
BROADCASTING AND SCATTERING

IN CUBE-CONNECTED CYCLES AND BUTTERFLY NETWORKS

Radoslav Nickolov

B .Sc., Technical University of Sofia, 1% 1

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

O Radoslav Nickolov 1993

SIMON FRASER UNIVERSITY

August, 1993

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or any other means, without the permission of the author.

APPROVAL

Name: Radoslav Nickolov

Degree: Master of Science

Title of Thesis: Broadcasting and Scattering in

Cube-Connected Cycles and Butterfly Networks

E~amining Committee:

Chairman: Dr.Z.N.Li

v

eter!, Senior Supervisor

Date Approved: (0 h 3 / ? 3

PART I A L COPYR l GHT L I CENSE

I hereby grant t o Slmon Frsser Un ivers l t y the r i g h t t o lend

my thesis, pro ject o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Slmon Fraser University Library, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r I n response t o a request from the

l i b r a r y o f any other un ivers i ty , o r o ther educational I n s t i t u t i o n , on

i t s own behalf o r f o r one of i t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying of t h l s work f o r scholar ly purposes may be granted

by me o r the Dean of Graduate Studies. It i s understood t h a t copying

o r pub l i ca t ion o f t h l s work f o r f lnancfa l gain sha l l not be allowed

without my wr i t ten permisslon.
1

T it I e o f Thes i s/Project/Extended Essay

Broadcasting and' S c a t t e r i n g in Cube-Connected Cycles and B u t t e r f l y Networks

Author: - v

(signature)

Radolsav Nickolov

(name

(date)

ABSTRACT

The process of sending a message from one node of a communi-

cation network to all other nodes is called broadcasting when the

message is the same for all nodes and scattering when each of the

nodes receives a different message. In this thesis we prove sev-

eral upper bounds on the time to broadcast and scatter in the

Cube-Connected Cycles (CCCd) and Butterfly (BFd) intercon-

nection networks. We use the linear cost model of communica-

tion, in which the time to send a single message from one node to

its neighbour is the sum of the time to establish the connection

and the time to send the data proportional to the length of the

message. Our algorithms use pipelining in parallel along several

disjoint (spanning) trees. We show how to construct 2 arc-disjoint

spanning trees of depths 2d + Ld/2 J + 2 and 3 arc-disjoint span-

ning trees of depths 3d + 3 in CCCd, and 2 and 4 arc-disjoint

spanning trees in BFd, of depths d + Ld/2] + 1 and 2d + 1

respectively, and compare the broadcasting times for different

lengths of the broadcasted message. Our scattering algorithms

consist of two phases. During the first phase we scatter along per-

fectly balanced binary subtrees of CCCd and BFd. In the second

phase we scatter in parallel in all cycles of CCCd and BFd using

several originators. The times to scatter are close to the existing

lower bounds for both graphs. AIgorithms are presented for full-

duplex and half-duplex links and processor-bound and link-bound

communication.

To my family.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my senior supervisor, Dr.Joseph Peters, for

his help, for his encouragement, and for his valuable advice on the drafts of my thesis.

I would also like to thank Dr.Pavo1 Hell for his assistance during the first stages of my

work on the thesis.

My special thanks to my fiancee, Karen, who was always there for me.

TABLE OF CONTENTS

APPROVAL .. ii

ABSTRACT .. iii

... ACKNOWLEDGMENTS

.. TABLE OF CONTENTS

INTRODUCTION .. ; ..

.. Communication Networks

Communication patterns ...
... Routing strategies

Communication models ..

CHAPTER 1

LINEAR MODEL OF COMMUNICATION ..

1.1 Definition of the model and general lower bounds ...
1.2 Pipelining and disjoint spanning trees ..

.. 1.2.1 Pipelining

1.2.2 Disjoint spanning trees ...
1.3 General upper bounds ...

CHAPTER 2

BINARY SUBTREES OF CCCd AND BFd ..

CHAPTER 3

.. BROADCASTING IN CCCd AND BFd

...... 3.1 Three Arc-Disjoint Spanning Trees in the Cube-Connected Cycles graph

................................ 3.2 Four Arc-Disjoint Spanning Trees in the Butterfly graph

vii

3.2.1 Phase1 ..
3.2.2 Phase 2 ..

................................. 3.3 Two Arc-Disjoint Spanning Trees in the Butterfly graph

........ 3.4 Two Arc-Disjoint Spanning Trees in the Cube-Connected Cycles graph

... 3.5 Upper bounds on broadcasting in CCCd and BFd under the various models

3.5.1 Full-duplex links ...

3.5.2 Half-duplex links ..
3.5.3 Comparison between the bounds obtained using different number of

CHAPTER 4

SCATTERING IN CCCd AND BFd .. 72

4.1 Cube-Connected Cycles .. 72

4.1.1 Phase 1 .. 72

4.1.2 Phase2 .. 83

4.2 Butterflies ... 91

4.2.1 Phase 1 .. 91

4.2.2 Phase 2 .. 94

....... 4.3 Upper bounds on scattering in CCCd and BFd under the various models 97

.. CONCLUSION 98

BIBLIOGRAPHY .. 100

Introduction page 1 -

INTRODUCTION

Communication Networks

Parallel computer architectures have gained increasing popularity over the past decade.

The idea of distributing the algorithms to work simultaneously on several processor units is

extremely attractive; however, there are still many problems to be solved at both hardware and

algorithmic levels. Among the fundamental issues is the problem of communication between the

p;ocessors within the parallel architecture.

It is easy to see that, from a communication point of view, the best solution would be if all

processors within the communication network (we will stick to this more general term instead of

parallel computer architecture) are directly connected. Thus messages would be passed directly

between any two processors (nodes), and no special routing schemes would be necessary. Unfortu-

nately, this approach requires a quadratic number of links -- (N* - N) /2, where N is the number

of processors in the network. Another problem is that each processor would need N-1 links (to all

other nodes of the communication network), and so far it is difficult to implement processor units

with large numbers of If0 channels.

One approach to overcoming this problem is to use communication networks which pro-

vide relatively short paths between every two nodes (usually of length O(logN)) and also require a

feasible number of processor links. One of the most popular networks used is the hypercube net-

work [Pe77] (fig.1).

Definition:

A Hypercube of dimension d , denoted by Hd, is a communication

network consisting of N = 2d processors. Each processor is

labelled by a binary string of length d. Two processors are con-

nected iff their labels differ in exactly one bit.

Introduction Page 2

f ig . 1. Hypercube H3.

It is clear from the definition above that every processor has exactly d = logpN links and

therefore the total number of links is ~ i 2 ~ - ' . It is also easy to see that the shortest path between any

two processors is at most d. The longest shortest path within a communication network is usually

called diameter and is denoted by D.

The simplicity and regularity of the hypercube make it very suitable for various communi-

cation patterns, some of which are discussed in the next section of this chapter. Its main disadvan-

tage is that even though the number of processor links is only log2N, the hypercube is still very

difficult to implement for large values of N.

For example, in a hypercube with 1024 processors, each processor requires 10 links, while

the units now available on the market usually have up to 4 110 channels. For that reason, many

variations of the hypercube have been proposed. They all try to reduce the number of processor

links while attempting to preserve the properties of the hypercube. Usually these variations are

aimed at achieving a constant number of processor links.

Introduction Page 3

In this thesis we concentrate on two particular communication networks derived from the

hypercube. They both have a constant number of processor links, and, in both of them, each hyper-

cube processor is replaced by a cycle of processors.

Definition:

The Cube-Connected Cycles network of dimension d, denoted by

CCCd, is a communication network consisting of N = d2d proces-

sors. Each processor is labeled by a pair (i, X), where 0 5 i 5 d - 1

and X = x0x1 ... X,-J.I is a binary string of length d. Every processor

(i, X) is connected to three other processors: (i-1 mod d, X),

(i+l mod d, X) and (i, Xi), where Xi denotes a binary label derived

from X by replacing the i-th bit with its inverse.

fig. 2. Cube-connected cycles CCC3.

CCCd was first proposed by Preparata and Vuillemin [PrVuS 11. It is derived from Hd by

replacing each processor by a cycle of d processors, each of which inherits a link to a hypercube

Introduction Page 4

neighbour. In this way, the number of processor links is always 3. The diameter of CCCd is

2d + L d/2 J - 2 for d > 3 and 6 for d = 3 [MeChBO]. Therefore, the maximum distance between

two nodes is still O(logN).

Definition:

The Butterfly network of dimension d, denoted by BFd, is a com-

munication network consisting of N = d2d processors. Each pro-

cessor is labeled by a pair (i, X), where 0 5 i < d - 1 and

X = ~ 0 x 1 ... xd-1 is a binary string of length d. Every processor (i, X)

is connected to four other processors: (i-1 mod d, X),

(i+l mod d, X), (i+l mod d, Xi) and (i-1 mod d, Xi., ,,d d), where

Xi denotes a binary label derived from X by replacing the i-th bit

with its inverse.

jig. 3. Butterfly BF3.

Introduction Page 5

In this thesis we consider BFd for d 2 3. Usually, BFd is displayed with the cycles repre-

sented by vertical lines and the 0-th node of each cycle duplicated for clarity. The resemblance

between BFd (fig.3) and Hd (fig. 1) is not as immediate as it is for the CCCd; however, we can see

that each cycle of BFd corresponds to a processor in Hd. Every cycle is connected to its hypercube

neighbours via two links, which improves the communication abilities of the network compared to

the CCCd and yet preserves the processor link number constant -- 4. The diameter of BFd is

L3d/2_1, i.e., it is closer to the diameter of Hd than the diameter of CCCd is.

Communication patterns

* In a communication network, processors need to exchange ir?formation. During the execu-

tion of a distributed program, communication schemes may vary, and they are very dependent on

the particular problem. There are, however, several major communication pattems which appear

very often. Here we briefly list some of them.

Routing:

Sending a message from one processor to another processor.

Broadcasting:

Sending a message from one processor to all other processors.

Scattering:

Sending different messages from one processor to all other processors.

Gossiping:

Sending a message from each processor to all other processors.

All these patterns are specific and require different approaches. Of course, given a routing

algorithm all other patterns can be performed by sequentially sending messages from an originator

to a destination. This brute force approach does not fully utilize the available parallelism in the

network, and therefore other algorithms are needed.

In this work we study the problems of broadcasting and scattering in the CCCd and BFd

Introduction Page 6

networks.

Routing strategies

Let us consider the task of routing a message between two processors within a communi-

cation network. In the general case those two processors are not adjacent and therefore intermedi-

ate nodes have to be used in order to send the message from the originator to the destination. It is

possible to use several strategies. We briefly describe some of them.

Store-and-forward. The message proceeds from the source to the destination one "hop"

at a time. This means that, first, the entire message is sent from the originator to the first node in

the route. After the message is completely received (and stored in a buffer at the node), it is for-

warded to the next node in the route. This is repeated until the message reaches the destination.

Packet-switching is a type of store-and-forward routing in which the message is split into several

packets, and then each of the packets is sent using the above described approach. We can even use

different routes for the different packets to speed up the process.

Circuit Switching. Once the route is determined we occupy all links composing the route

and send the message along the established channel. In a way, we switch the circuit to provide con-

nection between the two nodes. Thus, it is not necessary to store the message at the intermediate

nodes. The disadvantage, however, is that the route is busy during the entire message passing, and

also that some time is needed to establish the connection.

We study only the store-and-forward strategy. Any circuit-switched communication net-

work can also perform store-and-forward routing. Thus the algorithms described can be used in

those networks as well.

Communication models

We model a communication network as a graph G defined by its set of vertices V(G) and

set of edges E(G). Each vertex (node) of V(G) corresponds to a processor from the network and

each edge (u, v) E E (G) , u, v E V (G) , corresponds to a link between the processors represented

Introduction page 7

by u and v.

In our work we concentrate on networks in which all processors and links have identical

properties. Therefore, when we talk about the properties of a processor (link), we assume that they

apply to all processors (links) in the network.

There are two possible cases for every link within a network:

1. The link could be used in only one direction at any given time.

This is called a half-duplex link.

2. The link could be used simultaneously in both directions. This is

called a full-duplex link.

Half-duplex links are modelled with arcs (i.e. using directed graphs) and full-duplex links

are modelled with edges in the network graph. Another important parameter of the network is the

ability of each processor to communicate over its links in parallel. There are two extreme cases,

which we study further in our thesis:

1. A processor can use only one of its links at any given time. This

case is called processor-bound communication.

2. A processor can use all of its links at the same time. In this case

the communication is called link-bound communication.

Notice that the above described two properties are orthogonal. We further use some abbre-

viation to simplify the notation. F will stand for full-duplex links and H will stand for half-duplex

links. F or H followed by 1 will mean processor-bound communication and F or H followed by *

will mean link-bound communication. To summarize, there are four communication models which

we study in this thesis: F1, F*, HI, H*.

Definition:

Given a connected graph G and a message originator u E V (G) ,

the broadcast time of vertex u (under model M), b,,,, (u) , is the

Introduction Page 8

minimum number of time units required to complete broadcast-

ing from vertex u under the M communication model and the

scatter time of vertex u (under model M), sM (u) , is the minimum

number of time units required to complete scattering from vertex

u under the M communication model.

Definition:

The broadcast time of a graph G (under model M) is

bM(G) = ~ ~ x { ~ ~ (u) I u E V(G)} and

the scatter time of graph G (under model M) is

sM (G) = max {sM (u) 1 u E V (G) } .

Once a graph corresponding to the network is built and the types of links and communica-

tion are determined, we have to decide how to measure the time that a communication between

two processors takes. In earlier years, the time to send a message between two processors (nodes)

was considered to be a constant. Thus, the algorithms were aimed to minimize the number of steps

necessary to perform a given communication pattern. The estimated time to perform those algo-

rithms did not reflect the fact that the time to finish a given algorithm depends on the length of the

message being transferred across the communication network.

This approach is known as the constant cost model or the telegraph model. For surveys on

the constant cost model refer to [HeHeLiM], [LiSo90], [BeFraPe92], [FrLa92]. This model

appears to provide satisfactory solutions for several communication patterns and short messages.

Unfortunately, there are communication patterns for which this is not the case. For example, scat-

tering and broadcasting can use algorithms with the same number of steps; however, the amount of

information sent during each step is different and thus, in real systems, scattering is always slower

than broadcasting.

Another approach is to model the time needed for single communication between two pro-

cessors (T) as a function of the message length. For the store-and-forward routing strategy, T is

often modelled as:

Introduction page 9

T=P+Lz

where 0 is the time to initiate the communication, .r: is the time to send a single unit of information

across the link and L is the length of the message. This model is known as the linear cost model of

communication. For simplicity, we may refer to the linear cost model as linear model.

Many papers are devoted to the constant cost model, while the linear one is relatively new.

It is also harder to use and it is less studied. A survey on the existing results under the linear model

can be found in [FrLa92].

In this thesis, we use the linear model and store-and-forward routing in order to design

algorithms for broadcasting and scattering in the CCCd and BFd networks under the F1, F*, H I

and H* models of communication. To the best of our knowledge, only the process of broadcasting

in CCCd has been studied before (see [FrHogl], [FrLagl]). We improve the upper bounds pre-

sented by Fraigniaud and Ho in [FrHogl] and [FrHoglr]. All of our algorithms run in times very

close to the existing lower bounds.

Linear Model of Communication page 10

CHAPTER 1

LINEAR MODEL OF COMMUNICATION

In this chapter we describe the linear cost model of communication in details and give

some general lower and upper bounds. We also show some common techniques for broadcasting

and scattering which are used to design our algorithms presented in Chapters 3 and 4.

1.1 Definition of the model and general lower bounds

The time for a node to send a message to a neighbouring node greatly depends on the

length of the message. This time can be modeled as a linear combination of the time to establish

the connection called start-up time (P) and the time to send a unit of information of the message

called propagation time (7):

where L is the length of the message measured in some units of information and z is the

time required to send one unit of information. We call 1 /z the bandwidth of the link. The fact that

the communication time depends on the length of the message implies that the number of steps is

not the only parameter to be minimized when optimal algorithms are sought. It is also necessary to

minimize the total amount of information sent at each step. Indeed, for cases in which P), L2 it is

efficient enough to minimize the number of steps only. However, for long messages this approach

is far from satisfactory and thus other techniques have to be used.

Before we proceed any further some general lower bounds on the communication time for

broadcasting and scattering will be stated. Those were presented in [FrLagl]. The method to

obtain the lower bounds is the one given by Ho [Ho90]: "The minimum data transfer time can be

derived considering either of the following three cases: (1) root dominance, that is the minimum

time required for the source node to send the data; (2) latency dominance, that is the propagation

delay for the last element, and (3) bandwidth dominance, that is the total bandwidth required

divided by the total bandwidth available."

Linear Model of Communication page 11

Lemma 1.1: [FrLagl]

The minimum time to broadcast a message of length L in a A-regular

graph G with diameter D is:
L

bF1(G) 2DP+ (D - ~ + L) I , b7 (G)>DP+ (D-I+,),,

(N-1) L bv (G) 2 -
N/2 z2'

Proof: For the full-duplex model we use the latency dominance. The maximum distance

between the originator and any other node is the diameter D (in the worst case) and therefore the

first packet of the whole message sent to the furthermost node reaches it after a time of at least

D(j3 + 7). Under the F1 model at most one unit of information has reached the node at that time and

th;s L - 1 other units have to be received as well. This takes time of at least (L - 1) ~ . Under the F*

model parallel routes can be used to send the message and therefore A units of information could

have been received after D(P + z) time. Thus, there are L - A other units yet to be received and this

(L - *) 2 time. Adding up the two times gives the lower bounds for bF, and bF . requires at least -
A

Under the half-duplex model for H* the nodes can communicate over all their links at the
NA 1 same time, therefore the total bandwidth is at most --, since the bandwidth of every link is 117.
2 2

If only one port can be used at a given time by each processor then the total bandwidth is at most
1

LN/2 J - . To broadcast a message the total number of exchanged information units is at least
2

(N - 1) L (every node but the originator has to receive the full message). Using the bandwidth

dominance the above bounds are obtained. 0

Lemma 1.2: [FrLag 11

The minimum time to scatter messages of length L in a A-regular

graph G with diameter D is:

L
s (G) (N - I) , s d (G)h (N - l) z ~ .

