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Abstract 

This thesis studies how the performance of a common spatial database operation, 

called spatial join, can be affected by different data models and DBMS platforms. We 

consider three spatial data models: Relational, BLOB ( Binary Large Object Block) 

and Parent-Child Pointer model, which have different degrees of pointer involvement 

at the database schema level. Objectstore and Sybase are chosen as representatives of 

object-oriented and relational DBMS. Our R-tree based spatial join algorithm, which 

is optimized in the step of polygon overlap checking, is presented. We measure the 

performance of this spatial join algorithm against five combinations of data models 

and DBMS platforms. Among other findings, the experimental results show that the 

Relational model does poorly on either DBMS platform, the running time being 3 

to 4 orders of magnitude worse than the others. We introduce a technique called 

application caching that bridges the gap between the storage data structure (the 

data model) and the application data structure. By applying this technique to the 

algorithm runnning against the Relational and the BLOB data models, we show 

how the effect of data modellDBMS platform on performance of spatial join can be 

neutralized. 
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Chapter 1 

Introduction 

1.1 Motivations 

Recently spatial database processing has become an active research area and many 

studies are concerned with the performance of spatial data structures. Typically, a 

number of data structures and/or algorithms are considered, and then their perfor- 

mance are evaluated either analytically (e.g., [I I]) or experiment ally (e.g., [4], [13], 

and [I]). In this thesis, we take a different approach to performance study of spatial 

database processing, which should complement the traditional ones. Assuming an 

algorithm has been selected for implementation, we consider how the performance of 

this algorithm may be affected by various implementation strategies. In most perfor- 

mance studies, analyses or experiments are mostly conducted in a system environment 

that is not representative of the system environments for many real-life applications. 

For example, many use the number of disk accesses as the performance metric, which 

implies the algorithm runs directly on the I/O system of the operating system. In an 
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application environment, however, many GIs (geographic information systems) use 

database systems (DBMS) to store their spatial and attribute data. Neither the end 

user nor GIs vendorlresearcher has direct access to the I/O system. The I/O ac- 

cessing is determined by the DBMS platform which controls how data are physically 

stored and the spatial data model which presents to the application a logical view of 

data. (In this thesis, spatial data models are meant to be only a slightly more abstract 

form of data schema at the DBMS level.) In comparing the performance of the same 

algorithm across different data models and DBMS platforms, we hope td gain insight 

into how an algorithm interacts with data models and DBMS platforms, which may 

lead to further optimization of the overall performance, for a given data model and a 

given DBMS platform. 

With the advent of a next generation of database systems, generally known as 

Object-Oriented DBMS (OODBMS), it is natural to ask whether OODBMS is a 

more suitable platform than RDBMS (Relational DBMS) for implementation of GIs 

applications. In the research literature, GIs, along with CAD, CASE and others, is 

generally considered to be an application which these OODBMSs are designed for. 

Unlike CAD and CASE, however, most GISs continue to rely on relational DBMS 

as the data store. Even within the academic GIs community, there is an on-going 

debate on this issue. In the NCGIA (National Center for Geographic Information and 

Analysis) Core Curriculum on GIs [19], there is a comment that some OODBMSs may 

not be well-suited to GIs applications. It is not clear whether it is the object-oriented 

data modelling technique or the performance of OODBMS vis-a-vis RDBMS that is 

called into question. In any case, it is indicative of the need for more research in this 

direction. In this thesis we choose Objectstore and Sybase, as the representatives of 

OODBMS and RDBMS, respectively. 
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There is a general perception that data models are intrinsically linked to specific 

DBMS platforms. For example, pointers may be included in a persistent (storage) 

data structure under OODBMS, while in a RDBMS, all persistent data are flat files 

in some normal forms. Here we argue that excluding physical pointer representation, 

the same data model (schema) can be defined on both OODBMS and RDBMS, and 

they are routinely done in many spatial database applications. For example, one can 

define flat files on an OODBMS, which is a common data model for (huge) attribute 

data associated with geographic objects. On the other hand, many RDBMS now 

provide a BLOB (Binary Large Object Block) data type, which is defined as part of 

a relation, while in implementation there is a pointer linkage between the contents 

of the BLOB attribute and those of other attributes. Spatial data models at the 

schema level have great impact on performance of the application since the data 

model determines how data may be accessed, e.g., by pointer (address) or by query 

(associative retrieval). Often a spatial application may not get to choose a data model 

which is most optimized for the application. This may be because the data model is 

pre-defined by the vendor who supplies the data (e.g., Maps used in Census [37]), or 

because the same data set being shared by other applications has a data model which 

is a compromised choice. In this thesis, we design three different spatial data models 

to study their impact on the performance of the application. 

1.2 Thesis Objectives 

This thesis uses a rather unusual method to study the performance issue in spatial 

database processing. We hope to get the perception in whether it is the spatial 

data modelling technique or the DBMS architecture that affects the performance of 
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spatial database processing. We design and implement some experiments to test the 

performance of one spatial application against different spatial data models and DBMS 

platforms. One goal of this thesis is to get some practical experience in answering the 

above question. 

If it is true that for most non-traditional applications, OODBMS is better suited 

than RDBMS because of its pointer 'de-referencing' facility, one immediate question 

is whether it is possible to make RDBMS more efficient since most GIs still depend on 

RDBMS as the data store. From Ju Wu's research thesis [16], the answer is a positive 

one. In that project, in order to narrow the performance gap between OODBMS and 

RDBMS in one specific application - DSQL (Dynamic Spatial Query Language), they 

came up with a technique called Preloading which simulated ObjectStore7s Memory 

Mapping and Pointer Swizzling method to "load the entire database into the client 

machine's virtual memory and handle the object by its virtual memory address instead 

of the relational key". In this thesis, we borrow and improve this Preloading idea in 

our performance study on spatial data modelling technique and DBMS platform. We 

call this strategy application caching in order to distinguish it from client caching in 

Objectstore. 

1.3 Methodology 

The spatial application we choose for the performance study is called spatial join, 

which is a common spatial database operation, and has been studied in [23], [I], [ll]. 

It is similar to the join operation in the relational database, but the two operands 

of the operation are sets of polygons instead of tuples from two relations. Like the 
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relational join operation, spatial join is a complex operation, and spatial indices are 

often needed as a filter to eliminate those pairs of polygons that are clearly non- 

overlapping. The algorithm we use for implementation is an improved version over 

many published algorithms which tend to focus exclusively on the choice of spatial 

indices. 

We consider three data models for the spatial join operation : Relational, BLOB 

and Parent-Child Pointer model, which have different degrees of pointer involvement 

at the database schema level. That means data accessing is done by querying or by 

pointer 'de-referencing'. 

There have been several studies on performance comparison between OODBMS 

and RDBMS. The most recent one is reported in [6].  For that study, a suite of queries 

(e.g., insert, lookup, and traversal) are performed against an engineering database 

(i.e., a network of parts wired together). This database is stored as a collection of 

flat files on an RDBMS and as pointer network on an OODBMS, respectively. It is 

shown that the performance of these operations on an OODBMS is, as a whole, much 

better than that on an RDBMS primarily due to the overhead of each SQL call to the 

RDBMS server and the ability of OODBMS to cache data on the client workstation. 

This research is not a benchmark study of DBMS platforms; its emphasis is on spatial 

database processing. Instead of simple operations, we study a complex operation, 

and how it interacts with various data models and DBMS platforms. Nonetheless 

the findings of the benchmark study have motivated us to conduct this research. The 

representatives we choose for the two different DBMS platforms are Sybase (RDBMS) 

and Object Store (OODBMS). We compare the performance of our R-tree based spatial 

join algorithm against five combinations of data models and DBMS platforms. The 
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five combinations are : Relational and BLOB model on Sybase, Relational, BLOB 

and Parent-Child pointer model on ObjectStore. 

1.4 Thesis Overview 

The rest of this thesis is organized as follows. The spatial join operation is discussed 

in Chapter 2. Spatial join definition and algorithm as well as some related works in 

both computational geometry and spatial database areas are presented there. The 

spatial data modelling is discussed in Chapter 3. We consider three different data 

models Relational, BLOB and Parent-Child Pointer model for our experiment. These 

models have different degrees of pointer involvement at the database schema level, 

so that data fetching methods from underlying database are different. We compare 

the two different DBMS platforms (object-oriented and relational) in Chapter 4. The 

representatives we used in our research are ObjectStore and Sybase. The application 

caching technique is also discussed there. The experimental setups which include 

implementation environment, polygonal data generation and the six data sets used in 

our experiments are described in Chapter 5. In Chapter 6 we analyze the experimental 

results. The conclusions of the thesis are presented in Chapter 7. 



Chapter 2 

Spatial Join 

Spatial join is a basic geometric calculation operation. It can be found in many GIs 

applications. Basically, spatial join is a set operation that operates on two sets of 

spatial objects. The output of this operation consists of pairs of spatial objects, one 

from each input set. In GIS there are always many different maps, such as soils, crop 

productivity, land usage, time zones, administrative areas, etc., for each geographical 

area. Thus spatial join is a very useful spatial operation as it can synthesize informa- 

tion found in different maps of the same geographical area and can therefore answer 

complex spatial queries. For example, "find all the administrative areas in a certain 

time zone" can be answered by performing a spatial join operation on the time zone 

map and the administrative area map. 

In this chapter, we will first discuss our R-tree based spatial join algorithm, fol- 

lowed by a short literature survey on spatial join. 
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2.1 Algorithm 

In this thesis, the spatial objects for the spatial join operation are polygons. We 

represent a map as a set of non-overlapping polygons. The spatial join algorithm 

is an R-tree based two-step algorithm. Before presenting the algorithm, some basic 

definitions and assumptions are given. In addition, we will briefly describe the R-tree 

Spatial Indexing Method (SIM). 

2.1 .I Definitions 

In our spatial data models, polygons are simple polygons which have no intersecting 

edges and no holes. Other entities comprising each spatial data model include vertex, 

edge, node and chain. According to Hong Fan's thesis [14], we give a brief definition 

of these entities below: (See Chapter 3 for examples of these entities.) 

vertex: a vertex is a point in the 2-dimensional space. 

edge: an edge is a straight line between two vertices. 

node: a node is a vertex at which more than two edges terminate. 

chain: a chain consists of the sequence of edges between two adjacent nodes. 

polygon: a polygon is a closed sequence of chains. 

