transmitter and the receiver filters and its spectrum. 

If P(f)  is the Fourier transform of p(t) and Q(f) is the Fourier transform of q(t) ,  we 

know 

where @I represents convolution. The factor -& in the matched filter is to normalize 

the variance of the additive white noise in the received sample to unity. In the case 



that p( t )  is a rectangular pulse, q ( t )  is 

and its spectrum is 

while in case of square root raised-cosine pulse, q(t)  is 

and its frequency response is 

elsewhere 

('2.9) 

2.2.2 The Frequency-Selective Rayleigh Fading Channel Model 

Due to the multipath feature and the limited bandwidth of digital cellular channel, 

the transmitted signal x(t) suffers frequency-selective distortion. The digital cellular 

channel is considered to be a wide-sense stationary zero-mean complex Gaussian ran- 

dom process including the additive white Gaussian noise (AWGN) and can be treated 



as time-variant system with an impulse response c ( r l ;  t )  plus the AWGN n,(t). This 

means the received signal is 

Proakis in [I] indicates that in most transmission media the attenuation and phase 

shift of the channel associated with path delay TI is uncorrelated with those associated 

with path delay 7 2 ,  thus the autocorrelation function of C ( T ;  t )  can be defined as 

where J, [o]  is the zero-order Bessel function, and 

is the maximum Doppler frequency at a mobile vehicle speed of v. Here f ,  is the 

carrier frequency and c is the speed of light. For example, if the car travels at a speed 

of v = 120 km/hour and if the carrier frequency is f ,  = 900 MHz, the corresponding 

maximum Doppler frequency f D  is 100 Hz. In this thesis, we are going to study 

the range of f D  from 0 H z  to 100 Hz, which corresponds to the speed of the 

vehicle from rest to 120 kmlhour. The fade rate is more commonly used which 

is defined as f D T ,  where T is the pulse duration and + is the pulse rate. According 

to IS 54, the pulse rate is + = 24 kHz, therefore the fade rate f D T  varies from 0 



t o  0.004. G(r1) is the power-delay profile. In the case of the flat fading channel, the 

yower-delay profile is simply 

G(r,)  = +(r1) 

where CT; is the variance of the flat fading process. 

Example 

Figure 2.3: Two-ray channel model 

As indicated in Chapter 1, a two-ray channel model is generally adopted to describe 

the frequency-selective fading channel and it is shown in Figure 2.3. As we can see, 

21 



x( t )  arrives a t  the receiver through two rays. There is a flat fading process in each 

ray, but the combination of the two represents the frequency-selective fading process. 

The relative delay T between the two paths is comparable with the pulse duration T, 

and therefore is not negligible. Mathematically the impulse channel response c(rl ; t ) 

and then the received signal r ( t )  can be written as : 

The process n,(t) in (2.15) is additive white Gaussian noise (AWGN) in the channel 

and it has a two-sided power spectral density of No. On the other hand, both g(t)  

and h( t)  represent the effect of flat fading. Their autocorrelation functions are 

and 

respectively. Note that  the parameter X in these equations is the delay variable and 

Jo(e)  is the zero-order Bessel function. 



It is easy to show that the delay-power profile G(T,) in Equ. (2.1 1 )  is 

G(T*)  = u:S(T,) + u : ~ ( T ,  - T )  

where u: and u: are variances of the two fading process g(t)  and h(t).  

We define the power split ratio a as 

When the other channel parameters are fixed, the performance of the CDD, with the 
1 

optimal sample timing, is the same for a1 = a and cr2 = -. However, the performance 
a 

1 

of the CDD with integer sample timing are different for a1 = a and o2 = 1. Specif- 
a 

ically, if a < 1, the performance of the CDD with a1 = a can be significantly worse 
1 

than its o2 = - counterpart. Due to the sequence estimation nature, the performance 
a 

1 

of the MSDD is believed to be insensitive to whether ol = a to a2 = 1 in the actual 
a 

channel. Consequently, we consider only the case of o 2 1. 

The power split ratio a, together with the relative propagation delay T in the 

two paths, play a key role in the performance of the differential detector. In this 

thesis, we are going to study the performance of the differential detector 

within the realistic ranges of o and T according to measurements of various 

environments. The power split ratio a, the power of the direct ray against 

that of the delay ray varies from 1 to oo. The delay T between the two 

paths is less than or equal to one symbol interval T, ie. 0 < T < T. We are 



more interested in the normalized relative delay p which is defined as 

Since T is less than or equal to one symbol interval T ,  it is obvious that p E [O, 11. 

In [15] ,  Cavers uses the first two moments of G(T), Tm and T,,,, to characterize the 

time dispersion. As for this two-ray channel model, the relationships between a ,  p,  

T, and T,,, are given below 

The received symbol signal to  noise ratio is defined as 

while the bit signal to noise ratio for uncoded QPSK is simply 

2.2.3 Receiver 

The received signal r(t),  in (2.10) will pass through a matched filter with an impulse 

response of .% and the output of the matched filter is 



and it is sampled once every T seconds. At the sampling instants t = kT (the integer 

sample timing), the received sample can be written as 

where 

is the fading gain on the nth transmitted PSK symbol at instants t = kT, and the n;s 

are a set of independent and identically distributed (iid) complex Gaussian variates, 

each assumed to have a zero mean and a unit variance. In the second expression of 

(2.26), the first term x k  is the desired transmitted PSK symbol and the rest in the 

second terms represent intersymbol interference (ISI). For a flat fading channel, the 

IS1 terms are zero. 

The structure of the decoder at the receiver is the emphasis of this thesis. We 

use the following separate section to describe the structures of two types of detec- 

tors: conventional differential detector (CDD) and multisymbol differential detector 

(MSDD). 



2.3 The Differential Detector 

The sequence of received samples 

is sent to a generic differential detector. This generic detector has an observation 

window of N samples, where N 5 2. It processes all the N samples within the current 

window and makes a decision about the data symbol located at the middle of the ob- 

servation window. Once a decision has been made, the window will be moved ahead 

by one sample. The CDD is of N = 2. Any detector with N > 2 is termed a mul- 

tisymbol differential detector (MSDD). The structure of the two decoders are given 

in Figure 2.4, where part (a) represents a CDD while part (b) represents a MSDD 

of N = 5 with decision feedback (the branch AB). Note that it is straightforward to 

extend the methods described in this thesis to any other value of N ( N  > 2) samples. 

The N received samples, y k - ~ ~ + l  to Y ~ - N ~ + N ,  can be written in vector form as 

where there are Nl - 1 samples are ahead of yk and N - Nl samples after yk (Nl < N). 

Each element in (2.28) is defined by (2.26). For the sake of simplicity, yk in (2.26) 
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can be represented by finite number of terms as 

It is seen from (2.29) that the vector Y is a function of the fading gain vectors 

U = ( U k - ~ ~ + l , .  . - ,Uk7  U k + i , . . - , U k - ~ l + ~ )  

where 

Uk = ( W - M ~ , ~ ,  . . . , W - I , ~ ,  w , k ,  w+l,k,. . . , W + M ~ , ~ )  

as well as a function of the vector of transmitted symbols 

or equivalently a function of the vector of data symbols 

If we define 

then the length of X is L while the length of (2 is L-1 with L1 symbols ahead of ck. In 

the following subsections, first we consider the optimal generic decoder to  determine 

the (L1 + l ) t h  symbol ck in the C ,  then we will consider the specific examples of a 

CDD ( N  = 2), and a MSDD ( N  = 5). 



2.3.1 The Optimal Generic Decoder 

The random vector (2.28) is Gaussian and has a zero mean. Its probability density 

function (pdf) conditioned on ck is denoted by pY (Y (ck),  while p y  (Y IC) is the con- 

ditional pdf of Y given the vector C .  If all the data PSK symbols are used with equal 

probability, it is obvious that py(YIck) is the sum of the conditional pdfs of Y given 

the vector C containing ck. Thus the optimal decoder is the one that computes for 

each possible value of ck the metric 

PY ( Y h )  = PY (YIC). (2.35) 
C:C~EC 

Note that the above summation is over all the possible C's whose ( L 1  + l) th symbol 

is ck. For any vector C, the conditional density function py(YIC) is given by 

1 
PY(YIC) = exp {-:~ta;i (c)Y) 

(2~)NII~yu(c) l l  

where +yy(C) is the correlation matrix of Y given that C is the transmitted data 

vector, and 1 1  1 1  denotes the determinant of a matrix. The decoder selects the value 

of ck that gives the largest metric. Note that the correlation matrix ayy(C) can be 

determined from the equations given in the next two subsections. 

The optimal decoder in (2.35) requires the computation of exponential functions 

and their sums. A simpler decoder would be-the one that uses the assumption that 

the sum in (2.35) is dominated by the largest term. In this case, the decoder simply 

selects the C vector whose metric 



is the smallest. Subsequently, the value of the symbol ck in C will be chosen as the 

decoded symbol. 

2.3.2 Conventional Differential Detector 

When using N = 2 received samples to decode, the metric used in the CDD is optimal 

for the flat fading channel. In this case, the diagonal elements of Q;; (c), as well as 

the determinant ~~@;:(c)II, are independent of the IS1 symbols in the sequence C . 

This implies the metric defined in (2.37) is reduced to 

where Re[.] means the real part of [o ] .  The metric shown in (2.38) is simple and 

independent of the channel conditions. However, it is not optimal for a selective 

fading channel. In this thesis, we apply the CDD to the frequency-selective Rayleigh 

fading channel and investigate its performance. Detection is performed by calculating 

for each possible symbol Q in the set {exp[%], n = 0,1,2,3) the likelihood of (2.38) 

and selecting the symbol & with the largest likelihood. The performance of the CDD 

will be shown in Chapter 3. 



2.3.3 Multisymbol Differential Detector 

Now let us consider the case N > 2 in (2.37), ie. MSDD. For demonstration purpose. 

we choose N = 5. The correlation matrix then becomes : 

where 

and the term $,,(i, j) is defined in (A.2). From Appendix A, we know that q5,,(i1 j) 

depends on the shape of the combined impulse response q(t) and channel parameters. 

