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Abstract 

Functional prograrns are often more concise, more amenable to  formal reasoning, and better 

suited to  parallel execution than imperative programs. This work investigates the applica- 

tion of functional programming to parallel combinatorial search programs such as branch- 

and-bound or alpha-beta. 

We develop an abstract data type called improving intervals that can be used to  write 

functional search programs. Programs that use improving intervals are simple because they 

do not explicitly refer to pruning all pruning occurs within the data type. The programs are 

also easily annotated so that different portions of the search space are searched in parallel. 

The search programs are verified using approximate reasoning: a method of program 

transformation that uses both equational and approximation properties of functional pro- 

grams. Approximate reasoning is also used to  verify an implementaticn of improving inter- 

vals. 

Parallel functional programs have deterministic results. Jn some cases, permitting some 

non-determinism in the functional search programs can result in more pruning. We define 

a restricted form of non-determinism called partial determinism that permits a program 

to return a set of possible results but requires that the set of results be consistent. Par- 

tial determinism can improve the performance of the search programs while guaranteeing 

consistent results. We also show how approximate reasoning can be used t o  reason about 

partidly deterministic programs. 

iii 
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'I'his dissertation e:<plores t h e  applicaf ion of functional programming to  search programs. 

S ~ a r r h  programs are often wed tcr solr-e combinatorial optimization problems such as the 

O/i kmpsack prohi~m. the  traselfing salesman problem. integer programming. and game 

pfaying. Many of these problems are difficult to solve: they are often SP-hard. Executing 

warcl: programs on parailei machines provides an opportunity to  reduce the time required 

t o  salve sudt problems. 

Our approach t o  writi~rg functional search programs is based on a new abstract data 
r,.,, L' ,,l1 A E ~ I C J I I O C  ',,, -,,, ;-* ,,,,E, A s ,  that encapsdates the pruning behaviour that occurs in 

s~arctt programs. TIP definition of this data type relies heavily on lazy evaluation and the 

encapsulation of praming leads to  concise and simple programs. 

Fanrtiorial proparns are naturally parallel because each argument of a function can be 

emirrated in paraBEsi; they do not have the inherent "one after another" nature of imper- 

ative programs. Yardkf imperative search algorithms typically use shared variables and 

in-wlve tasks that asxnchrunausly update the shared variables. It  is not possible to express 

sarh algorithms using functional languages. However, functional search programs that use 

improving intervals can be esecrtted on parallel machines using specufatit-E parallelism. Spec- 

ulative parallelism creates a task to evaluate an expression before its result is known to be 

needed. 

In some cases. the performance of the search programs can be improved by permitting 

some nodeterministic behaviour. However, permitting non-deterministic behaviour in 

functional programs is difficult: functions are by definition deterministic and introducing 

nun-deterministic camtructs hamper  t he  ability to formally reason about programs. We 

iantradure a new concept called partial deteminisrn and show how it captures the type 

of non-determinisnt required by parafteli search programs while preserving the ability to 

farmally reason about the programs. 

1 .l Combinatorial Optimization Problems 

f'onrbinatorid optintization problems arise in various fields such as operations research, 

sxhedding, CAD, AI. and game pfaying. An ins taxe  of a combinatodd optimization prob- 

lem cortsists of a non-emptv discrete set S and a function ffs) defined on X. We are asked 

to find an element- r' of S that optimizes the function f(xj. The function f (X) is called 

the ~bje~f i r t .  function and an optimization problem is either a minimization problem or a 



maximization problem depending on whether we want t o  minimize or maximize J ( x ) .  

1.1.1 The 0/1 Knapsack Problem 

The 011 Knapsack problem is a simple maximization problem. lye arc givcn a set of itmns 

and each item has an associated profit. The goal is to fill a knapsack such that t hc tot a1 

profit i maximized and the capacity of the knapsack is not exceeded. More prwisclj-, thc 

problem is defined as ffoflorvs: 

Given: A finite set of objects ti = (zl. uz , .  . . .U,) ,  a weight function W: I T  - Z', a profit, 

function p: L; - Z+, and a capacity C E E+. 

Find: A subset C' of L- that maximizes CU,L-g p(uf such that C,,,,il w ( u )  5 C' 

In this problem, the set S is all the subsets of U whose total weight is less t h a n  or rviual t,ct 

the knapsack's capacitv and the objective function is f (L'') = CuEt:t p( U ) .  

1.1.2 Combinatorial Search 

In many cases, a problem instance can be divided irlto simpler problems. A problem instancc 

[X' ,  f) is a sub-instance of {X'. f) iff X' is a non-empty subset of X. Tf f  is clear from context, 

xe  oiten say X' is a sub-instance of X. For any sub-instance X* of A', let j " ( X ' )  l)(* t h  

cost of an optimal solution of X'. The function f ' ( X i )  may be defirted as 

Top-down search programs use a branching function b ( X j  that divides an irist;trrcc~ into 

a set of sub-instances. The iterative application of b ( X )  starting with the original instanrf* 

+ 4 d s  a tree or graph of sub-instances calfed the search space'. A leaf occurs in t h c  trcv 

where there is a sub-instance X' with iS'f = 1. 

For example. an  instance of the 011 knapsack problem can be divided into two 

instances: one that includes the first item (subject to  there being sufficient rapacity) ant1 

another that  excludes the first item. Figure 1.1 shows part of the search space for an inblxtrch 

af the 0 f f knapsack problem using the above branching function. 

%Ve consider only search spaces structured a s  trees. 
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Figure 1.1: Search Space for a Knapsack Instance 

Given a problem instance (X, f )  and a branching function b ( X ) ,  the cost of an optimai 

solution can be defined as: 

if X  = {X) 
op t (X ,  f ,  b) = 

min ( o p t ( X f ,  f ,  b) / X' E b ( X ) )  , if 1x1 > 1 

For many problems, the size of X is large enough that it is not practical t o  exhaustively 

generate 21  of the search space. Branch-and-bound methods [26, 391 use bound functions 

t o  avoid generating the entire search space. Branch-and-bound subsumes many top-down 

search techniques 1351 including the A* algorithm and the alpha-beta algorithm for searching 

game trees [44]. 

A lower bound 1(X1)  and an upper bound u ( X 1 )  are functions on sub-instances such 

that, for any sub-instance X', 

For miriimizaiion prokdel?is, the utility of boiind functions relies on the observation that 

if X" and X' are two sub-instances such that v ( X f )  < l ( X N )  then no element in X" can 

be the optimal solution and the search space rooted at the node representing X" does not 

need to be generated. In such cases, we say that the node representing X" can be pruned. 



CHAPTER 1. INTRODUCTION 5 

Maximization problems can be treated as minimization probleris by ncgating t i l t  objcCtivr 

functian and negating and swapping the bound functions. 

For many problems, bound functions can be found by relaxing some of t hc const,raint S. 

In the 011 knapsack problem, for example, a simple upper bound relaxes the 0/ 1 constraint. 

The items are sorted by their profit-to-weight ratios and the knapsack is packed with as 

many items as will fit plus some fraction of the next item. 

1.1.3 An Imperative Branch-and-Bound Program 

The pseudo-code in figure 1.2 illustrates a typical imperative branch-and-bound progri\rlt 

for a minimization problem2. The function branch,and,bound(r) returns a nodcl 111;11, 

represents a sub-instance of r containing an optimal solution (if branch-and-bound(r) 

returns r* then r* represents the sub-instance {X*)). An iteration of branch-alld-bo~intl 

refers t o  the execution of the body of the while loop. Each iteration selects a node, r~pcla.t,t!s 

the best current solution (the incumbent), and possibly expands the selected node. 'l'he main 

data structure is a priority queue of nodes that contains the nodes the have been crea,tctl 

but not yet expanded; such nodes are called open nodes. The function initially inscrls the 

root node r in the priority queue and terminates when the priority queue bccomrxs empty. 

The function children(r) is the branching function and it returns a list of nodes rcp- 

resenting sub-instances of r. The functions lb(r) and ub(r) are the bound functions. 'T'llc 

function has-direct-solut ion(r) is true when the node r represents a sub-instancc that, 

can be solved directly. In that case, cost (r) is the value of the objective function at t hc? 

optimal solution. A node that can be solved directly is called a solution node. WO assurw 

that for any solution node r that lb(r) = cost (r) = ub(r) . 
The incumbent is the best current solution node, that is, the node with thc minirnaJ cost 

over the sot of solution nodes that have currently been expanded. The incumbent valuc is 

cost of the incumbent's solution. 

The program uses a variable min-ub t o  record the minimum upper bound of t h  cx pandctl 

nodes. Any node whose lower bound is greater than min-ub is pruned. 

There are several improvements that can be made to the above code. For exarnpla, 

we could check that Ib(k)<min,ub for each child k before putting k in  the priority queue?. 

There are other enhancements such as dominance tests and equivalence tests that, we haw 

'The pseudo-code is copied from [56] with some minor changes. 
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function branch-and-bound(r: Eiode) : Node 
pq : priority-queue of Node 
incumb : Node /* the incumbent */ 
min-ub : int /* current min upper bound */ 

if has-direct-solution(r) then return r 
min-ub = ub(r) 
insert (pq, r) 
while not is-empty(pq) 

r := delete-max(pq) 
if lb(r) min-ub 

min-ub := min(min-ub,ub(r)) 
if has-direct-solution(r) 

incumb := r 
else 

/* Expand the node */ 
for each k in children(r) 

insert(pq, k) 
end 

fi 
else 

/* node r is pruned */ 
f i 

end 
return(incumb) 

end 

Figure 1.2: Branch-and-Bound Pseudo-code 



omitted for the sake of simplicity. 

The time taken by a branch-and-bound program is often ~neasurcd by t hc 11u11llwr of 

nodes generated. The space used by the program is measured by thc luasiintin~ six(. o f  t.lic 

priority queue. 

1.1.4 Search Strategies 

The branch-and-bound program above uses a priority qvaue to record thc open uotlcs. 'I'llc 

order in which nodes are expanded depends 011 an assignment of priorities to nodes. I)iifc.rcnt 

search strategies result in different time and space requirements and thc two most cor1tlrlol1 

strategies are depth-first and best-first . 
The depth-first strategy corresponds to prioritizing nodes in a tnanncr such that ( l i~( .h  

node's priority is greater than the priority of any node to  its right. 

The best-first strategy gives higher priority to nodes with the smaller lowcr I)ou~~cls and 

ties are usually broken in favour of the node that was generated firstt. 

The best-first strategy corresponds to the A* algorithm [44] and is known t,o gcncratc 

the fewest number of nodes in the worst case. The space used with the hest-firs! stratxgy 

typically grows exponentially with the depth of the search tree. This affects the amount of 

time taken by each iteration of the while loop because the time to  delet.c/insert iterns fso~~r  

the priority queue grows as the priority queue becomes larger. 

The depth-first strategy can generate more nodes but the space grows linearly wit l )  1 , h ~  

depth of the search tree. In addition, a stack can be used to  implemcni tflc priority ~ I W I I O  

so the delete and insert opeiations can be done in constant time. The depth-first strattgy 

can fail to  terminate if the search tree contains an infinite branch. 

1.2 Thesis and Outline of the Dissertation 

It  is possible to code the standard imperative search algorithms in  afur~ctiona! rnarlner [(i, I l i ]  

but this does not result in simpler programs and does not lead to any new insightr;. O u r  

thesis is that functional programming can be applied to combirtatorial search prograrIis so 

that the programs are simpler, more amenable to formal reasoning, arid easily cxc*cut,r:tl irk 

parallel. The dissertation demonstrates that this can be done by: 

1. Defining a new abstract data type that encapsulates pruning. 
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2. Using speculative parallelism to  execute the programs in parallel. 

3. Using partially deterministic functions to permit more non-deterministic behaviour 

while still guaranteeing consistent results. 

4. Using approximations to  formally reason about the programs. 

Chapter 2 provides the background necessary to understand the rest of the dissertation 

and describes lazy evaluation, speculative parallelism, non-determinism, and approximate 

reasoning, in more detail. 

Chapter 3 develops the improving intervals abstract data type that forms the basis for 

simplifying search programs. This data type is based on the observation that during exe- 

cution of a branch-and-bound program, the bounds on the optimal solution value form an 

interval that becomes tighter (or improves) as the search tree is explored. The implementa- 

tion of improving intervals relies on lazy evaluation. We give a branch-and-bound program 

and an alpha-beta program that use improving intervals. These programs are simple because 

all pruning is encapsulated within the data type. 

programs are amenable to equational reasoning where the algebraic properties 

of programs are used to  reason about the correctness of the programs. We extend the 

idea of equational reasoning to  include the use of approximations. Approximations are 

inequalities defined using the approximates relation (C) from domain theory. We verify our 

search programs and also verify an implementation of improving intervals using approximate 

reasoning. We use approximations, rather than equations, because they result in simple 

proofs for the search programs and they are also appropriate for reasoning about the partially 

deterministic progra.ms that are discussed later. 

Section 3.7 describes how search programs can be executed in parallel using speculative 

parallelism. With speculative parallelism a task is initiated before knowing that the results 

of the task will be required. The advantage of speculative parallelism in functional languages 

is that we obtain parallel behaviour without affecting the results of the programs; the parallel 

program remains deterministic. 

However, in some cases, permitting some non-determinism can result in more pruning. 

Consider searching distinct sub-spaces in parallel with asynchronous processes. Finding 

a solution in one sub-space may be sufficient to prune the other sub-space. A program 

that abstracts the actual order of finding solutions is non-deterministic. However, in sec- 

tion 2.4, we show that adding non-determinism to functional programs hampers the ability 
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t o  formally reason about the programs. Chapter 4 introduces an alternative cirlicd pr.tica1 

determinism that allows the type of non-determinism required by parallel scarch progriluls 

while retaining the abilitv t o  formally reason with the programs. X partially tictcrniiiiistic. 

program is non-deterministic but it is restrictrd t o  give cortsistent resrilts in tcrlns of infor- 

mation content. The idea of '.information content" arises from domain theory. Ctiaptc*r 4 

provides a precise definition of partial determinism using domain theory, considers !he cf- 

fect of extending functional languages with partial determinism, and describes how part i d l y  

deterministic programs are  amenable t o  approximate reasoning. 

Chapter .5 relates our work t o  other work on search, non-deterruinisni, and s p r c . ~ ~  li:t,ivc 

parallelism. Finally. chapter 6 describes some conclusions and areas for ftiturr rescitrc.h. 



Chapter 2 

Background 

This chapter begins with a review of functional programming, including a brief introduction 

to  the syntax of the functional language Mirandal. We then give an intuitive description 

of graph reduction and lazy evaluation and show how lazy evaluatiox permits the definition 

of non-strict functions. We also cover the distinction between speculative and mandatory 

parallelism and define the annotations par, spec, and p r io r i ty  for parallel functional 

programming. 

Section 2.2 clarifies the concept of non-determinism and defines the non-deterministic 

operators amb, choose, and n d ~ e r g e  that have been used as extensions to  functional lan- 

guages. The semantics of programming languages with non-determinism involves domains 

and power domains. We briefly review their definitions. 

Non-sequential functions are described in section 2.3. These functions are interesting 

because they requite fair evaluation of their arguments and hence cannot be expressed in 

functional languages. The chapter ends with a description of equational reasoning with 

functional programs. 

2.1 Functional Programming 

This section gives a brief introduction to  functional programming. Its aim is not t o  be 

comprehensive but instead it  defines the terminology used later and places this work in the 

cant ex t of previous research on functional programming. 

Mirandzt is a trademark of Researcb Software Ltd. 

10 
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2.1.1 Miranda - Syntax 

Miranda is used as the programming notation throughout the dissertation. Expressions 

and function definitions appear in a typewriter font. Turner [62] gives a good ovcwiew of 

Miranda. The following briefly describes some aspects of the syntax that are used latcs. 

A functional program is a set of type and function definitions. Miranda uses at1 cqua- 

tional syntax so a function definition looks like an equation. For example, t.hc followi~~g is 

a definition for a function f i b  that computes the nth Fibonacci number. 

> f i b  n = 1 ,  i f  n=O \/ n=l  

> = f i b  (n-l)  + f i b  (n-21, if n > i  

> = error "f ib:of -'ve num" , otherwise 

The application of a function f to  an argument a is denoted by the justnpositio~~ f a 

instead of the more usual f (a) .  The right-hand side of a definition is a sequence of gua,stlcd 

expressions (a guard is a boolean expression) and provides one method for case analysis. 

Pattern matching is an alternative way of doing case analysis in function definitions t1tit.L 

is often more concise than using guards. Patterns occur in the argument positions on tiro 

left-hand side of a function definition. The following definition of f  i b  uses tho patt,erris 0, 

1, and n+2. 

> f i b  0 = 1 

> f i b  1 = 1 

> f i b  (n+2) = f i b  (n+l)  + f i b  n 

In general, a pattern n+k matches a numeric argument that is greater than or c:qual t o  k ancl 

has the effect of binding the variable n to  the argument minus k. The pattmn C1 rnatchcfi 

an empty list while the pattern (x:xs) matches a non-empty list and binds x to  its head 

and xs to  its tail. The pattern ( x l , x 2 , .  . .xn) matches an n-tuple and binds XI throilgh 

xn to  the components of the tuple. 

Local definitions are possible using a where clause. For example, the followirig tlscs 

pattern matching and a local definition to  define a function f ib2 such that 

f i b 2  n =  ( f i b  ( n - l ) ,  f i b  n) .  

> f i b 2  0 = (error "fib:of - ' v e  numii,l) 

> f i b 2  1 = ( 1 , l )  
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> where 

> ( f l , f 2 )  = f i b 2  n 

The scope of the where clause is the entire right-hand side of the equation. The indentation 

is significant and is used by the compiler to determine the block structure of the program. 

The Type System 

Miranda is strongly typed and each variable has a type that can be inferred from the program 

text by the compiler. The programmer is not required to specify types though it is often 

useful to do so for documentation. The primitive types in Miranda are booleans (bool), 

characters (char), and numbers (nun). The type num includes both floating point numbers 

and integers. 

The list type is typically the most important type in functional programs. [T] represents 

the type of lists whose elements are of type T. Thus [numl is the type of lists of numbers. 

Other type constructors are (T1, T2, . . . Tn) for the type of n-tuples and T 1  -> T2 for 

the type of functions with argument type T1 and result type T2. 

User defined types can be defined using type synonyms, algebraic types, or abstract data 

types. A type synonym such as 

> word == [char] 

defines an alternate name for a type. Algebraic types can be used for tagged unions and for 

recursive types. For example, binary trees with integer leaves are defined by the following 

algebraic type: 

> bin- t ree  ::= Leaf num / Node bin- t ree  bin- t ree  
C 

Leaf and Node are called constructors and may be used as functions (Leaf 1 is a valid 

expression) or in patterns (Leaf X matches a leaf node and binds X t o  its integer label). 

Miranda uses a polymorphic type system. The type variables *, **, ***, etc. can be 

used t o  represent an arbitrary type, for example C*] is the type of a list of elements of an 

arbitrary type. 

The type of a variable can be explicitly stated when desired. For example, the type of 

the map function (that applies a function to  every element of a list) can be stated with the 

following: 
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> map : : (*->**) -> [*l -> [W] 

In Miranda, functions are curried so that functions of several arguments arc a.ctually func- 

tions that take a single argument and return a function. The following addition fuoct,io~l 

appears to take two arguments but its actual type is 

> add :: num -> (num -> n u )  

so it maps a number to  a function from numbers to numbers. The bra.ckcts i n  t l t c !  a,l)ovc 

expression are redundant because the type constructor -> associates to the right,. With 

currying, functions can easily be partially applied. For example, add 1 is a valid cxprcssion 

and it denotes a function that adds one to  its argument. 

2.1.2 The Computation Model 

A computational model for functional programs is typically based on a red urtiorl sys ~ , C I I I  : 

an expression is executed with respect to a functional program by reducing the expr~wiion 

to  normal form. Most functional la~guages can be considered as sugared syntax for t , h ~  

lambda calculus and so the formal definition of reduction in the lambda calculus ca,rricb 

over to  functional programs. 

Each reduction step replaces a sub-expression, called the redez, by an equivalent, sub- 

expression. Redex is short for reducible expression. An expression is in norrncd /brn i f  

it has no redexes. Within an expression, there may be many sub-expressions 1,Irat aw 

redexes; a reduction strategy is a method for choosing the redex to be replaced. 'l'hc norrrd- 

order reduction strategy chooses the left-most outer-most redex. Normal-order rcduct,ior~ 

corresponds t o  executing the body of a function as far as possible before evaluating tire 

function's arguments. In contrast, imperative languages typically use the ~~p~)licutior.-or.(l~r. 

strategy that evaluates the arguments before executing the function's body. 

