
Slicing Up Bonsai:
Adding Cutting Planes to Mixed 0-1 Programs

Cheryl Michele Petreman

B.Sc., Simon Fraser University, 1990

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

O F T H E REQUIREMENTS FOR T H E DEGREE O F

MASTER OF SCIENCE

in the School

of

Computing Science

@ Cheryl Michele Petreman 1993

SIMON FRASER UNIVERSITY

July 1993

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Cheryl Michele Petreman

Master of Science

Slicing Up Bonsai: Adding Cutting Planes t o Mixed 0-1 Pro-

grams

Examining Committee:

Chair

Date Approved:

Dr L. 1-Iafm

Senior Sy~ervisor

Associate Professor of Computing Science

Dr. R. I<rishnamurti

Assistant Professor of Cofnputing Science

Dr. P. Hell

External Examiner

Professor of Computing Science

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un lve rs l t y the r l g h t t o lend

my thesis, p ro jec t o r extended essay (t he t i t l e o f which i s shown below)

t o users o f the Simon Fraser Unlvers l ty L ibrary, and t o make p a r t i a l o r

s i ng le copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of Its users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying of t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. It i s understood t h a t copying

o r pub l l ca t l on o f t h i s work f o r f lnancfa l gain shal I not be al lowed

wi thout my w r i t t e n permlssion,
a

T i t l e o f Thes i s/Project/Extended Essay

S l i c i n g up Bonsai: Adding Cutt ing P lanes t o Mixed 0-1 Programs.

Author:

(s' jgnature)

Cheryl Michele Petreman

(name 1

(date

Abstract

We investigate a method of reducing the effort required to solve resource-constrained schedul-

ing problems using mixed-011 linear programming. In particular we examine a formulation

of the decision as to whether two activities of variable duration will be serialized or not.

From this subset of the constraint system, we derive cutting plane constraints which are

expressed in terms of variable upper and lower bounds.

We describe the integration of these cuts into bonsai - a system which implements branch

and bound search with partial arc consistency. Each time the arc consistency routines are

able to restrict variable domains, the cutting plane is tightened to reflect the tighter bound.

The computational results show a decrease in the average number of subproblems required

to solve large examples. However, there is also an increase in the total number of pivots.

iii

Acknowledgments

Thanks go to Lou for his time and enthusiasm.

Dedication

To David for putting up with me

Contents

... Abstract nl

. Acknowledgments iv

. Dedication v

. List of Tables ix

. List of Figures x

. 1 Introduction 1

. 1.1 Definitions 2

. Linear Programming 2

Polyhedral theory . 4

. Branch-and-Bound Approach 5

. Arc Consistency 6

. Using Cutting Planes 8

. 1.2 Thesis Overview 9

. 2 Cutting Plane Derivation 12

. 2.1 Algorithm 12

2.2 Derivation . 14

Cutting off XI . 18

Cutting off X 2 . 20

Cutting off X3 . 22

3 Bonsai . 25

3.1 Branch-and-Bound . 25

Penalty Calculations . 27

3.2 Arc Consistency . 27

Background . 27

Propagating incumbent bounds . 29

4 Integration with Bonsai . 31

4.1 Implementation Details . 31

Initialization . 32

Rewriting Cutting Plane Constraints 32

4.2 When Cuts Are Effective . 32

4.3 An Examination of Row Bounds . 36

. Replacing a with its complement 37

5 Computational Results . 40

5.1 Applying Bonsai to Digital Hardware Synthesis 40

5.2 Cutting Plane Results . 42

Objective Functions . 46

vii

. Branching Strategies 47

Data . 49

. 6 Conclusion and Future Work 58

. 6.1 Further research 59

. A Broken Underlying Assumptions 61

. The constraint system is static 61

. Static b vector 61

. Branching variables can be selected before restoration 62

. b vector branching corrections can be pre-calculated 62

. Only non-zero coefficients are stored 63

. Coefficients must be finite 63

. Boolean variable domains are not tightened 63

. Variable status is not changed after a node is stored 63

. Bibliography 65

viii

List of Tables

. 1.1 Notation 11

. 2.1 Cutting Plane Constraints 24

. 5.1 Summary of example problem descriptions 42

. 5.2 Summary of example problem constraint systems 42

. 5.3 CrissX Results 50

. 5.4 Logic Results 52

. 5.5 Ralph1 Results 54

List of Figures

. 2.1 Non-integer extreme points to cut off 15

. 2.2 ACD cuts off XI 19

. 2.3 ABC cuts off X z 21

. 2.4 ADE cuts off Xa 23

. 3.1 Branch-and-bound algorithm 26

. 3.2 Partial arc consistency algorithm 30

. 4.1 Tightening constraint -s + r + (S ?)a 5 0 33

. 4.2 When i: < S then s 2 S makes constraint ABC redundant 34

. 4.3 When f < B then r 5 ? makes constraint ADE redundant 35

. 5.1 Data flow diagram for CrissX 43

. 5.2 Data flow diagram for Logic 44

. 5.3 Data flow diagram for Ralph1 45

. 5.4 CrissX Subproblems - averaged over all branching strategies 51

. 5.5 CrissX Pivots - averaged over all branching strategies 51

5.6 Logic Subproblems - averaged over all branching strategies 53

. 5.7 Logic Pivots - averaged over all branching strategies 53

. 5.8 Ralph1 Subproblems - NG branching strategy 55

. 5.9 Ralph1 Pivots - NG branching strategy 55

. 5.10 Ralph1 Subproblems - MNG4 branching strategy 56

. 5.11 Ralph1 Pivots - MNG4 branching strategy 56

. 5.12 Ralph1 Subproblems - MNG8 branching strategy 57

. 5.13 Ralph1 Pivots - MNG8 branching strategy 57

Chapter 1

Introduction

The focus of this thesis is to investigate a method of reducing the effort required to solve

resource-constrained scheduling problems using mixed-011 linear programming. In particu-

lar we examine a formulation of the decision as to whether two activities of variable duration

will be serialized or not; and if so, in what order. We then describe the derivation of a set of

cutting plane constraints using the lift and project method of Balas, Ceria, and Cornukjols

[I, 21. These constraints are expressed in terms of the upper and lower bounds of the timing

variables. We further describe the integration of these cuts into bonsai - a system which

implements branch and bound search with partial arc consistency. Each time the arc consis-

tency routines are able to restrict variable domains, the cutting plane is tightened to reflect

the tighter bound.

This chapter contains some required definitions, a review of the required integer program-

ming background, and an overview of the motivation and organization of this thesis.

CHAPTER 1. INTRODUCTION

1 .I Definitions

Linear Programming

This section starts with a brief review of linear programming terms. Further discussion of

this material can be found in [4, 91.

A linear constraint is an equation or inequality having one of the following forms:

X I , x2, ..., xn are real variables, and

b is a real number.

Linear Programming (LP) is a mathematical algorithm that facilitates the allocation of

scarce resources while optimizing some objective. The mathematical formulation of an LP

problem consists of a linear objective function and a set of linear constraints which together

describe a real world decision situation. In standard form an LP problem is written as:

maximize C cjxj
j=1
n

subject to C aijxj 5 bi (i = 1,2, ..., m)
j=1

Introducing slack variables x,+~, xn+2, ..., xn+,, xn+; 2 0 allows constraints of (1.1) to be

rewritten as equalities.
n

The system of linear equations can then be represented by a dictionary where the objective

function, z , and a subset of the variables are expressed in terms of the remaining variables.

CHAPTER 1. INTRODUCTION

The variables appearing on the left hand side of the dictionary are termed basic while those

on the right are non-basic (N).

In a basic optimal solution (one representable by a dictionary), non-basic variables xj have

the value 2j if E j < 0 or g j if E j > 0.