Since we consider a MSDD with N = 5, we assume that the matrix (2.39) is 

mainly determined by L successively transmitted QPSK symbols of X in (2.31) or 

L-1 corresponding data QPSK symbols of C in (2.32). L is given in (2.33). At the 

receiver, a set of channel statistical parameters are predetermined including the max- 

imum Doppler fade rate jDT in (2.12), the power split ratio a in (2.19), the relative 

delay p in (2.20), and the working bit signal to noise SNR in (2.24). There are 4L-1 

different vector C 's due to various combinations of L - 1 data QPSK symbols. Thus 



with the knowledge of channel statistical parameters we can calculate for each C the 

inverse and determinant of @,, (C)  and store them in the decoder codebook. The de- 

cision feedback (DF) feature in Figure 2.4 (b)  is also very important and is explained 

in detail in Chapter 4. The MSDD feeds back L1 previously decoded symbols to the 

decoder. When decoding with N successively received samples, the MSDD calculates 

the metric given by (2.37) for each C vector whose first L1 symbols are the same as 

the L ,  previously decoded symbols, selects the C vector whose metric is the smallest. 

and chooses the (L1 + l ) t h  symbol in the selected C as the decoded symbol. 

One point worth discussing is that the decoder works under mismatching channel 

conditions. The use of the MSDD in (2.37) requires that the receiver can predeter- 

mine the correlation matrix associated with the channel. This translates into having 

knowledge about the Doppler frequency fD, the relative delay p, the power split ra- 

tio a. Estimating all these parameters accurately can be a difficult task. Even if it 

is possible, the extra effort required may contradict the rationale of using partially 

coherent detection in the first place. Consequently, we focus our attention in mis- 

matched decoders. As for a mismatched decoder, we are referring to the one that uses 

a fixed cP,,(C), regardless of the values of the actual channel parameters. As readers 

will find out in Chapter 4, it is more important to estimate accurately the relative 

delay p and the power split ratio a. The performance of the matched and mismatched 

MSDD will be presented in chapter 4. 

The MSDD in this thesis is designed for the two-ray channel model. If the actual 

channel model is different from this two-ray channel model, definitely we can not 



achieve the performance of the matched MSDD. The degradation of the performance 

of the MSDD can be large. For example, the actual channel model is a three-ray 

channel with equal split power on each ray. But we only design the decoding metrics 

for a two-ray channel, then the power on the third ray becomes the additive noise 

part in the received sample. Thus equivalently, the signal to noise ratio becomes very 

low and the degradation of the performance of the MSDD is large. But in this thesis 

we concentrate on the MSDD working under the actual two-ray channel model. 

Channel Coding 

Convolutional coding can be incorporated in both the CDD and the MSDD based 

systems. The system block diagram with convolutional coding is shown in Figure 2.5. 

The additional parts due to coding are shown in dash-line boxes. At the transmitter 

side, the information binary data iks is sent into a rate f (53, 75) convolutional en- 

coder, illustrated in Figure 2.6. (53, 75) is the octal notation representing the output 

branches from the encoder registers. The output of the encoder ek's are mapped into 

data QPSK symbol ck. These data QPSK symbols are interleaved by an ideal inter- 

leaver and then sent into the differential encoder. 

At the receiver side, for the case of the CDD (see Figure 2.7(a)), the sequence 

of the metric vi = yky;-, obtained from the two successive received samples is dein- 

terleaved. The output of the deinterleaver is' sent into Viterbi Decoder (VD). With 

the branch output QPSK symbol cb, the VD forms the branch metric 2 R e [ ~ i y ~ y ; - ~ ] .  

There are 32 nodes at each stage in the trellis diagram corresponding to the rate $ 



Figure 2.5: System block diagram with coding 



Figure 2.6: Structure of the rate $ (53, 75) convolutional encoder 
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(53, 75) convolutional encoder while two paths are coming to and leaving each node 

respectively. Thus at each stage in the trellis diagram, VD computes 64 metrics cor- 

responding to the 64 paths leading to nodes, discards half of them and saves the most 

probable half of transitions. The discarding and saving procedure is then repeated for 

each subsequently received sample. During decoding, the VD selects the path that 

has the largest metrics out of the 32 terminating nodes, traces back to the beginning 

node and finds out the corresponding input binary bits [ k .  

As for the MSDD (see Figure 2.5 and Figure 2.7(b)), v i  is the estimate of the 

interleaved data PSK symbol 2k. The output of the deinterleaver, vk = 4, is sent 

into the VD. Assuming that cb is the output symbol on the transition branch in 

the trellis diagram, the branch metric is the Hamming distance between the binary 

representations of cb and ci, . Other procedures are similar to that in the CDD 

described above except that the VD selects the path that has the smallest metric 

among 32 terminating nodes. 



Chapter 3 

Performance of Conventional 

Differential Detection in A 

Frequency-select ive Rayleigh 

Fading Channel 

In this chapter, we investigate the performance of the conventional differential de- 

tector (CDD) in a frequency-selective Rayleigh fading channel. It is found that its 

performance depends on the transmitted pulses as well as the channel parameters. 

In the first section, we will analyze the performance of the CDD to detect un- 

coded QPSK signals with an arbitrary transmitted pulse shape under any fading 

spectrum and delay power profile. In the second section, we restrict our attention to 



a rectangular transmitted pulse shape with a duration of one symbol interval. The 

analytical results illustrate the dependence of the performance of the CDD on channel 

parameters while simulation results provide proof to show how good the analysis is. 

In the third section, we consider raised-cosine pulses and analyze the corresponding 

performance of the CDD. In the forth section, we will use the piece-wise-constant as- 

sumption to analyze the performance of CDD and show that it is a good assumption 

for analysis and simulation. And in the last section, we will consider the effect of 

optimal sampling on the error performance of the CDD. 

General Performance of CDD 

As shown in Chapter 2, two successive received samples are used to  detect the trans- 

mitted information in the CDD. Rewriting the two received samples in (2.29) below: 

where u ~ , ~ ' s  and U ~ , ~ - ~ ' S  are fading gains given by (2.27) and 2,'s are the transmitted 

PSK symbols given by (2.1). 

Given ck is transmitted the CDD will make an erroneous decision if for some 4 

not equal to ck, the random variable D defined below is less than zero: 
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D = iM(C;E) - ibf(~k) = ~ k y i - ~ d ;  + y i ~ ~ - ~ d ~ .  

where M(ck)  is the metric in (2.38) and dk is given as 

For any pair of ck and 4, the chance that D is less than zero is called the symbol 

pairwise error probability and is denoted by 

A union bound on the average bit error rate (BER) is simply 

where a(ck, ?k) is the information-bit error in making a wrong decision and m is the 

number of information bits per channel symbol. The overline over P(ck + 4) means 

the average of the symbcl pairwise error probability over all data PSK symbols and 

all possible interference symbol sequence. 

Since we are interested in QPSK, cr; will take one of the four symbols from the 

set { 1, j ,  -1.  - j}. If ck is assumed to b e  transmitted, there are three possible symbol 



 airw wise error probabilities P(ck  -, &)  where could be jck, -ck, or -jck. Accord- 

ing to the metric in (2 .38) ,  we find that 

Whenever 

M(ck) is negative, and since Max[M(jck), M(-jck)] is always positive, thus 

M(ck) < Max[M(jck), M(- j ~ k ) ]  

which means that given ck transmitted, the opportunity that the CDD chooses -ck 

is included in the opportunity that it chooses jck and - jck. Therefore, in our error 

analysis of the BER, we only consider the two nearest neighbor error events. It is 

assumed that gray mapping is used to map information bits into channel symbols. In 

other words, only one information bit error is made in a nearest neighbor error event. 

Consequently, (3.6) becomes 

where the overline represents a statistical average with respect to the all possible val- 

ues of ck and the interference symbols. 



From the above equation, it is clear that the key to the error analysis is to de- 

ter~nine a general expression for the pairwise error probability. To determine this 

probability. we make use of the fact that the random variable D in (3 .3 )  is a quadratic 

form of complex Gaussian variates conditioned on the data QPSK sequence. tising 

the characteristic function technique described in [l]  and [ 2 ] ,  it can be shown that the 

pairwise error probability is given by 

where 

and o:-, and ui are the variances of the samples yk-1 and yk, and c $ ~ - ~  is the cor- 

responding covariance. Note that notation I e I is used to denote the magnitude of a 

complex number. 

3.2 The Rectangular Pulse Shape 

The method to analyze the performance of the CDD given in Section 3.1 is general. 

Any kind of transmitted pulse shape can be applied. In this section, we consider a rect- 

angular pulse with pulse duration T. This means q(t) is a triangle pulse given in (2.6). 



3.2.1 The Error Performance 

Since q ( t )  is of duration 2T, it is obvious that there is only one interference symbol in 

the received sample yk and yk-l respectively. Thus = 1 and ,M2 = 0. Equ. ( 3 . 1  ) 

and ( 3 . 2 )  become 

Let a: and be the variances of the samples yk and yk-1 and u:,~-, be their cor- 

responding covariance, then 

where $k,k(e, e) ,  $k-l,k-l(e, e), and dk,k-l(e, e) are defined by (A.2) and determined 

by (A. 11) in Appendix A. ck is the desired data  PSK symbol while ck-1 is the inter- 

ference symbol. Applying (3.15), (3.16), and (3.17) to  (3.10) - (3.12), we can obtain 



the performance of CDD in a frequency-selective Rayleigh fading channel. 

The pairwise error probability given by (3.1 1 )  and (3.12) can be applied to any hl- 

ary PSK modulation in a straightforward fashion. In the following, we will first apply 

it to BPSK and get a rough idea of the performance of the CDD in the f ,  rr q uency- 

selective Rayleigh fading channel. Then the performance of the CDD of QPSK signals 

in the frequency-selective Rayleigh fading channel will also be shown. Once again, 

the received signal is assumed to be sampled at integer sample timing. 

\ 3.2.2 Example One: BPSK 

I Let us first consider the special case of BPSK with static fading (fD = 0.0) and a 

normalized relative delay of p = 1. Since BPSK symbols are real, this implies the 

error probability in (3.1 1) becomes 

and a:, a:-, and af,k-l are 

Where r is symbol signal-to-noise ratio 2 defined in (2.23). Consequently, the BER, 

after taking average over the two possible values of the interfering symbol ck-1, is 



At large symbol signal-to-noise ratio F, the above reduces to z. In other words, 

even in the case of static fading, there exists an irreducible error floor. In the worst 

case of equal power split, this error floor is as large as i. Once again, it should be 

pointed out that the above results is for the special case of a relative delay equal to 1 

symbol interval. For smaller relative delays, the average bit error rate will be better 

than the above. 

As for the performance of BPSK at the optimal sampling time, see Section 3.5. 

3.2.3 Example Two: QPSK 

We have studied in detail the error performance of uncoded QPSK in the 2-ray 

frequency-selective Rayleigh fading channel. 

