
ERROR-ADAPTIVE COMPUTER-ASSISTED LANGUAGE

LEARNING FOR GERMAN

Gertrud Heift

I. Staatsexamen, Weingarten University, 1983

II. Staatsexamen, Weingarten University, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS

in the Department

of

Linguistics

O Gertrud D. M. Heift

SIMON FRASER UNIVERSITY

September 1993

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Approval

Name:

Degree:

Title of Thesis:

Gertrud Heift

Master of Arts

Error-Adaptive ~ 0 m ~ u t e . r - ~ s s i s t e d

Language Learning for German

Examining Committee:

Chair: R. DeArmond

-
 actor Hammerly
Senior Supervisor
Professor of Applied Linguistics

r--
a a u l MM~
Professor of Linguistics

6,. Juan Sosa
External Examiner
Professor of SpanishILAS

Date Amroved: S& 3, /yy3

PARTIAL COPYRIGHT LICENSE

I hereby g r a n t t o Simon Fraser U n i v e r s i t y t h e r i g h t t o lend

my t h e s i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f t h e Simon F rase r U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such users o r i n response t o a reques t f rom t h e

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users . I f u r t h e r agree t h a t permiss ion

f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t h e Dean o f Graduate S tud ies . I t i s understood t h a t copy ing

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l g a i n s h a l l n o t be a l lowed

w i t h o u t my w r i t t e n permiss ion .

T i t l e o f Thes is /Pro jec t /Ex tended Essay

Author :

(s i g n a t u r e)

Abstract

The author presents an Intelligent Tutoring System for German

language instruction and outlines the theoretical rationale underlying

its design. The examplar is subordinate clauses, a classic problem in

German pedagogy. The system is implemented in Hypercard v.2.1,

running on Macintosh System 7.1.

A review of the literature provides historical and pedagogical

perspectives on computers and computer-assisted language learning

(CALL). The author contrasts and compares three teaching approaches,

behaviorist-structural, explicit learning, and acquisitionist,

examining their application to CALL systems. The eclectic teaching

method employed in the 'software draws upon all three teaching

theories.

The reader is introduced to various modes of computer

instruction, and an argument for lntelligent Tutoring Systems is

presented. Designed as an Intelligent Tutoring System, the software

leads the student through a graded, individualized, or, individually

tailored , program.

The interactive model strikes a balance between student and

computer control, allowing for user-initiated actions limited only by

I pedagogical considerations. Informative interaction provides the user
with error-contingent feedback, that is, feedback which not only

signals student error but also targets specific errors, taking

appropriate action, and directing the student to further exercises. The

program implementation simulates intelligence through the use of

daemons: conceptually simple, modular sub-programs dedicated to

Error-Adaptive Computer-Assisted Language Learning for German iii

I
I specific errors. Overall design is consistent with the extant

literature on computer error message and dialog design, specially

adapted by the author to the specific needs of the language learner.

In conclusion, intelligent responses to student's input can be

simulated on a micro computer platform. The strategy described

exploits the constrained and predictable domain of the language

exercise to efficiently achieve the teaching goals.

\
I

Error-Adapt ive Computer-Assisted Language Learning for German iv

Acknowledgements

Heartfelt thanks to Professors H. Hammerly and P. McFetridge

for their insights and assistance throughout this project. And

very special thanks to Chris.

Table of Contents

. Approval I I

... Abstract i i i

.. Acknowledgements v

CHAPTER 1

CHAPTER 2
2.1

CHAPTER 3

CHAPTER 4
4.1
4.2
4.3
4.4

CHAPTER 5

.. Introduction 1

History and Teaching Methodology of CALL .. 3
....................................... Historical Development of CALL 3

.. 2.1 . 1 Programmed Instruction 4
2.1 . 2 The Stanford Project and PLAT0 System 6

.. Teaching Methodology 9
2.2.1 Language Teaching Approaches .. 10

Teaching Subordinate Clauses in German
with CALL .. 20
Teaching Functions of the Computer 20
Intelligent Tutoring Systems ... 23
Overview and Teaching Objectives 26
3.3.1 Subordinate Clauses .. 26
3.3.2 Program Architecture and Teaching Principles 27

Human Factors in CALL .. 32
Interaction in CALL ... 32
Informative Feedback ... 33
Error Message Guidelines ... 40
Interface .. 41
4.4.1 Dialog Design ... 43

A Theoretical Framework and its Practical
Implementation ... 55

... Program Design 55
.. 5.1 . 1 Optimizing Analysis 55

5.1 . 2 The Daemon Approach ... 56
.. 5.1 . 3 Local and Global Daemons 59

5.1 . 4 Error Thresholds .. 61
Program Implementation .. 63
5.2.1 Daemons in Action .. -63

Error-Adaptive Computer-Assisted Language Learning for German vi

Table of Contents

CHAPTER 6 Conclusion .. 72

... Appendix A Program Listing 75

.. Appendix B Questionnaire 88

.. List of References 89

Error-Adaptive Computer-Assisted Language Learning for German vii

CHAPTER 1 Introduction

The intent of this project is to outline an Intelligent Tutoring

System which can be used efficiently and effectively in the second

language classroom. Language classes, particularly those for academic

and professional purposes, primarily concentrate on the teaching of

form, leaving litt le time for communicative activit ies; that is, most

of the teaching time is spent on the rather mechanical practice of the

various grammatical constructions of the target language. In addition,

large class sizes prohibit extensive individualization of the learning

process. Communicative activities and individualization are,

nonetheless, important. The former allow students to spontaneously

apply the rules learned during more constrained exercises; the latter

permits students to work at their own pace. In practice, the

momentum of the group must often take precedence over the need to

correct individuals' errors. The dilemma, then, for the language

teacher is to find sufficient time for conversation, role playing, etc.,

while still pursuing the grammatical essentials.

Error-Adaptive Computer-Assisted Language Learning for German 1

Chapter 1: Introduct ion 1

The software accompanying this project acts as a computer

tutor providing the student with efficient and effective practice in

one of the formal aspects of German, subordinate clauses. Subordinate

clauses are used only by way of example: the modular design of the

system is inherently flexible and can be easily expanded to

incorporate additional formal aspects of German. A language teacher

employing this software can better manage classroom time, relying on

the computer to provide efficient and individually tailored practice of

grammatical structures and thus freeing more time for teacher-led

communicative activities.

Error-Adapt ive Computer-Assisted Language Learning for German 2

I

CHAPTER 2 History and Teaching
Methodology of CALL

2.1 Historical Development of CALL

Modern Computer-Assisted Language Learning (CALL) is the

result of the convergence of several fields of research addressing the

use of computers in language processing. While the influence of

computational linguistics and machine translation may be indirect,

CALL systems draw heavily upon the findings of both areas. The

handling of natural language by the computer essentially contributes

to the fluency of interaction between the human user and the machine.

Ahmad (1985) gives two reasons for the importance of computational

linguistics and machine translation to CALL:

"First, those working in these areas have provided some of
the tools for CALL, such as particular features of
programming languages; second, they form part of the
groundwork for future developments, as they will lead to

Error-Adaptive Computer-Assisted Language Learning for German 3

Chapter 2: History and Teaching Methodology of CALL

more intelligent processing of grammar and meaning and
therefore to more sensible responses from the computer."'

We are, ultimately, aiming at interactive computer systems

possessing a high degree of artificial intelligence fully capable of

processing natural language input. This represents an even more

complex task in the educational, as opposed to the commercial or

military, field since natural language constitutes not only the

operational dialogue, but the subject matter itself.

We find a direct bearing on CALL in experiments in Programmed

lnstruction (section 2.1 . I) . In the late sixties CALL systems were

being developed mostly on large-scale, mainframe systems in

universities where computer sessions were intended to replace

classroom instruction. Of course, as Holmes and Kidd (1982) point out,

much of the structure of the computer programs was created by

psychologists and the computer industry itself, rather than by

language teachers. Two important projects at that time were the

Stanford Project (Stanford University) and the PLAT0 system

(Programmed Logic for Automated Teaching Operations) developed at

the University of Illinois and by Control Data Corporation (section

2.1.2).

2.1.1 Programmed lnstruction

Throughout the 19601s, Programmed lnstruction (PI), which

arose out of Skinner's work at Harvard University, dominated the field

of computer-assisted learning. Even in the early 80's it was still

assumed that computer-assisted learning and Programmed lnstruction

1. Ahmad, K., 1 Te%bUand p. 28.

Error-Adapt ive Computer-Assisted Language Learning fo r German 4

Chapter 2: History and Teaching Methodology of CALL

were essentially one and the same; the microcomputer was merely the

latest technical device to bring the behaviorist view of language

teaching back into the classroom (Kaliski 1992). Programmed

Instruction proposed that the best way of learning a task is

"to break it down into a series of small subtasks and then
tackle each one of these in turn. As a means of reinforcing
learning, student mastery of a subtask would be rewarded in
an appropriate way.lV2

The generally sound pedagogical principle of dividing a large learning

task into conceptually smaller units, was, however, distorted by an

over-emphasis on the reinforcement aspect of Skinner's stimulus-

response-reinforcement paradigm. The result was automated teaching

machines which presented the student with 'mindless13 dr i l ls ,

typically multiple choice answers, and provided inappropriate

feedback:

"... a student was presented with a problem and then asked
to type in the answer through a typewriter-like console. The
answer was checked as each character was entered. If any
error resulted, the computer assumed control and typed out
the word 'wrong'. An incorrect answer then caused the
generation of another problem of similar difficulty. After a
number of successive incorrect answers a problem of lesser
difficulty would be generated."4

Beyond any purely humanitarian concerns with Skinner's

psychology, we have to question the effectiveness of such systems. A

program with a simple letter to letter match is incapable of

differentiating types of errors: not only is it, therefore, incapable of

2. Barker, P. &Yeates, H., 1- c o ~ W W & ~ ~ t e d Learning, p. 45.
3. While there are many kinds of drills, 'mindless' refers here to simple substitution/ pattern

drills.
4. Barker, P. &Yeates, H., 1- Co-, p. 45.

-- - -

Error-Adaptive Computer-Assisted Language Learning for German 5

Chapter 2: History and Teaching Methodology of CALL

providing any valuable, evaluative feedback, but, in ignoring the source

of the error when selecting another problem, it would seem to be

relying upon an inflexible, program-centered, rather than student-

centered, definition of diff iculty. While, in considering the early

systems, we should make allowances for the limitations of the then

current technology, we must also note that, although PI has been

redefined over the years, it has never achieved a high degree of

popularity (Price 1991). The original linear programs (representing

fixed sequences of instructions) improved, becoming more

sophisticated branching programs; most, however, remained based

upon multiple choice answers. Inasmuch as the new is often an

offshoot of the old, as among teaching approaches which emulate some

procedures of the previous approach while rejecting others, CALL is

historically related to PI, adopting many of its concerns. As Price

states:

concern for individualized learning, self-pacing,
immediate knowledge of the correctness of response, and
reinforcement are just as important today as they were to
PI twenty five years ago."=

2.1.2 The Stanford Project and PLAT0 System

The Stanford Project which was carried out under the

supervision of J. Van Campen in the Slavic Languages Department was

a self-instructional introductory course to Russian. While the student

typed answers to questions, inflected words, and performed various

types of transformation exercises on the computer, a tape-recorder

connected to a teletype was used solely to ask questions. The system

5. Price, R.V., w r - A i d e d -, p. 1 2.

Error-Adapt ive Computer-Assisted Language Learning for German 6

--

Chapter 2: History and Teaching Methodology of CALL

did not allow for the recording of answers; recordings of the student

output were produced in the traditional language laboratory. While all

of the student's work was evaluated by a language teacher, the

computer clearly superseded the teacher in the actual instruction. It

is important at this point to relate this project to the general

language teaching philosophy of the time. Van Campen states that

"the introduction of computer-based instruction in
elementary language courses in which the acquisition of
writing plays an important role would greatly improve the
effectiveness of those course^."^

The influence of Audiolingualism, a behaviorist-structuralist

approach to language teaching, becomes evident. Among some of the

audiolingual methodologists there is a focus on teaching all four

language skills, listening-speaking-reading-writ in^, at the same time

and with equal emphasis. However, as Hammerly (1986) points out in

his balanced approach to second language learning, "early access to a

second language through its written form --if it has an alphabet--

guarantees the formation of bad pronunciation habits."' In addition,

although these early computers were not equipped with sound, we can

see the influence of Audiolingualism in the students' being presented

with exercisesldrills in a language laboratory focussing on auralloral

skil ls.

A general concern among teachers of the period was that the

computer would alter the studentlteacher relationship (Kaliski 1992).

The Stanford Project went as far as to replace the teacher all but

6. Van Campen, J., "A Computer-Based Language Instruction System with Initial Application to
Armenian", p. 27, as cited in Ahrnad, K., (=omDuters.--
-, p. 29.

. . 7. Harnmerly, H., Svnthesls Te-, p. 188.

Error-Adapt ive Computer-Assisted Language Learning for German 7

Chapter 2: History and Teaching Methodology of CALL
- -- - - -- - -

entirely, while "at New York the teachers working with computers in

the language teaching programs were reduced to the role of teaching

audiolingual drills."*

The P m . program, by contrast, was not as dedicated to

making the teacher redundant. The original program provided the

student with software to practice reading and translation skills from

Russian to English. The whole course was divided into three parts:

vocabulary skills, grammar explanations and drills, and translation

tests. PLATO presently covers a wide range of languages, as well as

other subjects taught at the university. Some programs, like the one

dedicated to Spanish, are designed as self-instructional software,

while others are intended only to complement classroom instruction.

Over the years, the system has incorporated new advances in

technology, such as the touchscreen and multimedia (e.g. audio in/

output), and even provides the teacher with an authoring language

(Wyatt 1984). But, as Ahmad points out "while PLATO offers a high

degree of technical sophistication, it is also extremely expensive."g

The main reason for the cost is that the PLATO software can only be

run on specialized hardware consisting of two mainframe computers.

