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ACHIEVING STRONG CONSISTENCY 
IN 

A REPLICATED FILE SYSTEM 

Abstract 

Replicated file systems help to provide fault tolerance in distributed computing environments. Many 

existing replicated file systems sacrifice strong se~nantics to achieve efficiency and have costly failure 

handling and recovery algorithms. This thesis puts forward a replicated file system protocol that enforces 

strong consistency semantics while achieving more efficient failure handling and recovery. Although the 

protocol pays a performance cost in order to ensure the stricter semantics, this cost is reduced through the use 

of a non-centralized protocol in which all of the replicas are peers. This decentralization of the protocol avoids 

the bottleneck problem noticed in primary-copy systems, facilitates load balancing, lets clients choose 

physically close servers and allows for the reduction of work required during failure handling and recovery. 

Instead of optimizing each operation type on its own, file system activity was viewed on the level of a file 

session and the costs of individual operations were able to be spread over the life of a file session. 

The performance of a prototype of the protocol is compared to both NFS and a non-replicated version of 

the protocol that also achieves strong consistency semantics. Through these comparisons the cost of 

replication and the cost of enforcing the strong consistency semantics are shown. Qualitative comparisons of 

this protocol to other replicated protocols are also provided. 
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Introduction 

This thesis proposes a protocol for a replicated file system that differs significantly from protocols 

described in recent resexcli. The protocol achieves UNlX seniantics unlike other replicated file systems that 

offer weaker semantics. Also, this protocol is fully distributed in that all of the servers are equal peers. 

The remainder of Chapter 1 shall cover definitions and topics relevant to the protocol. Chapter 2 will 

survey other relevant file systems, describing the basic protocols and the achieved semantics. A general 

overview of our protocol is given in Chapter 3 with a more detailed explanation of the algorithms in Chapter 

4 and the failure handling being explained i n  Chapter 5. A qualitative comparison of the protocol to existing 

replicated file systems is presented in Chapter 6. Chapter 7 will discuss the prototype we implemented, the 

methods we used to test the protocol, and the results of the tests. Concluding remarks and issues for future 

research directions are found in Chapter 8. 

1.1 Replicated File Systems 

In a replicated file system files are stored redundantly, with their copies distributed among a number of 

servers. The motivation for replicat ion is to increase the availabi lity of files during periods of failures, andlor 

to increase the performance of the file system in a distributed computing environment. 



Replicating files on multiple servers allows files to be accessed when one or more file servers are 

inaccessible. However, in using multiple file copies, consistency problems are introduced. The desired 

semantics of the file system must be adhered to, when concurrent accesses are being performed, and when 

only a subset of the servers is unavailable. For example, if the file system is to provide UNIX semantics 

which dictates that all writes be immediately visible to all clients', unavailable servers can be left out-of-date 

during periods of updates. I f  multiple conflicting updates arrive at different servers with copies of the same 

file, inconsistencies will result if  the updates are not applied in the same order at all of the servers. In order to 

maintain file consistency, the file system tnust control when and at what servers file accesses can be 

performed. 

As well as tolerating failures, a replicated file system can be used to improve performance over widely 

distributed file systems. Rather than sending requests across the network to a distant server, a physically close 

server can serve requests, thus reducing the cost of accessing data. Unfortunately, not all replicated file 

systems make full use of this feature. 

1.2 Failures 

There are different types of failures that can affect a replicated file system. A server's disk can fail, a 

server can fail, communication links can be broken, and clients can fail. Each type of failure can affect the 

replication protocol differently. How a site fails can also effect the file system. 

Usually servers failures are nssu~ned to be fail-stop in  that the server does not show any degradation 

before the failure. The server will always perform its functions correctly and will not generate invalid 

messages. When a site undergoes a Byzantine failure, the site acts "crazy" or in a incorrect manner possibly 

producing illegal or incorrect messages, or destroying memory and/or disk contents. 

When a server's disk fails, the other servers can be made aware that the server will be out of service and 

can change their behavior accordingly. The other servers can assume one less server, or can choose another 

site to replace the ineffective server. Detectable disk crashes are easily handled in a replicated environment 

(as long as some other up-to-date copy of each file exists.) 

1. A client is the process or site that requests a file system operation. 



Failure of a machine (server or client) cannot be distinguished from the failure of a communication link, 

or from slow responses due to extreme overloading. Therefore, when a site does not respond one cannot 

determine if the site has failed and stopped processing, or if a communication link is down and the site is still 

operational. One must then assume that the unavailable site is still capable of processing file requests. 

Requests that could conflict with possible requests at the inaccessible site should be disallowed so that the 

consistency guarantees of the file system are not violated. 

Partitioning caused by com~iiunication link or site failures must also be considered. If strong consistency 

semantics are to be offered by the file system, not all partitions can be allowed to serve accesses on a given 

file. Some methods to determine in which partition file operations can continue include using tokens, 

requiring that a majority or specific sites be included in the partitions (i.e., the partition with site A is allowed 

to continue processing, all others are not), erc. 

Client failure can also affect wlirtlier a server can process requests on a file. If a client has a file cached, 

but the client does not respond to a server, the server cannot know if the client is accessing the cached file or 

not. In order to achieve the desired consistency semantics, the server may have to either assume that the cache 

is being used by the client or the protocol must provide a mechanism to prohibit the client from continuing 

when partitioned. Which accesses the server may allow on the file by other clients will be determined by the 

consistency guarantees of the file system. 

1.3 Definition Of Terms 

1.3.1 File Session 

A file session is a sequence of systeni calls by a process starting with the opening of a file for access, and 

ending with the corresponding close. All read, write, seek, and truncate operations between the openlclose 

pair, that reference the same file belong to the file session. No read, write, seek, or truncate system calls can 

be performed outside of a file session 

file session =open [read I write I seek I truncate]* close 

Figure 1-1: Definition of a file session. 



1.3.2 Write-Sharing 

Write-sharing refers to concurrent file sessions that access a file in conflicting modes. Two, not 

necessarily concurrent, file sessions conflict i f  at least one of them allows writing. 

1.3.3 Availability 

The term availability refers to the accessibility of a file. If a client requests access to a file that the client 

has the right to access and is unable to access the file, then the file is said to be unavailable. The fraction of 

time that legal operations can be performed on a file by a client is the availability of the file. Failures andlor 

restrictions imposed by a file system, can make a file available to some clients and not available to others; in 

this manner a file that 11 clients have access to has a lower availability than a file that nz clients are able to 

access when ni > 11. 

Failures reduce the availability of a file by making i t  impossible for clients' file requests to be granted. 

In a system free of failures, a client should always be allowed access to a file unless the file is locked or the 

client does not have the required privileges. This paper does not consider the lack of availability due to 

locking performed by an application or due to a user's lack of privileges. Availability is then a measure of a 

file system's ability to serve requests when failures are present. 

1.3.4 Serializability 

A concurrent execution of a set of actions, performed on a set of objects, is serializable if i t  is equivalent 

to a serial execution of the set of actions performed on the set of objects. Each action is a called a serialization 

unit and is a collection of operations, of which each may be executed concurrently, and/or inter-mixed with 

operations from the same or other serialization units. The ordering of the operations within a serialization unit 

must be the same in both the concurrent execution, and the serial execution. In the case of file systems, the 

serialization unit is usually a single file system call. 

An execution performed on a replicated set of objects is one-copy equivalent if the execution is 

equivalent to an execution performed on a non-replicated set of the same objects. An execution on a replicated 

set of objects is one-copy serializable ( I  SR) if it  is serializable and one-copy equivalent. (For a more formal 

definition refer to [BERN87]). 



In file systems, it is also desirable that the execution of a set of system calls performed by a single process 

be equivalent to a serial schedule which atranges them in the same order in which they are performed. Since 

the serialization unit in a file system is typically a system call, 1SR does not guarantee this. An execution of 

a set of serialization units that are performed by a group of processes is global one-copy serializable (GlSR) 

if the execution is ISK and the partial ordering of the serialization units observed by each process is 

maintained. 

So far, we have discussed desirable properties of a given execution E. As a separate issue, there is a 

question of how accurately E reflects the actual order the serialization units were executed in. An execution, 

E, is real-time consistent if for any two operations, opI and op2 in E, opl precedes 0112 in E, iff opl occurred 

(in real time) before op2 [SIEG89]. 

1.4 File Semantics 

A principal issue when designing a file system is its behavior in the presence of: 

1) concurrent conflicting requests and 

2) failures. 

This issue is identified as the file senlantics issue. Four types of commonly used file semantics are: UNIX 

semantics, session semantics, imnlutnble files and transactional semantics. 

1.4.1 UNIX Semantics 

When one uses basic file operations as the units to be serialized, and these operations are constrained by 

real-time consistency, UNIX senlantics result. Under UNIX semantics update operations are "immediately" 

visible (i.e. within d seconds, where d is small) to all read operations that follow and are always applied to a 

copy of the file that reflects all previous updates. The strictness of UNIX setnantics can hinder the efficiency 

of distributed file systems due to the overhead in guaranteeing all updates on a file are reflected in all copies 

of the file (i.e.. cached copies, and server replicas), and in guaranteeing that the updates are applied in the 

same order at all servers. 



1.4.2 Session Seniantics 

Under session semantics, each file session gets a logical copy of the current version of the file. The 

current version of a file reflects the updates from closed file sessions, and none of the updates from ongoing 

file sessions. All read and write accesses for the file session are performed on this copy. When the file session 

ends, the logical copy becomes the current version of the file (if the session updated the file). An update file 

session, S l ,  will have its updates completely obliterated when another updating file session S2 closes, if S 1  

opens after S2 starts and closes before S2 closes, even if  the two sessions update non-overlapping sections of 

the file. 

Session semantics are not always defined quite so strictly. File sessions on a single machine may or may 

not share a copy of the file; i t  depends on the interpretation by the implementor. Sharing the local copy 

introduces two questions. one on open and one on close. When the second session starts, would the version 

brought from the server destroy any updates to the cached version that were performed by the first session? 

When the first close is received, is the file written back to the server, or are the updates kept locally until all 

sessions have closed? This question has not been decisively answered i n  the literature. 

1.4.3 Immutable Files 

Similar to session semantics, each file session is given a logical copy of the file being accessed and 

updates to the file are only noticeable to other sessions after the close. The difference is that an update session 

creates a new version of the file so that both the old version and the new version are present and accessible. 

An open system call can request an old version so that any version of the file is accessible (if all versions are 

kept). 

This method partially overcomes the problem of session semantics where the effects of some sessions 

can be obliterated. A session's effect will not be obliterated, but i t  may not be reflected in the most current 

version of the file. Immutable files also require extra disk space to store the multiple copies of each file. 

1.4.4 Transactional Semantics 

Transactional semantics require that a set of file sessions be serializable, and that any given file session 

appear to be an atorttic ucrion. A set of file sessions executed concurrently is serializable if the outcome of the 



execution is the same as the outcome of some serial execution of the same set of file sessions. Atomicity of 

file sessions guarantees that either all of the actions of a file session will be performed, or none of them will, 

and that the actions appear to be instantaneous, no transient state of the file is noticeable. Each file session 

can be equated to a transaction in a database environment. 

1.5 Basic Methods Of Replica Control 

The primary-copy approach centralizes replica control at a single site. A server is chosen to be the 

primary server for a file, all other servers are secondary servers. All client requests to the file are sent to the 

primary server. The primary server is responsible for sending updates to the secondaries in order to keep them 

up-to-date. Some systems have a single primary for a11 files (primary-site), while others have a primmj that 

controls a group of files (primary-copy). This group of files is called a file group. 

A primary and the set of accessible secondaries is called a view. When the failure of the primary or a 

secondary is detected, a server will initiate a view change. I f  the network is partitioned, a view change will 

occur for each file group, in every partition. If the protocol requires strict consistency semantics then the view 

change will only succeed in one partition, usually the majority partition. If the primary is not in the successful 

partition, then a secondary will be elected to the position of primary. While a view change is taking place, no 

file requests can be served. 

Such primary-copy systems pay a high cost when a server that is participating in the current view 

becomes inaccessible, or when a server becomes accessible. No file system requests are fulfilled while the 

servers confer amongst themselves to elect a new primary. The view change typically includes the 

transferring of the current content of files between the servers to ensure that all participating servers in the 

new view are up-to-date. Harp ([LISKBI]) reduces this cost by allowing recovering servers to become up-to- 

date before the view change, if possible. Echo ([MANN89]) delays bringing the secondaries up-to-date until 

after the view change succeeds, but the primary is brought up-to-date during the view change. Delaying the 

file transfers allows clients to access the files sooner but does not reduce the strain on server cpu's or network 

bandwidth caused by a view change. 



Different computers have different failure characteristics; some servers fail more frequently than others. 

Allowing primaries to be chosen from those servers that survive during failures, sites that fail less frequently 

are more liable to become the primary for a collection of file groups. Therefore, a primary protocol that does 

not take measures to balance the load during view changes may degrade to the performance of a primary-site 

protocol. 

All clients sends their file requests to the file's primary server. If the primary is not physically close, the 

client must send the request to the distant primary. 

Primary-copy algorithms result in systems that are easier to administer and which support efficient read 

operations. However, such systems cannot exploit replication to improve data access times and suffer from 

considerable overhead during failure and recovery. 

1.5.2 Tokens 

Tokens can be used for replica control instead of a primary system as i n  Deceit ([SIEG89], [SIEG90]), 

or for cache consistency control in conjunction with some other replica control protocol as in Echo 

([MANN89]). When tokens are used for replica control, a server is required to obtain a token before 

performing accesses on a file. When tokens are used for cache consistency, i t  is required that a client obtain 

a token before accessing a cached copy of a file. 

If a site fails while holding a token, the token is inaccessible until the failure is resolved. A time-out can 

be attached to a token so that a token is only valid before the expiration of the time-out. The drawback to using 

a time-out, is that any updates that are only reflected at the site that holds the expired token may conflict with 

updates performed by any new token holders. Another method is to issue a new token when the old token 

cannot be found, thus allowing multiple tokens to exist in the system at once. Generating new tokens 

whenever the token holder is inaccessible allows multiple sites to concurrently access different copies of a 

file which can violate strong consistency guarantees. 

1.5.3 Voting 

A more distributed approach to replication is voting ([GlFF79]). Each server is assigned a number of 

votes. For an operation to be performed by a server S, S must first collect responses from a sufficient number 



of other servers so that a majority of votes is gathered. Since any two sets of servers with a majority of votes 

overlap, all operations on the file are guaranteed to notice the most current value of the file. 

In a replicated file system there are many ways that voting can be utilized. Voting can control server 

accesses on files by requiring, for example, that a majority of the servers be notified of the intent to access. 

This will allow the server performing an access to detect concurrent conflicting accesses, and to determine 

which servers store up-to-date versions of the file. 

The number of servers that need to be consulted when updating or querying a file need not be confined 

to majorities. For example, if  there are N sites, the number of sites that need to be contacted for a read 

Figure 1-2: Restrictions on numbcr of sites to contact when updating andlor querying an 
information item. 

operation (R) plus the number of sites needed for an update operation (W) must be larger than N. This ensures 

that read operations find a current version of the file. Also W must be larger than N/2 to guarantee that any 

two update operations will cotnlnunicate with overlapping sets of servers, allowing serialization of the update 

operations. 

1.5.4 Witnesses 

It is likely that increasing the number of replicas will increase availability. However, this is achieved at 

the expense of increasing the storage costs, and increasing the overhead for maintaining consistency. 

Witnesses do not store copies of files; they only store some state information (i.e., version #) that is useful for 

processing operations on replicated files ([PAR186]). 

Witnesses can also replace lost servers. When the failure of a replica is noticed, a witness can be 

promoted to become a replica, although this can require significant bandwidth to send the files to the witness. 



1.6 Client Caches 

As in all distributed systems, client sites may be allowed to cache file data. This introduces another level 

of file consistency that must be checked. When can a client cache file data? When can a client access cached 

file data? When should modified data be propagated back to the file server? How are client failures handled 

with respect to file availability, cache consistency and the permanence of cached updates? What unit ofdata 

is cached, a file block, a file, or some other unit? 