The BER versus bit signal-to-noise ratio (SNR) curve for QPSK at a Doppler 

frequency of fDT = 0.004 and a normalized delay of p = 1 is shown in Fig. 3.1 with 

the power split ratio a, in dB, as a parameter. The case of a = 10000 approaches 

the channel conditions of a flat fading channel while a = 0 dB corresponds to equal 

power split among the two arrival rays. The results in this figure suggest that the error 

floor is dominated by the power split ratio a as long as the relative delay is relatively 

big. From (2.22), T,,,, the root-mean-square of the delay T, is related to both a and 



Figure 3.1: The BER vs % curves of QPSK using a rectangular pulse 
foT = 0.004 and p = 1.0. The different curves are (1)a = OdB, ( 2 ) a  
(3)a = 20dB ( 4 ) a  = 30dB and ( 5 ) a  = 40dB respectively 

and with 
= 10dB. 



p. T l ~ i s i  t is obvious that the error floors also depend on the con~biueci paranwter r,,,,, . 

3.2: The  BER vs curves of QPSK using a rectangular pulse and with 
0.004 and cu = OdB. The various curves are ( 1 ) p  = 1.0, ( 2 ) p  = 0.75, ( 3 ) p  = 0.5 
0.25, and ( 5 ) p  = 0. Signs "*", "x", and "on are simulation results for the cases 
= 1.0, (:3)p = 0.5 and ( 5 ) p  = 0 respectively 

The  effect of the relative propagation delay on the error performance is shown in 

Fig. 3.2. The Doppler frequency is fDT = 0.004 and the power split ratio a is 0 dB. 

The case of a zero relative delay corresponds to  flat fading. It is observed that with 

the given channel parameters, a small delay of p  = 0.25 already causes two orders of 

magnitude change in the error probability from the flat fading case. For larger values 

of cu though, the change in the error probability becomes less dramatic as p  changes, 



see Fig. 3.3. 

Figure 3.3: The BER vs % curves of QPSK using a rectangular pulse and with 
fDT = 0.004 and a = 2 0 d B .  The various curves are (1 )p  = 1.0, ( 2 ) p  = 0.75, 
( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and ( 5 ) p  = 0. 

The simulation results are also given in Figure 3.2. The signs "0" are for the case 

p = 0.0; The signs "x" are for the case p = 0.5; and the signs "*" are for the case 

p = 1 .O. It is observed that the simulation results agree very well with the analytical 

results. Thus we can see that the analytical results given by (3.10) are accurate. 



Figure 3.4: A three dimensional BER plot of QPSK at a SNR of 25dB using a 
rectangular pulse. The normalized Doppler frequency is fdT = 0.004. 



The dependence of the BER on both the power split ratio cr and the norrllalized 

relative delay p is illustrated in the three dimensional error plot in Fig. 3.4. T l ~ r  

total rec-eived hit signal-to-noise ratio is equal to 25 dB and the normalizeci Doppler 

Frequency is once again fDT = 0.004. The roles played by cr and p are quite evident 

from this figure. 

3.3 The Raised-Cosine Pulse Shape 

In the previous section, we illustrate the performance of the CDD for QPSK with a 

rectangular pulse operating in the frequency-selective Rayleigh fading channel. There 

is only one interference symbol in the received sample. In this section, we will analyze 

the performance of the CDD for a raised-cosine pulse although the method is also 

suitable to other kind of pulses. In this case, the received sample will contain a few 

interfering symbols. 

Recall once again that the received samples yk and yk-1 are shown in (3.1) and 

(3.2). Given ck being transmitted, the CDD will make an erroneous decision if for 

some cj, not equal to  ck, the random variable D defined in (3.3) is less than zero. It 

is obvious that the way to find out the BER is the same as before, ie (3.5) - (3.1'2) 

still hold. However, the raised-cosine pulse has finite frequency duration and there- 

fore infinite time duration. Thus there are a: number of significant IS1 terms in the 

received sample, instead of one IS1 term as in the case of the rectangular pulse. Even 

for a pulse with a small roll-off factor in a frequency-selective fading channel with 



L corresponding to more than 1021 patterns of interference symbol sequelice when  11s- 

ing QPSK. This significantly hinders the average BER calculation in (3.10). 

In  [Is], Cavers suggests a way to average the variances and covariances over the 

interference symbol sequences first and then calculate the BER. He finds that the 

lnethod works well without restriction of the length of IS1 and the result on the BER 

is an extremely tight approximation. This method is adopted in the thesis. 

3.3.1 Approximation to the Pairwise Error Probability 

Since the two received sample are given by (3.1) and (3.2), a: and a:-,, the variances 

of the samples yk and yk-1, and u : ,~ -~ ,  the corresponding covariance are 

where 4k,k(a,e), dk-l,k-l(e,e), and 4k,k-l(e,e) are defined by (A.3) in Appendix A, 

and xi and xj are the transmitted PSK symbols. Using Cavers' tight approximation 

show- in Appendix B, (3.22), (3.23), and (3.24) become 



k-1+.L12 

= ( i , )  + R ~ [ c - , - ( ~ ,  - I ) ]  + 1 (3.26 

k -1+Mz  
2 - 4 k . k - 1  ( i ,  i )  + c ~ & . x - I ( ~ ,  - 1 )  

U k . k - 1  - 

- -  
where c k  is the data PSK symbol. Note that a:, a:-,, and a : , k - ,  given above only 

--  
2 depend on the data PSK symbol c k .  Substituting a:, a:-,, and a:,k-l for a:, ak-l 

and ~ i , ~ - ~  in (3.1 I ) ,  we obtain approximation to P(ck  + j c k )  and P(ck + - j c k )  re- 

spectively and finally obtain the BER in equation (3.10). 

3.3.2 The Error Performance 

The previous subsection provides a method to calculate the BER for a given MI and 

iW2. In the following, we set MI = 8 and M2 = 7. Then there are sixteen terms in the 

received sample. In the case of the raised-cosine pulse with a roll-off factor of 0.35, 

the maximum variance of the fading gains in the IS1 terms which are thrown away is 

less than of the maximum variance of the fading gains on the data PSK symbol. 

The rest of fading gains decay in the order of t - 3 .  So keeping 16 terms in the received 

sample is accurate enough to represent the actual received sample and thus (3.25), 

(:3.'26), and (:3.27) become 



where d k , k ( @ ,  a ) ,  d k - l , k - l ( ~ ,  o), and d k , k - l ( o ,  0 )  are given in (A . l l ) .  We substitute 

(:3.28), (3.29) and (3.30) into (3.11) and (3.12) to calculate the BERs. 

The numerical results presented in this subsection are valid for both the conven- 

tional and the $-shift version of QPSK. The BER versus bit SNR curves for QPSK 

with a raised-cosine pulse at  a Doppler frequency of fDT = 0.004 and power split 

ratio of a = 1 is shown in Figure 3.5. Figure 3.5 is generally similar to Figure :3.2 but 

its error floors are a little bit higher. This is due to more IS1 terms in the received 

sample so that the performance of the CDD becomes worse. Simulation results are 

also shown for the cases p = 0 (by signs "on),  p = 0.5 (by signs "x") and p = 1.0 (by 

signs "*"). It is obvious the analytical results are in accordance to the simulations. 

Figure 3.6 illustrates the effects of truncating the interference symbols. The con- 

ditions are Doppler frequency fDT = 0.004, a normalized delay of p = 0.25 and power 

split ratio a = 1. It is discovered that the results of the performance of the CDD are 

accurate enough if we keep more than six IS1 terms in the received sample. 

Before ending the section, we will show in Figure 3.7 the effect of the roll-off factor 

on the performance of the CDD. The  conditions are the same as the previous figure, 



Figure 3.5: The BER vs 2 curves of QPSK using a raised-cosine pulse with ,~9 = 0.35 
at fDT = 0.004 and a = OdB. The various curves are ( 1 ) p  = 1.0, ( 2 ) p  = 0.75, 
( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and ( 5 ) p  = 0.  



Figure 3.6: The BER vs 2 curves of QPSK using raised-cosine pulses ii ith /3 = 0.35 
at jDT = 0.004, p = 0.25 and a = OdB. The various curves show different BERs 
when different number of interference terms are kept in the received sample. 
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Figure 3.7: The BER vs % curves of QPSK using different raised-cosine pulses at 
fDT = 0.004, p = 0.25 and a = OdB. The various curves show different BERs when 
raised-cosine pulses with different P are used to transmit. 



ct = 1.  Sixteen terriis are kept in the received sample. It is obvious that the best 

pulse used for transmission is d = 1.0 and the worse is 3 = 0.0. It shows the trade-off 

I~etween bandwidth and performance. Larger bandwidth provides better performanc-e 

in the CDD. Another thing worth pointing out is that the performance of the ( 'DD 

for QPSK with a raised-cosine pulse of 3 = 1.0 is better than that of the rectangular 

pulse. When the roll-off factor of @ = 1.0, side lobes of the raised-cosine pulse are 

very small compared with the main lobe. And more importantly, the slopes of the 

main lobe of the raised-cosine pulse q( t )  decay faster than the slopes of triangle pulse. 

That is the reason why the CDD works better with a raised-cosine pulse of P = 1.0. 

/ 

3.4 Validity of the Piece- Wise-Constant assump- 

tion 

In the analysis and simulation of fading channels, the piece-wise-constant assump- 

tion is often used because of its convenience. In other words, the fading process in 

the channel is assumed to  change so slowly that the complex fading gain is roughly 

constant within one or a few successive symbol intervals. Cavers shows, in [21], the 

validity of this assumption for the flat slow and moderate fading channel. In this 

section, we are going to  show the effectiveness of this piece-wise-constant assumption 

in the frequency-selective slow fading channel. 

Assuming the received signal r ( t )  is given by (2.15). It can be rewritten as 



If we adopt the piece-wise-constant assumption, ie. the fading process g( t  ) and h ( t  ) 

change so slowly that they keep roughly constant within one symbol interval. the11 

r ( t )  can be written as 

where gk and hk are the values of g( t )  and h( t )  at  the t = k T  instants. The received 

waveform r ( t )  passes through the matched filter and the output y( t )  is 

where q(e)  is given by (2.4). 

3.4.1 TheRectangular Pulseshape 

If p ( t )  is a rectangular pulse and then q( t )  is a triangle pulse given in (2.6), according 

to [20], the kth  and (k - 1)'h samples are 

In the above equations, the n;s are a set of iid complex Gaussian variates, each having 
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a zero mean and a unit variance. On the other hand, the n;s and the b: ; are samples 

of the two fading processes g(t)  and h(t)  in (2.15). Specifically, 

Since we are going to use (3 .10 )  - (3 .12 )  in the performance evaluation, we have 

to first determine u i  and u:-,, the variances of the samples yk and yk-1, and ui,k-l, 

their corresponding covariance. According to [20] ,  The received symbol SNR for each 

propagation path, in the absence of the other path, is given by: 

and 

where Re[.] is used to denote the real part qf a complex number, 



is the variance of ak in (:3.:36), 

is the variance of bk in (:3.37), 

is the covariance of ak and bk, 

is the filtered noise power, and 

is the value of the zero-order Bessel function evaluated at k times the fade rate fDT. 