Proof: The bounds for both the full-duplex model and the half-duplex models are obtained

using the root dominance. The originator has to send at least (N - l)L units of information -- a mes-

Linear Model of Communication page 12

sage of length L to every other node. If it can only use one link at any given time then the time

needed is at least (N - 1)Lz. If all links can be used simultaneously then the time needed is at least

Having these general lower bounds we try to describe algorithms running in times as close

to the bounds as possible.

1.2 Pipelining and disjoint spanning trees

There are two major techniques used to build information dissemination algorithms under

the linear model of communication. They can be both applied for scattering and broadcasting and

for that reason we describe them here. We want to emphasize that all our algorithms presented in

chapters 3 and 4 are based on those two techniques.

1.2.1 Pipelining

Let us consider an array of N processors numbered from 0 to N-1 . Let assume that node 0

has to broadcast a message M of length L to all other nodes. Under the constant model of commu-

nication an optimal algorithm would be to send the message from node 0 to node 1, then send it

from node 1 to node 2, etc., until node N-1 receives M. If we applied the same approach under the

linear model the time needed to broadcast M would be (N - 1)(P + Lz). Notice that at any given

moment only one link of the array would be used. This implies that we could somehow split M into

m packets of size B < L and send the packets sequentially from node 0 and then forward a packet

from any node immediately after the packet has been fully received. Thus, more than one link at a

time will be used and the algorithm will run significantly faster (see [SaSch89] and [FrLa91]).

More precisely, the algorithm works as follows: First we send a packet of size B from node

0 to node 1. The moment node 1 receives the packet it sends it to node 2 while node 0 sends the

next packet to node 1. We repeat this procedure for all nodes and until all packets reach the last

node -- N-1 . The UB packets are pipelined from node 0 to node N-1 . (see fig. 1.1).

Linear Model of Communication page 13

t steps

nodes

N-2 N-1

fig. 1.1. Pipelining in array of N processors.

Now let analyze the time needed to complete the algorithm. The first packet reaches node

N-1 after N-1 steps, each of which takes time p + Bz. At that time the second packet is already at

node N-2 and thus one more step is needed for N-1 to receive the second packet. Thus, we can see
L L that the remaining - - 1 packets of size B successively reach node N-1 in (- - 1) steps after the
B t B

first one, that is in time (p + ~z)(. - 1). Therefore, the global time for all packets to reach node N-
L

6
1 is (N + - - 2)(P + Bz). At that time all other nodes have already received all packets and thus this

B

Linear Model of Communication page 14

time. Minimizing the expression as a function of the packet size B gives

-
(N - 2) r

and a total time of (&+ ,./-)*. Thus on an array of N processors

using pipelining for large messages is asymptotically N-1 times faster than using the constant

model algorithm.

Under the link-bound model this technique can be generalized for any graph G. Instead of

pipelining M over an array we can do so over a spanning tree of G because each node can send the

message in parallel to all its children in the tree. Thus, the time to broadcast will depend on the

height of the spanning tree.

Definition:

The height of a tree is the largest distance between the root and a leaf.

Lemma 1.3: [BeFBl]

Let h be the height of a spanning tree of a graph G rooted at node

r (the originator). Then there exists a protocol for link-bound

broadcasting from r and the time to complete the protocol is

(&+ m 1 2 .

We present an original approach for scattering. First, let us have the above described array

of processors and let try to scatter messages of size L from node 0. If we attempt to split the mes-

sages into m packets of size B (assume that m = L/B), as we did for the broadcasting algorithm,

and pipeline them to their destination nodes in reverse order, then after (N - 1) steps the first packet

for node N-1 will reach its destination. Again after (UB - 1) additional steps all packets for node N-

1 will reach it. At that time node N-2 will have its first packet received and therefore another (UB -

1) steps are necessary for all packets to reach node N-2. Continuing the same analysis for the rest
L of the nodes we can easily see that the total number of steps will be (N - 1) + (N - 1) (- - 1) or

L
B

(N- l)g . Each step takes time P + BT, therefore the total time needed will be
L

(p+Br) (N - l) g .

Obviously the minimum of the above expression is for B = L. Therefore, the best

approach is to send the messages in reverse other without splitting them (see fig. 1.2). This will

Linear Model of Communication page 15

yield an algorithm for scattering in an array of time (N - 1)P + (N - 1)Lz.

T steps

nodes

fig 1.2. Scattering in array of N processors.

It is not as easy to extend this approach to spanning trees as it was for broadcasting. The

reason is that we have to make sure that at every step the information sent from every node does

not exceed the information received by the same node. Otherwise some delay will be introduced at

each step and significant changes in the algorithm will be needed. In the broadcasting algorithm

every node sends exactly the same amount of information to its children of the spanning tree as it

receives from its parent at every step -- a packet of size B. Unfortunately, during scattering every

node in a spanning tree potentially has to send different amounts of information to its children.

Thus, we introduce an approach which is limited to certain specific spanning trees.

Assume that r is a node of a graph G and there exists a perfectly balanced k-ary spanning

tree T of G rooted at r. The height of T is h. Then we can modify the scattering algorithm for arrays

Linear Model of Communication page 16

as follows.

steps
I

h

3

2

1

root

packet size

I I I
I I w

levels

fig. 1.3. Scattering in perfectly balanced binary tree of height h.

In the first step we send from r to its children packets consisting of the messages for all

leaves (i.e. nodes at distance h from r) in the corresponding subtree. Since T is a perfectly balanced

k-ary tree, it follows that the number of leaves in every subtree of r is kh - ' . At every subsequent

Step i, 2 6 i s h , we send from r to all its children packets of size Pi = kh - 'L containing the mes-

sages for all nodes at distance h + 1 - i from r. At the same time every node which has received a

Linear Model of Communication page 17

packet of size Pi - at step i-1 splits the packet into k parts and during step i sends to each of its
1

children a packet of size -Pi - , containing the information for their subtree. During step i the
k

node receives a packet of the same size from its parent (fig 1.3 shows scattering in a perfectly hal-

anced binary tree).

Thus every step i, 1 5 i 5 h , takes time kh- i~~ + P. At the h-th step all nodes receive their
h k -1 messages. The time required to complete the scattering is therefore - Lz + hg. The total num-

k h + l k - 1 - 1 N - 1 ber of nodes in the tree is and therefore the scattering time is -
k

L2 + hp . This is
k - 1

stated in the following lemma.

Lemma 1.4:

Let h be the height of a perfectly balanced k-ary spanning tree of

a graph G rooted at node r (the originator). Then there exists a

protocol for link-bound scattering from r and the time to complete
N-1 the protocol is -

k
Lz+ hp.

Usually, it is very difficult to find such kind of spanning trees in a graph. We can general-

ize the lemma for partial scattering in any graph G:

Lemma 1.5:

Let h be the height of a perfectly balanced k-ary tree T rooted at

node r (the originator) and let this tree be a subgraph of a graph

G. Then there exists a protocol for link-bound scattering from r to

all nodes in T and the time to complete the protocol is
M-1 k h + l - 1
-Lz+ hp, where M =

k
is the number of nodes in T. k-1

Using this lemma we can construct scattering algorithms for arbitrary graphs in two

phases. First we have to construct a perfectly balanced k-ary tree rooted at node r and this tree must

be a subgraph of G. Each of the nodes in the tree will collect the messages for a set of nodes of G

in such way that every node of G is in exactly one set. During phase one we scatter in the tree.

During phase two all nodes from the tree scatter in parallel within their sets. This approach will be

further illustrated in Chapter 4.

Linear Model of Communication page 18

1.2.2 Disjoint spanning trees

The time needed to pipeline a message along a spanning tree of height h, even if it is pos-

sible to construct the tree in such a way that h is equal to D (the diameter of the graph), is still not

too close to the broadcasting lower bound presented in Lemma 1.1. This is because we pipeline the

whole message along the tree and thus the propagation time is proportionate to the length of the

entire message. The lower bound suggests that it might be possible to split the message into pack-

ets and then pipeline the packets in parallel. In the best case, we might be able to split the message

into A even parts, where A is the degree of the graph. To do so we need to find other spanning trees

which will be used to pipeline the other parts of the message. However, during the pipelining, all

links of the tree are busy for most of the time. Therefore, we have to find edge-disjoint spanning

trees to be able to send different parts of the message in parallel.

It is also easy to observe that in case of a full-duplex model it is sufficient that the trees are

arc-disjoint and in the case of a half-duplex model they have to be edge-disjoint, because every

edge could be used only in one direction at a time.

To simplify the notation we shall further use the abbreviation ADST for arc-disjoint span-

ning trees, EDST for edge-disjoint spanning trees and ST for spanning tree.

Thus under the link-bound model giving p ADST or EDST rooted at the originator and

using them to pipeline simultaneously different parts of the message defines a broadcasting algo-

rithm:

Lemma 1.6: [BeF191]

Let h(p) be the maximum height of p ADST (EDST) rooted at

node r of a graph G. Then there exists a protocol for link-bound

broadcasting under the F* (H*) model from node r which com-

pletes its execution in time

 ine ear Model of Communication page 19

In this thesis we consider two A-regular graphs. There are no more than A ADST or EDST

in any graph, because every node must be reached through all the trees and there are no more than

A different links to any node. Therefore, our goal will be to find A ADST (EDST) of minimum

possible height in CCCd and BFd.

Similarly, we can try to construct several arc(edge)-disjoint perfectly balanced k-ary trees

to perform scattering. The exact construction heavily depends on the particular structure of the

graph and, as it is shown in Chapter 4, some modifications might be necessary.

1.3 General upper bounds

Our description of pipelining and disjoint spanning trees implies the usage of link-bound

communication. We can extend the algorithms to processor-bound networks using labeling of the

links to avoid the usage of more than one link by a node at a time. In [FrLagl] Fraigniaud and Laz-

ard use the notion of processor-bound disjoint-labeling of the edges (arcs) of p EDST (ADST) of a

given graph. We briefly describe their approach here.

Definition:

A processor-bound labeling of the edges (arcs) of a spanning tree

T of a graph G is a labeling lab:E(T) + Na satisfying

lab (u, v) #lab (u, w) for any two distinct children v and w of u

in T, and lab (t, u) <: lab (u, w) , where t is the father of u in T and

w is any child of u in T.

Definition:

A processor-bound disjoint-labeling of the edges (arcs) of p

EDST (ADST) of a graph G is a processor-bound labeling labi of

each tree Ti, 0 S i l p- 1 , such that for every node u

labi (u, v) # labj (u, w) , labi (v, u) # labj (w, u) and

labi(u,v) #labj(w,u), Vv#w and Osi, j sp -1 .

Linear Model of Communication page 20

Definition:

The delay of a processor-bound disjoint-labeling of p EDST

(ADST) is the smallest integer p, such that for every node u and

for any pair of edges (pair of non-symmetrical arcs) of extremity

u these edges (non-symmetrical arcs) have a distinct label mod-

ulo p.

Using this labeling they perform the link-bound broadcasting algorithm in G under the

processor-bound model sending the packets every p steps to insure the use of one link by any pro- $

cessor at any given time (see [FrLagl]). Since these labelings are strictly specific for every graph

to give a general upper bound on the broadcasting under the processor-bound model Fraigniaud

and Lazard use the notion of chromatic index:

Definition:

The chromatic index of graph G is the minimum number q, such

that it is possible to label all edges of E(G) with numbers in

{ O , l ,..,q-I} in such a way that each vertex has all its edges labeled

with different numbers.

Since for any graph G p is at most equal to q(G) and the maximum labeling is at most

h(p)(q(G)-I), the broadcasting time under the processor-bound model in G can be obtained by:

Lemma 1.7: [FrLagl]

Let q(G) be the chromatic index of G, and h(p) be the maximum

height of p ADST (EDST) of G rooted at some node r. There

exists a protocol for a processor-bound broadcasting from node r

which takes time -

Thus, the broadcasting paradigm for both link- and processor-bound models can be solved

by finding as many ADST (EDST) of small heights as possible.

Linear Model of Communication page 21

Constructing EDST for the half-duplex model may not be easy. Therefore, we need some

tools to construct upper bounds on the broadcasting and scattering times under the half-duplex

model given the results in the full-duplex one. Here we prove an original lemma which could be

used for deriving algorithms for information dissemination under the half-duplex model from the

corresponding algorithms in full-duplex model.

Lemma 1.8:

If an information dissemination protocol P for a graph G takes

time T(P) under the full-duplex model of communication and

consists of k steps which start at the same time at all nodes

involved then there exists a protocol Q under the half-duplex

model for G such that T (Q) 1 2T (P) .

Proof: P can be split into k steps which start at the same time at all nodes involved. The

amount of information transmitted during step i at any node does not exceed some Li, since P fin-

ishes in some finite time T(P). We transform every step i of P into two steps of Q (il and i2) in the

following manner. For every link used during step i of P we have two cases. (1) the link is used in

one direction and (2) the link is used in both directions. In both cases the time to complete step i at

any node is Ti I p + Liz. In step i l of Q we send at most Li information units from one of the nodes

to the one on the other side of the link (for both case (1) and case (2)) and in step i2 of Q -- vice

versa (for case (2)). Thus after those two steps every node has received exactly the same informa-

tion it receives after step i of P. Every link is used in one direction at a time. Also, each of the steps

i , and i2 takes time Ti 2 p + Liz and therefore the time to complete Q is at most twice the time to

complete P. 0

As it is easy to see this lemma can only be used in special cases, for which the above con-

ditions apply. Fortunately, all broadcasting algorithms deal with packets of fixed size and therefore

every step starts at the same time at every node which transmits at that step. Therefore, Lemma 1.8

can be used to derive broadcasting upper bounds under for half-duplex communication. The

lemma can also be applied to some scattering algorithms as we show in Chapter 4.

Binary subtrees of CCCd and BFd page 22

CHAPTER 2

BINARY SUBTREES OF CCCd AND BFd

In this chapter we introduce two structures (ascending and descending binary subtrees of

CCCd and BFd) which are extensively used in constructing our broadcasting and scattering algo-

rithms. We start with some general notation. Unless otherwise stated any reference to a number n

should be understood to be n mod d, where d is the dimension of CCCd or BFd. Any reference to

an integer interval (a, b) , such that b < a , should be understood to be (a, b + d) . For example,

whend>4, i~ (d-2,2) meansthatiisd-I,dord+1.Since,dmodd=Oandd+ 1 modd= 1,

it f'ollows that i is either d - 1,0 or 1.

Gd we use Gd to denote that certain statement applies to both CCCd and BFd.

X a cycle label, which is a binary string of length d -- xoxl ... xd-1; we also refer to

some cycles using their labels, like 'cycle X' instead of 'cycle with label X'. Notice that the left-

most bit of the label has the lowest index.

-
0 this will stand for the label 00 ... 0.

1x1 the number of 1's in X.

x[il the i-th bit of X, where i varies from 0 to d-I.

-
Xi X with inverted i-th bit, i.e. Xi = xdcl ... xi . . . ~ d - ~ .

i-node the i-th node of a cycle X, i.e. (i, X) ; for example, 0-node is any node (0, X) .
Also, a node (i, X) is said to be at level i in X. Thus, i-node and node at level i are synonyms.

Gd[i = j] The set of all cycles of the graph Gd such that their labels X have j in bit i; for

example CCCd[O = 01 is the set of cycles X of CCCd such that X[O]=O, also CCCd[O,l ,..,k = 0,0,..,0]

is the set of all cycles X of CCCd such that the first k bits of their labels are 0's.

a()o a(X) = max {i I X[i] = I), for X # 3 and

Binary subtrees of CCCd and BFd page 23

a (i) = 0. In other words, a(X) is the position of the last non-zero bit of X.

Po() P(x)= min{i l x [i]= 1),for ~ $ 5 and

P(8) = 0 (we may use P(8) = d as well). This is the position of the first non-

zero bit of X.

(x) a1 (X) = a(X) + 1 (thus if a(X) = d-1 then a1 (X) = d, which is a1 (X) = 0).

P I (x) P I (X) = P(X) - 1 (thus if P(X) = 0, which is P(X) = d, then P I (X) = d-I).

Here is an important property of a(X) and P(X) which we use in our proofs:

Proof: a (6) = P (i) = 0 by definition and V (X + 5) I XI > 0, therefore

max {it X [i] = 1 } 2 min { i l X [i] = 1) , therefore

a(X) 2 p (X) . 0

We define several types of arcs in Gd (CCCd and BFd).

Definition:

We call an arc (i, X) + (j, Y) cross arc if X + Y and straight arc

otherwise.

Definition:

A compound arc (i , X) (j, Y) is the pair of arcs

(i, X) -+ (k, Z) and (k, Z) (j, Y) , where X and Y are two dif-

ferent cycles of Gd and Z is identical to either X or Y. We also

denote the compound arc as

0, X) + (k, Z) -+ (j, Y) .

Apparently, each compound arc consists of one cross arc and one straight arc. We call the

intermediate node (k, Z) of this compound arc a hop or hop node.

Binary subtrees of CCCd and BFd page 24

Definition:

All arcs (i, X) -, (i + 1, Y) , where i+l stands for i+i mod d, we

call ascending arcs and all arcs (i, X) -+ (i - 1, Y) , where i-1

stands for i-1 mod d, we call descending arcs.

The above definition can be extended to compound arcs as well:

Definition:

All arcs (i, X) * (i + I , Y) , where i+l stands for i+l mod d, we

call ascending compound arcs and all arcs (i, X) 3 (i - 1, Y) ,

where i-1 stands for i-1 mod d, we call descending compound

arcs.

For simplicity we further use the term ascending (descending) arc to refer to ascending

(descending) compound arcs as well. In addition, there is a property of CCCd and BFd which will

allow us to use similar constructions in both graphs:

Property 2.2:

Every cross arc of BFd can be mapped to a compound arc of CCCd.