1.6.1 Cache Consistericy 

Client caches are used in most distributed file systems to improve performance. When a file system is 

providing UNIX semantics, a client's cache can be considered just another replica of the file and therefore 

accesses must be constrained in order to guarantee consistency. Cache consistency can be addressed through 

the use of tokens, by allowing a client to become a pseudo-server, by disabling client caching during periods 

of write-sharing, by choosing a semantics notion that trivializes caching (session semantics), or cache 

consistency can simply be ignored. 

Tokens can be issued to clients to allow them to perform reads and/or writes on their cached copies. This 

method is used by Echo. One problem with tokens is loss of availability when the token holder becomes 

unreachable. Echo overcomes this problem with a token time-out; once a token times out, the client is no 

longer guaranteed that the copy in its cache is the most current, or that any updntes made to the cache will be 

kept when contact with the server is re-established. If a client's token times out when the cache is dirty, and 

another client, in a different partition, updates the file, updates in the original client's cache will not be written 

to the server, but will be thrown out when contact with the server is reestablished. 

When a file system is to provide strong consistency guarantees, cached copies must be kept up-to-date. 

Updates performed by one client must be seen by other clients. This can be accomplished through call-backs 

where the server requests all updates to be written to the server. The new version of the file will then be passed 

on to subsequent clients of the file. During conflicting file sessions this can cause significant overhead. In 

order to cut down on the cost of constantly passing updates back to the server, and then passing them to other 

client's caches, the server can disable client caches. This method is used in Sprite ([LEVY90]) which forces 

all file operations in conflicting file sessions to be passed through to the file server. 



Another method to lower the cost of update propagation has clients gathering updates from other clients 

([TAIT91]). Instead of writing the updates to the server, an updating client becomes a pseudo-server and 

serves all requests on the file. Other clients send read and write requests to the client with the cached copy, 

and that client performs the operations just as a server would. 

NFS effectively ignores cache consistency ([LEVYgO]). Updates in NFS are not written back 

immediately to the server, and a server ignores any possible updates that may be in client caches. This allows 

there to be updates in a client's cache, when the server sends file data to a different client. NFS clients check 

that cached file data is as current as the server's copy on open, and whenever a cache miss occurs. Other than 

at these points, no cache consistency check is performed; thus NFS' semantics are indeterminate. Due to this 

lack of strict consistency controls, any replicated file system that is designed as a replacement for an NFS 

server (e.g., Harp, Deceit) also ignores the cache consistency problem. 

Session semantics simplify cache consistency as a client's cache need only be current on open, and 

replaces any current version at the servers on close. The only consistency issue that could arise would happen 

if the system designer chose to delay update propagation after closing. In this case, for the server todetermine 

if a session has closed, the server would either need to poll all clients that have a cached copy and the ability 

to modify it, or a client must notify the server on close but not transfer the file (a better choice). On open the 

server would be required to perform a call-back to retrieve the modified cache contents from the current client 

before continuing with the open. 

1.6.2 Update Propagation 

When a client performs an updnte lo a file, at some point the update will need to be reflected in the servers' 

copies. This can be done in different ways and at different times. Each method affects efficiency and 

availability differently. 

1.6.2.1 Sending Updates to the Servers 

When caching a file, updates can be made on the cache, or can be written through to the server. Writing 

every update through to the server effectively negates any benefit of having a client use a cache for update 

file sessions, but does provide better permanence guarantees. Altliough better permanence is provided, most, 

if not all, systems do not use write-through due to the performance penalty of sending each write request to 



the server ([LEVY90]). When delayed-write is used, cached updates are usually kept either for a specified 

length of time, until after the updating file session closes, or until they are flushed to make room in the cache. 

Some systems keep updates in the cache even after the file session has closed so that files that are deleted soon 

after closing will not need to be transfen-ed to the servers. 

Sending all of a session's updates after the session closes has the benefit that only one update call to the 

server needs to be performed. A disadvantage to delayed-write is that updates kept in a cache in volatile 

memory will not survive the failure of the client. Once a file session closes, updates to the file can be written 

to a server immediately, or the propagation of the updates can be delayed. Studies of file access patterns in 

[BAKEgl], and [FLOY86] have shown that about 6 0 8  of recently modified files are deleted within 5 minutes 

of being closed. If the client does not send updates to the server before the deletion, then network bandwidth 

and server resources are not used. As is the case with any caching of updates, the longer the updates are only 

reflected in a client's cache, the lower the achievable availability and the higher the probability that updates 

will be lost due to client failure (if the cache is not on disk.) 

If a client fails while the most current i~pdates are still only in its cache, those updates will not be seen 

until the client recovers and will only survive the failure if the client's cache is stable. UNIX semantics would 

require that no other accesses be perfortned on the file until the client recovers and, if possible, sends the 

updates to the servers so that they beconie visible. 

An additional drawback is the uncertainty of data written to a file during a file session. If the updates are 

not written back to a server on close and the client's cache is not stable, failure of the client would mean loss 

of the updates. The implication is that one cannot be guaranteed the permanence of changes to a file even after 

the file has been closed! 

1.6.2.2 Immediate vs. Lazy Update 

Once the updates have been sent to a server, they can either be propagated to all servers at the same time 

ensuring replication of the current copy of the file, to a portion of the servers, or to no servers. Lazy update 

refers to propagating updates at a later point, either when the updates are needed, when the servers are not 

busy, or after some time-out period. By updating all of the servers immediately, the availability of the current 

version of the file is enhanced. The more servers with up-to-date copies of the file, the more server failures 

that can be tolerated when the file system provides UNIX semantics. 



Delaying propagation can be beneficial in a number of ways. Transmitting updates only when they are 

needed at a different server causes network usage only when required but significantly reduces availability. 

Waiting until server load decreases before propagating updates can balance the load on the servers and 

improve response times. Time-outs can be used to ensure that updates will be propagated at some point so 

that servers will receive the current version eventually. Delaying updates can also allow multiple updates to 

a file to be transferred at once, thus reducing messaging overhead. 

1.6.2.3 Client Broadcast 

Another method of reducing server cpu utilization is to have the client perform the distribution of 

updates. Instead of sending the updates to a server, and then having the server send the updates to the others, 

the client multi-casts the updates to all servers in a single operation. 



Related Work 

In this chapter we present an overview of some recently-developed well-known replicated file systems. 

2.1 Echo 

Echo [MANN89] is aprimary-site protocol. Tokens are issued by the primary to control accesses to client 

caches. When failures are not present in the system, Echo enforces UNlX semantics. 

2.1.1 Token Protocol 

Echo uses tokens to ensure client cache consistency. A client must acquire a read or write token for a file 

before accessing cached file data. When a client is finished with a token, it will notify the primary. Tokens are 

issued and recalled by the primary. When a client requests a token, the primary will issue the token if it does 

not conflict with any tokens held by other clients. If the token being requested conflicts with currently issued 

tokens, the primary will recall the conflicting tokens by sending a recall message to each client that holds one. 

On receipt of a recall message, a client will acknowledge the recall, and send any modified cached data for 

the file to the primary. Once all of the conflicting tokens have been recalled, the primary will issue the 

requested token. Updates sent to the primary during a token recall are applied in the same manner as any other 

updates would be applied. 



Each token has an associated time-out. To keep tokens from expiring, clients must refresh tokens 

periodically. This is done implicitly whenever a client communicates with the primary. If the primary cannot 

reach a token holder while trying to recall a token, the primary will wait until the token expires. This allows 

the system to continue when token holders crash. If a client becomes partitioned from the primary, and cannot 

refresh its token, the client will continue to access its cache, even though the token has expired. When the 

failure is resolved and the client can communicate with the primary again, the client will request a token 

refresh. If a conflicting token has not been issued, the primary will refresh the token. If a conflicting token 

was issued, the client will discard its cache contents and any updates in the cache are lost. The lost updates 

may include some performed while the client's token was valid. 

In order to track token holders, each secondary keeps a list of clients that hold tokens but not which 

tokens they hold. When a client requests its first token, or gives up its last token, the primary sends a message 

to each secondary so that they may adjust their lists accordingly. These lists are used during view changes to 

determine which clients hold tokens. During a view change the new primary will query each client on the list 

to determine which tokens each client holds. 

When conflicting sessions exist at different client sites, Echo will pay a high price in issuing and revoking 

tokens. File data will also be required to be shuttled between the clients, the primary, and the secondaries as 

the tokens are transferred. 

2.1.2 Reads 

Reads in Echo are performed on a client's cache. In order to load a client's cache, the client must acquire 

a token and read the file from the primary. Even if the file is already cached, the client site must hold a read 

token before i t  can read cached file data. 

2.1.3 Writes 

As with reads, write operations are performed on a client's cache. When a modified cached file is to be 

written back to the servers, i t  is sent to the primary. The primary sends the updates to all secondaries in the 

view. The secondaries apply the updates to disk before sending an acknowledgment to the primary. Once all 

secondaries have responded, the call is returned to the client. 



2.1.4 Fa i lu re  Handling 

Server failures in Echo are handled through the use of a view change. When the failure or recovery of a 

server is noticed, a view change is initiated. A view change consists of: 

1) determining all of the servers that are in the partition and whether the partition contains 

a majority of the servers and, if so, electing a new primary, 

2) deciding the outcome of in-progress updates, and applying those that are chosen to 

succeed, 

3) determining which clients hold which tokens, and 

4) bringing all of the servers' files up-to-date. 

The first step in a view change is an election. Tne election phase allows each server to determine the new 

primary, and lets the primary know what other servers are in the partition. Next all in-progress updates need 

to be resolved. All of the servers that participated in the previous view confer on which non-committed 

updates will be applied and which will not. Which in-progress updates that will be allowed to succeed is not 

covered in the literature. The servers fro111 the previous view will apply those non-committed updates that are 

to be committed and discard those in-progress updates that are to be aborted. Any replicas that are still out- 

of-date will be updated once the file service has been reinstated. 

Finally, the primary must determine which tokens are held by which clients. Servers keep only a list of 

clients that hold token. The primary queries each client on the list and each client responds with a list of tokens 

it holds. If a client does not respond to this request the primary will wait for the duration of the token time- 

out period before issuing new tokens. 

Performing all of these functions requires a significant amount of time and resources. If, during a view 

change, a server crashes, recovers or takes too long to respond, the view change process will start all over 

again. During the election phase there will also be contention for the network as each server may try to 

become the new primary; this will also slow down the view change process. Finally, if "perceived failures" 

occur (caused by network overload. for exalnple.) initiating the view change algorithm will exacerbate an 

already serious problem. 



2.1.5 Semant i c s  

Echo provides a close approximation to UNIX semantics, achieving UNIX semantics in the absence of 

failures. When the primary revokes a client's token by allowing it to time-out, and issues a conflicting token 

to another client, UNIX semantics may be violated. Updates performed by the partitioned client while its 

token was valid will not be noticed by subsequent readers. Also, if another client updates the file, updates by 

the original client will be discarded even i f  the two sets of updates do not conflict. Both of these cases can 

occur after the original client performed the file system operations successfully, and possibly even after the 

original client's file session had closed. 

2.1.6 S u m m a r y  

Echo provides UNIX semantics when failures do not exist through the use of a primary-site protocol. The 

primary-site format of Echo will caiwe a bottleneck at the primary. Even though it may be simple to modify 

Echo to provide multiple file groups, there will still be the problem of one server becoming the primary for 

many file groups after a few failures. The cost of transferring tokens during periods of write-sharing, and the 

costs incurred during view changes are a high price to pay to achieve a higher level of availability. 

2.2 Harp 

HARP is a primary-copy replica control protocol ([LIS KO]]). The protocol deals only with servers and 

does not provide a mechanism for client caching. In order to improve efficiency while ensuring permanence 

of updates, Harp uses uninterruptible power supplies (UPS), and nonvolatile RAM. 

The files in the file system are organized into logical sets called Ale groups. Each file group has a 

preferred primary server, a set of secondaries, and a set of witnesses. A server may participate in multiple file 

groups, serving as a primary for one group, a secondary for another, etc. A witness server does not have a 

copy of the files in the file group, and only participates in view changes or when there are not enough regular 

servers to form a majority. Witnesses have a tape to store event records in case the witness is promoted to the 

position of secondary. 



2.2.1 Open and Close Operations 

Harp was designed to be used as a replacement for NFS servers and as such does not use the notion of a 

file session. In Harp, as in NFS, to provide stateless servers, clients perform read and write operations without 

first opening the file, and without later closing the file, so there is no support for open or close operations. 

2.2.2 Reads 

All file operations are sent to the primary. Reads are simply fulfilled by the primary and returned to the 

client. 

2.2.3 Writes 

For write operations, the primary determines the outcome, packages each operation in an event record, 

appends the event record to its event queue, and sends the event record to all secondaries. When every 

secondary in the current view responds after appending the event record to their event queues, the primary 

commits the write and returns the call to the client. The primary then informs the secondaries of the committal 

of the write operation. All event records are cotnmitted in order, so the primary, and each secondary, keep a 

commit pointer to track the latest committed event record. 

The event records are used in order to guarantee permanence of the write operations. An event log is kept 

in memory at each server. Event records are appended to the event log instead of to disk before secondaries 

respond to the primary. Stability of the event logs is enhanced through the use of stable RAM and UPSs. In 

case of power failures the UPSs give the servers enough time to write the logs and other state information out 

to disk. To help overcome other server failures, some of the file system state information is kept in stable 

RAM. When a failure of any server is noticed, all remaining servers dump their state to disk to minimize the 

chance of information loss due to the crashing of multiple servers. 

2.2.4 Failure Handling 

Failures in Harp cause a view change to occur, as do recoveries. During a view change, a secondary may 

be upgraded to become a primary, or a witness may be upgraded to become a secondary. In Harp, each file 

group has a designated primary. I f  this server is available then i t  will be the primary for the file group. If the 



server is not available then a secondary will be promoted. Witnesses cannot be promoted to primary as they 

have no copy of the file system. Without a copy of the files, witnesses would not be able to fulfill file access 

requests. When a witness is promoted to secondary, all event records are stored onto tape so that they may be 

replayed, at a recovering site, in the event that the witness becomes the only available current site for the file 

group. 

When a primary or secondary server recovers, or becomes connected to the majority partition, the server 

will update its files from a server i n  the current view. Once its files are close to current, (i.e., they reflect most 

of the recent updates), the server will initiate a view change. During the view change the recovering server 

will acquire the rest of the updates. 

2.2.5 Semantics 

Harp achieves UNIX semantics i f  clients do not use caches. The goal of the Harp designers was to 

provide a server protocol that would provide atomic file system operations. This has been achieved at the level 

of the servers, but as an NFS server replacement, Harp can only provide the consistency guarantees of NFS. 

2.2.6 Summary 

Harp provides a primary-copy server protocol that ignores the cache-consistency problem. As a server 

protocol, the use of a preferred primary allows file system administrators to choose which sites will be 

primaries, and alleviates the problem of all file groups migrating their primaries to the same server, although, 

if the preferred server is inaccessible. bottlenecks may occur. In order to achieve this, Harp needs to pay a 

high cost during failures and recovery, performing expensive view changes in both situations. The addition 

of UPSs and stable memory to the server hardware is a useful tool in increasing the achievable performance 

of a replicated file system. 

2.3 Deceit 

Deceit is a decentralized protocol that uses write-tokens and stability notification to control file replicas. 

The main goal of Deceit is to provide variable file se~nantics in a replicated NFS server. The variable file 

semantics provided offer a range of consistency guarantees from no consistency checking, to consistency that 

approaches that stipulated by UNIX semantics. As Deceit is a replacement NFS server, there is no control 



over client caches. Variable semantics are provided through the variable methods of: token regeneration, 

replica regeneration, stability notification, file migration and update propagation. 

2.3.1 Writes 

The replicas in Deceit are all peers so there is no central control. Instead, access to file copies is controlled 

through the use of tokens and stability notification. In order for a server to perform updates for a client it must 

acquire the token for the file. The culrent token holder is found through the use of forwarding nddresses; the 

address of the server that generated the token is kept with the file handle and each time the token is passed, 

which server received the token is left at the previous holder. If the chain is broken, due to an inaccessible 

server, then a request will be broadcast to all servers. The current token holder will broadcast a token pass 

message in response. After acquiring the token the token holder will broadcast a request to the other server 

to mark their copies unstable. The new token holder can then perform updates on behalf of the client. 