Equations (3.38)-(3.47) can then substituted into (3.12) for calculating the pairwise 

error probability. Since the value of the pairwise error probability depends on the data 

symbol ck and the interfering symbol ck-1, the average pairwise error probability, ob- 

tained over all values of ck and ck-1, should be used in the union bound in (3.10). If 

the channel conditions are: a fade rate fDT = 0.004 and a power split ratio a = OdB, 

the dependence of the performance of the CDD on the relative delay p is shown in 

Figure 3.8. It is obvious that Figure 3.8 is almost the same as Figure 3.2. We tried 

other channel conditions, the results are the same. So it can be concluded that the 

piecewise-constant assumption is valid at least for the rectangular pulse. Now let us 

see the case when the transmitted pulse is a raised-cosine pulse. 



Figure 3.8: The BER vs curves of QPSK using a rectangular pulse at  fDT = 0.004 
N? 

and a = OdB with piece-wise-constant assumption. The various curves are ( 1 ) p  = 1 .O, 
( 2 ) p  = 0.75, ( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and ( 5 ) p  = 0.  



3.4.2 The Raised-Cosine Pulse Shape 

If q ( t )  is the raised-cosine pulse given by (2.8), the kth and ((t - l ) t h  samples are 

Using Caver's tight approximation shown in Appendix B and considering 16 most 

significant terms in (3 .48)  and (3 .49) ,  we can approximate o; and a:-, , and a;,k-l as 

where a: is 

-- 
and r,, r h ,  and J1 are all given by (3 .38) ,  (3.39),  and (3 .47) .  Substituting a; ,  a;-,, 



and P(ck + -jck) respectively and finally obtain the BER in equation (3.10). If the 

channel conditions are a fade rate fDT = 0.004 and a power split ratio cr = OdB, 

the dependence of the performance of the CDD on the relative delay p is shown in 

Figure 3.9, which is obviously almost the same as Figure 3.5. We tried other channel 

Figure 3.9: The BER vs 2 curves of QPSK using a raised-cosine pulse with = 0.35 
at fDT = 0.004 and a = OdB with piece-wise-constant assumption. The various 
curves are (1)p = 1.0, (2)p = 0.75, (3)p = 0.5 (4)p = 0.25, and (5)p = 0. 

conditions, the results are the same. 



3.4.3 Explanations of the Assumption 

The above two subsections, using numerical results, show that piece-wise-constant is 

an accurate and convenient assumption in the analysis of the CDD in the frequency- 

selective Rayleigh fading channel. In the following, we try to explain, through the 

derivation, why we have the coincidence. 

First assuming the piece-wise-constant assumption, we calculate the correlation of 

the fading gains on two symbols as follows. Considering Equ. (3.33), also (2.16) and 

(2.17) and assuming that q(t) is an even function , the correlation of fading gains on 

any two symbols are 

where S1 and S2 are given in (A.lO) and G(r1) is the power-delay profile given in (2.13). 

Then without the piece-wise-constant assumption, let us derive a reasonable ap- 

proximation to the correlation of (A.l l) .  Since we only deal with slow fading, the 

maximum Doppler frequency fD is very small compared with the sampling rate +. 

Numerically, the fade rate fDT < 0.004 , much smaller than 1. Thus within the range 

of frequency [- fD, fD], P(f - () can be simplified as 



where P (e )  is the frequency spectrum of the impulse response p(t) of the pulse shap- 

ing filter. The derivative of P(<) is given by 

and therefore A( f ,  6) in ( A . l l )  can be approximated as 

The combined-transmitter-and-receiver filter q(t),  defined in (2.4), has a frequency 

response of 

and its derivative is 

where F[m] represents the Fourier transform. This means A( f ,  6) in the range - fD 5 

f 5 fD can be written as 



The approximation shown in (3.60) coincides with Figure A . l  and Figure A.2. If q( t )  

is a raised-cosine pulse, fixing f = 0, A(0,S) gives the raised-cosine pulse shape, which 

is in accordance with Figure A.1. On the other hand, fixing b = ? T  and being in the 

range of -0.004 5 f 5 0.004, the real part of A(0,:T) is nearly constant and the 

imaginary part is a line segment, which is in accordance with Figure A.2. 

With the approximation in (3.60) and the condition that 

due to very small fDT,  the correlation in (A.3) is simply: 



It is obvious that the approximated correlation given above is in accordance with 

the correlation given by (3.54) derived from the piece-wise-constant assumption. 

Summarizing the derivation above, when the maximum Doppler frequency f D  is 

very small compared with the sampling rate +, ie. when the fade rate jDT << 1, 

we can simplify P(f) as shown in (3.55) and subsequently obtain the simplification of 

A ( j ,  6 )  as shown in (3.60). Again due to foT << 1, two conditions are obtained in 

(3.61) and (3.62), then we come to the same correlation equation as the one derived 

from the piece-wise-constant assumption. Therefore we can conclude that when the 

fading process is slow enough, the piece-wise-constant is a reasonable and 

good assumption. 

3.5 Optimal Sampling Time Instants 

In [15], Cavers points out that using a raised-cosine pulse, the optimal sample timing 

for the CDD is at t = kT + to, where to can be obtained from equation below (Equ. 

(A.3) in [15]) 

where G(rl)  is the power delay profile. For the flat fading channel, to = 0.0, ie. integer 

sample timing is optimal. For the two-ray frequency-selective fading channel, when 

equal power split, ie. a = 1, to is one half of the delay between the two rays, ie. 

P t - -T; when a > 1, to is less than one half of the delay spread. In general the kth 
" - 2  



received sample yk in (2.26) can be written as 

Figure 3.10: The BER vs 2 curves of QPSK using a raised-cosine pulse with ,i3 = 0.35 
at fDT = 0.004 and a = OdB. The received samples are obtained at the optimal 
sampling instants. The various curves are (1)p = 1.0, (2)p = 0.75, (3)p = 0.5 (4)p = 
0.25, and (5)p = 0. 
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Figure 3.10 illustrates the performance of the CDD using a raised-cosine pulse 

when the received samples are obtained at the optimal sampling instants. Compared 

with Figure 3.5 where the same channel conditions and the same transmitted pulse 

are used, we found that the BER can be reduced by as much as if optimal sample 

timing, rather than integer sample timing, is used. The reason why the performance 
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of the CDD can be improved by using optimal sampling is that the desired QPSK 

symbol has a larger influence on the variance of the corresponding received sample. 

Although the numerical results of the CDD using optimal sample timing are better 

than those using integer sample timing, the methods to analyze the performance of 

the CDD and major conclusions shown in this chapter do not depend on the sampling 

instants. For simplicity, we only consider integer sample timing for MSDD in the next 

chapter. 



Chapter 4 

Performance of Multi- Symbol 

Differential Detection in a 

Frequency-Selective Rayleigh 

Fading Channel 

As indicated in chapter 3, under some channel conditions, the performance of the 

conventional differential detector (CDD) is not acceptable at  the receiver because the 

BER is above 10-l. This chapter discusses using a multi-symbol differential detector 

(MSDD) for the decoder to improve the performance of the receiver. It is illustrated 

that the MSDD works much better than the CDD under most of the channel condi- 

tions and that MSDD is a robust detector using a rectangular pulse or a square-root 

raised-cosine pulse with p = 1 as the transmitted pulse p(t). 



The first section describes in detail how the MSDD works, with N = 5 as an 

example. However, we do not restrict our attention to any specific transmitted pulse. 

The second section focuses on the rectangular transmitted pulse, and the third section 

considers the square-root raised-cosine transmitted pulse. 

4.1 General Description of the MSDD 

As shown in chapter 2, the MSDD uses more than two received samples to make each 

decision. The MSDD performs better than the CDD because more received samples 

provide more accurate channel information to the decoder so that the decoder can 

make decisions more correctly. Figure 2.4 (b) shows the structure of the MSDD 

decoder. 

In this chapter, we use N = 5 received samples to demonstrate how the MSDD 

works although the method is also available for any other values of N. For the case of 

N = 5 and Nl = 3, , the received five-sample vector is 

where yk-2,  yk-1, yk, yk+l, and yk+2 are the received signal in (2.25) sampled at t =(k- 

2)T, (k- 1)T, kT, (k+ l )T ,  and (k+2)T respectively and can be easily determined by 

(2.26). 



If we know the statistical channel information such as G(r l ) ,  foT and 2 defined 

in (2.13), (2.12), and (2.24) respectively, the correlation matrix a y y ( C )  in (2.37) can 

then be determined. As mentioned in chapter 3, the piece-wise-constant assumption 

is a very useful and reliable assumption to model the fading channel as long as fDT 

is much smaller than 1. Consequently this is the assumption we use in this chapter 

to determine the correlation matrix ay , (C)  in (2.37). 

When making a decision, the MSDD calculates metrics M(C)'s for each possible 

C vector whose first L1 symbols are the same as the L1 previous fed back symbols, 

and selects the C whose M(C)  is the smallest. Subsequently, the (L1 + l)th symbol 

of the corresponding C is chosen as the decoded symbol. 

4.1.1 Decision Feedback 

The reasons why DF is important in the MSDD is following: First, the DF gets rid 

of those C4 whose corresponding @,,(C) results in the same metrics due to symmet- 

rical reasons under some channel conditions. Thus the performance of the decoder is 

improved greatly. For example, considering the following set of channel conditions: 



the transmitted pulse p(t) is rectangular, equivalently q(t) is a triangle pulse given by 

(2.6). There are two terms in each element in Y, which means M1 = 1 and M2 = 0 

in (2.32). The lengths of X and C are L=6 and L-1=5 respectively. There are L1 = 2 

fed back symbols. The vector C contains five successive data symbols: ck-2, ~ h - ~ ,  ch, 

ck+l, and Ck+2. We found that C1 = (1, j, 1, j, 1) and C 2  = (j, 1, j, 1, j) generate 

the same matrix, ie. ayy (C1)  = ayy (C2) .  But the MSDD can work only if each C 

vector generates its unique ayy (C).  

