
HOW SPATIAL DATA MODELS AND DBMS PLATFORMS
AFFECT THE PERFORMANCE OF SPATIAL JOIN

Wei Zhou

B. Sc., Peking University, China, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T H E DEGREE O F

MASTER OF SCIENCE
in t he School

of
Computing Science

@ Wei Zhou 1993
SIMON FRASER UNIVERSITY

August 1993

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author

APPROVAL

Name: Wei Zhou

Degree: Master of Science

Title of thesis: How Spatial Data Models and DBh
the Performance of Spatial Join

4s Platforms Affect

Examining Committee: Dr. R.obert Hadley
Chair

Senior Supervisor

Date Approved:

Dr. Jiawei Ha
Computing Science

Supervisor

Dr. Tiko I<a.meda
Professor, Computing Science
External Emminer

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Slmon Fraser University the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser University Library, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any other university, o r o ther educational I ns t i t u t i on , on

i t s own behalf o r f o r one of I t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying of t h l s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood t h a t copying

o r pub l l ca t ion o f t h i s work f o r f inanc ia l galn sha l l not be allowed

without my wr i t t en permission.
1

T i t 1 e o f Thes i s/Project/Extended Essay

How S p a t i a l Data Models and DBMS Platforms Affect t h e Performance of

S p a t i a l Jo in .

Author: -
1 (signature)

Wei Zhou

i f . 0 ? 3
V (date)

Abstract

This thesis studies how the performance of a common spatial database operation,

called spatial join, can be affected by different data models and DBMS platforms. We

consider three spatial data models: Relational, BLOB (Binary Large Object Block)

and Parent-Child Pointer model, which have different degrees of pointer involvement

at the database schema level. Objectstore and Sybase are chosen as representatives of

object-oriented and relational DBMS. Our R-tree based spatial join algorithm, which

is optimized in the step of polygon overlap checking, is presented. We measure the

performance of this spatial join algorithm against five combinations of data models

and DBMS platforms. Among other findings, the experimental results show that the

Relational model does poorly on either DBMS platform, the running time being 3

to 4 orders of magnitude worse than the others. We introduce a technique called

application caching that bridges the gap between the storage data structure (the

data model) and the application data structure. By applying this technique to the

algorithm runnning against the Relational and the BLOB data models, we show

how the effect of data modellDBMS platform on performance of spatial join can be

neutralized.

Acknowledgements

I wish to express my deepest gratitude and appreciation to Dr. Wo-Shun Luk, my

senior supervisor, for his guidance, supervision, support and encouragement.

I am also grateful to Dr. Jiawei Han and Dr. Tiko Kameda for their careful

readings and valuable comments on this thesis.

I wish to thank my frineds who provided me with their generous help. Especially,

Chor Guan Teo, who spent much of her precious time correcting grammatical mistakes

in my thesis, Hong Fan, who helped me understanding her research project during

the preparation of my thesis. Roman Bacik, who gave me many suggestions in the

implement ation of the spatial join algorithm.

Finally, this thesis is dedicated to my parents and my sister for their love and care.

Contents

Abstract

Acknowledgements iv

1 Introduction 1

1.1 Motivations . 1

. 1.2 ThesisObjectives 3

. 1.3 Methodology 4

. 1.4 Thesis Overview 6

2 Spatial Join 7

. 2.1 Algorithm 8

. 2.1.1 Definitions 8

. 2.1.2 R-tree SIM 9

. 2.1.3 R-tree Based Algorithm 10

. 2.2 Literature Review on Spatial Join 16

. 2.2.1 Spatial Overlap Query in PROBE 17

2.2.2 Spatial Join Based on Different Approximations 18

3 Spatial Data Models 20

. 3.1 Spatial Data Model Representations 20

. 3.2 Spatial Data Models 21

. 3.2.1 Relational Data Model 22

. 3.2.2 BLOB Data Model 25

. 3.2.3 Parent-child Pointer Data Model 28

4 DBMS Platforms and Application Caching 30

. 4.1 DBMS Platforms . Sybase and Objectstore 31

. 4.2 Application Caching 33

4.2.1 Application Caching Mechanism 34

. 4.2.2 Evaluation of Application Caching 42

5 Experimental Setup 44

. 5.1 ImplementationEnvironment 44

. 5.2 Generating Polygon Set 45

. 5.2.1 Randomly Generating Polygon Set 45

. 5.2.2 Data Sets for the Experiment

. 5.3 Experimental Setup

6 Experiment a1 Results and Analysis

. 6.1 Comparison of Spatial Join Algorithms

. 6.2 Experimental Results

. 6.2.1 Who is the Winner ?

. 6.2.2 BLOB Model vs . Relational Model :

. 6.2.3 PerformanceofObjectStore

. 6.2.4 Application Caching

. 6.3 More Discussion on Application Caching

7 Conclusions

. 7.1 Thesis Summary

. 7.2 Contributions

7.3 Future Work .

Bibliography

List of Tables

3.1 Polygon Relation . 24

3.2 Chain Relation . 24

3.3 Edge Relation . 24

3.4 Vertex Relation . 25

3.5 Polygon Relation . 26

3.6 Chain Relation . 26

5.1 Data Set Statistics . 48

6.1 Performance Results from Different Algorithms for Data Set No.1 . . 51

6.2 Performance Results from Different Algorithms for Data Set No.2 . . 52

6.3 Performance Results from Different Algorithms for Data Set No.3 . . 52

6.4 Performance Results from Different Algorithms for Data Set No.4 . . 52

6.5 Performance Results from Different Algorithms for Data Set No.5 . . 52

6.6 Performance Results from Different Algorithms for Data Set No.6 . . 53

. . .
Vll l

6.7 Performance Result for Data Set No.1 (Sec) 55

. 6.8 Performance Result for Data Set No.2 (Sec) 55

. 6.9 Performance Result for Data Set No.3 (Sec) 55

. 6.10 Performance Result for Data Set No.4 (Sec) 56

6.1 1 Performance Result for Data Set No.5 (Sec) 56

6.12 Performance Result for Data Set No.6 (Sec) 56

6.13 Number of Queries in Relational Model and BLOB Model 63

6.14 QueryingCost: Relational/Sybase/Off 64

6.15 Querying Cost: Relational/Object Store/Off 64

6.16 Run Times in (Sec) with Different Database Loading Percentage . . . 66

6.17 Number of Queries Executed Agaist Different Data Sets 66

List of Figures

2.1 Intersecting chains AB and CD imply 4 pairs of intersecting polygons

2.2 Only edges AB and BC are checked with edges XY and YZ

3.1 An Example of a Polygonal Map .

4.1 Application Caching Mechanism .

5.1 Line Net With Uniform Distribution of Ending Points

5.2 Polygon Set from Fig . 5 . 1 with smoothness factor=20

6.1 Comparison of Polygon Overlap Computation Times in Logarithmic

Form .

6.2 Comparison of DB Open Time and Pre-load Time on Sybase and Ob-

jectStore .

6.3 Comparison of Run Times: Relational in Sybase vs . Baseline Version

6.4 Comparison of Run Times: . Relational in Objectstore vs . Baseline

. Version

6.5 Comparison of Run Times: BLOB in Sybase vs. Baseline Version . . 61

6.6 Comparison of Run Times: BLOB in Objectstore vs. Baseline Version 61

Chapter 1

Introduction

1.1 Motivations

Recently spatial database processing has become an active research area and many

studies are concerned with the performance of spatial data structures. Typically, a

number of data structures and/or algorithms are considered, and then their perfor-

mance are evaluated either analytically (e.g., [I I]) or experiment ally (e.g., [4], [13],

and [I]). In this thesis, we take a different approach to performance study of spatial

database processing, which should complement the traditional ones. Assuming an

algorithm has been selected for implementation, we consider how the performance of

this algorithm may be affected by various implementation strategies. In most perfor-

mance studies, analyses or experiments are mostly conducted in a system environment

that is not representative of the system environments for many real-life applications.

For example, many use the number of disk accesses as the performance metric, which

implies the algorithm runs directly on the I/O system of the operating system. In an

C H A P T E R 1. INTRODUCTION

application environment, however, many GIs (geographic information systems) use

database systems (DBMS) to store their spatial and attribute data. Neither the end

user nor GIs vendorlresearcher has direct access to the I/O system. The I/O ac-

cessing is determined by the DBMS platform which controls how data are physically

stored and the spatial data model which presents to the application a logical view of

data. (In this thesis, spatial data models are meant to be only a slightly more abstract

form of data schema at the DBMS level.) In comparing the performance of the same

algorithm across different data models and DBMS platforms, we hope td gain insight

into how an algorithm interacts with data models and DBMS platforms, which may

lead to further optimization of the overall performance, for a given data model and a

given DBMS platform.

With the advent of a next generation of database systems, generally known as

Object-Oriented DBMS (OODBMS), it is natural to ask whether OODBMS is a

more suitable platform than RDBMS (Relational DBMS) for implementation of GIs

applications. In the research literature, GIs, along with CAD, CASE and others, is

generally considered to be an application which these OODBMSs are designed for.

Unlike CAD and CASE, however, most GISs continue to rely on relational DBMS

as the data store. Even within the academic GIs community, there is an on-going

debate on this issue. In the NCGIA (National Center for Geographic Information and

Analysis) Core Curriculum on GIs [19], there is a comment that some OODBMSs may

not be well-suited to GIs applications. It is not clear whether it is the object-oriented

data modelling technique or the performance of OODBMS vis-a-vis RDBMS that is

called into question. In any case, it is indicative of the need for more research in this

direction. In this thesis we choose Objectstore and Sybase, as the representatives of

OODBMS and RDBMS, respectively.

C H A P T E R 1. INTRODUCTION

There is a general perception that data models are intrinsically linked to specific

DBMS platforms. For example, pointers may be included in a persistent (storage)

data structure under OODBMS, while in a RDBMS, all persistent data are flat files

in some normal forms. Here we argue that excluding physical pointer representation,

the same data model (schema) can be defined on both OODBMS and RDBMS, and

they are routinely done in many spatial database applications. For example, one can

define flat files on an OODBMS, which is a common data model for (huge) attribute

data associated with geographic objects. On the other hand, many RDBMS now

provide a BLOB (Binary Large Object Block) data type, which is defined as part of

a relation, while in implementation there is a pointer linkage between the contents

of the BLOB attribute and those of other attributes. Spatial data models at the

schema level have great impact on performance of the application since the data

model determines how data may be accessed, e.g., by pointer (address) or by query

(associative retrieval). Often a spatial application may not get to choose a data model

which is most optimized for the application. This may be because the data model is

pre-defined by the vendor who supplies the data (e.g., Maps used in Census [37]), or

because the same data set being shared by other applications has a data model which

is a compromised choice. In this thesis, we design three different spatial data models

to study their impact on the performance of the application.

1.2 Thesis Objectives

This thesis uses a rather unusual method to study the performance issue in spatial

database processing. We hope to get the perception in whether it is the spatial

data modelling technique or the DBMS architecture that affects the performance of

CHAPTER 1. INTRODUCTION

spatial database processing. We design and implement some experiments to test the

performance of one spatial application against different spatial data models and DBMS

platforms. One goal of this thesis is to get some practical experience in answering the

above question.