The spatial join operation is about detecting overlapping polygon pairs from two 

polygon sets. There are two ways in which two polygons may overlap: partial overlap 

and total overlap. Two polygons partially overlap when (at least) one of the edges of 
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one polygon intersects or overlaps an edge of the other. Two polygons overlap totally 

when one is contained (enclosed) in another. Our spatial join algorithm is concerned 

with only partially overlapping polygons. The formal definition of the. operation is 

given below: 

Definition : Given two sets of polygons S and R,  the spatial join operation returns 

all pairs of polygons (s, r), where s belongs to S, r belongs to R, and s and r overlap 

partially. 

2.1.2 R-tree SIM 

Since spatial operations usually deal with 2 or 3 dimentional data, traditional B- 

tree indexing technique used in many DBMSs is not suitable for multidimensional 

situation. A large number of spatial indexing methods (SIM) have been proposed 

to improve the performance of spatial operations. These include R-trees [12], K-D- 

B-trees [26], Quadtrees [29], [30], [31], Grid File [20] and so on. Our spatial join 

algorithm is based on one popular SIM - R-tree. The R-tree is a hierarchical SIM 

dealing with rectangular data. Each non-leaf node of the R-tree contains entries of 

the form (MBR, child-pointer), where MBR is a Minimum Bounding Rectangle of all 

the MBRs in its child node, and child-pointer is the address of its child node. The leaf 

node has entries of (MBR, object-id), where MBR is the object's MBR and object-id 

refers to a certain object. The node size M is defined as the maximum number of 

entries in each node. M is always chosen so that a node fits a page and I/O cache 

block. That is why R-tree is regarded as a page-oriented SIM. The number of entries 

in each node lies between m and M, where m = [MI21 is the minimum number of 

entries per node. 
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2.1.3 R-tree Based Algorithm 

There are many similarities between the spatial join operation and the join operation 

in relational algebra, one of which is that the operation is quadratic in complexity if a 

brute-force nested loop algorithm is used. (The basic spatial join algorithm is shown 

below.) Thus, a spatial index is frequently used by a spatial join algorithm, much 

as a B-tree index is used by a join algorithm. Incidentally, the most frequently used 

spatial index, R-tree [12], or one of its variants, e.g. R+-tree [9] and R*-tree [I], is 

modelled after the B-tree. 

INPUT : m polygons in Mapl, n polygons in Map$ 

OUTPUT : Set of pairs (Pi, Qj), such that Pi belongs to Map1 and Qj  belongs to 

Map2, and Pi and Qj intersect. where 0 < i < m, 0 < j < n; 

BEGIN 

1. For each polygon Pi from Mapl, 0 < i < m 

2.1. For each chain C of polygon Pi 

2.2. For each chain C' of polygon Q j 

2.2.1. For each edge E of chain C 

2.2.2. For each edge E' of chain C' 

if E intersects with E', report intersection of Pi and Qj. 

END 
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Unlike the relational join algorithm, the purpose of a spatial index is to reduce the 

number of pairs of polygons that must be subjected to the polygon (partial) overlap 

test. This is because R-tree, or any of its variant, stores only rectangle approximations 

of the polygons. (See Fig. 2.2 for some examples of MBR). Given a polygon r in the 

polygon set R, using an R-tree index, one can locate only those polygons in S whose 

MBRs overlap with the MBR of r. Further computation is required to determine, 

precisely, which of these polygons actually overlap with r. Thus our spatial join 

algorithm contains two major steps: 

R-Tree Join: This preprocessing step acts as a filter to find all potentially 

overlapping polygon pairs. This is accomplished by checking for MBR overlap 

of each polygon in R against an R-tree of MBRs for polygons in the other set, 

S. 

Polygon Overlap Computation: For each pair of polygons returned by R-Tree 

Join, we check whether they really overlap. This is done by checking for inter- 

section of all possible pairs of chains. 

Since we do not assume existence of any auxiliary data structure, the construction 

of the R-tree is included in our algorithm. (As an option, we can also store the R-tree 

in the database.) Thus we can express our algorithm in the following sequence of 

major operations, which we call, the execution plan. 

1. Open the database 

2. Construct an R-tree 

3. Compute R-tree join 
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4. Perform polygon overlap computation 

5. Close the database 

Up to now, our algorithm is very similar to other published two-step spatial join 

algorithms. After an initial implement ation, it was discovered that the polygon over- 

lap computation (step 4 in the plan) consumes most of the CPU time! This bias 

would reduce the spatial join to an unsuitable candidate for our experimental pur- 

poses. Fortunately, we have managed to introduce the following two techniques during 

the polygon overlap computation, which result in drastic reduction in the execution 

time. 

Utilizing topological information: Since the spatial data model can provide ad- 

ditional topological information for each chain, its left and right polygons, more 

information can be obtained when two chains intersect. Consider Fig. 2.1 which 

shows two polygons each from Mapl and Map2. If during the checking for poly- 

gon overlaps of any pairs of polygons from Mapl and Map2, chain AB is found 

to intersect chain CD, then one can conclude that all four pairs of polygons over- 

lap. A 2-dimensional matrix is used to store this information, which is consulted 

each time before the pair-wise polygon checking is performed. It seemed that 

this technique would have reduced the execution time by about 75% because 

one pair of intersecting chains results in four pairs of intersecting polygons. But 

the experimental results show that this technique just reduces the execution 

time of step 4 by 15%. The reason for this is the result set from R-tree join 

step always has at least 113 polygon pairs that do not really overlap. We call 

them false candidate pairs. The polygon overlap computation for all these false 
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candidate pairs is most time-consuming since each chain in one polygon has to 

be checked with all the chains in the other one before we find out that they do 

not overlap. Time used on false candidate pairs cannot be reduced by utilizing 

topological information because no chain pair overlaps each other. Therefore, 

the performance of step 4 is improved by only 15% instead of 75% after using 

more topological information. 

Figure 2.1: Intersecting chains AB and CD imply 4 pairs of intersecting polygons 

Utilizing M B R  intersection in format ion  ( f rom the  R-tree Join):  Recall that 

even if the MBRs of two polygons overlap, the two polygons themselves may 

not overlap. Conversely, if these polygons do overlap, the overlapping region 

must be confined to the overlapping region of their respective MBRs, which for 

convenience is called RECT. We further infer that only those chains intersecting 

RECT( partially or totally) may intersect. In particular, if there are no chains 

from ei ther polygon intersecting RECT, the two polygons cannot overlap. By 

applying a sort of line clipping algorithm in Graphics [27] to determine whether 
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the edges intersect RECT instead of checking whether two edges intersect each 

other, the performance can be significantly improved. Thus another filtering 

process is introduced in step 4 to reduce the polygon overlap computation. The 

idea is to calculate the intersection of two overlapped MBRs from R-tree join 

step instead of checking the two polygons directly. The result is another small 

rectangle, say RECT, such as the shaded region in Fig. 2.2. All chains of Pi 

and Qj  outside RECT are excluded from consideration. For the remaining ones, 

edge-by-edge intersection checking is done for all possible pairs of edges from 

Pi and Qj. For example, in Fig. 2.2, only edges AB and BC in polygon Pi are 

checked with edges XY and YZ in polygon Qj. 

Thanks to this technique, the computation has been further reduced by 80-90%. 

Figure 2.2: Only edges AB and BC are checked with edges XY and YZ 

The detailed algorithm is presented below : 

INPUT : m polygons in Mapl,  n polygons in Map2, where m 5 n; 
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OUTPUT : Set of pairs (Pi, Qj), such that Pi belongs to Mapl and Qj  belongs to 

Map2, and Pi and Qj  intersect, where 0 < i < m, 0 < j < n; 

BEGIN 

1. Initialize the result matrix Mn,, by setting all its elements to 0. 

2. Create R-tree R T  for the Map2 which has the larger number of polygons. The 

MBR of each leaf node is the MBR of each polygon. 

3. For each polygon Pi in Mapl, where 0 < i < m 

3.1. Read its MBR Ri 

3.2. Starting from N = the root of R-tree RT, for each element e of node N 

with MBR R: 

if Ri intersects with R: 

if N is a leaf node, record pair (Pi, Q,); 

if N is a non-leaf node, for each child node of element e, let N be that 

child node and repeat 3.2; 

4. For each pair (Pi, Qj) recorded in the third step, where 0 I i < m, 0 I j < n 

4.1. if M[P;, Q,] == I ,  goto 4; 

4.2. Initialize edge sets ES1 and ES2 to the empty set. 

1 .  
4.3. Compute the intersection of MBRs of Pi and Qj, call it R; 

I 4.4. For each chain C of polygon Pi 

I ,  4.4.1. For each edge E of chain C 
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if E is not outside R, insert E to edge set ES1; 

4.5. If edge set ES1 is empty, goto 4; 

4.6. For each chain C' of polygon Qj  

4.5.1. For each edge E' of chain C' 

if E' is outside R, insert E' to edge set ES2; 

4.7. If edge set ES2 is empty, goto 4; 

4.8. For each E of edge set ESl,  suppose E also belongs to Pk 

4.8.1. For each E' of edge set ES2, suppose E' also belongs to Q1 

5. For each M[i, j] == I 

report intersection Pi and Qj. 

END 

The experimental data showing the improvement of our spatial join algorithm will 

be presented in Chapter 6 after we explain all the important concepts, such as spatial 

data modelling, Sybase and Objectstore platforms, application caching, and describe 

the experiment setups which include implementation environment and data sets. 

2.2 Literature Review on Spatial Join 

The polygon intersection problem is not a new topic in the field of computational 

geometry. There have been many studies on finding optimal intersection algorithms 
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for basic geometrical elements such as segment in the literature [34], [2] and [3]. The- 

oretically, these algorithms are very efficient. However, they always require complex 

auxiliary data structures and extensive preprocessing of raw data. 