An Integer Linear Programming (ILP) problem can be formulated as (1.1) plus additional

requirements which force a subset of the variables to take on integer values. For pure-integer

problems, all variables must have integer values in a solution. If only some of the variables

in the model are required to be integral then it is called a mixed-integer linear program

(MILP) .

A mixed-011 linear programming problem is expressed using continuous and Boolean vari-

ables and can be formulated as follows:

maximize cx + h y

st A x + G y < b X E W

Y E (07 1IP

where

p is the number of boolean variables,

0 c is the cost coefficients corresponding to the variables in x ,

0 h is the cost coefficients corresponding to the variables in y ,

0 A is the columns of the coefficient matrix corresponding to the

variables in x, and

0 G is the columns of the coefficient matrix corresponding to the

variables in y .

We shall use the abbreviation MILP to refer to mixed-011 linear programs since they are

the only type of mixed-integer linear programs that we are concerned with in this thesis.

CHAPTER 1. INTRODUCTION

The linear relaxation of a mixed-011 programming problem is the LP problem that results

from relaxing the integrality constraints to allow continuous values, i.e. yj E {O,l) is relaxed to 0 5
< 1 Y j -

The term row bound is used to refer to the bound which we can calculate for the left hand

side of a constraint (using arc-consistency techniques described below).

The term incumbent refers to the best integral solution which has been discovered so far in

a tree search strategy.

Polyhedral theory

We now provide a review of some polyhedral concepts. Details can be found in [12, 131.

A set P of points x E Xn is called a polyhedron if P = { x : Ax 5 b) for some matrix A

and vector b.

An inequality T X 5 TO (denoted (T , T O)) is called a valid inequality for P if it is satisfied for

all x E P.

If x E P and there do not exist x1,x2 E P, x1 # x2 such that x = i x l + !jx2 then x is an

extreme point of P.

Let P be the polyhedron defined by the linear relaxation of the MILP. A point x of P is

called non-integer if 3xi such that xi has been constrained in the MILP to be an integer

but takes on a non-integer value at x.

Let Po = { r E Xn : Ar 5 0) . If P = { x E Xn : Ax 5 b) # 8, then r E PO \ (0) is called

a ray of P.

If r is a ray of p and there do not exist r l , r2 E P, r1 # Xr2 for any X 2 0, X E X, such

1 1
that r = y1 + y2, then r is called an extreme ray of P.

The projection of a point (x , y) E Xn x !JP onto the subspace H = { (x , y) : y = 0) is the

point (x , 0) . The projection of polyhedron P = { (x , y) E Xn x R' : Ax + G y 5 b) from

CHAPTER 1. INTRODUCTION

(x, y)-space to x-space is defined as

proj,(P) = {x E Xn : vt(b - Ax) > 0 Vt E T)

where { v t) t ~ ~ are the extreme rays of Q = {v E X T : v 2 0, vG = 0). The projection of

a polyhedron is a polyhedron.

The polar of P is defined to be the set of points

P* = {(T, 7ro) E xn+l : T X I TO vx E P).

For any polyhedron P, the integer hull of P is defined to be the convex hull of the integral

lattice points in P . Let us then define the mixed-integer hull of P for a MILP M as the

convex hull of the set of points x such that x E P and x j E 2 if there is an integrality

restriction on xj in M.

The term cutting plane will refer to a linear constraint that separates a non-integer extreme

point from the mixed-integer hull of the MILP. To tighten a cutting plane constraint, we

replace it with a more effective one - a constraint which cuts off more points of the relaxed

polyhedron than were cut off by the previous constraint.

We now describe a few approaches to solving mixed-011 programming problems. While

these algorithms were developed in isolation, they are often used in combination.

Branch-and-Bound Approach

Since the possible values of Boolean variables can be enumerated, a branch-and-bound

algorithm can be used to solve a MILP problem. This procedure uses a depth first tree

exploration strategy where

the linear relaxation of the root of each subtree provides an upper bound for any

solution in the subtree, and

the incumbent - the best integral optimal solution found to date - provides a lower

bound.

CHAPTER 1. INTRODUCTION 6

The live set is the set of nodes which have been explored, but not fathomed off. The most

promising node in the active set will be restored each time the current node is determined

to have no ancestors. The current node begin explored is said to be active.

The following steps are performed at each node:

1. Solve the linear relaxation.

2. Examine the results.

If the relaxation is infeasible, then the node is fathomed (not explored further).

If the solution to the linear relaxation of the node is less than the incumbent, the

node is fathomed.

Let S be the set of Boolean variables which have solution values 6 {0,1). If

S # 0 then go to step 3.

Otherwise an integer solution has been achieved and is compared against the

current incumbent. If the solution is better, it becomes the new incumbent. The

node is not explored further.

3. Select a set of branching variables V C S. Generate all possible {O,l) vectors of length

IVI. Create a subproblem for each of these vectors by introducing constraints which

force each branching variable vi to be the appropriate { O , l) value while not excluding

any feasible integer solutions. Each subproblem is added to the search tree as a child

of the current node.

4. No problems remaining? Then the current incumbent solution is optimal. Otherwise,

select an unexplored node and return to step 1.

Arc Consistency

Partial arc consistency techniques developed by Sidebottom [14] enable us to prune con-

tinuous variable domains by restricting the lower and upper bounds of the variables. In

particular, the fixing of branching variables might allow us to restrict the domains of other

variables. The mathematics involved are described in Section 3.2 while the logic is described

below:

CHAPTER 1. INTRODUCTION

Algorithm : Propagate variable bound change

Given that variable xj has had its bounds tightened:

For each constraint i in which a i j # 0

Calculate new row bounds for constraint i.

If the change in row bounds will affect the bounds of other variables in the

constraint then add constraint i to the propagation set.

End For

Algorithm : Explore propagation set

While the propagation set is non-empty

Remove constraint i from the propagation set

For each variable xt in constraint i

Calculate variable xt's upper and lower bounds.

If the variable bounds have tightened then call propagate variable bound

change.

End For

End For

Algorithm : arc consistency

Initialize the propagation set to 0.

For each branching variable

Call propagate variable bound change.

End For

Call Explore propagation set.

CHAPTER 1. INTRODUCTION

Incorporating partial arc consistency into the branch-and-bound algorithm, as described

above, provides a significant reduction in the amount of work required to explore the search

tree (Hafer [6]) .

Using Cutting Planes

Another approach to solving integer programming problems involves the construction of

cutting planes to cut off non-integer optimal solutions. This procedure is described as

follows:

1. Solve the linear relaxation.

2. Examine the optimal solution. If all variables which are required to be integer have

integer values then the optimal solution has been achieved and we can stop. Otherwise,

proceed to step 3.

3. Construct a cutting plane to cut off the non-integer optimal solution. Add the cutting

plane to the constraint system.

4. go to step 1

Merging cutting planes with the branch-and-bound algorithm leads to the more efficient

branch-and-cut approach where a cutting plane is constructed after solving the linear relax-

ation at each node.

CHAPTER 1. INTRODUCTION

1.2 Thesis Overview

Bonsai implements an LP-based branch-and-bound algorithm incorporating arc consistency

techniques (Hafer [6, 81). It was developed to solve the scheduling problems that arise

from digital hardware synthesis1. A fundamental decision arising in the formulation of

these problems is whether or not two activities will be serialized; and if so, in what order.

This decision is formulated using the following model which takes into account the variable

duration of these types of activities:

-TS(x2) + Tr(x1) - f'a1,2 I 0

- T s (~ l) + TT(x2) - f ' a2 , l I 0

a1,2 + a2,1 - 1 2 = 1

where

0 Ts(xi) is the start time of activity X i 1

0 TT(xi) is the release time of activity xi, and

T represents the maximum possible completion time of the

schedule.