When a token holder receives an updnto request, i t  broadcasts the update to all other servers. The other 

servers apply the update to disk and then respond back to the token holder. Once the token holder has received 

a response from a predetermined number of servers (which may be O), the write call is returned to the client. 

The number of responding servers required is set on a per file basis. The servers without the token remain 

unstable until a l u l l  in update activity occurs, at which point the token holder broadcasts a stability notice to 

all servers. 

2.3.2 Reads 

Read requests can be performed by any server that has a stable copy of the file. If an unstable server 

receives a read request, the request is sent to the token holder. The token holder fulfills the request and sends 

the result back to the originating server which passes i t  on to the client. 

2.3.3 Failure Handling 

The inability to communicate with another server does not cause any special processing to occur until an 

operation is requested that requires the unnvailable server. If the failed server is required because it has the 

only stable file copy to read from, then the most current, accessible, unstable server will be made stable, and 

the read will be performed there. All of the other accessible, unstable servers will destroy their copies of the 



file. If an inaccessible server is required because i t  holds a required write-token, then a new write-token will 

be generated if allowed by the token generation setting for the file. If there are not enough accessible servers 

to propagate updates to, the token holder will generate new servers, then continue to propagate updates. 

Recovery in Deceit is simpler than in a priniary configuration, but can still require a significant amount 

of work. When a server recovers, it attempts to determine the token holder, and version number for all of its 

files. The server will then destroy all out-of-date files. For any file for which the server holds a token, the 

server determines if  any stale or inconsistent versions exist at other servers. If the server's copy of the file is 

out-of-date, yet is a direct ancestor of the current version, the file copy is destroyed and so are other servers' 

copies of that version of the file. I f  the file copy is out-of-date, yet not a direct ancestor, both copies are kept 

and the user is notified of the inconsistency so that the file copies niay be reconciled manually. Stale and 

inconsistent copies result when tokens are generated and updates are allowed to be performed in multiple 

partitions. 

2.3.4 Semantics 

The variable file semantics are achieved on a per file basis through the use of some file settings. These 

settings are: token regeneration, replica regeneration, stability notification, file migration and update 

propagation. The settings allow each file to be adjusted for consistency, availability or efficient accesses. 

File migration either allows or disallows a file to be migrated to a server that receives a request for a file 

operation yet does not hold a copy of the file. Replica regeneration determines the minimum number of 

replicas that must be kept up-to-date. If  the number of replicns drops below this level the token holder will 

create another replica by copying tlie file to another server. The update propagation setting determines the 

number of servers that lnust reply to the token holder before an update call can be returned to the client. 

The token generation setting determines whether tokens can be generated to replace missing tokens. If 

the token regeneration setting is high, a new token is created whenever the old token is not available. A 

medium setting allows token generation only in majority partitions, and a low setting disallows token 

generation completely. When tokens are allowed to be generated, file version vectors are used to track the 

different lineage of the files. 



The stability notification setting turns stability notification on or off for the file. If stability notification 

is turned off, file copies are not made stable during periods of updates. This setting trades better performance 

for weaker consistency guarantees. 

2.3.5 Summary 

Deceit is unique among those file systems surveyed here, in that the semantics are variable. Although a 

variation of consistency guarantees are provided in  order for the users to determine their requirements, Deceit 

fails to provide the option of UNlX semantics. In partitions, a Deceit client will always be allowed to read 

from accessible servers, even if  the token holder is not accessible. With the token holder possibly in another 

partition allowing updates to the file, UNlX semantics cannot be achieved. Even if Deceit were to provide a 

strict form of semantics, they would be nullified by the client caching scheme used by NFS and adopted by 

Deceit. 

2.4 Coda 

Coda is the successor to the Andrew file system ([KIST9 I], [SATYBO]). The development of Coda was 

directed to address specific issues including the operation of clients while not connected to the servers and 

higher availability througb replication. Both of these are achieved through the use of an optimistic replication 

strategy. The semantics of the Andrew system are made looser in order to support clients that are partitioned 

from all servers. 

In Coda, UNlX semantics are not used. Instead, an approximation to session semantics is adopted. This 

allows individual read and write operations to be ignored by the replication protocol as they are always 

performed on a client's local copy, and cannot create inconsistencies among the replicated copies. Instead, the 

protocol deals with providing a copy on open and with the propagation of updates on close. 

2.4.1 Open 

When a connected client opens a file, i t  is guaranteed to receive the most current copy of the file held by 

any accessible server. The client sends a request for the file to its preferred server. A client's preferred server 

accepts all of a client's opens and will remain the client's preferred server until the server becomes 

inaccessible. The client also contacts every other available server to make sure that the copy of the file 



retrieved is the most current. I f  the file was not the most current, the client notifies the servers and retrieves 

the most up-to-date copy. Thus all out-of-date servers are notified that they hold stale copies. 

The preferred server promises to notify the client if the file becomes out-of-date. On subsequent open 

operations for the file, the client will use the cached copy unless the preferred server has notified the client 

that the cached copy is out-of-date. 

2.4.2 Close 

On the close of an update session, the client broadcasts the file to all accessible servers. Each server 

responds to the client stating its version number of the file and the client computes the new version number 

of the file and notifies all servers what the new version number is. 

2.4.3 Reads and  Writes 

Individual reads and writes are always performed on the client's local copy of the file. If there are 

multiple file sessions on a client machine, they will all access the same copy of the file. Accesses to this local 

copy behave according to UNlX semantics. 

2.4.4 Failure Handling and  Recovery 

Sewer failures and partitions are noticed by clients when they do not receive a response from a server 

during open and close operations. The client will stop sending any file system requests to that server until the 

server becomes accessible again. 

Every T seconds a client attempts to communicate with each inaccessible server. If the client receives a 

response from one, the client marks all files cached locally to be out-of-date. Subsequent opens will then 

cause the files to be checked for consistency and currency and they will be refetched if necessary. 

On recovering from a failure, Coda servers do nothing. The server will be notified on a per file basis 

during open and close operations i f  its copy of the file is out-of-date. When a server is notified that i t  is out- 

of-date, it will copy a current version of the file from another server. I f  a server is found to hold an inconsistent 

copy, the replicated copies will have to be reconciled manually. Until the reconciliation is performed all 

operations on the file will fail. 



2.4.5 Disconnected Operat ion 

Disconriected operation refers to machines, operating while communication with servers is not 

possible. In order to facilitate disconnected operation, clients hoard files. Clients cache files that are deemed 

necessary for remote operation (e.g., system binaries.) Clients also keep recently accessed files cached. When 

disconnecting voluntarily, the client will rnake sure that all cached files are up-to-date. 

While disconnected, file sessions are performed on the cached copies. All operations are also logged for 

playback later. Upon re-connection, modified files are transferred to the servers. The playback log is used if 

any conflicts exist to allow reconciliation and partial updates. 

2.4.6 Semantics 

The semantics achieved by Cod:) are \)ery loose. Session semantics were approximated by Andrew, and 

that approximation was loosened i n  order to better support disconnected operation. While the network is fully 

connected, the semantics of Andrew are achieved. File sessions on a single client machine share the same 

copy of the file, and accesses to the local copy adhere to UNlX semantics. When there are disconnected 

machines, or machines in dil'ferent partitions of the network, clients are allowed access to files as long as a 

copy of the file is available. This copy is only guaranteed to be the most recent available version of the file. 

No constraints are placed on file accesses to prohibit inconsistencies, although tools are provided for merging 

inconsistent file versions. The merging of files is done manually. and most merging of directories is done 

automatically. 

2.4.7 Summary  

Coda provides a method for replication that will not overly burden large scale networks, and that allows 

clients to operate in disconnected mode. The choice of semantics and the optimistic replica control are crucial 

in supporting these chxacteristics. By requiring that clients perform the update propagation and consistency 

checking, Coda removes some of the burden from the servers. 



2.5 A File System for Mobile Clients 

This section describes a file system protocol designed to facilitate mobile clients (e.g., portable 

computers) that is described in [TAITgI] and [TAlT92]. The system is a contact' based system, where each 

client has its own contact server to handle all of its file accesses. Mobile clients are supported by allowing a 

client to change its contact depending on the location of the client site. 

2.5.1 Reads 

This protocol offers two different read operations: a loose-read and a strict-read. The loose-read does 

not guarantee anything about the value returned and will return the first value for the file i t  finds, regardless 
2 of whether the value is stale. I n  contrast, the system is claimed to guarantee that a strict-read is performed 

on the most current version of the file A loose-read first checks the client's cache, then the client's contact, 

and then checks each other server until a copy of the file is found. The first copy of the file found is used to 

fulfill the read request. 

Their implementation of a strict-read queries all servers and all other clients' caches that may update the 

file in order to determine the current version of the file. A client that strict-reads a file and has the ability to 

update the file is a potentially consiste~it writer (PCW.) The ability to update a file is based on the access 

rights for the file and not the mode i n  which the file is opened. The contact checks the other servers and all 

PCWs. The other servers and the PCWs send the file to the contact, and the contact sends the most current 

version to the client. 

2.5.2 Currency Tokens 

In order to make strict-reads more efficient, a currency token (CT) can be issued to a client. A currency 

token is only issued if there pfare no other PCWs for the file. The currency token guarantees the client that 

the first copy found is the most current version when checking first the cache, then the contact and finally the 

other servers. This allows strict-reads to be performed on the client's cache without communicating with any 

servers. 

1. Contact is a term that we coined. The authors use the term primary but we felt that it was confusing 
as the system does not use a primary-copylprimnry-site protocol. 

2. The system is supposed to guarantee this but does not. 



Currency tokens are revoked when another client becomes a PCW by requesting a strict-reads on the file, 

or when a client cannot be reached by its contact for an extended period of time. The ability of the contact to 

unilaterally revoke the currency token violates the guarantee that the currency token is supposed to provide, 

and results in this file system failing to achieve the desired semantics. Thus, it appears that strict-reads can 

return stale data. 

2.5.3 Writes 

This protocol controls consistency among file copies by noting the existence of PCWs at all servers. 

Whenever a PCW is introduced into the system, a11 of the servers are notified. If any server cannot be notified 

the strict-read that marks the arrival of the PCW will fail. Currently, once a client has obtained PCW status, 

it will remain a PCW. How PCW status is to be revoked has yet to be decided by the designers of the system. 

It is assumed that before a client updates a file, the file is first strictly read into the clients cache. All 

updates are then performed on this cached copy. The client's contact will request periodic cache flushes in 

order to propagate updates to the servers. The client will keep all updates cached until the contact notifies the 

client that the updates can be purged. The contact will notify the client that updates can be purged after N 

servers have responded to tlie contact's propagation of the updates. N-I is the number of server failures that 

the system is configured to handle. Ulxlate propagation at the request of the server is called server-based 

writing. 

This protocol allows conflicting updates to create inconsistent cached copies. Although the system will 

be aware of the different writers i t  will make no attempt to coordinate the updates. The literature does not 

discuss how inconsistent versions are dealt with. 

2.5.4 Failure Handling 

When a site fails or is partitioned from the majority group, elections will be held. An election is held to 

determine the best contact for each client of the inaccessible server. Whether one server will take all of the 

inaccessible server's clients, or whether each client will be dealt with separately is not clear. The elected 

contact will try to determine all of tlie currency tokens that are held by its clients. When a client is given a 

new contact, the new contact informs the client by performing a server-based write. 



The client determines the server to communicate with as the last server that performed a server-based 

write. This process is not discussed in detail in the paper, but i t  appears that during a partition failure a client 

could have two contacts. If the client is disconnected from its contact, the other partition will still elect a new 

contact for the client. When the partition failure is repaired, there will be two servers that believe they are the 

client's contact. 

If a server is not the contact for a client, the failure/partitioning of this server will not cause any excess 

processing, although the failure will result in  loss of availability as no new PCWs can enter the system since 

all servers must note the existence of PCWs. I f  fewer than N servers remain reachable then update 

propagations will fail, and strict-reads that require server participation will also fail. Also, if the client cannot 

flush updates to its contact, then the client's cache may fill  up, and cause write operations to fail. 

2.5.5 Semantics 

The semantics achieved by lhis system are weak. The paper claims that the system achieves one-copy 

UNIX serializability ( I  USR) and defines this as the semantics achieved i n  a centralized UNIX system. The 

paper also states that inconsistent files can arise from this form of semantics (and also in UNIX); therefore 

our definition of UNIX semantics appears to be different, although we believe that our definition of UNIX 

semantics holds in a centralized UNIX environment. 

The system definitely does not support UNIX semantics, as we defined them, as conflicting file versions 

can and will result if two processes concurrently update a file. I t  appears that after a file has been loaded into 

a client's cache, no effort is made to reconcile updates on the cache with updates on other caches. This 

protocol also appears to fail to achieve its stated objectives for strict-reads, since it allows the contact to 

revoke CTs unilaterally, resulting i n  disconnected clients reading stale data. 

2.5.6 Summary 

This protocol uses a unique method of update propagation in allowing the servers to determine when 

updates will be transferred from a client's cache. The provision of two rend operations provides an alternate 

method for allowing variable consistency at the choice of the programmer. This method may not necessarily 

be better as the variable consistency is tied to a progmm, not to a file, so one user can be attempting to access 

a file in a consistent manner while another is using the file in a 'loose' manner. 



The use of PCW status needs to be refined. Currently, once the protocol issues PCW status to a client for 

a file, that client always has PCW status. Since this is tied to a client machine and not auser, if a user normally 

accesses his files through a number of machines there will be two or more PCWs for the user's files, and thus 

no CTs. 



Protocol Overview 

3.1 Motivations and Goals 

Many of the previously built systems employ a primary-copy strategy. Primary-copy protocols ignore a 

potential benefit of replicated file systems: the physical locality of the file servers. In large networks, 

communication delays can vary dramatically depending on the relative locations of the communicating sites. 

If there is a file server that is physically close, why send requests to a server that is not? 

Primary-copy systems also require more participation in individual operations. In order for the 

secondaries to be able to replace the primary in case of failure, they are kept up-to-date. All updates are 

immediately sent not only to the primary but also to enough secondaries so that the updates will be noticeable 

by a new primary after any successfill view change. If this requirement is removed, the method of update 

propagation can be changed to send updates when they are required, when the system is not busy, or when it 

appears that the file will not be updated again soon. 

Involving the primary server in all file system requests regarding a particular file group causes the 

primary server to become a bottleneck. All file sessions involving a particular file group will be competing 

for the primary's resources. Allowing each server to serve requests provides an opportunity for dynamic load 

balancing in the file system; primary-site systems ignore this opportunity. Primary-copy systems allow static 



load balancing through the use of multiple file groups, but view changes can force one site to be the primary 

for many groups. 

A more distributed approach would exploit physical locality to enhance performance. When a client 

opens a file session, a physically close server can be chosen for that session. If that server is not available, the 

next best server can be chosen, and so forth. There need be no constraint on which server a client chooses to 

deal with for any given file session. 

Decentralizing the protocol will also facilitate load-balancing. If a server determines that it is too 

overloaded te handle a request and knows that others are not, i t  could redirect the request to another server. 

The information required for determining server load can be sent with the messages passed between servers 

as file state information or updates are moved about the system. This method of load balancing will also 

remove the bottleneck problem found in primary-copy protocols. Even without explicit load balancing, if all 

clier;i sites generate similar loads, a natural load balancing scheme is provided. 

Immediate update schemes have the disadvantage of involving multiple servers in individual write 

operations. The peer server approach can remove this requirement, at the expense of availability, as long as 

a sufficient number of servers know where the most current copy can be found. A single server would accept 

updates from clients for a file, and return the call to the client without involving other servers. At some later 

point the updates will be sent to the other servers in order to increase the replication of the current copy, and 

to improve the probability that accesses can continue in the presence of failures. I n  the case of failure, recently 

updated files may become unavailable, but the mnjority would remain available as most files would be 

sufficiently replicated to be available when server failures occur. 

