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ABSTRACT 

Knowledge discovery in databases is the nontrivial extraction of implicit, previously 

unknown, and potentially useful information from data such that the extracted knowl- 

edge may facilitate deductive reasoning and query processing in database systems. 

This branch of study has been ranked among the most promising topics for database 

research for the 1990s. 

Due to the dominating influence of relational databases in many application fields, 

knowledge discovery from databases has been largely focused on relational databases. 

The gradual adoption of object-oriented database systems has expressed a need for the 

study of knowledge discovery from object-oriented databases as well. Object-oriented 

databases(O0DBs) are concerned with complex data structures and diverge greatly 

from relational database systems. In order to effectively conduct knowledge discov- 

ery in an object-oriented database, existing relational algorithms need be modified 

accordingly to take full advantage of the object-oriented data model. 

The attribute-oriented induction method has been successful for knowledge dis- 

covery in relational databases and we choose this method to study the new demands 

OODBs impose on a learning algorithm. In this thesis, we study the characteristics of 

the object-oriented data model and their effects on the attribute-oriented induction 

algorithm. We extend the attribute-oriented induction method to object-oriented 



paradigms, focusing on handling complex attributes, and present a algorithm for 

learning characteristic rules in an object-oriented database. We follow the least com- 

mitment principle and break down complex objects into primitive ones and then apply 

attribute-oriented generalization techniques. Learning in databases with a cycled class 

composition hierarchy is specifically addressed. 
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CHAPTER 1 

Introduction 

The computerization of scientific, business, and government activities produces an 

ever-increasing stream of data because every bit of information is typically recorded 

in a computer. This flood of raw data outgrows human abilities to analyze and 

calls for automated data analysis and knowledge extraction from databases[lO]. The 

study of this automated process, knowledge discovery, also known as data mining, has 

been ranked among the most promising topics for database research for the 1990s[20]. 

By learning from databases, interesting relationships among data can be discovered 

automatically, and the extracted knowledge may facilitate deductive reasoning and 

query processing in database systems. 

Due to the dominating influence of relational databases in many application fields, 

the focus of learning from databases has been largely targeted toward relational 
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databases and there have been proposed a number of successful methods. The at- 

tribute oriented-induction method for knowledge discovery in databases[2] is an ef- 

fective and efficient tool in relational databases as well as in extended relational and 

deductive databases. The past decade has seen the widespread acceptance of rela- 

tional database management systems(DBMSs) for business applications. However, 

existing commercial DBMSs, both small-scale and large-scale, have proven inade- 

quate for applications such as computer-aided design, software engineering, and office 

automation. A new DBMS-object-oriented database system- has been proposed, stud- 

ied, and constructed[7]. The new objected-oriented data model opens up a new topic 

in knowledge discovery in databases. 

Object-oriented databases(O0DBs) are concerned with complex data structures, 

such as those required to represent the parts of a document, a program, or a design. 

They diverge greatly from relational database systems in that the value of an attribute 

is allowed to be non-atomic, and that relationship between objects is via references 

rather than foreign keys. In order to effectively conduct knowledge discovery in an 

ob ject-oriented database, existing relational algorithms need be modified accordingly 

to take full advantage of the object-oriented data model. 

In this paper, we study the characteristics of the object-oriented data model and 

their effects on attribute-oriented induction algorithms. We extend the attribute- 

oriented induction method to object-oriented paradigms, focusing on handling com- 

plex attributes, and present the OOLCHR algorithm for learning characteristic rules 

in an object-oriented database. We conclude that the attribute-oriented method can 

also be used in object-oriented databases. We also examine the induction process in 

detail and present an asynchronous multiple-level ascension algorithm, Async* to 
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guarantee the correctness of the induction and to improve the induction efficiency. 

The organization of this paper is as follows. Chapter 2 introduces the primitives 

of knowledge discovery in databases and the relational attribute-oriented induction 

method. Chapter 3 gives a general description of the object-oriented database model. 

Chapter 4 summarizes our study of attribute-oriented induction in object-oriented 

databases and presents the OOLCHR algorithm. Chapter 5 discusses methods to 

guarantee the correctness of the induction process and to improve the induction effi- 

ciency, and the result is summarized in the Async* Algorithm. Chapter 6 concludes 

our study. 



CHAPTER 2 

Knowledge Discovery in Databases 

We introduce some theoretical issues related to knowledge discovery in databases in 

general, and the relational attribute-oriented induction method in particular. 

2.1 An Overview 

It has been estimated that the amount of information in the world doubles every 20 

months and the size and number of databases probably increases even faster. The 

computerization of scientific, business, and government activities ~roduces  an ever- 

increasing stream of data because every bit of information is typically recorded in a 

computer. This flood of raw data outgrows human abilities to analyze and calls for 

automated data analysis and knowledge extraction from databases[lO] . The study of 

this automated process, knowledge discovery, also known as data mining, has been 

ranked among the most promising topics for database research for the 1990s[20]. 
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2.1.1 Formalization 

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and 

potentially useful information from data. It can be characterized as follows[lO]. Given 

a set of facts(data) F, a language L, and some measure of certainty C, we define a 

pattern as a statement S in L that describes relationships among a subset F s  of F with 

a certainty C, such that S is simpler(in some sense) than the enumeration of all facts 

in F s .  A pattern that is interesting(acc0rding to a user-imposed interest measure) 

and certain enough(again according to the user's criteria) is called knowledge. The 

output of a program that monitors the set of facts in a database and produces patterns 

in this sense is discovered knowledge. 

The analysis and extraction of knowledge from large databases is a very impor- 

tant application field of machine learning. Since a database generally contains a 

large number of records and each record can be regarded as an example, the machine 

learning paradigm, learning from examples, has been the one used by many learning 

algorithms. From the viewpoint of machine learning, learning from examples belongs 

to synthetic symbolic empirical learning[l8] and can be defined as the process of rea- 

soning from the specific to the general. In the interest of our study in this thesis, 

learning from examples is interchangeable with induction or generalization. 

2.1.2 Algorithms 

Discovery algorithms are procedures designed to extract knowledge from data; they 

usually contain two steps. The first step is to recognize interesting patterns in data. 

Traditional numerical analysis and conceptual clustering techniques can be used[l, 151. 
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The second step is to describe the concept in a concise and meaningful manner, 

that is, to generate rules. Symbolic learning methods(synthesis) and explanation- 

based learning methods(ana1ysis) can be used independently or combined. In machine 

learning, these two processes are sometimes referred to as unsupervised and supervised 

learning respectively. Since very large databases abound with raw data, the inductive 

learning from examples(synthesis) has been widely used in knowledge discovery from 

large databases. 

The inputs to a learning algorithm may include a database, domain knowledge, the 

learning task, and some constraints for controlling the learning output. The database 

provides learning examples, that is, each instance is generally considered an example 

in the learning from examples paradigm. The learning task specifies the goal of one 

learning session, and the learning constraints lay down some limitations to the format 

and form of the final learned rule(the output). Domain knowledge(also called back- 

ground knowledge) may include a wide spectrum of human knowledge. The degree 

to which domain knowledge is used affects the applicability of a knowledge discovery 

algorithm. The use of domain knowledge to the extreme will produce a specialized 

learning algorithm, i.e., domain-specific algorithm, that will outperform any general 

method in its domain but will not be useful outside it. A good general-purpose 

learning system should provide a general facility for incorporating domain-specific 

knowledge into the induction process as an exchangeable package(ideal1y the domain- 

specific knowledge should be isolated from the general purpose inductive process)[l8]. 

The presencelabsence of this facility also reflects the flexibility of a learning system. 
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2.1.3 Types of Learned Rules 

The goal of knowledge discovery in databases is to generate knowledge represented in 

a high level language form. Two types of rules, characteristic rules and classification 

rules can be learned from databases based on the following two learning processes. 

Summarization(finding characteristic rules): Summarize class records by de- 

scribing their common or characteristic features. 

Discrimination(finding classification rules): Describe qualities sufficient to dis- 

criminate records of one class from another. 

Thus, the symptoms of a specific disease can be summarized as a characteristic 

rule, while a classification rule should be generated to distinguish one disease from 

others. 

2.1.4 Evaluation 

Discovery algorithms for large databases can be evaluated by the following criteria[8, 

91. 

Adequacy of the representation language: Knowledge representations such as 

frames and semantic nets are semantically rich but may lead to exponential 

increase in complexity to the induction process while the less structured rep- 

resentations such as attribute-value lists are more uniform. A choice is made 

according to what is symantically needed and the uniformity that is available 

to the representation. 
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Rules of generalization implemented 

Computa t ional  e f i c i ency  

Flexibility and extensibility: ease to be extended to discover descriptions with 

forms other than conjunctive generalizations and to include mechanisms which 

facilitate the detection of errors in the input data, and to provide a general 

facility for incorporating domain-specific knowledge into the induction process 

as an exchangeable package, and to perform constructive induction. 

The current research in generic algorithms focuses on the development of effi- 

cient incremental algorithms that are guided by expert knowledge[lO]. Some recently 

proposed learning algorithms were surveyed in [2]. 

These algorithms, when applied to large databases, are either low in computational 

efficiency or generate an overly large set of rules. The poor computational efficiency 

stems from the fact that these algorithms adopt the tuple-oriented approach which 

examines the training examples tuple by tuple and thus have a large search space. To 

reduce the size of the set of rules generated, some knowledge-guided control mecha- 

nism need be introduced into the learning process so that only interesting rules are 

generated in a well-formed format. The attribute-oriented approach to knowledge 

discovery in databases put forward in [2] represents a step forward in improving the 

learning efficiency and the quality of the learned rule. Experiments have shown that 

it is a very promising learning method for very large relational databases. The next 

section will introduce it in detail. 
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The Attribute-Oriented Induction Method 

The attribute-oriented induction method presented in [2, 111 is primarily targeted to- 

wards relational databases. Following the learning from examples paradigm, it applies 

an attribute-oriented concept tree ascending technique which integrates database op- 

erations with the learning process. This method substantially reduces the complexity 

of the database learning processes and can learn both conjunctive rules and restricted 

forms of disjunctive rules. 