With the spatial database becoming an active research area, researchem in database 

area have been working on spatial data query processing which also needs to manip- 

ulate geometric objects. Many practical solutions for spatial operations have been 

developed and implemented for spatial database (e.g., [22], [24], [23], [4], [ll], [36], 

> . 

2.2.1 Spatial Overlap Query in PROBE 

PROBE[22] is a research project for an object-oriented image database system. In 

PROBE, spatial objects are constructed by point sets entities. The point set of an 

object is a set of points in the space occupied by that object. Point set has a well- 

defined set of operations suitable for many applications. Spatial overlap operation 

of two spatial objects could be performed on their corresponding point sets. The 

problem with this approach is its large time and space requirements. For this reason, 

PROBE introduces a geometry filter : "a k-D point set indicating a spatial object 

is approximated by superimposing a k-D grid of cells on the space." This grid rep- 

resentation is a conservative approximation of the object. The spatial overlap query 

in PROBE is also processed in two steps. First, a geometry filter is involved. Next, 

ordinary geometrical computation is performed to refine the candidate set. 

One of the interesting part of this research is the geometry filter. Spatial overlap 

operation for grid representations can be implemented simply - the same logical AND 
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operation is applied for each grid cell. However, in this case, the performance is still 

a big problem when grid resolution is high. PROBE overcomes this drawback by 

encoding the grid. "The encoding is obtained by recursively partitioning the space 

where the object is occupied until the boundary of the object is obtained or the 

maximum resolution is reached." One region obtained by a sequence of splitting has 

a unique corresponding bit string which is called z value of that region. By sorting 

z values lexicographically, z order is obtained. Z order is a kind of mapping from 

k-D space to 1-D space with the spatial proximity preserved. Clustering can be 

achieved for efficient disk access by preserving spatial proximity. Another practical 

benefit of using Zorder is that traditional indexing methods (B-tree, Bf-tree) or other 

conventional file organizations can be used for spatial database. Under this encoding 

scheme, spatial overlap can be performed by checking whether a z value in one input 

is a prefix of that in the other input. 

2.2.2 Spatial Join Based on Different Approximations 

In [4], an approximation-based query processing mechanism for managing large sets of 

complex polygonal objects was introduced. Just like many other methods of spatial 

query processing, the approximation-based query processing is also performed in two 

steps, filter step and refinement step. But it has two important features in addressing 

the efficiency issue of managing geometric objects. 

0 To make the filter step as fast and accurate as possible, the approximation of 

object should be simple and should have a good approximation quality. This 

research designed and investigated several convex conservative approximations 
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which meet these requirements: Minimum Bounding Rectangle, Rotated Mini- 

mum Bounding Rectangle, Minimum Bounding Circle, Minimum Bounding El- 

lipse, Convex Hull and Minimum Bounding n-corner. From their testing results, 

in most cases (different complexity of objects and different type of queries), "the 

approximat ions 5-corner, ellipse and rotated bounding rectangle clearly outper- 

form the bounding rectangle which is used in many spatial query processing 

mechanisms." 

Instead of using complicated Spatial Indexing Methods, such as sphere tree[25], 

cell tree[lO] , polyhedra-tree [15] or P-tree[33], R*-tree which is originally de- 

signed for bounding rectangles is adopted to organize the non-rectangular ap- 

proximations. In this case, spatially adjacent approximations are grouped into 

one leaf-node. Since more complex approximations need more storage, the node 

size is determined by the complexity of the approximation and it will further 

influence the performance of the Spatial Indexing Method. Just like an ordinary 

R*-tree, each non-leaf node has elements of form (MBR, child-pointer) and thus 

can be organized by the R*-tree in the normal way. 

Both our spatial join algorithm and this approximation-based query processing 

are aimed to reduce the execution time in the refinement step during which a complex 

and time-consuming computational geometry algorithm is performed. Our strategy is 

to design another filter processing to simplify the polygon overlap computation. This 

research focuses on investigating different object approximations with high approxi- 

mation quality to reduce the false hits from the filter step. 
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Spatial Data Models 

3.1 Spatial Data Model Representat ions 

It is widely known that the representations of spatial data models fall within two 

major classes : vector representation and raster representation. The vector data 

model represents geographical feature by explicitly defining its component geometric 

entities, such as points, lines and polygons, as well as the topological information 

among these entities. In the raster data model, the whole space is participated into 

small pieces or cells (like PROBE project). Each object is approximated by a set 

of cells overlapping the object. The representation is therefore conservative, and the 

precision is limited by the resolution of the cell. Compared to its raster equivalent, the 

vector data model has much higher precision while representing objects,'but requires 

much more complicated geometrical computations. 

We adopt the vector data model representation for all three spatial data models 
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designed for our spatial join algorithm. 

3.2 SpatialDataModels 

Three spatial data models are considered in this thesis. These are chosen as represen- 

tatives from a spectrum of data models, according to the extent to which pointers are 

present in the data model. These models are: Relational, BLOB (Binary Large Object 

Block), and Parent-Child Pointer model (or simply Pointer model). Although Rela- 

tional and BLOB models are actually designed for the relational DBMS platform, both 

of them can also be implemented in an object-oriented database. In this case, data 

accessing has to be done by query (associative retrieval) instead of 'de-referencing7. 

Obviously, there is a trade-off between performance and flexibility. With pointers, 

access from one object to other associated objects is very fast, and is more so for 

the current generation of OODBMS. Relational data model, on the other hand, uses 

keylforeign-key to associate related objects. A query is the only way to access data 

from the database. This results in a reduction in the performance. However, pointer 

linkage tends to 'hard-wire' association of objects which works for some applications 

but may not work well for other applications which require different access strategies. 

A spatial data model for spatial join is not very different from that for other 

spatial applications since it must define all basic entities in a polygonal map, and 

its topology information of the polygons therein. The only application-specific infor- 

mation included in the spatial data models we use is about the Minimum Bounding 

Rectangle (MBR) of each polygon. 
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3.2.1 Relational Data Model 

In this spatial data model, each polygon is broken into multiple entities which are 

stored in separate tables. The data model is constructed as a four-level hierarchical 

structure - polygon, chain, edge and vertex. In this model most of the topology 

information is provided by foreign keys. The schema definitions and some sample 

tuples of these four tables are given below. These tables are defined according to the 

common relational data model such as the one described in [7]. This data model can 

also be implemented on Objectstore. Since in the schema definitions only two basic 

data types (int and float) are used, the only thing we need to do is to translate each 

table to a class. 

This model, while containing all information required by our spatial join algorithm, 

is designed without considering the efficiency of this or other applications. Many 

geometric data models are defined in a similar way. It is clear that this model is 

not 'compatible' with the data structure requirement of our algorithm. For example, 

many database accesses and joins are needed to get all the information of one polygon 

required by our algorithm. 

Table  POLYGON 

( PolygonID 

ChainNum 

S t  a r t  Chain 

MBR-llx 

MBR- 11 y 

MBR-urx 

i n t  , 

i n t  , 

i n t  , 

f l o a t ,  

f l o a t ,  

f l o a t ,  

/* Polygon I D  */ 

/* No. of c h a i n s  i n  t h e  polygon */ 

/* The f i r s t  cha in  i n  t h e  polygon */ 

/* The low- le f t  c o o r d i n a t e  of polygon 's  MBR */ 

/* The upper- r ight  c o o r d i n a t e  of polygon's  MBR */ 
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Figure 3.1: An Example of a Polygonal Map 

MBR-ury f l o a t  ) 

Table  CHAIN 

( ChainID i n t ,  /* Chain I D  */ 

EdgeNum i n t ,  /* No. of edges i n  t h e  cha in  */ 

S t  ar t  Edge i n t ,  /* The f i r s t  edge i n  t h e  cha in  */ 

Lef tPo ly  i n t ,  /* The polygon on t h e  l e f t  s i d e  of t h e  cha in  */ 

NextChainInLeftPoly i n t ,  /* The nex t  cha in  i n  t h e  l e f t  polygon */ 

RightPoly  i n t ,  /* The polygon on t h e  r i g h t  s i d e  of t h e  cha in  */ 

NextChainInRightPoly i n t )  /* The nex t  cha in  i n  t h e  r i g h t  polygon */ 

Table  EDGE 
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Table 3.1 : Polygon Relation 

Table 3.2: Chain Relation 

MBR-urx PolygonID 

PI 
~2 

( EdgeID i n t ,  /* Edge I D  */ 

Vertex1 i n t ,  /* The f i r s t  v e r t e x  i n  t h e  edge */ 

Vert  ex2 i n t ,  /* The second v e r t e x  i n  t h e  edge */ 

Next Edge i n t  ) /* The nex t  edge i n  t h e  cha in  */ 

MBRllx MBR-ury 

NextChainInRightPoly 

c2 
c4 

Table  VERTEX 

( VertexID i n t  , /* Vertex I D  */ 

x f l o a t ,  /* x  c o o r d i n a t e  of v e r t e x  */ 

Y f l o a t  ) /* y c o o r d i n a t e  of v e r t e x  */ 

MBRlly ChainNum 
3 
3 

ChainID 

c l  
c3  

Start Chain 
cl  
c3 

StartEdge 

e l  
e7 

EdgeNum 

3 
3 

-- -- 

Table 3.3: Edge Relation 

LeftPoly 

P3 
PI 

EdgeID 
el  
e2 
e3 

Endvertex 
v2 
v3 
v4 

Startvertex 
vl 
v2 
v3 

NextChainInLeftPoly 

c5 
c l  

NextEdge 
e2 
e3 
nil1 

RightPoly 

PI 
~2 



C H A P T E R  3. SPATIAL DATA MODELS 

Table 3.4: Vertex Relation 

3.2.2 BLOB Data Model 

The major difference between this model and the Relational data model is the addition 

of the BLOB data type, which does not have a fixed length. BLOB data type is the 

answer of RDBMS vendors to the user's need for the DBMS to handle non-text data, 

such as images. It is also frequently used as a device to handle variable-sized text data. 

Many GIs applications represent their map data in either images (raster-based) or 

text (vector-based). In this thesis, although we choose to represent a map as a set of 

non-overlapping polygons, BLOB data type is still very useful because each polygon 

has a variable number of chains, each of which in turn has a variable number of 

vertices. BLOB data type has another implication that is important to this research. 