Failures in a primary-copy system cause the invocation of a view change. During the view change, access 

to the file system is blocked and all clients must wait while a new primary server is elected and stale replicas 

are brought up-to-date. In protocols where there are multiple file groups, there may be multiple view changes, 

one for each group. This will cause each of the changes to compete for server cpu time, network bandwidth, 

and server disk bandwidth, slowing every view change process. Protocols that have expensive failure and 

recovery operations behave even more poorly in situations of perceived failures. Expensive recovery 

operations, while attempting to provide better availability by noting the repair of a failure, may degrade the 

performance of a system that is working just fine. Low cost repair operations will punish users less for 

repairing their machines. 



Most of the systems that are covered here assume an academic environment. In such an environment 

certain situations are much more frequent than others. Our approach capitalizes on this information by 

focusing on the frequent situations and streamlining them. The infrequent situations, such as write-sharing, 

may be slower, but by keeping the frequent operations faster, the overall performance is improved. 

The trend towards distributed computing has emphasized the cost of obtaining strict file system 

semantics. A centralized file system has the advantage of low cost for serialization of accesses. Adding client 

caches into the mix introduces the cost of cache consistency, and serializing accesses to files residing in 

multiple client caches. Upon replicating the file system, the cost of providing strict semantics is increased 

further still. All of the replicas, and all of the clients' caches must only allow accesses that conform to the 

consistency guarantees. The stricter the guarantees, the more work that is required to meet them. 

A close examination of previously-i~nplemented replicated file systems reveals this perceived cost, as 

none of the systems provide strict semantics under all conditions. Echo fails to provide ISR during failures 

by allowing cache tokens to time-out. Haq) completely ignores the problem of client cache consistency, and 

the mobile-user protocol does not appear- to meet its stated semantic goals. Deceit can provide a variety of 

semantics, but the main focus is on a weak semantic notion relying, like Coda, on infrequent write-sharing to 

avoid inconsistencies. Deceit cannot provide UNIX semantics; their closest approximation requires a 

significant decrease in eficiency, and also does not consider client cache consistency. We believe that UNIX 

semantics are achievable in a replicated file system, and that the cost need not be over-bearing. 

Of the systems that we reviewed in the previous chapter, only Coda mentioned complete file sessions. 

The other systems considered 'periods' of access. Given that standard interfaces to file systems include 

open(), and close() file system calls, protocols that supply file service should take advantage of these. An 

open() operation is effectively a letter of intent, warning the file system to be ready for a barrage of requests. 

The corresponding close0 operation, likewise tells of the end of n series of accesses. With this added 

information, a file system can prepare for a file session during the open0 call, and cleanup at the end, after a 

close() call. Work performed during the opm0 and clo.seO operations in order to provide more efficient read() 

and write0 operations can be amortized over the whole file session. In contrast, a file system that does not 

note these important operations, will need to perform more work during individual read() and write() 

operations, or make a best guess at how long periods of accesses will last. 

Our work attempts to address all of these concerns by developing a decentralized replicated file system. 

Through the distribution of server responsibility we allow failures to be handled more easily and more 



efficiently, and strict semantics to be achieved with very little cost. Our system does not address the 

possibilities of load balancing, but the structure of the protocol inherently facilitates load balancing. 

3.2 Assumptions 

Like the other systems developed recently we designed this protocol for an academic environment with 

loads similar to those load measured in [BAKEgl]. In that environment, read only file sessions make up about 

88% of the mix, while write only file sessions make up 11% and the remaining 1% are read-write sessions. 

We assume that there will be several read and/or write operations per file session. Using this assumption, 

we have tailored the protocol to achieve fast read and write operations. The cost of replication, and 

consistency control would be paid mostly during the open operation, and partially during the close operation. 

The benefit is that the cost is paid once for all operations, so that individual read and write operations, which 

are more frequent, could be made eficient. Also, since write-sharing is rare, consistency is not an issue for 

most file sessions, and thus update propagation is not performed until a file session is closed. Propagating 

updates once removes the excess overhead paid by sending the updates in multiple messages. When 

write-sharing does occur, we ensure consistency by disabling client caching, forcing operations to be sent to 

the servers. 

File traces were obtained from Carnegie Mellon University ([MUMM93]) that provided more detail 

about file sessions than other sources we had come across. From these file traces we noticed that the average 

number of read or write operations per session was approximately 8. Table 3-1 shows the average and median 

Table 3-1: The average number of operations per session as observed in the file 
traces. 
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values for each session type. Although the overall average is 8, most of the sessions (> 50%) had only 1 or 2 
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The intended operational environment requires tliat client machines should not be trusted. As users have 

direct access to the machine hardware, we felt that trusting client machines would not be appropriate. Users 

could easily add extra hardware, fiddle with the internals of the system, and should be expected to shutdown 

the system without warning whenever i t  appears tliat the system has crashed or the response time becomes 

unbearable. 

3.3 General Overview 

The protocol we descnbe here distributes the processing so that no one server is ultimately responsible 

for control of the file system. The protocol achieves UNlX semantics, controlling the replicas and client 

caches to ensure that consistency is ~nnintained. 

Each server provides service to files as requested by clients, and is responsible for letting a majority of 

the servers know what file sessions i t  is working on, and for ensuring that new sessions that it starts will not 

compromise UNlX semantics. Each piece of file state information (i.e., the current version number, record of 

each active file session, etc.) is replicated at a majority of the servers, not at all servers. Keeping state 

information replicated at a ~najority of the servers allows a server to determine the state of the file system by 

querying a majority of the servers and merging the information obtained. By not requiring that all servers keep 

up-to-date information, and by not specifying which servers must be kept up-to-date, our protocol alleviates 

the need for views and view changes. 

In this protocol there are four main entities: contacts, servers, agents, and clients. A client (process) is 

an application that uses the file system service. Each client machine has one agent (process) that controls 

caching for that machine and provides the file system interface for the client processes. An agent intercepts 

client requests and either fulfills them or passes them on to the contact. The agent is also responsible for 

fielding requests from the servers. 

3.3.1 Sessions 

When a client starts a file session, the agent chooses a server to handle the session and sends the open 

request to that server. This server is referred to as the contact. Each file session is represented by an 

agreement between a contact and an agent. All operations associated with the file session that require aserver 

will be fielded by the contact. The contact guarantees that all successful operations are performed in 



accordance with UNIX semantics and the agent agrees to send all remote requests associated with this 

agreement to the contact.' 

As part of its duties, the contact is required to guarantee that, if an agent has cached file data, the data is 

current. During an open, the contact will send file data to the agent if there are no conflicting file sessions, and 

if the agent does not already have the current version of the file cached. The contact will notify the agent to 

stop serving requests locally, using the cached file, if a conflicting file session starts during the life of the an 

agreement. On close, the contact is responsible for accepting any updates from the agent and for distributing 

them to the other servers to increase availability. 

UNIX semantics require that each file operation be performed on the most current version of the file. This 

increases the cost of ensuring cache consistency as updates written during a write-shared file session must be 

reflected in any conflicting sessions. Our protocol handles this problem by disabling client caching for files 

that are being accessed in  a write-shared mode. File operations during write-shared file sessions will be sent 

to the contact for processing. If the conflicting file sessions have different contacts, then a two phase commit 

protocol is used to ensure that updates are applied at all of the contacts. By keeping all contacts up-to-date, 

read operations need only involve the contact for the agreement. Since we expect that there will be many more 

read operations than write operations, the above approach improves the efficiency of the common cases at the 

expense of the uncommon cases. 

3.3.2 Failure Handling and  Session Progress 

The server failure handling operation is called change-of-contact and may be performed for each server 

that fails. When a server fails, client sites [hat have agreements with the server will be left without a contact. 

In order to allow processing to continue, the change-of-contact operation is introduced to replace the contact 

in all agreements held by a specific inaccessible server with an accessible server. Due to the distributed nature 

of the protocol, some agreements cannot have their contacts changed during a failure. Those agreements for 

which the contact cannot be changed will not be able to proceed with any requests that require participation 

of the contact until the contact becomes accessible again. Situations where the change-of-contact operation 

will fail are described in more detail later. 

1. Except in the case of failures. 



3.3.3 Semantics 

The semantics of a file system are an important part of the service i t  provides. The semantics define what 

can be expected from the different system calls provided for the interface to the file system, in the presence 

of concurrent accesses and failures. 

UNIX semantics give a clear, concise definition of what can be expected when one or more clients are 

performing operations on a file. The outcome of a system call is simple: all operations are performed on the 

most recent copy of the file. Other semantics notions, like the semantics offered by Coda, are non- 

deterministic given the set of previous operations. Outside influences must be factored in before the outcome 

of an operation can be known. For example, in Coda, a read operation on a file can give two different results 

solely dependent on whether a conflicting access is being performed on the local site, or at a remote site. Such 

semantics may be acceptable on single user machines, but many networks support cpu-servers and thus multi- 

user machines. A user of the file system must then be prepared for different results depending on which 

computer is being used. 

For reasons like this, we have chosen to adopt a strict semantic notion, UNIX semantics, which has been 

used extensively and one which provides logical results to file system operations. UNIX semantics have the 

benefit of being able to provide most other types of semantics, if one wishes to obtain them, without too much 

extra processing. For example. session semantics are simply achieved by performing whole file reads into a 

buffer, and then accessing the buffer until close. If the buffer is modified i t  is written out when the file is 

closed. 

The semantics of a file system can also be affected by how caching is implemented. Although UNIX 

semantics provides strong guarantees to concurrent operations, they fail to provide strong guarantees in the 

presence of failures, since they do not guarantee permanence of update operations. In some UNIX systems, 

updates are cached in the kernel and not written to disk immediately. If the host fails before the updates are 

applied to disk then the updates will be lost, even though the system call has returned. In fact, the file session 

can end, or a different file session can read the updates, and the permanence is still not guaranteed as the 

updates may still only remain in the kernel buffer cache. The effect is that a client of the file system is not 

guaranteed that its updates will be reflected after the file session has ended. 

The protocol we outline in this chapter makes an additional guarantee to clients of the file system. The 

effects of a write system call are guaranteed to be stable if: 



1)  the file session ends successfully, or 

2) any other file session reads the updates, or 

3) the client explicitly requests a cache flush and it succeeds. 

If these conditions are not met there is no guarantee that the updates will be stable. 

This choice of file semantics has the effect that the results of client site failures are non-determinable. If 

a client machine crashes during an update session, one cannot be guaranteed that the successful updates will 

kept, or that they will be discarded. Only updates from file sessions that have successfully closed, have been 

flushed or have occurred during a concurrent write-sharing sessicn can be guaranteed to survive failures. 

3.4 File System State 

Failures of servers must not cause loss of state information. Due to the distributed nature of the protocol, 

loss of state information could result in breaches of the semantic constraints. In order to keep state 

information stable, the file system can use uninterruptible power supplies (UPSs) andlor stable RAM to store 

the state information. Using such extra hardware will allow processing at servers to be performed with fewer 

disk accesses and result in better performance. UPSs help by allowing servers to write state information out 

to disk when a power failure occurs. Stable R A M  (battery backed up) helps to overcome server crashes by 

saving important state information in memory that will not be lost by unexpected server shutdown. It is 

assumed that during failures a server will not overwrite these portions of its memory. Both of these hardware 

methods are used by Harp to enable state infor~nation to be kept stable without paying the cost of writing it 

to disk. In lieu of such additional hardware, state information can be kept stable by using the servers' disks. 

Each server keeps state infor~nation about every file in the file system. This state information is used to: 

determine which servers have a current copy of the file, 

what agreements exist for the file, and 

the status of in-progress updates. 

When a file is opened, the state information for the file is acquired from a majority of the servers, and is 

merged to determine the current state for the file. No server can determine the accuracy of its state information 

for a file without first receiving the state information from a majority of the servers. The only guarantee that 

a server has is that, if the server does have an agreement, i t  will know about it. 
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Figure 3-1: File state information kept by each server about the files replicated at the 
server. 

During periods of failures, and after failures have been resolved, a server's state may be incorrect. The 
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state information will never forget an agreement, but may show that an agreement exists when it no longer 

does. This situation may happen when an agent and contact cannot communicate, and the agent requests a 

change-of-contact. If the change is successful, odds are that the original contact will not know about the 

change and will believe that the agreement still exists. The original contact will notice the change-of-contact 

if it performs another open operation for the file, or possibly when the file is closed by the client. 

The state information that is kept at each server is shown in Figure 3-1 and in Figure 3-2. The figures 

depict the logical form of the information and do not necessarily show the actual form as stored by the 

Write Ack Record = Server Id 
Has Acknowledged 
Ack Timestamp 

Write Entry Record = Agreement Number 
Write Id 

Write Ack ~ e c o r d ~ "  
Start 
Length 
Data 
Result 

Write Log = [ 

File Id 

Write Entry ~ e c o r d ~ "  
Fn 

Fn = number of files Wn = number of write requests 

Sn = number of servers 

Figure 3-2: Infomiation on write operations kept by contacts. 

servers. 

Each client machine has an agent process. The agent must keep information about what agreements are 

local to the machine. In contrast to the server state, an agent's state need not be stable. The agent state is used 

to determine what server to use as the contact for each agreement, to keep track of change-of-contact 

operations and their outcomes, and to track failed operations for use in server recovery. The information kept 

by an agent is shown in Figure 3-3. 
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(truelfalse) 

An = number of agreements C,, = number of change-of-contact requests 

Fn = number of files On = number of hiled operations 

Figure 3-3: Information about local agreements kept by each agent process. 

3.4.1 Determining Active Agreen~ents 

During open operations and change-of-contact operations, servers pass file state information between 

them. A contact needs to determine what agreements exist for the file being opened, and where the current 

copy of the file resides when performing either of these two operations. In order to determine this information. 

the server performing the operation requests state information from a majority of the servers and merges all 

of this state information to get the current state of the file. 

To merge two states, a server combines all agreement entries in the states. Duplicates and outdated 

agreement records are then removed. Agreement information becomes outdated when the lowest open 

agreement value of the contact surpasses the agreement number. Each server keeps track of its own lowest 

open agreement number, and passes this 10 the other servers during communications for open, close, and 

change operations. 



A state that has been merged using this process is not guaranteed to be complete. A majority ofthe servers 

must participate for the information to show all active agreements. Even if a majority do participate, some 

agreements may appear in the state as active, even after they have been closed. If a change-of-contact 

operation was performed on an agreement the state will show this, but the outcome of the change-of-contact 

operation is not guaranteed to be reflected. If a change-of-contact operation's outcome is not known, the 

change-of-contact is assumed to be in progress. 

Although the state information may be incomplete, enough information can be acquired from the merged 

state. If an agreement has been closed, but the close is not reflected in the state, the server performing an open 

or close operation will 'think' that the agreement is active and act as if i t  were. This will guarantee that, if the 

agreement were active, no violations of UNlX semantics could occur. On the other hand, if the agreement has 

closed, there may be a loss of availability. 

During an open, if there is a conflicting agreement that appears active, even though it  has been closed, 

the open will fail. Since the conflicting agreement has actually closed, there is be no real conflict, only a 

perceived one. This becomes a problem only during periods of failures. A contact performing an open 

operation will always attempt to conlmunicate with the contacts holding conflicting agreements. If the 

communication is successful, the opening contact will notice all closures, and the open will not fail. It is only 

when the opening contact cannot com~nunicate with conflicting contacts that closure of the agreement will 

not be seen and will cause failure of the open. 

3.4.2 Finding A Curren t  File Copy 

The contact for a file session is required to obtain a current copy of the associated file. When a file is 

opened, the contact merges the responses from a mjority of the servers. This merged state will show the last 

close operation for the file, or will show active agreements for the file. The contact can deduce the contact for 

an active agreement or, if no active agreements exist, the contact for the last closed agreement. In this manner, 

the opening contact determines which server created the current version of the file, and what the current 

version number is. The merged state will also show the versions kept at each server; from this the contact can 

tell if its copy is up-to-date (i.e., if i t  is the same version as the server i t  has deduced to be current.) If the 

contact's version is not current, i t  will request a file transfer from a server that holds a current version. 