If it is true that for most non-traditional applications, OODBMS is better suited

than RDBMS because of its pointer 'de-referencing' facility, one immediate question

is whether it is possible to make RDBMS more efficient since most GIs still depend on

RDBMS as the data store. From Ju Wu's research thesis [16], the answer is a positive

one. In that project, in order to narrow the performance gap between OODBMS and

RDBMS in one specific application - DSQL (Dynamic Spatial Query Language), they

came up with a technique called Preloading which simulated ObjectStore7s Memory

Mapping and Pointer Swizzling method to "load the entire database into the client

machine's virtual memory and handle the object by its virtual memory address instead

of the relational key". In this thesis, we borrow and improve this Preloading idea in

our performance study on spatial data modelling technique and DBMS platform. We

call this strategy application caching in order to distinguish it from client caching in

Objectstore.

1.3 Methodology

The spatial application we choose for the performance study is called spatial join,

which is a common spatial database operation, and has been studied in [23], [I], [ll].

It is similar to the join operation in the relational database, but the two operands

of the operation are sets of polygons instead of tuples from two relations. Like the

C H A P T E R 1. INTRODUCTION

relational join operation, spatial join is a complex operation, and spatial indices are

often needed as a filter to eliminate those pairs of polygons that are clearly non-

overlapping. The algorithm we use for implementation is an improved version over

many published algorithms which tend to focus exclusively on the choice of spatial

indices.

We consider three data models for the spatial join operation : Relational, BLOB

and Parent-Child Pointer model, which have different degrees of pointer involvement

at the database schema level. That means data accessing is done by querying or by

pointer 'de-referencing'.

There have been several studies on performance comparison between OODBMS

and RDBMS. The most recent one is reported in [6]. For that study, a suite of queries

(e.g., insert, lookup, and traversal) are performed against an engineering database

(i.e., a network of parts wired together). This database is stored as a collection of

flat files on an RDBMS and as pointer network on an OODBMS, respectively. It is

shown that the performance of these operations on an OODBMS is, as a whole, much

better than that on an RDBMS primarily due to the overhead of each SQL call to the

RDBMS server and the ability of OODBMS to cache data on the client workstation.

This research is not a benchmark study of DBMS platforms; its emphasis is on spatial

database processing. Instead of simple operations, we study a complex operation,

and how it interacts with various data models and DBMS platforms. Nonetheless

the findings of the benchmark study have motivated us to conduct this research. The

representatives we choose for the two different DBMS platforms are Sybase (RDBMS)

and Object Store (OODBMS). We compare the performance of our R-tree based spatial

join algorithm against five combinations of data models and DBMS platforms. The

C H A P T E R 1. INTRODUCTION

five combinations are : Relational and BLOB model on Sybase, Relational, BLOB

and Parent-Child pointer model on ObjectStore.

1.4 Thesis Overview

The rest of this thesis is organized as follows. The spatial join operation is discussed

in Chapter 2. Spatial join definition and algorithm as well as some related works in

both computational geometry and spatial database areas are presented there. The

spatial data modelling is discussed in Chapter 3. We consider three different data

models Relational, BLOB and Parent-Child Pointer model for our experiment. These

models have different degrees of pointer involvement at the database schema level,

so that data fetching methods from underlying database are different. We compare

the two different DBMS platforms (object-oriented and relational) in Chapter 4. The

representatives we used in our research are ObjectStore and Sybase. The application

caching technique is also discussed there. The experimental setups which include

implementation environment, polygonal data generation and the six data sets used in

our experiments are described in Chapter 5. In Chapter 6 we analyze the experimental

results. The conclusions of the thesis are presented in Chapter 7.

Chapter 2

Spatial Join

Spatial join is a basic geometric calculation operation. It can be found in many GIs

applications. Basically, spatial join is a set operation that operates on two sets of

spatial objects. The output of this operation consists of pairs of spatial objects, one

from each input set. In GIS there are always many different maps, such as soils, crop

productivity, land usage, time zones, administrative areas, etc., for each geographical

area. Thus spatial join is a very useful spatial operation as it can synthesize informa-

tion found in different maps of the same geographical area and can therefore answer

complex spatial queries. For example, "find all the administrative areas in a certain

time zone" can be answered by performing a spatial join operation on the time zone

map and the administrative area map.

In this chapter, we will first discuss our R-tree based spatial join algorithm, fol-

lowed by a short literature survey on spatial join.

CHAPTER 2. SPATIAL JOIN

2.1 Algorithm

In this thesis, the spatial objects for the spatial join operation are polygons. We

represent a map as a set of non-overlapping polygons. The spatial join algorithm

is an R-tree based two-step algorithm. Before presenting the algorithm, some basic

definitions and assumptions are given. In addition, we will briefly describe the R-tree

Spatial Indexing Method (SIM).

2.1 .I Definitions

In our spatial data models, polygons are simple polygons which have no intersecting

edges and no holes. Other entities comprising each spatial data model include vertex,

edge, node and chain. According to Hong Fan's thesis [14], we give a brief definition

of these entities below: (See Chapter 3 for examples of these entities.)

vertex: a vertex is a point in the 2-dimensional space.

edge: an edge is a straight line between two vertices.

node: a node is a vertex at which more than two edges terminate.

chain: a chain consists of the sequence of edges between two adjacent nodes.

polygon: a polygon is a closed sequence of chains.

The spatial join operation is about detecting overlapping polygon pairs from two

polygon sets. There are two ways in which two polygons may overlap: partial overlap

and total overlap. Two polygons partially overlap when (at least) one of the edges of

CHAPTER 2. SPATIAL JOIN

one polygon intersects or overlaps an edge of the other. Two polygons overlap totally

when one is contained (enclosed) in another. Our spatial join algorithm is concerned

with only partially overlapping polygons. The formal definition of the. operation is

given below:

Definition : Given two sets of polygons S and R, the spatial join operation returns

all pairs of polygons (s, r), where s belongs to S, r belongs to R, and s and r overlap

partially.

2.1.2 R-tree SIM

Since spatial operations usually deal with 2 or 3 dimentional data, traditional B-

tree indexing technique used in many DBMSs is not suitable for multidimensional

situation. A large number of spatial indexing methods (SIM) have been proposed

to improve the performance of spatial operations. These include R-trees [12], K-D-

B-trees [26], Quadtrees [29], [30], [31], Grid File [20] and so on. Our spatial join

algorithm is based on one popular SIM - R-tree. The R-tree is a hierarchical SIM

dealing with rectangular data. Each non-leaf node of the R-tree contains entries of

the form (MBR, child-pointer), where MBR is a Minimum Bounding Rectangle of all

the MBRs in its child node, and child-pointer is the address of its child node. The leaf

node has entries of (MBR, object-id), where MBR is the object's MBR and object-id

refers to a certain object. The node size M is defined as the maximum number of

entries in each node. M is always chosen so that a node fits a page and I/O cache

block. That is why R-tree is regarded as a page-oriented SIM. The number of entries

in each node lies between m and M, where m = [MI21 is the minimum number of

entries per node.

CHAPTER 2. SPATIAL JOIN

2.1.3 R-tree Based Algorithm

There are many similarities between the spatial join operation and the join operation

in relational algebra, one of which is that the operation is quadratic in complexity if a

brute-force nested loop algorithm is used. (The basic spatial join algorithm is shown

below.) Thus, a spatial index is frequently used by a spatial join algorithm, much

as a B-tree index is used by a join algorithm. Incidentally, the most frequently used

spatial index, R-tree [12], or one of its variants, e.g. R+-tree [9] and R*-tree [I], is

modelled after the B-tree.

INPUT : m polygons in Mapl, n polygons in Map$

OUTPUT : Set of pairs (Pi, Qj), such that Pi belongs to Map1 and Qj belongs to

Map2, and Pi and Qj intersect. where 0 < i < m, 0 < j < n;

BEGIN

1. For each polygon Pi from Mapl, 0 < i < m

2.1. For each chain C of polygon Pi

2.2. For each chain C' of polygon Q j

2.2.1. For each edge E of chain C

2.2.2. For each edge E' of chain C'

if E intersects with E', report intersection of Pi and Qj.

END

CHAPTER 2. SPATIAL JOIN

Unlike the relational join algorithm, the purpose of a spatial index is to reduce the

number of pairs of polygons that must be subjected to the polygon (partial) overlap

test. This is because R-tree, or any of its variant, stores only rectangle approximations

of the polygons. (See Fig. 2.2 for some examples of MBR). Given a polygon r in the

polygon set R, using an R-tree index, one can locate only those polygons in S whose

MBRs overlap with the MBR of r. Further computation is required to determine,

precisely, which of these polygons actually overlap with r. Thus our spatial join

algorithm contains two major steps:

R-Tree Join: This preprocessing step acts as a filter to find all potentially

overlapping polygon pairs. This is accomplished by checking for MBR overlap

of each polygon in R against an R-tree of MBRs for polygons in the other set,

S.

Polygon Overlap Computation: For each pair of polygons returned by R-Tree

Join, we check whether they really overlap. This is done by checking for inter-

section of all possible pairs of chains.

Since we do not assume existence of any auxiliary data structure, the construction

of the R-tree is included in our algorithm. (As an option, we can also store the R-tree

in the database.) Thus we can express our algorithm in the following sequence of

major operations, which we call, the execution plan.

1. Open the database

2. Construct an R-tree

3. Compute R-tree join

C H A P T E R 2. SPATIAL JOIN

4. Perform polygon overlap computation

5. Close the database

Up to now, our algorithm is very similar to other published two-step spatial join

algorithms. After an initial implement ation, it was discovered that the polygon over-

lap computation (step 4 in the plan) consumes most of the CPU time! This bias

would reduce the spatial join to an unsuitable candidate for our experimental pur-

poses. Fortunately, we have managed to introduce the following two techniques during

the polygon overlap computation, which result in drastic reduction in the execution

time.

Utilizing topological information: Since the spatial data model can provide ad-

ditional topological information for each chain, its left and right polygons, more

information can be obtained when two chains intersect. Consider Fig. 2.1 which

shows two polygons each from Mapl and Map2. If during the checking for poly-

gon overlaps of any pairs of polygons from Mapl and Map2, chain AB is found

to intersect chain CD, then one can conclude that all four pairs of polygons over-

lap. A 2-dimensional matrix is used to store this information, which is consulted

each time before the pair-wise polygon checking is performed. It seemed that

this technique would have reduced the execution time by about 75% because

one pair of intersecting chains results in four pairs of intersecting polygons. But

the experimental results show that this technique just reduces the execution

time of step 4 by 15%. The reason for this is the result set from R-tree join

step always has at least 113 polygon pairs that do not really overlap. We call

them false candidate pairs. The polygon overlap computation for all these false

CHAPTER 2. SPATIAL JOIN

candidate pairs is most time-consuming since each chain in one polygon has to

be checked with all the chains in the other one before we find out that they do

not overlap. Time used on false candidate pairs cannot be reduced by utilizing

topological information because no chain pair overlaps each other. Therefore,

the performance of step 4 is improved by only 15% instead of 75% after using

more topological information.

Figure 2.1: Intersecting chains AB and CD imply 4 pairs of intersecting polygons

Utilizing M B R intersection in format ion (f rom the R-tree Join): Recall that

even if the MBRs of two polygons overlap, the two polygons themselves may

not overlap. Conversely, if these polygons do overlap, the overlapping region

must be confined to the overlapping region of their respective MBRs, which for

convenience is called RECT. We further infer that only those chains intersecting

RECT(partially or totally) may intersect. In particular, if there are no chains

from ei ther polygon intersecting RECT, the two polygons cannot overlap. By

applying a sort of line clipping algorithm in Graphics [27] to determine whether

CHAPTER 2. SPATIAL JOIN

the edges intersect RECT instead of checking whether two edges intersect each

other, the performance can be significantly improved. Thus another filtering

process is introduced in step 4 to reduce the polygon overlap computation. The

idea is to calculate the intersection of two overlapped MBRs from R-tree join

step instead of checking the two polygons directly. The result is another small

rectangle, say RECT, such as the shaded region in Fig. 2.2. All chains of Pi

and Qj outside RECT are excluded from consideration. For the remaining ones,

edge-by-edge intersection checking is done for all possible pairs of edges from

Pi and Qj. For example, in Fig. 2.2, only edges AB and BC in polygon Pi are

checked with edges XY and YZ in polygon Qj.

