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Abstract

A graph is said to be k-extendable if it is matchable and every matching of size
k extends to a perfect matching. The notion of extendability has been studied by
a number of authors. Most highly extendable graphs that have appeared in the
literature have high edge density. Indeed, it is a nontrivial problem to find graphs
that have high extendability and whose girth is at least five. In light of these facts it
seemns to be interesting to look for constructions yielding graphs without short cycles
whose extendability would also be large. This is in focus of this thesis the main result
of which is a constructive proof of the existence of highly extendable graphs whose

girth is greater than a given number.



Acknowledgements

I azn thankful to professor Jaroslav Nesetfil for introducing me to the problem of
constructing highly extendable graphs without short cycles as well as for advising me

in the course of my work and thus making this thesis possible.

iv



Contents

Title

Approval

Abstract

Acknowledgements

Contents

List of Figures

1

2

7

Introduction
Motivational Results
Extendability

Girth

Main Result

Order Estimate

Surfaces and Extendability

Bibliography

i

i

iv

vi

19

27

43

47

31



List of Figures

2.1
2.2

10
11
16



Chapter 1
Introduction

A matching (or a set of independent edges) in a graph G is a loop-free subset of the edge
set of GG, no two edges of which share a common endpoint. M is a perfect matching
if it covers all vertices of G. A graph containing a perfect matching is matchable. If
a matching M is contained in a matching N, then we say that M extends to N.

The notion of extendability seems to have its earliest roots in works of Kotzig
[11, 12, 13], Hetyei [9], Hartfield [8], Brualdi and Perfect [3], and some other authors.
In recent years, Plummer investigated this concept in a number of papers (e.g., [15,
16, 17, 18]). Other papers dealing with extendability include [2], [4] and [10].

Definition 1 Let & be a nonnegative integer and let G be a graph satisfying the

following properties.

e G has at least 2k + 2 vertices,
e (' is matchable and
e every matching of size k in G extends to a perfect matching of G.

Then we say that G is k-extendable.

It appears from this definition thai a highly extendable graph should tend to have

an abundance of edges since it must contain a perfect matching extending any given
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matching of a fixed size. Indeed, not only do some of the most natural examples of
highly extendable graphs have relatively high edge density (here, the edge density of a
graph G is defined to be the number m/ (’2‘) where m and n denote the number of edges
and the number of vertices in G, respectively), for example, both Koxi2 and Kipy ke
are k-extendable for k£ > 0, but also some of the earlier results on the extendability
hint at a correlation between a high edge density of a graph and its extendability. A
survey of these results is presented in Chapter 2 of this thesis.
Thus, it is interesting to ask how closely are the extendability and the edge density
“of a graph related. A result in this direction was achieved by Gydri and Plummer [7],
who proved that the Cartesian product of a k-exiendable graph and an [-extendable
graph is, in general, (k+ [+ 1)-extendable. This gives rise to interesting constructions
- of highly extendable graphs with arbitrarily low edge density (see Propositions 10
and 12). However, the graphs constructed in this way will necessarily contain short
cycles. This provokes the question whether or not we can construct highly extendable
~ graphs which would not only have low edge density, but which would also have large
~ girth (where the girth of a graph G is the length of a shortest cjcle in G). It 13 this
question that is investigated in the thesis, and which; is answered in the affirmative.
| Hence, when trying to construct graphs with desired properties, one encounters
the problem of how to reconcile the requirement that graphs have high extendability
~(which has a tendency to force the graphs to contain “many” edges) with the condition
'thatf graphs do not contain short cycles (which forces the graphs to have relatively
“feW” edges). ‘
It seems that the latter requirement is “less restrictive” or, at least, that we have
a better grasp of it, and can be satisfied “more easily”. In light of this, the most
difficult task appears to be that of being able to construct a sufficiently rich class
of highly extendable graphs, so that one can find in it subclasses containing only -
graphs without short cycles. Thus, Chapter 3 is crucial for our main construction
(‘Con‘s_truction 27). |
 The graphs used in this construction are inspired by the Cartesian product of

cycles from Proposition 12 and can be viewed as “skew” products of certain Cayley

graphs.
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The thesis is organized as follows. Chapter 2 contains some motivational earlier
results suggesting a connection between extendability and edge density, as well as
two propositions which inspired our main construction. In Chapter 3. we prove that
members of a certain class of graphs have high extendability, and in Chapter 4, we
present a class of graphs, members f which have high girth. These results enable us
to prove in Chapter 5 that Construction 27 given there produces graphs with both

high girth and high extendability. The last two chapters contain some concluding

statements.



Chapter 2
Motivational Results

Graphs in this thesis may contain multiple edges and loops. The vertex and the edge
sets of a graph G will be denoted by V(G) and E(G), respectively. The degree of
a vertex u, denoted deg(u), is the number of edges adjacent to u, with each loop
counted twice. The minimum degree of a graph G, denoted 6(G), is the minimum
over all degrees of vertices in G.

If S is a subset of the vertex set of G, then G[S] is the subgraph of G induced by
S, that is, V(G[S]) = S and G[S] contains exactly those edges of G of whose both
endpoints lie in S. The graph G[V(G) \ 5] is also denoted by G \ S.

A walk of length n > 0 is an alternating sequence ug, €1,uy, €3, Uz, . .., €y, Un Of
vertices u; and edges e; of G having the property that u;_; and u; are the two endpoints
of the edge e; for all :. If up = u,, then the walk is closed. A walk in which no vertex
occurs more than once is a path. A closed path of length at least 1 is called a cycle. 1
G is simple (i.e., without loops and multiple edges), we will also use ug, uy, us, ..., uy,
instead of ug, €3, Uy, €3, ug, ..., €n, Up.

A subgraph F of G which is a union of disjoint cycles and for which V(F) = V(G)
is called a 2-factor of G. If F is in fact a cycle itself, then F is a hamiltonian cycle.

Theorems 2-8 in this chapter are earlier results from [15],{18] and [4] and they
suggest the existence of a correlation between the edge-density of a graph and its
extendability. The proofs presented here are in most cases more detailed versions of

the original proofs.
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CHAPTER 2. MOTIVATIONAL RESULTS

The first of these results, Theorem 2, deals with simple graphs and says, in effect,
that if a simple graph G has very large edge density (and its edges are distributed so
that the degrees of all vertices are big), then G 1s highly extendable.

Theorem 2 ([15]) Let G be a simple graph with |V(G)| > 4 being even and let n > 0.
Assume that 6(G) > 3|V(G)| + n. Then G is n-eztendable.

Proof: As |V(G)| > 4 and §(G) > 3|V(G)|, G contains a hamiltonian cycle by Dirac’s
Theorem ([5]). As |V(G)] is even, we conclude that G contains a perfect matching.
Hence, by the hypothesis, [V(G)| > §(G) > }|V(G)| + n and ;|V(G)| > n. Thus, G
contains at least 2n + 2 vertices. Finally, let M be a matching of size n in G and let

G' =G\ V(M). Then

§(G") > 8(G) — [V(M)| = 6(G) —2n > %|V(G)| —n= %(}V(G)| — %) =

= (V@) - V(M) = 5IV(E).

Since |V(G)| is even, so is |V(G')|. As we know that |V(G)] > 2n + 2, we get
[V(G")] > 2. If |[V(G')] = 2, then

5(6) 2 5IV(E)] =1

and G’ contains an edge. If |V(G")| > 2, then we can again apply Dirac’s Theorem to
G’ to see that G’ contains a hamiltonian cycle and, therefore (as |V(G’)| is even), a
perfect matching. In both cases, we conclude that M extends to a perfect matching
of Gm

Before we can state and prove Theorems 3-5, we need a few more definitions.

We say that a vertex v is a neighbor of a vertex u if G contains an edge whose
endpoints are u and v. In this case, we write u ~g v (or u ~ v if it is obvious from
the context what graph we have in mind).

Let =~ be a binary relation on V(G) defined by u = v if and only if G contains a

path connecting u to v. It is easily seen that ~ is an equivalence relation. If S is a



CHAPTER 2. MOTIVATIONAL RESULTS 6

class of equivalence under =, then we say that G[S] is a connected component of G. A
graph that has only one connected component is connected (note that G is connected
if and only if there is a uv-path in G for every pair u,v of vertices of G). If (G is
connected, S is a subset of V(G) and V'\ S is not connected, then S is called a cutset.
If, for a vertex u, {u} is a cutset, then u is called a cut-verter. If G is a connected
graph on at least n + 1 vertices and if G contains no cutset of size less than n, then
G is n-connected.

Theorems 3 and 4 are needed for the proof of Theorem 5, which can be viewed
as going in the direction opposite to that of Theorem 2; it shows that if a graph is

n-extendable, then it must also be (n + 1)-connected and thus cannot have few edges.
Theorem 3 ([15]) If G is l-extendable and connected, then G is 2-connected.

Proof: Suppose the contrary and let v be a cut-vertex in G with Gy, Gy, ..., Gy being
the components of G \ {v}, (k > 2). For every 7,1 < i < k, there is a vertex u; in G

such that u; ~ v. Let M be a perfect matching in G extending {u;v} (see Fig. 2.1).

G,

Figure 2.1.

