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Abstract 

We investigate a method of reducing the effort required to solve resource-constrained schedul- 

ing problems using mixed-011 linear programming. In particular we examine a formulation 

of the decision as to whether two activities of variable duration will be serialized or not. 

From this subset of the constraint system, we derive cutting plane constraints which are 

expressed in terms of variable upper and lower bounds. 

We describe the integration of these cuts into bonsai - a system which implements branch 

and bound search with partial arc consistency. Each time the arc consistency routines are 

able to restrict variable domains, the cutting plane is tightened to reflect the tighter bound. 

The computational results show a decrease in the average number of subproblems required 

to solve large examples. However, there is also an increase in the total number of pivots. 
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Chapter 1 

Introduction 

The focus of this thesis is to investigate a method of reducing the effort required to solve 

resource-constrained scheduling problems using mixed-011 linear programming. In particu- 

lar we examine a formulation of the decision as to whether two activities of variable duration 

will be serialized or not; and if so, in what order. We then describe the derivation of a set of 

cutting plane constraints using the lift and project method of Balas, Ceria, and Cornukjols 

[I, 21. These constraints are expressed in terms of the upper and lower bounds of the timing 

variables. We further describe the integration of these cuts into bonsai - a system which 

implements branch and bound search with partial arc consistency. Each time the arc consis- 

tency routines are able to restrict variable domains, the cutting plane is tightened to reflect 

the tighter bound. 

This chapter contains some required definitions, a review of the required integer program- 

ming background, and an overview of the motivation and organization of this thesis. 



CHAPTER 1. INTRODUCTION 

1 .I Definitions 

Linear Programming 

This section starts with a brief review of linear programming terms. Further discussion of 

this material can be found in [4, 91. 

A linear constraint is an equation or inequality having one of the following forms: 

X I ,  x2, ..., xn are real variables, and 

b is a real number. 

Linear Programming (LP) is a mathematical algorithm that facilitates the allocation of 

scarce resources while optimizing some objective. The mathematical formulation of an LP 

problem consists of a linear objective function and a set of linear constraints which together 

describe a real world decision situation. In standard form an LP problem is written as: 

maximize C cjxj 
j=1 
n 

subject to C aijxj 5 bi ( i  = 1,2, ..., m) 
j=1 

Introducing slack variables x,+~, xn+2, ..., xn+,, xn+; 2 0 allows constraints of (1.1) to be 

rewritten as equalities. 
n 

The system of linear equations can then be represented by a dictionary where the objective 

function, z ,  and a subset of the variables are expressed in terms of the remaining variables. 



CHAPTER 1. INTRODUCTION 

The variables appearing on the left hand side of the dictionary are termed basic while those 

on the right are non-basic (N). 

In a basic optimal solution (one representable by a dictionary), non-basic variables xj have 

the value 2j if E j  < 0 or g j  if E j  > 0. 

An Integer Linear Programming (ILP) problem can be formulated as (1.1) plus additional 

requirements which force a subset of the variables to take on integer values. For pure-integer 

problems, all variables must have integer values in a solution. If only some of the variables 

in the model are required to be integral then it is called a mixed-integer linear program 

(MILP) . 

A mixed-011 linear programming problem is expressed using continuous and Boolean vari- 

ables and can be formulated as follows: 

maximize cx + h y  

st A x + G y < b  X E W  

Y E (07 1IP 

where 

p is the number of boolean variables, 

0 c is the cost coefficients corresponding to the variables in x ,  

0 h is the cost coefficients corresponding to the variables in y ,  

0 A  is the columns of the coefficient matrix corresponding to the 

variables in x,  and 

0 G  is the columns of the coefficient matrix corresponding to the 

variables in y .  

We shall use the abbreviation MILP to refer to mixed-011 linear programs since they are 

the only type of mixed-integer linear programs that we are concerned with in this thesis. 
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The linear relaxation of a mixed-011 programming problem is the LP problem that results 

from relaxing the integrality constraints to allow continuous values, i.e. yj E {O,l)  is relaxed to 0 5 
< 1 Y j  - 

The term row bound is used to refer to the bound which we can calculate for the left hand 

side of a constraint (using arc-consistency techniques described below). 

The term incumbent refers to the best integral solution which has been discovered so far in 

a tree search strategy. 

Polyhedral theory 

We now provide a review of some polyhedral concepts. Details can be found in [12, 131. 

A set P of points x  E Xn is called a polyhedron if P = { x  : Ax 5 b )  for some matrix A 

and vector b. 

An inequality T X  5 TO (denoted ( T ,  T O ) )  is called a valid inequality for P if it is satisfied for 

all x  E P. 

If x  E P and there do not exist x1,x2  E P, x1 # x2 such that x  = i x l  + !jx2 then x  is an 

extreme point of P. 

Let P be the polyhedron defined by the linear relaxation of the MILP. A point x  of P is 

called non-integer if 3xi such that xi has been constrained in the MILP to be an integer 

but takes on a non-integer value at x. 

Let Po = { r  E Xn : Ar 5 0) .  If P = { x  E Xn : Ax 5 b) # 8, then r E PO \ ( 0 )  is called 

a ray of P. 

If r is a ray of p and there do not exist r l ,  r2 E P, r1 # Xr2 for any X 2 0, X E X, such 

1 1 
that r = y1 + y2, then r is called an extreme ray of P. 

The projection of a point ( x ,  y )  E Xn x !JP onto the subspace H = { ( x ,  y )  : y = 0 )  is the 

point ( x ,  0) .  The projection of polyhedron P = { ( x ,  y )  E Xn x R' : Ax + G y  5 b) from 



CHAPTER 1. INTRODUCTION 

(x, y)-space to x-space is defined as 

proj,(P) = {x E Xn  : vt(b - Ax) > 0 Vt E T) 

where { v t ) t ~ ~  are the extreme rays of Q = {v  E X T  : v 2 0, vG = 0). The projection of 

a polyhedron is a polyhedron. 

The polar of P is defined to be the set of points 

P* = {(T, 7ro) E xn+l : T X  I TO vx E P). 

For any polyhedron P, the integer hull of P is defined to be the convex hull of the integral 

lattice points in P .  Let us then define the mixed-integer hull of P for a MILP M as the 

convex hull of the set of points x such that x E P and x j  E 2 if there is an integrality 

restriction on xj in M. 

The term cutting plane will refer to a linear constraint that separates a non-integer extreme 

point from the mixed-integer hull of the MILP. To tighten a cutting plane constraint, we 

replace it with a more effective one - a constraint which cuts off more points of the relaxed 

polyhedron than were cut off by the previous constraint. 

We now describe a few approaches to solving mixed-011 programming problems. While 

these algorithms were developed in isolation, they are often used in combination. 

