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Abstract 

In this thesis we study the vortex dynamics of an unsteady two dimensional viscous 

flow (Reynolds number 1000) in a channel with a rectangular cavity having a flow 

constantly entering from the left. The investigation of the generation, evolution, 

interactions and long-time tendency of the vortex motions is performed using a finite 

difference discretization of the Navier-Stokes equations in primitive variables. We 

follow the time development of the normalized velocity field, and study the surface 

and contour pressure and kinetic energy plots. A comparison between the final state 

of this problem and the steady state of the lid driven cavity problem is also analyzed 

in this work. 
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Chapter 1 

Introduction 

Fluid dynamics is not a young science; it has accumulated a huge amount of scientific 

information, theories and experimental data during the last several hundred years. 

However, it was not until the appearance of computers and computational fluid dy- 

namics (CFD) that big new developments in this field took place. The continuing 

increase of machine speed, in part due to new massively parallel computers, as well as 

larger computer memories have brought the tools that may turn fluid dynamics into 

the central discipline of applied mathematics in the near future, as was pointed out 

in [20]. 

This thesis deals with a channel flow. During the last several decades stability 

properties of such flows with a vast diversity of geometries and time behavior of 

vortex motions have been active areas of research. In this work we are going to 

exhibit fascinating dynarnical features of vortex motions that have not been seen 

in previous channel flow studies. The unsteady vortex development simulation is 

performed for a two dimensional incompressible laminar flow in a channel with a 

rectangular cavity at Reynolds number Re = lo3 and a flow constantly entering from 

the left ((u, v) = ( 1 , O ) ) .  

We start with a review of some of the most important representative studies of 
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the driven cavity problem. The purpose of the review is to familiarize ourselves with 

various numerical methods for a problem of considerable theoretical significance. This 

common test problem is then used later to ensure that our numerical method of choice 

is working properly by reproducing a solution given in [14]. The formulation of our 

finite difference discretization and the boundary conditions are described in the next 

chapter. 

To achieve a high level of accuracy we use an explicit method where a discrete 

Poisson's equation is solved at every time step. The third chapter briefly describes 

three fast direct solvers for this linear system of equations, with a more detailed 

description of block cyclic reduction which is used in the FISHPACK subroutine. 

To give an idea of the magnitude of the computational challenge posed by these 

problems one should consider that the calculation of the vector field and the pressure 

takes approximately one second of CPU time on a SUN SPARCstation 41670. This 

number is on a 60 x 150 grid for a single time step (At = The flow development 

was followed for lo5 time increments. 

Chapter four describes and analyzes the vortex motion of the channel problem fol- 

lowing the four vortex dynamics stages given in [15]. A possible mesh-size dependence 

is investigated by running and comparing two different resolution grids. We found an 

unexpected transition state grid dependence that does not change the steady state. 

The computation of the unsteady lid driven cavity problem with the same Reynolds 

number and a depthlwidth ratio equal to 0.26 is carried out in order to compare it 

with the final state attained by the interior cavity of the channel problem. 



Chapter 2 

General Theory 

2.1 Represent at ive Work 

Flow in a rectangular cavity where the motion is driven by translation of the top lid 

has been used as a test problem by many authors in order to check new numerical 

methods for fluid problems. The description below follows the summary table of some 

of the important representative studies given in [13]. 

One of the earliest papers in numerical simulation of two-dimensional Navier- 

Stokes (2D N-S) flows within a cavity was developed by Kawaguti [18] in 1961. In 

this work the author used a finite difference approximation of the vorticity-stream 

function formulation of the steady equations of motion. The numerical integration 

was performed for a small range of Reynolds numbers (Re 5 64) in cavities with 

aspect ratio (a) equal to 0.5, 1, 2. His observations included the downstream drift 

of the primary vortex center with the increase of Re, in addition to the formation of 

corner eddies in the deep cavities (a = 2). 

Moffatt in [Z] used the stream function for solving the linear steady 2D N-S 

Equation for small Reynolds numbers (Stokes equation). He showed a sequence of 

eddies of decreasing size and rapidly decreasing intensity to occur near the sharp 
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corners. Moffat t found theoretically that an infinite sequence of these eddies sequence 

exists obeying a simple similarity law. 

Burggraf in [4] used a relaxation method to solve the linear steady driven cavity 

problem for Reynolds numbers from 0 to 400. He found that for Re greater than 100 

an inviscid core developed yielding a large primary vortex near the center of the cavity, 

while the two secondary eddies were present in the bottom corners at all Reynolds 

numbers. 

In 1967 Pan and Acrivos [22] produced experimental results of steady flow in 

rectangular cavities having finite and infinite aspect ratios for Reynolds numbers 

ranging from 20 to 4000. It was shown in this work that a secondary vortex in the 

lower right corner decreases in size as Re increases beyond 500, as well as the non- 

existence of a secondary vortex in the lower left corner up to Re = 2700. These two 

results contradict the results of many numerical experiments carried out in later work. 

A possible explanation for this apparent disagreement, offered in [7, 361, is that the 

experimental apparatus was such as to introduce vertical components of velocity at 

the upper boundary, owing to the use of a circular drum to form the sliding upper 

surface. Since the drum protruded into the cavity to about 17% of the cavity depth 

it was postulated that induced vertical velocities could have had an effect on the 

secondary vortices. The experiment was also subject to significant 3D effects, making 

it inappropiate as standard for comparison with the numerical solution of the 2D 

problem. 

Bozman and Dalton [2] used a strongly implicit procedure developed by Stone [29] 

and compared four possibilities in representing the nonlinear terms of the 2D N-S 

Equations computing solutions to the cavity flow problem for a range of Re between 

10 and 1000, and different grid sizes. 