With the advent of the microchip and microcomputers,

computer literacy increased dramatically. The computer became

available at increasingly affordable prices to individuals as well as to

institutions. School DistrictsIBoards throughout the U.S. and Canada

made large commitments to computer education by purchasing

8. Holmes, G. & Kidd, M.E., "Second Language Learning and Computers",
, vol. 38, p. 504.

9. Ahmad, K., I I-, p. 32.

Error-Adaptive Computer-Assisted Language Learning for German 8

I
Chapter 2: History and Teaching Methodology of CALL

computers and software for classroom use. The availability of the

hardware also offered programming opportunities to other than

professional programmers. In addition, with the movement toward

individualized instruction, in the sense that the student works at his/

her own pace, the computer began to be seen as a useful tool in the

learner-centered classroom. Whereas the original rejection of

behaviorism implied a rejection of CALL as well:

"[M]ethodological changes to a more communicative
approach led to a rejection by some teachers of any method
associated with behaviorism. It was argued that language
with no context, as was the case with many CALL exercises,
was of no use and teaching should concentrate on the
functional or notional uses of language."'

with computers becoming more accessible and accepted, teachers'

concerns over being replaced by computers abated, shifting toward

"becoming computer literate and incorporating CALL into the

curriculum ... [as] a matter of professional survival"". Rather than

being closely associated with one stream of pedagogic thought,

software design in CALL began to reflect more divergent teaching

approaches.

. .
10. Kaliski . . . T., "Computer-Assisted Language Learning (CALL)". In Roach P. (Ed.), Q m g U m g ~

- a n d p. 99.
. . . .

11. Teichert, H. U., - r - A s ~ u c t ~ o n ~n R e g m m g L d k a e Gecman: An Fqum.aol,
p. 18.

Error-Adaptive Computer-Assisted Language Learning for German 9

Chapter 2: History and Teaching Methodology of CALL

2.2 Teaching Methodology

In the same way teaching philosophies influence the

development of printed language learning materials, computer

software also reflects the goals of the particular teaching approach.

Is the purpose of language merely to f luentlv communicate or is our

emphasis on fluent and accurate communication? When writing or

evaluating computer software this question has to be addressed.

2.2.1 Language Teaching Approaches

In relating computer software to language teaching approaches

it is important to distinguish between the computer as a medium and

the software itself. While the computer medium is not tied to any

specific language teaching approach or method, that is, the computer

can be used by a vast range of teaching methodologies, the specific

language learning software reflects more directly the language

teaching pedagogy adopted.

Throughout the history of CALL we find essentially three

approaches to language teaching:

I . Behaviorist/StructuraIist Approaches
2. Explicit Learning Approaches
3. Acquisitionist Approaches

While many teaching methods, such as the Structural Method

which combined aspects of both the Behaviorist/Structuralist and

Explicit Learning Approaches, incorporated theoretical underpinnings

from more than one approach, the following discussion will examine

Error-Adapt ive Computer-Assisted Language Learning for German 10

Chapter 2: History and Teaching Methodology of CALL

each in rather stark isolation to better understand their implications

in CALL.

The behav~or~st /s t ruc tura l
. .

approach to language learning is

based on behaviorist learning theories developed by Skinner and the

structuralist linguistic theory founded by Bloomfield. The

manifestation of these ideas is found in Audiolingualism, a method

based on psychological and linguistic theory. Language learning is seen

as a habit formation through stimulus, response, and reinforcement.

Language teaching employs a bottom-up approach: language is split

into small units, where the successful completion of one building-

block leads to the next one. The key to this approach, as manifested in

its later distorted, extreme forms, is 'mindless' dril l ing and rote

memorization: grammar is taught inductively with little rule

explanation and formulation. In addition, in this habit-formation

theory, situations where frequent errors are produced are to be

avoided, since they could lead to the formation of bad habits. It was

this reasoning which led to a complete control of the pattern drills.

For CALL software to be representative of this approach

Hubbard (1987) lists a number of principles:

I . presents vocabulary and structure appropriate to the
learner's level

2. maintains the learner's attention to task

3. does not accept errors as correct answer

4. requires the learner to input the correct answer before
proceeding

5. provides the learner with positive feedback for correct
answers

6. provides sufficient material for mastery and
overlearning to occur

Error-Adaptive Computer-Assisted Language Learning for German 11

Chapter 2: History and Teaching Methodology of CALL

7. reinforces patterns and vocabulary presented in a
lesson

8. presents grammar rules or patterns inductively with no
attempt at teaching explicit formulations of them1'

In contrast to the behaviorist/structural theory we find the
. .

e x ~ l l c ~ t learn in^ approaches, as manifested in the Cognitive Approach.

This approach is based on cognitive learning theories, that is, the

student is supposed to be cognitively involved in the learning process.

Furthermore it reflects the theory of transformational-generative

grammar proposed by Chomsky. Language is seen as rule-governed

creativity, using rules to create meaningful13 utterances. Explicit

learning approaches are structurally graded where grammar rules are

taught deductively, and to be consciously acquired. Therefore

"language is not a set of habits to be mindlessly drilled, but
the creative use of internalized rules. These rules are
complex and abstract and do not lend themselves easily to
conscious formulation, but constitute instead our
unconscious "competence" which makes it possible to
generate an infinite array of new sentences."14

In transformational-generative theory errors are seen as testing

hypotheses of the concepts students form in the learning process.

Their purpose is to provide the teacher with cues of the student's

competence level.

12. Hubbard, P. L., "Language Teaching Approaches, the . Evaluation . of CALL Software, and Design
Implications". In Smith, Wm. Flint (Ed.), W a -
and, pp. 231 -2.
Hubbard's eighth principle seems to be more a reflection of the Naturalistic Approaches than
of the Behaviorist/Structuralist. Only one version of the Audiolingual Methods -- that is, a
variety close to the Direct Method showed reluctance toward rule formulation/explanation.

13. "Providing drill-and-practice material in explicit learning approaches that is meaningful,
contextualized, and interesting to the students is a recent trend that parallels developments
in communicative approaches."Hubbard, P. L., "Language Teaching Approaches, the
Evaluation of CALL Software, and Design Implications". In Smith, Wm. Flint (Ed.), Modern

rn For- Theorv and y, p. 233.
. . 14. Underwood, J. H., J TeaLanauaae p. 1 1.

Error-Adaptive Computer-Assisted Language Learning for German 12

Chapter 2: History and Teaching Methodology of CALL

CALL software will be representative of explicit learning

approaches i f it does the following:

introduces or reviews grammar rules and word meanings
in an understandable, learnable, and reasonably accurate
form1=
provides effective practice so that (a) novel target-
language input can be readily understood, and (b) the
learner's understanding of rules leads to the production
of grammaticality acceptable spoken or written
target-language discourse in novel situations
gives meaningful rather than mechanical practice
gives practice contextualized in a coherent discourse
larger than a single sentence
provides hints of various types to help lead students to
acceptable answers
accepts alternative correct answers within the given
context
provides the student with explanation of correct
answers
anticipates incorrect or inappropriate answers and
explains why such answers are incorrect and
inappropriate
maintains the student's interest throughout the
exercise
allows an appropriate degree of student c o n t r o ~ ' ~

Even more removed from the behaviorist/structuralist theory,
, . . .

we find the ~ c q u ~ s ~ t ~ o n ~ s t approaches to language learning, as

manifested first in the Natural Approach. This theory, developed by

Stephen Krashen in his Monitor Model, emphasizes that a second

language is acquired in an unconscious and natural way similar to

15. Hubbard's description of the grammar approach used in CALL seems to contradict the
underlying notion of a descriptive grammar which by definition is scientific and not easily
understandable for second language learners.

16. Hubbard, P. L., "Language Teaching Approaches, the . Evaluation . of CALL Software, and Design
Implications". In Smith, Wm. Flint (Ed.), Modern in For- Fducaion: Theory
andImDlementatlon, pp. 233-4.

Error-Adapt ive Computer-Assisted Language Learning for German 13

Chapter 2: History and Teaching Methodology of C A L L

first language acquisition. The key to this model is to provide the

student with comprehensible input just slightly higher than the stage

s/he is at (i+ l) . The input has to be relevant and interesting to the

student, an idea shared by the notional/functional syllabus. It is a

top-down approach where material is presented as in conversation: no

special attention is drawn to new items, drilling, or grammar. The

focus is on meaning and not on form. Errors remain uncorrected since,

in doing so, the emphasis on meaning would shift towards form.

Accuracy is supposed to be acquired as a by-product of fluency.

CALL software representative of this approach:

provides meaningful communicative interaction between
the learner and the computer
provides comprehensible input at a level just beyond
that c-urrently acquired by the learner
promotes a positive self-image in the learner
motivates the learner to use the software
motivates the learner to learn the language
provides a challenge but does not produce frustration or
anxiety
does not include overt error correction
allows the learner the opportunity to produce
comprehensible output
acts effectively as a catalyst to promote learner-
learner interaction in the target language17

As with regular classroom instruction, we find a trend towards

acquisitionist approaches in computer-assisted language learning.

Kaliski (1992) states that

"the type of program, which appears to be the biggest

17. Hubbard, P. L., "Language Teaching Approaches, the Evaluation of CALL Software, and Design . . Implications". In Smith, Wm. Flint (Ed.), M o d e r n o r e i - n : T h e w
andImDlementatlon, p. 236.

Error-Adaptive computer-Assisted Language Learning for German 14

Chapter 2: History and Teaching Methodology of C A L L

selling and the most popular with students, comes in the
'computer as a playmate' category. These are word guessing
games which use variations of the conventional cloze
techniques or jumbled sentences."'

These kinds of computer programs are, at least initially, highly

motivating for the student, a not unimportant consideration. There is,

however, much debate in the field of language teaching over the

ultimate effectiveness of this pedagogy.

A more practical and disturbing problem in CALL is that

"current CALL programs [have no relationship to theories of
language and] often appear to have been designed merely to
demonstrate technological developments rather than
contribute to the educational process." [brackets added]I9

While the above statement calls for our attention to the

problematic underemphasis of language teaching pedagogy in CALL, it

is not quite right to say that current programs do not reflect any

teaching approach. All educational software design implicitly

incorporates one, or more likely many, different approaches, albeit in

a haphazard or ad hoc fashion. There may also be further distortion in

the implementation of an idea borrowed from a teaching pedagogy

owing to design costs, hardware limitations, andlor the

interdisciplinary nature of the task at hand, this latter meaning that

programmers are not usually language teachers and vice versa.

Nonetheless, Hubbard argues that most CALL features can be traced to

one of three teaching approaches. Table 2-1: CALL Features makes

18. Kaliski T., "Computer-Assisted Language Learning (CALL)". In Roach P. (Ed.), . .
ICS -, p. 99.

19. Kaliski T., "Computer-Assisted Language Learning (CALL)". In Roach P. (Ed.) . .
. . .

- a n d p. 99.

Error-Adapt ive Computer-Assisted Language Learning for German 15

Chapter 2: History and Teaching Methodology of CALL

explicit those features and their theoretical parentage. In some cases,

of course, the particular CALL feature may only roughly correspond to

its classroom equivalent; nonetheless, from a design point of view,

orienting potential features within the larger theoretical framework

will help us attain a more coherent overall design.

Behaviorist1
Structural
Approaches

Expl ici t
Learning

Approaches

Acquisit io-
nist

Approaches I Features

on form but with
awareness of

meaning
Emphasis on form on meaning

exercise material
is meaningful and

presented in
context

communicative,
mostly in form of

games

Form of
Exercises

multiple choice,
pattern drills

graded,
descriptive
grammar

graded,
descriptive
grammar

ungraded,
grammar is not
taught overtly

Presentation of
Grammar

Errors deterred but
corrected corrected

--

uncorrected

Progressive
Error

Correction

Error Feedback

students are led
toward a correct

answer,
provides

explanation for
correct answer

"Wrong, try
again!" (or the

correct answer is
provided)

I Motivation not explicitly
considered

computer

considered considered

Control student

Table 2-1 : CALL Features

Error-Adaptive Computer-Assisted Language Learning for German 16

Chapter 2: History and Teaching Methodology of C A L L

Analyzing the similarities and differences of these three

theories, we note that the explicit learning approaches are very nearly

a combination of the principles of the others. Teaching occurs in a

student-centered classroom in which, however, an emphasis on form

is maintained through the presentation of graded material. The only

unique feature, that is, the only feature not contained in any of the

other approaches, is the progressive error correction for incorrect or

inappropriate student responses, an area closely related to error

feedback. In the cognitive learning approaches errors are corrected by

leading the students toward the correct answer. This feature does not

apply in the acquisitionist approaches, since grammar is not explicitly

taught and incorrect responses are not intercepted by the system. In

the behaviorist theory, grammar is often taught inductively -- hardly

any explanations/rule formulations are given. If errors do occur,

however, they are corrected in a far less elaborate way, either by

providing the student with the correct answer or simply signalling

that an error occurred.

While taking into account aspects of all three approaches, the

computer program associated with this project does not strictly

adhere to any one of them, incorporating, rather, elements of all three

into its teaching methodology. The choice of a more eclectic method is

another common trend in teaching. While language approaches have

often developed in reaction to previous schools of thought, for

example, Audiolingualism's rejection of the Grammar-Translation

Method, we nowadays find teachers extracting principles from a

variety of methods and approaches. Consider the principles

implemented by the proposed model in Table 2-2: CALL Features:

Error-Adapt ive Computer-Assisted Language Learning for German 17

Chapter 2: History and Teaching Methodology of C A L L

I Features I Proposed Model I
Emphasis on form but with awareness of

meaning

I Form of Exercises I tutor, game I
Presentation of Grammar graded,

pedagogical grammar

Errors corrected

Progressive Error
Correction Yes

Error Feedback students are led toward a correct
answer

Motivation considered

Control student/computer

Table 2-2: CALL Features

We find close similarities with the explicit learning and

acquisitionist theor-ies with regards to the student role in the

learning process. The approach taken is that learning can only take

place if the "Affective Fi l ter", a notion proposed by Krashen (1977),

is low. Motivation, self-confidence, and anxiety are central factors in

learning. They reflect the learners' attitudes and determine how the

information gets "filtered". If the attitudes are negative, new

information is strongly filtered, meaning that learning is hindered.

Closely connected to this concept is the question of who is in control

of the learning process; the extreme positions are staked out by the

behaviorist/structuralist and the acquisitionist theories. The

approach taken in this project presupposes that the teacher's role is

to guide the student through the learning process by presenting graded

material, but reserving some creativity/control for the student. The

key idea here is that pedagogical concerns should play just as

Error-Adapt ive Computer-Assisted Language Learning for German 18

Chapter 2: History and Teaching Methodology of CALL

important a role in software design as in regular classroom

instruction.