Two algorithms, L C H R  and LCLR,  have been developed to learn characteristic 

rules and classification rules respectively. Since both algorithms utilize essentially 

the same generalization techniques, we concentrate on illustrating the procedure of 

L C H R  and all discussions hereafter will be with regard to learning characteristic 

rules. 

First of all, data relevant to the query submitted by the user is collected into one 

relational table using database operations such as selection, projection, and join. For 

each of the attribute in the table, there can exist a concept hierarchy. The concept 

hierarchy is where we incorporate higher level concepts in the learning process. Dif- 

ferent levels of concepts can be organized into a taxonomy of concepts. The concepts 

in a taxonomy can be partially ordered according to general-to-specific ordering. The 

most general point is the null description(described by a reserved word LLANY"), and 

the most specific points correspond to the specific values of attributes in the database. 

Usually, the concept hierarchies are provided prior to the learning process by domain 

experts. An example concept hierarchy is shown in Figure 2.1. Alternately, this 

concept tree can be represented in a textual form as shown in Figure 2.3, where the 
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ANY 

B.C.. . .. . . Ontario China India 

I 
Burnaby ... Victoria Ottawa Toronto Shanghai Nanjing Bombay 

Figure 2.1 : The concept hierarchy for Birthplace(graphica1 form) 

concept appearing after the ":" is a generalization of the concepts inside the curly 

brackets. We only use the graphical form when we examine the tree ascension tech- 

nique in Chapter 5. Since most concept hierarchies are structured like a tree, we use 

concept hierarchies and concept trees interchangeably hereafter. 

The goal of the learning algorithm is to represent the set of learning exam- 

ples(tup1es) in more general terms and thereby reduce the number of tuples to within 

a certain predefined value, the threshold, by using the following strategies. 

Strategy 2.1 If there is a large set of distinct values for an attribute but there is no 

concept hierarchy provided for the attribute, the attribute should be removed during 

generalization. 

Strategy 2.2 Generalization should be performed on the non-decomposable compo- 

nents of a data relation. 

Strategy 2.3 If there are many distinct values for an attribute and there exists a 
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concept tree for the attribute, each value in  the attribute of the relation should be 

substituted for by a higher level concept in  the learning process. 

Strategy 2.4 If the number of distinct values of an attribute is larger than the spec- 

ified threshold value, further generalization on this attribute should be performed. 

Strategy 2.5 If the number of tuples of a generalized relation is larger than the spec- 

ified threshold value, further generalization on the relation should be performed. 

In a relational database, the First Normal Form(1NF) is generally observed and 

each attribute is simply the non-decomposable component of a data relation. There- 

fore, Strategy 2.2 states the obvious. However, the principle is very important for 

databases that do not observe 1NF. We will discuss this further when we come 

to attribute-oriented induction in object-oriented databases in subsequent chapters. 

Strategy 2.4 limits the maximum number of distinct values for an attribute in the final 

learned result and Strategy 2.5 limits the maximum number of tuples in the final table. 

Strategy 2.1 corresponds to the dropping condition rule, and Strategy 2.3 corresponds 

to the climbing tree rule in machine learning. The concept tree ascending technique is 

the major generalization technique used in both attribute-oriented generalization and 

tuple-oriented generalization. Since generalization in an attribute-oriented approach 

is performed on individual attributes first and the learned rule is obtained by piecing 

together generalized at tributes, it greatly reduces the computational complexity of 

the induction method[2]. 

We now show this algorithm through an example. Suppose we have a university 

database containing information about students and we want to learn characteristic 
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(computing, math, biology, chemistry, statistics, physics):science 
(music, history, liberal arts, 1iterature):art 
(science, art) :ANY 

Figure 2.2: Concept hierarchy for Maj or 

(Burnaby , Richmond, Vancouver, Victoria) :British Columbia 
(Calgary, Edmonton):Alberta 
(Ottawa, Toronto):Ontario 
(Bombay):India 
(Shanghai, Nanjing):China 
(China, India) : Foreign 
(British Columbia, Alberta, 0ntario):Canada 
(Foreign,Canada):ANY 

Figure 2.3: The concept hierarchy for Birt hPlace 

rules of graduate students. The concept hierarchies for the relevant attributes are 

given in Figure 2.2, Figure 2.3, and Figure 2.4. By following the steps just introduced, 

we first collect data related to "graduate" into a relational table, as shown in Table 2.1. 

By Strategy 2.1, attribute Name is removed. We then examine the remaining three 

attributes. Each attribute contains many distinct values and is associated with some 

higher level concept in the concept tree of Figure 2.2, Figure 2.3, or Figure 2.4. We 

should replace the value of an attribute by its higher level concept in the concept tree 

(2.0--2.9):average 
(3.0--3.4):good 
(3.5--4.O):excellent 
(average, good, excellent) :ANY 

Figure 2.4: The concept hierarchy for GPA 
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to generalize its representation, for instance, from LLphysics" to "science" and from 

"Vancouver" to "British Columbia", using Strategy 2.3 and Strategy 2.4. The result 

is shown in Table 2.2. Suppose we have a threshold value of three in this example, 

and by Strategy 2.5, further generalization is needed. The final relational table is 

shown in Table 2.3. 

The output of the learning result is in order. Depending on how the learned 

knowledge is to be used, various transformations of the final table can be conducted. 

Put in English, the rule says, "a graduate is either a canadian with an excellent GPA 

or a foreign student majoring in sciences with a good GPA". Or we can represent the 

learned rule using predicate logic, as shown below. 

for any x, graduate(x)=> 

(Birth-Place(x)=Canada & GPA(x)=excellent) I 

(Major(x)=science & Birth-Place(x)=Foreign & GPA(x)=good) 

We may also leave the result in its tabular form for further study. In this thesis, 

we represent the final learning result in a tabular form together with an English 

interpretation. 

The attribute-oriented induction method can also be applied to learning classifi- 

cation rules. The difference is that in the extraction of classification rules, the facts 

which support the target class(e.g., "graduates") serve as positive examples, while 

the facts which support the other class(es) (e.g., "undergraduates") serve as negative 

examples. Since the learning task is to discover the concepts that have discriminant 

properties, the portion of facts in the target class that overlaps with other classes 
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I Fraser I 
I I I 

physics I Ottawa 1 3.9 1 

Name 
Anderson 

I A "  

I Gupta ( 
I I 

math I Bombay 1 3.3 1 

I " I I 

Wang 1 sta stics I Naniine. 1 3.2 1 

GPA 

3.5 
Major 
historv 

Table 2.1: The set of data relevant to "graduates" 

Birthplace 
Vancouver 

~ i u  

1 Maior I Birthplace I GPA I 

Monk 

I 

biology 
com~utine: 

Shanghai 
Victoria 

excellent 

good 

3.4 
3.8 

art 
science 

Table 2.2: A generalized relation 

I Maior 1 Birthplace 1 GPA 1 

B.C. 
Ontario 

excellent 
excellent 

1 science I Foreign I good I 

art 
science 

Table 2.3: Further generalization of the relation 

Canada 
Canada 

excellent 
excellent 
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should be detected and removed from the description of classification rules. For in- 

stance, suppose we want to learn a classification rule which distinguishes graduate 

students from undergraduate students. We can start the learning process as if we 

were learning two characteristic rules for graduate students and undergraduate stu- 

dents. In the process of generalization, we remove overlapping tuples that are shared 

by both graduate class and undergraduate class. The final learned rule for gradu- 

ate students will be discriminant due to the fact that relevant tuples belong to the 

graduate class only. 

The attribute-oriented induction method can be summerized in terms of the eval- 

uation criteria we introduced earlier as follows. 

Representation The learned rule can be represented in predicate logic which is 

adequate for most applications 

Rules implemented Dropping conditions and tree climbing 

Computational eficiency Many operations during the learning process can be 

carried out using database operations1. The reduction of the search space due to 

attribute orientation instead of tuple orientation greatly improves the efficiency 

Extensibility Allows disjunctive rules and constructive induction and the domain- 

specific knowledge(the concept hierarchy) can be implemented as an exchange- 

able package 

'Taking advantage of well-implemented database operations can be complicated and database- 
dependent. This issue is discussed at length in Chapter 6. 
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ALGORITHM LCHR; 
INPUT: (1) a r e l a t i o n a l  d a t a b a s e ,  

(2)  a s e t  of concept  t r e e s ,  
(3)  t h e  l e a r n i n g  t a s k ,  and 
(4) t h e  t h r e s h o l d  va lue(T)  . 

OUTPUT: A c h a r a c t e r i s t i c  r u l e  l e a r n e d  from t h e  d a t a b a s e .  
BEGIN 

S t e p  1. S e l e c t  t h e  t a s k - r e l e v a n t  d a t a  i n t o  t a b l e  P .  
S t e p  2 .  C a l l  Procedure  INDUCTION(P,T). 
S t e p  3. Transform t h e  f i n a l  r e l a t i o n  i n t o  a p r e d i c a t e  formula .  

END 

Figure 2.5: The LCHR algorithm 

We now give the formalization of the LCHR algorithm in Figure 2.5 and Fig- 

ure 2.6. 

The LCHR and LCLR algorithms are designed for learning characteristic rules 

and classification rules from relational databases. Therefore, both algorithms can 

only handle the well-formatted data stored in relational databases. With the wider 

application of database concepts, new database systems have emerged to suit the 

need of non-business data management, such as computer-aided design and office 

automation. These new generation database systems differ from relational database 

systems in quite a number of facets, and the need for knowledge discovery is also 

urgent to deal with the explosion of data. To conduct learning in the new database 

systems, the learning algorithm should take into account all the new features. On 

the other hand, existing learning algorithms have left much room for improvement. 

