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Abstract 

A graph i s  said to be k-extendable if it is matchable and every matching of size 

k extends to a perfect matching. The notion of extendability has been studied by 

a number of authors, Most highly extendable graphs that have appeared in the 

literature have high edge density. Indeed, it is a nontrivial problem to find qraphs 

that have high extendability and whose girth is at least five. In light of these facts it 

seerns to be interesting to look for constructions yielding graphs without short cycles 

whose extendability would aIso be large. This is in focus of this thesis the main result 

of which is a constructive proof of the existence of highly extendable graphs whose 

girth is greater than a given number. 
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Chapter 1 

Introduction 

A matching (or a set of independent edges) in a graph G is a loop-free subset of the edge 

set of G, no two edges of which share a common endpoint. M is a perfect matching 

if it covers all venices of G. A graph containing a perfect matching is matchable. If 

a matching M is contained in a matching N ,  then we say that :%f extends to N .  
The notion of extendability seems to have its earliest roots in works of Kotzig 

fll, 12, 131, Hetyei f9], Hartfield [8], Brualdi ant1 Perfect [3f, and some other authors. 

h recent years, Plummer investigated this concept in a number of papers (e.g., [15, 

16, 17, 181). Other papers dealing with extendability include 121, [4] and [lo]. 

Definition 1 Let k be a nonnegative integer and let G be a graph satisfying the 

foliowing properties. 

G has at least 2k + 2 vertices, 

r G is matchable and 

r every matching of size k in G extends to a perfect matching of G. 

Then we say that G is k-&endable. 

It appears from this definition that a highly extendable graph should tend to have 

an abundance of edges since it must contain a perfect matching extending any given 
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matching of a fixed size. Indeed, not only do some of the most natural examples of 

highly extendable graphs have relatively high edge density (here, the edge densdg of a 

graph G is defined to be the number m/ (;) where m and n denote the number of edges 

and the number of vertices in G, respectively), for example, both l<2k+2 and f<k+l,k+l 

are k-extendable for k 2 0, but also some of the earlier results on the extendabili t,y 

hint at a correlation between a high edge density of a graph and its extendability. $1 

survey of these results is presented in Chapter 2 of this thesis. 

Thus, it is interesting to ask how closely are the extendability and the edge density 

of a graph related. A result in this direction was achieved by Gyori and Plummer [7], 

who   roved that the Cartesian product of a k-extendable graph and an 1-extendable 

graph is, in general, (k + I + 1)-extendable. This gives rise to interesting constructions 

of highly extendable graphs with arbitrarily low edge density (see Propositions 10 

and 12). However, the graphs constructed in this way will necessarily contain short 

cycles. This provokes the question whether or not we can construct highly extendable 

graphs which would not only have low edge density, but which would also have large 

girth (where the girth of a graph (I' is the length of a shortest cycle in G). Ic is thi:; 

question that is investigated in the thesis, and which is answered in the affirmative, 

Hence, when trying to construct graphs with desired properties, one encounters 

the problem of how to reconcile the requirement that graphs have high extendability 

(which has a tendency to force the graphs to contain "many" edges) with the condition 

that graphs do not contain short cycles (which forces the graphs to have relatively 

"few" edges). 

It seems that the latter requirement is "less restrictive" or, at least, that we have 

a better grasp of it, and can be satisfied 'Lmore easily". In light of this, the most 

difficult task appears to be that of being able to construct a sufficiently rich class 

of highly extendable graphs, so that one can find in it subclasses containing only 

graphs without short cycles. Thus, Chapter 3 is crucial for our main construction 

(Construction 27). 

The graphs used in this construction are inspired by the Cartesian product of 

cycles from Proposition 12 and can be viewed as "skew" products of certain Cayley 

graphs. 



The thesis is organized as follows- Chapter 2 contains same motixrational earlier 

results suggesting a connection b~tween extendability and edge density, as tvell as 

two; proposit ions which inspired our main construction. In Chapter 3. we proye that 

members of a certain ( 3 1 ~  of graphs haw high extendabitit_w, and in Chapter 4, we 

present a cIas uf graphs- members d which have high girth. These results enable us 

to prove in Chapter 5 that Construction 21 given there produces graphs tvizh both 

high girth and high extendability. The last tw chapters contain some concluding 

statements. 



Chapter 2 

Motivational Results 

Graphs in this thesis may contain multiple edges and loops. The vertex and the edge 

sets of a graph G will be denoted by V(G) and E(G), respectively. The degree of 

a vertex u, denoted deg(u), is the number of edges adjacent to u,  with each loop 

counted twice. The minimum degree of a graph G, denoted 6(G), is the minirnurn 

over all degrees of vertices in G. 

If S is a subset of the vertex set of G, then G[S] is the subgraph of G induced by 

S, that is, V(G[S]) = S and G{S] contains exactly those edges of G of whose both 

endpoints lie in S. The graph G[V(G) \ S] is also denoted by G \ S.  
A walk of length n 2 0 is an alternating sequence UO, el, ul, ez, uz, . . . , en, u, of 

vertices u; and edges e; of G having the property that u;-1 and u; are the two endpoints 

of the edge e; for all i. If uo = u,, then the walk is closed. A walk in which no vertex 

occurs more than once is a path. A closed path of length at least 1 is called a cycle. If 

G is simple (i.e., without loops and multiple edges), we will also use u0, U I ,  ~ 2 , .  . . , UI' 
instead of ug, el, ul,  ez,u2,. . . , en, u,. 

A subgraph F of G which is a union of disjoint cycles and for which V ( F )  = V ( G )  

is called a 2-factor of G. If F is in fact a cycle itself, then F is a hamiltonian cycle. 

Theorems 2-8 in this chapter are earlier results from [15],[18] and [4] and they 

suggest the existence of a correlation between the edge-density of a graph and its 

extendability. The proofs presented here are in most cases more detailed version5 of 

the original proofs. 
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The first of these results, Theorem 2, deals with simple graphs and says, in effect, 

that if a simple graph G has very large edge density (and its edges are distributed so 

that the degrees of all vertices are big), then G is highly extendable. 

Theorem 2 ([15]) Let G be a simple graph with I V(G)I > 4 being even and let n > 0 .  

Assume that 6(G) 2 $lV(G)I + n.  Then G is n-extendable. 

Proof: As I V(G) / > 4 and b(G) 2 $ I V(G) I, G contains a hamiltonian cycle by Dirac's 

Theorem (151). As ]V(G)I is even, we conclude that G contains a perfect matching. 

Hence, by the hypothesis, IV(G)I > 6(G) 2 $IV(G)/ + n and i / V ( G ) J  > n. Thus, G 

contains at least 272 + 2 vertices. Finally, let M be a matching of size n in G and let 

G' = G \ V ( M ) .  Then 

Since IV(G)I is even, so is IV(G1)I. As we know that ]V(G)I 2 2n + 2, we get 

JV(G')/ 2 2. If IV(G1)I = 2, then 

and G' contains an edge. If (V(Gt)( > 2, then we can again apply Dirac's Theorem to 

G' to see that G' contains a hamiltonian cycle and, therefore (as IV(Gt) I is even), a 

perfect matching. In both cases, we conclude that M extends to a perfect matching 

of G.m 

Before we can state and prove Theorems 3-5, we need a few more definitions. 

We say that a vertex zt is a neighbor of a vertex u if G contains an edge whose 

endpoints are u and v. Ic  this case, we write u -G v (or u v if it is obvious from 

the context what graph we have in mind). 

Let * be a binary relation on V(G) defined by u x v if and only if G contains a 

path connecting u to v. It is easily seen that * is an equivalence relation. If S is a 



CHAPTER 2. MOTIVATIOXA L RESULTS 6 

class of equivalence under z, then we say that C[S]  is a corrnected cornponent of C. X 

graph that has only one connected component is connected (note that G is connected 

if and only if there is a uv-path in G for every pair u!  v of vertices of G). If (: is 

connected, S is a subset of V ( G )  and V \ S is not connected. then S is called a ckrr/st t ,  

If, for a vertex u, {u) is a cutset, then u is called a cut-vertex. If G is a connc~tcti  

graph on at  least n + 1 vertices and if G contains no cutset of size less than 11, then 

G is n-connected. 

Theorems 3 and 4 are needed for the proof of Theorem 5, which can be viewed 

as going in the direction opposite to that of Theorem 2; it shows that if a graph is 

n-extendable, then it must also be (n + 1)-connected and thus cannot have few edges. 

Theorem 3 ([15]) I fG is 1-extendable and connected, then G is 2-connected. 

Proof: Suppose the contrary and let v be a cut-vertex in G with GI,  G 2 , .  . . , Gk being 

the components of G \ {v), (k 2 2). For every i,1 5 i < k, there is a vertex ui in Gi 

such that ui - v. Let M be a perfect matching in G extending {utv) (see Fig. 2.1). 

Figure 2.1. 

