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Abstract 

Soliton solutions to the generalized nonlinear Schrodinger equation (GNLSE) model 

the behaviour of light pulses in certain optical fibers. These optical solitons have 

been the object of much recent interest because of their potential applications in 

communications technology and in optical computing. In this thesis, the physical 

phenomena leading to soliton formation are reviewed, and the GNLSE is solved for 

two models of fiber nonlinearity. 

Optical fibers may support bright soliton bistability in two ways. Bistable solitons 

of the first kind (BISOLl) exist when solitons may propagate with the same total 

energy but different propagation parameters. Bistable solitons of the second kind 

(BISOL2) exist when the fiber supports solitons with the same width but different 

amplitudes. Two models of fiber nonlinearity are shown to support BISOL2, but not 

BISOLl, and collisions between BISOL2 are investigated numerically. 

Dark solitons are also supported by one of the models under discussion. The solu- 

tion of the GNLSE for dark solitons is presented and classes of bistability, analogous 

to those identified for bright solitons, are proposed for dark solitons. 

It has been demonstrated previously that it is possible to switch between high 

and low state BISOL1, by amplifying a soliton pulse. In this thesis, BISOL2 are 

amplified numerically, and the results are compared to the predictions of a variational 

analysis based on that of Anderson (Phys. Rev. A27 (1983) 3135). The variational 

method generally predicts the observed numerical behaviour well. However, it is 
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not able to  account for the switching that occurs for suitably chosen amplifications. 

Both upswitching (from low to high state) and downswitching (from high to low 

state) are demonstrated for two different models of the fiber nonlinearity. In both 

models, essentially hysteresis-free back-and-forth switching is observed numerically 

between BISOL2 states, whereas such behaviour is not generally possible for BISOLL. 

While fibers described by both models allow amplificational switching, those with a 

saturable nonlinearity are likely to  be more useful in practice, as they easily allow 

switching between solitons of very different amplitudes. 
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Chapter 1 

Introduction 

1.1 Solitons and Optical Technology 

Optical fibers have been used since the 1970's for communications technology (tele- 

phone lines, for example). Information is sent along a fiber in binary form as a series 

of ones and zeros. Conventionally, a pulse of light is used to represent one and a space 

is used to represent zero. Several difficulties arise when these light pulses are sent 

along optical fibers. Fiber loss, due to Rayleigh scattering and absorption, causes 

the pulses to lose intensity as they travel, and dispersion inherent to the dielectric 

fiber causes pulse broadening. Loss limits the distance over which information can 

travel, and dispersion limits the rate at which zeros and ones may be sent. 

Originally, these difficulties were overcome by using fibers with very low loss, 

stationing repeaters in the fibers to reduce the distance that a pulse needs to travel, 

and using only wavelengths at which the dispersion falls to zero. Now, it is also 

possible to manufacture fibers with appropriate nonlinear refractive indices, so that 

the nonlinear effects balance the effects of dispersion. The stable, extremely narrow 



pulses (solitons) which may be propagated in such fibers allow for very high bit-rate 

data transmission over long distances. A model for the physical processes involved 

is described in section 1.2. 

Rather than using pulses and gaps to represent ones and zeros, one could use 

tall and short pulses. The major advantage of the latter system is that it makes 

simple switching between zeros and ones conceivable; it may also allow data bits 

to be sent closer to each other without confusion. Bistability makes it possible to 

identify "high" and "low" state solitons, and thus offers a way to create tall and 

short pulses in practice. Two main classes of bistability have been identified in the 

literature. Bistable solitons of the first kind are those for which the same total 

energy (or energy deficiency, for dark pulses) is possible for different propagation 

parameters. Bistable solitons of the second kind have the same width for different 

amplitudes. Bistability for bright and dark solitons is discussed in detail in Chapters 

2 and 3. 

A great deal of interest has been shown recently in the possibility of optical 

computing; that is, applying the technology of fiber optics to logic operations. Logic 

operations require a mechanism for switching between ones and zeros. As mentioned 

above, bistable solitons provide a method of coding binary information which allows 

the possibility of switching. Switching between high and low state bright solitons in 

systems with bistability of the first kind has been demonstrated by Enns et al. (see [l] 

and references therein). The amplification and switching of bright bistable solitons 



of the second kind are the subjects of Chapters 4 and 5 ,  where both analytical and 

numerical methods are used to investigate the consequences of amplifying pulses. 

This work has been accepted for publication in Physical Review [2]. 

1.2 The Physics of Soliton Propagation 

1.2.1 Solitons and the NLSE 

The term "soliton" was coined in 1964 by Zabusky and Kruskal [3] to describe soli- 

tary wave solutions to the KortewegIdeVries (KdV) equation. Solitary waves are 

localized, isolated pulses. The solitary waves regained their original shape exactly 

after colliding or passing through one another, and were given the name "solitonn to 

reflect their particle-like behaviour. Two years later, in 1967, Gardner et al. [4] used 

the inverse-scattering method to solve the KdV equation. This method is described 

in some detail in [5] .  In the inverse-scattering solution, solitons are described as 

bound states of a Schriidinger operator. This description gives a theoretical basis for 

the particle model of solitons. 

The KdV equation was originally derived to describe long wavelength, shallow 

water waves in a rectangular canal. A different mathematical description is needed 

for light pulses in fibers, which usually take the form of local modifications to the 

amplitude of a carrier wave. The propagation of the envelope pulses is governed 

by the nonlinear Schrodinger equation ( N L S E )  and its generalizations. The NLSE 

shown below describes the motion of an envelope function E ( z ,  t ) ,  which is assumed 

to vary slowly in space and time relative to the carrier wave, in a lossless fiber with 



the Kerr nonlinearity: 

Here E represents the amplitude of the electric field. 2 is the spatial co-ordinate in 

the direction of motion; T = t - z/vg, is a retarded time for group velocity vg = dwldk; 

k" = d2k/dW2 is the group velocity dispersion (GVD) where k is the wavenumber of 

the envelope wave and w is its frequency; and the index of refraction in the fiber is 

n = no + n2 1 E l 2  for the Kerr nonlinearity. The detailed derivation of the NLSE from 

Maxwell's equations can be found in [5] or [6],but is not included here. Instead, the 

physical processes behind the NLSE are described. 

The propagation of stable solitary waves depends on a balance between the effects 

of the nonlinearity and the dispersion. In the NLSE the dispersion is governed by 

the second term and the nonlinearity by the third. 

Dispersion 

Dispersion exists when the wavenumber, k, of the envelope pulse depends on its 

frequency, w. The precise nature of the dependence is determined by the molecular 

structure of the fiber. The relation k(w) can be expressed in terms of the relationship 

between index of refraction, n, and wavelength, A,  which is tabulated for many 

dielectrics. 

Since k = n(w)w/c it follows that 



Now, also, w = 2~c/n(X)X, so dn/& can be written: 

Using this. the group velocity can be found as follows: 

Xdn . ' [I -!%I if --z lssmall. 
C 

Similarly, 

For a wide variety of dielectrics [7], n(X) and dn/dX have the shapes shown in 

Figure 1.1 , so dLn/dX2 (and hence kt') is positive for lower wavelengths, zero for 

some wavelength, and negative for higher wavelengths. Positive kN is referred to as 

normal dispersion, while negative k" is referred to as anomalous dispersion. 

Since, for nonzero dispersion, the wavenumber is dependent on frequency, it fol- 

lows that phase velocity (vph = w/k(w)), in general, depends on frequency. Different 

frequency components of a pulse travel at different speeds. Thus, dispersion causes 

the pulse to spread as it propagates through the fiber. Pulse spreading is indepen- 

dent of the sign of the group velocity dispersion, and occurs for both dark and bright 

pulses. Detailed treatments of dispersion can be found in [8] and [9]. 



wavelength,  h 

wavelength, h 

Figure 1.1: Typical shapes of wavelength-dependent refractive index curves 
(a) Refractive index vs. wavelength ( A  is a log scale). 
(b) dn/dA vs. wavelength (log-log plot). The derivative of this function 

is proportional to the group velocity dispersion. 