These two considerations are the motivation for our study of attribute-oriented induc- 

tion in object-oriented databases which will be presented in the following chapters. 

For clarity, we will refer to the LCHR as the relational attribute-oriented induction 
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PROCEDURE INDUCTION (P , T) ; 
/* P c o n s i s t s  of a t t r i b u t e s  A l ,  A2, . . . ,  An; d l ,  d2 ,  . . . ,  dn denote  
* t h e  number of d i s t i n c t  v a l u e s  of A l ,  A2, . . . ,  An i n  t h e  c u r r e n t  
* (working) t a b l e ;  and N t h e  t o t a l  number of t u p l e s  i n  t h e  t a b l e .  

*/ 
BEGIN 

FOR i := I TO n DO 
BEGIN 

WHILE d i  > T DO 
I F  t h e r e  does  n o t  e x i s t  a concept  t r e e  f o r  A i ,  
THEN remove A i  
ELSE r e p l a c e  each  v a l u e  of A i  by i t s  p a r e n t  i n  t h e  concept  t r e e  

and e l i m i n a t e  redundant  t u p l e s ;  
END ; 
WHILE N > T DO 

BEGIN 
S e l e c t  t h e  a t t r i b u t e s  c o n t a i n i n g  s u b s t a n t i a l l y  more d i s t i n c t  
v a l u e s  o r  w i t h  a b e t t e r  r e d u c t i o n  r a t i o ,  and r e p l a c e  each 
v a l u e  of them by i ts  cor responding  p a r e n t  i n  t h e  concept  
t r e e ,  and e l i m i n a t e  redundant  t u p l e s ;  

END 
END. 

Figure 2.6: The INDUCTION procedure 
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algorithm. 



CHAPTER 3 

The Object-Oriented Database 

Model 

In the past decade, there have been major changes in products for business applica- 

tions, including the widespread acceptance of relational database management sys- 

tems(RDBMSs). However, it is sometimes inefficient and clumsy to use existing com- 

mercial DBMSs for applications such as computer-aided design, software engineering, 

and office automation. These applications all involve complex structures and rela- 

tionships among structures that cannot be directly represented using the relational 

database model. A new DBMS-object-oriented database system- has been proposed, 

studied, and constructed[7]. 

Object-oriented databases(0ODBs) are concerned with complex data structures, 

such as those required to represent the parts of a document, a program, or a de- 

sign. They treat any real-world entity as an object and represent the entity in a 
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straight-forward manner. In this sense, the advent of OODBs brings about impor- 

tant methodological advantages, notwithstanding a lack of t heoretical importance. 

To date, there is no consensus about precisely what object-oriented means in general, 

and what object-oriented database is in particular, but an object-oriented data model 

should contain the following core concepts: object and object identifier, attributes 

and methods, class, and class hierarchy and inheritance[l6]. Object and object iden- 

tity define the structural object-orientation of a DBMS, that is, with objects as data 

structures. Methods are used to encapsulate the semantics of an object and charac- 

terize the behavioral object-orientation of a DBMS. Without loss of generality, in the 

next several sections, we will present a brief discussion on these core concepts. 

3.1 Objects and Object Identifiers 

Essentially all OODBs incorporate the two most basic features of objects: 

Object grouping: Objects can serve to group data that pertain to one real-word 

entity. For example, we can treat a document as an object which groups chapters, 

indexes, appendices, etc. into one entity, namely, a document. Chapters serve as 

attributes of the document object. In like manner, a chapter can be defined as another 

type of object which groups sections into one entity. The uniform treatment of any 

real-word entity as an object simplifies the user's view of the real world. This implies 

that the state of an object consists of values for the attributes of the object, and 

the values are themselves objects, possibly with their own states. This leads to the 

concept of complex attributes whose values are non-primitive objects. 
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Object identity: Objects can have a unique identity independent of the values that 

they contain. A system that is identity-based allows an object to be referenced via a 

unique internally generated number, an object identlifier, independent of the value of 

its primary key, if any. The adoption of object identifier facilitates the representation 

of the state of an object, namely, the state of an object is naturally represented as a 

set of identifiers of the objects which are the values of the attributes of the object. 

For performance reasons, if the domain of an attribute is a primitive class, the values 

of the attribute are directly represented; that is, instances of a primitive class have 

no identifiers associated with them. 

In a nutshell, an object is an aggregation of attribute-value pairs and the value can 

be an object of another type. Each object has a unique internal value to be identified. 

Complex Attributes and Methods 

In relational databases, an attribute corresponds to a column of a relation. In object- 

oriented databases, the domain of an attribute may be any class: user-defined or 

primitive. This represents a significant difference from the normalized relational model 

in which the domain of an attribute is restricted to a primitive class[l6]. In an 

object-oriented database, object attributes may have complex values, such as sets or 

references to other objects. There are three kinds of complex attributes: references, 

collections, and procedures. 

Reference at tributes, or associations, are used to represent relationships between 

objects. They take on values that are objects-that is, references to entities. Reference 

attributes are analogous to pointers in a programming language, or to foreign keys in 
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a relational system[7]. In our document example, the chapter attribute of a document 

object can be a reference attribute, i.e., it takes a pointer to a chapter object as its 

value. The ability to take an object as the value for an attribute greatly simplifies the 

modeling of a database and makes the modeling more straightforward and natural. 

From the viewpoint of knowledge discovery, it is more natural and convenient if we 

can pose a query regarding an entity directly instead of having to know the entity's 

components. 

The second kind of complex attribute, collections, is used for lists, sets, or arrays 

of values. The collections may include simple attribute values and also references. 

Operations are provided for creating, inserting, or deleting an element from a col- 

lection. Relational first normal form does not permit collection-valued at tributes; in 

contrast, many ob ject-oriented database systems allow collections. Thus, we diverge 

in an important way from the relational model on this point. Collection attributes 

reflect a real world need, for instance, to describe a person's hobbies(set), ordered 

preferences(list), etc. 

Derived attributes are those whose values can be defined procedurally rather than 

stored explicitly, by specifying a procedure to be executed when the value is retrieved 

or assigned. For example, we may store such personal information as birth date and 

age in a personnel database. The birth date will not change but the age does. It would 

be desirable to define a procedure for the age attribute so that it always represents 

the difference between the current date and the birth date. Derived data correspond 

roughly to views in the relational database literature, but procedural languages may 

define more complex derivations than views, and are generally used to define individual 

attributes rather than relations. Since knowledge discovery in databases is a read-only 
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operation to the database and does not change the state of the database in any way, 

derived attribute values, once retrieved from the database, can be treated just like 

regular attribute values. Derived attributes do not pose any special problem to the 

knowledge discovery process, so we will not discuss derived attributes further. 

Methods are procedures used in OODBs to encapsulate or "hide" the attributes of 

an object, providing the only interface to access the attributes. This encapsulation 

allows an implementation to be changed without affecting programs using a data type. 

The attributes associated with an object are private, and only an object's methods 

may examine or update these data; the methods are public[7]. Since knowledge dis- 

covery algorithms work on a copy of the data stored in the database and do not change 

the stored data or other implementations in any way, the methods do not effect the 

learning process and we will not discuss them further. 

3.3 Class 

Class is used to group together objects that respond to the same message, use the 

same methods, and have variables of the same name and type. Each such object is 

called an instance of its class. All objects in a class share a common definition, though 

they differ in the value assigned to the variables[l7]. 

Briefly, classes define the type of objects. Several meanings can be associated with 

class: 

A class defines an object type or intent-the structure and behavior of objects of a 

particular type. The intent includes structure(that is, the attributes and relationships 
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in which objects having this type can participate) and behavior(that is, the methods 

associated with the type). 

A class defines an extent-the set of objets that have a particular type. In some 

object-oriented database systems such as Objectstore, such an extent has to be ex- 

plicitly defined as an attribute in this class.The concept of classes is similar to the 

concept of abstract data types with some additional properties. 

In an object-oriented database scheme, it is often the case that several classes are 

similar. It would be desirable to define a representation for the common variables of 

these classes in one place. To do so, we place classes in a specialization hierarchy, 

the class hierarchy. In the hierarchy, the child of a class is a subclass of this class. 

A subclass inherits all the attributes and methods of its superclass and can define 

its own attributes and methods. If a class inherits attributes and methods from 

only one class, this inheritance is called single inheritance. Otherwise, it is called 

multiple inheritance. In a system which supports single inheritance, the classes form 

a hierarchy, called a class hierarchy. 

There exists another kind of hierarchy relating to classes, the class composition 

hierarchy. The fact that the domain of an attribute may be an arbitrary class gives 

rise to the nested structure of the definition of a class: a class consists of a set of 

attributes; the domains of some or all of the attributes may be classes with their own 

sets of attributes, and so on. This definition of a class results in a directed graph of 

classes rooted at that class, the class composition hierarchy. This hierarchy captures 

the specialization relationship between one class and its subclasses. We will give an 

example class hierarchy and an example class composition hierarchy shortly. 
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3.4 An Example Database 

To illustrate the concepts we just introduced, we establish a database containing 

information of professors and graduate students in a graduate school. We first of 

all define a class called Person, and then define Professor  and Graduate to be two 

subclasses of Person. There exists a single inheritance from Person to Professor  

and from Person to Graduate, that is, Professor  and Graduate inherit attributes 

and methods from Person. Since class Professor  contains a reference attribute, 

Student, there should be a link in the class composition hierarchy to reflect this. The 

class hierarchy and class composition hierarchy for the classes we defined are shown 

in Figure 3.1 and Figure 3.2 respectively. In the class hierarchy, the title on top of a 

box is the name of the class; the names inside a box are attributes defined for that 

class. A link between two boxes indicates that the lower class is derived from the 

upper class; the derived class inherits all the attributes and methods of the base class. 