Proof: There are two types of cross arcs in BFd.

(i, X) + (i+ l , X i) :

Corresponds to (i, X) (i, Xi) -, (i + 1, Xi) of CCCd;

(i,X) + (i - l , X i - ,) :

Correspondsto (i,X) + (i - l , X) + (i - l , X i - ,) ofCCCd.0

At this point we define what we refer to as ascending binary subtree of Gd (CCCd or

BFd). We use one definition for both CCCd and BFd. This is achieved by using the mapping given

in the proof of Property 2.2.

Definition:

We call ascending binary subtree of Gd (BFd or CCCd) of height

h r d rooted at node (r, Y) the subgraph T of Gd constructed as

Binary subtrees of CCCd and BFd page 25

follows:

step 0: make (r, Y) the root of T;

step j for each (i, X) added to T during step j-1

add (i, X) -+ (i + 1, X) to T;

add (i, X) + (i + 1, Xi) (for BFd) or

(i, X) (i + 1, Xi) (for CCCd), that is

(i , X) -+ (i , Xi) + (i + 1, Xi) , to T

repeat the above step for all 1 I j I h.

Notice that an ascending binary subtree of CCCd includes compound arcs. In fact, each

non-leaf node of such a tree is connected via a compound arc to exactly one of its children.

Clearly, only ascending arcs (BFd) and ascending compound arcs (CCCd) are used to build the

tree and at each step j we add r+j-nodes to the tree. In addition, all nodes added at step j belong to

cycles X, such that V (r + j 5 i I r - 1) X [i] = Y [i] . The proof of this important property is given

bellow.

Property 2.3:

For every ascending binary subtree T of Gd rooted at (r, Y) ,

foreverynode (r+j,X) E T, V (r + j s i ~ r - 1) X [i] = Y [i] .

Proof: We denote the statement 'for every node (r + j , X) € T ,

V (r + j I i I r - 1) X [i] = Y [i] ' by Y. As it was mentioned above, it is clear that at each step j we

add r+j-nodes to T. This means that each node (r + j, X) E T was added to the tree during step j.

We prove by induction that Y applies to all nodes added to T during any step j.

j = 1: We add two new nodes during step 1. One of them is (r + 1, Y) ,

i.e. it belongs to the cycle of the root node. The other one is
-

(r + 1, Y,) . Y, has the same bits as Y except for Y, [r] = Y [r] .

Therefore, V (r + 1 <i<r-1)Y,[i] = Y [i] andYholdsforj=l.

Binary subtrees of CCCd and BFd page 26

Two cycles of an ascending binary subtree of CCCd rooted at (r, Y)

Two cycles of an ascending binary subtree of BFd rooted at (r, Y)

fig. 2.1.

j = k: Assume that Y holds for all nodes added to T during step k, i.e.

for any r+k-node from T.

j = k + l : Let consider any of the nodes added to T during step k+l

-- (r + k + 1, X) . Since only ascending arcs are used to build T, the

Binary subtrees of CCCd 'and BFd page 27

node's parent could either be (r + k, X, + k) (if the node was reached

via a cross arc or compound arc) or (r + k, X) . Those are both r+k-

nodes and therefore Y holds for either of them. This means that

V (r + k s i s r - l) X , + k [i] = Y[i] or

V (r + k < i < r - 1) X [i] = Y [i] . In the latter case clearly Y holds for

(r + k + 1, X) . The only difference between the labels of X and X, + is in the

r+k-th bit. Therefore, if the parent was (r + k, X, + k) , again we can conclude

tha tV(r+k+l < i I r - l) X [i] = Y [i] .O

For now, we do not consider the hop nodes of the compound arcs (for CCCd) to be in the

tree: When our particular algorithms are described the hops will be taken into consideration.

Property 2.4:

Every ascending binary subtree of Gd is a perfectly balanced binary tree.

Proof: We show that any ascending binary subtree T of Gd is a tree by proving that each

node in such a tree has exactly one parent. Assume that there exists a node (r + j + 1, X) from T

that has two parents. Since only ascending arcs are used to build T those two parents should be

(r + j, X) and (r + j, XWj) . These are r+j-nodes of T, an ascending binary subtree of Gd, and

according to Property 2.3 X [r + j] = Y [r + j] and X, + [r + j] = Y [r + j] , thus

X [r + j] = X, + , [r + j] . However, X [r + j] # X, +, [r + j] by definition. Therefore, our assumption

was wrong and (r + j + 1, X) has only one parent. In addition, every non-leaf node of T has exactly

two children. 0

There are some properties of the ascending binary subtrees of Gd, which we use in our

proofs later in this thesis. The first one tells us that given a node (i, X) of an ascending binary sub-

tree T of Gd, rooted at some node (r, Y) and of height h, all nodes of cycle X with levels higher

than i and not exceeding r+h are straight descendants (definition follows) of (i , X) in T.

Definition:

Node (j, X) is a straight descendant of another node (i, X) in a sub-

tree T of Gd iff (j, X) can be reached from (i, X) by only using

Binary subtrees of CCCd and BFd page 28

straight arcs of T.

Property 2.5:

For any ascending binary subtree T of Gd of height h rooted at

(r, Y) , for each (i, X) E T V (i c rn 5 r + h) (rn, X) is a straight

descendant of (i, X) in T.

Proof: We use induction on m.

Let (i, X) E T and i 5 r + h - 1 . Then this node was added to T

at step j = i - r I h - 1 . Therefore, during step j + 1 I h node

(i + 1, X) was also added to T via a straight arc (see the definition of

ascending binary subtree) and (i, X) is its parent. Thus (i + 1, X) is

a straight descendant of (i, X) in T.

We assume that (i -t k, X) is a straight descendant of (i, X) in T,

where i + k l r + h - I .

Since (i + k, X) E T and i + k 5 r + h - 1 then this node was added

toTduringsomestepj = i + k - r , w h e r e j l r + h - 1 - r = h-1.

Therefore, at step j + 1 < h node (i + k + 1, X) was added via a straight

arc to T and its parent is (i + k, X) , which is a straight descendant of

(i, X). Thus (r + k + 1, X) is also a straight descendant of (i, X) in T. 0

This means that once a node (i, X) from a cycle X is added to the tree all nodes from X at

levels between i and r+h are included in the tree and could be reached from (i, X) by only using

straight arcs of the tree.

Definition:

Given a subtree T of Gd and a cycle X of Gd (CCCd or BFd) we

say that X E T (X is represented in T) iff 3i ((i, X) E T) .

Now, imagine that a cycle X represented in an ascending binary subtree T of Gd of height

h, rooted at (1, Y) , has more than one node reached from another cycle represented in T. Let two

of those nodes be (i, X) and (j, X), i + j. If r + h > i > j then according to Property 2.5 (i, X) is a

Binary subtrees of CCCd and BFd page 29

straight descendant of (j, X) in T. Therefore, (i, X) is reached via straight arc from its parent in T.

This contradicts to the assumption that (i, X) was reached from another cycle. Therefore,

i < j c r + h, but then following the same reasoning (j, X) is a straight descendent of (i, X) and must

be reached from its parent via a straight arc, which is another contradiction. Therefore, we can

conclude that each cycle represented in T is reached via a cross arc (BFd) or compound arc

(CCCd) exactly once.

Every non-leaf node of T has exactly one child in another cycle. Each cross arc (com-

pound arc) adds a new cycle to the tree, since no cycle is reached via cross arcs (compound arcs)

more than once. Therefore, there is a 1- 1 correspondence between the non-leaf nodes of T and the

cycles (excluding the cycle of the root Y) represented in T. There are 2h - 1 non-leaf nodes in T

(according to Property 2.4 T is a perfectly balanced binary tree) and hence, there are 2h - 1 differ-

ent cycles represented in T and Y is not among them. Therefore,

Property 2.6:

There are 2h different cycles represented in any ascending binary

subtree of Gd of height h.

Our algorithms use ascending binary subtrees having a specific property. The root (r, Y) is

always chosen in such a way that r L a 1 (Y) . Given a tree with this property we try to determine

which is the first node of each cycle added to the tree.

Lemma 2.1:

Given an ascending binary subtree T of Gd of height h rooted at

(r, Y) , such that r 2 a 1 (Y) , the first node of every cycle X E T

added to T is its a1 -node.

Proof: Every cycle X E T is reached exactly once via a cross arc (BFd) or compound arc

(CCCd) from another cycle represented in T. Let assume that the first node of X added to T is

(r + j, X) . Then its parent is (r + j - 1, X r and according to Property 2.3

V (r + j - l s i s r - l) X r + j - l [i] = Y [i] . Since r r a l (Y) then all bits ofY between r and d-1

must be 0's. Therefore, V (r + j - 1 5 i 2 d - 1) Xr+i -, [i] = 0 and consequently

Binary subtrees of CCCd and BFd page 30

V (r + j S i I d - 1) X [i] = 0, because X has the same bits as X,, -, except for the r+j-1 -th bit, i.e.

X[r+j-1] = 1. Therefore, according to the definition of al, al(X) = r+j and it follows that the first

node of X added to T is its a1 -node. 0

It is interesting to find some general way to describe all cycles represented in a given

ascending binary subtree T of Gd of height h rooted at node (r, Y). If h = d then 2d (i.e. all) cycles

are represented in T. If h < d then all nodes of T are reached at steps j 5 h < d and thus according to

Property 2.3 for all cycles X represented in T V (r + h 5 i <_ r - 1) X [i] = Y [i] , where the addition

is modulo d. This means that the labels of all cycles X E T differ from the label of Y in at most h

bits. There are 2 i -1 , 1 I i I h , labels that differ from Y in i bits. Therefore, including Y, there are

exactly 2h possible labels which differ from the label of Y in at most h bits. Also, there are exactly

2h different cycles represented in T (Property 2.6). Therefore, if h c d then X E T iff

V (r + h I i <_ r - 1) X [i] = Y [i] . We can formulate this as:

Property 2.7:

For any ascending binary subtree T of Gd of height h < d rooted

at node (r,Y) a cycle X is represented in T iff

V (r + h I i r r - 1)X[i] = Y[i] andalsoall cyclesofGdarerep-

resented in any ascending binary subtree T of Gd of height d.

If the height h of an ascending binary subtree of Gd rooted at (r, Y) is such that r + h = d

then we can conclude:

Lemma 2.2:

If T is an ascending binary subtree of Gd rooted at node (r, Y) of

height h = d - r then all cycles X in

Gd[O,l ,.., r-1 = Y[O],Y[1] ,.., Y[r-111

are represented in T.

Proof: T is such that r + h = d, thus for each cycle X represented in T

V (d I i 5 r - 1) X [i] = Y [i] and vice versa (Property 2.7). The addition is modulo d, i.e. d stands

for d mod d, which is 0. Therefore, each cycle X, such that 'd (0 S i I r - 1) X [i] = Y [i] , is repre-

Binary subuees of CCCd and BFd page 3 1

sented in T and Gd[O,l ,..,r-1 = Y[O],Y[l],..,Y[r-I]] is exactly the set of cycles of Gd, such that their

labels match the first r-1 bits of Y. O

As we already mentioned, only ascending arcs are used to construct ascending binary sub-

trees of Gd. We can use the descending arcs to define descending binary subtrees with similar

properties. It is possible to define those subtrees in a uniform manner for both CCCd and BFd

using the mapping of cross arcs of BFd to compound arcs of CCCd (Property 2.2). This, however,

will create unnecessary complications for describing our scattering algorithm for CCCd. Since this

is the only algorithm for which we need descending binary subtrees of CCCd, we prefer to give

separate definitions.

Definition:

We call descending binary subtree of BFd of height h I d rooted

at node (r, Y) the subgraph T of BFd constructed as follows:

step 0: make (r, Y) the root of the tree;

step j for each node (i , X) added to T at step j-1

add (i,X) -+ (i-1,X) toT;

add (i,X) -+ (i - l ,Xi - l) toT;

repeat the above step for all 1 I j 5 h .*

Observe that if we used compound arcs (i, X) (i - I, Xi -) , which is

(i, X) + (i - 1, X) -+ (i - 1, Xi- ,) , to build descending binary subtrees of CCCd then the hop-

node of such an arc would coincide with the other child of (i , X). To simplify our presentation and

avoid artificial substitutions and other tricks we use another type of compound arcs to define

descending binary subtrees in CCCd:

Definition:

We call descending binary subtree of CCCd of height h 5 d

rooted at node (r, Y) the subgraph T of CCCd constructed as fol-

lows:

1. If h = d then view the leaf (r - d, Y) as a node different from (r, Y).

Binary subtrees of CCCd and BFd page 32

step 0: make (r, Y) the root of the tree;

step j for each node (i, X) added to T at step j-1

add (i, X) + (i - 1, X) to the tree;

add (i, X) 3 (i - 1, Xi) , that is

(i, X) + (i, Xi) + (i - I , Xi) , to T

repeat the above step for all 1 < j < h .'
For now, we do not consider the hop-nodes of the compound arcs of CCCd to be in the

tree. Those are taken into account when our particular algorithms are presented.

For both CCCd and BFd the descending binary subtrees have structures similar to the

structure of the ascending binary subtrees of Gd. We can show properties of the descending binary

subtrees corresponding to the results we already have for the ascending binary subtrees using sim-

ilar proofs.

Observe that at each step j nodes of the type (r - j, X) are added to the descending binary

subtrees for both CCCd and BFd. Following the proof for Property 2.3 we can conclude:

Property 2.8:

For every descending binary subtree T of CCCd rooted at (r, Y) ,

foreachnode (r-j,X) E T, V (r + l < i < r - j) X [i] = Y [i] .

For every descending binary subtree T of BFd rooted at (r, Y) ,

foreachnode (r-j,X) E T, V (r < i < r - j - 1) X [i] = Y[i] .

Using Property 2.8 and applying the approach used to prove Property 2.4 we can derive:

Property 2.9:

Every descending binary subtree of Gd is a perfectly balanced binary tree.

It is also easy to modify the proof of Property 2.5 and Property 2.6 to show that:

1. If h = d then view the leaf (r - d, Y) as a node different from (r, Y).

Binary subtrees of CCCd and BFd page 33

< x r - h i
a

(j-2yXj-l)

11

Two cycles of a descending binary subtree of CCCd rooted at (r, Y)

Two cycles of a descending binary subtree of BFd rooted at (r, Y)

Property 2.10:

For any descending binary subtree T of Gd of height h rooted at

(r, Y) , for each (i, X) E T V (r - h I m c i) (m, X) is a straight

descendant of (i, X) in T.

Binary subtrees of CCCd and BFd page 34

and

Property 2.11:

There are different cycles represented in every descending

binary subtree of Gd of height h.

For each cycle represented in a descending binary subtree of Gd we want to know which is

the first node from the cycle added to the tree. All descending binary subtree which we use for our

broadcasting and scattering algorithms are such that r < P1 (Y) (for CCCd) and r 5 fi (Y) (for

BFd). For these special cases we can prove:

* Lemma 2.3:

Given a descending binary subtree T of CCCd (BFd) of height h

rooted at (r, Y) , such that r s pl (Y) (r r p (Y) for BFd), the first

node of every cycle X E T added to T is its Pl -node (P-node).

Proof: Every cycle X E T is reached exactly once via a compound arc of CCCd (cross arc

of BFd) from another cycle represented in T (according to Property 2.11 there are 2h different

cycles represented in T and this is also the number of cross/compound arcs in T). Let assume that

thefirstnodeofXaddedtoTis (r-j,X).Thenitsparentis (r - j+ l ,Xr - j+ r) ((r - j+ l ,Xr- j)

for BFd) and according to Property 2.8

V(r+ l ~ i 5 r - j i - I) X ~ - ~ + , [i] = Y [i] (and for BFd

(r - X [i] = Y[i]).
r-l

Since r 5 P1 (Y) (r I p (Y) for BFd) then all bits of Y between 0 and r (r-1) must be 0's.

Therefore, V(Os i s r - j+ l)X , - j+ l [i] = 0 (andforBFd V(0risr- j)Xr- , [i] = O).Theonly

difference between the label of X and the label of its parent is the r-j+l-th bit (r-j-th bit for BFd).

Therefore, X [r - j + I] = 1 (X [r - j] = 1 for BFd) and all other bits of X are the same as the bits

of its parent, i.e.

V(0s is r - j)X[i] = 0 (andforBFd

V(05is r - j -1)X[i] = 0).

Binary subtrees of CCCd and BFd page 35

Therefore, pl(X) = P(X)-1 = r-j+l -1 = r-j (P(X) = r-j for BFd). Therefore, the first node of X

added to T is its pl-node (P-node for BFd). (7

In the end, we can state the counterpart of Property 2.7:

Property 2.12:

For any descending binary subtree T of Gd of height h < d rooted

at node (r,Y) a cycle X is represented in T iff

V (r + 1 5 i 5 r - h) X [i] = Y [i] (Gd is CCCd) or

V(r5 i I r -h - I)X[i] = Y [i] (GdisBFd).

All cycles of Gd are represented in any descending binary subtree

T of Gd of height d.

If the height h of a descending binary subtree of Gd rooted at (r, Y) is such that r - h = 0

(which could be considered as r - h = d modulo d) then we can conclude:

Lemma 2.4:

If T is an descending binary subtrce of CCCd rooted at node

(r, Y) of height h = r then all cycles X in

CCCd[r+l ,r+2 ,..., d = Y[r+l],Y[r+2] ,..., Y[d]]

are represented in T.

If T is an descending binary subtree of BFd rooted at node (r, Y)

of height h = r then all cycles X in

BFd[r,r+l ,.., d-1 = Y[r],Y{r+l] ,.., Y[d-l]]

are represented in T.

