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ABSTRACT

Optimal modal load-frequency control (LFC) of an interconnected multi-machine power system
is considered in this thesis. Two considerations has been given to this problem which sets this thesis
apart from other studies involving the LFC. First, we make a practical assumptions that the power
demand is time varying and unknown, and that the system state is not available for feedback purposes.
This is in contrast to a number of past studies which treat the power demand as a constant, and use
'state feedback for control purposes. Second, a (sub)optimal modal control strategy is adopted for
obtaining (sub)optimum performance as well as systematic control over the location of the system'’s
eigenspectrum to achieve good transient response.

For the sake of our study, we consid¢ran iﬁtcrcbnnected single area multi-machine power system.
A mathematical model of the system is derived with the power demand modeled as an unknown
disturbance. A sequential design strategy is used for designing an optimal control law which would
assign the eigenvalues of the closed loop system to desired locations, and at the same time would
minimize a quadratic cost functional. This optimal modal controller is designed in a systematic
fashion by selecting the weights in the cost functional so that a single real or a complex conjugate
pair of poles are assigned at each stage. Once the appropriate weights are computed the control
strategy which would achieve the pole placement is computed and the next round of the sequential
design would then take place. Since this controller is based on state feedback, the unknown input
observer (UIO) theory is then used to correctly estimate the system’s state in spite of the time varying
and unknown power demand, Finally, a supplementary control law based on the estimate of the
power demand is designed in order to correct for the effect of load changes on the power system,

and maintain the system’s frequency as well as the tie line power at the scheduled values.

Simulation studies are used to illustrate the effectiveness of the proposed load frequency ccntrol

strategy.

vi
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CHAPTER 1

INTRODUCTION

Interconnection in large electric power systems is intended to make electric energy
generation and transmission more economical and reliable. However, with highly inter-
connected power grid many new dynamic power system problems have emerged, low
frequency oscillation, load frequency instabilities, to name a few Yu(1973).

The economical aspect of the large scale power system interconnections is manifested
through the remarkable reduction of spinning reserve or the stand by generating capacity
for maintenance or emergency use. The reliability of the interconnected system is also
enhanced by the capability of transferring power from one area to others within the system.
But in the meantime multiple inierconnections of multi areas make the system much more
vulnerable to instability. First of all, the reduction in spinning reserve of the individual areas
and secondly complexity of the multi area interconnections can be considered as the main

reasons for instability.
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There are variety of control problems that need to be addressed for efficient and safe
operation of interconnected power systems. Also, as new problems are emerging, additional
more sophisticated control is necessary for stable operation of the system. As an example.
voltage collapse phenomenon is a problem that has arisen due to the fact that power
transmission lines are being used almost at their full capacity in recent times.

One of the well known control problems in interconnected power systems is that of the
Load Frequency Control (LFC). This problem is the subject of our study. The purpose of
LFCissupplying a time varying load while maintaining scheduled tie line powers and system
frequency levels at the nominal values. In this thesis, we shall concentrate on modern control
approaches to LFC. Basically four category of control will be discussed. These are: optimal
control, pole placement, optimal modal control and decentralized control of power systems.

Modelling is a basic part of the modern control design. It is obvious that without a proper
model, we can not be successful in controlling the behavior of any system. Generally, for
application of modern control concepts, dynamical systems are described in state space
form. In linear system, time response of the system is in terms of eigenvalues and eigen-
vectors of the system matrix. To achieve desired response of a system without expenditure
of high control effort, optimal control is often employed, where a performance index or cost
function for the system is defined. Minimizing the cost function will result in the optimal
control law. Often the cost function is defined as a weighted quadratic function of state
variables and the control inputs. This the so called Linear Quadratic Regulator (LQR)

strategy.
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The dynamic aspects of LFC were first considered by Elgerd and Fosha (1970) using
optimal control theory. In that work a two area system (which is the simplest multi area
system) was modelled. The cost function that was to be optimized was in terms of frequency
and the tie power deviations. Optimal state feedback law was then used for LFC purposes.
Since the original work of Elgerd and Fosha (1970), a number of other optimal control
approaches has been proposed by other researchers. While in Elgerd’s work, linear feedback
controller is a function of all the state variables, Calovic (1977) proposes a PI controller law
in which the proportional part as well as the integral part is only a function of the output
variables. A similar approach to Elgerd’s work, was also proposed by Nanda and Kothari
(1987). In this approach a proportional and integral control strategy was used. Proportional
control is a function of all state variables of the system and the integral part has only output
terms.

Another approach to LFC using modern control theory concepts has been through use
of eigenvalue/eigenvector placement. In these approaches the transient response can be
better manipulated by appropriate placement of eigenvalue/eigenvector, however the
optimality is lost. In Porter and D’azzo (1977) work, an approach based on the entire
eigenstructure assignment is proposed.

Chow (1989), in his paper lists four different ways of pole placement for the power

systems :
a): Direct pole placement Algorithm ( Mayne and Murdoch (1970))
b) Indirect Pole placement Algorithm ( Solheim (1972)) where by Q

selection, we can shift the eigenvalues and minimize the

quadratic cost function of the system. This approach falls under
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the next category of approaches to be discussed as well.

c) Projective Output feedback Design ( Hopkins, Medanic and
Perkins (1981)) where uses the outputs (which are available)
feedback instead of using state variables ( which has to be
reconstructed )

d) Low Order Optimal Design ( Medanic (1988)) where instead
of full state observer only local dominant modes are used, and
pole placement design is to improve only the local dominant modes.
Thereby, some modes will shift from their open loop values.

On the other hand, Hsu and Huang (1990) present Eigenstructure Assignment Control
(EAC) in power systems. In this approach, the objectives are to change the both eigenvalues
and the eigenvectors of the system. It is well known that linear system solution can be
described in terms of eigenvalues and the eigenvectors of the system, so changing them to
desired values will completely control the response of the system. However, Shapiro (1975)
shows that it is not possible to assign all of the eigenvectors aﬁd only some of them can be
set to predefined vectors.

There is another class of approaches that are combination of eigenvalue assignment and
optimization together for control of the power systems. Yu (1983) presents the LQR design
with dominant eigenvalue shift, which uses sensitivity analysis of eigenvalues with respect
to the elements of a diagonal Q matrix to shift the dominant eigenvalue of the system.
Habibullah (1974) uses the canonical form of state space model and finds the similarity

transformation to place the eigenvalues of the system.
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Finally, since power systems are among few large scale systems, and due to their geo-
graphically distributed nature, they are ideal candidate for decentralized, and hierarchical
control applications. In a decentralized control scheme, the feedback control law in each
area is computed on the basis of measurements taken in tb-t area only. The advantages of
this operating philosophy are apparent in providing cost saving in data communications and
in reducing the scope of controlled area. Christensen (1987) formulates the LFC problem
as a parameter optimization problem. It is based on finding proportional and integral gain
of a PI controller to minimize the system transient and the control action such that the steady
state, dynamic limit, and area decentralization are met. A two-level LFC scheme was
introduced by Miniesy and Bohn(1971), where a local closed loop feedback for each plant
is calculated in the first level and the control law is supplemented with an open loop global
control, calculated in the second level. However the algorithm in the second level is based
on a linear search, which makes it computationally complicated. In Saif and Villaseca (1986)
the Interaction prediction approach is used which is computationally much simpler and the
nonlinear effects of the interaction between systems do not affect the main calculations.
More recently, Aldeen and Marsh (1991) method proposes the use of observer in each step
of load disturbance and a PI controller with proportional and integral terms of area control
error (ACE) to compensate for the steady state error of the frequency and the tie power
deviation.

A common feature of most of the optimal control approaches as well as the others is that:
1) load is assumed to be known and constant, which usually is not true and fluc-

tuations of the consumption specially in emergency situations can not be ignored.
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2) state variables have been used in control design which makes estimation neces-
sary. Because the load is generally an unknown variable, we need a special
estimator which can reconstruct state variables of the system in a varying load
demand system.

3) transient response of the system can not be easily adjusted and the only means
for getting a better response is through trial and error.

4) No systematic way of selecting the weight in the cost function is given in the
optimal control based techniques.