Sybase's equivalent of BLOB, called image data type, is capable of holding up to 

2,147,483,647 bytes of binary data. Image data is stored, internally, on a linked list (s) 

of data pages separated from other data storage for the relation [35]. It is in this sense 

that the BLOB data model is a compromise between the relational model (strictly no 

pointers) and the parent-child pointer model (explicitly defined pointers). 

Our BLOB data model consists of two relations: polygon and chain, each of which 

has an image attribute. 

t a b l e  POLYGON 

( PolygonID i n t ,  / * P o l y g o n I D * /  
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I PolygonID I ChainNum I MBRllx I MBRlly I MBR-urx I MBR-ury .I ChainBuf I 

Table 3.5: Polygon Relation 

ChainNum 

MBR-llx 

MBR-lly 

MBR-urx 

MBR-ury 

ChainBuf 

ChainID 

c 1 

t a b l e  CHAIN 

( ChainID 

Lef tPo ly  

Right  Poly  

Vert  exNum 

Ver t  exBuf 

Table 3.6: Chain  elation 

i n t ,  /* No. of c h a i n s  i n  t h e  polygon */ 

f l o a t ,  /* The low- le f t  c o o r d i n a t e  of polygon 's  MBR */ 

f l o a t ,  

f l o a t ,  /* The upper- r ight  c o o r d i n a t e  of polygon 's  MBR */ 

f l o a t ,  

image ) /* Sequence of c h a i n s  i n  t h e  polygon */ 

LeftPoly 

~3 

i n t  , /* Chain I D  */ 

i n t  , /* The polygon on t h e  l e f t  s i d e  of t h e  cha in  */ 

i n t  , /* The polygon on t h e  r i g h t  s i d e  of t h e  cha in  */ 

i n t  , /* No. of v e r t i c e s  i n  t h e  cha in  */ 

image ) /* Sequence of v e r t i c e s  i n  t h e  cha in  */ 

Objectstore does not support BLOB, or image data type. Instead we use the 

0s-List construct as the equivalent in order to implement the BLOB model on Ob- 

jectstore. An 0s-List is a parameterized class, which is used to define 'an arbitrary 

RightPoly 

~1 
VertexNum 

4 
Vert exBuf 

x l  v l  x2 v2 x3 v3 x4 v4 
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collection of objects belonging to the same class. Objectstore allows many ways to 

access objects in this collection, but for our purposes here, this collection is used in 

the same way as the attributes stored in an image attribute. 

c l a s s  Vertex ( 

p u b l i c  : 

f l o a t  x ,  y ;  

c l a s s  Poly ( 

p u b l i c  : 

i n t  po ly id  

RECTANGLE *MBR ; 

i n t  chainnum ; 

0s -L i s t< in t*>  chainbuf ;  

c l a s s  Chain ( 

p u b l i c  : 

i n t  c i d  

i n t  l p o l y i d ;  

i n t  r p o l y i d ;  

indexable ;  

/ /  No. of c h a i n s  

// Sequence of cha in  i d s  

indexab le ;  

/ /  l e f t  polygon i d  

// r i g h t  polygon i d  

i n t  vert icenum; // No. of v e r t i c e s  

os,List<Vertice*> v e r t i c e b u f ;  // Sequence of v e r t i c e s  
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3.2.3 Parent-child Pointer Data Model 

Even though the BLOB data model provides pointer access to variable-sized data, 

there are two major limitations of BLOB. First, there is no way to address directly a 

specific segment within the image data. Of course, once the data is in memory, any 

part of the image data can be addressed, but the entire image must be brought into 

the memory prior to that. Second, there cannot be any image field within the image 

field. This is because no explicit pointer is allowed in the model. The implication is 

that it is impossible to build multi-level hierarchies with BLOB data type. 

The Parent-child pointer data model provides the flexibility that is required to 

model the storage data structure (i.e., the layout of the data in the storage) as closely 

to application data structure as possible. This is the case for the data model (schema) 

below which is optimized for the purpose of this application. For example, during the 

polygon overlap computation, information about a polygon's chains are frequently ac- 

cessed. Likely, all edges (or their vertices) are frequently accessed from the chain they 

belong to. The parent-child pointer model supports fast accesses in these situations. 

Clearly, this pointer data model can be implemented only on the OODBMS plat- 

form. 

c l a s s  Ver tex  ( 

p u b l i c  : 

f l o a t  x ,  y ;  

3; 

c l a s s  Chain ( 
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p u b l i c  : 

i n t  ChainID ; // Chain I D  

i n t  Le f tPo ly ;  // L e f t  polygon i d  

i n t  RightPoly;  // Right  polygon i d  

i n t  VertexNum; // No. of v e r t i c e s  

Vertex VertexBuf [Numof Vert ices] ; / /  Sequence of v e r t i c e s  

c l a s s  Polygon ( 

p u b l i c  : 

i n t  PolygonID; // Polygon I D  

RECTANGLE *MBR ; // The MBR of t h e  polygon 

i n t  ChainNum; // No. of cha ins  

Chain *ChainBuf[NumofChains]; // P o i n t e r s  t o  cha ins  

3 ;  

The main difference between BLOB and the Parent-child pointer model is the way 

in which chain information is stored in the polygon structure. In the BLOB model, a 

sequence of chain IDS that form the polygon are stored. In this case, database queries 

based on the chain IDS have to be performed in order to get chain information. On 

the other hand, in the Parent-child pointer model, the pointers to the chains are 

saved in the polygon. Thus, chain information can be obtained by 'de-referencing' 

the pointer. As we will see in the performance analysis in chapter 6, this difference 

results in substantially different performances. 



Chapter 4 

DBMS Platforms and Application 

Caching 

Currently relational DBMS platform is still a major storage mechanism for large 

collections of data and is still widely used for various applications, even for some 

non-traditional ones such as GIS. One major reason for this trend is because rela- 

tional DBMS is well-developed and technologically-mature. However, because of its 

limitations, such as uniformity, tuple orientation, small data items and atomicity of 

at tribute[l7], more and more non-traditional applications are leading the database 

model research in different directions. 

One direct way to overcome the shortcomings of the relational database model is 

to extend this model. One example of an extended relational database model is the 

Nested Relation. The Nested Relational database model allows relations that are not 

in first normal form. That means the value of a tuple on an attribute may be an 

atomic value or a relation. Thus, in this model, a complex object with a hierarchical 
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structure can be directly represented by a single tuple of a nested relation. 

Another alternative is to develop the object-oriented database model. Object- 

oriented databases are based on the object-oriented programming paradigm and aug- 

mented by persistency as well as other database features such as transaction man- 

agement. In an object-oriented database model, users can use concepts, such as 

hierarchical structure, inheritance, etc., to describe their understanding of the data 

structure of an object in the real world. That means a complex object can be rep- 

resented as an individual unit which is closer to the user's concept, while, relational 

database models require users to consider a complex object in multiple relations[l8]. 

However, the object-oriented database model also sacrifices many of the advantages 

of the relational database model. For example, it provides few means of descriptive 

set-operations[32]. 

The two different DBMS platforms we adopted for our performance study are 

Sybase and ObjectStore. Although there are many differences between Sybase and 

ObjectStore, we will only examine here two major ones that would affect the perfor- 

mance of the application: persistence and local caching. 

4.1 DBMS Platforms - Sybase and ObjectStore 

ObjectStore is essentially a database programming language [ 5 ] ,  i.e., CS+ with database 

extensions. Persistent and transient data are treated in a uniform way. The only differ- 

ence is that when the data is allocated, ,persistent data must be declared as persistent. 

Once data is declared as such, the application programmer need not be concerned 

with its longevity. There are two ways to access persistent data: de-referencing and 
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by query (or querying). To de-reference means to load the contents given the virtual 

memory address. Object Store's virtual memory database architecture stipulates that 

every piece of persistent data is given a virtual memory address. If the data is not in 

memory, a page fault will be generated and program control will be passed on to Ob- 

jectstore. Once the data is located, a proper virtual memory address is assigned and 

its contents is then loaded. ObjectStore also provides a query facility for associative 

retrieval, i.e., an object is located given the values of its attribute(s) [21]. The same 

query facility can also be used to explicitly write an object into Object Store (e.g., an 

insert command). Mostly, however, the persistent objects are created and modified in 

the same way as transient objects, without resorting to querying. In contrast, appli- 

cations running on Sybase, like many other DBMSs, must use SQL to read or write 

persistent data, i.e., data stored in Sybase. 

In a typical database processing situation, the application and the DBMS run as 

separate processes, or, on separate machines if it is a clientlserver architecture. In 

Sybase, or other RDBMS, the query is issued by the application and sent to the server, 

which, after processing, returns the result data set to the application. In contrast, 

an OODBMS sends to the application more data than requested, which remains in 

the cache memory of the local process/machine until it is swapped out. This is called 

local caching [6] and it is transparent to the application programmer. There are two 

types of local caching: object-level and page-level, depending on whether the object, 

or the physical page (or segment) that contains the requested data, is sent. In [8], 

a performance comparison is made between these two types of local caching. In this 

thesis we consider page-level local caching, since it is what ObjectStore has adopted. 

Regardless of which type of local caching is adopted, its existence causes a major 
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system architectural difference between the RDBMS and OODBMS and contributes 

to the superior performance for the latter for certain types of application. By pre- 

loading the data into the local cache, the OODBMS creates a physical copy of the 

data. This data is identical in contents but physically distinct from the corresponding 

storage data in the sense that the OODBMS must maintain consistency between these 

two images of the same data. However, this cost arising from concurrency control is 

outweighed by the benefit provided by the local caching. Without that, de-referencing 

style of data accessing would be impossible. In addition, ObjectStore has a clever way 

of determining whether a data item, given its virtual memory address, is located in the 

cache without any overhead. This makes it possible for an ObjectStore application 

to access persistent data as efficiently as transient data. However, there is a cost 

associated with the unique database architecture. We discovered in our experiments 

that the database open time is much lengthier than that of Sybase. This is discussed 

in greater detail in Chapter 6. 