Two fundamental results that carry over from the lambda calculus are: 

1. If an expression s reduces to  the normal form y and to the normal form z then y = n. 

2. If an expression X can be reduced t o  the normal form y then X can be reduct?d to y 

using normal-order reduction. 



The first result enswes that the normal form is unique regardless of the reduction strab 

egy. Hence, sub-expressions may be reduced in parallel without affecting the result of the 

program. The situation is not quite this simple because some care is required in handling 

sub-expressions whose evaluation may not terminate. The second result shows that the 

normal-order strategy finds the normal form if it exists. 

Expressions can be represented as either strings or graphs. The graph representation 

permits sharing of sub-expressions when a variable occurs more than once in an expression. 

For example, in the following function definition, 

> f x = z * ( x / z )  

> where z = g X 

the variable z occurs twice and is bound t o  the shared expression g X. Graph reduction 

reduces a shared sub-expression only once while string reduction reduces a shared sub- 

expression each time it occurs. The time used by the program is measured by the number 

of reduction steps performed to  reduce an expression to  normal form. Thc space used is the 

size (the number of nodes) of the largest graph that exists during reduction. 

Lazy evaluation uses the normal-order reduction strategy with graph reduction. With 

lazy evaluation, a sub-expression is only evaluated when its value is needed and shared 

sub-expressions are evaluated only once. For example, with the following definition, 

> f X y = (X- l ) /x ,  if X "= 0 

> = Y, otherwise 

the expression f (1+1) (1/0) reduces t o  0.5. The argument (1+1) is reduced once even 

though X occurs three times in the body o f f .  In addition, the function returns a result even 

though its second argument is undefined. 

In practise, a redex is selected and is itself reduced. However, the redex is not reduced 

all the way to normal form. An expression is in weak head normal fomz (WHEF) iff it is 

not a redex and cannot become a redex by reducing its sub-expressions [48]. We refer to  

the process of reducing an expression t o  -W-HNF as evakating the expression. Later in the 

dissertation? u3e use the fact that a list of the form x:xs is in WHNF. The evaluation of an 

expression that denotes a list stops once the expression is reduced t o  a list cell; neither the 

head nor the tail is evaluated. 



2-1.3 Strict and Non-Strict Functions 

Lazy evaluation allows the definition of functions that  may nut n t td  t hr vatitt. of nrl ; IS  

gument. Such functions are called non-strict and a simple tsample is t t i t  ccmt it111 - w e  

function, defined by the fblfowing: 

More precisely, a function f(r), is strict iR f f  I) = I, where f deiiotcs a ~ ~ o ~ ~ - t c r r t i i ~ l i ~ f i r ~ ~  

computation. Otherwise the function is called rtott-strict. This idea cait bc g(\tli*~;tli~i*il ; o  

functions with more tharr one argument (but recall trhat, with currying, all fwctiotts t a k c  a 

single argument ). 

All general-purpose programming languages provide sorne ~OII-strict  cunstructs: t I I P  i f  

statement is non-strict because a statement like 

if True then ci e l s e 1  

evaluates c l  without evaluating 1. Most languages also provide a non-strict cor~ditio~iir~l o r  

function, we cali it cor. that is non-strict in its second argument Iteca~rsc 

cor True 1 = True. 

Kowever, in most languages, user-defined functions are always strict. 

In Miranda, constructor functions are used t o  build da ta  structures. <'oust ructor. f'trrir- 

tions are an impoxtant class of non-strict functions. In particular, the list co~tst,ruc.bor is 

non-strict in both arguments so that f L: I j # I. Lists cunstructr.d with this iiort-strirt 

constructor are called fa2g lists (or "streams'-) and are used extensivi:ly iri the tlissr~rla tiorr , 

2.1.4 Parallel Rinctionaf Programming 

Two main approaches t o  parallel programming are: to leave the parallelisrrr implicit arrd ict 

the  compiler determine what to do 12tf; or  t o  annotate the program t o  ~xpliri t ly irrcfic;~t,r 

what should be done in paralfef. Functionat proqrammlrig provides advantages for tmth 

approaches though we c o ~ ~ i d e r  only the fatter. 

We nse anno ta tkm similar to those proposed by Burton 1121 arrd f f  ttdak 1271 to expJicitly 

indicate the pardel ism in functional, programs. Annotations are special firrrctio~ih that, 

do not a k t  the meaning of the program but do  affect its execution. The advan tap: o f  



5uch arrnatations I5 that :he a r l n ~ t i i t ~ d  jpardef version is correct proiided that the un- 

ar,r~ritatf-dfs~yuer~tiifi prr;u,rr;m is correct. Therefore. a parallel program can be dewloped 

h i  firkt d~veloping arid deb*qginq ;i sequential program and then adding the appropriate 

artnot a h n s .  

The annotation par is rrsed ro kiriate the parallel evaluation of rhe argument t o  a 
. . furictiori [the rjngtnd task goes on to e-duate the function - just as with normal order 

seb?rction!. For exampfc. esafu&iinq the expression par (add ell e2 crehtes a task  to  

evaluate e2 in paraikf x i t h  rhe evdrlarion of (add e l l .  Sernanticafiy. par behaves as if it 

sew defined by. 

Sotice that evaluating par f X does nut terminate if evaluating x does oot terminate. 

Therefore, the function par is an annotation i i r  preserves meaning) on& for strict functions: 

if f is a non-stricl f~uncrion then par  f Is nqt equal to  f .  The nexx section describes an 

annotaticm called spec thar can be used to introduce parallelism ~ 6 t h  non-strict functions. 

The pas armotatlctrr can be used to b d d  other functions for parallel programming. For 

example, a paratlet map fimwiorr rhat applies a function f t o  each eferuent of a list in parallel 

can be expressed as follows: 

> par-nap f Cf = r4 
> par-map f (X : xs 1 = par ( &f xZ : ) (par-map f xs) 

The notztian (f X) :) is a n  example of Kranda's notation for partiauy applying an infix 

h n c t  ion. The expression f x : 1 denores a function such that (K : 1 xs = X:  zs. Hence. 

((f XI : 1 druotes a h c t i o n  %hat appends the element (f X )  to a list. 

Speculative and Mandatory Parallelism 



Specuiatiw parallelism is used to evaluate an expression w h o s ~  rpui t  max not hc needed. 

If the resalt is needed then t iae is saved by the  parallel evaluation of the ~xpression. I f  t irc 

result is no; needed then a processor has  wasted some time by evaluaring t tzc expression. 

Speculative parallelism is useful with non-strict functions. For exampb. con.iitier cvai- 

tlating an expression snch CCCI r81 e2 where cor is the conditiortat-or ftincrim. I'iw 

fmction cor is strict in its first ayurneat but non-strict in its second arguxnwr so rua~ida- 

ton; pardelism codd be used t o  evaluate et and speculative parailcikrrt inay h 1 1 m i  t o  

evaluate e2. 

The annotation spec is ;ISPI! t o  introduce speculative parallelism. Scma~itically, spec 

behaves as if it zi-ere defioed bv 

> spec f X = f X 

and so spec is the ideatit>- function tsn 60th strict and nun-strict h~nrticms. Eval~tarir~g 

the expression spec f X creaies a net=; speculative task t o  cvafuate X w t d c  t h ~  origirial 
+ - -  ~ a k  proceeds with the evaluation off X. If the evaluation o f f  X d o ~  ~ t o t  new1 t h u  valw 

of X then rhe speculative r ~ k  becomes i r rele~ant  and may be killed. Ot hcrwise whrn t he  

et-afuation o f f  X requires the d u e  of X then r h ~  task evaluating X bwomes rnandatrxy arrrl 

the origirral task blocks uritil x is el-alnated. 

Tasks are either specdative or mandatory. Mandatory tasks are sched t~ l~d  ahcad of 

specdative tasks. There is aizs-ays at least one mandatory ta& becauie the initial task is 

madator? and a mandatory t a s k  thar e v a l ~ z t e ~  spec f X or par  f X gtsei oii to rsvaluatr 

f X. 

Fair f o r  pre-empfiwj scfied:~E.t~:g is nor required. A rnandztory task can always rurt 

to co=pletictn because if r he ;=I.: does not ~crrninatre then ~ I I P  program must  m? t c r n i r ~ a t ~ ~ .  

A specdative task cau also be run to cunpfetion. If a speculative task is s r h ~ t i u l ~ d  t h m  

there must be a mandatory task scheduled on some other processor. If the sp~cttlativr~ task 

does not terminate then the processor that is rmning the mandatory ta5k may IF. u s d  to 

~ ~ m n l ~ r ~  t_hp nrnwr2rn  r=-=- 15- -D= --- - 
A specdative task =a:: become matdatrrry or may becorm i r re I~~,an t .  Ar:v fa.4 that 

becorner irrefevant should be kiiled and reclaimed through a prucpsi sirrtilar to gartragr2 

caEecrion. -1 speculative task eannst initiate a mandatory task.  

1: is often usefd tcr be ahk to piace priorities cm speculative tasks 50 that. t b  5 p t w ~  ran 

schdnfe tasks that the programmer deems are more likely to  be needed. The annotation 



CIiAPTER 2. BACKGROUND 

priority p X modifies the priority of a speculative task evaluating X to  be p. For example, 

evaluating the expression 

spec (cor ell (priority 100 e2) 

initiates a speculative tasks to evaluate e2 whose priority will be set to  100. The semantics 

of the priority annotation are given by the following definition. 

> priority p X = X, if p # I 
> = l., otherwise 

We assume that priorities are numeric and that a larger number represents a higher 

priority. A speculative task created without a priority annotation has the same priority 

as its parent task if the parent is speculative or otherwise has some maximal speculative 

priority. Evaluating a priority annotation has no effect on a mandatory task. 

Priorities are just hints to the scheduler and may be ignored. For example, we want 

to permit a distributed implementation where each processor has a local priority queue of 

tasks rather than requiring a global priority queue be shared among all the processors. 

Speculative paxallelisrn is useful with lazy data structures such as lists. The annotation 

spec-list, defined below, is the identity function on lists, but uses speculative parallelism 

to  evaluate the spine of the list. 

> spec-list [l = C] 
> spec-list (x:xs) = spec (X:) (spec-list xs) 

Only the spine of the list: as opposed to  its elements, is evaluated. For example, a task 

evaluating the expression spec-list Eel, e2, e31 terminates after reducing this expression 

to el :spec-list Ce2,e31 without evaluating e1 and also initiates another speculative task 

to evaluate spec-list Ce2, e31. 

i t  is easy to write a function that speculativeIy evaluates each element of the list by 

using iivo spac annotations: 

> spec-list-eiems Cl = P1 
> spec,list,elems (x:xs) = spec (spec (:) X) (spec-list-elems xs) 

The sub-expression spec ( : ) X denotes a function that takes a list and returns the list with 

x appended as the head and also initiat,es a speculative task to  evaluate X. 
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Non-determinism naturally arises in parallel programs where scvcral tasks li,lvc acccss to 

a shared resource. Most programs do not precisely specify the ostler in w1iic.h tasks access 

a shared resource and different results may be obtained depending on the acttral ostlrr of 

execution . 
In imperative programs, non-determinism is often implicit in the cor~stsucts of thc I i r r i -  

guages. For example, in Dijkstra's guarded command language th t~  i f  statc~nc~it,  I I ~ S I -  

deterministically selects and executes a branch with a true guard. Languages that s~~ppost  

message passing usually contain a receive statement that retrieves messages in a firs( i r i  

first-out order. If two client tasks send messages to the same server, thcri the ortltr i n  wlriclr 

the messages are retrieved is non-deterministic. 

,4 major concern in writing parallel programs is the synchronizatio~i of tlic t;isks so t Iiirt 

non-determinism is at least somewhat controlled. Bugs may occur becausc o f  inipropcr 

synchronization. Such bugs can be difficult to detect and correct because ;l sma l l  c.h;lrrgc\ i n  

the actual execution order of the tasks can hide or reveal the bug. 

It  is often helpful to view execution of a program as a scqucnce of s tdcs  i n  ir stiito 

transition system. A deterministic program gives a linear sequence of stales whcreas a nor\- 

deterministic program gives a branching tree of states. Each branching point involvcbs il 

choice. The choice depends on the program as well as other factors, like t he ac.t,ual or tic^ of 

execution, that are not specified in the program. There must be sorne rricthotl for rosolvi~~g 

the choice and different strategies for resolving the choice lead to different types of non 

determinism: 

Global or Local With global non-determinism, the choices are made to c?nsr!rct t11a.t t . h  

program as a whole terminates successfully. For example, in a non-dctc~rrr~ir~istic. lir~it,cb 

automaton a string is accepted if there is some sequence of vslid transitions frorrl ttrv 

start state t o  a final state. At each transition, the machine choosc.s to rnovc. to ii now 

state but this choice must be made s s  that eventually a iinai siatc. is rcwchrd. 

With !ocd non-determinism, the choices can be made lorally without consicl~rirrg 

global aspects of the program. Most parallel programs use local non-detc*rtn irr  istr~ . 

For example, when two tasks access a shared resource the choice may he based on thc 

time when a task first accessed the resource. 
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Angelic, Demonic, or Erratic There are several possibilities for the interaction of non- 

terminating computations and non-determinism. Angelic non-determinism always 

makes a choice to  avoid non-termination; demonic non-determinism always chooses 

non-termination; while erratic non-determinism make a random choice. 

Weak or Strong Weak non-determinism refers to a program whose execution may be 

non-deterministic but whose result is deterministic. Dijkstra [l71 uses his guarded 

command language to  write many non-deterministic programs that always produce 

the same result. 

Strong non-determinism refers to programs that produce different results. Operating 

systems and many real-time systems are strongly non-deterministic. 

Our concept of partial determinism lies between weak and strong non-determinism. A 

partially deterministic program is strongly non-deterministic because different results 

can be produced but the results are all consistent. 

The various types of non-determinism can be combined in different ways. For exam- 

ple, in Dijkstra's guarded command languages the guarded i f  statement is a local angelic 

non-deterministic construct but many programs written using the guarded command lan- 

guage are weakly non-deterministic. The non-determinism in logic programming languages 

involves making a global angelic choice between clauses in a predicate definition. Logic 

programs are often strongly non-deterministic because they return results corresponding to 

different proofs of the goal. 

2.2.1 Non-deterministic Operators in Functional Languages 

In functional languages, non-determinism is often expressed by the use of pseudo-functions. 

They axe called pseudo-functions because they do not map the same arguments to the same 

result. McCarthy's amb operator is a local angelic pseudo-function that behaves as if it were 

defined by the following: 
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The intended behaviour of amb is that it evaluates both arguments in parallcl and rctrls~~s 

the first one to finish. 

Tbe pseudo-function choose is pseudo-function that is local erratic. I t  bcl~avrs as if  i t  

were defined by 

> choose a b = a or b 

The amb operator must return a non-bottom argument if one exists whilc choose may rctusu 

I if either of its arguments is I. 

The operator amb can be used to  write some other common pseudo-functions. 'Chc. 11011- 

deterministic merge operator nd-merge, as defined below, returns a fair intcslcavinf: of t w o  

lists. 

> nd-merge xs ys 
> = ys, if choice=l & xs=[] 

> = xs, if choice=2 & ys=[] 

> = (hd x):nd,merge (tl xs) ys, if choice = 1 b xs"=C] 

> = (hd y):nd,merge xs (tl ys), if choice = 2 & yse=[] 

> where 

> choice = amb (seq xs 1) (seq ys 2) 

The amb operator is used t o  non-deterministically choose between 1 a.nd 2 1);tsctl 011 whidr  

of xs or ys evaluates first (the expression seq xs 1 evaluates to 1 after evaluating xs t o  

WHNF: that is, the empty list or a list cell). The use of amb ensures that nd-merge is bottoni- 

avoiding. The operational reading of nd-merge is that it evaluates both of its argumc?rtts i n  

pa rde l  and merges elements from the arguments in the order t l ~ a ~ ,  they hecornc: availa,hlct. 

The behaviour of nd-merge corresponds to the non-determinism that occurs with tItc?ssagct 

passing when two tasks each send a stream of messages to the same receiver. '1'11(: ta.sks 

evaluating each argument of nd-merge must be evaluated with a fair schedulw so that i f  

one argument fails to termina.te then elements from the other argurner~l can  till bct nscd. 

2.2.2 Domains and Power Domains 

In chapter 4, deaotational semantics is used as a tool for understanding some aspects of' 

partial determinism. Denotational semantics is built on the concept of a domain. Power 
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Figure 2.1: Domain ( Z  U {I}, C) 

domains arc used for handling non-determinism. The following reviews some of the basic 

definitions for domains and power domains. 

A domain is a set with a partial order C that obeys the restriction described below. The 

usual reading for C is "approximates" where a approximates b iff b has as much informa- 

tion content as a. Every domain contains an element I that is considered to  contain no 

information or to denote an undefined value. Figure 2.1 gives a pictorial representation of 

part of the domain ( Z  U {I), C) where for all X,  y E Z, X L y iff X = I or X = y. In more 

operational terms, I stands for a value that has not been computed yet. We often use I to  

stand for a non-terminating computation because a non-terminating computation is always 

"not computed yet". Domains like that in figure 2.1 are called flat. 

The notion of approximates and information content is better illustrated with more 

structured domains. For example, with lists 

In the expression 1 : I ,  nothing is known about the tail of the list. The tail of the list 1 : 2 : 1 

is known t o  start with a 2 and the tail of the list [1,2,3] is known to  be the list [2,31. 

The computable functions from D1 t o  D2 form a domain that is partially ordered by the 

following: if f and g are functions in D1 + D2 then f L g iff for all X in D1, f (X)  50, g(x). 

In a deterministic language, every expression denotes a single value. However, when 

non-determinism is added, an expression denotes a set of possible values. For example, the 

expression choose 1 2 denot,es the set (1,2}. The sets of possible values are elements in a 

power domain (the analogue of a power set). The elements of a power domain are sets and 

the ordering c n  the sets csmhines the subset relatiun with the approximates relation. 

We now define some of the above terms with more precision. 

A p s e t  (D, 5) is a set D with a binary relation L on D that is reflexive, transitive, and 

anti-symmetric. A subset, S of D is a chain iff for every pair of elements a ,  b E S, either 

a C b or b C a. Given a subset S of D, an element b E D is an upper bound on S iff for all 
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a E S ,  a L b. An upper bound b on S is the least upper borlrzd iff. for cscry upper t m u n d  0' 

on S, b 5 b'. US denotes the least upper bound on S when it exists. Siiitilarly, I7.S clciiotrs 

the greatest lower bound on S when it esists. 

A poset (D,  C) is a domain iff every chain of D ha.s a least upper bound in  I ) .  Ivcry 

domain has a least element that is denoted by ID or just 1 if I1 is rlmr fronl contest. 

Given a set A not containing I, the domain ill = f A tt (L). Q, whwc for a .  lr E A, n 2 h 

iff a = b or a = L, is called a fiat domain. 

A function f: D1 -- D2 is ntonotonic iff s 50, y itnplies j ! x )  &D, f ( g )  for all .r, !/ E 11, 

and f is continuous iff UD, ( f ( z )  j X E X )  = f (Un, X) for all the chains S of 11,. I w r y  

computable function is monotonic and continuous. 

There are three standard power domain constructions [49, 531: the Plot kilt pc)wcbr ( I O I I I ~ L ~ I ~  

for erratic non-determinism. the Hoare power dornain for angelic 11oii-dctcrniirtisrfi, i t l ~ t l  t I t (> 

Smythe power domain for demonic non-determinism. We use the Plotkir~ power ( I ~ l t l i ~ i i i  to 

model the erratic non-determinism that occurs in parallel search programs. 

When D is a flat-domain, the elements of the Plotkin power domain ??(I)) are tlir 11011- 

empty subsets of D that are either finite or contain I. Since I can be an clenient, ir i  a sct,, 

non-termination is a possible result. The ordering & p  is defined for all A,  I1 E 'P(/)) i t s ,  

The least element of P ( D )  is {I) (the empty set is not an element of P( 11) hoc.;ti~sc~ cwcbry 

program at  least returns I as a result). Figure 2.2 shows part of the Plotkirl powcbr tlorrrairr 

on Zl. 
When D is not a flat domain then the above power domain constructio~t is morc corn- 

plicated. For completeness, we give the Plotkin power domain coristruc tior~ for n o n -  flat 

domains following Broy [g]. 