Benjamin and Denny [I] examined the convergence properties of various finite- 

differences schemes for solving the nonlinear 2D square (a = 1) driven cavity problem 

at Reynolds numbers up to lo4. In this work the existence of tertiary and fourth 

order corner vortices for large Re was shown. Gatski et al. [9] utilized the compact 
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finite difference schemes described by Rose [25] and Philips and Rose [24] to solve the 

vorticity-velocity form of the 2D unsteady N-S Equation. Paper (91 dealt with the 

dynamics to steady state of shadow and square cavity flow at Re = 400. 

In Ghia et al. [lo] the vorticity-stream function formulation of the 2D N-S Equa- 

tions is used to study the effectiveness of the coupled strongly implicit multigrid 

method in the determination of high Reynolds number fine-mesh flow solutions. The 

driven flow in a square cavity is used as the model problem and detailed informa- 

tion about the streamline contours and properties of primary, secondary and terciary 

vortices is given with Re inceasing from lo2 to lo4. 

Schreiber and Keller [26] used a fourth-order derivative scalar formulation of the 

2D N-S Equations in terms of the stream function. To solve this equation for the 

square cavity problem their numerical method combines an efficient linear system 

solver (central differences on a uniform net yield an approximation with truncation 

error expansion proceeding in powers of the mesh-width square), an adaptive Newton- 

like method for the nonlinear system, and a continuation procedure (Keller [19]) for 

following a branch of solutions over a range of Re. The existence of spurious solutions 

for relatively coarse grids and high Re were described in detail in [27]. 

Gustafson and Halasi [13] studied the unsteady viscous incompressible N-S flow in 

a driven cavity problem with particular attention to the formation and evolution of 

vortices and eddies. The numerical method used by them is the projection method in 

a modified Marker and Cell (MAC) staggered mesh scheme. In this work the vorticity 

features are analyzed for cavities with a from 0.5 to  4 and Re from to 2 lo3. 

In a later paper [14] the same authors analyze the dynamical features of the same 

problem with aspect ratio equal to 2 and at Re = lo4. They conjecture the existence 

of a Hopf bifurcation at some critical Reynolds number between 2 lo3 and lo4. 

Goodrich et al. [ll] used the time dependent stream function equation, with 

a Crank-Nicolson differencing scheme for the diffusion terms, and with an Adams- 

Bashforth scheme for the convection terms in order to solve the same problem (a = 2) 

with Re = 5000. Using the relative change of the L1 norm of the stream function per 
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time step, the total kinetic energy, and other scalar relations as indicators of dynamics 

they conjecture that the 2D N-S system of equations for the driven cavity problem 

with aspect ratio two possesses a Hopf bifurcation in the interval 2000 < Re 5 5000. 

2.2 The Navier-Stokes Equations in Primitive 

Variables 

The motion of a continuous medium is governed by the principles of classical mechan- 

ics and thermodynamics for conservation of mass, momentum and energy. Application 

of these principles in a Newtonian incompressible isothermic fluid when ,u = const 

and p = const, will give us the following dimensionless equations 

where 

Re = 5 - Reynolds number 

U - reference characteristic velocity 

L - reference characteristic length 

v = - kinematic coefficient of viscosity 

p - dynamic coefficient of viscosity 

p - density 

V - dimensionless velocity field 

p - dimensionless pressure 

This system of equations is known as the dimensionless Navier-Stokes Equations. 



CHAPTER2. GENERAL THEORY 

Figure 2.1: Computational domain 

2.2.1 Discretization 

In two dimensions the governing equations for unsteady incompressible laminar flow 

(written in conservative form) are 

The computational domain is shown in fig. 2.1. If we denote by Lo the dimension 

of the inlet height, then the width of the cavity will be 2Lo, the cavity length will be 

3.85~50 and the channel length will be 5.85Lo. The characteristic length L, velocity U 
and time T  were chosen as follow: 

L = 2Lo - maximum channel width 

U = U, - inlet velocity 
L T =  - u 
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MAC Formulation 

In 1965 Harlow and Welch [16] developed a technique for solving (2 .3 ) - (2 .5 )  that was 

called the Marker and Cell (MAC) method. This method with different modifications 

has been widely used to solve 2D N-S Equations. It uses a staggered grid and the 

solution of a Poisson equation for the pressure at every time-step. 

The approximation of (2 .3 )  and (2 .4 )  is 

while the continuity equation (2 .5 )  is discretized as 

In this discretization FGlj and Gcj+, represent the finite differencing of the com- 

bined advection and viscous terms - ( u 2 ) ,  - ( U V ) ~  + (u,,  + u y y ) / R e  and - ( u v ) ,  - 

( v ~ ) ~  + (v,, + v y y ) / R e  respectively at the nth time step i.e. 
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Figure 2.2: The MAC staggered grid 

The staggered MAC mesh is shown in fig. 2.2 

It can be seen that pressures are defined at the centre of each cell and that velocity 

components are defined at the midpoints of the left and right vertical boundaries 

for the x-directional velocity component u, and at the midpoints of the horizontal 

boundaries for the y-directional velocity component v. 

Substitution for ti::., u::', vcj'il and vcj" from (2.6) and (2.7) into (2.8) gives 

a discrete Poisson equation for the pressure, i.e. 

Underlying the use of these equations are assumptions that the analytic N-S Equa- 

tion possesses solutions smooth enough so that they can be differentiated, continued 
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Figure 2.3: Computational cell near a vertical wall 

to the boundary, and still retain a consistent discretization thereafter. 
D" 

In (2.1 1) 2 may be interpreted as a discretization of -% Jij with D g l  = 0. 

Thus the converged pressure solution resulting from (2.11) is such as to cause the 

discrete form of the continuity equation to be satisfied at time level n + 1. 

In order to solve (2.11) and then substitute the pressure into (2.6) and (2.7) to 

compute u and v we need to find the values of p on the boundary. 