Nonlinearity 

The effects of the fiber nonlinearity can be seen more easily if the dispersion term is 

removed from the XLSE. The resulting propa~at~ion equation is : 

which has the solution: 

The phase shift is proportional to the pulse intensity, IE(0, 7)12, and so is time- 

dependent. The time dependence of the phase can be expressed as a frequency shift. 

After time ST, the frequency shift is 

For a pulse which is concave down, a ( I E I 2 ) / d ~  is positive in the trailing part and 

negative in the leading part, so the trailing part of the pulse is raised in frequency 

while the leading part is lowered in frequency. If group velocity, v, = dwldk, is an 

increasing function of frequency (which occurs for 62k/dW2 < 0), the trailing part of 

the pulse speeds up while the leading part slows down, and the pulse is compressed. 

For a concave up pulse, a ( ( E  I 2 ) / a ~  is negative in the trailing part and positive in 

the leading part, so the trailing part is lowered in frequency, while the leading part 

is raised in frequency. In this case 62 k / o h 2  > 0 is the necessary condition for pulse 

compression. 



Both the amount of broadening due to dispersion and the amount of compression 

due to the nonlinearity depend on the initial shape (particularly the width) of the 

pulse. For some pulse shapes and widths, the two effects can exactly balance one 

another, allowing the pulse to propagate unchanged. This stable pulse is a soliton. 

"Concave down" solitons which take the form of localized pulses of radiation 

against a zero intensity background are called bright solitons. They are possible 

in the presence of anomalous dispersion. Solitons which take the form of localized 

holes in a nonzero intensity background ("concave upn) are known as dark solitons, 

and can exist in the presence of normal dispersion. Dark and bright solitons, with 

some relevant parameters labelled, are shown in Figure 1.2. In 1973, Hasegawa and 

Tappert [lo, 111 solved the NLSE for both bright and dark solitons. Independently, 

Zakharov and Shabat used the inverse scattering method to solve the NLSE for bright 

solitons [12] and dark solitons [13]. 

'1.2.2 Generalizationofthe NLSE 

The NLSE models a fiber with the Kerr nonlinearity; that is, one whose refractive 

index is described by n = no + nzl El2. Many other nonlinearities are possible in 

practice, depending on the dielectric medium and the intensity of the light being 

propagated. The generalized nonlinear Schrdinger equation (GNLSE) was devel- 

oped to allow for various models of refractive index. 

If the index of refraction is given by n = no + n2F(IEI2) , the GNLSE is written 



background 

q m a x  
- 

- 

depth 

lq min 

ampl i tude 

Figure 1.2: Typical shapes of dark and bright solitons, in normalized units given by 
equation (1.8) 

(a) - dark soliton 
(b) - bright soliton 



as follows: 

Equation (1.7) reduces to the NIJSE if F(IE12) = )E l2 .  

It is conventional to write the GNLSE in normalized units as follows: 

The second term is positive for anomalous dispersion and negative for normal dis- 

persion. The dimensionless quantities used here are < = z/zL, s = r/ tO, and 

CJ = E l 6  where 

I k" I Po = - t: kn2 
t;lkl ZL = - 

Ikffl 
, and K: = - . 

no 

The constant to = ~0J1.76 is the pulse duration (FWHM of IUI2) normalized to the 

pulse duration of sech2(s). 

For example, a fiber made of silica glass (Si02) has a group velocity dispersion 

of k" = -10ps2/km at a wavelength of 1.5 pm. The constant n2 is known to be 

approximately 1.22 x 10-22m2/V2 and no is about 1.4 [5] .  For a pulse with width 

TO = 5ps, a silica fiber has to x 2.8ps, Po x 3.6 x 10f2V2/m2, and z~ x 807m . 

This means that 5 = 1 corresponds to a distance of 0.8km, s = 1 corresponds to 

a (retarded) time of 2.8ps, and U = 1 corresponds to an electric field strength of 

about 2 x 106V/m. Silica glass has a nonlinear index of refraction of the Kerr form, 

but these numbers provide a first approximation of the magnitudes of the quantities 

involved for more complex nonlinearities. 

10 



The function f((U12) is related to F(IE12) by: 

Eyuat ion (1.8) has been solved (either numerically or analytically) for several 

different forms of the function f ,  for both bright [14, 15, 16, 171 and dark [18, 191 

solitons. Chapter 2 gives details of the bright soliton solutions for the models f ( I = 

lUI2) = I - -I2 and f (I) = 3 I ( y I  + %)(I + Y I ) - ~ ,  which describes a fiber with a 

saturable nonlinearity. Chapter 3 outlines the dark soliton solution for f ( I )  = I -a 12. 

These models for f were chosen for detailed study because the analytical solutions are 

known, and because there is reason to believe that real fibers with these nonlinearities 

can be manufactured. Herrmann [18] gives a possible mechanism which may lead to 

the nonlinearity f = I - a12 in semiconductor doped fibers. This nonlinearity has 

also been used by Puell et al. [20] to account for their observations of laser pulse 

propagation in Rubidium vapour. Fibers with saturable nonlinearities have been 

observed by Coutaz and Kull [21]. 

1.2.3 Notes about Stability 

Originally, the term "solitonn referred only to those solitary waves which are ab- 

solutely stable against large perturbations, such as collisions. More recently, in the 

physics literature, the term has come to describe a much wider class of solitary waves 

which are stable only against weak perturbations. For bright solitons, stability con- 

siderations have been studied extensively. 



It has been established (see [I] and references therein) that the dependence of 

the total energy P = J-2 lU 12ds on the propagation parameter, ,B. can be used to 

predict the stability of a pulse of the form [I([, s)  = q ( s )  exp(i(p[ + 4)). For 1,% or 3 

dimensions, d P/d$ > 0 guarantees stability of a solitary wave solution against small 

perturbations, whereas dP/dp < 0 indicates an absolutely unstable pulse. Collision 

and switching studies [l, 221 indicate that solitary waves for which dP/dp > 0 are 

also stable against large perturbations when f ( I )  is Kerr-like (f IX I) for low I ,  rises 

like In with n >_ 3 at intermediate I, and either becomes Kerr-like again or saturates 

to a constant value at large I. Solutions of the GNLSE for the model f = I - @I2, 

which are discussed in more detail in following chapters, have been tested for stability 

by Enns and co-workers [22] and by Sombra [23]. For a either positive or ncgative, 

quasi-soliton behaviour can occur; that is, small amounts of radiation are emitted 

during a collision, but the pulse is stable. 

1.3 Experimental Verification of Solitons 

The NLSE (1.1) does not take fiber loss into account, although loss has a large impact 

in experimental investigations of soliton propagation. Loss may be due to absorption 

or Rayleigh scattering, by fiber imperfections or impurities and by the fiber material 

itself. If loss is included, the NLSE becomes: 



where r is known as the loss rate. A soliton can only survive if the nonlinear term is 

larger than the loss term; otherwise, the pulse will simply vanish before any nonlinear 

effects can be observed. 

Fiber loss depends on wavelength, as does group velocity dispersion. To propagate 

a soliton experimentally, it is necessary to find a wavelength at which both GVD 

and loss are small in magnitude, so that the nonlinearity can compensate for both 

effects. This typically occurs around 1.5pm. For a glass fiber, the constant n2 is 

about 1.2 x 10-22m2/V2 and no is between 1 and 3. If the electric field is lo6 V/m 

(created by an optical power of 100 mW in a fiber with cross-sectional area 6OPm2) 

at a wavelength of 1.5pm7 the nonlinear coefficient, kn21EI2/no, is on the order of 

2 x 10-4m-1. The loss rate r must be less than 2 x 10-4m-1, or, in terms of power loss 

per kilometre, the loss must be less than 1.7 dB/km (33 % /km). After Hasegawa and 

Tappert's prediction of optical solitons, it took several years to develop fibers with 

- losses low enough that the nonlinear term is significant. (Commercially available 

fibers today have loss rates less than 0.2 dB/km, or 4.5%/km.) 