Since v is a cut-vertex, M induces perfect matchings of the graphs G ~ \ { u ~ ) ,  C2, G3 . . . , 
Gk. In particular, IV(G1)l is odd and IV(G2)1 is even. Applying similar reasoning to 

{u2v) forces IV(GI)I to  be even and JV(G2)I to be odd, a contradiction.. 
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Theorem 4 (1151) Let n > 2 and let G be a n  n-extendable graph. Then G is (n - 1)- 

extendable, 

Proof;. Suppose the statement were false and let M be a matching of size n - 1 in 

G which does not extend to a perfect matching. Let N be a perfect matching in G 
(G contains a perfect matching since it is n-extendable) and consider the symmetric 

difference MAN.  As IN1 > I MI, at least one of the components of MAN is an 

alternating path of odd length, whose first and last edges are both in N. Let P be 

such a path. Then M A P  is a matching in G of size IMI + 1 = n. By the hypothesis, 

it extends to a perfect matching N'. Moreover, as IV(G)I 2 2n + 2, M A P  is not a 

perfect matching of G and there must be e E N' such that e 6 M A P .  Then e is 

independent of all edges of M and MU { e )  is a matching of size n in G. This extends 

to a perfect matching MI by the assumption. But M' is a perfect matching extension 

of M, a contradiction.. 

Theorem 5 ([15]) Let  n > 0 and let G be a connected n-extendable graph. Then G' 

Proof: Induction on n. If n = 1, then the result follows by Theorem 3. 

For n > 1, suppose G is not (n + 1)-connected. As G is n-extendable, G is (n - 1 j- 
extendable by Theorem 4. Hence G is n-connected by the induction hypothesis. Thus 

there is a cutset S of size n in G. Let GI, Gz, . . . , Gk be the components of G \ S 

(note that k 2 2). 

First, we will show that IV(Gi)l < n for all i, 1 5 i 5 k. If not, then there is an i 

such that (V(G;)( 2 n. Without loss of generality, we may assume that i = 1. Then, 

by Menger's Theorem (a variation due to Dirac [6 ] ) ,  there are n vertex-disjoint paths 

in G connecting S with GI. In particular, since in fact all these paths must lie within 

G[S U ~ ( G I ) ] ,  there are n independent edges, each of which has one endpoint in S 

and the other in GI. Let M be the matching formed by these edges. As (M ( = n and 

G is n-extendable, M extends to a perfect matching MI of G (see Fig. 2.2). Also, the 

endpoints of the edges in M cover S and hence every edge in M' \ M lies fully within 

one of the components Gi . In particular, 

(V(G1)J r n (mod 2). (2.1) 
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Figure 2.2. 

On the other hand, let e = uvl E M with u E S, vl E GI. Since G is n-connected and 

IS \ {u} 1 = n - 1, S \ {u} is not a cutset of G and there is a vertex v2 E G2 such that 

u - 212. Then 

is a matching of size n covering S. Again, it extends to a perfect matching N' of C 
and again each edge of N' \ N lies fully within one of G; (see Fig. 2.3). 

G Gj 

Figure 2.3. 
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Thus, 

IV(Gl)l r n - 1  (mod 2). (2.2) 

But (2.1) and (2.2) yield a contradiction. 

Thus indeed (V(G,)l < n for all i, 1 5 i < k. Next, we will show that in fact 

IV(G;)I = 1 for all i ,  1 5 i 5 k. If not, then, say, IV(G1)l = m 2 2. Let V(G1) = 

{uI,u2,. . . ,urn} and set R1 = {ul, 212,. . . We have 

Thus, we can choose a set R2 E V(G) \ (S U V(G1)), with IR21 = n - m + 1. Then 

Again, by Menger's Theorem there are n vertex-disjoint paths connecting S to R1 U R2. 
If M is the set containing the first edge of each of these paths, then M is a matching 

of size n in G. Moreover, M contains m - 1 edges joining S to V(Gl) and n - m + 1 

edges joining S to V(G) \ (S U V(Gl)). In particular, there is a unique vertex u in 

GI not covered by M. Since no matching in G extending M can cover u, M does not 

extend to a perfect matching of G. This contradicts the hypothesis as ]MI = n. 

Hence, we conclude that IV(G;)I = 1 for all i, 1 5 i < k. As G is n-extendable, it 

must contain a perfect matching, and this forces k < n. Then 

contradicting the fact G is n-extendable. Thus G must be (n + 1)-connected.. 

The set of neighbors of a fixed vertex u in a graph G is denoted by rG(u) (or r (u )  

when no ambiguity may arise). 

In the previous theorem, we saw that n-extendability of a graph G implies (n + 1)- 

connectivity. This, in turn, means that such a graph has minimal degree at least 

n + 1. The next theorem strengthens this result a bit further by showing that if G 
does indeed contain a vertex u of degree n + 1, then this severely restricts the possible 

structure of G[I'(u)]. 
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Theorem 6 ([IS]) If n > 0, G is connected and  n-ex tendable ,  and  u is a vertex in 

G w i t h  deg(u) = n + 1 ,  t h e n  r ( u )  is a n  independent  set .  

Proof: Let r ( u )  = {vl,v2,. . . , v , + ~ )  and assume that r ( u )  is not independent. 

If IV(G)I > 2 n  + 2,  then 

IV(G) \ ( r ( u )  U { u ) )  1 > (2n + 2 )  - ( ( n  + 1 )  + 1 )  = n,  

and we can choose a set W = {wl, wa, . . . wn+l} of size n + 1 such that 

Figure 2.4. 

By Theorem 5, G is (n + 1)-connected, and we can use Menger7s Theorem. Thus, 

there are n + 1 vertex-disjoint paths PI, P2, P3.. . , Pntl connecting W to F(u). Say, 

Pi connects w; to vi for i, 1 < i < n + 1. Obviously, if M is the set containing the 

last edge v;wl of each P,,  1 < i < n + 1, then M is a matching (of size n + 1) in G. 

Because r (u )  is not independent, we may assume that r ( u )  contains the edge v,v,+l. 

Therefore, 



CHAPTER 2. MOTIVATIONAL RESULTS 

is a matching of size n in G (see Fig. 2.4). 

Ry the hypothesis, this must extend to a perfect matching of G. But this is 

impossible as u is not covered by N whereas all of its neighbors are. 

Now, consider the case IV(G)I = 2n+2. In this case, we get IV(G) \ (I'(u)u {u})( = 

n and can find W = {wl, wz, . . . , w,) of size n satisfying (2.3) (in fact, the equality 

is attained in (2.3)). A similar reasoning as before shows that there are n + 1 vertex- 

disjoint paths Po, PI, P2,. . . , Pn connecting {u} U W to r(u) .  Suppose Po connects u 

to v,+I, while Pi connects wi to vi, for 1 5 i 5 n. As IV(G)I = 2n + 2, each of these 

paths consists, in fact, of a single edge. Hence the set M consisting of these edges is 

a (perfect) matching in G. If v,+l is connected to another vertex in r(u) ,  say to v,, 

then we set 

N = ( M  U {vnvn+l)) \ {vnwn,vn+lu) 

and, as before, arrive at  a contradiction. 

Figure 2.5. 

So suppose that vn+l has no neighbor in I'(u). Since G is (n + 1)-connected, 

deg(v,+l) 2 n + 1. But 

In particular, I'(V,+~) > W. As r ( u )  is not independent, we may assume that vlv2 is 

an edge in 6. Now, wl E I'(V,+~). Thus 



is z matching of size n in G which does not extend to a perfect matching of G, a 

con~radiction (see Fig. 2.5) .a 

Before we can proceed, we have to introduce another piece of notation. By c(G) and 

c,(G) we denote the number of connected components and the number of connected 

components with an odd number of vertices in G, respectively. 

another concept related to extendability is the concept of the toughness of a graph. 

The toughness of a connected graph G is defined to be 

min{ I d '  : S is a cutset of G}. 
c(G \ S )  

We denote the toughness of G by tough(G). Thus toughness measures "how hard" i t  is 

to find a relatively small set of vertices in G which would disconnect G into relatively 

many connected components. In this way, toughness can be viewed as indirectly 

related to the number of edges in a graph (since graphs having "many edges" are 

"more likely" to be difficult to disconnect). In light of this, the next result, as the 

preceding ones, hints on a correlation between the edge-density and extendabilil;y of 

a graph. 

Theorem 7 ([18]) Let G be a connected graph with IV(G)I even. Let n > 0 and let 

IV(G)I 2 2n + 2. Then G is n-extendable i f  tough(G) > n. 

Proof: We will prove this theorem by contradiction. First, note that Tutte's Theorem 

on perfect matchings [19], combined with tough(G) > n > 1, implies matchability of 

G. Now, suppose G is not n-extendable and let N = {uivi : 1 < i 2 n)  be a matching 

of size n which does not extend to a perfect matching. Let 

Then G1 does not contain a perfect matching. By Tutte's Theorem, there is a cutset 

sl G V(G1) with IS11 < ~ , ( G I  \ SI). 
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If JS1l = c0(G1 \ S1) - 1, then 

contradicting the assumption that IV(G)I is even. Thus, in fact, IS1 I 5 co(G1 \ S1) - 2. 