Proof: T is such that r - h = 0 (d mod d), thus for each cycle X represented in T we simply

substitute d for r - h in the result stated in Property 2.12. 0

Broadcasting in CCCd and BFd page 36

CHAPTER 3

BROADCASTING IN CCCd AND BFd

In this chapter we describe our algorithms for broadcasting under the linear model of com-

munication in CCCd and BFd networks. Our main approach is to construct A arc-disjoint spanning

trees of minimal height in both graphs, where A is the degree of the graph. Then by pipelining

along the ADST we give upper bounds on the broadcasting time using the results presented in

Chapter 1. Both graphs are vertex transitive and therefore it is sufficient to give the ADST rooted

at any vertex r. The optimal solution would be to find A ADST of height D (the diameter of Gd).

For 60th graphs we give A ADST cf height close to D and also 2 ADST of height almost D, which

proved to yield faster algorithms for short messages.

We first construct the ADST and analyze the algorithms under the full-duplex link-bound

model (F*) and then analyze the other models of communication (F1, H*, HI) using the general

upper bounds described in Chapter 1.

3.1 Three Arc-Disjoint Spanning Trees in the Cube-Connected Cycles graph

Our goal is to construct 3 ADST of CCCd -- TO, T1 and T2. We assume the originator to

be (1,0). In each step and substep of the following algorithm we use arcs which have not been

used during the preceding steps to ensure that the trees are arc-disjoint. We analyze the height of

each tree after every step.

step 0:

~ d d (1,G) -+ (0,0), (0,G) -+ (o,Oo), (o,GO) -+ (l,GO) to TO;

add (1, 00) + (2, &)) to TO

(the height of TO is 4);

Broadcasting in CCCd and BFd page 37

(the height of Ti is 5);

add (1 ,0)+(2,0) toT2

(the height if T2 is 1).

fig. 3.1. CCCd after step 0.

During the next step we build 4 trees -- Ta, Tb, Tc and Td, rooted at nodes (2,0) , (2,a1) ,

(2, tjO) and (2, sol) respectively. Those four trees are built in a uniform manner. We show how

to build any of them, denoted by T and rooted at (2, Y). Notice that r 2 a1 (Y) for all root nodes

(2,s) , (2, 01) , (2, Go) and (2, Got) . In this way we can use Lemma 2.1 to determine the first

node reached from each cycle represented in either of the trees.

Broadcasting in CCCd and BFd page 38

step I:

step 1.1: Build an ascending binary subtree oh height d-2 rooted at (2, Y)

and call this tree T.'

step 1.2: For every (0, X), X er (5, co, 51, } ,2 added to T during

step 1.1 add (0, X) + (1, X) to T.

step 1.3: For every node (1, X) added to T at step 1.2 add

(1,X) + (l ,Xl) toT.

step 1.4: For every node (I , X) added to T at step 1.3

V(1 s j I a (X) -1) add (j,X) + (j+ l ,X) toT.

step 1.5 For every node (a(X), X) added at step 1.4 to T add

(a(X>, X) 4 (a(% XMX,> to T.

Since r = 2 and h = d - 2, according to Lemma 2.2, after step 1.1 all nodes of Ta are in

CCCd[O,l = 0,0], all nodes of Tb are in CCCd[O,l = 0,1], all nodes of Tc are in CCCd[O,l = 1,0] and

all nodes of Td are in CCCd[O,l = 1 ,I]. Those four sets of cycles are non-intersecting and there-

fore, the four trees are vertex disjoint and consequently arc disjoint. According to Lemma 2.1, all

cycles in any of the trees are reached via their al-nodes first. Since those al-nodes are added to

the trees via a compound arc, we have to consider the hop-nodes of the compound arcs as well, and

in that case the first node of each cycle added to a tree is the cycle's a-node. According to Property

2.5, once a cycle X is reached through its a-node, all nodes of X at levels higher than a (X) and not

exceeding d are straight descendants of (a(X), X). Thus, the only straight arcs that are added during

step 1.1 are those between nodes (a(X), X) and (d, X), and the only cross arcs added are the ones

pointing to a-nodes at levels greater than 1.

Consider .any of the four trees T, rooted at (2, Y) . The shortest path from (2, Y) to any

leaf of T consists of d - 2 arcs of T. In the worst case, all these arcs are compound arcs, i.e. each of

them is composed of two arcs of CCCd. Therefore, in the worst case, the shortest path from the

1. We remove arcs (d - I , 61) + (0, 01) from ~ b , (d - I , 00) + (0, 00) from TC and

(d - 1, 601) 3 (0, iO1) from Td, because they add nodes which are in the trees already.

2. The cycles containing the originators are treated separately in step 3.

Broadcasting in CCCd and BFd page 39

root (2, Y) to a leaf of T is:

Therefore, the furthermost leaf (0, X) of T is such that V (2 5 i I d - 1) X [il + Y [i] and

theheightofTis 2 (d - 2) = 2d-4.

Definition:

z (X) = I {il X [i] = 0,2 I i r d- 1 } I , i.e. it is the number of zero

bits between positions 2 and d-1 of X.

fig. 3.2. W o cycles of CCCd after step 1.3; X E CCCd [0, 1 = 1,0] .

Since a1 (Y) 2 2, it follows that the furthermost leaf (0, X) is such that z(X) = 0. It is also

Broadcasting in CCCd and BFd page 40

clear that any node (i, X) E T, such that z(X) > 0, is of distance less that 2d - 4 from the root of T.

In step 1.2 we add one more level to each tree by using arcs not included in any tree

before. Ta, Tb, Tc and Td are still vertex and arc-disjoint and of height 2d - 3.

Assume that after step 1.2 (1, X) is in some tree T and X is in CCCd[O,l = x,x]. Therefore,

XI is in CCCd[O,l = x,;] and its 1-node (1, XI) is in some other tree -- i. During step 1.3 node (1,

X) is added to T and (1, XI) -- to T. Thus those two nodes are represented in two different trees

after step 1.3. The arcs used during the step are cross arcs to nodes of level 1 and therefore were

not used before (remember that during this step we do not consider cycles 5, Oo, GI, Ool), i.e. all

four trees remain arc-disjoint. The height of the trees increases by one and is 2d - 2 after the step. .
More precisely, in step 1.3, all nodes (1, X) , such that X is in CCCd[O,l = 0,1] are reached via a

cross arc from Ta, all nodes (1, X) , where X is in CCCd[O,l = 0,0] -- from Tb, all nodes (1, X) , X

is in CCCd[O,l = 1 , I] -- from Tc and all nodes (1, X) , X is in CCCd[O,l = 1,0] -- from Td.

jig. 3.3. A cycle X E CCCd [O, 1 = 1,0] after step 1.

During step 1.4, starting from (1, X), in all cycles X E (0, 00, G I ,) we add to some

Broadcasting in CCCd and BFd page 41

tree T straight arcs which were not used in the preceding steps until we reach (a(X), X). Node

(1, X) was added to during step 1.3. All nodes of X at levels between a(X) and d are repre-

sented in some other tree -- T. Therefore, in step 1.4, node (a(X), X) is added to a second tree.

All four trees remain arc-disjoint. No more than max { a (X) - 21 X E CCCd, X # 6) lev-

els were added to any of the trees, i.e. their height is 2d - 2 + d - 3 = 3d - 5 after step 1.4. During

the last substep, one more level is added to each tree, i.e. their height is 3d - 4.

Lemma 3.1:

After step 1 Ta, Tb, Tc and Td are 4 arc-disjoint trees of height

3d - 4 and all nodes (i, X), such that a(X) I i < d - 1 or i = I , are .
represented in two different trees.

Proof: We already know that all 1-nodes and a-nodes are included in two different trees -

- in one tree during step 1.1 (tree T) and in another one during steps 1.3 and 1.4 (tree T). In the last

substep 1.5 we add the cross neighbours of all a-nodes to the tree T. Those cross neighbours are in

fact the parents of the a-nodes in the other tree T. Since all nodes (i, X), such that a(X) c i sd - 1

are parents of a-nodes in some tree, it follows that they are all added to a second tree during the

last step. The trees remain arc-disjoint, because the arcs added during step 1.5 were not used

before and also every arc is added to one tree only. I7

We attach Ta to T2, Tb and Td to TI, Tc to TO. Thus, TO, T1 and T2 are arc-disjoint trees

and each cycle is represented in two of them. More precisely,

Lemma 3.2:

After step 1, for every cycle X iz (6, 50, 0 1, Ool } ,

if X E CCCd [I = 11 then V(a(X) l i l d , 1)

if X E CCCd [I = 01 then V(l l i s d - 1)

and

i f X ~ CCCd[O,l =1 ,0] then V (a (X) l i I d , l)

i f X ~ CCCd[O,1 =1 ,1] then V (1 s i s d - 1)

and

(i, X) E T I ,

(i, X) E TI ;

(i, X) E TO,

(i, X) E TO;

Broadcasting in CCCd and BFd page 42

i f X ~ C C C d [O , l = o , O] t h e n V (a (X) ~ i < d , l) (i ,X)ET2,

i f X ~ CCCd[O,1 =0,1] then V(11i Id-1) (i, X) E T2.

After we take into account the distance between the roots of Ta, Tb, Tc, Td and the origina-

tor (1,6) , we can conclude that the height of TO is 3d, the height of TI is 3d + 1 and the height of

T2 is 3d - 3. Notice that so far only ascending straight arcs were used. Therefore, we can use the

descending straight arcs, as well as some of the remaining cross arcs to make all cycles repre-

sented in all trees.

The purpose of the next step -- step 2, is to make sure that all nodes of cycles

X E (0, 00, 01, GO1) are included in all trees.

During the description of step 2 , any reference to a (node from)

cycle X should be treated as a reference to a (node from) cycle X,

such that X E (8, iJO, 01, iSol) .

In an attempt to simplify the presentation of step 2, we describe the trees separately and

analyze their heights after each substep. At each substep, only free arcs are used and no arc is

added to more than one of the trees. In this way, the trees are preserved arc-disjoint.

First, we want to make all 0-nodes and d-1 -nodes represented in all trees.

Tree TI contains all nodes from X E CCCd [I = 01 , except for the 0-nodes. The descend-

ing arcs (1, X) -+ (0, X) have not been used yet. Therefore, we can perform step 2.1:

step 2.1:

For every cycle X E CCCd [I = 01 , X s~ (8, Oo, a l , Ool) ,

add (1,X) + (0,X) toT1.

This substep adds new arcs to non-leaf nodes of TI, and therefore its height remains

unchanged.

Tree TO contains all nodes from X E CCCd [O, 1 = 1,1] , except for the 0-nodes. We can

use the same approach:

Broadcasting in CCCd and BFd page 43

step 2.2:

For every cycle X E CCCd [O, 1 = 1,1 I , X E (5, 50, ijl, 501 1 ,

add (1,X) + (0,X) toTO.

Any new node (0, X) is added to a node (1, X) , X E CCCd [O,1 = 1, I I . Therefore,

node (1, X) was included in TO during step 1.3. Its parent is (1, XI) , X, E CCCd [O,1 = 1,0] .
Node (1, X I) was added to TO in step 1.2. Its parent is (0, XI). The distance from (0, XI) to

node (2, 0,) is at most 2d - 4, and if it is exactly 2d - 4 then z(X1) = 0 (see the analysis after step

1). The distance from (2, 0,) to (1,5) is 4.

Therefore, the maximal distance in TO from any new node (0, X) to the root (1,G) is

4 + (2d - 4) + 3, i.e. 2d + 3 , and in the worst case z(X) = z(X1) = 0.

After this substep, all 0-nodes and d-l-nodes from cycles X E CCCd [O = 1 I are included

in TO. The cross arcs between nodes of level 0 are still free and we can use them to add all O-nodes

and d-1 -nodes from the remaining cycles to TO:

step 2.3:

Forevery cycle X E CCCd [O = 11, X E {5,50,61,501},

add (0, X) -, (0, Xo)

and (0, X,) + (d - 1, X,) to TO.

Two more levels are added to the O-nodes from cycles X E CCCd [0 = I] , i.e. to nodes

included in TO either in step 2.2 or in step 1.1, Therefore, the maximal distance from a node

(d - 1, X,) , X, E CCCd [O = 01, to (I , 5) is 2d + 3 + 2, i.e. 2d + 5, in TO, and in the worst case

z(X,) = z(X) = 0.

We can expand T2 in a similar way:

step 2.4:

Foreverycycle X E CCCdECi, 1 = 0,11, X E {iS,O0,51,6011,

add (1,X) + (0,X) toT2.

Broadcasting in CCCd and BFd page 44

Forevery cycle X E CCCdEO = 01, X E {6,60,61,601),

add (0, X) -9 (0, X,)

and (0, X,) -+ (d - 1, X,) to T2.

Jig. 3.4. Four cycles of CCCd after step 2.4; X E CCCd [O , 1 = 0,0] .

Broadcasting in CCCd and BFd page 45

Following the analysis for steps 2.2 and 2.3, we can conclude that the maximal distance

from a node (d - 1, Xo) , Xo E CCCd [0 = I] , to (1,6) is 2d + 2 in T2 (because the distance

from the root (I , 0) to (2,s) is only 11, and in the worst case z(xo) = 0.

After step 2.4 all 0-nodes and d-1-nodes are represented in all trees. In the following sub-

steps of step 2 we treat separately cycles X, such that z(X) is even and cycles X, for which z(X) is

odd.

step 2.5

For every cycle X E CCCd [O = 01 , X E {&oo, o l , t o l) ,

if z (X) is odd then
'

V(d-1 2 i 2 2) add (i,X) + (i - l ,X) toTO,

V (a(X) - 1 r i r 2) add (i, X) -+ (i, Xi) to TO.

After this substep, all nodes of cycles X E CCCd [0 = 01, z(X) is odd, are in TO. Since

z(X) is odd, i.e. z(X) > 0, it follows that, in TO, the maximal distance from the d-1-nodes of those

cycles to (1,G) is 2d + 4. We add d - 2 levels to these d-1-nodes. Therefore, in TO, the maximal

distance from any of their descendants to the root (1,a) is 3d + 2.

Also, all nodes (i, Xi) , (a(X) - 1 2 i 2 2) , X E CCCd [O = 01 and z (X) is odd, are

included in TO. However, if z (X) is odd then z (Xi) , (a(X) - 1 2 i 2 2) , is even, and Xi is in

CCCd [O = 01 as well. Therefore, we only need to add to TO the remaining nodes from those

cycles for which z(X) is even:

step 2.6

For every cycle X E CCCd 10 = 01 , X @ {5,50,&, 501) ,

if z (X) is even then

V (d - i r i 2 a (X) + l) add (i ,X)+(i-1,X)

and (2, X) -+ (1, X) to TO.

In this step, we only add one more level to nodes (2, X) , X E CCCd [0 = 01 and z(X) is

even, i.e. we add one level to nodes included in TO during step 2.5. We also add d - 1 - a (X) lev-

Broadcasting in CCCd and BFd page 46

els to the d-1-nodes of the cycles. X E (6, 60, 01, 001} and thus a(X) > 1. Therefore, the height of

TO after step 2.6 is 3d + 3.

T2 is expanded in a similar way:

step 2.7

For every cycle X E CCCd [O = 11 , X E (8, eo, 61, Ool} ,

if z (X) is odd then

V (d - 1 2 i 2 2) add (i,X) -+ (i - l ,X) toT2,

V (a(X) - 1 2 i r 2) add (i, X) -+ (i, Xi) to T2.

*

For every cycle X E CCCd [O = 11 , X E (0, 50, el, col} ,

if z (X) is even then

V(d -1 2i2o!(X) +l)add (i,X) -+ (i - l ,X)

and (2,X) -+ (1,X) toT2.

Following the analysis for TO and taking into account the fact that the distance from

(1,6) to (2, O) is only 1, we can conclude that the height of T2 does not exceed the height of TO.

Lemma 3.3:

After step 2.7, for every cycle X e { 6, 50, 81, 6ol } ,

if X E CCCd [I = 11 then V(a(X) s i l d , 1)

if X E CCCd [I = 0] then V (0 l i l d - 1)

and

i f X ~ CCCd[O,l =1,O] then V (a (X) s i I d , l)

if X E CCCd[O,l = 1,1] then V (0 l i s d - 1)

if X E CCCd [0 = 0] then V (0 l i s d - 1)

and

if X E CCCd[O,1 =O,O] then V(a(X) l i r d , 1)

if X E CCCd[O,1 =0,1] then V (0 s i l d - 1)

if X E CCCd [O = 11 then V (O l i < d - 1)

(i, X) E T I ,

(i, X) E T I ;

(i, X) E TO,

(i, X) E TO,

(i, X) E TO;

(i, X) E T2,

(i, X) E T2,

(i, X) E T2.

Broadcasting in CCCd and BFd page 47

7 / ... "
(x)/ 3'

z(Y) is even

fig. 3.5. TO and T2 in two cycles of CCCd[O,l = 1,1] after step 2.7.

Proof: The proof follows from Lemma 3.2 and the fact that in substeps 2.1 through 2.7

Broadcasting in CCCd and BFd pane 48

tree T I was expanded to cover all 0-nodes of cycles X E CCCd [I = 01 , tree TO was expanded to

cover the 0-nodes of cycles X E CCCd [O,1 = 1, I] and all nodes of cycles X E CCCd [0 = 01 ,

and tree T2 was expanded to cover all 0-nodes of cycles X E CCCd [O,1 = 0, I] and all nodes of

cycles X E CCCd [O = 1 I .0

Observe that in steps 2.5 and 2.7 not all descending and cross arcs from cycles X, z(X) is

even, were used. In particular, the arcs between levels a(X) and 2 are still free. Therefore, we can

use them now:

step 2.8

For every cycle X +z (6, 60, 81, Got } ,
'

z(X) is even,

V(a(X)-1 2 i 2 2)

add (i+ l ,X) + (i,X)

and (i, X) + (i, Xi) to T I if X E CCCd [I = I] or

to TO if X E CCCd [O,1 = 1,0] or

toT2if X E CCCd[O,l =0,0].

After this substep, all nodes of all cycles X E (6, 60, 61,) are included in all trees. We

add a(X) - 2 levels to nodes included to the their corresponding trees in step 1.1. Therefore, the

heights of all trees remain the same.