Variable assignments in (1.2) are interpreted as follows:

If a l , 2 = 0 then the first constraint becomes Ts(x2) 2 Tr(xl) so the activities are

serialized with xl executing first.

If al,2 = 1 then the first constraint is trivially satisfied since it states that the difference

between the two times is less than the largest possible time.

If a 2 , l = O4hen the second constraint becomes TS(xl) 2 TT(x2) so the activities are

serialized with xl executing first.

'capsule description: The algorithm to be implemented is described as transformations of data
and storage of values (collectively, activities). Activities must be scheduled on a set of components
(resources/machines).

CHAPTER 1. INTRODUCTION

If a2 ,~ = 1 then the second constraint is trivially satisfied since it states that the

difference between the two times is less than the largest possible time.

If = 1 then no execution order is enforced.

If = 0 then the activities are serialized.

The third constraint ensures that exactly one serialization order is chosen when serialization

is forced.

In an effort to make these serialization decisions more efficiently, we replace constraints of

the form

- TS(xi) + TT(xj) - Tai,j 5 0 (1.3)

by the following cutting plane constraints (derived in Chapter 2):

These constraints are then tightened each time one of the variable domains Ts(xi) E

 xi), TS (xi)], or TT (xi) E [TT (xj), TT (xj)] is tightened by the arc consistency routines.

The constraints must also be rewritten to match the restored bounds when a node is re-

stored during the branch-and-bound search.

The computational results presented in Chapter 5 show a decrease in the average number

of subproblems required to solve large examples. However, there is also an increase in the

number of pivots required to solve each relaxation.

The notation used in this thesis appears in Table 1.1. The generic cutting plane equations

are derived in Chapter 2. A description of Bonsai appears in Chapter 3. Chapter 4 contains

a discussion of how the generic cutting planes are integrated into bonsai. Chapter 5 presents

the computational results and the conclusions follow in Chapter 6.

CHAPTER 1. INTRODUCTION

lower bound of variable x

upper bound of variable x

row upper bound of the left hand side of constraint i

row lower bound of the left hand side of constraint i

maximum possible completion time of the schedule

the set of indices j such that a i j > 0

the set of indices j such that a;,j < 0

the set difference S - { t)

the polar of polyhedron P

rx 5 no is a valid inequality for the polyhedron

Table 1.1: Notation

Chapter 2

Cutting Plane Derivation

2.1 Algorithm

We use the sequential convexification procedure of Balas et al. [2] to lift and project the

constraint system to generate the cutting plane equations. This procedure is described

below:

1. Select j E (1, ...p}.

2. Multiply AX < b by (1 - xj) and xj to obtain the nonlinear system

3. Linearize (2.1) by substituting yi for xixj, i = 1, ..., n, i # j and xj for x;. Call the

resulting polyhedron Mj(K). This step cuts off points x with 0 < xj < 1 but does

not eliminate any points x for which xj E { O , l } (see [I] for details).

4. Project Mj(K) onto the x-space by eliminating yi, i = 1, ..., n, i # j. Call the resulting

polyhedron Pj (K).

CHAPTER 2. CUTTING PLANE DERIVATION

 heo ore tic ally, the best cutting plane would be the inequality (T, TO) that is valid for the

polyhedron P j (K) and is orthogonally as far away as possible from X*, the non-integer

extreme point to be cut off. However, since distance is a non-linear function, we shall

instead select the inequality (T, TO) from the polar of M j (K) which has the maximum slack

at X* in the projection polyhedra Pj(K). This criteria can be formulated as the following

objective function:

maximize U(A1X* - b')

where

U is a vector of non-negative multipliers,

X* is a non-integer extreme point to be cut off the original

polyhedron, and

A'x 5 b' defines M j (K) .

To eliminate the yi terms in the projection step of the algorithm, we use the following

constraints:
m

C u i Y i , j = 0 , for j = 1 ,..., n j # i
i= 1

To ensure that the LP will not be unbounded, we place a limit on the growth of the cutting

plane constraint within the polar by adding the following constraint:

Thus, symbolically solving the following LP will provide us with a linear combination of

constraints that generate a cutting plane equation:

maximize U(AIX* - b')
m

st C UiYi, j = 0, for j = 1, ..., n j # i
i=l

CHAPTER 2. CUTTING PLANE DERIVATION

2.2 Derivation

We examine the input constraint form introduced as (1.3) on page 10:

To simplify notation we perform the variable substitutions:

Adding constraints enforcing the variable upper and lower bounds1 yields the following

constraint system:
- s + r 0

-S 5 - 5

S i 2
- r -i:

r 5 ?
- a < 0

a 5 1

The constraint system (2.3) defines the polyhedron for which cutting planes will be derived

(shown in Figure 2.1).

 h he bounds on s and r are required in the linear combinations which calculates the cutting plane
equations.

CHAPTER 2. CUTTING PLANE DERIVATION

Figure 2.1: Non-integer extreme points to cut off

Lift the constraints (step 2.1 from Section 2.1) by multiplying (2.3) by a and by (1 - a) .

CHAPTER 2. CUTTING PLANE DERIVATION

Replace cu2 by cr (step 3 from Section 2.1) :

S T (2 SCX TQ

The cutting plane equations are then calculated as the linear combination of (2.4) derived

using following linear program which eliminates any non-linear terms2

maximize U(A'X* - b')

where

U is a set of non-negative multipliers, and

0 X* is a non-integer extreme point to be cut off.

 his incorporates the projection step 4 in Section 2.1.

CHAPTER 2. CUTTING PLANE DERIVATION

To solve (2.5) symbolically we performed the following steps using Maple [3]:

1. Calculate the objective function.

2. Substitute numeric values for the variable bounds to acquire a numeric LP.

3. Solve the numeric LP using the simplex method.

4. Format the symbolic LP as a dictionary using the set of basic variables from the

numeric solution.

Then it is necessary to manually verify that the symbolic solution is optimal - i.e. test

that all coefficients in the dictionary representation of the objective function are negative.

Depending on the values of the domains of s and r , there can be a maximum of three non-

integer extreme points in (2.3) These points have the following coordinates (see Figure 2.1):

Since we can derive one cutting plane from each non-integer extreme point, we will repeat

the algorithm of Section 2.1 three times to generate our three cutting plane equations.

Figures 2.2, 2.3, and 2.4 illustrate examples of these cutting planes and contain labeled

points having the following coordinates:

CHAPTER 2. CUTTING PLANE DERIVATION

Cutting off X I

Substituting X I = (5 , ?, (? - s) / T , 0,O) for X* in U(A'X* - b') we have:

Note that X 1 is an extreme point of the polyhedron (2.3) only when S 5 ?. By selecting

u2, us, and ug as basic variables, objl can be rewritten as zl below.

U 2 =

u5 =

U g =

21 =

where

C 1 =

C3 =

C4 =

c6 =

C7 =

Cg =

c10 =

c11 =

c12 =

c13 =

C14 =

-2(? - S) (T - (? - i))

-(? - s) (2 ~ - 2(? - i) + (i - 5))

-(? - S)(?+2S + 2 ~ - 3i.)

-(? - S) (T - (? - 5))

-(? - S) (T - (? - S) + 3)

-2(? - i) (T - (? - i))

-3 (i - S) (T - (? - S))

-3(? - i) (T - (? - S))

-2(? - S) (T - (? - 2))

-(3 + (? - S)) (T - (? - 5))

-(? - S) (T - (? - 3))

Given S < ?, all of the coefficients of zl are negative. Hence the above dictionary represents

an optimal solution.