As opposed to a scientific grammar a pedagogical grammar has

been chosen. The use of pedagogical grammars dates back to the

Structural Method, an early form of the behaviorist/structuralist

approaches. It seems rather obvious that, i f we are teaching grammar,

we need a grammar designed for teaching purposes. A pedagogical

grammar is

"a grammar designed to take a learner where he is (taking
into account his knowledge of the native language and his
traditional and popular notions about language) and lead him
step by step to the internalization of the structure of a
second language ,... 992 0

The design of a step by step program, where the emphasis is

placed on form with awareness of meaning, presents the student with

graded material. The student is provided with explanations of

incorrect responses, a deep error correction, to lead himlher Joward a

correct answer. The rationale behind this decision is that rule

internalization, a precondition for creative use of language, can only

occur if cognitive involvement on the part of the student is ensured.

This particular kind of error feedback is achieved by having the

computer act as an Intelligent Tutoring System. The various modes of

the computer and the functions of tutoring systems, in particular, will

be discussed in Chapter 3.

20. Hammerly H., A n t e d Theorv of I a- Tea-, p. 124.

Error-Adapt ive Computer-Assisted Language Learning for German 19

CHAPTER 3 Teaching Subordinate
Clauses in German with
CALL

3.1 Teaching Functions of the Computer

Price (1990) lists five distinct 'modes' of computer

instruction:

I . Page Turners
2. Simulations
3. Educational Games
4. Drill and Practice
5. Tutorial

While each mode has its uses, from on-line manuals to expert-

systems, not all are equally suitable for CALL.

k a e Turners use the computer screen as a page to display the

knowledge to be transmitted. Although similar in this respect to any

printed material, they have the added advantage of potentially

Error-Adaptive Computer-Assisted Language Learning for German 20

Error-Adapt ive Computer-Assisted Language Learning for German 21

Chapter 3: Teaching Subordinate Clauses in German with CALL

incorporating animation, sound, and other media. While the "living

textbook"' may be well fitted to representing spatial concepts and

time-dependent trends, or navigating large data-bases, studies2 have

shown that people assimilate purely text-based material more

quickly, and with less effort, from traditional print sources. Even the

more elaborate multi-media versions have only limited application in

CALL: the user's passive role provides no opportunity for the practice

so essential to language learning.

Simulations allow students to deduce general concepts by

responding to ostensible situations. The computer lets the student

explore topics, usually through animation, rather than leading himlher

toward explicit outcomes. These programs are not only highly

motivating for students but allow them to encounter a wide variety of

situations virtual ly, usually at far lower cost, and with less dire

consequences in the event of student error. Due to the expense of

constructing a convincing virtual reality, the most elaborate

simulators to date have been contracted for and built by the military,

for use as flight-trainers, and battle-simulators; more recently,

however, we find simulators being used in the medical, engineering,

and architectural professions. In CALL, simulations find some

applicability, inasmuch as they can offer a wide range of exposure to

the second language culture.

~onal Games provide the student with dril l and practice

embedded in a game to make it more memorable and motivating. An

example might be using a bingo game to practice vocabulary. Such

1 . Price, R.V., w u t e r - A i d e d Instructioo - A W e for Authors. p. 32.
. . 2. Shneiderman, B., Deslanlna the User lnkd&~, p. 362.

Chapter 3: Teaching Subordinate Clauses in German with C A L L

games are simple to encode and, as a result, inexpensive. However, in

the second language classroom, Educational Games require some prior

subject knowledge, presumably gained from a human teacher.

P-c.tt programs are constructed without game

elements to provide the student with activities intended only to

reinforce classroom instruction. "Problems are generated by the

computer program whereas in conventional methods drill problems are

found at the end of textbook chapters, on worksheets, or on

f~ashca rds . "~ The computer is, in this case, merely the latest device

in teaching, offering no overt advantages over textbook c h a e r s or

workbooks. Authoring programs, which allow teachers to create their

own exercises tailored to particular students' needs, are superior to

fixed drills, but offer no especial advantage over worksheets.

Tutorials, in contrast, do not rely on previous instruction.

Rather they assume the role of a human tutor, guiding the student

toward a given task. They generally offer some degree of diagnostic

testing, more corrective feedback than a simulator or a game, and

more flexible branching within the program than found in Drill and

Practice software. The simpler implementations bear a striking

resemblance to earlier Programmed Instruction systems, while

sophisticated examples emulate the human tutor to a modest degree.

As will be discussed in section 3.2, however, significant aspects of

the teacherlstudent interaction are still missing.

3. Price, R.V., Comouter -AidasUnU~t ion - A Guide for AU~QG p. 27.

Error-Adapt ive computer-~ssisted Language Learning for German 22

Chapter 3: Teaching Subordinate Clauses in German with CALL

3.2 Intelligent Tutoring Systems

The foregoing classifications provide a general framework for

the different approaches to computer instruction, but do not address

the communication between user and computer, an integral part of the

learning environment. I f we are aiming at optimal instruction, one of

the most important issues is the individualization of the learning

process.

"The major advantage by the computer is individualization.
In the typical foreign language class, students vary widely
in their instructional needs, and research shows that
students learn a foreign language effectively if they spend
useful instructional time on tasks suited to their own needs.
The teach-er is faced with major difficulties because in a
class of thirty students, some will have mastered all the
prerequisite skills to begin working toward mastery of a
designated objective, while others will have mastered none
of them.l14

But the teacherlstudent ratio can only effectively be reduced

using computers if we provide the student with a device capable of

realistically approximating the teacherlstudent interaction.

Increasingly, more attention is being paid to the interactive

aspects of tutoring systems5. An optimal system must simulate a high

degree of intelligence. An Intelligent Tutoring System is a

"computer program that

4. LaReau, P., Vockell, E., The in the Fore- Currrnculum, p. 72.
5. "So in the 1990s our educational and training establishments are witnessing evolutionary

advances in intelligent computer-assisted instruction and the emergence in the research
laboratories of intelligent computer systems (ITSs)." Burns, H., Parlett, J.W, Redfield, C.L.

Svstem, p. xi.

Error-Adapt ive Computer-Assisted Language Learning for German 23

Chapter 3: Teaching Subordinate Clauses in German with CALL

a. is capable of competent problem solving in a domain
b. can infer a learner's approximation of competence,

and
C. is able to reduce the difference between its compe-

tence and the student's through application of vari-
ous s t r a t e g i e ~ . " ~

Designers of lntelligent Tutoring

concerned with the subject matter, but ;

between the student and the computer, so

learning can be achieved more efficiently.

Systems are not only

s o with the interaction

that the primary goal of

TS consists of rules and "Communication knowledge in an
facts that tell the system how

I
to manage the student-

computer interaction. ... Thus communication knowledge
refers to the conversation between the student and the
computer system and all the media necessary for that
communication. Together these elements comprise what
may be called communication style."7

Categorizing programs according to communicational styles

organizes them along lines not dissimilar to Price's classification of

Page Turner, Simulations, etc., but with an important new emphasis

upon user/computer interaction. Fischer and Morch (1988)8 describe

three different communication styles in Intelligent Tutoring Systems:

1. Consultation
2. Critiquing
3. Tutoring

In the Consulbtion Mode[, as implemented in expert systems,

for example, the user is able to ask questions of the computer

6. Wenger, E., A r t l f l c l a l a - t ~ v s t e m s . p. 263.
7. Burns, H., Parlett, J.W., Redfield, C.L., 1-nt Tuto-, pp. 17-8.
8. Fischer, G., & Morch, A. "Crack: A Critiquing Approach to Cooperative Kitchen Design". In

Proceedings on Intelligent Tutoring Systems, pp. 176-185. New York: Association for
Computing Machinery, as cited in Burns, H., Parlett, J.W., Redfield, C.L., MQhgent T u t o w a, pp. 17-8.

- - --

Error-Adaptive Computer-Assisted Language Learning for German 24

Chapter 3: Teaching Subordinate Clauses in German with CALL

consultant. An example would be a medical diagnostic system where a

physician enters the medical history, vital statistics, and symptoms

of a patient in order to obtain a recommendation for testing and

treatment. The interface of these systems must take into account the

knowledge representations of the users, and be able to query and

respond in a pseudo-intelligent manner.

. . .
In C r ~ t ~ g l y a M o m , the student acquires problem-solving

skills through exploring concepts and testing hypotheses. "The

computer interrupts only when the student fails to meet minimum

criteria. ... [It] allows the student to fail and make m i ~ t a k e s . " ~

Students pursue their own goals through multiple paths which they

can access in a non-sequential order. Simulators, discussed earlier,

would tend to fall under the Critiquing Model, inasmuch as the trainee

is free to take many actions until such time as the plane 'crashes'.

The Tutorina Model, in contrast, while student-centered in an

educational sense, does not rely as heavily upon an event-oriented,

user-centered interface. The program leads the student through a

sequence of instructions, where the arrangement of the paths are

determined by the designer. A high degree of sophistication in the

areas of corrective feedback, diagnostic testing, and multiple

pathways, means that branching decisions are primarily handled by the

program, thereby ensuring the attainment of the teaching goal.

Tutoring models are very suitable for subjects dealing with formal

rules because they provide students with graded, effective practice,

allowing them to internalize concepts. For these reasons the program

--

9. Burns, H., Parlett, J.W, Redfield, C.L., 1- Tu-, p. 19.

Error-Adaptive Computer-Assisted Language Learning for German 25

Chapter 3: Teaching Subordinate Clauses in German with CALL
--

accompanying this project adheres largely to such a model. It should

be recalled that in the design of Intelligent Tutoring Systems

consideration is given to both:

I . the computer interaction, and
2. the instructional goal.

An event-centered design has been retained as much as is

compatible with instructional goals, therefore, providing a balance of

student/computer control. The interactive model employed will be

discussed at fuller length in Chapter 4.

The instructional goal is achieved by integrating teaching principles,

such as gradation and individualization, into a branching program. The

teaching principles and the overall architecture of the program will be

discussed in section-3.3.2.

3.3 Overview and Teaching Objectives

3.3.1 Subordinate Clauses

Subordinate clauses, a classic problem in German pedagogy, is

taught at the late beginner's level of second language instruction. The

position of the verb in a German sentence depends on whether it

appears in a main clause or subordinate clause. Whereas a German

main clause has an SVO word orderi0, a subordinate clause has an SOV

word order. The following example shows that the verb 'liest' appears

in second position when in a main clause, but sentence-final when in a

subordinate clause.

Error-Adaptive Computer-Assisted Language Learning for German 26

Chapter 3: Teaching Subordinate Clauses in German wi th CALL

Main Clause:

S v 0
Sie liest ein Buch.
She is reading a book.
She is reading a book.

Subordinate Clause;

S 0 v
Ich weiO, daO sie ein Buch liest.
I know that she a book is reading.
I know that she is reading a book.

3.3.2 Program Architecture and Teaching Principles

Inherently, the use of a pedagogical grammar in a computer-

instruction program means presenting grammatical constructs

gradually. Gradation implies a carefully selected sequence of

material, proceeding "from simple to complex, the frequent before the

infrequent, the concrete before the abstract, the independent before

the concomitant, etc.""

In addition, i f our goal is to individualize the learning process through

use of an intelligent tutor, we need a program with branching

capabilities. Branching programs depart from the usual sequence of

executing instructions in a computer in order to address the particular

deficiencies of a student.

A computer, with its branching abilities, can reduce the

10. This already by itself causes problems to English speakers learning German since we find the
verb in a German main clause always in second position.
E.g.: Heute gehe ich ins Kino.

Today go I to the movies.
Today I am going to the movies.

11. Hammerly, H., 1 Tea-, p. 11 7.

Error-Adapt ive Computer-Assisted Language Learning for German 27

Chapter 3: Teaching Subordinate Clauses in German with CALL

repetition for those who do not need additional practice. For
students who do need the extra practice, creative teachers
overcome this difficulty ..., by supplying informative
feedback, and by making the repeated practice relevant to
the present or future needs of the students."12

Consider Figure 3-1 :

Exercises

Figure 3-1

The program is organized into three major sections and a final

game. Each student takes an individual path depending on his or her

mastery of each subtask. Cumulatively, these tasks lead to an

understanding of subordinate clauses in German.

The objectives in I esson 1-4 are:

I . correct use of subordina

2. correct word order

ting conjunctions

Error-Adaptive Computer-Assisted Language Learning for German 28

Chapter 3: Teaching Subordinate Clauses in German wi th CALL

3. correct punctuation (the comma precedes the subor-
dinating conjunction)

4. correct spelling

The objectives are sought as follows:

*Lesson 1: In Lesson 1 the students are presented with a
paragraph where the subordinating conjunctions are
missing. The student's task is to provide the correct
subordinating conjunction in context.

Example exercises from Lesson 2-4 are:

Lesson 2: Join the sentences1 3:

Ich nehme zwei Meniis. Ich habe Hunger. (because)

Ich nehme zwei Menijs, w e i l ich Hunger habe.

Lesson 3: Join the sentences:

Sie fragt, ...
Wo wohnt Peter?

Sie fragt, w o Peter wohn t .

Lesson 4: Begin the sentence with the subordinate clause:

Er hat eine Party gegeben, weil sie 21 geworden ist.

Weil sie 21 geworden i s t , ha t er eine Party gegeben.

After Lesson 4 the student's performance is evaluated14.

Branching provides the student with additional exercises as needed to

ensure hislher mastery of each grammatical step. The additional

exercises accompanying Lesson 1-4 are similar in make-up to the

examples above. Should the student require remedial practices, slhe

goes through the additional exercises, and then, returning to the main

path, continues on to Lesson 5.

13. The instructions are only given in English with the first exercise in each Lesson.
14. The way the system handles students' evaluations and error thresholds will be discussed in

detail in Chapter 4.

Error-Adapt ive Computer-Assisted Language Learning for German 29

Chapter 3: Teaching Subordinate Clauses in German wi th C A L L

In Lesson 5 the task grows more complex: the student must

begin to correctly handle verb inflection, gender and Case of nouns.

The objectives for Lesson 5 are:

I . correct word order
2. correct punctuation
3. correct verb inflection
4. correct use of gender and Case of nouns
5. correct spelling

Consider the following example for Lesson 5:

Lesson 5: Form a sentence:
Er / fragen / ob / Salat (def. article) / schmecken / gut
Er fragt, ob der Salat gut schmeckt.