In the class composition hierarchy, the names atop and inside a box bear the same 

meaning as in a class hierarchy. The link between an attribute in one box and the 

title of another box indicates that the value of this linked attribute is an object of the 

linked class. 

Each of the three classes are defined as in Figure 3.3. We use a syntax similar to 

that of C++ and Objectstore for the definition. In the definition, we assume s t r i n g  

is a primitive type for character strings. The construct Set<ElementType>SetName 

defines a set named SetName whose elements are of ElementType; The construct 

List<ElementType>ListName defines a list named ListName whose elements are of 

ElementType. We omit all method definitions in our class definition. 
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Person 

Name 
Birt hPlace 

Age 

Professor Graduate 

TeachPref 
Student 

Figure 3.1: The class hierarchy 

Person 

Birthplace 

Professor 

I Student Graduate 

CoursesTaken 

Figure 3.2: The class composition hierarchy 
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Class Person 

.t 
protected : 

string Name; 
string Birthplace; 
int Age ; 

>; 

class Professor:public Person 

t 
List<string> TeachPref; 
SetCGraduat e*> Student ; 

>; 

class Graduate:public Person 

int GPA ; 
Set<string> CoursesTaken; 

1; 

Figure 3.3: The class definition 
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Table 3.1: Instances of class Professor  

Oid 

p l  
p2 
p3 
p4 

The TeachPref attribute of class Professor  indicates a professor's teaching pref- 

erence, i.e., which courses he/she prefers teaching, and is a list of course numbers; 

we make TeachPref a list to differentiate among a professor's preferences. The 

CoursesTaken attribute of class Graduate is of se t  type since a student may have 

taken a number of courses, and there is no particular reason to order them. The 

Student attribute of Professor  is a set of pointers to instances of class Graduate, 

reflecting the facts that a professor may supervise more than one graduate student 

and that a graduate student may be an instance of a class of arbitrary structure. 

Now we can populate our example database with objects. Class Person is used as a 

base class only, therefore does not have any instance. Table 3.1 shows the instances of 

class Professor,  and Table 3.2 shows the instances of class Graduate in our database. 

For brevity, we still list database objects in tables similar to how we list tuples in a 

relational table; the differences are, in addition to showing all the at tribute-value 

pairs, we also show the object identities(0ids) and the values for reference at tributes 

are oids. We use {) for enclosing elements of a set and [] for enclosing elements of a 

list. 

Name 

Ghandi 
Roberts 
Gibson 
Tanaka 

The example database, though very simple, covers many of the OODB concepts 

we have discussed. The next chapter will examine the effects of OODB features on 

Graduate 

{g3,g4) 
{gl,g2) 

{g5) 
{g6) 

TeachPref 

[600,800] 
[652,653] 
[601,750] 
[800,801] 

Birthplace 

Bombay 
Ottawa 
Calgary 
Tokyo 

Age 
45 
29 
30 
49 

Salary 

39000 
54000 
33000 
49000 
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I Oid I Name I Birthplace I Age / GPA I CoursesTaken 

Table 3.2: Instances of class Graduate 

the attribute-oriented induction method and extend the relational attribute oriented 

induction method to object oriented data model in general. 



CHAPTER 4 

Attribute-Oriented Induction in 

OODBs 

In this chapter, we extend the relational attribute-oriented induction method to 

object-oriented databases. We will study the impact of object-oriented features on 

the method and propose algorithms for the extension. 

4.1 General Discussion 

Before we begin discussing the impact of complex attributes and class inheritance to 

the induction, we take a look at the general procedure of induction in an OODB. 

In a relational database, we start learning by collecting relevant data into a re- 

lational table using selection, projection, or join operations provided by the query 
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language; namely, we make a copy of the data portion in the database that are rel- 

evant to our learning task and the database remains intact. We should abide by 

the same principle in an OODB. However, in an OODB, instances are grouped into 

classes and related objects of different classes are connected through references, i.e., 

oids, which act as a counterpart of join in the relational sense. Attribute projection 

may not be supported in an OODB. Therefore, the "relevant data" returned from 

a query into an OODB is generally a set of oids pointing to instances of a specific 

class-the queried class. Relevant as well as irrelevant attributes of objects of this class 

can be accessed by dereferencing the oids in this set; attributes of related objects of 

other classes are accessed through reference attributes. For example, the query "select 

professors who are aged between 25 and 50" can be written in Objectstore as 

Set<Professor*> se lec tedprofs ;  

se lec tedprofs  = Professor::extent[:(Age>=25) & (Age<=50):] 

Here, se lec tedprofs  is defined as Set<Professor*>, i.e., what is returned is a 

set of oids pointing to instances of class Professor  whose ages are between 25 and 

50. If we assume that the relevant instances are as in Table 3.1, then 

se lected-profs  = (pl ,p2,p3,p4) 

After obtaining object instances relevant to our learning task, we may start the 

induction process. The basic strategies of attribute-oriented induction introduced in 

Chapter 2 are still applicable when the induction is conducted on an attribute whose 

values are of a primitive class. Since attribute projection may not be supported in an 

OODB, we encounter some technical differences here from in a relational database. 
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"Attribute removal" simply means that this attribute is no longer of interest to in- 

duction, and we can ignore its values when we interpret the induction result. 

In the object-oriented database model, no two object instances are equal even if 

they have identical values for each of their attributes, because their oids will never be 

the same. The relational attribute-oriented induction method is value-based. In an 

object-oriented database, when we judge whether two object instances are "merge- 

able" in the relational sense, we only compare values in the relevant attributes, ignor- 

ing the oids. When checking whether two reference attributes have equal values, we 

see if the composing attributes of the pointed object instances are equal instead of 

comparing the oid values of the two reference attributes. Irrelevant attribute values 

are not compared. If two instances have identical values for each and every task- 

relevant attribute, one of them is considered redundant even though their oids are 

different. To "merge" two instances, we simply delete the oid of one of them from the 

class extent. Subsequent examples will demonstrate these. For brevity, we will not 

show values of irrelevant attributes; only values of relevant attributes and oids will be 

listed. 

Example 4.1 Characterize professors in relevance to Age and Birthplace with thresh- 

old value of 2. 

Suppose the relevant instances of class Professor gathered is as in Table 3.1. In 

this learning task, only attributes Age and Birthplace are relevant; other attributes 

are ignored. By assuming the concept hierarchy for Age in Figure 4.1 and the concept 

hierarchy for Birt hPlace in Figure 4.2, we generalize on Age and Birthplace. Similar 

to in relational databases, we replace each concept with its parent in the concept 
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(20--29):twenties 
(30--39):thirties 
(40--49):forties 
(50--59):fifties 
(60--69):sixties 
(twenties):young-age 
(thirties, forties):mid-age 
(fifties, sixties):old-age 
(young-age, mid-age, old-age):ANY 

Figure 4.1: Concept hierarchy for Age 

(Burnaby, Richmond, Vancouver, Vict0ria):British Columbia 
(Calgary, Edmont0n):Alberta 
(Ottawa, Toronto) :Ontario 
(Bombay):India 
(Shanghai, Nanj ing) :China 
(China, India) :Foreign 
(British Columbia, Alberta, 0ntario):Canada 
(Foreign, Canada) : ANY 

Figure 4.2: The concept hierarchy for Birthplace 

hierarchy and delete redundant instances. After generalization, we get the result as 

shown in Table 4.1, which says that "we have young professors born in Canada and 

middle-aged professors born outside of Canada". 

4.2 Complex Attributes 

We will discuss the generalization of collection attributes and reference attributes in 

this section. In real applications, these two categories of complex attributes may 
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Table 4.1: Result for Example 4.1 

Oid 

p2 
p l  

be mixed. A collection attribute can have elements of pointers to another class; a 

reference attribute can point to a class consisting of collection attributes. We first 

discuss each category separately, and then present the integrated algorithm in the last 

section. 

4.2.1 Collection Attributes 

Birthplace 

Canada 
Foreign 

The common characteristic of set, list, and array is that they are non-atomic; they 

all have subcomponents. Each subcomponent, or element, of a collection attribute 

represents a concept itself, so a collection attribute can be regarded as a compound 

concept expressed in terms of a number of subconcepts. Strategy 2.2 in Chapter 2 

states Generalization should be performed on the smallest non-composable components 

of a data relation. Here, though we are not dealing with a data relation, but a class 

having complex attributes, the least commitment principle is still valid. Therefore, 

we have 

Age 
young-age 
midage 

Strategy 4.1 Generalization of a collection attribute should be performed on its com- 

posing elements and the generalized concept for the collection is expressed in terms of 

its generalized elements. 
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(2.0--2.9):average 
(3.0--3.4):good 
(3.5--4.O):excellent 

{average, good, excellent) :ANY 

Figure 4.3: The concept hierarchy for GPA 

(600,601,602,603):~heory 
(650,651,652, 653) :A1 

{700,701,702,703):~rogrammin~ Languages 
{750,751,752,753):DB 
{800,801,802,803) :Architecture 
{~heory,~~,~rogramming Languages, DB, Architecture):ANY 

Figure 4.4: Concept hierarchy for CourseTaken and TeachPref 

We first take a look at  set attributes. Operators are provided for adding and 

deleting an element to and from a set. Two sets are equal when they contain identical 

elements. In our example database, the CoursesTaken of class Graduate is of set 

type; its value is a set of character strings. The following learning task involves a set 

attribute. 

Example 4.2 Characterize the graduates in relevance to CoursesTaken, Birthplace, 

and GPA with threshold of 2. 

Assume the set of data relevant to this learning task is as shown in Table 3.2, 

and the concept hierarchies for Birthplace, GPA, and CourseTaken are as shown in 

Figure 4.2, Figure 4.3, and Figure 4.4, respectively. 