2.2.2 Pressure Boundary Conditions 

The grid is arranged so that boundaries pass through velocity points but not pressure 

points, so in order to solve (2.11) values of the pressure outside the domain are 

required. 

Let us take, for example, a vertical boundary. Since u at the boundary is not a 

function of time and since 2 = 0 at the wall, it follows from (2.3) 

If (2.12) is discretized at node ( l j )  (see fig. 2.3) it becomes 
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with 

Ul+2,j - U l j  = O and u l + l , j  = 0 ,  
2 a x  

1 
P1,j = Pl+l , j  - - ReAx 2 ~ 1 + 2 , j  

Similar results are obtained for the remaining possible configurations. 

2.2.3 Velocity Boundary Conditions 

Consider a non-slip boundary condition for the velocity at a rigid wall. Then the 

normal velocities beyond the wall must be calculated in such a way as to ensure that 

the divergence-free condition is satisfied on the exterior cell in order to prevent D i j  

from diffusing into the fluid. Accordingly, the conditions on u and v for the vertical 

case (fig. 2.3) are u l j  = ~ 1 + 2 , j  and v l , j  = - v l + l , j ,  i.e. tangential velocities are simply 

reversed across the wall while normal velocities remain the same. 

In the case when we have an inflow boundary u and v are usually given, while on 

an outflow boundary the typical boundary conditions would be given in such a way 

to keep the features of the flow at the inflow boundary. 

2.2.4 Numerical Stability 

According to the Lax equivalence theorem the necessary and sufficient conditions for 

convergence of a finite difference approximation to a given properly posed linear initial 

value problem are consistency and stability. 

If a linearization of (2.6) and (2.7) is made (the consistency follows from the 

construction of the scheme) then there is a restriction on the time step for a stable 

solution of the explicit algorithm for un+' and vn+', namely 
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4At < 1 where A x  = A y .  
R e A x 2  - 

For more details see [23] 5 6.2.3. 

2.2.5 The Projection Method 

An alternative MAC-like method called the projection method was proposed inde- 

pendently by Chorin [6] and Temam [35]. This explicit method is a fractional step 

method which splits into two stages: 

a) Computation of the provisional vector field vn+' - advection-diffusion compo- 

nent of the flow 

b) C-' mputation of the velocity vector at time step n + 1 by considering the equa- 

tions 

Substituting Vn+' from (2.19) into (2.20) we get the Poisson equation 

that ensures Vn+' satisfies the divergence-free equation as well as the equation of 

motion. In order to solve (2.19) for Vn+', (2.18) is solved for vn+', and (2.21) for 

pn+'. The boundary conditions for pressure and velocity are set up in the same way 

as shown earlier in this chapter. 

In (2.19) there is an apparent dilemma of nonuniqueness that we would like to 

point out. If we consider the Helmholtz decomposition of the intermediate velocity 

field vn+' [12] 
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where 

v;"" - curl-free component of v ,  

v,"" - divergence-free component of v ,  

v;'' - curl-free and divergence-free component of v ,  

and three different velocity fields defined by 
v;+l = p + l  - Vn+l 

1 7  

v;+l = Vn+l - - V;+l, 
Vn+l = Vn+l - AtVpn+l, 

we can notice that all these fields have the same vorticity and all are divergence-free. 

Any curl-free vector can be expressed as the gradient of some scalar field h, therefore 

v;" = Vh, and this means 

The Neuman boundary condition for h is 

For general domains fl it is not clear what the values n vy+l, i=1,2,3, should 

be at the boundary. However, by assuming impermeability at the boundary for the 

divergence-free components, v;+' and v,"+' only, we get 

= Atn . Fnlan 

Thus h r A t  - pn+l, and V;+' = Vn+'. Similarly, under the above assumption, 

we see that 
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from which we have V;+' = V;I+l = Vn+'. 

This analysis, given in [12], demonstrates that in order to resolve the uniqueness 

question for an incompressible flow simulation it is sufficient to impose an imperme- 

ability constraint on the boundary for the divergence-free component only. 

The projection method as developed above coincides with the MAC method in 

the interior. However, the treatment of boundary conditions is slightly different.The 

essential difference between these two methods is that for the projection method the 

solution is independent of the prescription of vnS1 on the boundary, while for the 

MAC method it is independent of the evaluation of the normal pressure gradient on 

the boundary. For more details see [23] •˜ 6.3.1 and [8] 5 17.1.4. 



Chapter 3 

Linear Solvers 

The matrices that arise from the discretization of Poisson's equation on a rectangle 

subject to different boundary conditions have block tridiagonal structure. The rapid 

solution of such systems of equations has been studied by many authors [17, 3, 5, 32, 

33, 30, 31, 34, 281. 

The most efficient direct algorithms for solving these systems of linear equations 

are the matrix decomposition method based on the fast Fourier transform (FFT), the 

Buneman variant of the cyclic reduction and a combination of both methods known as 

FA4CR(1) algorithm (Fourier analysis-cyclic reduction; 1-number of cyclic reductions 

steps) [17, 311. A brief description of these methods will be given below. 

3.1 Fourier Analysis 

Consider the large sparse linear system 

Ax = b, 
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where A is block tridiagonal with block order m + 1 

and 

where cr is the ratio of the spacings Ay/Ax and P = (1 + c r 2 ) / 0 2 .  

If we define the discrete Fourier transform bl = Q-'bj then each of the components 

of b; i.e., b:,j, are given by 

The form of A given in (3.2) corresponds to the system obtained by discretiz- 

ing Poisson's equation subject to Neumann boundary conditions. The matrix B is 

tridiagonal with scalar elements 

7 

(n+l)x(n+l) 

B=cr2 

- - 
-2p 2 0 . . .  0 

1 -2p 1 . . .  0 
: 

0 ... 1 -2p 1 

0 . . .  - O -2' - 
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The inverse discrete Fourier transform xj = Qx; is given by 

The eigenvalues of B are 

Multiplying (3.1) by Q-' and substituting x j  and b j  by its Fourier transform, we 

obtain 

Then for each A, we obtain a system of order m + 1 

Hence, the x;,~ can easily be determined by solving a sequence of independent 

tridiagonal system. The solution is then given by the inverse Fourier transform x j  = 

Qxj*. 