Thanks to this technique, the computation has been further reduced by 80-90%.

Figure 2.2: Only edges AB and BC are checked with edges XY and YZ

The detailed algorithm is presented below :

INPUT : m polygons in Mapl, n polygons in Map2, where m 5 n;

CHAPTER 2. SPATIAL JOIN

OUTPUT : Set of pairs (Pi, Qj), such that Pi belongs to Mapl and Qj belongs to

Map2, and Pi and Qj intersect, where 0 < i < m, 0 < j < n;

BEGIN

1. Initialize the result matrix Mn,, by setting all its elements to 0.

2. Create R-tree R T for the Map2 which has the larger number of polygons. The

MBR of each leaf node is the MBR of each polygon.

3. For each polygon Pi in Mapl, where 0 < i < m

3.1. Read its MBR Ri

3.2. Starting from N = the root of R-tree RT, for each element e of node N

with MBR R:

if Ri intersects with R:

if N is a leaf node, record pair (Pi, Q,);

if N is a non-leaf node, for each child node of element e, let N be that

child node and repeat 3.2;

4. For each pair (Pi, Qj) recorded in the third step, where 0 I i < m, 0 I j < n

4.1. if M[P;, Q,] == I , goto 4;

4.2. Initialize edge sets ES1 and ES2 to the empty set.

1 .
4.3. Compute the intersection of MBRs of Pi and Qj, call it R;

I 4.4. For each chain C of polygon Pi

I , 4.4.1. For each edge E of chain C

C H A P T E R 2. SPATIAL JOIN

if E is not outside R, insert E to edge set ES1;

4.5. If edge set ES1 is empty, goto 4;

4.6. For each chain C' of polygon Qj

4.5.1. For each edge E' of chain C'

if E' is outside R, insert E' to edge set ES2;

4.7. If edge set ES2 is empty, goto 4;

4.8. For each E of edge set ESl, suppose E also belongs to Pk

4.8.1. For each E' of edge set ES2, suppose E' also belongs to Q1

5. For each M[i, j] == I

report intersection Pi and Qj.

END

The experimental data showing the improvement of our spatial join algorithm will

be presented in Chapter 6 after we explain all the important concepts, such as spatial

data modelling, Sybase and Objectstore platforms, application caching, and describe

the experiment setups which include implementation environment and data sets.

2.2 Literature Review on Spatial Join

The polygon intersection problem is not a new topic in the field of computational

geometry. There have been many studies on finding optimal intersection algorithms

CHAPTER 2. SPATIAL JOIN

for basic geometrical elements such as segment in the literature [34], [2] and [3]. The-

oretically, these algorithms are very efficient. However, they always require complex

auxiliary data structures and extensive preprocessing of raw data.

With the spatial database becoming an active research area, researchem in database

area have been working on spatial data query processing which also needs to manip-

ulate geometric objects. Many practical solutions for spatial operations have been

developed and implemented for spatial database (e.g., [22], [24], [23], [4], [ll], [36],

> .

2.2.1 Spatial Overlap Query in PROBE

PROBE[22] is a research project for an object-oriented image database system. In

PROBE, spatial objects are constructed by point sets entities. The point set of an

object is a set of points in the space occupied by that object. Point set has a well-

defined set of operations suitable for many applications. Spatial overlap operation

of two spatial objects could be performed on their corresponding point sets. The

problem with this approach is its large time and space requirements. For this reason,

PROBE introduces a geometry filter : "a k-D point set indicating a spatial object

is approximated by superimposing a k-D grid of cells on the space." This grid rep-

resentation is a conservative approximation of the object. The spatial overlap query

in PROBE is also processed in two steps. First, a geometry filter is involved. Next,

ordinary geometrical computation is performed to refine the candidate set.

One of the interesting part of this research is the geometry filter. Spatial overlap

operation for grid representations can be implemented simply - the same logical AND

CHAPTER 2. SPATIAL JOIN

operation is applied for each grid cell. However, in this case, the performance is still

a big problem when grid resolution is high. PROBE overcomes this drawback by

encoding the grid. "The encoding is obtained by recursively partitioning the space

where the object is occupied until the boundary of the object is obtained or the

maximum resolution is reached." One region obtained by a sequence of splitting has

a unique corresponding bit string which is called z value of that region. By sorting

z values lexicographically, z order is obtained. Z order is a kind of mapping from

k-D space to 1-D space with the spatial proximity preserved. Clustering can be

achieved for efficient disk access by preserving spatial proximity. Another practical

benefit of using Zorder is that traditional indexing methods (B-tree, Bf-tree) or other

conventional file organizations can be used for spatial database. Under this encoding

scheme, spatial overlap can be performed by checking whether a z value in one input

is a prefix of that in the other input.

2.2.2 Spatial Join Based on Different Approximations

In [4], an approximation-based query processing mechanism for managing large sets of

complex polygonal objects was introduced. Just like many other methods of spatial

query processing, the approximation-based query processing is also performed in two

steps, filter step and refinement step. But it has two important features in addressing

the efficiency issue of managing geometric objects.

0 To make the filter step as fast and accurate as possible, the approximation of

object should be simple and should have a good approximation quality. This

research designed and investigated several convex conservative approximations

CHAPTER 2. SPATIAL JOIN

which meet these requirements: Minimum Bounding Rectangle, Rotated Mini-

mum Bounding Rectangle, Minimum Bounding Circle, Minimum Bounding El-

lipse, Convex Hull and Minimum Bounding n-corner. From their testing results,

in most cases (different complexity of objects and different type of queries), "the

approximat ions 5-corner, ellipse and rotated bounding rectangle clearly outper-

form the bounding rectangle which is used in many spatial query processing

mechanisms."

Instead of using complicated Spatial Indexing Methods, such as sphere tree[25],

cell tree[lO] , polyhedra-tree [15] or P-tree[33], R*-tree which is originally de-

signed for bounding rectangles is adopted to organize the non-rectangular ap-

proximations. In this case, spatially adjacent approximations are grouped into

one leaf-node. Since more complex approximations need more storage, the node

size is determined by the complexity of the approximation and it will further

influence the performance of the Spatial Indexing Method. Just like an ordinary

R*-tree, each non-leaf node has elements of form (MBR, child-pointer) and thus

can be organized by the R*-tree in the normal way.

Both our spatial join algorithm and this approximation-based query processing

are aimed to reduce the execution time in the refinement step during which a complex

and time-consuming computational geometry algorithm is performed. Our strategy is

to design another filter processing to simplify the polygon overlap computation. This

research focuses on investigating different object approximations with high approxi-

mation quality to reduce the false hits from the filter step.

Chapter 3

Spatial Data Models

3.1 Spatial Data Model Representat ions

It is widely known that the representations of spatial data models fall within two

major classes : vector representation and raster representation. The vector data

model represents geographical feature by explicitly defining its component geometric

entities, such as points, lines and polygons, as well as the topological information

among these entities. In the raster data model, the whole space is participated into

small pieces or cells (like PROBE project). Each object is approximated by a set

of cells overlapping the object. The representation is therefore conservative, and the

precision is limited by the resolution of the cell. Compared to its raster equivalent, the

vector data model has much higher precision while representing objects,'but requires

much more complicated geometrical computations.

We adopt the vector data model representation for all three spatial data models

CHAPTER 3. SPATIAL DATA MODELS

designed for our spatial join algorithm.

3.2 SpatialDataModels

Three spatial data models are considered in this thesis. These are chosen as represen-

tatives from a spectrum of data models, according to the extent to which pointers are

present in the data model. These models are: Relational, BLOB (Binary Large Object

Block), and Parent-Child Pointer model (or simply Pointer model). Although Rela-

tional and BLOB models are actually designed for the relational DBMS platform, both

of them can also be implemented in an object-oriented database. In this case, data

accessing has to be done by query (associative retrieval) instead of 'de-referencing7.

Obviously, there is a trade-off between performance and flexibility. With pointers,

access from one object to other associated objects is very fast, and is more so for

the current generation of OODBMS. Relational data model, on the other hand, uses

keylforeign-key to associate related objects. A query is the only way to access data

from the database. This results in a reduction in the performance. However, pointer

linkage tends to 'hard-wire' association of objects which works for some applications

but may not work well for other applications which require different access strategies.

A spatial data model for spatial join is not very different from that for other

spatial applications since it must define all basic entities in a polygonal map, and

its topology information of the polygons therein. The only application-specific infor-

mation included in the spatial data models we use is about the Minimum Bounding

Rectangle (MBR) of each polygon.

C H A P T E R 3. SPATIAL DATA MODELS

3.2.1 Relational Data Model

In this spatial data model, each polygon is broken into multiple entities which are

stored in separate tables. The data model is constructed as a four-level hierarchical

structure - polygon, chain, edge and vertex. In this model most of the topology

information is provided by foreign keys. The schema definitions and some sample

tuples of these four tables are given below. These tables are defined according to the

common relational data model such as the one described in [7]. This data model can

also be implemented on Objectstore. Since in the schema definitions only two basic

data types (int and float) are used, the only thing we need to do is to translate each

table to a class.

This model, while containing all information required by our spatial join algorithm,

is designed without considering the efficiency of this or other applications. Many

geometric data models are defined in a similar way. It is clear that this model is

not 'compatible' with the data structure requirement of our algorithm. For example,

many database accesses and joins are needed to get all the information of one polygon

required by our algorithm.

Table POLYGON

(PolygonID

ChainNum

S t a r t Chain

MBR-llx

MBR- 11 y

MBR-urx

i n t ,

i n t ,

i n t ,

f l o a t ,

f l o a t ,

f l o a t ,

/* Polygon I D */

/* No. of c h a i n s i n t h e polygon */

/* The f i r s t cha in i n t h e polygon */

/* The low- le f t c o o r d i n a t e of polygon 's MBR */

/* The upper- r ight c o o r d i n a t e of polygon's MBR */

C H A P T E R 3. SPATIAL DATA MODELS

Figure 3.1: An Example of a Polygonal Map

MBR-ury f l o a t)

Table CHAIN

(ChainID i n t , /* Chain I D */

EdgeNum i n t , /* No. of edges i n t h e cha in */

S t ar t Edge i n t , /* The f i r s t edge i n t h e cha in */

Lef tPo ly i n t , /* The polygon on t h e l e f t s i d e of t h e cha in */

NextChainInLeftPoly i n t , /* The nex t cha in i n t h e l e f t polygon */

RightPoly i n t , /* The polygon on t h e r i g h t s i d e of t h e cha in */

NextChainInRightPoly i n t) /* The nex t cha in i n t h e r i g h t polygon */

Table EDGE

C H A P T E R 3. SPATIAL DATA MODELS

Table 3.1 : Polygon Relation

Table 3.2: Chain Relation

MBR-urx PolygonID

PI
~2

(EdgeID i n t , /* Edge I D */

Vertex1 i n t , /* The f i r s t v e r t e x i n t h e edge */

Vert ex2 i n t , /* The second v e r t e x i n t h e edge */

Next Edge i n t) /* The nex t edge i n t h e cha in */

MBRllx MBR-ury

NextChainInRightPoly

c2
c4

Table VERTEX

(VertexID i n t , /* Vertex I D */

x f l o a t , /* x c o o r d i n a t e of v e r t e x */

Y f l o a t) /* y c o o r d i n a t e of v e r t e x */

MBRlly ChainNum
3
3

ChainID

c l
c3

Start Chain
cl
c3

StartEdge

e l
e7

EdgeNum

3
3

-- --

Table 3.3: Edge Relation

LeftPoly

P3
PI

EdgeID
el
e2
e3

Endvertex
v2
v3
v4

Startvertex
vl
v2
v3

NextChainInLeftPoly

c5
c l

NextEdge
e2
e3
nil1

RightPoly

PI
~2

C H A P T E R 3. SPATIAL DATA MODELS

Table 3.4: Vertex Relation

3.2.2 BLOB Data Model

The major difference between this model and the Relational data model is the addition

of the BLOB data type, which does not have a fixed length. BLOB data type is the

answer of RDBMS vendors to the user's need for the DBMS to handle non-text data,

such as images. It is also frequently used as a device to handle variable-sized text data.