Since v is a cut-vertex, M induces perfect matchings of the graphs Gi\{u1},G2,Gs .. .,
Gi. In particular, |V(G;)| is odd and |V(G2)| is even. Applying similar reasoning to
{uyv} forces |V(Gi)| to be even and |V(G2)| to be odd, a contradiction.m
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Theorem 4 ([15]) Let n > 2 and let G be an n-extendable graph. Then G is (n—1)-

erxtendable.

Proof: Suppose the statement were false and let M be a matching of size n ~ 1 in
G which does not extend to a perfect matching. Let V be a perfect matching in G
(G contains a perfect matching since it is n-extendable) and consider the symmetric
difference MAN. As |N| > |M|, at least one of the components of MAN is an
alternating path of odd length, whose first and last edges are both in N. Let P be
such a path. Then MAP is a matching in G of size |[M|+ 1 = n. By the hypothesis,
it extends to a perfect matching N’. Moreover, as |V(G)| > 2n + 2, MAP is not a
perfect matching of G and there must be e € N’ such that e ¢ MAP. Then e is
independent of all edges of M and M U {e} is a matching of size n in G. This extends
to a perfect matching M’ by the assumption. But M’ is a perfect matching extension

of M, a contradiction.m

Theorem 5 ([15]) Let n > 0 and let G be a connected n-extendable graph. Then G

is (n 4 1)-connected.

Proof: Induction on n. If n = 1, then the result follows by Theorem 3.

For n > 1, suppose G is not (n + 1)-connected. As G is n-extendable, G is (n — 1)-
extendable by Theorem 4. Hence G is n-connected by the induction hypothesis. Thus
there is a cutset S of size n in G. Let G1,Gs,...,Gk be the components of G \ S
(note that k > 2).

First, we will show that |V(G;)| < n for all 7,1 < i < k. If not, then there is an ¢
such that |[V(G;)| > n. Without loss of generality, we may assume that i = 1. Then,
by Menger’s Theorem (a variation due to Dirac [6]), there are n vertex-disjoint paths
in G connecting S with G;. In particular, since in fact all these paths must lie within
G[S U V(G1)], there are n independent edges, each of which has one endpoint in S
and the other in G;. Let M be the matching formed by these edges. As |[M| = n and
G is n-extendable, M extends to a perfect matching M’ of G (see Fig. 2.2). Also, the
endpoints of the edges in M cover S and hence every edge in M’ \ M lies fully within

one of the components G;. In particular,

IV(G)|=n (mod 2). (2.1)
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On the other hand, let e = uv; € M with u € S,v; € G;. Since G is n-connected and
IS\ {u}| =n—1, S\ {u} is not a cutset of G and there is a vertex v, € G, such that

u ~ vy. Then

= (M U {uva}) \ {uv1}

is a matching of size n covering S. Again, it extends to a perfect matching N’ of G
and again each edge of N'\ N lies fully within one of G; (see Fig. 2.3).

X///)’

Figure 2.3.
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Thus,

[V(Gi)]=n—1 (mod 2). (2.2)

But (2.1) and (2.2) yield a contradiction.
Thus indeed |V(G;)] < n for all 7,1 < 7 < k. Next, we will show that in fact
[V(G:)] = 1 for all 3,1 <7 < k. If not, then, say, |V(G1)| = m > 2. Let V(G,) =

{u1,uz,...,un} and set R; = {u1,uz,...,upn-1}. We have
VIG)\(SUV(G))| = [V(G)| = (S| +IV(G1)]) 2 (2n+2) ~(n+m) =n—-m+2> 0.
Thus, we can choose a set R, C V(G)\ (S U V(G1)), with |R;| =n —m + 1. Then

Again, by Menger’s Theorem there are n vertex-disjoint paths connecting S to B;UR;.
If M is the set containing the first edge of each of these paths, then M is a matching
of size n in G. Moreover, M contains m — 1 edges joining S to V(G1) and n —m +1
edges joining S to V(G) \ (S U V(G1)). In particular, there is a unique vertex u in
G1 not covered by M. Since no matching in G extending M can cover u, M does not
extend to a perfect matching of G. This contradicts the hypothesis as |M| = n.
Hence, we conclude that |V(G;)| =1 for all 7,1 < i < k. As G is n-extendable, it

must contain a perfect matching, and this forces k¥ < n. Then
IV(G)|=I|S|+k<n+n=2n<2n+2,
contradicting the fact G is n-extendable. Thus G must be (n + 1)-connected.m

The set of neighbors of a fixed vertex u in a graph G is denoted by I'g(u) (or I'(u)
when no ambiguity may arise).

In the previous theorem, we saw that n-extendability of a graph G implies (n+1)-
connectivity. This, in turn, means that such a graph has minimal degree at least
n + 1. The next theorem strengthens this result a bit further by showing that if G
does indeed contain a vertex u of degree n+ 1, then this severely restricts the possible
structure of G[I'(u)].
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Theorem 6 ([15]) Ifn > 0, G is connected and n-extendable, and u is a verter in
G with deg(u) = n + 1, then I'(u) is an independent set.

Proof: Let T'(u) = {v1,v2,...,vn41} and assume that I'(u) is not independent.
If |V(G)] > 2n + 2, then

VG)\ (T(w)U{u})|>2n+2)=((n+1)+1)=n,

and we can choose a set W = {w;,ws,...wn41} of size n + 1 such that

W C V(G)\ (T(w) U {u}). (2.3)

Figure 2.4.

By Theorem 5, G is (n + 1)-connected, and we can use Menger’s Theorem. Thus,
there are n + 1 vertex-disjoint paths Py, P, P ..., P,y connecting W to I'(u). Say,
P; connects w; to v; for ¢,1 < ¢ < n 4 1. Obviously, if M is the set containing the
last edge v;w! of each P;,1 <7 < n + 1, then M is a matching (of sizen +1) in G.
Because I'(u) is not independent, we may assume that I'(u) contains the edge v,vy+1.

Therefore,

N = (MU {vavp41}) \ {vnw;,vn+1w;+1}
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is a matching of size n in G (see Fig. 2.4).

By the hypothesis, this must extend to a perfect matching of G. But this is
impossible as u is not covered by N whereas all of its neighbors are.

Now, consider the case |V(G)| = 2n+2. In this case, we get [V (G)\(T'(v)U{u})| =
n and can find W = {w;,w,,...,wa} of size n satisfying (2.3) (in fact, the equality
is attained in (2.3)). A similar reasoning as before shows that there are n + 1 vertex-
disjoint paths Po, Pi, Ps,..., P, connecting {u} UW to I'(u). Suppose P, connects u
to vn41, while P; connects w; to v;, for 1 < ¢ < n. As |V(G)| = 2n + 2, each of these
paths consists, in fact, of a single edge. Hence the set M consisting of these edges is
a (perfect) matching in G. If v,y is connected to another vertex in I'(u), say to va,

then we set
N = (M U {vnvn41}) \ {vawn, vasru}

and, as before, arrive at a contradiction.

Figure 2.5.

So suppose that v,y; has no neighbor in I'(x). Since G is (n + 1)-connected,

deg(vn41) > n+ 1. But
V(G \Tu)|=02n+2)-(n+1)=n+1.

In particular, I'(va41) 2 W. As I'(u) is not independent, we may assume that v,v; is

an edge in G. Now, w; € I'(vn41). Thus
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(M U {vnprwr, v1v2}) \ {uvngr, vriw, v2ws }

is & matching of size n in G which does not extend to a perfect matching of G, a

contradiction (see Fig. 2.5).m

Before we can proceed, we have to introduce another piece of notation. By ¢(G) and
¢,(G) we denote the number of connected components and the number of connected
components with an odd number of vertices in G, respectively.

Another concept related to extendability is the concept of the toughness of a graph.
The toughness of a connected graph G is defined to be

S|
(G \ S5)

We denote the toughness of G by tough(G). Thus toughness measures “how hard” it is

min{ : S is a cutset of G}.

to find a relatively small set of vertices in G which would disconnect G into relatively
many connected components. In this way, toughness can be viewed as indirectly
related to the number of edges in a graph (since graphs having “many edges” are
“more likely” to be difficult to disconnect). In light of this, the next result, as the
preceding ones, hints on a correlation between the edge-density and extendabiiity of

a graph.

Theorem 7 ([18]) Let G be a connected graph with |V(G)| even. Let n > 0 and let
[V{G)| > 2n + 2. Then G is n-extendable if tough(G) > n.

Proof: We will prove this theorem by contradiction. First, note that Tutte’s Theorem
on perfect matchings [19], combined with tough(G) > n > 1, implies matchability of
G. Now, suppose G is not n-extendable and let N = {u;v; : 1 < i < n} be a matching

of size n which does not extend to a perfect matching. Let
GlzG\{ui,vitlsiSn}.

Then G; does not contain a perfect matching. By Tutte’s Theorem, there is a cutset
51 C V(G1) with IS1| < CO(Gl \ S1)
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If |S1] = ¢o(G1 \ S1) — 1, then
V(G) = V(G = |51 + eo(Gi \ S1) =1 (mod 2),

contradicting the assumption that |V(G)| is even. Thus, in fact, [S;]| < ¢,(G1\ S1) —2.

If we set
Sy =S U{u;vi: 1 <i<n},

then G\ S; = G, \ S1 and, therefore, ¢(G \ S2) = ¢(G1\ S1). Also, |S;| = |S1] + 2n.