In this thesis, we shall address the above issues as follows: Optimal modal control strategy
(Saif(1989)) shall be employed to address the third and fourth issues. Optimal modal con-
trollers are a class of optimal controllers where in addition to minimizing a suitably selected
performance measure, they can also assign all the modes (or a subset of them) of the system
to desired locations. A number of researchers have considered this problem in recent years.
Amin (1985) and the Medanic (1988) works are capable of placing the real part of the
eigenspectrum, while Saif’s approach (1989) is capable of placing both the real and the
imaginary part of the closed loop eigenvalues. Saif’s approach is computationally more
attractive because it is based on aggregating the system to a first, or a second degree one
for placing a real or a complex conjugate pairs respectively, rather than the original ( possibly
high dimensional ) system’s equations which has to be dealt with in the other approaches.
In this approach, for large scale systems, it is possible to assign a subset of the closed loop
poles without altering the remaining ones. Thus we can decompose the system into sub-

systems of order one or two (depending on the real or imaginary eigenvalues respectively),
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and then we try to find the proper weighting matrix elements for the reduced order
subsystems. The results obtained from these single subsystems would then enable us to
arrive at the final solution of the original problem.

The above controllers would require the state of the system. Thus, there is a need to
address the first and second issues in this thesis as well. If the load of the system was known,
we would be able to estimate the state variables of the system and thereby realize the control
input. While conventional observers can be used to estimate state variables of the system
with known inputs, this approach would not be practical in LFC problem.

To address the decentralized state estimation task siljak(1978), Siljak and Vukcevic(1978)
and Sundarereshan(1977) proposed the local estimators which have to communicate with
one another. Ozguner(1977) addresses the problem of designing observers for a class of
multilevel hierarchical systems with two time scale property. Another approach based on
the design of unknown input observer UIO (Guan and Saif(1991)) was proposed by Saif
and Guan(1992). For a class of interconnections, this approach can result in a totally
decentralized estimators for large scale systems.

In this thesis, centralized as well as decentralized optimal modal control as well as
estimation will be employed for LFC problem. The thesis consists of four chapters and one
appendix. Chapter One is an overview to general ideas about linear optimal control ( LOC
), linear quadratic control (LQR) and different electrical power systems stabilizers with
introducing related works and approaches.

Chapter Two addresses the modelling of the electrical two-area system with supplementing
the exciter loop for the generators to take into consideration the effect of the exciters on the

response of the system.
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Chapter Three addresses the theoretical background for the optimal linear quadratic
control. In this approach the special technique used in changing the state variable weighting
matrix to accomplish the LQR is introduced.

In chapter Four optimal LQR technique is applied to two interconnected generators, and
different simulation tests are carried out.

Finally in chapter Five the effectiveness of the LQR approach in enhancing stability of
the systems is discussed and some advantages of that over other methods are reviewed. The

appendix provides the main system data which is not in the main text.



CHAPTER 2

MODELLING

In order to study or alter the behavior of a dynamic system via feedback control a proper
mathematical model is essential. There are various kinds of power system dynamics: high
or low frequency oscillations, large or small system disturbances and large or small electrical
power systems. Generally, there are a number of system components that are important to
the dynamic study of the power systems such as the hydraulic and steam turbines, syn-
chronous generator and the excitation system. For each of them, several basic models are
recommended, and can be adapted for the studies of specific problems. Among the basic
component models, that of the synchronous generator is probably the most important and
complicated.

The selection of the synchronous generator model for power system dynamic studies
depends not only on the nature of the problems itself, but also on the computational facilities
and control techniques available. Yu (1983) gives the first, second, third and higher order

synchronous generator models.
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First order model is based on Park’s equations which are fundamental equations for the
synchronous machine. In the second order model the torque relation is described by dif-
ferential equation. Third order model system takes intc consideration the change in flux
linkage of the field winding as well, while in high order model not only the field winding
voltage relation, but also, the armature and damiper winding voltage relations must be
described by differential equations.

Like generators, we have different models for governors, turbines and exciters, whose
dynamical model become more complex as a function of the degree of accuracy, specific
design and the dynamical study performed. For example in transient stability study we have
to use high order models, because the behavior of the systemin the firstcycles of the transient
response is the main concern. Since our concern in this thesis is to study a two-area system
with unknown load, in steady state, we’ll use an extension of the model recommended by
Elgerd (1971). Here we add an excitation loop to account for the effect of both megawatt
and megavar control on the two-area system.

We have to mention also that the model we develop applies to small deviations around
a nominal steady state. We use the model proposed by Elgerd mainly due to the fact that,
known inputs ( such as voltage and exciter voltage ) and unknown inputs ( such as the load
and tie line power ) are separated and the system matrices are independent of these values.
In addition to that, most of the outputs ( or state variables ) are measurable, such as power,

frequency, etc.

10



CHAPTER 2. MODELLING

This model can be put into state space formulation, which is suitable for modern control
application. It is assumed that a sudden change in the power demand will affect all the

systems in the area simultaneously, and thus frequency deviation is the same every where

in the system.

2.1) Power System Model

In this model we use the simple time delay transfer functions for the response of the
speed governor, turbine and the exciter.
2.1.a ) Speed Governor : (SG) .

Speed governor regulates the synchronous speed of the generator, which is translated
into frequency of the output electrical power and should be maintained to its nominal value.
Speed governor performs its control via main steam control valve, where any change of its
piston position change will increase or decrease the amount of steam flow into the turbine
and therefore accelerate or decelerate the main turbine shaft speed. Main piston position
change is performed by the change in hydraulic oil pressure of the piston. The relationship
between hydraulic oil pressure change to that of main piston position change is given through

the following transfer function:

Ax,(s)=Ap, ks 2.1.1)

1+ st,

kg, 1, - gain and time constants of (SG)
Ap. :hydraulic oil pressure change

Ax, :main piston position change for steam

11
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r :speed regulation due to governor action

Later we will deduct the effect of speed regulation from above equation.
2.1.b ) Turbine : g,(s)

Turbine converts the mechanical power of steam into the electrical power in the stator
winding circuit. Exciter winding is located on the main turbine shaft and provides the

electromagnetic field, necessary to induce voltage in the stator winding circuit. Thedynamics

of this subsystem is described by:

Ax (2.1.2)

Ap, =

Ap,, : generating power change by turbine.
k..t : gain and time constants of a non-reheat turbine

2.1.c ) Excitation : g.(s)

Exciter regulates the stator winding voltage, and therefore can be regarded as one of our
inputs, which can control output electrical power. Because of the exciter electrical nature
its response is faster than speed governor, and that makes it desirable in feedback control.
Usually generator voltage is compared to the nominal value and the difference ( voltage
efror ) is given to the exciter circuit as its input, and so exciter voltage increases or decreases
to compensate for the negative or positive voltage error. The excitation system is described

by:

12
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k

e

Ae = s, Au (2.1.3)

k,,t: gain and time constants of exciter
u :absolute value of generator terminal voltage

e : absolute value of exciter voltage

13
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2.1.d ) Control Area (External System ) : g _(s)

Control area is regarded as that part of the electrical system which is to be controlled.
Usually, the boundaries of the control areas coincide with those of the individual power
systems belonging to the network, but its concept is really a relative one. For example the
eastern and western power blocks in the US each contain many individual control areas. In
general, the difference between generation and load demand of the system is absorbed in :
1) change in kinetic energy of the system
2) change in load consumption due to the change in frequency (d)

3) change in tie power . So

Ap,—Ap,= j Wy, +dAf+Ap,, (2.1.9)
where:
P,, D4 - generating and demanding power
and we can write :
f+AFY Af ,
wﬁn ( f wbn l +2f- &in (2].5)

where :
Af=f-f (2.1.54)

f and f  :frequency and its nominal value

B
&

w, and wy, - Kinetic energy of the system and its nominal v

14
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If we differentiate the above equation and define w,;, as the inertia of the system ( h ), then

we get:
d, e A EPLICYN 2.1
by substituting (2.1.6) into (2.1.4) we get :
Ap,—Ap,= 2——(Af) +dAf+Ap,, 2.1.7)

fdt
If the line losses are neglected ,the incremental tie power can be written in the form :
Ap,, =1 (A8, - A3) (2.1.8)
where ¢’ is the synchronizing coefficient and §, , §, are the torque angles of the two machines.