The first problem is that lZp is not anti-symmetric. The standard solution is to divide 

the subsets of D ir-to equivalence classes. For the Plotkin power domain, this ttq uiva.lc*rlc~ 

relation is based on the convex ciosure of a set. For a subset S of D, the convcJx c-losr~rc 

conv(S) of S is defined by 

FOP example, the convex closure of the set {1:I, [1,2,3]) includes the list 1 : 2 : 1  and t h c  

list 1 : 2 : 3 : 1. Two sets S1 and S2 are considered equivalent iff conv(S1 ) = cmv(S2  f .  



Figure 2.2: Plotkin Power Domain on ZL. 

The second problem is that even when such equivalence classes are used some operations 

on power domains are not continuous. (For example, the singleton set constructor is not 

continuous.) This can be remedied by modifying the equivalence relation to  consider finite 

elements of finite subsets of the base domain D. An element X in D is finite iff for every 

chain S in D with s US, we have X z for some z in S [g, p. 131. Let fin(D) be the 

finite elements of a domain D. For sets S1, Sz C D, the equivalence relation is defined by 

5% take the elements of the Plotkin power domain to  be the &-maximal element of each 

equivalence class. That is, 

2.3 Non-Sequent iai Fund ions 

classic example of a non-sequentiai function is the pardei-or function and it can be 

defined by the following: 

True, i f x = T r u e  
par( X, l!) = 

if z = I or X = False 
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The por function can return a non-bottom a.nd non-constant. result when eit,her a.rgunle11I, 

is I. That is, 

por(x, I )  = X 

p or(,x) = X 

Therefore, por requires fair evaluation of its arguments to  avoid non-termination when 

evaluation of one of its arguments does not terminate. The fair evaauation may bc done 

sequentially by interleaving the evaluation of each argument or may be done in pa.rallr1 by 

concurrently evaluating each argument. The tasks evaluating ea.& argument arc specula.kive 

in that a task becomes irrelevant if the other task evaluates to true. However., thcsc. Imks 

are unlike the speculative tasks described earlier because they require fair scheduling. 

Another typical non-sequential function is a variant of the conditional function ij and 

is defined by: 

( X,  i f c = i a n d x # I a n d x = y  

( y, if c = False 

An implementation of pij requires fair evaluation of the condition c and the test, s = y. 

'ra.l~ls The por function appears t o  be a good candidate for writing parallel search prog 

because it  could be used in decision problems to search the children of a uode i n  pa,rd- 

lel. However, any functional language with a fixed sequential reduction strategy car~r~ot, 

implement the por function because it requires fair evaluation of its arguments. 

Functional languages can be extended so that the por function could be irnpleme~~tcd. 

For example, the p r  function can be implemented using amb by the following: 

> por X y = amb (cor X y) ( c m  y X) 

where cor is the conditional or function. However, we want to avoid the overhcmls of h i r  

scheddi~g.  We also want t o  be able to  write functional programs that can be written and 

bebugged using existing sequential compilers and then run on a parailei machine for. hctttcr 

performance. Therefore, we want a variant of the por function that is sequential bu t  car take 

advantage of parallelism when it  is available. Chapter 4 describes how partial deterrni nir;tn 

c a  be used t o  define an approximation t o  por that achieves the above goals. 
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2.4 Equational Reasoning 

Equational reasoning is a method of program transformation that uses the algebraic prop- 

erties of functional programs. Verifying a program using equational reasoning is done by 

transforming the program to its specification (or vice versa). 

Equational reasoning is particularly suited to  functional programs because the lack of 

side effects results in many simple algebraic properties. One simple but important property 

is the equivalence of identical expressions. That is, for any expression X, 

Note that this property does not hold in languages with side-effects (in C, for example, it 

is not true that i++ == i++). A slightly more complex example is the following property 

(map f) . (map g) =map (f . g) (2.1) 

where . is an infix function denoting function composition. This property says that applying 

g t o  each element of a list followed by applying f to  each element of the result is the same 

as applying f . g to  the list. 

Bird and Wadler [7] contains many examples of such algebraic properties and their ap- 

plication. Bird and Hughes [6] describe a particular relevant example. They use equational 

reasoning to derive a sequential alpha-beta program from its specification. However, the 

final program is not surprising and can be viewed as a straightforward translation of an 

imperative alpha-beta program. 

The addition of non-deterministic operators seriously hampers equational reasoning. 

The equivalence of identical expressions is no longer valid. For example, 

amb 1 2 f a m b  1 2  

because the left-hand side may evaluate t o  1  and the right-hand side may evaluate to 2. 

Setsoft and Sdndergaard [58] examine non-determinism in functional languages in more 

detail. They define a simple non-deterministic functional language and describe twelve 

diRerent semantics. Eqnat imd rreasming is difficult, using each of the twelve different 

semantics, because the language either snpports unfolding or has simple algebraic properties 

but not both. Unfolding replaces a function application with the function's body (with 

a suitable substitution of the arguments for the parameters) and is a key technique in 

equation9 reasoning. 
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Our approach is to  reason with deterministic approximations to non-dc.terminislic. pro- 

grams. Approzinzate reasoning extends equational reasoning to include reasoning wit 11 ap-  

proximations of the form el C e2, There are several factors that contributc to approsinlatc 

reasoning. The approximates relation is similar to equality in that it is reflexive arid t,rnli- 

sitive. Secondly, if f is any computable function, and el C e2 then f el C f 02 follows 

from the monotonicity of f . 
Unlike equality, the approximates relation ei C e2 permits the expression e2 t o  cont ain 

more information that the expression el. For example, if S is a specification atitl p is a 

program then showing that S C p is usually sufficient for correctness sincc it g t ~ a r i ~ ~ i t c ~ ~ s  

that results from p will be at least as informative as results required by S. 111 o t l l c~  words, 

we are usually willing to  accept programs that meet or exceed their spccificatioli. 



Chapter 3 

Improving Intervals 

This chapter describes the improving interuuls abstract data type. Improving intervals 

are an explicit representation of a sequence of converging intervals. The data  type defines 

minimum and maximum functions that are useful for writing functional search programs in 

which all pruning occurs within the data type. 

Improving intervals are an extension of Burton's improving oalues [l41 and the chapter 

starts with a review of improving values as an introduction to  the basic concepts. The 

improving values data type encapsulates operations on lower bounds while the improving 

intervals data type handles both lower and upper bounds. 

Section 3.3 describes a specification for improving intervals that uses non-sequential 

functions. However, we do not want to enforce nowsequential behaviour for the reasons 

described in section 2.3. Therefore, we weaken the specification to  allow sequential im- 

plenlentations. An implementation for improving intervals is given in section 3.4. The 

implementation relies on lazy evaluatio~l and uses lazy lists to  represent the sequence of 

converging intervals. Approximate reasoning is used t o  prove that the implementation is 

correct with respect to the specification. 

Sections 3.5 and 3.6 include two examples of search programs that use improving inter- 

vds: a best-first brarich-and-bound program and an alpha-beta program. For each program, 

we give a specifrsatiorr and use approximate reasoning t o  show that the program meets its 

specification. 

Improving intervals heIp to simplify the coding and verification of a search program but it 

can be difficult to  understand rhe program3s behaviour. Section 3.5.i includes a comparison 



> abstype impvalue * 
> with 
> iv-exact :: * -> impvalue * 
> iv- lb  :: * -> impvafue * -> inpvalue * 
> iv-value :: impvalue * -> * 
> iv-min :: impvalue * -> impvalue * -> impvalue * 

Figure 3.1: The Signature of the Improving Values Abstract ])at il 't'ypr 

between the behaviour of a functionai branch-and-bound program and imjwativt.  t ) r i t t ~ ( ~ i i -  

and-bound. 

Section 3.7 describes hotv speculative parallelism can be used tn esc~t'ntc t hc f~ i~wt~ ion id  

branch-and-bound program in paraild. The addition of spec anitt~taf icms yitlltis parall(*! 

programs but without some care the behaviour of the parallel prt~grains ciLl1 be urtcsjtc*cbc~dly 

poor. 

3.1 Introduction to Improving Values 

Improving values were conceived b_v Burton [l41 as a way of mprcssitig par;tllol sc~ardt 

programs in a functional language. Consider the executiori of a brand;-aid-imurld program 

on some problem instance (Xl f). As the search tree is explored, wt obtain I)c~t,tji~r-antl- 

better bounds on f"(X) ( the cost of an optimal solution). Surh a scqncr~co of honrrtls rat1 

be explicitly represented by a lazy list. For example, the list f3 ,  5, 101 inight bc gcwc~ri~l~td 

by a program tha t  first found that B 5 f"(S ), then fourtd the better k o u t ~ l  5 < f * f  h' ), ard 

finally found that f " ( l k ' )  = 10. Improving values encapst~latct oywatioris ort lists of Iowcr 

bounds. 

Figure 3.1 shows the signature of the improvirrg value zthstrart da ta  t y p ~ .  ' l ' h f s  followirtg 

describes some ctf the intuition behind the operations on improving ~ ~ l u c * s .  

iv- lb a X is an improving d u e  with an irritial lower hourrd of a arid wltost! h11 l~er:qucnt 

vdne is defined by X. The improving vdue iv-fb 3 [5,10] is reyreserjtr*d by tlrt:! list 

[3.5,101. The frtrmctiorn iv-lb is non-strict in its second argumrxlltt so that iv-lb 3 1 



is t h e  list 3 : i .  

iv-value X is the wart value in f he improving value X. For example. iv-value [3,5,10] 

ii, 16. Thi> is defined only for improving values having a finire total representation. 

iv-rain x y retwns an improving value that represents the minimum of the improving 

f;;;tiu~% x and y. T ~ P  f m c t i o ~  iv-rain may return a resul: without examining all the 

bounds in its arguments: iv-ntin E33 ( 5 : i >  may return C31 without esamining i. 

Ihro.sughout this dissertation. the variables a. b. c, etc. are used for values while X. y. z. are 

used for improving values {or improvirig in;ervals 1. 

3.2 Introduction to Improving Intervals 

The improving intervals abstract data  tvpe extends improving values t o  handle both upper 

and 10%-er bounds. An improving inters-d represents a value b>- a sequence of successively 

tighter intervals that bound the value. For example. the sequence of inter~als .  

represents the value T. tlh try to avoid some confusion betxeen the notation [a. bj for the 

inclut;ive interval of 3-a:tit.s from a to  b and the notation [a,bl. for a list with two elements 

by tlpesettjng the interud rtotalion in a math font while a typewriter font i used for the list 

notation. As with irnprovi~lg values, the sequence of intervals can be explicitly represented 

t ) ~  a lazy Est. 

Section 3.3 defines a specification far the fanctions on improving intervals but ii'e give 

a informal description below. The funcxions on improving intervals are similar t o  those on 

improving values but there we &so same additional functions on improving intervals: 

ii-ub a X is an imprasing inxerra-ai whose lnirial upper bound is a and u-hose subsequent 

d u e  Is defined by X. 

ii-E= IE y is an imprm-kg Inrerd that is rhe maximum of the improving intervals x and 

J - 

Ttie signature of improuiqg imen-als is shown ia figure 3.2 and is similar t o  the signature 

far irnproring rda- with rffe addition of the two new functions. 



> abstype i q i c z  * 
> with 
> i i -exact  : : * -> inpint  * 
> i i -value : : &pint * -> * 
> i i - l b  :: * -> impint * -> d p i n t  * 
> i i -ub :: -> impint * -> impint * 
> ii-min :: i q i n t  * -> i n p i n t  * -> impint * 
> ii-max :: h p i n t  * -> i q i n t  * -> impint * 

Figure 3.2: The Signarure of the Improving Intervals --Ibstract Data l'ypcl 

The functions i i-exact-  i i - lb .  and i i -ub are used to construct I ~ n p r o v i ~ ~ g  in?crvals. 

For example. 

1. i i -exact  7 is denotes a seq.rlencr: with the single interval I T . ; ] .  

2.  i i - l b  5 ( i i -35 10 ( i i -exact  7 ) )  denotes the  sequence [5 .~ ] . [5 .1 I f j . [7 .7 j .  

The functions ii-min and ii-max return an improving interval that is t h o  ~ r i i r l i i n i ~ i r ~ r  or 

maximurn of its argrimenrs. 

3.3 Specification of Improving Intervals 

A natrrral approach t o  specif.;lng improving intervals is to  equate their o p ~ r a t i o l ~ s  to furic- 

tions art intervals. However. this is difficult because the natural f ~ m c f i o ~ ~ s  c m  i ~ i t  ( w a h  

2re non-sequenrial. Instead. :be specification is given using approximationi. ' J ' f r r  applrtx- 

jrnation; consrrair! the operations on improving intervals wit h respc3ct to rri i r ~ i r ~ r  !I 111 and 

ma-ximum filnc~ions uo values. t't- call this an a p p m x i ~ ~ u i c  .IF rnurd K.<. 

The section is organized as folloxs. \ite start with a more precise definition of intvvalh. 

the approsirnates relation on intervals. and the minimum and maximum fnnctio~ls or1 in-  

r e r d s .  l$-e t t c n  give ?he specificatiorr of improving intervals using approximations. t'irialiy 

1%-e derive some acid&ionai properties about improving intervals from r hp  spc~cification. 

The domain of i n r e i n k  is constrlicted from a fiat domain V with a linear ortkri~ig 5 .  
Ke assume that 5 is s ir ic~  asld monotocic. For ariy subset S of non-bottom cl~rrwnts of 

t-. let .tfff't'r* S j be r@e greatest lower bound on S with respect to 5 arid let M A  X( .?l t ic* 

the least upper boand on S x i t h  respect t o  <. For reasons described later. iw p x t ~ d  V to 
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include the MIN(S) and MAX(S) of any subset of non-bottom elements of V. That is, 

V- = V U (MIN(S) I S E V - {L))  U {MAX(S) I S c V - {I)) 

Let -m = MIN(V - {L))  and oo = MAX(V - {I)). The ordering _< extends to  V* 

in the obvious way. For example, that rational numbers Q would be extended as Q* = 

R U {-m, m). We call V' the set of values. 

The domain Z of intervals is the set 

partially ordered by 

[ a , b ] k  [c,d] iff a < c and b 2 d. 

Hence, for intervals il and i2, we can read il i2 as i2 is tighter or equal to  il. The least 

element of Z is LT = [-m, m]. The maximum and minimum functions on intervals are 

defined point-wise: 

where min and max are minimum and maximum functions on values with respect to  5. The 

functions mini and maxz are monotonic because max and min are monotonic. That is, if 

il CT 1:: and i2  i: then rnaxz(il, i2) maq-ii, i;). 
If we used V rather than V* in the definition of Z then some chains in Z would not have 

a least upper bound. For example, if we let V be the rational numbers Q then the least 

upper bound of the chain of intervals 

is the interval [e,  31 (where e = 2.71828) but [e, 31 4 Z because e is not in Q. With any data 

type having a fixed size representation, and hence only a finite number of values, V and V* 

are equivdent . 
A natural specification for improving intervals defines a function that maps the opera- 

tions on improving intervals to functions on intervals. For example, the following equations 



partially define such a function called a. 

[ a , ~ ] ,  i f a # I  
a ( i i - e x a c t  a) = 

IT, otherwise 

a(ii,max X y )  = snax~(cu(x),a(y)) 

max~(cr( i i -exact  a) ,a(y)) ,  if a, # I 
a ( i i , l b  a y) = 

otherwise 

The function i i - l b  is specified using m a q  because for any lower bound 1 on a, va.lile :I: i t ,  

follows that max(l,z) = X. 

An implementation of improving intervals would be correct if it satisfied tht\ a.hovr. 

equations. However maxx is a non-sequential function (in the sense defined in scctiou 2.3). 

For example, because 

max1([3, 333 1 s )  = [3? m ]  

an implementation of maxT must fairly evaluate both its arguments in order to avoid a, possi- 

ble non-terminating computation. Any implementation of ii-max in a traditional I'u nctiona.l 

language must be sequential and can not satisfy the above specification. 

Two possible remedies are to extend the functional language so that non-sc~q~lcrrbia~l 

functions are implementable or to  weaken the abstract model (intervals plus rninz ancl ~ n o x ~ )  

so that they corresponds to sequential functions. Both these approaches have pro1)lerns. 

Extending the functional language introduces the problems with non-sequential f i ~  11 ctioris 

mentioned in section 2.3. On the other hand, mini and maxz are simple and r~at,ura,l 

functions on intervals1. 

Our approach is to  avoid the above dilemma: We weaken the specification by rcpla,cing 

the equations with approximations. 

3.3.1 Approximate Semantics for Improving Intervals 

The approximate semantics for improving intervals re-writes the previous equations using 

approximation relations. For example, 

' m m  and minl are associative, commutative and have absorption and distributive properties. 
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[a,a], if a # I 
a(ii,exact a) = 11, otherwise 

ii-valueI~ = I 

a(ii,exact (ii-value X)) 51 a(x) 

ii-value (ii-exact a) = a 

maxT(a(ii-exact a), a(y)), if a # I 
rx(ii,lb a y) = otherwise 

minz(a(ii,exact a), a(y)), if a # I 
a(ii-ub a y) = otherwise 

max2 (ii-value X) (ii-value y) 5 ii-value (ii-max X y) 
min2 (ii-value X) (ii-value y) 5 ii-value (ii-min X y) 

max2 a (ii-value X) 5 ii-value (ii-lb a X) 
min2 a (ii-value X) 5 ii-value (ii-ub a X) 

Figure 3.3: Collected Specification For Improving Intervals 

This approximation is not strong enough by itself because it  is satisfied by an implementation 

for ii-max that always returns 11. The specification can be strengthened by giving an 

approximation that relates ii-max to  the strict maximum functions. That  is, 

where max2 is the strict maximum funct.ions on values. The above approximation constrains 

the ii-max of two improving intervals t o  be a t  least as informative as applying max2 to  the 

values represented by the improving intervals. The use of allows ii-max to  be less strict 

than max2 so that ii-max can do pruning where max2 does not. 

Figure 3.3 contains the collected specification for improving intervals. The functions 

ii-value and ii-exact convert values t o  and from improving intervals so their composition 

is related t o  the identity function, as specified by approximations 3.3 and 3.4. Section 3.4 

describes an implementation that meets the above specification. 
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3.3.2 Additional Properties for Improving Intervals 

The rest of this section describes some additional properties about improving in tcrvals that 

follow from the specification in the previous section. 

Adding a lower bound to an improving interval does not change its valnc. 

Lemma 3.13 If a 5 ii-value X then ii-value X 5 ii-value (ii-lb a X) 

Proof 

ii-value X = m u 2  a (ii-value X) 

ii-value (ii-lb a X) 

{since a 5 ii-value X) 
{by oq 11 3 .  l l } 

Similarly, adding an upper bound does not change the value of a n  improving itrt,crvaI. 

Lemma 3.14 If a > ii-value X then ii-value X C ii-value (ii-ub a X) 

The proof is similar to  that for lemma 3.13. 

Approximations 3.9 and 3.10 can be extended to  lists of improving intervals. 

Lemma 3.15 If xs is a non-empty list then 

max (map ii-value xs) ii-value (fold11 ii-max xs) 

Proof 

Since max (X :xs) = f oldl max2 X xs, we prove that 

foldl max2 (ii-value x)(map ii-value xs) Lii-value (foldl ii-max X xs) 

by induction on xs. 

Case xs=[]. Then both the left-hand side and right-hand side are ii-value x try the 

definition of f oldl. 

Case xs=xl: xs ' . 
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foldl max2 (ii-value x)(map ii-value (xl:xsY)) 

= foldl max2 (max2 (ii-value x)(ii-value xl)) (map ii-value xs') 

{defn of foldl)) 

C foldl m w 2  (ii-value (ii-max X xl)) (map ii-value xs') 

{by eqn 3.9) 

C il-value (fold1 ii-max (ii-max X XI) xs') {induction) 

C - ii-value (fold1 ii-max X (XI :xs' 1) {defn of foldl) 

Lemma 3.16 If xs is a non-empty list then 

min (map ii-value xs) 5 ii-value (fold11 ii-min xs) 

The proof is similar to that for lemma 3.15. 

Results similar to lemmas 3.15 and 3.16 that use foldri instead of f old11 also hold. 

The proofs are straightforward. 

3.4 Implement at ion of Improving Intervals 

This section describes an implementation that represents an improving interval by a lazy list 

of bounds. Each bound is a tuple consisting of the lower bound and the upper bound. The 

implementation emphasizes clarity and simplicity. Appendix A describes how to  transform 

the implementation into a more efficient version (though the improvement in efficiency is 

a constant factor). We describe some preliminary experiments on the performance of this 

approach in appendix B. 

