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Abstract

Functional programs are often more concise, more amenable to formal reasoning, and better
suited to parallel execution than imperative programs. This work investigates the applica-
tion of functional programming to parallel combinatorial search programs such as branch-
and-bound or alpha-beta.

We develop an abstract data type called improving intervals that can be used to write
functional search programs. Programs that use improving intervals are simple because they
do not explicitly refer to pruning; all pruning occurs within the data type. The programs are
also easily annotated so that different portions of the search space are searched in parallel.

The search programs are verified using approzimate reasoning: a method of program
transformation that uses both equational and approximation properties of functional pro-
grams. Approximate reasoning is also used to verify an implementaticn of improving inter-
vals.

Parallel functional programs have deterministic results. In some cases, permitting some
non-determinism in the functional search programs can result in more pruning. We define
a restricted form of non-determinism called partial determinism that permits a program
to return a set of possible results but requires that the set of results be consistent. Par-
tial determinism can improve the performance of the search programs while guaranteeing
consistent results. We also show how approximate reasoning can be used to reason about

partially deterministic programs.

il
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Chapter 1

Introduction

Traditional programming languages such as C or Pascal are called imperative because a
program is expressed as a series of commands that are executed one after another. A fune
tional program has no commands. Instead, the program is expressed only by the definition
of functions and the application of functions to arguments.

Advocates of functional programming claim that,

“programs can be written quicker, are more concise, are higher level (resembling
more closely traditional mathematical notation), are amenable to formal rea-
soning and analysis, and can be executed more easily on parallel architectures.”

128, p. 360}
The features of functional programming that lead to the above advantages include:

1. Higher-order functions: functions may take functions as argnments and return func.

tions as results.
2. Lazy evaluation: an expression is not evaluated until its result is needed.
3. Equational syntax: a functional program looks like a set of mathematical equations.
4. Polymorphic types: a sirong but flexible type system based on parameterized types.
5. Data abstraction: facilities for defining abstract data types and modules.

6. Absence of side effects: evaluating an expression gives its value and does nothing else.
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This dissertation explores the application of functional programming to search programs.
Search programs are often used to solve combinatorial optimization problems such as the
/1 knapsack problem. the travelling salesman problem, integer programming, and game
playing. Many of these problems are difficult to solve: they are often NP-hard. Executing
search programs on parallel machines provides an opportunity to reduce the time required
to solve such problems.

Our approach to writing functional search programs is based on a new abstract data
type, called improving intervals, that encapsulates the pruning behaviour that occurs in
search programs. The definition of this data type relies heavily on lazy evaluation and the
encapsulation of pruning leads to concise and simple prograrms.

Functional programs are naturally parallel because each argument of a function can be
evaluated in parallel; they do not have the inherent “one after another” nature of imper-
ative programs. Parallel imperative search algorithms typically use shared variables and
involve tasks that asynchronously update the shared variables. It is not possible to express
such algorithms using functional languages. However, functional search programs that use
improving intervals can be executed on parallel machines using speculative parallelism. Spec-
ulative parallelism creates a task to evaluate an expression before its result is known to be
needed.

In some cases. the performance of the search programs can be improved by permitting
some non-deterministic behaviour. However, permitting non-deterministic behaviour in
functional programs is difficult: functions are by definition deterministic and introducing
non-deterministic constructs hampers the ability to formally reason about programs. We
introduce a new concept called partial determinismm and show how it captures the type
of non-determinism required by parallel search programs while preserving the ability to

formally reason about the programs.

1.1 Combinatorial Optimization Problems

Combinatorial optimization problems arise in various fields such as operations research,

scheduling, CAD. Al and game pla

RE x wmaw Te=2Rs

ving. An instance of a combinatorial optimization prob-
lem censists of a non-empty discrete set X and a function f({z) defined on X. We are asked
to find an element r™ of X that optimizes the function f(z). The function f(z) is called

the objective function and an optimization problem is either a minimization problem or a
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maximization problem depending on whether we want to minimize or maximize f(r).

1.1.1 The 0/1 Knapsack Problem

The 0/1 Knapsack problem is a simple maximization problem. We are given a set of items
and each item has an associated profit. The goal is to fill a knapsack such that the total
profit is maximized and the capacity of the knapsack is not exceeded. More precisely, the

problem is defined as follows:

Given: A finite set of objects U = {uy, uz,...,u,}, a weight function w: U — Z%, a profit

function p: U — Z*. and a capacity C € Z1.

Find: A subset I’ of " that maximizes 3, .. p(u) such that 3~ . w(u) <C

In this problem, the set X is all the subsets of U whose total weight is less than or equal to

the knapsack’s capacity and the objective function is f(U') = 3 v plu).

1.1.2 Combinatorial Search

In many cases, a problem instance can be divided into simpler problems. A problem instance
(X', f)is asub-instance of (X, f)iff X' is a non-empty subset of X. If f is clear from context,
we often say X' is a sub-instance of X. For any sub-instance X’ of X, let f*{X’) be the

cost of an optimal solution of X’. The function f*(X’) may be defined as
X" = min{f(z)]z € X'}.

Top-down search programs use a branching function b(X ) that divides an instance into
a set of sub-instances. The iterative application of b( X') starting with the original instance

I A leaf occurs in the tree

vields a tree or graph of sub-instances called the search space
where there is a sub-instance X’ with | X’ = 1.

For example, an instance of the 0/1 knapsack problem can be divided into two sub-
instances: one that includes the first item (subject to there being sufficient capacity) and
another that excludes the first item. Figure 1.1 shows part of the search space for an instance

of the 0/1 knapsack problem using the above branching function.

!We consider only search spaces structured as trees.
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Figure 1.1: Search Space for a Knapsack Instance

Given a problem instance (X, f) and a branching function (X ), the cost of an optimal

solution can be defined as:

f(=), if X = {z}

min {opt(X', £,)| X' € b(X)}, if |X] > 1 -y

opt(X, f,b) = {

For many problems, the size of X is large enough that it is not practical to exhaustively

generate all of the search space. Branch-and-bound methods [26, 39] use bound functions

to avoid generating the entire search space. Branch-and-bound subsumes many top-down

search techniques [35] including the A* algorithm and the alpha-beta algorithm for searching
game trees [44].

A lower bound /(X’) and an upper bound u(X’) are functions on sub-instances such

that, for any sub-instance X',
I(X') < f(X") < u(X')

For minimization problems, the utility of bound functions relies on the observation that
if X” and X’ are two sub-instances such that u(X’) < /(X") then no element in X” can
be the optimal solution and the search space rooted at the node representing X" does not

need to be generated. In such cases, we say that the node representing X” can be pruned.
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Maximization problems can be treated as minimization problems by negating the objective
function and negating and swapping the bound functions.

For many problems, bound functions can be found by relaxing some of the constraints.
In the 0/1 knapsack problem, for example, a simple upper bound relaxes the 0/1 constraint.
The items are sorted by their profit-to-weight ratios and the knapsack is packed with as

many items as will fit plus some fraction of the next item.

1.1.3 An Imperative Branch-and-Bound Program

The pseudo-code in figure 1.2 illustrates a typical imperative branch-and-bound program
for a minimization problem?. The function branch_and_bound(r) returns a node that
represents a sub-instance of r containing an optimal solution (if branch_and_bound(r)
returns r* then r* represents the sub-instance {z*}). An iteration of branch-and-bound
refers to the execution of the body of the while loop. Each iteration selects a node, updates
the best current solution (the incumbent), and possibly expands the selected node. The main
data structure is a priority queue of nodes that contains the nodes the have been created
but not yet expanded; such nodes are called open nodes. The function initially inserts the
root node r in the priority queue and terminates when the priority queue becomes empty.

The function children(r) is the branching function and it returns a list of nodes rep-
resenting sub-instances of r. The functions 1b(xr) and ub(x) are the bound functions. The
function has_direct_solution(r) is true when the node r represents a sub-instance that
can be solved directly. In that case, cost(r) is the value of the objective function at the
optimal solution. A node that can be solved directly is called a solution node. We assume
that for any solution node r that 1b(xr) = cost(r) = ub(r).

The incumbent is the best current solution node, that is, the node with the minimal cost
over the sat of solution nodes that have currently been expanded. The incumbent’s value is
cost of the incumbent’s solution.

The program uses a variable min_ub to record the minimum upper bound of the expanded
nodes. Any node whose lower bound is greater than min_ub is pruned.

There are several improvements that can be made to the above code. For example,
we could check that 1b(k)<min_ub for each child k before putting k in the priority queue.

There are other enhancements such as dominance tests and equivalence tests that we have

2The pseudo-code is copied from [56] with some minor changes.
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function branch_and_bound(r: Node) : Node
Pq : priority_queue of Node
incumb : Node /* the incumbent #*/
min_ub : int /* current min upper bound */

if has_direct_solution(r) then return r
min_ub = ub(r)
insert(pq, 1)
while not is_empty(pq)
r := delete_max(pq)
if 1b(xr) < min_ubdb
min_ub := min(min_ub,ub(r))
if has_direct_solution(r)
incumb := r
else
/* Expand the node */
for each k in children(r)
insert(pq, k)
end
fi
else
/* node r is pruned */
fi
end
return(incumb)
end

Figure 1.2: Branch-and-Bound Pseudo-code
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omitted for the sake of simplicity.
The time taken by a branch-and-bound program is often measured by the number of
nodes generated. The space used by the program is measured by the maximum size of the

priority queue.

1.1.4 Search Strategies

The branch-and-bound program above uses a priority queue to record the open nodes. The
order in which nodes are expanded depends on an assignment of priorities to nodes. Different
search strategies result in different time and space requirements and the two most common
strategies are depth-first and best-first.

The depth-first strategy corresponds to prioritizing nodes in a manner such that each
node’s priority is greater than the priority of any node to its right.

The best-first strategy gives higher priority to nodes with the smaller lower bounds and
ties are usually broken in favour of the node that was generated first.

The best-first strategy corresponds to the A* algorithm [44] and is known to gencrate
the fewest number of nodes in the worst case. The space used with the best-first strategy
typically grows exponentially with the depth of the search tree. This affects the amount of
time taken by each iteration of the while loop because the time to delete/insert items from
the priority queue grows as the priority queue becomes larger.

The depth-first strategy can generate more nodes but the space grows linearly with the
depth of the search tree. In addition, a stack can be used to implement the priority queue
so the delete and insert operations can be done in constant time. The depth-first strategy

can fail to terminate if the search tree contains an infinite branch.

1.2 Thesis and Outline of the Dissertation

It is possible to code the standard imperative search algorithms in a functional manner [6, 46]
but this does not result in simpler programs and does not lead to any new insights. Our
thesis is that functional programming can be applied to combinatorial search programs so
that the programs are simpler, more amenable to formal reasoning, and easily cxecuted in

parallel. The dissertation demonstrates that this can be done by:

1. Defining a new abstract data type that encapsulates pruning.
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2. Using speculative parallelism to execute the programs in parallel.

3. Using partially deterministic functions to permit more non-deterministic behaviour

while still guaranteeing consistent results.

4. Using approximations to formally reason about the programs.

Chapter 2 provides the background necessary to understand the rest of the dissertation
and describes lazy evaluation, speculative parallelism, non-determinism, and approximate
reasoning, in more detail.

Chapter 3 develops the improving intervals abstract data type that forms the basis for
simplifying search programs. This data type is based on the observation that during exe-
cution of a branch-and-bound program, the bounds on the optimal solution value form an
interval that becomes tighter (or improves) as the search tree is explored. The implementa-
tion of improving intervals relies on lazy evaluation. We give a branch-and-bound program
and an alpha-beta program that use improving intervals. These programs are simple because
all pruning is encapsulated within the data type.

Functional programs are amenable to equational reasoning where the algebraic properties
of programs are used to reason about the correctness of the programs. We extend the
idea of equational reasoning to include the use of approzimations. Approximations are
inequalities defined using the approximates relation (C) from domain theory. We verify our
search programs and also verify an implementation of improving intervals using approximate
reasoning. We use approximations, rather than equations, because they result in simple
proofs for the search programs and they are also appropriate for reasoning about the partially
deterministic programs that are discussed later.

Section 3.7 describes how search programs can be executed in parallel using speculative
parallelism. With speculative parallelism a task is initiated before knowing that the results
of the task will be required. The advantage of speculative parallelism in functional languages
is that we obtain parallel behaviour without affecting the results of the programs; the parallel
program remains deterministic.

However, in some cases, permitting some non-determinism can result in more pruning.
Consider searching distinct sub-spaces in parallel with asynchronous processes. Finding
a solution in one sub-space may be sufficient to prune the other sub-space. A program
that abstracts the actual order of finding solutions is non-deterministic. However, in sec-

tion 2.4, we show that adding non-determinism to functional programs hampers the ability
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to formally reason about the programs. Chapter 4 introduces an alternative called partial
determinism that allows the type of non-determinism required by parallel search programs
while retaining the ability to formally reason with the programs. A partially deterministic
program is non-deterministic but it is restricted to give consistent results in terms of infor-
mation content. The idea of “information content” arises from domain theory. Chapter 4
provides a precise definition of partial determinism using domain theory, considers the ef-
fect of extending functional languages with partial determinism, and describes how partially
deterministic programs are amenable to approximate reasoning.

Chapter 5 relates our work to other work on search, non-determinism, and speculative

parallelism. Finally. chapter 6 describes some conclusions and areas for future rescarch.



Chapter 2

Background

This chapter begins with a review of functional programming, including a brief introduction
to the syntax of the functional language Miranda!. We then give an intuitive description
of graph reduction and lazy evaluation and show how lazy evaluation permits the definition
of non-strict functions. We also cover the distinction between speculative and mandatory
parallelism and define the annotations par, spec, and priority for parallel functional
programming.

Section 2.2 clarifies the concept of non-determinism and defines the non-deterministic
operators amb, choose, and nd_merge that have been used as extensions to functional lan-
guages. The semantics of programming languages with non-determinism involves domains
and power domains. We briefly review their definitions.

Non-sequential functions are described in section 2.3. These functions are interesting
because they require fair evaluation of their arguments and hence cannot be expressed in
functional languages. The chapter ends with a description of equational reasoning with

functional programs.

2.1 Functional Programming

This section gives a brief introduction to functional programming. Its aim is not to be
comprehensive but instead it defines the terminology used later and places this work in the

context of previous research on functional programming.

"Miranda is a trademark of Research Software Ltd.

10



CHAPTER 2. BACKGROUND 11

2.1.1 Miranda — Syntax

Miranda is used as the programming notation throughout the dissertation. Expressions
and function definitions appear in a typewriter font. Turner [62] gives a good overview of
Miranda. The following briefly describes some aspects of the syntax that are used later.

A functional program is a set of type and function definitions. Miranda uses an equa-
tional syntax so a function definition looks like an equation. For example, the following is

a definition for a function £ib that computes the n** Fibonacci number.

> fibn = 1, if n=0 \/ n=1
> = fib (n-1) + fiv (n-2), if n>1
> = error 'fib:of -’ve num", otherwise

The application of a function £ to an argument a is denoted by the juxtaposition f a
instead of the more usual £(a). The right-hand side of a definition is a sequence of guarded
expressions (a guard is a boolean expression) and provides one method for case analysis.
Pattern matching is an alternative way of doing case analysis in function definitions that
is often more concise than using guards. Patterns occur in the argument positions on the

left-hand side of a function definition. The following definition of £ib uses the patterns 0,

1, and n+2.
>fib 0 =1
>fib1 =1

> fib (n+2) = fit (n+1) + fib n

In general, a pattern n+k matches a numeric argument that is greater than or equal to k and
has the effect of binding the variable n to the argument minus k. The pattern [J matches
an empty list while the pattern (x:xs) matches a non-empty list and binds x to its head
and xs to its tail. The pattern (x1,x2,...xn) matches an n-tuple and binds x1 through
xn to the components of the tuple.

Local definitions are possible using a where clause. For example, the following uses

pattern matching and a local definition to define a function £ib2 such that

£fib2 n = (fib (n-1), fib n).

{error "fib:of -’ve num",1)

(1,1)

> £fib2 0
> fib2 1
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> fib2 (n+1) = (£2,f1+£2)
> where
> (f1,£2) = fib2 n

The scope of the where clause is the entire right-hand side of the equation. The indentation

is significant and is used by the compiler to determine the block structure of the program.

The Type System

Miranda is strongly typed and each variable has a type that can be inferred from the program
text by the compiler. The programmer is not required to specify types though it is often
useful to do so for documentation. The primitive types in Miranda are booleans (bool),
characters (char), and numbers (num). The type num includes both floating point numbers
and integers.

The list type is typically the most important type in functional programs. [T] represents
the type of lists whose elements are of type T. Thus [num] is the type of lists of numbers.

Other type constructors are (T1, T2, ...Tn) for the type of n-tuples and T1 -> T2 for
the type of functions with argument type T1 and result type T2.

User defined types can be defined using type synonyms, algebraic types, or abstract data

types. A type synonym such as
> word == [char]

defines an alternate name for a type. Algebraic types can be used for tagged unions and for

recursive types. For example, binary trees with integer leaves are defined by the following

algebraic type:

> bin_tree ::= Leaf num | Node bin_tree bin_tree

-

Leaf and Node are called constructors and may be used as functions (Leaf 1 is a valid
expression) or in patterns (Leaf x matches a leaf node and binds x to its integer label).
Miranda uses a polymorphic type system. The type variables *, %%, ***, etc. can be
used to represent an arbitrary type, for example [*] is the type of a list of elements of an
arbitrary type.
The type of a variable can be explicitly stated when desired. For example, the type of
the map function (that applies a function to every element of a list) can be stated with the

following;:
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> map :: (*=>*x) ~> [*] => [*x]

In Miranda, functions are curried so that functions of several arguments are actually [unc-

tions that take a single argument and return a function. The following addition function
>add x y=x + y

appears to take two arguments but its actual type is

> add :: num -> (num -> num)

so it maps a number to a function from numbers to numbers. The brackets in the above
expression are redundant because the type constructor -> associates to the right. With
currying, functions can easily be partially applied. For example, add 1 is a valid expression

and it denotes a function that adds one to its argument.

2.1.2 The Computation Model

A computational model for functional programs is typically based on a reduction system:
an expression is executed with respect to a functional program by reducing the expression
to normal form. Most functional languages can be considered as sugared syntax for the
lambda calculus and so the formal definition of reduction in the lambda calculus carries
over to functional programs.

Each reduction step replaces a sub-expression, called the redez, by an equivalent sub-
expression. Redex is short for reducible expression. An expression is in normal form if
it has no redexes. Within an expression, there may be many sub-expressious that are
redexes; a reduction strategy is a method for choosing the redex to be replaced. The normal-
order reduction strategy chooses the left-most outer-most redex. Normal-order reduction
corresponds to executing the body of a function as far as possible before evaluating the
function’s arguments. In contrast, imperative languages typically use the applicative-order
strategy that evaluates the arguments before executing the function’s body.

Two fundamental results that carry over from the lambda calculus are:

TTJ

1. If an expression z reduces to the normal form y and to the normal form z then y = z.

2. If an expression z can be reduced to the normal form y then z can be reduced to y

using normal-order reduction.
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The first result ensures that the normal form is unique regardless of the reduction strat-
egy. Hence, sub-expressions may be reduced in parallel without affecting the result of the
program. The situation is not quite this simple because some care is required in handling
sub-expressions whose evaluation may not terminate. The second result shows that the
normal-order strategy finds the normal form if it exists.