Thus summarizing, the algorithm proceeds as follows: 

Compute or determine the eigenvalues A, by (3.7). 

Compute b; = Q-'bj using (3.5). 

Solve the sequence of systems C,i, = b,, where i, and b, are m + 1-dimensional 

vectors formed with the 4th components of all the x; and b;, respectively; and 
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Compute x j  = Qx; using (3.6). 

The details of the algorithm for the remaining standard boundary conditions can 

be found in [3 11. 

3.2 Block Cyclic Reduction 

Given the system of linear equations (3.1) where A is defined by (3.2) and assuming 

that m has the form m = 2k+1 for some integer k (the algorithm is simplified by this 

assumption, but such a restriction [5] has been removed [33, 34]), we have 

BXO + 2x1 = bo, 

xj-1 + Bxj  + xj+l = bj,  j = 1,2, .. . , m - 1 (3.11) 

2xm-1 + Bxm = bm. 

Thus, for j = 2, - .  . , m - 2 

xj-2 + Bxjel + xj = b j 4 ,  

xj-1 + Bxj  + xj+l = bj, (3.12) 

xj + Bxj+l + xj+2 = bj+l. 

Multiplying the second equation of (3.12) by -B and adding, we have 

xj-2 + (21 - B ~ ) x ~  + xj+2 = bj-l + bj+l - Bbj. (3.13) 

Thus, if j is even, the new system of equation involves xj's with even indices. 

Similar equations hold for xo and x,. The process of reducing the equations in this 
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fashion is known as cyclic reduction. Then (3.1) may be written as the following 

equivalent system: 

I 

0 

0 - 

and 

Since m = 2'+' and the new system of equations (3.14) involves xj's with even 

indices, the block dimension of the new system is 2' + 1. The system (3.14) is block 

tridiagonal and of the same form as (3.1), so we can apply the reduction repeatedly 

until we have one block. 

To define the procedure recursively, let 
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Then for r = 0 , 1 , . . . , k  - 1 

@'+'I = 21 - (B('q2, 

by+') - - b!" + b(T) - @')b(T). 
3-2 3+Zr 3 

At each stage, we have a new system of equations 

where 

A('+') = 

and 

Thus, after k steps we have the system 

B(" 221 0 

and the final reduction yields 
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Note that each B(') is a polynomial, say p2r(B), of degree 2' in B;  then (3.21) is 

equivalent to writing 

p2k+1 (B)x2k = b$+'). (3.22) 

Let p2k+1 (x) denote the scalar analogue of p2k+f (B);  then p2k+l (x) will be 

where p 2 k  (x) is given recursively from pl (x) = x and 

If we make the substitution x = -2 cos 8, then 

where C2' (2) is the Chebyshev polynomial of degree 2' with zeros 

Consequently, 

pzk+l (2) = (2 ~ i n ( 2 ~ 0 ) ) ~ .  

Thus, h k + l  (x) = 0 when x = A?+') for j = 1,2, . . . ,2'+' where 

Therefore, p2r (B)  can be expressed in factored form as 

For 1 5 r 5 k, A:) is given by (3.25) and for r = k + 1, A?") is given by (3.26). 
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We note that although B is sparse and easily inverted, the matrices B(') fill rapidly; 

as a result the algorithm becomes expensive in terms of both storage and computa- 

tion. Hence, instead of storing the matrices B('), only the zeros A?) are stored, and 

instead of computing (3.22) we can perform all matrix computations in terms of sparse 

matrices using the factored form of B('). 

Unfortunately, the computation of the right hand sides by) given by (3.16) is a 

numerically unstable process and suffers from a severe loss of significance even for 

relatively small values of r. To overcome this instability [5] let us define: 

where 

In general we have for r = 1,2, , k - 1 

where 
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where 

so that 
0+1) + ( ~ ( k + l )  1 (*+I) 

X2k = P2k )- q 2 k  

Using (3.32) we can rewrite (3.34) as 

Then, x 2 k  is determined by first defining zo = q$+l) and computing zj recursively by 

solving a sequence of tridiagonal systems 

In this manner, all computations can be performed in terms of sparse matrices. The 

vectors qj') are computed from (3.28) starting with 

The remaining qj') are determined from (3.30) by 
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where h = 2'-',r = 1 , 2 , . . .  , k - 1 and j = i2r+1,i = 1,2, . - . ,2k-r  - 1. 

The solution vectors xj are given by (3.17) and (3.30) 

where Xj-2h and Xj+2h are computed at the previous step, and thus are known. 

To summarize, the Buneman's block cyclic reduction algorithm proceeds as follows: 

Compute the matrices B(') using (3.16) and (3.27). 

Compute the sequence of vectors q:) by (3.38) and (3.39). 

Back-solution for xj using the back-substitution (3.37) and (3.40). 

The details of the algorithm for the remaining standard boundary conditions can 

be found in [5]. 

3.3 Fourier Analysis - Cyclic Reduction 

The FACR(1) algorithm is a combination of the two methods which have just been 

described. It begins with 1 steps of cyclic reduction in which the qj') are computed 

using (3.38) and (3.39) for r = 1, - ,1 where I can be chosen so as to reduce the 

asymptotic operation count (I 5 k is yet to be determined). 