In 1980, Mollenauer, Stolen and Gordon 1241 observed bright solitons at a wave- 

length of 1.55pm in a 700 m long silica glass fiber. In 1987 and 1988, dark solitons 

were observed by Emplit et al. [25], Krokel et al. [26], and Weiner et a1.[27]. Krokel 

et al. observed the formation of dark solitons from 0.3-psec dark pulses at 532 nm, 

propagating through 10m of single-mode fiber. Weiner's experiment used 185-fsec. 

pulses at 620 nm in a 1.4 m length of fiber. All these results compared favourably 



with numerical soliton solutions of the NLSE. Very recent experiments have result,ed 

in the error-free transmission of binary information through 9000 km of fiber at a 

rate of .5 gigabits per second [B]. This was accomplished using erbium doped fiber 

amplifiers, nonlinear all-optical devices which are located at intervals along the fiber. 



Chapter 2 

Bright Solitons 

2.1 Bright Soliton Solutions of the GNLSE 

Bright solitons are possible when the group velocity dispersion (62k/dw2) is negative, 

or, in other words, in the presence of anomalous dispersion. Analytical bright soliton 

solutions to the NLSE have been known since Hasegawa and Tappert's solution 

in 1973. The generalized nonlinear ~chridinger equation (GNLSE) introduced in 

Chapter 1 may also be solved analytically, for appropriate choices of the nonlinearity. 

The GNLSE, for anomalous dispersion, is written in normalized soliton units as 

follows: 

If the solution is assumed to have the form 

with q, ,!?, and 4 real, and the boundary conditions 

q(s) + 0 and dq/ds + 0 as s + f oo 

q(s) = A. and dq/ds = 0 at s = 0 , 

15 



the GNLSE reduces to 

Multiplying by ' t (dq/ds)ds and integrating once gives 

This may also be written 

(2) = 2(Jq2  - F q 2 )  , where 

and it is assumed that F ( 0 )  = 0 .  

Applying the boundary condition (2 .4 )  to equation (2 .7 )  gives the following ex- 

pression for the propagation constant /? : 

Integrating equation (2 .7 )  results in an expression relating q  and s: 

Most often, the integration in equation (2 .10)  must be performed numerically; 

however, for some forms of the nonlinearity f ,  an analytic solution is possible. For 

example, Enns and co-workers [22],  in their studies of bistability, found exact analytic 

solutions for the "linear + smooth stepn nonlinearity 



The GNLSE with the nonlinearity 

f ( I )  = 1 - a12  (2.11) 

was originally solved by Cowan et al. [17]. Its bright solutions have recently been the 

subject of much attention from Gatz and Herrmann [18, 291 and Sombra [23]. This 

form of f corresponds to a refractive index of the form n = no + nz 1 El2 + n4 1 El4. In 

normalized soliton units, 

Gatz and Herrmann propose that this model could he realized experimentally using 

semiconductor-doped fibers. In [15] and (181 they estimate that for such fibers, a 

might typically have values near 0.1 for pulses of width near Sps. If cu = 0, the 

nonlinearity described by (2.11) reduces to the Kerr nonlinearity. 

Kroli kowski and Lut her-Davies [16] have recently found analytic solutions for the 

GNLSE with a saturable nonlinearity described by 

In normalized soliton units, 

Isat is a constant of the model for refractive index, n = no + An, where 

The latter two models will be the focus of further discussion in this chapter, because 

of their relatively straightforward solutions. 



2.2 Bistable Solitons of the First Kind 

Bistable soliton solutions to the generalized nonlinear Schrodinger equation (GNLSE) 

were first described several years ago by Kaplan, Enns, and co-workers [22, 301. For 

certain types of nonlinearity, it was shown that two (or more) solitons could exist 

with the same energy, P = Jm lU12 ds. but different propagation parameters. /?. 
-00 

The energetically degenerate solitons are characterized in general by substantially 

different amplitudes and widths. These Kaplan-Enns bistable solitons are referred 

to here as bistable solitons of the first kind, or, more succinctly, BISOLl. For BISOLl 

to exist, the energy curve obtained when P is plotted against ,B must be, at least, 

U-shaped. However, N-shaped P(P)  curves are more useful for switching applica- 

tions, since they allow two stable (positive-slope) branches separated by an unstable 

(negat ive-slope) region. 

It is not necessary to have the complete solution q(s) in order to find P(P).  

Changing the independent variable to I = q2, and using dq/ds given by equation 

(2.7), the energy can be expressed as: 

where F ( I  = q2) is defined by equation (2.8) and I,,, A: is related to ,B by 

equation (2.9). 

For f = I - a12, 

I wi tho > 0 ,  and (2.14) 



1 I with cr < 0 . 
2 

(2.15) 
161a1$/3 + 1 

Plots of these relations P($),  which were originally derived in ['L'L], are shown in 

Figure 2.1. It  is clear from the plots that /3 is not double-valued in P ,  so bistability 

of the first kind is not possible for f = I - a12 . with a either positive or negative. 

In general, the shape of the P(P) curve can be deduced from the form of the 

nonlinearity. For an intensity ( I )  dependent nonlinearity of the form f = In with 

n 2 0, it has been shown [31] in d-dimensions that dP/d,B is positive for n < 2/d, 

zero for n = 2/d, and negative for n > 2 / d .  For d = 1,2, and 3 the critical (zero 

slope) value of n is 2,1, and 2/3, respectively. Thus, bistability is possible for f ( I )  

which are dominated by different n values in different ranges of I. For example, since 

the negative sign changes the sign of the slope, an N-shaped P(P)  curve is possible 

in one dimension for f ( I )  = al I + a2 13 - a315 if the positive coefficients ax, a2, and 

a3 are suitably adjusted [22]. 

On the other hand, for the saturable model described by equation (2.12), f I 

at  small I ,  and f - constant at  large I .  Using the analysis above, this means that 

n = 1 at small I and n = 0 at  large I ,  so that dP/dp does not change sign. BISOLl 

are thus not possible for this saturable model. 

2.3 Bistable Solitons of the Second Kind 

Very recently, Gatz and Herrmann [la, 291 have introduced an alternate definition 

of bistability. According to their definition, bistable solitons have the same pulse 



Figure 2.1: Energy vs. propagation parameter for f = I - a12. The single- valued 
P ( P )  curve indicates the absence of BISOL1. 



duration, 7, hut different amplitudes, Ao. To avoid confusion with the original 

definition, the Gatz-Herrmann bistable solitons are referred to as bistable solitons of 

the second kind, or BISOL2. Gatz and Herrmann showed that RISOL2 are possible 

in one dimension for f = I - cr12 with cr > 0. 

To determine whether BISOL2 exist for a given model, it is necessary to find the 

form of the soliton solution. Gatz and Herrmann [l8, 291 found it convenient to solve 

the GNLSE using the initial assumption 

For the case f = I - cr12, the GNLSE can be solved to obtain: 

with the propagation parameter P = !Io(l - $crIo), where 

= d m '  = A. is the soliton amplitude. 

The normalization of to to the pulse duration of sech2(s) (see Section 1.2.2) re- 

quires that the FWHM of the soliton be that of the function sech2(s), approximately 

1.76. That is, 

Applying this condition to equation (2.17) gives the transcendental equation 



Figure 2.2: Amplitude vs. parameter cr for f = I - cr12 with collision results shown 
solid line - soliton line given by equation (2.20) 
A - initial and final pulses from collision experiments (see Table 2.1) 



which defines the relationship between the soliton amplitude A. and the param- 

eter a. For fixed material parameters, cr depends on the pulse duration (a oc rc2). 
The soliton line Ao(a) given implicitly by equation (2.20) is shown in Figure 2.2. 

Over a certain range of a. the relation Ao(a) is double-valued. Physically, this 

means that the fiber described by the nonlinearity (2.11) can support solitons with 

the same width (rO oc a-*) but with different amplitudes Ao. These are the bistable 

solitons of the second kind (BISOL2) introduced by Herrmann [14, 181. 