3.4.3 Tracking In-Progress Updates - The Write Queue 

All write requests are applied to a stable write queue before being applied to the actual file. The write 

queue is used to order and store all write requests so that each call can be returned to the requesting agent 

before the write is applied to disk. This is to remove the disk write from the critical path and speed up the 

write system call. When a write request is received by a server and there exists a conflicting agreement on this 

file, the write cannot be immediately applied to disk. First the write must be committed using a two phase 

commit protocol involving all contacts for the file. The write and all associated acknowledgments are kept in 

the write log and thus are stable for the duration of the 2PC protocol. 

The write log also serves to uniformly serialize concurrent write requests at different servers by ordering 

the write requests through the use of timestamps. Exactly how the ordering is determined is examined later 

in section 4.3. 

3.4.4 Stability of Server State 

The state information kept at a server must be guamnteed to survive failures. If the information does not 

survive, consistency may be compromised. For example, if a server fails and loses all of its state, then a 

majority of the servers can participate in an open but not all active agreements will be known to the opening 

contact. Consider the following example in which there are five servers S 1, ..., S5. S1 opens file X, and during 

the operz() tells S 1 ,  S2, S3 about the open(). S 1, S2, and S3 subsequently fail. On recovery, S3 forgets all about 

the agreement S 1 has for file X. S5 then opens file X for a client. During the open(), S5 communicates with 

S3, S4, S5 to build the state for the file. A majority of the servers participated, yet they do not know of the 

agreement that S 1 is participating in.  If S 1's agreement updates the file, the updates will not be seen by the 

S5's client. 

The easiest method to ensure server state stability is to write all state changes to disk, or tape, before 

acknowledging or acting upon the change. For example, when a server is opening a file, the open request 

could be logged to disk, then the request for other server's state would be performed. Next the server would 

receive all of the state information, merge the states and determine the outcome of the open operation. The 

merged state and the outcome of the operation would then be saved to disk, the agent would be notified of the 

open result and in the case of the opnl() failing, the other servers would be notified. The problem with 

guaranteeing state stability in this manner is the speed penalty paid by writing the state to disk. As an 



3.4.5 Stabil i ty of Agent  S t a t e  

Agent state information is not required to remain stable when a server's state is completely stable. This 

is due to the design decision to have all sessions on a failed client machine implicitly closed. All dirty cache 

entries are lost, except in cases outlined earlier, and all open files are automatically closed. 

In the case where a server does not supply complete state stability (i.e., no UPSsIstable RAMS and not 

all updates are forced to disk), agents will use their state infor~nation to help the recovery of servers. Agents 

alternative, the state can be kept in memory made stable by battery backup, or through the use of UPS'S that 

can protect against power failures. 

Battery backed memory provides better stability guarantees in that all servers could fail at once and no 

state would be lost. If only UPSs are used, then when a server fails for reasons other than a power failure, file 

system state is lost. The state will need to be recovered from other sources (other servers and agents) before 

the recovering server will be able to serve file system requests. If a majority of the servers fail within a short 

time period while using only UPSs to safeguard state information then irrecoverable information loss can 

occur. 

State information for all files need not be kept in memory. When the last local agreement is closed, the 

state information for i t  can be written to disk. Writing outside of the critical path will not directly affect the 

response times of individual operations. Reading in a file state from disk will, however, affect individual open 

times. File state for agreements held by other servers will be kept in memory until the agreement closes, a 

generous time-out expires, or when the in-memory file state cache is growing too large. 

When a power failure occurs, each server will force all in-memory file state information to disk. If UPSs 

are available they provide enough time for the file servers to get the information out onto stable storage before 

the servers shut down. In the case of server failures that do not allow a graceful shutdown, battery backed-up 

memory can kecp file state stable until the server is rebooted. Also, due to the distributed nature of the 

algorithm, almost all information kept by a server can be recovered from the other servers and from the 

agents. Without the use of battery backed up memory and without saving the state information to disk, the file 

system can still perform correctly if only a minority of the servers fail within a Z second period. Z seconds is 

the amount of time required for a server to recover its state from the other servers and from the agents. 



will keep a record of operations that were requested but received no response from the contact so that a 

recovering contact can determine any possible in-progress operations. 

3.5 Cache Control 

Our protocol covers client caching as well as replica control. This is necessary for the file system to 

guarantee UNIX semantics. The protocol uses whole file caching. In order to maintain consistency a client's 

contact can call-back the cached copies. 

On open, the contact sends a current copy of the file to the agent if i t  is not already cached. If there is a 

pre-existing conflicting file session then the contact will not send the file to the agent, and will force the agent 

to send all requests to the contact. If, on opening a file session, there is no room left in the cache because it is 

in use by other file sessions, the new file session will be performed remotely, sending all file requests to the 

contact. 

If a conflicting session smts while an agent has the file cached, the agent's contact will request a call- 

back. When an agent receives a call-back request from its contact, the agent will act as follows. If the cache 

entry is dirty, the file will be flushed back to the contact, otherwise the cache entry is just deleted. 

On close the agent will send the cache contents back to the contact. This is to guarantee stability of the 

updates before completing the closure of the file session. Once the cache contents are safe at the contact, the 

close operation is returned to the agent. The agent will not discard cache contents after closing a file session 

in order to allow the cache to be reused if the file is opened again soon after closing. If the file is not opened 

soon after closing, the cache entry may be cleared to make space for other file sessions. 

The protocol was designed to be used with whole file caching, but could easily use partial file caching, 

or no caching (although a performance penalty would be paid). We chose to use whole file caching as most 

files in the assumed environment are small, and 76% of the files accessed are completely read or written 

[BAKE91]. According to [TAIT91], whole file caching is a good method for files up to IOOK, after which the 

benefits of transferring the whole file are reduced, as large files are not usually completely read or written 

during a file session. Our protocol can easily handle larger files by switching to a partial file caching scheme 

when files exceed some predetermined size. 



Protocol Description 

This chapter describes each of the operations of the protocol except for failure handling which is covered 

in the next chapter. 

4.1 Open 

The open operation serves to notify the file system of the intention of the client to process a file. This 

notification allows the file system to prepare for the file session by updating the chosen server, if it is stale, 

performing any necessary call-backs. and possibly filling the client's cache. I t  is during the open system call 

that the contact is chosen and the agreement is setup; an agent can have a different contact for each filesession 

agreement. I f  the open operation succeeds, the contact will be the only server that the agent communicates 

with in performing operations related to the file session, except in the case of failures. 

A summary of the open operation is shown in Figure 4-1. The first step in the open operation is for the 

agent process to choose a server to be the contact for the file session. The server is chosen based on physical 

proximity, and perceived availability. The contact would normally be located on the same local area network, 

and would not have recently failed to respond to the client. Once the agent chooses the contact, it sends the 

open request to the contact. 



1) Agent, A I, chooses server, S1,  that is to be the contact 

2 )  S 1  notifies a majority of the servers of the open request 

3) All notified servers return their file state to S 1 

4) S1  determines the current state of the file 

5 )  S1  notifies any contacts with conflicting agreements that were not notified in step 2. 

6) S 1 acquires a current copy of the file, if its copy is stale 

7) S1  returns the result of the opeu() to the agent and if the open()  failed, tells the other 

servers of the failure 
- - 

Figure 4-1: The basic steps perfomled during a open operation. 

Upon receipt of an open request the contact notifies a majority1 of the servers. On choosing the set of 

servers that the contact should notify in  step 2, the contacl examines the local state for the file. Any server 

shown in the state to have an agreement for the file is included in the set. I t  should be noted that at this point 

the contact does not necessarily know of all the agreements that exist for the file, and its state may show 

agreements that no longer exist for the file. The opening contact is attempting to include all conflicting 

contacts for the file in  the first phase of the open operation so that they will not need to be contacted at a later 

point. Those servers that have recently been noticed to be unavailable are not included in the set unless there 

are not enough other servers to make up a majority. Once the set has been determined, the open notification 

is sent. 

In response to the notification, in  step 3, each server notes the open operation in its local file state and 

returns its local copy of the file state2 to the opening contact. If, upon receipt of the open notification, a server 

sees that it has a conflicting client for the file, and the client has the file cached, the server will request acache 

call-back. The server will not respond to the contact u n t i l  the call-back is complete or aborted due to a time- 

out. 

If a call-back fails, the server performing the call-back will note this in its response to the contact 

performing the open operation. The contact will then determine, once the merged state is complete, if the open 

1. This majority includes the contact itself. 

2, The write logs are not included in the state passed between servers during open operations 



operation can continue. If the client, for which the call-back failed, has changed contacts for the agreement 

in question and subsequently closed, the open operation can continue. Otherwise the open operation must be 

aborted. 

In step 4, the opening contact collects all of the responses in order to piece together a current state for the 

file. As each response is received, the state included in the response is merged into the contact's local state. 

When all of the responses are received, the contact's state for the file will be complete enough to reflect all 

conflicting file sessions. 

From the merged state, the contact can determine all of the conflicting contacts for the file. This list of 

contacts is compared to the list of servers that were notified of the open request. In step 5, any contact that 

was not sent in the original notification is then sent the open notification. The opening contact must wait for 

all conflicting contacts to participate in the open operation before continuing. Requiring that all conflicting 

contacts participate guarantees t h n t  a11 contacts become aware of each other. 

Once i t  has been determined that all conflicting contacts know about the open request, in step 6,  the 

contact makes sure thnt i t  has a current copy of the file. If the contact does not have a current copy of the file, 

the contact will look in the file's state to find all servers that do have a current copy of the file. One of these 

servers will be chosen, and a request for the file will be sent to that server. The requested server will then send 

the file back to the opening contact. I f  the contact cannot obtain a current copy of the file, the open will fail. 

The final step, step 7, in the open operation is to return the result of the open operation to the agent and 

to notify the other servers if the open failed. The client is sent the result of the open, and possibly the file. The 

file will be sent to the client if there are no conflicting file sessions and the client does not already have the 

current version of the file cached. 

4.1.1 Write-Shared Opens 

In order to guarantee consistency, extra processing is required during an open operation when conflicting 

file sessions exist. The opening contact is required to notify all conflicting contacts, which will require an 

extra phase if all of the contacts are not included i n  the first notification phase. The opening contact will not 

send the file to the client machine for caching when write-sharing exists. Each contact will send a call-back 

request to any of their clients that have the file cached. Upon receipt of a call-back request, aclient will delete 

the associated cache entry and send any cached updates for the file back to its contact. 



4.1.2 Fa i lu re  of O p e n s  

In order for an open to succeed there are certain conditions that must be met. First, a majority of the 

servers must participate in the open process. If less than n majority participated, and the open were allowed 

to succeed, inconsistent file copies, or accesses to stale copies could result. For example, if two conflicting 

1)  a majority of the servers must participate 

2) all conflicting contacts must participate 

3) a current copy of the file must be available 

Figure 4-2: Necessary conditions for a successful open. 

sessions start and the two contacts notify non-overlapping subsets of the servers, each session's contact will 

not know of the other file session, updates will not be propagated to both of the contacts, and the file copies 

at the two contacts will become inconsistent. 

Every conflicting contact, if any, must participate in an open operation. In order to avoid the 

aforementioned inconsistencies, each updating contact must know of all contacts that exist for the file. If an 

updating contact does not know about another contact, the updating contact will not include the unknown 

contact in any write requests. The unknown contact would then be left out-of-date and would return stale data 

when fielding read requests, violating UNlX semantics. 

The opening contact must be able to acquire a current copy of the file. If the opening contact cannot 

acquire a current copy of the file, the contact will not be able to perform any file requests on the file. Given 

that no file requests will succeed, there would be no reason to allow the open to succeed. The open could be 

allowed to succeed, but subsequent accesses would only fail, resulting in the client wasting time and resources 

on failed file operations in the future. 

4.1.3 Al te rna te  Design Choices  

A read-one-write-all (ROWA) scheme could have been used, and the read perfor~nance would have been 

better, but the availability might have suffered. The availability, as measured on a per file session basis, would 



have improved as only one file server would be required for the majority of file sessions (i.e., read sessions), 

even though updating file sessions would have worse availability than in a non-replicated system. The 

problem is that, although the availability of file sessions would be improved, the ability to complete tasks 

would decrease. This is due to an assumption that most tasks that a user would want to perform, require 

updating at least one file. Since the ability of a user to perform a task is dependent on the lowest availability 

of all file sessions required, the ability of the user to perform tasks would decrease in a ROWA system. 

A quorum based scheme could also have been adopted. This would require the contact to obtain a 

read-quorum or write-quorum of responses from other servers, during an open operation, depending on the 

file session type. We chose not to use this method, as our protocol is aimed at smaller replicated environments 

and with 3 servers a quorum based approach is either ROWA or uses majorities. When using 5 servers 4 

(e.g. Qw=4, Qr=2), and multicasting, the difference is a single message per read-only file session (i.e. the 

response message from a single server). This increase in efficiency is achieved at the cost of lowered 

availability in that, only 1 server failure could be handled without the loss of write availability, in contrast to 

two server failures, when using majorities. 

4.2 Close 

When a file session is closed, the agreement between the contact and the client ends. It is at this point in 

most file sessions that updates are propagated by the agent back to the contact. 

1 )  The client requests a close, and the agent sends any cached updates back to the 

contact. 

2) The contact accepts the updates, and returns the call to the agent 

3) The contact propagates any updates to some, or all, of the other servers 

Figure 4-3: Basic steps of a close operation 

The agent sends the close request and any cached updates to the contact. Once the contact has appended 

the updates to the write log and noted the close in its state, i t  returns the call to the agent. The contact then 



propagates the close notification and the file, i f  i t  was modified, to some of the other servers. Updates will be 

applied to disk in the same manner as they would be in the case of a write operation that involves the contact. 

4.2.1 Propagation of Updates and  Close Notification 

The result of the close operation is returned to the client before the contact propagates the close 

notification to the other servers. When the other servers receive the close notification, they note this in their 

state. This reduces the delay of a close noticed by the client process. If the client was made to block until 

propagation was complete, the client would be blocked unnecessarily. By not blocking the return to the agent, 

the client is allowed to continue processing, and the semantics of the file system are not affected. 

Delaying the propagation of the close notification and updates to the other servers, in order to return the 

call to the agent sooner, can negatively affect the availability of the file. Not propagating the current copy of 

the file immediately, slightly increases the amount of time that only one current copy of the file exists in the 

system. Also, by delaying the close notification, the knowledge that the agreement is no longer active is 

limited to one server. Subsequent file opens may not see the close if the contact fails at an inopportune 

moment. Both of these design choices decrease the availability of the file, but they decrease it minimally as 

the propagation of the information is only delayed long enough to return the close call to the agent. 

The protocol does not specify how many sites must be updated during a close operation. Notifying a 

majority about the close operation ensures that all successful future open operations will notice that the 

agreement has closed without requiring the closing contact's participation. If an opening contact does not 

have a record of the agreement closure, then the closing contact may be required to participate, possibly 

slowing the open request or causing the open to fail when the closing contact is unavailable. Propagating an 

updated file to more servers irnproves the availability of future file sessions. Propagating to more than a 

majority also reduces the probability that a file transfer will be required during a future open. 

If failures exist in the system when an update file session is closed, the new version of the file may not 

get propagated to a majority of the servers. Also, the system may be configured not to update a majority of 

the servers during a close operation. Therefore, an open operation may not be able to find a current version 

of a file, even if a majority of the servers participate. I t  is because of this that condition 3 in Figure 4-2 is 

required. 



When to propagate a file is a hard question to answer. If a file is propagated on close, then the file becomes 

replicated and provides better availability. Propagation on close also removes the cost from the critical path, 

since, during an open operation, the client will be kept waiting if the contact has to bring its copy up-to-date. 

To counter this, if most sessions on a file are sent to the same contact, then propagating to other servers is a 

price paid solely for availability. 

4.2.2 Failure of a Close Operation 

A close operation may fail when the client's contact is not reachable, or when the contact fails during the 

close process. If either situation occurs the agent process will time-out waiting for a response and will initiate 

a change-of-contact operation. If the change-of-contact operation succeeds the agent will retry the close 

operation at the new contact. I f  the change-of-contact operation fails, the close operation will return failure 

to the client process. 