With r = I from (3.40) we have 

This system can be solved using the Fourier method. Defining x; = Q-'xj, computing 

qi = Q-~Q, and substituting into (3.41), we obtain 

Since B(') = p21(B), equation (3.42) reduces to n + 1 independent tridiagonal systems 

of order m/2' - 1, 
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where j = 2', 2 2', . . , m - 2'. Once x;, is determined from these systems then xj 

can be obtained from the inverse transform xj = Qxl. Note, however, that only every 

(2')th vector x, has been determined. The remaining xj are determined by I cycles 

of the back-substitution phase, i.e., for r = 1 - 1, - - .  ,0 ,  using (3.40). 

According to [31] the total operation count for cyclic reduction is 3mn log, n (as- 

suming that B is of order n) and the total asymptotic operation count for the matrix 

decomposition method based on the use of the FFT is 2mnlog2n. In FACR(l), 

since 1 cycles of both the reduction and back-substitution are required, the count for 

this portion of the algorithm is 3mnl. The Fourier analysis portion requires 2m/2' 

transforms of length n for a count of (mn/2'-') log, n. Hence, the total count is 

3mn + 2l-'rnn log, n. This expression is minimized at 1 = log, log, n + log(: In 2) or 

1 = log, log, n - 1. Thus, we obtain an asymptotic operation count of 3mn log, log, n 

for the FARC algorithm. 



Chapter 4 

Numerical Simulation 

In this chapter we are going to simulate an unsteady flow of homogeneous incompress- 

ible fluid in a channel with a cavity using the original explicit MAC method given in 

Section 2.2.1. The geometry of the problem and the velocity boundary conditions are 

shown in fig. 4.1. In all but the right open boundary the pressure boundary condi- 

tions are similar to the ones described in Section 2.2.2. On this boundary we chose 

2 = -6, where E (const) is the prescribed pressure gradient for Poiseuille flow. In 

particular, we can choose E = 0; however, it must be clear that this condition is purely 

numerical and does not imply that the real pressure gradient is zero. 

The fluid, initially at  rest, is impulsively started, moving to the right because of 

the inlet velocity action (u,v) = (1,O). This velocity will not change throughout the 

continuing flow history. 

The vortex dynamics of this problem was simulated for Re = lo3 using a time 

interval At = loq3 and the fast direct Poisson solver HWSCRT from the FISHPACK 

Library to calculate the pressure field at each time step. 

In order to ensure that our solution process will not lead to spurious solution we 

compared the 40 x 100 resolution with a finer grid 60 x 150 resolution. The detailed 

comparison of these two grids will be discussed below. With the same purpose and 
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Figure 4.1: Channel with a cavity 

to ensure that the code being used is working properly we computed the dynamics of 

the driven cavity problem for Re = lo4 and cr = 2, obtaining very similar results to 

those of Gustafson and Halasi [14] (see fig. 4.3). 

4.1 Vortex Dynamics 

In the analysis of the vortex motion we are going to follow the four stages given in 

[15]. As it was pointed out there, these stages overlap one another throughout the 

flow. Nevertheless following these stages we can obtain some clarification of the flow 

development in terms of: 

The initial generation of the individual vortex motions. 

The basic large-scale development of vortex structures. 

The important vortex interactions. 

a The long-time tendency of the vortex motions. 

The discussion given below will be based on these four perspectives towards the 

flow development. 
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4.1.1 Generation of Vortex Motion 

The analysis of the generation of vortex motion in a channel with a cavity at Re = 

lo3 is carried out together with a general description of the channel flow shown in 

figs. 4.4,4.5,4.6 and 4.7. The reason why we describe these processes at the same time 

is because even if the flow approaches a final state, the motion generation continues 

throughout the flow; otherwise viscous dissipation would reduce the flow to rest. 

Once the flow is impulsively started there is an immediate single recirculation 

at t = 0.3sec on the left wall of the cavity. This left wall eddy is induced by the 

boundary layer separation at the left vertical wall. The causes of this boundary layer 

breaking are the sharp left corner and the deceleration of the oncoming flow due to 

the viscosity and the no-slip boundary walls. The upper left corner has acted as a 

provocation point. 

The wall recirculation quickly becomes a clearly defined vortex (at 0.5sec). This 

first appearing vortex enlarges and a counterrotating vortex forms on the lower left 

corner. The generation of this vortex responds to the second subprinciple (corner 

sequence) of the space filling principle [15], i.e. the fact that vortices try to fill a 

corner by generating a vortex sequence descending into it. 

Meanwhile, at the upper wall of the channel there appears a well defined eddy, 

that acquires quickly a vortex structure, but it does not last long. After the flow 

enters from the left, it encounters a sudden expansion that generates a pressure drop, 

as shown in fig. 4.6 c). The decrease of the pressure expands throughout the cavity 

width and induces the counterrotating recirculation at the upper no-slip wall. This 

structure remains all the time behind the initial vortex center, it moves slowly to the 

right and dissipates. 

Immediately after the initial vortex separates from the left wall, a similar vortex 

appears at the same place. This new vortex is induced by shear from the counterro- 

tating vortex at the lower left corner, the separation of the initial vortex, the singular 

point and the no-slip boundary wall. 

The second upper vortex gets stronger, taking energy from the main flow and 
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pushes the lower left corner vortex down. The last one is forced to stretch toward the 

bottom of the cavity and splits due to the combined action of the upper vortices. 

A sequence of five of these upper left corner vortices will shed, but only the second 

and the fifth will survive (see the next stage). The first of the last two vortices becomes 

the principal vortex and it is constantly being fed energy coming from the main flow. 

From the sequence of the bottom vortices, it will also take "five" of them to reach its 

final state as a counterrotating vortex at the middle bottom of the cavity. 

4.1.2 Evolution of Vortex Motion 

In this second stage we will describe the history of each vortex as a single isolated 

structure, ignoring as much as possible the interaction with the other vortices. In 

other words, we are going to follow the evolution of each individual vortex motion. 