4.2 Application Caching 

Local caching is done by ObjectStore transparently to the application. However, there 

is no reason why the same approach cannot be taken by the application programmer, 

in order to achieve the same kind of superb performance improvement for the RDBMS 

. platform. Since the local caching is done by the application, not by the DBMS, we 

call this application caching to differentiate between the two. The major advantage 

of application caching over local caching is that the former is controlled by the ap- 

plication, and consequently the layout of the data in the cache, i.e., the cache data 

structure, can be tailored to the needs of the application. In addition, by pre-loading 
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the bulk of data from the database before the objects are required by the application, 

the query cost in the application can be reduced. This is because fetching a set of 

relational tuples by a range query is much less expensive than shipping a single tuple 

from the database because of the high start up cost per data transmission. 

4.2.1 Application Caching Mechanism 

To include the step for application caching, we modify the execution plan of the spatial 

join algorithm as follows: 

0 1. Open database 

0 2. Perform application caching 

0 3. Construct R-tree 

0 4. Compute R-tree Join 

0 5. Perform polygon overlap computation 

0 6. Close database 

Since the goal of this thesis is to study how the performance of a common spatial 

database operation - spatial join, can be affected by different data models and DBMS 

platforms, and since the cache data structure is not tailored to the requirements of the 

application during the cache pre-loading, the data conversion from the spatial data 

model to the application data structure is conducted during the spatial join operation. 

The main function of the application caching is to pre-load all or part of database 
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(depending on the database size) to the local cache in order to cut down the query 

cost in the application program. 

The complexity of application caching is of course application dependent. It also 

depends on the size of the database. For large databases which may not be loaded 

entirely at the same time, caching management would be required. Basically our 

application caching mechanism is constructed in a fashion similar to Objectstore. It 

consists of two major components : address converter and application cache manager.  

An overview of the application caching mechanism is shown in Fig. 4.1.. 

1 Application R o p r n  I 
address 

tuple key (id) 
..................... " ....... 
Application Caching 

Mechaniim 

I Address Converter I 
data admess tuple key (id) 

I Application Cache Manager I 
t SQL query 
I.. 

Figure 4.1 : Application Caching Mechanism 

The function of each part of the application caching mechanism is described below: 
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Address Converter : The address converter should maintain a mapping table 

which converts a key of a relational tuple into its virtual address in the applica- 

tion cache. In our experiment, the application cache is composed of a number 

of arrays. Each array conforms to its correspondent relation in the spatial data 

model. The data type of each array is exactly the same as the definition of its 

correspondent relation. That means no data structure alignment is applied at 

the data pre-loading stage. Since each relation of our spatial data model has an 

integer primary key (e.g., Polygon ID, Chain ID, etc.), this key can be used as 

the index value for direct access to the required tuple in the application cache. 

If the primary key cannot be used as a value of the index, then a suitable hash 

function can be applied to map the primary key into an appropriate index value. 

This access will be slower than the access by 'de-referencing' in Objectstore be- 

cause it requires some computation to translate the index value into the virtual 

address of the tuple. However, it is considerably faster than query access. 

Application Cache Manager : The application cache manager is required because 

it may not be possible to pre-load the entire database into the application cache 

due to the swap space limitation of the client machine. Thus when the address 

converter fails to return the cache address of the required tuple, it will pass the 

primary key of the tuple to the application cache manager to retrieve the tuple 

from the database by issuing queries. Since in this case the application cache 

has already been full, an existing tuple in the application cache will be replaced 

by the incoming tuple according to a first-in-first-out (FIFO) policy. After 

adjusting the relevant entries in .the mapping table, the virtual cache address 

of the required tuple will be passed to the application program by the address 

converter. 
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An example of the application caching algorithm for the relational model is given 

below. In the relational model, tuples which are always accessed together in one 

relation are given sequential IDS and stored in that sequence in the relational table in 

order to achieve data clustering. For example, all the edges in one chain are arranged 

in a sequence of edge IDS and stored one after another. When the chain information 

is required by the application program, all the edges of that chain can be fetched by 

a single range query. 

The application caching algorithm comprises two sections : pre-loading algorithm 

and cache manager algorithm. 

Pre-loading Algorithm : 

BEGIN 

1. Loading polygon tuples. 

1.1. Set POLYNUM to the minimum value of the number of polygon 

tuples in the polygon relation and the number of polygons that can be 

loaded into the application cache. 

1.2. For each of the POLYNUM polygons 

1.2.1. Load the polygon tuple into the application cache. 

1.2.2. Invoke the address converter to  maintain the mapping ( from 

the polygon ID to its virtual address in the application cache ). 

2. Loading chain tuples. 

1.1. Set CHAINNUM to the minimum value of the number of chain tuples 

in the chain relation and the number of chains that can be loaded into 

the application cache. 
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1.2. For each of the CHAINNUM chains 

1.2.1. Load the chain tuple into the application cache. . 

1.2.2. Invoke the address converter to maintain the mapping ( from 

the chain ID to its virtual address in the application cache ). 

3. Loading edge tuples. 

3.1. Set EDGENUM to the minimum value of the number of edge tuples 

in the edge relation and the number of edges that can be loaded into 

the application cache. 

3.2. For each of the EDGENUM edges 

3.2.1. Load the edge tuple into the application cache. 

3.2.2. Invoke the address converter to maintain the mapping ( from 

the edge ID to its virtual address in the application cache ). 

4. Loading vertex tuples. 

4.1. Set VERTEXNUM to the minimum value of the number of vertex 

tuples in the vertex relation and the number of vertices that can be 

loaded into the application cache. 

4.2. For each of the VERTEXNUM vertices 

4.2.1. Load the vertex tuple into the application cache. 

4.2.2. Invoke the address converter to maintain the mapping ( from 

the vertex ID to its virtual address in the application cache ). 

END. 

Cache Manager Algorithm : 

BEGIN 
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1. Invoke the address converter to get the virtual address for the polygon ID 

from the mapping table. 

2. If success, return its virtual address to the application program. 

3. Upon failure, get a polygon tuple from database server ( GetPolygon- 

FromDB ). 

4. From the polygon tuple, get the first chain ID in the polygon. 

5. For this chain : 

5.1. Invoke the address converter to get the virtual address for the chain 

ID from the mapping table. 

5.2. If success, return its virtual address to the application program. 

5.3. Upon failure, get a chain tuple from database server ( GetChain- 

FromDB ). 

5.4. From the chain tuple, get the first edge ID in the chain. 

5.5. For this edge : 

5.5.1. Invoke the address converter to get the virtual address for the 

edge ID from the mapping table. 

5.5.2. If success 

5.5.2.1. Return its virtual address to the application program. 

5.5.2.2. From the edge tuple, get the two vertex IDS of the edge. 

5.5.2.3. For each vertex : 

5.5.2.3.1. Invoke the address converter to get the virtual ad- 

dress for the vertex ID from the mapping table. 

5.5.2.3.2. If success, return its virtual address to the application 

program. 
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5.5.2.3.3. Upon failure, get a vertex tuple from database server 

( GetVertexFromDB ). 

5.5.2.4. From the edge tuple, get the next edge ID in the chain, 

goto step 5.5. 

5.5.3.  Upon failure, get edge tuples from database server ( GetEdges- 

FromDB). 

5.6. From this chain tuple, get the next chain ID, go to step 5. 

END. 

Get PolygonFromDB 

BEGIN 

1. 

2. 

3 .  

4. 

5 .  

END 

Create a query by the polygon ID and send it to the database server. 

Wait for the query result. 

According to the FIFO policy, choose an existing polygon tuple in the 

application cache to be replaced by the incoming polygon tuple. 

Invoke the address converter to maintain the mapping ( from the 

polygon ID to its virtual address in the application cache ). 

Return its virtual address to the application program. 

Get ChainFromDB 

BEGIN 

1. Create a query by the chain ID and send it to the database server. 

2. Wait for the query result. 
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3. According to the FIFO policy, choose an existing chain tuple in the 

application cache to be replaced by the incoming chain tuple. 

4. Invoke the address converter to maintain the mapping ( from the chain 

ID to  its virtual address in the application cache ). 

5. Return its virtual address to the application program. 

END 

GetEdgesFromDB 

BEGIN 

1. Create a range query by all the rest edge IDS in the chain and send it 

to the database server. 

2. Wait for the query results. 

3. According to the FIFO policy, the incoming edges will replace the same 

number of existing edges in the application cache. 

4. Invoke the address converter to maintain the mapping ( from the edge 

IDS to their virtual addresses in the application cache ). 

5. Return their virtual addresses to the application program. 

6. For each edge tuple, get the two vertex IDS of the edge. 

7. For each vertex : 

7.1. Invoke the address converter to get the virtual address for the 

vertex ID from the mapping table. 

7.2. If success, return its virtual address to the application program. 

7.3. Upon failure, get a vertex tuple from database server ( GetVer- 

texFromDB ). 
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END 

GetVertexFromDB 

BEGIN 

1. Create a query by the vertex ID and send it to the database server. 

2. Wait for the query result. 

3. According to the FIFO policy, choose an existing vertex tuple in the 

application cache to be replaced by the incoming vertex tuple. 

4, Invoke the address converter to maintain the mapping ( from the vertex 

ID to its virtual address in the application cache ). 

5 .  Return its virtual address to the application program. 

END 

4.2.2 Evaluation of Application Caching 

The performance results of implementing application caching on top of the relational 

database show that we can get an amazing improvement of perfor~nance with a reason- 

able cost. Detailed performance analysis will be presented in Chapter 6. Interestingly, 

applications running on ObjectStore can benefit from the application caching as well. 

That means the application caching is applied on top of the local caching by Object- 

- Store. Why? In case of local caching by ObjectStore, the layout of data in the cache, 

i.e., the cache data structure, is beyond the control of the application programmer, 

in the sense that it is determined by the database schema. If, for some reason, the 

cache data structure is not 'compatible' with the application, expensive searching for 
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data requested by the application is required. In this case, local caching by Object- 

Store may not be very effective. Thus, a case can be made for another level of local 

caching, by the application, whose main purpose is to convert the cache data structure 

determined by the database schema into one that is well-suited to the application. 