First, we define a type to represent values. The main purpose in defining this type is to 

provide two identifiers that explicitly represent -m and m. The type values * is defined 

in figure 3.4. The identifiers Neginf and Inf represent -m and m. We assume that <, 
=, > are functions of type * -> * -> boo1 that correspond to  the linear order on values2. 

The functions v-lt, v-leq, B-gt, etc. extend this ordering to  the type value *. If f is a 

function then $f is Miranda" notation for the infix operator that corresponds to f .  The 

functions v-max and v-min take two values and return the maximum or minimum based 

on the above ordering. 

'Miranda automatically defines <, =, and > for all non-function types. 
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> value * ::= Neginf I V * I Inf 

> v-leq Neginf y = True 
> v-leq (V a )  Neginf = False 
> v-leq (V a)  (V b) = (a<+) 
> v-leq (V a)  Inf = True 
> v-leq Inf Inf = True 
> v-leq Inf X = False 

> v-max X y = y,  i f  X $v,leq y 
> = X ,  otherwise 
> v-min X y = X ,  i f  X $v,leq y 
> = y, otherwise 

Figure 3.4: Implementation of Values 

A bound is a tuple consisting of the lower bound and the upper bound. Figorc 3.5 givos 

the code that defines a type bnd * for bounds and some useful functior~s on bounds. 1':ac.h 

component of a bound has the type value * so that (V a , I n f )  is a bound that rq)rcscnt,s 

the interval [a, m]. We say a bound ( 1 , ~ )  is valid iff 1 < U. Hence, ncithor cornponclnt of 

a valid bound can be 1. 

The functions l b  and ub take a bound and return the lower bound and upjwr hound ,  

respectively. The constant b-bot is the least informative bound. The fur~ctioris b-isExact 

and b-nonExact check if a bound represents an interval with a single value. The fun(-tio~r 

b-tighter-or-eq returns True if its first argument is a bound that is tighter or ccjusl to 

its second argument. Finally, b-min and b-max are the minimum and maxirrrurn f'ur~c.tions 

on bounds. There is an obvious correspondence between hounds a n d  Ir~tcrva!~. ' l 'hrh kr.y 

difference is that b-min and b-max are strict in both arguments while r n m ~  aarrtl m i q  arc 

non-strict . 
An improving interval is represented by an infinite list of bounds where the bounds arcs 

monotonically tighter (or equal). The bounds in the list are constant once a11 exacf, hourrd 
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> bnd * == (value *, value *) 

> b-bot = (Neginf, I n f )  
> b-isExact b = (lb b = ub b) 
> b-nonExact b = ' (b-isExact b) 

> b-tighter-or-eq b l  b2 = ( l b  b l )  $v,geq ( l b  b2) & 
> (ub b1) $v,leq (ub b2) 

> b-min b1 b2 = (v-min ( l b  b1) ( l b  b2),  v-min (ub b l )  (ub b2))  
> b-max b l  b2 = (v-max ( l b  b1) ( l b  b2),  v-max (ub b1) (ub b2)) 

Figure 3.5: Implementation of Bounds 

is found. For example, the list 

represents the sequence of intervals 

Not all lists are valid representations. In particular, a finite list is not valid. The function 

valid, defined below, defines the valid representations more precisely. 

valid(l) = True 

vulid(b: l) = ( l b  b) $v-leq (ub b) 

vnlid(bi:b2:x) = ( l b  b1) $v,leq (ub b l )  and 

b2 $b,tightsr,or,eq 51 and 

vulid(b2 :X) 

valid([]) = False 

An infinite. list is valid if it is the least upper bound of a chain of valid partial lists. Note 

that the function valid is not computable. 
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> i i -exact  a = seq (force a) (cycle [(V a,V a)]) 
> cycle xs  = xs'  where xs '  = xs  ++ xs'  

> i i -value (b:x) = (v-out ( lb  b ) ) ,  i f  b-isExact b 
> = i i -value X ,  otherwise 
> where v-out (V a) = a 

Figure 3.6: Implementation of i i -exact  and i i -value 

If a t  some point an improving interval is represented by the list (b : bs) t1te11 we ( ~ ~ 1 1  b 

the current bound and the bounds in bs the subsequent bounds. The restriction to itrfi~lit~c 

lists is not crucial but does simplify some of the code and some of the proofs. 

Figure 3.6 gives the code that def nes a type, impint *, to  represent improving intcwa,ls 

and the functions i i -exact  and i i -value.  Evaluating i i -exact  a produces an infinite list. 

where each element is (V a,V a).  It uses the function cycle that ta,kes a (filtite) list, a3ntl 

turns it  into an infinite one. The expression seq (force a) X is a Miranda idiom tlzat fu l ly  

evaluates a before returning X. It is used to  make i i -exact  strict and to cnsurcJ that, its 

argument is either I or fully de.fined. This helps to ensure that the argurnerlt to i i -exact  

comes from a flat domain. 

The function i i -value returns the value represented by an exact bound il l  the list if il ,  

exists. If a list X does not cont.ain an exact bound (for example, when the list is partia,l) 

then the evaluation of i i -value X does not terminate. 

The implementation of ii-max and ii-min is based on "zipping" the arguments ir~to a, 

list of tuples and then mapping b-max or b-min on this list. The complete code for ii-max 

and ii-min is shown in figure 3.7. It uses a more general version of the zipwith fur~ct~iori 

called zipwithord. The normal zipwith function behaves as follows: 

zipwith f [xl ,x2,  . . .I Cyl ,y2, . . .I = Ef x l  y l ,  f  x2 y2, . . . l  

Hone of the list arguments is longer, excess elements are discarded from it. The zipwithord 

function has an extra parameter, called a reducing function, that controls how t t ~ c  lists are 

combined. For example, the normal zipuith could be defined as follows. 

> zipwith f X y = zipwithord t a i l s  f X y 
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> where tails (x:xs) (y:ys) = (xs, ys) 

The reducing function takes two lists and returns a pairs of lists. A reducing function must 

discard a non-exact bound from, a t  least, one of its arguments. Thus if red is a reducing 

function then red X y returns either: 

4. (tl x,tl y) 

If red (bx: X) (by: y) = (X' ,y ' ), then we say that red discards the bound bx if X' = X 

(similarly for by and y). Some further restrictions on reducing functions are described in 

section 3.4.2. These are necessary to  ensure that the implementation is correct. 

The implementation of zipwithord is shown in figure 3.7. The second equation of 

zipwithord handles finite lists. It is not required for implementing improving intervals but 

it is include to  strengthen the analogy with the standard zipwith function. 

The function ii-min uses the reducing function lb-red such that lb-red X y discards 

a bound from the argument that has the smaller current lower bound (assuming that neither 

is an exact bound). For example, 

lb-red ((V 5,V 1O):x) ((V 3, V 7):y) = ((V 5,V lO):x, y) 

because the lower bound of 3 in the second argument is less than the lower bound of 5 in 

the first argument. The iterative application of lb-red, as is done by zipwithord (defined 

in figure 3.71, causes further evaluation of the list with the smaller lower bound. This is 

how ii-min corresponds t o  the best-first search strategy. The function ii-max is similar 

but uses a reducing function based on the largest upper bound. 

Versions of ii-max and ii-min that correspond to  different search strategies can be 

implemented by using a different reducing function. For example, section 3.4.1 defines 

versions of ii-max and ii-min that correspond to  the depth-first strategy. 

The functions ii-lb and ii-ub are implemented using ii-max and ii-min, just as in the 

specification. The code for ii-lb and ii-ub is included in figure 3.7. The implementation of 



> ii-max X y = zipwithord ub-red D-max X y 

> ub-red (bx:x) (by:y) 
> = (bx:x ,by: y) , if b-isExact bx & b-isExact by 
> = (bx :X, y) , if b-isExact bx & b-nonExact by 
> = (X, by:y), if b-nonExact bx & b-isExact by 
> = (X, by : y) , if ubx $v,gt ubp 
> = (X, Y), if ubx = uby 
> = (bx: X, y) , if ubx $v-lt uby 
> where ubx = ub bx 
> uby = ub by 

> ii-min X y = zipwithord lb-red b-min X y 

> lb-red (bx:x) (by:y) 
> = (bx:x,by:y), if b-isExact bx & b-isExact by 
> = (bx:x, y), if b-isExact bx & b-nonExact by 
> = (X, by:y), if b-nodxact bx & b-isExact by 
> = (X, by : y) , if lbx $v-lt lby 
> = (x,~), if lbx = lby 
> = (bx:x,y), if lbx $v-gt lby 
> where lbx = lb bx 
> lby = lb by 

> ii-lb a X = ii-max (ii-exact a) (b-bot :X) 
> ii-ub a X = ii-min (ii-exact a) (b-bot : X )  

> zipwithord red f (bx:x) (by:y) 
> = f bx by : zipuithord red f X' y' 
> where (x',y3) = red (bx:x)(by:y) 
> zipwithord red f X y = [l 

Figure 3.7: Implementation of ii-max and ii-min 
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> ii-df-max X y = zipwithord df-red b-max X (b-bot :y) 
> ii-cif-min X y = zipwithord df-red b-min X (b-bot:y) 

> df ,red (bx:x) (by:y) 
> = ((bx:x),(by:y)), if b-isExact bx & b-isExact by 
> = [X, (by:y)), if b-nonExact bx 
> = ((bx:~),~), otherwise 

Figure 3.8: Implementation of ii-df -max and ii-df -min. 

ii-lb a X applies ii-max to  b-bot :X instead of just X so that ii-lb is non-strict in its sec- 

or,d argument. For example, evaluating ii-lb 3 1 returns the partial list (V 3, Inf) : 1. 

If the bound (V 3,Inf) is sufficient then further evaluation of X is not required, otherwise 

X is evaluated to find subsequent bounds. 

The functions ii-max and ii-min are strict in both arguments but can produce an exact 

value without fully evaluating their arguments. For example, evaluating the expression 

ii-min (ii-exact 5) (ii-ub 3 1) 

produces the list 

without evaluating I. This is how pruning occurs in search programs that use improving 

intervals. 

3-4.1 A Depth-first Version of ii-min and ii-max. 

Section 3.5 defines a best-first branch-and-bound program that uses the functions ii-min 

and ii-max. In this section, we define two new functions on improving intervals that are 

useful in depth-first scarch programs. Section 3.6 describes an alpha-beta program that uses 

these new functions. 

The new functions are cded  ii-df-marr and ii-cif-min. They have the same type and 

specification as ii-max and ii-min. An implementation for ii-df -max and ii-df ,min is 

shown in figure 3.8. The implementation of ii-df ,max uses zipwithord with the reducing 

function df-red. This reducing function discards bounds from its first argument until 

an exact. bound is found and then it starts discarding bounds from its second argument. 



Therefore. ii-df-max completely evaluates its first argument bcforc c~valuatisg its scconcl 

argument. 

The functions ii-df-max and ii-df-min should bc non-st rict i n  t lwir sccoritl ;~rgi~nwrt S. 

However, the function zipwithord is strict in both arguments. 'I& makr ii-df-max at~tl  

i i - d f  -min non-strict by appiying zipwithord to  b-bot : y instead of just y . 

3.4.2 Correctness of the Implement a t' mn 

Th-is section proves that  the above implementation is correct by showing that i t  satisli<*s 

the specification given in figure 3.3. The  proof is done in tltrct. steps. k'irst, we sslrow that 

the implementation preserves valid representations of improving irttrrvals. 'I'lwii wrl c l c ~ f i ~ l t t  

the function a that maps a representation t o  an abstract interval. I ~ i ~ ~ a l l y ,  wt. show that 

the approximations in figure 3.3 hold. Throughout the section, we give t llc proofs o ~ l y  for 

i i - l b  and ii-max. The  proofs for i i -ub  and ii-min are analogous. 

The  function ii-max is implemented using zipwithord with the reclnr.irtg S ~ ~ t i c t i o ~ ~  

ub-red. Our approach is t o  prove some general results about zipwitfiord with iLIlY rta- 

ducing function. The  results for ii-max are just special taws of these morcB ~ P I K ~ I ' ; L ~  r ~ s ~ l l t s .  

This approach makes it easy t o  verify variants of ii-max (for esari~plt. i i -d f  ,max) t,hat I I W  

a different reducing function. Our intention is that a reducirig Stlrrc-titrrr mtrsf progrcw ( l)y 

returning the tail of one of its arguments) until both arguments a r r  ~ w ~ t .  i , t4 red 1w ;L 

function from two fists of bounds t o  a pair of lists of bounds. C:iucn t,wo fist,s of Imu~rrln X 

and y, we say that the function red discads the bound b front X if 

b = h d  x a n d f s t  (red X y) = tf X 

Simiiarily, red discards the bound b from y if 

b = hd y and snd (red X y) = tl y 

m. 

khe function red is a reducing _func&n jff for any lists of h m d s  X arid y: If  ihcs currrxr~t 

bound on either x or g is non-exact then there exists a nou-exact Botd b sttch that red 

discards b from X or red discards b from y. In other words, applying a rcvjt~sirtg fur~et~ion 

discards a non-exact bound from one of its arguments, unless the currertt hrttlrrd or[ t)of,h 

arguments is exact. The  functions ub-red, lb-red, and df-red arc obviously rfdur:irig 

f~nct ions.  



Proving Valid Representations 

Lemma 3.17 rcrilda ii-erart, a:  



Lemma 3.19 If x an4 y x c i  ~;a5d repres~ntai ions  then rcl idi ii-max X y!. 

Proof 

Proof 

Defining the a Function 

-1 r ue implement arior; BP\-er C O ~ S W ~ C : S  i h ~  bounds (Weginf , Heginf 1 or 1 nf , inf  ) so t f t r v  

haw ben oziitted fro= $he d~finiilon of a,, If 51 and b2 are valid bounds t irrrr thr* 

foEowino, equations kdb. 
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Now, the function a maps valid representations of improving intervals as follows: 

For an infinite representation X, the value of a(x) is defined to  be the least upper bound of 

the chain of partisl lists that approximate X. Note that U1 is interval intersection and I 

is the universal interval. 

The following corollaries holds from the definition of U1 . 

Corollary 3.25 If X is a valid representation of an improving interval and X' is any suffix 

of X then a(x ' ) C1 a(x). 

Corollary 3.26 If b: X is a valid representation of an improving interval then 

The following corollary holds for a representation b :X because if the bound b is exact then 

subsequent bounds in X are equal to b. Otherwise, the implementation of ii-value 

discards b. 

Corollary 3.27 If b :X is a valid representation of an improving interval then 

ii-value (b :X) = ii-value (X) 

P r o v i n g  the Approximat ions  

We now show that all the equa.tions and approximations in figure 3.3 are satisfied by the 

implement at ion. 

Lemma 3.28 The implementation of ii-exact satisfies equation 3.1. That is, 

[ a , ~ ] ,  i f a # I  
a(ii,exact a) = 

11, otherwise 
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Proof 

If a = I then the use of seq and force causes ii-exact a to evaluate to I. Otl~erwiw, 

ii-exact a evaluates t o  cycle [(V a,V a)] and 

a((V a,V a):(V a,V a):. . .) = [a ,a ]  

Lemma 3.29 The implementation of ii-value satisfies equation 3.2. T1ia.t is, 

ii-value IT = I 

Proof 

The implementation of ii-value X is strict because it matches its a.rgument with t h  pa.1- 

tern (b:x). 

Lemma 3.30 The implementation of ii-value and ii-.exact satisfy a,pproxitrdo~i 3.3, 

That is, 

a(ii,exact (ii-value X)) [Zz @(X) 

Proof 

Case X = 11. The left-hand side is 11 so the approximation holds. 

Case X = (b : X ' ) and b is an exact bound. 

Then ii-exact (ii-value (b :X' ) ) evaluates to cycle [bl . And 

because all the subsequent bounds in X' must be equal to b. 

Case X = (b :X' ) and b is not an exact bound. 

Then ii-value (b : X ' )  evaluates to  ii-value X' and the result holds hy i n d u d h ~ .  
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Lemma 3.31 The implementation of ii-value and ii-exact satisfy the equation 3.4. 

That is, 

ii-value (ii-exact a) = a 

P r o d  

If X = I then both sides of the equation are I. Otherwise, 

ii-value (ii-exact a) 

= ii-value ((V a,V a):(V a,V a): ...I 

- a 

{by ii-exact.1) 

{by ii-value.1) 

Lemma 3.32 If red is a reducing function and X and y are improving intervals then 

a(zipwithord red b-max X y) 51 rnax~(a(x), a(y)) 

Proof 

We prove the approximation by induction on the structure of X and y. 

The base case is when X or y is I in which case the left-hand side is 11 and so the 

approximation is triviauy true. 

Otherwise, let bx = hd X and by = hd y and (x',yJ) = red X y. The following 

approximations hold by corollaries 3.26 and 3.25. 

Now consider the left-hand side of the approximation. 

a(zipwithord red b-max X y)) 

= ~(b-max bx by:zipwithord red b-max X' y ' )  (by zipwithord.1) 

= crb(b,m~ bx by) U~ ~(zipwithord red b-max X' y ' ) {by defn of a) 

The result holds because both arguments to  U* approximate m.uxT(a(x), a(y)). First, 
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Also, 

{by incltlction} 

{by monotonicity o f  111~1y) 

Lemma 3.33 The implementation of ii-max satisfies approximation 3.5. 

Proof 

Follows directly from lemma 3.32 because ii-max X y = zipwithord ub-red b-max X y. 

0 

Lemma 3.34 The implementation of ii-lb satisfies approximation 3.7. 

Proof 

If a is I then ii-lb a X is 11. 

Otherwise, 

ii-lb a X 

= ii-max (ii-exact a .) (b-bot :X) {by ii, ,lb. 1 } 

{by lemma 3.33) 

{because a(x) = a(b-bot : X))) 

Lemma 3.35 If red is a reducing function and X and y are improving intervals thr:n 

m a x 2  (ii-value X) (ii-value y) C ii-value (zipwithord red b-max X y) 

Proof 

Ifx or y does not contain an exact bound then the left-hand side is 1 and the approxiniatjo~~ 

trivially holds. 

Otherwise, both X and y must contain an exact bound and there are a finite nurnher of 

bounds before the exact bound. We prove this case by induction on the number of non-exact 
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bounds in X and y. Applying the reducing function to X and y must decrease the number 

of non-exact bounds. 

Assume (wlog) that 

ii-value X 2 ii-value y 

and so the left-hand side of the approximation is ii-value X. Using the zipwithord.1, the 

right-hand side evaluates to 

ii-value (b-max bx by:zipwithord red b-max X' y') 

where hd X = bx, hd y = by, and red X y = (X' ,y'). Let b = b-max bx by. 

The inequality, lb b 5 ii-value X, holds because ii-value y 5 ii-value X. Also, 

ii-value X 5 ub b holds because ii-value X 5 ub bx. 
The base case occurs when both bx and by are exact bounds and then b must be an exact 

bound. If b is an exact bound then lb b = ub b and therefore lb b = ii-value X = ub, b. 

When bx is a, non-exact bound or by is a non-exact bound then b can either be an exact 

bound (and the above argument applies) or a non-exact bound. Hence, induction is used 

when either bx is a non-exact bound or by is a non-exact bound and b is a non-exact bound. 

In this case, the right-hand side further evaluates to 

ii-value (zipwithord red b-max X' y') 

where a non-exact bound has been discarded from either X or y to  obtain X' and y'. 

Therefore, by induction, 

max2 (ii-value X') (ii-value y' ) E ii-value (zipwithord red b-max X' y' ) 

but ii-value X' = ii-value X and ii-value y' = ii-value y so the left-hand side is 

equal to  

max2 (ii-value X) (ii-value y) 

ii-value (zipithard red b-mm X' 5;') 

= ii-value (b : z-ipwithord red h-max X' y ' j 
= ii-value (zipwithord red b-max X y) 

U 

{above) 

{by corollary 3.27) 

Lemma 3.36 The implementation of ii-mix satisfies approximation 3.9. 
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Proof 

Follows directly from lemma 3.35 because ii-max X y = zipwithord ub-red b-max X y. 

0 

Lemma 3.37 The implementation of ii-lb satisfies approximation 3.1 1. 