If we set 

then G \ S2 = G1 \ S1 and, therefore, c(G \ 5'2) = c(G1 \ 5'1). Also, IS21 = IS11 + 2n. 

Thus, we have 

tough(G) = mini IS'  : S C V(G), S is a cutset of G) 5 IS21 - 
c(G \ S) c(G \ S2) - 

But this contradicts the hypothesis that tough(G) > n.m 

Without a proof, we will give one more result relating the notions of extendability 

and edge density in graphs. 

A surface is a compact connected Zmanifold. If we view a graph G, in a natural 

way, as a topological space (with edges being represented by closed line segments, 

vertices by points and the incidence between a vertex and an edge being given by the 

containment of the point in the boundary of the line segment), then by an imbedding 

of G in a surface C we mean the image G of G under a continuous injection j : G + C. 

The connected components of C \ 6 are then called faces of 8. The set of faces of G 

is denoted by F(G). If each face of G is homeororphic to an open disc, we say that 

the imbedding is cellular. In this case, the length of a face is the number of edges one 

encounters when one traverses along its boundary (note that if an edge is traversed 

twice along the boundary of a face, then it contributes 2 to its length). The number 

IV(G) I - I E(G) I + IF(G)  I is an invariant for the set of cellular imbeddings G in C and 

is cdled the Euler characteristic of E and denoted by x(E). 
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Theorem 8 ([4]) If C is a surface dzflerent from the sphere and G is a connected 

graph imbedded in C, then the extendability of G is less than 2 + [,,,/-I ,m 

The following remarks explain how this result suggests a con~lection betwccrl t h c ~  

extendability of a simple graph and its number of edges. 

Let G be a simple graph and let G be a cellular imbedding of G in C (there always 

exists a C in which G imbeds cellularly). Then 

If, for each positive integer n, f ,  denotes the number of faces of length n in the 

imbedding, then (because f i  = fi = 0 since G is simple) 

f 3 + f 4  + f 5  + f 6  + .. .  = IF(Q 

and: since each edge contributes 2 to the total length of all faces, 

3 f 3  + 4 f 4  + 5 f 5  + 6 f 6  + - - = 2[E(G)I, 

implying 

3(f3 + f4 + f5 + f6 + ') L 2/E(G)I. 

Thus ~ / F ( G ) I  5 21E(G)I. Substituting this in (2.4) yields 

and, after simplifying, 

So we see that the ratio I E(G)(/IV(G)( can be bounded by a function of x ( C ) .  As we 

have seen in Theorem 8, a similar result holds true for the extendability of a graph. 

In this way, Theorem 8 suggests a similarity between the behavior of edge density and 

extendability with respect to imbeddability. 
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"411 results shown so far were, each of them in a specific way, suggesting that a 

hignly extendable graph should be "likely" to be rlch in its number of edges. The 

following two propositions will, however, show that there exist highly extendable 

graphs with arbitrarily low edge density. 

The propositions themselves are mentioned here because of their proofs rather 

than because of their content. In fact, they are both trivial corollaries of the main 

result of [7]. But the proofs presented here are interesting not only because of their 

relhtive simplicity but especially since, as it turns out, they admit a generalization 

which will lead to our main result. 

But first, we need the following definition. 

Definition 9 Given a positive integer n, the n-dimensional cube Q, is the graph 

whose vertices are the elements of the set (0, l In and in which two vertices are joined 

by an edge if and only if they differ in exactly one coordinate. 

Proposition 10 Let n be a positive integer. Then Q, is (n - 1)-extendable. 

Proof: The proof will be by induction on n. When n = 1, the result is obvious 

(QI is just an edge and is matchable), So assume n > 1. Obviously, IV(Q,)l > 
2(n - 1) + 2 = 2n. Let M = {u;v; : 1 5 i _< n - 1) be a matching of size n - 1 in Q, 

and let S = {u;,u; : 1 5 i 5 n - 1). Since IMl < n, there exists j, 1 < j 5 n, such 

that for every i, 1 5 i 5 n - 1, the coordinate in which u, and v; differ is not the j-th 

one. Let 

V;: = {u E V(Qn) : j-th coordinate of u is i ) ,  i = 0 , l .  

There are two cases. 

Case 1. S E for some i. Let q5 be the involution on V(Q,) = {0,1)" defined by 

If we set 
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and 

then M' is a matching in Q, and St C &-;. Thus S n S' = VI, and hrl u &f' is also a 

matching in Q.:. Furthermore, for every u  E V(Q,)  it holds true that u 4 S u St i f  

and only if d(u)  f S U St .  Therefore, if we set 

A. = { u  f V(Q,) \ ( S  U S t )  : j-th coordinate of u is 0)  

and 

then Ao, A1 is a partition of V(Q,)  \ ( S  U St) .  But N = {uq5(u) : u E .Ao) is a perfect 

matching of &,[A0 U All.  Then M U M' U N is a perfect matching in Q, extending 

M (see Fig. 2.6). 

Case 2. S  n & # 0 and S  n & # 0. By the choice of j, each edge of M is either 

fully in Q, [&I or fully in Q,[&]. Thus M = Mo U MI, where Mi contains the edges 

of M that lie in &,[XI, i = 0 , l .  

M - rr -M' 
.!.I..... N 

unused edges 

Figure 2.6. 

SinceSnK # 0for i = 0,1, lMol < n - 2  and IMlI < n-2 .  AsQ,[&] and Q,[K] are 

isomorphic to Qn-l, we see that, by the induction hypothesis, Mi extends to a perfect 
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matching Ni of Q,[K] for i = 0 , l .  Then, No U Nl is a perfect matching extension of 

M in Q,.m 

The previous result can, in fact, be strengthened to a wider class of graphs. 

Definition 11 Let G1 and G2 be two graphs. Then their cartesian product is the 

graph GI x G2 with 

V(G1 x Gz) = V ( G )  x V(G2) 

and 

where if e E Gi has endpoints vl, 212 and u  E G3-,, i E {1,2),  then (e, u )  connects 

( ~ 1 ~ 2 1 )  and ( v z , ~ ) .  

Remark Note that the cartesian product is associative (up to isomorphism of graphs). 

The graph which is itself the cycle on n vertices is denoted by C,. With this notation, 

we have the following result. 

Proposition 12 Let n be a positive integer and let G = C4m1+2 x C ~ ~ ~ + ~  X. . . x C4m,+2 

for some positive integers m l ,  m2 , .  . . , mn. Then G is ( n  - 1)-extendable. 

Proof: Obviously IV(G)I 2 2(n - 1) + 2 = 2n. We may assume that V(G) = 

Z4ml+2 x Z4m2+2 x.. . x Zdmn+2 and that vertices u  = ( ~ 1 ~ ~ 2 , .  . . , u,), v = ( ~ 1 , 1 1 2 , .  . . vn) 

are joined by an edge in G if there exists i, 1 5 i _< n, such that (lui - vil = 1 and 

uj = vj whenever j # 2 ) .  The proof will again be by the inductim on n. When n = 1,  

then G is a cycle of an even length 4ml + 2 and is matchable. So we may assume that 

n > 1. Certainly, G is matchable. Let M = {uivi : 1 5 i 5 n - 1) be a matching of 

size n - 1 in G and let S and j be as in the previous proposition. Partition the set 

V ( G )  into the sets 

V,  = {U € V(G)  : j-th coordinate of u  is i ) , O  5 i 5 4mj + 1. 

Again, there are 2 cases. 
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Case 1. S E for some i. We may assume S 5 F;b. We define a mapping 

I#J : V ( G )  -+ V ( G )  by 

The set F = {u ,  c$(u), 42(u),  . . . , 44m~t1 (u), q 5 4 m 1 + 2 ( ~ )  = u : u E Vo) is a 2-factor 

of G. In particular, u NG +(u) for every u E V(G) .  

If uv is an edge in G and i 2 0, then &(u)@(v)  is also an edge in G. 

Now, if we set 

then M' is a matching in G. Let 

Since S Vo, S' 5 V2ml+lt and so S Sf = 0. Thus M U M' is also a match- 

ing in G. Moreover, F \ ( S  U S') consists of cycles of length 4m, + 2 (with cy- 

cles u, $(u), 42(u), . . . , 44m3+2(~) = u for all u E \ S )  and paths of odd length 

2mj - 1 (with the pair of paths 4(u),  ( 6 2 ( ~ ) ,  . . . , ( 6 2 m ~  ( u )  and d2m3+2(u), 42m~+3(u),  . . . 
44ml+1(u) for each u E S). 

Hence F \ ( S  U S') contains a perfect matching N. Then M U M' U N is a perfect 

matching of G extending M .  

Case 2. There is no i such that S C K. The F of of this case is essentially the 

same as that of Case 2 of the previous proposition (with A4 partitioned into 4mj + 2 

sets) and is omitted.. 

Remark It should probably be noted here that the proof of Proposition 12 could be 

simplified. In fact, there is a simpler proof of this proposition which goes through 

even when the stipulation that the lengths of the cycles be congruent to 2 (mod 4) 

is replaced by a weaker requirement that the lengths of the cycles be even. 