Thus, we have

tough(G) = min{c—(—% : S CV(G),S is a cutset of G} < Z(Cg_iﬂ.g) —

C(G1 \S]) - Co(Gl \S]) - IS]|+2 - l51l+2

But this contradicts the hypothesis that tough(G) > n.m

Without a proof, we will give one more result relating the notions of extendability
and edge density in graphs.

A surface is a compact connected 2-manifold. If we view a graph G, in a natural
way, as 2 topological space (with edges being represented by closed line segments,
vertices by points and the incidence between a vertex and an edge being given by the
containment of the point in the boundary of the line segment), then by an imbedding
of G in a surface ¥ we mean the image G of G under a continuous injection j : G — .
The connected components of ¥\ G are then called faces of G. The set of faces of G
is denoted by F(G). If each face of G is homeor-orphic to an open disc, we say that
the imbedding is cellular. In this case, the length of a face is the number of edges one
encounters when one traverses along its boundary (note that if an edge is traversed
twice along the boundary of a face, then it contributes 2 to its length). The number
[V(G)| — |E(G)|+ |F(G)| is an invariant for the set of cellular imbeddings G in ¥ and
is called the Euler characteristic of £ and denoted by x(X).
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Theorem 8 ([4]) If ¥ is a surface different from the sphere and G is a connected
graph imbedded in X, then the ertendability of G is less than 2+ | /4 — 2y(Z)| =

The following remarks explain how this result suggests a connection between the
extendability of a simple graph and its number of edges.

Let G be a simple graph and let G be a cellular imbedding of G in ¥ (there always
exists a ¥ in which G imbeds cellularly). Then

IV(G)| - IE(G) + IF(G)] = x(Z). (2.4)

If, for each positive integer n, f, denotes the number of faces of length n in the

imbedding, then (because f) = f; = 0 since G is simple)

fat fat fs+ fo+ - = |F(G)]

and, since each edge contributes 2 to the total length of all faces,

3fs+4fs+5fs5 +6fc + - = 2|E(G)),
implying
3(fa+ fat+ fs+ fo+---) < 2/E(G).
Thus 3|F(G)| < 2|E(G)|. Substituting this in (2.4) yields
V()] - |BG)] + 3 1E(G)] 2 (%)
and, after simplifying,
|E(G)] < 3[V(G)] - 3x(X).

So we see that the ratio |E(G)|/|V(G)| can be bounded by a function of x(X). As we
have seen in Theorem 8, a similar result holds true for the extendability of a graph.
In this way, Theorem 8 suggests a similarity between the behavior of edge density and
extendability with respect to imbeddability.
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All results shown so far were, each of them in a specific way, suggesting that a
hignly extendable graph should be “likely” to be rich in its number of edges. The
following two propositions will, however, show that there exist highly extendable
graphs with arbitrarily low edge density.

The propositions themselves are mentioned here because of their proofs rather
than because of their content. In fact, they are both trivial corollaries of the main
result of [7]. But the proofs presented here are interesting not only because of their
relative simplicity but especially since, as it turns out, they admit a generalization
which will lead to our main result.

But first, we need the following definition.

Definition 9 Given a positive integer n, the n-dimensional cube Q, is the graph
whose vertices are the elements of the set {0,1}" and in which two vertices are joined

by an edge if and only if they differ in exactly one coordinate.
Proposition 10 Let n be a positive integer. Then Q,, is (n — 1)-eztendable.

Proof: The proof will be by induction on n. When n = 1, the result is obvious
(@1 is just an edge and is matchable). So assume n > 1. Obviously, |V(Q.)| =
2(n—1)+2=2n. Let M = {u;v; : 1 <7< n—1} be a matching of sizen—1in @,
and let S = {u,v; : 1 <7 < n—1}. Since |M| < n, there exists j,1 < j < n, such
that for every i,1 <1 < n —1, the coordinate in which u; and v; differ is not the j-th

one. Let
Vi = {u € V(Qr) : j—th coordinate of u isi},7 =0, 1.

There are two cases.
Case 1. § C V; for some i. Let ¢ be the involution on V(Q,) = {0,1}" defined by

d(my,ma, ... ,mjm1,Mj, M1, ..., 1,) = (M1, Mg, ..., mj—1, 1 —mj, My, ..., my).
If we set

M = {¢(ui)p(vi) : 1 <i <n—1}
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and
S = {d(ui), p(vi) : 1 <i < n—1}

then M’ is a matching in @, and S’ C Vi_;. Thus SNS' =0, and M U M’ is also a
matching in Q.. Furthermore, for every u € V(Q,) it holds true that « ¢ S U S’ if
and only if ¢(u) ¢ S U S’. Therefore, if we set

Ao = {u € V(Q,) \ (SUS’) : j—th coordinate of u is 0}

and

A1 = {¢(u) u € Ao},

then Ao, A; is a partition of V(Q,)\ (SUS’). But N = {ug(u) : u € Ag} is a perfect
matching of Q,[Ao U A;]. Then M U M’ U N is a perfect matching in Q, extending
M (see Fig. 2.6).

Case 2. SN Vy # 0 and SNV, # 0. By the choice of j, each edge of M is either
fully in @.[V0] or fully in @,[V4]. Thus M = My U M,, where M; contains the edges
of M that lie in Q.[Vi],7i =0, 1.

-\ - —_—M

| - =M’
....... N
’ unused edges
Figure 2.6.

Since SNV, #0fori = 0,1, |[Mo| <n—2and |M;| <n-2. As Q,[V] and Q,[V}] are

isomorphic to (),—1, we see that, by the induction hypothesis, M; extends to a perfect
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matching N; of Q,[V/] for = 0,1. Then, Ny U N is a perfect matching extension of
MinQ,n

The previous result can, in fact, be strengthened to a wider class of graphs.

Definition 11 Let G; and G; be two graphs. Then their cartesian product is the
graph G, x G with

V(Gl X Gg) = V(G1) X V(Gz)
and

E(G1 x G2) = (E(G1) x V(G2)) U (E(G) x V(G1)),

where if e € G; has endpoints vy,v; and u € G;s_;,7 € {1,2}, then (e,u) connects

(v1,u) and (vs,u).
Remark Note that the cartesian product is associative (up to isomorphism of graphs).

The graph which is itself the cycle on n vertices is denoted by C,,. With this notation,

we have the following result.

Proposition 12 Let n be a positive integer and let G = Capm,y 42 XCamps2 X+« - X Camp+2

for some positive integers mq,ma,...,m,. Then G is (n — 1)-extendable.

Proof: Qbviously [V(G)| > 2(n — 1) + 2 = 2n. We may assume that V(G) =
Zamy+2 X Zama+2 X« . . X Zamo+2 and that verticesu = (uy,uz,...,us),v = (v1,02,...Vn)
are joined by an edge in G if there exists :,1 < ¢ < n, such that (Ju; — v;| = 1 and
u; = v; whenever j # i). The proof will again be by the induction on n. Whenn =1,
then G is a cycle of an even length 4m; + 2 and is matchable. So we may assume that
n > 1. Certainly, G is matchable. Let M = {u;v; : 1 <i < n — 1} be a matching of
sizen — 1 in G and let S and j be as in the previous proposition. Partition the set

V(G) into the sets
Vi = {v € V(G) : j—th coordinate of uisi},0 <z < 4m; + 1.

Again, there are 2 cases.
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Case 1. § C V;
¢ : V(G) - V(G) by

for some :. We may assume S5 C V5. We define a mapping

P(U1, Uz, v oy Uje1y Ujy g1y ey Un) = (Ut, Uz, Uy, Uy F L Ujpr, e U )
Note the following two facts.

o The set F = {u, ¢(u), $*(u),...,d*™ ' (u), "™ % (u) = u:u € V) is a 2-factor
of G. In particular, u ~g ¢(u) for every u € V(G).

o If uv is an edge in G and ¢ > 0, then ¢'(u)¢*(v) is also an edge in G.
Now, if we set
M’ = {¢*™H (u)¢*™H (v;) : 1 <7 <m =1},
then M’ is a matching in G. Let
§" = {¢" (w), "™ () : 1 <i<m—1}.

Since S C Vy, S’ € Vam, 41, and so SNS' = §. Thus M U M’ is also a match-
ing in G. Moreover, F \ (S U S’) consists of cycles of length 4m; + 2 (with cy-
cles u, ¢(u), #%(u),...,¢*™*t?(u) = u for all v € V5 \ S) and paths of odd length
2m; — 1 (with the pair of paths ¢(u), $*(u), ..., ¢*™ (u) and ¢*™12(u), p™1+3(u), ...,
¢*™11(u) for each u € §).

Hence F'\ (SU S’) contains a perfect matching N. Then M U M’ U N is a perfect
matching of G extending M.

Case 2. There is no ¢ such that S C V;. The p of of this case is essentially the
same as that of Case 2 of the previous proposition (with M partitioned into 4m; + 2

sets) and is omitted.m

Remark It should probably be noted here that the proof of Proposition 12 could be
simplified. In fact, there is a simpler proof of this proposition which goes through
even when the stipulation that the lengths of the cycles be congruent to 2 (mod 4)
is replaced by a weaker requirement that the lengths of the cycles be even.

We chose to present the proof given above since it more closely resembles the proof

of the main result of this thesis, where the corresponding simplification is impossible.



Chapter 3

Extendability

In this chapter we present some theorems giving sufficient conditions for high extend-

ability of graphs.