Proof 

max2 a (ii-value X) 

= max2 (ii-value (ii-exact a) ) (ii-value X) {by eqli 3.4) 

= max2 (ii-value (ii-exact a))(ii-value (b-bot:x)) {by corolli~ry 3.27) 

C - ii-value (ii-max (ii-exact a) (b-bot : X ) )  {by Icrrirna 3.363) 

C ii-value (ii-lb a X) {i)y ii-lb. l} 

0 

Correctness of The Dept h-first Versions 

The functions ii-df -mar and ii-df ,min are depth-first versions of the funct,ions ii-max 

and ii-min. Section 3.4.1 described an implementation of ii-df-min and ii-df ,max usir~g 

zipwithord with the reducing function df ,red. The function df ,red is a reducing f u  tic-lion 

so lemmas 3.18, 3.32, and 3.35 can be used to prove that. the approximatioris that hold for 

ii-max and ii-min also hold for ii-df -max and ii-df ,min. That is, 

and 

max2 (ii-value X) (ii-value y) C ii-value ( i i - d f  ,max X y) ( 3 . 4 0 )  

min2 (ii-value x)(ii-value y) 5 ii-value (ii-df-min X y) (3.41) 

The extension of approximations 3.40 and 3.41 to  lists also holds. 

Lemma 3.42 If xs is a non-empty list then 

max (map ii-value xs) ii-value (fold11 ii-df-max xs) 
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> opt r = (cost r, r) , if has-direct-solution r 
> = min (map opt (children r)), otherwise 

Figure 3.9: A Specification for Branch-and-Bound 

> bb r = ii-value (bb' r) 
> bb' r 
> = ii-exact (cost r, r) , if has,direct,solution r 
> = (ii-lb 1 . ii-ub U) (exp r), otherwise 
> where 
> 1 = (lb r, l-node) 
> U = (ub r, U-node) 
> exp r = fold11 ii-min (map bb' (children r)) 

Figure 3.10: Best-first Branch-and-Bound Using Improving Intervals 

Lemma 3.43 If xs is a non-empty list then 

min (map ii-value xs) C ii-value (foldli ii-df-min xs) 

3.5 Branch-and-Bound with Improving Intervals 

A specification for branch-and-bound on minimization problems is shown in figure 3.9. It is 

based on the function opt (X,  f, b )  defined in section 1.1 but maps a search tree node to a tuple 

co~~sisting of the cost an optimal solution and the optimal solution node. The specification 

relies on ordering tuples as: (a,b)<(c,d) iff a<c or (a=c and b<d). It also assumes that 

every leaf node is a solution node3. The specification is executable but executing opt r 

generates the entire search tree. 

The program in figure 3.10 has the same form as the definition of opt but uses improving 

intervals. The auxiliary function bb' r returns an improving interval that represents the 

sequence of bounds obtained by exploring the sub-tree rooted at r. The function ii-value 

is used at the root t o  extract the optimal cost and solution node. 

 fa leaf node n is not a solution node then we can set cost r=m. 
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The local definitions 1 and U are the lower and upper bounds on the node r. WO ass ru~~c  

that 1-node and U-node aze two dummy nodes such that for any nodes r in t,hc scarcl) 

space, 

l-node < r < U-node 

This ensures that l < opt r < U. 
When a node r does not have a direct solution then exp r is the result of expand- 

ing r. The definition of exp r is similar to  the second equation of opt bu t  substit~itcs 

f old11 ii-min for min. 

The theory of improving intervals requires that the values be elements from s fia.t, tlo~nair~. 

In the above program, the values are tuples and tuples are not a flat domain. Howcver, thc 

tuples are of the form (cost r,r) and such tuples are isomorphic to a flat donmi~i provided 

that r is always fully defined and cost r is defined when r is not bottom. 

The properties in section 3.3 can be used to prove that bb meets the specilication opt. 

First, note that 

ii-value (exp r) C ii-value ((ii-lb 1 . ii-ub U) (exp r) ) (3.44) 

follows from lemmas 3.13 and 3.14 because 1 < exp r < U. 

Theorem 3.45 For any node r, opt r C bb r 

Proof 

Ifr is not a finite tree then opt r is 1 and the result trivially holds. Otherwise, r has finitc 

height and the proof is by induction on the height of r. There are two cases dcpcnding or1 

whether r has a direct solution. 

Case If r has a direct solution. 

bb r = ii-value (bb' r) 

= ii-value (ii-exact (cost r, r)) 

= (cost r, r) 

- opt r 

(by bb. l ) 

{by bb'.]) 

(by cqrl 3 .4))  

{by opt.1) 

Case Ifr does not have a direct solution then let kids = children n. Notc that kids# [l 
because every leaf node is a solution node. 
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opt r = 

c 
- - 

min (map opt kids) 

min (map bb kids) 

min (map (ii-value . bb') kids) 

min (map ii-value (map bb' kids)) 

ii-value (foldli ii-min (map bb' kids)) 

ii-value (exp r) 

ii-value ((ii-lb 1 . ii-ub U) (exp r)) 
bb r 

{by o p t 4  

{induction) 

{by bb. l) 

{map law) 

{by lemma 3.16) 

{by exp.11 
{by eqn 3.44) 

{by bb.1) 

The proof of correctness relies only on the specification of improving intervals and does 

not rely on any details of the implementation. With the implementation in section 3.4, bb 

strictly exceeds its specification (that is, opt C bb) because there are infinite search trees 

for which bb terminates but opt does not. 

It also follows immediately that the obvious depth-first version of this algorithm, using 

ii-df -min, is correct. 

3.5.1 Operational Behaviour 

The previous section proved that bb was correct in that it meets the specification opt. The 

operational behaviour of bb may not be clear: When and how does pruning occur? How is 

the least-cost node chosen without using a priority queue? What axe the time and space 

requirements of bb compared to  imperative branch-and-bound? 

The questions are addressed by looking at the behaviour of bb on a particular example. 

A correspondence between the search tree and the functional program graph is used to  show 

that the execution of bb goes through a number of iterations where each iteration does the 

following: 

1. Finds the least-cost node. 

2. Expands the least-cost node. 

3. Propagates a. bound to  the root of the graph. 

Each iteratioll corresponds t o  an iteration in the imperative branch-and-bound program. 

However, we also show that the time taken for some steps within the iteration may be 

greater than the time for the step in the imperative program. 



> bb r = ii-value (bb' r) 
> bb' r 
> = ii-exact (cost r), if has-direct-solution r 
> = ii-lb (lb r) (exp r), otherwise 
> where 
> [kl ,k2] = children r 
> exp r = ii-min (bb' ki) (bb' k2) 

Figure 3.11: Simplified Branch-and-Bound 'IJsing Improving Int,crvals 

Figure 3.12: Example Search Tree 

To simplify the presentation, the slightly different version of bb shown i n  figure 3.1 I i ~ ;  

used. The new version of bb differs from the previous one in that each non-solution no& 

must have exactly two children, only lower bounds are used, and just the cost of the opti rna,] 

solution is returned (rather than the cost plus solution node). 

The behaviour of bb is demonstrated on the search tree shown In figiiw 3.12. Thi; 

l ~ w e r  bounds are shown within each node. The cost of a leaf node is the sarrw a s  its lownr 

bound. The optimal solution occurs at node r l l 2  with cost 14. With a best-first strategy, 

the iniperative branch-and-bound algorithm expands the nodes in the order: r ,  . r l ,  Q,  T, 1 

and the nodes r l 2 ,  7-21, and ~ 2 2  are pruned. 
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Figure 3.13: Initial Program Graphs in Evaluation of bb 

Consider the expression bb r where r is an expression corresponding to  the root of the 

search tree in figure 3.12. Figure 3.13 to  3.17 show the program graph during reduction of 

bb r. Figure 3.13 shows the program graph after a few reductions. The oval encloses the 

sub-graph that corresponds to  node r. The expression at the top of the figure is the list of 

bounds that have been computed so far (in figure 3.13 no bounds have been computed yet). 

To further evaluate this graph the expression exp r must be evaluated and this evaluation 

corresponds to  expanding the node T .  

Figure 3.14 shows the result of reducing the expression exp r to  weak-head normal 

form. The graph now contains sub-graphs corresponding to  t.he nodes rl and T Z .  The 

bound ( 5 , c ~ ) ~  on rl has been computed and propagated up to  node T .  The current least- 

cost node is T I .  This iteration is finished when bound (5,m) propagates up through the 

root of the graph and the result. is shown in figure 3.15. 

The next iteration then finds the least cost node by starting a t  the root and following 

the path down the graph while avoiding any node represented by a list-cell. In figure 3.15, 

for exampie, we follow the path from the root r to  T I  and avoid r;! because it is represented 

by a list-cell. 

The normal order redcction strategy implicitly does this traversal because ii-min is 

strict in both arguments. Howel-er, any argument that is a list-cell is in WHNF and therefore 

it does not need to  be evduated further. This is how the functional program avoids the 

explicit use of a primity queue. Essentiay? each node records wEch C U E  cmtains the open 

node of least cost. Obviously* the time t o  traverse down the tree to  the least-cost node is 

proportional to  the height of the tree. 

4 For readability. we show the bound as (S , - )  rather than (V 5, Inf 1. 



Figure 3.14: After Expanthg Node I. 

Ffgore 3.15: After Propagating (5, .x)  





Fignre 3.17: X3er Expandkg ?;ode rz and Propagating (13, x) 
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Figure 3.16 shows the program graph after expanding the node rl. This produces the 

bound of (13,~) on rl. However, the bound of 12 on r 2  is smaller and is propagated 

through the root making r 2  the new least-cost node. 

The third iteration expands rz then propagates the lower bound of 13 from rl through 

the root. Figure 3.17 show the program graph after the third iteration. The final iteration 

expands rll and finds the exact bound (14,141 on rll. The exact value propagates up to 

the root, but since 14 is less than the lower bound of 18 at r 2 ,  the sub-tree rooted at r2 

is pruned. The expressions associated with the pruned sub-tree become garbage and will 

be reclaimed. Therefore, the exact bound on the root r is (14,14) and the application of 

ii-value converts it to  the value 14. 

There are a couple of points about the time and space requirements worth emphasizing. 

First, the number of iterations taken by bb and the imperative program are the same. 

However, the time taken by each iteration of bb can be greater than an iteration in an 

imperative branch-and-bound program. We assume that the time to  compute the bounds 

and generate the children is the same in each case but consider the time to  find the least 

cost node in a search tree whose height is currently h (h 2 0) and whose branching factor 

is b. Typically, the search tree grows exponentially with its height so b > 1. In this case, 

the number of leaves is O(bh)  so the time to  remove the least cost node from the priority 

queue is O ( h )  - the same as in the bb program. However, it is possible that the priority 

queue has less than a ( b h )  nodes and then the time to  remove the least cost node would be 

less than h. 

Secondly, the lists used t o  represent improving intervals never grow long. After an 

iteration, each non-least-cost open node has one element in its list representation while the 

least-cost open nodes and closed nodes have no elements in their representation. Therefore, 

tire space used by bb should be of the same order as that used by an imperative branch- 

and- bound program. 

3.6 Alpha-Beta Using Improving Intervals 

-L- r tkti alpha-beta algorithm is the key dgodihin in many programs for two-player games. It 

searches a game t e e  to  find the best-move from the current position. Nodes in a game tree 

represent positio~is and the childre,-, of a node are nodes that represent positions that result 

from making a single mow. The leaf nodes represent positions that end the game. 
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> rninmax r 
> = (cost r, r) , if has-direct-solution r 
> = max (map minmax (children r)), if my-turn r 
> = min (map minmax (children r)), otherwise 

Figure 3.18: Specification of the Minimax Value of a. Game 'Free 

The alpha-beta algorithm is based on the nzinimax value of a game tree. We assume a, 

game with two players, myself and an opponent. The minimas value of a game t , r ~  is t,hc\ 

value of the best position in the game tree and is defined recursively as: t,hc valuc of a, leaf 

node, the maximum value of the children when it is my turn or the minimum value of t,tw 

children when it is the opponent's turn. 

The function minmax defined in figure 3.18 is an executable specification for the ~~tini tr~ax 

value of a game tree. It also serves as a specification for an alpha-beta program. We assumc 

some functions on game tree nodes that are similar to  the functions used in our branch-ancl- 

bound programs: 

has-direct-solution r is true iff the game position represented by r is a.11 obviot~s w i r ~  

or loss. 

cost r is the value of the game position r when has,direct,solution r is true. 

children r is a list of nodes that represent the positions that result from maki~lg ;L singlc 

move from r. 

my-turn r is true when r is a position where it is my turn to  move and is false when it is 

the opponent's turn to move. 

h practise, the size of game trees makes it impractical to  consider cornplr'tc? game tr.c?t3s. 

Game trees are typicdy cutoff past some depth. We can implement this by dt:finirig 

has,direct,solution r t o  be true if the depth of r is greater than some ti~reshold i ~ r t d  

then cost r is an estimate of the value of the game position represented by r. 

A simple alpha-beta program is constructed from the definition of minmax by replacing 

max with foldll ii-df-max and min with foldll ii-df-min. The resulting program is 

shown in figure 3.19 The fnnctions ii-df-min and ii-df ,max are used because alpha-beta 

nses a depth-fist strategy to search the game tree. 
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> ab r = ii-value (ab' r) 
> ab' r 
> = ii-exact (cost r, r) , if has,direct,solution r 
> = foldll ii-df-max (map ab' (children r)), if my-turn r 
> = foldll ii-df-min (map ab? (children r)), otherwise 

Figure 3.19: Alpha-Beta Program using Improving Intervals 

Figure 3.20: Example Game Tree 

At a leaf node the value of the node is returned as an improving interval by using 

ii-exact and a t  the root the value of the game tree is converted from an improving interval 

t o  a value by using ii-value. The handling of bounds and pruning is encapsulated in the 

operations on improving intervals. 

Figure 3.20 shows a game tree and the improving intervals that are computed at each 

node. Nodes where it  is my turn are drawn with a square box while nodes where it is the 

ol>por?ent's - - turn are drawn with a circle. The circled portions of the game tree are pruned 

during the search. Node 12122 is pruned because the lower bound of 30 from node nlzl is 

s~rfficient t o  determine that the value of node nl is exactly 20. Other nodes are pruned in 

a similar manner. 
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However, the program misses an opportunity for pruning the node labcled 11:3212. tI'l~o 

reasoning that supports the pruning of this node is that we have a lower bound of 20 at t hc 

root node; in order to  get a better result at the root each of the nodcs: v:{, 11:3;! and n: j2 ,  

would have to  be greater than 20; but we know 7 ~ 3 2 1  must be less than 10 witltout, csnn~iiiittg 

~ ~ 3 2 1 2 ;  therefore 71.3212 can be pruned. This is known as a deep cutofl. 

The program can be modified to handle deep cutoffs but this would con~yliwtc the. 

program. The simplicity of the program in figure 3.19 arises partially bccausc stv~rcl~irrg ;L 

sub-tree is independent of searching any of its siblings5. In order to handle decp cr~taii's, 

searching a sub-tree must be made dependent on the result of searching siblings to its Icl't . 

We prefer the simplicity of the program in figure 3.19 considering that deep cutofi's h a w  not 

been found to  be a major factor in practise [ 5 ] .  

The program ab meets its specification, that is, 

minmax C ab 

because 

max (map ii-value xs) C ii-value (f old11 ii-cif ,max xs) 

and 

min (map ii-value xs) C ii-value (fold11 ii-df-min xs) 

This shows that ab is correct with respect to minmax but it does not show that ab t1oc:s all t l ~ c  

pruning that is done by the standard alpha-beta algorithm. In fact,, we have sllown that ab 

misses deep cutoffs. The pruning behaviour of improving intervals can only btt untlerstoorl 

by carefully examining the behaviour of the implementation. Approximatc reasorr i r~g  and 

functional programming do not heip with this task. 

3.7 Adding Speculative Parallelism 

Programs written using improving intervals can be made to run in parallel using sjmrrla,t,ivc* 

padelisrn.  We add spec annotztions (defined in section 2.1.4) to the branch-and-howl 

program from figure 3.10 to  explicitly indicate the parallelism. However, this section also 

shows that without some care the parallel programs may not behave as expecttd. 

The program shown in figure 3.21 is a first attempt a t  a parallel best,-first branch-arrtl- 

bound program and is based on the search programs that appeared in [I41 and [:G?]. rl*hf: 

'This atso make it easier to execute in parallel. 
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> spec-bb r = ii-value (spec,bby r) 
> spec-bb' r 
> = ii-exact (cost r, r) , if has-direct-solution r 
> = spec (ii-lb 1 . ii-ub U) (exp r), otherwise 
> where 
> 1 = (lb r, 1-node) 
> U = (ub r, u-node) 
> exp r = foldrl ii-min (map spec-bb' (children r)) 

Figure 3.21: Parallel Branch-and-Bound Program - First Attempt 

spec annotation initiates the expansion of a node in parallel with computing the node's 

bounds. The parallelism is speculative because the bounds may be sufficient to prune 

the node without expanding it. The program is highly parallel because with an unbounded 

number of processors all the nodes in the search space are expanded in parallel. The parallel 

execution occurs because expanding a node applies spec-bb ' to  each child and the recursive 

application of spec,bby initiates an additional speculative task to  expand the child. 

A minor problem is that the speculative task that expands a node sequentially evaluates 

the bounds of each child. This can be easily fixed by changing the definition of exp r to  

use par-map rather than map. 

Another problem is that bounds are produced in parallel but are consumed sequentially. 

A speculative task that expands a node r produces a single bound on r then terminates 

because its result is in WHNF. The single mandatory t. sk is left with the work of consuming 

all the subsequent bounds. There are likely to be many speculative tasks so it is likely 

that bounds would be produced a t  a rate that exceeds the rate that the mandatory task 

can consume them. In the worst case' the complete search tree is expanded in parallel 

by speculative tasks that then die and leave a single mandatory task to  perform all the 

remaining work. 

A fix is to  use the spec-list annotation to  initiate consumers for subsequent bounds. 

However, the spec-list operates on lists and the list representation of improving intervals 

is hidden in the abstract data type. We define a function ii-spec that uses spec-list 

t o  initiate a speculative consumer for each bound in an improving interval. Semantically, 

ii-spec is an annotation that denotes the identity function on improving intervals. That 

is. 
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> ii-spec :: impint * -> impint * 
> ii-spec X = X 

The type specification for ii-spec should be added to the signature of improving i~itcrvals. 

Operationally, ii-spec initiates the speculative evaliiation of all the bounds in all iltiprovirig 

interval. The implementation of improving intervals is extended with the following tlefinitkw 

for ii-spec. 

> ii-spec xs = spec-list xs 

Applying ii-spec to  an improving interval ii-min X y causes thc bounds protlurcd t y  

the speculative tasks evaluating X and y to be consumed. Here is the branch-ancl-i)o~~~ltl 

program, modified to use ii-spec rather than spec: 

> spec-bb' r 
> = ii-exact (cost r, r) , if has,direct,solution r 

> = spec (ii-lb 1 . ii-ub U) (ii-spec (exp r)), otherwise 

> where 

> 1 = (lb r, 1-node) 

> U = (ub r, U-node) 

> exp r = foldrl ii-min (par-map spec-bb' (children r)) 

A node r in the search tree is now associated with a sequence of speculativt~ tasks (lac41 

of which generates a new bound by consuming a bound from ih chilti of r. rI'h~ls, ~ a r h  

speculative task is both a consumer and a producer and there is now hettcr balaricc bctwccr~ 

the consumers and the producers. 

The above solution only works well if the speculative tasks at r fiavc a higher priosi1,y 

than the speculative tasks at the children of r so that the corisumers have higher priorities 

than the producers. The next section adds speculative priorities to ensnrc! this is so. 

It is usually necessary to add priorities t o  indicate the relative !ikelihood uf cad! spcr.ula?,ivc* 

task. This section considers the addition of priorities to  speculative tasks using I h  priority 

annotation from 2.1.4. 

A simple priority scheme for the best-first branch-and-bound strategy with a minimiza- 

tion problem is to use the negation of the lower bound as the priority for the tasks associated 
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> spec-bb r = ii-value (spec-bb' r) 
> spec-bb' r 
> = ii-exact (cost r, r) , if has-direct-solution r 
> = spec (ii-lb 1 . ii-ub U) 
> (priority (- (lb r)) (ii-spec (exp r) l ) ,  otherwise 
> where 
> 1 = (lb r, l-node) 
> U = (ub r, U-node) 
> exp r = foldrl ii-min (par-map spec-bb' (children r)) 

Figure 3.22: Parallel Branch-and-Bound Program - Final Version 

with a node. A node with a smaller lower bound is then associated with tasks with a higher 

priority. This idea can be expressed by re-writing spec-bb' as shown in figure 3.22. If 

the lower bound function is strictly monotonic (for any node r and descendant k of r, 

(lb r) < (lb k)) then the priorities of tasks associated with a node is greater than the 

priorities of tasks associated with its descendants. 