We chose to present the proof given above since it more closely resembles the proof 

of the main result of this thesis, where the corresponding simplification is impossible. 



Chapter 3 

Ext endability 

In this chapter we present some theorems giving sufficient conditions for high extend- 

ability of graphs. 

Lemma 13 Let k > 0 and s > (;&I). Let GI, G2,. . . , Gs be graphs on the same non- 

empty vertex set and let G = G1 U G2 U . . . U G,. Assume further that the following 

conditions are met: 

a) For every pair u,v of distinct vertices in G there is at most one i, 1 5 i 5 s, 

such that u and v lie in the same connected component of G;. 

b) Each G; is matchable. 

c) I j  H1 and Hz are distinct connected components of some G; and uv is an edge 

in G connecting Hl to Hz, then G[(V(Hl) U V(H2)) \ {u, v)] is matchable. 

Then G is k-extendable. 

Proof: First, we have to show that /V(G)I >_ 2k + 2. Since V(G) # 0, there is some 

u E V(G) .  As V(G) = V(Gi) for 1 5 i < s,u E V(G;) for all i. Since each G; is 

matchable, there is a vertex v;, v; # u, in Gi with u N ~ i  v;, 1 5 i 5 S .  By  a), all Vi 

are distinct. Consequently, 

By b), all IV(Gi)j (and hence IV(G)I) are even. We conclude that indeed IV(G) I 2 
2k + 2. G must also contain a perfect matching because each Gi is matchable. 
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Let M = {u,vi : 1 < i < k} be a matching of size k in G. The set lV = { u i ,  u, : 

1 < i < k) contains 2k elements and, therefore, there are exactly ( y )  pairs { u ,  r } of 

elements of this set. By a) and since s > (22), there is j, 1 < j 5 s, such that no two 

elements of N lie in the same connected component of GJ. 

Now, for 1 5 i 5 k, let Hu, and H", be the components of GJ containing t ~ ,  and 

v;, respectively. Then all Hz are distinct and, by c), G[(V(H,,) U V(H,,)) \ (u , ,  L),)] 

contains a perfect matching M, for all i. The set M U u!=, M; is a perfect matching 

of G[u!=l{V(HU,), V(H,,)II. 
Furthermore, as Gj is matchable by b), all of its connected components are also 

matchable. But Gj \ u:=, {v(H,,), V(H,,)) is a disjoint union of such components 

and, hence, is matchable and contains a perfect matching, say M'. 

Now, ( M  U M') u u;=, M; is a perfect matching i G extending M. This ends the 

proof of this lemma.. 

The next corollary is an example how Lemma 13, which looks quite technical, can 

be applied to an interesting class of graphs, a certain subclass of the class of Cayley 

graphs, to show that graphs in this class have high extendability. 

Definition 14 Let H be a group and let S be a subset of H \ {IH) such that s-' E S 

whenever s E S. The Cayley graph X(H, S)  on H with respect to S is the graph with 

the vertex set H and with the edge set defined by the following rule: hl, h2 E H are 

connected by an edge in X(H, S) if and only if hc1h2 E S ( H  h,'hl E S ) .  

Corollary 15 Let X(H, S) be a Cayley graph on an abelzan group H and let m be 

the number of elements of order 2 in S. Assume that 

a) the order of each element in S is even, 

b) sl, sz E S, sl # SF and sl = si imply that s; = si = 1 and 

C )  (IS1 + m)/2  > (2:) for some k > 0. 

Then X ( H ,  S )  is k-eztendable. 

Proofr For s E S, let G, be the subgraph of X ( H ,  S) containing the edges arising 

fiom the element s (that is, the edges hlh2 where h;'hz = s*'). Obviously, for every 

s and t in S, G, = G, if and only if s = t f l .  Thus, the set {G, : s E S) contains 
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distinct graphs. The union of these graphs is X(H, S )  and V(Gs) = V(X(H, S)) # 0 
for all s E S. Hence, it suffices to show that the conditions a)-c) of Lemma 13 are 

satisfied. To see that condition a) of Lemma 13 is satisfied, let u and v be two distinct 

vertices in G. 

If there are sl and sz in S such that u and v are in the same connected component 

of Gai, for i = 1.2, then 

for some i and j. This implies that 

If Gal and Gs2 are distinct, then sl # sf1 and, by b), 

This contradicts the assumption that u and v are distinct. Thus condition a) of 

Lemma 13 is satisfied. 

As the order of each element s in S is even, each G, is either a perfect matching 

in X ( H ,  S) (if the order of s is 2) or a 2-factor consisting of cycles of even length (if 

the order of s is larger than 2). In both cases, Gs is matchable, and condition b) from 

Lemma 13 is met. 

Finally, let HI and Hz be distinct connected components of some G, and let uv 

be an edge in G connecting HI with Hz.  Without loss of generality, we may assume 

that u E HI and v E H2. Then v = ut for some t E S. Now, 

2 m-1 HI = u, us, US , . . . , US , u 

and 
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where m is the order of s in H. As H is abelian, we get 

usi = uts' = usit for all i, 1 5 i 5 m. 

Hence, in G, the vertices usi and us' are connected by an edge e; for all i, 1 _< i < nz. 
The edges ei ,  1 5 i 5 m - 1, form a perfect matching of 

and condition c) of Lemma 13 is met. 

We conclude that X(H, S) is k-extendable.. 

Another corollary, which already suggests resemblance with the statements about the 

extendability of Q, and C4rn1+2 x C4rn2.t2 x . . . x C4rn,+2 is the following. 

Corollary 16 Let k > 0 and let s > (y )  . Let GI, G2,. . . , G, be graphs on ihe some 

non-empty vertex set and let G = GI  U G2 U . . . U G,. For each 2 ,  1 5 i 5 s, let G, be 

a 2-factor of G consisting only of cycles whose lengths are congruent to 2 (mod 4 ) .  

Further, assume that 

a) if i # j ,  C is a cycle in G, and C' is a cycle in Gj, then IV(C) n V(C1)I < 1 

and 

b) for all 4 1  5 i 5 s, if Cl = ug, u1,. . . , U ~ ~ + I ,  uo and C2 = VO, VI, . . . , vqq+1, uo 

are two distinct cycles in  Gi such that uo -JG vo, then ~ 2 , , + 1  -G ~ 2 ~ + 1 .  

Then G is k-extendable. 

Proof: Again, we only need to check the conditions a)-c) of Lemma 13. Condition 

a) of Lemma 13 is directly implied by a) of this corollary. Condition b) in Lemma 

13 is satisfied since every Gi consists of even length cycles only. To see that c) of 

Lemma 13 is also met, let Cl and C2 be distinct connected components of some G;. 
Consequently, Cl and C2 are cycles. Say, 
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and 

If e = uv is an edge connecting C1 to C2, we may without loss of generality assume 

that u = uo and v = vo. Then, by b), the edge f = ~ 2 ~ + l v 2 ~ + 1  is in G. Since 

is composed of four distinct paths, two of them having length 2p - 1 and other two 

being of length 2q - 1, it is matchable and, consequently, condition c) of Lemma 13 

is satisfied. 

Thus, G is k-extendable.. 

In this special case where each Gi consists exclusively of cycles of length congruent 

to 2 (mod 4), we can, with a further condition posed on G, prove that s > k can be 

used instead of s > (1:). 

Proposition 17 Let k 2 0 and let s > k .  Let GI, G2,. . . , G, be graphs on the same 

non-empty vertex set and let G = GI U G2 U . . . U G,. Let, for each 1 5 i 5 s ,  Gi be 

a 2-factor of G consisting of cycles all of whose lengths are congruent to 2 (mod 4 ) .  

Assume that a) and b) of the previous corollary hold true and that 

c)  For every i ,  G \ E(Gi) can be written as a vertex-disjoint union of graphs 

Hi ,  Hi, .  . . , Hii where, for all j, 1 < j < pi, and for all cycles C in G,, / C  n Hjl 5 1. 

Then G is k-extendable. 

Remark This proposition is a generalization of Proposition 12 (and also Proposition 

10). The numbers s and k in this proposition correspond to the numbers n and n - 1 

of Proposition 12, respectively, and the graph G; here corresponds to the subgraph 

of C4rn1+2 x C4m2+2 x . . . x C4rnn+2 containing the i-th "parallel class" of edges of 

C4m1+2 x C4m2+2 x . . . x G4rnn+2 in Proposition 12. 
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Finally, the graph H; corresponds to the subgraph of C4m,+2 x C4,,,,+z x . . . x C4,,,+> 
induced by the set Z4m1+2 x Z4mz+2 x . . . x Z4m,-1+2 x { j )  x Z4tn,+l+.a x . . . x Zqm,,+2. 

Before we embark on the proof of this proposition, we will first prove the following 

simple observation. 

Observation 18 Let s > k > 0 and let G be as in Proposition 17. Let i E {1,2,, . . , 
s )  and let G\E(G,)  = H ~ u H ~ U . .  . uHj i ,  where Hi, Hi , .  ..,HLi are as in Propositiorl 

17. Then each H;, 1 < j _< pi, satisfies the hypothesis of Proposition 17 with G. s and 

k being replaced by Hj, st = s - 1 and kt = k - 1, respectively. 