Branch-and-Bound Approach 

Since the possible values of Boolean variables can be enumerated, a branch-and-bound 

algorithm can be used to solve a MILP problem. This procedure uses a depth first tree 

exploration strategy where 

the linear relaxation of the root of each subtree provides an upper bound for any 

solution in the subtree, and 

the incumbent - the best integral optimal solution found to date - provides a lower 

bound. 
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The live set is the set of nodes which have been explored, but not fathomed off. The most 

promising node in the active set will be restored each time the current node is determined 

to have no ancestors. The current node begin explored is said to be active. 

The following steps are performed at each node: 

1. Solve the linear relaxation. 

2. Examine the results. 

If the relaxation is infeasible, then the node is fathomed (not explored further). 

If the solution to the linear relaxation of the node is less than the incumbent, the 

node is fathomed. 

Let S be the set of Boolean variables which have solution values 6 {0,1). If 

S # 0 then go to step 3. 

Otherwise an integer solution has been achieved and is compared against the 

current incumbent. If the solution is better, it becomes the new incumbent. The 

node is not explored further. 

3. Select a set of branching variables V C S. Generate all possible {O,l) vectors of length 

IVI. Create a subproblem for each of these vectors by introducing constraints which 

force each branching variable vi to be the appropriate { O , l )  value while not excluding 

any feasible integer solutions. Each subproblem is added to the search tree as a child 

of the current node. 

4. No problems remaining? Then the current incumbent solution is optimal. Otherwise, 

select an unexplored node and return to step 1. 

Arc Consistency 

Partial arc consistency techniques developed by Sidebottom [14] enable us to prune con- 

tinuous variable domains by restricting the lower and upper bounds of the variables. In 

particular, the fixing of branching variables might allow us to restrict the domains of other 

variables. The mathematics involved are described in Section 3.2 while the logic is described 

below: 
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Algorithm : Propagate variable bound change 

Given that variable xj has had its bounds tightened: 

For each constraint i in which a i j  # 0 

Calculate new row bounds for constraint i. 

If the change in row bounds will affect the bounds of other variables in the 

constraint then add constraint i to the propagation set. 

End For 

Algorithm : Explore propagation set 

While the propagation set is non-empty 

Remove constraint i from the propagation set 

For each variable xt in constraint i 

Calculate variable xt's upper and lower bounds. 

If the variable bounds have tightened then call propagate variable bound 

change. 

End For 

End For 

Algorithm : arc consistency 

Initialize the propagation set to 0. 

For each branching variable 

Call propagate variable bound change. 

End For 

Call Explore propagation set. 
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Incorporating partial arc consistency into the branch-and-bound algorithm, as described 

above, provides a significant reduction in the amount of work required to explore the search 

tree (Hafer [ 6 ] ) .  

Using Cutting Planes 

Another approach to solving integer programming problems involves the construction of 

cutting planes to cut off non-integer optimal solutions. This procedure is described as 

follows: 

1. Solve the linear relaxation. 

2. Examine the optimal solution. If all variables which are required to be integer have 

integer values then the optimal solution has been achieved and we can stop. Otherwise, 

proceed to step 3. 

3. Construct a cutting plane to cut off the non-integer optimal solution. Add the cutting 

plane to the constraint system. 

4. go to step 1 

Merging cutting planes with the branch-and-bound algorithm leads to the more efficient 

branch-and-cut approach where a cutting plane is constructed after solving the linear relax- 

ation at each node. 
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1.2 Thesis Overview 

Bonsai implements an LP-based branch-and-bound algorithm incorporating arc consistency 

techniques (Hafer [6,  81). It was developed to solve the scheduling problems that arise 

from digital hardware synthesis1. A fundamental decision arising in the formulation of 

these problems is whether or not two activities will be serialized; and if so, in what order. 

This decision is formulated using the following model which takes into account the variable 

duration of these types of activities: 

-TS(x2) + Tr(x1) - f'a1,2 I 0 

- T s ( ~ l )  + TT(x2) - f ' a2 , l  I 0 

a1,2 + a2,1 - 1 2  = 1 

where 

0 Ts(xi) is the start time of activity X i 1  

0 TT(xi) is the release time of activity xi, and 

T represents the maximum possible completion time of the 

schedule. 

Variable assignments in (1.2) are interpreted as follows: 

If a l , 2  = 0 then the first constraint becomes Ts(x2) 2 Tr(xl) so the activities are 

serialized with xl  executing first. 

If al,2 = 1 then the first constraint is trivially satisfied since it states that the difference 

between the two times is less than the largest possible time. 

If a 2 , l  = O4hen the second constraint becomes TS(xl) 2 TT(x2) so the activities are 

serialized with xl  executing first. 

'capsule description: The algorithm to be implemented is described as transformations of data 
and storage of values (collectively, activities). Activities must be scheduled on a set of components 
(resources/machines). 
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If a2 ,~  = 1 then the second constraint is trivially satisfied since it states that the 

difference between the two times is less than the largest possible time. 

If = 1 then no execution order is enforced. 

If = 0 then the activities are serialized. 

The third constraint ensures that exactly one serialization order is chosen when serialization 

is forced. 

In an effort to make these serialization decisions more efficiently, we replace constraints of 

the form 

- TS(xi) + TT(xj) - Tai,j 5 0 (1.3) 

by the following cutting plane constraints (derived in Chapter 2): 

These constraints are then tightened each time one of the variable domains Ts(xi) E 

 xi), TS (xi)], or TT (xi) E [TT (xj), TT (xj)] is tightened by the arc consistency routines. 

The constraints must also be rewritten to match the restored bounds when a node is re- 

stored during the branch-and-bound search. 

The computational results presented in Chapter 5 show a decrease in the average number 

of subproblems required to solve large examples. However, there is also an increase in the 

number of pivots required to solve each relaxation. 

The notation used in this thesis appears in Table 1.1. The generic cutting plane equations 

are derived in Chapter 2. A description of Bonsai appears in Chapter 3. Chapter 4 contains 

a discussion of how the generic cutting planes are integrated into bonsai. Chapter 5 presents 

the computational results and the conclusions follow in Chapter 6. 
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lower bound of variable x 

upper bound of variable x 

row upper bound of the left hand side of constraint i 

row lower bound of the left hand side of constraint i 

maximum possible completion time of the schedule 

the set of indices j such that a i j  > 0 

the set of indices j such that a;,j < 0 

the set difference S - { t )  

the polar of polyhedron P 

rx 5 no is a valid inequality for the polyhedron 

Table 1.1: Notation 
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Cutting Plane Derivation 

2.1 Algorithm 

We use the sequential convexification procedure of Balas et  al. [2] to lift and project the 

constraint system to generate the cutting plane equations. This procedure is described 

below: 

1. Select j E (1, ...p}. 

2. Multiply AX < b by (1 - xj) and xj to obtain the nonlinear system 

3. Linearize (2.1) by substituting yi for xixj, i = 1, ..., n, i # j and xj for x;. Call the 

resulting polyhedron Mj(K). This step cuts off points x with 0 < xj < 1 but does 

not eliminate any points x for which xj E { O , l }  (see [I] for details). 