Expressions can be represented as either strings or graphs. The graph representation
permits sharing of sub-expressions when a variable occurs more than once in an expression.

For example, in the following function definition,

>fx=2z% (x/ z)

> where z = g x

the variable z occurs twice and is bound to the shared expression g x. Graph reduction
reduces a shared sub-expression only once while string reduction reduces a shared sub-
expression each time it occurs. The time used by the program is measured by the number
of reduction steps performed to reduce an expression to normal form. The space used is the
size (the number of nodes) of the largest graph that exists during reduction.

Lazy evaluation uses the normal-order reduction strategy with graph reduction. With
lazy evaluation, a sub-expression is only evaluated when its value is needed and shared

sub-expressions are evaluated only once. For example, with the following definition,

>fxy=(x-1)/x, if x "= 0

> =y, otherwise

the expression £ (1+1) (1/0) reduces to 0.5. The argument (1+1) is reduced once even
though x occurs three times in the body of £. In addition, the function returns a result even
though its second argument is undefined.

In practise, a redex is selected and is itself reduced. However, the redex is not reduced
all the way to normal form. An expression is in weak head normal form (WHNF) iff it is
not a redex and cannot become a redex by reducing its sub-expressions [48]. We refer to
the process of reducing an expression to WHNF as evaluating the expression. Later in the
dissertation, we use the fact that a list of the form x:xs is in WHNF. The evaluation of an
expression that denotes a list stops once the expression is reduced to a list cell; neither the

head nor the tail is evaluated.
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2.1.3 Strict and Non-Strict Functions

Lazy evaluation allows the definition of functions that may not need the value of an ar-
gument. Such functions are called non-strict and a simple example is the constant-one

function, defined by the following:
> const_one x = 1

More precisely, a function f({z), is strict iff f(L) = L, where L denotes a non-terminating
computation. Otherwise the function is called non-strict. This idea can be generalized to
functions with more than one argument (but recall that, with currying, all functions take a
single argument ).

All general-purpose programming languages provide some non-strict constructs: the if

statement is non-strict because a statement like
if True then ci else L

evaluates c1 without evaluating L. Most languages also provide a non-strict conditional or

function, we call it cor, that is non-strict in its second argument because
cor True 1 = True.

However, in most languages, user-defined functions are always strict.

In Miranda, constructor functions are used to build data structures. Constructor fune-
tions are an important class of non-strict functions. In particular, the list constructor is
non-strict in both arguments so that {L:L1) # L. Lists constructed with this nou-strict

constructor are called lazy lists (or “streams”™) and are used extensively in the dissertation.

2.1.4 Parallel Functional Programming

Two main approaches to parallel programming are: to leave the parallelisin implicit and let
the compiler determine what to do {21]; or to annotate the program to explicitly indicate
what should be done in parallel. Functional programming provides advantages for both
approaches though we consider only the latter.

We use annotations similar to those propvosed by Burton {12] and Hudak [27] to explicitly
indicate the parallelism in functional programs. Annotations are special functions that

do not affect the meaning of the program but do affect its execution. The advantage of
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by first dmf-lopmﬂ and debugging a sequential program and then adding the appropriate
annotations.
The annotation par is used to imitiate the parallel evaluation of the argument to a

just as with normal order

function {the original task goes on to evaluate the fun
reduction). For example. evaluating the expression par (add el) e2 creates a task to
evaluate e2 in parallel with the evaluation of (add e1). Semantically. par behaves as if it

were defined by.

/

fx, if x £ L

> par f x

> = i, otherw e

Notice that evaluating par f x does not terminate if evaluating x does not terminate.
Therefore, the function par is an annotation (it preserves meaning} only for strict functions:
if £ is a non-strict function then par f is nnt equal to f. The next section describes an
annotation called spec that can be used to introduce parallelism with non-strict functions.

The par annotation can be used to build other functions for parallel programming. For
example. a parallel map function that applies a function £ to each element of a list in parallel

can be expressed as follows:

>parmap £ [] = [J

> par_map f (x:xs) = par ({f x):) (par_map f xs)

The notation ((f x):) is an example of Miranda’s notation for partially applving an infix
function. The expression (x:) denotes a function such that (x:) xs = x:xs. Hence,

{({f x):) denotes a function that appends the element (f x) toa

Speculative and Mandatory Parallelism

) ¥
i3 4

I
ot

Bigde
mandatory parallelism and speculative parallelism

Mandatory parallelism refers to evaluating an expression whose result is known to be
required. With mandatory parallelism. ro processor wastes its time evaluating an expression
whose result mayv not be required. If the evaluation of the expression par f x is mandatory

then the par annotation initiates a mandatory task to evaluate x.
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.

Speculative parallelism is used to evaluate an expression whose result mayv not be needed.
If the result is needed then time is saved by the parallel evaluation of the expression. If the

result is not needed then

a processor has wasted some time by evaluating the expression.
Speculative parallelism is useful with non-strict functions. For example. consider eval-
nating an expression such as cor el e2 where cor is the conditional-or function. The

function cor is strict in its first argument but non-strict in its second argument so manda-

tory parallelism could be used to evaluate el and speculative parallelism mayv be used to

evaluate 2.

The annotation spec is used to introduce speculative parallelism. Semantically, spec

behaves as if it were defined by
> spec f x = £ x

and so spec is the identity function on both strict and non-strict functions. Evaluating
the expression spec £ x creates a new speculative task to evaluate x while the original
task proceeds with the evaluation of £ x. If the evaluation of f x does not need the value
of x then the speculative task becomes irrelevant and may be killed. Otherwise when the
evaluation of £ x requires the value of x then the task evaluating x becomes mandatory and
the original task blocks until x is evaluated.

Tasks are either speculative or mandatory. Mandatory tasks are scheduled ahead of
speculative tasks. There is alwavs at least one mandatory task because the initial task is
mandatory and a mandatory ta:s" that evaluates spec £ x or par f x goes on to evajuate
£ x.

Fair {or pre-emptive} scheduling is not required. A mandatory task can always be run
to completion because if the task does not terminate then the program must not terminate.
A speculative task can also be run to completion. If a speculative task is scheduled then
there must be a mandatory task scheduled on some other processor. If the speculative task
does not terminate then the processor that is running the mandatory task may be used to

rnmnl th nro
compi ele the pPro

"l

A speculative task mayv become mandatory or may become irrelevant. Any task that
becomes irrelevant should be killed and reclaimed through a process similar to garbage
collection. A speculative task cannot initiate a mandatory task.

It is often useful tc be able to place priorities on speculative tasks so that the system can

schedule tasks that the programmer deems are more likely to be needed. The annotation
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priority p x modifies the priority of a speculative task evaluating x to be p. For example,

evaluating the expression
spec (cor el) (priority 100 e2)

initiates a speculative tasks to evaluate e2 whose priority will be set to 100. The semantics

of the priority annotation are given by the following definition.

x, if p#1

1, otherwise

> priority p x

>

We assume that priorities are numeric and that a larger number represents a higher
priority. A speculative task created without a priority annotation has the same priority
as its parent task if the parent is speculative or otherwise has some maximal speculative
priority. Evaluating a priority annotation lias no effect on a mandatory task.

Priorities are just hints to the scheduler and may be ignored. For example, we want
to permit a distributed implementation where each processor has a local priority queue of
tasks rather than requiring a global priority queue be shared among all the processors.

Speculative parallelism is useful with lazy data structures such as lists. The annotation
spec_list, defined below, is the identity function on lists, but uses speculative parallelism

to evaluate the spine of the list.

> spec_list [] = [

> spec_list (x:xs) = spec (x:) (spec_list xs)

Only the spine of the list, as opposed to its elements, is evaluated. For example, a task
evaluating the expression spec_list [el,e2,e3] terminates after reducing this expression
to el:spec_list [e2,e3] without evaluating el and also initiates another speculative task
to evaluate spec_list [e2,e3].

It is easy to write a function that speculatively evaluates each element of the list by

using two spec annotations:

> spec_list_elems [1 = [J

> spec_list_elems (x:xs) = spec (spec (:) x) (spec_list_elems xs)

The sub-expression spec (:) x denotes a function that takes a list and returans the list with

x appended as the head and also initiates a speculative task to evaluate x.
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2.2 Non-determinism

Non-determinism naturally arises in parallel programs where several tasks have access to
a shared resource. Most programs do not precisely specify the order in which tasks access
a shared resource and different results may be obtained depending on the actual order of
execution.

In imperative programs, non-determinism is often implicit in the constructs of the lan-
guages. lor example, in Dijkstra’s guarded command language the if statement non-
deterministically selects and executes a branch with a true guard. Languages that support
message passing usually contain a receive statement that retrieves messages in a first-in
first-out order. If two client tasks send messages to the same server, then the order in which
the messages are retrieved is non-deterministic.

A major concern in writing parallel programs is the synchronization of the tasks so that
non-determinism is at least somewhat controlled. Bugs may occur because of improper
synchronization. Such bugs can be difficult to detect and correct because a small change in
the actual execution order of the tasks can hide or reveal the bug.

It is often helpful to view execution of a program as a sequence of states in a state
transition system. A deterministic program gives a linear sequence of states whercas a non-
deterministic program gives a branching tree of states. Each branching point involves a
choice. The choice depends on the program as well as other factors, like the actual order of
execution, that are not specified in the program. There must be some method for resolving
the choice and different strategies for resolving the choice lead to different types of non-

determinism:

Global or Local With global non-determinism, the choices are made to cnsure that the
program as a whole terminates successfully. For example, in a non-deterministic finite
automaton a string is accepted if there is some sequence of valid transitions from the
start state to a final state. At each transition, the machine chooses to move to a new

state but this choice must be made so that eventually a final state is reached.

With local non-determinism, the choices can be made locally without considering
global aspects of the program. Most parallel programs use local non-determinism.
For example, when two tasks access a shared resource the choice may be based on the

time when a task first accessed the resource.
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Angelic, Demonic, or Erratic There are several possibilities for the interaction of non-
terminating computations and non-determinism. Angelic non-determinism always
makes a choice to avoid non-termination; demonic non-determinism always chooses

non-termination; while erratic non-determinism make a random choice.

Weak or Strong Weak non-determinism refers to a program whose execution may be
non-deterministic but whose result is deterministic. Dijkstra [17] uses his guarded
command language to write many non-deterministic programs that always produce

the same result.

Strong non-determinism refers to programs that produce different results. Operating

systems and many real-time systems are strongly non-deterministic.

Our concept of partial determinism lies between weak and strong non-determinism. A
partially deterministic program is strongly non-deterministic because different results

can be produced but the results are all consistent.

The various types of non-determinism can be combined in different ways. For exam-
ple, in Dijkstra’s guarded command languages the guarded if statement is a local angelic
non-deterministic construct but many programs written using the guarded command lan-
guage are weakly non-deterministic. The non-determinism in logic programming languages
involves making a global angelic choice between clauses in a predicate definition. Logic
programs are often strongly non-deterministic because they return results corresponding to

different proofs of the goal.

2.2.1 Non-deterministic Operators in Functional Languages

In functional languages, non-determinism is often expressed by the use of pseudo-functions.
They are called pseudo-functions because they do not map the same arguments to the same
result. McCarthy’s amb operator is a local angelic pseudo-function that behaves as if it were

defined by the following:

>amb 1 1 = 1
>amb a 1 = a
>amb | a = a
>amb ab=aorb
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The intended behaviour of amb is that it evaluates both arguments in parallel and returns
the first one to finish.
The pseudo-function choose is pseudo-function that is local erratic. It belaves as if it

were defined by
> choose a b =aorb

The amb operator must return a non-bottom argument if one exists while choose may return
L if either of its arguments is L.

The operator amb can be used to write some other common pseudo-functions. The non-
deterministic merge operator nd_merge, as defined below, returns a fair interleaving of two

lists.

nd_merge xs ys
= ys, if choice=1 & xs=[]

= xs, if choice=2 & ys=[]

(hd x):nd_merge (tl xs) ys, if choice = 1 & xs™=[]
2 & ys~=[]

>
>
>
>
> (hd y):nd_merge xs (tl ys), if choice
> where

>

choice = amb (seq xs 1) (seq ys 2)

The amb operator is used to non-deterministically choose between 1 and 2 based on which
of xs or ys evaluates first (the expression seq xs 1 evaluates to 1 after evaluating xs Lo
WHNF: that is, the empty list or a list cell). The use of amb ensures that nd_merge is bottom-
avoiding. The operational reading of nd_merge is that it evaluates both of its arguments in
parallel and merges elements from the arguments in the order that they become available.
The behaviour of nd_merge corresponds to the non-determinism that occurs with message
passing when two tasks each send a stream of messages to the same receiver. The tasks
evaluating each argument of nd_merge must be evaluated with a fair scheduler so that if

one argument fails to terminate then elements from the other argument can still be used.

2.2.2 Domains and Power Domains

In chapter 4, denotational semantics is used as a tool for understanding some aspects of

partial determinism. Denotational semantics is built on the concept of a domain. Power
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1 2 3 4
L

Figure 2.1: Domain (ZU {L1},C)

domains are used for handling non-determinism. The following reviews some of the basic
definitions for domains and power domains.

A domain is a set with a partial order C that obeys the restriction described below. The
usual reading for C is “approximates” where ¢ approximates b iff b has as much informa-
tion content as a. Every domain contains an element L that is considered to contain no
information or to denote an undefined value. Figure 2.1 gives a pictorial representation of
part of the domain (ZU {L1},C) where forall z,y € Z, 2 C yiff t = L or z = y. In more
operational terms, L stands for a value that has not been computed yet. We often use 1 to
stand for a non-terminating computation because a non-terminating computation is always
“not computed yet”. Domains like that in figure 2.1 are called flat.

The notion of approximates and information content is better illustrated with more

structured domains. For example, with lists
1: 1 C1:2:1C [1,2,3]

In the expression 1: 1, nbthing is known about the tail of the list. The tail of the list 1:2: 1
is known to start with a 2 and the tail of the list [1,2,3] is known to be the list [2,3].
The computable functions from D; to D, form a domain that is partially ordered by the
following: if f and g are functions in Dy — D; then f C g iff for all z in D,, f(z) Cp, g(z).

In a deterministic language, every expression denotes a single value. However, when
non-determinism is added, an expression denotes a set of possible values. For example, the
expression choose 1 2 denotes the set {1,2}. The sets of possible values are elements in a
power domain (the analogue of a power set). The elements of a power domain are sets and
the ordering on the sets combines the subset relation with the approximates relation.

We now define some of the above terms with more precision.

A poset (D,C)is a set D with a binary relation C on D that is reflexive, transitive, and
anti-symmetric. A subset S of D is a chain iff for every pair of elements a,b € 5, either

aC bor bC a. Given a subset S of D, an element b € D is an upper bound on S iff for all
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a €S5,aC b. An upper bound b on 5 is the least upper bound iff. for every upper bound ¥’
on §,bC b. | [S denotes the least upper bound on S when it exists. Similarly, ['15 denotes
the greatest lower bound on § when it exists.

A poset (D,C) is a domain iff every chain of D has a least upper bound in D. Every
domain has a least element that is denoted by Lp or just L if D is clear from context.
Given a set A not containing 1, the domain A = (AU {L},C), where fora.be 4, a C b
iff a=bora=1,is called a flat domain.

A function f: Dy — D is monotonic iff x Cp, y implies f(z)Cp, f(y) forall x,y € D,
and f is continuous iff | Jp, {f(z) | * € X} = f (LUp, X) for all the chains X of D). Lvery
computable function is monotonic and continuous.

There are three standard power domain constructions [49, 53]: the Plotkin power domain
for erratic non-determinism, the Hoare power domain for angelic non-determinism, and the
Smythe power domain for demonic non-determinism. We use the Plotkin power domain to
model the erratic non-determinism that occurs in parallel search programs.

When D is a flat-domain, the elements of the Plotkin power domain P( D) are the non-
empty subsets of D that are either finite or contain L. Since 1 can be an element in a set,

non-termination is a possible result. The ordering Cp is defined for all A, B € P(D) as,
ACp Biff(Vae A3 € B.aCb)A(Vbe B.3a € A.a L b).

The least element of P(D) is {1} (the empty set is not an element of P( D) because every
program at least returns L as a result). Figure 2.2 shows part of the Plotkin power domain
on Z_]_.

When D is not a flat domain then the above power domain construction is more com-
plicated. For completeness, we give the Plotkin power domain construction for non-flat
domains following Broy [8].

The first problem is that € is not anti-symmetric. The standard solution is to divide
the subsets of D i1.to equivalence classes. For the Plotkin power domain, the equivalence
relation is based on the convez ciosure of a set. For a subset § of [J, the convex closure

conv(S) of S is defined by
conv(S)={y | Vz,z€ 5,z Cy C z}

For example, the convex closure of the set {1:1,[1,2,3]} includes the list 1:2:1 and the

list 1:2:3: L. Two sets S, and 53 are considered equivalent iff conv(5)) = conv(Ss).
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N

{-1, 0} {1,-1,0,1} {0, 1}

L N

{L,-1,0} (L, 0,1}
{L.-1} {L,1}

Figure 2.2: Plotkin Power Domain on Z; .

The second problem is that even when such equivalence classes are used some operations
on power domains are not continuous. (For example, the singleton set constructor is not
continuous.) This can be remedied by modifying the equivalence relation to consider finite
elements of finite subsets of the base domain D. An element z in D is finite iff for every
chain § in D with =z C | ]S, we have ¢ C z for some z in § [8, p. 13]. Let fin(D) be the

finite elements of a domain D. For sets S, S; C D, the equivalence relation is defined by
Sy =p 852 iff VS C fin(D),|S| < 0. (SCp 5y iff SCp S2)

We take the elements of the Plotkin power domain to be the C-maximal element of each

equivalence class. That is,

PD) = ({Uts1 1 $1=p S}| SCDand S # {}},Cr )

2.3 Non-Sequential Functions

The classic example of a non-sequential function is the parallel-or function and it can be

defined by the following:

True, ifz=True

v, ifzr=1 orz= False

por(z,y) = {
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The por function can return a non-bottom and non-constant result when either argument
is L. That is,
por(z,Ll) = =z
por(L,z) = =

Therefore, por requires fair evaluation of its arguments to avoid non-termination when
evaluation of one of its arguments does not terminate. The fair evaluation may be done
sequentially by interleaving the evaluation of each argument or may be done in parallel by
concurrently evaluating each argument. The tasks evaluating each argument are speculative
in that a task becomes irrelevant if the other task evaluates to true. However, these tasks
are unlike the speculative tasks described earlier because they require fair scheduling.

Another typical non-sequential function is a variant of the conditional function ¢ and
is defined by:
z, fe=landz# Landz =y
X L, ife=_Lland(z= Lorz#y)

pif(e,z,y) = ,
z, ife=True
y, ife= False

An implementation of pif requires fair evaluation of the condition ¢ and the test 2 = y.

The por function appears to be a good candidate for writing parallel scarch programs
because it could be used in decision problems to search the children of a node in paral-
lel. However, any functicnal language with a fixed sequential reduction strategy cannot
implement the por function because it requires fair evaluation of its arguinents.