Proof: Fix j ,  1 5 j _< pi. Obviously 

Thus, setting 

gives Hj = G: U Gi U ... U G:,. 

Clearly, each G: is a 2-factor of Hl consisting of cycles whose lengths are congruent 

to 2 (mod 4), and V(G:) = V(Hj) # 0. Furthermore, conditions a) and b) (of 

Corollary 16) are obviously satisfied by the graphs GI, 1 5 i 5 3'. Finally, for every 

I ,  1 5 1 5 st ,  H; \ E(GI) is the union of the graphs 

where 1' = 1 or I t  = 1 + 1 according as whether 1 < i or 1 > i. This union is vertex- 

disjoint since H:, H;, . . . H:, are vertex-disjoint. Now, if C is a cycle in Cj, then 

it is also a cycle in Gll. Thus, by hypothesis, jC n H: I 5 1 for 1 5 m 5 pp and, 

consequently, I C n H: [v(H;)] I 5 1 for 1 < m 5 pp r 
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We are ready to prove the proposition. 

ProoJ of Proposition 17: We will proceed by induction on s. 

When s = 1, k is necessarily 0, and we only have to show that G contains a perfect 

matching. But in this case G = GI and is matchable. 

So assume s > 1. First, we have to show IV(G)I 2 2k + 2. Let u E V ( G ) .  Then 

u E V(Gi) for all i,  1 5 i 5 s. As each Gi is a 2-factor, it contains a cycle C, with 

u G C;. By condition a), I V(Ci) n V(Cj) I 5 1 for all i # j, 1 5 i,  j < s. As each Ci 

contains u, we have (V(Ci) \ {u)) n (V(Cj) \ {u)) = 0 for all i # j. Thus, 

Also, G is matchable as each Gi is matchable. Now, let 

M = {uiv; : 1 5 i 5 k) 

be a matching in G. As ]MI = k < s and no edge of G is contained in more than one 

G;, there exists i, 1 5 i 5 s, such that none of the edges of M belongs to G;. Without 

loss of generality, we may assume i = 1. Therefore, all edges of M lie in 

We consider the two possible cases. 

Case 1. There exists i, 1 5 i 5 pl, such that all edges of M lie in H;'. Again, we 

may assume i = 1. By assumption c), each of the cycles in G1 has at most one vertex in 

common with Ht . Thus, if for 1 5 j < k we let Cuj (C, ) be the cycle in G1 containing 

uj ( v j ) ,  then these cycles are pairwise distinct (and, therefore, pairwise disjoint). As 

in the proof of the previous corollary, we conclude from condition b) that for each 

j, 1 5 j < k, the edge ujvj extends to a perfect matching Mj of G[V(Cu,) U V(C,,)]. 

Also, 
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is a union of (even-length) cycles and contains a perfect matching hf' Now iW' U 

(u:=, M,) is a perfect matching of G extending M. 
Case 2. There is no i ,  1 4 i 5 p, such that all edges of A-ci lie in H,'. Hence each 

H,' contains at most k - 1 edges of M and, by Observation 18, we may apply the 

induction hypothesis to each H,' to show that H;' contains a perfect matching Mi such 

that Mi contains all edges of M which lie in Hi'. 

Then M, is a perfect matching extension of M.m 



Chapter 4 

Girth 

This chapter deals with graphs that do not contain short cycles. Similarly as in the 

previous chapter, where we presented sufficient conditions for a graph to be highly 

extendable, we will here give conditions that are sufficient to make sure that a graph 

has no short cycles. 

For a graph G, by the girth of G (denoted by girth(G)) we mean the length of a 

shortest cycle in G (if G contains no cycle then girth(G) = m). 

Let G be a graph and let e be an edge in G connecting (not necessarily distinct) 

vertices u and v. Then by the contraction of the edge e we mean the following 

procedure. 

Step 1. Delete the edge e from G. 
Step 2. Identify the vertices u and v in G. 

It is readily seen that the graph resulting from a sequence of contractions is in- 

dependent of the order in which these contractions are performed and depends only 

on the set of edges that are being contracted. Thus, if S C E(G), then we can talk 

about the contraction of the set S. 

One easily observes that if e is an edge in G, then the contraction of e does not 

increase the girth of G unless (e is a loop and the contraction of e results in a loopless 

graph). From this, we see that the next statement holds true. 

Observation 19 Let G = GI U Gz U . . . U G, where V(G) = V(Gi) for all i, 1 <_ 



i < - s ,  and where s 2 1. Assume that E(G;) n E ( G j )  = 0 for all pairs i ,  j such that 

1 5 i, j 5 s and i # j .  For each i, let G: be obtained from G b y  contracting all edges 

not in G;. Then 

girth(G) 2 min {girth(G{)) .m 
1<i<3 

This observati,on will serve as a motivation for the results that follow. In these results, 

we restrict our attention to the class of graphs described in the next definition. 

Definition 20 Let G be a graph with V(G) = TI x T2 x . . . x Ts for some sets 

TI, TZ, . . . , T,, s > 1, in which every pair of adjacent vertices differ in exactly one 

coordinate. Then we say that G is orthogonal. Also, we denote by E;, 1 5 i 5 s, the 

set of edges of G whose endpoints differ in the i-th coordinate. 

We will see that for orthogonal graphs the conclusion of the above observation can be 

strengthened and this will prove useful in our main construction. Before we can state 

the first proposition inspired by Observation 19, we need the definition of a projection 

of an orthogonal graph. 

Definition 21 Let G be an orthogonal graph, V(G) = TI x T2 x . . . x T,. Then the 

projection n;(G) of G onto T; is the graph obtained from G by first deleting all edges 

not in E; and then identifying all vertices having the same i-th coordinate. We then 

think of ni(G) as having the vertex set T; (the edge set of ni(G) is Ei) .  

Proposition 22 Let G be an orthogonal graph with V(G) = TI x T2 x . . . x Ts. Then 

girth(G) 2 min {girth(n;(G)) } . 
l < r < a  

Remark Note that if G is a cartesian product of cycles, then the proposition is a 

(trivial) special case of Observation 19. For example, if G = C3 x C4 and i = 2, 

then r2 (G)  = 3C4 and can be viewed as being obtained from G by the contraction of 

the edges of the copies of C3 in G. In fact, Proposition 22 can, with a little e f h t ,  

be proven using Observation 19, but we will not follow this path and rather give an 

independent proof as it is illuminating in the light of the statements that will follow. 
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Proof of Proposition 22: Let 

be a shortest cycle in G. Then el E Ej for some j, 1 < j < s. Let 

be all those indices i for which e; E Ej. 
For 0 5 i 5 n - 1, let ui,j be the j-th coordinate of u,. Then, by the definition 

of the graph nj(G), the edge e;, connects the vertices u;,-l,j and uj,,j in nj(G) for 

1 5 k 5 m (here, ui0 = uirn). 

Moreover, 

for 1 < k < m. Thus (noting that uo,j = uirn,j), 

is a closed walk (without repeated edges) of length m in xj(G). Hence, 

and the proposition is proven.. 

The following strengthening of the above proposition is crucial because it will serve 

as a tool for constructing classes of (regular) graphs with arbitrarily large girth which 

will also have properties that will enable us to show that such graphs have high 

extendabili ty. 

Lemma 23 Let G be an orthogonal graph with V(G) = TI x Tz x . . . x T,, jor some 

s 2 1 .  Let 
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u j  E T' for z < j < s ) .  

Then 

Proof: Let C be a shortest cycle in G and let j be the largest index such that 

E(C)  n Ej # 0. Then V(C) 2 Tl x T2 x . . . x T; x { ~ j + ~ )  x ( u ~ + ~ )  x . . . x {u,) for 

some uj+l E Tj+l,uj+2 E Tj+2,. . . , u s  E Ts. The graph 

can be viewed as being obtained from G by first deleting the vertices not in TI x 

T2 x . . . x Tj x { u ~ + ~ )  x {uj+2) x . . . x {u,) and edges not in Ej and then identifying 

the vertices having the same j-th coordinate. By the choice of 4, none of the deleted 

vertices is in C and not all edges of C are deleted. Thus, the projection of G onto the 

j-th coordinate is a closed walk without repeated edges of length greater than 0 and 

is contained in GI. Therefore, girth(Gi) 5 girth(G). 

As G' E G, the conclusion fol1ows.m 

To get a flavor of how this lemma improves Proposition 22, consider the following 

graph G. V(G) = Z,, x Z,,, for some n, m 2 3 and 

where Hi, for 0 5 i 5 m - 1, is the cycle (0, i), (1, i) ,  (2, i), . . . , ( n  - 1, i), (0, i )  and 

where each Hi is a certain graph with V(H;') = ( i )  x 2,. Let's first estimate the 

girth of G using Lemma 23. The collection G contains m copies of the graph Cn and 

a copy of the graph H = nz(G). By the lemma, 

Since if m is sufficiently large compared to n, then Hi can be chosen so that H contains 

no short cycles, the appropriate choice of Hi will lead to girth(G) 2 n. 
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However, if we estimate the girth of G using Proposition 22, we can only get 

girth(C) 2 2 as the graph nl(G) of the proposition is a copy of mC,, and has girth 2. 