4. Project Mj(K) onto the x-space by eliminating yi, i = 1, ..., n, i # j. Call the resulting 

polyhedron Pj (K). 



CHAPTER 2. CUTTING PLANE DERIVATION 

 heo ore tic ally, the best cutting plane would be the inequality (T, TO) that is valid for the 

polyhedron P j (K)  and is orthogonally as far away as possible from X*, the non-integer 

extreme point to be cut off. However, since distance is a non-linear function, we shall 

instead select the inequality (T, TO) from the polar of M j ( K )  which has the maximum slack 

at X* in the projection polyhedra Pj(K).  This criteria can be formulated as the following 

objective function: 

maximize U(A1X* - b') 

where 

U is a vector of non-negative multipliers, 

X* is a non-integer extreme point to be cut off the original 

polyhedron, and 

A'x 5 b' defines M j ( K ) .  

To eliminate the yi terms in the projection step of the algorithm, we use the following 

constraints: 
m 

C u i Y i , j  = 0 ,  for j = 1 ,..., n j  # i  
i= 1 

To ensure that the LP will not be unbounded, we place a limit on the growth of the cutting 

plane constraint within the polar by adding the following constraint: 

Thus, symbolically solving the following LP will provide us with a linear combination of 

constraints that generate a cutting plane equation: 

maximize U(AIX* - b') 
m 

st C UiYi, j  = 0, for j = 1, ..., n j # i 
i=l 
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2.2 Derivation 

We examine the input constraint form introduced as (1.3) on page 10: 

To simplify notation we perform the variable substitutions: 

Adding constraints enforcing the variable upper and lower bounds1 yields the following 

constraint system: 
- s + r  0 

-S  5 - 5  

S i 2 
- r -i: 

r  5 ? 
- a <  0 

a 5  1 

The constraint system (2.3) defines the polyhedron for which cutting planes will be derived 

(shown in Figure 2.1). 

 h he bounds on s and r are required in the linear combinations which calculates the cutting plane 
equations. 
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Figure 2.1: Non-integer extreme points to cut off 

Lift the constraints (step 2.1 from Section 2.1) by multiplying (2.3) by a and by (1 - a) .  
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Replace cu2 by cr (step 3 from Section 2.1) : 

S T (2 SCX TQ 

The cutting plane equations are then calculated as the linear combination of (2.4) derived 

using following linear program which eliminates any non-linear terms2 

maximize U(A'X* - b') 

where 

U is a set of non-negative multipliers, and 

0 X* is a non-integer extreme point to be cut off. 

 his incorporates the projection step 4 in Section 2.1. 
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To solve (2.5) symbolically we performed the following steps using Maple [3]: 

1. Calculate the objective function. 

2. Substitute numeric values for the variable bounds to acquire a numeric LP. 

3. Solve the numeric LP using the simplex method. 

4. Format the symbolic LP as a dictionary using the set of basic variables from the 

numeric solution. 

Then it is necessary to manually verify that the symbolic solution is optimal - i.e. test 

that all coefficients in the dictionary representation of the objective function are negative. 

Depending on the values of the domains of s and r ,  there can be a maximum of three non- 

integer extreme points in (2.3) These points have the following coordinates (see Figure 2.1): 

Since we can derive one cutting plane from each non-integer extreme point, we will repeat 

the algorithm of Section 2.1 three times to generate our three cutting plane equations. 

Figures 2.2, 2.3, and 2.4 illustrate examples of these cutting planes and contain labeled 

points having the following coordinates: 
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Cutting off X I  

Substituting X I  = ( 5 ,  ?, (? - s ) / T ,  0,O) for X* in U(A'X* - b') we have: 

Note that  X 1  is an extreme point of the polyhedron (2.3) only when S 5 ?. By selecting 

u2, us, and ug as basic variables, objl can be rewritten as zl below. 

U 2  = 

u5 = 

U g  = 

21 = 

where 

C 1  = 

C3 = 

C4 = 

c6 = 

C7 = 

Cg = 

c10 = 

c11 = 

c12 = 

c13 = 

C14 = 

-2(? - S ) ( T  - (? - i)) 

-(? - s ) ( 2 ~  - 2(? - i )  + (i - 5 ) )  

-(? - S)(?+2S + 2 ~  - 3i.) 

-(? - S ) ( T  - (? - 5 ) )  

-(? - S ) ( T  - (? - S )  + 3)  

-2(? - i ) (T  - (? - i)) 

-3 ( i  - S ) ( T  - (? - S ) )  

-3(? - i ) ( T  - (? - S ) )  

-2(? - S ) ( T  - (? - 2 ) )  

-(3 + (? - S ) ) ( T  - (? - 5 ) )  

-(? - S ) ( T  - (? - 3)) 

Given S < ?, all of the coefficients of zl are negative. Hence the above dictionary represents 

an optimal solution. 
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Figure 2.2: ACD cuts off XI 

Since uz, us, andu8 all have the same value, we can calculate the first cutting plane constraint 

(shown in Figure 2.2) as the sum of the 2nd, 5th, and 8th constraints of M j ( K )  (2.4): 
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Cutting off X 2  

Substituting X 2  = ( 5 ,  ?, (? - s ) / T ,  0 ,O)  for X* in U ( A I X *  - b') we have: 

X 2  is an extreme point of the polyhedron (2 .3)  only when S 5 ?. By selecting u2, u s ,  and 

ull as basic variables, obj2 can be rewritten as 2 2  below. 

U 2  = 

u8 = 

u11 = 

2 2  = 

where 

C1 = 

C3 = 

C4 = 

C5 = 

c6 = 

C7 = 

Cg = 

c10 = 

c12 = 

c13 = 

c14 = 

-2(? - S ) ( T  - (? - 5 ) )  

-(? - S ) ( ~ T  + (i - S )  + 2 ( i  - ?)) 

-2(? - S ) ( T  - (? - S ) )  

-3(? - S ) ( ?  - ?) 

-(? - i ) (T  - (? - 5 ) )  

-(? - $)(T - (? - 5 )  + 3 )  

- 2 ( f  - S ) ( T  - (? - S ) )  

- 3 ( i  - S ) ( T  - (? - 5 ) )  

- (a(?  - 25) + (? - ?))(T - (? - 5 ) )  

- ( 3 +  (? - $)(T - (? - S ) )  

-(? - S ) ( T  - (? - S ) )  

Given S 5 7, all of the coefficients of 2 2  are negative. Hence the above dictionary represents 

an optimal solution. 
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Figure 2.3: ABC cuts off X 2  

Since u2, U g ,  andull a11 have the same value, we can calculate the the second cutting plane 

constraint (shown in Figure 2.3) as the sum of the 2nd, 8th, and 11th constraints of Mi (K) 

(2.4): 
- s a! + Sa 5 0 

- s + r + s a -  r  a! 5 0 
- r  + ra! - i a  5 -i 
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Cutting off X3 

Substituting X j  = (i, ?, (? - > ) I T ,  0,O) for X *  in U ( A ' X *  - b') we have: 