Now by substituting the laplace transforms of the (2.1.8) in (2.1.7) and remembering that
the frequency is the time derivative of the torque angle , we arrive at :

(Ap,—Ap,—Ap,)g,(s)=AF (s) (2.1.9)
where :

(2.1.9a)

8,(5)= 1+s¢,

h : inertia constant

d : rate of the load change of load due to the change of frequency

i A
where kp =3 . Ip = 2‘;:;

15
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2.1.e ) Generating Power Change due to the Exciter : Ap,,

To notice the effect of exciter on the generating power of the system, we recall the

generating power change equation in (2.1.9) :

ue .
p,=—sind (2.1.98)

X,

where u and e are voltage terminal and exciter voltages respectively, x, is stator winding

impedance and 8 is the torque angle. By ignoring the change of p, due to the change of u

and by using (2.1.3), differentiation of the above equation gives:

I &
Apg,=pg,1+tsAu+pgaA5 (2.1.9¢)

where:

— _9op, _9p,

Pe=3e * Pr= 3%

by rearranging the above equation:

-4

Ap = 2ap X5 AusPEas 2.1.10
Do =7 p3,+tepg, +7: + P A (2.1.10)

2.1.f) Total Generating Power Change : Ap,

Now total generating power change of the system can be formulated as the difference
between turbine generating power change and the generating power change due to the
exciter. Exciter provides part of the generating power change needed to compensate for
the load change. Therefore,

Ap,=Ap,—-Ap,, (2.1.11)

16
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2.1.g ) Tie Power between systems : p,,
Tie power is one of the main parameters of the interconnected electrical power systems
that should be controlled and maintained in the nominal range of the individual systems.

We know :

P = %Ci‘-zsin(ﬁl ~-3) (2.1.12)

12

where u, , u, are terminal voltages of the two end machines and 9, , 8, are respective torque

angles and x,, is the interconnecting tie line impedance. So we can write:

apn'e aprie apn‘e -
Apri:".é;-l—Aul-l- au2 Au2+a(61_52)A(61—82) (2113)

If we define:

rate of tie power change by system No. 1 voltage change as:

apne u; o (-]
= =—sin(d, —
pml aul xlz Sln( 1 82)

rate of tie power change by system No. 2 voltage change as:

a8
P, = o, Xy l

rate of tie power change by torque angle difference change as:

— apn'e u:”’; ° o
Pra= d(3; - 8,) B Xi2 cos(8,~5)

then eq (2.1.13) becomes:
Ap,, = p,, Auy + p,, A, + p A8, — p,AB, (2.1.14)

17
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here "°" means nominal values.

2.1.h) Rate of Load Change due to the change of Voltage : p,,

As we considered ’’d’’, rate of the load change due to the change of the frequency, we
have to consider the rate of the load change due to the change of the voltage (p,,). For
example, electrical load of motors is dependent on both voltage and frequency. We can

define it as:

_ dpy
Pu=

2.2) State Space Formulation of the power system

2.2.a) Equations

At this point, we shall put the previous equations describing dynamic operation of the
interconnected system into a state space formulation. This formulation is suitable for
computer studies as well as application of modern control concepts.

l1a) Frequency Equation System 1 :

A8, =—AF, 2.2.1)

1b) Frequency Equation System 2 :
1
A3, =—AF, (2.2.2)
2a) Control Area Equation System 1 (Eq2.1.9):

1
AF, =k, (Ap,, —Apy — Ay — D uiAu,) (2.2.3)
1+st,

18
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2b) Control Area Equation System 2 :

AF, =k, ,— (Apgy —ADuz = @1 AD 2 — P4 AU,)

1+st,,
a,, :transmission coefficient of Ap,,, into system 2

3a) Speed Governor System | (Eq2.1.1):

L +st,,

k 1
Axel= £ (Apcl—;—A-fl)
1
3b) Speed Governor System 2 :

Aer =

ko 1
Ap_,——A
1 +st32( Pa™ fz)
4) Tie Power between Systems ( Eq 2.1.11) :
Ap ey = Py, Ay + p Alhy + P.sAS, — p,sAD,

5a) Generating Power Change in System 1 due to the Exciter in System 1 :

Apgzl =Eg¢l 1+ Au +pgalA8
tel

5b) Generating Power Change in System 2 due to the Exciter in System 2 :

ApgeZ p382A62

P gezm

6a) Total Generating Power Change in System 1 ( Eq 2.1.11):
Apg = Apy, = Ap,.,

6b) Total Generating Power Change in System 2 :

Ap,,=Ap,,,—Ap,.,

19
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7a) Turbine in System 1 :

kxl
Ap,, = 2.2.12
pgrl 1+St,|Ax“ ( [ )
7b) Turbine in System 2 :
k12
Ap ,=— 2,17
ngZ 1+St,’2Axe2 (2 2 ]3)

2.2.b) State Equations :
Now we write each of the above equations in state space form :

State Equation No.1 :

State Equation No.2 :

State Equation No.3 :

|

A'tel

kgl
—Axel +kglApcl --k—l-A-fl

wt

1

State Equation No.4 :
. 1 ng
Aer _.t;; _Ax22+k32Apc2—.k—2‘A-f2
State Equation No.5 :
) 1 1 — 1
Apgel = _;:Apgel +t—pgelk¢lAul +.t—_pgﬁlA81 +pg§lA-fl
e el el

State Equation No.6 :

20
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. I I — I
ApgeZ = —,—AngZ + .t—ngeZkeZAMZ + ‘t—ngEZAal + pgﬁZA-fZ
Le2 e e
State Equation No.7 :

, I k
Af, = —t—‘Afl + ?ﬂ (Apyy = APy = PuzAtty — PsAD, + PAD, — (P + P s )AU,)
pl pl
State Equation No.8 :
. 1 k2
Af,= -;—2Af2 + ‘t_; (Apg?. ~Ap 4, = a,P,, Aty — a,D,AD + P A, — (@12D s + P i) A)
P P

State Equation No.9 :

, 1 k,, 1 1 1
Apgl = _t_Ap + Axel + (— _“}pgel pgﬁlAfl pgelkelAul pgﬁlAsl

1] iel l

State'Equation No.10:

_ k,, 11 1 1
Ang Ap32+ Ax22+ P pgeZ pgSZAZ pgeZkeZAMZ__t—z—pgSZAal

lo 1o
2.2.c ) State Space Model:
According to the above equations, we can construct the state space model of two area system
as:
x=Ax+Bu+Ip 2.2.14)
where:( index 1 and 2 refer to machine No. 1 or No. 2 respectively )

State Variable :

E [A-fl A-fZ Aal ASZ Apgl Ap32 Apgel ApgeZ Axel Axe?] ’
(2.2.15)

Control Input :
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us=[Ap., Ap., Au, Auy)’ (2.2.16)
where unknown inputs :
p=[Ap, Ap.) 2.2.17)
Unknown Input matrix :
Kk,
T 0 0O 000 00 O00O0
r= " L (2.2.18)
0 -2 000000 00
[

22
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Known Input matrix :

/

0

S OO O

0

0
0
0
0

1

kP
—(pml +pdul)?_

pl
k2

~ 8P T
L2

23
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pl
—me
pl

k2
—(a,P, pduZ)?P—

p2

(2.2.19)
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System matrix :

[ k k., k l
L0 Sy Ep, B 0 o o 0 0
tp] tp] tpl tpl
1 k k k
0 - 0 —au—ﬁp,5 au—f}p,5 22 0 0 0 0
tp2 tp2 tp2 tp2
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
Pgan 1 1 1 kyy
- 0 - 0 —_ 0 ——+— 0 =0
Pesr ta I I Iy
Dga2 1 1 1 Kz
A=| O - 0 L 0 -— 0 —t— 0 2
pg52 te2 tt2 112 lez t12
1
by O B 0 o 0 -— o 0 0
tzl tel
pg&l 1
Le 0 - 0
0 Pya 0 . 0 0 ” 0
k 1
—1 0 0 0 0 0 0 -— 0
thgl tgl
k 1
0o - 0 0 0 0 0 0 0 -—
L Rytyy fyad
(2.2.20)

If we ignore the variation of systems terminal voltages, or in other words let both control

inputs A, and A, equal to zero, we arrive at the two area system model of Reddoch (1971)

where:
X = [Ap, . A1, AP 10X, A AD A, ) (2.2.21)
u=[Ap_.Ap.J) (2.2.22)
p=[Ap,,Ap,)l (2.2.23)
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B= 8! (2.2.24)

I'= (2.2.25)

._f’
0O O — 0
0 0 2H, 0

In fiure 1a, two-area system model and in figure 1b, elements of a single area power system

has been shown.