There are two, possibly competing, methods that dictate the order for expanding nodes: 

1. The search strategy is determined by the use of ii-min versus ii-df -min in the 

program. The use of ii-min gives a best-first strategy while the use of ii-df ,min 

gives a depth-first strategy. Mixed strategies are possible by combining ii-min and 

ii-df-min in the same program. These functions determine the order in which tasks 

become mandatory. 

2. The assignment of priorities to  speculative tasks. Nodes with higher speculative pri- 

orities may be expanded sooner. 

Many variations are possible by using combinations of the above orderings. 

For example, a program could use a best-first search strategy but assign speculative 

priorities in a depth-firsi manner. Branch-and-bound programs that use mixed strategies 

have not been examined and it is potential area for future research. 
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Partial Determinism 

This chapter defines partial determinism and demonstrates its use in branch-and-bound 

programs. A partially deterministic program is non-deterministic: It denotes a set of'yossiI)lc 

results. However, the set of possible results is restricted so that all the elements in the sct, a,re 

consistent. Section 4.1 defines partial determinism more precisely and includes a few si~nplo 

examples. Section 4.2 describes the semantics of a simple functional language extencler1 wil,h 

partially deterministic functions. A major result is that all expressions in the language arc 

pa r t idy  deterministic, that is, unrestricted non-determinism does not occur. 

In section 4.3 we show that partially deterministic programs can be developed a l ~ d  vos- 

ified using a deterministic program that approximates the partially deterministic progrw~.  

This is another application of approximate reasoning. 

P a r t i d y  deterministic functions are often useful as approximations to non-ser~~~erti,i;rl 

functions. They do not require fair evaluation but can take advantage of parallel evaluation 

when it is available. Section 4.4 introduces a new type of task, called a par.tially r r ~ ( d ( ~ l o r , q  

task, for implementing partially deterministic functions. 

The application of partial determinism to  branch-and-bound programs is discusr;ecl i n  

section 4.5. We show how a partially deterministic version of the i i d f a i n  function can 

prune more of the search space in a parallel depth-first branch-and-bound program. We 

chow how part,ld bete,mhisrr? is useful in z. seqnentia! branch-and-t:oun:! progrartr by 

describing a branch-and-bound strategy that dynamically adapts to the memory available?. 
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4.1 Definition of Partial Determinism 

A partially deterministic set is a set whose greatest lower bound and least upper bound 

exist within the set. Let P ( D )  be the Plotkin power domain, as defined in section 2.2.2, 

over a domain D. 

Definition 4.1 A set S in P ( D )  is partially deterministic iff n S  E S  and US E S. 

For example, the set {I, l), in P(INI), is partially deterministic because n{l, 1) = I and 

U{I ,  1) =: 1. The set {I, 1,2), however, is not partially deterministic because it does not 

have an upper bound. The existence of the U S  guarantees that there is an element that 

is consistent with all the elements in the set. The existence of n S  guarantees that all the 

elements in S  are a t  least as well defined as n S .  

The above definition could be applied to  any of the three standard power domains 

(Hoare, Smythe, or Plotkin). However, some interesting simplifications occur when the 

Plotkin power domain is used. For the rest of the dissertation we consider only partially 

deterministic sets that  are elements of a Plotkin power domain. 

The Plotkin power domain divides the subsets of a domain D into equivalences classes 

based on the equiva.lence relation: 

S1 = p  S2 iff VS C f in(D),  ISf < w . ( S  C p  S1 iff S & p  S2)  

where S1 and Sz are subsets of D. The simplification that occurs with the Plotkin power 

domain is that a partially deterministic set S  is equivalent to  a two-element set that consists 

of n S  and US. 

Lemma 4.1 If a set S in PfD) is partially deterministic then S =p {m?, US). 

Proof 

Let S' be any finite subset of fin(D). 

First, assume that S' f S .  Then, 

But for any such b, b US so 
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Similarly, 

Vb E {ilS,US).3a E Sf.a C b 

because 

V b  E S.3a E Sf.a 5: b 

and n S  E S and US E S. Therefore S' C p  { m ,  US). 

Now, assume that S' !Ip {rIS,US). Then for all a in ,Sf, a C US. Sincc. S is pa,st,ially 

deterministic US is in S. Therefore, 

Similarly, there exists an  a in S' such that a 5 f l S  and for all b in S, n S  C b so 

Therefore S' lip S. 

If the set S is partially deterministic then we write <( f7S, US'>> for a set that rcprescrits 

the equivalence class that includes S. If n S  = bjS then we abbreviate this notittio~l 1,o 

<<us>>. 
The approximates relation on partially deterministic sets is also simplified . 

Lemma 4.2 If S1 and S2 are partially deterministic sets i n  P(D) then 

Proof 

Assume that S1 E p  Sz. Then, USI E S1 so 3b E S2 such that 
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and flSI E S,. Therefore, & p  S2. 

It is often useful t o  consider a partially deterministic set of functions. The set 

is partially deterministic because Xx.1 C XX.~. Section 4.2 describes a simple programming 

language with identifiers that  denote partially deterministic sets of functions. For example, 

the identifier maybe denotes the set. << Xa.1, Xz.3 >>- 
There is strong correspondence between a partially deterministic set of functions and a 

fitnetinn that returns a partially deterministic set. If F is a part.idy deterministic set of 

functiorrs then 

A..< (uF)(z) B 

is the corresponding function that returns a partially deterministic set. We use the term 

partially deterministic funetion t o  mean either a partially deterministic set of functions or 

a function that returns a pa r t idy  deterministic set. 

There are some simple part.ialfy deterministic functions that are variations of the boolean 

or function. The following truth table defines a partially deterministic version of the strict 

or function. 

Y 
1 False True 

It is like the strict or fanetion escepr for the  cases when one argument is 4 and the other 

argument is Tnre. In these cases, the result of @sor can be 1 or True. Thus, &sor is 

non-deterministic, but on$ to the extent that its result is more or less defined. The function 

pd-SW curresponds to  the partially deterministic set << sor, p r > >  where sor is the strict or 

fplnctian and PP' is the pardeI or function. 



The function pd-sor is only well-defined using t h e  Plotkirt powrr dontain. \ \ ' i t 1 1  i i ie  

Hoare power domain, the set (L. True) is equivalent to ( T r i ~  jj SO IKi_f;or is i s i ~ ~ ~ t t ~ p l ~ i c  ( I )  

sor. With the Smythe power domain, the  set {I. True)  is rquivalcnt to  { L ,  True. I.iilsc,). 

The  fdoWing defines the function pb-cor as a partially dctcrministic vcwiull of 1 1 1 ~  

conditional or function. 

The pd-COT function corresponds to the partially detvrmirtistic set ror, por. w t r t ~ r c ~  c w t .  

is the conditional or function. The difference betwceri 1x1-sor arnd pd-c.rir occu rs ;v l t t * r ~  t,lr c l  

first argument is True and the second argument is I: p~Lsorj 7i-ut. 1) = < i. ' h t  2 w i i i l ~ ~  

pd-cor(True, I) = << True>>. The differertt versioris of the or fu~lci,iorr arc. rclat td  i r ~  i 1 1 ~  

following way. 

<< sor. p r  B- 
<<six-> &p CF - << cur, yor )3 G P  +E :<Jo~. 2 

<<tor>> 

Hence, the functions pdsor and pd-cor are approximated by t h i s  clctc-rtilir~istic T ~ t ~ t c . t  iott:, 

scar and COT respectively and approximate the detcrririnistic parailcl or fi~rtctirm I J ~ J ~ ' .  t J 11  l i  k t s  

the pardel or function. they do  not require fair evalt~atiort. 'I'lrt*~ t w i ,  Itowrwr, t ; r k t b  

admntage of parallelism when it is available. For example, pd-car( i, 7'mi j uiiglt t ~ ~ i ~ l t l i i t , ( *  

its arguments sequentialiy and return i or i t   night evaluate i t s  argr~i t iwit~ io p i ~ r i i l i 4  ;tnd 

return True. 

Both pd-sor and $-L"UP are USEM parkiall_v deterministic- ftiitcricms. For cxiiirrplv, t h* 
.. Imguage Eiffef 1421 uses an ar function that denotes ~ f - . m r .  5 his ktb tf16. ~ t ~ i ~ l p i l i ~ ~  1 1 s ~  

commutatiuity to perform some optimizatiorts hut Jso  lets t h e  rotrrpifw gc*wratis soclrs tfra 1, 

"short-circuits" evaf natim nf bodean expressions' . 

The pLcm f u a c h a  is swfd in p a d e l  sea:& programs. X backt rarkiiig jiriigrairj f i ~ r  

a decision problem can be structured rts nested applications of thr- ronrljticjital or h~wtiort. 

Speculative pwaEleIism cram be us& t o  evaluate the second argr~rnr*iit of eac l~  ror applisirtio~i 

1 En tHk exam& the mm-deterministir choice is rewlvcrl by the curnpifcr SQ tfv:r* IS no clrorrr-  tct / JP  rrtiujr 

at ran-time. 



<<-B. if c = I arrd I = y 
&j. C. 2. g = 

<z>>. if c = True 

4.3 .X Partial Determinism and Function Application 

Proof 



'L
 

C
 

.- 
.- 

c
 

". 
r
 

'I. 
.. 

.- 
C
.
 

- 
P

 
.-' 

"
 

. *- 
v.. 

P
. 

+
-. '.- 

C
 

*
 

L. 
c
 

I
 

P
. 

*, 
- 

U
 



CHAPTER 4. PARTIAL DETERA4INISM 

Let "f" 
(Lam "X" 

(App (App (App (Atom "if l') 
(App (App (Atom "=") (Var "X")) (Atom "0")) ) 

(Atom "1") ) 

(App (App (Atom "*") (Var "X")) 
(App (App (Atom "-"l (Atom "1")) (Atom "X")) ) ) ) 

(App (Var "f "1 (Atom "5")) 

Figure 4.1: An Expression in the Deterministic Language 

The denotational semantics of the language is based on a domain called value consisting 

of functions in value - caluc, integers, and booleans. Thus, value is a domain that satisfies 

the fclflowing domain equation. 

value = [ualue - value] + ZI + { True, F a l ~ e ) ~  

* 
where + is the coalesced union (sum) on doma.ins2. The  following functions are used for 

conversions to  and from the domain value. 

inF : (value -- value) -+ valve 

outF : value - (value -+ value) 

o u t 3  : value i Z1 

tnB : ( True! F ~ l s e ) ~  + value 

oufB : wtue - ( True, F a l ~ e ) ~  

The semantics rise an erwimnmcni. a part id  mapping of names t o  values, t o  record the 

variable bindings. The empty environment is denoted by p,-, while p denotes an arbitrary 

eiivirunxn~nt. The two f~rnciions for dealing with environments are: 

2,  update : enztironmcra! X name X valve environment 

"The least element of codexed union, D1 + D2, is i and is equated with and ID,. 
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M [  Var X ]p = Iookup(p, X) 

.M[ e ](updnte(p, v, X ) ) )  

.M[ App el e2 ]p  = outF(.M[ el ] p ) ( M [  62 ]p )  
M &  Let s el e2 ] p  = .;M[ e2 ~(fiz(Xp'.updntc(p.  v, i W [  e l  ] p i ) ) )  

Figure 4.2: Semantics for a Simple Deterministic 1,anguagc 

where looktpfp, v) is the value bound to tile variable z: in the cnviror~rncnt, p ancl  

update(p, v, s )  is a new environment that is the same as p except that variahlt* 21  is 1)olrricl 

t o  the value 2. 

The main semantic function ;W maps an expression and a n  environmtvrl to ;l c~lrwwnt, o f  

the domain ualue. It is common to  write the application of M to a r t  rxprtwicm e a.rltl  i i r i  

environment p as A4 p. Figure 4.2 defines M using an  attsiliary f~trrction A th;tt I I I ~ L ~ S  

an atomic name to a value. Reci~rsive definitions in Let expressions art* prwnittwf atid I , I i v  

semantics of a L e t  expression uses the function fix to find f i x 4  points. For siniplisiiy, t t t c *  

semantics does not exphcitfy handle errors such as trying to %pp)y a rtu~tibc*r t o  it r~urttl)t*r 

- such i n d i d  expressions are mapped to L. 

4.2.2 A Partidly Deterministic Language 
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= << i n F ( X x . l ) ,  inF(Xx.2) >> 
B& "pd-corf' 1 = << inFjvcor), inF(vpor) B 

where vcor = Xx.inF(Ay.inB(cor(outB(x), ou tB(y ) ) )  
upor = Xx.inF(Xy.inB(por(outB(x), outB( y ))) 

Figure 4.3: Semantics for a Simple Partially Deterministic Language 

Pd Echarl I 
Lam [char] expr I 
App expr expr l 
Let [char] expr expr 

For example, axr expression like 

App (App fPd "pd-cor") (Atom "Truefl))(Atom "False") 

&notes +ear( True, False). 

The semantics maps expressions to sets of values, that is, elements in the power domain 

Ff ttalzre), The e n v i m ~ m e n t  is modified to map identifiers to elements in P(value). The 

sema~tics is shaws !B figure 4.3. It rises a semaiitir: fmetioii D that maps an expression of 

the form Pd n to a partidy deterministic set of functions. For example, 

D[ Pd pd-cor ] = << cur, par >> 

The function Z, plays the same role for partidy deterministic functions as the function A 
pfays for deterministic functio~rs. 
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An important result is that unrestricted non-determinism is not introduced by the pws- 

ence of partially deterministic functions. We assume that  if n is an identifier that dc~iutcs a 

partially deterministic set then D[ n ] is a partially deterministic set. 

Theorem 4.5 If p is an  environment such that for all names n,  bookuy(p,n) is a. pa.rt,iitlly 

deterministic set then for any expression e, M [  e ] p  is a partially determinist,ic w t .  

Proof 

We prove the theorem by induction on the structure of the expression e. 

Case e=Atom n. The result follows because M[ Atom n ] p  is a singleton set. 

Case e=Var n. The result follows because loofcup(p, n) is a partially deterrriinistic set,. 

Case e=Pd n. The result follows because D[[ n 1 is a partially deterministic set. 

Case e=Lam v el. By induction, for any value X, M [ ei ](updute(p, v, << n: B)) is 1)ii.t.- 

t i d y  deterministic so its greatest lower bound and least upper bound c~xist. 'I ' t~cr.cfor.cl ,  

M[ e ] p  is a pzrtially deterministic function. 

Case e=Ap e1 e2. By induction, M[ e l  ] p  is a partially deterministic ftlnctiorl ; L I I ~  

M[ e2 ] p  is a partially deterministic set. Therefore, the result follows by theorcm 4.3. 

Case e=Let v e l  e2. First, the environment 

is the least fixed point of the c h i n  of environments {po,pl ,p2,.  . .), wlicro 

By induction, each of these environments binds v t o  a partially deterrriinistic set and 

the least fixed point aiso bind v t o  a partially deterministic set. ?'fierefore, also f)y 

induction, 

M[ 62 ~ ( f i x ( X p ' - ~ ~ d a t e ( ~  v, M [  e l  ] p f ) ) )  

is a partially deterministic set. 
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From the above theorem, it follows immediately that, for any expression e, M [ [  e ]po is 

partially deterministic. 

4.3 Reasoning with Partial Determinism 

Section 2.4 outlined why equationd reasoning is difficult with non-deterministic programs. 

These difficulties can be avoided with a partially deterministic program by reasoning with 

a deterministic approximation. 

We consider a deterministic program P to  be correct with respect to  a specification S iff 

M [  S ]po C M [  P ]po. A program is partially deterministic if it contains an occurrence of 

Pd n where n is an identifier that denotes a partially deterministic function. A partially de- 

terministic program P is correct with respect t o  a specification S iff M [  S ]po & p  M [ [  P ]po. 

We abbreviate the above relation as S & p  P. 

Our approach for reaso~ing with a partially deterministic program P is to construct 

a deterministic program Pdet such that Pdet &p P and then apply equational reasoning to 

show that S C Pdet- We call Pdet a deterrninislic approximation to the program P. The 

deterministic approximation Pdet cannot contain an occurrence of Pd n so M [ Pdet ]po equals 

<X>> for some value X. Therefore. Pdet & p  P iff flpdet [II n ~ .  Hence, for demonstrating 

correctness, we are not normally interested in the greatest upper bounds. The existence 

of the greatest upper bounds ensures consistency which is the key to  the simplicity of the 

semantics of partial determinisn;. 

Fortunately, it is easy to  construct a deterministic approximation t o  any partially de- 

terministic program by replacing each occurrence of a partially deterministic function by 

a deterministic approximation t o  the function. For example, if a partially deterministic 

program contains an occurrence of Pd "pd-cor" then a deterministic approximation can be 

constructed by substituting A t o m  l'cor" for Pd "pd-cor". h the following, we use the no- 

tation Cdyl  for a substitution and eCxly1 means the simultaneous substitution of X for y in 

rhe expression e (we astlme that appropriate care is taken t o  avoid name ciashes). The fol- 

lowing theorem shows, for the language defined in section 4.2, the substitution [A ny IPd n] 

can be used to construct a deterministic approximation t o  a partially deterministic program. 

Theorem 4.6 If P is a program and A[ A n' ] V[ Pd n 1 then P[A n9/Pd n] &p P 



Proof 

Assume that A[ A n' ] f p V[ Pd n 1. Let qi be the substitution [A n'/~d nf. 'l'lw proof is 

by induction on the structure of P. 

Case P = Var x or Atom n. Then P4 = P so the theorern is trivially t.ruc. 

Case P = Pd f. If f # n then P6 = P. Otherwise, f = n a n d  Pd= A n' LP P. 

Case P = Lam V el. 

Case P = Ap el e2. 

Case P = Let v e1 e2. 



The deterministic program Pdet is not only useful for proofs of correctness but also 

because tools developed for deterministic programs (debuggers, compilers, etc.) can be 

use with Pdet as an aid in understanding the partially deterministic program P. In fact, 

we suspect that P would often be developed by first developing a deterministic program 

and then replacing some of the deterministic functions by analogous partially deterministic 

functions. 

As an example, consider a small search problem where we are given a finite tree with 

Iabeled leaves a.nd we are asked if a particular value occurs as the label of any leaf. A simple 

specification for this problems is: 

> t r e e  * : := Leaf * f Hode [tree *l 
> occurs v (Leaf 1) 
> = True, if v=1 

> = False, otherwise 

> occurs v (Wode kids) 
P = foldr sor False (map (occurs v) kids) 

Two correct partially deterministic programs can be developed by replacing sor with either 

pd-sor or pd-cor. 

4.4 Implementation using Partially Mandatory Tasks 

Partidly deterrninistie functions can be defined using the non-deterministic choose operator. 

For example, the function Ixf_cor could be defined as: 

> pd-cor X y = choose (cm r y) (par X y) 

Zitowever, the above definitiort requires a non-sequential function and does not capture the 

intended behaviour of our par2idlp deterministic functions. Our intention is that evaluating 

pd-car x y might ednaie x and y in yaraiiei without the requirement of fair evaluation. 

In a sequential setting, or  irt a program where the amount of parallelism exceeds the number 

of processors, X maybe elrduated before evaluating y . In a p a r d e l  setting, evaluating X may 

be dorw conct~rrently with evaluating y. This section describes how partially deterministic 

ftrnctiims can be implemented using a new type of task called a partially mandatory task. 



The evaluation of pd-cor x y initiates a partially mandatory task to cvduate X while a 

speculative task may be used to  evaluate y. The partially mandatory task m\ist bc ~ c t l ~ d t ~ l ~ d  

ahead of the speculative task but n a y  become irrelevant if y et-altiates to 7 i . t ~ .  

4 partially mandatory task is a task that can either beconre nzandatory or bcconw 

irrelevant. A p a r t i a b  mandatory task becomes irrelevant, likc a ~ p e c d i ~ t i ~  task, i f  its 

result is not required. However. a partially mandatory task may becomc 111;~tldiit~)t.y at i111y 

point during its execution. a specdative t.ask becomes mandatory only w i m r  its resu!bs arc 

required. We define a new annotation called pmand for creating partially ~ ~ t a ~ l d a  tory tasks. 

The meaning of the annotation is defined as follows. 

> pmand f X = I or f X, if X = I 

> = f X,  otherwise 

The evaluation of pmand f X creates a partially mandatory task to cvaluatt~ X i l l  parallcl 

with the evaluation of f X. H a partially mandatory task does not ter111in;ttc3 thtw b11c 

program may or may not terminate. 

A par t idy  mandatory task cart be used t o  define a new non-deterministic. fr~nction called 

pd-choose. 