X 3  is an extreme point of the polyhedron (2.3) only when d 5 ?. By selecting us,  us ,  and 

ulo as basic variables, obj3 can be rewritten as 23 below. 

where 

-2(? - i)(? - (? - i ) )  

-3(? - d ) ( i  - 8 )  

-2(? - i ) (T  - (? - 4 ) )  

- (? - 4 ( 2 ~  + 2 ( i  - i) + (? - f ) )  

-(? - i ) (T - (? - i ))  

-(? - i ) ( ~  - (? - i)  + 3 )  

-(T - (? - S))(2(? - S)  + (i - 8 ) )  

-3(f  - i)(? - (? - i ))  

-2(? - i ) (T  - ( f  - i ))  

-((? - i )  + 3 ) ( ~  - ( f  - 8 ) )  

- ( f  - i ) (T - (? - 2 ) )  

Given i 5 ? all of the coefficients of 23 are negative. Hence the above dictionary represents 

an optimal solution. 
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Figure 2.4: ADE cuts off X3 

Since US, ug, anduI0 a11 have the same value, we can calculate the the third cutting plane 

constraint (shown in Figure 2.4) as the sum of the 5th, 8th, and 10th constraints of M j ( K )  

(2.4): 

ra - f a  5 0 

- s + r + s a -  ra 5 0 

S - sa + ia  5 j. 

r  + (j.-;.)a 5 i 
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Table 2.1 shows the generic cutting plane equations derived in this chapter. These equations 

will be used to generate cutting planes to replace each constraint appearing in the input 

having appropriate form. The cutting planes will then be tightened each time the variable 

bounds are tightened. 

A C D :  - s  + r + ( 3 - ? ) a  5 0 

A B C :  - s  + ( $ - ? ) a  < f 

ADE : r + ( $ - ? ) a  < s  ̂

Table 2.1: Cutting Plane Constraints 
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Bonsai 

Bonsai solves mixed-011 programming problems. It implements a LP-based branch-and- 

bound algorithm incorporating partial arc consistency and supports binary and continuous 

variables. Only the components of bonsai relevant to this thesis are described below. For a 

detailed discussion see [6, 81. 

The main cycle of the branch-and-bound algorithm (shown in Figure 3.1) begins by select- 

ing a set of Boolean variables to branch over. The active subproblem is expanded using 

these branching variable(s). The successor subproblems are then evaluated. The objective 

function value, infeasibility, and integrality are all used in an attempt to fathom each sub- 

problem. Improving the bound on the subproblem's objective function is attempted through 

a cycle of arc consistency, solving the LP relaxation, and penalty calculations which is re- 

peated until there are no more variables which can be fixed. 

The best unfathomed successor is selected to become the new active subproblem. The 

remaining unfathomed nodes are placed in the set of live subproblems and will be explored 

at a later time. If all the active node's successors are fathomed, then a new active subproblem 

is selected from the live set. 



CHAPTER 3. BONSAI 

Read the problem and 
option specifications. 

Force variables using 

Fathom by infeasibility? Solve the LP relaxation. 

Optimal solution? 

Evaluate the solution: 
force variables using arc 

consistency and penalties; 
check for integral solution. 

Select branching variables I- 
Create successor 

subproblems 

1 

survivors? 

Report the solution. -r 
Remove the best subproblem 

from the live set to be the 

1' 
Select the best survivor to be 
the new active subproblem; 
add remaining survivors to 

the live set. 

Figure 3.1: Branch-and-bound algorithm 
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Whenever a new solution to the MILP problem is discovered, it is tested against the current 

incumbent. If the new objective function value is better then this solution becomes the new 

incumbent and the set of live subproblems is winnowed to remove any subproblems which 

no longer have the potential to produce a better solution. 

Penalty Calculations 

After solving each linear relaxation, bonsai calculates a penalty for forcing each basic non- 

integer variable to either 0 or 1. The penalty is the minimum deterioration in the objective 

function after the first dual pivot to restore primal feasibility. The reader is directed to [6] 

for details since for the purpose of this thesis, our only interest in this procedure is that 

it provides another method besides branching for setting boolean variables. These domain 

restrictions are propagated using the arc consistency routines and this propagation will in 

turn cause tightening of cutting plane constraints. 

3.2 Arc Consistency 

Bonsai uses a partial arc consistency algorithm to propagate restrictions on the domain of 

one variable onto the domains of other variables. The algorithm is termed partial because 

it does not necessarily eliminate all inconsistent values from the domain of a variable. It 

prunes the domain only by restricting the lower and upper bounds of the variable. A 

variable is fixed at a value if its lower and upper bounds are set equal to that value. The 

partial arc consistency algorithm used by bonsai (shown in Figure 3.2) is a specialization 

of the algorithm described in [14] which relies on the knowledge that all constraints are 

summations, and the right hand side of each constraint is a constant. 

Background 

The i-th linear constraint can be represented in the following format: 
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Isolating xt in the equality constraint i (0 is '=') of (3.1) yields the following: 

Given that k j  and i?j are the upper and lower bounds of variable xj ,  we can calculate the 

upper and lower bounds on the value of the left hand side of the i-th constraint as 

A lower bound on xt is obtained by minimizing the right hand side of (3.2): 

An upper bound on xt is obtained by maximizing the right hand side of (3.2): 

Given an inequality constraint i (o is '5' or '2') ' the unique bound of xt which can be 

tightened depends on the type of inequality and the sign of ai,t. 

If i is a "2" constraint and a;,t > 0 then: 
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If i is a "2" constraint and ai,t < 0 then: 

If i is a "I" constraint and a;,t > 0 then: 

If i is a "5" constraint and a+ < 0 then: 

Propagating incumbent bounds 

From the objective function: 
n 

maximize/minimize x cjxj 
j=1 

we create the following constraint: 

where o is "2" for maximization problems and "5" for minimization problems. Each time 

an incumbent is discovered in bonsai, the bounds on z are tightened and the arc consistency 

routines are run to propagate this change. 
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Change variable bound. L 
< Constraints remaining 

involving this variable? 

Recalculate the left-hand-side 
bounds for the constraint. 

I Add the constraint to the I 
propagation set. + 

Constraints remaining? 0 
Remove constraint 

from propagation set. I 

Variables remaining? 

Evaluate the isolation for the 
variable to obtain upper and 

I lower bounds. 

+ 
Bounds change? 

Constraints remaining 
involving this variable? 

Yes 

Recalculate the left-hand-side 
bounds for the constraint. 

Add the constraint to the & I propagation set. I 

Figure 3.2: Partial arc consistency algorithm 
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Integration with Bonsai 

This chapter discusses how the generic cutting plane equations are introduced into the 

bonsai algorithm. In particular we discuss how the cutting planes interact with the bound 

tightening performed by the arc consistency component. 