Many GIs applications represent their map data in either images (raster-based) or

text (vector-based). In this thesis, although we choose to represent a map as a set of

non-overlapping polygons, BLOB data type is still very useful because each polygon

has a variable number of chains, each of which in turn has a variable number of

vertices. BLOB data type has another implication that is important to this research.

Sybase's equivalent of BLOB, called image data type, is capable of holding up to

2,147,483,647 bytes of binary data. Image data is stored, internally, on a linked list (s)

of data pages separated from other data storage for the relation [35]. It is in this sense

that the BLOB data model is a compromise between the relational model (strictly no

pointers) and the parent-child pointer model (explicitly defined pointers).

Our BLOB data model consists of two relations: polygon and chain, each of which

has an image attribute.

t a b l e POLYGON

(PolygonID i n t , / * P o l y g o n I D * /

CHAPTER 3. SPATIAL DATA MODELS

I PolygonID I ChainNum I MBRllx I MBRlly I MBR-urx I MBR-ury .I ChainBuf I

Table 3.5: Polygon Relation

ChainNum

MBR-llx

MBR-lly

MBR-urx

MBR-ury

ChainBuf

ChainID

c 1

t a b l e CHAIN

(ChainID

Lef tPo ly

Right Poly

Vert exNum

Ver t exBuf

Table 3.6: Chain elation

i n t , /* No. of c h a i n s i n t h e polygon */

f l o a t , /* The low- le f t c o o r d i n a t e of polygon 's MBR */

f l o a t ,

f l o a t , /* The upper- r ight c o o r d i n a t e of polygon 's MBR */

f l o a t ,

image) /* Sequence of c h a i n s i n t h e polygon */

LeftPoly

~3

i n t , /* Chain I D */

i n t , /* The polygon on t h e l e f t s i d e of t h e cha in */

i n t , /* The polygon on t h e r i g h t s i d e of t h e cha in */

i n t , /* No. of v e r t i c e s i n t h e cha in */

image) /* Sequence of v e r t i c e s i n t h e cha in */

Objectstore does not support BLOB, or image data type. Instead we use the

0s-List construct as the equivalent in order to implement the BLOB model on Ob-

jectstore. An 0s-List is a parameterized class, which is used to define 'an arbitrary

RightPoly

~1
VertexNum

4
Vert exBuf

x l v l x2 v2 x3 v3 x4 v4

C H A P T E R 3. SPATIAL DATA MODELS

collection of objects belonging to the same class. Objectstore allows many ways to

access objects in this collection, but for our purposes here, this collection is used in

the same way as the attributes stored in an image attribute.

c l a s s Vertex (

p u b l i c :

f l o a t x , y ;

c l a s s Poly (

p u b l i c :

i n t po ly id

RECTANGLE *MBR ;

i n t chainnum ;

0s -L i s t< in t*> chainbuf ;

c l a s s Chain (

p u b l i c :

i n t c i d

i n t l p o l y i d ;

i n t r p o l y i d ;

indexable ;

/ / No. of c h a i n s

// Sequence of cha in i d s

indexab le ;

/ / l e f t polygon i d

// r i g h t polygon i d

i n t vert icenum; // No. of v e r t i c e s

os,List<Vertice*> v e r t i c e b u f ; // Sequence of v e r t i c e s

C H A P T E R 3. SPATIAL DATA MODELS

3.2.3 Parent-child Pointer Data Model

Even though the BLOB data model provides pointer access to variable-sized data,

there are two major limitations of BLOB. First, there is no way to address directly a

specific segment within the image data. Of course, once the data is in memory, any

part of the image data can be addressed, but the entire image must be brought into

the memory prior to that. Second, there cannot be any image field within the image

field. This is because no explicit pointer is allowed in the model. The implication is

that it is impossible to build multi-level hierarchies with BLOB data type.

The Parent-child pointer data model provides the flexibility that is required to

model the storage data structure (i.e., the layout of the data in the storage) as closely

to application data structure as possible. This is the case for the data model (schema)

below which is optimized for the purpose of this application. For example, during the

polygon overlap computation, information about a polygon's chains are frequently ac-

cessed. Likely, all edges (or their vertices) are frequently accessed from the chain they

belong to. The parent-child pointer model supports fast accesses in these situations.

Clearly, this pointer data model can be implemented only on the OODBMS plat-

form.

c l a s s Ver tex (

p u b l i c :

f l o a t x , y ;

3;

c l a s s Chain (

C H A P T E R 3. SPATIAL DATA MODELS 29

p u b l i c :

i n t ChainID ; // Chain I D

i n t Le f tPo ly ; // L e f t polygon i d

i n t RightPoly; // Right polygon i d

i n t VertexNum; // No. of v e r t i c e s

Vertex VertexBuf [Numof Vert ices] ; / / Sequence of v e r t i c e s

c l a s s Polygon (

p u b l i c :

i n t PolygonID; // Polygon I D

RECTANGLE *MBR ; // The MBR of t h e polygon

i n t ChainNum; // No. of cha ins

Chain *ChainBuf[NumofChains]; // P o i n t e r s t o cha ins

3 ;

The main difference between BLOB and the Parent-child pointer model is the way

in which chain information is stored in the polygon structure. In the BLOB model, a

sequence of chain IDS that form the polygon are stored. In this case, database queries

based on the chain IDS have to be performed in order to get chain information. On

the other hand, in the Parent-child pointer model, the pointers to the chains are

saved in the polygon. Thus, chain information can be obtained by 'de-referencing'

the pointer. As we will see in the performance analysis in chapter 6, this difference

results in substantially different performances.

Chapter 4

DBMS Platforms and Application

Caching

Currently relational DBMS platform is still a major storage mechanism for large

collections of data and is still widely used for various applications, even for some

non-traditional ones such as GIS. One major reason for this trend is because rela-

tional DBMS is well-developed and technologically-mature. However, because of its

limitations, such as uniformity, tuple orientation, small data items and atomicity of

at tribute[l7], more and more non-traditional applications are leading the database

model research in different directions.

One direct way to overcome the shortcomings of the relational database model is

to extend this model. One example of an extended relational database model is the

Nested Relation. The Nested Relational database model allows relations that are not

in first normal form. That means the value of a tuple on an attribute may be an

atomic value or a relation. Thus, in this model, a complex object with a hierarchical

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING31

structure can be directly represented by a single tuple of a nested relation.

Another alternative is to develop the object-oriented database model. Object-

oriented databases are based on the object-oriented programming paradigm and aug-

mented by persistency as well as other database features such as transaction man-

agement. In an object-oriented database model, users can use concepts, such as

hierarchical structure, inheritance, etc., to describe their understanding of the data

structure of an object in the real world. That means a complex object can be rep-

resented as an individual unit which is closer to the user's concept, while, relational

database models require users to consider a complex object in multiple relations[l8].

However, the object-oriented database model also sacrifices many of the advantages

of the relational database model. For example, it provides few means of descriptive

set-operations[32].

The two different DBMS platforms we adopted for our performance study are

Sybase and ObjectStore. Although there are many differences between Sybase and

ObjectStore, we will only examine here two major ones that would affect the perfor-

mance of the application: persistence and local caching.

4.1 DBMS Platforms - Sybase and ObjectStore

ObjectStore is essentially a database programming language [5] , i.e., CS+ with database

extensions. Persistent and transient data are treated in a uniform way. The only differ-

ence is that when the data is allocated, ,persistent data must be declared as persistent.

Once data is declared as such, the application programmer need not be concerned

with its longevity. There are two ways to access persistent data: de-referencing and

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING32

by query (or querying). To de-reference means to load the contents given the virtual

memory address. Object Store's virtual memory database architecture stipulates that

every piece of persistent data is given a virtual memory address. If the data is not in

memory, a page fault will be generated and program control will be passed on to Ob-

jectstore. Once the data is located, a proper virtual memory address is assigned and

its contents is then loaded. ObjectStore also provides a query facility for associative

retrieval, i.e., an object is located given the values of its attribute(s) [21]. The same

query facility can also be used to explicitly write an object into Object Store (e.g., an

insert command). Mostly, however, the persistent objects are created and modified in

the same way as transient objects, without resorting to querying. In contrast, appli-

cations running on Sybase, like many other DBMSs, must use SQL to read or write

persistent data, i.e., data stored in Sybase.

In a typical database processing situation, the application and the DBMS run as

separate processes, or, on separate machines if it is a clientlserver architecture. In

Sybase, or other RDBMS, the query is issued by the application and sent to the server,

which, after processing, returns the result data set to the application. In contrast,

an OODBMS sends to the application more data than requested, which remains in

the cache memory of the local process/machine until it is swapped out. This is called

local caching [6] and it is transparent to the application programmer. There are two

types of local caching: object-level and page-level, depending on whether the object,

or the physical page (or segment) that contains the requested data, is sent. In [8],

a performance comparison is made between these two types of local caching. In this

thesis we consider page-level local caching, since it is what ObjectStore has adopted.

Regardless of which type of local caching is adopted, its existence causes a major

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING33

system architectural difference between the RDBMS and OODBMS and contributes

to the superior performance for the latter for certain types of application. By pre-

loading the data into the local cache, the OODBMS creates a physical copy of the

data. This data is identical in contents but physically distinct from the corresponding

storage data in the sense that the OODBMS must maintain consistency between these

two images of the same data. However, this cost arising from concurrency control is

outweighed by the benefit provided by the local caching. Without that, de-referencing

style of data accessing would be impossible. In addition, ObjectStore has a clever way

of determining whether a data item, given its virtual memory address, is located in the

cache without any overhead. This makes it possible for an ObjectStore application

to access persistent data as efficiently as transient data. However, there is a cost

associated with the unique database architecture. We discovered in our experiments

that the database open time is much lengthier than that of Sybase. This is discussed

in greater detail in Chapter 6.

4.2 Application Caching

Local caching is done by ObjectStore transparently to the application. However, there

is no reason why the same approach cannot be taken by the application programmer,

in order to achieve the same kind of superb performance improvement for the RDBMS

. platform. Since the local caching is done by the application, not by the DBMS, we

call this application caching to differentiate between the two. The major advantage

of application caching over local caching is that the former is controlled by the ap-

plication, and consequently the layout of the data in the cache, i.e., the cache data

structure, can be tailored to the needs of the application. In addition, by pre-loading

CHAPTER 4, DBMS PLATFORMS AND APPLICATION CACHING34

the bulk of data from the database before the objects are required by the application,

the query cost in the application can be reduced. This is because fetching a set of

relational tuples by a range query is much less expensive than shipping a single tuple

from the database because of the high start up cost per data transmission.