The domains of attributes Birthplace and GPA are primitive classes, and their gen- 

eralization can be done directly based on our discussion in the last section. CourseTaken 
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Oid 

g 1 
g2 

Table 4.2: After the first round of generalization 

g3 
g6 

Birthplace 
B.C. 

Ottawa 

Table 4.3: The learning result 

India 
China 

Oid 

g l  
g6 

is a set attribute and its generalization is unlike an attribute with a primitive class 

GPA 
excellent 
excellent 

domain. By Strategy 4.1, we should generalize on each element of the set. We first 

CoursesTaken 
{ Architecture,Theory ) 
(Theorv.Architecture) 

good 
good 

Birthplace 
Canada 
Foreign 

replace each element in the set with its higher level concept by ascending the concept 

~ A I , D B ~  
{AI,DB) 

hierarchy by one level; we then eliminate redundant element(s) in the set caused by 

GPA 
excellent 

good 

the generalization. This result is shown in Table 4.2. Since the number of instances 

CoursesTaken 
{Architect ure,Theory ) 

{AI,DB) 

is still greater than the threshold, further generalization is needed. We conduct one 

more round of generalization on Bi r thp lace  in like manner and get the final result 

in Table 4.3. 

The rule states that a graduate student is either a Canadian-born student with 

excellent GPA who has taken courses in Architecture and Theory or a foreign-born 

student with good GPA who has taken courses in A1 and DB. 

The next example illustrates induction on list attributes. 
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Table 4.4: The final learned rule 

Oid 

p l  
p2 

Example 4.3 Characterize professors in relevance to Age and TeachPref with thresh- 

old of 2. 

Suppose the concept hierarchy for Age is as as shown in Figure 4.1[2], and the 

concept hierarchy for TeachPref is as shown in Figure 4.4. By Strategy 4.1, we 

generalize on each element of it by ascending the concept tree. There are two different 

points in generalizing a list attribute: identical elements after generalization are not 

reduced to one, and concept substitution does not change the order of elements in 

the list. Two lists are equal only if their corresponding elements are equal pairwise. 

The learned rule is shown in Table 4.4. The learned rule indicates that a professor 

is either middle-aged and prefers teaching A1 and DB courses or is old and prefers 

teaching Architecture and Programming Languages courses. 

Age 
midage 
old-age 

Some object-oriented database systems also allow array attributes. From the 

view point of attribute-oriented induction, an array can be treated as a multiple- 

dimensional list, and the induction method we discuss here regarding lists can be 

applied to arrays as well. 

TeachPref 

[AI,DB] 
[Architecture,Programming Language] 
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4.2.2 Reference Attributes 

Reference attributes point to objects of another class that can be regarded as a concept 

grouping. The generalization of a reference attribute is therefore the generalization 

of subconcepts that make up the pointed class. Therefore, we can derive the general- 

ization strategy as follows. 

Strategy 4.2 Generalization on a reference attribute is conducted on each composing 

attribute of the object class being pointed to. 

This is similar to how we handle collection attributes. However, since the objects 

being pointed to may be of a class that contains reference attributes as well, we may 

have to apply the above strategy several times. By the least commitment principle, 

generalization should start on the finest concepts in order to guarantee correctness. 

This means we may have to keep on dereferencing pointers until we reach a non- 

reference attribute. The class composition hierarchy contains the information that 

will guide this pointer dereference. When there exists a link from an attribute in one 

class to another class, and when this attribute is relevant to the learning task, this 

link(pointer) should be dereferenced, that is, generalization moves on to the referenced 

class. No more dereferencing is needed when we have come down to a leaf class in a 

class composition hierarchy. 

Example 4.4 Characterize professors in  relevance to their B i r t h p l a c e ,  TeachPref ,  

and Studen t  with threshold of 2. 

Again, we assume the relevant instances of class P r o f e s s o r  and class Graduate 

are as shown in Table 3.1 and Table 3.2. Here, S tudent  is a reference attribute; it 
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Table 4.5: the final result 

Oid 

p4 
p2 

contains pointer(s)(oids) to instances of class Graduate. Each instance of Graduate is 

further decomposable to several components, so generalization on attribute s tudent  

equals to generalization on Bir thplace ,  GPA, and CoursesTaken of class Graduate. 

The final learned rule is shown in Table 4.5. 

Student 

{gl1g2,g5) 
{@&g6) 

Birthplace 

Canada 
Foreign 

Oid 

{gl,g2,g5) 
{g3,g4,g6) 

The learned rule says that "Canadian-born professors prefer to teach courses in 

TeachPref 

[Architecture,ProgrammingLang] 

[AI,DB] 

Architecture or Programming Languages and their students have excellent GPA and 

Birthplace 

ANY 
Foreign 

have taken courses in Architecture and Programming Languages; Foreign-born pro- 

fessors prefer to teach courses in Artificial Intelligence or Databases and their students 

GPA 

excellent 
good 

have good GPA and have taken courses in Artificial Intelligence and Databases". 

CoursesTaken 

{Arch., ProgLang) 

{AI,DB) 

The above discussion has assumed that the class composition hierarchy does not 

contain a cycle. In some applications, the class composition hierarchy may contain 

cycles. For example, in our example database, if we add an attribute ThesisExaminer 

of class Professor  to class Graduate to refer to the professor who acts as the thesis 

examiner of a student, the resultant class composition hierarchy will contain a cycle, 

as shown in Figure 4.5. 
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Person 

Name 

Birthplace 

Age 

Graduate 

GPA 

CoursesTaken 

ThesisExaminer ' 

Figure 4.5: Class composition hierarchy with a cycle 

The cycle exists due to the fact that a reference attribute of a class indirectly 

references this same class. If we conducted induction on a reference attribute in 

a cycle by simply dereferencing the pointers, we would get into an infinite loop. 

Therefore, a cycle has to be broken at a certain point such that the dereferencing 

will terminate. There can be several ways to limit the depth of deferencing a cycle. 

To get interesting knowledge rules without too much complexity, we would desire to 

trace the full length of a cycle but not to dereference the same class twice. We propose 

the following simple and effective method to handle class-composition hierarchy with 

a cycle. We start out a learning process with a certain class in the hierarchy and 

dereference pointers as we normally do until we encounter a reference attribute which 

points to the class we started from. We stop dereferencing any further, instead, 

we conclude the dereferencing by describing the last reference attribute using only 



C H A P T E R  4. ATTRIBUTE-ORIENTED INDUCTION IN OODBS 

the non-referencial attributes of the class pointed to. Let us examine the query in 

Example 4.4 again, this time assuming attribute ThesisExaminer has been added to 

class Graduate.  

The dereferencing of attribute S tudent  of class P r o f e s s o r  leads the induction 

to all attributes of class Graduate.  Since attribute ThesisExaminer of Graduate  is 

again a reference attribute that points back to class P r o f e s s o r ,  forming a loop, we 

break the loop by describing ThesisExaminer using the non-referential attributes of 

class P r o f e s s o r  only, that is, every attribute except S tudent .  

The above method to deal with cycled class-composition hierarchy is simple and 

also effective. Tracing the full length of the cycle path captures all the details that 

may be needed to describe the queried class of instances. In case a deeper description 

is desired, a separate query can be issued. 

4.3 The OOLCHR Algorithm 

We have demonstrated our solutions to perform generalization on complex attributes, 

and a formal presentation of the algorithm is in order. The OOLCHR algorithm 

is an extension of the relational LCHR algorithm and can conduct generalization 

on complex attributes. The algorithm and accompanying procedures are listed in 

Figure 4.6 and Figure 4.7. In the algorithm, '*A' refers to the object class pointed to 

by 'A'. 

The algorithm is based on the strategies we discussed in the previous section. Af- 

ter task-relevant instances have been selected, the procedure OOinduction is called. 
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ALGORITHM OOLCHR; 
INPUT: (1)  an  o b j e c t - o r i e n t e d  d a t a b a s e ,  

(2 )  a s e t  of concept  t r e e s ,  
(3) t h e  l e a r n i n g  t a s k ,  and 
(4) t h e  t h r e s h o l d  va lue(T)  . 

OUTPUT : A c h a r a c t e r i s t i c  r u l e  l e a r n e d  from t h e  d a t a b a s e .  
BEGIN 

S t e p  1. S e l e c t  t h e  t a s k - r e l e v a n t  i n s t a n c e s  i n t o  s e t  S .  
S t e p  2 .  C a l l  P rocedure  00induct ion(S ,T) .  
S t e p  3. Transform t h e  f i n a l  r e l a t i o n  i n t o  a p r e d i c a t e  formula .  

END 

Figure 4.6: The OOLCHR Algorithm 

This procedure processes each relevant attribute such that the attribute threshold is 

satisfied. It then goes on to ensure that the final learned result contains no more 

instances than the threshold dictates. For each relevant attribute can be simple as of 

a primitive class, or complex as of a set, a list, an array, or a reference, OOinduction 

has to treat each attribute according to its type; this is done by the subprocedure 

Resolve(A). The element in a collection attribute can again be a complex class, 

and the attributes of the class pointed to by a reference attribute may also be of a 

complex class. This gives Resolve(A) a recursive nature. Here, by primitive, we 

mean the system defined classes such as integer, float, char, etc, or a user- defined 

class that does not belong to a complex class. Since complex attributes are defined 

using primitive classes and can always break down to primitive classes, and we have 

introduced a mechanism to break cycles in class composition, Resolve(A) is guar- 

anteed to terminate. Moreover, since all the extensions we made strictly follow the 

least commitment principle, the correctness of our algorithm is also guaranteed. 
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PROCEDURE Resolve(A);  
/* The argument A i s  an  a t t r i b u t e  name on which g e n e r a l i z a t i o n  
* i s  done i n  t h i s  procedure  */ 

BEGIN 
CASE A OF 
Reference  : 

S e t  : 

L i s t :  
P r i m i t i v e :  

I F  (*A h a s  n o t  been de re fe renced)  
THEN FOR (each a t t r i b u t e  of t h e  c l a s s )  DO R e s o l v e ( a t t r i b u t e )  
ELSE FOR (each non-reference  a t t r i b u t e )  DO R e s o l v e ( a t t r i b u t e ) ;  
FOR (each  element of A) DO Resolve(e1ement) ;  
D e l e t e  r e p e t i t i v e  e lements  from A; 
FOR (each  element of A) DO Resolve(e1ement) ;  
FOR (each  i n s t a n c e  i n  s e t  S) DO 

Replace t h e  v a l u e  of a t t r i b u t e  A by i t s  
p a r e n t  concept  i n  t h e  concept  t r e e ;  

D e l e t e  r e p e t  it i v e  i n s t a n c e s  i n  s e t  S ; 
END 

PROCEDURE OOinduction(S, T ) ;  
/* S i s  t h e  s e t  of i n s t a n c e s  of some c l a s s  r e l e v a n t  t o  t h e  l e a r n i n g  t a s k .  