The pseudo-function pd-choose takes tv.m arguments and non-determir-tistically rcturr~s onri 

of them. The above definition causes pd-choose to  behave as follows. 

> pd-choose 1 1 = L 

> pd-choose X I = x 

> pd-choose I y = L or y 

> pd-choose x y = x or y 

The function pd-choose is Eke anb except that it is bottom avoidirrg oriiy in  its sc~olltl 

argf:=.,eEt. Therefore, it d-S E& reijiiire fair evaluation of its arguments. Evaluatirrg 

pd,choose x y initiates a partially mandatory task to evaluate X and a spr*cufativt~ t a s k  to 

e d u a t e  y. Each sub-task evduates it. argument to Wf INF and the original task w t u  rrrs t h  

resalt of the first sub-aak to complete. The expression pd-choose X y may 1w cvaluatrd 

qnentially by returning the result of evaluating x.  

The function choose m be defined using two partially mandatory tasks. 
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Evaluation of choose X y initiates a partially mandatory task to  evaluate each argument 

and the original task returns the result of the first sub-task to  mmplete. 

Many partially deterministic functions can be implemented using pd-choose. We de- 

scribe the implementation of pd-cor and pd-sor below. Section 4.5.2 describes an imple- 

mentation of a partially deterministic version of ii-df-min using pd-choose. Equational 

reasoning can be preserved if pd-choose is not available t o  the programmer, but is restricted 

to use in defining standard partially deterministic functions. 
C 

The function pd-cor can be implemented as3 

? pd-cos X y = pd-choose (cos x y)!sor y X) 

The evaluation of pd-cos r p initiates a partially mandatory task t o  evaluate cor X y 

and speculative task fo evaluate cor y X. These tasks must evaluate X and y respectively 

because cos is strict in its first argument. The partially mandatory W k  is run in preference 

to the speculative task but may become irrelevant if y evaluates t o  True. An interesting 

case occurs when X is i and y is True. In this case, the partially mandatory task does not 

terminate and the result depends on whether or not the speculative task is executed. If the 

speculative task is executed and finds that y is True then the result is True. Otherwise, the 

evaluation of pd-cor does not terminate. 

The partially deterministic function pd-sor can be implemented using two partially 

nnandatsry tasks. 

As soon as either tasks returns a result, the other task becomes irrelevant. However, non- 

termination by either task may result in a non-terminating program, urtlike the case with 

pd-cor. 

Priorities can be nsed with partially mandatory tasks. However, the priority of a partially 

manclator3 task is atwaydfni&er than the priority of a specdative task. 

"E- .;S is very &ii;ifa :a :be fab&ng $eRlii;im of por using amb from section 2.3. 

por X y = aab (car X y3 fcor y xl 
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4.5 Partial Determinism in Branch-and-Bound 

This section shows how par t id  determinism is useful in branch-and-bound prograins (hat 

use improving intervals. Recall from chapter 3 that the function i i -df  -min ret,ur~ls tlw 

minimum of two improving intervals by evaluating its first argument befow wal~i;\t,i~tg its 

second argvment. A speculative task can be used to  evaluate the scconti argunicnt in piisallcl 

with the evaluation of the first argument. 

However, consider the following expression 

ii-value (spec (ii-df ,min rl) (ii-spec r2) ) 

where rl = (ii-lb 5 (ii-ub 10 L ) )  

r2 = (ii-lb 4 (ii-ub 6 (ii-exact 4))) 

This expression mimics depth-first branch and-bound on a node wi th  two childrca, r1 i111tl 

r2. The node rl has a lower bound of 5 and an upper bound of  10 i1.11<1 is wry ti~tic. 

consuming t o  expand (expanding ri does not terminate). The  node r2 h a s  a lowcr \)o~rntl 

of 4, an upper bound of 5, and expands quickly to  a solution node whosit cost is 4 .  

The  spec and ii-spec annotations initiate the spxxilative evaluation of r2 i n  p r a l l ~ l  

with the evaiuation of rl. One might think that the node ri can he prul~cd ;iftw r2 is 

expanded because the  lower bound of .5 on rl is greater than the optirnal cost of 4 on r2. 

However, the use of ii-df-min forces rl to  be completely evaluated Iwfcm tlw I,o~lrtds f r o l r ~  

r2 are used. Therefore. evaluation of the ahove expression does not tc~rmilrat~. 

We would like a version of the minimum and maximum functions o n  improvirig i r t f . c~r .v ;~ l~  

that  can use bounds from either argument as soon as they are availabk.. 'I'irc* ~ w x t  sc*c.t.ion 

describes how the non-deterministic function amb can be used t o  irnplc~rwr~t st1cl1 f~tr lc t ioas ,  

4.5-1 A Nan-Sequential Version of ii-min and ii-max 

Figure 4.4 contains an implementation for the minimum and rnaxjrnt~in fittrc.tior~s o r 1  i r r i -  

proving intervals that can use hounds as soon as they become availablra. I , i k g *  ii-max ard 

ii-min, the functions ii-pmax and ii-pmin are implemented using zipwithord. l iowtw*r ,  

they use a reducing f ~ ~ n c t i o n  nd-red where nd-red X y non-dcterrnir~isticaily choos(*s to 

d iscad  a non-exact bound from either X or y (provided that both arcb slot cixar-t,). If X = L 

then nd-red r e % - a s  Cbx:x,y) while if y = I then nd-red returns (x,by:y). 

The fmcaion ii-prrein caa return different representations when ap jtlied to thct .ctarrrcs 



> ii-pmax X y = zipuithord nd-red b-max (b-bot:x) (b-bot:y) 
> ii-pmin x y = zipuithord nd-red b-min (b-bot :X) (b-bot : y) 

> nd-red (bx:x) (by:y) 
> = (bx:x,by:y), if b-isExact bx & b-isExact by 
> = ibx:x,y), if b-isExact bx & b-nonExact by 
> = (xYby:y), if b-nonExact bx & b-isExact by 
> = amb (seq x (x,by:y)) (seq y (bx:x,y)), otherwise 

Figure 4.4: Irnplementation of a Parallel Min 

arguments. Consider evaluating the expression 

ii-pmin (ii-lb 5 (ii-ub 10 1)) (ii-lb 4 (ii-ub 6 (ii-exact 4))) 

If amb chooses its first argument until it is i then the result is 

If imb cllooses its second argume~it until it is exact then the result is 

However, both results are equivalent in that they both denote the interval [4,4]. The use 

of amb in the implementation of ii-pmin allows ii-pmin to use bounds as soon as they are 

produced. 

The function ii-pmin is non-sequential because it avoids bottom in either argument. 

For esantple, 

ii-pmin 1 (ii-exact 4) = ( - m ,4) : 1 = ii-pmin (ii-exact 4) 1 

m-. 

' l ' h e r e f ~ ~ ~  an impiementation of ii-pmin requires fair evaluation of its arguments. 

4.5-2 A Partially Deterministic Version of ii-df -min and ii-df - m m  

This section describes a partially deterministic: version of ii-df ,min d e d  ii-pd-min. The 

function ii-pd-min is like ii-pmin in that  it can use bounds as soon as they are available. 

WQW~VCT. unlike ii-pmin, it does not require fair evaluation of its arguments. 



> ii-pd-min X y = zipwithord pd-red b-min X y 
> ii-pd-max x y = zipwithord pd-red b-max X y 

> pd-red (bx:x) (by: y) = 
> = (bx:x,by:y), if b-isExact bx & b-isExact by 
> = (bx:x,y), if b-isExact bx & b-nonExact by 
> = (x,by:y), if b-nonExact bx & b-isExact by 
> = pd-choose (seq x (x,by:y)) (seq y (bx:x,y)), otherwise 

Figure 4 2: ImpIementation of ii-pd-min and ii-pd-max. 

The code for the partially deterministic version of ii-df-min is show11 i n  1;igul-cl .l.5. 

The function pd-red is siiniiar to  nd-red except that it uses pd-choose irtstcatl of arnb. If 

aeither bx nor by is an exact bound then evaluating the esjtrcssiort 

pd-red (bx:x) (by:y) 

creates a partially mandatory task to evaluate x and creates a spcjcufativt !ask tlr> C V ; F ~ I I ; L I ~ ~  

J-  

The function ii-pd-min is partiall3 deterministic. First, 

is when y # 1 with 

Therefore, inr terms af their denotations, ii-df _rain ayprrsxirnatr*i, ii-pd-min. 



can result in any of the representatioxis: 

etc. depending upon when the bounds are produced. Each result tlertot 0s ;in i~~tcsval  t , l ~ i i  1, 

is approximated by [--X. 101 and approximates [$,?l. 

4.5.3 A Partially Deterministic Version of ii-min 

The previous sections have shown the utility of a partially de tc r~rh is t ic  vtbrsior~ of' 

ii-df-min. Is there useful partially deterministic version of ii-min as well? 

Partial determinism does not yield the same benefits with t t~c  brst-first, S! rategy. Wt, 

can imagine a partially deterministic version of ii-min whose behaviour is hc~i,wcr~~r that of' 

ii-nin and ii-pmin. That is, 

- 'i'he main advantage of ii-pd-m 3 X y over ii-df-min X y is that, by using a bourl (l fsorrr 

y, ii-pd-min X y may return an exact bound sooner than ii-df -min X y. 

This advantage does not occur with ii-min. Consider an expressic~n 

ii-min X y 



whesk the current bound on X is bx ( a  non-exact bound) and the current bound on y is by 

and (lb bx) < (lb by), If by' is any subsequent bound in y then 

(lb bx) < (lb by) < (lb by') < (ub by') 

Therefore b-min bx by' cannot be an exact bound. This is closely related to the well 

known result that the best-first search strategy never expands a node that another strategy 

could avoid expanding [assuming that all the bounds are distinct) [44]. 

4.6 Partial Determinism for Adapting to Memory 

The previous sections have discussed partial determinism in the context of parallel pro- 

grams and non-sequential functions. Part id determinism is also useful in strictly sequential 

situations. 

Consider a branch-and-bound program that adapts its search strategy to  the memory 

availabie. Initially the program uses the best-first strategy but when memory becomes 

tight it switches to  a depth-first strategy. The puogram's behaviour is non-deterministic: It 

depends on the amount of memory available. The memory-adaptive program is partially 

deterministic because its behaviour falls between that of depth-first branch-and-bound and 

best-first branch-and-bound. 

If memory is always tight then executing the memory-adaptive program is equivalent 

to executing a depth-first program. On the other hand, if memory is never tight then 

e~ecut~ing t.he memory-adaptive program is equivalent to  executing a best-first program. 

The interesting cases occur somewhere between these two extremes. We hypothesize that 

when the amount of available memory is sufficiently large then the memory-adaptive strategy 

will expand fewer nodes than the depth-first strategy but run in less space than the best-first 

strategy. The above hypothesis remains to be verified and we do not know what "sufficiently 

large" really means. 



Chapter 5 

Related Work 

This dissertation combines ideas from the fields of functional programming, c.otnbinat.oria1 

optimization, parallel programming, and nm-determinism. There is related work from cwch 

of these fields and this chapter gives a brief overview of some of the related work. 

5.1 Parallel Combinatorial Search 

There has been much recent interest in applying parallel processing to scarcli progsi~~ris. 

Roucairol [51] and Grama and Kumar [22] survey parallel processing in branch-and-boutl 

while Marsland and Campbell [4 11 survey work on the parallel search of game t,sccs. 'I'lic? 

main goal in the above is to improve the performance of parallel search program whilc our 

work has focussed on simplifying parallel search programs. 

Searching for solutions is jilst one approach to solving combinatorial optimizat,iorl pmh- 

lems. We have not considered other approaches such as: dynamic programming, si1r1ula.l,c4 

annealing, or approximation algorithms. 

There are three main approaches in writing parallel search programs: 

1. Search distinct parts of the search tree in parallel. 

2. Apply parallel processing to node operations such as computing the houncis o r  ~ C I I ( I ~ -  

ating the children. Ebc'ing [l91 describes the application of this approach to c~(?ss. 

3. In parallel window search[4, 411, each processor explores the search tree usirrg a dif- 

ferent window. The lower and upper bound on the root of the tree defirros the initial 
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search window. With P processors, the initial window is split into P subwindows 

and each processor searches within a distinct subwindow. The speedup using parallel 

window search in game playing has been found to be 5 or 6 regardless of the number 

of processors [41]. 

Our programs use the first approach and the rest of this section discusses the first approach 

in more detail. 

A straightforward method of parallelizing branch-and-bound on P processors is to modify 

the simple branch-and-bound program in Figure 1.2 such that each iteraiion expands P 

nodes in parallel. We call this approach synchronous because the processors synchronize 

after each iteration. Li and Wah [40] use this approach to andyze the number of iterations 

taken by parallel branch-and-bound. 

Parallel branch-and-bound programs can exhibit speedup anomalies 1381: the program 

can exhibit speedups that are greater than Y or less than 1. Anomalies are possible because 

the parallel program may explore a different search tree than the sequential program. The 

part of the search tree that is expanded by the parallel program but not by the sequential 

program is called search overhead. Search overhead is analogous to  the irrelevant work that 

may be done by programs that use speculative parallelism. There is a tradeoff between 

processor utilization and search overhead: using a single processor results in no search 

overhead but a utilization of only $. As more processors are used, it is more likely that 

some of the processors expand nodes that are not expanded by the sequential program. The 

samz tradeoff occurs with speculative parallelism: it increases processor utilization but may 

result in irrelevant work. 

The synchronous approach may perform poorly in practise because of contention for the 

shared priority queue and delays in waiting fcr all processors to complete the iteration. In 

many programs 136, 37, 501: the processors are given their own local priority queues and 

operate more asynchronously by selecting and expanding nodes from their local priority 

queues. Some comnlunication between processors is needed so that all processors are aware 

of the current best solution. 

Various load balancing schemes are used to  ensure that each processor has nodes to 

espaxtd and to ensure that promising nodes are fairly distributed among the processors. 

Laxge search overhead can occur if some processor only has nodes that are likely to be 

irrelevant. Two generd strategies for load balancing are: 



1. Queue splitting: IYhen a processor's priority quew beco~ncs crnpty i t  rtyttt*sts work 

from some target processor. The target processor splits i t s  priority qritwc airtf givc's 

part of it to the requesting processor. Many variations are possible tlttpcncting tw how 

a target is selected and how the queue is split[37]. 

2. Node splitting: ?Vhen a node is expanded its children arc distributctl aitrctrtg 1 I r v  

processors. Shu and Kali. 1551 use this approach and distribute tile dtilclrcn ra11tfo1111y 

ressors. among the pro, 

Queue splitting typically involves less communication overhcatl than i~otlc splitting bc~ititw 

the processors communicate less often. 

Our use of improving intervals results in programs that do not have all csplici! priority 

queue. Instead, the priority queue is implicit in the search tree. It is t l~e r~fore  itnpossil)l(~ 

for the programmer to dictate a queue splitting strategy. However, the run-time syst~~111 

of a parallel functional language must support some load balancing strategy. ]:or CX~LIIIJ)I(\, 

the Grip system [47] has a local queue of tasks on each processors and exports sonrt- tasks 

from a processor's queue when its local task pool exceeds a fixed sizc' . Huncc, ou r a,pproiicll 

simplifies programs by handing over control of load balancing to the run-time systcrti. Wltilc 

this does make the programs simpler, the performance of the programs tlc~pencls OII thv 1'1111- 

time system and it is more difficult to esperiment with different load balancing st,r.atcy+s. 

The node splitting strategy could be programmed within our approach if an additional 

annotation were available t o  initiate a task on a specific processor. l h t h  I4urtorr [!l] artcl 

Hudak 1271 proposes annotations for this purpose. For example, the expression on p f e 

behaves like spec f e but initiates the speculative task on the processor nanicd p. 

5.1.1 Reducing Search Overhead and Anomalies 

Search overhead can be kept low by keeping the rzurnber of nodes expanded by the parahl  

algorithm close to  the number of nodes expanded by the seyuentjal algorithm. Kaid ar~tl 

Sdvetor [34] describe a parallel depth-6rst search program that does not exhibit spccxillp 

anomalies. They assigo priorities to  nodes in a manner that is consistent with a depth-first 

ordering of the search tree. Their program ensures that during the expansion of a node nl ,  

another node of lower priority may be expanded in parallel only if there would othcirwisc 

'Grip does not currently srrpport prioritized tasks so the load is balanced only in the wense of bafancing 
the number of tasks on each machine. 



he a processor left idle. This is similar to what happens when using speculative parallelism 

with a depth-first straiegg. Any node expanded by the sequential program will eventually 

become mandatory and when it does its evaluation will be scheduled ahead of speculative 

tasks. Priorities should also be placed on the specuiative task stlch that the speculative 

priorities are co;lsistent with a depth-first ordering of the tree. 

Aki  et al. [l] use a xt~antfatory-work-first scheme for an alpha-beta program. Their 

strategy exploits the idea that for perfectly ordered game trees, there is a unique minimal 

search tree that must be expanded by the sequential alpha-beta algorithm. Their algorithm 

exparrds this unique search tree in parallel before expanding other nodes. Steinberg and 

Solomon [59] refine this approach to get better processor utilization. Our approach could 

be adapted to utilize these strategies by using a combination of mandatory and speculative 

parallelism. 

5.2 Speculative Parallelism 

There has been relatively little work done on speculative parallelism. Languages for parallel 

computing do not in generd support speculative parallelism very well and few programs 

explicitly use speculative parallelism. Burton [l13 introduces the term "speculative compu- 

tation" and we use annotations similar to  those proposed in [12]. 

Osborne's thesis i45j describes how speculative parallelism can be supported in Mul- 

tilisp. He vieus the major requirements for speculative parallelism as: a priority scheme 

for directing computahn to more promising work and a means to  abort and reclaim ir- 

relevant speculative tasks. Osborne proposes a sophisticated priority scheme that supports 

dynamically changing priorities. priority transitivity (if a task Tl demands the result of a 

task Tz then priority of T2 should be greater than or equal the priority of T l ) ,  and modu- 

lar priorities. His scheme is certainly more expressive than the simple scheme that we use 

but it is not clear that the gain in expressiveness out-weighs the overheads involved in its 

Implemeiitation. 

Osberne used the travelling salesman problem as a sample problem and describes a 

simple branch-and-bound program t o  solve it. The program speculatively expands each 

nude and uses the speculstk-e priorities to  control the order of node expansions. Bowever, 

the program explicitly handles pruning and a global variable is used to  record the incumbent. 

The use of sideeffects to update the incumbent makes the program non-deterministic and 
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not pnrely functional. 

Soley [5 i ]  describes ttte impfem~ntat ion of sperula t i w  par;illtlis;:1 in  t ttr. diitaflotv 1;\11- 

guage Id. In Soley's programs. speculate f xs eva1natt.s the application o f  f 011 1*;1(.11 

element in the list xs in parallel and returns the result of f applird to som- t t t w ~ t ~ ~ t  in 

the list (typically the first to evaluate). Hcncc, speculats is nort-tictt*r~l~irlistic ancl cart hc  

viewed as an extension of an& to lists. 

Grit and Page [23] a~:d Baker arid Iicwitt I.?] describe rncthods for rcrt;iiming spt~citlat ivca 

tasks that have become irrelevant. 

Parallel logic programming systems [ 5 I ]  may use or-parallelis~n to waluiltc> c w - 1 1  r . l ; ~ t i ~ c ~  

of a predicate definiiion in parallel. Or-paralle!:sr;: is speculativc Irerattsr oilrr* arty c-liiriw 

is found to  be true, the tasks  evaluating other clauses becorrw irrrltvant.. IIowcw~r, t lwstb 

systems do not yet support priorities for rontrolhg speculative parall~lisnr. 

W t t e  [63] shows how speculative parallefism can be applied to  sittiulattd anriritling. Sim- 

ulated annealing iteratively makes local Improvements and occasionally a ra11tio1n ntr~t.;ttiir~l 

t o  an initial solution ( the probability of a mutation decreases over time). 'J'he rtlgoritl~nr is 

inherently serial because each iteration depends on the solution from the previous i t w  CL 1 '  1 0 1 1 ,  

Bowever, speculative parallelism can be used to  initiate a next itcratiort on bot l] t h  crl t l  

solution and a new candidate. before it is known which will bc chosc.rt. Ont  bcntlfit of ~tsi~rg 

speculative parallelism is that  it preserves the sequentia.1 sequence of solutions. 

Schaeffer 1521 describes an interesting use cif speculative paraliclisrn in g a m b  playjrrg. ' 1 '11~ 

speculative tasks are specialists in searching for specific game positions that ;m particularly 

beneficial. Often, a specialist will fail t o  find such a position but when it does the rcwarrfs arc) 

great. In experiments with chess, Schaeffer found that the addition of speculative sprtialists 

increased the search depth by two or more plys. 