4.2.1 Application Caching Mechanism

To include the step for application caching, we modify the execution plan of the spatial

join algorithm as follows:

0 1. Open database

0 2. Perform application caching

0 3. Construct R-tree

0 4. Compute R-tree Join

0 5. Perform polygon overlap computation

0 6. Close database

Since the goal of this thesis is to study how the performance of a common spatial

database operation - spatial join, can be affected by different data models and DBMS

platforms, and since the cache data structure is not tailored to the requirements of the

application during the cache pre-loading, the data conversion from the spatial data

model to the application data structure is conducted during the spatial join operation.

The main function of the application caching is to pre-load all or part of database

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING35

(depending on the database size) to the local cache in order to cut down the query

cost in the application program.

The complexity of application caching is of course application dependent. It also

depends on the size of the database. For large databases which may not be loaded

entirely at the same time, caching management would be required. Basically our

application caching mechanism is constructed in a fashion similar to Objectstore. It

consists of two major components : address converter and application cache manager.

An overview of the application caching mechanism is shown in Fig. 4.1..

1 Application R o p r n I
address

tuple key (id)
..................... "
Application Caching

Mechaniim

I Address Converter I
data admess tuple key (id)

I Application Cache Manager I
t SQL query
I..

Figure 4.1 : Application Caching Mechanism

The function of each part of the application caching mechanism is described below:

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING36

Address Converter : The address converter should maintain a mapping table

which converts a key of a relational tuple into its virtual address in the applica-

tion cache. In our experiment, the application cache is composed of a number

of arrays. Each array conforms to its correspondent relation in the spatial data

model. The data type of each array is exactly the same as the definition of its

correspondent relation. That means no data structure alignment is applied at

the data pre-loading stage. Since each relation of our spatial data model has an

integer primary key (e.g., Polygon ID, Chain ID, etc.), this key can be used as

the index value for direct access to the required tuple in the application cache.

If the primary key cannot be used as a value of the index, then a suitable hash

function can be applied to map the primary key into an appropriate index value.

This access will be slower than the access by 'de-referencing' in Objectstore be-

cause it requires some computation to translate the index value into the virtual

address of the tuple. However, it is considerably faster than query access.

Application Cache Manager : The application cache manager is required because

it may not be possible to pre-load the entire database into the application cache

due to the swap space limitation of the client machine. Thus when the address

converter fails to return the cache address of the required tuple, it will pass the

primary key of the tuple to the application cache manager to retrieve the tuple

from the database by issuing queries. Since in this case the application cache

has already been full, an existing tuple in the application cache will be replaced

by the incoming tuple according to a first-in-first-out (FIFO) policy. After

adjusting the relevant entries in .the mapping table, the virtual cache address

of the required tuple will be passed to the application program by the address

converter.

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING37

An example of the application caching algorithm for the relational model is given

below. In the relational model, tuples which are always accessed together in one

relation are given sequential IDS and stored in that sequence in the relational table in

order to achieve data clustering. For example, all the edges in one chain are arranged

in a sequence of edge IDS and stored one after another. When the chain information

is required by the application program, all the edges of that chain can be fetched by

a single range query.

The application caching algorithm comprises two sections : pre-loading algorithm

and cache manager algorithm.

Pre-loading Algorithm :

BEGIN

1. Loading polygon tuples.

1.1. Set POLYNUM to the minimum value of the number of polygon

tuples in the polygon relation and the number of polygons that can be

loaded into the application cache.

1.2. For each of the POLYNUM polygons

1.2.1. Load the polygon tuple into the application cache.

1.2.2. Invoke the address converter to maintain the mapping (from

the polygon ID to its virtual address in the application cache).

2. Loading chain tuples.

1.1. Set CHAINNUM to the minimum value of the number of chain tuples

in the chain relation and the number of chains that can be loaded into

the application cache.

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING38

1.2. For each of the CHAINNUM chains

1.2.1. Load the chain tuple into the application cache. .

1.2.2. Invoke the address converter to maintain the mapping (from

the chain ID to its virtual address in the application cache).

3. Loading edge tuples.

3.1. Set EDGENUM to the minimum value of the number of edge tuples

in the edge relation and the number of edges that can be loaded into

the application cache.

3.2. For each of the EDGENUM edges

3.2.1. Load the edge tuple into the application cache.

3.2.2. Invoke the address converter to maintain the mapping (from

the edge ID to its virtual address in the application cache).

4. Loading vertex tuples.

4.1. Set VERTEXNUM to the minimum value of the number of vertex

tuples in the vertex relation and the number of vertices that can be

loaded into the application cache.

4.2. For each of the VERTEXNUM vertices

4.2.1. Load the vertex tuple into the application cache.

4.2.2. Invoke the address converter to maintain the mapping (from

the vertex ID to its virtual address in the application cache).

END.

Cache Manager Algorithm :

BEGIN

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING39

1. Invoke the address converter to get the virtual address for the polygon ID

from the mapping table.

2. If success, return its virtual address to the application program.

3. Upon failure, get a polygon tuple from database server (GetPolygon-

FromDB).

4. From the polygon tuple, get the first chain ID in the polygon.

5. For this chain :

5.1. Invoke the address converter to get the virtual address for the chain

ID from the mapping table.

5.2. If success, return its virtual address to the application program.

5.3. Upon failure, get a chain tuple from database server (GetChain-

FromDB).

5.4. From the chain tuple, get the first edge ID in the chain.

5.5. For this edge :

5.5.1. Invoke the address converter to get the virtual address for the

edge ID from the mapping table.

5.5.2. If success

5.5.2.1. Return its virtual address to the application program.

5.5.2.2. From the edge tuple, get the two vertex IDS of the edge.

5.5.2.3. For each vertex :

5.5.2.3.1. Invoke the address converter to get the virtual ad-

dress for the vertex ID from the mapping table.

5.5.2.3.2. If success, return its virtual address to the application

program.

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING40

5.5.2.3.3. Upon failure, get a vertex tuple from database server

(GetVertexFromDB).

5.5.2.4. From the edge tuple, get the next edge ID in the chain,

goto step 5.5.

5.5.3. Upon failure, get edge tuples from database server (GetEdges-

FromDB).

5.6. From this chain tuple, get the next chain ID, go to step 5.

END.

Get PolygonFromDB

BEGIN

1.

2.

3 .

4.

5 .

END

Create a query by the polygon ID and send it to the database server.

Wait for the query result.

According to the FIFO policy, choose an existing polygon tuple in the

application cache to be replaced by the incoming polygon tuple.

Invoke the address converter to maintain the mapping (from the

polygon ID to its virtual address in the application cache).

Return its virtual address to the application program.

Get ChainFromDB

BEGIN

1. Create a query by the chain ID and send it to the database server.

2. Wait for the query result.

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING41

3. According to the FIFO policy, choose an existing chain tuple in the

application cache to be replaced by the incoming chain tuple.

4. Invoke the address converter to maintain the mapping (from the chain

ID to its virtual address in the application cache).

5. Return its virtual address to the application program.

END

GetEdgesFromDB

BEGIN

1. Create a range query by all the rest edge IDS in the chain and send it

to the database server.

2. Wait for the query results.

3. According to the FIFO policy, the incoming edges will replace the same

number of existing edges in the application cache.

4. Invoke the address converter to maintain the mapping (from the edge

IDS to their virtual addresses in the application cache).

5. Return their virtual addresses to the application program.

6. For each edge tuple, get the two vertex IDS of the edge.

7. For each vertex :

7.1. Invoke the address converter to get the virtual address for the

vertex ID from the mapping table.

7.2. If success, return its virtual address to the application program.

7.3. Upon failure, get a vertex tuple from database server (GetVer-

texFromDB).

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING42

END

GetVertexFromDB

BEGIN

1. Create a query by the vertex ID and send it to the database server.

2. Wait for the query result.

3. According to the FIFO policy, choose an existing vertex tuple in the

application cache to be replaced by the incoming vertex tuple.

4, Invoke the address converter to maintain the mapping (from the vertex

ID to its virtual address in the application cache).

5 . Return its virtual address to the application program.

END

4.2.2 Evaluation of Application Caching

The performance results of implementing application caching on top of the relational

database show that we can get an amazing improvement of perfor~nance with a reason-

able cost. Detailed performance analysis will be presented in Chapter 6. Interestingly,

applications running on ObjectStore can benefit from the application caching as well.

That means the application caching is applied on top of the local caching by Object-

- Store. Why? In case of local caching by ObjectStore, the layout of data in the cache,

i.e., the cache data structure, is beyond the control of the application programmer,

in the sense that it is determined by the database schema. If, for some reason, the

cache data structure is not 'compatible' with the application, expensive searching for

CHAPTER 4. DBMS PLATFORMS AND APPLICATION CACHING43

data requested by the application is required. In this case, local caching by Object-

Store may not be very effective. Thus, a case can be made for another level of local

caching, by the application, whose main purpose is to convert the cache data structure

determined by the database schema into one that is well-suited to the application.

Since no concurrency control mechanism is included into the implementation, cur-

rently the application caching works properly only in read-only situations. Fortu-

nately, many spatial database operations, especially those complicated ones, do not

modify spatial data, e.g., maps, which are usually compiled in separate processes.

Chapter 5

Experimental Setup

In Chapters 3 and 4, we presented three different data models Relational, BLOB

and Parent-Child Pointer and discussed two different DBMS platforms ObjectStore

and Sybase for our spatial join operation. In this chapter, a brief overview of the

experimental setup, which includes the implementation environment and the polygon

set generation, will be given.

5.1 Implement at ion Environment

We use Sun workstations for our experiments. For ObjectStore, both the client and

server (ObjectStore) run on a Sun 41280 with 32 MB memory, but the system and

its files are stored in a remote disk. Sybase runs on a similar platform but the client

runs on a separate machine. Despite. the asymmetry between the setups of these

two DBMS platforms, we do not think the differences are significant enough to alter

our qualitative comparisons of the results in connection with these platforms. All the

C H A P T E R 5. EXPERIMENTAL SETUP

experimental results are obtained during the mid-night or weekend when the computer

workload and network traffic are low.

Generating Polygon Set

5.2.1 Randomly Generating Polygon Set

The spatial space that contains the polygon set is restricted to a square which is from

lower-left (0, 0) to upper-right (1, 1). The polygon set generating algorithm has three

steps :

Generating Random Lines : A number of straight lines are generated in this

step. The two end points of each line are located on two different edges of the

space square. Thus, the line orientation has six possibilities: SW, SN, SE, WN,

WE, NE. All the end points of straight lines are generated on one of the four

edges according to the uniform probability distribution. Fig. 5.1 shows seven

straight lines generated in the space.

0 Tracing Polygon Set : Polygons which are composed of intersections of the

straight lines are traced out from the line net generated in the first step. To

simulate real area boundaries in the map, m number of additional points gen-

erated by a uniform bias toward the original straight line segment are added

to each line segment. The original line segment will be replaced by a sequence

of new line segments connecting all the m points. This sequence of new line

segments actually is a chain which we have already defined in Chapter 2. The

uniform bias can be controlled by smoothness factor, by which the chain can

C H A P T E R 5. EXPERIMENTAL SETUP

Figure 5.1: Line Net With Uniform Distribution of Ending Points

zigzag to different extent. The smoothness factor ranges from 0 $0 100. The

higher the smoothness factor, the more winding the chain will be. For exam-

ple, if the smoothness factor is 100, then all the additional points are generated

on the original line segment. With the smoothness factor is 0, an extremely

jagged chain connecting the additional points will be generated. Therefore, the

number of additional points m toget her with the smoothness factor determines

how jagged the chain will be. By restricting the area in which each sequence

of additional points are generated, we can guarantee that all the polygons in

the space do not overlap. Fig. 5.2 presents the polygon set after the boundary

modification of Fig. 5.1.