* / 
BEGIN 

FOR (each  t a s k - r e l e v a n t  a t t r i b u t e  A of t h e  c l a s s )  DO 
WHILE ( t h e  number of d i s t i n c t  v a l u e s  of A > T) DO 

I F  t h e r e  does  n o t  e x i s t  a concept  t r e e  f o r  A 
THEN mark A as " i r r e l e v a n t "  and e x i t  
ELSE c a l l  Resolve(A);  

/* now t h e  t h r e s h o l d  c o n s t r a i n t  i s  s a t i s f i e d  by each  a t t r i b u t e  */ 

WHILE IS I > T DO 
BEGIN 

S e l e c t  t h e  a t t r i b u t e  c o n t a i n i n g  s u b s t a n t i a l l y  more d i s t i n c t  
v a l u e s  o r  w i t h  a b e t t e r  r e d u c t i o n  r a t i o ,  and r e p l a c e  each  
v a l u e  of them by i t s  cor responding  p a r e n t  i n  t h e  concept  
t r e e ,  and e l i m i n a t e  redundant  i n s t a n c e s  i n  S ;  

END 
/* now t h e  t h r e s h o l d  c o n s t r a i n t  i s  s a t i s f i e d  by t h e  i n s t a n c e  s e t  */ 

END 

Figure 4.7: The OOinduction procedure 



CHAPTER 5 

General Improvement of the 

Induct ion Met hod 

In the attribute-oriented induction method, the concept hierarchy plays an important 

role; it is the place where knowledge is embedded. Whether the concept hierarchy is 

generated automatically or is provided by a human expert, how to make the best use 

of it has a marked effect on the learning efficiency and the learning result. 

So far in our discussion, we have assumed that all concept trees are balanced trees 

and all of the primitive concepts reside at the same level at start. By primitive, we 

mean the concepts(at tribute values) that appear in the database. The assumptions 

were necessary for synchronous generalization on each attribute. Namely, we have 

assumed that every possible domain value of the attribute has a corresponding leaf 

node in the concept tree and that all the leaf nodes reside at the same depth from the 

root. With each round of generalization, the substitution of a higher level concept for 
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ANY 

\/.da<sideXanada 

/------ 

Ont Western Que Maritime OtherinXanada 

BC Prairies PEI NS NF NB 

Figure 5.1: An imbalanced concept tree 

a concept residing at the current induction level is synchronous with respect to the 

concepts to be generalized. Each raw concept is treated uniformly throughout the 

induction process. 

However, in some applications, we may encounter concept hierarchies that do not 

satisfy this assumption; we may have to perform generalization by an imbalanced 

concept tree. Such a tree is given in Figure 5.1. If we still use the synchronous 

ascension strategy, we may mingle concepts residing at different levels and result in 

an incorrect generalization. For instance, if we synchronously ascend the concept 

tree in Figure 5.1 by one level, "Ont" would be replaced by "Canada", and "AB" 

by "Prairies". The result thus contains both "Canada" and "Prairies", and since 

"Canada" logically contains "Prairies", the generalization is incorrect. We therefore 

need a new ascension strategy. 

In order to ensure induction correctness, we need a concept hierarchy that provides 

us with more information in a more explicit way. We propose an enhancement of the 

concept hierarchy in which some statistics of the tree is calculated and attached to 

the tree before generalization is conducted. First, we associate a conceptual level 
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0: (1) ANY 

1 : (2) \/>7da<side-Canada / \  
2: (6) Ont Western Que Maritime Otherin-Canada 

/ \  / / \ \  
BC Prairies PEI NS NF NB 

Figure 5.2: The enhanced concept tree 

number to each and every node of the tree, which equals to the depth of this node 

relative to the root. So the root is at level 0, children of the root are at level 1, 

etc. Second, we associate each conceptual level with an integer value which denotes 

the number of compatible concepts at this level. Mat hematically, this number equals 

to the number of nodes at this level plus the number of leaf nodes above this level. 

The calculation can be carried out once a concept tree is formed. In the event that 

the concept hierarchy should be dynamically adjusted according to the learning task, 

the calculated information is updated as well. The enhanced version of Figure 5.1 is 

shown in Figure 5.2. The meaning of compatibility is explained in Section 5.1. 

5.1 Maintaining Generalization Correctness 

As has been mentioned, the synchronous tree ascension method does not work well 

on imbalanced trees and will result in incorrect rules. For a learned rule to be logi- 

cally sound, it must be expressed in terms of compatible concepts. Two concepts are 

compatible if they can appear in a generalized result at the same time and the result 
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makes sense. Let us examine the compatibility of concept "Ont" with any other con- 

cepts in the concept tree of Figure 5.2. On the one hand, "Ont" represents one of the 

many provinces and appears in the database before generalization as a raw datum, 

so it is naturally compatible with other province names represented as leaf nodes in 

the tree. On the other hand, due to many factors, "Ont" plays a more important 

role in the grant information database and attracts more funds than does the three 

maritime provinces combined. From the statistical point of view, we also want "Ont" 

to be compatible with "Maritime"; this is where human knowledge(bias) can influ- 

ence the learning result. In like manner, we want "Ont" to be compatible with "BC", 

"Prairies", "Otherin-Canada", and "OutsideXanada" . To generalize, we state that 

a leaf node concept is compatible with any other concept residing at the same level 

or at a lower level. The method for calculating the number of compatible concepts of 

each level we mentioned previously captures this concept. 

To guarantee that the learned rule is always expressed in terms of compatible 

concepts, we can modify the existing synchronous ascension method or we can design 

a new ascension control mechanism. We discuss both scenarios. Cai presented a 

method following the former approach [2]. This method does a compatibility check 

and adjustment after the generalization by seeing whether one generalized concept 

covers other concepts of the same attribute. Concept A covers concept B if concept 

B is a descendent of concept A in the concept tree. If one generalized concept covers 

another concept, that is, the two concepts are not compatible due to their logical 

containment relationship, the covered concept is then replaced by the generalized 

concept. 

There are two drawbacks to this method. It entails computation to check the 
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compatibility, and it may lead to over-generalization. To see how over-generalization 

may occur, let us take the concept tree in Figure 5.2 as an example. Because the 

synchronous induction treats every raw datum equally by replacing it by its parent 

concept in the tree and "Ont" is a raw datum, "Ont" will be replaced by "Canada" 

after the first round of generalization. Since "Canada" covers all concepts except 

"Outside-Canada", Cai's method will adjust the generalization result by substituting 

"Canada" for any concept other than "Outside-Canada", and results in an over- 

generalized rule that contains "Canada" and "Outside-Canada" only. 

We now look at the another approach to ensuring the coherence of the learning 

result-the asynchronous ascension method. We have seen from the above example 

that logical inconsistency stems from the synchronousness in treating each raw da- 

tum. In an imbalanced tree, raw concepts reside at different levels and so deserve 

different treatment; this is the idea of asynchronous ascension. In this method, we 

examine the location of each concept prior to ascension. Depending on its location, 

a concept is substituted for by its parent, or remains unchanged in the current round 

of generalization. The ascension of all concepts is asynchronous. 

Now that we have enhanced the concept tree with conceptual level numbers, the 

-implementation of the asynchronous ascension is easy. We demonstrate the method 

using the same concept tree as in Figure 5.2. In our example concept tree, "Canada" 

will be at conceptual level 1, "Western" at 2, "Prairies" at 3, "Alberta" at 4, etc.. 

We use a counter to record the current conceptual level which is initialized to be the 

maximum depth of the concept tree. With each ascension, we only substitute for a 

concept whose conceptual level number is the same as the current conceptual level 

and leave it intact otherwise. The current conceptual level is decremented after each 
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PROCEDURE Async (cl) 
/* c1 is the concept to be generalized. The procedure returns the 
* generalized concept 
* / 

BEGIN 
Search the concept tree for concept cl, its conceptual level 
number c1-level, and its parent concept c2; 
IF (cl-level == CurrentLevel) 
THEN return(c2) 
ELSE return(c1) ; 

END 

Figure 5.3: The Async procedure 

round of ascension. The induction goes on until a desired level is reached. In this 

example, at the first round of generalization, the current conceptual level is 4, so we 

should only replace concepts that reside at level 4 with their corresponding parent 

concept at level 3. Therefore, concepts such as "SK", "MT", and "AB" are replaced 

by "Prairies". Concepts like "Ont.", "BC", "NF", etc. not residing at the current 

conceptual level are not effected. "BC", "Prairies", "PEI" , etc., are substituted for 

only when a second round of generalization is conducted. 