After Lesson 5, there are two sets of possible additional

exercises provided: the first, specifically addresses gender and Case

of nouns, and the second, practices word order in subordinating

conjunctions. Both sets continue to address verb inflection. The

additional exercises have been separated in order to correct any

deficiencies in gender and Case of nouns, before addressing word

order. The first set of additional exercises on gender and Case

presents only a main clause, containing two noun phrases. The second

set covers word order in subordinate clauses, and incidentally, gender

and Case.

Whereas up to this point, all the German words are in one way

or another provided, Lesson 6 requires the student to translate

sentences, while applying all of the concepts practiced so far.

The objectives for Lesson 6 are:

1. correct translations

Error-Adapt ive Computer-Assisted Language Learning for German 30

Chapter 3: Teaching Subordinate Clauses in German with CALL

2. correct spelling
3. correct word order
4. correct use of subordinating conjunctions
5. correct verb inflection
6. correct use of gender and Case of noun
7. correct punctuation

After Lesson 6, the student moves on to the final game after

which slhe can start again with one of the sets of exercises.

In the final game, the student is presented with six sentences, one at

a time, in random order; each of the sentences is missing the

subordinating conjunction. The student is also provided with six

buttons, each labelled with a subordinating conjunction. The challenge

is to provide the correct answer as quickly as possible with a timer at

the edge of the screen keeping score. The game is intended to be fun

and to reinforce the grammatical concepts through a different mode of

computer instruction.

Error-Adaptive Computer-Assisted Language Learning for German 31

CHAPTER 4 Human Factors in
CALL

4.1 Interaction in CALL

Marshall (1 988) identifies the "significant interactive

quali t ies"' of computer assisted language learning as one advantage

of introducing the computer into the classroom. True interaction

requires intelligent behavior on the part of the computer as well as

the student. Without intelligence, defined here as informative

interaction, the computer is merely another medium for presenting

information, one not especially preferable to a static medium such as

print. In order to go beyond multiple choice questions, relatively

uninformative answer keys, and gross mainstreaming of students

characteristic of workbooks, the proposed model emulates significant

aspects of a student-teacher interaction.

1. Marshall, D. V., CAI ICRT - The &e&D.&&, p. 17.

Error-Adaptive Computer-Assisted Language Learning for German 32

Chapter 4: Human Factors in C A L L

Section 4.2 presents an example of how the system handles

errors of gender versus case2 in German providing evaluative

feedback. In addition, Section 4.3 outlines error message guidelines

which take motivation, as a central aspect of learning, into account.

Section 4.4 discusses the overall design of the interface as

implemented in the system.

4.2 Informative Feedback

In terms of ease of implementation, the simplest way for a

program to evaluate a student response is a straightforward string

match. That is, the student response is compared letter for letter

against an answer key. For a program to be informative, however, it

must do more than merely indicate that an error has occurred: the

software must also give a description of the error, and perhaps go to

an even deeper linguistic analysis in order to isolate the source of

error. For example, if a student provides a wrong article the error

might be either incorrect gender or incorrect Case. In such an instance

the program must be capable of distinguishing between the two error

types and providing error-contingent feedback3. While this is quite a

complex task in areas involving natural language responses when

compared to more quantitative areas, such as mathematics,

nonetheless

"... for almost all cognitive learning, instruction is

2. For clarity grammatical Case is capitalized.
3. "Feedback tailored to the nature of the student's error is called error-contingent feedback."

Alessi S. M. & Trollip S. R., --Based Instructipn, p. 116.

Error-Adapt ive Computer-Assisted Language Learning for German 33

Chapter 4: Human Factors in CALL

enhanced by evaluative feedback. In many cases it is
essential, if any learning is to occur. Translation of a
foreign language is a prime example of the latter
~ i t u a t i o n . " ~

The following code illustrates error-contingent feedback,

responding differently to an article which is in the wrong Case than to

one which is of the wrong gender. The first subroutine (line 2-9)

checks the gender of a noun, the second subroutine (line 10-19) looks

for Case.

Code e x a m ~ l e 4-1 5

On AnswerCheck

if word dpos of string is not word det in card field artfield in card artcard then

if incorrectlnflection(word dpos of string, artfield, artcard) is false then

select word RealPosition(punctposition, dpos) in field answerl

answer "Wrong gender?"

add 1 to first word of card field score in card scorecard

exit answercheck

end if

end if

if word dpos of string is not word det in card field artfield in card artcard then

if incorrectlnflection(word dpos of string, cases, artcard) is false then

select word RealPosition(punctposition, dpos) in field answerl

answer "Wrong case?"

add 1 to second word of card field score in card scorecard

exit answercheck

end if

end if

select word RealPosition(punctposition, dpos) in field answerl

answer "Wrong translation?"

End AnswerCheck

4. Venezky, R. & Osin, L., -t nesian of COIUQLW A s s i s t e d , p. 9.
5. The terminology is explained on page 37.

Error-Adaptive Computer-Assisted Language Learning for German 34

Chapter 4: Human Factors in CALL

The stack contains one card for the definite articles. This card

contains four fields, one for each case6, and one which shows all

possible articles of the Cases. The Cases concerned are:

Nominative: field 'detnom': der, die, das, die

Accusative: f ield 'detacc': den, die, das, die

Dative: f ield ' d e t m : dem, der, dem, den.

All possible German articles7 for the three Cases are:

Field 'cases': der, die, das, den, dem

lncorrectlnflection, a function which is present in both of the two

subroutines (Code example 4-1, line 2 and lo) , checks whether the

student's answer is in one of the four fields.

Code example 4-3

Function lncorrectlnflection reply, tense, verbcard
set cursor to busy
put true into it
repeat with increment = 1 to number of words in card field tense in card verbcard
if reply is word increment in card field tense in card verbcard then
return false
end if

end repeat
return it
End lncorrectlnflection

To follow a concrete example through this process of error

analysis, consider the following exercise presented to the student:

Translate the following:

The car belongs to the woman.

6. The 'genitive' is not included since it is not taught until the intermediate level. All articles are
listed in the order: masculine, feminine, neuter, plural.

7. For the indefinite articles, or, 'M, which is considered an kin-word', the same concept has
been applied and individual fields have been created accordingly.

Error-Adaptive Computer-Assisted Language Learning for German 35

Chapter 4: Human Factors in CALL

The correct answer is:

&Auto gehort der Frau.

A mistake-ridden response might be:

*h Auto gehort *a Frau.

The following flow-chart (Figure 4-1) i l lustrates the logical

process:

I Student Response 1

I co r rec t Answer I
I (i ncl udes s t r i nq, case,

gender, declension,
I sub. conjunction) I

i d word
pos i t i on o f
e r ro r

Figure 4 -1

After the student has provided the answer slhe clicks the

'DONE' button (Figure 4-4, section 4.4.1) in which the correct answer

is specified; that is, the button contains the complete sentence as

well as the position of the articles in the string, and a module for the

- - - - - - - - - -

Error-Adaptive Computer-Assisted Language Learning for German

--

Chapter 4: Human Factors i n CALL

correct article. This module consists of three parameters: det,

artfield, and artcard. While the string match allows the system to

quickly scan the student's answer, deeper error analysis occurs i f the

two sentences do not match. This requires a detailed short-hand

description of the articles. In the example given, the following

information is stored:

Das Auto gehort der Frau.

I . position in string: 1
parameter det: 3 ('das' is the third article in the field

'detnom')

parameter artf i e ld : detnom (name of the field where
articles of nominative Case are stored)

parameter artcard: defarticles (name of the card
where al l definite articles are stored)

2. position in string: 4
parameter det: 2 ('der' is the second article in the

field 'detnom')

parameter ar t f ie ld: detdat (name of the field where
articles of dative Case are stored)

parameter artcard: defarticles (name of the card
where al l definite articles are stored)

After the program has identified by string match that the

student's answer, position 1 in the string, a definite article, is

incorrect it enters the first subroutine on articles, the gender check

(Code example 4-1, line 2-9). Line 2 calls the function

lncorrectlnflection (Code example 4-2) which looks up the student's

answer (nominative. masculine) in the field 'detnom'. The system

recognizes that the answer provided by the student is in the field

Error-Adapt ive Computer-Assisted Language Learning for German 37

Chapter 4 : Human Factors in CALL

'detnom' although it is not the correct gender. Accordingly, the

subroutine responds with: "Wrong gender?" (Code example 4-1, line 5).

The incorrect article is also highlighted (Code example 4-1, line 4) to

indicate to which word the error message applies.

In the second noun phrase, the student's answer (nominative/
. .

accusat~ve. f e m ~ n ~ n e) is again compared against the correct answer

(d-
. .

). In this instance, however, the system does not find

the answer provided by the student in the field 'detdat', so the

subroutine on gender (Code example 4-1, line 2-9) does not apply and

the article check continues with the subroutine on Case (Code example

4- 1 , line 10 -1 9). Line 11 calls the function Incorrectlnf lection (Code

example 4-2) to check whether the student's answer is in the f ie ld

a s e s ' . If it is, as i r i the example, the system responds with: 'Wrong

case?'. If not, the system bypasses the subroutine on Case, and

answers with 'Wrong translation?' (Code example 4-1, line 19). This

catches instances where the student provides an indefinite article

instead of a definite one.

There are of course instances in German where it is not

possible, for either the language instructor or a computer program, to

tell whether the student applied the incorrect Case or the incorrect

gender. Consider the following example:

Er schreibt mit * & ~ u l i * .

He is writing with the pen.

8. 'Kuli' is a masculine noun and therefore the correct sentence is:
Er schreibt mit &m Kuli.

Error-Adaptive Computer-Assisted Language Learning for German 38

Chapter 4: Human Factors in CALL
-- - --

If the student knows that 'Kuli' is masculine, ~ / h e did not

apply the dative Case required after the preposition 'mit'. But i f the

student is under the assumption that 'Kuli' is feminine, s/he applied

the right Case.

In such ambiguous instances, the system's default response is:

"Wrong case?". This decision, which is reflected in the fixed order of

the two subroutines and in the specific organization of the four fields,

is based mainly on the author's experience that native speakers of

English (which only shows a Case distinction with pronouns) have

quite severe problems with the German Case system. The program,

therefore, utilizes the idea of native language interference, in the

sense that it analyzes errors hierarchically according to their

likelihood of occurrence.

The system exhibits a hierarchical order in the error analysis

to improve the program's response time as well. The subroutines

within the system are ordered in such a way as to search for the most

likely errors first. Consider the following student's task:

Verbinden Sie die Sam (Join the sentences)

Ich nehme zwei Menus. Ich habe Hunger. (because)

Ich nehme zwei Menus, weil ich Hunger habe.

In this example spelling will be checked last since all but one

word is given and that word is unlikely to cause spelling problems.

Among the most likely errors in this example is use of the correct

subordinating conjunction and/or word order.

Error-Adaptive Computer-Assisted Language Learning for German 39

Chapter 4: Human Factors in CALL

4.3 Error Message Guidelines

In addition to emphasizing the importance of feedback being

informative, Steinberg (1 984) also stresses motivation. Feedback and

motivation are closely related in the sense that this extrinsic factor

provided by an instructor or a computer program propels or prods the

student into one or another pattern of behavior. This applies to

feedback on errors as well as on correct responses. It even can reach a

degree where students may be stimulated to make errors intentionally

in order to get the computer's interesting effects on an incorrect

answer.

"The classic anecdote is that in one CAI lesson, the
feedback for an incorrect response was a display of a child
with tears running down its face. This so fascinated the
students that they continually entered incorrect responses
to see this display."g

At the other end of the spectrum, feedback must not be

intimidating: sarcasm, a 'laugh' or an insulting verbal message as a

response to an incorrect answer have a discouraging effect on

students.

Shneiderman (1 987) lists some error message guidelines1 as

an aid to designing informative and motivating feedback. The

messages which the system displays to the student follow these

guidelines. An example of the system's responses is listed after each:

9. Steinberg, E. R., A of Theorv. Practice. and -, p. 124.
. .

10. Shneiderrnan, B., Deslanlna the User Interface, p. 320.

-- - - - - - - - -

Error-Adapt ive Computer-Assisted Language Learning for German 40

Chapter 4: Human Factors in CALL

Be as specific and precise as possible
Wrong gender? Wrong case?

Be constructive: indicate what needs to be done
There needs to be a comma separating the main clause
from the subordinating conjunction.

Use a positive tone: avoid condemnation
Almost! Right verb, right position, but wrong inflection.

Choose user-centered phrasing
This button leads you back to your exercise.

Keep consistent grammatical form, terminology, and
abbreviations
Gender, case, subordinating conjunction, inflection, etc.
Abbreviations are not used in the program.

Keep consistent visual format and placement
The overall graphics and layout of the program will be
discussed in detai l in section 4.4.

4.4 Interface

Users undoubtedly prefer one program over another and the

judgement is often based on the interactive qualities of a program

such as ease of use or functionality.

"Effective systems generate positive feelings of success,
competence, and clarity in the user community. The users
are not encumbered by the computer and can predict what
happens with each of their actions. When an interactive
system is well designed, it almost disappears, enabling
the users to concentrate on their work or pleasure.
Creating an environment in which tasks are carried out
almost effortlessly, requires a great deal of hard work for
the designer."' '

-- - - - - -

Error-Adapt ive Computer-Assisted Language Learning for German 41

Chapter 4: Human Factors in CALL

If the designer is aiming at a tool to aid the user in performing

tasks, any tool which takes more time and effort to use than the

actual task requires is unlikely to be successful; but considering the

varying levels of computer literacy, whom are we addressing: novices,

intermittent users or experts? Whiteside et al. (1 985)' compared

user interfaces and found that systems that are the easiest to learn

are also the easiest to use. While novices may need some introduction

to how to use a program and "may need extensive prompting and rely

heavily on menus Experts should be able to shortcut or bypass menus

and prompting when desired."I3 The system takes students' various

computer backgrounds into account, presenting a menu at the

beginning of the program (Figure 4-2).