We will describe our observations in a table, defining by U the upper vortices, 

follow by a number or order of appearance. The lower counterrotating vortices will be 

defined in a similar way by D and the top wall vortex by T. Flow evolution history 

is shown in figs. 4.4, 4.5, 4.6 and 4.7. 

Vortex 

Initial 

Vortex 

Ul 

Time 1 Evolution 

lsec I makes contact with the cavity bottom 

O.3sec 

0.5sec 

2sec I continues strengthening and stretching toward the 

upper left wall eddy 

left wall vortex 

1 center of the cavity 
-- 

get r s t rong  enough to begin inducing Dl in the lower 

I left corner 

8sec I separates from the left wall, is covering almost the 

whole interior of the cavity 
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Principal 

Vortex k 12sec 

Secondary I15~e~ 
Vortex 

u3 

reaches the lower right corner as well as the right 

wall 
-- - 

pushed into smaller area dueto the rise of U2 

and D12 
is getting smaller and weaker (dissipating) 

about to be absorbed (the remaining portion) into 

U2, strengthening the latter 

gone 

new recirculating core induced by the separation of 

U1 from the left wall, combined with the action 

of Dl and no-slip wall 

acquires vortex structure 

continues strengthening and pushes Dl down, 

forcing the last one to. split 

stretches toward the center and the bottom of the 

cavity 

moves into the interior of the cavity 

is about to absorb U1 

makes contact with the left wall 

has reached its final position, to play the role for the 

rest of the flow history as the primary right 

recirculation 

well defined eddy induced by the separation of U2 

from the left wall 

stretches toward the center of the cavity 

fully formed fast strengthening vortex 

has reached the bottom of the cavity 
- -- - - - - 

clearly leaving the left wall dynamics 

has been absorbed by U2 (gone) 
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has been induced by the same source as U2 and Us 

strong enough to influence the split of Dlll 

makes contact with the cavity bottom and separates into 

the interior 

has pushed U2 into smaller area 

is weakening, will compete with U2 

has been absorbed by U2 (gone) 

upper left wall eddy 

is stretching slowly toward the center (still a very 

narrow recirculation) 

Secondary 

Vortex 

expands rapidly due to the vanishing of U4 rivalry 

appears to have an unsuccessful attempt of separation 

from the left wall (at least in the current grid 

resolution) 

is about to reach its final state structure, to become 

the main upper left (large and narrow) cavity vortex 

Secondary r counterrotation induced by U1 

well defined lower left corner vortex 

continues strengthening, occupies most of the region 

1 Vortex left by U1 at separation 

is pushed down by U2 

1 lsec splits (Dl1 and Dl2) due to the combined action of 

U1 and U2 
-- - - - 

occupies the middle bottom part of the cavity and is 

moving fast to the right 

is weakening 

is gone, mostly dissipated 
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Secondary 

Vortex 

Dl1 

lower left corner vortex 

stretches toward the bottom of the cavity 

is forced to split (Dl11 and Dll2) 
well formed middle bottom vortex 

is dissipating fast 

gone 

well defined bottom vortex 

is breaking up into Dllll and Dlllz 
Secondary 

Vortex 

a tertiary recirculation appears between the new two 

vortices, but it cannot compete 

middle bottom vortex 

is weakening, about to disappear 

gone 

well formed bottom eddy 

has stretched toward the bottom Secondary 

Vortex 

Dllll 

well defined vortex 

is about to split 

a barely organized recirculation structure is spawned 

between Dlllll and Dlll12 but it will not last long 

left bottom eddy 

appears to fuse with Dlll12 
-- - - 

has split again, now it is a very weak structure, about 

to disappear 

gone 

fully formed vortex after the last fission of Dllll 
has survived, to become the main counterrotating 

structure of the steady state 
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Figure 4.2: Dl fission process 

Secondary 

Vortex 

T1 

W a l l  

Eddy 

T2 

top wall eddy induced by the drop of the pressure behind 

the initial vortex, as well as the no-slip top wall I 
well formed wall vortex 

is strengthening and moving to the right pushed by the 

main flow 

wall of the channel, inducing a counterrotation 

gone I 
In order to bring a better idea of the Dl sequence of splits a graphic of the fission 

process is shown in fig. 4.2 

The evolution of a fluid flow and its dynamics are very interrelated concepts, so 

the next natural step is to describe the flow dynamics. 

4.1.3 Dynamics of Vortex Motion 

The main objective here is to emphasize the role of vortex interaction. We do not 

pretend to formulate any general principle of such a vast and complex subject as 

vortex motion dynamics; all we are going to do is to describe some aspects of the 
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dynamics of the studied flow. 

If we look at the initial dynamics of the problem we can realize that the initial 

vortex, and as a consequence the vortex dynamics of the flow, starts due to the action 

of the viscous term in the boundary layer near the left vertical wall, i.e. it has a 

viscous origin. Part of the translational motion energy of the instantaneously created 

inlet flow is transferred to rotational motion in order to preserve the continuity of the 

fluid behind the separation point. 

The amount of rotational energy transfer to the fluid near the left corner of the 

vertical cavity wall is sufficient to make possible the generation of a fully organized 

small vortex motion which then continues to grow (energy is constantly fed into it by 

the main flow) and accelerates until it separates from the lower left corner inducing a 

counterrotating recirculation. This new rotational motion acquires its vortex structure 

very fast due to the energy provided by U1 but at the same time with its growth and 

strengthening Dl will contribute to the separation of the initial vortex from the left 

wall. 

An interesting feature of this problem are the pair interactions U2 * U1 and 

U, H U2 ( 2  = 3,4 and 5). All these pairs survive just as long as the opposite-signed 

vortex between them is alive; once the latter disappears (mostly through dissipation) 

a fusion process begins. In the case of U2 * U1, the second one is not strong enough 

to stop the advance of U2 that will weaken, reduce and then absorb U1 (see fig. 4.5 

(I) t = 15sec and (11) t = 16sec ). 