For the model described above, the function f reaches a maximum at  I  = 1/2cr 

and then decreases, eventually becoming negative. Models with other forms also 

support BISOL2. For example, Krolikowski and Luther-Davies [16] have recently 

found an analytic solution to the GNLSE (2.1) with a saturable nonlinearity of the 

form given by equation (2.12). The solution for a different saturable model is given 

in [14]. 

Using the assumption (2.16), Krolikowski and Luther-Davies obtained the follow- 

ing relation to describe the soliton solution: 

where 

and lo = I ( s  = 0 )  . 

Applying the half width condition (2.18) gives the following transcendental equa- 



tion for tilt. dationship between lo and y: 

The relation I"(?) defined implicitly by equation (2.23) is shown in Figure 2.3. 

l o  is double-valued in y, so BISOL2 exist for this model. It should be noted that 

Figure 2.2 has Ao(= fi) on the vertical axis, while Figure 2.3 has lo. 

Numerical Scheme and Collision Results 

Numerical simulations have often been used to study collisions between soliton solu- 

tions of the NLSE and the GNLSE [15, 17, 22, 23, 29, 321. Collisions reveal details 

of the stability of the solitons, and suggest other behaviour, such as splitting or 

switching. 

Gatz and Herrmann [18, 291 have studied the BISOL2 arising from the model 

f = I - d2 in depth. In reference [29], they describe a series of numerical collision 

experiments. These results are confirmed here both as a demonstration of some of the 

possible outcomes of soliton collisions, and also as a demonstration of the viability 

of the numerical scheme used for the switching experiments in Chapter 5. 

A three-step explicit scheme was used to simulate the GNLSE numerically. For 

longer runs, the split-step Fourier algorithm [I] can be used. Gatz and Herrmann 

used the latter, faster algorithm [29]. In the explicit scheme, a central difference 

approximation was used for all < steps except the first, where a forward difference 

approximation was required. The forward difference approximation is less accurate 



Figure 2.3: Intensity I. vs. parameter y for the saturable model 



and becomes numerically unstable after a certain number of ( steps. This scheme is 

described in more detail in reference [22]. Typically, the mesh used had As x 0.1 

and A( % 0.001. To check the accuracy of the numerical runs, and to determine an 

appropriate step size, the energy integral P = J-: Ids was monitored for invariance. 

The s and 5 step sizes were also varied over two orders of magnitude to check for 

artifacts related to the mesh size. 

For each collision experiment, points were chosen from the soliton line (2.20), and 

used to form an input function U(s, = 0) of the following form: 

Ul and U2 are given by equation (2.16) and either (2.17), with A. and o chosen 

to satisfy (2.20), or (2.21), with A. and y chosen to satisfy (2.23). s o  is a time delay; 

the pulses begin separated by a time 2so, which must be large enough that the tails 

of the pulses do not overlap to any significant degree. R represents a frequency shift. 

Because of the anomalous group dispersion, a positive frequency shift causes a pulse 

to move more quickly, while a negative frequency shift causes a pulse to  be slowed 

down. The delayed pulse, Ul, catches up to and collides with U2, over the course of 

the numerical experiment. 

Some representative numerical runs are shown in Figures 2.4 and 2.6, along with 

the corresponding runs from reference [29]. 

In many of the collision runs, solitary waves emerged after the collision. To 

determine whether these were solitons, it was necessary to fit them onto the soliton 
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Figure 2.4: (a) Collision run 3 (see Table 2.1 and Figure 2.2) 
(b) Corresponding run from [29] 



Figure 2.5: Least 'squares fits of the output pulses from collision run 3 
(a) - centre pulse ; (b) - side pulse, located at 3 = f 71.4 

x - numerical result 
o - best fit soliton 



a .O 
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Figure 2.6: (a) Collision run 4 (see Table 2.1 and Figure 2.2) 
(h)  Corresponding run from [29] 



Figure 2.7: Least squares fit of the output pulse from collision run 4, located at 
s = f 72.0 

x - numerical result 
o - best fit soliton 



line given by equation (2.20). The process of finding a and A. to fit the output pulse 

has two steps. First, a least squares fit is performed, varying P in equation (2.17) to 

obtain a best fit equation I(s) for the output pulse. As can be seen in Figures 2.,5 

and 2.7, the least squares fit is quite accurate. 

Second, the pulse is fitted onto the soliton curve (2.20). In order that this can 

be done, the dimensionless units must be rescaled so that the FWHM of the pulse 

obtained by the least squares fit is 1.76. Rescaling is accomplished by changing the 

time scale to tb = do, where 6 = rAI1.76 and is the FWHM of the best fit function 

1 (s). Using the new time scale and the defining relations for a and A. we can find 

scaled values cr' and Ah from the constant a and best fit A. as follows: 

These rescaled values a' and Ab characterize a pulse with FWHM = 1.76, which 

lies on the soliton line (2.20). 

The results of the collision experiments are summarized in Table 2.1, where the 

results from the three-step explicit scheme are compared to those from reference [29]. 

The input and output solitons are also indicated in Figure 2.2. The results of the 

collision experiments done using the explicit scheme are qualitatively the same. The 

sole exception is run 6, where, in the explicit scheme, the pulses disintegrate into a 

large number of sharp spikes. The disintegration could be due to the fact that, during 

the collision, the resulting pulses have amplitudes large enough that f = I - a12 

becomes negative. Parts of the pulses are subjected to the negative nonlinearity, and 



the explicit xheme magnifies the resulting instabilities. This difficulty is discussed 

further in Chapter 4. 

Table 2.1: Some representative results of collision experiments for the model f = 
I - a12. (s)- side peak. (c)- central peak. See also Figure 2.2 

Several difficulties arose in the attempt to repeat the quantitative results of [29]. - 

First, the input parameters quoted in [29] are rounded off to two decimal places, but 

Input Parameters 

the rounded values do not fit on the soliton line exactly. For the explicit scheme, 

ref. [29] 
a ,  I A ~ ,  

Out put Parameters 

parameters were chosen from the soliton line to at least four decimal places. Since 

ref. [29] 
aj I Aoj 

5 
6 

7 

the output parameters are sensitively dependent on the input a and A. values, the 

explicit scheme 
a ,  I Ao; 

explicit scheme 

~j I Aoj 

output parameters from the explicit scheme runs do not match those from the runs 

in [29]. This problem is particularly noticeable in run 7. 

R 

0.16 
0.02 

0.21 

Second, it is not clear in [29] at what point the output profile is measured. In 

run 3, particularly, the pulse continues to evolve for greater values of ( than are 

1.90 
6.12 

1.38 

0.1600 
0.0200 

0.2060 

1.9388 
6.1207 

1.3877 

5.280 
1.760 

1.760 

neither peak is a soliton 
0.01 
0.08 

(s )0 .15  
central peak is not a soliton 

9.87 
1.02 
1.15 

pulses collide 
and disintegrate 
0.1318 11.1164 



shown in the diagram in [29]. The difference in endpoint can account for some of the 

discrepancy between the quantitative results of [29] and those of the explicit scheme. 

Overall, it is possible to conclude that the explicit scheme is capable of reproduc- 

ing the results obtained using the more sophisticated split-step Fourier method, for 

the ranges of s and [, and the step sizes chosen here. 



Chapter 3 

Dark Solitons 

3.1 Dark Soliton Solutions of the GNLSE 

As was explained in Chapter 1, dark solitons can propagate in fibers with norma1 

dispersion (d2k/dW2 > 0) and a nonlinear index of refraction. Dark soliton solutions 

to the NLSE have been familiar since Hasegawa and Tappert's work in 1973. The 

more recent dark soliton solution to the generalized nonlinear Schrodinger equation 

(GNLSE) is presented here. 

The GNLSE is written as follows, for normal dispersion and in the normalized 

units introduced in Chapter 1: 

A stationary dark soliton solution of the GNLSE may be assumed to have the 

form 

U(t' 3) = d s )  exp(iP5 + i q s ) )  

(with q, ,B, 6 real) and to satisfy the boundary conditions 

q --, q,, and d2q/ds2 -+ 0 as I S [  -+ 00 
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q --+ q,, and dqlds + 0 as Is1 + oo (3.4) 

A soliton with this form is shown in Figure 1.2(a). 