In order to resolve this ambiguity, decision feedback (DF) is suggested in the 

MSDD. The MSDD keeps the two previous decoded symbols in the buffer. During 

decoding of the current symbol, the MSDD only calculates and compares the metrics 

M(C)'s for those C vectors whose first two symbols are identical to the two previous 

decoded symbols. Then the metric related to C1 = (1, j, 1, j, 1) and C2 = (j, 1, 

j, 1, j) will obviously not be used at the same time. Consequently, the ambiguity is 

resolved. 

Another advantage of DF is that it greatly reduces the computational complexity 

of the MSDD. In the above example, the MSDD without DF has to calculate 1024 

metrics. But the MSDD with DF needs only to calculate 64 metrics and also has 

better performance. From this illustrative example, we can see the importance of DF 

in the MSDD. 

For given number of DF symbols, the location of the decoded symbol in the C 



vector influences the performance of MSDD. From simulation tests, we find that mak- 

ing a decision on the middle symbol is better than on the end symbol in the selected C .  

4.1.2 Assumptions and Notations 

It is very difficult to determine the performance of the MSDD with DF just by anal- 

ysis. In this chapter, the received signal is sampled at the integer sample timing. 

We adopt the piece-wise-constant assumption and use simulation to determine the 

performance of the MSDD. In Section 3.5, we discuss the optimal sampling time for 

the CDD. As for the case of the MSDD, we are not sure where the optimal sampling 

instants should be. However, we can easily predict that the results of MSDD using 

the received samples obtained at the optimal sample timing are equal to or better 

than those numerical results shown below. Since we are more interested in how the 

techniques of the MSDD improves the performance of communication systems in this 

chapter, we just sample the received signal at integer sample timing. The techniques 

of MSDD shown in this chapter does not depend on the sampling instants. On the 

other hand, one of the advantages of using the integer sample timing is that the re- 

ceived sample has fewer IS1 terms and hence the simulation process can be simpler. 

Once again, we adopt the two-ray channel model to represent the frequency- 

selective Rayleigh fading channel. In the following sections, the normalized 95% 

confidence interval [0.8,1.2] is used in the simulations to make sure that the simu- 

lation results are accurate enough. In the simulation, we generate a long sequence 

of random binary bits at the transmitter, modulate them using QPSK, transmit the 



QPSK signal over the frequency-selective fading channel, decode the received signal 

using a MSDD, compare the decoded binary sequence with the transmitted one, and 

finally count the number of error bits calculating the corresponding BER. According 

to [16], the definition of the 95% confidence interval is given below: 

where x is the estimated BER; when the it h decoded bit is the same as the ith trans- 

mitted bit, Xi = 0, otherwise X; = 1; N is the number of the total transmitted bits; 

c.i. is the 95 % confidence interval; 1 - 3 and 1 + 3 are the lower and upper limits 

of the normalized confidence interval respectively; s is the standard derivation. 

Before we discuss the performance of the MSDD, some terminology used in the 

following must be introduced. 

The MSDD needs some statistical channel parameters to set up the decoding 

metrics. The statistical channel parameters used in the MSDD are called the chosen 

channel conditions while those statistical channel parameters in the real channel are 

referred to as the actual channel conditions. When the chosen channel conditions 

are the same as the actual channel conditions, we refer to  the MSDD as matched. As 



mentioned before, the actual channel conditions are often very difficult to estimate. 

When the chosen channel conditions are different from the actual channel conditions, 

we refer to the MSDD as mismatched. 

4.2 The Rectangular Pulse Shape 

In this section, we will consider a rectangular pulse with a pulse duration T as the 

transmitted pulse p(t). This means the corresponding q(t) is the triangle pulse given 

in (2.6). In chapter 3, it is shown that the CDD breaks down under certain channel 

condition, see Figure 3.2. In this section, we see that the performance improvement 

brought along by the MSDD. 

Here we consider a MSDD with N = 5. The kth received sample yk is shown in 

(3.13). Expressions for the other four samples yk-2, yk-1, yk+l, and yk+z are sim- 

ilar. Each of the five samples contains one interference symbol. Equivalently, we 

set N = 5, Nl = 3, M1 = 1 and M2 = 0 in (2.32). Their variances and covariances, 

shown below, depend on only L- 1 = 5 data QPSK symbols (ck-2, ck-1, ck, ck+l, c ~ + ~ )  



where 4nz,n(0,0) can be evaluated by (3.63) and z,,, is 

C, . c,-1 ...c,+l when m > n 

- - when m=n 

( C: . c,-~ . . . cmfl when m < n 

where m , n  E {k -2,  k - l , k , k  + 1 , k + 2 )  

@yy (C)  'S composed of a; and a;,, given above are exact ones, and thus the decoding 

metrics M(C)'s are the optimal decoding metrics. With (4.6) and (4.7), the MSDD 

calculates the inverses and the determinants of 1024 @yy(C)'s and sets up the code 

book at the receiver. We show next the performance of the matched MSDD, followed 

by that of the mismatched MSDD. 

4.2.1 The Matched MSDD 

Consider a channel with fDT = 0.004, a = 1, and 0 5 p 5 1. If we have information 

about these statistics, then as shown in Figure 4.1, the performance of the MSDD 

is very good. Compared with the performance of the CDD under the same chan- 

nel conditions, see Figure 3.2, the matched MSDD performs much better, especially 

76 



Figure 4.1: The BER of the matched MSDD vs 2 curves of QPSK using a rectan- 
gular pulse. The channel conditions are: fDT = 0.004, a = OdB,  and (1 )p  = 1.0, 
( 2 ) p  = 0.75, (3 )p  = 0.5 (4 )p  = 0.25, and (5 )p  = 0 corresponding to various curves 
respectively. 



under those channel conditions with a large relative delay p. There is no noticeable 

irreducible error floor within the range of bit SNR of interests. We also find that the 

performance of the matched MSDD changes little when the relative delay p is nonzero 

while the performance is about 5 dB better in the flat fading channel (p = 0) than 

that in the selective fading channel. We tried other channel conditions and the 

results are similar. So we conclude that the performance of the matched MSDD is 

almost independent of the channel conditions in the selective fading channel when the 

transmitted pulse is rectangular. 

4.2.2 The Mismatched MSDD 

Now, let us consider the case of a mismatched MSDD. This corresponds to the case 

in which the channel conditions assumed in the MSDD are different from those in the 

actual channel. When we can not estimate the statistical information of the channel, 

a misnatched MSDD is more practical. Recall once again, the actual channel 

conditions are the channel conditions in the real channel while the chosen channel 

conditions refers to the channel conditions assumed in the MSDD decoder. 

A Mismatch in p 

We at first study the effect of a mismatch in relative delay p, see Figure 4.2. The 

decoder assumes a frequency-selective fading channel with p = 0.5 while the actual 

delay differences are p =1.0, 0.75, 0.5, 0.25, and 0 respectively. The mismatched 

decoder still provides acceptable performance. It is observed that the performance 



Eb/No (dB) 

Figure 4.2: The BER of the mismatched MSDD vs % curves of QPSK using a 
rectangular pulse. The chosen channel conditions in the MSDD are: fDT = 0.004, 
a = 1.0 and p = 0.5 while the actual channel conditions are fDT = 0.004, a = 1.0, 
and the relative delay: ( 1 ) p  = 1.0, ( 2 ) p  = 0.75, ( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and ( 5 ) p  = 0 
corresponding to various curves respectively. 



is pretty good as long as there is IS1 in the received samples while the performance 

is barely acceptable when the chosen channel conditions are mismatched to the flat 

fading channel. Also it is obvious that the smaller the mismatch to the actual relative 

delay p is, the more closely the performance approaches that of the matched MSDD. 

The reason why we choose the relative delay p = 0.5 as the chosen condition is that 

it is the midpoint in the range [O,1] of the relative delay p. 

A Mismatch in a 

Figure 4.3 illustrates the effect of a mismatch in the power split ratio a. The MSDD as- 

sumes equal power split, ie. a = 1.0, while the actual power split ratios are a =10000, 

1000, 100,10, and 1 respectively. All the other statistical channel parameters (the 

Doppler frequency fDT = 0.004, the relative delay p = 0.5) are matched to the actual 

channel conditions. As we can see, the performance of the mismatched MSDD is ac- 

ceptable: the error floors are around or lower. It is also seen that the bigger the 

mismatch, the worse the performance. The channel is close to the flat fading channel 

when a = 10000, thus the performance is very close to the case of mismatch to the 

flat fading shown in Figure 4.2. The error floors of all curves in Figure 4.3 are all 

below 2 x The reason why this is important is that, as shown in Chapter 5, 

the performance of communication systems can be improved further through channel 

coding if the raw BER is below lo-'. 



Figure 4.3: The BER of the mismatched MSDD vs 2 curves of QPSK using a 
rectangular pulse. The chosen channel conditions in the MSDD are: fDT = 0.004, 
a = 1.0 and p = 0.5 while the actual channel conditions are fDT = 0.004, p = 1.0, 
and the power split ratio: (1)a  = 10000, (2)a = 1000, (3)a  = 100 (4)a  = 10, and 
( 5 ) a  = 1 corresponding to various curves respectively. 



A Mismatch in fDT 

Now k t  us examine a mismatch in the fade rate fDT.  In  Figure 4.4, the chosen power 

Figure 4.4: The BER of the mismatched MSDD vs 3 curves of QPSK using a 
rectangular pulse. The chosen channel conditions in the MSDD are: ~ D T  = 0.004, 
a = 1.0 and p = 0.5 while the actual channel conditions are a = 1.0, p = 0.5, and the 
fade rates are: (1) fDT = 0.002 (2) fDT = 0.003, (3) fDT = 0.004, and (4) ~ D T  = 0.01 
corresponding to various curves respectively. 

split ratio of cr = 1 and the chosen relative delay of p = 0.5 are rmkched to those in 

the actual channel. The chosen fade rate is fDT = 0.004 while the actual fade rate is 

~ D T  = 0.002, 0.003, 0.004, and 0.01 respectively. It is observed that if the actual fade 

rates are slower than the chosen one, the performance of MSDD is almost the same 



as the matched case. On the other hand, if the actual fade rates is higher than the 

chosen one, performance degradation is a result. According to the carrier frequency 

and the symbol rate given in chapter 2, fdT = 0.01 corresponds to the case when 

the speed of the vehicle is :: J km/h, which is well beyond the normal speed of all 

vehicles. 

Eb A Mismatch in - 
No 

Finally let us examine a mismatch in the 2. In Figure (4.5), only the 2 is mis- 

matched. It is observed that for any .iven actual channel 2, the matched MSDD 

works better than the mismatched MSDD. The larger the mismatch in 2 is, the 

worse the performance of MSDD is. The mismatch between the chosen and actual $ 
results in the irreducible error floor. But if the target BER is the performance 

of the mismatch MSDD in the SNR is still acceptable. 