CHAPTER 2. CUTTING PLANE DERIVATION

Figure 2.2: ACD cuts off XI

Since uz, us, andu8 all have the same value, we can calculate the first cutting plane constraint

(shown in Figure 2.2) as the sum of the 2nd, 5th, and 8th constraints of M j (K) (2.4):

CHAPTER 2. CUTTING PLANE DERIVATION

Cutting off X 2

Substituting X 2 = (5 , ?, (? - s) / T , 0 ,O) for X* in U (A I X * - b') we have:

X 2 is an extreme point of the polyhedron (2 .3) only when S 5 ?. By selecting u2, u s , and

ull as basic variables, obj2 can be rewritten as 2 2 below.

U 2 =

u8 =

u11 =

2 2 =

where

C1 =

C3 =

C4 =

C5 =

c6 =

C7 =

Cg =

c10 =

c12 =

c13 =

c14 =

-2(? - S) (T - (? - 5))

-(? - S) (~ T + (i - S) + 2 (i - ?))

-2(? - S) (T - (? - S))

-3(? - S) (? - ?)

-(? - i) (T - (? - 5))

-(? - $)(T - (? - 5) + 3)

- 2 (f - S) (T - (? - S))

- 3 (i - S) (T - (? - 5))

- (a(? - 25) + (? - ?))(T - (? - 5))

- (3 + (? - $)(T - (? - S))

-(? - S) (T - (? - S))

Given S 5 7, all of the coefficients of 2 2 are negative. Hence the above dictionary represents

an optimal solution.

CHAPTER 2. CUTTING PLANE DERIVATION 21

Figure 2.3: ABC cuts off X 2

Since u2, U g , andull a11 have the same value, we can calculate the the second cutting plane

constraint (shown in Figure 2.3) as the sum of the 2nd, 8th, and 11th constraints of Mi (K)

(2.4):
- s a! + Sa 5 0

- s + r + s a - r a! 5 0
- r + ra! - i a 5 -i

CHAPTER 2. CUTTING PLANE DERIVATION

Cutting off X3

Substituting X j = (i, ?, (? - >) I T , 0,O) for X * in U (A ' X * - b') we have:

X 3 is an extreme point of the polyhedron (2.3) only when d 5 ?. By selecting us, us , and

ulo as basic variables, obj3 can be rewritten as 23 below.

where

-2(? - i)(? - (? - i))

-3(? - d) (i - 8)

-2(? - i) (T - (? - 4))

- (? - 4 (2 ~ + 2 (i - i) + (? - f))

-(? - i) (T - (? - i))

-(? - i) (~ - (? - i) + 3)

-(T - (? - S))(2(? - S) + (i - 8))

-3(f - i)(? - (? - i))

-2(? - i) (T - (f - i))

-((? - i) + 3) (~ - (f - 8))

- (f - i) (T - (? - 2))

Given i 5 ? all of the coefficients of 23 are negative. Hence the above dictionary represents

an optimal solution.

CHAPTER 2. CUTTING PLANE DERIVATION 23

Figure 2.4: ADE cuts off X3

Since US, ug, anduI0 a11 have the same value, we can calculate the the third cutting plane

constraint (shown in Figure 2.4) as the sum of the 5th, 8th, and 10th constraints of M j (K)

(2.4):

ra - f a 5 0

- s + r + s a - ra 5 0

S - sa + ia 5 j.

r + (j.-;.)a 5 i

CHAPTER 2. CUTTING PLANE DERIVATION 24

Table 2.1 shows the generic cutting plane equations derived in this chapter. These equations

will be used to generate cutting planes to replace each constraint appearing in the input

having appropriate form. The cutting planes will then be tightened each time the variable

bounds are tightened.

A C D : - s + r + (3 - ?) a 5 0

A B C : - s + ($ - ?) a < f

ADE : r + ($ - ?) a < s ̂

Table 2.1: Cutting Plane Constraints

Chapter 3

Bonsai

Bonsai solves mixed-011 programming problems. It implements a LP-based branch-and-

bound algorithm incorporating partial arc consistency and supports binary and continuous

variables. Only the components of bonsai relevant to this thesis are described below. For a

detailed discussion see [6, 81.

The main cycle of the branch-and-bound algorithm (shown in Figure 3.1) begins by select-

ing a set of Boolean variables to branch over. The active subproblem is expanded using

these branching variable(s). The successor subproblems are then evaluated. The objective

function value, infeasibility, and integrality are all used in an attempt to fathom each sub-

problem. Improving the bound on the subproblem's objective function is attempted through

a cycle of arc consistency, solving the LP relaxation, and penalty calculations which is re-

peated until there are no more variables which can be fixed.

The best unfathomed successor is selected to become the new active subproblem. The

remaining unfathomed nodes are placed in the set of live subproblems and will be explored

at a later time. If all the active node's successors are fathomed, then a new active subproblem

is selected from the live set.

CHAPTER 3. BONSAI

Read the problem and
option specifications.

Force variables using

Fathom by infeasibility? Solve the LP relaxation.

Optimal solution?

Evaluate the solution:
force variables using arc

consistency and penalties;
check for integral solution.

Select branching variables I-
Create successor

subproblems

1

survivors?

Report the solution. -r
Remove the best subproblem

from the live set to be the

1'
Select the best survivor to be
the new active subproblem;
add remaining survivors to

the live set.

Figure 3.1: Branch-and-bound algorithm

CHAPTER 3. BONSAI 2 7

Whenever a new solution to the MILP problem is discovered, it is tested against the current

incumbent. If the new objective function value is better then this solution becomes the new

incumbent and the set of live subproblems is winnowed to remove any subproblems which

no longer have the potential to produce a better solution.

Penalty Calculations

After solving each linear relaxation, bonsai calculates a penalty for forcing each basic non-

integer variable to either 0 or 1. The penalty is the minimum deterioration in the objective

function after the first dual pivot to restore primal feasibility. The reader is directed to [6]

for details since for the purpose of this thesis, our only interest in this procedure is that

it provides another method besides branching for setting boolean variables. These domain

restrictions are propagated using the arc consistency routines and this propagation will in

turn cause tightening of cutting plane constraints.

3.2 Arc Consistency

Bonsai uses a partial arc consistency algorithm to propagate restrictions on the domain of

one variable onto the domains of other variables. The algorithm is termed partial because

it does not necessarily eliminate all inconsistent values from the domain of a variable. It

prunes the domain only by restricting the lower and upper bounds of the variable. A

variable is fixed at a value if its lower and upper bounds are set equal to that value. The

partial arc consistency algorithm used by bonsai (shown in Figure 3.2) is a specialization

of the algorithm described in [14] which relies on the knowledge that all constraints are

summations, and the right hand side of each constraint is a constant.

Background

The i-th linear constraint can be represented in the following format:

CHAPTER 3. BONSAl

Isolating xt in the equality constraint i (0 is '=') of (3.1) yields the following:

Given that k j and i?j are the upper and lower bounds of variable xj , we can calculate the

upper and lower bounds on the value of the left hand side of the i-th constraint as

A lower bound on xt is obtained by minimizing the right hand side of (3.2):

An upper bound on xt is obtained by maximizing the right hand side of (3.2):

Given an inequality constraint i (o is '5' or '2') ' the unique bound of xt which can be

tightened depends on the type of inequality and the sign of ai,t.

If i is a "2" constraint and a;,t > 0 then:

CHAPTER 3. BONSAI

If i is a "2" constraint and ai,t < 0 then:

If i is a "I" constraint and a;,t > 0 then:

If i is a "5" constraint and a+ < 0 then:

Propagating incumbent bounds

From the objective function:
n

maximize/minimize x cjxj
j=1

we create the following constraint:

where o is "2" for maximization problems and "5" for minimization problems. Each time

an incumbent is discovered in bonsai, the bounds on z are tightened and the arc consistency

routines are run to propagate this change.