4.1 Implement at ion Details 

Due to restrictions in the underlying data structures of bonsai which prevent efficient ad- 

dition or deletion of constraints, it was necessary to have all possible cutting planes in the 

constraint system at all times even though most of these will be redundant or inactive. 
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Initialization 

Continuous variable domains [ij, 2j] are initialized to [O,T]. Thus after reading in the 

constraint system, each constraint having the form 

is replaced with the initial cutting plane constraints: 

This is an equivalent constraint system to the original problem although more redundant 

since we already had bound constraints on all variables. 

Rewriting Cutting Plane Constraints 

Whenever the bounds on the variable are changed - either during the arc consistency 

routines or when a node is restored from the active set during the branch-and-bound search 

- all cutting planes are examined and those whose equations use the changed bound will 

be rewritten. Row bounds for cutting plane constraints are then recalculated. 

Figure 4.1 illustrates how cutting plane ACD is tightened as S increases and .i- decreases. 

4.2 When Cuts Are Effective 

The relative ordering of the variable bounds determines which cuts are effective and which 

are actually redundant. 

So long as either S > 0 or .i. < T then cutting plane ACD: -s + r + ( S  - ? )a  5 0 is a tighter 

constraint than the original -s + r - ~a 5 0. Since variable bounds are never loosened in 

bonsai1, the cutting plane will only become tighter whenever either S or i is tightened. 

'Lower bounds become monotonically larger while upper bounds become monotonically smaller 
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Figure 4.1: Tightening constraint -s + r + (5 - ?)a 5 0 
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Figure 4.2: When ? < S then s 2 S makes constraint ABC redundant 

Observation 1 If ? is strictly less than S then cutting plane constraint ABC is made 

redundant b y  the constraint s 2 S. 

Proof A = (S,?, 1) and B = (S,?, 1) are in the plane s = 8 .  C = (?,?,O) is cut off 

by s > 8 since by assumption ? < S. Thus, cutting plane ABC is redundant given that 

0 5 a < 1 (see Figure 4.2). rn 
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Figure 4.3: When i < i then r 5 i makes constraint ADE redundant 

Observation 2 If i is strictly less than i then cutting plane constraint ADE is made 

redundant by  the constraint r 5 i .  

Proof A = ( S , i , l )  and E = (; ,?,I)  are in the p laner  = f .  D = ( i , i ,O)  is cut off 

by r 5 i since by assumption f < i .  Thus, cutting plane ADE is redundant given that 

0 5 a 5 1 (see Figure 4.3). w 
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4.3 An Examination of Row Bounds 

Previous incarnations of Bonsai read in the constraint matrix and then treated it as a 

static entity. Now however, the coefficients of the Boolean variables and the right hand 

side of cutting plane constraints are modified as the bounds of the continuous variables are 

tightened. 

In bonsai, bounds are only ever tightened; lower bounds are only replaced by larger values 

and upper bounds only by smaller values. We need to examine the tightening of the cutting 

plane constraints to ensure that this property has been maintained. 

Recall from Section 3.2 that only the constraint lower bound is used for 5 constraints and 

it is calculated as follows: 

Note that the relative magnitudes of the variable bounds determines the sign of the co- 

efficient of a in the cutting plane constraints. The sign of the coefficient is then used 

to determine whether the variable's upper or lower bound will be used in calculating the 

constraint bounds. 

Expanding (4.1) for cutting plane constraint ACD: -s + r + (S - i ) a  5 0 we have: 

Examining (4.2) it is clear that LBACD cannot decrease by increases in S and ? or decreases 

in j, and i .  
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Similarly, the following expansion of (4.1) for constraint ABC: -s + ( B  - ? ) a  < -i. shows 

that LBABC can not be loosened: 

The expansion of constraint ADE: r + (i - +)a 5 d shows that it is also true that LBADE 

cannot be loosened. 

Replacing a with its complement 

The above analysis describes the happy circumstance of everything working out. However, 

the constraints in the test data actually used 6? = 1 - a and had the form 

This switch to the complement allowed constraint bounds to loosen when variable bounds 

are tightened. 

Substituting a for h, the cutting plane equations become 

ACD: -s + r + ( i -S)a  i - S  

A B C :  -S + (f - S)a < -S 

ADE : r + (i - ; )a  < i 
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Expanding (4.1) for constraint ACD: -s + r + ( i  - S)o > i - S we have: 

( - B + f + i - ~  if i - S < O a n d & = l , o r  

I i - S > O a n d & = O  

We see that tightening i or S, LBACD can be loosened. 

For example, assume that 

800 5 s 5 1800 

300 5 r 5 700 

l l a 5  1 

If i is tightened from 700 to 600, LBACD is loosened from -1600 to -1700. However, since 

bAcD is also reduced by 100 the variable bounds calculated are not changed as a result of 

loosening the constraint bound. This can be seen using (3.3) and (3.4) from page 29: 

Any loosening of LBACD as a result of tightening S is similarly cancelled out by the reduction 

of ~ A C D  

Expanding (4.1) for constraint ABC: -s + (f - S)o < -5 we have: 

( - B + i - d  if 7 - S < O a n d & = l , o r  



CHAPTER 4. INTEGRATION WITH BONSAI 39 

which can be loosened by tightening S. However, any loosening of LBABC as a result of 

tightening S is cancelled out by the reduction of bABC. 

Expanding (4.1) for constraint ADE: r + ( i  - L ) a  5 i we have: 

which can be loosened by tightening i .  However, any loosening of LBADE as a result of 

tightening i is cancelled out by the reduction of bADE. 

Since in all cases, ALBi = Ab; it is sufficient to store the changed constraint bound without 

propagating it. Therefore, the arc consistency routines need not pay any attention to the 

changing a coefficient when propagating variable bound changes. 

This chapter described the theory of how the cutting plane constraints are integrated into 

bonsai. There were also several assumptions underlying the implementation of bonsai which 

were broken when the cutting planes were introduced. These are described in Appendix A. 

The computational results of the integration are presented in the next chapter. 
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Computational Results 

5.1 Applying Bonsai to Digital Hardware Synthesis 

Bonsai is tested on problems arising from research into automated synthesis of register- 

transfer level digital logic. These problems can be characterized as deterministic machine 

scheduling problems with variable-duration activities and other complicating constraints. 

In digital hardware design, the scheduling problem is phrased in terms of activities which 

must be executed by hardware components. An algorithmic description of the behaviour 

which is to be implemented is translated into a data flow graph - a representation of the 

algorithm in terms of data values flowing between activities that transform the values. The 

activities in the data flow graph are the jobs which must be performed. The components 

made available to construct the implementation are the machines. 

More formally, a set of n activities x,, a = 1, ..., n,  must be performed on a set of m 

components fd,  d = 1, ..., m. The components fd can only perform one activity at a time. 

In a digital circuit, the output of a component is not stable; it is simply a voltage asserted 

on a wire, and the component must continue to assert the voltage for as long as the output is 

in use. The components fd are assumed to be combinational logic. By definition, when the 

inputs to combinational logic change, the output will change after a specified propagation 

delay. This means that the active interval during which a component fd will be occupied 
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with an activity x, is not a constant. The inputs i, required by an activity x, must be held 

until the outputs o, are no longer required. Although a minimum length for the interval 

can be developed [7], the maximum length of the interval depends on how long the output 

is required as an input to components executing other activities. 