4.2.3 Alternatives 

In order to increase the perforrnance of the protocol, the propagation of the file to the contact could be 

delayed. Multiple close operations could be sent to the contact at once, reducing the messaging overhead, and 

allowing short lived files to be deleted before being transfe~red. This would make close operations that much 

faster but at the cost of availability and semantics. If the client fails, or becomes partitioned from the majority 

of servers, no processing can be performed on the file as the only current copy resides on the client machine. 

If the client's cache is in volatile memory, and the client crashes before sending the modified file to the 

contact, all of the updates will be lost. This is a weakening of the semantics that we chose to guarantee with 

this protocol and is why we do not use this alternative. 

4.3 Write 

Write operations can only be performed using agreements opened in write or read-write mode. Write 

operations are performed by the client's agent on the cache i f  possible, othenvise write operations are sent to 

the contact. For most write operations, the file will be cached as the environment has a low level of write- 

sharing and most files are small enough to allow caching. The steps that a contact takes to perform a write 

operation are shown in Figure 4-1. 



1) Multicast the write operation to all of the other contacts for the file (if any) with an 

initial timestamp To (the value of local timestamp counter at the contact). 

2 )  V i ,  1 I i I n ,  where 11 = #of corlJIictir~g corztacts, contact i inserts the write into its 

local write queue according to rtias(q, To), associates Ti with the write 

acknowledgment, increments the local timestamp counter to 'I;: = mcrs('l;:, To)+l, and 

acknowledges the write. 

3) The originating contact accepts all acknowledgments for the write request and returns 

the call to the agent. 

4) The contact sets the write timestamp to Tly = IIIU .Y( To, ..., T,J and the cornmit notice is 

broadcast to all contacts with the new write timestamp. 

Figure 4-4: Basic steps of  a write operation performed by servers. 

When the file is not cached, the write is sent to the contact which inserts the write into its write queue 

and multicasts a write notice to a11 existing contacts (note that write notices are sent to the other contacts for 

the file and not to every server) to initiate the 2-phase commit. The other contacts insert the write into their 

write queues in step 2, and then return an acknowledgment to the originating contact. During the time from 

when a contact acknowledges a write, unti l  the contact receives the result of the write, the write is said to be 

uncertain. 

When all acknowledgments are received in step 3, the contact returns the call to the client. A write 

commit notice is then broadcast to all of the contacts in step 1. Each contact will apply the write to disk at 

some point after the write has been committed. 

4.3.1 Serializing Write Requests 

Concurrent write requests need to be applied in the same order at all of the contacts. To serialize the write 

operations, each write request is assigned a timestamp' and all writes are applied in timestamp order. When 

a contact receives a write request, i t  gives the write an initial timestamp To and inserts i t  into the local write 

1. We assume each server keeps a local timestamp counter and that no two servers issue identical 
timestamps (ensured by appending the server Id to the timestamp.) 



queue. The contact then sends a write notice to all other contacts. On receiving a write notice, server i will 

create an acknowledgment for it which includes a timestamp 3. Server i will insert the write into its write 

queue at the position dictated by the write's timestamp. The timestamp used when inserting the write into the 

write queue is ritax(To, TJ. The acknowledgment will then be sent to the originating contact. Server i updates 

its write timestamp counter to equal mu.x(TO ? ) + I  so the next timestamp issued at server i will be later than 

the timestamp of the write notice that was just processed. 

Once all acknowledgments have been received, the originating contact sets the timestamp for the write 

to Tw the latest of all the timestamps returned with the acknowledgments, including the original timestamp 

assigned by this site. The originating contact also updates its local write timestamp counter to Tw+l. Tw is 

the final timestamp for the write and determines the order in which the write will be applied to the file. The 

write is then moved to its correct location within the write queue. The call is returned to the client, and a write 

commit notice is broadcast to the other contacts. The other contacts in turn update their local write timestamp 

counters and readjust the write i n  their write queues so that its position reflects the final timestamp, Tw Write 

requests are placed in the write queue immediately when received so that they will be noticed by the server 

when processing other write requests. 

4.3.2 Application of Writes t o  Disk  

Updates are put into the write queue so that they are applied in the correct order. The write queue is 

ordered by the timestamps so the writes art: applied at each server in the order they appear in the write queue. 

A committed write can be applied once all writes before it in the write queue have been applied or aborted. 

Once a write is committed, i t  is guaranteed that no writes will be inserted in the queue before it that do  not 

already exist there. In order for a new write to be inserted before a committed write, the timestamp must be 

earlier than that of a committed write. The timestamp of a write to be inserted in the queue will be greater 

than the local write timestamp counter when the committed write was inserted. Thus, the new write cannot 

be inserted in the write queue before it .  The timestamp mechanism also guarantees that the write queue is 

ordered the same at all contacts. 

4.3.3 Write Failure 

A write operation is not guaranteed to succeed when failures are present. In order for a write operation 

to succeed, all of the contacts for the file must acknowledge the write. If the originating contact times out 



while waiting for an acknowledgment, the contact will abort the write, return failure to the client and 

multi-cast a write abort notice to all contacts. 

4.4 Read 

Read operations can only be performed during the life of an agreement for a file session that was opened 

in read or read-write mode. Most read operations are performed on a cached copy of the file by the agent. The 

file will be cached for most file sessions as the assumed environment has a low level of writesharing and 

most files are small enough to f i t  into the cache. 

When there are conflicting agreements or the file is too large for the cache, the file will not be cached. 

The client will then send all read requests to its contact. The contact will read the data and send the result to 

the client. 

4.4.1 Serializing Read Requests With Write  Requests 

In some cases there may be a write operation in-progress that affects the outcome of the read operation. 

The contact will not perfor111 the read if there are any uncertain conflicting writes. A write conflicts with a 

read if the portion of the file written overlaps the portion of the file read. In order to guarantee that the file 

becomes stable at some point, the contact will not acknowledge any write notices unti l  the read is fulfilled or 

aborted. This is used in achieving UNlX semantics by serializing the read operation between write operations. 

Any write operation that has not yet been acknowledged by this contact is in-progress and the read will then 

be performed before it .  Any write that has been committed at this contact has already been returned to the 

writing client, so the read will reflect i t  and be serialized after it. 

If a conflicting write exists, and the contact is not notified about the outcon~e of the write within some 

time-out period, the contact will query the other contacts for the file to determine the outcome of the 

conflicting write. Requiring the involvement of the other contacts is due to the well-known problem of 

dependent recovery inherent in 2PC [BERN87]. If the outcome of the write is still unknown, then the contact 

that originated the write must not be i n  the same partition otherwise i t  would have known the result. However, 

the writing client might be in the same partition, so, the contact serving the read operation will initiate a 

change-of-contact operation for the contact that originated the write operation. If the change-of-contact fails, 



then the read request will fail and the contact will return an error to the client. This is a version of the well- 

known problem of blocking inherent in 2PC [BERN87]. 

4.4.2 Failure of Read Requests 

There are a limited number of situations in which a read request will fail. Reads will always succeed 

when the file is in the client's cache. If the file is not cached, then reads will succeed if the contact is available, 

and no conflicting writes exist. If a conflicting uncertain write exists and its outcome cannot be determined 

then a read request will fail. If the reader's contact is not available, and a change-of-contact operation fails, 

then the read request will fail. 

4.5 Flush 

A client process does not have the ability to determine if a file is cached or not. Therefore, the client does 

not know whether a flush will actually perform a useful function. If a client requests a flush when the file is 

not cached, nothing happens. When the file is cached, the updates are sent to the contact. Upon receipt of the 

updates, the contact treats them as i t  would a write operation. 

The ability to flush crche updates allows the client application to control the permanence of updates 

during a file session. Without the flush operation, the only method an application would have to guarantee 

permanence of updates, would be to perform a close and then re-open the file for subsequent accesses. This 

would not be an appropriate method to use as opening and closing a file are expensive operations. 

A flush operation will fail if, there are cached updates, the client cannot communicate with its contact 

and a change-of-contact operation is not possible. The result o f a  failure to flush updates from a client's cache 

is that the updates will not be made stable. The updates are not lost and a flush can be retried at a later point 

in order to attempt to make the updates stable. If a flush fails, the client may still process operations on the 

client's cache as normal. 

4.6 Seek 

In providing a UNlX style interface, one must provide for random file access. The seek operation allows 

for this. For most seek operations all processing can be accomplished locally at the client site as the agent 



keeps track ofeach agreement's file pointer. In the case where the client application is using a seek operation 

to extend the file, a seek is a special case of a write operation, logically increasing the size of the file and 

zeroing the new area. A seek operation usually remains local to the client; only in those cases where the file 

is extended and not cached does a seek require server participation. 

4.7 Common Case Processing 

Our protocol is quite detailed in order to handle many complicated scenarios. However, the common case 

for each operation is quite simple. Given the assumed environment, with write-sharing being rare, most file 

sessions do not require any comm~~nication with other contacts. Partitions and server failures are also 

considered to be relatively infrequent, so failure processing is not part of an average file session. 

An average file session starts with an ope110 that requires only a majority of the servers to be notified, 

and the contact will allow the agent to cache the file. Unti l  the close(), all subsequent file operations (reads, 

writes, seeks) are quickly fillfilled by the agent using the cache. The close() of a normal file session, includes 

the agent transferring the file back to the contact, if i t  was updated. The contact notifies the agent that the close 

operation has finished, allowing the agent to return the close() to the client. The contact will then propagate 

the file to a set of servers, again, if the file was updated. 



4.8 Example File Sessions 

To help in visualizing the steps the protocol takes, this section will step through a few example situations. 

For all of the examples, assume that the file system consists of three servers, Sf, S2 and S3, two clients sites 

each with one client process, C, and C2, and all file sessions are on file X. 

4.8.1 Normal Case  Example 

Figure 4-5: The normal processing of an open operation, when there are three servers. 

The first example will be an average file session for reading a file, and an average file session for writing 

a file. Client C I  will first perform a read-only file session on file X and then CI will perform a write-only file 

session, rewriting file X. The open operation is shown in Figure 4-5 taking 6 steps. 

1) The client process performs an opeu/X, reutl-only) and the operation is intercepted by 

the agent, Al. 

2)A1 chooses SI for the contact, sends the open request to Sf and informs SI that the file is 

not cached. 



3) The contact, S I ,  sends the open notification to a majority of the servers, which, when 

including itself, requires one other server (the other server chosen is S2). 

4) S2 responds back to S ,  with its file state for file X. 

5) SI merges the state infonnation, and determines that its copy of file Xis current and that 

there are no conflicting agree~nents for file X. Sl notes the agreement in its state, packages 

the file, and responds to A ] .  

6) Al puts file X in the cache and returns the open(X, read-onfy) call to C,. 

The client, C I ,  continues with the file session, performing 3 read operations on fileX. Each read operation 

follows the steps shown in Figure 4-6. 

Figure 4-6: The normal processing of an read operations. 

1 )  C I  sends the read request to the agent, A, .  

2 )  A ,  performs the read on the cache and returns the result to the client. 

After the client finishes accessing the file i t  requests a close operation which proceeds as depicted in 

Figure 4-7. 



Figure 4-7: The normal processing of a close operation. 

1) CI sends the close request to the agent, Al. 

2) A, sends the close request to the contact, St .  

3 )  S, notes the close in its state, and return success to A,. 

4) A, returns success to the client. 

5 )  SI sends notification of the close to all servers that know about the agreement. In this 

case S2 is sent the notification and S2 notes the close in its state. 



4.8.2 An Example of Write-Sharing 

In order to see exactly what occurs when conflicting sessions are present. this section steps through an 

example of write-sharing. The execution order is shown in Figure 4-8. In this example there are three file 

Figure 4-8: An example of sharing file sessions. 

sessions chosen to highlight the actions taken during write-sharing and read-sl~arin~. '  The first two steps in 

the execution are performed as in the last example. The third step has C2 opening the file; a break down is 

shown Figure 4-9. 

C2's open operation proceeds as follows: 

1) C2 performs an operr(X, write-only) and the operation is intercepted by the agent, A2. 

1. Read-sharing refers to sharing of a file by processes that only read. 



Figure 4-9: An open that creates a write-sharing situation. 

2) Af chooses S3 for the contact, sends the open request to S3 informing S3 that the file is 

not cached. 

3) The contact, S3, sends the open notification to a majority of the servers, which, when 

including itself, requires one other server (the other server chosen is SI). 

4) Upon receiving the open notification, S I  checks its state and finds that i t  is the contact 

for a conflicting agreement. SI sends a callback request to agent A/. 

5 )  A, discards the cache entry, and responds back to its contact. 

6) Once the callback completes successfitlly, SI sends its file state for file X to S3. 

7 )  S3 merges the two states together and notices the conflicting agreement. A successful 

open result is then returned to the agent A2 without 3 file to cache. 

8) A2 returns the successful result to the client process. 



Figure 4-10: The steps taken by a write operation while in a write-share mode. 

Next, C2 performs a write operation. The steps performed to propagate the updates to both contacts are 

shown in Figure 4-1 0. 

1 )  Cz sends the write request to the agent. 

2) The agent, A?, finds that the file is not cached so the request is passed through to the 

contact, S3. 

3) S3 assigns the write a timestamp, T3. and inserts i t  into the write queue. S3 then looks up 

all conflicting contacts in the file's state and deterniines that S ,  is the only other contact, 

and sends a write notice to S,. 

4 )  Sl accepts the write notice, formulates an acknowledgment with a timestamp, TI ,  and 

inserts the write notice to the write queue at mus(T3, T,). The acknowledgment is then 

returned to S3. 

5) S3 accepts the acknowledgment, re-inserts the write at rttu.r(T3, TI ) ,  and returns success 

to the agent, A2. 

6) A2 sends the result to C2. 



7 )  S3 sends a commit notice for the write operation to S I .  

The next operation performed is a read operation by client C I .  The operation is going to include the 

client's contact, S I ,  and will involve ensuring that no conflicting writes are in-progress. In order to examine 

what will be done when conflicting writes exist, assume that the read operation is requested while the write 

operation that we discussed was still in the system. The steps in the read operation are shown in Figure 4-11. 

Figure 4-1 I :  The steps taken by a read operation while in a write-share mode. 

1) CI sends the request to the agent. 

2 )  A l  checks the cache, finds the file not cached, and sends the request through to the 

contact, SI. 

3 )  Sl checks the write queue for conflicting uncertain writes, and in this case finds one. SI 

delays unti l  the write result is received from S3. Sf returns the read result to the agent. 

4) The agent passes the result to the client process. 



Figure 4-12: The steps taken by the close operation of a write session that ends a period of 
write-sharing. 

The writing client, C2, will now close its file session and the file will be propagated to the other servers 

as shown in Figure 4- 12. 

1) C2 sends the request to the agent. 

2) A2 checks the cache, finds the file not cached, and sends the request through to the 

contact, S3. 

3 )  S3 notes the close operation in the file's state and returns success to the agent. 

4) The agent passes the result to the client process. 

5) S3 sends close notification to the other servers, and (optionally) sends the file to S2. S3 

would not send the file to Sl as SI is already up-to-date. The other servers note the close 

operation in their states. 

Client C2 will next re-open the file for reading. This open will proceed just as client C,'s open did at the 

start of this example. The open will result in client C2 having the file cached, and the contact will be S3. Next, 



C2, will perform a read, sending the request to the agent and having the agent fulfill the read on the cache. C2 

will then close the file in the normal manner as described in the previous example and shown in Figure 4-13. 

Figure 4-13: Client C2 closing the read file session on file X. 

Finally, Cl will perform a read operation and then close the file. These operations will not be described 

but it should be noted that the read operation will be fielded by SI and that the file will not be sent to the agent 

to be cached (as files are only sent to client machines for caching during open operations.) 

4.8.3 An Example Of Write-Write Coriflicts 

For the final example, let us examine what happens when two concurrent conflicting write operations are 

submitted at about the same time. Assume that our two clients, CI and C2, have write-only sessions for file 

X. C,'s contact is SI and C2's contact is S2. Both clients issue a write request. Also, let the timestamp at S, be 

10.1' and the timestamp at S2 be 10.2. The discussion will pick up with each contact receiving the write 

request, and is shown in Figure 4-14. 

1. A timestamp consists of ( local count} .(server Id}. 



Figure 4-14: The steps taken when two conflicting writes enter the system at about the 
same time. 