Using this program
Review o f Subordinate Clauses
Review o f the Case System
Exercises
Engl ish-German Glossary
German-Engl i sh G l ossaru

Figure 4 -2

When starting the program the student has immediate choices. The

novice has the opportunity to become familiar with the program by

choosing a two-page introduction; intermittent users, or, experts can

. .
11. Shneiderman, B., Deslanlna the User LnWke: S t r a w e s for Fffe-
M t , p. 9.

12. Whiteside,J., et al., "User Performance with Command, Menu, and Iconic Interfaces". In
Proceedings of CHI '85 Human Factors in Computing Systems, pp. 185-91. New York:
Association for Computing Machinery, as cited in Brown, C. M. "Lin", . .

e ne-, p. 13 . .
13. Brown, C. M. "Lin", Human-Comouter p. 14.

-- - - - - - - - - - - - - -

Error-Adaptive Computer-Assisted Language Learning for German 42

Chapter 4: Human Factors in CALL
- - --

start with the exercises. For students who prefer some theoretical

information on the language constructions involved, a review on

subordinating conjunctions and the Case system, as well as the

relevant vocabulary, can be accessed. Furthermore, within the program

an edit- and a help menu are provided, as illustrated in Figure 4-3.

Cut T e ~ t XH
Copy Text %C
Paste T e ~ t XU
Clear T e ~ t I Peek?

Figure 4-3

The help menu supplies the student the opportunity to access

additional information in order to find the correct answer14, while

the edit menu provides standard Macintosh shortcuts for typing/

correcting the answer in a specified field. While intermittent users

and experts may be accustomed to the Macintosh command-key

shortcuts, novices might prefer to access the menu items by dragging

the menu and clicking the mouse.

4.4.1 Dialog Design

In addition to handling users' diverse levels of computer

competence we need to address the overall interface design. Here the

14. "PEEK?" allows the student to look at the correct answer, however, with a deterrent series
of prompts.

Error-Adaptive Computer-Assisted Language Learning for German 43

Chapter 4: Human Factors in CALL

Eight Golden Rules of Dialog Design " l 5 have been extended to suit

the specific needs of the language learner.

I . Strive for consistency

Verbinden Sie die SBtze!

IEHample!-

Klaus fragt. Haben sie die Kamera gefunden? (whether)

Score? 0
Figure 4 -4

Consistency not only applies to feedback, menus, and prompts,

but also to pictureslgraphics, the overall layout of each page, and the

consistent sequences of actions required in similar situations. Figure

4 - 4 shows the typical functions and graphics of a page in the program.

The overall arrangement of each page is identical throughout the

. .
15. Shneiderrnan, B., Deslanlna the UserInterface, p. 61 -2.

Error-Adaptive Computer-Assisted Language Learning for German 44

Chapter 4: Human Factors in CALL

program: on each page the student finds a marked field to provide his/

her answer, and buttons consistent in their function and placement.

From a computational point of view, the 'DONE' button does different

things on each page but since the j n t e n t i o ~ of the user, to signal

completion, is the same throughout the program, the same button is

used.

While the principle of consistency with regards to the screen

display is especially important to novices, there are also pedagogical

considerations relevant to any language student. Upon presentation of

an exercise series, an example is displayed in boldfaced type above

the exercise. The example is collapsed to a button in subsequent

exercises of the same series to minimize the possibility that the

student works merely according to a pattern. Access to the example

remains, but is now a deterring one step away.

2. Reduce short-term memory load
"The limitation of human information processing in short-
term memory ("seven plus or minus two chunks") requires
that displays be kept simple Where appropriate, on-line
access to command syntax forms, abbreviations, codes, and
other information should be provided."'

The display intentionally uses a limited number of fields and

buttons. Reference to common needed keystrokes is, however,

immediately accessible rather than buried in a manual or a help

section (Figure 4-5).

In other parts of the program the system handles the minor

drudgery of remembering small details. In the review section, for

. .
16. Shneiderman, B., Deslanlna the l Jser Interface, p. 62.

Error-Adapt ive Computer-Assisted Language Learning for German 45

Chapter 4: Human Factors in CALL

n = option s
a = option u a
ii = option u u
o = option u o

Figure 4 -5

instance, once the student has finished reviewing the section on

subordinate clauses slhe simply clicks the 'BACK' button to return to

the most recent exercise. HyperTalk handles this by the 'Pop Card'

command used throughout this system. In Hypercard, information

appears on cards which make up a stack. Each card within the stack

has an id number. Whenever the student opens a card17 its id number is

stored in a field which is constantly replaced by the id number of the

new open card. Use. of this device also allows the student to quit the

program at any time without having to start the exercises from the

beginning again. By entering the name and a password when the

student logs in, and by saving this data with the id number of the last

card opened, the system is able to identify whether this particular

student has logged in before, and allow himlher to continue with the

next exercise.

3. Enable frequent users to use shortcuts
"As the frequency of use increases, so does the desire to
reduce the number of interactions and increase the pace of
interaction."'

17. This only refers to cards providing the student with an exercise. The id number of other
cards, such as for example the Review sections, is not stored. . .

18. Shneiderman, El.,- p. 61.

Error-Adaptive Computer-Assisted Language Learning for German 46

Chapter 4: Human Factors in C A L L

Besides the 'command-key' shortcuts accessing the menu

items, the student can also use the <return> or center> key to evoke

the answer check. While it might be easier for the novice to use the

'DONE' button, frequent users might find it tedious to have to move the

mouse repeatedly. An attempt was made to preserve all of the

standard Macintosh interface keyboard commands to take advantage of

previously acquired user skills, and, to avoid conflicting with user

expectations.

4. Offer simple error handling

"The user should not have to retype the entire command,
but only need repair the faulty part."'

This rule is particularly relevant in this program since the

student must type a-whole sentence, as opposed to a multiple choice

scheme where clicking a button suffices. While for pedagogical

reasons multiple choice answers are avoided , bad typing skills should

not hinder the student in the task. Therefore, if only parts of the

student answer are incorrect, the system not only highlights and

selects the particular error, positioning the typing cursor (I-beam) at

the appropriate location, but also deals with one error at a time. Thus

the student need not memorize various errors displayed by several

dialog boxes on the screen all at once. As mentioned, all of the

standard Macintosh shortcuts (cut, copy, paste) are enabled. Since

errors with 'Subordinate Clauses' in German frequently address word

order, the student can use these commands to quickly reposition

words, without retyping. Consider the example in Figure 4-6:

. .
19. Shneiderman, B., Deslanlna the llser Interface, p. 62.

Error-Adapt ive Computer-Assisted Language Learning for German 47

Chapter 4 : Human Factors in CALL

I
Bilden . Wrong gender?

b

Don't for I[-]

e r / fragen / ob / Salat (def . article) / schmecken / g u t

Figure 4 -6

The student has provided a wrong article as well as an

incorrect subject-verb agreement. The incorrect article is highlighted

first. After correcting this error the system will point out the

incorrect verb inflection and highlight the verb. Highlighting an error

not only points out the specific error but also enables the student to

use the <delete> command to quickly remove the word and provide the

new answer.

5. Design Dialogs to yield closure
"Sequences of actions should be organized into groups with
a beginning, middle, and end. The informative feedback at
the completion of a group of actions gives the operator the
satisfaction of accomplishment, ... 112 o

While the student is provided with informative feedback after

each single exercise, the system also displays the overall score after

each lesson, as shown in Figure 4-7:

. .
20. Shneiderman, B., Desranlna the Lhw Inte&u, p. 61

Error-Adaptive Computer-Assisted Language Learning for German 48

Chapter 4: Human Factors in CALL

Bi 1 dr
Prima! You did very well on this lesson. Do

Don't
you want to continue with the n e ~ t one?

11 Art ic les O I

Verb Inf lect ion 1
Punctuation 0
Spelling 0
Subordinating Conjunctions 0
Wrong Translation 0
Word Order 0

11 PEEKS! 0 1

Figure 4 - 7

The display of the score at the end of a lesson, which consists of

various exercises of the same type, gives the student the

iisatisfaction of accomplishment" and, importantly, informs himlher

of hislher progress within the program.

6. Permit easy reversal of actions

"This relieves anxiety since the operator knows that
errors can be undone, and encourages exploration of
unfamiliar options.1121

This rule mostly applies to novices since the more familiar the

student is with a computer the more confident slhe is to explore a

program in depth. While in some students anxiety cannot be avoided

. .
21. Shneiderrnan, B., -the User Interface, p. 62.

Error-Adapt ive Computer-Assisted Language Learning for German 49

I I

Chapter 4: Human Factors in CALL

completely, the program strives to minimize it. First, the introduction

to the program tries to familiarize the student with the various

functions within the program in a friendly, entertaining way. The

student is able to try out the various buttons and menus while

explanations of their actions are given. Throughout the program, the

'Quit' button provides the student with a further dialogbox to decide

whether slhe really wants to exit the program or not. But even in a

case where the student exits the program accidentally the scores and

other relevant information are automatically saved. Second, whenever

the student leaves, whether intentionally or not, the page of an

exercise slhe is working on, a 'BACK' button is provided leading the

student back to that page. This applies to all paths open to the student

within the program: the Review, Glossary, and score sections. Third,

since the student is in control of evoking the answer check, typing

errors can be corrected before clicking the 'DONE' button. Effectively,

giving the student an infinite number of tries to get to the right

answer may reduce anxiety as well. To avoid utter frustration the

student can also access the correct answer with the menu item 'peek'

under the help menu. The pedagogical rationale behind this decision is

t 0

"prevent students from guessing, and at the same time to
allow them to reconsider their answers and possibly to
learn from their mistakes."22

However, while the student can access the menu item 'peek' as

often as needed, the access is always a deterring three steps away.

The system displays three slightly tricky dialogue boxes: the default

22. Steinberg, E. R., W r - A s s i s t e d lrxslruction, p. 1 13.

Error-Adaptive Computer-Assisted Language Learning for German 50

Chapter 4: Human Factors in C A L L

for the first two is 'getting to the answer': in the third one, the

default is 'not getting to the answer'. Even if the student escapes the

tendency to choose llPt to peek after all, slhe must switch from the

keyboard to the mouse to finally look at the answer. Again, as with the

'example' button described in section 4.4.1 (step I) , by making the

access sufficiently inconvenient the student will hopefully make rare

use of it. On the other hand the system provides the student with the

help slhe might need.

7. Support internal locus of control

"Surprising system actions, tedious sequences of data
entries, incapacity or difficulty in obtaining necessary
information, and the inability of the action they want all
build anxiety and d i ~ s a t i s f a c t i o n . " ~ ~

While this rule has already been partly covered above there are

further instances where it has been considered in the program24. One

of the goals of the system is to provide the student with a tool to

practice a grammatical construction in German which does not require

other material to do the task. The system therefore provides the

student with two review sections: one on subordinate clauses and one

on the German Case system. The two sections provide the student with

the theoretical concepts involved, which are illustrated by examples.

In addition, there are two glossaries: English-German, and German-

English. Consider Figure 4-8 which illustrates the English-German

glossary.

. .
23. Shneiderman, B., Deslanlna the User I-, p. 62.
24. While an easy access to necessary information has been implemented as a general principle of

the program, out of pedagogical reasons, there are instances where the access has been made
inconvenient, as discussed with the menu item 'peek' and the 'example' button.

Error-Adaptive Computer-Assisted Language Learning for German 51

Chapter 4: Human Factors in CALL

be
because
belong to (in f)
before

buy
camera
chi ld
come
cookie
dish
drive (in f)

sein
wei 1
gehdren
bevor
kauf en
die Kamera, -s
das Kind, -er
kommen
das Platzchen, -
das Menu, -s
fahren

Click on
the

0 K:::."
get
additional
i nfo !

Figure 4-8

The student can access the glossary through the help menu at any time

in the program. While the two review sections and the glossaries are

essential for working with any language problem, the student also

might need grammatical information, such as the conjugation of a

verb. It would be merely too tedious and frustrating i f a student

needed constantly to refer to a book to get the necessary information.

Also, if the required help is not easy to access the student will be

more likely to guess at the answer, a situation which is undesirable

from a language teaching point of view. In this system, the student

can access additional information needed through the glossary, as

i l lustrated in Figure 4-9:

Error-Adapt ive Computer-Assisted Language Learning for German 52

Chapter 4 : Human Factors in CALL

Rs a transitiue verb the present perfect I takes the au~i l iary 'haben'!

[OK]
fahre
f i jhrst
f i jhr t
f ahren
f ahrt
f ahren

tod r i ve fahren

past participle:
gef ahren

Figure 4 -9

After the student clicks the vocabulary item 'fahren' in the

glossary slhe receives additional information on this verb: the various

inflections, the past participle, and the required auxiliary for the

present perfect. In other cases, the student might want to access

additional information on nouns, articles, or the Case system. As

discussed in section 4.2 the program provides informative feedback to

guide the student j o w a r d ~ the answer, but does not automatically

provide the student yvith the actual answer. I t is therefore important,

in order to avoid frustration, that the student be able to access

additional information within the program to be able to work

independently toward the correct answer.

8. Offer informative feedback

"For every operator action there should be some system
feedbackn2'

. .
25. Shneiderman, B., Deslanlna the User Interface, p. 61.

Error-Adaptive Computer-Assisted Language Learning for German 53

i
Chapter 4 : Human Factors in CALL

To avoid the 'Dead Macintosh' phenomenon, there are instances

within the program where system feedback is provided. For example,

if the student evokes an answercheck which cannot be supplied at that

t imez6 the system will respond accordingly. In addition, the system

'beeps' if the cursor is not placed in the answer field and the student

tries to type. Additionally, while the system is processing the user's

input, checking the answer, the normal Maclntosh system response of

setting the cursor to 'watch cursor', or 'busy' cursor is displayed,

although, of course, this processing time has been kept to within a

matter of a few seconds or less.

In Lesson 1, for example, the student is given a paragraph where slhe has to provide the four
missing subordinating conjunctions. Even though the instructions are precise it is very
possible that a student tries to evoke the answercheck after providing just one of them. In
such an instance the system will provide the student with appropriate feedback.

Error-Adaptive Computer-Assisted Language Learning for German 54
I

CHAPTER s A Theoretical
Framework and its
Practical
Implementation

5.1 Program Design

5.1.1 Optimizing Analysis

The system is designed as an intelligent tutor in contrast to an

electronic workbook. The principal advantage of an intelligent tutor is

the error-contingent feedback which it provides the student. However,

the sheer amount of processing required to provide evaluative

feedback can be a disadvantage. The computer platforms on which

language instruction programs operate are typically too underpowered

to permit the amount of processing required in reasonable time. How

can we then use the personal computer efficiently while still

providing some semblance of intelligence?