Substituting the form (3.2) for U ( ( ,  s )  into the GNLSE (3.1) gives a system of 

differential equations in q and 8, as follows: 

Equation (3.7) can be integrated to obtain 

where C1 is a constant of integration. By substituting the above form for dolds in 

(3.6), the following equation can be obtained: 

4 Multiplying equation (3.9) by 2-ds and integrating once gives 
ds 

where C2 is a second integration constant. The form of q(s )  can be found by inte- 

grating: 

where C3 is another integration constant. 
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Obvior~:iy, the full solution of the GNLSE depends on the form of g(q), and thus 

on the form of the nonlinearity f ( I  G q 2 ) .  Enns and Mulder [19, 331, for example, 

developed solutions for a split-Kerr model 

I={ pr I >  I,, 
aI I < I o  

and for the model f = A I [l + a tanh[y (I2 - I:)]].  The model 

which may describe the behaviour of a real nonlinear fiber, is the focus of more 

detailed mathematical analysis in the rest of this chapter. 

Substitution of f (q2 = I )  given by equation (3 .12)  leads to the following forms 

for equations (3 .10)  and (3 .6 ) :  

The boundary conditions on q can now be used to obtain the constants ,l3 , C;, 

and C2. First, when boundary condition (3 .3 )  is applied to equation (3 .14) ,  the result 

is: 

It is convenient to introduce some new notation. I  = q 2  is the intensity of the pulse, 

2 with Imax = qmax and I ~ n  = qLn.  The above equation then simplifies to: 



Next, applying boundary condition (3.4) and the same new notation, equat,ion 

(3.13) becomes 

Finally, a.pplying the boundary condition (3.5) to equation (i3.13) gives 

The system of three equations (3. IS), (3.16), and (3.17) can be solved for the 

unknown constants: 

Now, in terms of I, equation (3.11) can be written 

where, in this case, 

Upon substitution for p, C; and C2, Z g ( I )  can be factored to give 

l d I 
= 2s + C3 

1/3(I- - 1)2(1 - I-)[3 - 0(21fin + 4ImX + 2I)] 

which has the solution: 



with 

Substituting this value for C3 into the solution (3 .24) ,  and solving for I ,  gives 

I = Imm - 277 (3.27) 
( 3  - 8a I,,) + ( 3  - 4 ~ ( 1 , .  + I m a ) )  cosh(2s fi) 

At this point, the phase, 9,  can also be calculated from equation (3 .8 ) .  The 

calculation is not included here, since equation (3 .27)  provides all the information 

necessary to discuss bistability of dark solitons. 

3.2 Analogue of BISOLl for Dark Solitons 

Chapter 2 describes two classes of bistability for bright solitons. There are BISOL1, 

solitons with the same energy &right = S'w lli12ds but different propagation pa- 

rameters, and BISOL2, solitons with the same width but different amplitudes. It is 

possible to develop definitions of bistability for dark solitons which are analogous to 

these. 

In 1989, Mulder and Enns [19, 331 developed the first definition of bistability for 

dark solitons. They defined a "hole energy", which can be thought of as the energy 
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deficiency in a constant intensity background, due to the dark pulse. It is given by 

and can also be calculated directly from g ( q )  (equation (3.13)) as follows: 

The parameters q,, and q-, are defined in equations (3.3)-(3.5). 

If the dimensionless parameter 

is used to describe the hole modulation depth, bistability can be said to occur when 

more than one value of D corresponds to a given value of Phole; that is, when, for a 

given background (I,,,) there are two or more holes of different depths (Imi,) with 

the same energy. This is analogous to the Kaplan and Enns [22, 301 definition of 

bistability for bright solitons (BISOLl). 

For the particular nonlinearity modeled by f = I - a12, it is convenient to write 

Phole in terms of I = q2: 

Mole = / I m a x  
L a x  - I d I  

JIgo 7 

Imin 

where Ig( I )  is given by (3.22). 

Substituting the full forms of C,2, P,  and C2 in equation (3.30), and evaluating 

the integral gives: 



where the negative sign is taken for a(lmi, + I,,,) > 314. In terms of the dark pulse 

parameter D, hole can be written: 

From Figure 8.1 it can be seen that the relation D(Phole) is single-valued, so that 

this model does not support bistability in the sense described above. 

3.3 Analogues of BISOL2 for Dark Solitons 

It is natural to ask next whether a definition of bistability for dark solitons can be 

developed which is analogous to BISOL2 for bright solitons. In fact, there are several 

such definitions, three of which are outlined in this section for the model described 

by f = I - a12. 

All three definitions begin with finding the soliton line. For bright BISOL2, the 

soliton line is found using equation (2.18), which expresses a condition on the width 

of a pulse required by the normalization of soliton units. The analogous condition 

for dark solitons is: 

1 
or -(Ik, + I,,) = I ( s  = 0.88) 

2 
(3.34) 

Applied to equation (3.27), this condition leads to a transcendental relationship 

between the background, I,,, the minimum intensity I ~ ,  and the parameter a: 

(3 - 801-,) + (3 - 4a( Ikn  + I,,,)) C O S ~  
477 (3.35) 
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Figure 3.1: Modulation depth D vs. hole energy for dark solitons with f = I - 012. 
(a) - I,, = 5 ,  cu = 0.5 
(b) - I,, = 2,cr = 0.5 
(c) - I,, =8,0 = 0.1 



From this point there are several ways to seek bistability. Perhaps the most 

obvious approach is to look for dark solitons with the same background intensity 

(I,,,) and the same value of a, but different depths ( I f i n ) .  This would be more 

useful in practice than an approach which involves varying the background intensity, 

since, in experiment, dark solitons usually take the form of short holes in much 

broader bright pulses. Figure 3.2 shows the result of plotting Imin(cr) for several 

constant backgrounds in equation (3 .35 ) .  Imin(a )  is single-valued, so in this sense 

the model f = I - cr12 does not support bistability. 

Alternatively, the hole depth I- can be held constant, and soliton solutions 

can be sought with the same cr and different background intensities. The result of 

plotting I,,(cr) for various constant I- is shown in Figure 3.3. Im,(a)  is double 

valued, so in this sense bistability can be said to exist for the model f = I - cr12. 

The inset in Figure 3.3 shows a pair of solitons for cr z 0.0735. 

The definitions proposed above were developed independently from that of Gatz 

and Herrmann [34],  who chose to hold the modulation depth D = (I,, - I f i n ) /  I,,, 

constant . In terms of D ,  the transcendental equation is written: 

with 1) = 31maxD(1 - $a1,,,(4 - D ) ) .  Plots of I,, vs. a for various constant values 

of D are shown in Figure 3.4. I,,,, is double valued in a,  so in this sense, again, 

bistability can be said to exist. The inset in Figure 3.4 shows a pair of solitons for 

cr FS 0.086 which are bistable by this definition. 
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I =8 
max 

I =5 
max 

Figure 3.2: Depth I- vs. parameter a for dark solitons with f = I - cr12. 
Curves for several different constant backgrounds I,, are shown. 



I 
max 6 

Figure 3.3: Background I,, vs. parameter a for dark solitons with f = I - a12 and 
constant depth Imin. Curves for several different constant depths Imh are shown. 
(inset) - A pair of solitons with a rz 0.0735 and 1- = 1.5 

dotted line - Imax = 5.86 ; solid line - Imax = 3.58 
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Figure 3.4: Background I,, vs. parameter a for dark solitons with f = I - a12 and 
constant D. Curves for several different constant modulation depths D are shown. 
(inset) - A sample pair of solitons with a! x 0.086 and D = 0.81 

solid line - I,, = 5.21 ; dotted line - I- = 1.62 



As yet, . ]ere is no standard definition for dark soliton bistability of the second 

kind. Of the possible definitions presented in this chapter, the second and third 

definit,ions provide bistability for the model f = I - a 12. However, it is not clear how 

these definitions would be put into practice experimentally, where the background 

intensity cannot be changed rapidly. The first definition presented here does not 

provide bistability for the model f = I -a12, but is a better candidate for a standard 

definition because it would be convenient in experimental situations. 