Since no concurrency control mechanism is included into the implementation, cur- 

rently the application caching works properly only in read-only situations. Fortu- 

nately, many spatial database operations, especially those complicated ones, do not 

modify spatial data, e.g., maps, which are usually compiled in separate processes. 



Chapter 5 

Experimental Setup 

In Chapters 3 and 4, we presented three different data models Relational, BLOB 

and Parent-Child Pointer and discussed two different DBMS platforms ObjectStore 

and Sybase for our spatial join operation. In this chapter, a brief overview of the 

experimental setup, which includes the implementation environment and the polygon 

set generation, will be given. 

5.1 Implement at ion Environment 

We use Sun workstations for our experiments. For ObjectStore, both the client and 

server (ObjectStore) run on a Sun 41280 with 32 MB memory, but the system and 

its files are stored in a remote disk. Sybase runs on a similar platform but the client 

runs on a separate machine. Despite. the asymmetry between the setups of these 

two DBMS platforms, we do not think the differences are significant enough to alter 

our qualitative comparisons of the results in connection with these platforms. All the 
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experimental results are obtained during the mid-night or weekend when the computer 

workload and network traffic are low. 

Generating Polygon Set 

5.2.1 Randomly Generating Polygon Set 

The spatial space that contains the polygon set is restricted to a square which is from 

lower-left (0, 0) to upper-right (1, 1). The polygon set generating algorithm has three 

steps : 

Generating Random Lines : A number of straight lines are generated in this 

step. The two end points of each line are located on two different edges of the 

space square. Thus, the line orientation has six possibilities: SW, SN, SE, WN, 

WE, NE. All the end points of straight lines are generated on one of the four 

edges according to the uniform probability distribution. Fig. 5.1 shows seven 

straight lines generated in the space. 

0 Tracing Polygon Set : Polygons which are composed of intersections of the 

straight lines are traced out from the line net generated in the first step. To 

simulate real area boundaries in the map, m number of additional points gen- 

erated by a uniform bias toward the original straight line segment are added 

to each line segment. The original line segment will be replaced by a sequence 

of new line segments connecting all the m points. This sequence of new line 

segments actually is a chain which we have already defined in Chapter 2. The 

uniform bias can be controlled by smoothness factor, by which the chain can 
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Figure 5.1: Line Net With Uniform Distribution of Ending Points 

zigzag to different extent. The smoothness factor ranges from 0 $0 100. The 

higher the smoothness factor, the more winding the chain will be. For exam- 

ple, if the smoothness factor is 100, then all the additional points are generated 

on the original line segment. With the smoothness factor is 0, an extremely 

jagged chain connecting the additional points will be generated. Therefore, the 

number of additional points m toget her with the smoothness factor determines 

how jagged the chain will be. By restricting the area in which each sequence 

of additional points are generated, we can guarantee that all the polygons in 

the space do not overlap. Fig. 5.2 presents the polygon set after the boundary 

modification of Fig. 5.1. 

Eliminating Small Polygons : The number of straight lines directly affects the 

total number of polygons in the polygon set. In this last step, a ratio can be set 
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Figure 5.2: Polygon Set from Fig. 5. 1 with smoothness factor=20 

to eliminate those polygons which are relatively small compared to the largest 

one. For example, if the ratio is set to 0.01, that means we only keep those 

polygons whose area sizes are at least 1% of that of the largest one. 

While this method of generating random maps may not produce uniform dis- 

tributed intersection points, there is no reason to doubt the randomly generated poly- 

gon sets will favor any specific algorithm. In one spatial join performance study done 

by Hong Fan [14], polygon sets with different distributions (in the random generation 

of lines) were used and no discernible difference in performance was shown in that 

study. 
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Six data sets with varying sizes are generated for the experiments. Each set consists of 

two polygonal maps, each of which contains a set of non-overlapping polygons. Table 

5.1 shows the statistical information of each of the six data sets generated. 

Data Set 

Experimental Setup 

# 1 I # 2 I # 3 1 # 4 I # 5 1 # 6 

There are three different data models/schemas, and two different DBMS platforms, 

each of which may run with or without application caching. Thus, theoretically, there 

should be altogether 12 combinations for our spatial join algorithm: 

Mapl  I Map2 I Mapl I Map2 I Mapl  I Map2 I Mapl  I Map2 I Mapl  I Map2 I Mapl  I Map2 

Table 5.1: Data Set Statistics 

5.2.2 Data Sets for the Experiment 

1. Relational Model on Sybase with Application Caching Off. 

2. Relational Model on Sybase with Application Caching On. 

3. Relational Model on ObjectStore with Application Caching Off. 

4. Relational Model on ObjectStore with Application Caching On. 

5. BLOB Model on Sybase with Application Caching Off. 
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6. BLOB Model on Sybase with Application Caching On. 

7. BLOB Model on ObjectStore with Application Caching Off. 

8. BLOB Model on ObjectStore with Application Caching On. 

0 9. Parent-child Pointer Model on Sybase with Application Caching Off. 

10. Parent-child Pointer Model on Sybase with Application Caching On. 

11. Parent-child Pointer Model on ObjectStore with Application Caching Off. 

12. Parent-child Pointer Model on Object Store with Application Caching On. 

In practice, it is not possible to run the parent-child pointer model on Sybase, 

because Sybase does not support navigational access through pointer. Thus versions 

9 and 10 do not exist. Version 12 does not exist either, since the cache data structure 

built by Object S tore is already well-suited to the application and by 'de-referencing7 

pointer instead of query to access object the data accessing cost is already very small, 

nothing can be gained from application caching. 

To abbreviate, we label each version as XXX/YYY/ZZZ, where XXX is the data 

model, YYY is the DBMS platform, and ZZZ (On, Off) indicates whether application 

caching is on or off. Following the Unix tradition, we use a '*' to present the collection 

of all models, or platforms. 

We use the total execution time of the entire version, including the database open 

and close times consumed by the DBMS, to measure the performance of each version. 

The database load time is not included since data sets are already stored in the DBMS 

prior to the execution of the algorithm. 



Chapter 6 

Experimental Results and 

Analysis 

In this chapter, we tabulate the experimental data from nine different versions of our 

spatial join operation on the six data sets given in Chapter 5 and present our analysis 

of these performance results. Before giving these experiment a1 results obtained from 

different spatial data models and different DBMS platforms with or without appli- 

cation caching, we report some performance data to show the improvement of our 

spatial join algorithm after applying two technical strategies : utilizing topological 

information and utilizing MBR intersection information as mentioned in Chapter 2. 

6.1 Comparison of Spatial Join Algorithms 

In Chapter 2, we described our spatial join algorithm which was developed from a 

basic R-tree based algorithm and explained why the performance can be improved by 
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1 Algorithm 1 1 Algorithm 2 1 Algorithm 3 1 

~, I Polygon Overlap Time (Sec) 8.831 7.642 1.200 1 
R-tree Construction Time (Sec) 
R-tree Join Time (Sec) 

Table 6.1: Performance Results from Different Algorithms for Data Set No.] 

utilizing topological information and MBR intersection information from the R-tree 

join. Here we show some performance data in Tables 6.1 - 6.6. In this section, we call 

the basic R-tree based spatial join algorithm Algorithm 1. The algorithm applied with 

topological information is called Algorithm 2. The final version of the algorithm which 

utilizes both topological information and MBR intersection information is defined as 

Algorithm 3. For each algorithm, the execution time consists of three timing results: 

- 
0.430 
0.760 

R-tree Construction Time: time for creating the R-tree index . 

R-tree Join Time: time duration for finding all potentially overlapping polygon 

pairs 

.., 
0.430 
0.760 

Polygon Overlap Computation Time: execution time for real polygon overlap- 

ping checking 

- 
0.430 
0.760 

The spatial data model and DBMS platform used for testing these three algorithms 

are Parent-Child Pointer Model and Objectstore. According to our numbering of 

versions in Chapter 5, it is version 11. 

In order to provide a good comparison, we summarize the polygon overlap com- 

putation time of all six data sets in one chart (Figure 6.1). To make the chart better 

looking, polygon overlap computation time is given in its logarithmic form (In). 
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R-Tree Construction Time (Sec) 
R-tree Join Time (Sec) 

Table 6.2: Performance Results from Different Algorithms for Data Set No.2 

\ ,  I I 
- -  --- I Polygon Overlap Time (Sec) 

I 

15.074 

Table 6.3: Performance Results from Different Algorithms for Data Set No.3 

Algorithm 3 
0.660 
1.420 

Algorithm 1 

0.660 
1.420 

R-Tree Construction Time (Sec) 
R-tree Join Time (Sec) 
Polygon Overlap Time (Sec) 

I Algorithm 1 I Algorithm : 

Algorithm 2 
0.660 
1.4211 

13.051 1.880 

Algorithm 1 
1.360 
3.100 
33.736 

, , I I -- I Polygon Overlap Time (Sec) 
I 

36.628 31.676 4.390 1 
Table 6.4: Performance Results from Different Algorithms for Data Set No.4 

Algorithm 2 

1.360 
3.100 
29.198 

Algorithm 3 

1.840 
4.720 

- , - T 

Algorithm 3 
1.360 
3.100 
4.080 

R-tree Construction Time (Sec) 
R-tree Join Time (Sec) 

R-tree Construction Time (Sec) 
R-tree Join Time (Sec) 
Polygon Overlap Time (Sec) 

1.840 
4.720 

1.840 
4.7211 

Table 6.5: Performance Results from Different Algorithms for Data Set No.5 

Algorithm 1 

3.590 
9.480 
67.910 

Algorithm 2 

3.590 
9.480 

58.519 

Algorithm 3 

3.590 
9.480 
8.420 
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R-tree Construction Time (Sec) 
R-tree Join Time (Sec) 
Polygon Overlap Time (Sec) 

I Algorithm 1 I Algorithm 

Table 6.6: Performance Results from Different Algorithms for Data Set No.6 

- Algorithm 1 

Algorithm 2 

.......... Algorithm 3 

I I I I 1 I I 

I 2 3 4 5 
* 

Data Set 

Figure 6.1: Comparison of Polygon Overlap Computation Times in Logarithmic Form 
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As the algorithm analysis has already been given in Chapter 2, it is not being 

repeated in this section. From Tables 6.1 - 6.6, it can be observed that polygon overlap 

computation time does not constitute a dominant part when Algorithm 3 is used. In 

the next section, we will report and analyze the main part of our experimental results, 

the spatial join performance of different spatial data models and DBMS platforms 

based on this algorithm - Algorithm 3. 