Error-Adaptive Computer-Assisted Language Learning for German 55

Chapter 5 : A Theoretical Framework and its Implementation

Facts of human communication, noted by H.P. Grice (1967)'

suggest methods for limiting the depth and/or range of analysis and

thus decreasing the processing time. rice' argued that contributions

to communication should imply four categories, and adhere to the

following maxims:

I. Quantity
'be as informative as required for the current pur-
poses of the exchange'

2. Quality
'try to make your contribution one that is true'

3. Relation
'be relevant'

4. Manner
'be perspicuous'

When applied to responses to students' errors, this analysis suggests,

first, that with respect to a particular exercise only errors relevant

to that exercise need be analyzed12 and second, that detailed

linguistic analyses are unnecessary as they contain too much

information and would merely burden the student.

5.1.2 The Daemon Approach

The author's implementation of these ideas stresses

modularity within the system. The system consists of blocks of

exercises which students complete sequentially. Students' work on

each exercise is evaluated by a set of daemons; a daemon is a program

submodule, typically highly parameterized, which seeks a particular

error and takes remedial action when that error is discovered. Each

1. Grice, H.P., "Logic and Conversation". In Cole, P. and Morgan, J. (Eds.)
Semantics. yol. 3., pp. 41 -59

2. For example, in a one word answer, word order is an extraneous concern.

Error-Adaptive Computer-Assisted Language Learning for German 56

Chapter 5 : A Theoretical Framework and its Implementation

E
C
k

exercise has associated with it a set of daemons which seek errors

relevant to the exercise.

To take a specific example, the daemon responsible for

ensuring that the subordinating conjunction in a given sentence is

correct requires three parameters: a string representing the student's

sentence, an integer representing the position of the target

subordinating conjunction in the string, and the correct subordinating

conjunction. The daemon extracts the word from the string based on

the position parameter and compares it with the correct subordinating

conjunction. If the words do not match, the daemon takes remedial

action.

Consider the following example:

Verbinden-Sie die S a m (Join the sentences)

Ich gehe zur Party. Ich habe Zeit. (if)

Ich gehe zur Party, 'ob ich Zeit habe.3
I am going to the party if I have time.

The following code checks for the correct subordinating conjunction.

Code e x a m ~ l e 5-1

put word spos of string into it
if it is not word subconj in card field allsub in card subconjs then
if Incorrectlnflection(word spos of string, allsub, subconjs) is false then
select word RealPosition(punctuation, spos) in field answer1
answer "No, "'8 it &"' is the wrong subordinating conjunction!"
add 1 to sixth word of card field score in card scorecard
exit answercheck
end if
end if

- -

3. The correct answer is: Ich gehe zur Party, wenn ich Zeit habe.

Error-Adaptive Computer-Assisted Language Learning for German 57
I

Chapter 5: A Theoret ical Framework and i ts l rnplementat ion

The first parameter, 'string', refers to the student answer.

'Spos of string' (line 1) is the specified target position of the

subordinating conjunction in the sentence which in the example given

is '5'. The correct subordinating conjunction consists of a module

which is made up of three parameters: word 'subconj', card field

'allsub', and card 'subconjs'. All subordinating conjunctions are stored

in a field of a card in the glossary section which the student can also

access by way of reference as outlined in Chapter 4 (section 4.4.1). In

our example the parameter subconj is specified as '4' ('wenn' is listed

as the fourth subordinating conjunction in the field), the parameter

allsub (the subordinating conjunctions are listed in the field named

'allsub'), and the parameter subconjs (the name of the card the

subordinating conjunctions are listed in). When checking the student's

answer the system. compares 'ob' (student's answer) with 'wenn'

(correct answer). Since the two do not match, the system responds

with: "No, 'ob' is the wrong subordinating conjunction!" (line 5).

The use of parameters within the subroutines is very general in

that they can be applied to any word in any position of any sentence;

while the subroutine is stored in the common backgrounds of all cards

requiring it, the specific information (5, allsub, subconj) is specified

in the 'DONE' button of each card. This approach is structurally

optimal since we are defining functions to be stored in the system

only once, but which can be specified and accessed whenever

necessary, using parameters appropriate to the task at hand.

Daemons are, therefore, conceptually simple but capable of

simulating intelligence. This combination of simplicity and

sophistication is achieved by constraining the domain of the task. In

Error-Adapt ive Computer-Assisted Language Learning for German 58

- -

Chapter 5 : A Theoretical Framework and its Implementation

most cases4, only one answer is correct and the range of possible

errors is small, since the exercises are graded according to difficulty.

As discussed in Chapter 3, the program provides the student with

bottom-up instruction where the successful completion of a task

leads to a slightly more difficult one. This therefore contrasts with

domains where the task is highly variable and considerable analysis is

required.

5.1.3 Local and Global Daemons

The program employs two kinds of daemons, local and global.

Local daemons may be active or inactive. Active daemons seek errors

local to the current exercise and track the frequency of an error in

order later to refer students to additional exercises if a threshold is

exceeded. Inactive daemons are dormant in the current exercise but

can be activated as needed. Table 5-1: Daemons gives an overview of

the local daemons and shows at which point in the program they are

activated.

Local Daemons active

Articles Lesson 5,6

Case Lesson 5,6

Verb Inflection Lesson 2,5, 6

Punctuation Lesson 2, 3, 4, 5, 6

Subordinating Conjunctions Lesson 1, 2,5, 6

Wrong Translation Lesson 6

Word Order Lesson 2, 3, 4, 5 , 6

Table 5-1 : Daemons

--

4. In the final game there are more than one possible answer.

Error-Adaptive Computer-Assisted Language Learning for German 59

Chapter 5: A Theoret ical Framework and i ts Implementat ion

While local daemons are directed to specific positions within

the sentence, as with the subordinating conjunction daemon discussed

in section 5.1.2, global daemons seek errors common to all exercises.

Typically, these search the entire sentence for errors. An example of a

global daemon implemented in the program is the Spelling daemon

which seeks spelling errors by scanning each word in a sentence.

The overall modularity of the system allows one to create a

"pool" for each exercise, adding daemons from previous exercises to

the current one. The daemon approach ensures relevance of response:

the order in which daemons are activated keeps the point of the

current exercise salient. Additionally, the overall system can be

easily extended to encompass new phenomena by adding new daemons

to the pool.

I

1
4

I
Error-Adapt ive Computer-Assisted Language Learning for German 60 I

-) Exercise 4

Sie we in , daD du nicht zur Party kommst.

t t

Verb Inf lection? ---) Exercise 5 ri.
Figure 5 -1

Chapter 5 : A Theoret ica l Framework and i ts Implementat ion

Figure 5-1 illustrates the concept of a pool of daemons.

Grading the exercise requires checking that the verb of the

subordinate clause is in final position, that both verbs are correctly

conjugated and that each word is correctly spelled. Moreover, the

daemon Word Order? redirects the students to Exercise 4 if it

discovers that the verb is not sentence final while the daemon Verb

Inflection? redirects students to Exercise 5 i f either of the verbs are

incorrectly conjugated. These daemons are local and active. They may

also be used in subsequent exercises. The daemon Spelling? is global -

each exercise inherits it by default.

5.1.4 Error Thresholds

One other advantage of the Daemon approach is that we can

provide information about a student's performance by cataloguing the

types of errors made. The catalogue is created and maintained by the

daemons, each counting the student's errors which it handles. For

example, if the Word Order daemon responds to an incorrect student

answer an error is recorded on the scoresheet5 as shown in Figure 5-2.

At the end of each block of exercises, the student is presented

with a scoresheet reflecting the overall performance within the block.

In addition, the values in the scoresheet signal whether or not, and

what kind of remedial work is required. Whether remedial work is

required for a particular type of error is controlled by establishing a

threshold for each error in each block of exercises. If the threshold is

exceeded, the student is directed to further work. Figure 5-3

illustrates what a student might encounter at the end of Lessons 5.

5. p. 57, Code example 5-1 (line 5).

Error-Adaptive Computer-Assisted Language Learning for German 61

Chapter 5 : A Theoretical Framework and its Implementation

Score of Lesson 1-4: 2 1 problems

..

Kinds of Errors Number of Errors

Art ic les 0 ..
Case 0 ..
Verb Inf lection 0 ..
Punctuation 0 ..

0 ..m!..l.w!g ...
Subordinating Conjunctions 0 ..
Wrong Translation 0 ..
Word Order 1 ..
PEEKS! 0 ..

Figure 5 - 2

Figure 5-3 shows that the student made 4 errors in word order

and 4 in spelling. In lesson 5, however, the student's task was to

conjugate verbs, supply articles, and provide the correct word order.

Since the German words needed to construct each sentence were

provided, it is presumed that recorded spelling errors are likely to

have represented typos. The threshold for spelling errors is therefore

higher than for word order and the student is accordingly only directed

to remedial exercises on word order.

Error-Adaptive Computer-Assisted Language Learning for German 62

Chapter 5: A Theoret ica l Framework and i ts Implementat ion

~ j l d Prima! But you made too many errors on I word order. You need to do some additional
Don't exercises. Do you want to continue now?

Case 1
Verb Inflection 1
Punctuation 0
Spelling 4
Subordinating Conjunctions 0
Wrong Translation 0 I

1 word Order 4

Figure 5-3

5.2 Program Implementation

5.2.1 Daemons in Action

In addition to tracking performance for remedial work,

daemons also provide the intelligent, immediate feedback, discussed

in Chapter 4, within each exercise. Figure 5-4 shows the response of

a local daemon which signals errors in the position of the verb.

In this exercise the student's task is to form a sentence with the

words provided. The student's answer activates the word order

Error-Adapt ive Computer-Assisted Language Learning for German 63

Chapter 5: A Theoret ica l Framework and i ts Implementat ion

ich / gehen / nach Hause / wei l / ich / sein / mijde

Ich gehe nach Hause we i l ich bin mijde,..... 4

Figure 5 -4

daemon because the verb is not in sentence-final position. In Code

example 5-2,

Code example 5-2

1 repeat with wordposition = 1 to number of words in string
2 if isincard(word wordposition in string, tense, verbcard) is true and 1

3 wordposition is not vpos then
4 answer "No, form of "'& verbcard & " ' is in the wrong position!"
5 add 1 to eighth word of card field score in card scorecard
6 exit answercheck
7 end if
8 end repeat

the subroutine (line 1-8) checks with the function isincard

(line 2) to discover whether the student's answer contains a possible

inflection of sein. If the student used a possible inflection of 'sein'

but the verb is not in the specified position (vpos=8) the system will

respond (line 4) as in Figure 5-4. If no possible inflection of 'sein' can

be found within the student answer the system will respond with:

"This is not a possible inflection of 'sein'! Spelling?" as shown with

Code example 5-3 (l ine 8).

Error-Adapt ive Computer-Assisted Language Learning for German 64

Chapter 5: A Theoret ica l Framework and i t s Imp lementa t ion

In an alternate answer to the same exercise (Figure 5-5) the

student has correctly placed the verb in sentence final position

(vpos=8) but provided incorrect subject-verb agreement. In this case

the word order daemon, although active, remains quiescent but the

verb inflection daemon responds.

-

ich I gehen nach Hause / wei l / ich t' sein / mude

Figure 5-5

Consider the following code:

Code e x a w e 5-3

if word vpos of string is not word verb of card field tense-?
in card verbcard then
if Incorrectlnflection(word vpos of string, tense, verbcard) is false then
select word RealPosition(punctposition, vpos) in field answer1
answer "Almost! Right verb, right position, but wrong inflection!"
add 1 to third word of card field score in card scorecard
else
answer "This is not a possible inflection of "' & verbcard &"'! Spelling?"
add 1 to third word of card field score in card scorecard
end if
exit answercheck
end if

Er ror -Adapt ive Computer -Ass is ted Language Learn ing f o r German 65

Chapter 5 : A Theoretical Framework and its Implementation

This subroutine (line 1-12) applies if the verb the student provided in

position 8 is not the correct inflection ('bin') of the verb. The function

incorrectinflection (line 3)checks whether the student answer is one

of the possible inflections of the verb provided in a card field 'tense'

in the card 'verb'. As in this case, the system will then respond (line

5) as shown in Figure 5-5. Otherwise the response will be "This is not

a possible inflection of 'sein'! Spelling?" (line 8).

The system also has a built-in dictionary which enables it to

distinguish a spelling error from an incorrect translation. In the

exercise shown in Figure 5-6 the student needed to translate the

sentence provided. While all local daemons are satisfied by the answer

given, the global daemon spelling responds that the student misspelled

the second person singular of the verb 'wissen' (weif3t).

I' '1
Do you know (informal sing,) that he saw the gi r l?

du daD er das Madchen gesehen hat? A ,.. ,

Figure 5-6

Code example 5-4 shows the indict function:

1 if indict(word ok of string, increment) is false then

2 select word RealPosition(punctposition,ok) in field answer1

Error-Adaptive Computer-Assisted Language Learning for German 66

Chapter 5: A Theoret ica l Framework and i ts Implementat ion

3 answer "This word is not in my dictionary! Spelling?"
4 add 1 to fifth word of card field score in card scorecard

5 exit answercheck
6 end if

The function indict (line 1-6) uses a binary lookup - in the interest of

speed - to scan for the word within the built-in glossary. The student

answer which through a string match has been identified as incorrect

(word ok in string, line 1) cannot be found in the dictionary (Figure 5-

6); therefore the student must have misspelled the word slhe used,

and the system responds accordingly (line 3).

The processing for the detection of spelling errors in German

required a low-level rewrite of the string functions available in

Hypertalk since the scripting language, by default, does not

distinguish between-upper- and lower case nor between Umlauts and

their counterpart letters (ulu, ala, 610).