If u and v are two vertices in G, then dG(u, v) (or simply d(u, v) when no confusion 

may arise) is the distance between u and v in G, i.e., the length of a shortest uv-path 

in G. We set dc(u, v) = oo if there is no path connecting u and v in G. 

Now, finally, we can prove the main theorem of this chapter. 

Theorem 24 Let G and be as in the previous lemma and let G satisfy the following 

extra requirement. 

a) If G' E G, V(GJ) = Ti, el and e2 are multiple edges in Gt connecting the vertices 

u' and vt, and the endpoints of el (e2) in G are u1 (212) and vl (v2), then d(ul, uz) > g 

and d(v1, v2) > g . 
Also, let 3-t be the set of the graphs which are obtained from graphs of G bg iden- 

tifying multiple edges. Then 

girth(G) > min{g, min {girth(Gt)). 
G'E'H 

Proof: Let C be a shortest cycle in G and let u be a vertex in C. If the length of C 

is larger than g ,  the conclusion follows. So we may assume ICI 5 g.  In ihis case, for 

every vertex v in C, we have d(u, v) < 9/2. Let G be obtained from G by deleting all 

those edges of G with at least one endpoint at distance greater than g/2 from u. Let 

P be obtained from G as D is from G. By the previous lemma, we have 

Let 'I? be obtained from 6 as H is from 9. The way G was chosen and the additional 

condition a) placed on G in this theorem imply that graphs in do not have multiple 

edges and, consequently, @ = 6. On the other hand, each ggrph in f i  is a subgraph 

of some graph in 7-i. Combining these two observations, we get 

miq{girth(Gt)) = miq {girth(Gt)) > min {girth(G1)). 
C'EO G'E'H G'ER 

Thus, 
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But G contains C ,  a shortest cycle in G. This means that girth(G) = @rth(G) and 

the conclusion follows.~ 

Let H I ,  H2,. . . , H, be groups. Further, let fl E Hl \ {IH,) and let, fw 2 < 1: < 3, f, 

be a function from HI x H2 x . . . x H;-l to Hi \ { l ~ , ) .  We will construct a simple 

orthogonal graph G on the vertex set HI x H2 x . . . x H, as follows. 

The vertex (u,, u2,. . . ,us)  will be connected to the vertices (ulfF1, ul, u3,. . . , us) 

and to the vertices (UI, u2, . . . , u;-1, u; f?' (UI, ~ 2 ,  . . . , ui-I), ui+l, ~ ; + 2 ,  - . . (21,)) for 2 5 
i 5 s. 

. . . . . .  

Figure 4.1. 

Example Let HI = Z3n and Hz = Z, for some n, m > 0. Let fi = 1 (note that 1 is 

not the identity element of &) and let 

f2(a) = 1 i f a  = 0 (mod 3), 
f2(a) = 3 if a G 1 (mod 3) and 

f z ( a ) = 2 i f a r 2  (mod3). 

Figure 4.1 indicates what the resulting G looks like. 
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3.' 

Corollary 25 Let Hl,H2,. . . , H,, fl, f2 , .  . -,  fs and G be as above. Assume that the 

order of fl in HI is greater than g and that the girths of the graphs X(Hi, { f,i'(v) : 

v E HI x H2 x . . . x Hi-1}) are larger than g for 2 5 i 5 s .  Assume further that the 

following condition is satisfied. 

b)  For every pair u = (ul, ~ 2 , .  . . , us), v = (vl, 212,. . . , v,) of distinct vertices of G 

and for every i ,2 < i 5 s, i f  uj = v j  for all j , i  5 j 5 s, and fi(ul,u2,. . . , u ; - ~ )  = 

fifl(vl, ~ 2 ,  . . . , ~ ~ - 1 )  then d(u, V) > g .  

Then girth(G) 2 g .  

Proof: Again, let 6 be as in Lemma 23 and Theorem 24. Condition b) implies that 

a) of the previous theorem is met. Thus G satisfies the assumptions of the previous 

theorem and hence 

where 3-1 is as in Theorem 24. 

Thus, it suffices to prove that minGtEN{girth(G1)) 2 g. But, by the definition of 

3-1, each graph in 3.1 is isomorphic to either X(Hl, { fl, f ~ l ) )  or to one of the graphs 

X(Hj, {fF1(v) : v E HI x Hz x . . . x Hi-1)), 2 < i < s. By the assumption, all these 

graphs have girth greater than g and the corollary fol1ows.m 

Remark Note that if each f,,2 5 i < s,  is injective and f;(u) # fr l(v)  for all 

u, v E HI x H2 x . . . x H;-l then = 3.1 and, using Lemma 23, the assumption b) 

can be dropped. 
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Main Result 

In this chapter, we present our main construction and prove that it produces highly 

extendable graphs that do not contain any short cycles. 

Lemma 26 Let n and k be positive integers. Then there exists a Jinite group Nnvk 

containing elements all a2,. . . ,a* (a; # afl for i # j )  such that, for every rn < 
n and for every rn-tuple (bl, b2,. . . , b,) of elements of Hn,* of the form a;, af ', if 

bib. . . b, = I&,,, then there exists i, 1 5 i 5 rn - 1,  for which bi+* = b ~ ' .  Moreover, 

the elements a, can be chosen so that their orders are odd. 

Remark Note that the lemma says that the Cayley graph X (Hntk1 {a f l  I ,a2 fl ,..., 
a?}) has girth larger than n. 

Proofi We will show that Hn,* can be chosen from among groups used in [14]. To 

this end, let SL2(Z) (or SL2(Zp) for p prime) denote the group of 2 x 2 matrices over 

Z (or over 2,) which have determinant equal to 1 and let 4, : SLZ(2) -+ SL2(Zp) 

denote the homomorphism reducing the entries of elements of SL2(Z) mod p. 

Take a sufficiently large positive integer s and k + 1 distinct pairs (mi, q;) ,1 < i < 
k + 1, of numbers satisfying gcd(rn;, q;) = 1, O 5 mi 5 s/2  and O 5 q; 5 3/2 for all i 

(in particular, (0,O) is not among these pairs). Let b;, c; be such that 
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has determinant equal to 1. We may assume that 1c;l < s/2 and lb,] < s/2. For 

1 f i <  k + l , s e t  

In [14], it was shown that for any prime p the Cayley graph of SL2(Zp) with respect 

to {+p(g;), +p(g;l) : 1 j i j k)  is 2k-regular and has girth larger than f log,(p/2) - 1. 

Hence, if we choose p so that f 1og,(p/2) - 1 > n, set a; = (,(g;) for all i, and let 

Hn,k = SL2(Zp), then Hn,k and a; will be as this lemma requires except that possibly 

the order of some a, could be even. Now, we will show that p can be chosen so that 

the orders of all a; are odd. In order to do this, choose p as above satisfying the 

additional requirement that it be greater than s. Consider, for a positive integer t ,  

the t-th power of 9;: 

Hence, #p(g;)t = (Jgf) = 1SL2(Zp)  if and only if 

As p is prime, s,  m; and q; are smaller than p and at least one of m;, q; is nonzero, the 

conditions are satisfied exactly when t is a multiple of p. Thus, the order of dP(gi) in 

SL2(Zp)  is p, an odd number.. 

In the rest of the thesis we assume that, for every pair n, k, the group Ifnjk is fixed. 

The elements a; of Hn,k are referred to as natural generators for the group Hnlk.  
Now we are ready to give the main construction which will feature certain orthog- 

onal graphs. These graphs turn out to be special instances of graphs dealt with in 

Corollary 25 and, thus, do not contain short cycles. We will also be able to prove, in 
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a series of claims, that they satisfy the conditions of Proposition 17, implying that 

they are also highly extendable. 

Construction 27 Let k and n be given positive integers. We construct a graph 

G = Gk,+ as follows. 

a First let s > k and define recursively groups H i ,  Hi , .  . . , Hi;  let Hl be Z2,+, and, 

for 2 2 i 5 s ,  let H,! = H n , l H ~ l I H ~ I . . . ( ~ :  -1 1. When i 2 2, the natural generators for 

H: will be denoted by a:), 1 5 j < IHiI IHiI . . . IH,!-l 1 .  

a For i ,  1  5 i 5 s, let the group Hi be defined by  H; = H;' x Z2. 

For i, 2 5 i < s ,  let f;' : Hi x Hi x . . . x + H;' be a bijection between 

Hi x H i  x . . . x Hiw1 and the natural generators {a!') : j E {1,2, . . . , IH; I IH; I . . . 
IH,!-lI}L 

For i ,2  2 i 5 s, let f; : HI x Hz x . . . x Hi-1 4 Hi be defined b y  

fi((b1, n i ) ,  ( 6 2 ,  na), . . . , (bi-1, ni-1)) = (f:ibl, 6 2 , .  . . ,b;-I), 1). 