SUMMARY

In this chapter we described the main components of the two area system, containing
two interconnected generators. Each component input-output characteristic was formulated,
and then the equations of the two area system were constructed and rewritten into state space
model. The next step is to design a controller capabie of maintaining the system stability
and also providing desirable transient behavior with a unknown varying load demand. In
the next chapter we address the LFC problem, where we shall give theoretical background

in the design of modal controllers and estimators for the systems with unknown inputs.
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Figure 1a-Two-Area System Model

Tie Power Ex2
<

S “ Sz

Fex 1

T T2
Load | Load

Network

Unknown Input : Load , Tie Power

Known Input : Turbine , Exciter
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Figure 1b- Elements of a Single Area Power System
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P(td) : Tie Power Change / Torque Angle Change
P(tu) : Tie Power Change / Voltage Change

P(gd): Unit Power Change x Torque Angle Change

Y Load Change 1
R P(ed)
~——{ Governer | Turbine Control Area Freguency
OP Change 1
Exciter dL/dV
¥ 3 Voltage
Change
Unit No. 1 P(tu)
I P(td)

Unit No. 2 Frequency Change 2

[ : Integrator

dL/dV: Load change / Voltage change

OP: Hyraulic Oil Pressure  Change
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CHAPTER 3

BACKGROUND AND RESEARCH
OVERVIEW

In this chapter we shall study control techniques and implement them for the LFC to
ensure a stable and reliable operation under varying load demand. The control approach to
be used is based on LQR theory.

The linear quadratic regulator theory (LQR) is one of the most powerful techniques for
designing multivariable control systems, and has several desirable properties such as good
sensitivity and robustness behavior. The LQR problem is a multiobjective optimization task,
namely the regulation of the state trajectories and minimizing the control efforts (Saif 1989).
The elements of the weights on the states (Q) and the controls (R) are indicators of the
relative importance of each of them with respect to others. it is well known that the transient
behavior of the closed loop system can be modified by changing these matrices. Unfortu-

nately, there is no systematic way of controlling the transient behavior of the system through
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selection of appropriate Q and R. As aresult, selection of these weights has been a problem
for long time (Saif and Villaseca (1986)). In general Q and R elements are chosen as diagonal
positive (semi) definite matrices, but as we will see later these assumptions are not necessary.

The controller that we shall supply in this study will combine the minimization of the
cost functional of the system and pole placement of the eigenvalues simultaneously. This
is achieved through proper selection of Q and R, to satisfy both objectives. The control
design is achieved in a sequential manner. The sequential procedure amounts to aggregating
the system into smaller subsystems whose controller design is simpler to solve and the
individual solutions are added up to find the overall optimal control law and weights.

The controller obtained using the above procedure would require the availability of the
states of the system. As a result, estimation of the state is necessary for implementation of
this controller. It should be noted however, that standard estimation technique based on
Luenburger Observer or Kalman Filter assume that the inputs to the system are completely
known. However, as we have seen in the previous chapter this need not be the case. It is
clear from Chapter 2 that the two area system is influenced by the controlled inputs which
are obviously known as well as the load demand which is an unknown input to the system.
Therefore, a special type of estimator need to be used. The unknown input observer (UIO)
1s such an estimator. This is another unseperable part of the control system design.

In the following discussion, we shall briefly discuss the controller as well as the estimator
design. It should be noted that we shall not attempt to prove various results, and only the
necessary material for LFC is covered here. More details could be found in Saif (1989) and

references given there.
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3.1) Optimal Modal Linear Quadratic Regulator ( LQR )
Consider the following linear dynamical system:

X=Ax+Bu ., x(0)=x, 3.0
where x € R” and u € R™ are state variable and control input of the system. The standard

LQR problem objective is to find an optimal control law which would minimize the following

guadratic cost functional subject to (3.1.1).
1r= 2 2
7 =3 [T +nu i (3.12)

where Q and R are weighting matrices for state and input variables respectively.

The optimal control law for the above problem is given by Yu (1983))
u=-R"'B'px (3.1.3)
where p is the symmetric positive semidefinite solution of the Algebric Matrix Riccati
Equation (AMRE).
PA+A'P-PBR'B'P+Q =0 (3.1.4)

An alternative solution for AMRE can be found by defining Hamiltonian matrix H as :

H--[A 'BR-B] (3.1.5)
-0 —A'

if H has no eigenvalue with zero real part and (A, B) is stabilizable, then the solution of the
AMRE can be obtained as:
p=ba” (3.1.6)

where nxn matrices ’2’ and "b’ are given by :
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s

a={a---a)}

b=[b,---b,]
where V. is an eigenvector ( or generalized eigenvector ) associated with stable eigenvalues

of H and ’n’ is the order of system matrix A.
3.1.1) Real Shifting of Eigenvalues:

It can be shown that for any fixed R>0, by properly selecting of Q one can place the
entire closed-loop eigenspectrum to the left of any vertical line defined in the left hand side.

This can be done as follows:

We know that the closed-loop eigenspectrum of the system is given by

A.=A-BR'B'p (3.1.7)

wa if we select:
0=0-2eP" (3.1.8)
where Q is any initial weight matrix, P~ is the unstable solution of (AMRE) and ¢ is a real

number . Then
AA)=AA -BR'B'P)=A(A,)-2¢ (3.1.9)
Furthermore, the optimal control law that achieves this placement is given by
u=-R"'B'Px=-Kx (3.1.10)

where A, is the new closed loop system matrix, K is the control gain and P is the stable

solution of the AMRE obtained from the following Hamiltonian matrix,
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\ {A+a1 —-BR“B’J
A={""" , G.111)
-0 —(A'+e

Thus we can conclude that by appropriate selection of €, the real part of the entire closed-loop

eigenvalues can be shifted to any desired values in the left hand plane.
3.1.2) Placing a Subset of Poles:

In the previous section, we discussed the idea of shifting the entire eigenvalues. To shift
a subset of the eigenvalues the following approach which uses aggregation of the system

can be used. Consider the reduced-order (aggregated) 2/x2/ Hamiltonian system (/<n)

g S5p-l5t
ﬁ:[ A “BR-,B} (3.1.12)
-0 -A

here " (- - -) " refers to aggregated values such that :
AAYcA@)Y={A--- N A}
For a choice of Q ,suppose Q in (3.1.4) is selected as
Q=C'QC (3.1.13)
where C is an /xn, full rank matrix given by:
C={0M" (3.1.14)

where M is modal matrix of A with its first / columns being the eigenvectors
{V,---V,} corresponding to {A, - ~- A, }. Then for the given choice of Q, the eigenvalues of
H are those of H plus (n-1) eigenvalues A(A ) N A(A) and their corresponding mirror images

about the imaginary axis and

A=CAC* , B=CB (3.1.15)
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where C*=C*(CC*)™": Pseudo Inverse of C (Aoki 1968)

In summary, with the help of above results, we are able to :
1) find the optimum control gain.
2) shiftall eigenspectrum to the left of the imaginary axis by the amount of ¢.
3) With the aid of the previous results one can shift all or a subset of the closed
loop eigenvalues of the system. This subset of eigenvalues can have as few as one real
pole or a pair of complex conjugate poles in which case through repeated application
of the above procedures all of the eigenvalues can be assigned to different locations
in the left hand plane.
Next algorithm gives us the procedure to assign the closed-loop eigenvalues of the systems.
3.1.3) Optimal Modal Controller Design Algorithm (M. Saif 1989)
Step 1
Let A; = A, the sequential procedure starts at stage (i=0):
a) If a real open pole A, is to be placed at A, use transformation given in (3.1.15) to
obtain A; and B,.
b) If a complex conjugate pair —a+ j is to be assigned to ~o £ jv, use the trans-
formation below:

Suppose A in (3.1.14) be given by :

. _|—o+jP 0 ]
A_[ 0 P (3.1.16)

In order to work with real matrices consider the transformation L given by :
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5 5 ]
L=
[5 s (3.1.17)
where now A is given by :
A=L"'CAC'L =["°é BOJ (3.1.18)
and accordingly:
B=L"'CB (3.1.19)

c) If a complex conjugate pair —o * /[ is to be assigned to two distinct real locations

—v and —{, use the same transformation b) to obtain A; and B,.
Step 2

a) For a value of QA,~, construct 4 ; In (3.1.12), and obtain the unstable solution to the
AMRE (P") from (3.1.6).

b) Find the appropriate Q; =g/ to achieve the desired imaginary part Y and the new

real part of the eigenvalue d using the following relations:

R +p* -7 - o)
= 3.1.20
i (e, +e5) ( )
(352+y2)2 =q(e, +e,) (0 +P%) +g*(e,e; — e2) + (0 + 52)2 (3.1.21)
E =[e‘ ej =BR™'B' (3.1.22)
e, e
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Using the value of Q ; obtained perform Step 2 a).

c) Find the appropriate Q; = g/ to achieve one of the desired real poles {say —v) and

the other one ¢ by:

C[@%+vY) —2( - B
g= e (3.1.23)
0V =g (e, +e,) (@ + B+ (e, — e)) + (o + B) (3.124)

Step 3

Calculate the value of € in theorem 2 as

a) €= (| A, | = | A, [)/2; where £\, are the eigenvalues of H; with 0.

be=(ol-13]/2.