The various functions are:

Code exarrlple 5-5

Function Wordcheck Correctanswer, string
set cursor to busy

put 0 into Correctlndex
put 0 into WordCount
repeat with increment = 1 to number of words in string
put 1 + WordCount into WordCount
put 1 + Correctlndex into Correctlndex
if increment 1 then
if not CorrectCapitalization(word increment in string,word Correctlndex in CorrectAnswer)

then
return increment
end if

end if
put word increment of string into it
if it is not word Correctlndex in correctAnswer then

Error-Adapt ive Computer-Assisted Language Learning for German 67

Chapter 5 : A Theoretical Framework and its Implementation

return increment
else

if CompleteSpellCheck(it, word Correctlndex in correctAnswer) then
next repeat
else
return increment
end if
end if
end repeat
return true
end wordcheck

Function CorrectCapitalization Word, Correct
set cursor to busy
If CharToNum(first character of Word) = CharToNum(first character c

return true
else
return false
end if
end CorrectCapitalization

~f Correct) then

Function CompleteSpellCheck Word, Correct
set cursor to busy

if number of characters in Word = number of characters in Correct then
repeat with index = 1 to number of characters in Word
put CharToNum(character index of Word) into it

if it = 1 2 8 o r i t = 133 or it = 1 3 4 o r i t = 1 3 8 o r i t = 1 5 4 o r 4 0 it = 1 5 9 o r i t = 6 5 o r i t = 7 9
o r i t = 8 5 o r i t = 9 7 o r i t = l l l o r i t = 1 1 7 t h e n
if it = CharToNum(character index of Correct) then
next repeat

else
return false
end if
end if
end repeat
end if
return true
end CompleteSpellCheck

Each of the three functions- wordcheck (l ine l -26) , correct-

capitalizationword (line 27-34), and completespellcheck (line 35-51)

- contains a loop and two parameters. In wordcheck, the system first

Error-Adaptive Computer-Assisted Language Learning for German 68

I

Chapter 5: A Theore t i ca l Framework and i t s Imp lementa t ion

compares words: the student's answer (str ing) with the correct word

(correctanswer). Since Hypertalk is incapable of recognizing the

difference between, for example, 'gute' and 'Gute', the two functions

correctcapitalization word (line 9) and completespellcheck (line 1 0)

are necessary. These functions both have two parameters, word and

correct, where word refers to the student answer and correct to the

correct answer. While correctcapitalization looks at the first letter

of the words for lowerlupper case completespellcheck checks each

letter of a word (Umlauts are specified by their ASCII characters). I f

the student answer deviates from the correct answer the student

receives feedback that a spelling error occurred.

In contrast to spelling errors, Figure 5-7 shows a case where

the student has provided a verb which exists in the dictionary. It is

spelled and inflected correctly but is, nonetheless, an incorrect

translation of 'to know'? After the spellchecker finds the student

answer in the dictionary the system runs through the

lncorrectlnflection/Wrong Translation subroutines. Code example 5-6

shows the actual functions at work:

if word vpos of string is not word verb of card field tense in card verbcard then
if Incorrectlnflection(word vpos of string, tense, verbcard) is false then
select word RealPosition(punctposition, vpos) in field answerl
answer "Almost! Right verb, right position, but wrong inflection!"
add 1 to third word of card field score in card scorecard
else
select word RealPosition(punctposition, vpos) in field answerl
answer "This is not the correct translation! Spelling?"
add 1 to third word of card field score in card scorecard

6. This is a very common mistake made by English native speakers since German, as do many
other languages, has two distinct verbs for the verb 'to know'.

Er ror -Adapt ive Computer -Ass is ted Language Learn ing f o r German 69

Chapter 5 : A Theoretical Framework and its Implementation

10 end if
11 exit answercheck
12 end if

The first part of the subroutine (line 2-5), Incorrectinflection, does

not respond because the student answer is none of the possible

inflections of 'wissen'. And since the student provided a word which

is in the dictionary the Spelling daemon and the Verb Inflection

daemon pass it on to the daemon Wrong Translation as shown in Figure

5 -7 :

This i s not the correct translation!

Trans1

Do you

Figure 5-7

From a language teaching point of view the distinction between

these two errors is necessary and important enough to build in to the

system, even at the cost of a slower response time. In the cases

il lustrated by Figure 5-6 and Figure 5-7, not receiving error-

contingent feedback the student would not only be confused but would

also remain unaware of the source of error. In Figure 5-6 the user

needs to practice the inflections of 'wissen' while in Figure 5-7 the

important distinction between 'wissen'l'kennen' has to be part of a

Error-Adaptive Computer-Assisted Language Learning for German 70

Chapter 5 : A Theoretical Framework and its Implementation

follow-up activity. These two remedial exercises are not

interchangeable i f our goal of language teaching is accurate speech.

Error-Adaptive Computer-Assisted Language Learning for German 71

CHAPTER 6 Conclusion

As the software accompanying this project demonstrates,

Intelligent Tutoring Systems are fully realizable on micro computer

platforms. Although there is no reason to assume that the program

could not have been successfully implemented on some other system,

the choice of the Macintosh computer with its user-friendly interface

seems to have been optimal. In addition, given the author's limited

previous computer programming experience, Apple's Hypercard more

than justified its claim to be a powerful, yet relatively easy to use

authoring system. For all its points, however, Hypercard will not be

the author's preferred environment for future work; past a certain

level of complexity a more flexible and powerful programming

language is required.

In the rapidly changing world of computers one can be

optimistic that hardware will continue to become cheaper, faster, and

more powerful. In other words, the technology will continue to

Error-Adaptive Computer-Assisted Language Learning for German 72

Chapter 6: Conclusion

improve, allowing the software to become even more effective and

elaborate. Many new developments, such as CD Interactive and to an

extent CD-ROM, are of particular interest to CALL designers inasmuch

as the incorporation of sound and image could greatly enhance existing

software.

Most of the above conclusions were drawn following a very

encouraging beta test conducted in April 1993 at Simon Fraser

University. 24 participants, the combination of students from 2

introductory German classes, went through the entire program, the

quickest students requiring about 50 minutes, and only 1 student

failing to complete all exercises within one and a half hours. Their

evaluations of the program' were positive and some minor bugs (the

inevitable small flaws) were identified and subsequently corrected.

Since the participants were volunteers and had already been imposed

upon, to some extent, by the beta test itself, there was no rigorous

after-testing to assess the program's efficacy in teaching

subordinate clauses. The responses to the questionnaires, however,

indicate that the students, at least subjectively, felt the program to

be effective. Interestingly, while the testees could be expected to

praise the software (in the immediate presence of the author), the

exact nature of their comments paralleled the theoretical rationale

underlying its design. That is, they appreciated precisely those

aspects of the program, the error-contingent feedback, the individual

tailoring, etc. which were earlier stressed as being of fundamental

importance to CALL. Specifically, students found it more motivating

than a workbook, enjoyed working at their own pace, and were

1. see Appendix B for a sample questionnaire.

Error-Adapt ive Computer-Assisted Language Learning for German 73

Chapter 6: Conclusion

gratified by its ease of use, appropriate and instant feedback, and the

on-line access to review. One student, for instance, wrote,

We all have individual mistakes and this program gives
me instant feedback as to what's wrong with my
sentences.

Another responded,

Excellent feedback! The best was: "Almost ..." or "I won't
count that." It was very useful.

One point raised by the students' responses of some interest to

future development, and not previously discussed here, is the

desirability of incorporating sound within the program. In actual fact,

this was implemented in a small way in the review and introduction

sections of the program. By clicking a sound button students could

listen to a recording of the author speaking the subordinating

conjunctions and so on. Many of the respondents indicated that they

would have liked sound to have been incorporated throughout the

exercises. The sole reason this was not done was one of purely

practical disk-storage limitations. A more extensive audio component

would have quickly required more storage space than is available on a

floppy disk. The obvious advantages of incorporating sound are

exposure to pronunciation, stress and intonation. Sound would most

certainly be desirable in a full-blown version of the current software

and is realizable with present technology.

Error-Adapt ive Computer-Assisted Language Learning for German 74

Appendix A

Program Listing

on openField - - disable arrow keys
global TextEntry
put true into TextEntry
send "openFieldW to Hypercard
end openField

on mouseDown
global TextEntry
put false into TextEntry
end mouseDown

o n arrowkey whichkey
global TextEntry
if textEntry is true then
if whichkey = "left" then
send "arrowkey left" to Hypercard
end if
if whichkey = "right" then
send "arrowkey right" to Hypercard
end if
end if
end arrowkey

on openstack -- set up menu and menuitems
delete menu "Style"
delete menu "Font"
delete menu "Go"
delete menuitem "undo" of menu "edit"
delete menuitem "new card" of menu "edit"
delete menuitem "delete card" of menu "edit"
delete menu "File"
create menu "Help"
put "Review" into menu "Help"
set the cmdchar of menuitem "Review" of menu "help" to R
put "--" after menuitem "Review" of menu "Help"
put "Glossary" after the second menuitem of menu "Help"

Error-Adaptive Computer-Assisted Language Learning for German

Appendix A- -

set the cmdchar of menuitem "Glossary" of menu "help" to G
put "--" after menuitem "Glossary" of menu "Help"
put "Peek?" after the fourth menuitem of menu "Help"
set textarrows to true
ask "Please enter your name" - - login
if it is empty then
ask "You need to enter your name"
if it is empty then
domenu "quit Hypercard"
exit openstack
end if
end if
put it into card field name in card scorecard
ask password "Please enter your password"
set cursor to busy
put it into card field password in card scorecard
repeat with increment = number of lines in card field scorehistory in card scorecard
down to 1
if line 1 in card field name in card scorecard is first word in line increment in card
field scorehistory in card scorecard and line 1 in card field password in card
scorecard is third -word in line increment in card field scorehistory in card
scorecard and word 5 in line increment in card field scorehistory in card scorecard =
"completed" then
answer "You've done the exercises before, which one would you like to review?" with
"Lesson 6" or "Lesson 5" or "Lesson 1 - 4"
set cursor to busy
if it is "Lesson 1 - 4" then
delete line increment in card field scorehistory in card scorecard
visual effect iris open
go to card id 16497
tabkey
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
if it is "Lesson 5" then
delete line increment in card field scorehistory in card scorecard
visual effect iris open
go to card id 20286
tabkey
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
if it is "Lesson 6" then
delete line increment in card field scorehistory in card scorecard
visual effect iris open

Error-Adaptive Computer-Assisted Language Learning for German 76

Appendix A

go to card id 12850
tabkey
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
exit openstack
else
if line 1 in card field name in card scorecard is first word in line increment in card
field scorehistory in card scorecard and line 1 in card field password in card
scorecard is third word in line increment in card field scorehistory in card
scorecard then
answer "Do you want to continue where you stopped last time?" with "no" or "yes"
set cursor to busy
put word 15 to 16 of line increment in card field scorehistory in card scorecard into
saved
if it is "yes" then
set cursor to busy
visual effect iris open
go card saved
tabkey
put word 5 to 13 of line increment in card field scorehistory in card scorecard into
line 1 of card field score of card scorecard
delete line increment in card field scorehistory in card scorecard
end if
if it is "no" then
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
delete line increment in card field scorehistory in card scorecard
end if
exit openstack
else
end if
end if
end if
end repeat
end openstack

on closestack
set cursor to busy
delete word 1 in card field id 4 in card id 16497 -- clear fields in Lesson 1
delete word 1 in card field id 5 in card id 16497
delete word 1 in card field id 6 in card id 16497
delete word 1 in card field id 7 in card id 16497
repeat with increment = 18 to the short number of card 66 --clear all other fields

Error-Adaptive Computer-Assisted Language Learning for German 77

Appendix A-
-

if line 1 in field answerl in card increment is empty then
next repeat
else
if line 1 in field answerl in card increment is not empty then
delete line 1 in field answerl in card increment
if the short number of this card = 66 then
exit repeat
end if
end if
if line 1 in field answerl in card increment is empty and line 1 in field answerl in
card increment + 1 is empty then
exit repeat
end if
end if
end repeat
if short id of this card = 32254 then -- clear lesson 1 if student did not do any

-- further exercise
delete line 1 in card field name in card scorecard
delete line 1 in card field password in card scorecard
delete line 1 in card field score in card scorecard
delete line 1 in card field ids in card scorecard
exit closestack
else
if short id of this card = 43357 then -- student completed the whole program
put (number of lines in card field scorehistory in card scorecard) + 1 into it
put (card field name in card scorecard) && "I" && (card field password in card
scorecard) && "I" && (card field ids in card scorecard) && "--" & the short date
into line it in card field scorehistory in card scorecard
exit closestack
else
put (number of lines in card field scorehistory in card scorecard) + 1 into it
put (card field name in card scorecard) && "I" && (card field password in card
scorecard) && "I" && (card field score in card scorecard) && "I" && (line 1 in
card field ids in card scorecard) && "--" & the short date into line it in card field
scorehistory in card scorecard
end if
end if
end closestack

Function showscore
set cursor to busy -- popup field with score
show card button 2 in this card
put word 1 of card field score in card scorecard into it

Error-Adaptive Computer-Assisted Language Learning for German 78

Appendix A

put (word 1 of line 1 of card field 2 in this card) && (it) into line 1 in card field 2
in this card
put word 2 of card field score in card scorecard into it
put (word 1 of line 2 of card field 2 in this card) && (it) into line 2 in card field 2
in this card
put word 3 of card field score in card scorecard into it
put (word 1 to 2 of line 3 of card field 2 in this card) && (it) into line 3 in card
field 2 in this card
put word 4 of card field score in card scorecard into it
put (word 1 of line 4 of card field 2 in this card) && (it) into line 4 in card field 2
in this card
put word 5 of card field score in card scorecard into it
put (word 1 of line 5 of card field 2 in this card) && (it) into line 5 in card field 2
in this card
put word 6 of card field score in card scorecard into it
put (word 1 to 2 of line 6 of card field 2 in this card) && (it) into line 6 in card
field 2 in this card
put word 7 of card field score in card scorecard into it
put (word 1 to 2 of line 7 of card field 2 in this card) && (it) into line 7 in card
field 2 in this card
put word 8 of card field score in card scorecard into it
put (word 1 to 2 of-line 8 of card field 2 in this card) && (it) into line 8 in card
field 2 in this card
put word 9 of card field score in card scorecard into it
put (word 1 of line 9 of card field 2 in this card) && (it) into line 9 in card field 2
in this card
send "mousedown" to card button 2 in this card
end showscore

Function storescore
set cursor to busy -- store score in scorecard
put (number of lines in card field scorehistoryl in card scorecard
get card field name in card scorecard