Finally, we have to take care of the cycles containing the originators of Ta, Tb, Tc and Td

to make the trees ADST. Observe that all nodes (i, Y) of those cycles, where 2 < i I d - 1 , are

already in two different trees after step 1. For any of the four cycles we call the trees T and 7. T is

the tree which contains the ascending binary subtree built from node 2, Y in step 1.1 and is the

other tree.

Broadcasting in CCCd and BFd page 49

z(X) is odd

z(Y) is even

fig. 3.6. TO, T I and T2 in two cycles of CCCd[O,l = 1,1] after step 2.

Broadcasting in CCCd and BFd page 50

step 3:

step 3.1 For Y E {Oo, 8ol)

add (1, Y) -+ (1, Y1) to T.

step 3.2 For Y E { to, 801)

add (1,Y) -+ (0,Y) to 7.

step3.3 ForY E {Oo,Ool} V (d -1 2 i 2 2)

add (i + 1, Y) -+ (i, Y) to 7.

remove (i, Yi) + (i, Y) from T and

add (i, Y,) -+ (i, Y) to T2.
'

step 3.5 For Y E (50, co1 }
add (d- l ,Y)-+(O,Y)and

(2,Y) -+ (1,Y) toT2.

step 3.6 For Y E (to, 801 }

add (0, Y) -+ (0, Yo) to 7.

step3.7 Add (d- I, ti1) -+ (O,tl) and (2,t1) -+ (l , t l) to T2.

step3.8 F o ~ Y E {8 ,61) ,V (d -12 i22)

add (i+ l ,Y) + (i,Y) toTO.

step 3.9 Add (0,01) + (1, il) to TO.

The purpose of the first three substeps is to ensure that all nodes from cycles to and 801

are represented in both trees -- TO and TI. After substep 3.5, all nodes of those cycles are included

in T2 as well. Substep 3.6 extends TO to reach the cycles 6 and 51. The next substep is to ensure

that all nodes of 81 are in T2. The last two substeps include all nodes of cycles 80 and gal to TO.

In all four cycles we build branches of TO or T I of height d-2 starting from nodes of small

distances from (1,8) (6 at the most -- the extension of TO in 01). We add at most two levels to T2

to nodes reached during step 1.1 or step 2, and since its height after step 2 was 3d - 1 , it follows

that the height of the trees remains at most 3d + 3. This construction does not interfere with the

arcs used at the previous steps, therefore:

Broadcasting in CCCd and BFd page 5 1

Theorem 3.1:

There exist 3 ADST in CCCd of maximum height 3d + 3.

jig. 3.7. Arcs added to TO, T1 and T2 during steps 0 and 3.

3.2 Four Arc-Disjoint Spanning llrees in the Butterfly graph

In this section we introduce an algorithm for building four ADST of BFd of height 2d+l,

Broadcasting in CCCd and BFd page 52

rooted at node (O,6) . We call the four trees TO, TI, T2 and T3. They are constructed in two

phases. During the first phase we build the trees in such a way that each of them covers half of the

nodes in BFd. During the next phase we expand the trees to include all nodes of BFd.

3.2.1 Phase 1.

First we build two ascending binary subtrees of BFd of height d-1 rooted at (1,0) (TO)

and at (1, EO) (Tl). Their leaves are d-nodes, i.e. 0-nodes. All cycles of BFd[O = 01 are represented

in TO and all cycles of BFd[O = 11 are represented in TI (Lemma 2.2). The two sets of cycles are

disjoint and therefore TO and TI are vertex disjoint and therefore arc disjoint.
1

We connect both trees to the originator (O,0) (fig.3.7a). The two trees in BF4 are shown

on fig.3.7a. According to Lemma 2.1 each cycle of BFd is first reached through its al-node in

either TO or TI. Thus, following Property 2.4, we can state that TO and TI are two arc-disjoint trees

rooted at (O,0) , such that:

V(XE BFd[O=O])V(a l (X)I i Id) ((i,X) E TO) and

V(XE BFd[O = l]) V (a l (X) I i s d) ((i,X) E T I) .

We extend TO and TI to cover all nodes in their corresponding cycles, using the following

algorithm:

V(XE BFd[O=O])

V(OsiSal(X)-2) add (i,X) -+ (i i - l ,X) toTOand

V(XE BFd[O=l])

V(O~i<otl(X)-2) add (i,X) 4 (i+I ,X) toT1.

Notice that arcs are added only within the cycles. The new arcs were not used before.

Therefore, TO and TI are still arc-disjoint and also they cover all nodes in their cycles:

Lemma 3.4:

After phase 1 TO and T1 are two arc-disjoint trees rooted at (0,a) and:

V((i,X),XE BFd[O=O]) (i,X) E TO and

V((i,X),XE BFd[O=l]) (i,X) E TI .

Broadcasting in CCCd and BFd page 53

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

fig.3.7a. TO and T I in BF4.

Broadcasting in CCCd and BFd page 54

During phase 1 only ascending arcs were used to build the two trees. Here is an important

property of the arcs of BFd:

Property 3.1:

All arcs of BFd are either ascending or descending and each arc is

of exactly one kind.

Proof: Let consider an arbitrary node (i, X). According to the definition of BFd it has four

arcs: to (i+l, X), (i+l, Xi), (i-1, X) and (i-1, Xi.l), where i+l stands for i+l mod d and i-1 stands for i-

1 mod d. Apparently, the first two arcs are ascending and the second two arcs are descending.

Let suppose that there exists a descending arc (j, X) + (j - 1, X) which is identical to

(i, X) + (i + 1, X) . Then j = i and (j-1 mod d) = (i+l mod d), i.e. (i-1 mod d) = (i+l mod d), which is

only true for d = 2. However, in our presentation we consider BFd's such that d 2 3, therefore the

arc (i, X) + (i + 1, X) is only ascending.

Suppose that there exists a descending arc (j, X) + (j - 1 X -) identical to

(i, X) + (i + 1, Xi) . Then again i = j and (j-1 mod d) = (i+l mod d), which is impossible for d 2 3.

Therefore, the arc (i, X) + (i + 1, Xi) is only ascending. Similarly, we can show that the other two

arcs of (i , X) are only descending. 0

Since we only used ascending arcs so far it is possible to build two other arc-disjoint trees

with similar properties using only descending arcs. We construct two descending binary subtrees

of BFd of height d-1 rooted at (d - 1,6) (T2) and at (d - 1, ijd - 1) (T3). Again, those two trees

are arc disjoint (consequence of Lemma 2.4). The first node added to each cycle represented in

those trees is the cycle's P-node (Lemma 2.3). We connect the trees to the originator (O , 6)
(fig.3.7b) and extend them to cover all nodes in their cycles:

V(XE BFd[d-1 =0])

V(dri2P(X)+2) add (i,X) + (i - l ,X) toT2and

V(XE BFd[d- 1 = 11)

V(d2i2P(X)+2) add (i,X) + (i-l ,X) toT3.

Broadcasting in CCCd and BFd page 55

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

fig. 3.7b.T2 and T3 in BF4.

Broadcasting in CCCd and BFd page 56

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

fig. 3.8. T2 and T3 in BF4 after phase 1. The extensions covering all nodes in a cycle are only

shown for four cycles.

Broadcasting in CCCd and BFd page 57

Only descending arcs are used and the trees are preserved arc-disjoint. Therefore, TO, TI,

T2 and T3 are mutually arc-disjoint after phase 1 and

Lemma 3.5:

After phase 1 T2 and T3 are two arc-disjoint trees, such that:

'if ((i, X) , X E BFd [d - 1 = 01) ((i, X) E S2) and

V((i ,X),X€ BFd[d-1 =I]) ((i,X) E S3) .

3.2.2 Phase 2

During this phase we extend all trees to cover all nodes of BFd. We use only ascending

arcs for TO and TI and only descending arcs for T2 and T3. Again, we first show how to extend TO

and TI and then apply the same approach to T2 and T3.

Let us look at TO and TI after phase 1 (fig. 3.8 shows the other two trees after phase 1).

Each of them covers half of the cycles of BFd. All straight ascending arcs are used except for the

ones pointing to al-nodes, since all al-nodes were reached via cross arcs. Also, we showed that

only few of the ascending cross arcs were used during phase 1 -- those pointing to the al-nodes.

But the al-nodes have a straight in-coming ascending arc free and thus we can inform them via

that straight arc.

Our algorithm starts from all 0-nodes, which are leaves of a tree T (TO or TI). For every O-

node, we add its ascending cross arc to T if the arc was not used before. Thus, all nodes at level 1

of the opposite tree but the al-nodes are included in T. In fact, the only a 1 -node at level 1 with

already used in-coming ascending cross arc is (1, 50) . At the end of the algorithm we show how

to add this node to TO.

Now for every node (1, X) included to T in the previous step we add its out-going ascend-

ing cross arc to T if the arc was not used before. After that all nodes at level 2 but the a1 -nodes are

included in both trees. Since we have already included all 1-nodes, except (1, 00) , in both trees,

we can reach the al-nodes of level 2 using straight arcs of the type (1, X) (2, X) . Therefore,

after this step all nodes of level 2 are informed in both trees. We continue with this procedure level

Broadcasting in CCCd and BFd page 58

by level until all nodes of level d are reached. Then we add the arc (0, Go) + (1, ti0) to TO.

We formally describe the algorithm and prove that after phase 2 TO and TI are two ADST

of BFd.

step 0: For every node (0, X), X # 5, from tree T (TO or Tl), add

(0, X) + (1, X,) to the same tree T.

Notice that all these arcs are not used yet, since ascending cross arcs were only used so far

to add a1 -nodes. a1 (X) = 1 only for E0 and the arc (0,O) + (1, 50) is not used during this step.

step i: For every node (i, X), a1 (Xi) # i + 1 ,added to some tree T (TO or TI)

during step i-I, add

(i, X) + (i + 1, Xi) to T.

For every node (i, X), a1 (X) = i + 1, added to T during step i - 1, add

(i, X) + (i + 1, X) to T;

repeat step i for all 1 I i I d - 1 .

Those arcs are not used yet, since ascending cross arcs from nodes (i, X) of T were used so

far to add nodes of the type (a(X), X) to T and the arcs of that type are not used during these steps.

step d: Add (O,EO) -+ (l ,EO) toTO.

First we have to show that after this algorithm is performed both TO and TI are still trees,

i.e. every node from TO (from TI) is reached exactly once. We already know that after phase 1 TO

(TI) is a tree. After phase 1 TO (TI) covers nodes (i, X) such that X[O] = 0 (X[O] = 1 for T1) (Lemma

3.4).

During step 0 of phase 2 nodes (0, X) of tree TO (tree TI) are connected to nodes (1, Xo).
-

According to the definition, Xo[O] = X [0] = 1 (Xo[O] = 0 for TI). Therefore, the new nodes added

to TO (TI) belong to cycles never reached in TO (TI) before. In each subsequent step j of phase 2

we add to TO (TI) nodes of levels j+l, therefore they were not included in TO (Tl) during the pre-

vious steps of phase 2. Also, the new nodes belong to cycles with labels different from the labels

Broadcasting in CCCd and BFd page 59

of the parents' cycles in at most one bit, which is at position different from 0. Therefore, all new

nodes added to TO are from cycles X, such that X[O] = 1 (all new nodes added to TI are from cycles

X, such that X[O] = 0). Therefore, those new nodes were not included in TO (TI) during phase 1.

Therefore, all new nodes are added to TO (TI) exactly once. 0

Lemma 3.6:

TO and TI are arc-disjoint spanning trees of BFd.

Proof: TO and TI are arc-disjoint after phase 1 (Lemma 3.4). In phase 2 only unused arcs

are added to the trees and no arc is added to both of them. Therefore the trees remain arc-disjoint.

Also, nodes informed during phase I in TO (TI) are never reached again in the same tree. TO (TI)

covers all nodes in BFd[O = 0] (BFd[O = 1 for TI) after phase 1 (Lemma 3.4), i.e. each of the trees

had d2d-1 nodes. During phase 2 d2d-1 new nodes are added to each tree (2d- ' - 1 to TO and

2d - ' to T I in step 0. (d - 1) (2d-) to both trees in steps 1 through d-1 and 1 to TO at step d).

Therefore, TO and TI contain d2d different nodes and thus they are spanning trees of BFd. 0

Only ascending arcs were used to build the trees. Therefore, we can extend T2 and T3 in a

similar manner using the remaining descending arcs:

step0: For every node (0, X), X#G, from tree T (TO or TI), add

(0,X) + (d- l ,Xd- ,) tothesametreeT.

All these arcs are not used yet, since descending cross arcs were only added so far to

nodes of the type (P(X), X). P(X) = d-1 only for &j- 1 and the arc (0,O) + (d - 1, Od- 1) is not

used during this step.

step i: For every node (i, X), p (Xi - # i - 1 , added to some tree T dur-

ing step i-1 , add

(i,X) + (i - l ,Xi - l) toT.

For every node (i, X), P(X) = i-I, added to T during step i-I, add

(i, X) + (i - 1, X) to T as well;

repeat step i for all 1 5 i c: d - 1 .

Broadcasting in CCCd and BFd page 60

fig. 3.9. Arcs added to T2 in BF4 during phase 2. Arcs added to T2 and T3 in the beginning of

phase 1 are also shown.

Broadcasting in CCCd and BFd page 6 1

All these arcs are not used yet, since descending cross arcs originating from (i , X) were

used so far to add nodes of the type (P(X), X) and the arcs of that type are not used during these

steps.

stepd: Add (0,6,-~-~) -+ (d-1,Od_l) toT2.

Clearly, all four trees are arc-disjoint and T2 and T3 are 2 ADST of BFd.

Theorem 3.2:

There exist 4 ADST of BFd rooted at (O,6) of maximum height 2d+l.

Proof: During phase 1 we build binary subtrees of height d-1 and add a single arc from

(0,6) to their roots. Then we add at most d-1 levels to their leaves. Therefore, all four trees are of

height 2d - 1 after phase 1. Phase 2 takes d+l steps, i.e. at most d+l new levels are added to nodes

(0, X), which are of distance d from (0,O) in any of the trees. Therefore, the height of any of the

four trees is at most 2d + 1. 0

3.3 Two Arc-Disjoint Spanning Rees in the Butterfly graph

We build an ascending binary subtree of BFd of height d rooted at (O,6) and call it TO.

We build a descending binary subtree of BFd of height d rooted at (O,8) and call it TI. According

to Lemmas 2.1 and 2.2 all cycles of BFd are represented in both trees and are first reached through

their a1 -nodes in TO and their P-nodes in TI. Therefore, according to Property 2.5 we can state:

Lemma 3.7:

For every cycle X E BFd V (a1 (X) I i I d) (i, X) E TO and

V(0 5 ilP(X)) (i, X) E TI.

We remove arc (d - 1,8) + (0,6) from TO and arc (I ,@ + (0,6) from TI, since there

is no need to send the message to the root (O,6) . We consider two types of cycles of CCCd.

We expand the trees in each cycle X for which a1 (X) - P (X) 2 as follows: LSJ

Broadcasting in CCCd and BFd page 62

fig. 3.10. The new arcs are shown in the cycles.

I XI is even.

V(01ir Ld/2J -1) add (i,X) -+ (i+ l ,X) toTO;

V(a1 (X) l i 2Ld /2J +2) add(i, X) + (i- 1, X) to TO and

V (d 2 i 2 a l (X) +1) add(i,X) -+ (i - l ,X) toT1.

Since a 1 (X) - p (X) 2 Ld/2 J it follows that a1 (X) > L d/2J and therefore no ascending

straight arcs of levels lower than Ld/2J were added to TO before. It also follows that

Broadcasting in CCCd and BFd page 63

P(X) c /d/2 J and therefore no descending arcs between levels higher than Ld/2 J were added to

TO before. Therefore, it is possible to perform the step.

We add at most Ld/2 J new levels to either tree in those cycles. The trees remain arc-dis-

joint and all nodes of cycles X, a1 (X) - (X) 2 Ld/2 J and [XI is even, are represented in TO.

However, the nodes (i, X) , where p (X) + 1 5 i 5 a1 (X) - 1 are only in TO, but not in TI.

1x1 is odd.

V(d> i>Ld/2J +2) add (i,X) + (i-1,X) toT1;

V(p(X) s i sLd /2J -1) add(i,X) + (i+ l ,X) toT1 and

V (O I i s p (X) -1) add(i,X) + (i+ l ,X) toTO.

We add at most Ld/2J new levels to both trees, while preserving them arc-disjoint. All

nodes of those cycles are in TI. The nodes (i, X) , where P (X) + 1 < i 5 a1 (X) - 1 are only in TI,

but not in TO. However, their cross neighbours are in a cycle Y such that a1 (Y) = a1 (X),

p(Y) = P (X) and 11x1 - lYll = 1. Therefore fi (Y) + 1 < i<a l (Y) - 1 and IYI is even and thus

all nodes of Y are in TO. Also, the cross links of the nodes (i, X) , P (X) + 1 I i s a1 (X) - 1 , are

not used yet. Therefore, we can use these cross links to add the cross neighbour of (i, X) to T I and

to add (i, X) to TO. This means that the height of the trees increases by at most 1 and is therefore at

most d + Ld/2 J + 1 . All together Ld/2J+ I levels are added to the trees in those cycles.

For the rest of the cycles X, such that a1 (X) - P (X) c Ld/2 J , do the following:

((X) a (X) I) add (i,X) + (i+ l ,X) toT1 and

add (i+ 1, X) + (i, X) to TO.

Since a1 (X) - p (X) < Ld/2 J it follows that at most L d/2 J new levels are added to the

leaves to TO and TI, which are of distance from (0, i) not exceeding d, and all nodes (i, X) ,

p (X) < i 5 a1 (X) , are in both trees while the trees are still arc-disjoint because those arcs were

not used before. Notice that every other node (i, X) from those cycles has a cross arc in TOTTI

which connects it to a node (a (Y), Y) (resp. (P (Y), Y)) in some cycle Y, such that

a1 (X) - p (X) < Ld/2J. Therefore, this node of Y is already represented in both trees. The

Broadcasting in CCCd and BFd Page 64

reverse arc of the cross link connecting the two nodes has not been used yet. We add (i, X) to TI

(TO) using the reverse arc, thus increasing the distance from the root of the trees by at most 1.