Experimental Results 

The experimental data are tabulated in Tables 6.7 - 6.12. For each version, three 

timing results are given: 

DB Open Time: time duration for the DBMS to execute the database open 

statement 

Pre-load Time: time for carrying out pre-loading by the application into the 

local application cache 

Run Time: execution time for the algorithm. 

The only time that is not reported here is the DB close time, which is so small 

compared with the other three that it is negligible. The rest of this section is devoted 

to the analysis of the experimental data in these tables, supported by other relevant 

finer-grained data. 

In this section, it is assumed that when the application caching is performed, the 

local application cache is large enough to accommodate a huge database. In the next 
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Table 6.7: Performance Result for Data Set No.1 (Sec) 

UnMb 
Application 
Caching 

Relational Model 
BLOB Model 
Pointer Model 

Table 6.8: Performance Result for Data Set No.2 (Sec) 

DBMS 
Application 
Caching 

Relational Model 
BLOB Model 
Pointer Model 

section, we will give some testing results in which the database cannot be totally 

loaded into local application cache at once. 

Sybase 

Do these experimental data justify our performance study? In other words, are 

there great differences in performance for different versions of the algorithm? The 

answer is of course a positive one, since there are 3 to 4 orders of magnitude differences 

between the best and the worst times. The data also show the effectiveness of the 

application caching technique. When it is on, the differences in timing are so much 

reduced that the timings appear similar to each other across data models and DBMS 

platforms. 

ObjectStore 

I DBMS I S v h a ~  I n h ; ~ ~ t q t ~ ~ ~  1 

On 

Sybase 

DB Open 

0.01 
0.01 
NA 

Off On 

Objectstore 

Table 6.9: Performance Result for Data Set No.3 (Sec) 

DB Open 

0.01 
0.01 
N  A 

Off 

On 
DB Open I Pre-load I Run Time 

8.67 1 1.33 ] 4.96 
9.06 1 1.10 1 4.89 
NA I NA I NA 

0 n 

Appllcatlon 
Caching 

Relational Model 
BLOB Model 
Pointer Model 

Pre-load 

14.78 
7.24 
N A 

Run Time 

694.96 
135.69 

N  A N A N A NA 9 77 

DB Open 

8.92 
9.11 

Run Time 

3.04 
3.04 

DB Open 

8.85 
8.96 

Off 
DB Open I Run Time 

8.96 1 774.02 
9.01 1 8.49 
8.89 1 4.53 

DB Open 

0.01 
0.01 
NA 

Off 

Run Time 

5.18 
5.10 
N A 

Run Time 

314.45 
4.75 

Pre-load 

0.87 
0.76 

DB Open 

0.01 
0.01 
NA 

Pre-load 

15.70 
9.69 
NA 

Run Time 

1218.79 
249.84 

NA 

0 n 

Run Time 

7.00 
6.81 
NA 

DB Open 

0.01 
0.01 
NA 

Off 
Pre-load 

19.41 
16.85 
NA 

DB Open 

0.01 
0.01 
NA 

Run Time 

11.03 
10.36 
NA 

Run Time 

2132.44 
417.56 

NA 

Onp Off 
DB Open I Pre-load 

9.32 1 2.25 
9.03 1 1.83 
NA I NA 

DB Open 

8.86 
8.91 
8.92 

Run Time 

9.75 
9.56 
N A 

Run Time 

2349.88 
15.98 
9.65 
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Table 6.10: Performance Result for Data Set No.4 (Sec) 

DBMS 
Application 
Caching 

Relational Model 
BLOB Model 
Pointer Model 

Table 6.1 1: Performance Result for Data Set No.5 (Sec) 

DBMS 
Application 
Caching 

Relational Model 
BLOB Model 
Pointer Model 

Sybase 

Table 6.12: Performance.Result for Data Set No.6 (Sec) ' 

Objec ts tore  

Sybase I Objec ts tore  

DBMS 
Application 
Caching 

Relational Model 
BLOB Model 
Pointer Model 

On On Off 

On 

U B  Open 

9.03 
9.14 
N A 

Off 
Run Tlrne 

12.91 
12.39 
NA 

D B  Open 

0.01 
0.01 
N A 

D B  Open 

0.01 
0.01 
NA 

Sybase 

D B  Open 

8.95 
8.87 
8 c(X 

Run Tlrne 

2678.95 
843.92 

N A 

Yre-load 

22.85 
19.62 
N A 

Run Trine 

24.56 
24.06 
NA 

D B  Open 

0.01 
0.01 
N A 

Objec ts tore  

Pre-load 

2.81 
2.48 
N A 

Run Tlrne 

3674.29 
19.16 
17 53 

Off Off 
Pre-load 

30.89 
25.13 
NA 

On 

Run 1'1me 

12.29 
12.22 
N A 

DB Open 

0.01 
0.01 
NA 

On 
UB Open 

8.85 
8.99 
9.03 

DB Open 

0.01 
0.01 
NA 

Off On 

Run Tlrne 

5134.11 
1707.85 

NA 

D B  Open 

9.12 
8.94 
NA 

Run T m e  

11246.36 
38.83 
23.85 

DB Open 

0.01 
0.01 
NA 

UB Open I Pre-load 

8.95 1 7.69 
8.99 1 7.29 
NA I NA 

Off 
Run T ~ r n e  

7439.24 
2619.38 

NA 

Pre-load 

57.70 
37.54 
NA 

Knn T ~ m e  

42.75 
42.44 
NA 

DB Open 

9.03 
8.97 
9.01 

Pre-load 

5.10 
4.00 
NA 

Run Tlme 

37.58 
36.97 
NA 

Run Tlme 

24770 
75.20 
37.03 

Run Tlrne 

27.10 
26.54 
NA 
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6.2.1 Who is the Winner? 

We are reluctant to pick a winner for several reasons. Although we have been using 

these two database systems for many research projects, we are by no means experts 

and have not tried to tune the DBMS. Thus, it is likely that some performance 

nu~nbers are smaller by some percentage because different techniques are applied, 

though we are confident that these changes would not significantly alter our findings 

here. Another reason is that there are more than one way to compute the total time. 

It would seem entirely reasonable that the Pre-load Time is included in the total time. 

But there are two issues about whether to include the DB open time of Object Store in 

the comparison. (Its counterpart for Sybase is so small that it is negligible.) First, we 

are not sure what to include, although we do have some representative numbers in the 

tables. This time, with each run, is almost constant across all data set sizes. Second, 

without the knowledge of the internal system, we have no way of knowing how much 

of this time is spent on tasks that are related to the execution of this algorithm, such 

as local caching, which serves similar purposes as the application caching. If the DB 

Open Time for ObjectStore is excluded from the total time, should the Pre-load Time 

be also excluded? 

When we compare the performance by each timing category, many trends are easily 

identifiable. The DB Open T i~ne  of ObjectStore is quite large, in comparison with 

that of Sybase, and it is identical for data sets of all sizes for each set of experiments. 

The Pre-load Time of ObjectStore increases as the size of the data set increases, but 

not quite as much as that of Sybase. The sum of the DB Open Time and the Pre- 

load Time of Sybase is much larger than that of ObjecStore. (See Figure 6.2). The 

most interesting timing category is of course the Run Time, which will be used as the 
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Figure 6.2: Comparison of DB Open Time and Pre-load Time on Sybase and Object- 
Store 
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B Open Time + Pre-load Time (Sybase) 
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- DB Open Time + Pre-load T i e  (ObjcctStore) 

DB Open Time (Objects-) - 

performance criteria for the rest of this section. 

The combination of Pointer model and ObjectStore offers the best system environ- 

ment. We call this version the Baseline Version. This is expected, since our spatial join 

algorithm has an application data structure that is most compatible with the Pointer 

model, and least compatible with the Relational model. What is unexpected is that 

despite the fact that ObjectStore is known for its efficiency in navigational accessing 

(de-referencing), the Relational/*/On and BLOB/*/On are very close to the Baseline 

Version in performance. In Figures 6.3 - 6.6, we compare the Run Times of all the 

versions to that of the Baseline Version. The Run Time is still given in its logarithmic 

form just like in Figure 6.1. From these four figures, the performance improvement 

by applying application caching is quite obvious. Without application caching, both 

data models (Relational and BLOB) have poor results on either RDBMS Sybase or 
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Figure 6.3: Comparison of Run Times: Relational in Sybase vs. Baseline Version 
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Figure 6.4: Comparison of Run Times: Relational in Objectstore vs. Baseline Version 
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Figure 6.5: Comparison of Run Times: BLOB in Sybase vs. Baseline Version 
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Figure 6.6: Comparison of Run Times: BLOB in Objectstore vs. Baseline Version 
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have very comparable performance to the Baseline Version. 

6.2.2 BLOB Modelvs. Relational Model 

Comparing versions of Relational model with those of BLOB model on Sybase (See 

Figures 6.3 and 6.5)' we can make some interesting observations. In Relational model, 

information of each polygon is distributed in four tables (polygon, chain, edge and 

vertex) and each table requires normalization. In BLOB model, the polygon informa- 

tion is 'compressed' into two tables (polygon and chain) and each table has a BLOB 

attribute. Thus, the number of database accesses (the number of SQL queries) to 

fetch the objects from the database in Relational/Sybase/Off is about 6 times more 

than that in BLOB/Sybase/Off (See Table 6.13). Since SQL queries are the most 

time-consuming part in the total execution, the performance of Relation/Sybase/Off 

is obviously worse than that of BLOB/Sybase/Off. On the other hand, when we apply 

application caching to both of the models to cut down the SQL query time, the dif- 

ference between these two models is almost negligible even though the mapping from 

data model to application data structure in Relation model is more complicated than 

that in BLOB model. The same conclusion can be drawn by comparing versions of 

Relational model with those of BLOB model on Objectstore. (See Figures 6.4 and 6.6) 

When we make a comparison between BLOB/Sybase/Off and BLOB/ObjectStore/Off 

in Figures 6.5 and 6.6, we observe that the same data model results in some difference 

in performance. The latter is much faster than the former. Object Store's local caching 

seems to be the reason for this performance difference, since during the database open 

time, part of the database has already been pre-loaded into the local cache by Ob- 

jectstore. (See Chapter 4 for more information about Objectstore's local caching.) 
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Table 6.13: Number of Queries in Relational Model and BLOB Model 

~ a t a S e t  

Relational 
BLOB 

However, here comes an unexpected result. From the above analysis of two data 

models (Relational and BLOB), it is easy to imagine that the performance of Re- 

- 

1 

17330 
2910 

lational/ObjectStore/Off will be worse than that of BLOB/ObjectStore/Off, but it 

shouldn't be that much different (see Figures 6.4 and 6.6). We will try to explain this 

2 

28090 
4797 

mystery in Sec.6.2.3. 