Formally, variables must be defined for the start and end of the intervals when inputs, 

outputs, and activities are active. For example, for an activity z,, let the variable Ts(xa) 

represent the time when the activity starts, and the variable T,(x,) represent the time when 

it ends. The interval required to perform activity x, on some component is then the interval 

[Ts(xa), T ( ~ a ) ] .  

In order to release a component and inputs occupied in producing a value o,,,, a storage 

activity can optionally be introduced which captures and holds the value. A component s, 

is required to implement a storage activity, and it remains in use as long as the value is 

required as input to some activity. A component s, is assumed to be sequential logic; by 

definition, it is capable of retaining a value after the value has been withdrawn from its 

input. 

To account for the option of storing outputs in an implementation, the problem definition for 

digital hardware design needs to be extended. A set of n activities x,, a = 1, ..., n must be 

performed on a set of m components fd, d = 1, ..., m and a set of optional activities storing 

o,,,, a = 1, ..., n, c = 1, ..., k,, may be performed on a set of m' components s,, e = 1, ..., m'. 

The constraint system can be viewed as consisting of three sets of constraints: 

0 One set of constraints propagates activity (job) start times forward through the net- 

work of activities. 

0 One set of constraints propagates activity (job) end times backward through the net- 

work of activities. 

One set of constraints ensures that the active intervals of two activities (jobs) assigned 

to the same component (machine) are serialized. 

In a synthesis problem it is desirable to minimize both the time required to execute an algo- 

rithm and the number of components required for the implementation. These are competing 
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objectives; generally a weighted sum of the two is acceptable as an objective function. This 

differs from the usual view of machine scheduling, which assumes a fixed set of machines, 

but is appropriate for many problems which arise in practice (e.9. determining both the 

fleet size and the schedule for a fleet of trucks). 

5.2 Cutting Plane Results 

The constraint systems used to test bonsai are generated by iddma [5]  - a dedicated con- 

straint generation program - from a data flow description of the algorithm to be imple- 

mented, a description of the set of available components, and a specification of the allowable 

uses for components. Statistical descriptions of the test examples are presented in tables 

5.1 and 5.2 while their data flow diagrams appear in figures 5.1, 5.2 and 5.3. 

I I Data Flow I I Data Flow ( Storage I 

Table 5.1: Summary of example problem descriptions 

CrissX 

Table 5.2: Summary of example problem constraint systems 

Activities 
4 

CrissX 
Logic 
Ralph1 

Operators 
6 

Constraints Variables 

Values 
6 

Without 
Cutting 
Planes 

179 
237 
577 

Continuous 
4 1 
45 
78 

Non-Zero Coefficients 

Elements 
3 

With 
Cutting 
Planes 

259 
345 
779 

Boolean 
77 
106 
222 

Without 
Cutting 
Planes 

488 
671 
1672 

With 
Cutting 
Planes 

728 
995 
2308 
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Figure 5.1: Data flow diagram for CrissX 
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AND (f37 f6) v 

Figure 5.2: Data flow diagram for Logic 
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Figure 5.3: Data flow diagram for Ralph1 
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Objective Functions 

There are three main types of objective functions. 

Cost objectives emphasize the cost of the implementation, where cost is defined to  be 

the total cost of the components used. 

Time objectives emphasis the time required to complete the algorithm, where com- 

pletion time is based on the time at which the final outputs of the algorithm become 

available to the world. 

Implementation cost and completion time are competing objectives, in the sense that 

serialization of the activities in the algorithm is generally required to minimize hard- 

ware, whereas maximal parallelism tends to minimize completion time. The final 

class of objectives, Cost/Time, attempt to balance the two by scaling the terms in the 

objective function so that one unit of time appears equivalent to one unit of cost. 

Within each class of objective there are four functions. Three of these incorporate timing 

information in an attempt to distinguish solutions which would otherwise be equivalent1. 

For the Cost objectives, a small completion time component is added to all four functions 

to compress the schedule into the minimum time. The variations, and their codes, are as 

follows: 

c (Cost) 

Component costs dominate the objective. Completion times are incorporated with a 

scaling factor which limits their sum to roughly one order of magnitude smaller than 

the cost terms. 

CI (Cost with Active Interval) 

Component costs dominate the objective. Completion times and the start and release 

times (the active interval) for activities are incorporated with a scaling factor which 

limits their sum to roughly one order of magnitude smaller than the cost terms. 

' 1 . e .  there would be equivalent solutions if two independent activities could have their execution order 
swapped, but the implementation might still have the same cost and completion time. If, however, the 
objective function were to slightly favour one ordering over the other, it might be possible to fathom one 
solution by bound a bit earlier in the search. 
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CS (Cost with Start Time) 

Component costs dominate the objective. Completion times and the start times for 

activities are incorporated with a scaling factor which limits their sum to roughly one 

order of magnitude smaller than the cost terms. 

CSS (Cost with Scaled Start Time) 

Component costs dominate the objective. Completion times and the start times for 

activities are incorporated with a scaling factor which limits their sum to roughly one 

order of magnitude smaller than the cost terms. Based on examination of the data 

flow for the algorithm, the weights on the start times are varied so as to prefer one 

order over another in cases where two activities have no data dependencies to force 

an ordering. 

In the Time objectives, a small cost component is added to prevent the incorporation of 

unused hardware into the solution. The variations are as described for the Cost objectives. 

The variations for the CostITime objectives also follow the Cost pattern. 

Branching Strategies 

There are nine strategy variations, some loosely based on different philosophies of hardware 

design and some included simply to round out the test suite. The one common feature which 

deserves separate explanation is that variables of class S will always be in the first priority 

class. These variables represent the decision as to whether an input will obtain the value it 

needs directly from the combinational logic which produces it, or from a stored copy of the 

value. In hardware terms, this represents a tradeoff between keeping combinational logic in 

use to produce a value versus using a storage component to hold the value and freeing the 

logic for other uses. F'rom inspection of the constraint relations, this decision is also crucial 

to tightening the portion of the constraint system dealing with release times, and previous 

work has shown that it's pointless to place it in a lower priority class. 

There is little meaning in the codes used for the strategies. NG stands for No Guidance 

and is actually meaningful. The remainder of the codes stem from Modified No Guidance, 

which makes sense only in a historical context. 
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NG (6, a, P, a, 4, X, PI 
All variables are placed in a single priority class. 

MNGl  (6, a ,  P, a ,  41, {x, PI 
The x and P variables, which represent decisions on whether or not to allow the use of 

a particular component, are placed in a lower class. The underlying rationale is that 

decisions on which parts to use should be a consequence of other design decisions, and 

not drive them. 