Several Mismatched channel Parameters 

In the above four examples, we study the performance of the MSDD when only 

one channel parameter is mismatched between the chosen and the actual channel 

parameters. 

Furthermore, Figure 4.6 shows the performance of the MSDD under the assump- 

tion that three chosen channel parameters, a, p, fDT, are mismatched to the actual 

channel conditions. As we can see, the performance of the MSDD is still acceptable, 

around 1 0 - h r  less. 



Figure 4.5: The BER of the mismatched MSDD vs 2 curves of QPSK using a 
rectangular pulse. The chosen channel conditions in the MSDD are: fDT = 0.004, 
a = 1.0 and p = 0.5, which are the same as those in the actual channel. But the 
chosen 2 ' s  are set to: (1) 2 = 20dB, (2) 2 = 20dB, (3) matching to the actual 2. 



Figure 4.6: The BER of the mismatched MSDD vs curves of QPSK using a 
rectangular pulse. The chosen channel conditions in the MSDD are: jDT = 0.004, 
a = 1.0 and p = 0.5 while the actual channel conditions are jDT = 0.002, a = 100.0, 
and the relative delay: ( 1 ) p  = 0 ,  ( 2 ) p  = 0.25, ( 3 ) p  = 0.5 ( 4 ) p  = 0.75, and ( 5 ) p  = 1.0 
corresponding to various curves respectively. 



Thus it can be concluded that under the condition of a rectangular transmitted 

pulses, the MSDD is a robust detector for communications over frequency-selective 

fading channels. The irreducible error floors are at most around lo-? No error prop- 

agation is found with decision feedback. 

The Square-Root Raised-Cosine Pulse Shape 

While a rectangular pulse requires a big bandwidth, a raised-cosine pulse has finite 

bandwidth and thus it is more useful in practice. In this section, we consider a 

square-root raised-cosine pulse as the transmitted pulse p(t). The equivalent q(t) is 

the raised-cosine ~ u l s e  given in (2.8). The roll-off parameter considered is /3 = 1.0 

or /3 = 0.35. It will be shown that, compared with the CDD in chapter 3, there is 

a big improvement to the error performance by using MSDD as long as a suitable 

transmitted pulse (ie. p )  is chosen. 

Although we still use five received samples yk-2, yk-1, yk, y k f l ,  and Yk+2 in the 

MSDD, each of the five samples contains one desired QPSK symbol and many inter- 

ference symbols. We use 16 terms to respresent each received sample in (2.29) and set 

N = 5, Nl = 3, Ml = 8 and M2 = 7. Then the length of C is L - 1 = 19 and there 

are 4'' possible C vectors. Thus it is impractical to implement directly the MSDD 

introduced in Chapter 2 when using a square-root raised-cosine pulse. 

When using a square-root raised-cosine pulse, one way to make the MSDD work 

is to reduce the effective length of C .  From Appendix B, we know that among the 



sytnbols in C=(ck-IO, . . ., CI;-2, ck-1, ck, ck+l, ck+2, . . ., c ~ + ~ ) ,  the five symbols in C' 

given by (B.3) are the dominant symbols which determine the variances and covari- 

ances in the correlation matrix a y y ( C ) ,  see (B.13) and other synibols in C have just 

minor effects on ayy ( C ) .  

Using (B.5), (B.8), (B.9) and (B.12), the variance and covariance are shown below: 

where m , n €  { k - 2 , k - l , k , k + l , k + 2 )  

where dm,,(., 0) can be evaluated by (3.63) and z,,, is given by (4.8). Substituting 

(4.9) and (4.10) for u i  and u:,, in (2.39), we obtain ayy(C1) .  The rest detection 

procedure is similar to that using a rectangular pulse. Since the length of C' is five, 

inverses and determinants of 1024 correlation matrix are calculated and stored in the 

codebook. When decoding, two decoded symbols ?k-2 and 2k-1 are fed back. We 

calculate the decoding metric in (2.37) and decode the desired QPSK symbol ck in 

the kth received sample yk. 

One thing worth mentioning is that ayy (C') obtained from (4.9) and (4.10) is the 

approximation and just represents the correlation matrix determined by C roughly, 
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therefore the M ( C f )  using raised-cosine transmitted pulses is not the optimal decoding 

metric. However, the M(C1)'s obtained are good approxinlation to the optimal ones, 

see Appendix B. Thus the performance of the matched MSDD is still very good and 

the acceptable performance of the mismatched MSDD depends on the transmitted 

pulse shape. 

4.3.1 The Matched MSDD 

Just like in Section 4.2, we first consider the matched MSDD. If the statistical channel 

information is known at the receiver, the performance of the MSDD using a raised- 

cosine pulse with a roll-off parameter P = 1.0 is shown in Figure 4.7. The channel 

conditions are: fDT = 0.004, a = 1, and p = 0, 0.25, 0.5, 0.75, 1.0 respectively. It 

is observed in Figure 4.7 that the matched MSDD using the raised-cosine pulse with 

/3 = 1.0 works almost as well as the matched MSDD using the rectangular pulse. If the 

transmitted pulse is changed to the raised-cosine pulse with ,f3 = 0.35, see Figure 4.8, 

the performance is similarly good. Thus summerizing the performance of the matched 

MSDD shown above, we can say that as long as the statistical channel information is 

known at the decoder, the MSDD works well no matter what the transmitted pulses 

and the channel conditions are. 

4.3.2 The Mismatched MSDD 

As indicated in chapter 3, when P = 1.0, the slopes of the main lobe of the raised- 

cosine pulse q(t) decays very fast while the side lobes are very small, thus the cor- 

responding performance of the CDD is similar to and even better than that using a 



Figure 4.7: The BER of the matched MSDD vs 2 curves of QPSK using a raised- 
cosine pulse with ,B = 1.0. The chosen channel conditions in the MSDD are: fDT = 
0.004, a = 1.0 and p = 0.5 while the actual channel conditions are fDT = 0.004, 
cu = 1.0, and the relative delay: ( 1 ) p  = 1.0, (2 )p  = 0.75, ( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and 
(5 )p  = 0 corresponding to various curves respectively. 



Figure 4.8: The BER of the matched MSDD vs $ curves of QPSK using a raised- 
cosine pulse with @ = 0.35. The chosen channel conditions in the MSDD are: fDT = 
0.004, a = 1.0 and p = 0.5 while the channel conditions: fDT = 0.004, a = 1.0, and 
the relative delay: ( 1 ) p  = 1.0, ( 2 ) p  = 0.75, (3 )p  = 0.5 (4 )p  = 0.25, and ( 5 ) p  = 0 
corresponding to various curves respectively. 



rectangular pulse. For the same reasons, the mismatched MSDD using a raised-cosine 

pulse with ,8 = 1.0 works well. If there is only one mismatched channel parameter, ie. 

one of a,  p ,  and fDT,  the performance of the mismatched MSDD using a raised-cosine 

pulse with ,8 = 1.0 is very similar to those using a rectangular pulse; see Figure 4.2, 

4.3, and Figure 4.4. Under the conditions that all the chosen channel parameters 

are mismatched to the actual channel parameters, the mismatched MSDD using a 

raised-cosine pulse with B = 1.0 also works well, and even better than that using a 

rectangular pulse; compare Figure 4.9 with Figure 4.3. 

Unfortunately, we find experimentally that the mismatched MSDD breaks down 

under some channel conditions and when certain raised-cosine pulses are used. As 

an example, when the actual fDT = 0.004, a = 1.0, and a raised cosine pulse with 

p = 0.35, the performance of a MSDD mismatch in p is not acceptable; see Figure 

4.10. The matched MSDD works better than those mismatched MSDD. As the dif- 

ference between the chosen p and the actual p increases, the performance generally 

becomes worse and worse, except for the flat fading channel. 

The reason why the performance of the mismatched MSDD degrades is the fol- 

lowing. When calculating the variances and covariances of the received samples, we 

do not consider the influence of the eleven IS1 terms. When the roll-off parameter @ 

becomes smaller, the side lobes in a raised-cosine pulse are getting larger and thus 

the effect of those IS1 terms in the received sample is getting stronger; see (B.7) and 

(B. l l ) .  Consequently, the decoding metric is no longer a good approximation to the 

optimal one and hence the performance shown above degraded faster as the mismatch 



Figure 4.9: The BER of the mismatched MSDD vs $ curves of QPSK using a raised- 
cosine pulse with ,B = 1.0. The chosen channel conditions in the MSDD are: fDT = 
0.004, a = 1.0 and p = 0.5 while the actual channel conditions are: fDT = 0.002, 
a = 100, and the relative delay: ( 1 ) p  = 1.0, (2 )p  = 0.75, ( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and 
( 5 ) p  = 0 corresponding to various curves respectively. 



Figure 4.10: The BER of the mismatched MSDD vs curves of QPSK using a 
raised-cosine pulse with /3 = 0.35. The chosen channel conditions in the MSDD 
are: fDT = 0.004, CY = 1.0 and p = 0.5 while the actual channel conditions are 
fDT = 0.004, a = 1 ,  and the relative delay: (1 )p  = 1.0, ( 2 ) p  = 0.75, ( 3 ) p  = 0.5 
( 4 ) p  = 0.25, and ( 5 ) p  = 0 corresponding to various curves respectively. 



becomes larger. We also see part of the tails of the error curves in Figure 4.10 are 

bendixig up.  One of the possible reasons is the nonlinear approximation of varianc,es 

and covariances to the decoding metrics. 



Chapter 5 

Performance of (Mult isymbol) 

Differential Detection of QPSK 

with Convolutional Coding in the 

Frequency- Selective Rayleigh 

Fading Channel 

In this chapter, we combine the rate optimum 32-state convolution code and our 

MSDD decoder, and examine their performance in the frequency-selective fading chan- 

nel. We find that the performance of a coded system depends largely on the corre- 

sponding uncoded system. Coding helps only when the bit error rate (BER) of the 

uncoded communication system is not high, say at least less than lo-'. The numerical 

results shown below indicate that a communication system can be enhanced greatly 



with convolutional coding if the BER of the corresponding uncoded system is lower 

than 1 0 - 2 .  

The organization of this chapter is following: Section 5.1 introduces the general 

information about the system and defines the notations and assumptions in the anal- 

ysis and simulation. The performance of coding and conventional differential detector 

(the coded CDD) is examined in Section 5.2. The performance of the coding and 

multisymbol differential detector (the coded MSDD) is examined in 5.3. 