Lemma 13 Let £k > 0 and s > (22k). Let G1,G,,...,Gs be graphs on the same non-
empty verter set and let G = G, UG, U ... UG,. Assume further that the following
conditions are met:

a) For every pair u,v of distinct vertices in G there is at most one 1,1 <1 < s,
such that u and v lie in the same connected component of G;.

b) Each G; is matchable.

c) If Hy and H, are distinct connected components of some G; and uv is an edge
in G connecting Hy to H,, then G[(V(H,) U V(H;)) \ {u,v}] is matchable.
Then G is k-extendable.

Proof: First, we have to show that |V(G)| > 2k + 2. Since V(G) # 0, there is some
u € V(G). As V(G) = V(G;) for 1 < i < s,u € V(G;) for all . Since each G; is
matchable, there is a vertex v;, v; # u, in G; with u ~g, v;, 1 <: < s. By a), all v;

are distinct. Consequently,
2k
V(G > {u,v1,v9,...,05}=s+12> 5 +2>2k+1.

By b), all |V(G:)| (and hence |V(G)|) are even. We conclude that indeed |V(G)| >

2k + 2. G must also contain a perfect matching because each G; is matchable.

19
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Let M = {u;v; : 1 <17 < k} be a matching of size k in G. The set N = {uiyvi
1 <t < k} contains 2k elements and, therefore, there are exactly (2;) pairs {u,v} of
elements of this set. By a) and since s > (22"), there is j,1 < j < s, such that no two
elements of V lie in the same connected component of G;.

Now, for 1 <7 < k, let H,, and H,, be the components of G; containing u; and
v;, respectively. Then all H; are distinct and, by ¢), G{(V(H.,) UV (H,)) \ {ui,v:}]
contains a perfect matching M; for all . The set M U, M; is a perfect matching
of GlUim{V (Hu,), V(H,)}]-

Furthermore, as G; is matchable by b), all of its connected components are also
matchable. But G; \ UL, {V(H.,),V(H,)} is a disjoint union of such components
and, hence, is matchable and contains a perfect matching, say M.

Now, (M U M')U U~ , M; is a perfect matching i - G extending M. This ends the

proof of this lemma.m

The next corollary is an example how Lemma 13, which looks quite technical, can
be applied to an interesting class of graphs, a certain subclass of the class of Cayley

graphs, to show that graphs in this class have high extendability.

Definition 14 Let H be a group and let S be a subset of H\ {15} such that s™!' € S
whenever s € 5. The Cayley graph X(H, S) on H with respect to S is the graph with
the vertex set H and with the edge set defined by the following rule: hy,h, € H are
connected by an edge in X(H, S) if and only if A7 h, € S (& h3'hy € 5).

Corollary 15 Let X(H,S) be a Cayley graph on an abelian group H and let m be
the number of elements of order 2 in S. Assume that

a) the order of each element in S is even,

b) 51,82 € S, s; # 53! and s} = s} imply that s = s} = 1 and

c) (IS|+m)/2 > (2:) for some k > 0.
Then X(H,S) is k-extendable.

Proof: For s € S, let G, be the subgraph of X(H,S) containing the edges arising
from the element s (that is, the edges hih, where hT'hs = st!). Obviously, for every
sand tin S, G, = G, if and only if s = t*'. Thus, the set {G, : s € S} contains
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(151 = m)/2+ m = (151 + m)/2 > (5

distinct graphs. The union of these graphs is X(H, S) and V(G,) = V(X(H,S)) # 0
for all s € S. Hence, it suffices to show that the conditions a)-c) of Lemma 13 are

satisfied. To see that condition a) of Lemma 13 is satisfied, let u and v be two distinct

vertices in G.

If there are s; and s; in S such that u and v are in the same connected component

of G,,, for 1 = 1,2, then
u = vsi = vs}

for some 7z and 7. This implies that

If G,, and G,, are distinct, then s; # si! and, by b),
st = s% = 1.

This contradicts the assumption that u and v are distinct. Thus condition a) of
Lemma 13 is satisfied.

As the order of each element s in S is even, each G, is either a perfect matching
in X(H,S) (if the order of s is 2) or a 2-factor consisting of cycles of even length (if
the order of s is larger than 2). In both cases, G, is matchable, and condition b) from
Lemma 13 is met.

Finally, let H, and H, be distinct connected components of some G, and let uv
be an edge in G connecting H; with H,. Without loss of generality, we may assume

that u € H; and v € H;. Then v = ut for some t € S. Now,
2 m—1

Hy =u,us,us®,...,us™ ",u

and
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(&
o

H; = v, vs,vs%, ..., vs™ L v,

where m is the order of s in H. As H is abelian, we get
vs' = uts' = us'tforall 7,1 <i<m.

Hence, in G, the vertices us’ and vs' are connected by an edge e; for all i,1 < i < m.

The edges e;,1 < ¢ < m — 1, form a perfect matching of
X(H,S)[(V(H1) UV(H))\ {u,v}]

and condition c¢) of Lemma 13 is met.

We conclude that X (H, S) is k-extendable.m

Another corollary, which already suggests resemblance with the statements about the

extendability of @, and Cym,+2 X Cymys2 X ... X Cym, 42 is the following.

Corollary 16 Let k > 0 and let s > (22k). Let G1,Gy, ..., G, be graphs on the same
non-empty verter set and let G = G, UG U...UG,. For eacht,1 <1 < s, let G; be
a 2-factor of G consisting only of cycles whose lengths are congruent to 2 (mod 4).
Further, assume that

a) if i # 3, C is a cycle in G; and C' is a cycle in G;, then |V(C)NV(C")| < 1
and

b) for all ,1 < i < s, if C1 = ug,u1,...,Usps1, U and Co = Vg, V1, ..., Vs4g41, Vo
are two distinct cycles in G; such that ug ~g vq, then ugppy ~G vag41-

Then G is k-extendable.

Proof: Again, we only need to check the conditions a)-c) of Lemma 13. Condition
a) of Lemma 13 is directly implied by a) of this corollary. Condition b) in Lemma
13 is satisfied since every G; consists of even length cycles only. To see that c) of
Lemma 13 is also met, let C; and C; be distinct connected components of some Gi;.

Consequently, Cy and C; are cycles. Say,
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Cl = UgUyp ... Ugp41Uo
and
Cg = VgV1 ... V4q+1V0.

If e = uv is an edge connecting C; to C3, we may without loss of generality assume

that u = up and v = vo. Then, by b), the edge f = uzp+1v2¢41 is in G. Since

(Cl U CQ) \ {an Vo, U2p+1, v2q+1}

is composed of four distinct paths, two of them having length 2p — 1 and other two
being of length 2¢ — 1, it is matchable and, consequently, condition c) of Lemma 13

1s satisfied.
Thus, G is k-extendable.m

In this special case where each G; consists exclusively of cycles of length congruent
to 2 (mod 4), we can, with a further condition posed on G, prove that s > k can be

used instead of s > (2,_,").

Proposition 17 Let £ > 0 and let s > k. Let G1,Ga,...,G, be graphs on the same
non-empty vertex set and let G = G, UG, U ...UG,. Let, for each1 <1 < s, G; be
a 2-factor of G consisting of cycles all of whose lengths are congruent to 2 (mod 4).
Assume that a) and b) of the previous corollary hold true and that

¢) For every i, G \ E(G;) can be written as a vertez-disjoint union of graphs
H{,H{;,...,H;;i where, for all 3,1 < 3 < p;, and for all cycles C in G;, |C N H_;| <1.
Then G is k-extendable.

Remark This proposition is a generalization of Proposition 12 (and also Proposition
10). The numbers s and & in this proposition correspond to the numbers n and n ~ 1
of Proposition 12, respectively, and the graph G; here corresponds to the subgraph
of Cym,+2 X Camgyz X ... X Cym,.+2 containing the i-th “parallel class” of edges of

Cami+2 X Camgg2 X ... X Cyp, 42 in Proposition 12.
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Finally, the graph H; corresponds to the subgraph of Cym, +2 X Cymy+2 X . . X Cymns2

induced by the set Z4m1+2 X Z4m2+2 X ... X Z4m‘_1+2 X {]} X Z-‘lm..H+2 X...X Z~lmn+‘2~

Before we embark on the proof of this proposition, we will first prove the following

simple observation.

Observation 18 Let s > k > 0 and let G be as in Proposition 17. Leti € {1,2,...,
s} and let G\ E(G:) = H{UH}U.. .UH; , where H}, H},..., H, are as in Proposition
17. Then each H;, 1 < j < p;, satisfies the hypothesis of Proposition 17 with G. s and
k being replaced by H},s' = s — 1 and k' = k — 1, respectively.

Proof: Fix j,1 < j £ p;. Obviously
Hi = Gi[V(H})]U...UGi1[V(H)]U G [V(H})]U...UG,[V(H))).
Thus, setting

G = Gy[V(H})], Gy = GalV(H), .. Gl = Gen [V(H])],

Gl =Gin[VH)),...,G\_y = G,[V(H))]

gives H: = G{UG, U ...UG,.

Clearly, each G' is a 2-factor of H ; consisting of cycles whose lengths are congruent
to 2 (mod 4), and V(G}) = V(H}) # 0. Furthermore, conditions a) and b) (of
Corollary 16) are obviously satisfied by the graphs Gi,1 <: < s¢'. Finally, for every
L1<I<L, HJ‘f \ E(G}) is the union of the graphs

H{ (V(H)], Hy (V(H)), Hy V() .. Hy, [V(H)),

Py

where ' = l or I' = | + 1 according as whether ! < ¢ or [ > ¢. This union is vertex-
disjoint since Hy,H},... H;  are vertex-disjoint. Now, if C' is a cycle in G}, then
it is also a cycle in Gy. Thus, by hypothesis, [C N H.| < 1 for 1 < m < pr and,
consequently, |C N HL[V(H!))|<1for 1 <m < pym
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We are ready to prove the proposition.