Let fl = ( 1 , l )  E Hl = H: x 2 2 .  

a Set V ( G )  = H = Hl x Hz x ... x Hs. 

a For every u  = (u l ,  u2 , .  . . , u s )  and v  = (211, v2,. . . , us)  in V ( G ) ,  let uv be an 

edge in G if there is a unique i ,  1 5 i 5 s, for which u; # v; and, for this i, 

ui = v i f f1 (v1 ,  ~ 2 , .  . . v;-I)(= vi f f 1 ( ~ 1 , ~ 2 , .  . . t i ; - 1 ) )  if i # 1 and ul = f f l  if 

i = 1. 

Let, for 1 5 i 5 s ,  G; be defined by V ( G ; )  = V ( G )  and 

E(G;) = {uv  : u and v  differ in the i-th coordinate and uv is an edge in G).  

Claim 28 For every i, 1 5 i 5 s ,  Gi is a 2-factor of G ,  all of whose cycles have 

lengths congruent to 2 modulo 4. 
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Proof: If i = 1, then fl = (1 , l )  has order 4n + 2 in the group Hl = H,' x Z2 and the 

result follows. If i > 1, then Gi is a 2-factor of G and the length of each cycle in Gi is 

equal to the order of the element (f;'(b), 1) in H, for some b E H,' x Hi x . . . x H:-l. 

By the definition of f;, 

for some j, 1 5 j 5 1 Hi 1 1  HJ . . . IHi'_, I .  Hence the order of f;(b) in H;' is odd and, 

therefore, the order of (f:(b), 1) in Hi is congruent to 2 (mod 4). This ends the 

proof.. 

Claim 29 For every i, j with i # j and 1 5 i,  j 5 s, i f  C is a cycle in G, and C' is 

a cycle in Gj, then IV(C) n V(C1)I 5 1. 

Proof: Suppose the contrary and let C and C1 be cycles in G; and Gj  (i # j, 1 5 
i ,  j < s), respectively, with IV(C) n V(C1)I 2 2. Then there are two distinct vertices 

u and v in V(C) r l  V(C1). By the definition of G;, u, v E V(C) implies that u and v 

can only differ in the i-th coordinate. Similarly, from u, v E V(C1) we get that u, v 

can only differ in the j-th coordinate, a contradiction.. 

Claim 30 For all i ,  1 5 i < s, if C1 = U O , U ~ , U ~ ,  . . . , U ~ ~ + ~ , U O  and C2 = 

= VO, vl,v2, . . . , vqq+l, vo are two distinct cycles in G; such that u0 NG VO, then 

Wp+l -G V2q+1 

Proof: Let uo = (u',, ui, . . . , u:). Then ul = uoc where 

for some E E (1, -1) if i # 1 and 

for some E E (1, -1) if i = 1. 
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Then 742 = uOc2, ug = u0c3 and so on. In particular, as C1 is a cycle of length 4p-I-'3, 
I the order of c in H is 4p + 2. Thus, if i # 1, then the order of f;C(ui, u',, . . . , ui- in 

H, is also 4p + 2. But 

where 

Consequently, for the order of f ~ ( u ~ , u ~ , . .  . ,u : -~)  to be 4p + 2, the order of 

f.(bl, b2, . . . , bi-1) (in H;') must be 2 p  + 1. Thus 

A similar argument shows that the same conclusion holds when i = 1. Now, let d E H 

be such that vl = vod. The same reasoning as above gives 

for some E' E (1, -1). 

From (5.1) it follows that if uo = ((bl,nl), (bz, nz), . . . , (b,,n,)), then 
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The definitions of fj7 1 < j 4 s, and of the graph G imply that uSp+l, uSp+lg is also an 

edge in G. Therefore, it suffices to show that v2q+l = uzp+lg. But u2p+lg = u 0 ~ 2 ~ + 1 g .  

Again, from (5.1) we see that every element of H, in particular, g, commutes with 

c2p+', and we get 

Claim 31 For every i, 1 5 i < s ,  G \  E(Gi) can be written as a vertex-disjoint union 

of graphs G;, G;, . . . , Gb, where p = I H;I and for all j, IC n G: 1 < 1 whenever C is a 

cycle in G, . 

Proof: Let H; = { a k :  15 k 5 [Hi[). For 1 < k < /Hi], let 

G', = GIHl x H2 x . . . x x { a k )  x Hi+1 x . . . x H,]. 

Obviously, Gi, 1 < k < IH;l, are vertex-disjoint and u L ~ !  G', does not contain any 

edges of G;. Moreover, if uv is an edge in G \ E(G;), where u = (ul, US, .  . . , u,), v = 

(vl, VZ, . . . , v,), then ui = v; = a,  for some I ,  1 5 I 5 IH;l, and, therefore, uv E Gi. 

Thus, G \ E(Gi) is a vertex-disjoint union of the graphs Gi,  1 5 k 5 [ H i / .  

Finally, if C is a cycle in G; and u # v are two vertices in C ,  then u; # v; (where 

ui and vi are the i-th coordinates of u and v, respectively) and, consequently, u and 

v cannot lie in the same G:. Thus, IC n G[i I 5 1, for all j .m  

Remark Note that in the proof of this claim we only needed the fact that G is 

orthogonal. 

Claim 32 Let u = (ul, US, .  . . ,us), v = (vl, 0 2 , .  . . , v,) be two distinct vertices in G 

and let 2 < i < s. Assume further that uj  = vj for all j,i 5 j < s, and that 

f,(u1,u2,. . . ,uj-1) = f~1(v1,v2, . .  .v;-1). Then d(u,v) > n. 

Proof: By the definition of f;, f;(ul, US,. . . , u;-1) = fF1(vl, v2,. . . , viml) implies that 

and 
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for some bs, ns and m. Moreover, since u, = v, for j 2 i and since u and o are 

distinct by the assumption, there must be 1 (1 5 1 .< i - 1) such that # mi. 

Now, if xy is an edge in G, x and y differ in the I-th coordinate and 1 > 1, then 

xryl is an edge in G = X(Hl, {fF1(z) : .z E HI x H2 x . . . x by the definition of 

G (here xi and yl are the I-th coordinates of x and y,  respectively). Similarly, if I = 1, 

then sly, is an edge in G' = X(H1, {(1,1), (2n, 1))). Let u = w1, W ~ , Z U J , .  . . , w,, = v 

be a shortest uv-walk in G and let, for 1 5 j < rl, w; be the I-th coordinate of wj. 

If 1 < tl < t2  < . < t,, < rl are all those numbers t for which wi + w:+~, then 

wLw;+, is an edge in GI for all j, 1 5 j < r2 .  

Moreover, 

Thus, 

is a walk of length r2 in GI. 

Since nl # ml and each fl(z) is either of the form (f[(b), 1) for some b E Hi x 

Hi x . . . x HI_, (if 1 > 1) or of the form (f 1, l )  (if 1 = l), r2 must be odd. Hence, if 

W$ = (cj, o j )  for 1 5 j 5 rl, then c1 = = bl and, thus, bl = ct1, ca, .  . . , ~ t . ,  , c,, = bc 

is a closed walk of length r 2  in G", where G" = X ( q ,  {(f/)&'(a) : z E 4 x Hi x 

... x HL,)) if 1 > 1 and G"= X(HI,{1,2n)) if 1 = 1. 

Then (as r 2  is odd) G" must contain a cycle of length r3, r3 < r2. But by the 

choice of fj' in Construction 27, the girth of G" is strictly greater than n when 1 > 1 

while when 1 = 1, then G" is a (2n + 1)-cycle and, again, girth(GN) > n, Thus n < m, 
and we get 
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Now we are able to prove the main result. 

Theorem 33 The graph G = Gk,+ is k-extendable and has girth at least n ,  for every 

k and n. 

Proof: Obviously s > k > 0, G = G1 U G2 U . . . U G,, and V(G;) = V(G) # 0 for 

all i. This, together with Claims 28,29,30 and 31, shows that the assumptions of 

Proposition 17 are satisfied and, hence, G is k-extendable. 

For the proof of the girth, we will first show that for 2 5 i 5 s 

Suppose not and let C = (bo, mo), (bl, m ~ ) ,  (b2, m2), . . . , (bT-1, m,-l), (bo, mo) be a 

cycle of length r 5 n in X(H;, { f?l(v) : v E Hl x H2 x . . . x Hi-1) (note that r > 3 

because G is a simple graph). Then bo, bl, b2,. . . , bT,l, bo is a closed walk of length 

r in X(H,' ,  {(f,!)&'(v) : v E Hi x H; x ... x H,'!,)). But girth(X(H,',{(f~)fl(v) : 

v E Hi x Hi x . . . x Hi-,))) > n. Thus, there is j , O  < j 5 r - 1, such that 

bj = bj+2 (indices are taken mod r ) .  Then if h' E Hi' is such that bj+1 = bjh', then 

bj+z = bj(h1j-'. From the construction of G, it follows that (bj+l,mj+l) = (bj,mj)h 

and (bj+2,mj+2) = (bj+ll mj+l)h-', where h = (h', 1) E H;. In particular, (bj, mj) = 

(bj+2, mj+l), contradicting the fact that C is a cycle having length at least 3. 