Chapter 4 

Solit on Amplification 

4.1 Theoretical Analysis 

The generalized nonlinear Schrodinger equation can be solved exactly in many cases. 

This was shown in Chapter 2, where the GNLSE with anomalous dispersion and 

the nonlinearities given by equations (2.11) and (2.12) was solved to yield bright 

soliton solutions, and in Chapter 3, where the GNLSE with normal dispersion and 

the nonlinearity (2.1 1) was solved for dark soliton solutions. The variational method 

* which is discussed in this section provides a way to find an approximate solution to 

the GNLSE, and is obviously useful when no exact solution can be found. Variational 

analysis is also useful in cases where an exact solution is known, as it can be used to 

describe the dynamics of pulses whose parameters do not lie exactly on the soliton 

line. Such pulses occur when solitons are amplified by multiplying their amplitudes 

by real constants, which is the simplest way to attempt switching. 

Anderson [35] used the variational method to obtain an approximate solution of 

the NLSE with a Kerr nonlinearity (f oc IUI2). Here, a similar technique is used to 



solve the GNLSE with anomalous dispersion (2.1). 

The variational method is based on principles of Lagrangian dynamics. According 

to the principle of least action, equations of motion (also called variational equations) 

for a system are found by setting 

where the Lagrangian , L, is formed by subtracting the system's total potential energy 

from its total kinetic energy. The quantities x; are generalized position coordinates, 

and t is an independent variable of the system (time, for example). From equation 

(4.1), Lagrange's equations of motion can be derived: 

and solved simultaneously to obtain the relationship between the position coordi- 

nates, their respective "velocitiesn, dx;/dt, and the independent variable t. 

The GNLSE can be thought of as an "equation of motion" corresponding to the 

Lagrangian given by : 

where 

was introduced in Chapter 2. In this case, there are two independent variables, 

and s, and the variational principle is given by: 



The GNLSE is equivalent to: 

In the variational method, a trial function is adopted to approximate U. The trial 

function depends on certain parameters, so that, when it is inserted into the varia- 

tional principle, the result is a set of differential equations in the parameters. These 

differential equations can be solved simultaneously to give an approximate solution 

to the GNLSE, and can also give insight into the dynamics of pulse propagation. 

Following Anderson, the trial wavefunction is chosen to have the form 

U ( ( ,  s )  = A([) sech (4.7) 

where the pulse amplitude, A, is complex and a,  b are real. a represents the pulse 

width and a non-zero b corresponds to the pulse developing a chirp (a frequency 

change over the pulse width). 

Since the s-dependence in the trial wavefunction is explicit, one can integrate 

over s in equation (4.5) to obtain a reduced variational principle 

with the reduced Lagrangian 



It should be noted here that x = s l a  is a dummy variable of integration. In equation 

(4.9). the J ' s  are integrals defined as follows: 

With the reduced Lagrangian, equation (4.2) can be used to create four variational 

equations: 

Upon substitution of equation (4.9) for (L), S(L)/GA* = 0 becomes 

Similarly, S(L)/GA = 0 becomes 



and 6 ( L ) / 6 b  = 0 becornes 

This system of equations can be solved simultaneously to give )AI2a = Ck, a 

constant of motion; b = ; and also 

where I = IA12sech2z. Specific forms of f (I) may be substituted at this point. 

With the assumptions a(( = 0) = a0 and = 0, equation (4.16) becomes 

where y = a /ao .  

For the model f = I - a12,  n(y)  is given by 

where 



Equation (4.17) is analogous to the equation of motion for a particle starting 

from rest at y = 1 in a potential well, with the potential II(y) given by equation 

(4.18). Equation (4.1 8) has the same form as the "potential well" equation developed 

by Anderson [35]. Anderson's p has been renormalized in (4.19) into P to take the 

contribution of nonzero CY into account. 

Anderson identified the following properties of n ( y )  : 

n(y)  = 0 for y = 1 and y = -(1 + y / ~ ) - l  yo , 

For distinct ranges of the value of v/F, and hence for distinct regions of a/Ao space, 

, the qualitative behaviour of a pulse can be predicted based on the shape of II(y). 

When (-1 < v/F < O), the minimum of the potential is at y > 1, and the 

potential has only one zero since -(ji + v) < 0 (See Figure 4-1). Starting at 1, y 

will increase indefinitely, since the potential well is not deep enough to prevent the 

increase. Physically, this means that the nonlinearity opposes pulse spreading, but 

is not strong enough to overcome it. The pulse broadens and disperses. 

When (-2 < ulji < -I), the minimum of the potential is at y > 1, and there is 

a potential well between y = 1 and y = yo = -(1 + ~/j! . i)-~ (see Figure 4-2). The 

mechanical analogy suggests that ,.I. starting from 1, will oscillate between the zeros 
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of I I (y ) .  P ~ivsically, this means that the nonlinearity stops the initial broadening, 

causing the pulse to oscillate after first becoming broader. The oscillation of the pulse 

width is expected to be accompanied by an oscillation in height, since IAI2a = C,, is 

a constant of motion. 

When (VIP < -2), the minimum of the potential is at y < 1, and a potential well 

exists between y = 1 and y = yo = -(I  + v/l)- '  (see Figure 4-3). In this case, the 

physical interpretation is that nonlinear effects dominate initially but are countered 

by dispersion. The pulse oscillates after first becoming narrower. 

When v/ji = -2, yo = y, = 1. The potential well collapses into a single point, 

and, if y starts at this point, it will not change. This situation corresponds to 

a balance between the nonlinear and dispersive effects which allows the pulse to 

propagate unchanged. In other words, the pulse is a bright soliton solution. The line 

in cr / A. space defined implicitly by v/ii = -2 is an approximation to the soliton 

line given by equation (2.20) . 

The boundary lines vlji = - 1 and v/ji = -2 are shown in Figure 4-4, along with 

the exact solution. Since the line v/P = -2 is only a rough approximation to the 

soliton line, it can be expected that the line v /p  = -1 is also only an approximate 

boundary. This suggests that input pulses for which cr and A. lie very close to the 

boundaries of the above regions may not behave exactly as predicted. 

Evaluating the relevant integrals in equation (4.19), we have 



Figure 4.1: Qualitative plot of Il(y) for (- 1 < vlji < 0) from Anderson. 
The case of linear dispersion is given for comparison ( -  - - )  

Figure 4.2: Qualitative plot of n ( y )  for (-2 < v/jZ < - 1 )  from Anderson. 
The case of linear dispersion is given for comparison (- - -) 

Figure 4.3: Qualitative plot of i I (y)  for ( v l ~  < -2) from Anderson. 
The case of linear dispersion is given for comparison (- - -) 



Figure 4.4: Amplitude vs. parameter a for f = I - a12 with amplified input pulses 
shown. 

solid line - soliton line given by (2.20) 
- - - a I = l  
- .  -./p= -2 
- . . - v / p  = -1 
A - experimental input amplified pulses ( K A o  in Table 4-1). 



When a # 0, v@ given by equation (4.20) increases for A. increasing from zero. 

but will eventually begin to decrease. For the Kerr model studied by Anderson [35]. 

a = 0. so that v / p  increases monotonically with increasing input intensity. The more 

complex dependence of v / p  on A. allows bistability to be possible, since the line in 

a / A. space defined by v / l  = -2 bends back on itself. Moreover, more complex 

pulse behaviour is possible for the model f = I - d2, since, for example, dispersive 

effects dominate at both large and small amplitudes for many values of a. 

It should be noted that the dimensionless soliton units were chosen to normalize 

the pulse intensity FWHM to that of sech2(s). In these units, the width parameter 

The dotted line in Figure 4-4 represents a1 = 1. For initial amplitudes (Ao) 

above this line, the function f is negative, and the nonlinearity changes sign. We 

can expect solitons with parameters a and A0 lying above the dotted line to behave 

in an unusual manner, since parts of their amplitudes will be subjected to a positive 

nonlinearity and parts to a negative nonlinearity. 