Functional languages can be extended so that the por function could be implemented.

For example, the por function can be implemented using amb by the following:
> por x y = amb (cor x y) (cor y x)

where cor is the conditional or function. However, we want to avoid the overheads of fair
scheduling. We also want to be able to write functional programs that can be written and
debugged using existing sequential compilers and then run on a parallel machine for better
performance. Therefore, we want a variant of the por function that is sequential but can take
advantage of parallelism when it is available. Chapter 4 describes how partial determinism

can be used to define an approximation to por that achieves the above goals.
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2.4 Equational Reasoning

Equational reasoning is a method of program transformation that uses the algebraic prop-
erties of functional programs. Verifying a program using equational reasoning is done by
transforming the program to its specification (or vice versa).

Equational reasoning is particularly suited to functional programs because the lack of
side effects results in many simple algebraic properties. One simple but important property

is the equivalence of identical expressions. That is, for any expression x,
X =X.

Note that this property does not hold in languages with side-effects (in C, for example, it

is not true that i++ == i++). A slightly more complex example is the following property
(map £) . (map g) =map (f . g) (2.1)

where . is an infix function denoting function composition. This property says that applying
g to each element of a list followed by applying f to each element of the result is the same
as applying £ . g to the list.

Bird and Wadler [7] contains many examples of such algebraic properties and their ap-
plication. Bird and Hughes [6] describe a particular relevant example. They use equational
reasoning to derive a sequential alpha-beta program from its specification. However, the
final program is not surprising and can be viewed as a straightforward translation of an
imperative alpha-beta program.

The addition of non-deterministic operators seriously hampers equational reasoning.

The equivalence of identical expressions is no longer valid. For example,
amb 1 2# amb 1 2

because the left-hand side may evaluate to 1 and the right-hand side may evaluate to 2.
Setsoft and Sgndergaard [58] examine non-determinism in functional languages in more
detail. They define a simple non-deterministic functional language and describe twelve
different semantics. Equational reasoning is difficult, using each of the twelve different
semantics, because the language either supports unfolding or has simple algebraic properties
but not both. Unfolding replaces a function application with the function’s body (with
a suitable substitution of the arguments for the parameters) and is a key technique in

equational reasoning.
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Our approach is to reason with deterministic approximations to non-deterministic pro-
grams. Approzimate reasoning extends equational reasoning to include reasoning with ap-
proximations of the form e1 C e2. There are several factors that contribute to approximate
reasoning. The approximates relation is similar to equality in that it is reflexive and tran-
sitive. Secondly, if £ is any computable function, and el C e2 then f el C f o2 follows
from the monotonicity of £.

Unlike equality, the approximates relation el C e2 permits the expression e2 to contain
more information that the expression e1. For example, if s is a specification and p is a
program then showing that s C p is usually sufficient for correctness since it guarantees
that results from p will be at least as informative as results required by s. In other words,

we are usually willing to accept programs that meet or exceed their specification.



Chapter 3
Improving Intervals

This chapter describes the improving intervals abstract data type. Improving intervals
are an explicit representation of a sequence of converging intervals. The data type defines
minimum and maximum functions that are useful for writing functional search programs in
which all pruning occurs within the data type.

Improving intervals are an extension of Burton’s improving values [14] and the chapter
starts with a review of improving values as an introduction to the basic concepts. The
improving values data type encapsulates operations on lower bounds while the improving
intervals data type handles both lower and upper bounds.

Section 3.3 describes a specification for improving intervals that uses non-sequential
functions. However, we do not want to enforce non-sequential behaviour for the reasons
described in section 2.3. Therefore, we weaken the specification to allow sequential im-
plementations. An implementation for improving intervals is given in section 3.4. The
implementation relies on lazy evaluation and uses lazy lists to represent the sequence of
converging intervals. Approximate reasoning is used to prove that the implementationis
correct with respect to the specification.

Sections 3.5 and 3.6 include two examples of search programs that use improving inter-
vals: a best-first branch-and-bound program and an alpha-beta program. For each program,
we give a specification and use approximate reasoning to show that the program meets its
specification.

Improving intervals help to simplify the coding and verification of a search program but it

can be difficult to understand the program’s behaviour. Section 3.5.1 includes a comparison
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abstype impvalue *
with
iv_exact :: * -> impvalue *
iv_1b :: * -> impvalue * -> impvalue *
iv_value :: impvalue * -> *

>
>
>
>
>
> iv.min :: impvalue * -> impvalue * -> impvalue ¥

Figure 3.1: The Signature of the Improving Values Abstract Data Type

between the behaviour of a functional branch-and-bound program and imperative braneh-
and-bound.

Section 3.7 describes how speculative parallelism can be used to execute the functional
branch-and-bound program in parallel. The addition of spec annotations yields parallel
programs but without some care the behaviour of the parallel programs can be unexpeetedly

poor.

3.1 Introduction to Improving Values

Improving values were conceived by Burton [14] as a way of expressing parallel search
programs in a functional language. Consider the execution of a branchk-and-bound program
on some problem instance (X, f). As the search tree is explored, we obtain better-and-
better bounds on f*{ X} (the cost of an optimal solution). Such a sequence of hounds can
be explicitly represented by a lazy list. For example, the list [3, 5, 10] might be generated
by a program that first found that 3 < f~(X'), then found the better bound 5 < f*(X ), and
finally found that f*(X} = 10. Improving values encapsulate operations on lists of lower
bounds.

Figure 3.1 shows the signature of the improving value abstract data type. The following

describes some of the intuition behind the operations on improving values.

iv_exact a is an improving value whose value is exactly a. For example, iv_exact 10 is

represented by the list [10].

iv_1b a x is an improving value with an initial lower bound of a and whose subsequent
value is defined by x. The improving value iv_1b 3 [5,10] is represented by the list

[3,5,10]. The function iv_1b is non-strict in its second argument so that iv_1b 3 L
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is the list 3: 1.

iv_value x is the exact value in the improving value x. For example. iv_value [3,5,10]

is 10. This is defined only for improving values having a finite total representation.

iv_min x y returns an improving value that represents the minimum of the improving
values x and y. The function iv_min may return a result without examining all the

bounds in its arguments: iv_min {3] (5:L) may return {3] without examining 1.

Throughout this dissertation. the variables a, b, c, etc. are used for values while x. y. z. are

used for improving values {or improving intervals).

3.2 Introduction to Improving Intervals

The improving intervals abstract data type extends improving values to handle both upper
and lower bounds. An improving interval represents a value by a sequence of successively

tighter intervals that bound the value. For example. the sequence of intervals,

3.xl {3.10}. [5.10]. [7.7]

B P

=~1

represents the value 7. We trv to avoid some confusion between the notation [a.b] for the
inclusive interval of values from a to b and the notation [a,b]. for a list with two elements
by tvpesetting the interval notation in a math font while a typewriter font is used for the list
notation. As with improving values. the sequence of intervals can be explicitly represented
by a lazy list.

Section 3.3 defines a specification for the functions on improving intervals but we give
a informal description below. The functions on improving intervals are similar to those on

improving values but there are also some additional functions on improving intervals:

ii_ub a x is an improving interval whose initial upper bound is a and whose subsequent
value is defined by x.

ii_max x y is an improving interval that is the maximum of the improving intervals x and
y-

The signature of improving intervals is shown in figure 3.2 and is similar to the signature

for improving values with the addition of the two new functions.
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> abstype impint *

> with

> ii_exact :: * -> impint =*

> ii_value :: impint * -> =*

> ii_1b :: * => impint * -> impint =*

> ii_ub :: * -> impint * -> impint *

> ii_min :: impint * -> impint * -> impint *
> ii_max :: impint * -> impint * -> impint *

Figure 3.2: The Signature of the Improving Intervals Abstract Data Type

The functions ii_exact. ii_1b. and ii_ub are used to construct improving intervals.

For example.
1. ii_exact 7 is denotes a sequence with the single interval [7. 7).
2. ii_1b 5 (ii_ub 10 (ii_exact 7)) denotes the sequence [5.x].[5.10}.[7.7].

The functions ii_min and ii_max return an improving interval that is the minimum or

maximum of its arguments.

3.3 Specification of Improving Intervals

A natural approach to specifving improving intervals is to equate their operations to func-
tions on intervals. However. this is difficult because the natural functions on intervals
are non-sequential. Instead. the specification is given using approximations. The approx-
imations constrain the operations on improving intervals with respect to minimam and
maximum functions on values. We call this an approzimate semantics.

The section is organized as follows. We start with a more precise definition of intervals,
the approximates relation Tz on intervals. and the minimum and maximum functions on in-
tervals. We then give the specification of improving intervals using approximations. Finally
we derive some additional properties about improving intervals from the specification.

The domain of intervals is constructed from a flat domain V with a linear ordering <.
We assume that < is strict and monotonic. For any subset S of non-bottom elements of
V. let MIN{S) be the greatest lower bound on 5 with respect to < and let MAX(S5) be

the least upper bound on § with respect to <. For reasons described later, we extend V' to
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include the MIN(S) and MAX(S) of any subset of non-bottom elements of V. That is,
VP =VU{MIN(S)| SCV -{L}}JU{MAX(S)| SCV —-{1l}}

Let —0o = MIN(V — {1}) and oo = MAX(V — {1}). The ordering < extends to V*
in the obvious way. For example, that rational numbers @ would be extended as Q* =
R U {—o00,00}. We call V* the set of values.

The domain 7 of intervals is the set
{[a,b] |a,b € V™ — {1} and a < b},

partially ordered by
[¢,b]Cr1 [c,d] iff a < cand b>d.

Hence, for intervals 7; and i5, we can read i) C71 i3 as iy is tighter or equal to ¢;. The least
element of 7 is 17 = [—00,00]. The maximum and minimum functions on intervals are

defined point-wise:

ming([a,b],[c,d]) = [min(a,c), min(b,d)]
mazr([a,b],[c,d]) = [max(a,c), max(b,d)]

where min and max are minimum and maximum functions on values with respect to <. The
functions miny and mazz; are monotonic because max and min are monotonic. That is, if
i1 C7 ) and i3 C7 & then mazr(i),i2) C7 mazr(il, 15).

If we used V rather than V™ in the definition of 7 then some chains in 7 would not have

a least upper bound. For example, if we let V be the rational numbers @ then the least
upper bound of the chain of intervals

i1 .
{[1+25,3 §j=1,2,...
=1

is the interval [e, 3] (where e = 2.71828) but [e, 3] ¢ Z because e is not in Q. With any data

type having a fixed size representation, and hence only a finite number of values, V and V*

are equivalent.
A natural specification for improving intervals defines a function that maps the opera-

tions on improving intervals to functions on intervals. For example, the following equations
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partially define such a function called a.

.
a(ii-exact a) = [a’a], it a #

’ 1, otherwise
o(iimax x y) = mazr(a(x),afy))

mazr(a(ii_exact a),a(y)), ifa# L

a(ii_1b a y)
17, otherwise
The function ii_1b is specified using mazy because for any lower bound [ on a value x it
follows that max(/,z) = z.
An implementation of improving intervals would be correct if it satisfied the above
equations. However mazy is a non-sequential function (in the sense defined in section 2.3).
For example, because

mazr([3,3], L1) = [3,00]

and

mazr(Lr,[3,3]) = 3, 00],

an implementation of mazr must fairly evaluate both its arguments in order to avoid a possi-
ble non-terminating computation. Any implementation of ii_max in a traditional functional
language must be sequential and can not satisfy the above specification.

Two possible remedies are to extend the functional Janguage so that non-sequential
functions are implementable or to weaken the abstract model (intervals plus ming and mazr)
so that they corresponds to sequential functions. Both these approaches have problems.
Extending the functional language introduces the problems with non-sequential functions
mentioned in section 2.3. On the other hand, miny and mazr are simple and natural
functions on intervals®.

Our approach is to avoid the above dilemma: We weaken the specification by replacing

the equations with approximations.

3.3.1 Approximate Semantics for Improving Intervals

The approximate semantics for improving intervals re-writes the previous equations using

approximation relations. For example,

a(ii_max x y) Cr mazz(a(z),ay))

Y mazr and mint are associative, commutative and have absorption and distributive properties.
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.. _ la,a], ifa# L
a(ii_exact a) = { 17, otherwise (3.1)
ii_value L7 = L (3.2)
a(ii_exact (ii_value x)) C7r oa(x) (3.3)
ii_value (ii_exact a) = a (3.4)
a(ii_max x y) Lz mazr(a(z), a(y)) (3.5)
afii_min x y) L7  ming(a(z), a(y)) (3.6)
.. _ mazr(a(ii_exact a),a(y)), ifa# L
a(ii.lbay) = { 17, otherwise (37)
.. _ minz(a(ii_exact a),a(y)), ifa# L
a(ii_ub a Y) - { 17, otherwise (3.8)
max2 (ii_value x)(ii_value y) C ii_value (ii_max x y) (3.9)
min2 (ii_value x)(ii_value y) LC ii_value (ii_min x y) (3.10)
max2 a (ii_value x) [C ii_value (ii_lb a x) (3.11)
min2 a (ii_value x) LC ii_value (ii_ub a x) (3.12)

Figure 3.3: Collected Specification For Improving Intervals

This approximation is not strong enough by itself because it is satisfied by an implementation
for ii_max that always returns L7. The specification can be strengthened by giving an

approximation that relates ii_max to the strict maximum functions. That is,
max2 (ii_value x)(ii_value y) [ ii_value (ii_max x y)

where max2 is the strict maximum functions on values. The above approximation constrains
the ii_max of two improving intervals to be at least as informative as applying max2 to the
values represented by the improving intervals. The use of C allows ii_max to be less strict
than max2 so that ii_max can do pruning where max2 does not.

Figure 3.3 contains the collected specification for improving intervals. The functions
ii_value and ii_exact convert values to and from improving intervals so their composition
is related to the identity function, as specified by approximations 3.3 and 3.4. Section 3.4

describes an implementation that meets the above specification.
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3.3.2 Additional Properties for Improving Intervals

The rest of this section describes some additional properties about improving intervals that
follow from the specification in the previous section.

Adding a lower bound to an improving interval does not change its value.
Lemma 3.13 If a < ii_value x then ii_value x T ii_value (ii_lb a x)

Proof

ii_value x = max2 a (ii_value x) {since a < ii_value x}

C ii_value (ii_1b a x) {by eqn 3.11}

O

Similarly, adding an upper bound does not change the value of an improving interval.
Lemma 3.14 If a > ii_value x then ii_value x T ii_value (ii_ub a x)

The proof is similar to that for lemma 3.13.

Approximations 3.9 and 3.10 can be extended to lists of improving intervals.
Lemma 3.15 If xs is a-non-empty list then
max (map ii_value xs) C ii_value (foldll ii_max xs)
Proof
Since max (x:xs) = foldl max2 x xs, we prove that
foldl max2 (ii_vaiue x)(map ii_value xs) C ii_value (foldl ii_max x xs)

by induction on xs.

Case xs=[]. Then both the left-hand side and right-hand side are ii_value x by the

definition of foldl.

Case xs=x1:xs’.
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f0ldl max2 (ii_value x)(map ii_value (x1:xs’))
= foldl max2 (max2 (ii_value x)(ii_value x1)) (map ii_value xs’)

{defn of foldl)}

C foldl max2 (ii_value (ii_max x x1)) (map ii_value xs’)

{by eqn 3.9}
C ii_value (foldl ii_max (ii_max x x1) xs’) {induction}
C ii_value (foldl ii_max x (xi:xs’)) {defn of foldl}

(]

Lemma 3.16 If xs is a non-empty list then

min (map ii_value xs) LC ii_value (foldll ii_min xs)

The proof is similar to that for lemma 3.15.

Results similar to lemmas 3.15 and 3.16 that use foldri instead of foldl1 also hold.

The proofs are straightforward.

3.4 Implementation of Improving Intervals

This section describes an implementation that represents an improving interval by a lazy list
of bounds. Each bound is a tuple consisting of the lower bound and the upper bound. The
implementation emphasizes clarity and simplicity. Appendix A describes how to transform
the implementation into a more efficient version (though the improvement in efficiency is
a constant factor). We describe some preliminary experiments on the performance of this
approach in appendix B.

First, we define a type to represent values. The main purpose in defining this type is to
provide two identifiers that explicitly represent —oo and co. The type values * is defined
in figure 3.4. The identifiers Neginf and Inf represent —oc and co. We assume that <,
=, > are functions of type * -> * -> bool that correspond to the linear order on values?.
The functions v_1t, v_leq, v_gt, etc. extend this ordering to the type value *. If f is a
function then $f is Miranda’s notation for the infix operator that corresponds to £. The
functions v_max and v_min take two values and return the maximum or minimum based

on the above ordering.

?Miranda automatically defines <, =, and > for all non-function types.
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> value * ::= Neginf | V * | Inf
> v_leq Neginf y = True

> v_leq (V a) Neginf = False

> v_leq (V a) (Vb) = (a<=b)

> v_leq (V a) Inf = True

> v.leq Inf Inf = True

> v_leq Inf x = False

>a$v_.lt b =a $v_leq b & a"=b
> a $v_geq b =b $v_leq a

>a$v.gtb="> $v_1lt a
>vmax x y =y, if x $v_leq y
> = X, otherwise
>v.omin x y = x, if x $v_leq y
> = y, otherwise

Figure 3.4: Implementation of Values

A bound is a tuple consisting of the lower bound and the upper bound. Figure 3.5 gives
the code that defines a type bnd * for bounds and some useful functions on bounds. Fach
component of a bound has the type value * so that (V a,Inf) is a bound that represents
the interval [a,00]. We say a bound (1,u) is valid iff 1 < u. Hence, neither component of
a valid bound can be L.

The functions 1b and ub take a bound and return the lower bound and upper bound,
respectively. The constant b_bot is the least informative bound. The functions b_isExact
and b_nonExact check if a bound represents an interval with a single value. The function
b_tighter_or_eq returns True if its first argument is a bound that is tighter or equal 1o
its second argument. Finally, b_min and b_max are the minimum and maximum functions
on bounds. There is an obvious correspondence between bounds and intervals. The key
difference is that b_min and b_max are strict in both arguments while mazz and ming are
non-strict.