¢) Go to Step 5.
Step 4

a, b) Calculate the appropriate Q; for proper pole placement according to (3.1.8).
Stepd

a, b) Find the stable solution of the AMRE (13) corresponding to the Hamiltonian
system A, given in (3.1.11).

¢) Find the stable solution of the AMRE (P) corresponding to Hamiltonian system
H;in (3.1.12).
Step 6
Let Q. be the desired value of the weighting matrix that accomplishes the pole placement
for the aggregated system, then the value of this weighting matrix is

a, b) Q. =0,+2P (3.1.25)
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c) 0.=0, (3.1.26)
Step 7
Calculate K; given by
a, b) K,=R'B'P (3.1.27)
C) K, =R"'B'P (3.1.28)

Step 8

Use the following to obtain the desired weighting matrix, and the optimal feedback gain for

the original higher dimensional system,

a) Q.=C'Q0.C (3.1.29)
K.=K.C (3.1.30)
b, ¢) Q.=C'L"Q.L™'C (3.1.31)
K, =K.L'C (3.1.32)
Step 9
Let
A;,,=A,-BK, (3.1.33)
Step 10
If all the eigenvalues are placed, stop and find Q, as
0,= 20, (3.1.34)

and the optimal gain
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K =K, (3.1.35)

otherwise let i=i+1, and go to Step 1.
Remarks

In pole placement algorithm mentioned earlier , we have four possibilities:

- b.1 : real to real change ; real pole ==> real pole
-0 =~
b2 : complex shift change  ; complex pole ==> complex pole (equal imaginary part)

ot jp=>-atjp
b.3 : complex toreal change ; complex pole ==> two real poles
—atjf=-u-v
b.4 : complex to complex change ; complex pole ==>complex pole
-atjpf=-ctjy
Both cases (b-1) and (b-2), can be done unconditionally. ( except o.= 0 ). In case (b-3), we

can do it if two necessary conditions are satisfied. By using equations (3.1.23) and (3.1.24),

we construct the equation of fourth degree in ¢

a0° + b9’ +¢,=0 (3.1.36)
with the following coefficients:
2
ee,—ée
, = (—‘—1-—-252 (3.1.37)
(e, +e)
b,= -V + o + B* +2a,(v’ - 207 + 28%) (3.1.38)
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Cy = (02 + B + (V2 20 + 2B2) (0 + B%) + ay(vP — 20 + 2B?) (3.1.39)

The necessary conditions are:

If a,#0
a: A=bl-4a,c,>0
b: A =(-b,xA"H2a,)>0 (3.2.37)
If a,=0
C;
=>0 (b,20) (3.1.40)
b,

In case (b-4), also we can find the similar conditions. From (3.1.20) and (3.1.21), and with
the same procedures, we can find the coefficients of the fourth degree equation and the

necessary conditions to have a solution:

2
ee;—e
4(13 2)

=1- 14
a, v (3.1.41)
2 2
bl=2f—2(a2+ﬁz)—8(ele3~e§)w (3.1.42)
(e, +e3)
¢ =7 =207 +B) (B~ ¥ - o) - (0 +B) - 4B - ¥~ o)’ (e,e, - €D)
(3.1.43)

The necessary conditions are :

If a#0

a: A=bl-4a,c,20
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b: A =((-b,£A"2a)>0 (3.1.44)

If a, =0 ,the only condition is :

S.0 b, #0) (3.1.45)

1

Inequalities for A and A’ in both cases are complicated and can’t give a explicit inequality

in terms of parameters, but apparently for Y> B there will be no solution.
This will conclude the controller design using an optimal modal approach. However, as can
be seen from (3.1.3), the control law designed using this scheme requires the availability of
the power system state for feedback purposes. This however is rarely the case in practice.
As aresult an estimator capable of estimating the state of the system in the face of unknown
load demand variation is needed. The unknown input observer (UIO) is such a estimator
and will be presented in the next section. Again, only the necessary material for imple-
mentation of the estimator for LFC purpose will be covered here. Interested reader should
refer to Saif and Guan (1992), and Guan and Saif (1991) and references cited there for more
detail.
3.2 Estimator Design
Recall from (2.2.14) that the two area system can be described using the following state
space formulation:

X=Ax+Bu+Ip

y=Cx
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The output of the system is usually considered to be frequency and the tie power but as we
will explain it in the chapter four, to realize LFC, area control error of the system should be
taken as output of the system. In the last section, we ignored the effect of the unknown input
p (load ), and our basic assumption was that state vector X is available and equation (3.1.2)
gave the proper control input to find optimum performance index J (3.1.1b). With the
presence of p, we can’t use normal observers and we need a unknown input observer which,
with different load p, still can estimate state vector X. Suppose our time invariant system
can be represented as:

X=Ax+Bu+lp 3.2.1)
y=Cx=[0 IIx (3.2.2)
where xe€ R",ue R?pe R™ye R” arethe state, known input, unknown input and output

of the system respectively . Special form assumed for matrix C defined in (3.2.2) is not a
restrictive assumption, since as long as C is a full rank matrix, there exists a similarity
transformation that if applied to the system, will result the desired output matrix. The
existence condition for (UIO) states that for designing a stable observer it is necessary that:

rank(CT)=m with m<p (3.2.3)
3.2.1 Case 1 ( Number of unknown inputs are less than the outputs (m<p) )

Partition (3.2.1) and (3.2.2) as follows:

wkofohe/r]
x=|A, x+|B,ju+|T,p (3.2.4)
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Y| [0 lo-mup-m O
(yZJ - [0 0 Imxm (32’5)

A € R®™  A,e R®™™ A e R™

where:

Bl € R(hp)tq ,BZE R(p-ﬂkq »Bs e R™¢
I,e R" 7™ [I,eR*™™ TI,eR™

and the state vector x is partitioned as:

X; X
X=1%1=h (3.2.6)
X, Yy

and x, € R""* is the vector whose estimate is required. From the structure of the matrix C

and the necessary condition assumed above, it can be shown easily:

T
rank (rjzm (3.2.7)

From (3.2.7), without loss of any generality, we can assume D; is nonsingular, therefore the

following operator can be defined:
I 0o -1
T=lo [ —le“;‘ (3.2.8)
0 0 I

postmultipling (3.2.4) with operator T, yields :
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{gl "'rnl—;f: A, _rll—;g“i}
¥, -5, |=|A, - TI A,
. A,

u+| 0 lp (3.2.9)

)

(3, -r,r,*sg] (
N :

T

As a result of performing this operation, it is clear that in (3.2.9) the unknown inputs enter

only through the third row and the first two rows are independent of any unknown inputs.

Thus by defining:
A, =A,-TT'A, (3.2.10)
B, =B -TI}'B, (3.2.11)

The first two rows of (3.2.9) can be written as:

%, -Gy, =Ax+Bu (3.2.12)

§,-LIG'Y, =Ax+Bu (3.2.13)
By partitioning A, as :

A=[A, A, A] (3.2.14)

and some calculations, we armive at the following theorem:

Theorem: If the pair {A,,,A,,} is observable, the state of the dynamical system given in

(3.2.1) can be estimated by using the UIO. The estimate of the sta*z variable is given by:
1 N
X = + 3.2.15
X (0)“ (!}’ G2

w=Fw+ECx+Lu (3.2.16)

where w is the vector satisfying:
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and the remaining parameters are given as:

H=A,-MA)+(A, -MA,) ([, -MT)I7 (3.2.17)
G=(A,-MA)+@A, -MA,)M (3.2.18)
F=A,-MA, (3.2.19)

L=B,-MB, (3.2.20)

E=[G H] (3.2.21)

N=[M T,-MI,)I;] (3.2.22)

In the above equations, by properly selecting the estimator’s gain, one can assign the poles

of the F to appropriate locations. By combining the (3.2.16) and the (3.2.1), we arrive at:

B JEFEwL)

The equations (3.2.23) and (3.2.15) are the main equations of the UIO which describe its
function. In those cases where m=p, it is not possible to assign the eigenspectrum of the
observer to arbitrary locations, although a stable observer with fixed eigenvalues may be

possible.
3.2.2 Case I { Equal number of unknown inputs and the outputs ):

In this case, we assume that p = m. Let’s rewrite (3-2-1) in the following partitioned form:

AR AN R
= + + 2.24
(_V J Aa Az)\y) \B; rzlp G )

Note that in the above representation D, is full rank square matrix and therefore invertible.
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Theorem : The eigenspectrum of the UIO can not be arbitrarily assigned if p = m. In this
case an asymptotically state observer with fixed eigenspectrum of the form (3.2.30) would

exist, if and only if the following matrix is stable ( negative eigenvalues ).
F=A,-TT;A, (3.2.25)