CHAPTER 3. BONSAI

Change variable bound. L
< Constraints remaining

involving this variable?

Recalculate the left-hand-side
bounds for the constraint.

I Add the constraint to the I
propagation set. +

Constraints remaining? 0
Remove constraint

from propagation set. I

Variables remaining?

Evaluate the isolation for the
variable to obtain upper and

I lower bounds.

+
Bounds change?

Constraints remaining
involving this variable?

Yes

Recalculate the left-hand-side
bounds for the constraint.

Add the constraint to the & I propagation set. I

Figure 3.2: Partial arc consistency algorithm

Chapter 4

Integration with Bonsai

This chapter discusses how the generic cutting plane equations are introduced into the

bonsai algorithm. In particular we discuss how the cutting planes interact with the bound

tightening performed by the arc consistency component.

4.1 Implement at ion Details

Due to restrictions in the underlying data structures of bonsai which prevent efficient ad-

dition or deletion of constraints, it was necessary to have all possible cutting planes in the

constraint system at all times even though most of these will be redundant or inactive.

CHAPTER 4. INTEGRATION WITH BONSAI

Initialization

Continuous variable domains [ij, 2j] are initialized to [O,T]. Thus after reading in the

constraint system, each constraint having the form

is replaced with the initial cutting plane constraints:

This is an equivalent constraint system to the original problem although more redundant

since we already had bound constraints on all variables.

Rewriting Cutting Plane Constraints

Whenever the bounds on the variable are changed - either during the arc consistency

routines or when a node is restored from the active set during the branch-and-bound search

- all cutting planes are examined and those whose equations use the changed bound will

be rewritten. Row bounds for cutting plane constraints are then recalculated.

Figure 4.1 illustrates how cutting plane ACD is tightened as S increases and .i- decreases.

4.2 When Cuts Are Effective

The relative ordering of the variable bounds determines which cuts are effective and which

are actually redundant.

So long as either S > 0 or .i. < T then cutting plane ACD: -s + r + (S - ?)a 5 0 is a tighter

constraint than the original -s + r - ~a 5 0. Since variable bounds are never loosened in

bonsai1, the cutting plane will only become tighter whenever either S or i is tightened.

'Lower bounds become monotonically larger while upper bounds become monotonically smaller

CHAPTER 4. INTEGRATION WITH BONSAI

Figure 4.1: Tightening constraint -s + r + (5 - ?)a 5 0

CHAPTER 4. INTEGRATION WITH BONSAI 34

Figure 4.2: When ? < S then s 2 S makes constraint ABC redundant

Observation 1 If ? is strictly less than S then cutting plane constraint ABC is made

redundant b y the constraint s 2 S.

Proof A = (S,?, 1) and B = (S,?, 1) are in the plane s = 8 . C = (?,?,O) is cut off

by s > 8 since by assumption ? < S. Thus, cutting plane ABC is redundant given that

0 5 a < 1 (see Figure 4.2). rn

CHAPTER 4. INTEGRATION WITH BONSAI 3 5

Figure 4.3: When i < i then r 5 i makes constraint ADE redundant

Observation 2 If i is strictly less than i then cutting plane constraint ADE is made

redundant by the constraint r 5 i .

Proof A = (S , i , l) and E = (; ,?,I) are in the p laner = f . D = (i , i ,O) is cut off

by r 5 i since by assumption f < i . Thus, cutting plane ADE is redundant given that

0 5 a 5 1 (see Figure 4.3). w

CHAPTER 4. INTEGRATION WITH BONSAI

4.3 An Examination of Row Bounds

Previous incarnations of Bonsai read in the constraint matrix and then treated it as a

static entity. Now however, the coefficients of the Boolean variables and the right hand

side of cutting plane constraints are modified as the bounds of the continuous variables are

tightened.

In bonsai, bounds are only ever tightened; lower bounds are only replaced by larger values

and upper bounds only by smaller values. We need to examine the tightening of the cutting

plane constraints to ensure that this property has been maintained.

Recall from Section 3.2 that only the constraint lower bound is used for 5 constraints and

it is calculated as follows:

Note that the relative magnitudes of the variable bounds determines the sign of the co-

efficient of a in the cutting plane constraints. The sign of the coefficient is then used

to determine whether the variable's upper or lower bound will be used in calculating the

constraint bounds.

Expanding (4.1) for cutting plane constraint ACD: -s + r + (S - i) a 5 0 we have:

Examining (4.2) it is clear that LBACD cannot decrease by increases in S and ? or decreases

in j, and i .

CHAPTER 4. INTEGRATION WITH BONSAI 3 7

Similarly, the following expansion of (4.1) for constraint ABC: -s + (B - ?) a < -i. shows

that LBABC can not be loosened:

The expansion of constraint ADE: r + (i - +)a 5 d shows that it is also true that LBADE

cannot be loosened.

Replacing a with its complement

The above analysis describes the happy circumstance of everything working out. However,

the constraints in the test data actually used 6? = 1 - a and had the form

This switch to the complement allowed constraint bounds to loosen when variable bounds

are tightened.

Substituting a for h, the cutting plane equations become

ACD: -s + r + (i -S)a i - S

A B C : -S + (f - S)a < -S

ADE : r + (i - ;)a < i

CHAPTER 4. INTEGRATION WITH BONSAI

Expanding (4.1) for constraint ACD: -s + r + (i - S)o > i - S we have:

(- B + f + i - ~ if i - S < O a n d & = l , o r

I i - S > O a n d & = O

We see that tightening i or S, LBACD can be loosened.

For example, assume that

800 5 s 5 1800

300 5 r 5 700

l l a 5 1

If i is tightened from 700 to 600, LBACD is loosened from -1600 to -1700. However, since

bAcD is also reduced by 100 the variable bounds calculated are not changed as a result of

loosening the constraint bound. This can be seen using (3.3) and (3.4) from page 29:

Any loosening of LBACD as a result of tightening S is similarly cancelled out by the reduction

of ~ A C D

Expanding (4.1) for constraint ABC: -s + (f - S)o < -5 we have:

(- B + i - d if 7 - S < O a n d & = l , o r

CHAPTER 4. INTEGRATION WITH BONSAI 39

which can be loosened by tightening S. However, any loosening of LBABC as a result of

tightening S is cancelled out by the reduction of bABC.

Expanding (4.1) for constraint ADE: r + (i - L) a 5 i we have:

which can be loosened by tightening i . However, any loosening of LBADE as a result of

tightening i is cancelled out by the reduction of bADE.

Since in all cases, ALBi = Ab; it is sufficient to store the changed constraint bound without

propagating it. Therefore, the arc consistency routines need not pay any attention to the

changing a coefficient when propagating variable bound changes.

This chapter described the theory of how the cutting plane constraints are integrated into

bonsai. There were also several assumptions underlying the implementation of bonsai which

were broken when the cutting planes were introduced. These are described in Appendix A.

The computational results of the integration are presented in the next chapter.

Chapter 5

Computational Results

5.1 Applying Bonsai to Digital Hardware Synthesis

Bonsai is tested on problems arising from research into automated synthesis of register-

transfer level digital logic. These problems can be characterized as deterministic machine

scheduling problems with variable-duration activities and other complicating constraints.

In digital hardware design, the scheduling problem is phrased in terms of activities which

must be executed by hardware components. An algorithmic description of the behaviour

which is to be implemented is translated into a data flow graph - a representation of the

algorithm in terms of data values flowing between activities that transform the values. The

activities in the data flow graph are the jobs which must be performed. The components

made available to construct the implementation are the machines.