6.2.3 Performance of ObjectStore 

3 

49036 
8147 

ObjectStore in this research does not always offer good results. In fact, we are sur- 

prised that the combination of Relational model and ObjectStore with no application 

caching gives the worst performance. Our interpretation of this is that ObjectStore 

is optimized toward 'de-referencing' rather than querying as a persistent data ac- 

cess mechanism, while querying is the only means to access data in Sybase. Be- 

cause of this reason, we can explain why the performance difference between Rela- 

tional/ObjectStore/Off and BLOB/ObjectStore/Off is bigger than that between Re- 

lational/Sybase/Off and BLOB /Sybase/Off. As we see from Table 6.13, the number 

of queries in Relational model is 6 times more than the number in BLOB model. So 

many queries are really a burden to ObjectStore. Therefore, the performance of Re- 

lational/ObjectStore/Off is much worse than that of BLOB/ObjetStore/Off. Tables 

6.14 and 6.15 show the estimated costs of querying for the Relational/Sybase/Off and 

- 

4 

60199 
10671 

5 

112751 
20502 

6 

166760 
30871 
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Table 6.14: Querying Cost: Relational/Sybase/Off 

Date Set 
No. of queries 
Time difference (sec) 
Time per query (sec) 

Table 6.15: Querying Cost: Relational/Object Storeloff . 

1 
17330 
690 
0.04 

Date Set 
No. of queries 
Time difference (sec) 
Time per query (sec) 

Relational/ObjectStore/Off. To arrive at an estimated querying cost, we calculate 

the difference between the run times of Relational/*/On and Relational/*/Off to first 

estimate the cost of processing all queries, which is then divided by the total number 

of queries. On Sybase, the average query access cost is almost constant across data 

sets of different sizes. On ObjectStore, the average increases rapidly as the size of 

data set increases. In comparison with the Sybase version, it is half as much for the 

smallest data set, and increases to four times as much for the largest data set .' This 

result shows why Object Store's performance deteriorates much faster than Sybase as 

the data set size increases. 

'To verify this unexpected result, we tried indexing on both Sybase and ObjectStore. But the 
results do not help us to answer the question. 

1 
16193 
31 1 
0.02 

2 
28090 
1212 
0.04 

4 
60199 
2666 
0.04 

3 
49036 
2121 
0.04 

2 
25569 

769 
0.03 

5 
112751 
5110 
0.04 

3 
45282 
2341 
0.05 

4 
55348 
3662 
0.07 

6 
166760 
7402 
0.04 

5 
101069 
11219 
0.11 

6 
149415 
24727 
0.16 
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6.2.4 Application Caching 

Application caching as a bridge between the application data structure (or access re- 

quirements) and the incompatible storage data structure (or data model) is effective in 

drastically improving the performance of spatial join, at a very modest cost. When it 

is applied, the difference in the data models seems to almost disappear. For example, 

the performance of Relational/S ybase/On and Relational/Object Store/On are only 

marginally worse than that of Pointer/Object Storeloff, which is the most optimized 

version. The performance of the Relational model and the BLOB model, with appli- 

cation caching on, are practically indistinguishable. We will give more experimental 

data and more discussion on application caching in the following section. 

6.3 More Discussion on Application Caching 

In the above section, we showed the effectiveness of the application caching technique. 

When it is applied, no matter what data models and DBMS platforms we are using, 

the performance can be improved substantially. However, all the performance data 

we presented in the last section are based on the assumption that the local application 

cache is large enough to store the entire database. While, in many real applications, 

this condition may not be true as the database can be humongous. In this section, 

we abandon this assumption and perform the application caching in a more realistic 

situation. 

We still use those 6 data sets as our testing data. For each data set we pre- 

load loo%, 900, 75% and 50% of database respectively. In Table 6.16 we report the 

experimental data. The algorithm version used is the combination of the Relational 
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Table 6.16: Run Times in (Sec) with Different Database Loading Percentage 

Data Set 

Loading 100% 
Loading 90% 
Loading 75% 
Loading 50% 

I I I I I I I I 

I Loading 100% 1 0 I 0 I 0 I 0 I 0 1 0 I " I I I I I I I Loading 90% 1 546 1 1635 1 1382 1 1516 1 4734 1 4715 1 

1 
3.20 
12.61 
41.21 
100.91 

Table 6.17: Number of Queries Executed Agaist Different Data Sets 

2 
3.77 
31.96 
86.29 
176.80 

- 
Loading 75% 
Loading 50% 

data model and Sybase with application caching on. This time we have a different 

implementation environment. The Sybase server is running on a Sun 4/75(SS2) with 

16 MB memory. The client runs on a separate machine Sun 4/50(IPX) with 16 

MB memory. Since we are only interested in the Run Time differences among the 

4 different loading sizes, the changed environment will not bias the results. We also 

show the number of queries that are required to access the data when they do not 

reside in the local cache. (See Table 6.17) This number is affected by three factors : 

The size of database 

3 
5.20 
29.39 
125.57 
327.02 

2239 
5616 

The percentage of the pre-loaded section 

The distribution of polygons in each map 

4 
5.92 
38.47 
141.81 
478.70 

4809 
9917 

The first two factors are obvious. The last one can be explained by an example in 

5 
10.16 
98.05 
303.77 
659.88 

6507 
16126 

6 
15.01 
105.45 
405.86 
955.97 

6707 
18789 

16083 
33842 

21954 
51117 
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Table 6.17. In the second row of that table (loading go%), the number of queries for 

data set 2, 3, 4 is 1635, 1382, and 1516, respectively, even though the size of data set 

increases from data sets 2 to 4. This fact indicates that the polygons in data set 3 

and 4 have a better clustering than those in data set 2. Therefore, fewer queries are 

required. 

Data in Table 6.16 show that there is a big gap between loading the whole database 

and loading 90% of the database. This proves that the query call is a major cost in the 

tot a1 execution. Comparing Table 6.16 with the performance of Relational/Sybase/Off 

in Tables 6.7 - 6.12, we can also observe that when only 50% of the database is 

loaded, we can still gain performance improvement by applying application caching. 

It is observed that the advantage of application caching is not fully utilized by the 

spatial join application. This is because in spatial join, all the polygons in both maps 

are required to be accessed to find out how many polygon pairs overlap. Thus, if 

only part of the database is loaded, data swap-in-and-swap-out during computation 

is unavoidable. We claim that in some other applications which do not require to 

scan entire database application caching is an effective strategy to achieve better 

performance. 



Chapter 7 

Conclusions 

7.1 Thesis Summary 

In order to study how the spatial data model together with its underlying database 

platform affect the performance of the complex spatial operation, we designed and 

implemented three spatial data models on two different DBMS platforms. The three 

data models have different degrees of pointer involvement which means.the data ac- 

cessing will be different (querying or pointer 'de-referencing'). 

The spatial join operation, a specific application we used for the performance 

study in this thesis, is very efficient after applying new techniques: utilizing topolog- 

. ical information and utilizing MBR intersection information from the first filter step. 

Therefore, we guarantee that our spatial join operation is a suitable candidate for our 

research. 

We have shown that there can be interesting observations to be made out of this 
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performance study, although care m u s t  be taken  t o  generalize these findings beyond 

the  context of the  application. Some of them confirm the conventional wisdom. For 

example, the more the data model resembles the application data structure, the faster 

the algorithm is. For that reason, OODBMS can provide superior performance for 

spatial database operations due to its capability of including pointers in the schema 

level data model. By using BLOB data type in the data model, spatial information 

is 'compressed' into a smaller number of tables than in the relational model, so that 

better performance can be achieved. On the other hand, we have managed to show 

that by applying the application caching technique, the relational model and BLOB 

model on either OODBMS or RDBMS platform can provide acceptable performance. 

The advantage of conducting application caching is two folds : 

Since the application caching is managed by the application, the cache data 

structure can be tailored to the need of the application. 

By pre-loading bulk of the data into the application cache before the objects 

are required by the application, the high query cost can be reduced. 

Contributions 

We have taken a rather unusual approach to performance study, i.e., considering the 

impact of system environment (data models and DBMS platforms) on the performance 

of a specific application. 

Three spatial data models were designed : Relational Model, BLOB Model and 

Parent-Child Pointer Model. 
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0 A typical spatial database operation - spatial join, was selected as our specific 

application. We carefully designed and implemented an efficient R-tree based 

spatial join algorithm to make it a suitable candidate for our experimental pur- 

poses. 

0 We carefully designed the map data generation, implementation environment 

and different testing versions of the same algorithm to make the results reason- 

able. 

0 We introduced the application caching technique to bridge the gap between the 

spatial data model and the application data structure. Our performance results 

showed that by applying this technique to the Relational and BLOB models the 

effect of data modellDBMS platform can be neutralized. 

Future Work 

Much more research is needed in order to perfect the application caching technique. 

Further investigation about it is required to determine how well it works with other 

applications. We believe the same conclusion can be obtained. Although the technique 

as described here is readily implementable, it works only in read-only situations, and 

more work is also required in the area of concurrency control, when the persistent 

data in a multi-user environment are modifiable. 

At present, OODBMS is the only kind of DBMS that can provide acceptable 

performance for specialized applications that require fast graph traversals. With the 

perfection of application caching technique, it is possible that an RDBMS can be an 

accept able alternative. 
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