Proof of Proposition 17: We will proceed by induction on s.

When s = 1, k is necessarily 0, and we only have to show that G contains a perfect
matching. But in this case G = G and is matchable.

So assume s > 1. First, we have to show |V(G)| > 2k + 2. Let u € V(G). Then
u € V(G;) for all 7,1 <7 < s. As each G| is a 2-factor, it contains a cycle C; with
u € C;. By condition a), |[V(C;)NV(C;)| < 1foralli# j,1 <1i,7 <s. As each C;
contains u, we have (V(C;) \ {u}) N (V(C;) \ {u}) = @ for all 7 # 5. Thus,

&) 21 V(C) 1+1Uv N {u} = 1+ (VG ~1) > 2541 > 2k +2.

=1 1=1

Also, G is matchable as each G; is matchable. Now, let
M= {uwv;:1<i<k}

be a matching in G. As |M| = k < s and no edge of G is contained in more than one
G}, there exists 7,1 < i < s, such that none of the edges of M belongs to G;. Without

loss of generality, we may assume ¢ = 1. Therefore, all edges of M lie in
G\E(G)=H UH;U...UH, .

We consider the two possible cases.

Case 1. There exists 2,1 < 1 < py, such that all edges of M lie in H}. Again, we
may assume ¢ = 1. By assumption c), each of the cycles in G, has at most one vertex in
common with H}. Thus, iffor1 < j < k welet Cu; (Cy,) be the cyclein G containing

u; (v;), then these cycles are pairwise distinct (and, therefore, pairwise disjoint). As
in the proof of the previous corollary, we conclude from condition b) that for each
7,1 <7 < k, the edge u;v; extends to a perfect matching M; of G[V(C.y;) U V(Cy;)]-

Also,

k
Gi[V(G) \ H(V(Cu,-) uV(Cy))]
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is a union of (even-length) cycles and contains a perfect matching M’ Now M'U
(Uf=I M;) is a perfect matching of G extending M.

Case 2. There is no 7,1 < i < p, such that all edges of M lie in H}. Hence each
H! contains at most k — 1 edges of M and, by Observation 18, we may apply the
induction hypothesis to each H} to show that H} contains a perfect matching M; such
that M; contains all edges of M which lie in H}.

Then UL, M; is a perfect matching extension of M=



Chapter 4

Girth

This chapter deals with graphs that do not contain short cycles. Similarly as in the
previous chapter, where we presented sufficient conditions for a graph to be highly
extendable, we will here give conditions that are sufficient to make sure that a graph
has no short cycles.

For a graph G, by the girth of G (denoted by girth(G)) we mean the length of a
shortest cycle in G (if G contains no cycle then girth(G) = co).

Let G be a graph and let ¢ be an edge in G connecting (not necessarily distinct)
vertices u and v. Then by the contraction of the edge e we mean the following
procedure.

Step 1. Delete the edge e from G.
Step 2. Identify the vertices u and v in G.

It is readily seen that the graph resulting from a sequence of contractions is in-
dependent of the order in which these contractions are performed and depends only
on the set of edges that are being contracted. Thus, if S C E(G), then we can talk
about the contraction of the set S.

One easily observes that if e is an edge in G, then the contraction of e does not
increase the girth of G unless (e is a loop and the contraction of e results in a loopless

graph). From this, we see that the next statement holds true.

Observation 19 Let G = G, U G2 U ... U G, where V(G) = V(G;) for all i,1 <

27
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4]

t <5, and where s > 1. Assume that E(G;) N E(G;) = 0 for all pairs t,j such that
1<i,7<sandi#j. For eachz, let G be obtained from G by contracting all edges
not in G;. Then

girth(G) > 11?'i? {girth(G")} =

This observation will serve as a motivation for the results that follow. In these results,

we restrict our attention to the class of graphs described in the next definition.

Definition 20 Let G be a graph with V(G) = T} x T; x ... x T, for some sets
Ty, Ts,...,Ts,s > 1, in which every pair of adjacent vertices differ in exactly one
coordinate. Then we say that G is orthogonal. Also, we denote by E;,;1 <1 < s, the

set of edges of G whose endpoints differ in the i-th coordinate.

We will see that for orthogonal graphs the conclusion of the above observation can be
strengthened and this will prove useful in our main construction. Before we can state
the first proposition inspired by Observation 19, we need the definition of a projection

of an orthogonal graph.

Definition 21 Let G be an orthogonal graph, V(G) =Ty x Ty x ... x T,. Then the
projection m;(G) of G onto T; is the graph obtained from G by first deleting all edges
not in £; and then identifying all vertices having the same :-th coordinate. We then
think of 7;(G) as having the vertex set T; (the edge set of 7(G) is E;).

Proposition 22 Let G be an orthogonal graph with V(G) = Ty x Ta x ... xT,. Then
girth(G) 2 ppip {girth(mi(G))}.

Remark Note that if G is a cartesian product of cycles, then the proposition is a
(trivial) special case of Observation 19. For example, if G = C3 x C4 and i = 2,
then 72(G) = 3C, and can be viewed as being obtained from G by the contraction of
the edges of the copies of C3 in G. In fact, Proposition 22 can, with a little effort,
be proven using Observation 19, but we will not follow this path and rather give an

independent proof as it is illuminating in the light of the statements that will follow.
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Proof of Proposition 22: Let
C = Up, €1,U1,€2,U2,...,€n, Uy

be a shortest cycle in G. Then e; € E; for some j,1 < j < s. Let
l=5 <5< <t <n

be all those indices ¢ for which e; € E;.
For 0 < i <n —1, let u;; be the j-th coordinate of u;. Then, by the definition

of the graph =;(G), the edge e;, connects the vertices u;,_,; and u;, ; in 7;(G) for
1 < k < m (here, uj, = u;,,).

Moreover,

Uip,j = Uip41,j = Uip425 = U435 = * 7" = Uipyy-1,5

for 1 < k < m. Thus (noting that ug; = ui,, ;),
C" = ug,j, €iyy Uiy jy Cigs Uig,js + + -y Yim_1,5» Eim> U0 5
is a closed walk (without repeated edges) of length m in 7;(G). Hence,
girth(r;(G)) < |C'] = m < n = girth(G)
and the proposition is proven.m

The following strengthening of the above proposition is crucial because it will serve
as a tool for constructing classes of (regular) graphs with arbitrarily large girth which
will also have properties that will enable us to show that such graphs have high

extendability.

Lemma 23 Let G be an orthogonal graph with V(G) =T1 x Tz x ... x Ty, for some
s>1. Let

G={mi(G[Ty x To x ... x T; x {ttig1} X {wiga} x ... x{us}]): 1 i < s,
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UjEijOIi<jSS}.
Then
N . . 4
girth(G) > g}ég{glrth(G )}

Proof: Let C be a shortest cycle in G and let j be the largest index such that
E(C)NE; #0. Then V(C) CTy x Tp X ... x Ti X {ujp1} X {uj42} x ... x {u,} for
some Uj41 € Tjy1,uj42 € Tjy2,...,us € Ty. The graph

G'=m(G[Th x Tz x ... x Ty x {ujua} % {ujpa} X ... x {u,}])

can be viewed as being obtained from G by first deleting the vertices not in T} x
Ty x ... xT; x {ujp1} x {uj42} x ... x {u,} and edges not in E; and then identifying
the vertices having the same j-th coordinate. By the choice of ;. none of the deleted
vertices is in C' and not all edges of C are deleted. Thus, the projection of C onto the
J-th coordinate is a closed walk without repeated edges of length greater than 0 and
1s contained in G'. Therefore, girth(G’) < girth(G).

As G’ € G, the conclusion follows.m

To get a flavor of how this lemma improves Proposition 22, consider the following
graph G. V(G) = Z, x Z,, for some n,m > 3 and

EG) = (U E#y) v (U EH),

i=0 i=0
where H;, for 0 < i < m — 1, is the cycle (0,1),(1,1),(2,7),...,(n — 1,¢),(0,¢) and
where each H| is a certain graph with V(H}) = {i} x Z,,. Let’s first estimate the
girth of G using Lemma 23. The collection G contains m copies of the graph C, and
a copy of the graph H = 7,(G). By the lemma,

girth(G) > min{n, girth(H)}.

Since if m is sufficiently large compared to n, then H! can be chosen so that H contains

no short cycles, the appropriate choice of H! will lead to girth(G) 2 n.
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However, if we estimate the girth of G using Proposition 22, we can only get
girth(G) > 2 as the graph =,(G) of the proposition is a copy of mC, and has girth 2.

If u and v are two vertices in G, then dg(u,v) (or simply d(u,v) when no confusion
may arise) is the distance between u and v in G, i.e., the length of a shortest uv-path
in G. We set dg(u,v) = oo if there is no path connecting u and v in G.

Now, finally, we can prove the main theorem of this chapter.