For the next two pairs ( Ug * U2 and U4 o U2 ) the left hand side vortex will 

compete, pushing U2 into a smaller area, but U2 will finally win in the fusion process, 

absorbing the oncoming vortices. The last pair U5 t, U2 will reach a stable state 

(t = 33sec) together with Dlll12 forming a trio that will last for the rest of the flow 

history. 

The Dl split sequence dynamics is based on the strain induced by the recent 

growing upper left corner vortex combined with the action of the respective right 

hand side vortex. The first one pushes the corresponding Dl sequence vortex down 
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and forces it to stretch. Meanwhile the vortex on the right keeps transferring energy 

to it, so at one point this counterrotating vortex has to break up in order to satisfy 

the requirements of the two vortices that are energetically feeding it, i.e. it has to 

play the role of the opposite-signed vortex between the upper pair and to cover the 

lower left corner of the cavity. 

Finally, looking at the flow entering from the left we find out that after 1 lsec it 

behaves almost the same way as if this was a problem of a flow in a straight channel 

(see fig. 4.5 (I)). In other words, once the vortex motions of the flow have filled up 

all the cavity space, this region acts as a closed domain, having very little mixing 

between the main flow and the flow inside the cavity. Hence, we can conclude that 

the flow itself changes the effective geometry of the problem, using the constantly 

entering flow just as an energetic supplier. 

4.1.4 Limits of Vortex Motion 

We have reached the point were a conclusion about the flow's final state has to be 

made. Looking at the development of the physical magnitudes such as kinetic energy, 

pressure and velocity vector field it is clear that the steady state has been attained at  

approximately t = 40sec (see figs. 4.5 (IV), 4.6 (111) and 4.7 (111)). 

The fundamental features of this state are two counterclockwise vortices and 

one vortex with the opposite direction. The momentum scale for the inside flow 

(fig. 4.7 (111)) shows the highest concentration of energy in the cavity located on the 

right hand side of it. This energy is mainly coming from the flow constantly entering 

from the left. The inside flow that is moving along with the previous one hits the 

right wall close to  the upper corner and divides into two streams; one goes down the 

cavity and the other leaves in the opposite direction to join the channel flow. The 

high pressure located close to the upper right corner of the cavity shown in fig. 4.6 

(111) confirms the existence of a stagnation point at the place where the flow splits. 

As we can see in fig. 4.7 (111) there is a very uniform and almost dead region on 
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the lower left side of the cavity. During the basic energy distribution process that has 

taken place in the first stage of the vortex dynamics, the amount of energy the inner 

flow has at its disposal is not enough to feed any recirculation on the lower left side 

of the cavity domain, so in this region the already limited movement is very slow. 

Neither the coarse grid nor the finer grid simulation clarifies the situation in the 

lower left corner. There both, the pressure and the kinetic energy surfaces appear 

to have singularities. It seems that a very fine grid simulation is needed in order 

to decide whether there exists some kind of recirculation or this is just a stagnation 

point. 

Notice that the kinetic energy hill rising just in the cavity-channel boundary re- 

sponds to the parabolic distribution of the problem of a flow in a channel with two 

parallel flat walls (see fig. 4.7 (111)). This corroborates the fact that vortex dynamics 

inside the cavity has transformed the geometry of the problem, generating a closed 

region under the main flow. 

4.2 Coarse Grid vs. Finer Grid 

In the previous section we have analyzed in detail the dynamics of the two dimensional 

flow in a channel with a rectangular cavity having a uniform mesh-size with grid 

spacing equal to 1/60 on both x and y directions. Before we have started working 

on this problem, and in order to investigate possible mesh-size dependence we ran 

the same problem on a coarser grid with a uniform grid spacing equal to 1/40 (see 

fig. 4.8). 

One of the most interesting differences between these, two grids is the fact that in 

the coarse grid U3 instead of U2 plays the role of the principal vortex covering the 

right hand side of the cavity. On the other hand U1 incorporates U2 (see fig. 4.8 (11) 

e) and f ) )  into itself to be absorbed later by U3 at t = 26sec; so in this respect the 

upper sequence order also changes. 

The Dl sequence of splits is hard to follow on the coarse grid and at some points 
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it is barely defined. This is not the case with the top channel recirculation TI, which 

seems to be stronger than the corresponding one on the finer grid and it lasts longer 

(see fig. 4.8 (I)). 

Summarizing we can say that independently of the vortex evolution, differences 

between the coarse and the finer mesh-sizes, the final states of both grids are qualita- 

tively the same. At t z 40 for the finer grid and t x 50 for the coarse grid the steady 

states features of both flows are essentially the same. 

Final Remarks 

Without going into any vortex dynamics details of the unsteady driven cavity problem 

for Re = lo3 and cr = 0.26, we are going to compare the steady state of this problem 

with the final state reached by the interior domain in the channel with a cavity flow. 

Fig. 4.9 shows the existence of a right hand side recirculation on a driven cavity 

problem quite similar to the principal vortex U2 in the channel problem, even though 

the lower right corner vortex seen in this figure is not clear in either of the two above 

analyzed different mesh resolutions for the channel flow. Looking to the momentum 

scale of both problems (see fig. 4.11) we find out that it is mostly concentrated on 

the right side of the domain, having a very uniform flat distribution in the opposite 

region. 

Independently of the fact that pressure and kinetic energy distributions (see 

figs. 4.10 and 4.11) are qualitatively quite similar in the steady state of both prob- 

lems, we should point out the drastic change of the vortex motion on the left part 

of the driven cavity flow (see fig. 4.9 b ) ) .  There is a well defined counterrotating 

vortex covering three quarters of the left cavity wall, where the channel flow used to 

have a "movement" in the opposite direction. The bottom counterrotation Dlll12 has 

disappeared in the cavity problem and what used to be an upper large vortex (Us) 
has become a very narrow and barely defined recirculation in this problem. 