An improving interval is represented by an infinite list of bounds where the bounds are

monotonically tighter (or equal). The bounds in the list are constant once an exact bound
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> bnd * == (value *, wvalue *)

>ub (1,u) = u
>1b (1,u) =1

> b_bot = (Neginf, Inf)
> b_isExact b = (1b b = ub b)

> b_nonExact b = ~ (b_isExact b)

> b_tighter_or_eq bl b2 = (1b b1) $v_geq (1b b2) &
(ub b1) $v_leq (ub b2)

> b_min b1 b2 = (v_min (1b b1) (1b b2), v_min (ub b1) (ub b2))
> b_.max b1l b2 = (v_max (1b b1) (1b b2), v_max (ub b1l) (ub b2))

Figure 3.5: Implementation of Bounds

is found. For example, the list
(V 1,Inf):(V 1,V 10):(V 3,V 5):(V 3,V 3):(V 3,V 3):...
represents the sequence of intervals
[1,00], [1,10], [3,5], [3,3]

Not all lists are valid representations. In particular, a finite list is not valid. The function

valid, defined below, defines the valid representations more precisely.

valid(L) = True

Il

valid(b: 1) (1b b) $v_leq (ub b)

velid(b1:02:x)

(1b b1) $v_leq (ub b1) and
b2 $b_tighter_or_eq b1l and
valid(b2:x)

valid([1) = False

valid([b]l) = False

An infinite list is valid if it is the least upper bound of a chain of valid partial lists. Note

that the function valid is not computable.
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> impint * == [bnd *]

> ii_exact a = seq (force a) (cycle [(V a,V a)])
> cycle xs = xs’ where xs’ = xs ++ xs’

(v_out (1b b)), if b_isExact b
ii_value x, otherwise
> where v_out (V a) = a

> ii_value (b:x)

\'%4
fl

Figure 3.6: Implementation of ii_exact and ii_value

If at some point an improving interval is represented by the list (b:bs) then we call b
the current bound and the bounds in bs the subsequent bounds. The restriction to infinite
lists is not crucial but does simplify some of the code and some of the proofs.

Figure 3.6 gives the code that defines a type, impint *, to represent improving intervals
and the functions ii_exact and ii_value. Evaluating ii_exact a produces an infinite list
where each element is (V a,V a). It uses the function cycle that takes a (finite) list, and
turns it into an infinite one. The expression seq (force a) x is a Miranda idiomn that fully
evaluates a before returning x. It is used to make ii_exact strict and to ensure that its
argument is either L or fully defined. This helps to ensure that the argument to ii_exact
comes from a flat domain.

The function ii_value returns the value represented by an exact bound in the list if it
exists. If a list x does not contain an exact bound (for example, when the list is partial)
then the evaluation of ii_value x does not terminate.

The implementation of ii_max and ii_min is based on “zipping” the arguments into a
list of tuples and then mapping b_max or b_min on this list. The complete code for ii_max
and ii_min is shown in figure 3.7. It uses a more general version of the zipwith function

called zipwithord. The normal zipwith function behaves as follows:
zipwith £ [x1,x2, ...J0lyl,y2, ...1=1[f xt y1, £ x2 y2, ...]

If one of the list arguments is longer, excess elements are discarded from it. The zipwithord
function has an extra parameter, called a reducing function, that controls how the lists are

combined. For example, the normal zipwith could be defined as follows.

> zipwith f x y = zipwithord tails f x y
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> where tails (x:xs) (y:ys) = (xs, ys)

The reducing function takes two lists and returns a pairs of lists. A reducing function must
discard a non-exact bound from, at least, one of its arguments. Thus if red is a reducing

function then red x y returns either:

1. (x,y)
2. (t1 x,y)
3. (x,t1 y)

4. (t1 x,tl y)

If red (bx:x) (by:y) = (x’,y’), then we say that red discards the bound bx if x” = x
(similarly for by and y). Some further restrictions on reducing functions are described in
section 3.4.2. These are necessary to ensure that the implementation is correct.

The implementation of zipwithord is shown in figure 3.7. The second equation of
zipwithord handles finite lists. It is not required for implementing improving intervals but
it is include to strengthen the analogy with the standard zipwith function.

The function ii_min uses the reducing function 1b_red such that 1b_red x y discards
a bound from the argument that has the smaller current lower bound (assuming that neither

is an exact bound). For example,
lb_red ((V 5,V 10):x) ((V 3, V 7):y) = ((V 5,V 10):x, y)

because the lower bound of 3 in the second argument is less than the lower bound of 5 in
the first argument. The iterative application of 1b_red, as is done by zipwithord (defined
in figure 3.7), causes further evaluation of the list with the smaller lower bound. This is
how ii_min corresponds to the best-first search strategy. The function ii_max is similar
but uses a reducing function based on the largest upper bound.

Versions of ii_max and ii_min that correspond to different search strategies can be
implemented by using a different reducing function. For example, section 3.4.1 defines
versions of ii_max and ii_min that correspond to the depth-first strategy.

The functions ii_1b and ii_ub are implemented using ii_max and ii_min, just asin the

specification. The code for ii_1b and ii_ub is included in figure 3.7. The implementation of
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> ii_max x y = zipwithord ub_red b_max x y

> ub_red (bx:x) (by:y)

> = (bx:x,by:y), if b_isExact bx & b_isExact by
> = (bx:x, y), if b_isExact bx & b_nonExact by
> = (z, by:y), if b_nonExact bx & b_isExact by
> = (x, by:y), if ubx $v_gt uby

> = (x, ¥), if ubx = uby

> = (bx:x, y), if ubx $v_1t uby

> where ubx = ub bx

> uby = ub by

> ii_min x y = zipwithord 1lb_red b_min x y

> 1b_red (bx:x) (by:y)

> = (bx:x,by:y), if b_isExact bx & b_isExact by
> = (bx:x, y), if b_isExact bx & b_nonExact by
> = (x, by:y), if b_nonExact bx & b_isExact by
> = (x, by:y), if 1bx $v_1t 1by

> = (x,¥), if 1bx = 1by

> = (bx:x,y), if 1bx $v_gt lby

> where 1bx = 1b bx

> 1by = 1b by

> ii_1b a x = ii_max (ii_exact a) (b._bot:x)

> ji_ub a x = ii_min (ii_exact a) (b_bot:x)

> zipwithord red f (bx:x) (by:y)

> = f bx by : zipwithord red f x’ y’

> where (x’,y’) = red (bx:x)(by:y)

> zipwithord red f x y = []

Figure 3.7: Implementation of ii_max and ii_min
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> ii_df max x y = zipwithord df_red b_max x (b_bot:y)
> ii_df _min x y = zipwithord df_red b_min x (b_bot:y)

> df _red (bx:x) (by:y)

> = ((bx:x),(by:y)), if b_isExact bx & b_isExact by
> = {x, (by:y)), if b_nonExact bx

> = ((bx:x),y), otherwise

Figure 3.8: Implementation of ii_df_max and ii_df_min.

ii_1b a x applies ii_max to b_bot:x instead of just x so that ii_1b is non-strict in its sec-
ond argument. For example, evaluating ii_1b 3 L returns the partial list (V 3, Inf):.l.
If the bound (V 3,Inf) is sufficient then further evaluation of x is not required, otherwise
x is evaluated to find subsequent bounds.

The functions ii_max and ii_min are strict in both arguments but can produce an exact

value without fully evaluating their arguments. For example, evaluating the expression
ii_min (ii_exact 5) (ii_ub 3 1)
produces the list
(v 5,V 5):zipwithord lb_red b_min (ii_exact 5) ((Neginf,V 3):.L1)

without evaluating L. This is how pruning occurs in search programs that use improving

intervals.

3.4.1 A Depth-first Version of ii_min and ii_max.

Section 3.5 defines a best-first branch-and-bound program that uses the functions ii_min
and ii_max. In this section, we define two new functions on improving intervals that are
useful in depth-first search programs. Section 3.6 describes an alpha-beta program that uses
these new functions.

The new functions are called ii_df_max and ii_df_min. They have the same type and
specification as ii_max and ii_min. An implementation for ii_df_max and ii_df_min is
shown in figure 3.8. The implementation of ii_df max uses zipwithord with the reducing
function df_red. This reducing function discards bounds from its first argument until

an exact bound is found and then it starts discarding bounds from its second argument.
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Therefore, ii_df_max completely evaluates its first argument before cvalunating its second
argument.

The functions 1i_df_max and ii_df_min should be non-strict in their secoud arguments,
However, the function zipwithord is strict in both arguments. We make ii_df_max and

ii_df_min non-strict by applying zipwithord to b_bot:y instead of just y.

3.4.2 Correctness of the Implementation

This section proves that the above implementation is correct by showing that it satisfics
the specification given in figure 3.3. The proof is done in three steps. First, we show that
the implementation preserves valid representations of improving intervals. Then we define
the function a that maps a representation to an abstract interval. Finally, we show that
the approximations in figure 3.3 hold. Throughout the section, we give the proofs only for
ii_1b and ii_max. The proofs for ii_ub and ii_min are analogous.

The function ii_max is implemented using zipwithord with the reduciug hunction
ub_red. Our approach is to prove some general results about zipwithord with any re-
ducing function. The results for ii_max are just special cases of these more general results.
This approach makes it easy to verify variants of ii_max (for example ii_df_max) that use
a different reducing function. Qur intention is that a reducing function must progress (by
returning the tail of one of its arguments) until both arguments are exact. Let red be a
function from two lists of bounds to a pair of lists of bounds. Given two lists of bounds x

and y, we say that the function red discards the bound b from x if
b="hd x and fst (red x y) =tl1 x
Similarily, red discards the bound b from y if
b=hd y and snd (red x y) =tl y

The function red is a reducing function iff for any lists of bounds x and y: I the current
bound on either x or y is non-exact then there exists a non-exact bound b such that red
discards b from x or red discards b from y. In other words, applying a reducing function
discards a mon-exact bound from one of its arguments, unless the current hound on bhoth
arguments is exact. The functions ub_red, 1b_red, and df__red are obviously reducing

functions.
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Proving Valid Representations

We show that the implemeniation preserves valid representations by showing that ii_exact.

valid

o)

ii_1b and ii_max each produce z valid representation when their arguments ar

Lemma 3.17 validiii_exact a:

Proof
Ifais L then the use of seq and force causes ii_exact a toevaluate to L and L is a valid

representation. therwizse. 1i_exact a svaluates cycle ,V a)] which is also a
p tat Oth Inates to cycle [(V 2,V a)] which Isc

Lemma 3.18 If red is a reducing function and x and y are valid representations then

Proof

We prove the lemma by structural induction on x and y.

The base case is when x = . or y = _ in which case the zipwithord application

id (x?,y") = red x y. Both x? and y? are valid

vraglid{zipuithord red b_max x y!

x

= velid{b_max bx by:zipwithord red b_max x’ y’}j {by zipwithord.l}

The bound b_max bx by is valid because bx and by are valid bounds.

Let e = zipwithord red b_max x’ y’. The expression e is valid by induction zo either:
I. e = & and b_max bx by: > is valid.

2. e = b_max {hd x’) (kd y’):e’ where e’ is a valid representation. But hd x’ is

tighter or equal tobx and hd y’ is tighter or equal to by because x and y are valid rep-

resentations. 1herefore. b_max (hd x’)(hd y’) is tighter or equal to b_max bx by.

Hence, b_max bx by:e is a valid representation.
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Lemma 3.19 If x and y are valid representations then velid{ii_max x y).
Proof

Follows directly from lemma 3.1%.

Lemma 3.20 [f x is a valid represeniation then valid(ii_1b a x}.
Proof

d.

Ifa=_+then 1i_1b a x is L which is vali
_bot:x are valid representations. Therefore. the
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(ii_exact a) (b_bot:x)

Defining the o Function

The o function for improving intervals is easily defined using an auxiliary function ay that

maps a valid bound {bnd #*} to an interval (7).

a{l) = [-x.x

a;{(Neginf,Inf)) = [-x.x!
aii (Reginf,V a)) = [-x.a

a:{(V a,V b)) = la.b

a;{(V a,Inf); = |a.x]

The implementation never constructs the bounds (Neginf,Neginf) or (Inf,Inf) so these

ase have been omitted from the definition of a;. If bl and b2 are valid bounds then the

following equations hold.

ayib_max bl b2} = marriaiiblj ab2)) (3.21)

a:(b_min b1 b2; = ming(ay{bl). a(b2)) (3.22)
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Now, the function & maps valid representations of improving intervals as follows:
a(l) = [—o0,0] (3.23)

a(b:x) = ap(b)Ur a(x) (3.24)

For an infinite representation x, the value of a(x) is defined to be the least upper bound of
the chain of partial lists that approximate x. Note that Uz is interval intersection and L
is the universal interval.

The following corollaries holds from the definition of Uz .

Corollary 3.25 If x is a valid representation of an improving interval and x’ is any suffix

of x then a(x’) Cr a(x).
Corollary 3.26 If b:x is a valid representation of an improving interval then

ap(b) E1 a(b:x).

The following corollary holds for a representation b:x because if the bound b is exact then

all subsequent bounds in x are equal to b. Otherwise, the implementation of ii_value

discards b.

Corollary 3.27 If b:x is a valid representation of an improving interval then

ii_value (b:x) = ii_value (x)

Proving the Approximations

We now show that all the equations and approximations in figure 3.3 are satisfied by the

implementation.

Lemma 3.28 The implementation of ii_exact satisfies equation 3.1. That is,

a,a|l, ifa# L
afii_exact a) = L2, a] # ]
: ' 17, otherwise
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Proof

If a = 1 then the use of seq and force causes ii_exact a to evaluate to L. Otherwise,

ii_exact a evaluates to cycle [(V a,V a)] and
a((V a,va):(Va,va):..) = [aqa]
|
Lemma 3.29 The implementation of ii_value satisfies equation 3.2. That is,
ii_value l7 = 1
Proof

The implementation of ii_value x is strict because it matches its argument with the pat-

tern (b:x).

O

Lemma 3.36 The implementation of ii_value and ii_exact satisfy approximation 3.3.

That is,
o(ii_exact (ii_value x)) L7 a(x)
Proof

Case x = l7. The left-hand side is L7 so the approximation holds.

Case x = (b:x’) and b is an exact bound.

Then ii_exact (ii_value (b:x’)) evaluates to cycle [b]. And
a(cycle [b]) = a(b:x’)
because all the subsequent bounds in x’ must be equal to b.

Case x = (b:x’) and b is not an exact bound.

Then ii_value (b:x’) evaluates to ii_value x’ and the result holds by induction.
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Lemma 3.31 The implementation of ii_value and ii_exact satisfy the equation 3.4.

That is,
ii_value (ii_exact a) = a
Proof =

If x = L then both sides of the equation are L. Otherwise,

ii_value (ii_exact a)
= ii_value ((V a,V a):(V a,V a):...) {by ii_exact.1}
= a {by ii_value.l}

O

Lemma 3.32 If red is a reducing function and x and y are improving intervals then
a(zipwithord red b_max x y)C7 mazr(a(x),a(y))

Proof

We prove the approximation by induction on the structure of x and y.
The base case is when x or y is L in which case the left-hand side is L7 and so the

approximation is trivially true.
Otherwise, let bx = hd x and by = hd y and (x’,y’) = red x y. The following
approximations hold by corollaries 3.26 and 3.25.

ap(bx) E1 a(x), ap(by) E1 afy)
a(x’) Er a(x), a(y’) Ez ofy)

Now consider the left-hand side of the approximation.

ofzipwithord red b_max x y))
= o(b_max bx by:zipwithord red b_max x’ y’) {by zipwithord.1}

= ap(b_max bx by)Us a(zipwithord red b_max x’ y’) {by defn of a}
The result holds because both arguments to L7 approximate mazr(a(x),a(y)). First,

oap(b_max bx by) L7 mazr(ap(bx),a(by)) {by equation 3.21}
Cr  mazr(a(x),a(y)) {by monotonicity of mazr}
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Also,
a(zipwithord red b_max x’ y°)
Cr  mazr(a(x’),a(y’)) {by induction}
Cr  mazr(a(x),a(y)) {by monotonicity of maay}

O
Lemma 3.33 The implementation of ii_max satisfies approximation 3.5.
Proof

Follows directly from lemma 3.32 because ii_max x y = zipwithord ub_red b_max x y.

O
Lemma 3.34 The impiementation of 1i_1b satisfies approximation 3.7.
Proof

If ais L then ii_1b a xis Ll7.

Otherwise,
ii_1b a x
= ii_max (ii_exact a) (b_bot:x) {by 1i_1b.1}
Cr  mazz([a,a}, a(b_bot :x)) {by lemma 3.33}
= mazz([a,a}, ofx)) {because a(x) = a(b_bot:x))}

O

Lemma 3.35 If red is a reducing function and x and y are improving intervals then
max2 (ii_value x)(ii_value y) C ii_value (zipwithord red b_max x y)

Proof

If x or y does not contain an exact bound then the left-hand side is L and the approximation
trivially holds.
Otherwise, both x and y must contain an exact bound and there are a finite number of

bounds before the exact bound. We prove this case by induction on the number of non-exact
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bounds in x and y. Applying the reducing function to x and y must decrease the number
of non-exact bounds.

Assume (wlog) that

ii_value x > ii_value y

and so the left-hand side of the approximation is ii_value x. Using the zipwithord.l, the

right-hand side evaluates to
ii_value (b_max bx by:zipwithord red b_max x’ y’)

where hd x = bx, hd y = by, and red x y = (x’,y’). Let b = b_max bx by.

The inequality, 1b b < ii_value x, holds because ii_value y < ii_value x. Also,
ii_value x < ub b holds because ii_value x < ub bx.

The base case occurs when both bx and by are exact bounds and then b must be an exact
bound. If b is an exact bound then 1b b = ub b and therefore 1b b = ii_value x = ub b.

When bx is a non-exact bound or by is a non-exact bound then b can either be an exact
bound (and the above argument applies) or a non-exact bound. Hence, induction is used
when either bx is a non-exact bound or by is a non-exact bound and b is a non-exact bound.

In this case, the right-hand side further evaluates to
ii_value (zipwithord red b_max x’ y’)

where a non-exact bound has been discarded from either x or y to obtain x’ and y’.

Therefore, by induction,

max2 (ii_value x’)(ii_value y’) C ii_value (zipwithord red b_max x’ y’)
but ii_value x’ = ii_value x and ii_value y’ = ii_value y so the left-hand side is
equal to

max2 (ii_value x)(ii_value y)
C ii_value (zipwithord red b_max x’ y’) {above}
= ii_value (b:zipwithord red b_max x’ y’) {by corollary 3.27}

= ii_value (zipwithord red b_max x y)

a

Lemma 3.36 The implementation of ii_mex satisfies approximation 3.9.
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Proof

Follows directly from lemma 3.35 because ii_max x y = zipwithord ub_red b_max x y.
O

Lemma 3.37 The implementation of ii_1b satisfies approximation 3.11.

Proof

max2 a (ii_value x)

max2 (ii_value (ii_exact a))(ii_value x) {by eqn 3.4}

Il

max2 (ii_value (ii_exact a))(ii_value (b_bot:x)) {by corollary 3.27}

ii_value (ii_max (ii_exact a)(b_bot:x)) {by lemma 3.36}

im m

ii_value (ii_1b a x) {by ii_1b.1}

O

Correctness of The Depth-first Versions

The functions ii_df_max and ii_df_min are depth-first versions of the functions ii_max
and ii_min. Section 3.4:1 described an implementation of ii_df_min and ii_df_max using
zipwithord with the reducing function df _red. The function df _red is a reducing function
so lemmas 3.18, 3.32, and 3.35 can be used to prove that the approximations that hold for

ii_max and ii_min also hold for ii_df_max and ii_df_min. That is,

a(ii_df_min x y) LTz ming(a(z),o(y)) (3.38)
a(ii_df_max x y) L7 mazz(a(z),ofy)) (3.39)
and
max2 (ii_value x)(ii_value y) LC ii_value (ii_df_max x y) (3.40)
min2 (ii_value x)(ii_value y) L ii_value (ii_df_min x y) (3.41)

The extension of approximations 3.40 and 3.41 to lists also holds.