Theorem 24 Let G and G be as in the previous lemma and let G satisfy the following
eztra requirement.

a) IfG' € G,V(G') =T;, e1 and e, are multiple edges in G’ connecting the vertices
u' and v', and the endpoints of e1 (e3) in G are uy (uz) and vy (v2), then d(uy,uz) > g
and d(v1,vq) > g.

Also, let H be the set of the graphs which are obtained from graphs of G by iden-
tifying multiple edges. Then

girth(G) > min{g, Cr;r’1€1171{{g1rth(G )}

Proof: Let C be a shortest cycle in G and let u be a vertex in C. If the length of C
is larger than g, the conclusion follows. So we may assume |C| < g. In this case, for
every vertex v in C, we have d(u,v) < g/2. Let G be obtained from G by deleting all
those edges of G’ with at least one endpoint at distance greater than ¢g/2 from u. Let

G be obtained from G as G is from G. By the previous lemma, we have
girth(G) > min{girth(G")}.
G'eg

Let H be obtained from G as M is from G. The way G was chosen and the additional
condition a) placed on G in this theorem imply that graphs in G do not have multiple
edges and, consequently, H = G. On the other hand, each graph in H is a subgraph

of some graph in H. Combining these two observations, we get
min{girth(G')} = min{girth(G')} > min{girth(G")}.
G'eg G'eH G'en

Thus,
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. o ,
girth(G) > érllel%{glrth(G )}
But G contains C, a shortest cycle in G. This means that girth(G) = girth(G) and

the conclusion follows.m

Let Hy, H,,..., H, be groups. Further, let fy € H; \ {1y, } and let, for 2 < i < s, f,
be a function from Hy x Hy x ... x H;_y to H; \ {lg,}. We will construct a simple

orthogonal graph G on the vertex set Hy x H, x ... x H, as follows.

The vertex (u1,us, ..., u,) will be connected to the vertices (uy f!, uz, us, ..., u,)
: +1
and to the vertices (u1,uz,. .., Ui—1, Ui fi7 (U1, U2y . . -, Uic1), Uig1, Uita, - - -, Uy ), fOr 2 <
1 < s.

<<
o i aiin alln
SIS T s s

N
==

Figure 4.1.

Example Let H, = Z3, and H, = Z,, for some n,m > 0. Let f; = 1 (note that 1 is
not the identity element of Z3,) and let

fo(a)=1ifa=0 (mod 3),

fa(a)=3ifa=1 (mod 3) and

fala)=2ifa=2 (mod 3).
Figure 4.1 indicates what the resulting G looks like.
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Corollary 25 Let Hy,H,, ..., H,, f1, fa,..., fs and G be as above. Assume that the
order of f, in Hy is greater than g and that the girths of the graphs X (H;, {f*'(v) :
v€E Hy x Hy x ... x H;_1}) are larger than g for 2 < i < s. Assume further that the
following condition is satisfied.

b) For every pair u = (uy,uz,...,Us),v = (v1,V2,...,0,) of distinct vertices of G
and for every 1,2 < i1 < s, if u; = v; for all 3,1 < j < s, and fi(ur, uz,...,ui-1) =
fE (v, v2,...,v;-1) then d(u,v) > g.

Then girth(G) > g.

Proof: Again, let G be as in Lemma 23 and Theorem 24. Condition b) implies that
a) of the previous theorem is met. Thus G satisfies the assumptions of the previous

theorem and hence
girth(G) > min{g, Cr';llé%{glrth(G )1},

where H is as in Theorem 24.

Thus, it suffices to prove that ming/en{girth(G')} > g. But, by the definition of
H, each graph in H is isomorphic to either X (Hy, {fi, fi''}) or to one of the graphs
X (H;, {ffhl(v) cv e Hy x Hy x...x H;_1}),2 <1 < s. By the assumption, all these
graphs have girth greater than g and the corollary follows.m

Remark Note that if each f;,2 < i < s, is injective and f;(u) # f7!(v) for all
u,v € Hy x Hy x ... x H;_; then G = H and, using Lemma 23, the assumption b)
can be dropped.



Chapter 5

Main Result

In this chapter, we present our main construction and prove that it produces highly

extendable graphs that do not contain any short cycles.

Lemma 26 Let n and k be positive integers. Then there exists a finite group H,
containing elements ay,a,,...,ax (a; # afl for 1 # j) such that, for every m <
n and for every m-tuple (by,be,...,bm) of elements of H,x of the form a;,al?, if
bibo... by = 1g,,, then there existsi, 1 <i < m-—1, for which by, = b7'. Moreover,

the elements a; can be chosen so that their orders are odd.

Remark Note that the lemma says that the Cayley graph X(H,x, {af',ad’,. ..,
ai'}) has girth larger than n.

Proof: We will show that H,, can be chosen from among groups used in [14]. To
this end, let SL3(Z) (or SL2(Z,) for p prime) denote the group of 2 x 2 matrices over
Z (or over Z,) which have determinant equal to 1 and let ¢, : SLo(Z) — SLy(Z,)
denote the homomorphism reducing the entries of elements of SLy(Z) mod p.

Take a sufficiently large positive integer s and k + 1 distinct pairs (m;, ¢;),1 <: <
k + 1, of numbers satisfying gcd(mi,¢;) = 1,0 < m; < s/2 and 0 < ¢; < 3/2 for all ¢

(in particular, (0,0) is not among these pairs). Let b;,c; be such that

g b

34
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has determinant equal to 1. We may assume that |¢;| < s/2 and |b;] < s/2. For

1<i<k+1,set
1 s
;= C; C,-l.

In [14], it was shown that for any prime p the Cayley graph of SL;(Z,) with respect
to {#p(g:), dp(97") : 1 < i < k} is 2k-regular and has girth larger than Zlog,(p/2) ~ 1.
Hence, if we choose p so that 2log,(p/2) — 1 > n, set a; = ¢,(g:) for all ¢, and let
H,r = SLy(Z,), then H,, and a; will be as this lemma requires except that possibly
the order of some a; could be even. Now, we will show that p can be chosen so that
the orders of all a; are odd. In order to do this, choose p as above satisfying the
additional requirement that it be greater than s. Consider, for a positive integer {,

the t-th power of g;:

Mmoo 1 ts b —a | [ —stmyq; + 1 stm?
g b 0 1 —-q¢ m; | st stmigi +1 |
Hence, ¢,(g:) = ¢p(g{) = 1s1,(z,) if and only if

tsmiq; = tsm? =tsq? =0 (mod p).

As p is prime, s, m; and ¢; are smaller than p and at least one of m;, ¢; is nonzero, the
conditions are satisfied exactly when ¢ is a multiple of p. Thus, the order of ¢,(g:) in
SLy(Zy,) is p, an odd number.m

In the rest of the thesis we assume that, for every pair n, k, the group H,  is fixed.

The elements a; of H, ; are referred to as natural generators for the group Hy .
Now we are ready to give the main construction which will feature certain orthog-

onal graphs. These graphs turn out to be special instances of graphs dealt with in

Corollary 25 and, thus, do not contain short cycles. We will also be able to prove, in
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a series of claims, that they satisfy the conditions of Proposition 17, implying that

they are also highly extendable.

Construction 27 Let k and n be given positive integers. We construct a graph

G = Gk, as follows.

o Firstlet s > k and define recursively groups H{, H;, ..., H}; let H| be Zanyy and,
for2 <i<s, let H = H, gm0 1H._,|-
H! will be denoted by a\”, 1 < j < |H||Hp|...|HL_,].

When 1 > 2, the natural generators for

e Fori,1 <i<s, let the group H; be defined by H; = H! x Z,.

o For1,2 <1< s, let fl : HH x Hy x ... x H!_, — H] be a bijection between
H] x Hyx...x H!_, and the natural generators {ag-‘) :j€{L,2,...,|H{||H;]..-
|Hi_4[}}

e For 1,2 < 1 < s, let f; : H x Hy x ... x Hi-;y — H; be defined by
fi((blanl)a (bg,ng),. ey (bi—h ni—l)) = (f;‘l(blabi.’:- . °’bi—l), 1)'

o Letf1=(1,1)€H1=H{ X 2.
o Set V(G)=H = Hy x Hy x ... x H,.

o For every u = (uy,uz,...,u,) and v = (v1,v2,...,7,) in V(G), let uv be an
edge in G if there is a unique i,1 < 1 < 8, for which u; # v; and, for this i,

u; = v.-ffl(vl,v%...v.-_l)(= Vi fE (ug, Uz, ... ui1)) if i # 1 and uy = v fE if

i=1.
Let, for 1 < i < s, G; be defined by V(G;) = V(G) and
E(G;) = {uv : u and v differ in the i—th coordinate and uv is an edge in G}.

Claim 28 For every i,1 < i < s, G; is a 2-factor of G, all of whose cycles have

lengths congruent to 2 modulo 4.
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Proof: 1f : = 1, then f; = (1,1) has order 4n + 2 in the group H; = H| x Z, and the
result follows. If 2 > 1, then G| is a 2-factor of G and the length of each cycle in G; is
equal to the order of the element (f/(),1) in H; for some b € H] x Hy x ... x H!_,.
By the definition of f],

fi(h) = a5’

for some 35,1 < j < |Hj||H;|...|H]_,|. Hence the order of f!(b) in H! is odd and,
therefore, the order of (f/(b),1) in H; is congruent to 2 (mod 4). This ends the

proof.m

Claim 29 For everyi,j withi# j and 1 <¢,j <3, if C is a cycle in G; and C' is
a cycle in G, then |V(C)NV(C")| < 1.