,,
<I '.. (X) ,./ - To

'.> '.... ,,,-'
.,.' .@..*?y.-.~

.00000000000,0* */I-
T' /!-

fig. 3.11.

All nodes of BFd are represented in both trees. Therefore,

Theorem 33:

There exist two ADST of BFd of height d +

3.4 Two Arc-Disjoint Spanning n e e s in the Cube-Connected Cycles graph

We build an ascending binary subtree of height d-1 rooted at (1,8) and call it TO. We

build another ascending binary subtree TI rooted at (I , 80) of height d-I. TO and TI are arc-dis-

joint and according to Lemma 2.2 all cycles of CCCd[O = 01 are represented in TO and all cycles of

CCCd[O = 1 J are represented in TI. The height of the trees is 2 (d - I) , since every non-leaf node

has a compound arc to one of its children. We add (0 , + (I ,) to TO and

(0,0) -+ (0, 00) -+ (1,0) to TI and thus their height increases to 2d - 1 and 2d respectively.

Broadcasting in CCCd and BFd page 65

Broadcasting in CCCd and BFd page 66

All leaves of TO and TI are 0-nodes. For each X, such that (0, X) is in some tree T we add

(0, X) (0, Xo) to T. The height of both trees increases by 1 and is 2d for TO and 2d + 1 for TI.

In both trees the first node reached of each cycle X E T is the cycle's a-node. This is due

to Lemma 2.1 and the fact that compound arcs are used to build the trees and their hop-nodes are

the a-nodes of the cycles. Thus, in every cycle X all nodes (i, X) , a(X) I i I d - 1 are in some tree

T and node (0, X) is in both trees.

This is very similar to what occurs when 2 ADST in BFd are built (see section 3.3) and

therefore, we can extend the trees using the same approach. We consider again two types of cycles:

(I) cycles X, such that a (X) r Ld/2 J and (2) cycles X, such that a (X) < Ld/2J.

For case (1) we apply the algorithm used for case (1) in section 3.3. The only difference is

that we use a(X) instead of cxl(X) and 0 instead of P(X). Again, the algorithm adds at most

Ld/2 J + 1 new levels to the trees and preserves them arc-disjoint. Similarly, for case (2) we use

the algorithm for case (2) from section 3.3. The trees are again arc-disjoint and they cover all

nodes of CCCd. Therefore:

Theorem 3.4:

There exist two ADST in CCCd of height 2d + + 2. L21
3.5 Upper bounds on broadcasting in CCCd and BFd under the various models

Given the arc-disjoint trees described in this chapter and the broadcasting algorithms

shown in Chapter 1 we can prove several upper bounds on the broadcasting time under various

models.

3.5.1 Full-duplex links

We use directly the results from this chapter to show upper bounds on the broadcasting

time in CCCd and BFd for the link-bound and the processor-bound communication.

Broadcasting in CCCd and BFd page 67

Lemma 3.8:

Br (CCCd) 2 (g + JV~ (2 ADST),

2

8,. (cccd) r (g+ ,/+) (3 ADST),

(2 ADST),

' Proof: All bounds are derived from Lemma 1.6 by substituting the values for 2 and A

ADST of CCCd and BFd respectively (Theorems 3.4, 3.1, 3.3 and 3.2). 0

The chromatic index of CCCd is q(CCCd) = 3 and q(BFd) = 4 (see fig. 3.12). Therefore,

we can use theorems 3.4, 3.1, 3.3, 3.2 and apply Lemma 1.7 to obtain upper bounds on the broad-

casting time in CCCd and BFd for processor-bound communication:

Lemma 3.9:

BFI (cccd) L (E + J-)~ (2 ADST),

BF,(CCCd) r (a+ .-./-) (3 ADST),

BF,(BFd) S (&+ ./m) (4 ADST).

3.5.2 Half-duplex links

For CCCd we use Lemma 1.8 multiplying by two the results from lemmas 3.8 and 3.9:

Broadcasting in CCCd and BFd page 68

Labeling of CCCd for odd and even values of d

Labeling of BFd for odd and even values of d

f ig . 3.12.

Lemma 3.10:

BM(CCCd)S(&+

(3 ADST),

Broadcasting in CCCd and BFd page 69

We can use the same approach for BFd as well. Notice, however, that two of the four

ADST shown in section 3.3 (TO and TI) are exclusively built out of ascending arcs and each arc in

BFd cannot be both ascending and descending (Property 3.1). Therefore, those two trees are not

only arc-disjoint but also edge-disjoint spanning trees of BFd. Therefore, we can broadcast in par- i:

allel along the two trees (of height 2d+l) under the H* model (using Lemma 1.6). Given those two

tre& and the fact that q(BFd) = 4 and Lemma 1.7 we can derive an upper bound under HI as well:

Lemma 3.11:
2

3.5.3 Comparison between the bounds obtained using different number of ADST

For each graph and each model we have two upper bounds depending on how many

ADST are used. We want to compare the bounds and determine which one is better for any given

length L of the broadcasted message. Clearly, this depends on the size of the message given all

other parameters are fixed.

We define cM(Gd) to be the difference between the bound derived from 2 ADST for graph

Gd under model M and the bound derived from A ADST for the same graph and model. For

instance,

eF (CCCd) = (+ (E + J ~) ~ .
This is obviously a growing function of L, since the left term of the above expression

Broadcasting in CCCd and BFd page 70

grows faster than the right one. Also, for L = 0 the function is negative. Therefore, if we can find

some value of L, Lo, for which E< (CCCd) = 0 , than for 0 < L < Lo using 2 ADST gives tighter

upper bound and for L > Lo using 3 ADST gives better upper bound.

We substitute Lz:

z
i.e. we use variable I = instead of L.

7
It is our god to find some I, = Lo, for which E< (CCCd) = 0.

E< (CCCd) = ((J+/Tr- (&+, /m)2)p

and since &+ /-> 0 and &+ - s 0 we can conclude that

eF (CCCd) = 0 for some I = lo, such that

We denote lo for this function as lo< (CCCd) :

log (CCCd) =
, / m - , / 2 d + ~ d / 2 ~ + 1

Table 3.1 displays some values of lor (CCCd) for different values of d. For example, for

d = 10, if the length of the message L < Lo, i.e. Lz c 18.4820, it is faster to broadcast under F* in

CCCd using 2 ADST instead of 3 ADST of greater height.

The same reasoning applies to CCCd under F1 and BFd under both F* and F1. Similarly,

to loF (CCCd) we define

and

Broadcasting in CCCd and BFd page 7 1

IOF1 (B Fd) = (^j3 (2d
+ I) - 4 3 (d + L d / 2 J + I)

A- 1

Under the half-duplex model we simply double the time for all bounds for CCCd and

therefore

lot4 (CCCd) = log (CCCd) and

For BFd we only have one bound for each model and therefore E,,. (BFd) and

cH1 (BFd) are simply not defined.

Table 3.1: Values of lo for various models

BFd, F1

2.935

2.194

4.167

3.436

5.412

4.684

6.662

5.934

7.913

7.187

9.166

8.440

10.419

9.693

d

3

4

5

6

7

8

9

10

11

12

13

14

15

16

CCCd, F*

14.156

10.730

15.909

13.240

18.176

15.841

20.628

18.482

23.169

21.144

25.759

23.817

28.379

26.498

CCCd, F1

8.529

6.620

9.938

8.359

11.550

10.127

13.240

1 1 .909

14.968

13.697

16.718

15.489

1 8.482

17.284

BFd, F"

4.710

3.348

6.220

5.022

7.826

6.695

9.463

8.369

11.113

10.043

12.771

11.717

14.433

13.39 1

Scattering in CCCd and BFd page 72

CHAPTER 4

SCATTERING IN CCCd AND BFd

In this chapter we describe our algorithms for scattering under the linear model of commu-

nication for both CCCd and BFd networks. Our main approach is to use two phases of scattering.

In the first phase we scatter along perfectly balanced binary subtrees of CCCd and BFd. We assign

a cycle to every node from each subtree. In the end of the phase, every node of the trees has part of

the information to be further scattered within its cycle. To minimize the time we use several dis-

joint trees and pipeline different parts of the information for every cycle along different trees. In

ph6e 2 we scatter in all cycles of CCCd and BFd in parallel using multiple originators.

4.1 Cube-Connected Cycles

The scattering algorithm described in Chapter 1 is modified for CCCd. CCCd is vertex

transitive and therefore we can assume the originator to be (O,0) .

4.1.1 Phase 1

In this phase we build three binary subtrees of CCCd and scatter messages of size

M = * along each of the trees. At the end of the phase each node of the trees confains a third of
3

the information needed for its assigned cycle. Cycles are assigned in such way that each cycle

receives the information for its nodes from three different originators.

First we show how to build and scatter along one of those trees (TO), and then we describe

the algorithms for the other two trees -- T I and T2.

We build an ascending binary subtree of height d rooted at (0,g) . It is a perfectly bal-

anced binary tree and therefore we can scatter in the tree using the scattering algorithm described

in Section 1.2.1.

However, we only want to use the part of the tree, which is in CCCd [0 = 01 . We remove

Scattering in CCCd and BFd page 73

node (0, Go) , the subtree rooted at (0, Go) and the arc (0,c) + (0, Go) from the tree. The result-

ing tree is called TO. The height of TO (we ignore the hop-nodes for now) is d. Every non-leaf node

of TO (except for the root) is connected via a straight arc to one of its children and via a compound

arc to its other child.

We can scatter in TO in the same way we would scatter in a perfectly balanced binary sub-

tree of height d, rooted at (0,E) . This means that at each step i , 1 < i I d , node (0, c) sends to

node (1,6) a packet of size 2 h - i ~ , comprised of the messages for all nodes of distance d - i + 1

from (0,Z) in TO. During every step i, 2 I i < d, each node (j, X) , which has received during step

i - 1 a packet from its parent in TO, splits the packet into two equal parts. Each of the parts contains

the ihessages for the nodes in one of the branches of (j, X) . Node (j, X) sends the two packets in

parallel to its children in TO.

Definition:

Pi(j, X) denotes the packet which node (j, X) has to receive during step i

of the scattering algorithm in TO.

Every non-leaf and non-root node of TO has a compound arc to its cross child. It is not

possible to send a packet over a compound arc in a single communication. For that reason, we split

each step of the above described algorithm into 2 substeps, called substep 1 and substep 2.

Every packet Pi(j, X), 1 I i < d - 1 , contains the information for packets Pi + + 1, Xj) and

Pi + l(j + 1, X) . We refer to those two packets as Pri(j, X) and Prri(j, X) , respectively. For simplicity,

we say that a packet 'contains other packets' instead of 'contains the information for other pack-

ets'.

Every node (j, X) of TO, which has to receive a packet Pi(j, X), 1 I i < d - 1 , receives the

packet in two substeps of step i. In substep 1, node (j, X) receives Pri(j, X) and in substep 2, it

receives Prfi(j, X). This way, it is possible for (j, X) to forward Pri(j, X), which is Pi + + 1, XI), to

its cross child during substep 2 of step i. Pi + (j + 1, XI) is sent to the hop-node -- (j, XI) . Thus, the

hop-node can send Pi + + 1, Xi) to (j + 1, Xi) during the next step -- step i + 1. During step i + 1

node (j, X) forwards Prfi(j, X), which is Pi + ,(j + 1, X), to its straight child -- (j + 1, X) .

Scattering in CCCd and BFd page 74

substep
step 3

substep

substep

step 2

substep

substep

step 1

substep

1-1 packets sent from (O,6) at step 3.1 packets sent from (0,O) at step 3.2

.............. .;,. packets sent from (0,8) -at step 2.1
.............

packets sent from (0,5) at step 2.2
......................

&q2<?.rx<.w 1 packets sent from (0,@ at step 1.1 $g ..FA:..

p ,,,A:. ..ix packets sent from (O,6) at step 1.2
..., ..%...::*

fig.4.l. Scattering in TO. Observe that both nodes at level 2 -- (2,0) and (2,6,) receive their

packets at the same time.

More formally, the algorithm for scattering in TO is:

Scattering in CCCd and BFd page 75

step i, 1 l ' i l d - 1

substep 1

substep 2

step i, 2 I i l d - 1

substep 1

substep 2

step d substep 1

for the originator (O,3) :

(0,6) sends Pri(l , & to (1,a) .
(O,6) sends Pni(l , G) to (1,G) and

(1, 6) sends Pri(l, 61, which is Pi + ,(2,6,), to (1,6,) (hop-node

of the compound arc to the cross child of (1,8)).

for every node (j, X) that during substep 2 of step i - 1 has received

a packet PtPi - X), i.e. Pi(j + 1, X) :

(j,X) sends Pri(j+l,X) to (j + l ,X) .

(j, X) sends PrPi(j + 1, X) to (j + 1, X) and

(j+ l ,X) sends Pri(j+l,X),i.e. Pi+l(j+2,Xj+l),to (j+ l ,X j+ l)

(hop-node of the compound arc to the cross child of (j + 1, X)).

(0,6) sends Pd(l ,6) to (1,6) and

every node (j, X) that during substep 2 of step d - 1 has received

a packet Pnd - , (j, X) , which is Pd(j + 1, X) , forwards this packet to

(j + l ,X) .

Lemma 4.1:

Every packet Pi(j, X), 1 < i I d, is received at node (j, X) during

step i of the scattering algorithm.

Proof: We use induction to prove the statement for every step i.

i = 1 There is only one packet to be received during step 1 -- P1(l, 6). According

to the above algorithm this packet is received at (1,6) in step 1.

i = k Assume that all packets PkQ, X) are received at nodes (j, X) in step k.

i = k+l Consider any packet Pk+ X), which has to be received at a node (j, X) during

step k+i. There are two possible cases for (j, X) :

Scattering in CCCd and BFd page 76

case 1 The parent of (j, X) is (j - 1, X) .
Therefore, Pk + , (j, X) is Prrk(j - 1, X) . According to our assumption,

Pnk(j - 1, X) is received at (j - 1, X) in step k. During the entire algorithm

packets destined for a node's straight child are always sent to the node in

substep 2 of some step. Therefore, Prrk(j - 1, X) was received at (j - 1, X)

during substep 2 of step k. Therefore, node (j - 1, X) sends Ptrk(j - 1, X),

which is Pk+ ,(j, X), to (j, X) in step k+l (see step k+l of the algorithm).

case 2 The parent of (j, X) is (j - 1, Xj - ,) .
Therefore, Pk + ,(j, X) is Prk(j - 1, XI - ,) . According to our assumption,

PWk(j - I, Xj - ,) is received at node (j - 1, Xj - ,) during step k. During

the entire algorithm packets destined for a node's cross child are always

sent to the node in substep 1 of some step. In substep 2 of that step, those

packets are sent to the hop-node of the compound arc to the cross child.

Therefore, Prk(j - 1, Xi - ,) was forwarded to (j - 1, X) in substep 2 of

step k. Therefore, node (j - 1, X) forwards Prk(j - 1, XI - ,), which is

Pk+ ,(j, X) to (j, X) in step k+l (see step k+l of the algorithm). 0

Therefore, after d steps, each node of TO receives its packet of size M.

Lemma 4.2:

Phase 1 inTOtakes time (2 d - 1) ~ ~ + (2d-1)p.

Proof: The size of each packet Pi(j, X) is 2 d - i ~ . Therefore, all steps, except for the last

one, take time 2P + 2d "MI. The last step takes a time of only P + Mr. 0

Now, similarly to TO we construct TI, building a descending binary subtree of height d

rooted at (0,a) and removing the subtree pointed to by arc (0,a) + (0, ao) . TI has exactly the

same structure as TO -- the root has only one child, every other non-leaf node has a child reached

via straight arc and a child reached via compound arc. The hop-node of the compound arc is differ-

ent from both children. Therefore, we can scatter in TI the same way we scatter in TO. The time to

complete the algorithm is again (2d - 1) Mr + (2d - 1) P.

Scattering in CCCd and BFd page 77

It is our goal, however, to scatter in parallel along both trees. We denote the packets used

during the scattering in T1 by Qi(j, X).

fig.4.2. TO and T I in two cycles of CCCd [0, 1 = 0,0] .

All cycles of CCCd[O = 01 are represented in TO (Lemma 2.2). They are reached first

through their a-nodes (Lemma 2.1 and taking into account the hop nodes of the compound arcs)

and in every cycle X all nodes with levels higher than a(X) are in TO (Property 2.4). Similarly, all

cycles of CCCd[O = 01 are represented in T1 (Lemma 2.4) and they are reached via their P-nodes

Scattering in CCCd and BFd page 78

(Lemma 2.3 and taking into account the hop-nodes of each compound arc). All nodes of X with

levels lower than P(X) are in TI (Property 2.10). We know that V (X E CCCd) a (X) 2 P (X)

(Property 2.1). Also, for all cycles, except for ai and 5, a(X) ;t P(X). Therefore,

V (X E CCCd, X #ai, X # 6) (a(X) > P(X)) .

Therefore, for all cycles, except a and 0i9 the two trees are arc-disjoint. In fact, the only

common arcs used by both trees are the ones of the type (i , 5) + (i, ti) .

Assume that d is odd. Notice that the common arcs are used only after step Ld/2J. For

example, in TO, every node (j, 6) , Ld/2 J + 1 S j 2 d - 1 uses its cross arc during substep 2 of steps

i, j G i I d - 1 . The amount of information sent during step i over the cross arc is 2 d - i - 1 M. During

those substeps the same arcs are used by TI to send the same amount of information. Therefore,

our goal is to have the information from TO for those nodes received before step Ld/2 J + 1 . Then,

we can use some idle first substeps of steps 1 through Ld/2 J + 1 to send the packets from TO over

the cross arcs, accumulate them at the hop-node and continue the normal scattering at the appro-

priate step.