5.3 Non-Determinism 

. .  . 
5.3.1. Non-de+,ermtntst.,c Extensicns to Pmctiona! Languages 

Adding non-deterministic operators hampers eq~ationa! reaxdrtg with funr:tiorral programs 

but fmctional languages extended with non-deterministjc operators have hem used h i  prac- 

tice t o  build operating systems 124, 333 and user interfaces [15, 181. 

There have also bee@ several proposafs to  add non-deterministic constructs ill ways 

that preserve equational reasoning. Burton" [l31 approach using oracles, and i-fnghrts and 
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O'llonneil's [31] approach using sets are described below. Both of these approaches permit 

more general non-determinism but they also have their own shortcomings. 

Hurton proposes a non-deterministic operator choice that is like amb but has an extra 

argument called an oracle that determines how the choice should be made. An oracle can 

either have the value One or the value Two and the choice function behaves as if it were 

defined by the following. 

> choice One X y = X 

> choice Two X y = y 

The oracle is set by the run-time system when the choice must be made and may be set by 

examining factors not available to  the program (such as the actual time when an argument 

becomes evaluated). Equational reasoning is preserved provided that every instance of 

choice uses a new oracle. Burton proposes that every functional program be given an 

infinite supply of oracles by the  addition of an argument that is an lazy infinite tree of 

oracles. 

Hughes and O'nonnell elevate the set of possible results of a non-deterministic choice 

to the language level. Their functional language includes built-in functions to  create and 

manipulate these sets. Set union is the basic non-deterministic operator and an amb-like 

operator can be defined as: 

> amb X y = {X) U (y) 

Equational reasoning is preserved because the program explicitly deals with sets of results. 

However, these sets are actually represented by a single element so for example the result 

of (I) U C2) is a set represented by either l or 2. They go on t o  show how these sets are 

useful for writing and verifying parallel programs. However, with their approach, equational 

reasoning only demonstrates partial correctness and termination must be demonstrated by 

ather means'. 

5.3.2 Other Approaches 

Milner's work on CCS [G] and Hoare's work on CSP [25] give more general theories of 

parallel systems and non-determinism. Their approaches are algebraic and include calculi 

for reasoning about non-deterministic programs. 

'Hugha and O'hnnell attempt to develop a calculus for reasoning about termination. 
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Many treatments of non-determinism include an assumption or requirernent of fadrncss. 

Apt and Olderheog 121 model parallel programs as non-deterministic programs iiiibrtltlcd 

in a fair scheduler. Pure logic programming systems must assuIne each clausc is csccutrtl 

fairly so that a proof is found if one exists. The UNITY language [I61 assumes that ~ i o  

statement will be ignored infinitely often. We have deliberately avoided a fairticss assurnp- 

tion because it introduces overheads in scheduling and makes it more difficult to csccutc 

programs sequentially. 

There are other approaches in dealing with the difficulties caused by 11011-dctern~inis~~~. 

Emrath and Padua [20] try to automate the detection of unwanted non-cleternti~~isn~ in par- 

allel programs. ablmach and Appel [61] instrument non-deterministic programs to prod~~cc. 

traces of their execution including the outcome of all non-deterministic choices. 'I'hc t raws 

are used to  re-play the program so that the results are repeatable. This approach call holp 

with debugging a non-deterministic program once a bug has been detected but it docs lrot 

address the problem of finding bugs in non-deterministic programs. 



Chapter 6 

Conclusions 

This dissertation has  explored the application of functional programming to  combinatorjal 

search programs. Our thesis is that functional programming leads t o  programs that are 

simple, are amenabIe to  formal reasoning, and are easy t o  execute on parallel machines. 

The dissertation supports tlte above thesis with some qualifications. This chapter starts 

with a review of what has been accomplished and describes why the thesis is only partially 

supported. We follow with a description of some future work and then conclude with a short 

discussion of the main contributions of this work. 

6.1 Simpler Programs 

We have developed an abstract data type called improving intervals whose minimum and 

maximum operations encapsulate the pruning behaviour found in many search programs. 

Search programs that use improving intervals are simple because all pruning is handled 

within the data type. Lazy evaluation is the key aspect of f~nctional  programming that 

ailows pruning to  be modularized in an abstract data type. This supports Hughes' claim 

that lazy evaluation is a new type of "glue" whereby 

"one can modularize programs in new and exciting ways." 1301 

However. we have also shown that improving intervals can be implemented using lazy lists 

and there are a number of languages (Scheme, ML, SISAL) that support lazy Lists without 

being fully lazy. Improving intervals could be impleme~ted and used in these languages as 

well. 



One of the reasons why our functional search piograms are s impl~  is that thcy do riot 

include enhancements found in more contpies search programs. For csaniple, our progranis 

assume that the search space is structured as a tree rather than  a graph ant1 our prograrlis 

do not use enhancements such as dominance relations. Including such ctihanct.:~tents would 

make the programs more complicated and may pose additional difficultirs for functiona,l 

programming. 

We have also not considered the details of particular combinatorial problo~us. I n  nrany 

cases, the code needed to  compute bounds, etc., for instances uf the prol>leul is more c.oniplt1s 

than the code for the search program. For example, int.egcr programmi~~g problc~tls a r c  

often solved using a branch-and-bound program that computes bounds on a sub-irlsta~iccl 

by solving a linear programming problem. The amount of code required to soli~c t,trc\ l i t r c w  

programming problem is t o  be likely much larger than the amount of brancli-a~td-~)o~t~~tl  

code. 

6.2 Parallel Execution 

Search programs that use improving intervals are easily annotated with a spec anrlot,iit io11 to 

initiate speculative tasks that explore distinct sub-trees in parallel. The annotations (10 tlol 

affect the meaning of a program so annotations can be stripped from a functioltal progra 111 

without changing its results. This means that programs can he written and debugged on il 

sequential machine and then executed on a parallel machine for better perforrriancc. 

The parallelisn in search programs is speculative because a task searching a sub-trw may 

become irrelevant if a solution is found in a different part of the tree. We have assurr~cxi tti<tt 

the irrelevant tasks are automatically reclaimed. This leads to simpler progralrls t)(~ili~ho 

the programmer is freed from the details of detecting and killing irrelevar~t tasks rntlclr as 

garbage collection frees the programmer from the details of memory rrianagerticwt. 

However, programs using spec annotations are deterministic and we have show11 that 

this determinism can preveni some pruning in parallel search programh. We Jefiiwd t h ~  

concept of partid determinism t o  allow programs with some non-determinism. 'J'hc: IISP 

of non-determinism means that the programs are not purely functional and it r a j m  the 

possibility of unpredictable results. Partial determinism restricts non-determinism 50 that 

only consistent results can be produced. We have shown that partial deterrnir~isrn is closc4 

under function application so that every expression in a functjonal language extwidcd with 



partial fy deterministic functions is part iafly deterministic. 

We also demonstrated how partially deterministic functions can be viewed as approx- 

imatiotls to  non-sequential functions that can use parallelism when it is available but do 

not require fair evaluation. This means that partially deterministic functions are easy to 

cvaltiate sequentially. 

We have assumed that some details that make parallel programming difficult, for esample 

mapping tasks onto processors and load balancing, are handled by the functional language. 

We have d s o  not considered the details of task granularity or communication costs. An 

advantage of functional programming is that these details can often be ignored or left to 

the run-time system. However, without considering these factors, the performance of the 

programs may be poor. 

6.3 Reasoning with Programs 

Approximate reasoning is an extension of equational reasoning to  include approximations 

such as el C 82 in addition to  equations. We have shown how approximate reasoning is 

useful for formally reasoning about search programs. We have used approximate reasoning 

t o  verify an implementation of improving intervals and to  verify two search programs. 

Approximate reasoning is applicable to  partially deterministic programs because for a 

partially deterministic program P, there is often a deterministic program P *  that approx- 

imates it, that is P' C P. This means that programs can be written and debugged using 

the deterministic approximation and we can avoid the problems associated with the unpre- 

dictability of nctn-dete~ ,,inistic programs, 

Approximzcte reasoning can only demonstrate the correctness of programs and it does 

not help in understanding their behaviour. Ucderstanding the behaviour of our functional 

search programs is difficult for a number of reasons. First, understandiog search programs 

that prune parts of the search space is difficult because the behaviour depends on what parts 

of the search space are pruned and when they are pruned. Understanding the behaviour 

of lazy fbnctional programs, including the time and space requirements, is difficult because 

€he order in which expressions are evaiuated is not readily apparent from the program's 

source code; rather it depends on when the results of an expression are needed. The use of 

speculative or partially mandatory parallelism complicates this by allowing some expressions 

t o  be evaluated before they are demanded. 



6.4 Future Research 

6.4.1 Application to Other Areas 

?Ve have used the combination of improvirlg htervals, sperufativc p;~rallrlisi~t.  arrt i  p;~r t i ; \ l  

determinism t o  write functional search programs. While starch programs art. npptic.;~ ttlc to it 

wide range of problems, it is interesting to colisicler whcrther or not the almvc c;tn l)ti <ti)plictl 

t o  other areas. 

One possible area is numerical anaiysis witerr many jtrcrgrarns s t w l ~ t ( ~  ii ~ y ~ i w r t ~  o f  

better and better approsirnatiolrs to  some valtw. If a progratn t.rl~rrputc*x thc wcltrc~ricx~ 

at,  az:. . . that approximates a value a then typically the sccltrtbrtrcx is i i~iproviry, i l k  that t 1113 

errors, lul --at, taz-al. - . .* are   no no tonically decreasing. Such a ,swjucm-tk of a~r~)roxir~t ;~~ic t l~ , s  

can be explicitly represented by a lazy list 1301 and it is easy to clcfilir furirticwh Ilrnt 

add fsubtract/mul'iipl_vfetc. such lists. 

As with the minimum and maximum functions on ir~iproving intervals. t h t w  2Ll.t. ciifli~rrvrt 

strategies for evaluating the arguments of these functions. For exalnplc-, it f u ~ t c t i o t ~  df ,add 

might evaluate ifs first argument, to within some tolerance, brforcr uvafei~ti~rg tlrr swortrl 

argnment while a function bf-add might evaluate thv argurncrtt with tlir* largwl c.rlr.t.ilrit 

error. Speculative parallelism can be used to evaluate the argurwtits i r r  p;~1.iill4 i r r ~ c l  p a r !  id 

determinism is useful to use results as soon as they berotne available. 

The approach seems particularl_v suited to  an algorithm sricll as atlaptiw qrtatlrirt urcv 

that  computes an estimate for a definite integral J.. f(rjrir. It q w r a t w  by W I I I ~ I I ~ , ~ I I ~  

m initial approxjmation to the  integrd using the trapezoid rulc and rprursivtdy tlivitlos t tw 

intervd into subintervals if the initial approximation is 11ot grmtf cviol~glr. fErr~rii~ t h o  ov(m.11 

structure of an adaptive quadratwe prosram is sirnilar to tite struc.turr* o f  a sc~;mIr progt.ilrIl. 

6.4.2 Approximate Reasoning with Non-Deterministic Programs 



6.4.3 Other Parkiafly Deterministic Fbnctions and Primitives 

5f'e have described a Few parridiy afetermirtistic functions that are useful in ivriting search 

programs. Soctio~i &%.H above saggests that there are other useful partially deterministic 

Ziincrions. fdeirlfj-, there wosid exist ornil set of primitive partially deterministic functions 

titat could be u s d  to ii;iM other partially deterministic functions. IS1 have not found 

anF S P ~  of primitive part idy deterministic functions and it seems like a difficult task. In 

thfif)rj=-.. a function like ~ & E O T  CH @,if might be sufficient to  express the possible results 

of program, IioKevet. I B  practise. the method Pm choosing between the results may vary. 

10. ham described exampios where the choice is  made based on the number of processors 

amifatbfe or is made h a d  on the arnourtt of memory available. 

6.4.4 Scheduling with Speculative Tasks 

lye have used a simple priority scheme for directing the scheduling of speculative tasks 

towards tasks that are more likely 10 be needed. However. scheduling with speculative tasks 

involves the probabiKt~ that a task wiff he rneeded, the utility of the result of the task, and 

the amount of work required t s  compute the result. For example. we may schedule a task 

that is 1 3 x 4 ~  t o  be irrefevani if the utility of its result is high enough or if it requires very 

Eittte work. There is a large bodr- of r~search o n  scheduling tasks for execution on parallel 

machines but this work mostly ignores the possibility of speculative tasks. 

6.4.5 Performance 

fTe have not addressed the  question oi how our functional search programs perform in 

practice. There are a rtrtrnber of interesting possibilities for work in this direction. 

1. Now does the performance af the functional programs compare with imperaiive pro- 

grams. both in the  sequential and parzfief case7 

2.  How much does speculative pardelism speedup the execution of the programs? 

5Icwnring the performance of search programs is difficult because the performartce is often 

\-er>- dependent on the partieniar problem and data sets used. Parallel search programs have 

adtiiticsrral unprecticta6iEtv due to non-determinism. 



Comparisons be twen functional and imperative implementations depent! o n  tlic par- 

ticular language and compiler used. In the sequentid case, good compi!ers for funct ional  

languages are starting t o  appear though the state of the art is cha:~ging rapidly and t l ~ r r c  

is a risk of obsolescence. In the parallel case. there are no current con:pilcm that support 

speculative parallelism well enough to  make a valid comparison. 

There is some question as t o  whether fmctional languages are an appropriate cl~oirc* 

for implementing searcb programs. Search programs are co~nputationally intcrisivc and can 

consume large amounts of space and time iesen for small problems). In some c;tses, suc-h 

as integer programming. there are hand-crafted and highly optiniized imperative programs 

available. -4 functional program can not compete with the performance of these prograltw. 

Fnnctional programming may still he useful to  prototype and experiment with new scarc-11 

programs. 

6.5 Final Remarks 

Our attempt to  apply functional programming to  search programs has highlighted butli 

strengths and weaknesses of functional programming. Our functional searc11 programs ;trr 

slmpk. easy to  verifv and can be easily executed in parallel. However, it can be difficult to 

understand their behaviour and some of the prfigrams require non-deterministit. behaviour. 

The main contributions of the work are: 

l: The definition of improving intervals and their use in simplifying fulrctior~al scarc.11 

programs. 

2. The concept of par t id  determinism and its use in programs that can  takr adva~ t tqy  

of parallel evaluation x-ithout requiring fair evaiuation. 

3. The  naitity of approsirnate reaso~ing  with search programs and partially dctterrnirtistic 

programs. 

Our approzch z!so saggests some interesting search strategies for brancf1-and-'houitcir pro- 

grams. There is a lot of research that remains to  be done. The irnprnvinq intervals ap- 

proach needs t o  be tested on real problems. Futher work on partial determinism is nrc44  

t o  discoser its applicability t o  other areas. 



Appendix A 

mansforming the Implement at ion 

This section describes some simple improvements that can make the implementation of im- 

proving intervals run more quickly. Our approach is to use equational reasoning to  transform 

the implementation from chapter 3 to a more efficient version. 

The first optimization is to  remove duplicate bounds from the list of bounds. The 

following definition of the function ii-rmdup removes duplicate bounds, and ensures that 

once an exact bound is found, the list is turned into an infinite list (that uses a constant 

arnou~it of space). 

> ii-rmdup (b:bs) 
> = b:rmdupJ b bs, if b-nonExact b 

> = cycle [b] , otherwise 
> where 

> rmdup' bl (b2:bs) 

> = rmdup' b1 bs, if bl = b2 

> = b2:rmdup' b2 bs, if b-nonExact b2 

> = cycle [b2], if b-isExact b2 

Cleady, ii-mdup X is equ iden t  to X and evaluating ii-rmdup X takes O ( n )  time if X is a 

List with n non-exact bounds. 

The function ii-lb may be optimized by unfolding its definition: 



i i - l b  a X 

= ii-max ( i i -exact  a)(b,bot:x) 

= zipwithord ub-red b-max ( i i -exact  a) (b-bot :X) 

= zipwithord ub-red b-max (cycle [(V a,V a)] ) (b-bot :X) 

= b-max (V a,V a) b-bot :zipwithord ub-red b-max (cycle [(V a,V a)] ) X 

= (V a,Inf):zipwithord ub-red b-max (cycle [(V a,V a ) ] )  X 

Let 

i i - l b  ' a X = zipwithord ub-red b-max (cycle [(V a,V a)] ( X )  

Since zipwithord is strict in its List argument, X must be evaluated and the pattern b:x 

can be used to  define i i - l b '  . 

i i - l b '  a (b:x) 

= zipwithord ub-red b-max (cycle [(V a,V a)] ) (b:x) 

= b-max (V a,V a )  b:zipwithord ub-red b-max (cycle [(V a,V a ) ] ) (x )  

There are three cases for b-max (V a,V a) b: 

1. If b-max (V a,V a )  b = (V a,V a) then the subsequent bounds in X can 1)c ignorcxl. 

However, this case does not require special handling because the function ii-rmdup 

ensures that the result is turned into an infinite list once an exact bound is fol~ntl. 

2. If b-max (V a,V a )  b = b then ( Ib  b) 2 a. Therefore, if b' is a bound tighter tlra,n 

b then b-max (V a,V a )  b' = b y .  So, 

i i - l b y  a (b:x) = b:x,  i f  (b-~aax (V a,'! a) b) = b 

3. If b-max (V a,V a )  b # b then 

Finally, unfolding b-m=, gives 

Combining all of the above results in the following definition for i i - l b .  
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> ii-lb a X = seq (force a) (ii-rmdup ((V a,Inf) : ii-lb' a X)) 

> ii-lb' a (b:x) 
> = (b:x), if max-b = b 

> = max,b:(ii,lb' a X), otherwise 

> where max-b = (v-max' a (lb b), v-max' a (ub b)) 

> v,max2 a Neginf = (V a) 

> v,max2 a (V b) = (V (max2 a b)) 

> v,max3 a Inf = Inf 

The other functions can be optimized in a similar manner. 



Appendix B 

Performance Testing 

This appendix describes some very preliminary results on the periorma.nce of search pro- 

grams that use improving intervals. These tests were not meant as serious expcrirtlcnts hul .  

as a guide in assessing the potential of the improving intervals approach. Several branch- 

and-bound programs (using Haskell, Eiffel, and C) were written to solvc the 011 Kuapsark 

problem (as defined in section 1.1). 

Problem instances with n = 100 objects were generated with profits arid wciglit,~ uni- 

formly random in [l, lOOO] and with the capacity set to half the sum of the weights. ' 1 ' 1 ~  

branching function and the bounding functions follow the fixed-size tupk approach of 

Horowitz and Sahni [26]. In this approach, the objects are initially sorted in non-increasirrg 

order of their profit-to-weight ratios. A node at depth Ic in the search tree reprcscnts ttrc 

subproblem that packs the kth through nth objects. A node has, at most, two childrcn that 

correspond t o  including or excluding the kth  object in the knapsack. Thc lower bound i h  

computed by including all objects, from the remaining objects, that will fit in the knapsack. 

The upper bound is computed by greedily packing the remaining objects arid iricludi~rg i L  

fraction of the first object that does not fit. 

We ra.n tests using several different sequential implementations: 

1. A Haskell program that corresponds to the Miranda implementation in  Chaptcr 3 a h  

well as a Kaskeil program that includes the optimizations in Appendix A ( ~ I I I R  a few 

additional ones). We tested the IEaskell program with both the depth-first strategy 

and the breadth-first, strategy. 

2. A generic best-first branch-and-bound program, written in Eiffel, and  infitan tiated for 
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the 0/ 1 knapsack problem. 

3. A specialized depth-first branch-a.nd-bound program, written in C, for solving the 0/1 

knapsack problem (converted from a program in [59]). 

The tinics for the FIaskell programs were approximately the same for the depth-first strategy 

and for the hest-first strategy because of the nature of the problem. The original Haskell 

program was a factor of 30 times slower than the C program while the Eiffel program was a 

factor of 15 times slower than the C program. However, the more optimized Haskell program 

was a fxtor of 7 times slower than the C program or approximately twice as fast as the 

Eiffel version. 

Thcse results are very preliminary: none of the programs has been optimized using 

profiling informa.tion and only very limited datasets were used. While the performance of 

the Haskell program is still poor with respect to the C program, the results are promising. 

The Haskell program uses a generic branch-and-bound program while the C program is 

specialized for the Of l knapsack problem. There are also likely to  be other optimizations 

that could be applied t o  the Haskell version. 
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