Lemma 3.42 If xs is a non-empty list then

max (map ii_value xs) [ ii_value (foldll ii_df_max xs)
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(cost r, 1), if has_direct_solution r
min (map opt (children r)), otherwise

> optr

\4
[

Figure 3.9: A Specification for Branch-and-Bound

> bb r = 1i_value (bb’ r)

> bb’ r

> = ii_exact (cost r, r), if has_direct_solution r
> = (ii_1b 1 . ii_ub u) (exp r), otherwise

> where

> 1 = (1b r, 1l_node)

> u = (ub r, u_node)

> exp r = foldll ii_min (map bb’ (children r))

Figure 3.10: Best-first Branch-and-Bound Using Improving Intervals

Lemma 3.43 If xs is a non-empty list then

min (map ii_value xs) L ii_value (foldli ii_df_min xs)

3.5 Branch-and-Bound with Improving Intervals

A specification for branch-and-bound on minimization problems is shown in figure 3.9. It is
based on the function opt( X, f, b) defined in section 1.1 but maps a search tree node to a tuple
consisting of the cost an optimal solution and the optimal solution node. The specification
relies on ordering tuples as: (a,b)<(c,d) iff a<c or (a=c and b<d). It also assumes that
every leaf node is a solution node®. The specification is executable but executing opt r
generates the entire search tree.

The program in figure 3.10 has the same form as the definition of opt but uses impro'ving
intervals. The auxiliary function bb? r returns an improving interval that represents the
sequence of bounds obtained by exploring the sub-tree rooted at r. The function ii_value

is used at the root to extract the optimal cost and solution node.

*If a leaf node n is not a solution node then we can set cost r=o0.
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The local definitions 1 and u are the lower and upper bounds on the node r. We assume
that 1_node and u_node are two dummy nodes such that for any nodes r in the search
space,

1_node < r < u_node

This ensures that 1 < opt r < u.

When a node r does not have a direct solution then exp r is the result of expand-
ing r. The definition of exp r is similar to the second equation of opt but substitutes
foldl1l ii_min for min..

The theory of improving intervals requires that the values be elements from a flat domain.
In the above program, the values are tuples and tuples are not a flat domain. However, the
tuples are of the form (cost r,r) and such tuples are isomorphic to a flat domain provided
that r is always fully defined and cost r is defined when r is not bottom.

The properties in section 3.3 can be used to prove that bb meets the specification opt.

First, note that
ii_value (exp r) C ii_value ((ii_lb 1 . ii_ub u) (exp r)) (3.44)
follows from lemmas 3.13 and 3.14 because 1 < exp r < u.
Theorem 3.45 For any node r,opt r C bb r
Proof

K ris not a finite tree then opt ris L and the result trivially holds. Otherwise, r has finite
height and the proof is by induction on the height of r. There are two cases depending on

whether r has a direct solution.

Case If r has a direct solution.

bb r = ii_value (bb’ r) {by bb.1}
ii_value (ii_exact (cost r, r)) {by bb’.1}

(cost r, 1) {by equ 3.4)}

= optr {by opt.1}

Case Ifr does not have a direct solution then let kids = children n. Note that kids#[]

because every leaf node is a solution node.
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opt r = min (map opt kids) {by opt.2}
C min (map bb kids) {induction}
= min (map (ii_value . bb’) kids) {by bb.1}
= min (map ii_value (map bb’ kids)) {map law}
C  ii_value (foldll ii_min (map bb’ kids)) {by lemma 3.16}
= ii_value (exp r) {by exp.1}
C ii_value ((ii_lb 1 . ii_ub u) (exp r)) {by eqn 3.44}
= bbr {by bb.1}

O

The proof of correctness relies only on the specification of improving intervals and does
not rely on any details of the implementation. With the implementation in section 3.4, bb
strictly exceeds its specification (that is, opt [ bb) because there are infinite search trees

for which bb terminates but opt does not.

It also follows immediately that the obvious depth-first version of this algorithm, using

ii_df_min, is correct.

3.5.1 Operational Behaviour

The previous section proved that bb was correct in that it meets the specification opt. The
operational behaviour of bb may not be clear: When and how does pruning occur? How is
the least-cost node chosen without using a priority queue? What are the time and space
requirements of bb compared to imperative branch-and-bound?

The questions are addressed by looking at the behaviour of bb on a particular example.
A correspondence between the search tree and the functional program graph is used to show
that the execution of bb goes through a number of iterations where each iteration does the

following:

1. Finds the least-cost node.
2. Expands the least-cost node.

3. Propagates a bound to the root of the graph.

Each iteration corresponds to an iteration in the imperative branch-and-bound program.
However, we also show that the time taken for some steps within the iteration may be

greater than the time for the step in the imperative program.
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[k1,k2] = children r
exp r = ii_min (bb’> k1) (bb’ k2)

> bb r = ii_value (bb’ r)

> bb’ r

> = ii_exact (cost 1), if has_direct_solution r
> = 1i_1b (1b r) (exp r), otherwise

> where

>

>

Figure 3.11: Simplified Branch-and-Bound Using Improving Intervals

[(3,0),(5,0),(12,0),(13,00),(14,14)]
r

[(5,00), (13,0),(14,14)]
(12,0) :(18,0) : L

[(13,0), (14,14) (18,00) : L

(20,00) : L

1

[(16,16)]

Figure 3.12: Example Search Tree

To simplify the presentation, the slightly different version of bb shown in figure 3.11 is
used. The new version of bb differs from the previous one in that each non-solution node
must have exactly two children, only lower bounds are used, and just the cost of the optimal
solution is returned (rather than the cost plus solution node).

The behaviour of bb is demonstrated on the search tree shown in figure 3.12. The
lower bounds are shown within each node. The cost of a leaf node is the same as its lower
bound. The cptimal solution occurs at node ry with cost 14. With a best-first strategy,
the imperative branch-and-bound algorithm expands the nodes in the order: r, ry, 74, 71y

and the nodes 7,3, 751, and 1492 are pruned.
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Figure 3.13: Initial Program Graphs in Evaluation of bb

Consider the expression bb r where r is an expression corresponding to the root of the
search tree in figure 3.12. Figure 3.13 to 3.17 show the program graph during reduction of
bb r. Figure 3.13 shows the program graph after a few reductions. The oval encloses the
sub-graph that corresponds to node r. The expression at the top of the figure is the list of
bounds that have been computed so far (in figure 3.13 no bounds have been computed yet).
To further evaluate this graph the expression exp r must be evaluated and this evaluation
corresponds to expanding the node r. '

Figure 3.14 shows the result of reducing the expression exp r to weak-head normal
form. The graph now contains sub-graphs corresponding to the nodes r; and r. The
bound (5,00)4 on 7; has been computed and propagated up to node r. The current least-
cost node is r;. This iteration is finished when bound (5,00) propagates up through the
root of the graph and the result is shown in figure 3.15.

The next iteration then finds the least cost node by starting at the root and following
the path down the graph while avoiding any node represented by a list-cell. In figure 3.15,
for example, we follow the path from the root r to r; and avoid r, because it is represented
by a list-cell.

The normal order reduction strategy implicitly does this traversal because ii_min is
strict in both arguments. However, any argument that is a list-cell is in WHNF and therefore
it does not need to be evaluated further. This is how the functional program avoids the
explicit use of a priority queue. Essentially, each node records which child contains the open
node of least cost. Obviously, the time to traverse down the tree to the least-cost node is

proportional to the height of the tree.

*For readability, we show the bound as (5,00) rather than (V 5, Inf).
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(3,0):1

ii_value

(12,0} ii_max

/: Sxp r2

Figure 3.14: After Expanding Node r

(3,0} : (5,00} : 1

ii_value

{12,0) ii_max

AN

e eXp r2
QO

Figure 3.15: After Propagating (5,)
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{206,207}

Figure 3.16: After Expanding Node ry and Propagating (12, x)
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{18,w) ii_max
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Figure 3.17: After Expanding Node r; and Propagating (13,x)
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Figure 3.16 shows the program graph after expanding the node r;. This produces the
bound of (13,00) on r,. However, the bound of 12 on 7, is smaller and is propagated
through the root making r; the new least-cost node.

The third iteration expands r, then propagates the lower bound of 13 from r; through
the root. Figure 3.17 show the program graph after the third iteration. The final iteration
expands r;; and finds the exact bound (14,14) on r;;. The exact value propagates up to
the root, but since 14 is less than the lower bound of 18 at 75, the sub-tree rooted at ro
is pruned. The expressions associated with the pruned sub-tree become garbage and will
be reclaimed. Therefore, the exact bound on the root r is (14,14) and the application of
ii_value converts it to the value 14.

There are a couple of points about the time and space requirements worth emphasizing.
First, the number of iterations taken by bb and the imperative program are the same.
However, the time taken by each iteration of bb can be greater than an iteration in an
imperative branch-and-bound program. We assume that the time to compute the bounds
and generate the children is the same in each case but consider the time to find the least
cost node in a search tree whose height is currently A (h > 0) and whose branching factor
is b. Typically, the search tree grows exponentially with its height so b > 1. In this case,
the number of leaves is O(b") so the time to remove the least cost node from the priority
queue is O(h) — the same as in the bb program. However, it is possible that the priority
queue has less than Q(b") nodes and then the time to remove the least cost node would be
less than h.

Secondly, the lists used to represent improving intervals never grow long. After an
iteration, each non-least-cost open node has one element in its list representation while the
least-cost open nodes and closed nodes have no elements in their representation. Therefore,
the space used by bb should be of the same order as that used by an imperative branch-

and-bound program.

3.6 Alpha-Beta Using Improving Intervals

The alpha-beta algorithm is the key algorithm in many programs for two-player games. It
searches a game tree to find the best-move from the current position. Nodes in a game tree
represent positions and the childrez of a node are nodes that represent positions that result

from making a single move. The leaf nodes represent positions that end the game.
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> minmax r

> = (cost r, r), if has_direct_solution r
> max (map minmax (children r)), if my_turn r

> min (map minmax (children r)), otherwise

Figure 3.18: Specification of the Minimax Value of a Game Tree

The alpha-beta algorithm is based on the minimaxz value of a game tree. We assume a
game with two players, myself and an opponent. The minimax value of a game tree is the
value of the best position in the game tree and is defined recursively as: the value of a leaf
node, the maximum value of the children when it is my turn or the minimum value of the
children when it is the opponent’s turn.

The function minmax defined in figure 3.18 is an executable specification for the minimax
value of a game tree. It also serves as a specification for an alpha-beta program. We assume
some functions on game tree nodes that are similar to the functions used in our branch-and-

bound programs:

has_direct_solution r is true iff the game position represented by r is an obvious win

or loss.
cost r is the value of the game position r when has_direct_solution r is true.

children r is a list of nodes that represent the positions that result from making a single

move from r.

my_turn r is true when r is a position where it is my turn to move and is false when it is

the opponent’s turn to move.

In practise, the size of game trees makes it impractical to consider complete game trees.
Game trees are typically cutoff past some depth. We can implement this by defining
has_direct_solution r to be true if the depth of r is greater than some threshold and
then cost r is an estimate of the value of the game position represented by r.

A simple alpha-beta program is constructed from the definition of minmax by replacing
max with foldli ii_df_max and min with foldll ii_df_min. The resulting program is
shown in figure 3.19 The functions ii_df_min and ii_df_max are used because alpha-beta

uses a depth-first strategy to search the game tree.
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> abr = ii_value (ab’ r)

> ab’ r
> = ii_exact (cost r, r), if has_direct_solution r
> = foldll ii_df_max (map ab’ (children r)), if my_turn r

>

foldll ii_df_min (map ab’ (children r)), otherwise

Figure 3.19: Alpha-Beta Program using Improving Intervals

[ (20,00, (20,50}, (20,20)]

[(-®,20),(20,20)] {(-2,50), (5,50}, (15,15)1

30 40 50

Figure 3.20: Example Game Tree

At a leaf node the value of the node is returned as an improving interval by using
ii_exact and at the root the value of the game tree is converted from an improving interval
to a value by using ii_value. The handling of bounds and pruning is encapsulated in the
operations on improving intervals.

Figure 3.20 shows a game tree and the improving intervals that are computed at each
node. Nodes where it is my turn are drawn with a square box while nodes where it is the
opporent’s turn are drawn with a circle. The circled portions of the game tree are pruned
during the search. Node njy3 is pruned because the lower bound of 30 from node ny,; is
sufficient to determine that the value of node n, is exactly 20. Other nodes are pruned in

a similar manner.
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However, the program misses an opportunity for pruning the node labeled n33.9. The
reasoning that supports the pruning of this node is that we have a lower bound of 20 at the
root node; in order to get a better result at the root each of the nodes: ny, ns3; and N3
would have to be greater than 20; but we know nzp; must be less than 10 without examining
n3212; therefore nsz;2 can be pruned. This is known as a deep cutoff.

The program can be modified to handle deep cutoffs but this would complicate the
program. The simplicity of the program in figure 3.19 arises partially because searching a
sub-tree is independent of searching any of its siblings®. In order to handle deep cutoffs,
searching a sub-tree must be made dependent on the result of searching siblings to its left.
We prefer the simplicity of the program in figure 3.19 considering that deep cutoffs have not
been found to be a major factor in practise [5].

The program ab meets its specification, that is,
minmax C ab

because

max (map ii_value xs) C ii_value (foldll ii_df_max xs)

and

min (map ii_value xs) C ii_value (foldll ii_df_min xs)

This shows that ab is correct with respect to minmax but it does not show that ab does all the
pruning that is done by the standard alpha-beta algorithm. In fact, we have shown that ab
misses deep cutoffs. The pruning behaviour of improving intervals can only be understood
by carefully examining the behaviour of the implementation. Approximate reasoning and

functional programming do not heip with this task.

3.7 Adding Speculative Parallelism

Programs written using improving intervals can be made to run in parallel using speculative
parallelism. We add spec annotations (defined in section 2.1.4) to the branch-and-bound
program from figure 3.10 to explicitly indicate the parallelism. However, this section also
shows that without some care the parallel programs may not behave as expected.

The program shown in figure 3.21 is a first attempt at a parallel best-first branch-and-

bound program and is based on the search programs that appeared in [14] and [32]. The

>This also make it easier to execute in parallel.



CHAPTER 3. IMPROVING INTERVALS 64

> spec_bb r = ii_value (spec_bb’ r)
> spec_bb’ r

> = ii_exact (cost r, r), if has_direct_solution r
> = gpec (ii_1lb I . ii_ub u) (exp r), otherwise

> where

> 1 = (1b r, 1l_node)

> u = (ub r, u_node)

> exp r = foldrl ii_min (map spec_bb’ (children r))

Figure 3.21: Parallel Branch-and-Bound Program — First Attempt

spec annotation initiates the expansion of a node in parallel with computing the node’s
bounds. The parallelism is speculative because the bounds may be sufficient to prune
the node without expanding it. The program is highly parallel because with an unbounded
number of processors all the nodes in the search space are expanded in parallel. The parallel
execution occurs because expanding a node applies spec_bb’ to each child and the recursive
application of spec_bb’ initiates an additional speculative task to expand the child.

A minor problem is that the speculative task that expands a node sequentially evaluates
the bounds of each child. This can be easily fixed by changing the definition of exp r to
use par_map rather than map.

Another problem is that bounds are produced in parallel but are consumed sequentially.
A speculative task that expands a node r produces a single bound on r then terminates
because its result is in WHNF. The single mandatory t. sk is left with the work of consuming
all the subsequent bounds. There are likely to be many speculative tasks so it is likely
that bounds would be produced at a rate that exceeds the rate that the mandatory task
can consume them. In the worst case, the complete search tree is expanded in parallel
by speculative tasks that then die and leave a single mandatory task to perform all the
remaining work.

A fix is to use the spec_list annotation to initiate consumers for subsequent bounds.
However, the spec_list operates on lists and the list representation of improving intervals
is hidden in the abstract data type. We define a function ii_spec that uses spec_list
to initiate a speculative consumer for each bound in an improving interval. Semantically,
ii_spec is an annoiation that denotes the identity function on improving intervals. That

is,
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> ii_spec :: impint * -> impint *

> ii_spec x = x

The type specification for ii_spec should be added to the signature of improving intervals.
Operationally, ii_spec initiates the speculative evalnation of all the bounds in an improving

interval. The implementation of improving intervals is extended with the following definition

for ii_spec.
> ii_spec xs = spec_list xs

Applying ii_spec to an improving interval ii_min x y causes the bounds produced by
the speculative tasks evaluating x and y to be consumed. Here is the branch-and-bound

program, modified to use ii_spec rather than spec:

> spec_bb’ r

> = ii_exact (cost r, r), if has_direct_solution r
> = spec (ii_1b 1 . ii_ub u) (ii_spec (exp r)), otherwise

> where

> 1 = (1b r, 1_node)

> u = (ub r, u_node)

> exp r = foldrl ii_min (par_map spec_bb’ (children r))

A node r in the search tree is now associated with a sequence of speculative tasks each
of which generates a new bound by consuming a bound from a child of r. Thus, cach
speculative task is both a consumer and a producer and there is now better balance between
the consumers and the producers.

The above solution only works well if the speculative tasks at r have a higher priority
than the speculative tasks at the children of r so that the consumers have higher prioritics

than the producers. The next section adds speculative priorities to ensure this is so.

3.7.1 Priorities

It is usually necessary to add priorities to indicate the relative likelihood of each speculative
task. This section considers the addition of priorities to speculative tasks using the priority
annotation from 2.1.4.

A simple priority scheme for the best-first branch-and-bound strategy with a minimiza-

tion problem is to use the negation of the lower bound as the priority for the tasks associated
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> spec_bb r = ii_value (spec_bb’ r)
> spec_bb’ r
> = ii_exact (cost r, 1), if has_direct_solution r
= gpec (ii_1b 1 . ii_ub uw)
(priority (-(1b r)) (ii_spec (exp r))), otherwise
where
1 = (1b r, 1_node)
u = (ub r, u_node)
exp r = foldri ii_min (par_map spec_bb’ (children r))

VvV V V V Vv VvV

Figure 3.22: Parallel Branch-and-Bound Program — Final Version

with a node. A node with a smaller lower bound is then associated with tasks with a higher
priority. This idea can be expressed by re-writing spec_bb’ as shown in figure 3.22. If
the lower bound function is strictly monotonic (for any node r and descendant k of r,
(1b r)<(1b k)) then the priorities of tasks associated with a node is greater than the
priorities of tasks associated with its descendants.

There are two, possibly competing, methods that dictate the order for expanding nodes:

1. The search strategy is determined by the use of ii_min versus ii_df_min in the
program. The use of ii_min gives a best-first strategy while the use of ii_df_min
gives a depth-first strategy. Mixed strategies are possible by combining ii_min and
ii_df_min in the same program. These functions determine the order in which tasks

become mandatory.

2. The assignment of priorities to speculative tasks. Nodes with higher speculative pri-

orities may be expanded sooner.

Many variations are possible by using combinations of the above orderings.
For example, a program could use a best-first search strategy but assign speculative
priorities in a depth-first manner. Branch-and-bound programs that use mixed strategies

have not been examined and it is potential area for future research.