Proof: Suppose the contrary and let C' and C’ be cycles in G; and G; (I # j,1 <
i,J < s), respectively, with |V(C) N V(C")| > 2. Then there are two distinct vertices
u and v in V(C) N V(C'). By the definition of G;, u,v € V(C) implies that u and v
can only differ in the i-th coordinate. Similarly, from u,v € V(C’) we get that u,v

can only differ in the j-th coordinate, a contradiction.m

Claim 30 For all i,1 < &+ < s, if C; = uo,ul,ué,...,u4p+1,uo and C; =

= Vg,V1,V2,...,Vsq+1,V0 are two distinct cycles in G; such that ug ~g vy, then

U2p+1 ™G V2g41-
Proof: Let up = (u},u3,...,u"). Then u; = upc where
¢= (Yo, Layy ooy 1ay, fi(ug, uly oo yuiy) Llgyyy ooy 10,)
for some e € {1,—1} if i # 1 and
¢=(fis 1t 1y, -+ 5 18,)

for some € € {1, -1} if 7 = 1.
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o

Then u; = uoc?, uz = upc® and so on. In particular, as C, is a cycle of length 4p+2,
the order of ¢ in H is 4p + 2. Thus, if ¢ # 1, then the order of ff(u},us,...,ui_;) in
H; is also 4p + 2. But

f:c = ((le)c(blv bZ’ R bi—l)a 1)’
where
(uy, Uy Uiy) = ((b1y 1), (B2, m2), - (i1, mizd).

Consequently, for the order of ff(uj,uj,...,u_;) to be 4p + 2, the order of
fi(by, bay ..., biz1) (in H}) must be 2p + 1. Thus

P = (1H1 s Hs oo LHy ((fi,)('zp*-l)c(bl’ by, ..., bi‘l)’ 1)’ 1Hi+1 LA IH-') =

= (1H1’ 1H21 SRR lH.‘_l ’ (IH:’ l)a 1H.‘+1a 1H.‘+2a SRR ]'Ha)‘ (51)

A similar argument shows that the same conclusion holds when ¢ = 1. Now, letd € H

be such that v; = vod. The same reasoning as above gives

g2t 2p+1

= (1gy, 1H,, .- .,IHi_l,(IH:,l),IHiH, lHigr---51H,) =¢

Let g € H be such that vp = upg. Similarly to ¢ and d, we have that g is either
(1H1a1H2a---alH_,‘_xafjd(ullau;a'-'au;—l)alHHu-"le,)

or

(fldaleleav-"alHa)

for some ¢ € {1,—1}.
From (5.1) it follows that if ug = ((b1,71),(b2,n2),...,(bs,ns)), then

Uzp+1 = ((b1, 1), (bayn2)y - v vy (Bicry miz1)y (Biy 1 = 13), (i1, Rig1)s -« o (Bsy )
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The definitions of f;,1 < 7 < s, and of the graph G imply that uzp41, u2p419 is also an
2p+lg_

Again, from (5.1) we see that every element of H, in particular, g, commutes with

edge in G. Therefore, it suffices to show that ve,41 = u2p419. But ugpi19 = ugc

c?*! and we get

o 2pHl 2p+1 _ 20+1 _ . 129+1 _
Ugpt1g = UCTT g = upgcT = upgd™T = ved™T = vygq 1 m

Claim 31 For everyi,1 <i < s, G\ E(G;) can be written as a vertez-disjoint union
of graphs G,GY, ..., G, where p = |H;| and for all j, |C NG}| <1 whenever C is a
cycle in Gj.

Proof: Let H; = {ax:1 < k < |H;|}. For 1 < k < |Hi, let

v =G[Hy x Hy x ... x Hi_; x {ax} x Hiy1 x ... x H,].

Obviously, G},1 < k < |H;|, are vertex-disjoint and UIZ‘I G, does not contain any
k k=1 Uk

edges of G;. Moreover, if uv is an edge in G\ E(G;), where u = (uy,us,...,u,),v =
(v1,v2,...,,), then u; = v; = a; for some I, 1 <1 < |H;|, and, therefore, uv € Gj.
Thus, G\ E(G;) is a vertex-disjoint union of the graphs G},,1 < k < |Hjl.

Finally, if C is a cycle in G; and u # v are two vertices in C, then u; # v; (where
u; and v; are the i-th coordinates of u and v, respectively) and, consequently, u and
v cannot lie in the same G’. Thus, |[CNG}| < 1, for all j.m

Remark Note that in the proof of this claim we only needed the fact that G is
orthogonal.

Claim 32 Let u = (u;,uz,...,U,),v = (V1,V2,...,V,) be two distinct vertices in G
and let 2 < i < s. Assume further that u; = v; for all j,1 < j < s, and that

filur,uz, ..y uis) = fF(v1, v, ... vim1). Then d(u,v) > n.
Proof: By the definition of fi, fi(u1,us,...,ui-1) = fX(v1,v2,...,vi-1) implies that

(Ul, Ugy ooy Uimy) = ((bl, Tll), (bz, n2)yes (bi—l,ni-l))

and
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(U],U2, e avi-—l) = ((blaml)a (b‘21m2)3 e p(bi—lamiul))

for some bs, ns and m. Moreover, since u; = v; for j > i and since u and v are
distinct by the assumption, there must be ! (1 <1< i — 1) such that n; # m,.

Now, if zy is an edge in G, z and y differ in the [-th coordinate and [ > 1, then
zyy is an edge in G’ = X (H, {ff'(2): 2 € Hyx Hy x ... x H;_,}) by the definition of
G (here x; and y,; are the l-th coordinates of = and y, respectively). Similarly, if [ = 1,
then z;y; is an edge in G’ = X(H,, {(1,1),(2n,1)}). Let u = wy,we,wy,...,wy, =
be a shortest uv-walk in G and let, for 1 < j < ry, w) be the [-th coordinate of w;.

1<t <ty <--- <ty <r are all those numbers ¢ for which w, # w,,,, then

wy Wy 4y is an edge in G’ for all 5,1 < j <.

Moreover,
el - "--.-— ! ! - ! = .4 = ! ! — ! s as
U =W = Wy = = Wy, # Wyl T Wy g2 = = Wy, # W1 = Wy =
! ! ! ! ! ! !
W FE Wy T Wiy TS W F W T Wy g T T Wy S UL
Thus,

/ !’ / ’
UI —_ wtl,wtz,---,wtrz,wrl —_ 'l)[

is a walk of length r; in G'.

Since n; # m; and each fi(z) is either of the form (f/(b),1) for some b € H] X
Hj x...x H[_; (if ] > 1) or of the form (£1,1) (if ! = 1), r; must be odd. Hence, if
w; = (c;,0;) for 1 < j <7y, then ¢; = ¢;, = b and, thus, by = ¢y, €5y 1,0 &y = by
is a closed walk of length r; in G”, where G" = X(H],{(f{)*'(z) : z € H} x H} x
Lox H_hifl>1and G" = X(H{,{1,2n}) if I = 1.

Then (as r; is odd) G” must contain a cycle of length 3,73 < 7. But by the
choice of f/ in Construction 27, the girth of G” is strictly greater than n when [ > 1
while when ! = 1, then G” is a (2n + 1)-cycle and, again, girth(G") > n. Thus n < rj,

and we get
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n<r3<r,<r—1=d(u,v)m

Now we are able to prove the main result.

Theorem 33 Tke graph G = Gy is k-extendable and has girth at least n, for every
k and n.

Proof: Obviously s >k >0,G =G UG, U...UG,, and V(G;) = V(G) # 0 for
all :. This, together with Claims 28,29,30 and 31, shows that the assumptions of
Proposition 17 are satisfied and, hence, G is k-extendable.

For the proof of the girth, we will first show that for 2 <i <s

girth(X (H;, {f(v) :v € Hy x Hy x ... x H;1})) > n. (5.2)

Suppose not and let C = (by, mo), (b1, m1), (b2, m2),...,(br=1,mr=1),(bo,mo) be a
cycle of length r < n in X(H;, {ff'(v) :v € Hy x H; x ... x H;_;) (note that r > 3
because G is a simple graph). Then by, b, bs,...,b.-1,bp is a closed walk of length
rin X(HL{(f)*'(v) : v € H} x H, x ... x H!_;}). But girth(X(H, {(f)*(v) :
v € H x Hy x ... x H!_;})) > n. Thus, there is 5,0 < j < r — 1, such that
bj = bj4+» (indices are taken mod r). Then if b’ € H is such that b;4; = b;A’, then
bj+2 = b;(R’')~". From the construction of G, it follows that (b;y1,mj41) = (b;,m;)h
and (bj4+2,mjs2) = (bj41,mj41)h™1, where h = (#',1) € H;. In particular, (b;,m;) =
(b;42,mj42), contradicting the fact that C is a cycle having length at least 3.