MNG2 {6,4), {u, P1 a), {x, P) 
The 4 variable controls whether or not activities which could potentially be executed 

in parallel (given sufficient hardware) will be forced into a serial order. This is a fairly 

important decision which can have significant impact on the amount of hardware 

required in the implementation. 

MNG3 {S), (474 ,  {P, 01, {P, XI 
The a variables control the order in which serialized activities will be executed. One 

can argue that it only makes sense to decide on the order at the same time as the 

decision on whether or not to serialize. p and u variables control, respectively, the 

allocation of combinational logic to computational activities and storage elements 

to stored values. In an hardware design context, this priority says that scheduling 

decisions should drive component allocation. 

MNG4 (61, {P, 4 1  (4, 4 7  {Pl XI 
This ordering reflects the philosophy that component allocation decisions should drive 

the scheduling of activities. 

MNG5 @I, (0, P, a1 41, { x ,  P) 
This ordering places equal importance on scheduling and allocation. 

MNG6 (6, {P, 4 {P, XI 
MNG3, with the variation that scheduling decisions are given equal importance with 

input value access decisions. 

MNG7 (61, M a ) ,  {P, XI, {A 4 
MNG3, but experiment with the idea of deciding what components to use before 

actually assigning them to specific activities. 
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MNG8 {% { P ,  X I ,  ( $ 7  4, { P ,  4 
Decide what components to use, then schedule the activities, and finally decide on the 

details of how components should be assigned to activities. 

Data 

Tables 5.3, 5.4, and 5.5 report the number of subproblems which were solved in order to 

completely explore the branch-and-bound search tree and the average pivots required by 

each subproblem. Each data point in these tables is an average over 4 objective functions. 

Figures 5.4 and 5.5 show the CrissX total subproblems and pivots of each objective function 

averaged over the 9 branching strategies. Figures 5.6 and 5.7 show the Logic total subprob- 

lems and pivots of each objective function averaged over the 9 branching strategies. Figures 

5.8 and 5.9 show the computational results of R a l p h l  using the NG branching strategy. 

Figures 5.10 and 5.11 show the computational results of Ralph1 using the MNG4 branching 

strategy. Figures 5.12 and 5.13 show the computational results of Ralph l  using the MNG8 

branching strategy. 
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Branching 
Strategy 

NG 

MNGI 

MNG2 

MNG3 

MNG4 

MNG5 

MNG6 

MNG7 

MNG8 

Average 

Objective 
Function 
Emphasis 

Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 

Cost 
Time 
Cost/Time 

Subproblems 
Defined 

42 
11 

184 
42 
11 

184 
42 
11 

184 
42 
11 

184 
42 
11 

184 
42 
11 

184 
42 
11 

184 
42 
11 

184 
42 
11 

184 

42 
11 

184 

Subproblem 

19 
2 5 
12 
19 
2 5 
12 
19 
2 5 
12 
19 
2 5 
12 
19 
2 5 
12 
19 
2 5 
12 
19 
25 
12 
19 
2 5 
12 
19 
25 
12 

19 
2 5 
12 

Subproblems 
Defined 

54 
5 

229 
64 

5 
233 
101 
11 

256 
73 
9 

306 
191 

8 
144 
71 

9 
138 
66 

5 
338 

72 
10 

303 
72 
9 

110 

8 5 
8 

228 

With Cutting Planes 

- 

I 
Table 5.3: CrissX Results 
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0 Without cutting planes 

With cutting planes 

V 

C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.4: CrissX Subproblems - averaged over all branching strategies 

0 Without cutting planes 

With cutting planes 

V 

C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.5: CrissX Pivots - averaged over all branching strategies 
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Branching 
Strategy 

NG 

M N G l  

MNG2 

MNG3 

MNG4 

MNG5 

MNG6 

MNG7 

MNG8 

Average 

Objective 
Function 
Emphasis 

Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 
Cost 
Time 
Cost/Time 

Cost 
Time 
Cost /Time 

Without Cutting Planes 
Subproblems 

Defined 

- 
Pivots/ 

Subproblem 

22 
62 
33 
24 
62 
33 
21 
62 
3 2 
15 
62 
33 
86 
3 2 
26 
84 
6 2 
32 
20 
6 2 
33 
16 
6 2 
48 
20 
6 2 
3 1 

30 
5 5 
32 

Subproblems 
Defined Subproblem 

25 
241 

44 
26 

241 
44 
23 

24 1 
42 
24 

241 
44 
3 2 

241 
34 
31 

241 
44 
23 

241 
44 
2 5 

241 
3 7 
30 

241 
46 

26 
241 

4 1 

Table 5.4: Logic Results 
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C CI CS CSS 

0 Without cutting planes 

With cutting planes 

T TI TS TSS CT CTI CTS CTSS 
~ - - - 

Objective Function 

Figure 5.6: Logic Subproblems - averaged over all branching strategies 

0 Without cutting planes 

With cutting planes 

C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.7: Logic Pivots - averaged over all branching strategies 
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Branching 
Function Defined 

Cost 5 76 
Time 136 
Cost/Time 14372 
Cost 394 
Time 113 
Cost/Time 3180 
Cost 623 
Time 179 
Cost/Time 1393 

I Without Cut t in~Planes  I With Cutting Planes 
Pivots/ Subproblems 

Subproblem Defined 1 48 2936 Subproblem 

38 
79 
88 
5 8 
79 

125 
86 
64 

123 

4 1 
5 3 
47 
42 
52 
3 7 
33 
64 

69 
11091 

787 
72 

656 
426 

6 5 
689 

1383 
69 

4145 

Cost 531 
Time 143 
Cost/Time 6315 

Table 5.5: Ralph1 Results 

43 
38 
53 
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0 Without Cutting Planes 

With Cutting Planes 

C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.8: Ralphl Subproblems - NG branching strategy 

0 Without cutting planes 

With cutting planes 

C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.9: Ralphl Pivots - NG branching strategy 
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0 Without cutting planes 

With Cutting Planes 

C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.10: Ralphl Subproblems - MNG4 branching strategy 

0 Without cutting planes 

400 With cutting planes 

300 

200 

1 00 

O C CI CS CSS T TI TS TSS CT CTI CTS CTSS 
Objective Function 

Figure 5.11: Ralphl Pivots - MNG4 branching strategy 
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" 
C CI CS CSS T TI TS TSS CT CTI CTS CTSS 

Objective Function 

Figure 5.12: Ralph1 Subproblems - MNG8 branching strategy 

0 Without cutting planes 
- 

With cutting planes 

Figure 5.13: Ralp 

CSS T TI TS TSS 
Objective Function 

ivots - MNG8 brancl 

CTI CTS CTSS 



Chapter 6 

Conclusion and Future Work 

The addition of cutting planes caused the average pivot counts to increase substantially. 

This is likely due to the large increases in the number of constraints in the system (seen 

in table 5.2). Were bonsai to be rewritten to allow constraints to be added and removed 

dynamically1, it would not be necessary to have all cutting plane constraints in effect at all 

times and we believe that the number of pivots would be more in line with previous results. 