Chapter 4

Partial Determinism

This chapter defines partial determinism and demonstrates its use in branch-and-bound
programs. A partially deterministic program is non-deterministic: It denotes a set of possible
results. However, the set of possible results is restricted so that all the elements in the set are
consistent. Section 4.1 defines partial determinism more precisely and includes a few simnple
examples. Section 4.2 describes the semantics of a simple functional language extended with
partially deterministic functions. A major result is that all expressions in the language are
partially deterministic, that is, unrestricted non-determinism does not occur.

In section 4.3 we show that partially deterministic programs can be developed and ver-
ified using a deterministic program that approximates the partially deterministic program.
This is another application of approximate reasoning.

Partially deterministic functions are often useful as approximations to non-sequential
functions. They do not require fair evaluation but can take advantage of parallel evaluation
when it is available. Section 4.4 introduces a new type of task, called a partially mandalory
task, for implementing partially deterministic functions.

The application of partial determinism to branch-and-bound programs is discussed in
section 4.5. We show how a partially deterministic version of the ii_df min function can
prune more of the search space in a parallel depth-first branch-and-bound program. We
also show how partial determinism is useful in a sequential branch-and-bound programn by

describing a branch-and-bound strategy that dynamically adapts to the memory available.

67
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4.1 Definition of Partial Determinism

A partially deterministic set is a set whose greatest lower bound and least upper bound
exist within the set. Let P(D) be the Plotkin power domain, as defined in section 2.2.2,

over a domain D.
Definition 4.1 A set S in P(D) is partially deterministic iff ['1S € § and [ |$ € S.

For example, the set {1,1}, in P(IN), is partially deterministic because [1{ 1,1} = L and
L {L,1} = 1. The set {L, 1,2}, however, is not partially deterministic because it does not
have an upper bound. The existence of the | JS guarantees that there is an element that
is consistent with all the elements in the set. The existence of ['15 guarantees that all the
elements in S are at least as well defined as ['1S.

The above definition could be applied to any of the three standard power domains
(Hoare, Smythe, or Plotkin). However, some interesting simplifications occur when the
Plotkin power domain is used. For the rest of the dissertation we consider only partially
deterministic sets that are elements of a Plotkin power domain.

The Plotkin power domain divides the subsets of a domain D into equivalences classes

based on the equivalence relation:
S1=p S2iff VS C fin(D),|S]| < 0.(SCp S, iff SCp 55)

where 5 and S, are subsets of . The simplification that occurs with the Plotkin power
domain is that a partially deterministic set S is equivalent to a two-element set that consists
of 'lS and |]S.

Lemma 4.1 If a set § in P(D)is partially deterministic then §=p {I'1S,[|S}.
Proof

Let S’ be any finite subset of fin( D).
First, assume that §' Cp S. Then,

YVa€ 5'3be Salb
But for any such &, 5 C | ]S so

Vae §'.3be {INS,JS}.aCh
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Similarly,
Vb e {lNS,US}.3a€ S'aC b

because
Vbe S.3aec Sal b

and 1S € S and [ ]S € S. Therefore S’ Cp {['15, 1S}
Now, assume that S’ Cp {['15,[|S}. Then for all ¢ in 5/, a € | |S. Since S is partially

deterministic [ |S is in S. Therefore,
Vae S'Ibe Salb

Similarly, there exists an a in S’ such that ¢ C 1S and for all 6in S, 1S T b so
Vbe S.3be SaC b

Therefore S'Cp S.

a

If the set S is partially deterministic then we write < [15,[]5>> lor a set that represents

the equivalence class that includes S. If ['lS = [JS then we abbreviate this notation to

<S>
The approximates relation on partially deterministic sets is also simplified.

Lemma 4.2 If S) and S, are partially deterministic sets in P(D) then
S1 Cp S5 iff [1S; C 1S, and [ S5 C [ S,
Proof
Assume that Sy Ep S3. Then, | |5; € 5; so 3b € 53 such that
Usi CecUs,
Also, I'1S, € 5, so 3a € 51 such that
Ms; CaC 1S,
Assume that ['15; € 'S, and | |S; € ||S2. Then

VYa € S3.a C |9 C 52
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and | |52 € 53. Also,
Vbe §p.015, CT1S, Ch

and 1S, € 5,. Therefore, S; Cp 97.
O

It is often useful to consider a partially deterministic set of functions. The set
LAz. L, Az.x>

is partially deterministic because Azx.L C Az.z. Section 4.2 describes a simple programming
language with identifiers that denote partially deterministic sets of functions. For example,
the identifier maybe denotes the set < Az.1,Az.z>>.

There is strong correspondence between a partially deterministic set of functions and a
function that returns a partially deterministic set. If F is a partially deterministic set of

functions then
Az (M) ), (UF)(z)>

is the corresponding function that returns a partially deterministic set. We use the term
partially deterministic function to mean either a partially deterministic set of functions or
a function that returns a partially deterministic set.

There are some simple partially deterministic functions that are variations of the boolean
or function. The following truth table defines a partially deterministic version of the strict

or function.

¥
pd_sor(z,y) 1 False True
1 L1L> KL> £ L1, True>»
T False LL1L> < False > & True>>»
True L L, True>» <L True> & True>>

It is like the strict or function except for the cases when one argument is 1 and the other
argument is True. In these cases, the result of pd_sor can be L or True. Thus. pd_sor is
non-deterministic, but only to the extent that its result is more or less defined. The function
pd_sor corresponds to the partially deterministic set < sor, por>> where sor is the strict or

function and por is the parallel or function.
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The function pd_sor is only well-defined using the Plotkin power domain. With the
Hoare power domain, the set {L, True} is equivalent to { True} so pd_sor is isomorphic to
sor. With the Smythe power domain, the set {L, True} is equivalent to {L, True. False}.

The following defines the function pd_cor as a partially deterministic version of the

conditional or function.

y
pd_cor(r.y) 1 False True
i <KL> <Ll>» < 4, True>
z False L L> & False > & True >
True L True>» <KL True>» L True>

The pd_cor function corresponds to the partially deterministic set < cor, por» where cor
is the conditional or function. The difference between pd_sor and pd_cer occurs when the
first argument is True and the second argument is L: pd_sor(True, L) = <€ L, True>> while
pd_cor(True, L) = <« True>>. The different versions of the or function are related in the
following way.
Lsor>> Lp < sor, por > Cp<Lceor,por>» Cp Lpors
L cor>»

Hence, the functions pd_sor and pd_cor are approximated by the deterministic functions
sor and cor respectively and approximate the deterministic parallel or function por. Unlike
the parallel or function, they do not require fair evaluation. They can, however, take
advantage of parallelism when it is available. For example, pd_cor{ i, True} might evaluate
its arguments sequentially and return L or it might evaluate its argoments in parallel and
return True.

Both pd_sor and pd_cor are useful partially deterministic functious. For example, the
language Eiffel [42] uses an or function that denotes pd_sor. This lets the comnpiler use
commutativity to perform some optimizations but also lets the compiler generate code that

“short-circuits” evaluation of boolean expressions’.

ing program for

rd

parallel se

pas
oy
N4
)
e
.

The pd_cor fuaction is useful in
a decision problem can be structured as nested applications of the conditional or function.

Speculative parallelism can be used to evaluate the second argument of ecach cor application

*In this example the non-deterministic choice is resolved by the compiler so there is no choice to be made
at run-time.
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in parailel with the ev e first argument. However. a result produced bv a
speculative task can 1til the first argument has been evaluated. If pd_cor is
used in place of cor then can take better advantage of parallelism by returning
True as soon as the spe produces True. Section 4.5 extends this idea to the
minimum and maximum functions on improving intervals.

Another interesting partizlly deterministic function is a partially deterministic version

of the conditional.

L _ir», He=_Landr=y

L. <>, He=Landr =y
pa_ific.r.yi= )
€ r>. if = True
| €y fe= Falze

pd_ifi: . r.y)can return True when r = y. However. it is not required to return True and

therefore does not require fair evaluation.

4.1.1 Partial Determinism and Function Application

The most important result concerning partial determinism is that it is closed under function

application.

1

Theorem 4.3 If F in Pt D; — D5} is a partially deterministic set of monotonic functions

{fir) fe F.r

8

g
\,M‘
[ih

S} is partially

- S ¢ Y ote e - 1 i1, 3 e %1 o~ 2 3} "
aud §in ps D 115 a parttaiiv deterministic set then the se

deterministic.
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Theset {firi f< F.r = 3} is equivalent to < {(TTFHMIS{LJFHSI> by lemma 4.1.

g -

Results analogous 10 monotonicity also hold for the applicaiion of partially deterministic

Corollary 4.4 If F anéd F' in PiD; — D;} are partially deterministic sets of monotonic

— p.i F'and Sand 5" in Py Dy are partially deterministic

ming language. Firsi. we define 2 s%mf.)%e deterministic functional language by umcnhxng its
show how to extend the language by adding

All expressions in the extended langnage

The syntax of the language defines an expression as either: a variable. an atomic (builtin)

lambda-expression. an application. or a let-expression {possiblv recursive). The

B
£
i‘D
X

abstract syntax of a term is described by the following data type:

> expr ::= Var {char] |

> Aton [char] |

> Lam {char] expr |

> App expr expr |

> Let [char]} expr expr

constants {True. False}. and some standard functions on these tvpes (if, +. = etc.). For
example. the expression skown in ﬁgﬁi‘e 4.1 might be written more succinctiv as

let £f x = if x = G then 1 else {(x * (x-1)) in f &
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Let "f"
(Lam “x*
(App (App (App (Atom "if")

(App (App (Atom "=") (Var "x")) (Atom "0")) )

(Atom "1") )

(App (App (Atom "#") (Var "x"))

(App (App (Atom "-")(Atom "1")) (Atom "x")) ) ) )

(App (Var "f£") (Atom "5"))

Figure 4.1: An Expression in the Deterministic Language

The denotational semantics of the language is based on a domain called value consisting
of functions in value — value, integers, and booleans. Thus, value is a domain that satisfies

the following domain equation.

value = [value — value] + Z + {True, False} |

r

where + is the coalesced union (sum) on domains?

. The following functions are used for

conversions to and from the domain value.

inF : (value — value) — value

outF' : value — (value — value)

inN : Z, — value
outN : value — Z;

inB : {True, False}, — value
outB : value — {True, False}

The semantics use an environment, a partial mapping of names to values, to record the
variable bindings. The empty environment is denoted by pg while p denotes an arbitrary

environment. The two functions for dealing with environments are:
1. lookup: environment X name — value

2. update: environment X name X value — environment

?The least element of coalesced union, D + D3, is 1 and is equated with L p,and Lp,.

12
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-3
1

Mivar xJp = lookup(p,x)
Miastomnlp = Afn]
MlLam v ep = inF(Az.M[e J(update(p,v,z)))

M| app el e2]p outF(M[ el JpM[ o2 ]p)
M[Let v el e2]p = M][ e2 |(fizx(N\p'.update(p,v,.M[ o1 ]p')))

A "1" ] = inN(1)

Af"2"] = inN(2)
Af "True” |} = nB(True)
Af "False" ] = inB(Fualse)

A"+ } = inF(Az.inF(Ay.inN(ouiN(z) + outN(y))))

Figure 4.2: Semantics for a Simple Deterministic Language

where lookup{p,v) is the value bound tc the variable v in the environment p and
update(p,v,z) is a new environment that is the same as p except that variable v is bound
to the value z.

The main semantic function M maps an expression and an environment to a clement of
the domain value. It is common to write the application of M to an expression e and an
environment p as M| e Jp. Figure 4.2 defines M using an auxiliary function A that maps
an atomic name to a value. Recursive definitions in Let expressions are permitted and the
semantics of a Let expression uses the function fiz to find fixed points. For simplicity, the
semantics does not explicitly handle errors such as trying to apply a number to 4 mumber

— such invalid expressions are mapped to L.

4.2.2 A Partially Deterministic Language

We now look at extending the deterministic language defined in the previous section to
include partially deterministic functions. OQur approach is to include some identifiers that
denote partially deterministic sets of functions. The syntax of the language is extended 1o

include these identifier by the addition of a constructor Pd.

> expr ::= Var [char] |
> Atom [char] |
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M[Var xJp = lookup(p,x)
M[atomnlp = <A[n]>
M[Pdn]p = D[n]

M[Lam v eJp = <inF(f),inF(g)>
where  f(z) = [I(M] e J(update(p, v, <z>)))
g(z) = LI(M[ e [(update(p,v, < z>>)))
Mlapp el e2fp = <(MF)(MNX),UF)UX)>
where F = outF(M[ el Jp)
X = ./M[[ e2 :H,D
MiLet v et e2]p = M[ s2 |(fix(Ao'.update(p, v, M[ o1 [¢)))

Af*1" ] = inN(1)
D "maybe" ] = < inF(Az.1),inF(Az.z)>
D[ "pdcor"}] = < inF(vcor),inF(vpor)>

where  veor = Az.inF(Ay.inB(cor(outB(z), outB(y)))
vpor = Az.inF(Ay.inB(por(outB(z), outB(y)))

Figure 4.3: Semantics for a Simple Partially Deterministic Language

> Pd [char] |

> Lam [char] expr |

> App expr expr |

> Let [char] expr expr

For example, an expression like
App (app (Pd "pd_cor") (Atom "True"))(Atom "False")

denotes pd_cor( True, False).
The semantics maps expressions to sets of values, that is, elements in the power domain
P{value). The environment is modified to map identifiers to elements in P(value). The
- ' £

<, iee de oo . - o m commnantis fanatia thot on < - <
semantics is shown in figure 4.3. Tt uses a semantic function D that maps an expression of

the form Pd n to a partially deterministic set of functions. For example,
Df Pd pd_cor | = < cor, por>>

The function P plays the same role for partially deterministic functions as the function A

plays for deterministic functions.
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An important result is that unrestricted non-determinism is not introduced by the pres-
ence of partially deterministic functions. We assume that if n is an identifier that denotes a

partially deterministic set then D[ n ] is a partially deterministic set.

Theorem 4.5 If p is an environment such that for all names n, lookup(p,n) is a partially

deterministic set then for any expression e, M[ e ]p is a partially deterministic set.
Proof

We prove the theorem by induction on the structure of the expression e.

Case e=Atom n. The result follows because M[ Atom n ]p is a singleton set.

Case e=Var n. The result follows because lookup(p,n) is a partially deterministic set.
Case e=Pd n. The result follows because D[ n ] is a partially deterministic set.

Case e=Lam v el. By induction, for any value z, M[ el |(update(p,v, << a>>)) is pat-
tially deterministic so its greatest lower bound and least upper bound exist. Therefore,

M][ e Jp is a partially deterministic function.

Case e=Ap el e2. By induction, M[ el Jp is a partially deterministic function and

M] e2 ]p is a partially deterministic set. Therefore, the result follows by theorem 4.3.
Case e=Let v el e2. First, the environment
fiz(Ap'.update(p, v, M[ o1 ]p’))
is the least fixed point of the chain of environments {pg, p1, p2,. ..}, where

po = At L
update(p, v, M[ el ]po)
update(p,v, M[ el ]p1)

P1
P2

By induction, each of these environments binds v to a partially deterministic set and
the least fixed point also bind v to a partially deterministic set. Therefore, also by
induction,

M[ e2 |(fix(Ap'.update(p,v, M[ el ]p')))

is a partially deterministic set.
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0

From the above theorem, it follows immediately that, for any expression e, M[ e Jpo is

partially deterministic.

4.3 Reasoning with Partial Determinism

Section 2.4 outlined why equational reasoning is difficult with non-deterministic programs.
These difficulties can be avoided with a partially deterministic program by reasoning with
a deterministic approximation.

We consider a deterministic program P to be correct with respect to a specification S iff
M[ S Jpo C M[ P Jpo. A program is partially deterministic if it contains an occurrence of
Pd n where n is an identifier that denotes a partially deterministic function. A partially de-
terministic program P is correct with respect to a specification S iff M| S Jpo Cp M[ P ]po.
We abbreviate the above relation as SCp P.

Our approach for reasoning with a partially deterministic program P is to construct
a deterministic program P4 such that Pg; Cp P and then apply equational reasoning to
show that S C Py, We call Py, a deterministic approrimation to the program P. The
deterministic approximation Py, cannot contain an occurrence of Pd nso M[ Pse; Jpo equals
& z>> for some value z. Therefore, Pye; Cp P iff [Py, C [1P. Hence, for demonstrating
correctness, we are not normally interested in the greatest upper bounds. The existence
of the greatest upper bounds ensures consistency which is the key to the simplicity of the
semantics of partial determinism.

Fortunately, it is easy to construct a deterministic approximation to any partially de-
terministic program by replacing each occurrence of a partially deterministic function by
a deterministic approximation to the function. For example, if a partially deterministic
program contains an occurrence of Pd "pd_cor" then a deterministic approximation can be
constructed by substituting Atom “cor" for Pd "pd_cor". In the following, we use the no-
tation [x/y] for a substitution and e[x/y] means the simultaneous substitution of x for y in
the expression e (we assume that appropriate care is taken to avoid name clashes). The fol-
lowing theorem shows, for the language defined in section 4.2, the substitution [A n’/Pd n]

can be used to construct a deterministic approximation to a partially deterministic program.

Theorem 4.6 If P is a program and A[ A n’ JCp D[ Pd n ] then P[A n’/Pd n]Cp P
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Proof

Assume that A[ A n’ JCp D] Pd n ]. Let ¢ be the substitution {A n’/Pd n]. The proof is

by induction on the structure of P.
Case P = Var x or Atom n. Then P¢ = P so the theorem is trivially true.
Case P=Pd f. If £ # n then P¢ = P. Otherwise, f =n and P¢ = A n’ Cp P.

Case P =VLam v el.

M[ (Lam v el)¢ Jp
= MjLam v ed Jp

= <LmF(f),inF(g)>
where f = Az.[lM] e1¢ J(update(p,v, <z >)))
9 = Az (M] e1¢ [(update(p,v, <z >)))
Cp <LinF{f),mF(¢')> {induction}
where f' = AzfWM[ el J(update(p,v,<z>>)))
g = Azl M] el J(update(p,v, < z>)))

= MfLam v el]p

Case P =Ap el e2.

M] (Ap el e2)o }p

= Map elg e20]p

= < (MoutF(M[ e1¢ Jp))(T1M] €24 Jp),

(HoutF(M] e1¢ Jp)) (UM 02¢ Jp) >
Cp <« ([MoutF(M] el Ip))TTM] o2 Jp), (| JouwtF(M] el jp)(UM] e2 [p) >
{induction and theorem 4.3}
= Mlapetl e2]p

Case P=1Let v el e2.

Ml (Let v el e2)o }p

= MlLet v elg e2¢ }p

L e

= Mf e26 ] (fiz(Ap'.update(p,v, M o1¢ ]p')))

Cp M e2] (fix(Ap'.update(p,v, M[ e1 Jp')))
{induction and corollary 4.4}

= MfLet vele2]p



CHAPTER 4. PARTIAL DETERMINISM 80

The deterministic program Py is not only useful for proofs of correctness but also
because tools developed for deterministic programs (debuggers, compilers, etc.) can be
use with Py as an aid in understanding the partially deterministic program P. In fact,
we suspect that P would often be developed by first developing a deterministic program
and then replacing some of the deterministic functions by analogous partially deterministic
functions.