1) After receiving the write requests, the contacts timestamp them and insert them into their 

write queues. Contact SI  timestamps the write, from C I ,  10.1 and updates the counter to 

11.1. Contact S2 timestamps the write, from C 2 ,  10.2 and i~pdates the counter to 11.2. Each 

contact sends the write to the other contact. 

2) Upon receiving the write notice from S2, SI  creates an acknowledgment and gives it the 

timestamp 1 1.1. SI  inserts the write into its write queue at ~ i t u x ( I I . l ,  10.2)=11.1 and returns 

the acknowledgment to SZ.  S2 does this procedure for the write it receives, timestamping 

and inserting i t  using 11.2. SI  and S2 both update their counters to 12.1 and 12.2 

respectively. 

3) When each contact receives the other's acknowledgment, they re-insert the write at the 

higher timestamp; SI  re-inserts its agent's write at 11.2, and S2 re-insens its agent's write 

at 11.1. They then return success to their respective agents. 

4) Next the contacts create write-commit notices stating the final timestamps and send 

them to each other. The writes will be applied at some later point. 



Failure Handling and Recovery 

The main motivation for replicating a file server is to allow processing to continue even if some of the 

file servers are inaccessible. When a failure is present the replication protocol must take actions to facilitate 

continued service. Our protocol employs an algorithm called change-of-contact to tolerate server failures and 

network partitions. 

A change-of-contact operation can be initiated by an agent, or by a server. If an agent does not receive a 

response from its contact, the agent process will send a request to a new server to initiate a change-of-contact 

operation. Any server will suffice, but i t  is in  the agent's best interest to choose a server that is physically 

close, as this server will become the new contact if the operation succeeds. Also, if a server notices an 

unresponsive server i t  may initiate a change-of-contact operation. A server will initiate a change-of-contact 

only if i t  requires a response from the unreachable server in order to complete an in-progress operation. 

The purpose of a change-of-contact operation is to allow processing to continue when a server is 

inaccessible. If an agent cannot reach its contact, no file operations that require server participation can be 

performed for the affected agreement. In order to allow accesses to continue under the agreement, the 

change-of-contact operation attempts to modify the agreement to include a different server as the contact. 



When a server initiates a change-of-contact operation because i t  requires an unreachable server to participate, 

the change-of-contact operation attempts to modify the agreement to include a different server so that the 

operation can continue. 

If a server is inaccessible, i t  is probable that more than one agreement will be affected. If the failure 

persists, more than one change-of-contact would be required. For this reason, a change-of-contact operation 

attempts to change all of the agreements that a contact holds. In modifying all of the agreements with one 

operation, the cost of failure handling is reduced. 

The basic steps involved in a change-of-contact operation are shown in Figure 5-1. The server, S1, that 

Phase 1 

1)  Failure of server SO is detected. A server, S1, starts the change process by 

colnmunicating with a majority of servers to determine all of the agreements held by 

SO, and inform them of the change-of-contact operation 

Phase 2 

2) Sl notifies all agents of SO'S agreements that a change-of-contact is in progress 

3) S 1 ensures all conflicting contacts are aware of the change-of-contact operation 

4) S1 acquires the current copies of any files for which SO had an agreement 

Phase 3 

5) S 1 broadcasts the result of the change operation to a11 participating servers and agents 

Figure 5-1: Steps and phases in  a change-of-contact operation 

performs the change-of-contact operation is either the server that notices the failure, or the server chosen by 

the agent that notices the failure of server SO. In performing the change operation, S1 will attempt to have all 

of the agreements of SO changed to show S 1 as the contact. 

In order to determine all of the agreements held by SO, S1 communicates with a majority of the servers. 

Each server that participates, responds with the file state for any file that SO appears to have an agreement for, 



or for files that S1 has had an agreement for recently. Having received file states from a majority of the 

replicas, S1 can determine what agreements SO holds because during the open() for each of the agreements, 

SO made sure that a majority "knew" about it. The set of agreements is guaranteed to show all agreements 

held by SO, but may show some agreements of SO that have been closed. This occurs for any agreement 

closures fdr which SO did not inform a majority about and that are not implied closed by SO'S lowest open 

agreenent value. 

From the set of agreements held, SI determines all affected agents. Each of the agents is sent a 

notification of the change operation, and a list of that agent's agreements that are being changed. The agent 

will then ackno~~ledge the notification. The agent will also send back information about the agreements held 

with SO, including whether the file is cached, if  the cache is dirty, what operations the agent is currently 

performing on the file, and whether the agent believes that the agreement still exists. 

S1 must also communicate with any contacts that hold agreements that conflict with those held by SO. 

This is done so that a conflicting contact can direct any communication for SO to S1. At the same time, S1 

should also acquire the current copy of each file for which an agreement is being changed. Both of these 

operations can be done while S1 is communicating with the agents. 

Once S 1 has become up-to-date, and the agents have responded, S 1 can determine the outcome of the 

change operation for each agreement. I t  is important to note that a change-of-contact operation may only 

partially succeed. That is, the change may succeed for some of the unreachable contact's agreements, yet fail 

for others. 

5.1.1 Necessary Conditions for Success 

There are five conditions, shown in Figure 5-2, that must be met before an agreement's contact can be 

changed. If all of these conditions are met, the agreement's contact can be changed, but i t  does not guarantee 

that future operations will succeed. I t  is possible that the failed server may still be the contact for some 

conflicting agreements so write operations will fail. 

The first condition for a change operation's success is that the agent participates. If the agent cannot be 

contacted, the change will not be successful. If the change were allowed to proceed without the agent's 

knowledge, the agent and the original contact could be in another partition performing file system accesses. 



A change-of-contact would allow conflicting sessions to operate on the file in a different partition, causing 

violations of the consistency guarantees. 

1) The agent participates 

2) A majority of the servers participate 

3) S1 acquires a current copy of the file, or the agent has the file cached 

4) No uncertain write requests exist, for the agreement to be changed, for which the 

outcome cannot be determined 

5) No other server is trying to change the agreements of SO and started before S1 

Figure 5-2: Requirements for a successful change-of-contact operation. The requirements 
are on a per agreement basis. 

The second condition requires a majority of servers so that the new contact can collect all necessary 

agreement information and a majority of the servers know of the new contact. This guarantees that subsequent 

opens will notice the change-of-contact. 

Either the agent has the file cached. or the new contact is required to obtain a current copy of the file. This 

is required so that operations can continue as they did before the change operation. Without a current copy of 

the file, read and write requests cannot be performed. 

The fourth condition in Figure 5-2 refers to uncertain write requests. There must not be any in-progress 

write operation that were started by the contact that is unreachable, for which all other contacts have sent an 

acknowledgment, and none know the result. In this case, the change will fail as the state of the file is non- 

determinable. 

The last requirement is in place to stop multiple change-of-contact operations from being performed at 

the same time for the same contact. Each change-of-contact operation is given a timestamp so that each 

change-of-contact operation can be distinguished and ordered. If during the execution of a change operation, 

the server performing the operation notices an earlier change that is in progress, the server will abort the 

operation. 



5.1.2 Cost of a Change 

This operation is significantly less expensive than a view change in a primary-copylsite system. No 

election is required, few files need to be transferred, and file system functions are not halted while the failure 

is being dealt with. Only one server may be required to have files brought up-to-date, and only a small fraction 

of the file system is affected. From the file system traces that we examined ([MUMM93]), a maximum of 16 

concurrent file sessions were noticed. Also, i t  is trivial to determine what files need to be updated; unlike 

Deceit, Echo, and Harp, where the whole file system or file group needs to be checked. Given that only a few 

sessions are usually being served at any given time, the number of client machines that need to be contacted 

and the number of files that need to be updated is minimal. 

The whole operation takes 3 phases to complete. During this time, the file system allows operations on 

non-affected files to continue. The change operation may slow down responses to agents due to the extra 

server processing and network traffic, but this is better than halting all operations while servers "exercise their 

democratic right." 

Due to the assumed low level of write-sharing, the necessary conditions, shown in Figure 5-2, do not 

impose a heavy penalty on the success of failure handling. Conditions 3 and 4 only restrict failure handling 

when there are conflicting agreements. Therefore, most change-of-contact operations only require that the 

agent be in the majority partition. 

5.2 Contact Recovery 

When a server recovers from a crash i t  does nothing other than stan where i t  left off. In contrast to a 

primary based scheme that starts a view change, or to Coda that updates the files on recovering servers, this 

protocol's server recovery is rather simple and efficient. 

5.2.1 Contact Recovery Without Non-Volatile Memory 

If the system does not provide extra hardware, i.e. UPSs and battery backed RAM, then the recovery of 

a server may become more complicated. The contacts can keep the file state stable by applying state changes 

to disk before acting upon the state change. This will allow all file state to be available to the contact upon 



recovery, but does impose an overhead whenever a server participates in an operation. An alternative method 

can be used that provides better efficiency, but handles fewer failure conditions. 

If the server does not keep the file state stable, with the exception of the write queue, then parts of it will 

need to be rediscovered when a server recovers. Due to the distributed nature of the protocol, this can be 

achieved by communicating with other servers. The actions taken by a recovering server, SO, that did not keep 

its state stable, are: 

re-apply the entries in the write queue which is assumed to be stored on disk, 

query a majority of servers, that still have state information, to determine what agreements are held 

by SO, (note that the majority in this operation will not inclilde the recovering server as it has no 

state information,) 

query a majority of servers to determine all active agreements, and relevant change-of-contact 

operations, 

query all clients of SO to determine possible agreements that have closed, 

The server will start reapplying the writes i n  the write queue to disk. There may be updates in the queue 

that have been committed, yet have not been applied. Those that the server is not sure about will be reapplied. 

The following actions will not wait for the file to become up-to-date before starting. 

The second action allows the recovering server to reconstruct the list of agreements that i t  holds. This 

will also serve to notify the recovering server of all change-of-contact operations for which it was the old 

contact; in the assumed environ~nent all of the recovering server's agreements would most likely have been 

changed to include a new contact. 

The third action informs the recovering server of all active agreements. This is done to guarantee that the 

recovering server is notified of all agreements that i t  had participated in; ensuring that a majority of the servers 

know about all agreements in the system. If the recovering server did not rediscover what operations it has 

participated in, some agreements or change-of-contact operations would not be reflected at a majority of the 

servers. This infornlation is retrieved at the same time, (with the same broadcast,) that the server finds out 

about its own agreements. 



The last step allows the server to find out about agreements that were closed, where the closure was not 

known by the other servers. This step also allows the server to notify all of its clients that it has recovered, 

and can now fulfill requests. 

During the rediscovery phase of the recovery process, the server will not participate in any file system 

operations. The recovering server will wait until its state is complete. If the server were to participate before 

its state is complete, i t  would be possible for open operations, or change operations to be performed without 

noticing all relevant agreements. 

The requirements for this type of recovery to succeed are listed in Figure 5-2. The second requirement 

1 )  a majority of the servers are available, excluding recovering servers as they do not 

have state information to share 

2) less than a majority of the servers failed within T seconds, where T is the amount of 

time required for a server to rediscover its state. 

Figure 5-3: Requirements for server recovery when file state information is not kept 
stable. 

highlights an important fact. This method cannot handle the "near-si~i~i~ltaneous" failure of a majority of the 

servers. If a majority of the servers do fail within the time period T, then a non-recoverable loss of file state 

information can occur. The time period T is the amount of time required for a server to recover its file state. 

5.3 Client Site Failure and Recovery 

There are two cases to consider: failure of client machines with stable caches, and failures of client 

machines with unstable caches. When a client machine with a unstable cache crashes, all agreements are 

implicitly closed. Any updates that have not been sent to the server are lost. On recovery the agent process 

sends a message to each server stating that all agreements with the agent should be closed. When a client 

machine with a stable cache crashes, the agreements will remain in effect unti l  the machine recovers, at which 

point the agent process will close all of the agreements and pass any updates in the cache to the contacts. 



5.4 Availability Comparisons 

Another important yardstick with which to measure the different file systems is the availability achieved 

by each. This is where our protocol pays the highest cost for ensuring UNlX semantics. 

In choosing to enforce UNlX semantics, certain levels of availability are immediately unattainable. For 

example, one cannot allow updates to a file in one partition while any accesses are allowed to the file in 

another partition. One of the design decisions we chose was to benefit the reader, instead of the writer in times 

of conflict and failures. In doing so, we allow readers, that are able to open a file, to always read the file, if 

they can access a current copy, and the read does not conflict with an uncertain write. On the other hand, a 

writer is penalized in that the file is only available for update if all contacts for the file are available. This was 

chosen as update sessions make up only 10-20% of the file sessions ([MUMM93], [BAKEgI]). 

We have attempted to maximize availability without con~promising the average file session cost. To this 

end, we have allowed any agent that obtains a cached copy to always access that cached copy unless the 

agent's contact performs a call-back. This lets all accesses to a agent's cache go unhindered by any need to 

check that the cache is still valid by contacting a server, or by having the server periodically contact the agent. 

On the other hand, the failure of a client machine can cause the loss of availability of a file unti l  the computer 

is restored. The loss of availability is minimized by the requirement that the agent notify the contact on close, 

and flush any updates to the contact on close. This lowers the amount of time the availability of the file 

depends on a single site. 

In the same manner as requiring agents to flush updates to the contact immediately, the contact tries to 

distribute these updates as soon after the close as is possible. The distribution is left until after the close call 

is returned to the agent so as to not delay the client while replication is achieved. The contact distributes the 

file to all available servers after returning the call to the agent. 

To compare the achieved availability, the requirements for an operation to succeed are listed in Table 5- 

1 for each of the file systems is considered i n  this thesis. 

To open a file in a normal situation when there are no conflicting sessions, our protocol requires that the 

agent be in a majority partition. This is the same requirement for Echo and for Harp. Only Deceit lets file 

sessions start in non-majority partitions, but Deceit also has the weakest consistency guarantees. Using our 

protocol, all conflicting contacts must also be in the majority panition along with the client site requesting the 



Table 5-1: The Requirements For Availability Of Each Operation By File System 
I 1 OPEN 

I CLOSE 

1 )  the agent is in a majority partition 

2) all conflicting contacts are also in the partition 
or 
2) all conflicting agents and 1 contact are in the partition 

3) there is a current version of the file available 

1 )  the agent is in a majority partition 

1 )  the agent is able to contact a server 

1 )  the agent is in a majority partition 

Our Protocol 

Echo 

1 )  the agent can reach its contact 
or 
1 )  the agent and a current copy of the file are in a majority partition 

1 )  the agent is in  a majority partition 

Deceit 1 )  the close is for a read-only file session 
or 
1 )  the token holder is available 

1 )  the close is for a read-only file session 
or 
I ) the agent is in  a majority partition 

READ 

Our Protocol I )  the agent has the file cached 
or 
I )  the agent's contact is available 
or 
1 )  all conflicting agents. 1 contact, and a majority of the servers are in 1 partition 



Table 5-1: The Requirements For Availability Of Each Operation By File System 

Echo 

Deceit 

WRITE 

Our Protocol 

Echo 

Deceit 

Harp 

I )  the agent has the file cached and has not given up its read token 
or 
1) the agent is in a majority partition 

1 )  the agent has the file cached 
or 
1) the agent can contact a server 

--- - 

I )  the agent has the file cached 
or 
I )  the agent is in a majority partition 

I )  the agent has the file cached 
or 
I )  all contacts are available 
or 
I) all conflicting agents, I contact, and a majority of the servers are in 1 partition 

1) the agent has the file cached, has not given up its token, and flushes the updates from 
the cache before any conflicting agent gains the token 
or 
1) the agent is i n  a majority partition 

1 )  the agent has the file cached 
or 

oent can contact a server 1) thea, 

2) the token holder is available when the updates are to be flushed from the cache 

I )  the agent has the file cached 
or 
I )  the agent is in  a majority partition 

2) the agent is in a majority partition when the updates are to be flushed from the cache 

open operation and all client machines that have the file cached. Requiring this limits our protocol's achieved 

availability during times of write-sharing, but since such scenarios are very rare, they do not drastically affect 

the overall availability. 