Eliminating Small Polygons : The number of straight lines directly affects the

total number of polygons in the polygon set. In this last step, a ratio can be set

C H A P T E R 5. EXPERIMENTAL SETUP

Figure 5.2: Polygon Set from Fig. 5. 1 with smoothness factor=20

to eliminate those polygons which are relatively small compared to the largest

one. For example, if the ratio is set to 0.01, that means we only keep those

polygons whose area sizes are at least 1% of that of the largest one.

While this method of generating random maps may not produce uniform dis-

tributed intersection points, there is no reason to doubt the randomly generated poly-

gon sets will favor any specific algorithm. In one spatial join performance study done

by Hong Fan [14], polygon sets with different distributions (in the random generation

of lines) were used and no discernible difference in performance was shown in that

study.

C H A P T E R 5. EXPERIMENTAL SETUP

Six data sets with varying sizes are generated for the experiments. Each set consists of

two polygonal maps, each of which contains a set of non-overlapping polygons. Table

5.1 shows the statistical information of each of the six data sets generated.

Data Set

Experimental Setup

1 I # 2 I # 3 1 # 4 I # 5 1 # 6

There are three different data models/schemas, and two different DBMS platforms,

each of which may run with or without application caching. Thus, theoretically, there

should be altogether 12 combinations for our spatial join algorithm:

Mapl I Map2 I Mapl I Map2 I Mapl I Map2 I Mapl I Map2 I Mapl I Map2 I Mapl I Map2

Table 5.1: Data Set Statistics

5.2.2 Data Sets for the Experiment

1. Relational Model on Sybase with Application Caching Off.

2. Relational Model on Sybase with Application Caching On.

3. Relational Model on ObjectStore with Application Caching Off.

4. Relational Model on ObjectStore with Application Caching On.

5. BLOB Model on Sybase with Application Caching Off.

CHAPTER 5. EXPERIMENTAL SETUP

6. BLOB Model on Sybase with Application Caching On.

7. BLOB Model on ObjectStore with Application Caching Off.

8. BLOB Model on ObjectStore with Application Caching On.

0 9. Parent-child Pointer Model on Sybase with Application Caching Off.

10. Parent-child Pointer Model on Sybase with Application Caching On.

11. Parent-child Pointer Model on ObjectStore with Application Caching Off.

12. Parent-child Pointer Model on Object Store with Application Caching On.

In practice, it is not possible to run the parent-child pointer model on Sybase,

because Sybase does not support navigational access through pointer. Thus versions

9 and 10 do not exist. Version 12 does not exist either, since the cache data structure

built by Object S tore is already well-suited to the application and by 'de-referencing7

pointer instead of query to access object the data accessing cost is already very small,

nothing can be gained from application caching.

To abbreviate, we label each version as XXX/YYY/ZZZ, where XXX is the data

model, YYY is the DBMS platform, and ZZZ (On, Off) indicates whether application

caching is on or off. Following the Unix tradition, we use a '*' to present the collection

of all models, or platforms.

We use the total execution time of the entire version, including the database open

and close times consumed by the DBMS, to measure the performance of each version.

The database load time is not included since data sets are already stored in the DBMS

prior to the execution of the algorithm.

Chapter 6

Experimental Results and

Analysis

In this chapter, we tabulate the experimental data from nine different versions of our

spatial join operation on the six data sets given in Chapter 5 and present our analysis

of these performance results. Before giving these experiment a1 results obtained from

different spatial data models and different DBMS platforms with or without appli-

cation caching, we report some performance data to show the improvement of our

spatial join algorithm after applying two technical strategies : utilizing topological

information and utilizing MBR intersection information as mentioned in Chapter 2.

6.1 Comparison of Spatial Join Algorithms

In Chapter 2, we described our spatial join algorithm which was developed from a

basic R-tree based algorithm and explained why the performance can be improved by

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS 51

1 Algorithm 1 1 Algorithm 2 1 Algorithm 3 1

~, I Polygon Overlap Time (Sec) 8.831 7.642 1.200 1
R-tree Construction Time (Sec)
R-tree Join Time (Sec)

Table 6.1: Performance Results from Different Algorithms for Data Set No.]

utilizing topological information and MBR intersection information from the R-tree

join. Here we show some performance data in Tables 6.1 - 6.6. In this section, we call

the basic R-tree based spatial join algorithm Algorithm 1. The algorithm applied with

topological information is called Algorithm 2. The final version of the algorithm which

utilizes both topological information and MBR intersection information is defined as

Algorithm 3. For each algorithm, the execution time consists of three timing results:

-
0.430
0.760

R-tree Construction Time: time for creating the R-tree index .

R-tree Join Time: time duration for finding all potentially overlapping polygon

pairs

..,
0.430
0.760

Polygon Overlap Computation Time: execution time for real polygon overlap-

ping checking

-
0.430
0.760

The spatial data model and DBMS platform used for testing these three algorithms

are Parent-Child Pointer Model and Objectstore. According to our numbering of

versions in Chapter 5, it is version 11.

In order to provide a good comparison, we summarize the polygon overlap com-

putation time of all six data sets in one chart (Figure 6.1). To make the chart better

looking, polygon overlap computation time is given in its logarithmic form (In).

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 52

R-Tree Construction Time (Sec)
R-tree Join Time (Sec)

Table 6.2: Performance Results from Different Algorithms for Data Set No.2

\ , I I
- - --- I Polygon Overlap Time (Sec)

I

15.074

Table 6.3: Performance Results from Different Algorithms for Data Set No.3

Algorithm 3
0.660
1.420

Algorithm 1

0.660
1.420

R-Tree Construction Time (Sec)
R-tree Join Time (Sec)
Polygon Overlap Time (Sec)

I Algorithm 1 I Algorithm :

Algorithm 2
0.660
1.4211

13.051 1.880

Algorithm 1
1.360
3.100
33.736

, , I I -- I Polygon Overlap Time (Sec)
I

36.628 31.676 4.390 1
Table 6.4: Performance Results from Different Algorithms for Data Set No.4

Algorithm 2

1.360
3.100
29.198

Algorithm 3

1.840
4.720

- , - T

Algorithm 3
1.360
3.100
4.080

R-tree Construction Time (Sec)
R-tree Join Time (Sec)

R-tree Construction Time (Sec)
R-tree Join Time (Sec)
Polygon Overlap Time (Sec)

1.840
4.720

1.840
4.7211

Table 6.5: Performance Results from Different Algorithms for Data Set No.5

Algorithm 1

3.590
9.480
67.910

Algorithm 2

3.590
9.480

58.519

Algorithm 3

3.590
9.480
8.420

C H A P T E R 6. EXPERIMENTAL RESULTS AND ANALYSIS 53

R-tree Construction Time (Sec)
R-tree Join Time (Sec)
Polygon Overlap Time (Sec)

I Algorithm 1 I Algorithm

Table 6.6: Performance Results from Different Algorithms for Data Set No.6

- Algorithm 1

Algorithm 2

.......... Algorithm 3

I I I I 1 I I

I 2 3 4 5
*

Data Set

Figure 6.1: Comparison of Polygon Overlap Computation Times in Logarithmic Form

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 54

As the algorithm analysis has already been given in Chapter 2, it is not being

repeated in this section. From Tables 6.1 - 6.6, it can be observed that polygon overlap

computation time does not constitute a dominant part when Algorithm 3 is used. In

the next section, we will report and analyze the main part of our experimental results,

the spatial join performance of different spatial data models and DBMS platforms

based on this algorithm - Algorithm 3.

Experimental Results

The experimental data are tabulated in Tables 6.7 - 6.12. For each version, three

timing results are given:

DB Open Time: time duration for the DBMS to execute the database open

statement

Pre-load Time: time for carrying out pre-loading by the application into the

local application cache

Run Time: execution time for the algorithm.

The only time that is not reported here is the DB close time, which is so small

compared with the other three that it is negligible. The rest of this section is devoted

to the analysis of the experimental data in these tables, supported by other relevant

finer-grained data.

In this section, it is assumed that when the application caching is performed, the

local application cache is large enough to accommodate a huge database. In the next

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS 55

Table 6.7: Performance Result for Data Set No.1 (Sec)

UnMb
Application
Caching

Relational Model
BLOB Model
Pointer Model

Table 6.8: Performance Result for Data Set No.2 (Sec)

DBMS
Application
Caching

Relational Model
BLOB Model
Pointer Model

section, we will give some testing results in which the database cannot be totally

loaded into local application cache at once.

Sybase

Do these experimental data justify our performance study? In other words, are

there great differences in performance for different versions of the algorithm? The

answer is of course a positive one, since there are 3 to 4 orders of magnitude differences

between the best and the worst times. The data also show the effectiveness of the

application caching technique. When it is on, the differences in timing are so much

reduced that the timings appear similar to each other across data models and DBMS

platforms.

ObjectStore

I DBMS I S v h a ~ I n h ; ~ ~ t q t ~ ~ ~ 1

On

Sybase

DB Open

0.01
0.01
NA

Off On

Objectstore

Table 6.9: Performance Result for Data Set No.3 (Sec)

DB Open

0.01
0.01
N A

Off

On
DB Open I Pre-load I Run Time

8.67 1 1.33] 4.96
9.06 1 1.10 1 4.89
NA I NA I NA

0 n

Appllcatlon
Caching

Relational Model
BLOB Model
Pointer Model

Pre-load

14.78
7.24
N A

Run Time

694.96
135.69

N A N A N A NA 9 77

DB Open

8.92
9.11

Run Time

3.04
3.04

DB Open

8.85
8.96

Off
DB Open I Run Time

8.96 1 774.02
9.01 1 8.49
8.89 1 4.53

DB Open

0.01
0.01
NA

Off

Run Time

5.18
5.10
N A

Run Time

314.45
4.75

Pre-load

0.87
0.76

DB Open

0.01
0.01
NA

Pre-load

15.70
9.69
NA

Run Time

1218.79
249.84

NA

0 n

Run Time

7.00
6.81
NA

DB Open

0.01
0.01
NA

Off
Pre-load

19.41
16.85
NA

DB Open

0.01
0.01
NA

Run Time

11.03
10.36
NA

Run Time

2132.44
417.56

NA

Onp Off
DB Open I Pre-load

9.32 1 2.25
9.03 1 1.83
NA I NA

DB Open

8.86
8.91
8.92

Run Time

9.75
9.56
N A

Run Time

2349.88
15.98
9.65

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 56

Table 6.10: Performance Result for Data Set No.4 (Sec)

DBMS
Application
Caching

Relational Model
BLOB Model
Pointer Model

Table 6.1 1: Performance Result for Data Set No.5 (Sec)

DBMS
Application
Caching

Relational Model
BLOB Model
Pointer Model

Sybase

Table 6.12: Performance.Result for Data Set No.6 (Sec) '

Objec ts tore

Sybase I Objec ts tore

DBMS
Application
Caching

Relational Model
BLOB Model
Pointer Model

On On Off

On

U B Open

9.03
9.14
N A

Off
Run Tlrne

12.91
12.39
NA

D B Open

0.01
0.01
N A

D B Open

0.01
0.01
NA

Sybase

D B Open

8.95
8.87
8 c(X

Run Tlrne

2678.95
843.92

N A

Yre-load

22.85
19.62
N A

Run Trine

24.56
24.06
NA

D B Open

0.01
0.01
N A

Objec ts tore

Pre-load

2.81
2.48
N A

Run Tlrne

3674.29
19.16
17 53

Off Off
Pre-load

30.89
25.13
NA

On

Run 1'1me

12.29
12.22
N A

DB Open

0.01
0.01
NA

On
UB Open

8.85
8.99
9.03

DB Open

0.01
0.01
NA

Off On

Run Tlrne

5134.11
1707.85

NA

D B Open

9.12
8.94
NA

Run T m e

11246.36
38.83
23.85

DB Open

0.01
0.01
NA

UB Open I Pre-load

8.95 1 7.69
8.99 1 7.29
NA I NA

Off
Run T ~ r n e

7439.24
2619.38

NA

Pre-load

57.70
37.54
NA

Knn T ~ m e

42.75
42.44
NA

DB Open

9.03
8.97
9.01

Pre-load

5.10
4.00
NA

Run Tlme

37.58
36.97
NA

Run Tlme

24770
75.20
37.03

Run Tlrne

27.10
26.54
NA

C H A P T E R 6. EXPERIMENTAL RESULTS AND ANALYSIS 57

6.2.1 Who is the Winner?

We are reluctant to pick a winner for several reasons. Although we have been using

these two database systems for many research projects, we are by no means experts

and have not tried to tune the DBMS. Thus, it is likely that some performance

nu~nbers are smaller by some percentage because different techniques are applied,

though we are confident that these changes would not significantly alter our findings

here. Another reason is that there are more than one way to compute the total time.