Also, the order of f; in H) is 4n + 2 and is strictly greater than n. (5.3)

Claim 32 implies that condition b) of Corollary 25 is satisfied (with n instead of g).
(5.2) and (5.3) show that two of the remaining conditions of Corollary 25 are also
met (again with n in place of g). All other conditions of Corollary 25 are satisfied
trivially. Thus, girth(G) > n.m
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Remark In Chapter 2, we mentioned some known results concerning n-extendable
graphs. Two of them, Theorems 2 and 7, give conditions that imply n-extendability.
Here we note that neither of these theorems can be applied to prove that the graphs
we constructed are n-extendable. This is immediately seen in the case of Theorem
2 as §(Grn) < |V(Gk)|/2. For Theorem 7, we note that if G is a bipartite graph,
then tough(G) < 1. This is seen as follows. Let G be a bipartite graph with parts 5;
and S; and assume |S;| > |S2|. Then ¢(G \ S2) = |S1] and we get

152l _ 1S2] im
c(G\S2) [S] ™

We conclude this chapter with a statement regarding the structure of graphs from

Construction 27.
Observation 34 The graphs Gy, are bipartite.
Proof: Partition the set V(Gy,,) into two subsets V and V;, where

Vi = {((br,m1), (b2, m2)y- -, (BsyTis)) M1+ no+ -+ n, =1 (mod 2)}.

From the definition of the edges of Gk, it is readily seen that every edge in Gin

connects a vertex of V with a vertex of V;.m



Chapter 6

Order Estimate

The number of vertices of a graph G is called the order of G. We will prove the

following

Theorem 35 The graphs Gy, from Construction 27 can be constructed such that

their orders do not exceed (21n)(k+1)A3n)"

Before we can prove this result we need some lemmas.

Lemma 36 Given positive integers n and k, the group H,, can be constructed with
order not exceeding 256(4k)'?".

Proof: Since H,, = SL3(Z,) for some prime p and since |SL2(Z,)| < p?, it suffices
to show that in Lemma 26 p can be chosen so that p < 4(4k)3". To see this, let s be
as in that lemma. That is, s > 0 is large enough so that one can choose k + 1 distinct
pairs (mi,¢:),1 < ¢ < k+ 1, with ged(m;,¢) = 1,0 < m; <5/2,0 < ¢ < 5/2. As
wecan set m; =1for1 <i<k+1and g =:for1<:<k+1, wesee that any
s > 2k + 2 will suffice. As k > 0, we have 4k > 2k 4+ 2 and we conclude that s can be
any number satisfying s > 4k. So we set s = 4k. By Lemma 26, p can be any prime

satisfying the following two requirements.
o 2log,(p/2) —12>n,
e p>s.

43
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If ¢ is a number greater than or equal to 2(4k)*", then we see that these two conditions

are satisfied; for the first one we get

2 2 :
3 log,(¢/2)— 12> 3 log,((4k)*™) ~1 = —g—loqu((élk):*") —1= §-3n —~1=2n-~1>n,

while the second condition is met trivially as s = 4k. Since for every positive number

m there is a prime between m and 2m, we know that there is a prime number p with
4(4k)°™ > p > 2(4k)*".

Putting H,, x = SL,(Z,) gives the desired result.m

12n.

From now on we asssume that H, x are in fact chosen so that |H, x| < 256(4k)

Lemma 37 Let n be a positive integer and let the groups H! be defined recursively
as follows. H{ is any group of order my, for some m; > 0. If the orders of

H,H;,...,H_| are my,m,,...,mi_1, we set H = H, s, m;..m,_,- Then
m; = |H]| < (256(4m,)!2) (130"
for all1 > 1.

Proof: First, we will recursively define numbers n;,z > 0. For i = 1, we set n; = m,

and for ¢ > 1, we set n; = 256(4nyny...n;_1)'*"

Now, we will prove by induction that m; < n; for all ¢ > 0. When ¢ = 1, we have

my = n;. So assume ¢ > 1 and m; < nj for all 7,1 < j <. Then by Lemma 36
m; = |H| = |Huymyma.mi_s | < 256(dmyma...m_1)'?"
Therefore, using the induction hypothesis, we get
m; < 256(4nyny .. .0y )12 = n;.

Thus, it suffices to show that fori > 1, n; < (256(4m1)12")(’3")i‘2. We will again show
this by induction.
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When i = 2, we have
ng = 256(4n;)'?" = 256(4m;)!1?" = (256(4m, )127) 137,
For 1 > 2, we get
n; = 256(4nyny...n;_1)"?" = 256(4nyn, ... n,'_g)lz"(n,-_l)n".
But 256(4n;n;...n,_2)'*" =n;_; by the definition, and we get

n; = n;_l(n{__l)nn — (ni—1)12n+1 < (niwI)ISn <
< ((256(4my )12 (1307 13n = (256(4m, )127)10 7

Proof of Theorem 35: In the construction of the graphs Gi ,, the groups H!,1 <i < s,
are as in Lemma 37 with my = |Hj| = |Z2n41] = 2n + 1. Then, by the conclusion of

that lemma,
m; < (256(8n + 4)127) 130" < (256(12n)127) (137"

for all 2,7 > 1. For i = 1 the last inequality is satisfied trivially. Then, for each

1,1 €1 < s, we have
|Hi| = |H x 2| = |H]| - 2 < 2(256(12n)12")(137)"™,
As V(Gyn) = Hy x Hy x ... x H,, we obtain
[V(Grn)l < (2(256(12n)127)(130°7%)s = 99(256(12n)127)*(130)° 7
Since s can be any number greater than k, we may choose s = k + 1 to get

}V(Gk,n)l S 2k+1(256(12n)12‘n)(k+1).(13‘n)k-1 _<_ (512(12n)12n)(k+l).(l3n)k—'1 <

< ((1_75)1211(12n)12n)(k+1).(13n)"“1 _ (21n)12n(k+1).(13n)"-1 < (21n)(k+1)(13n)(13n)""1 <
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< (QIn)(k+1)(13n)" -

Remark The bound given in Theorem 35 is much greater than the order of a smallest
graph with minimum degree k and girth n, which is known to be of order (k — 1)"/?
(for the upper bound, see, for example, Theorem 1, p. 68 in [1]). Therefore, it might
be interesting to ask how close one can get to this bound with graphs that are, in
addition, k-extendable.



Chapter 7
Surfaces and Extendability

Some observations relating the extendability of graphs with their imbeddability are

introduced in this chapter.

Lemma 38 Let ¥ be a surface. Then there ezists a number k such that every graph

cellularly imbeddable in ¥ and having girth at least k fails to be 2-extendable.

Proof: Suppose G is a cellular imbedding of G'in ¥ and let f;,z > 0, be as in Theorem
8. Since girth(G) > k, we get f; = 0 for 1 <7 < k — 1 and, therefore, we obtain

fet feni ¥ frra+--- = |F(G)]
and
kfe + (k4 Dferr + (k+2) frga +--- = 2|1E(G)],
implying
k(fi + fesr + frrz + ) < 2|E(G)
and

kIF(G)) < 2|E(G)|. (7.1)
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Suppose further that G is 2-extendable. By Theorem 5, G is 3-connected. Hence
6(G) > 3. But |V(G)|6(G) < 2|E(G)|, implying

3V(G)] < 2|E(G)I. (7.2)

Now, consider the Euler formula |V(G)| — |E(G)| + |F(G)| = x(2). Substituting
[V(G)| < 2|E(G)| of (7.2) into this formula yields

SIE(G)] ~ |BG)] +IF(G)] > x(5)
and so
IF(@)] - X(5) 2 31BG)]
Substituting |E(G)| > £|F(G)| from (7.1) gives

(@)l - X(2) 2 §IF(G)

and so
6—k, _ »
x(2) < 2RO
Now, if k¥ > 6, then (6 — k)/6 < 0 and 6;6”|F(G)| < (6 — k)/6. Therefore, for k > 6,
x(X) < (6 —k)/6, and so k < 6 — 6x(X). Thus, for G to be 2-extendable, k has to
satisfy £ < max{6,6 — 6x(X)}. The conclusion follows.m

For a surface ¥, let k(X) denote the smallest number k satisfying the conclusion of
Lemma 38. Construction 27 shows that for every k > 0 there is a 2-extendable graph
G2, with girth at least k. Since there exists a surface ¥ such that Gy, cellularly
imbeds in X, we see that £(X) is an unbounded function. It might be of interest to
try to determine this function. In general, this problem appears to be difficult. We
show here the value of the function k() for the simplest surface — the sphere. We

start with an auxiliary observation.
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Observation 39 The regular dodecahedron is 2-extendable.

Figure 7.1.

Proof: Certainly, the regular dodecahedron has more than 2.2+2 = 6 vertices. There
are eight essentially different matchings of size 2 in this graph; they are the matchings
M; = {e, f;},1 < 7 < 8 depicted in Figure 7.1. Figure 7.2 shows that all these
matchings can be extended to perfect matchings of the regular dodecahedron (the
perfect matching depicted on the lefthand side of this picture extends the matchings
M, My, My, M5, Mg and Mg while the perfect matching on the righthand side is an
extension of M3 and M7 (and, also, of M;, M, and Ms).m

Figure 7.2.



CHAPTER 7. SURFACES AND EXTENDABILITY 50

Observation 40 k(S;) = 6.

Proof: From the previous observation we know that the regular dodecahedron, which
imbeds cellularly in the sphere, is 2-extendable. Since its girth is 5, we have k(S;) > 6.
On the other hand, as in the previous lemma, we get x(So) < ~6—g—’5|F(C‘}')] if G is
cellularly imbeddable in Sy and has girth at least k. Thus, if & > 6, we have (as
x(So) = 2) 2 < 0, a contradiction. Hence, ¥ < 5 and, therefore, k(Sp) < 6. We
conclude that in fact k(Sp) = 6.m
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