As an example, consider a small search problem where we are given a finite tree with
labeled leaves and we are asked if a particular value occurs as the label of any leaf. A simple

specification for this problems is:

> tree * ::= Leaf * | Node [tree *]

> occurs v (Leaf 1)

> True, if v=1

1]

> False, otherwise
> occurs v (Node kids)

> = foldr sor False (map (occurs v) kids)

Two correct partially deterministic programs can be developed by replacing sor with either

pd_sor or pd_cor.

4.4 Implementation using Partially Mandatory Tasks

Partially deterministic functions can be defined using the non-deterministic choose operator.

For example, the function pd.cor could be defined as:
> pd_cor x y = choose (cor x y)} (por x y)

However, the above definition requires a non-sequential function and does not capture the
intended behaviour of our partially deterministic functions. Our intention is that evaluating
pd_cor x y might evaluate x and y in paraliel without the requirement of fair evaluation.
In a sequential setting, or in a program where the amount of parallelism exceeds the number
of processors, x maybe evaluated before evaluating y. In a parallel setting, evaluating x may
be done concurrently with evaluating y. This section describes how partially deterministic

functions can be implemented using a new type of task called a partially mandatory task.
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The evaluation of pd_cor x y initiates a partially mandatory task to evaluate x while a
speculative task may be used to evaluate y. The partially mandatory task must be scheduled
ahead of the speculative task but may become irrelevant if y evaluates to True.

A partially mandatory task is a task that can either become mandatory or become
irrelevant. A partially mandatory task becomes irrelevant, like a speculative task, if its
result is not required. However, a partially mandatory task may become mandatory at any
peint during its execution, a speculative task becomes mandatory only when its results are
required. We define a new annotation called pmand for creating partially mandatory tasks.

The meaning of the annotation is defined as follows.

>pmand f x = 1 or £ x, if x = 1}

>

f x, othervise

The evaluation of pmand f x creates a partially mandatory task to evaluate x in parallel
with the evaluation of £ x. If a partially mandatory task does not terminate then the
program may or may not terminate.

A partially mandatory task can be used to define a new non-deterministic function called

pd._choose.
> pd_choose x y = pmand (amb x) y

The pseudo-function pd_choose takes two arguments and non-deterministically returns one

of them. The above definition causes pd_choose to behave as follows.

> pdchoose 1 1 = 1

> pdchoose x | = x
> pdchoose L y= 1 or y

> pdchoose x y = x or y

The function pd_choose is like amb except that it is bottom avoiding only in its second
argument. Therefore, it does not require fair evaluation of its arguments. Evaluating
pd_choose x y initiates a partially mandatory task to evaluate x and a speculative task Lo
evaluate y. Each sub-task evaluates its argument to WHNF and the original task returns the
result of the first sub-task to complete. The expression pd_choose x y may be evaluated
sequentially by returning the result of evaluating x.

The function choose can be defined using two partially mandatory tasks.
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> choose x y = pmand (pmand amb x) y

Evaluation of choose x y initiates a partially mandatory task to evaluate each argument
and the original task returns the result of the first sub-task to complete.

Many partially deterministic functions can be implemented using pd_choose. We de-
scribe the implementation of pd_cor and pd_sor below. Section 4.5.2 describes an imple-
mentation of a partially deterministic version of ii_df_min using pd_choose. Equational
reasoning can be preserved if pd_choose is not available to the programmer, but is restricted
to use in defining standard partially deterministic functions.

The function pd_cor can be implemented as®
> pd_cor x y = pd_choose (cor x y)(cor y x)

The evaluation of pd_cor x y initiates a partially mandatory task to evaluate cor x y
and speculative task to evaluate cor y x. These tasks must evaluate x and y respectively
because cor is strict in its first argument. The partially mandatory #ask is run in preference
to the speculative task but may become irrelevant if y evaluates to True. An interesting
case occurs when x is L and y is True. In this case, the partially mandatory task does not
terminate and the result depends on whether or not the speculative task is executed. If the
speculative task is executed and finds that y is True then the result is True. Otherwise, the
evaluation of pd_cor does not terminate.

The partially deterministic function pd_sor can be implemented using two partially

mandatory tasks.
> pd_sor x y = choose (cor x y)(cor y x)

As soon as either tasks returns a result, the other task becomes irrelevant. However, non-
termination by either task may result in a non-terminating program, umnlike the case with
pd_cor.

Priorities can be used with partially mandatory tasks. However, the priority of a partially

mandatory task is always higher than the priority of a speculative task.

k 3

X

This is very similar to the following definition of por using amb from section 2.3.

por x y = amb (cor x y) (cor y x)
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4.5 Partial Determinism in Branch-and-Bound

This section shows how partial determinism is useful in branch-and-bound programs that
use improving intervals. Recall from chapter 3 that the function ii_df_min returns the
minimum of two improving intervals by evaluating its first argument before evaluating its
second argument. A speculative task can be used to evaluate the second argument in parallel
with the evaluation of the first argument.

However, consider the following expression

ii_value (spec (ii_df_min ri) (ii_spec r2))
where r1 = (ii_lb 5 (ii_ub 10 L))
r2 = (ii_lb 4 (ii_ub 6 (ii_exact 4)))

This expression mimics depth-first branch-and-bound on a node with two children, r1 and
r2. The node r1 has a lower bound of 5 and an upper bound of 10 and is very time
consuming to expand {expanding r1 does not terminate). The node r2 has a lower bound
of 4, an upper bound of 5, and expands quickly to a solution node whose cost is 4.

The spec and ii_spec annotations initiate the speculative evaluation of r2 in parallel
with the evaluation of ri. One might think that the node r1 can be pruncd after r2 is
expanded because the lower bound of 5 on ri is greater than the optimal cost of 4 on r2.
However, the use of ii_df_min forces r1 to be completely evaluated before the bounds fromn
12 are used. Therefore, evaluation of the above expression does not terminate.

We would like a version of the minimum and maximum functions on improving intervals
that can use bounds from either argument as soon as they are available. The next section

describes how the non-deterministic function amb can be used to implement such functious.

4.5.1 A Non-Sequential Version of ii_min and ii_max

Figure 4.4 contains an implementation for the minimum and maximum functions on im-
proving intervals that can use bounds as soon as they become available. Like ii_max and
ii_min, the functions ii_pmax and ii_pmin are implemented using zipwithord. However,
they use a reducing function nd_red where nd_red x y non-deterministically chooses to
discard a non-exact bound from either x or y (provided that both are not exact). f x = L
then nd_red returns (bx:x,y) while if y = L then nd_red returns {(x,by:y).

The function ii_pmin can return different representations when applied to the same
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> ii_pmax x y = zipwithord nd_red b_max (b_bot:x) (b_bot:y)
> ii_pmin x y = zipwithord nd_red b_min (b_bot:x) (b_bot:y)

> nd_red (bx:x)(by:y)

> = (bx:x,by:y), if b_isExact bx & b_isExact by
> = (bx:x,y), if b_isExact bx & b_nonExact by
> = (x,by:y), if b_nonExact bx & b_isExact by
> = amb (seq x (x,by:y)) (seq y (bx:x,y)), otherwise

Figure 4.4: Implementation of a Parallel Min

arguments. Consider evaluating the expression
ii_pmin (ii_1b 5 (ii_ub 10 1)) (ii_1b 4 (ii_ub 6 (ii_exact 4))).
If amb chooses its first argument until it is L then the result is
[(-o,00),(—,10),(4,10),(4,6),(4,4)].
If amb chooses its second argument until it is exact then the result is
[(-o0,0),{-,6),(—-0,4),(4,4)].

However, both results are equivalent in that they hoth denote the interval [4,4]. The use
of amb in the implementation of ii_pmin allows ii_pmin to use bounds as soon as they are

produced.

The function ii_pmin is non-sequential because it avoids bottom in either argument.

For example,
ii_pmin 1 (ii_exact 4) = (—o0,4):L = ii_pmin (ii_exact 4) L

Therefore an implementation of ii_pmin requires fair evaluation of its arguments.

4.5.2 A Partially Deterministic Version of ii_df_min and ii_df_max

This section describes a partially deterministic version of ii_df _min called ii_pd_min. The
function ii_pd_min is like ii_pmin in that it can use bounds as soon as they are available.

However. unlike ii_pmin. it does not require fair evaluation of its arguments.
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> ii_pd_min x y = zipwithord pd_red b_min x ¥y
> ii_pd_max X y = zipwithord pd_red b_max x ¥y

1}

> pd_red (bx:x) (by:y) =

> = (bx:x,by:y), if b_isExact bx & b_isExact by
> = (bx:x,y), if b_isExact bx & b_nonExact by
> = (x,by:y), if b_nonExact bx & b_isExact by
> = pd_choose (seq x (x,by:y)) (seq y (bx:x,y)), otherwise

Figure 4.5: Implementation of ii_pd_min and ii_pd_max.

The code for the partially deterministic version of ii_df_min is shown in Figure 1.5,
The function pd_red is similar to nd_red except that it uses pd_choose instead of amb. If

neither bx nor by is an exact bound then evaluating the expression
pd_red (bx:x) (by:y)

creates a partially mandatory task to evaluate x and creates a speculative fask to evaluate

y-
The function ii_pd_min is partially deterministic. First,

ii_pd_minTp ii_pmin
because pd_choose Cp amb so pd_red Cp nd_red. Furthermore, the only case where
df _red (bx:x) {(by:y) # pd_red (bx:x) (by:y)

is when y # L with
df _red (bx:x)(by:y) = (x,by:y)

and

pd_red (bx:x)(by:y) = (bx:x,y)

he following hold

o
=
i
:P
&
=
ol

alby:y} = aly)

a{x) L7 afbx:xs)

Therefore, in terms of their denotations, ii_df_min approximates ii_pd_min.
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The function ii_pd_min is non-deterministic. TFor example, evaluating the expression
ii_pd_min (ii_1b & (di_ub 10 1)) (ii_lb 4 (ii_ub 6 (ii_exact 4)))
can result in any of the representations:
. (—oc,0): (-2, 10):L
2. (—o0,00):(—oc, 10):(4,10):1L
3. (—o0,0):(—2oc, 10):(4,10):(4,6): 4
4. [( - o0,x),(~ 2, 10),(4,10),(4,6),(4,4)]

[( - w,m)9( “CXZ,G),( ‘*%,4),(4,4)]

o

6. (—o0,00):(~02c,6):(4,6):1

7. (—o0,00):(4,00):(4,10): L

8. [(—o00,00),(4, x),(4,6):(4,4)]
etc. depending upon when the bounds are produced. Each result denotes an interval that
is approximated by [~oc, 10] and approximates [4,4].
4.5.3 A Partially Deterministic Version of ii_min

The previous sections have shown the utility of a partially deterministic version of
ii_df _min. Is there useful partially deterministic version of ii_min as well?

Partial determinism does not yield the same benefits with the best-first strategy. We
can imagine a partially deterministic version of ii_min whose behaviour is between that of

ii_min and ii_pmin. That is,
ii_ minCp ii_pd_min’ Cp ii_pmin

The main advantage of 1i_pd_m 1 x y over ii_df_min x y is that by using a bound from
¥, ii_pd_min x y may return an exact bound sooner than ii_df _min x y.

This advantage does not occur with ii_min. Consider an expression

ii_min x y
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where the current bound on x is bx (a non-exact bound) and the current bound on y is by

and (1b bx) < (1b by). If by’ is any subsequent bound in y then
(1b bx) < (1b by) < (1b by’) < (ub by’)

Therefore b_min bx by’ cannot be an exact bound. This is closely related to the well
known result that the best-first search strategy never expands a node that another strategy

could avoid expanding (assuming that all the bounds are distinct) [44].

4.6 Partial Determinism for Adapting to Memory

The previous sections have discussed partial determinism in the context of parallel pro-
grams and non-sequential functions. Partial determinism is also useful in strictly sequential
situations.

Consider a branch-and-bound program that adapts its search strategy to the memory
availabie. Initially the program uses the best-first strategy but when memory becomes
tight it switches to a depth-first strategy. The program’s behaviour is non-deterministic: It
depends on the amount of memory available. The memory-adaptive program is partially
deterministic because its behaviour falls between that of depth-first branch-and-bound and
best-first branch-and-bound.

If memory is always tight then executing the memory-adaptive program is equivalent
to executing a depth-first program. On the other hand, if memory is never tight then
executing the memory-adaptive program is equivalent to executing a best-first program.
The interesting cases occur somewhere between these two extremes. We hypothesize that
when the amount of available memory is sufficiently large then the memory-adaptive strategy
will expand fewer nodes than the depth-first strategy but run in less space than the best-first
strategy. The above hypothesis remains to be verified and we do not know what “sufficiently

large” really means.



Chapter 5

Related Work

This dissertation combines ideas from the fields of functional programming, combinatorial
optimization, parallel programming, and non-determinism. There is related work from each

of these fields and this chapter gives a brief overview of some of the related work.

5.1 Parallel Cdmbinatorial Search

There has been much recent interest in applying parallel processing to search programs.
Roucairol [51] and Grama and Kumar [22] survey parallel processing in branch-and-bound
while Marsland and Campbell [41] survey work on the parallel search of game trees. The
main goal in the above is to improve the performance of parallel search programs while our
work has focussed on simplifying parallel search programs.

Searching for solutions is just one approach to solving combinatorial optimization prob-
lems. We have not considered other approaches such as: dynamic programming, simulated
annealing, or approximation algorithms.

There are three main approaches in writing parallel search programs:
1. Search distinct parts of the search tree in parallel.

2. Apply parallel processing to node operations such as computing the bounds or gener-

ating the children. Ebe'ing [19] describes the application of this approach to chess.

3. In parallel window search[4, 41], each processor explores the search tree using a dif-

ferent window. The lower and upper bound on the root of the tree defines the initial

88
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search window. With P processors, the initial window is split into P subwindows
and each processor searches within a distinct subwindow. The speedup using parallel
window search in game playing has been found to be 5 or 6 regardless of the number

of processors [41].

Our programs use the first approach and the rest of this section discusses the first approach
in more detail.

A straightforward method of parallelizing branch-and-bound on P processors is to modify
the simple branch-and-bound program in Figure 1.2 such that each iteration expands P
nodes in parallel. We call this approach synchronous because the processors synchronize
after each iteration. Li and Wah [40] use this approach to analyze the number of iterations
taken by parallel braJnch.-a,nd-bound.

Parallel branch-and-bound programs can exhibit speedup anomalies [38]: the program
can exhibit speedups that are greater than P or less than 1. Anomalies are possible because
the parallel program may explore a different search tree than the sequential program. The
part of the search tree that is expanded by the parallel program but not by the sequential
program is called search overhead. Search overhead is analogous to the irrelevant work that
may be done by prografns that use speculative parallelism. There is a tradeoff between
processor utilization and search overhead: using a single processor results in no search
overhead but a utilization of only $. As more processors are used, it is more likely that
some of the processors expand nodes that are not expanded by the sequential program. The
same tradeoff occurs with speculative parallelism: it increases processor utilization but may
result in irrelevant work.

The synchronous appfoach may perform poorly in practise because of contention for the
shared priority queue and delays in waiting fcr all processors to complete the iteration. In
many programs [36, 37, 50], the processors are given their own local priority queues and
operate more asynchronously by selecting and expanding nodes from their local priority
queues. Some communication between processors is needed so that all processors are aware
of the current best solution.

Various load balancihg schemes are used to ensure that each processor has nodes to
expand and to ensure that promising nodes are fairly distributed among the processors.
Large search overhead can occur if some processor only has nodes that are likely to be

irrelevant. Two generai strategies for load balancing are:
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1. Queue splitting: When a processor’s priority queue becomes empty it requests work
from some target processor. The target processor splits its priority queue and gives
part of it to the requesting processor. Many variations are possible depending on how

a target is selected and how the queue is split[37].

2. Node splitting: When a node is expanded its children are distributed amoung the
processors. Shu and Kalé [55] use this approach and distribute the children randomly

among the processors.

Queue splitting typically involves less communication overhead than node splitting because
the processors communicate less often.

Our use of improving intervals results in programs that do not have an explicit priority
queue. Instead, the priority queue is implicit in the search tree. It is therefore impossible
for the programmer to dictate a queue splitting strategy. However, the run-time system
of a parallel functional language must support some load balancing strategy. For example,
the Grip system [47] has a local queue of tasks on each processors and exports some tasks
from a processor’s queue when its local task pool exceeds a fixed size'. Hence, our approach
simplifies programs by handing over control of load balancing to the run-time system. While
this does make the programs simpler, the performance of the programs depends ou the run-
time system and it is more difficult to experiment with different load balancing strategies.

The node splitting strategy could be programmed within our approach if an additional
annotation were available to initiate a task on a specific processor. Both Burton [9] and
Hudak [27] proposes annotations for this purpose. For example, the expression on p f e

behaves like spec £ e but initiates the speculative task on the processor named p.

5.1.1 Reducing Search Overhead and Anomalies

Search overhead can be kept low by keeping the number of nodes expanded by the parallel
algorithm close to the number of nodes expanded by the sequential algorithm. Kaié and
Salvetor [34] describe a parallel depth-first search program that does not exhibit speedup
anomalies. They assign priorities to nodes in a manner that is consistent with a depth-first
ordering of the search tree. Their program ensures that during the expansion of a node n,,

another node of lower priority may be expanded in parallel only if there would otherwise

'Grip does not currently support prioritized tasks so the load is balanced only in the sense of balancing
the number of tasks on each machine.
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be a processor left idle. This is similar to what happens when using speculative parallelism
with a depth-first strategy. Any node expanded by the sequential program will eventually
become mandatory and when it does its evaluation will be scheduled ahead of speculative
tasks. Priorities should also be placed on the speculative task such that the speculative
priorities are consistent with a depth-first ordering of the tree.

Akl et al. [1] use a mandatory-work-first scheme for an alpha-beta program. Their
strategy exploits the idea that for perfectly ordered game trees, there is a unique minimal
search tree that must be expanded by the sequential alpha-beta algorithm. Their algorithm
expands this unique search tree in parallel before expanding other nodes. Steinberg and
Solomon [59] refine this approach to get better processor utilization. Our approach could
be adapted to utilize these strategies by using a combination of mandatory and speculative

parallelism.

5.2 Speculative Parallelism

There has been relatively little work done on speculative parallelism. Languages for parallel
computing do not in general support speculative parallelism very well and few programs
explicitly use speculative parallelism. Burton [11] introduces the term “speculative compu-
tation” and we use annotations similar to those proposed in {12].

Osborne’s thesis [45] describes how speculative parallelism can be supported in Mul-
tilisp. He views the major requirements for speculative parallelism as: a priority scheme
for directing computation to more promising work and a means to atort and reclaim ir-
relevant speculative tasks. Osborne proposes a sophisticated priority scheme that supports
dynamically changing priorities, priority transitivity (if a task 7} demands the result of a
task 75 then priority of T, should be greater than or equal the priority of T}), and modu-
lar priorities. His scheme is certainly more expressive than the simple scheme that we use
but it is not clear that the gain in expressiveness out-weighs the overheads involved in its
implementation.