It would seem entirely reasonable that the Pre-load Time is included in the total time.

But there are two issues about whether to include the DB open time of Object Store in

the comparison. (Its counterpart for Sybase is so small that it is negligible.) First, we

are not sure what to include, although we do have some representative numbers in the

tables. This time, with each run, is almost constant across all data set sizes. Second,

without the knowledge of the internal system, we have no way of knowing how much

of this time is spent on tasks that are related to the execution of this algorithm, such

as local caching, which serves similar purposes as the application caching. If the DB

Open Time for ObjectStore is excluded from the total time, should the Pre-load Time

be also excluded?

When we compare the performance by each timing category, many trends are easily

identifiable. The DB Open T i~ne of ObjectStore is quite large, in comparison with

that of Sybase, and it is identical for data sets of all sizes for each set of experiments.

The Pre-load Time of ObjectStore increases as the size of the data set increases, but

not quite as much as that of Sybase. The sum of the DB Open Time and the Pre-

load Time of Sybase is much larger than that of ObjecStore. (See Figure 6.2). The

most interesting timing category is of course the Run Time, which will be used as the

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS 58

0.1

_I DB Open Time (Sybase)
D

1 2 3 4 5 6 Data Set

Time (Sec) j

60

50

40

30

20

10

Figure 6.2: Comparison of DB Open Time and Pre-load Time on Sybase and Object-
Store

-
B Open Time + Pre-load Time (Sybase)

-

-
-

- DB Open Time + Pre-load T i e (ObjcctStore)

DB Open Time (Objects-) -

performance criteria for the rest of this section.

The combination of Pointer model and ObjectStore offers the best system environ-

ment. We call this version the Baseline Version. This is expected, since our spatial join

algorithm has an application data structure that is most compatible with the Pointer

model, and least compatible with the Relational model. What is unexpected is that

despite the fact that ObjectStore is known for its efficiency in navigational accessing

(de-referencing), the Relational/*/On and BLOB/*/On are very close to the Baseline

Version in performance. In Figures 6.3 - 6.6, we compare the Run Times of all the

versions to that of the Baseline Version. The Run Time is still given in its logarithmic

form just like in Figure 6.1. From these four figures, the performance improvement

by applying application caching is quite obvious. Without application caching, both

data models (Relational and BLOB) have poor results on either RDBMS Sybase or

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS 59

..--.-----. RelationaUSybase/off
-----. RelationaUSybase/on

Baseline Version _*..--.

I I I I I I I

1 2 3 4 5
*

Data Set

Figure 6.3: Comparison of Run Times: Relational in Sybase vs. Baseline Version

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 60

-- - -- Relational/ObjectStore/on-..'
- Baseline Version

....'
...- ..I. ...--

.*I'

-2..

..J
..,.-'..

I I I I I I I

1 2 3 4 5
-

Data Set

Figure 6.4: Comparison of Run Times: Relational in Objectstore vs. Baseline Version

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS 61

I I I I I I I

1 2 3 4 5
t .

Data Set

WC

Figure 6.5: Comparison of Run Times: BLOB in Sybase vs. Baseline Version

e,

8 8
c
g

6

5

4

Baseline Version

-...- BLOB/Sybase/off
- ----- BLOB/Sybase/on----- ...- - - Baseline Version ...-.-

.*a-

/-.
....-a

- ...--
..-.-- ..-.

...- ..---.
- ...---

-

I I I I I I I

I 2 3 4 5
t

Data Set

Figure 6.6: Comparison of Run Times: BLOB in Objectstore vs. Baseline Version

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 62

have very comparable performance to the Baseline Version.

6.2.2 BLOB Modelvs. Relational Model

Comparing versions of Relational model with those of BLOB model on Sybase (See

Figures 6.3 and 6.5)' we can make some interesting observations. In Relational model,

information of each polygon is distributed in four tables (polygon, chain, edge and

vertex) and each table requires normalization. In BLOB model, the polygon informa-

tion is 'compressed' into two tables (polygon and chain) and each table has a BLOB

attribute. Thus, the number of database accesses (the number of SQL queries) to

fetch the objects from the database in Relational/Sybase/Off is about 6 times more

than that in BLOB/Sybase/Off (See Table 6.13). Since SQL queries are the most

time-consuming part in the total execution, the performance of Relation/Sybase/Off

is obviously worse than that of BLOB/Sybase/Off. On the other hand, when we apply

application caching to both of the models to cut down the SQL query time, the dif-

ference between these two models is almost negligible even though the mapping from

data model to application data structure in Relation model is more complicated than

that in BLOB model. The same conclusion can be drawn by comparing versions of

Relational model with those of BLOB model on Objectstore. (See Figures 6.4 and 6.6)

When we make a comparison between BLOB/Sybase/Off and BLOB/ObjectStore/Off

in Figures 6.5 and 6.6, we observe that the same data model results in some difference

in performance. The latter is much faster than the former. Object Store's local caching

seems to be the reason for this performance difference, since during the database open

time, part of the database has already been pre-loaded into the local cache by Ob-

jectstore. (See Chapter 4 for more information about Objectstore's local caching.)

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 63

Table 6.13: Number of Queries in Relational Model and BLOB Model

~ a t a S e t

Relational
BLOB

However, here comes an unexpected result. From the above analysis of two data

models (Relational and BLOB), it is easy to imagine that the performance of Re-

-

1

17330
2910

lational/ObjectStore/Off will be worse than that of BLOB/ObjectStore/Off, but it

shouldn't be that much different (see Figures 6.4 and 6.6). We will try to explain this

2

28090
4797

mystery in Sec.6.2.3.

6.2.3 Performance of ObjectStore

3

49036
8147

ObjectStore in this research does not always offer good results. In fact, we are sur-

prised that the combination of Relational model and ObjectStore with no application

caching gives the worst performance. Our interpretation of this is that ObjectStore

is optimized toward 'de-referencing' rather than querying as a persistent data ac-

cess mechanism, while querying is the only means to access data in Sybase. Be-

cause of this reason, we can explain why the performance difference between Rela-

tional/ObjectStore/Off and BLOB/ObjectStore/Off is bigger than that between Re-

lational/Sybase/Off and BLOB /Sybase/Off. As we see from Table 6.13, the number

of queries in Relational model is 6 times more than the number in BLOB model. So

many queries are really a burden to ObjectStore. Therefore, the performance of Re-

lational/ObjectStore/Off is much worse than that of BLOB/ObjetStore/Off. Tables

6.14 and 6.15 show the estimated costs of querying for the Relational/Sybase/Off and

-

4

60199
10671

5

112751
20502

6

166760
30871

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 64

Table 6.14: Querying Cost: Relational/Sybase/Off

Date Set
No. of queries
Time difference (sec)
Time per query (sec)

Table 6.15: Querying Cost: Relational/Object Storeloff .

1
17330
690
0.04

Date Set
No. of queries
Time difference (sec)
Time per query (sec)

Relational/ObjectStore/Off. To arrive at an estimated querying cost, we calculate

the difference between the run times of Relational/*/On and Relational/*/Off to first

estimate the cost of processing all queries, which is then divided by the total number

of queries. On Sybase, the average query access cost is almost constant across data

sets of different sizes. On ObjectStore, the average increases rapidly as the size of

data set increases. In comparison with the Sybase version, it is half as much for the

smallest data set, and increases to four times as much for the largest data set .' This

result shows why Object Store's performance deteriorates much faster than Sybase as

the data set size increases.

'To verify this unexpected result, we tried indexing on both Sybase and ObjectStore. But the
results do not help us to answer the question.

1
16193
31 1
0.02

2
28090
1212
0.04

4
60199
2666
0.04

3
49036
2121
0.04

2
25569

769
0.03

5
112751
5110
0.04

3
45282
2341
0.05

4
55348
3662
0.07

6
166760
7402
0.04

5
101069
11219
0.11

6
149415
24727
0.16

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 65

6.2.4 Application Caching

Application caching as a bridge between the application data structure (or access re-

quirements) and the incompatible storage data structure (or data model) is effective in

drastically improving the performance of spatial join, at a very modest cost. When it

is applied, the difference in the data models seems to almost disappear. For example,

the performance of Relational/S ybase/On and Relational/Object Store/On are only

marginally worse than that of Pointer/Object Storeloff, which is the most optimized

version. The performance of the Relational model and the BLOB model, with appli-

cation caching on, are practically indistinguishable. We will give more experimental

data and more discussion on application caching in the following section.

6.3 More Discussion on Application Caching

In the above section, we showed the effectiveness of the application caching technique.

When it is applied, no matter what data models and DBMS platforms we are using,

the performance can be improved substantially. However, all the performance data

we presented in the last section are based on the assumption that the local application

cache is large enough to store the entire database. While, in many real applications,

this condition may not be true as the database can be humongous. In this section,

we abandon this assumption and perform the application caching in a more realistic

situation.

We still use those 6 data sets as our testing data. For each data set we pre-

load loo%, 900, 75% and 50% of database respectively. In Table 6.16 we report the

experimental data. The algorithm version used is the combination of the Relational

C H A P T E R 6. EXPERIMENTAL RESULTS A N D ANALYSIS 66

Table 6.16: Run Times in (Sec) with Different Database Loading Percentage

Data Set

Loading 100%
Loading 90%
Loading 75%
Loading 50%

I I I I I I I I

I Loading 100% 1 0 I 0 I 0 I 0 I 0 1 0 I " I I I I I I I Loading 90% 1 546 1 1635 1 1382 1 1516 1 4734 1 4715 1

1
3.20
12.61
41.21
100.91

Table 6.17: Number of Queries Executed Agaist Different Data Sets

2
3.77
31.96
86.29
176.80

-
Loading 75%
Loading 50%

data model and Sybase with application caching on. This time we have a different

implementation environment. The Sybase server is running on a Sun 4/75(SS2) with

16 MB memory. The client runs on a separate machine Sun 4/50(IPX) with 16

MB memory. Since we are only interested in the Run Time differences among the

4 different loading sizes, the changed environment will not bias the results. We also

show the number of queries that are required to access the data when they do not

reside in the local cache. (See Table 6.17) This number is affected by three factors :

The size of database

3
5.20
29.39
125.57
327.02

2239
5616

The percentage of the pre-loaded section

The distribution of polygons in each map

4
5.92
38.47
141.81
478.70

4809
9917

The first two factors are obvious. The last one can be explained by an example in

5
10.16
98.05
303.77
659.88

6507
16126

6
15.01
105.45
405.86
955.97

6707
18789

16083
33842

21954
51117

CHAPTER 6. EXPERIMENTAL RESULTS AND ANALYSIS 67

Table 6.17. In the second row of that table (loading go%), the number of queries for

data set 2, 3, 4 is 1635, 1382, and 1516, respectively, even though the size of data set

increases from data sets 2 to 4. This fact indicates that the polygons in data set 3

and 4 have a better clustering than those in data set 2. Therefore, fewer queries are

required.