In this case the estimator dynamics is given as in (3.2.16) and the state variable estimate is

given by:
%, =w+My (3.2.26)
with
L=B,-TI,I;B, (3.2.27)
E =JAT (3.2.28)
where
r=[ -I\;1 , r=C5 0 (3.2.29)

This concludes the design of the UIO. It should be noted that such estimators are useful in
large scale system studies. It is possible in certain large scale systems to design a totally
decentralized estimation scheme by treating the interconnections of the systems as unknown
inputs, Saif and Guan (1992)

Remarks:

We have to point out here that the two area system modelled in (2-3-14) to (2-3-20) has two
unknown inputs: AP, AP, , so even if we have only three outputs of the systems, by the
use of the UIOQ, we are able to estimate all ten state variables and thus feedback controller

is completed. For simplicity in our simulation, the state equations are so arranged such that
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the state variables of each power system be together, i.e:
x=[Af, A8, AP;, APg, AXy Af, A8, AP;, AP, AX.)' (3.2.30)

and A and B are also appropriately rearranged. To find a similar C as in (3.2.2), we will

assume that the last three state variables are the outputs:
1 0 0
Coapy=|{0amy 0 1 0 (3.2.31)
0 0 1

In the next chapter LQR and UIO techniques and their applicability are illustrated in the
simulation of the electrical two area system load frequency control in response to varying

load demand.
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CHAPTER 4

TWO AREA SYSTEM CONTROL

This chapter presents simulated results of two area system control by the LQR theory
discussed in the earlier chapter. The two area system selected is the same one considered
in Elgerd and Fosha (1970) work. The per unit(pu) of megawatt is 2000 MW.

As we have seen in chapter two, the dynamics of the two-area system can be written in
state space model which is the basic formulation in modern control theory. In that model
we had known inputs as well as unknown inputs. In chapter three we discussed the LQR
technique which is a powerful tool to stabilize the linear systems. This technique is able to
optimize the cost function and place the eigenvalues of the system to the desired locations.
For realizing the control input we needed all state variables, so we discussed the UIO to
estimate the states of the system with unknown inputs. For the purpose of the simulation,
two similar generator with a connecting tie line has been considered. The simulation was
carried on a digital computer using a sampling interval of t=0.01 sec. Two generators in the

system supply different loads which are assumed to be unknown. Terminal voltage is
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assumed to be constant and so the tie power becomes a function of torque angle only. Two
different initial conditions are applied to the systems and the load is changed for one of them
and the response of the systems are studied. To demonstrate the performance of LQR and
UIO theory two different tests will be conducted.
Part1: a) decentralized system with 4% step load in one of the and 2%

step load for the other

b) decentralized system with 2% triangle load in one of them and 4%

step load for the other
Part2: centralized two area system with a change of 10% load change in one of them.

In each of the experiments first control gain will be found by using opﬁmal modal LQR

| theory discussed in chapter three, then a corrective control signal is added to compensate
for the unknown input and finally the estimation of the state variables of the system will be
carried out to realize the control law. System parameters are given in this chapter and the

data for the generators are given in Appendix.

4.1 Modified Optimal Modal Controller

To accomplish the task of regulating the frequency and the tie power deviations, the
optimal modal LQR discussed in chapter three needs to be modified. The controller that
will be used here will be a proportional plus integral controller which would eliminate the
steady state error due to step load change. For more detail on the PI optimal modal controller

the reader is referenced to Saif(1992).
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We use area control error ACE (Elgerd (1970) and Nanda and Kothari (1987)) . which
is a combination of the measurable variables of the system as our output. Area control error

defined as the sum of the frequency and tie power change or

ACE =Ap,, +BAf @.1.1

where B is the coefficient determined by the parameters of the system. The reason for chosing
area control error as a control measure is described below, where we show that if the steady
state error of the ACE of the two areas approach zero, tie power and the frequency deviation

also will approach zero individually which is exactly the objectives of the LFC. In the steady

state :
Ap,.+B14f,=0 (4.1.2)
Ap,.,+B2Af,=0 (4.1.3)
but we know:
AP, =—0,AD;,, (4.1.4)

where a, is the transformation ratio of the tie power between machine one and two, and is

dependent on the different (Pu) values of the systems. The equations (4.1.2), (4.1.3) and
(4.1.4) will result in: |
Ap,., =Ap,.,=Af, =Af, =0 4.1.5)

which is exactly the objectives of the load frequency control.

The control lIaw to be used is defined as:
u=-_pr—-K, fACEdt (4.1.6)

Define :
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z

-y 4.1.7)

where y is assumed to be the area control error (ACE). Augmenting the above equation with
the (4.1.1) gives a PI controller design where:

X=Ax+Bu+Ip (4.1.8)

y=Cx (4.1.9)

To ensure that the above set of equations (4.1.3) and (4.1.4) is stable and steady state error
in response to the step load change becomes zero, the following conditions should be

satisfied: (Davison (1971))

(i) the pair (4 ,B) is stabilizable.

(ii) the matrix [.2_ f)jl is of full row rank.

Differentiating eq (4.1.8) gives:
X=Ax+Bu (4.1.10)
It is now desired to obtain the control law & such that the following performance measure

in minimized subject to eq (4.1.10)
1= .12
T=3 ] UXIG+1 8l (.11

the optimal control law becomes:
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U=—R_I-B_IF-X-=K§=[KP K,]_X—
= K,x +K,fzdt (4.1.12)

This control law can perfectly regulate the tie line power deviation as well as the frequency
deviation that would result as the load changes in a step like fashion. However, if we assume
a general time varying load profile, perfect regulation would not be possible. To compensate
for the unknown input effects on the system we add a Corrective part to the control input
solutions of LQR, that will be discussed now.

Corrective Control Unknown input observer is able to estimate the state variables of the
system, but compensating for the time varying loads is necessary to achieve better regulation.
The following method is used to correct for effects of the time varying loads.

Consider the power system model described as:

X=Ax+Bu+Ip (4.1.13)
If we define :
u=Kx+u (4.1.14)
in which u’ is a corrective control signal to account for the unknown inputs. Our system
now becomes :
X=Ax+B(Kx+u)+Ip
=(A +BK)x+(Bu +T'p) (4.1.15)

The first part of the equation on the right hand side is found from (4.1.12), so it is stable.
Next it is desired to find u” such that the unknown effect is compensated. In order to achieve

that, lets define a performance measure:
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min J =||Bu +Tp|f (4.1.16)

Expanding J, we have
J =(Bu +Tp) (Bu +Tp)
=B +([p))(Bu +p)

=u"B'‘Bu’+u"BTp+pTBu’ +(p) Tp).

(4.1.17)
Taking the derivative,
gi_=2B'Bu'+2B'I‘p (4.1.18)
The minimum occurs a ;a:_. =( which implies :
B'Bu’ =-B'Dv
u =—(B'B) 'B'Dv 4.1.19)
Thus our overall control will be :
u=Kx—-(B'B) B'Tp. (4.1.20)

If we can get a good estimate of p () ,then we can find the control input (4.1.20). To find

the estimate of unknown inputs, assuming that it is smooth enough, we use the discretized

state eqation of the system. Suppose our system is discretized into :
X, =AX,+Bu,+T'p, (4.1.21)

Thus we have :
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p,=T"(x,,,—A'X,-B"u,) (4.1.22)
where D" is the psudo inverse of D",

Algorithm:

In this section we summarize the all optimal modal LQR and UIO design procedure,

which will be used in our simulation. First consider equation (3.2.31):

G Yy

where w 1s a variable such that the state variable estimate can be found by:(eq 3.2.28)

. (1. (N
x—(o}w+(1)y (4.1.24)

and our control input is calculated by (4.1.20) as:
u=Kx—-(8'B) B'Tp (4.1.25)
where P is the estimate of the unknown input p that should be found. This estimation is

done by the discretized form of equation (4.28).

(x) =Ad("] +B,u, +Tp, +T,p, (4.1.26)
W+ ®

Now we are able to itemize the algorithm as follows:
1) Define the initial conditions of state variables, unknown inputs and

their estimations.(first iteration k = 1)

N
et

Find the descrete formulation of the equation (4.1.26)
3) Find the new value of x(k+1) from (4.1.26).
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4) Find the estimate of x(k+1) from (4.1.24)

5) Find the control input u(k) from (4.1.25)

6) Find the estimate of unknown input p(k) from (4.1.26), using the

estimate of x(k+1), estimate of x(k), u(k) found earlier.