More formally, a set of n activities x,, a = 1, ..., n, must be performed on a set of m

components fd, d = 1, ..., m. The components fd can only perform one activity at a time.

In a digital circuit, the output of a component is not stable; it is simply a voltage asserted

on a wire, and the component must continue to assert the voltage for as long as the output is

in use. The components fd are assumed to be combinational logic. By definition, when the

inputs to combinational logic change, the output will change after a specified propagation

delay. This means that the active interval during which a component fd will be occupied

CHAPTER 5. COMPUTATIONAL RESULTS 41

with an activity x, is not a constant. The inputs i, required by an activity x, must be held

until the outputs o, are no longer required. Although a minimum length for the interval

can be developed [7], the maximum length of the interval depends on how long the output

is required as an input to components executing other activities.

Formally, variables must be defined for the start and end of the intervals when inputs,

outputs, and activities are active. For example, for an activity z,, let the variable Ts(xa)

represent the time when the activity starts, and the variable T,(x,) represent the time when

it ends. The interval required to perform activity x, on some component is then the interval

[Ts(xa), T (~ a)] .

In order to release a component and inputs occupied in producing a value o,,,, a storage

activity can optionally be introduced which captures and holds the value. A component s,

is required to implement a storage activity, and it remains in use as long as the value is

required as input to some activity. A component s, is assumed to be sequential logic; by

definition, it is capable of retaining a value after the value has been withdrawn from its

input.

To account for the option of storing outputs in an implementation, the problem definition for

digital hardware design needs to be extended. A set of n activities x,, a = 1, ..., n must be

performed on a set of m components fd, d = 1, ..., m and a set of optional activities storing

o,,,, a = 1, ..., n, c = 1, ..., k,, may be performed on a set of m' components s,, e = 1, ..., m'.

The constraint system can be viewed as consisting of three sets of constraints:

0 One set of constraints propagates activity (job) start times forward through the net-

work of activities.

0 One set of constraints propagates activity (job) end times backward through the net-

work of activities.

One set of constraints ensures that the active intervals of two activities (jobs) assigned

to the same component (machine) are serialized.

In a synthesis problem it is desirable to minimize both the time required to execute an algo-

rithm and the number of components required for the implementation. These are competing

CHAPTER 5. COMPUTATIONAL RESULTS 42

objectives; generally a weighted sum of the two is acceptable as an objective function. This

differs from the usual view of machine scheduling, which assumes a fixed set of machines,

but is appropriate for many problems which arise in practice (e.9. determining both the

fleet size and the schedule for a fleet of trucks).

5.2 Cutting Plane Results

The constraint systems used to test bonsai are generated by iddma [5] - a dedicated con-

straint generation program - from a data flow description of the algorithm to be imple-

mented, a description of the set of available components, and a specification of the allowable

uses for components. Statistical descriptions of the test examples are presented in tables

5.1 and 5.2 while their data flow diagrams appear in figures 5.1, 5.2 and 5.3.

I I Data Flow I I Data Flow (Storage I

Table 5.1: Summary of example problem descriptions

CrissX

Table 5.2: Summary of example problem constraint systems

Activities
4

CrissX
Logic
Ralph1

Operators
6

Constraints Variables

Values
6

Without
Cutting
Planes

179
237
577

Continuous
4 1
45
78

Non-Zero Coefficients

Elements
3

With
Cutting
Planes

259
345
779

Boolean
77
106
222

Without
Cutting
Planes

488
671
1672

With
Cutting
Planes

728
995
2308

CHAPTER 5 . COMPUTATIONAL RESULTS

Figure 5.1: Data flow diagram for CrissX

CHAPTER 5. COMPUTATIONAL RESULTS

AND (f37 f6) v

Figure 5.2: Data flow diagram for Logic

CHAPTER 5. COMPUTATIONAL RESULTS 45

Figure 5.3: Data flow diagram for Ralph1

CHAPTER 5. COMPUTATIONAL RESULTS

Objective Functions

There are three main types of objective functions.

Cost objectives emphasize the cost of the implementation, where cost is defined to be

the total cost of the components used.

Time objectives emphasis the time required to complete the algorithm, where com-

pletion time is based on the time at which the final outputs of the algorithm become

available to the world.

Implementation cost and completion time are competing objectives, in the sense that

serialization of the activities in the algorithm is generally required to minimize hard-

ware, whereas maximal parallelism tends to minimize completion time. The final

class of objectives, Cost/Time, attempt to balance the two by scaling the terms in the

objective function so that one unit of time appears equivalent to one unit of cost.

Within each class of objective there are four functions. Three of these incorporate timing

information in an attempt to distinguish solutions which would otherwise be equivalent1.

For the Cost objectives, a small completion time component is added to all four functions

to compress the schedule into the minimum time. The variations, and their codes, are as

follows:

c (Cost)

Component costs dominate the objective. Completion times are incorporated with a

scaling factor which limits their sum to roughly one order of magnitude smaller than

the cost terms.

CI (Cost with Active Interval)

Component costs dominate the objective. Completion times and the start and release

times (the active interval) for activities are incorporated with a scaling factor which

limits their sum to roughly one order of magnitude smaller than the cost terms.

' 1 . e . there would be equivalent solutions if two independent activities could have their execution order
swapped, but the implementation might still have the same cost and completion time. If, however, the
objective function were to slightly favour one ordering over the other, it might be possible to fathom one
solution by bound a bit earlier in the search.

CHAPTER 5. COMPUTATIONAL RESULTS 47

CS (Cost with Start Time)

Component costs dominate the objective. Completion times and the start times for

activities are incorporated with a scaling factor which limits their sum to roughly one

order of magnitude smaller than the cost terms.

CSS (Cost with Scaled Start Time)

Component costs dominate the objective. Completion times and the start times for

activities are incorporated with a scaling factor which limits their sum to roughly one

order of magnitude smaller than the cost terms. Based on examination of the data

flow for the algorithm, the weights on the start times are varied so as to prefer one

order over another in cases where two activities have no data dependencies to force

an ordering.

In the Time objectives, a small cost component is added to prevent the incorporation of

unused hardware into the solution. The variations are as described for the Cost objectives.

The variations for the CostITime objectives also follow the Cost pattern.

Branching Strategies

There are nine strategy variations, some loosely based on different philosophies of hardware

design and some included simply to round out the test suite. The one common feature which

deserves separate explanation is that variables of class S will always be in the first priority

class. These variables represent the decision as to whether an input will obtain the value it

needs directly from the combinational logic which produces it, or from a stored copy of the

value. In hardware terms, this represents a tradeoff between keeping combinational logic in

use to produce a value versus using a storage component to hold the value and freeing the

logic for other uses. F'rom inspection of the constraint relations, this decision is also crucial

to tightening the portion of the constraint system dealing with release times, and previous

work has shown that it's pointless to place it in a lower priority class.

There is little meaning in the codes used for the strategies. NG stands for No Guidance

and is actually meaningful. The remainder of the codes stem from Modified No Guidance,

which makes sense only in a historical context.

CHAPTER 5. COMPUTATIONAL RESULTS

NG (6, a, P, a, 4, X, PI
All variables are placed in a single priority class.

MNGl (6, a , P, a , 41, {x, PI
The x and P variables, which represent decisions on whether or not to allow the use of

a particular component, are placed in a lower class. The underlying rationale is that

decisions on which parts to use should be a consequence of other design decisions, and

not drive them.

MNG2 {6,4), {u, P1 a), {x, P)
The 4 variable controls whether or not activities which could potentially be executed

in parallel (given sufficient hardware) will be forced into a serial order. This is a fairly

important decision which can have significant impact on the amount of hardware

required in the implementation.