Finally, we have to mention the interesting fact that the differences between these 
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two problems with Re = lo3 will disappear for o = 0.5 or o = 1. For these 

depthlwidth ratios of the interior cavity the channel with a cavity has essentially 

the same steady state as the corresponding driven cavity problem. 

4.4 Conclusions 

During the last few years vortex dynamics has been an active area of research. Vortex 

methods have been applied to a vast variety of fluid flow problems with industry and 

nature as constant suppliers of new challenges in this field, but so far a complete 

theory of vortex dynamics has not been developed. 

The main objective of this thesis is to describe and analyze different aspects of 

the generation, evolution, interaction and long-time tendency of the vortex motion 

in one particularly interesting two dimensional unsteady viscous problem: a channel 

with cavity $ow. Our numerical results can be summarized as follow: 

On the coarse grid all calculations indicate that the solution attains a steady 

state at t e 50sec. This state is characterized by a main "straight channel flow" and 

a closed domain with a trio of a right principal vortex, an upper large left vortex and 

a middle bottom counterrotating recirculation. 

0 On the finer grid all calculations indicate that the solution attains a steady state 

for t = 40sec. This state is characterized by a main "straight channel flow" and a 

closed region with a principal vortex covering more than one third of the cavity (right 

part), an upper left vortex and a counterrotating vortex at the middle bottom. 

On the lid driven cavity problem all calculations indicate that the steady state 

attained by the solution is different from the final state reached by the refined grid 

channel problem, specially on the left side. This is not the case for similar comparisons 

when cr = 0.5 and o = 1. 

Several interesting flow dynamics have also been shown by simulating the normal- 

ized velocity field during the flow history. The Dl fission sequence and the upper 

vortex pair interactions are two particularly good examples of these dynamics. 
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The grid dependence seen in the transition state could be due to the filtration 

of smaller scale dynamic processes, but the interesting result is the fact that these 

unexpected differences did not affect the final states reached by both grids, which 

are essentially the same. These results show that this problem has still some open 

questions and suggest the necessity of further study. 

We believe this research will help in a better understanding of the vortex motion 

nature and will give rise to new interesting questions in this field. The vortex dynamics 

of the unsteady driven cavity problems at Re 2 5 - lo3 and a 5 113 is an interesting 

open problem, and work on this problem is in progress. 



Figure 4.3: Normalized velocity field in a lid driven cavity flow ( Re = l o4 ,  a = 2 ), 
a t :  a ) t = 2 , b ) t = l 8 , c ) t = 2 5 , d ) t = 3 4 , e ) t = 5 2 ,  f ) t = 7 0 , g ) t = 9 6 , h )  
t = R4n and i\ t = Rfin 



Figurc 4.4: (I) Timc-dcvcloprncnt of thc unstcady normalized velocity ficld in a chan- 
ncl with a cavity flow ( Rc = lo3 ) at a) t = O.lsec, 6) t = O.Sscc, c) t = 0.5scc and 
d) t = lsec. 



F i g  4.4: (11 from t = 2scc to t = Eiscc at  onc sccond intcrvds moving to t l ~ c  
right. 



Figure 4.4: (111) i) t = Gscc, j) t = 7scc, k) t = l4scc and I) t = 15scc. 



Figure 4.5: Time-dcvclopment of tlic unsteady normalizcd velocity ficld in the bottom 
hall of the domain ( Re = lo3 ) from (I) t = 8sec to t = 15scc at onc sccond 
intcrvals moving to the right. 



Figure 4.5: (11) 1 = lGsec to t = 23sec. 





Figure 4.5: ( IV)  a) t = 32scc to 6 )  1 = 35scc at onc second intervals; 6 )  t = Ssscc, 
C) t = 40scc, 7) t = GOsec and 0 )  t = 100scc. 



Agurc 4.6: Time-devclopmcnt surIacc and contour plot of prcssurc ( Re = lo3 ) at  
(I) a) t = O.lscc, 6) t = lscc, c) 1 = 2scc and d) t = 3scc 



Figurc 4.6: (11) e)  i = 5sec, f) 1 = 7scc, g )  t = 14sec and h)  t = lGsec 



Figure 4.6: (111) i) t = 25sec, j )  i = fOsec, k) i = 4Osec and I )  t = lOOsec 



x u i  (l-lwc) 
160 

Figure 4.7: Time-devclopmcnt surface and contour plot of kinetic energy scaled by 
lo4 ( Re = lo3 ) at (I) a) t = O.lscc, b) t = lscc, c) t = 4sec and d) t = 7sec. 



Figure 4.7: (11) e) t = IOscc, /) 1 = llsec, g)  t = l3sec and h) t = 14sec. 



Figure 4.7: (111) i) t = 20scc, j )  1 = 3Osec, k) 1 = 4Oscc and I )  t = 100scc. 





Figure 4.8: (11) e) t = 19sec, j )  t = 20sec, g )  t = 25sec and h)  t = 26sec. 



Figure 4.8: (111) i) t = 34sec) j )  t = 36sec) k) t = 3Ssec and I) t = 50sec. 





Figure 4.10: Surfacc and contour plot of pressure ( Re = lo3 ) at  t = lOOsec in a) 
the interior domain of a channel with a cavity flow and b) the driven cavity problem 
with a = 0.26. 

Figure 4.11: Surface and contour plot of kinctic cncrgy scalcd by lo4 ( Re = lo3 ) at 
t = lOOsec in a) the interior domain of a channel with a cavity flow and b) the driven 
cavity problem with cu = 0.26. 
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