Consider any packet Pi(j, a), 1 I j P , j P i I j + 1 $1 . This packet contains several other

packets, among them P,(d - j, a), where q = i + d - 2 j. This is the packet received at (d - j, 8) in

step q. Half of Pq(d - j, a) -- PJq(d - j, 8) , has to be sent to (d - j, ad -j) during substep 2 of step q.

During the same substep, node (d - j, a) has to send to (d - j, ad- j) apacket received

from TI -- Qrq(d - j, a).

Now, consider the packet Qi(d - j, a), which node (d - j, 3) receives along T I at step i.

This packet contains Qq& a), which node (j, a) receives along T I in step q. Part of this packet --
Q',(j, a) , has to be sent to (j, a,) during substep 2 of step q.

At the same time, PJq(j, 8) has to be sent to (j, 4) as well.

TO summarize, in substep 2 of step q, node (j, a) has to send to (j, $1 both P'q(i9 6) and

Q' (j, a). During the same substep, node (d - j, 0) has to send to (d - j, ad - i) both Ptq(d - j, 8)
q

Scattering in CCCd and BFd page 79

and Q '&d - j, 5).

The sire of all those four packets is the same. Also, PPq(d - j, 6) is contained in Pi(j, 6) and

aJq(j, 6) is contained in Qi(d - j, 8). Therefore, we can swap the packets as follows:

1. Remove from packet Qi(d - j, 5) the information for packet

Qq(j, 8) and make this information part of Pi& 8).

2. Remove from packet Pi(j, 6) the information for packet

P,(d - j, 5) and make this information part of Qi(d - j, 5).

In this way, the packet size remains the same; however, (d - j) is received at

(d - j, 5) during step i, as part of packet Qi(d - j, 6). Similarly, Qq(jl 5) is received at (j, 8) before

step q.

In all substeps 1, all cross arcs are idle. Substep 1 of step i+l takes time 2 d-i-2 Mz+P.

The size of P'&d - j, 6) and Q'q(j. 5) is 2d-q- ' M. Since q = d + i - 2j, it follows that

Therefore, there is enough time during substep 1 of step i+l to send P'q(d - j. 6) and

Q'q(j, 6) over the cross arcs of (d - j, 6) and (j, 6) , respectively. In this way, those packets are

received at the hop-nodes before the end of step q, because q = d + i - 2j I i + 1 , since j 5 L d/2 J .

We can apply this approach to all couples of packets Pq(d - j, 5) and Qq(i. 6).

Thus, none of the nodes in 8 receives packets from both trees after step . We don't L
have to use the cross arcs simultaneously, and the hop-nodes receive their packets from both trees

on time. Therefore, the parallel scattering in TO and T I finishes as fast as the single scattering in TO

and TI.

Scattering in CCCd and BFd page 80

Now, let us consider the other case -- d is even. The approach used above was based on

the idea of having all nodes of 5 informed earlier along one of the trees. When d is even. we can

use the same technique for all couples of packets P,(d - j, 5) and Qq(j, ", q = d + i - 2j r i + 1 ,
d d d - 1 I j 5 - - 1 , j I i j + -; however, special care must be taken of the packets for node (-, 0) ,
2 2 2

since it is reached at the same time along both trees and therefore, swapping the massages for that

node will not accelerate their receiving.

d - d -
First, let us analyze the packets received by node (-, 0) along TO -- packets P.(-, 0),

2 I2
d r i r d. Each of those packets, except for the packet received during step d, consists of two parts
2

d -
-- one part, which has to be forwarded to the straight neighbour of (-, 0) , and a second part,

2
d -

which has to be forwarded to the cross neighbour of (-, 0) .
2

Observe that it is not really necessary to forward any packets to the straight neighbour of
d - d

(-, 0) , because all nodes (j, 6) , - + 1 I j 5 d, receive their packets Pi& 6), j 5 i l d, along TI.
2 2

d - d - d
Therefore, it is sufficient to send to (-, 0) only packets P'.(-, 0), - l i l d - 1 , and packet

2 ' 2 2
d - Pd(?, 0). The total amount of information contained in these packets is

i = d/2

The size of packet pdI2(d7 8) is 2 d / 2 ~ as well. Therefore, in this packet, we can replace
2 -

d -
the information for packet P"d/2(2, 0) (we showed already Ulat there is no need to send this

d - d - d d -
packet to (-, 0)) with the information for all packets P'.(- 0), - 5 i I d - 1 , and packet Pd(-, 0).

2 2 ' 2 2
d

In this way, by the end of step - node (d, 6) receives all packets from TO which it needs for the
2 ' 2 A

u
entire algorithm. Therefore, we can use substeps 1 of steps i, - + 1 5 i 5 d - 1 , to forward to the

2
d - d -

hop-node (-, 0d/2) all these packets, except for P'.(-, 0), instead of sending them during sub-
2 ' 2

steps 2 of the same steps. Thus, substeps 2 can be used by TI.

d - d - d Now we only have to arrange for P'.(-, 0) to be received at (-, 0) before step -, so that
' 2

A
2 2

we can send this packet to the hop-node during substep 1 of step y, which will allow TI to use the
2

d arc during substep 2 of step - .
2

For that purpose, we have to speed up the information flow along cycle 6 and make it pos-

Scattering in CCCd and BFd page 8 1

d - sible for (-, 0) to receive the packet earlier.
2

Observe that during step 1 node (0,a) sends as part of Pml(l ,a) a piece of information of

size M, which is supposed to be received by node (d, 5) , i.e. the root itself, during step d. Obvi-

ously, there is no need to include this piece of information in PH1(l, 5) and we can simply remove

it from the packet.

d - Packet Pr.(-, 0), of size 2
'2

d/2 - M , is contained in PW1(1, 0).

Packet prl(l, a), which is P2(2, al), consists of Pr2(2, al) and PW2(2, al), each of size

2 d - 3 ~ , i.e. larger than 2 d/2-1M for all d 24. Those two packets have to be sent along

(1 ,T) 1) += (2,a 1) during substeps I and 2 of step 2.

We rearrange the packets and transmit them as follows:

1. In packet P'& a), replace a piece of information S, of size 2d/2- M , from the infor-
' 2

rnation for Pn2(2, with the information for packet pf.(d, 5). Execute substep 1 of step 1 as
' 2

usual. After this substep, S is still not sent to node (1,a) . Instead, pr.(d, 5) is already at that node.
' 2

2. In substep 2 of step I send PM1(1, 6) along (O,8) + (1,a) and

send pr2(2,al) along (1,8) + (l,al) and
d - send P'Jp, 0) along (I ,@ -t (2,a).

This substep finishes MT earlier for an: (0,t) -t (1,a) , because the size of PWl(l, 8)

is now only 2d- 2~ - M . It also finishes earlier for arc (1,a) + (1, 51) , because, instead of the

entire packet P2(2, 61). only P',(2, 51) was sent along the arc. Therefore, substep 1 of step 2 can

start Mz earlier along (1,a) + (1,0 . This introduces some asynchronism in the scattering

algorithm.

Packet Qd - 1(1, 8) is received at (2,6) during step 1 in place of packet Pd - l(d - 1,6) as

described earlier in this section.

3. During substep I, PI2(2, 81) is forwarded along (1, a,) + (2, GI) and Pr2(2, 6) is

sent along (1,a) -t (2,a) . Also, a packet comprised of Qd - 1(1, 5) and S is sent over the arc

Scattering in CCCd and BFd page 82

(1,G) -+ (I , 5 ,) . The size of this packet is at most 2 d - 3 ~ + M and the substep starts Mz earlier

than it starts for all other arcs. Therefore, the packet is received at the hop-node before the begin-

ning of substep 2.

d 4. Packet P'.(!, 8) is received at node (2,6) by the end of step 1. If d = 4 then - = 2,
' 2

d - 2
and therefore we have achieved our goal -- receiving pt.(d, 5) at (-, 0) before the beginning of

d d -
' 2 2

d
step - In all other cases, we forward P'.(-, 0) to its destination during the next - - 2 substeps.

2 ' ' 2 2
d Each of those substeps lasts long enough to send the packet over a single arc. Therefore, after .

d
L

d - d -
substeps, P'.(-, 0) reaches (-, 0) . This is again before step -. Therefore, we can forward

' 2 2
d

2
P'.(d, 5) to the hop-node (d, gdl2) during substep 1 of step - and use the second substep of step

' 2 2 2
d to send Q' (d, 6) to the hop-node.
2 2

Now, similarly to TO and TI, we build two trees from (0, 00) in CCCd[O = I]. We remove

the last level of those trees and call them TO' and TI ', respectively. Their height is d-1 . Then we

merge TO' and TI' into one tree and add (0,8) -+ (0, go) to it. This tree is called T2. The height of

T2 is d.

During substep 1 of steps i , 1 < i 5 d - I , (0,a) sends packets of size 2 d-i-1 M to

(0, 30) . The node scatters in TO' using the scheme which node (l,iS1) employs after step 1. Thus,

the scattering in TO' is always one substep ahead of the scattering in TO.

During substep 2 of steps i , 1 I i s d - 1 , (0,G) sends packet of size 2 d - i - ' ~ to (O,GO).

The node scatters in TI ' using the scheme employed by node (d - I, ad - 1) after step I. Thus, the

scattering in TI ' finishes at the time the scattering in TI is finished. Since the scattering in tree TO'

is one substep ahead, the common cross arcs are used by TO' and TI ' during different substeps.

During substep 1 of step d, a message of size M is sent from (O,8) to (0, ao).

In the end of the phase, all nodes from TO, TI and T2 receive a message of size M,

M = dl. Also, no link is used in both directions, and therefore we can conclude:
3

Lemma 4.3:

Phase 1 in CCCd finishes in time (2d - 1) + (2d - 1) under F' and H'.
3

Scattering in CCCd and BFd page 83

Observe that each node (i, 6) , 1 < i < d - 1, receives two messages by the end of step d --

one message from TO and one message from TI. One of these two messages is received before

step d and the other message is received during step d. This is caused by the modifications we

made in order to be able to scatter in parallel along TO and Ti . Also, arcs (i, 5) + (i, &) ,

1 s i s d - 1, are not used in step d. Therefore, in step d, nodes (i, 6) , 1 I i s d - 1 , can send one of

their messages along (i, 6) + (i , Oi) .

Similarly, each node (i, aO) , 1 I i 5 d - 1, receives two messages by the end of step d --

one along TO' and one along TI '. The scattering in TO' is always one substep ahead of the scatter-

ing in TI '. Arcs (i, 60) + (i, Ooi) , 1 < i < d - 1 , are not used during step d. Therefore, in the last

step, nddes (i, 50) , 1 I i < d - 1 , can send one of their messages along (i, 60) + (i, Coi) .

The time required to complete the algorithm remains the same. In phase 2, we use the fact,

that one of the messages is at the hop-node after phase I.

4.1.2 Phase 2

We show how to scatter in cycles 6 and 00.

Scattering in 5 and aO

We scatter in 6 from one originator -- the root (O,6) , using an algorithm similar to the

one proposed in [FrLag I].

Case 1: d odd.

We consider two subgraphs of 6 -- the array (O , 6) , (1, 6) , ..., (Ld/2 J, 6) and the array

(0,0) , (d - 1,0) , ..., (d - L d/2 j, 6) . Each of them consists of Ld/2 J + 1 nodes. We scatter in

both arrays in parallel using our algorithm for scattering in arrays presented in Section 1.2.1. The

time to complete the algorithm is therefore Ld/2J (LT + P) . Since d is odd this equals

Case 2: d even.

Scattering in CCCd and BFd page 84

In this case we split 5 into the same two subgraphs; this time, however, node (d/2,5) is

represented in both arrays, since Ld/2 J = d - Ld/2 J = d/2. Therefore, it is sufficient to send a

half of the message for (d/2,6) along each array. Thus, the first step of the scattering algorithm
L only takes time -z + 0 instead of Lz + f3 and therefore the scattering in both arrays finishes L
2

d L d -1 d
2 =

earlier, i.e. in time - (Lz + p) - -z = - Lz + - p, which is again - Lz + - P . 2 2 2 2 I;]
Since every link is used in only one direction, we can conclude that the scattering time for

cycle 8 is:

A similar idea is used for the scattering in 50. There are two originators -- (0,6) , which

contains two thirds of the information for the cycle, and (0, EO) , which contains one third of the

information for the cycle.

fig.4.3. Scattering in cycle 80.

Node (0,80) contains the entire messages for nodes of ijo. If d mod 3 = k, k # 0, K1

Scattering in CCCd and BFd page 85

k then this node also contains a message of size -L for itself. Therefore, in any case, node (0, 50)
3

has to scatter !!] messages of size L to - nodes of the cycle. We choose them to be nodes 1: 1
(i, 5,) , 1 !!] + 1 - L 31 5 i 5 1 f 1 . Node (O,aO) scatters by using the algorithm for scattering in

arrays. The algorithm requires L f l steps. After step , all messages have been sent from

(0,OO) .

Node (0,O) contains the messages for the rest of the nodes -- nodes (i,Oo), where

+ I 5 i I d - 1 or 1 <is - 3 - k i 1 - 1 :I. Node (0, i) also contains a message of size -
3 L,

k = d mod 3, for node (0, 00) .

Node (0 , i) uses the algorithm for scattering in arrays to scatter in nodes (i, 50) ,

+ 1 5 i 5 d . This scattering requires

After step 1 :I, node (O,6) originates scattering in nodes (i, 6,) , 1 5 i s - L;J-L$J by
using the algorithm for scattering in arrays. Therefore, after step , arc (0 , i) -+ (0, Go) is L f J
used for both scatterings. The packets are batched into one packet of double size. Therefore, each

step after step - , except for the last one, takes a time of 2Lz + P. The first L:l
last step take time of Lz + p .

Each link is used in one direction only, and therefore the time required to complete the

scattering in to is

Scattering in cycles X # (6, GO)

Our goal is to assign 3 originators to every cycle X E (5 , 50) . Each of the three origina-

tors has to be a node from TO, T1 or T2 and contain one third of the information which has to be

scattered within the cycle.

We assign nodes (a(X), Xqx$ and (p(X), Xacx,) to every cycle X a {a, zo} .
According to lemmas 2.1 and 2.3, all cycles of CCCd [O = 01 are represented in TO and

Scattering in CCCd and BFd page 86

TI. According to lemmas 2.2 and 2.4, all these cycles, except for 0, are reached from nodes

(a(X), X,(x,) in TO and from nodes (m), Xp(x)) in TI. a(X) # 0 and P(X) # 0 for any of them.

Therefore, every cycle from CCCd [0 = 01 , except for 0, is assigned to one node from TO and to

one node from T1. There are 2d - ' - 1 cycles in C CCd [0 = 01 (excluding 0) and there are

2d- ' - 1 non-leaf and non-root nodes in TO and 2d- ' - 1 non-leaf and non-root nodes in TI. All

leaves of TO and T1 are 0-nodes. Therefore, each non-root and non-leaf node of TO and T I is

assigned to exactly one cycle.

Similarly, every non-root node of TO' and T1' is assigned to exactly one cycle of (i

CCCd [0 = 11 (excluding to).
I

We assign every leaf (0, X) of TO to cycle Xo and every leaf (0, X) of T I to cycle X.

case 1 case2 1 I a I d - 1

fig.4.4. Originators for phase 2 in CCCd [0 = 11 .

All leaves of TO and T I are 0-nodes (i.e. nodes (0, X)) in cycles of X E CCCd [O = 01 .
Observe that X, E CCCd [0 = 1] . There are 2d- ' - 1 ,leaves in each tree TO and T I (excluding

(0,a)) and there are 2 d - ' - 1 cycles in each subset CCCd [O = 01 and GCCd [0 = 1] (exclud-

Scattering in CCCd and BFd page 87

ing 5 and 60). Therefore, each leaf of TO and TI is assigned to exactly one cycle, and each cycle is

assigned to a leaf from either TO or TI. Therefore, every cycle X E (5 , eo} is assigned to three

originators, and each originator is a node from TO, TI or T2.

We first examine the cycles X from CCCd[O = I]. We define k = d mod 3.

case 1. Cycles X e. {soil 1 < i L d - I } .

The three originators are adjacent to three different nodes of the cycle. Each originator

contains one third of the information for the cycle. The originators are denoted by (0, Xo) ,

(a, X,) , and (b, Xb) , where 0 < a < b c d . There are three possible cases:

(a) as[:] c b

k
Node (a, X,) contains a message of size -L for node (

3
I$] - !!I, X) and a message of

size L for each (i, X) , 1 i] - 1 + 1 < i s f] . We denote the set of nodes informed from

(a, Xa) by Sa.

Node (b, Xb) L for node (1 + 1 $1 + 1, X) and a message

of size L for each (i, . We denote the set of nodes informed from

(by Xb) by Sb .

Node (0, Xo) contains messages for nodes (i, X) . 1 + 1 : 1 + 1 I i 5 1 - 1 , where

the addition is modulo d. It has a message of size -L for the first and last nodes from this set
3

and a message of size L for all other nodes from the set.

During the first + 1 steps, node (a, X,) forwards to (a, X) the messages for nodes L$J

in that order. Every message, received at any node of X during some step, is forwarded during the

next step to its destination along the shortest path.

Similarly, during the first + 1 steps, (b, Xb) forwards to (b, X) the messages for 13

Scattering in CCCd and BFd page 88

in that order. Every message, received at any node of X during some step, is forwarded during the

next step to its destination along the shortest path.

The distance from (a, X,) to any node (i, X) E S, is at most I I . The distance from
L L J

(b, Xb) to any node (i, X) E Sb is also at most , and S, n Sb = 0. Therefore, in - steps, L$l L:J
each of which lasts at most Lz + P, those two originators complete their scattering.

During the first steps of the scattering in X, node (0, X,) forwards to node (0, X) all 13
information it contains, except for the message for node (0, X) . Since this information does not

exceed 1 !!I L, it is sufficient to send a packet of size L during each step. In step - + I , node 13
(0, X,) foiwards the message for (0, X) to node (0, X) .

steps, node (0, X) scatters simultaneously in two arrays:

o , , ,) (- - , X I and (Q X) , (d - l , X) , ([$ J + [$] + ~ , x) . L i J LSJ
Notice that the first packet sent along the first of those arrays reaches (a, X) during step

L Z J 1;J 3 - k + 1 at the earliest, because 0 < a. This packet is for node (- - , X) . Its size is -L.
3

Node (a, X) may still have a packet to be transmitted during the next step. This could only be the
k packet of size - L for node (-
3 13 -[$I , X) . In this case we simply batch the two packets into one

packet of size L and continue the scattering.