7) Initialize the next step unknown input p(k+1) with p(k)

8) Start the next iteration. Go to step 3.
Selection of the time steps depends on several factors such as acceptable accuracy and the
unknown input waveform, however we have to keep in mind that smaller time steps requires

more computation and memory.

4.2) Simulation Studies

We are now ready to apply the previous concepts to LFC of a two area system. We shall
consider two control strategies: centralized and decentralized control.
4.2.1 Decentralized Control

For the state equations, we can use the same equations as before, the only difference is
that we have to define load and tie power between two systems as unknown inputs. State

equations for the single generator in the two-area system are determined as follows.

X, =AX;+Bu,+Tp, 4.2.1)
x,=[Af A8 Ap, Ap, Ax] (4.2.2)
u,=[Ap., Aul; (4.2.3)
p;=Ap, +Ap,,, 4.2.4)
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where index i refers to ith subsystem. The state equations from chapter two become (for

simplicity we have dropped the index i):

§=f (4.2.5)
ax, =Y -ax +k.ap. —Xea (4.2.6)
e tg (3 2 D. R f -
_ 1 1_ 1
Apge =-?Ap8¢ +t—p3‘k'Au +;—pgaA8+p86Af (42'7)
S| k,
Af == Af +-=(Ap, = Ap, — puAk ~ Ap,) (4.2.8)
P P

, 1 k, 11 1 1
Ap,=—7Ap,+TAx + (;-;)Apg, ~PAf TPk AU =T A (4.29)

where X, u are state vector and known input vector respectively and p is unknown input
VECtor.

In this experiment two identical power systems (thermal) was considered. The numerical
values describing each area model is given in appendix A. It is assumed that tie power is
measureable and the two areas have similar control laws. The open loop eigenvalues of each
area power system are located at:

—-13.2768
~0.7608 +2.9832i
-0.7608 —2.9832i

-1.0817

Openloop eigenvalues =
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Each area’s model was augmented as described in section 4.1 and the optimal modal con-
troller was then designed. It was decided to retain the modes of the system and place the

augmented mode pole for better speed of response. The desired closed loop poles decided

upon were:

(-1.7679+2.9833; )
—1.7679 -2.9833i
Desired closedloop eigenvalues = - 13.2817
—-1.0830

\ -1.0315

The optimal control law as well as the open loop system are given in this chapter. Notice
that since two identical areas are assumed, all the aforementioned values are the same for
each area. Next, an estimator with eigenvalues located at (-1, -1.1, -1.2) was designed for
each area. The numenical values of the estimators’ parameters are given in this chapter.
Finally the control system designed was tested under various conditions. As an example,
we increased the load 2 by 4% while increasing other load by 2%. Initial conditions for the
state variables are set at zero, but estimation initial values are all at 2 and those for the load
estimation are at 4. figure 1-2 show the load estimation of the two areas, and as can be
noticed the estimates follow the actual values rapidly. The speed of estimator depends on
its eignvalues locations and the time steps of simulation. In figure 3-5 estimations of the
two systems frequencies and the generation power change of system 1 are given. Again the
estimators follow the actual values in a short time. Figure 6-7 are the response of the closed
and open loop system 1, and shows that generation and main piston position approach to
the load demand. The same response for the system 2 is shown in figure 8-9. In the open

loop system, generation and the main piston position would not approach the load but it will
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be shared between the systems. Transient response time of the closed loop system can be
reduced by lowering the real part of the eigenvalues, but on the other hand the overshoots
of the system are increased too, so a compromise between these two factors should be made.
In figl10 and figi! frequency deviations of the system are shown. While in closed loop
system the frequency deviations approach zeros, in open loop system responses they indicate
steady state errors which depend on the loads of the systems. Tie power change in closed
loop system approaches zero (figure 12), which is as desired. When each area, in steady
state supplies its own load (figure 6-9) the tie power would approach zero.

In the second experiment, the load of the system No. 2 remains the same but the load of
system No. 1 is changed to a2 2% triangle form. Load and state variable estimators still can
follow the actual loads perfectly (figure 13-17). Generating power change and piston position
change (figure 18-19) of the closed loop show an steady state error. There are two reasons
to this: first, the corrective control signal is not capable of compensating the load change
effect on the system (B and D of the system are nearly orthogonal) and second, PI controller
gives an steady state error to ramp functions. Interaction of the systems results in the similar
responses in system 2 {figure 20-21). Frequency deviation of the systems also experience
a steady state error. This same effect is true for the tie power change, however the open loop

system response is much worse.
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generating power change No. 1 (pu MW)

frequency change No. |

figure 3- generating power change estimate versus actual values
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figure 5- frequency change No. 1 estimate versus actual values
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figure 7- closed loop versus open loop values
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figure 9- closed loop versus open loop values
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load 1 (pu MW)

load 2 (pu MW)

figure 13- load 1 estimate versus actual values
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figure 15- generating power change estimate versus actual values
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frequency change No. |
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figure 17- frequency change No. | estimate versus actual values
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figure 19- closed loop versus open loop values
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figure 21- closed loop versus open loop values
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figure 23- closed loop versus open loop values
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4.2.2 Centralized Electrical System Control

In this part two area system that was discussed in chapter two is simulated. Both areas
are the same as decentralized experiment, but in this case all estimation and control laws
are globally found. The same method of defining of PI controller and the corrective control
signal used in decentralized case, will be applied here too. Output vector is defined as the
area control error of the two systems and the corrective control signal compensates for the
unknown loads of the two systems. Estimation as well as control law is found for both
systems simultaneously, so a central feedback controller provides the LFC for the system.
Numerical values of the two area system are given at the end of this chapter.

The open loop eigenvalues of the two area system are:

([ -132644 )
—.4967 + 3.5220i
~.4967 —3.5220i
eigenvalues = -1.6223
—13.2895
-1.2953+2.5123i
\— 1.2953 -2.5123i

Two area model is augmented with the same procedure described in 4.1 and the optimal
modal controller was designed. To ensure a better performance for the closed loop system
the eigenvalues close to imaginary axis are shifted to the left. The new eigenvalues of the

system are:
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([ -132694
- 1.5+3.5217i
-1.5-3.5217i
-1.6235
cigenvalues = -1.0316
-13.2944
-1.3014+2.5136i1
-1.3014-2.5136i
\ -1.0742 J

Next, an estimator with eigenvalues located at (-1.1,-1.2,-1.3, -1.4, -1.5) was designed
for the system. All data about the estimation and the control law are given at the end of this
chapter. Finally the following experiment is carried out to test applicability of the controller.

In this test, the load of system 2 is increased by 10% and system 1 is operating no-load.
In figure 13-17 estimates of the load and some of the state variables estimation are given.
Similarto the decentralized case, estimators approach actual values in a short time. In+ontrast
to the decentralized experiment, availability of the tie power is not necessary, because tie
power is one of the state variables of the system. Generating power and the main piston
position change for the system 1 are given in figure 18-19, which shows they approach zero
(no-load). Open loop system again shares the load between two systems. The same variables
for the system 2 are given in figure 20-21, and as is expected, approach the load of the system
2 in the closed loop system. In figure 22-23, frequencies of both areas are given. Closed
loop system satisfies the LFC objective and retains the frequency level in steady state.
Finally, tie power change in fig24, shows that all LFC objectives are met in closed loop

system.
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figure 25- load 1 estimate versus actual values
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figure X7- generating power change estimate versus actual values

6 v - — v v v +

s T
z 5
Z 4F H E
= | ;
3 £ i
b=} :
z | ,
N 3t i 4
g i
5 2F ~
2 \
»
-'é 1 3 !i A
5 :
& v
3 :
=0 i 1
R/
i
-1 N 2 x 5 2 s i |
0 I 2 3 4 5 6 7 8 10
time (sec)
figure 28- frequency change No. 2 estimate versus actual values
5 > - v r + v .
oF
=
z ‘j
g ]
g
=
o
g
s -i0p 4
=
&
-15- 4
.m — z i 4
[ i 2 3 3 b 6 7 g 10

72



CHAPTER 4. TWO AREA SYSTEM CONTROL

frequency change No. |

generating power change No. 1(pu MW)

figure 29- frequency change No. | estimate versus actual values
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main piston position change No. 1(pu MW)

generating power change No. 2(pu MW)

TWO AREA SYSTEM CONTROL

figure 31- closed loop versus open loop values
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figure 33- closed loop versus open loop values
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frequency No. 2 (HZ7)

figure 35- closed loop versus open loop values
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figure 36- closed loop versus open loop values
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Centralized System Parameters

The parameters of the generator using the earlier equations are :