MNG3 {S), (474 , {P, 01, {P, XI
The a variables control the order in which serialized activities will be executed. One

can argue that it only makes sense to decide on the order at the same time as the

decision on whether or not to serialize. p and u variables control, respectively, the

allocation of combinational logic to computational activities and storage elements

to stored values. In an hardware design context, this priority says that scheduling

decisions should drive component allocation.

MNG4 (61, {P, 4 1 (4, 4 7 {Pl XI
This ordering reflects the philosophy that component allocation decisions should drive

the scheduling of activities.

MNG5 @I, (0, P, a1 41, { x , P)
This ordering places equal importance on scheduling and allocation.

MNG6 (6, {P, 4 {P, XI
MNG3, with the variation that scheduling decisions are given equal importance with

input value access decisions.

MNG7 (61, M a) , {P, XI, {A 4
MNG3, but experiment with the idea of deciding what components to use before

actually assigning them to specific activities.

CHAPTER 5. COMPUTATIONAL RESULTS

MNG8 {% { P , X I , ($ 7 4, { P , 4
Decide what components to use, then schedule the activities, and finally decide on the

details of how components should be assigned to activities.

Data

Tables 5.3, 5.4, and 5.5 report the number of subproblems which were solved in order to

completely explore the branch-and-bound search tree and the average pivots required by

each subproblem. Each data point in these tables is an average over 4 objective functions.

Figures 5.4 and 5.5 show the CrissX total subproblems and pivots of each objective function

averaged over the 9 branching strategies. Figures 5.6 and 5.7 show the Logic total subprob-

lems and pivots of each objective function averaged over the 9 branching strategies. Figures

5.8 and 5.9 show the computational results of R a l p h l using the NG branching strategy.

Figures 5.10 and 5.11 show the computational results of Ralph1 using the MNG4 branching

strategy. Figures 5.12 and 5.13 show the computational results of Ralph l using the MNG8

branching strategy.

CHAPTER 5. COMPUTATIONAL RESULTS

Branching
Strategy

NG

MNGI

MNG2

MNG3

MNG4

MNG5

MNG6

MNG7

MNG8

Average

Objective
Function
Emphasis

Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time

Cost
Time
Cost/Time

Subproblems
Defined

42
11

184
42
11

184
42
11

184
42
11

184
42
11

184
42
11

184
42
11

184
42
11

184
42
11

184

42
11

184

Subproblem

19
2 5
12
19
2 5
12
19
2 5
12
19
2 5
12
19
2 5
12
19
2 5
12
19
25
12
19
2 5
12
19
25
12

19
2 5
12

Subproblems
Defined

54
5

229
64

5
233
101
11

256
73
9

306
191

8
144
71

9
138
66

5
338

72
10

303
72
9

110

8 5
8

228

With Cutting Planes

-

I
Table 5.3: CrissX Results

CHAPTER 5. COMPUTATIONAL RESULTS

0 Without cutting planes

With cutting planes

V

C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.4: CrissX Subproblems - averaged over all branching strategies

0 Without cutting planes

With cutting planes

V

C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.5: CrissX Pivots - averaged over all branching strategies

CHAPTER 5. COMPUTATIONAL RESULTS

Branching
Strategy

NG

M N G l

MNG2

MNG3

MNG4

MNG5

MNG6

MNG7

MNG8

Average

Objective
Function
Emphasis

Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time
Cost
Time
Cost/Time

Cost
Time
Cost /Time

Without Cutting Planes
Subproblems

Defined

-
Pivots/

Subproblem

22
62
33
24
62
33
21
62
3 2
15
62
33
86
3 2
26
84
6 2
32
20
6 2
33
16
6 2
48
20
6 2
3 1

30
5 5
32

Subproblems
Defined Subproblem

25
241

44
26

241
44
23

24 1
42
24

241
44
3 2

241
34
31

241
44
23

241
44
2 5

241
3 7
30

241
46

26
241

4 1

Table 5.4: Logic Results

CHAPTER 5. COMPUTATIONAL RESULTS

C CI CS CSS

0 Without cutting planes

With cutting planes

T TI TS TSS CT CTI CTS CTSS
~ - - -

Objective Function

Figure 5.6: Logic Subproblems - averaged over all branching strategies

0 Without cutting planes

With cutting planes

C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.7: Logic Pivots - averaged over all branching strategies

CHAPTER 5. COMPUTATIONAL RESULTS

Branching
Function Defined

Cost 5 76
Time 136
Cost/Time 14372
Cost 394
Time 113
Cost/Time 3180
Cost 623
Time 179
Cost/Time 1393

I Without Cut t in~Planes I With Cutting Planes
Pivots/ Subproblems

Subproblem Defined 1 48 2936 Subproblem

38
79
88
5 8
79

125
86
64

123

4 1
5 3
47
42
52
3 7
33
64

69
11091

787
72

656
426

6 5
689

1383
69

4145

Cost 531
Time 143
Cost/Time 6315

Table 5.5: Ralph1 Results

43
38
53

CHAPTER 5. COMPUTATIONAL RESULTS

0 Without Cutting Planes

With Cutting Planes

C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.8: Ralphl Subproblems - NG branching strategy

0 Without cutting planes

With cutting planes

C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.9: Ralphl Pivots - NG branching strategy

CHAPTER 5 . COMPUTATIONAL RESULTS 56

0 Without cutting planes

With Cutting Planes

C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.10: Ralphl Subproblems - MNG4 branching strategy

0 Without cutting planes

400 With cutting planes

300

200

1 00

O C CI CS CSS T TI TS TSS CT CTI CTS CTSS
Objective Function

Figure 5.11: Ralphl Pivots - MNG4 branching strategy

CHAPTER 5. COMPUTATIONAL RESULTS

"
C CI CS CSS T TI TS TSS CT CTI CTS CTSS

Objective Function

Figure 5.12: Ralph1 Subproblems - MNG8 branching strategy

0 Without cutting planes
-

With cutting planes

Figure 5.13: Ralp

CSS T TI TS TSS
Objective Function

ivots - MNG8 brancl

CTI CTS CTSS

Chapter 6

Conclusion and Future Work

The addition of cutting planes caused the average pivot counts to increase substantially.

This is likely due to the large increases in the number of constraints in the system (seen

in table 5.2). Were bonsai to be rewritten to allow constraints to be added and removed

dynamically1, it would not be necessary to have all cutting plane constraints in effect at all

times and we believe that the number of pivots would be more in line with previous results.

The number of subproblems defined is a crucial performance measure since at least one

relaxation LP is run for each one. The number of subproblems for the small CrissX and

Logic examples is, on average, about the same; possibly a little bit worse. The larger ralphl

problem shows a significant improvement in the number of subproblems in most cases and

also an improvement on average.

As the size of the example increases, the value of T increases since it has to be proportional

to the length of the serialized schedule. Since the cutting planes provide us with a method

of tightening constraints of the form

it makes sense that the cutting planes will become more effective as T becomes larger.
--

' ~ o t e that this is a fairly common practice and would be relatively easy given an appropriate data
structure for the constraint matrix. The packed array, used by the XMP linear programming library routines
110, 111, is adequate if you only use column major, or only use row major order, however, bonsai's arc
consistency routines access the structure by both row and column while the simplex routines access the
structure by column.

CHAPTER 6. CONCLUSION AND FUTURE WORK 59

Previously, the ralphl examples having the CSS, CT, CTI, CTS, and CTSS objective func-

tions were hard, ie. they involved a huge branch-and-bound search tree. We have managed

to improve almost all of these - the exceptions being in the NG strategy where there is no

prioritization of variables for branching.

Note that the MNG4 and MNG8 strategies force the allocation of resources before perform-

ing the scheduling. Since we have a marked improvement for the Ralph1 example using

these strategies, it appears that the cutting plane constraints are doing their job of deciding

on the order of activity execution.