1) + 1 into lines

put it into first word in line lines in card field scorehistoryl in card scorecard1
get card field score in card scorecard
put (first word in line lines in card field scorehistoryl in card scorecardl) && it
&& "-" && the short date && "- score" && (first line of card field lesson in card
scorecard) & "! !!!!" into line lines in card field scorehistoryl in card scorecard1
end storescore

Function NumErrorCheck Errorlds, myerrormessages, Cardlds,
Thresholds, msgstatus
set cursor to busy
put false into myerrormessage -- set up error messages

Error-Adaptive Computer-Assisted Language Learning for German 79

--

Appendix A

put false into cardid
put false into errorsFound
repeat with index = 1 to the number of words in Errorlds
if word word index of Errorlds of card field score in card scorecard > word index of
Thresholds then
if word index of msgstatus is true then
put true into errorsFound
if myerrormessage = false then
put Makemyerrormessage(myerrormessages, index) into myerrormessage
else
if "and" is in myerrormessage then
put Makemyerrormessage(myerrormessages, index) & "," & myerrormessage into
myerrormessage
else
put Makemyerrormessage(myerrormessages, index) & ", and" & myerrormessage
into myerrormessage
end if
end if
if cardid is false then
put word index of Cardlds into cardid
else
put word index of Cardlds into it
if it is word index - 1 of Cardlds then
next repeat
else
put it into card field numberofexercises in card id 35259
end if
end if
else
if errorsFound is false then
put Makemyerrormessage(myerrormessages, index) into myerrormessage
put word index of Cardlds into cardid
end if
end if
end if
end repeat
if myerrormessage is not false then
if errorsFound is true then
if short id of this card = 28582 then -- after lesson 6 if threshold is exceeded
answer "Prima! You made quite a number of errors on" && myerrormessage &". You
can move on to the last task, you might want to consider reviewing these exercises at
some point. Do you want to continue now?" with "Cancel" or "Yes"

Error-Adaptive Computer-Assisted Language Learning for German 80

7
Appendix A

if it is "yes" then
do storescore()
visual effect dissolve fast
go card id cardid
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
exit numerrorcheck
end if -- after any lesson if threshold is exceeded
answer "Prima! But you made too many errors on" && myerrormessage &". You need
to do some additional exercises. Do you want to continue now?" with "Cancel" or "Yes"
else
answer myerrormessage with "Cancel" or "Yes"
end if
if it is "yes" then
do storescore()
visual effect dissolve fast
go card id cardid
tabkey
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
else
if short id of this card = 28582 then -- after lesson 6 if no threshold is exceeded
answer "Prima! You did very well on this lesson. Do you want to continue with the
last one?" with "Cancel" or "Yes"
if it is "yes" then
do storescore()
visual effect dissolve fast
go to card id 43357
tabkey
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
else -- after each lesson if no threshold is exceeded
answer "Prima! You did very well on this lesson. Do you want to continue with the
next one?" with "Cancel" or "Yes"
if it is "yes" then
do storescore()
visual effect dissolve fast
go to next card
tabkey
put "0 0 0 0 0 0 0 0 0" into card field score in card scorecard
end if
end if

Error-Adaptive Computer-Assisted Language Learning for German 81

Appendix A

end if
end NumErrorCheck

Function Makemyerrormessage myerrormessages, myid
set cursor to busy
put 1 into count -- error messages for peeks
put "" into myerrormessage
repeat with index = 1 to number of words in myerrormessages
put word index of myerrormessages into it
if it = peekmsg then
put "Prima! But you've taken too many peeks! You need to make up these exercises.
Do you want to continue now?" into myerrormessage
end if
return myerrormessage
exit Makemyerrormessage
end if
if myid = count then
if i t is "I" then
return myerrormessage
else
put myerrormessage && it into myerrormessage
end if
else
if it is "I" then
put count + 1 into count
end if
end if
end repeat
return myerrormessage
end Makemyerrormessage

Function Capitalized word
set cursor to busy -- spellchecker for capitalization

put CharToNum(first character of word) into it
if it >= 65 and it <= 90 then
return true
else
if it >= 128 and it <= 134 then
return true
else
return false

Error-Adaptive Computer-Assisted Language Learning for German 82

Appendix A

286. end if
287. end if
288. end Capitalized

289. Funct ion IsPunctuat ion character
290. set cursor to busy -- check punctuation
291. return character is "," or character is "." or character is "?" or character is "!"
292. end IsPunctuation

Funct ion FindPunctuation sentence
set cursor to busy -- check punctuation
repeat with index = 1 to number of words in sentence
if IsPunctuation(word index of sentence) then
return index
end if
end repeat
return 10000
end FindPunctuation

Funct ion Normalizesentence sentence
set cursor to busy -- error messages for punctuation
put first character of sentence into it
put false into LastCharacterlsSpace
put number of characters in sentence into Length
repeat with index = 2 to Length
put character index of sentence into NewChar
if IsPunctuation(NewChar) then
if CharToNum(character index + 1 of sentence) = 32 then
if LastCharacterlsSpace then
select character index in field answerl
answer "Punctuation should not be preceded by a space."
return false
end if
if index = Length then
next repeat
else
put NumToChar(32) into NewChar
end if
else
if CharToNum(character index of sentence) = 44 then
select character index in field answerl

-

Error-Adaptive Computer-Assisted Language Learning for German 83

Appendix A

answer "Punctuation should be followed by a space."
return false
else
if CharToNum(character index of sentence) 44 then
next repeat
end if
end if
end if
end if
if ChartoNum(NewChar) = 32 then
if index = Length then
next repeat
else
if LastCharacterlsSpace then
next repeat
else
put it & NewChar into it
put true into LastCharacterlsSpace
end if
end i f
else
put it & NewChar into it
put false into LastCharacterlsSpace
end if
end repeat
return i t
end Normalizesentence

Function CompleteSpellCheck Word, Correct
set cursor to busy -- spellchecker for 'Umlaut'
if number of characters in Word = number of characters in Correct then
repeat with index = 1 to number of characters in Word
put CharToNum(character index of Word) into it
if i t = 1 2 8 o r i t = 1 3 3 o r i t = 1 3 4 o r i t = 1 3 8 o r i t t 1 5 4 o r i t = l W o r i t = 650r
it = 79 or it = 85 or i t = 97 or it = 11 1 or it = 117 then
if it = CharToNum(character index of Correct) then
next repeat
else
return false
end if
end if

Error-Adaptive Computer-Assisted Language Learning for German 84

Appendix A

end repeat
end if
return true
end CompleteSpellCheck

Func t ion Wordcheck Correctanswer, s t r i ng
set cursor to busy -- complete word check
put 0 into Correctlndex
put 0 into WordCount
repeat with increment = 1 to number of words in string
put 1 + WordCount into WordCount
put 1 + Correctlndex into Correctlndex
if increment 1 then
if not CorrectCapitalization(word increment in string, word Correctlndex in
CorrectAnswer) then
return increment
end if
end if
put word increment of string into it
if it is not word Correctlndex in correctAnswer then
return increment
else
if CompleteSpellCheck(it, word Correctlndex in correctAnswer) then
next repeat
else
return increment
end if
end if
end repeat
return true
end wordcheck

Func t ion Correctcap i ta l iza t ion Word, Correct
set cursor to busy -- spellchecker for capitalization
If CharToNum(first character of Word) = CharToNum(first character of Correct)
then
return true
else
return false
end if
end Correctcapitalization

Error-Adaptive Computer-Assisted Language Learning for German 85

-

Appendix A

Func t ion lncor rec t ln f lec t ion reply, tense, verbcard
set cursor to busy - - check for inflection
put true into it
repeat with increment = 1 to number of words in card field tense in card verbcard
if reply is word increment in card field tense in card verbcard then
return false
end if
end repeat
return it
End lncorrectlnflection

Funct ion is incard answer,tense, verbcard
set cursor to busy -- check for word position in string
repeat with increment = 1 to number of words in card field tense in card verbcard
if answer = word increment in card field tense in card verbcard then
return true
end if
end repeat
return false
End isincard

Func t ion i nd i c t reply, index, low, h i gh -- spellchecker

set cursor to busy
put false into it
put 1 into low
put (number of words in card field vocab in card vocab) + 1 into high
put (high + low) div 2 into new
repeat while new is not lastnew
put new into lastnew
put word(new) in card field vocab of card vocab into her
if SameWord(reply, her, index) then
put true into it
return i t
exit indict
else
if reply > her then
put new into low
put (high + low) div 2 into new
else
if reply < her then

Error-Adaptive Computer-Assisted Language Learning for German 86

Appendix A

put new into high
put (high + low) div 2 into new
end if
end if
end if
end repeat
return i t
end indict

Func t ion SameWord reply, correct , index
set cursor to busy - - spellchecker (ignore capitalization for first word in string)
if reply = correct then
if index = 1 then
return true
else
if reply > correct then
return false
else
if correct > reply then
return false
else
return true
end if
end if
end if
end if
return false
end SameWord

Funct ion RealPosit ion punctposi t ion, pos i t i on
set cursor to busy -- determine position of punctuation in string
if punctposition <= position then
return position + 1
else
return position
end if
end RealPosition

Error-Adaptive Computer-Assisted Language Learning for German 87

Appendix B

Questionnaire

1) Bearing in mind that this program is not intended to substitute for

the teacher, but rather is meant as an alternative to workbook review,

what do you think are advantagesldisadvantages of this computer pro-

gram?

2) In terms of the program's feedback (response to errors, help, hints,

etc.)

a. was the feedback accuratelappropriate?
b. detailedlnot detailed enough?
C. variedlnot varied enough?

3) Would you most likely use this program only when the structure is

taught in class or could you see yourself using it at a later point

again?

4) Additional comments (how did you find the exercises and the

"Speed Challenge"?)

5) Have you used Macintoshes before?

--

Error-Adaptive Computer-Assisted Language Learning for German 88

List of References

AHMAD, Khurshid et al. Com~uters. Lanauaae Learnina and Lanauaae
Teachina. Cambridge: Cambridge University Press, 1985.

ALESSI, STEPHEN M. and TROLIP, STANLEY R. Computer-Based
Jnstruction: Methods and Development. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1985.

BARKER, PHILIP and Yeates, HARRY. Lntroducina Computer Assisted
m. London: Prentice-Hall International, UK Ltd., 1985.

BROWN, C. MARLIN "LIN". Human-Computer Interface Desian Guidelines.
Norwood, New Jersey: Ablex Publishing Co., 1988.

BURNS, HUGH, PARLETT, JAMES W., and REDFIELD, CAROL LUCKHARDT
(eds.). lntelliaent T u t o r i ~ a Svstems: Fvolutions in Desiga. Hillsdale,
New Jersey: Lawrence Erlbaum Assoc., Inc., 1991.

COLE, PETER and MORGAN, JERRY L. (eds.). Svntax and Semantics,
Volume 3. Speech Acts. New York: Academic Press, Inc., 1975.

CRISWELL, ELEANOR L. Jhe Desian of Computer-Based Instruction.
New York: Macmillan Publishing Co., 1989.

HAMMERLY, HECTOR. An lntearated Theorv of Lanauaae Teaching and its
I consequence^. Blaine, Washington: Second Language

Publications, 1985.

HAMMERLY, HECTOR. Synthesis in Language Teaching: An Introduction
I anaulstlcs

. . . 2nd Edition. Blaine, Washington: Second Language
Publications, 1 986.

HIGGINS, JOHN. I a n m a e . I earners and Computers: Human Intelligence . . .
and A r t i f ~ c ~ a l I l n~n te l l~aence . New York: Longman Publishing Group,
1988.

HOLMES, GLYN and KIDD, Marilyn E. "Second Language Learning and
Computers", Canadian Modern W a e Review, vol. 38, pp. 503-51 6,
1982.

KRASHEN, STEPHEN. "The Monitor Model for Adult Second Language
Performance," pp. 152-61. In Burt, M., Dulay, H., and Finocchiaro, M.

-

Error-Adaptive Computer-Assisted Language Learning for German 89

(eds.). Viewpoints on Enalish as a Second Lanauaae: Trends in Research
d P r a c t i m New York: Regents, 1977.

LAREAU, PAUL and VOCKELL, EDWARD. The Com~ute r in the Foreian
ae Curr lcu lu~. Santa Cruz, California: Mitchell Publishing, Inc.,

1989.

MARSHALL, D.V. ICRT - e G r a D-. Bromley: Chartwell-
Bratt, 1988.

PRICE, ROBERT V. Computer-Aided Instruction: A Guide for Authors.
Pacific Grove, California: BrookslCole Publishing Co., 1991.

ROACH, PETER (ed.). Computina in L inau~st~cs and Phonetics;
. .

lntroductorv Readinas. London: Academic Press Limited, 1992.

SHNEIDERMAN, BEN. Desran~na the User interface: Strateaies for
. .

Effective Human-Computer Interaction. Reading, Massachusetts:
Addison-Wesley Publishing Co. 1987.

SMITH, WM. FLINT (ed.). Modern Med~a In Foreian W a e Education. . .

nd Im~lementation. Chicago: National Textbook Co., 1987.

STEINBERG, ESTHER R. Computer-Assisted Instruction: A Svnthesis of
Theorv. Practice. and Technoloay. Hillsdale, New Jersey: Lawrence
Erlbaum Assoc., Inc., 1991.

TEICHERT, HERMAN U. An E w r i m e n t a l Studv USiDa M o d ~ f ~ e d
. .

Individualized Instruction in Beainnina Colleae German. UGa., Athens,
1977.

UNDERWOOD, JOHN H. J inau~st~cs. Computers and the Lan- Teacher;
. .

A Communicative Approach. Rowley, Massachusetts: Newbury House
Publishers, Inc., 1984.

VENEZKY, RICHARD and OSIN, LUIS. The lnteuaent Desian of Computer-
Assisted I ns t ruc t i o~ . New York: Longman Publishing Group, 1991.

WENGER, ETIENNE. A r t ~ f ~ c ~ a l lntelliaence and Tutorina Svstems;
. . .

Computational and Coan~twe Approaches to the Communication o
. .

f
Knowledgg. Los Altos, California: Morgan Kaufmann Publishers, Inc.,
1987.

WYATT, DAVID H. (ed.). Computer-Assisted I a n u a a e Instruction.
Oxford: Pergamon Press Ltd., 1984.

Error-Adapt ive Computer-Assisted Language Learning for German 90