Similarly, we may have to batch packets for node (lgJ+L$I + 1, X) . In any case, the

entire algorithm takes - steps and each step takes time Lz + P. Each link is used in one direc- 1:1
tion only, and therefore the scattering time is

(b) L $] s a < b .

In this case we assign a second label to each node from the cycle:

Scattering in CCCd and BFd page 89

node (i, X) , 0 I i < d - 1 , is assigned a second label (d + i - b mod d, X).

Therefore, the second labels of nodes (a, X) , (b, X) and (0, X) are (d + a - b mod d, X),

(0, X) and (d - b, X) , respectively.

We can scatter in X using the second label of each node. The three originators are adjacent

to three different nodes of the cycle and their second labels are correlated as in case l(a). There-

fore, we can use the same algorithm.

The second label assigned to each node (i, X) , 0 I i I d - 1, is (d + i - a mod d, X). Nodes

(a, X) , (b, X) and (0, X) are assigned second labels (0, X), (b - a, X) and (d - a, X) , respec-

tively.

, i t follow sthat (d-a,X) I

Therefore, we can scatter in X as in case I(a), using the second label of each node.

case2. Cycles X = Ooi, 1 <isd- 1.

One of the originators is adjacent to node (0, X) , and the other originator is adjacent to

node (a, X) . Originator (a, X,) contains two thirds of the information for the cycle. Notice, how-
dL ever, that in substep 1 of step d, a message of size M = - was sent to (a, X) . Therefore, we can
3

scatter from three originators -- (0, X,) , (a, X,) and (a, X) , each containing a third of the infor-

mation for the cycle. There exist two cases:

We assign a second label to each node from the cycle:

node (i, X) , 0 < i < d - 1, is assigned a label (d + i - a mod d, X).

Therefore, the second labels of nodes (a, X) , (a + 1, X) and (0, X) are (0, X) , (1,O)

Scattering in CCCd and BFd page 90

and (d - a, X) , respectively.

Node (a, X) (original label) is adjacent to node (a + 1, X) (original label). Therefore, the

three originators are adjacent to three different nodes of the cycle -- nodes with second labels

(0, XI, (1,W and (d-a,X).

Therefore, we can scatter in X as in case l(a), using the second label of each node. The

only difference is that we use arc (0, X) + (1, X) instead of (1, X,) + (1, X) to scatter from the

originator adjacent to (1, X) . However, the first packet originating from node (0, Xo) is sent over

that arc in step - + 1 . The size of the packet is SL. The last packet originating from node M 3 k
(0, X) is sent over the arc in the same step and its size is -L. Therefore, we can batch those two

3
packets into one packet of size L and continue the algorithm as usual.

We use the sane approach as in case 2(a). We assign the same second labels. Node (a, X)

(original label) is adjacent to node (a - 1, X) (original label). Therefore, the three originators are

adjacent to three different nodes of the cycle -- nodes with second labels (0, X) , (d - 1, X) and

(d - a, X) . This time, a > d - - and therefore d - a l - < d - 1 . Therefore, we can scatter in LY L 3
X using the second labels.

In CCCd[O = 0] we have similar cases; however, one of the originators is always at (0, X)

instead of (0, X,) . Therefore, we can apply the same techniques as in cases 1 and 2 above and

keep that originator inactive during the first step of the corresponding algorithm.

The above-described scattering algorithms can be performed in parallel in all cycles.

Therefore, the time required to complete phase 2 is the time required to finish the scattering in the

worst case for all cycles.

Lemma 4.4:

Phase 2 in CCCd takes time

Scattering in CCCd and BFd page 9 1

4.2 Butterflies

4.2.1 Phase 1

During the first phase we scatter packets of size M = dl, each of which contains half of
2

the information of the d messages for a cycle. We use 2 arc-disjoint perfectly balanced binary

trees. In the end of the phase, every node of each tree contains a message of size M .

We call the trees TO and TI. TO is an ascending binary subtree of height d-1 rooted at

(0,a) . T1 is a descending binary subtree of height d-1 rooted at (O,0) . Therefore, they are 2 arc-

disjoint perfectly balanced binary trees. Therefore, we can scatter along TO and T1 in parallel using

the algorithm described in Chapter 1.

Each non-leaf node of both trees has a cross neighbour from another cycle represented in

its corresponding tree. Every cycle represented in TO and T1 is reached only once through each

tree (Lemma 2.1 and 2.3). Therefore, every non-leaf node of TO and T1 has a unique cycle adjacent

to it. If the trees were of height d rather than d-1, then their current leaves would have been non-

leaf nodes and therefore they have unique cycles adjacent to them as well.

Lemma 4.5:

Phase 1 in BFd takes time (2d- - 1) Mz + (d - 1) P under F* and H*.

Proof: The description of phase 1 assumed full-duplex links. A careful look at TO and TI

will reveal that, except for the cycle 8, they are not only arc-disjoint but also edge-disjoint, since

the only common edges used are the ones from cycle 6. This means that we can slightly modify

the algorithm used in phase 1 to ensure the usage of each link in one direction at any given time.

Obviously, we are concerned with the links of 5 only. The situation is almost identical to the scat-

tering in 6 of CCCd during phase 1 (see section 4.1.1). We can apply exactly the same approach

we used for CCCd -- swapping packets from TO and TI in the way described in section 4.1.1.

Scattering in CCCd and BFd page 92

fig.4 5. TO in BF4 after phase 1.

Scattering in CCCd and BFd page 93

0000 1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111

fig.4.6. T I in BF4 after phase 1.

Thus, we make sure that tree TO does not use the links (i, 5) + (i+ l,5), where

Scattering in CCCd and BFd page 94

14J I i I d - 1 and T I does not need the rest of the links of 6. Consequently, the scattering in TO

and T1 finishes in the same time and no common links are used. Therefore, we can conclude that

phase 1 takes the same time under both F* and H*.

4.2.2 Phase 2

We scatter in 6 from one originator -- the root (0, 6) , using the algorithm described in
- d - 1

section 4.1.2.1 Therefore, SF (O) s s,,. (0) 8 - LI + 1 p .
2

After phase 1, for all cycles X $6 , there exist two nodes adjacent to X, such that each of

them contains half of the information for the cycle. Those nodes are (a1 (X) - 1, X,,,,,) and

(P(X) + 1, Xp(,)) , and they are adjacent to (a1 (X), X) and (P(X), X) , respectively. According to

Property 2.1, those two nodes are different for each cycle X ;t 6, and therefore we have two origi-

nators adjacent to two different nodes of the ring, each containing half of the information for the
d ring, i.e. - L information units.
2

Assume without loss of generality that the originators are adjacent to nodes (a, X) and

(b, X) , and that 0 <_ a c b I d - 1 . We separately analyze two cases for d.

Case 1: d is even.

We know that a < b. Therefore, b - a > 0. We group all nodes (i, X) E X, such that

(the addition is modulo d), in one set called Sb, and the rest of the nodes -- in another set called S,.
d Both sets are of cardinality -. Also, (a, X) E S, and (b, X) E Sb. Each of the originators con-
2

d tains - messages of length L, which are to be sent to the nodes from their sets.
2

We consider two sets in order to scatter in Sb -- B1 = { (i, X) I i 2 b } u { (b, Xb) } and

B2 = { (i, X) 1 i I b} u { (b, Xb) } . Observe that B l n B2 = { (b, X), (b, Xb) } and therefore

IB1 n B21 = 2. Also, B1 u 8 2 = Sb u { (b, Xb) } and, since (b, Xb) 6 Sb, it follows that

Scattering in CCCd and BFd page 95

We scatter from (b, Xb) in 81 using the algorithm for scattering in arrays described in sec-

tion 1.2.1. The algorithm finishes in JB11 - 1 steps. During the last step, node (b, X) receives its

message Mb.

1x1 is even

fig. 4.7. Sa and Sb in ring (cycle) X; p = b-[!!$?].

1x1 is odd

Then we scatter from (b, Xb) in B2 using the same algorithm, which takes another 1821 - 1

Scattering in CCCd and BFd page 96

steps. Again, during the last step, node (b, X) receives Mb. Therefore, instead of sending Mb dur-

ing the last step of the scattering in B1, the originator (b, X) could start scattering in 82 one step

earlier. Thus, the total number of steps required to send the messages from (b, Xb) to all nodes of
d Sbis lBl\ +IB2I-3.But IB1!+\!32(= (61 uB2l +I61 n 6 2 l = -+3.Therefore,t.hetotalnum- 2

ber of steps is dl2.

Similarly, we scatter in S,, in dl2 steps, using two subsets of S, --
. { (i, X) I i r a) u { (a, S,)) and { (i, X) I i < a) u { (a, S,)) . A message of length L is sent over

every link used at each step. No link is used in two directions. Therefore, the scattering time is:

Case 2: d is odd.

Again we split the nodes into two sets -- S, and Sb.

S, contains the remaining nodes of X and the last element of Sb -- node

(b - [y] + [%I, X) . Thus, IS,I = ISb! = rd/21 and one node belongs to both sets. Each of

the originators contains the entire message for all nodes in its corresponding set but half of the

message for the common node. Again, we scatter as in case 1; however, the first message sent from

the originators is of length U2 and it is destined for the common node. We need [d/21 steps to
L perform the algorithm, because S, and Sb have rd/21 elements. The first step takes time p + -z
2

and all other steps take time p + Lz. Each link is used in one direction only, and therefore the total

time needed to complete the scattering is

Since we scatter in all cycles of BFd in parallel, the time to complete phase 2 is given by:

Lemma 4.6

Phase 2 in BFd takes time P under F* and H*.

Scattering in CCCd and BFd page 97

4.3 Upper bounds on scattering in CCCd and BFd under the various models

According to lemmas 4.3 and 4.4, the scattering time in CCCd under the F* and H* models

is at most

Since A(CCCd) = 3 we can divide each step of the scattering algorithm under F* (H*) in

three substeps, and in each of those substeps use only one link at each node. Thus, the time needed

under F1 (HI) is three times the scattering time under F* (H*). We denote d mod 3 by k.

Theorem 4.1:

If d is even then
Lz d

sf (CCCd)rsH. (CCCd)r (d2d+d+k-3) -+ (2d+--1)P,
3 2

If d is odd then

sf (CCCd) r sH. (CCCd) r (d2d + d + k) - + (2d + -) P,
3 LT L;J

Both phases of the scattering in BFd take the same time under F* and H*. According to

lemmas 4.5 and 4.6, this time is

To scatter under F1 and HI we can divide each step of the algorithm into A(BFd) = 4 sub-

steps and use only one link associated to a processor at every substep. Therefore,

Theorem 4.2:

d Lz sf (BFd)5sH. (BFd)S2 d-+ (d+[$!-l)~
4

sF1(BFd) I sH,(BFd) I 4 s F (BFd)

Conclusion page 98

CONCLUSION

In this thesis we have presented several algorithms for broadcasting and scattering in

CCCd and BFd networks under the linear model of communication.

We have shown 3 arc-disjoint spanning trees of CCCd of height 3d + 3, while the shortest

existing construction was of height 4d [FrHoglr]. We have given an explicit construction of 4 arc-

disjoint spanning trees of BFd of height 2d + 1 . To the best of our knowledge no other scheme for

4 ADST of BFd of shorter height has been proposed yet. Both constructions yield trees of a

heights close to the diameter of the graphs. In both cases the difference is of order . In addi- IS1
tion, we have shown how to build 2 ADST of even smaller heights for both graphs. The heights of

those trees differ from the graph diameter by a constant and thus they proved to allow faster broad-

casting for short messages. The results were extended to both full- and half-duplex links with pro-

cessor- and link-bound communication.

Even though our research brings the upper bounds on the broadcasting time in the studied

networks very close to the existing lower bounds it still remains to be shown if it is possible to

construct A ADST of smaller heights.

The problem of scattering under the linear cost model of communication has not been

studied for CCCd and BFd before. In our work we have presented algorithms for scattering in

those graphs. While the scattering time for CCCd differs from the existing lower bound by a term

of order dLz, the scattering time for BFd is even closer to the lower bound. In addition, our algo-

rithm for BFd applies to the half-duplex model as well.

To facilitate our proofs we have introduced the notion of compound arcs, ascending and

descending binary subtrees. Those constructions have given us the opportunity to describe our

algorithms in a uniform manner. It is our belief that the expressiveness of the constructions goes

beyond the studied networks. They may be applied to other graphs derived from the hypercube to

generate arc-disjoint trees of small depths and scattering algorithms under the linear cost model.

We have shown how to overcome the problem of scattering along a perfectly balanced binary tree I
containing compound arcs by splitting each step into two substeps in such way that after every step

all nodes involved are informed on time. Our technique could be further exploited for other hyper-

cube-derived networks as well.

In addition, more research has to be done in improving the existing lower bounds. They

are all based on general considerations and thus do not capture the specific features of the particu-

lar graph. In fact, the start-up time and the propagation time do not appear together in any lower

bound on the scattering under the linear model of communication.

Bibliography page 100

BIBLIOGRAPHY

S.Akers and B.Krishnamurthy. A group theoretic model for symmetric intercon-

nection networks. 1986 International Conference on Parallel Processing, 216-

233,1986.

EAnnexstein, M.Baumslag and A.Rosenberg. Group action graphs and parallel

architectures. SIAM Journal of Computing, 19,544-569, 1990.

J.C.Bermond and P.Fraigniaud. Communications in interconnection networks.

Proceedings Combinatorial Optimization in Science and Technology'91, 1992.

J.C.Bermond, P.Fraigniaud and J.Peters. Antepenultimate broadcasting. Technical

report, CMPT TR 92-03, School of Computing Science, Simon Fraser University,

1992.

J.C.Bermond, P.Hel1, A.Liestman and J.Peters. Broadcasting in bounded degree

graphs. SIAM Journal of Discrete Mathematics, 5, 10-24, 1992.

J.Bruck, R.Cypher and C.T.Ho. On the construction of fault-tolerant cube-con-

nected cycles networks. 1991 International Conference on Parallel Processing,

1692-1694, 199 1.

P.Fraigniaud. Communications intensives dans les architectures a memoire distri-

buee et algorithrnes paralleles de recherche de racines de polynomes. Ph.D. thesis,

Ecole Normale Superieure de Lyon, France, LIP-IMAG, URA CNRS #1398,

December 1990.

RFraigniaud and C-T.Ho. Arc-disjoint spanning trees on cube-connected cycles

networks. 1991 International Conference on Parallel Processing, 1225-1229,

1991.

Bibliography page 101

P.Fraigniaud and C-T.Ho. Arc-disjoint spanning trees on cube-connected cycles

networks. Research Report RJ 7931 (72914), IBM, January 1991.

P.Fraigniaud and E.Lazard. Methods and problems of communication in usual

networks. Research Report #91-33, Lab. de I'Info~matique du Parallelisme, Ecole

Normale Superieure de Lyon, France, 199 1, to appear in Discrete Applied Mathe-

matics.

PFraigniaud, S.Miguet and Y.Robert. Scattering on a ring of processors. Parallel

Computing, 13, 377-383, 1990.

S.D.Hedetniemi, S.T.Hedetniemi and A.Liestman. A survey of gossiping and

broadcasting in communication networks. Networks, 18,319-349,1988.

C-T.Ho. Optimal communication primitives and graphs embeddings on hyper-

cubes. Ph.D. thesis, Yale University, 1990.

J.Hromkovic, C-D.Jeschke and B.Monien. Optimal algorithms for dissemination

of information in some interconnection networks. Proceedings of the 25th

MFCS'90, Lecture Notes in Computer Science 452,337-346, 1990.

S.L.Johnsson and C-T.Ho. Optimum broadcasting and personalized comrnunica-

tion in hypercubes. IEEE Transactions on Computers, 38, 1249-1268, 1989.

R.Klasing, B.Monien, R.Peine and E.Stohr. Broadcasting in butteAy and

DeBruijn networks. Report #113, Department of Mathematics and Computer Sci-

ence, University of Paderborn, 1993. To appear in Discrete Applied Mathematics,

special issue on gossiping and broadcasting.

A.Liestman and J.Peters. Broadcast networks of bounded degree. SIAM Journal

of Discrete Mathematics, 1,53 1-540, 1988.

A.Liestman and J.Peters. Minimum broadcast digraphs. Discrete Applied Mathe-

matics, 37/38,401-419, 1992.

Bibliography page 102

D.Meliksetian and C.Y.R.Chen. Communication aspects of the cube-connected

cycles. 1990 International Corqerence on Parallel Processing, 1579-1580, 1990.

M.C.Pease. The indirect binary n-cube microprocessor array. IEEE Transactions

on Computing C-26,5,2-7, 1990.

J.Peters and M.Syska. Circuit-Switched broadcasting in torus networks. Technical

Report CMPT TR 93-04, School of Computing Science, Simorz Fraser University,

1993.

EPreparata and J.Vuillemin. The cube-connected cycles: a versatile network for

parallel computation. Communications of the ACM, 24, 300-309, 1981.

Y.Saad and M.Schultz. Topological properties of hypercubes. IEEE Transactions

on Computers, 35,867-872, 1988.

Y.Saad and M.Schultz. Data communication in hypercubes. Journal of Parallel

and Distributed Computing, 6 , 115-135, 1989.

Y.Shiloach. Edge-disjoint branching in directed multigraphs. Information Pro-

cessing Letters, 8,24-27, 1979.

E.Stohr. Broadcasting in the butterfly network. Information Processing Letters,

39,41-43, 1991.

Q.Stout and B.Wager. Intensive hypercube communication, prearranged commu-

nication in link-bound machines. Journal of Parallel and Distributed Computing,

10, 167-181,1990.