Also, the order of fl in HI is 4n + 2 and is strictly greater than n. (5.3) 

Claim 32 implies that condition b) of Corollary 25 is satisfied (with n instead of 9). 

(5.2) and (5.3) show that two of the remaining conditions of Corollary 25 are also 

met (again with n in place of g). All other conditions of Corollary 25 are satisfied 

trivially. Thus, girth(G) 2 n.8 
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Remark In Chapter 2, we mentioned some known results concerning n-extendable 

graphs. Two of them, Theorems 2 and 7, give conditions that imply n-e~tendahilit~y. 

Here we note that neither of these theorems can be applied to prove that the graphs 

we constructed are n-extendable. This is immediately seen in the case of Theorern 

2 as S(Gk,,) << IV(Gk,,)1/2. For Theorem 7, we note that if G is a bipartite graph, 

then tough(G) < 1. This is seen as follows. Let G be a bipartite graph with parts S1 

and Sz and assume I Sl I 2 

We conclude this chapter 

Construction 27. 

IS2 1. Then c(G \ S2) = ISz 1 and we get 

with a statement regarding the structure of graphs from 

Observation 34 The graphs Gk,,, are bipartite. 

Proofr Partition the set V(Gk,,) into two subsets Vo and &, where 

r/: = {((b,, nl), (b2, n2), . . . , (b,, n,)) : nl + nz + + . + n, = i (mod 2)). 

From the definition of the edges of Gk,,,, it is readily seen that every edge in Gk,n 

connects a vertex of Vo with a vertex of V;.. 
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Order Estimate 

The number of vertices of a graph G is called the order of G. We will prove the 

following 

Theorem 35 The graphs Gk,, from Construction 27 can be constructed such that 

their orders do not exceed (21n)(k+1)(13n)k. 

Before we can prove this result we need some lemmas. 

Lemma 36 Given positive integers n and k ,  the group Hn,k can be constructed with 

order not exceeding 256(4k)12". 

Proof: Since Hn,k = SL2(Zp) for some prime p and since ISL2(Zp) 1 5 p4, it suffices 

to show that in Lemma 26 p can be chosen so that p < 4(4k)3n. To see this, let s be 

as in that lemma. That is, s > 0 is large enough so that one can choose k + 1 distinct 

pairs (mi, qi), 1 5 i 5 k + 1, with gcd(mi, qi)  = 1,O 5 mi < s/2,O 5 q; 5 ~ / 2 .  AS 

we can set mi = 1 for 1 5 i 5 k + 1 and q; = i for 1 < i 5 k + 1, we see that any 

s 2 2k + 2 will suffice. As k > 0, we have 4k 2 2k + 2 and we conclude that s can be 

any number satisfying s 2 4k. So we set s = 4k. By Lemma 26, p can be any prime 

satisfying the following two requirements. 
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If q is a number greater than or equal to 2(4k)3n, then we see that these two conditions 

are satisfied; for the first one we get 

while the second condition is met trivially as s = 4k. Since for every positive number 

m there is a prime between m and 2m, we know that there is a prime number y with  

Putting Hn,k = S L 2 ( Z p )  gives the desired result.. 

From now on we asssume that Hn,k are in fact chosen so that I Hn,k ( 5 256(4k)12". 

Lemma 37 Let n be a positive integer and let the groups H;' be defined recursively 

as follows. H: is any group of order ml, for some ml > 0. If the orders of 

Hi Hl ,  . . . , are ml, mz, . . . , mi-1, we set H;' = Hntmlm2...m,-1 . Then 

for all i > 1. 

Proof: First, we will recursively define numbers ni, i > 0. For i = 1, we set nl = ml 

and for i > 1, we set ni = 256(4nln2 . . . ni-1)12n. 

Now, we will prove by induction that mi 5 n; for all i > 0. When i = 1, we have 

ml = nl. So assume i > 1 and mj  5 nj  for all j ,  1 5 j < i. Then by Lemma 36 

Therefore, using the induction hypothesis, we get 

Thus, it suffices to  show that for i > 1, q j (256(4ml)12n)(13n)i-2. We will again show 

this by induction. 



CHAPTER 6. ORDER ESTIM4TE 

When i = 2, we have 

12n (13n)~-~ nz = 256(4n1)l~~ = 256(4m1)12n = (256(4m1) ) 

For i > 2, we get 

n, = 256(4nl n2 . . . n;-1)12" = 256(4nl n2 . . . ni-2)12n(n;-l)12n. 

But 256(4nln2.. . n;-2)12n = n;-1 by the definition, and we get 

Proof of Theorem 35: In the construction of the graphs Gkln , the groups Hi, 1 5 i 5 s, 

are as in Lemma 37 with ml = I H; I = 1Z2n+1 / = 2n + 1. Then, by the conclusion of 

that lemma, 

for all i, i > 1. For i = 1 the last 

i,1 5 i 5 s, we have 

IH;I = /Hi' x Z21 = 

inequality is satisfied trivially. Then, for each 

Hz!/ - 2 5 2(256(12n)12n)(13n)8-2. 

As V(Gk,,) = HI x Hz x . . . x H,, we obtain 

12n (13n)~'~ Iv(Gk,n)l r (2(256(12n) ) )s = 2"(256(12n)12n)'('3n)dd2. 

Since s can be any number greater than k, we may choose s = k + 1 to get 

I I/(GkVn) 1 < 2k+1 (256(12n)12n)(k+1).(13n)k-1 5 (512(12n)'2n)(k+1).(13n)k-1 5 
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Remark The bound given in Theorem 35 is much greater than the order of a s~nallcst, 

graph with minimum degree k and girth n, which is known to be of order (k - I ) " / ~  

(for the upper bound, see, for example, Theorem 1, p. 68 in [I]), Therefore, it might 

be interesting to ask how close one can get to this bound with graphs that are, in 

addition, k-extendable. 
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Surfaces and Extendability 

Some observations relating the extendability of graphs with their imbeddability are 

introduced in this chapter. 

Lemma 38 Let C be a surface. Then there exists a number k such that every graph 

cellularly imbeddable in C and having girth at least k fails to be 2-extendable. 

Proof: Suppose G is a cellular imbedding of G in C and let f*, i > 0, be as in Theorem 

8. Since girth(G) 2 k, we get fi  = 0 for 1 5 i 5 k - 1 and, therefore, we obtain 

and 

implying 

and 
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Suppose further that G is %extendable. By Theorem 5, G is 3-connected. Hence 

S(G) 2 3. But IV(G)IS(G) 5 21E(G)I, implying 

3 1 ~ ~ 1  5 ~ I E ( G ) I .  ( 7 . 3  

Now, consider the Euler formula IV(G)I - IE(G)/ + IF(G)I = x(C). Substituting 

IV(G)I 5 !IE(G)I of (7.2) into this formula yields 

and so 

Substituting IE(G)I 2 $ ~ F ( G ) I  from (7.1) gives 

Now, if k > 6, then (6 - k)/6 < 0 and ~ I F ( G ) I  5 (6 - k)/6. Therefore, for k > 6, 

x(C) 5 (6 - k)/6, and so k _< 6 - 6x(Z). Thus, for G to be Zextendable, k has to 

satisfy k 5 max{6,6 - 6x(C)). The conclusion fol1ows.m 

For a surface C, let k(C) denote the smallest number k satisfying the conclusion of 

Lemma 38. Construction 27 shows that for every k > 0 there is a 2-extendable graph 

G2,k with girth at  least k. Since there exists a surface C such that GZ,k cellularly 

imbeds in C, we see that k(C) is an unbounded function. It might be of interest to 

try t o  determine this function. In general, this problem appears to be difficult. We 

show here the value of the function k ( C )  for the simplest surface - the sphere. We 

start with an auxiliary observation. 
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Observation 39 The regular dodecahedron is 2-eztendable. 

Figure 7.1. 

Proof: Certainly, the regular dodecahedron has more than 2.2 + 2 = 6 vertices. There 

are eight essentially different matchings of size 2 in this graph; they are the matchings 

Mi = { e l  f;), 1 5 i 5 8 depicted in Figure 7.1. Figure 7.2 shows that all these 

matchings can be extended to perfect matchings of the regular dodecahedron (the 

perfect matching depicted on the lefthand side of this picture extends the matchings 

MI, M2, M4, M5, M6 and M8 while the perfect matching on the righthand side is an 

extension of M3 and M7 (and, also, of MI, M2 and M6).. 

Figure 7.2. 
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Observation 40 k ( S o )  = 6 .  

Proof: From the previous observation we know that the regular dodecahedron, which 

imbeds cellularly in the sphere, is 2-extendable. Since its girth is 5, we have k(So)  2 6. 

On the other hand, as in the previous lemma, we get ~ ( $ 0 )  ~ I F ( G ) ~  if G is 

cellularly imbeddable in So and has girth at least k.  Thus, if k  2 6, we have (as 

x(&) = 2) 2 5 0, a contradiction. Hence, k < 5 and, therefore, k(So)  < 6. We 

conclude that in fact k(So)  = 6.. 
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