For the saturable nonlinearity (2.12), it is possible to carry out an analysis similar 

to that above, using the considerably more complex ll(y): 



Such a detailed analysis is not included here. By setting (dII/dy),,l = 0 (this is 

analogous to setting yo = y, = 1 in the previous model) and a0 = 1 (to account 

for soliton units), the variational approximation to the exact soliton curve (2.23) is 

found to be: 

with I. = IAo12. Equation (4.22) is shown in Figure 4-5 for comparison with the 

exact soliton line (2.23). 

4.2 Numerical Amplification 

The predictions of the variational method for f = I - a12 can be compared to the 

numerical behaviour of amplified solitons. For the following numerical experiments, 

the explicit three-step scheme, described in Chapter 2, was used again. An input 

pulse was formed for each experiment by choosing a point from the soliton line (2.20), 

and using the chosen a! and A. in equation (2.17). The resulting amplitude function 

is multiplied by an amplification factor h' to give a pulse of the form: 

The initial a! and & values, and the amplification constants, are shown in Table 4-1 

along with the observed result of each numerical experiment. 

The numbered triangles in Figure 4-4 correspond to the pairs of a and h'Ao 

values for the input pulses described in Table 4-1. Figures 4-6 - 4-9 show some 

represent at ive numerical runs. 



Figure 4.5: Intensity I. vs. parameter y-l for the saturable model with variational 
approximation shown 

. - (right-hand line) - exact soliton line given by equation 2.23 
+++ (left-hand line)- approximate soliton line given by equation 4.22 



Table 4.1: Some representative results of amplification experiments for the model 
f = I - a 12 .  See also Figure 4-4. 

1 
2 
3 

I I  1 I I I 

14 11 0.50 1 1.0 1 0.5 1 -0.48 1 disperses 

11 
12 
13 

a 

0.065 
0.065 
0.065 

0.50 
0.50 
0.50 

A. 
1.047 
1.047 
3.344 

1.0 
1.0 
1.0 

Numerical result 

narrows, then disintegrates 
narrows and oscillates 
narrows and osc., then switches 

K 
3.5 
2.0 
0.5 

1.9 
1.5 
0.7 

u 
-1.99 
-2.33 
-3.63 

-0.91 
-1.22 
-0.86 

disperses, then splits 
broadens and oscillates 
broadens and oscillates 



Figure 4.6: Amplification run 2 (refer to Figure 4-4 and Table 4-I), showing an inital 
narrowing and oscillation. A is the pulse amplitude. 

Figure 4.7: Amplification run 4, showing an initial broadening and oscillation. 
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Figure 4.8: Amplification run 10, showing dispersion. 

2 

IUI 

Figure 4.9: Amplification run 11, showing dispersion and splitting of the pulse. 



The numerical results shown in Table 4-1 agree with the predictions based on 

analysis of v / l  which are summarized in Figure 4-4 . In experiments 1 and 5, the 

pulse degenerates into a large number of sharp spikes. The input soliton for each of 

these cases lies near the line cr I = 1, and the initial upward oscillations put the peak 

value above this line. For I above this line, the function f becomes negative. The 

pulse may disintegrate because parts of it are subjected to a negative nonlinearity, 

and parts to a positive nonlinearity. This disintegration also occurred in one of the 

collision runs in Chapter 2. 

In experiment 11, the input pulse again extends above the line aI = 1. The 

variational method correctly predicts the initial dispersion, but does not account for 

the splitting (see Figure 4-9). The pulse in experiment 13 broadens and oscillates, 

although the variational method predicts dispersion. The input pulse for experi- 

ment 13 lies very close to the line v/ji = -1. Since the v/ji lines can give only a 

- rough indication of the regions where different behaviour is expected, the variational 

approximation fails to accurately predict its behaviour. 

The results in Table 4-1, when compared to the predictions summarized in Figure 

4-4 indicate that the variational analysis is a helpful tool for predicting the general 

behaviour of pulses whose initial a and A. values do not lie too close to the boundary 

lines vlji = -2 and v / p  = -1 or to the line aI = 1. The variational method is not 

able to predict the switches which are observed numerically (in experiments 3, 6, and 

8, for example). This is because its   re dictions are based on the assumption that 



the pulse shape does not undergo any radical or permanent change. In runs where 

switching takes place, the pulse shape typically does change as some radiation is shed 

in the form of side pulses. Switching is discussed in more detail in Chapter 5 ,  for both 

the model described by f = I - a12, and the model described by equation (2.12). 

Both the variational analysis and the numerical amplification studies described here 

are included in a paper which has recently been accepted for publication in Physical 

Review [2]. 



Chapter 5 

Switching 

As was discussed in Chapter 1, bistable solitons provide a way of coding binary infor- 

mation which makes switching possible between the ones (represented by high-state 

solitons) and the zeros (represented by low-state solitons). Ideally, the switching 

mechanism should be reversible, and the ones and zeros should be easily distinguish- 

able. 

Enns et al. (see [I] and references therein) have demonstrated switching between 

BISOLl states for several models which yield N-shaped P(P)  curves. The high- 

state solitons on the upper positive slope branch can be easily distinguished from 

the low-st ate solitons on the lower positive-slope branch, since they are separated 

by a negative-slope unstable region. Upswitching from low to high states and down- 

switching from high to low states were carried out by amplification and by evanescent 

coupling. 

In the amplification method, the input soliton was subjected to localized damping 

or a localized energy source, which had the effect of multiplying the pulse amplitude 



by a constant. Upswitching was observed for some strengths of the energy source, 

and downswitching for some strengths of localized damping. It was found that back- 

and-forth switches without hysteresis were not generally possible between high and 

low states which are far from the unstable region [36]. 

The evanescent coupling procedure makes use of crosstalk between optically cou- 

pled fibers (again, see [I]). In this method, two or more fibers are coupled slightly 

over a limited distance. Downswitching has been observed when energy from a soli- 

ton introduced into one fiber leaks into one or more other, initially empty fibers. A 

form of upswitching, soliton fusion, has been observed when low state solitons are 

introduced into four outer fibers around an initially empty fiber. When appropriate 

parameters are chosen, a high-state soliton can be formed in the central fiber. 

It is natural to ask next whether similar switching operations can be performed 

on BISOL2. In the collision experiments of Gatz and Herrmann [29], which were 
* 

repeated in Chapter 2, there is evidence to suggest that a low-state soliton may be 

one of the results of a collision between two high-state solitons. These collisions 

were performed numerically using the model f = I - a12. The amplification runs of 

Chapter 4 also use the model f = I - a12, and there is evidence to suggest switching 

in runs 3, 6 and 8 (refer to Table 4.1). In this chapter, switching is investigated in 

more detail, for both the model described by f = I - cr12 and the saturable model 

described by equation (2.12). 

The numerical scheme used here is the same explicit scheme used in Chapters 2 



and 4. As in Chapter 4, the input pulse is formed by choosing pairs of parameters (a 

and Ao, or y and lo) from the soliton line and using them in either equation (2.17), 

for f = I - a12, or equation (2.21), for the saturable model. The amplitude function 

is then multiplied by a factor Ii', where Ii' > 1 for attempted upswitching and h' < 1 

for attempted downswitching. 

For the model f = I - a12, the output pulse was fit using the same method which 

was described in section 2.4. For the saturable model, it was necessary to modify 

the fitting routine slightly, since equation (2.21) for the form of the soliton can be 

solved explicitly for s ( I ) ,  but not for I (s) .  The output pulse is fitted to the soliton 

line by varying I. in equation (2.21) for s(Ii),  which is evaluated at each I; from the 

output pulse data. If the chosen lo is smaller than I,, then equation (2.21) involves 

the square root of a negative quantity; the fitting routine ignores such points. The 

best fit lo is then chosen to be the one which minimizes the value of 

xi (sexpt (Ii) - sfit(1i))' 
number of points fit ' 

where the seWt(Ii) come from the output pulse data. The results presented in this 

chapter are included in [2], which has been accepted for publication in Physical 

Review. 