0 545 0 0 —-.545 0 0
-6 -.05 6 0 0 0 0
0 0 -333 333 0 0 0
A=l 0 =521 0 -12.5 0 0 0
6 0 0 0 -.05 6 0
0 0 0 0 0 -3.33 3.33
0 0 0 0 -5.21 0 —12.5

A 12.5)

C:”x 100000]
-1 0001 0O
o o0
-6 0
0 0

D=0 0
0 -6
0 O
L0 0.
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estimator _eigenvalues =

[ 2.0645
-.5513
~.5950
595
5513
—.1834
.1834
-.0618
| 0618

[—-1.0534
| 1.0534

—1.11608
—~3.5341
3.3216
3.3216
1219
| 2.0708

" 13.8849
44.1767
—41.5205
—~1.5243
| —25.8856

e
-12
-14
-16
| - 1.8
-.5513 -.595 595 5513 —~.1834
.8205 2920 —.1448 - 6116 .0692
2920 .3695 —.2656 —~.1448 0926
-.1448 -~ 2656 .3695 2920 —-.0650
-.6116 —.1448 2920 .8205 -.03
0692 0926 -.0650 -.03 .0248
-03 - 0650 0926 .0692 -.0174
2285 2076 —.1498 —.1465 .0398
—.1465 —.1498 2076 2285 —-.0245
7960 6262 —.3255 -3695 .16
-3695 -.3255 6262 7960 —.08
8051 0 0
15229 0 0
-2490 0 O
-2490 0 0
37088 0 0
-29763 0 0
- 10.0635
-19.0360
3.1130
—46.3606
37.2037 |
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(1834 — 0618 0618 ]
~03 2285 — 1465
~.0650 2076  —.1498
0926 ~—.1498 2076
0692  —.1465 2285
- 0174 0398  —.0245
0248  —.0245 0398
~.0245 2155 —.1833
0398 ~.1833 2155 |
~08 3498 —.1823]
16 ~.1823  .3498 |
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[ 5062
2.3361

—.9434
9477

| —2.3335

[ —13.0007

-43.3252
32.9138
4.1322

| 24.1392

-4391 -2151  .1171 3182
-1397 -.7609  .1159 6020
13130 -2.5278 .1831  —.0984
0482 3032  —-2.4049  1.4660
8186 2924  —5%°7  —1.1765]
93791  —53483  3.7031 ]
17.6577 —17.7960  7.9726
-2246 177179  -1.1829
37.4375 8142 19.8009
-36.7416 10.9219 - 14.7945]

Decentralized System Parameters

The parameters of the generator are :

0 545 0
-6 -.05 6
A=
0 0 -3.33
0 -521 0
0
0
B=
0
12,5
C=f1 1 0 0
0
-6
D=
0
Lol

o 1
0
333
-12.5
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-13.2768
—-0.7608 +2.9832;
~0.7608 —2.9832:

- 1.0817

eigenvalues =

[2.1231 -2166 -.7372 -.2176 1.4988]
~.2166 .2942 .2832 0542 -.4059
Q=|-.7372 2832 .5493 1419 - 4779
-.2176  .0542 1419 0403  -.1088
| 1.4988 —.4059 -4770 -—.1088 1.7185._

K =[-1.6369 .5318 .9529 2424 -1.3109|

—1.0028 0
N=| 36049 0
57862 O

[ 125352
L =| —45.0609
| —72.3278

K =[4265 .3007 .08 .1675]

4569 394  -.1730
F=|-26424 -14249 6218
| —2.6363 -22872 -23320

—12.6175 —4.7653
E =| 463596 18.0893
| 56.8647  30.6405

[ -1
estimator _eigenvalues = [ -1.1
-1.2

ormand

Domm————)
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SUMMARY

In this chapter simulation of the two area system and decentralized system has been carried
out. Control input is of the PI structure where state variables are the proportional part and
the area control error is used for the integral part. Least square error technique is used to
partially compensate for the unknown load. The responses of the systems show that load
frequency objectives are met and UIO is capable of estimating state variables disregarding

the unknown loads.
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CHAPTER S

SUMMARY AND CONCLUSIONS

This final chapter provides a summary of the thesis and outlines the major conclusions to
be drawn.
5-1 Summary

Chapter one gave the general definitions of LFC, LOC and LQR. A literature review of
some traditional and existing methods were briefly described. In addition, the need for UIO
as a part of control scheme was emphasized.

In chapter two the modelling of the electrical two-area system was fully described.
Modelling started with formulating different parts of the systemand then they were combined
to construct the state equations of the system. Load or interconnecting effect was d=fined
as unknown input in the systems.

Chapter three addressed the general ideas of LQR. The approach of changing state variable
weighting matrix Q to adopt the desired LQR was introduced. Aggregation to decompose
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the problem into first or second order system was used to facilitate the procedure of the
control. The UIO technique to estimate the state variables and load, needed for control input
was described.

In chapter four simulation tests on the two-area system were carried out. Simulation had
two parts. In the first part by using LQR method explained in chapter three, simulation tests
of the decentralized system for step and triangle load change was carried out, and the dif-
ference between open loop and closed loop systems were explained. Second part demon-
strates the responses of the centralized two-area system to the step and triangle load change.
5-2 Conclusions

In this thesis, an approach for LFC based on optimal modal LQR was introduced. In this
approach , the proper state variable weighting matrix is ffound analyticly to ensure robust
and stable response of the system in varying power demand. The accomplishments are listed
as follows:

a) Aggregation: By using this method we can divide the systems into subsystems and find
appropriate control input for each of those subsystems to get the desired LQR. Overall
control input and weighting matrices are the combination of those of the individual sub-
systems. Without using this technique we had to deal with complete order system which
involves a lot more calculations.

b} Unknown Input Observer: As we know in most of the real systems unknown inputs are
present. They can be load, noise or even the own system parameter changes, so the need for
the UIO is inevitable. The approach used for UIO eliminates the unknown input from
observer equations and enables us to use conventional observer to reconstruct state variables.

Necessary condition for UIO existence is that the number of the unknown inputs are less
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than that of the outputs. However in some cases as we did in two-area systems, we can
combine different unknown inputs into smaller groups which can help us to satisty the
necessary requirement.

c¢) Optimal Modal Linear Quadratic Regulator Control: The main purpose of this controller
is improving system response in different operating conditions. This approach is a multi-
objective controller, which minimizes the cost function of the system and places the
eigenvalues of the system simultaneously. While pcle placement tries to restrict the transient
time of the system response, optimization improves tiie transient response and the control
effort needed for the control.

5-3 Toward the Future

In the text we made the necessary assumptions for each of the techniques. Now the
questions can be raised as follows:
a) Unknown Input Observer : The number of urknown inputs is crucizal for the UIO, so if
the number of them can not satisfy the necessary condition, UIO can not be used. The
question for changing the necessary condition with at least a more relaxed one is standing.
b) Linear Quadratic Regulator Control: The questions regarding LQR are in three areas:
1) The choice of quadratic cost function is the usual selected one in modern approach. But
the search for other cost functions that ensure a better response for the system can be
promising.
2) Compensation of the unknown input effects for the control procedure is one other ne<;-
cssary objective. Otherwise we will not be able to compensate for its effect on the
system, and this can cause the detecriorating of the LQR solutions. This part of the

research also is the impertant part of the control.
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3) Necessary conditions for the feasibility of the LQR were outlined in chapter three and as
it was mentioned there, those necessary conditions do not lend themselves to an explicit
equation. This is the main shortcoming of this approach. Changing the control input

weighting matrix R, is another possibility that can help solve the problem.

85



APPENDIX

TWO AREA SYSTEM DATA

System Parameters : For the purpose of simulation a two-area system with the following

constants has been considered . It is supposed here that we have three state variables as our

output.

Terminal Voltages : (Kv)

u, =400
Nominal Frequency : (Hz)

f =60

Source Impedances : (ohm)
x,=0.15

Transmission Line Impedance : (chm)

Xz =1
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Transmission Factor :

a,,=-1
Exciter Voltages : (Kv)

E =06
Torque Angles : (Rad)

8, = /6

o, =1/3

Speed Regulations : (Hz/Mw)

n=24

Turbine Time Constants : (sec)

T,=0.25
Speed Governer Gain :

K; =20
Turbine Gains :

K, =0.05

Generators Time Constants : (sec)

TGI = 0.20

Exciter Gain

KEI = 20

Exciter Time Constants : (sec)
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Te, = 0.05

Inertia Corstants : (sec)

H,=7

Load Freq Regulations : (Mw/Hz)

D, =0.008

Load Voltage Requlations : (Mw/Kv)

Pdul = 0.005
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