6.1 Further research

We originally started generating cutting planes for three-dimensional systems since we

wanted to be able to visualize what was happening. The next step would be to design

cutting planes for the seven-dimensional serialization constraint system as described as

(1 .2) on page 9. From there we can go into even higher dimensions for more powerful

cutting planes.

By analyzing which cutting plane constraints are active in the region near the optimal

solution and throwing out the rest, we should be able to significantly reduce the

number of pivots required to solve each relaxation.

Recall the cutting plane equations from chapter 2:

ACD: -s + r + (3 - ?) a < O

ABC: -s + (3 - +) a 5 +
ADE : r + (i - ?) a 5 i

If the constraint's slack variable is basic, then the constraint is not active and can

probably be removed from the constraint system.

CHAPTER 6. CONCLUSION AND FUTURE WORK 60

The following tests can determine whether it would be useful to add a cutting plane

constraint to the constraint system:

- If cu is fixed at 0 or 1 then ACD, ABC, and ADE are all redundant.

- If S 2 f then ACE, ABC, and ADE are all redundant.

- If S = i. then ABC is redundant since it is equivalent to s 2 8.

- If 2 = f then ADE is redundant since it is equivalent to r 5 i .

- If i: < S then ABC is redundant (observation 1 page 34).

- If i < 8 then ADE is redundant (observation 2 page 35).

Appendix A

Broken Underlying Assumptions

The constraint system is static

Bonsai assumes that the constraint system is static. It is stored in packed arrays in both

row major and column major order to facilitate the arc consistency routines' need to use

rows and columns and the simplex routines' need to look at columns. Each time a cutting

plane constraint needed to be rewritten it was necessary to traverse and update both these

structures.

For this reason, it was necessary to have all possible cutting planes in the constraint system

at all times instead of only those that were active and non-redundant. A linked list structure

which could be accessed in either order would facilitate dynamic editing of the constraint

system.

Static b vector

Due to restrictions in the simplex routines used in bonsai, fixing a boolean variable to 1

is done by replacing the variable with its complement - which means fixing it to 0 and

subtracting its coefficient from the right hand side. Because of this and the fact that the (I!

coefficient and the b value of cutting plane constraints are both dependent on the variable

bounds, maintaining a consistent right hand side is a major headache. This is especially true

APPENDIX A. BROKEN UNDERLYING ASSUMPTIONS 62

since there are actually three b vectors in bonsai: the actual right hand side, the reduced b

vector of the parent subproblem, and the reduced b vector of the current subproblem.

The arc consistency routines only look at the actual right hand side. Each time the variable

bound change propagation routine runs, the b value is updated for each affected cutting

plane constraint in the actual b vector.

Once the arc consistency routines are finished and flagged variables have been fixed, the

current subproblem's b vector is rewritten.

While restoring a node for further exploration, the variable bounds are restored. Then all

cutting plane constraints, the actual b vector, and the parent's b vector are all corrected to

match the restored bounds. The subproblem's b vector starts out as a copy of its parent's.

Branching variables can be selected before restoration

Branching variables are selected before a node is restored. However, if an incumbent solution

was found between the time the node was created and the time it was restored, the restora-

tion is likely to fix a lot of variables since the objective function value of the incumbent will

be propagated during restoration. With the addition of cutting plane constraints, there are

cases where all of the branching variables become fixed. Since the code is not set up to look

for new branching variables at this point, we chose to allow degenerate tours - the parent

is expanded to have a single child.

b vector branching corrections can be pre-calculated

The reductions to the right hand side, as a result of fixing branching variables, used to be

calculated when the branching variables were selected. It is now necessary to wait until

after the parent node has been restored.

APPENDIX A. BROKEN UNDERLYING ASSUMPTIONS

Only non-zero coefficients are stored

Bonsai only stored non-zero coefficients. However, it is possible for the a coefficient of the

cutting plane constraints to become zero. Short of copying the whole coefficient matrix to

close up gaps, it is now necessary to store zero coefficients. Thus, we must test coefficient

values before use in several situations. For example, in the arc consistency routines we do

not want to divide by aiYt if it is zero. Nor can 0 coefficients be passed to the LA05 basis

maintenance package.

Coefficients must be finite

Variable domains used to be initialized to [0, MAX-DOUBLE] so the a coefficient of cutting

plane constraint ACD was initialized to MAX-DOUBLE. This caused all sorts of arithmetic

exceptions when calculating matrix inverses since since MAX- DOUBLE^ cannot be com-

puted. It is therefore necessary that all coefficients have reasonable finite values. To ensure

this, the input file must indicate a finite upper bound on all variables.

Boolean variable domains are not tightened

Bonsai assumed that the boolean variable domains remained [O , 1] until fixed by branching,

monotones, or penalty calculations. It was hard coded that fixing a boolean variable to its

upper bound meant it should be set to 1. It is necessary to use the actual variable bounds.

Variable status is not changed after a node is stored

The status of a variable - whether it was basic, non-basic, artificial, etc. - was assumed

to remain static for a node after the node was visited and stored. We discovered instances

where the status of variables changed upon restoring a node.

APPENDIX A. BROKEN UNDERLYING ASSUMPTIONS 64

The status vector of the root node is stored and a series of status edits record the differences

between the status vector of the parent and that of the child. Since the code did not check for

status differences during resurrection of a node status changes were not recorded as status

edits. In the case where there was no status edit for that basis position in a descendent, the

variable occupying the position was random, resulting in a singular basis and excess pivots

to regain feasibility and optimality.

Bibliography

[I] E. Balas, S. Ceria, and G. Cornu6jols. A lift-and-project cutting plane algorithm for

mixed 0-1 programs. Technical Report 576, Management Science Research Group,

Graduate School of Industrial Administration, Carnegie Mellon University, 1991.

[2] E. Balas, S. Ceria, and G. Cornu6jols. Solving mixed 0-1 programs by a lift-and-project

method. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 232-242, 1993.

[3] B. W. Char, K. 0. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M.

Watt. Maple V Library Reference Manual. Waterloo Maple Software, 1991.

[4] V. Chv6tal. Linear Programming. W.H. Freeman and Company, 1983.

[5] L. Hafer. Logic synthesis by mixed-integer linear programming. Technical Report T R

88-2, School of Computing Science, Simon Fraser University, May 1988.

[6] L. Hafer. Bonsai - teaching a clown to prune trees. Technical Report CMPT T R 91-6,

School of Computing Science, Simon Fraser University, July 1991.

[7] L. Hafer. Constraint improvements for MILP-based hardware synthesis. In ACM/IEEE

28th Design Automation Conference Proceedings, pages 14-19. ACM SIGDA, IEEE

Computer Society-DATC, June 1991.

[8] L. Hafer and E. Hutchings. Bringing up bozo. Technical Report TR90-2, School of

Computing Science, Simon Fraser University, August 1990.

[9] S. M. Lee, L. J. Moore, and B. W. Taylor 111. Management Science. Wm. C. Brown

Publishers, second edition, 1981.

BIBLIOGRAPHY

[lo] R. Marsten. The design of the .MP linear programming library. ACM Transactions

on Mathematical Software, 7(4):481-497, December 1981.

[ll] R. Marsten. XLP Technical Reference Manual. XMP Software, Inc., P.O. Box 13185,

Tucson, Arizona, 85732, 1987.

(121 G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John

Wiley and Sons Inc., 1988.

[13] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[14] G. Sidebottom. Satisfaction of constraints on non-negative integer arithmetic expres-

sions. Open File Report 1990-15, Alberta Research Council, 6815 8th Street N.E.,

Calgary, AB, T2E 7H7, July 1990.