Switching for f = I - d2 

The results of some representative switching experiments for the model f = I - a12 

are summarized in Table 5.1 which shows the inital (subscript i) and final (subscript 



f )  scaled values of a! and A0 for each run, along with the amplification constant K. 

Table 5.1 : Some representative swit,ching results for the model f = I -cr12. Subscript 
i indicates inital values, f indicatks final (scaled) values. K is the amplification factor. 
See also Figure Ij. 1. 

Figure 5.1 shows the soliton line with the initial and final pulses for each switch 

indicated. Both upswitching and downswitching were observed. In many cases, the 

difference in amplitude between the initial and final states was quite large. 

Representative switching runs are shown in Figures 5.2 and 5.4. Corresponding 

fits of the output pulses are shown in Figures 5.3 and 5.5. It is clear from these 

excellent fits that switching has occurred. 

For the BISOL2 supported by the nonlinearity f = I - cr12, back-and-forth 

switches with essentially no hysteresis appear to be possible between C; and Cf, and 

between E; and Ef (refer to Table 5.1 and Figure 5.1). In both cases, the upswitch 

was accomplished using an amplification factor of 2.0, and the downswitch using an 

amplification factor of 0.5. In the first case, the final A. after the upswitch is within 

0.1% of the initial A. of the downswitch. In the second case, the final A. was within 



Figure 5.1: Amplitude vs. parameter a for f = I - a12. 
- . - - soliton line 
- - - a I = l  
-.-./p= -1 
- . . - v / p  = -2 
A - initial and final pulses from switching experiments (see Table 5.1). 



Figure 5.2: Downswitch from D; to D, (refer to Figure 5.1 and Table 5.1). 

Figure 5.3: Least squares fit of the output pulse from downswitching run D. 
x - numerical result 
o - best fit soliton 



Figure 5.4: Upswitch from Fi to  Fj  (refer to  Figure 5.1 and Table 5.1). 

Figure 5.5: Least squares fit of the output pulse from upswitching run F. 
x - numerical result 
o - best fit soliton 



2% of the ir~ltial A. of the downswitch. 

5.2 Switching for the Saturable Model 

Some representative results of switching experiments for the saturable model are 

shown in Figure 5.6 and described further in Table 5.2. Subscript i again indicat.es 

the initial pulse, while subscript f indicates the final (scaled) pulse. Again, both 

upswitching and downswitching are possible. 

Table 5.2: Some representative switching results for the saturable model. Subscript i 
indicates initial values, f indicates final (scaled) values. K is the amplification factor. 
See also Figure 5.6. 

Representative switching runs are shown in Figures 5.7 and 5.9. The fits shown 

in Figures 5.8 and 5.10 are again very good, providing clear evidence for switching. 

There is also evidence of an essentially hysteresis-free back-and-fort h switch, be- 

tween G; and G r. 

Ebr the saturable model, the nonlinearity f ( I )  is always positive, so the difficulties 

that arose in Chapter 4 for the model f = I - cr12 when the amplitude of a pulse 

was above the line crI = 1 do not exist here. For this reason, it is possible to switch 



Figure 5.6: Intensity lo vs. parameter y-' for the saturable model. 
. - (right- hand line) - exact soliton line given by 2.23 

+++ (left-hand line)- approximate soliton line given by 4.22 
A - initial and final pulses from switching experiments (see Table 5.2). 
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Figure 5.7: Downswitch from H, to H j  (refer to Figure 5.6 and Table 5.2). 

Figure 5.8: Least squares fit of the output pulse from downswitching run H. 
x - numerical result 
o - best fit soliton. 
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80- 
Figure 5.9: Upswitch from Gi to GI (refer to Figure 5.6 and Table 5.2). 

Figure 5.10: Least squares fit of the output pulse from upswitching run G. 
x - numerical result 
o - best fit soliton. 



easily between pulses with very different amplitudes, which appear far apart on the 

high and low branches of the soliton line. 

In conclusion, it can be seen from the results in this chapter that it is possible 

to switch easily between high and low state bistable solitons of the second kind. 

for the models under consideration. The high and low states can be chosen to be 

sufficiently far apart in amplitude that they may be distinguished despite the lack 

of an unstable gap. Unlike the situation for BISOL1, hysteresis-free back and forth 

switches are possible for BISOL2. For these reasons, BISOL2 are good candidates 

for use in optical logic operation. 



Chapter 6 

Conclusions 

Optical solitons can propagate in fibers when the compressing effects of the fiber 

nonlinearity balance the spreading effects of dispersion. These solitons can be mod- 

eled mathematically as solutions to the generalized nonlinear Schriidinger equation 

(GNLSE). Solitons are extremely narrow and stable, and thus are ideal for com- 

munications applications where data must be sent at a high bit rate over very long 

distances. The information to be transmitted is conventionally represented in binary 

code, with a pulse representing a one and a gap representing a zero. The phenomenon 

of soliton bistability allows ones and zeros to be represented instead by "tall" (high 

state) and "short" (low state) pulses. 

Optical fibers may support bright soliton bistability in two ways. Bistable solitons 

of the first kind (BISOLl) exist when solitons may be propagated with the same total 

energy but different propagation parameters. Bistable solitons of the second kind 

(BISOL2) exist when the fiber supports solitons with the same width but different 

amplitudes. BISOL2, but not BISOLl, are supported by fibers with nonlinearities 



described in the GNLSE by f = I - rr12 and .f = OSI(y 1 + 2)(1 + y These 

models of fiber nonlinearity qualitatively mimic the behaviour of known classes of 

materials. 

Numerical collision studies of bistable solitons arising from the model f = I - a12 

demonstrate a wide range of possible outcomes. In at least one case, a low-state 

soliton is one of the output products of a collision between two high-state solitons, a 

result which suggests that switching between states is possible. The collision studies 

also indicate that the explicit numerical scheme, which is also used for amplification 

and switching runs, is a viable way to simulate the GNLSE numerically. 

Dark solitons, which take the form of localized "holes" in a constant intensity 

background, may also exhibit two different forms of bistability. Dark solitons with 

the same "hole energy" and different "modulation depthsn (D  = (I,,, - I ~ , ) / I , , , )  

are analogous to bright BISOL1. Several analogies to bright BISOL2 can be devel- 

oped: dark solitons may have the same width and background intensity, but different 

depths; the same width and depth, but different backgrounds; or the same width and 

modulation depth (D), but different backgrounds. By the first of these definitions, 

the model f = I  - a12 does not support dark soliton bistability. The first definition 

is, however, the most practical of the three since, in experiment, it is difficult to 

change the background intensity quickly. The model f = I  - cr12 does support dark 

soliton bistability as described by the second and third definitions. 

It has been demonstrated previously that it is possible to switch between high 



and low state bright BISOLl, by amplifying the soliton pulses. Numerical amplifica- 

tion of bright BISOL2 arising from the above-mentioned models results in a variety 

of behaviours, including dispersion, oscillation, splitting, and switching. An analytic 

variational method based on that of Anderson 1351 generally predicts the observed 

behaviour well. However, the variational analysis is not able to account for the 

switching that occurs for suitably chosen amplifications. This is because its predic- 

tions are based on the assumption that the pulse shape does not change dramatically 

or permanently, whereas significant shape changes usually occur during switching. 

Both upswitching (from low to high state) and downswitching (from low to high 

state) are possible for both models of the fiber nonlinearity. In both models, es- 

sentially hysteresis-free back-and-forth switching is observed numerically between 

BISOL2 states, whereas, for BISOLl, hysteresis-free switching is not generally possi- 

ble. Fibers with a saturable nonlinearity are likely to be more useful in practice than 

those modeled by f = I - cd2, as they easily allow switching between solitons of 

very different amplitudes, which can be distinguished despite the lack of an unstable 

gap separating the high and low states. Overall, bright BISOL2 appear to have good 

potential for use in optical switching operations. 
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