5.1 General Description of the Coding System 

Chapter 2 describes the structure of the coded system. Its system block diagram is 

shown in Figure 2.5. We adopt the rate optimum convolutional code with memory 

of 32 states. This code is recommended in IS 54 for the emerging North American 

narrow-band digital cellular systems. The.octa1 notation of this encoder is (53, 75) 

[I]  and the encoder structure is shown in Figure 2.6. 

To obtain the performance of the coded system, at the transmitter, we encode 

a long sequence of random binary bits generated at the transmitter, modulate them 

using QPSK, interleave and differentially encode these QPSK symbols, transmit the 

QPSK signal over the frequency-selective fading channel. At the receiver, we de- 

modulate and deinterleave the received signal, then decode using a Viterbi Decoder, 

compare the decoded sequence with the original transmitted random sequence, count 

the total number of erroneous bits in the decoded sequence and then calculate the 



BER. This chapter also adopts the piece-wise-constant assumption. This chapter im- 

plements coding on those uncoded systems introduced in Chapter 3 and Chapter 4. 

Once again, the normalized 95% confidence interval of [O.8,1.2] is used in all the 

simulations to make sure that the simulation results are accurate enough. Summa- 

rizing the simulation results, we find that the performance of improvement due to 

channel coding depends on the performance of the uncoded system. If the BER of 

the uncoded system is or lower, the BER of the corresponding coded system is 

usually improved two orders or more. On the other hand, coding can not help to 

improve the performance of the uncoded system when the BER of the corresponding 

uncoded system is larger than lo-'. This is one of the reasons why people often 

consider lo-' N as the raw target BER for the uncoded system. The following 

two sections show how the rate (53, 75) convolutional code helps to improve the 

performance of the communication system. 

5.2 CDD with Convolutional Coding 

The description of the structure of the coded CDD was given Section 5.1. Now let us 

examine the performance of the coded CDD. 

First, we use a rectangular pulse as the transmitted pulse p(t).  Figure 5.1 illus- 

trates the BER versus bit signal-to noise (SNR) curves for the coded CDD, where the 

channel conditions are: a fade rate of fDT = 0.004, a power split ratio of a = 1.0, 

and a relative delay of p = 0.0, 0.25, 0.5, 0.75, and 1.0. It is observed that for the 



Figure 5.1: The BER vs 2 curves for the performance of the coded CDD using a 
rectangular pulse and with fDT = 0.004, a = 1.0, and ( 1 ) p  = 1.0, (2 )p  = 0.75, 
(3 )p  = 0.5 (4 )p  = 0.25, and (5 )p  = 0 corresponding to different curves. 



relative delay less than 0.25, coding helps to improve the performance of the CDD 

significantly. Compared with Figure 3.2, the error floor is much smaller than that in 

the uncoded CDD. However, the same is not true for a relative delay larger than 0.5. 

When p = 1.0, the error floor is even higher. 

Figure 5.2: The BER vs 2 curves for the performance of the coded CDD using 
a raised-cosine pulse with ,b = 0.35 and under channel conditions: fDT = 0.004, 
cr = 1.0. and (1)p = 1.0, (2)p = 0.75, (3)p = 0.5 (4)p = 0.25, and (5)p = 0 
corresponding to the various curves respectively. 

When using a raise-cosine pulse as the transmitted pulse, we can see a similar phe- 

nomenon. Figure 5.2 shows the performance of the coded CDD using a raised-cosine 



pulse with [j = 0.35 under the same channel conditions as above. 

Summarizing the simulation results, we can conclude that coding helps the CDD 

only when the delay difference is small. The reason why the coded CDD under chan- 

nel conditions of large relative delay does not work is that the performance of the 

corresponding uncoded CDD is too poor. As mentioned in Chapter 4, the uncoded 

MSDD can make the BER lie around or lower under any channel conditions as 

long as the proper transmitted pulse is chosen. The next section shows how coding 

can improve the performance of the MSDD significantly. 

5.3 MSDD with Convolutional Coding 

This section indicates that coding can reduce the irreducible error floor of the MSDD 

within the range SNR of interests as long as proper transmitted pulse is chosen. In 

the following, we first discuss the matched MSDD and then consider the mismatched 

MSDD. 

5.3.1 The Matched MSDD 

Chapter 4 indicates that the performance of the uncoded matched MSDD works well 

no matter what the channel conditions or the transmitted pulses are. This implies 

the performance of the coded matched MSDD can be enhanced greatly. Here we use 

a raise-cosine pulse with ,j3 = 0.35 as an example to  illustrate the performance of the 



Eb/No (dB) 

Figure 5.3: The BER of the coded matched MSDD vs 2 curves of QPSK using a 
raised-cosine pulse with roll-off parameter ,f3 = 0.35. The channel conditions are: 
fDT = 0.004, cu = 1.0 and the relative delay: (1 )p  = 1.0, (2 )p  = 0.75, ( 3 ) p  = 0.5 
(4 )p  = 0.25, and (5 )p  = 0 corresponding to various curves respectively. 



coded matched MSDD. Figure 5.3 shows the simulation results under the followi~l~ 

channel conditions: fDT = 0.004, a = 1.0, and p = 0.0, 0.25, 0.5, 0.75, 1.0. From 

Figure 5 .3 ,  we discover that coding makes the curves decay much faster, compared 

with Figure 4.8. No noticeable error floors appear within the range of bit SNR of 

interest. 

5.3.2 The Mismatched MSDD 

As for the mismatched MSDD, the performance of the coded MSDD depends on 

different transmitted pulse shapes and/or the statistical channel parameters. When 

the transmitted pulse p(t) is either a rectangular pulse or a square-root raised-cosine 

pulse with p = 1.0, the coded mismatched MSDD works well under any mismatched 

channel conditions. For example, when the chosen channel parameters in the MSDD 

are: fDT = 0.004, a = 1.0, and p = 0.5 while the actual channel parameters are: 

fDT = 0.002, a = 100.0, and p varies from 0.0 to 1.0, we have the results in Fig- 

ure 5.4 and Figure 5.5. Figure 5.4 is for a rectangular pulse and Figure 5.5 is for a 

square-root raised-cosine pulse with ,b' = 1.0. Comparing the two figures, we find that 

the performance of the mismatched MSDD using a raised-cosine pulse with ,/3 = 1.0 is 

better than using a rectangular. Recall that the corresponding uncoded MSDD using 

a raised-cosine pulse with p = 1.0 performs only a little bit better than that using 

a rectangular pulse, see Figure 4.6 and Figure 4.9. This indicates that the system is 

perhaps improved greatly after coding even though there is only a slight improvement 

in the corresponding uncoded system. 
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Figure 5.4: The BER of the coded mismatched MSDD vs 2 curves of QPSK using 
a rectangular pulse. The chosen channel conditions are: fDT = 0.004, cr = 1.0, and 
p = 0.5. The actual channel conditions are: fDT = 0.002, a = 100.0, and (1 )p  = 1.0, 
( 2 ) p  = 0.75, ( 3 ) p  = 0.5 ( 4 ) p  = 0.25, and (5 )p  = 0 corresponding to various curves 
respectively. 
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Figure 5.5: The BER of the coded mismatched MSDD vs 2 curves of QPSK using 
a raised-cosine pulse with p = 1.0. The chosen channel conditions are: fDT = 0.004, 
a = 1.0, and p = 0.5. The actual channel conditions are: fDT = 0.002, a = 100.0, 
and ( 1 ) p  = 1.0, ( 2 ) p  = 0.75, (3 )p  = 0.5 ( 4 ) p  = 0.25, and ( 5 ) p  = 0 corresponding to 
various curves respectively. 
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Figure 5.6: The BER of the coded mismatched MSDD vs 2 curves of QPSK using a 
raised-cosine pulse with p = 0.35. The chosen channel conditions are: fDT = 0.004, 
cu = 1.0, and p = 0.5. The actual channel conditions are: fDT = 0.004, a = 1.0, 
and (1)p = 1.0, (2)p = 0.75, ( 3 ) p  = 0.5 (4)p = 0.25, and (5)p = 0 corresponding to 
various curves respectively. 



As mentioned earlier, coding can only improve the uncoded system whose per- 

forrnance is reasonably good, say around 10-l. Using an improper pulse shape, the 

uncoded mismatched MSDD does not work under some channel conditions, for ex- 

ample in a raised-cosine pulse with @ = 0.35. Thus even coding can not enhance its 

performance. Figure 5.6 shows the performance of the mismatched MSDD using a 

raised-cosine pulse with ,B = 0.35. The  chosen channel conditions are: fDT = 0.004, 

a = 1.0, and p = 0.5 while the actual channel parameters are: fDT = 0.004, a = 1.0, 

and p varies from 0.0 to  1.0. The  trade-off between bandwidth and performance is 

shown clearly in Figure 5.5 and 5.6. 



Chapter 6 

Conclusions 

6.1 Conclusions 

In this thesis, we study the performance of differential detection of QPSK signals in a 

frequency-selective Rayleigh fading channel. A two-ray channel model is adopted to 

represent frequency-selective fading. We investigate the performance of the conven- 

tional differential detector (CDD) and the multisymbol differential detector (MSDD), 

and also their performance incorporating the rate a 32-state optimum convolutional 

code. The validity of the piece-wise-constant assumption in differential detection is 

shown from both numerical results and analytical derivation under practical channel 

conditions. 

The CDD is discussed first. Based on the numerical results obtained, it can be 

concluded that the performance of the CDD depends mainly on the statistical channel 



parameters and also slightly on the transmitted pulses. It is observed that the per- 

formance of the conventional differential detector in the frequency-selective Rayleigh 

fading channel is acceptable as long as the power split ratio a is relatively large 

and/or the differential propagation delay p is relatively small. Also the pulse shape 

has influence on the performance of the CDD: the raised-cosine pulse with roll-off 

parameter ,8 = 1.0 provides better performance than the rectangular pulse and those 

raised-cosine pulses with /3 < 1. To maintain a target bit error rate of 10-%t bit 

signal-to-noise ratio 2 around 25 dB with the normalized fade rate fDT = 0.004 

using the rectangular pulse, a must be larger than 20 dB if p = 1. On the other 

hand, when 2 = 25dB, p = 0.25, a = 1, and fDT = 0.004, the performance of 

the CDD using the raised-cosine pulse with P = 1.0 is almost 10 times better than 

that using the raised-cosine pulse with /3 = 0.0. This shows the tradeoff between the 

performance and the bandwidth. The CDD works well under some channel conditions 

while it breaks down under other conditions. 