In a nutshell, the enhanced concept hierarchy allows lower leveled concepts to 

"catch up" during generalization, and disallows concepts at different levels to be 

generalized at the same time. Compared with Cai's method, our method not only 

guarantees induction correctness but also has a lower complexity because the expen- 

sive coverage check is eliminated. The method is summarized in the Async procedure 

below in Figure 5.3. 
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5.2 Induction Speedup 

The induction algorithm proposed in [2] suggests that ascension of the concept tree be 

done one level at a time. For learning tasks requiring a high degree of generalization, 

this single-step ascension has to repeat several times. Precious computation time can 

be saved if the ascension of multiple levels is done in a single move. [14] furthers 

[2]'s study in that multiple-level ascension is introduced into the algorithm. Before 

generalization on an attribute, a minimal desirable level is computed and then each 

values in the attribute is replaced by its corresponding superordinate concept in the 

concept hierarchy at the minimal desirable level. The enhanced hierarchy we proposed 

in the last section provides an elegant way to implement the multiple level ascension. 

The following paragraphs discuss it in detail. 

For ease of discussion, we define the start level of the induction to be the level 

with the largest number in the tree, the finish level to be the level where induction is 

supposed to end, and the induction depth to be their difference. The ascension process 

yields maximal efficiency when the ascension of induction depth levels is done in one 

move. In order not to over-generalize, it is imperative to determine at which level 

ascension should stop prior to the generalization process. The generalization result 

obtained by multiple level ascension should equal to that obtained by stepping up the 

concept tree one level at a time. 

We have used a threshold value as the sole criteria to decide when to stop further 

generalization. The threshold method is easy and simple for single-level ascension: 

before each round of ascension, the number of distinct values of an attribute is com- 

pared with the threshold to determine whether or not ascension should be conducted. 
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Since only one level is climbed up the concept tree after each threshold comparison, 

there is never the risk of over-generalization. The number of distinct attribute values 

left after some generalization is a good indicator of whether a certain degree of gen- 

eralization has been reached and the threshold method is simple, we therefore want 

to extend it for multiple level ascension control as well. 

We want to determine the finish level from the threshold value and knowledge 

coded in the concept tree. This has become easy now that the enhanced concept 

tree registers the number of compatible concepts allowed at each level in the tree; 

this number indicates how many distinct attribute values are left when the induction 

stops at this level1 The finish level can be easily determined by identifying the level 

whose number of compatible concepts is no greater than the threshold. With the 

finish level known, only concepts residing between the start level and the finish level 

need be generalized, and the ascension of the concept tree can be done in one move, 

that is, we substitute for each raw value of this attribute needing generalization by 

its ancestor residing at the finish level. 

Let us work through an example to see how the multiple level ascension works. 

Suppose the learning task is "Learn characteristic rules regarding grant recipients in 

relevance to geographic distribution with threshold of 6". We assume the enhanced 

concept hierarchy for the Province attribute is as shown in Figure 5.2. Using the 

asynchronous single step ascension technique discussed in the previous section, we 

'If the database does not include some leaf concept(s), when induction stops the number of distinct 
values may be smaller than the number of compatible concepts a t  the finish level. However, this 
is a rare situation in a very large database, especially when the concept hierarchy is generated 
automatically from the raw data. 
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would first replace concepts "AB", "SK", and "MT" by "Prairies" and do bookkeep- 

ing such as merging identical instances. Since the number of distinct values for this 

attribute is still greater than the threshold value of 6, the second round of ascension 

is initiated and concept "Prairies" is replaced by "Western" and concept "PEI" is re- 

placed by "Maritime", etc. By now, the only possible distinct values for Province  are 

"Ont", "Western", "Que", "Maritime", "Otherin-Canada" and "Outside-Canada", 

and this number is no greater than the given threshold. Therefore, the induction 

process stops at this level, and the learning task is finished. 

Using the multiple level ascension method, we first determine the finish level by 

comparing the number of compatible concepts associated with each level with the 

threshold, and it is easy to find the level whose number of compatible concepts is no 

greater than the threshold value; this level is the finish level. In this example, the 

finish level can be identified as level 2. Since induction starts at  the raw concepts 

residing at level 4, so the induction depth is calculated to be 2. During the one- 

move ascension, we replace each raw concept residing between level 3 and level 4 

inclusive by its ancestor residing at level 2. "AB" will be replaced by "Western", 

"BC" by "Western", "PEP by "Maritime", etc. We get the same induction result as 

that obtained by single level ascension. To make our method more robust, we can 

integrate this multiple-level ascension method and the asynchronous ascension control 

method developed in the previous section. Instead of comparing the level number of 

a concept being considered with the current conceptual level number, we simply see if 

the concept resides below the finish level. Concepts residing below the finish level are 

substituted for by their ancestors at the finish level; otherwise, these concepts are not 

changed. This integrated algorithm, Async* is formalized as follows in Figure 5.4. 
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PROCEDURE Async* (cl) 
/* c1 is the concept to be generalized. The procedure returns the 
* generalized concept 
* / 

BEGIN 
Search the concept tree for concept cl, and its conceptual level 
number cl-level; 
IF (c1-level > FinishLevel) 
THEN retrieve ancestor c2 of c1 residing at FinishLevel; return(c2) 
ELSE return(c1); 

END 

Figure 5.4: The Async* procedure 

In the discussion so far, we have assumed that the concept hierarchy remains 

constant throughout the induction. In some learning situations, the concept hierarchy 

has to be re-structured according to the specific query in order to make the learning 

result more meaningful[l4]. In this case, the finish level cannot be determined before 

the query is processed and single level ascension is still needed. However, as soon as 

the concept hierarchy becomes stabilized after some adjustment, the finish level can 

be determined and multiple-level ascension can still be utilized. 

The multiple ascension strategy is more time efficient than the single ascension 

strategy in that only one visit to the concept hierarchy is needed for each attribute 

value and that merging identical instances is performed only once. This reduction of 

overhead is significant when the number of instances is huge, which is the norm for a 

very large database. 
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ALGORITHM OOLCHR*; 
INPUT: (1)  an  ob j  e c t - o r i e n t e d  d a t a b a s e ,  

(2)  a s e t  of concept  t r e e s ,  
(3) t h e  l e a r n i n g  t a s k ,  and 
(4) t h e  t h r e s h o l d  v a l u e ( T ) .  

OUTPUT: A c h a r a c t e r i s t i c  r u l e  l e a r n e d  from t h e  d a t a b a s e .  
BEGIN 

S t e p  1. S e l e c t  t h e  t a s k - r e l e v a n t  i n s t a n c e s  i n t o  s e t  S .  
S t e p  2 .  C a l l  P rocedure  OOinduction*(S,T).  
S t e p  3 .  Transform t h e  f i n a l  r e l a t i o n  i n t o  a p r e d i c a t e  formula .  

END 

Figure 5.5: The OOLCHR* Algorithm 

5.3 The OOLCHR* Algorithm 

The algorithms we developed in this chapter improve the attribute-oriented induc- 

tion method in general and are not database model dependent; they can be used in 

the relational induction as well as in the induction in object-oriented databases we 

discussed in Chapter 4. Here we add our newly designed asynchronous multiple-level 

ascension method to the OOLCHR algorithm presented in Chapter 4, and the new 

algorithm, OOLCHR* is complete for performing learning characteristic rules from 

databases where complex at tributes exist. 
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PROCEDURE Async* (cl) 
/ *  cl is the concept to be generalized. The procedure returns the 
* generalized concept */ 
BEGIN 
Search the concept tree for concept cl, and its conceptual level 
number cl-level; 
IF (cl-level > FinishLevel) 
THEN retrieve ancestor c2 of c1 residing at FinishLevel; return(c2) 
ELSE return(c1); 

END 
PROCEDURE Resolve* (A) ; 
/* The argument A is an attribute name on which generalization 
* is done in this procedure */ 
BEGIN 
CASE A OF 
Reference: IF (*A has not been dereferenced) 

THEN FOR (each attribute of *A) DO Resolve(attribute) 
ELSE FOR (each non-reference attribute) DO Resolve(attribute); 

Set: FOR (each element of A) DO Resolve(e1ement); 
Delete repetitive elements from A; 

List: FOR (each element of A) DO Resolve(e1ement); 
Primitive: FOR (each instance in set S) DO 

Replace the value cl of attribute A by Async(c1); 
Delete repetitive instances in set S; 

END 
PROCEDURE OOinduction*(S, T); 
/* S is set of instances of class relevant to learning task*/ 
BEGIN 
FOR (each task-relevant attribute A of the instance class) DO 
WHILE (the number of distinct values of A > T) DO 
IF there does not exist a concept tree for A 
THEN mark Ai as "irrelevant" and exit 
ELSE call Resolve(A); 

WHILE IS I > T DO 
Select the attribute containing substantially more distinct 
values or with a better reduction ratio, and replace each 
value of them by its corresponding parent in the concept 
tree, and eliminate redundant instances in S; 

END 

Figure 5.6: The OOinduction* procedure 



CHAPTER 6 

Concluding Remarks 

6.1 Conclusions 

Learning from examples is a very useful learning technique in artificial intelligence and 

is the theoretical foundation of many learning algorithms for knowledge discovery in 

databases. The attribute-oriented induction method for excavating data regularities 

and rules from databases is computationally superior to many other learning algo- 

rithms in that it factors down the version space. To meet the ever increasing demand 

of real world applications, the new generation database systems such as the object- 

oriented database systems have been gradually adopted, and it is of significance to 

extend knowledge discovery methods designed solely with the relational database in 

mind to handle learning in object-oriented databases. 

In this thesis, we examined features of an object-oriented database and their effects 

on the attribute-oriented induction method and then proposed strategies to apply 
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the induction technique in the presence of complex attributes. The algorithm we 

presented, O O L C H R ,  can learn characteristic rules from object-oriented databases 

having complex attributes such as sets, lists, and arrays. 