Osborne used the travelling salesman problem as a sample problem and describes a
simple branch-and-bound program to solve it. The program speculatively expands each
node and uses the speculative priorities to control the order of node expansions. However,
the program explicitly handles pruning and a global variable is used to record the incumbent.

The use of side-effects to update the incumbent makes the program non-deterministic and
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not purely functional.

Soley {57] describes the implementation of speculative parallelism in the dataflow lan-
guage Id. In Soley's programs. speculate f xs evaluates the application of £ on eacl
element in the list xs in parallel and returns the result of £ applied to some element in
the list (typically the first to evaluate). Hence, speculats is non-deterministic and can be
viewed as an extension of amb to lists.

Grit and Page [23] and Baker and Hewitt [3] describe methods for reclaiming speculative
tasks that have become irrelevant.

Parallel logic programming systems [54] may use or-parallelism to evaluate each clause
of a predicate definition in parallel. Or-parallelsi is speculative because once any clause
is found to be true, the tasks evalunating other clauses become irrelevant. However, these
systems do not yet support priorities for controlling speculative parallelism.

Witte [63] shows how speculative parallelism can be applied to simulated annealing. Sim-
ulated annealing iteratively makes local improvements and occasionally a random mutation
to an initial solution (the probability of a mutation decreases over time). The algorithm is
inherently serial because each iteration depends on the solution from the previous iteration.
However, speculative parallelism can be used to initiate a next iteration on both the old
solution and a new candidate, before it is known which will be chosen. One benefit of using
speculative parallelism is that it preserves the sequential sequence of solutions.

Schaeffer [52] describes an interesting use of speculative parallelism in game playing. The
speculative tasks are specialists in searching for specific game positions that are particularly
beneficial. Often, a specialist will fail to find such a position but whern it does the rewards are
great. In experiments with chess, Schaeffer found that the addition of speculative specialists

increased the search depth by two or more plys.

5.3 Non-Determinism

5.3.1 Non-deterministic Extensions to Functional Languages

Adding non-deterministic operators hampers equational reasoning with functional programs
but functional languages extended with non-deterministic operators have been used in prac-
tice to build operating systems [24, 33] and user interfaces [15, 18].

There have also been several proposals to add non-deterministic constructs in ways

that preserve equational reasoning. Burton’s [13] approach using oracles, and Hughes and



CHAPTER 5. RELATED WORK 93

O’Donnell’s [31] approach using sets are described below. Both of these approaches permit
more general non-determinism but they also have their own shortcomings.

Burton proposes a non-deterministic operator choice that is like amb but has an extra
argument called an oracle that determines how the choice should be made. An oracle can
either have the value Dne or the value Two and the choice function behaves as if it were

defined by the following.

n

X

y

> choice One x y

]

> choice Two x y

The oracle is set by the run-time system when the choice must be made and may be set by
examining factors not available to the program (such as the actual time when an argument
becomes evaluated). Equational reasoning is preserved provided that every instance of
choice uses a new oracle. Burton proposes that every functional program be given an
infinite supply of oracles by the addition of an argument that is an lazy infinite tree of
oracles.

Hughes and O’Donnell elevate the set of possible results of a non-deterministic choice
to the language level. Their functional language includes built-in functions to create and
manipulate these sets. Set union is the basic non-deterministic operator and an amb-like

operator can be defined as:

> amb x y = {x} U {y}

Equational reasoning is preserved because the program explicitly deals with sets of results.
However, these sets are actually represented by a single element so for example the result
of {1} U {2} is a set represented by either 1 or 2. They go on to show how these sets are
useful for writing and verifying parallel programs. However, with their approach, equational
reasoning only demonstrates partial correctness and termination must be demonstrated by

other means?,

5.3.2 Other Approaches

Milner’s work on CCS [43] and Hoare's work on CSP [25] give more general theories of
parallel systems and non-determinism. Their approaches are algebraic and include calculi

for reasoning about non-deterministic programs.

?Hughes and O’Donnell attempt to develop a calculus for reasoning about termination.
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Many treatments of non-determinism include an assumption or requirement of fairness.
Apt and Olderheog [2] model parallel programs as non-deterministic programs imbedded
in a fair scheduler. Pure logic programming systems must assume each clause is executed
fairly so that a proof is found if one exists. The UNITY language [16] assumes that no
statement will be ignored infinitely often. We have deliberately avoided a fairness assump-
tion because it introduces overheads in scheduling and makes it more difficult to execute
programs sequentially.

There are other approaches in dealing with the difficulties caused by non-determinism.
Emrath and Padua [20] try to automate the detection of unwanted non-determinism in par-
allel programs. Tolmach and Appel [61] instrument non-deterministic programs to produce
traces of their execution including the outcome of all non-deterministic choices. The traces
are used to re-play the program so that the results are repeatable. This approach can help
with debugging a non-deterministic program once a bug has been detected but it does not

address the problem of finding bugs in non-deterministic programs.



Chapter 6

Conclusions

This dissertation has explored the application of functional programming to combinatorial
search programs. Our thesis is that functional programming leads to programs that are
simple, are amenable to formal reasoning, and are easy to execute on parallel machines.
The dissertation supports the above thesis with some qualifications. This chapter starts
with a review of what has been accomplished and describes why the thesis is only partially
supported. We follow with a description of some future work and then conclude with a short

discussion of the main contributions of this work.

6.1 Simpler Programs

We have developed an abstract data type called improving intervals whose minimum and
maximum operations encapsulate the pruning behaviour found in many search programs.
Search programs that use improving intervals are simple because all pruning is handled
within the data type. Lazy evaluation is the key aspect of functional programming that
allows pruning to be modularized in an abstract data type. This supports Hughes’ claim

that lazy evalunation is a new type of “glue” whereby
“one can modularize programs in new and exciting ways.” [30]

However, we have also shown that improving intervals can be implemented using lazy lists
and there are a number of languages (Scheme, ML, SISAL) that support lazy lists without
being fully lazy. Improving intervals could be implemented and used in these languages as
well.
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One of the reasons whyv our functional search piograms are simple is that they do not
include enhancements found in more complex search programs. For example, our programs
assume that the search space is structured as a tree rather than a graph and our programs
do not use enhancements such as dominance relations. Including such enhancements would
make the programs more complicated and may pose additional difficulties for functional
programming.

We have also not considered the details of particular combinatorial probiems. In many
cases, the code needed to compute bounds, etc., for instances of the problem is more complex
than the code for the search program. For example, integer programming problems are
often solved using a branch-and-bound program that computes bounds on a sub-instance
by solving a linear programming problem. The amount of code required to solve the linear
programming problem is to be likely much larger than the amount of branch-and-bound

code.

6.2 Parallel Execution

Search programs that use improving intervals are easily annotated with a spec annotation Lo
initiate speculative tasks that explore distinct sub-trees in parallel. The annotations do not
affect the meaning of a program so annotations can be stripped from a functional program
without changing its results. This means that programs can be written and debugged on a
sequential machine and then executed on a parallel machine for better performance.

The parallelism in search programs is speculative because a task searching a sub-tree may
become irrelevant if a solution is found in a different part of the tree. We have assumed that
the irrelevant tasks are automatically reclaimed. This leads to simpler prograins because
the programmer is freed from the details of detecting and killing irrelevant tasks much as
garbage collection frees the programmer from the details of memory management.

However, programs using spec annotations are deterministic and we have shown that
this determinism can prevent some pruning in parallel search programs. We defined the
concept of partial determinism to allow programs with some non-determinism. The use
of non-determinism means that the programs are not purely functional and it raises the
possibility of unpredictable results. Partial determinism restricts non-determinism so that
only consistent results can be produced. We have shown that partial determinism is closed

under function application so that every expression in a functional language extended with
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partially deterministic functions is partially deterministic.

We also demonstrated how partially deterministic functions can be viewed as approx-
imations to non-sequential functions that can use parallelism when it is available but do
not require fair evaluation. This means that partially deterministic functions are easy to
evaluate sequentially.

We have assumed that some details that make parallel programming difficult, for example
mapping tasks onto processors and load balancing, are handled by the functional language.
We have also not considered the details of task granularity or communication costs. An
advantage of functional programming is that these details can often be ignored or left to

the run-time system. However, without considering these factors, the performance of the

programs may be poor.

6.3 Reasoning with Programs

Approximate reasoning is an extension of equational reasoning to include approximations
such as e1 C @2 in addition to equations. We have shown how approximate reasoning is
useful for formally reasoning about search programs. We have used approximate reasoning
to verify an implementation of improving intervals and to verify two search programs.

Approximate reasoning is applicable to partially deterministic programs because for a
partially deterministic program P, there is often a deterministic program - that approx-
imates it, that is P’ C P. This means that programs can be written and debugged using
the deterministic approximation and we can avoid the problems associated with the unpre-
dictability of non-detei ..inistic programs.

Approximate reasoning <an only demonstrate the correctness of programs and it does
not help in understanding their behaviour. Understanding the behaviour of our functional
search programs is difficult for a number of reasons. First, understanding search programs
that prune parts of the search space is difficult because the behaviour depends on what parts
of the search space are pruned and when they are pruned. Understanding the behaviour
of lazy functional programs, including the time and space requirements, is difficult because
the order in which expressions are evaluated is not readily apparent from the program’s
source code; rather it depends on when the results of an expression are needed. The use of
speculative or partially mandatory parallelism complicates this by allowing some expressions

to be evaluated before they are demanded.
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6.4 Future Research

6.4.1 Application to Other Areas

We have used the combination of improving intervals, speculative parallelismi, and partial
determinism to write functional search programs. While search programs are applicable toa
wide range of problems, it is interesting to consider whether or not the above can he applied
to other areas.

(ne possible area is numerical analysis where many programs compute a sequence of
better and better approximations to some value. If a program computes the sequence
ay,as,...that approximates a value ¢ then typically the sequence is improving in that the
errors, |a; —al, laa—aj. . . ., are monotonically decreasing. Such a sequence of approximations
can be explicitly represented by a lazy list [30] and it is easy to define functions that
add/subtract/multiply/etc. such lists.

As with the minimum and maximum functions on improving intervals, there are different
strategies for evaluating the arguments of these functions. For example, a function df_add
might evaluate its first argument, to within some tolerance, before evaluating the second
argument while a function bf _add might evaluate the argument with the largest current
error. Speculative parallelism can be used to evaluate the arguments iu parallel and partial
determinism is useful to use results as soon as they become available.

The approach seems particularly suited to an algorithm such as adaptive quadrature
that computes an estimate for a definite integral fr‘ flz)dz. Tt operates by computing
an initial approximation to the integral using the trapezoid rule and recursively divides the
interval into sub-intervals if the initial approximation is not good enough. Hence, the overall

structure of an adaptive quadrature program is similar to the structure of a scarch program.

6.4.2 Approximate Reasoning with Non-Deterministic Programs

We have shown that reasoning with a partially deterministic program can be done using
a deterministic program that approximates it. This technique is applicable to any non-
deterministic program that is approximated by a deterministic program, not just Lo partially
deterministic programs. It would be interesting 1o look for non-deterministic programs that

are not partially deterministic but have a deterministic approximation.
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6.4.3 Other Partially Deterministic Functions and Primitives

We have described a few partially deterministic functions that are useful in writing search

programs. Section 6.1.1 above suggests that there are other useful partially deterministic

functions. ldeally, there would exist some set of primitive partially deterministic functions
that could be used to build other partially deterministic functions. We have not found
any set of primitive partially deterministic functions and it seems like a difficult task. In
theory. a function like pd_cor or pd_if might be sufficient to express the possible results
of program. However. in practise. the method for choosing between the results may vary.
We have described examples where the choice is made based on the number of processors

available or is made based on the amount of memory available.

6.4.4 Scheduling with Speculative Tasks

We have used a simple priority scheme for directing the scheduling of speculative tasks
towards tasks that are more likelv to be needed. However, scheduling with speculative tasks
involves the probability that a task will be needed, the utility of the result of the task, and
the amount of work required to compute the result. For example, we may schedule a task
that is likely to be irrelevant if the utility of its result is high enough or if it requires very
little work. There is a large body of research on scheduling tasks for execution on parallel

machines but this work mostly ignores the possibility of speculative tasks.

6.4.5 Performance

We have not addressed the question of how our functional search programs perform in

practice. There are a number of interesting possibilities for work in this direction.
1. How does the performance of the functional programs compare with imperative pro-
grams. both in the sequential and parallel case?

2. How much does speculative parallelism speedup the execution of the programs?

3. How much does the performance improve when partial determinism is used in contrast

ith 7

P

Measuring the performance of search programs is difficult because the performance is often
very dependent on the particular problem and data sets used. Parallel search programs have

additional unpredictability due to non-determinism.
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Comparisons between functional and imperative implementations depend on the par-
ticular language and compiler used. In the sequential case, good compilers for functional
languages are starting to appear though the state of the art is changing rapidly and there
is a risk of obsolescence. In the parallel case, there are no current compilers that support
speculative parallelism well enough to make a valid comparison.

There is some question as to whether functional languages are an appropriate choice
for implementing search programs. Search programs are computationally intensive and can
consume large amounts of space and time {even for small problems). In some cases, such
as integer programming. there are hand-crafted and highly optimized imperative programs
available. A functional program can not compete with the performance of these programs.
Functional programming may still be useful to prototype and experiment with new search

programs.

6.5 Final Remarks

Our attempt to apply functional programming to search programs has highlighted both
strengths and weaknesses of functional programming. Our functional search programs are
simple, easy to verify and can be easily executed in parallel. However, it can be difficult to
understand their behaviour and some of the programs require non-deterministic behaviour.

The main contributions of the work are:

1. The definition of improving intervals and their use in simplifying functional search

programs.

2. The concept of partial determinism and its use in programs that can take advantage

of parallel evaluation without requiring fair evaluation.

3. The utility of approximate reasoning with search programs and partially deterministic

programs.

Our approach also suggests some interesting search strategies for branch-and-bound pro-
grams. There is a lot of research that remains to be done. The improving intervals ap-
proach needs to be tested on real problems. Futher work on partial determinism is needed

to discover its applicability to other areas.



Appendix A

Transforming the Implementation

This section describes some simple improvements that can make the implementation of im-
proving intervals run more quickly. Our approach is to use equational reasoning to transform
the implementation from chapter 3 to a more efficient version.

The first optimization is to remove duplicate bounds from the list of bounds. The
following definition of the function ii_rmdup removes duplicate bounds, and ensures that
once an exact bound is found, the list is turned into an infinite list (that uses a constant

amount of space).

> ii_rmdup (b:bs)

> = b:rmdup’ b bs, if b_nonExact b

> = cycle [b] , otherwise

> where |

> rmdup’ bl (b2:bs)

> = rmdup’ bl bs, if bl = b2

> = b2:rmdup’ b2 bs, if b_nonExact b2
> = cycle [b2], if b_isExact b2

Clearly, ii_rmdup x is equivalent to x and evaluating ii_rmdup x takes O(n) time if x is a
list with n» non-exact bounds.

The function ii_1b may be optimized by unfolding its definition:
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ii_1b a x
= ii_max (ii_exact a)(b_bot:x)
= zipwithord ub_red b_max (ii_exact a)(b_bot:x)
= zipwithord ub_red b_max (cycle [(V a,V a)])(b_bot:x)
b_max (V a,V a) b_bot:zipwithord ub_red b_max (cycle [(V a,V a)]) x

(V a,Inf):zipwithord ub_red b_max (cycle [(V a,V a}]) x

Let
ii_1b’ a x = zipwithord ub_red b_max (cycle [(V a,V a)])(x)

Since zipwithord is strict in its list argument, x must be evaluated and the pattern b:x

can be used to define ii_1b°’.

ii_1b’ a (b:x)
= zipwithord ub_red b_max (cycle [(V a,V a)])(b:x)
b_max (V a,V a) b:zipwithord ub_red b_max (cycle [(V a,V a)])(x)

There are three cases for b_max (V a,V a) b:

1. If b_max (V a,V a) b= (V a,V a) then the subsequent bounds in x can be ignored.
However, this case does not require special handling because the function ii_rmdup

ensures that the result is turned into an infinite list once an exact bound is found.

2. If b_max (V a,V a) b=Db then (Ib b) > a. Therefore, if b’ is a bound tighter than
b then b_max (V a,V a) b’ =b’. So,

ii_1b? a (b:x) =b:x, if (b_max (V a,¥ a) b) = b

3. f b_max (V a,V a) b# bthen

ii_1b’ a (b:x) =b_max (V a,V a) b:ii_1b’ a x

Finally, unfolding b_max, gives

b_max (V a,* a) b= (v_max (V a) (1b b),v_max (V a) (ub b))

Combining all of the above results in the following definition for ii_1b.
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> ii_1b a x = seq (force a) (ii_rmdup ((V a,Inf):ii_1b’ a x))

> ii_1b’ a (b:x)

> = (b:x), if max_b = b

> = max_b:(ii_1b’> a x), otherwise

> where max_b = (v_max’ a (1b b), v_max’ a (ub b))
> v_max’ a Neginf = (V a)

> v_max’ a (Vb) = (V (max2 a b))

> v_max’ a Inf = Inf

The other functions can be optimized in a similar manner.



Appendix B

Performance Testing

This appendix describes some very preliminary results on the performance of search pro-
grams that use improving intervals. These tests were not meant as serious experiments but
as a guide in assessing the potential of the improving intervals approach. Several branch-
and-bound programs (using Haskell, Eiffel, and C) were written to solve the 0/1 Knapsack
problem (as defined in section 1.1).

Problem instances with n = 100 objects were generated with profits and weights uni-
formly random in [1,1000] and with the capacity set to half the sum of the weights. The
branching function and the bounding functions follow the fixed-size tuple approach of
Horowitz and Sahni [26]. In this approach, the objects are initially sorted in non-increasing
order of their profit-to-weight ratios. A node at depth & in the search tree represents the

th objects. A node has, at most, two children that

subproblem that packs the kth through n
correspond to including or excluding the kth object in the knapsack. The lower bound is
computed by including all objects, from the remaining objects, that will fit in the knapsack.
The upper bound is computed by greedily packing the remaining objects and including a
fraction of the first object that does not fit.

We ran tests using several different sequential implementations:

1. A Haskell program that corresponds to the Miranda implementation in Chapter 3 as
well as a Haskell program that includes the optimizations in Appendix A (plus a few
additional ones). We tested the Haskell program with both the depth-first strategy
and the breadth-first strategy.

2. A generic best-first branch-and-bound program, written in Eiffel, and instantiated for
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the 0/1 knapsack problem.

3. A specialized depth-first branch-and-bound program, written in C, for solving the 0/1

knapsack problem (converted from a program in [59}).

The times for the Haskell programs were approximately the same for the depth-first strategy
and for the best-first strategy because of the nature of the problem. The original Haskell
program was a factor of 30 times slower than the C program while the Fiffel program was a
factor of 15 times slower than the C program. However, the more optimized Haskell program
was a factor of 7 times slower than the C program or approximately twice as fast as the
Eiffel version.

These results are very preliminary: none of the programs has been optimized using
profiling information and only very limited datasets were used. While the performance of
the Haskell program is still poor with respect to the C program, the results are promising.
The Haskell program uses a generic branch-and-bound program while the C program is
specialized for the 0/1 knapsack probiem. There are also likely to be other optimizations

that could be applied to the Haskell version.
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