In order to improve the performance of differential detection in the frequency- 

selective fading channel, the MSDD is suggested in order to make full use of the 

information from N (N > 2) received samples rather than just two in the CDD. It is 

found that when using the rectangular pulse, the MSDD can work well under all prac- 

tical channel conditions while it provides best performance if the statistical channel 

information is known at the receiver. As for using a raised-cosine pulse, the perfor- 

mance of the MSDD depends on the roll-off parameters P. The performance of the 

matched and mismatched MSDD using a raised-cosine pulse with /3 = 1.0 is better 

than that using rectangular pulse. When using a raised-cosine pulse with /3 = 0.35, 

the matched MSDD works well, but the mismatched MSDD breaks down. This is 



mainly due to the larger effects of IS1 terms in the received samples and the use of 

of a non-optimal metric. It is true that the more received samples the MSDD uses, 

the better the performance is. But in reality though increasing N is subject to the 

exponential growth of the decoding complexity. 

We have used the optimal rate a 32-state convolutional code in conjunction with 

the CDD and the MSDD. It is found that coding helps greatly when the performance 

for uncoded cases is around or lower. If the BER is between lo-' and lo-', 

coding makes the error floors of the performance lower and the performance is usually 

tens of times better. But Coding can not help when the performance of the corre- 

sponding uncoded system is larger than lo-'. 

We also prove the validity of the piece-wise-constant assumptions in the Rayleigh 

fading channel by analysis and simulation. We found that if the carrier frequency is 

around 900 MHz and the symbol rate is 24 KHz, the piece-wise-constant assumption 

holds very well in the analysis of Rayleigh fading channel. It is safe to use the piece- 

wise-constant in analysis and simulation in the practical Rayleigh fading environment. 

6.2 Suggest ions for Further Research 

Some suggestions for further work are given below: 



The analysis of pairwise error probability could be extended to M-ary DPSK 

Modulation and can be used to study the performanc,e of DPSK in any other 

channel model. 

As for the MSDD, how much gain can be achieved when N is increased each 

time and what the limit of the improved performance of the MSDD is. 

The  study of the performance of the MSDD will also be very interesting under 

different channel models for the frequency-selective fading. 



Appendix A 

Correlation Between Two Fading 

Gains In Received Samples In 

Frequency-select ive Rayleigh 

Fading Channel 

In this appendix, we will show the correlation between the fading gains on two sym- 

bols in the same received sample or two different received samples. 

The received sample is defined by (2.10) and is sampled every T seconds. The kth 

sample in (2.26) and its nth fading gain un,k in (2.27) are rewritten below: 



where 

We want to examine the correlation between fading gains un,k and u,l in k th  and l th  

samples respectively. When k = 1, u n , k  and uml are the fading gains on two PSK 

symbols in the same received sample. The correlation coefficient is defined as 

Using (2.11), ( A . 2 )  can be rewritten as 

where power-delay profile G ( r l )  given in (2.13) represents statistical characteristic of 

the two-ray channel model. JO(2a  fD(X1 - X z ) )  is zero-order Bessel function and its 

Fourier transform is 



We define the Fourier transforms of the transmitted pulse p( t )  as P([) and also 

define A( f ,  6). 

Using properties of Fourier transforms, the following two integrations can be simply 

written as : 

00 

p(X1 - kT)p(X1 - - n ~ ) e - j ~ " ~ " d X  - - j 2 ~  f ~ T A  I - e  (f7 -61) (A.7) 

and 

where 

Applying (A.4)-(A.lO) to (A.3) and changing the order of integration, we get 

where A(., e )  is given in (A.6). 



Before the end of this appendix, let us examine the shape of A( f ,  5). Since A( f ,  6) 

is a function of both f and 6, we examine how A(f ,S)  changes with one of the two 

variables while fixing the other. First we set f = 0, then Figure A.l shows the shape 

of the real part of A(0,S) as a raised-cosine pulse (dash line). The  x axis is normalized 

Figure A.l:  A(0, S) using a raised-cosine pulse ( P  = 0.35). IA(0, S)I, RE(A(0, S)), and 
IM(A(0,S)) are the amplitude, real part and imaginary part of A(0,S) respectively. 

6, ie. SIT,  where T is the symbol interval. Due to  (A.11), we are only interested in 

the range -fo 5 f 5 f ~ ,  where f~ E [0.0,0.004]. Since the fD is very small, for 

other fixed f, the shape of A(f,  6) is very similar to  A(0,S). 



Now let us fix 6 = ZT. The shape of A( f ,  f T )  is shown in Figure A.2. The x axis 

is normalized frequency, ie. the frequency f divided by the symbol rate f. We also 

Figure A.2: A(f, 3/2T) using a square-root raised-cosine pulse ( P  = 0.35). 
IA( f ,  3/2T)I, RE(A( f ,  3/2T)), and IM(A( f ,  3/2T)) are the amplitude, real part and 
imaginary part of A( f ,  3/2T) respectively. 

put P(f)  in Figure A.2, the spectrum of square-root raised-cos pulse, as a reference. 

Noting that within the region around f T  = 0, the real part of A( f ,  ZT) is nearly 

constant and the imaginary part of A(f, fT) - i s  close to a straight line. These two 

figures give us a brief idea what A( f ,  S) in (A.6) looks like. In Section 3.4, we can see 

the simplied A( f ,  S), which finally results in simplying $ k , r ( n ,  m) in (A.  11). 



Appendix B 

Approximation to the variances 

and the covariances of the 

received samples 

In this appendix, we show how to approximate the variances and the covariances of 

the received samples containing many IS1 terms. 

If the raised-cosine pulse is adopted, there are infinite number of terms in the 

received sample. In this thesis, we use 16 terms to represent each received sample yk 

in (2.29) where MI = 8 and M2 = 7 are set. If only one data QPSK symbol ck in yk is 

of interest, the tight approximation to the variances and covariances of the received 

samples is shown by Dr. Cavers in [15]. They can be rewritten as 



In Chapter 4, we consider MSDD using five received samples yk-2, yk-1 ,  yk, y k + l ,  

and yk+2. The desired data QPSK symbols in these five received samples can be 

written in vector form as 

In the following, we use the same idea to determine a tight approximation to the 

variances and covariances in the correlation matrix of the five received samples. The 

approximation is influenced just by the five-symbol vector C'. 

Since we consider five received sample yk-2, yk-1, yk, yk+l, and Yk+2 at the same 

time, we use y, to represent mth received sample, where m E {k - 2, k - 1, k, k + 
1, k + 2). Then ym can be written as 



where the transmitted QPSK symbol x p  is related to the data QPSK symbol c p  by 

(2.1). Thus the C"s is related to six transmitted QPSK symbols (xk-3 ,  xk-3, xk-1, 

xk ,  xk+l ,  xk+2).  Then the variance a$ of ym is 

where $,,,(p, q )  and zpq are given in ( 3 . 6 3 )  and ( 4 . 8 )  respectively. A m  and Bm are 

two parts of a:: 

Noting that each z,,, in Am is the function of the elements only belonging to the 



desired five-symbol vector C' . The rest data QPSK symbols, not in C', are consid- 

ered as IS1 sytnbols at this moment. It is obvious that A, is determined only by the 

desired data QPSK symbols while B, is determined by both the desired and the IS1 

1 data QPSK symbols. Since I$,,,(p, q ) /  decays in terms of ,m-pl,,m-q13 and m E {k-2, 

k-1, k, k+l ,  k+2 ) , A, is the dominant part of a:. To show this, we give sotne 

numerical results below. 

Examples: 

Assuming that the channel conditions are: a = 1.0, p = 0.5, fDT = 0.004, symbol 

SNR = 20dB, and the data QPSK sequence C containing 20 symbols. The gth to 

lYh are the desired data QPSK symbols. Set k = l l .  

Set the roll-off parameter of the raised-cosine pulse P = 0.35: 

W h e n C = { 1 7 1 7 1 , 1 , 1 , 1 , 1 7 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 } :  

a; = 100.87, Ak = 103.69; 

When C = {I ,  j, -1, -j, 1, j, -1, -j, 1, 1, 1, 1, 1, j, -1, -j, 1, j, -1, -j }: 

a; = 103.19, Ak = 103,69; 

When C = {I ,  j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j }: 

a; = 51.0, Ak = 51.021; 

Set the roll-off parameter of the raised-cosine pulse P = 1.0: 

When C = {I ,  j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j }: 

a; = 51.0, Ak = 51.0; 

So we can see that the approximation (B.8) is a good approximation. 



Similarly we can determine the approximation to the covariance oat,, in the same way. 

where dm,,(p, q )  and zpq are given in (3.63) and (4.8) respectively. Cm,, and Dm,, are 

two parts of u:: 

For the same reasons, Cm,, is the dominant part in u;,, and is determined only by 

120 



the desired five-symbol vector C' . We approximate a:,7L by C,,,,,, ie. 

2 
am,, c m , n  

A few numerical results are given below to demonstrate how good (B.12) is. 

Examples: 

Assuming that the channel conditions are: a = 1.0, p = 0.5, fDT = 0.004, symbol 

SNR = 20dB, and the data QPSK sequence C containing 20 symbols. The gth to 

13th are the desired data QPSK symbols. Set k= l l .  

Set the roll-off parameter of the raised-cosine pulse ,f3 = 0.35: 

When C = {I,  j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j }: 

2 ak,k-l = -50.0030, Ck,k-i = -49.992; 

~ : - 2 , ~ + 2  = -130.63, Ck-2,k+2 = 140.09; 

Set the roll-off parameter of the raised-cosine pulse P = 1.0: 

When C = {I,  j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j, 1, j, -1, -j }: 

u : , ~ - ~  = -49.992, Ck,k-1 = -49.992; 

a:-2,k+2 = -99.747, Ck-2,k+2 = -99.747; 

Summerizing the above derivation, we obtain the approximation to the variances 

and covariances of the five received samples, which are functions of the desired data 

QPSK symbols in vector C'. Mathematically, the correlation matrix @,,(C) in Sec- 

tion 4.3 can be written as 



Note that the length of C is 20 and the the length of C' is 5. This approximation 

makes the MSDD using square-root raised-cosine pulse become practical. See Section 

4.3 for details. 

However, we have to keep in mind that the correlation matrix @yy(C') results in 

a non-optimal metric. It is obvious that the approximation depends on the P:  when 

/3 = 1 .O, the approximation in (B.8) and (B. 12) is very tight. The resulted decoding 

metrics are very close to optimal metrics. When P = 0.35, the approximation in (B.8) 

and (B.12) is looser. The effect of the approximation on the performance of MSDD 

is shown in Section 4.3. 
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