To guarantee that the generalization process maintains logical soundness, a mech- 

anism for deciding which concepts should be replaced by their ancestors and which 

concepts should be left unchanged was also proposed, making use of the enhanced 

concept hierarchy. Interestingly, the enhanced concept hierarchy also provides an el- 

egant way to implement the multiple level tree ascension proposed in [14]. The two 

improvements were formalized in the Async* algorithm. The algorithm works on an 

enhanced concept tree that contains more information about the attribute domain. 

Finally, we presented a complete algorithm for learning characteristic rules from 

an object-oriented database, the OOLCHR* algorithm. It integrates the general 

improvement to the induction met hod and the special treatment of complex attributes. 

Since learning in relational databases has a longer history and some of the tech- 

niques have been quite mature, a question in order would be whether or not we could 

convert learning in an OODB to that in a relational database? Our study has indi- 

cated that it is practible to convert a learning task in an OODB to that in a relational 

database and has provided transformation methods. This conversion can be signifi- 

cant if we consider that presently available commercial relational databases are still 

superior to commercial object-oriented databases in terms of performance. It may 

well be worthwhile to conduct a learning task in a relational database and then have 

the learning result converted. 
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Theoretically, however, doing learning directly in an OODB has advantages un- 

paralleled by that in a relational database. First, as we have pointed out, a real-world 

entity is directly represented as an object, and complex objects are directly supported 

by an OODB, while in a relational database, not all complex object can be directly 

represented and sometimes complicated counter-intuitive data structures have to be 

used. That is to say that sometimes for some applications the OODB model has 

to be used to achieve design clarity and understandability. Secondly, an OODB dif- 

fers from a relational database in that it significantly reduces the so-called impedence 

mismatch(exp1ained in the next section). This reduction is expected to boost the 

performance of OODBs substantially over relational databases. Our study presented 

a way to conduct learning in an OODB directly without the need for conversion which 

may be time-costly. 

6.2 Future Research 

To date, there has been little report on knowledge discovery methods specially de- 

signed for object-oriented databases. Undoubtedly, many existing learning algorithms 

are model-independent and can also be used for object-oriented databases. How- 

ever, since object-oriented database systems have many advanced features that other 

database systems lack, a direct application of these algorithms may not take full 

advantage of these features for maximal performance. One of the good features of 

object-oriented database systems is the reduction of impedance mismatch that rela- 

tional database systems suffer. 

Take the attribute-oriented induction method for example. Since some operations 
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in the learning process such as collect task relevant tuples, dropping an attribute, and 

merging identical tuples appear to be the select, project, and join operation or a com- 

bination of them, it may seem that if the attribute-oriented induction method is used 

in a relational database system, we may make use of the well-optimized set opera- 

tions provided by the query language to make the learning process computationally 

efficient. This is hardly the case in reality. Since the query language is usually in- 

complete as a programming language and implementation of the learning algorithm 

needs the capabilities of a programming language, generally both a query language 

and a programming language are needed to implement the learning algorithm in a 

relational database system. The performance of the learning may suffer greatly due 

to the impedance mismatch between the two languages. The following paragraphs 

explain what impedance mismatch is. 

The process of knowledge discovery in databases can be regarded as an applica- 

tion of the database. The implementation of the learning procedure usually has to 

be written in a programming language. The query language, as is provided with re- 

lational database systems, is not complete as a programming language and therefore 

cannot adequately implement the learning algorithm. This means that for relational 

database systems, two languages, a query language and a programming language, 

must be used to realize any learning activities. Relational database systems gener- 

ally provide a declarative query language with no control constructs, variables, or 

other programming features. The programmer writes applications in a programming 

language with its own data structures, and uses the query language to transfer data 

back and forth between the program data environment and the database data envi- 

ronment. The existence of two environments can be a problem in that it is necessary 

to translate data between the two representations in a database application, and that 
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the transfer of data or of control between the two environments can be a performance 

problem[7]. The problems with using two language environments have been collec- 

tively called the impedance mi sma tch  between the application programming language 

and the database query language. 

On the other hand, an object-oriented database system provides a database lan- 

guage that includes a query language plus programming and other capabilities as well. 

The database language provides only one execution environment, procedural language, 

and type system. The most important advantage afforded by database languages is 

a reduction of the impedance mismatch. With this unique feature, object-oriented 

database systems provide a better environment for conducting learning activities, a 

very important application of a database. 

It is hoped that the attribute-oriented induction method can perform better in 

an object-oriented database because of the reduction of the impedance mismatch. 

However, further study regarding the advanced features of object-oriented systems 

and the implementation issues need to be conducted to reach a conclusion. In this 

thesis, we examined only the influence of complex attributes on the attribute-oriented 

induction method in general terms. Study into the other features such as the class 

inheritance will also be an interesting topic. 



REFERENCES 

[I] T.  M. Anwar, S. B. Navathe, H. W. Beck, Knowledge Mining in Databases: 
A Unified Approach Through Conceptual Clustering. Database Research and 
Development Center, Computer and Information Sciences, University of Florida, 
Fainesville, Florida. November 4, 1991. 

[2] Yandong Cai, Attribute-Oriented Induction in Relational Databases. MSc thesis, 
Simon Fraser University, Dec. 1989. 

[3] Yandong Cai, Nick Cercone and Jiawei Han, Learning Characteristic Rules from 
Relational Databases, in F. Gardin and G. Mauri(eds.), Computational Intelli- 
gence, 11, Elsevier Science Publisher B.V. (North-Holland), 1990, 187-196 

[4] Yandong Cai, Nick Cercone, and Jiawei Han, Attribute-Oriented Induction in Re- 
lational Databases, Proceedings of IJCAI-89 Workshop on Knowledge Discovery 
in Databases, Detroit, Michigan, August 1989, 26-36. 

[5] Yandong Cai, Nick Cercone, and Jiawei Han, An Attribute-Oriented Approach 
for Learning Classification Rules from Relational Databases, Proceedings of the 
6th International Conference on Data Engineering, Los Angeles, CA, Feburary 
1990, 281-288. 

[6] Yandong Cai, Nick Cercone, and Jiawei Han, Learning in Relational Databases: 
an Attribute-Oriented Approach, Comput. Intell. 7, 119-132(1991). 

[7] R.G. G.Catte1, Object Data Management. Addison- Wesley Publishing Company, 
1991. 

[8] Thomas G. Dietterich, Ryszard S. Michalski, Inductive Learning of Structural 
Descriptions: Evaluation Criteria and Comparative Review of Selected Methods, 
Artificial Intelligence, 16(1981) pp257-294. 



REFERENCES 6 2 

[9] Thomas G. Dietterich, Ryszard S. Michalski, A comparative Review of Selected 
Methods for Learning from Examples, in Michalski et. al. (eds.), Machine Learn- 
ing: An Artificial Intelligence Approach, Vol. 1, Morgan Kaufmann, 1983, 41-82. 

[lo] W. J .  Frawley, G. Piatetsky-Shapiro, C. J. Matheus, Knowledge Discovery in 
Databases: An Overview, in G. Piatetsky-Shapiro and W. J .  Frawley (eds.), 
Knowledge Discovery in Databases, AAAI/MIT Press, 1991, 1-27. 

[ll] Jiawei Han, Yandong Cai, and Nick Cercone, Knowledge Discovery in Databases: 
An Attribute-Oriented Approach, Proceedings of the 18th VLDB Conference, 
Vancouver, British Columbia, Canada, 1992, 547-559. 

[12] Jiawei Han, Yue Huang, and Nick Cercone, Intelligent Query Answering Us- 
ing Discovered Database Knowledge. School of Computing Science, Simon Fraser 
University. Canada. 

[13] Jiawei Han, Yandong Cai, and Nick Cercone, Discovery of Quantitative Rules 
from Large Databases, in Z. W. Ras, M. Zema,nkova, and M. L. Emrich(eds.), 
Methodologies for Intelligent Systems, vol. 5, Elsevier Science Publishing Co., 
Inc., 1990, 157-165 

[14] Jiawei Han, Yandong Cai, Nick Cercone and Yue Huang. DBLEARN: A knowl- 
edge Discovery System for Large Databases. Proceedings of the ISMM Inter- 
national Conference, Information and Knowledge Management CIKM-92, Balti- 
more, MD, USA, November 8-11, 1992, 473-481. 

[15] Min Ke, Moonis Ali, A Knowledge-Directed Induction Methodology for Intelli- 
gent Database Systems, International Journal of Expert Systems, Vol. 4, No. 1, 
1991, 71-115. 

[16] Won Kim, Object-Oriented Databases: Definition and Research Directions, IEEE 
Transactions on Knowledge and Data Engineering, Vo12, No.3, September 1990, 
327-341. 

[17] H. F. Korth and A. Silberschatz, Database System Concepts, 2nd ed., McGraw- 
Hill, Inc., 1991. 

[18] Ryszard S. Michalski and Yves Kodratoff, Research in Machine Learning: Recent 
Progress, Classification of Methods, and Future Directions, Machine Learning: 
An Artificial Intelligence Approach, Vol. 1, Morgan Kaufmann, 1983, chapter 1. 

[19] G. Piatetsky-Shapiro, Discovery, Analysis, and Presentation of Strong Rules, 
in G. Piatetsky-Shapiro and W. J. Frawley (eds.), Knowledge Discovery in 
Databases, AAAI/MIT Press, 1991, 229-248. 



REFERENCES 6 3 

[20] A. Silberschatz, M. Stonebraker, and J. Ullman, Database Systems: Achieve- 
ments and Opportunities, Comm. ACM, 34(10), 1991, 94-109. 

[21] W. Ziarko, The Discovery, Analysis, and Representation of Data Dependencies 
in Databases, in G. Piatetsky-Shapiro and W. J. Frawley (eds.), Knowledge Dis- 
covery in Databases, AAAIIMIT Press, 1991, 195-212. 