Data in Table 6.16 show that there is a big gap between loading the whole database

and loading 90% of the database. This proves that the query call is a major cost in the

tot a1 execution. Comparing Table 6.16 with the performance of Relational/Sybase/Off

in Tables 6.7 - 6.12, we can also observe that when only 50% of the database is

loaded, we can still gain performance improvement by applying application caching.

It is observed that the advantage of application caching is not fully utilized by the

spatial join application. This is because in spatial join, all the polygons in both maps

are required to be accessed to find out how many polygon pairs overlap. Thus, if

only part of the database is loaded, data swap-in-and-swap-out during computation

is unavoidable. We claim that in some other applications which do not require to

scan entire database application caching is an effective strategy to achieve better

performance.

Chapter 7

Conclusions

7.1 Thesis Summary

In order to study how the spatial data model together with its underlying database

platform affect the performance of the complex spatial operation, we designed and

implemented three spatial data models on two different DBMS platforms. The three

data models have different degrees of pointer involvement which means.the data ac-

cessing will be different (querying or pointer 'de-referencing').

The spatial join operation, a specific application we used for the performance

study in this thesis, is very efficient after applying new techniques: utilizing topolog-

. ical information and utilizing MBR intersection information from the first filter step.

Therefore, we guarantee that our spatial join operation is a suitable candidate for our

research.

We have shown that there can be interesting observations to be made out of this

CHAPTER 7. CONCLUSIONS

performance study, although care m u s t be taken t o generalize these findings beyond

the context of the application. Some of them confirm the conventional wisdom. For

example, the more the data model resembles the application data structure, the faster

the algorithm is. For that reason, OODBMS can provide superior performance for

spatial database operations due to its capability of including pointers in the schema

level data model. By using BLOB data type in the data model, spatial information

is 'compressed' into a smaller number of tables than in the relational model, so that

better performance can be achieved. On the other hand, we have managed to show

that by applying the application caching technique, the relational model and BLOB

model on either OODBMS or RDBMS platform can provide acceptable performance.

The advantage of conducting application caching is two folds :

Since the application caching is managed by the application, the cache data

structure can be tailored to the need of the application.

By pre-loading bulk of the data into the application cache before the objects

are required by the application, the high query cost can be reduced.

Contributions

We have taken a rather unusual approach to performance study, i.e., considering the

impact of system environment (data models and DBMS platforms) on the performance

of a specific application.

Three spatial data models were designed : Relational Model, BLOB Model and

Parent-Child Pointer Model.

CHAPTER 7. CONCL USIONS

0 A typical spatial database operation - spatial join, was selected as our specific

application. We carefully designed and implemented an efficient R-tree based

spatial join algorithm to make it a suitable candidate for our experimental pur-

poses.

0 We carefully designed the map data generation, implementation environment

and different testing versions of the same algorithm to make the results reason-

able.

0 We introduced the application caching technique to bridge the gap between the

spatial data model and the application data structure. Our performance results

showed that by applying this technique to the Relational and BLOB models the

effect of data modellDBMS platform can be neutralized.

Future Work

Much more research is needed in order to perfect the application caching technique.

Further investigation about it is required to determine how well it works with other

applications. We believe the same conclusion can be obtained. Although the technique

as described here is readily implementable, it works only in read-only situations, and

more work is also required in the area of concurrency control, when the persistent

data in a multi-user environment are modifiable.

At present, OODBMS is the only kind of DBMS that can provide acceptable

performance for specialized applications that require fast graph traversals. With the

perfection of application caching technique, it is possible that an RDBMS can be an

accept able alternative.

Bibliography

[I] N. Beckmann, H. Schneider, and B. Seeger. "The R*-Tree: An Efficient and

Robust Access Method for Points and Rectangles", Proc. ACM SIGMOD Int.

Conf. on Management of Data, Altantic City, N. J., pages 322-331, May 1990.

[2] J. L. Bentley and D. Wood. "An Optimal Worst Case Algorithm for Reporting

Intersections of Rectangles", IEEE Transactions on Computers, Vol. C-29, No. 7,

pages 571-577, July 1980.

[3] J . L. Bentley and T. Ottmann. "Algorithms for reporting and counting geometric

intersections", IEEE Transactions on Computers, Vol. C-28, pages 643-647, Sept.

1979.

[4] T . Brinkhoff, H. P. Kriegel, and R. Schneider. "Comparison of Approximations

of Complex Objects Used for Approximation-based Query Processing in Spatial

Database Systems", Proc. 9th Int. Conf. on Data Engineering, pages 40-49,

Vienna, 1993.

[5] R.G.G. Cattell. Object Data Management, Addison-Wesley, Reading, Mass.,

1991.

BIBLIOGRAPHY 72

[6] R.G.G. Cattell. An Engineering Database Benchmark, pages 247-282, Springer-

Verlag, 199 1.

[7] C.J. Date. An Introduction to Database Systems, Vol. 1, 5th edition, Addison-

Welsey, 1990.

[8] D.J. DeWitt, D. Maier, P. Futtersack, and F. Velez. "A Study of Three Alterna-

tive Workstation-Server Architectures for Object Oriented ~ a t a b a i e Systems",

Proc. 16th Int. Conf. on VLDB, Brisbane, Australia, pages 107-121, 1990.

[9] C. Faloutsos, T. Sellis, and N. Roussopoulos. "Analysis of Object Oriented Spa-

tial Access Methods", Proc. ACM SIGMOD Int. Conf. on Management of Data,

pages 426-439, San Francisco, 1987.

[lo] 0. Gunther. "The Design of the Cell Tree: An Object-Oriented Index Struc-

ture for Geometric Databases", Proc. 5th Int. Conf. on Data Engineering, Los

Angeles, CA., pages 508-605, 1989.

[Ill 0. Giinther. "Efficient Computation of Spatial Join", Proc. 9th Int. Conf. on

Data Engineering, Vienna, pages 50-59, 1993.

[12] A. Guttman. " R-trees: A Dynamic Index Structure for Spatial Searching", Proc.

ACM SIGMOD Int. Conf. on Management of Data, Boston, pages 47-57, 1984.

[13] E. G. Hoe1 and H. Samet. "A Qualitative Comparison Study of Data Struc-

tures for Large Line Segment Databases", Proc. ACM SIGMOD Int. Conf. on

Management of Data, San Diego, CA., pages 205-214, 1992.

BIBLIOGRAPHY 73

[14] H. Fan. "Spatial Join: A Study of Complex Spatial Operation and 1t.s Underlying

Spatial Indexing Methods", Master Thesis, School of Computing Science, Simon

Fraser University, Burnaby, B. C., Canada, 1992.

[15] H. V. Jagadish. "Spatial Search with Polyhedra", Proc. ACM SIGMOD Int.

Conf. on Management of Data, San Diego, CA., pages 205-214, 1992.

[16] J . Wu. "Implementation and Evaluation of Dynamic Spatial Query Language",

Master Thesis, School of Computing Science, Simon Fraser University, Burnaby,

B. C., Canada, 1992.

[17] H. F. Korth and A. Silberschatz. Database System Concepts, Second Edtion.

McGraw-Hill Inc., 1990.

[18] D. J . Maguire, M. F. Worboys and H. M. Hearnshaw. "An Introduction to

Object-Oriented Geographical Information Systems", Mapping Awareness, 4(2),

pages 36-39, 1990.

[I91 M. Goodchild, K. Kemp, and T. Poiker. Core Curriculum on GIS, National Cen-

ter for Geographic Information Analysis, University of California, Santa Barbara,

1990.

[20] J . Nievergelt, H. Hinterberger and K. C. Sevcik. "The Grid File: An Adaptable,

Symmetric Multikey File Structure", ACM Transactions on Database Systems,

Vol. 9, No. 1, pages 38-71, 1984.

[21] J . Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. "Query Process-

ing in the Objectsotre Database System", Proc. ACM SIGMOD Int. Conf. on

Management of Data, San Diego, Calif., pages 403-412, 1992.

BIBLIOGRAPHY

[22] J . A. Orenstein and F. A. Manola. "PROBE Spatial Data Modeling and Query

Processing in an Image Database System", IEEE Transactions on Software En-

gineering, Vol. 14, No. 5, pages 611-629, May 1988.

[23] J.A. Orenstein. "Spatial Query Processing in an Object-oriented Database Sys-

tem", Proc. ACM SIGMOD Int. Conf. on Management of Data, Dallas, Texas,

pages 326-336, 1986.

[24] J . A. Orenstein. "Redundancy in Spatial Databases", Proc. ACM SIGMOD Int.

Conf. on Management of Data, Portland, Oregon, pages 294-305, June 1989.

[25] P. J. M. Oosterom. "Reactive Data Structures for Geographic Information Sys-

tems", Ph. D. thesis, Dept. of Computer Science at Leiden University, Nether-

lands, 1990.

[26] J. T. Robinson. "The K-D-tree: A Search Structure for Large Multidimensional

Dynamic Indices", Proc. ACM SIGMOD Int. Conf. on Management of Data,

Ann Arbor, MI, pages 10-18, 1981.

[27] D. F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill Book

Company, 1985.

[28] N. Roussopoulos and C. Faloutsos. "An Efficient Pictorial at abase System

for PSQL", IEEE Transactions on Software Engineering, Vol. 14, No. 5, pages

639-650, May 1988.

[29] H. Samet . "The Quadtree and Related Hierarchical Data Structures", ACM

Computing Surveys, 16, pages 187-260, June 1984.

BIBLIOGRAPHY 75

1301 H. Samet. The Design and Ar~alysis of Spatial Data Structure, Reading, Addison-

Wesley, MA. 1990.

[31] H. Samet . Applications of Spatial Data Structure: Computer Graphics, Image

Processing, and GIs, Reading, Addison-Wesley, MA. 1990.

1321 Hans-Jorg Schek and Marc H. Scholl. "From Relations and Nested Relations to

Object Models", Proc. 2nd Symp. on the Design of Spatial Database, Zurich,

Switzerland, pages 1-19, 1991.

[33] M. Schiwietz. "Organization and Query Processing of Spatial Objects", Ph. D.

thesis, Institute for Co~nputer Science, University of Munich, 1993.

[34] M. I. Shamos and D. Hoey. "Geometric Intersection Problems", Proc. 17th Annu.

IEEE Symp. Foundations of Computer Science, pages 208-215, 1976.

[35] Transact-SQL User's Guide, Sybase Corporation, Emeryville, CA.$ 1991.

[36] A. T. Teng, S. A. Joseph and A. R. Shojaee. "Polygon Overlay Processing: A

Comparison of Pure Geometric Manipulation and Topological Overlay Process-

ing", Proc. 3rd Int. Symp. on Spatial Data Handling, Vol. I , pages 102-119,

1988.

[37] Bureau of the Census, Washington, DC. TIGER/Line Precensus Files: 1990

Technical Documentation, 1989.