The number of subproblems defined is a crucial performance measure since at least one 

relaxation LP is run for each one. The number of subproblems for the small CrissX and 

Logic examples is, on average, about the same; possibly a little bit worse. The larger ralphl 

problem shows a significant improvement in the number of subproblems in most cases and 

also an improvement on average. 

As the size of the example increases, the value of T increases since it has to be proportional 

to the length of the serialized schedule. Since the cutting planes provide us with a method 

of tightening constraints of the form 

it makes sense that the cutting planes will become more effective as T becomes larger. 
-- 

' ~ o t e  that this is a fairly common practice and would be relatively easy given an appropriate data 
structure for the constraint matrix. The packed array, used by the XMP linear programming library routines 
110, 111, is adequate if you only use column major, or only use row major order, however, bonsai's arc 
consistency routines access the structure by both row and column while the simplex routines access the 
structure by column. 
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Previously, the ralphl examples having the CSS, CT, CTI, CTS, and CTSS objective func- 

tions were hard, ie. they involved a huge branch-and-bound search tree. We have managed 

to improve almost all of these - the exceptions being in the NG strategy where there is no 

prioritization of variables for branching. 

Note that the MNG4 and MNG8 strategies force the allocation of resources before perform- 

ing the scheduling. Since we have a marked improvement for the Ralph1 example using 

these strategies, it appears that the cutting plane constraints are doing their job of deciding 

on the order of activity execution. 

6.1 Further research 

We originally started generating cutting planes for three-dimensional systems since we 

wanted to be able to visualize what was happening. The next step would be to design 

cutting planes for the seven-dimensional serialization constraint system as described as 

(1 .2 )  on page 9. From there we can go into even higher dimensions for more powerful 

cutting planes. 

By analyzing which cutting plane constraints are active in the region near the optimal 

solution and throwing out the rest, we should be able to significantly reduce the 

number of pivots required to solve each relaxation. 

Recall the cutting plane equations from chapter 2: 

ACD:  -s + r + ( 3 - ? ) a  < O 

ABC: -s + ( 3 - + ) a  5 + 
ADE : r + ( i - ? ) a  5 i 

If the constraint's slack variable is basic, then the constraint is not active and can 

probably be removed from the constraint system. 



CHAPTER 6. CONCLUSION AND FUTURE WORK 60 

The following tests can determine whether it would be useful to add a cutting plane 

constraint to the constraint system: 

- If cu is fixed at 0 or 1 then ACD, ABC, and ADE are all redundant. 

- If S 2 f then ACE, ABC, and ADE are all redundant. 

- If S = i. then ABC is redundant since it is equivalent to s 2 8. 

- If 2 = f then ADE is redundant since it is equivalent to r 5 i . 

- If i: < S then ABC is redundant (observation 1 page 34). 

- If i < 8 then ADE is redundant (observation 2 page 35). 



Appendix A 

Broken Underlying Assumptions 

The constraint system is static 

Bonsai assumes that the constraint system is static. It is stored in packed arrays in both 

row major and column major order to facilitate the arc consistency routines' need to use 

rows and columns and the simplex routines' need to look at columns. Each time a cutting 

plane constraint needed to be rewritten it was necessary to traverse and update both these 

structures. 

For this reason, it was necessary to have all possible cutting planes in the constraint system 

at all times instead of only those that were active and non-redundant. A linked list structure 

which could be accessed in either order would facilitate dynamic editing of the constraint 

system. 

Static b vector 

Due to restrictions in the simplex routines used in bonsai, fixing a boolean variable to 1 

is done by replacing the variable with its complement - which means fixing it to 0 and 

subtracting its coefficient from the right hand side. Because of this and the fact that the (I! 

coefficient and the b value of cutting plane constraints are both dependent on the variable 

bounds, maintaining a consistent right hand side is a major headache. This is especially true 
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since there are actually three b vectors in bonsai: the actual right hand side, the reduced b 

vector of the parent subproblem, and the reduced b vector of the current subproblem. 

The arc consistency routines only look at the actual right hand side. Each time the variable 

bound change propagation routine runs, the b value is updated for each affected cutting 

plane constraint in the actual b vector. 

Once the arc consistency routines are finished and flagged variables have been fixed, the 

current subproblem's b vector is rewritten. 

While restoring a node for further exploration, the variable bounds are restored. Then all 

cutting plane constraints, the actual b vector, and the parent's b vector are all corrected to 

match the restored bounds. The subproblem's b vector starts out as a copy of its parent's. 

Branching variables can be selected before restoration 

Branching variables are selected before a node is restored. However, if an incumbent solution 

was found between the time the node was created and the time it was restored, the restora- 

tion is likely to fix a lot of variables since the objective function value of the incumbent will 

be propagated during restoration. With the addition of cutting plane constraints, there are 

cases where all of the branching variables become fixed. Since the code is not set up to look 

for new branching variables at this point, we chose to allow degenerate tours - the parent 

is expanded to have a single child. 

b vector branching corrections can be pre-calculated 

The reductions to the right hand side, as a result of fixing branching variables, used to be 

calculated when the branching variables were selected. It is now necessary to wait until 

after the parent node has been restored. 
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Only non-zero coefficients are stored 

Bonsai only stored non-zero coefficients. However, it is possible for the a coefficient of the 

cutting plane constraints to become zero. Short of copying the whole coefficient matrix to 

close up gaps, it is now necessary to store zero coefficients. Thus, we must test coefficient 

values before use in several situations. For example, in the arc consistency routines we do 

not want to divide by aiYt if it is zero. Nor can 0 coefficients be passed to the LA05 basis 

maintenance package. 

Coefficients must be finite 

Variable domains used to be initialized to [0, MAX-DOUBLE] so the a coefficient of cutting 

plane constraint ACD was initialized to MAX-DOUBLE. This caused all sorts of arithmetic 

exceptions when calculating matrix inverses since since MAX- DOUBLE^ cannot be com- 

puted. It is therefore necessary that all coefficients have reasonable finite values. To ensure 

this, the input file must  indicate a finite upper bound on all variables. 

Boolean variable domains are not tightened 

Bonsai assumed that the boolean variable domains remained [ O , 1 ]  until fixed by branching, 

monotones, or penalty calculations. It  was hard coded that fixing a boolean variable to its 

upper bound meant it should be set to 1. It is necessary to use the actual variable bounds. 

Variable status is not changed after a node is stored 

The status of a variable - whether it was basic, non-basic, artificial, etc. - was assumed 

to remain static for a node after the node was visited and stored. We discovered instances 

where the status of variables changed upon restoring a node. 
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The status vector of the root node is stored and a series of status edits record the differences 

between the status vector of the parent and that of the child. Since the code did not check for 

status differences during resurrection of a node status changes were not recorded as status 

edits. In the case where there was no status edit for that basis position in a descendent, the 

variable occupying the position was random, resulting in a singular basis and excess pivots 

to regain feasibility and optimality. 
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