Most read and write operations will be performed on cached copies in all protocols. Our protocol 

sacrifices availability during write-sharing in order to achieve the strict semantics. Write operations must be 

performed at all of the conflicting contacts in order to complete, or there must be enough servers, agents and 

contacts available to perform a change-of-contact operation. Read operations in write-shared situations are 



slightly better, requiring only the agent's contact be available or enough agents and contacts in order to 

perform a change-of-contact operation. 

The failure of a client machine, or the partitioning of client machine appears to impose severe limitations 

on the availability that our protocol can achieve. This is not so. Only those files that a client machine is using 

will be affected by the inaccessibility of the client. Most files that other clients will desire are read-shared 

system files, and since no one is updating them the failure will not affect their availability. Those files that the 

inaccessible client may update will usually be personal files that no other clients will require. In the event that 

a client machine fails and the user wishes to switch to an alternate client machine, system support should be 

able to mark the failed client machine as crashed, allowing the servers to close all agreements held by the 

machine. 



Comparisons 

6.1 Operation Costs 

This chapter presents a qualitative comparison of our protocol against Echo, Harp, and Deceit. Coda and 

the mobile system will not be included in the comparison as their semantics are sufficiently different that a 

comparison would not be useful. These comparisons are approximate, require a number of assumptions and 

are only presented to give the reader a general idea of how our protocol might perform in comparison to other 

replicated file systems. 

The comparisons estimate the maximum expected costs for each of the basic file operations. For each 

operation, the different functions that a server andlor client may have to perform are listed with the cost of 

each. 

In order to make the comparisons, we had to make some assumptions about the other file systems. The 

literature on Echo does not provide sufficient insight into what the file system performs during an open or 

close operation. The exact style of caching is also not covered. To overcome this, we assumed that an open 

operation entails acquiring the appropriate token, and fetching file data for the client's cache. A close 

operation is assumed to return the token and flush any cached updates to the primary. Since we did not know 

the caching style of Echo, we compared Echo using both whole file caching and disk block caching. 



Harp and Deceit are both NFS server replacements and as such do not directly support open or close 

operations. For these two file systems, we assumed that an open would cause a fetch of file data, and a close 

would cause a flush of dirty cache entries. The flushing of dirty cache entries would be done outside of the 

critical path after the close call has been returned to the client. Both Harp and Deceit are assumed to use disk 

block caching. 

Deceit allows a variety of operating modes. For the purpose of the comparisons, Deceit will be measured 

using the settings to achieve the strongest semantics i t  offers. This is so that it is similar to the other systems 

being compared. The Deceit settings are: no token generation, use stability notification, a minimum replica 

level of 1, no file migration, and a write availability level of low. 

Deceit uses forwarding address to locate the token holder. In [SlEG90], this cost is stated to average to 

log N, where N is the number of servers. This value is used as the cost for finding the token holder in Deceit. 

To describe the message costs performed by each file system, we broke down each operation into all the 

basic functions they perform. The functions and their associated costs are listed in tables 6-1 through 6-4. 

Each line in the tables shows what costs the file system would pay with and without hardware supported 

multicast. 

Some of the operations are performed in the critical path, before the call is returned to the client; others 

are wholly or partially perfomled outside of the critical path. Message costs paid outside of the critical path 

are enclosed in square brackets in the tables. Costs paid outside of the critical path add to the network load 

and to the server's load, but do not directly affect the response time for the operation. 



In order to determine the number of messages required, some constants are needed; these are shown in 

N = number of replicas 

F = number of client machines with existing, conflicting file sessions 

C = number of existing, conflicting contacts 

Figure 6-1: Constants used in  the comparisons. 

Figure 6-1. The number ofexisting conflicting file sessions, denoted by F, is the number of file sessions when 

a file is being write-shared. If the file is not being write-shared then F will be 0, even if there are concurrent 

file sessions reading the file. F is bounded by the number of client machines in the system, but will usually 

be smal1,e.g. less than 3. C denotes the number of contacts that are serving conflicting file sessions, and is 

bounded by min(E N) .  

The first four tables show the actions that can be performed by each file system operation. The message 

costs in Table 6-1 through Table 6-4, show the maximurn cost for each action. For some of the operations, not 

all actions can take their mnxi~num costs at the same time. For example, in our protocol, there are two actions 

shown for contacts performing cache call-backs. The total cost for these two operations is ZF, but the 

maximum for each is also 2F. 

Read operations are effectively the same as open operations, except in our protocol. For this reason only 

our protocol is covered in Table 6-2. 

The comparison of the different write operation costs is complicated. There are three issues: the cost of 

fetching the disk blocks into the client's cache, the cost of sending the updates back to the server and when 

these costs are paid. For our protocol, if the client's cache does not hold the required file, the update will be 

sent to the contact. The others will all fetch the required data, and send i t  to the client; this cost is the same as 

the open cost and so is not considered in Table 6-3. Therefore the table only shows the costs for updating the 

servers. In addition to the actual costs, the issue of when the costs are paid is also important. This will be 

addressed in the next section when session costs are discussed. 



Table 6-1: Cost of Open Operations 

OPEN 
# Msgs 

w/o multicast w/ multicast 

Our Protocol 

1) client sends rnsg to chosen contact 

4) each serve? responds to the contact 

2) contact sends open notice to a majority 

3) each servei5ecalls conflicting client caches 

5) contact sends the open notice to all conflicting 
contacts not included in  the majority 

6 )  each contactb recalls conflicting client caches I 2F I 2F 

M- 1 

2F 

7) each contactb responds 

1 

2F 

7 I 

8) contact obtains a current copy of the file 

Echo 

1) client sends msg to the primary 

2) primary recalls all conflicting tokens 

3) primary notifies all secondaries of each client that 
gives up its last token or receives its first token 

2 

4) updates sent back by a conflicting client are sent to 
all secondaries by the primary 

5) each secondary acks the updates 

2 

9) the call and possibly the file are returned to the agent , 1  

1 

2F 

(F+ I )(N- I  ) 

6 )  primary sends token and file data to client 

3) server gets current file data from token holder I I I  

1 

1 

2F 

1 

N- l 

N- 1  

I )  client sends msg to the closest server 

2) server finds token holder 

1 

N- 1 

Deceit 

1 

1) client sends msg to the primary I 1 

1 

1  

log N 

- - - -  - 

4) server sends file data to the client 

2) primary sends file data to the client I 

1 

log N 

a. Each server that was included in step 2 performs this function; not all servers. 

b. Each contact that was included in step 5 performs this function; not all contacts 

Harp 

1 
- -- 

1 



Table 6-2: Cost of Read Operations 
(When the read cannot be satisfied by the cache.) 

l - r c i z e n d s  msg to chosen contact 

READ 

2) contact reads the data and returns the call to the 
client 

Echo - same as open 

Deceit - same as open 

Our Protocol 

# Msgs 
w/o multicast 

I Harp - same as open 

# Msgs 
w/ multicast 



Table 6-3: Cost of Sending Updates to the Servers 

REMOTE WRITES 

1 3) all contacts ack the write notice 

1) client sends msg to chosen contact 

2) contact sends write notice to a11 contacts 

1 4) contact returns the write call to the client 

Our Protocol 

# Msgs 
wlo multicast 

# Msgs 
w/ multicast 

1 

C- 1 

1 I )  client sends msg to the primary 1 I /  

1 

1 

I I 

1 2) primary distributes updates to all secondaries 

5) contact broadcast write commit to all contacts 

1 4) primary returns the write call to the client 1 I I 1 I 

C- l 

3) each secondary acks the updates 

1 

N- l 

Decei ta 

I 3) token holder broadcasts a token pass 

N- 1 

1) client sends msg to the closest server 
I I 

2) server finds the token holder 

1 

4) new token holder broadcasts instability notice 

5) server sends the update to the other servers 

1 

log N 

6) server returns the call to the client 

7) the other servers ack the updates 

log N 

N- l 

N- l 

8) server broadcasts stability notice 

- - -- -- - 

1 

1 

1 

N- I 

1 )  client sends write to the primary 

2) primary sends the update to the secondaries 

a. For Echo, Deceit, and Harp the costs in this table reflect the operations performed to 
propagate updates to the servers. The cost for pre-loading the cache is the same cost as for 
an open. 

1 

N- 1 

N- I 

3) all secondaries ack the update 

4) primary returns the write call to the client 

1 

1 

N- 1 

1 

1  

N- 1 

1 

N- 1  

1 



Table 6-4: Cost of Close Operations 

CLOSE 
# Msgs # Msgs 

w/o multicast W/ multicast 

2) contact returns the call to the client I I I  1 

I I 

Our Protocol 

- - - - - - - - - - - - 

3) contact sends close notice and any updates to all 
servers 

1) client sends rnsg to chosen contact 

I Echo 

1 1 

I 2) primary distributes updates to all secondnries I N-l 1 
1) client sends the token and any updates to the prilnxy 

- --- 

1 1 

3) each secondary acks the updates 

4) primary returns the call to the client 

I I 

Deceit'" 

N- l N- 1 

I 1 

5 )  primary notifies all secondaries if this client gave up 
its last token 

I 1) client sends updates to the closest server I I /  

N- 1 1 

1 2) server finds token holder 1 log N I log N 

1 3) token holder broadcasts a token pass I N-l I 1 

I 4) token holder broadcasts a token pass 1 N-I I 1 

5 )  server sends the update to the other servers 

6 )  server returns the call to the client 

7) the other servers ack the updates 

8) server broadcasts stability notice 

N- l 1 

I 1 

N- 1 N- 1 

N- I 1 

Harpa 

1) client sends any updates to the primary 

2) primary sends the update to the secondaries 

3) all secondaries ack the update 

4) primary returns the call to the client 

1 1 

N- l 1 

N- l N- 1 

1 1 

a. A close in Deceit and in Harp does nothing, but the costs of writing out the cache contents 
will be paid later, outside of the critical path. 



6.2 Session Costs 

Showing each operation's cost on its own does not completely describe the cost paid by a file system. 

The cost of an average file session, as computed from the costs of each operation, are shown in Figures 6-5 

through 6-8. These are summarized in Figure 6-9. Figure 6-10 shows these costs with 3.5. and 7 replicas. 

The costs shown in the tables are for a normal file session; no error processing is included. For each 

protocol, the expected operations are listed with their associated costs. A normal file session will not conflict 

with any other sessions as the environment assumes a low level of write-sharing. Under whole file caching, 

the file is sent to the client on open, whereas with disk block caching the file is sent in pieces. For the purposes 

of the comparisons, we assume that disk block caching requires 2 fetches during an average file session in 

addition to the data transferred during the open operation. This definition of a normal file session has all 

protocols using client caching, and token based protocols only requiring 1 token acquisition. The calculations 

do not allow for file sessions that start with a file already cached. 

The tables provide 3 types of measurements: 

1 )  the cost in messages with and withoi~t hardware supported multicast, 

2) the number of message rounds required, and 

3) the number of file or data transfers required. 

The data transfer measurement shows the number of times that the whole file (ft), or a portion of the file (dt) 

is sent between sites. These measurements are calculated for setups with and without hardware supported 

multicast. In Table 6-6, Echo's cost is computed for whole file caching and disk block caching; the main 

portion of the table gives the data transfer measure~nents for disk block caching. 

Based on this cursory comparison, i t  can be seen that our protocol is only slightly more costly than the 

other protocols. Echo appears to be an excellent choice if  whole file caching is used, but these comparisons 

do not show traffic caused by conflicting accesses, bottlenecks that show up at primaries, or the cost paid 

when a site fails or recovers. If these were factored in, Echo would not appear so efficient. 



Table 6-5: Average Session Cost For Our Protocol. 

I # Msgs I I Data Xfers 
L 

Open 

Average 
Session Costs 

#Rounds 
W/O 

rncast 

1) client sends message to 
contact 

2) ccntact sends open notice to a 
majority of the servers 

3) a majority of the servers 
acknowledge the open notice 

4) contact sends file to the client 

Close 

w/ rncast 

1) client sends message (and 
updates) to contact 

2) contact sends close result to 
client 

3) contact sends close notice 
(and updates) to all servers 

wlo 
mcast 

I 

M- 1 

M- l 

1 

Read 
Sessions 

Write 
Sessions 

W/ mcast 

1 

1 

N- l 

2M+2+ 
[N- I] 

2M+2+ 
[N-I] 

1 

1 

M- l 

1 

I 

1 

I 

1 

1 

I 

1 

0 

0 

0 

1 ft 

4+M+[I ] 

4+M+[1] 

0 

0 

0 

I ft 

1 

1 

1 

6+[ 1 1 

6+[1] 

1 ft 

0 

N-1 ft 

I ft 

0 

1 ft 

1 ft 

2+[N-11 ft 

I ft 

2+[1] ft 



Table 6-6: Average Session Cost For Echo. 

# Msgs I I Data Xfersa 

w l o  
m a s t  

Open 

Fetch (disk block caching only) 

# Rounds 
w/ mcast 

1) client sends message to 
primary 

2) primary sends file data and 
token to client 

Close 

1) client sends message 

2) primary sends file data to 

1) client sends token (and 
updates) to primary 

2) primary sends updates to all 
secondaries 

3) all secondaries acknowledge 
the updates 

4) primary returns result to client 

client 

w/o 
mcast 

1 

1 

Average 
Whole File 
Caching Session 
Costs 

W/ mcast 

1 

N- l 

N- l 

1 

Average 
Disk Block 
Caching Session 
Costs 

1 

1 

Read 
Sessions 4 

1 

1 

N- l 

1 

Write 
Sessions 

1 

1 

Read 
Sessions 

1 

1 

1 

1 

Write 
Sessions 1 2N+6 

0 

1 dt 

a. The main section of this table shows data transfer measurements for disk block caching only. 
Whole file caching measurements for the open and close operations are the same except the 
units arefrs. 

0 

1 dt 

1 dt 

N-1 dt 

0 

0 

1 dt 

1 dt 

0 

0 



Table 6-7: Average Session Cost For Deceit. 

I # Msgs I I Data Xfers 

Write Back (after closing) 

W/O 
mcast 

Open 

# Rounds 
wlrncast 

1) client sends message to server 

2) server sends file data to client 

1) client sends file data to server 

2) server finds token holder 

3) token holder sends token pass 
to all servers 

4) new token holder marks 
others as unstable 

5 )  server sends updates to all 
servers 

6) server returns call to client 

7) the servers ack the updates 

8) server sends stability notice to 
all servers 

wlo 
mcast 

I 

I 

Fetch 

w/ mcast 

1 

log N 

N- I 

N- l 

N- l 

1 

N- I 

N- l 

1 

I 

1) client sends message to server 

2) server sends file data to client 

1 

log N 

I 

1 

1 

I 

I 

N- l 

1 

1 

6 

6+[5N-3+ 
log 31 

Average Session 
Costs 

1 

1 

Read 
Sessions 

Write 
Sessions 

1 

log N 

I 

1 

1 

1 

1 

1 

1 

1 

6 

6+ [N+6 
+log N] 

0 

I dt 

0 

1 dt 

1 dt 

0 

0 

0 

N-l dt 

0 

0 

0 

1 

1 

6 

6+ 
[7+log N] 

1 dt 

0 

0 

0 

1 dt 

0 

0 

0 

0 

1 dt 

3 dt 

3+[N] dt 

0 

1 dt 

3 dt 

3+[2] dt 



Table 6-8: Average Session Cost For HARP. 

I Write Back (after closing) 

Open 

# Msgs 

1) client sends message to 
primary 

2) primary sends file to the client 

Fetch 

1) client sends message 

#Rounds 
W/O 

mcast 

1) client sends file data to 
primary 

2) primary sends updates to all 
servers 

3) all secondaries acknowledge 
updates 

4) primary returns call to client 

5) primary sends update commit 
to all secondaries 

2) primary sends file data to 
client 1 

Average Read 
Session Costs Sessions 6 

Write 
Sessions 6+[3N- 1 ] 

W/ mcast 

1 

1 

Data Xfers 

1 

N- l 

N- l 

1 

N- l 

mcast 

1 

1 

w/ mcast 

1 

1 

N- l 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 dt 

0 

1 dt 

1 dt 

N-l dt 

0 

0 

0 

1 dt 

1 dl 

0 

0 

0 



Table 6-9: Average Session Cost Summary. 
I I I 

Our Protocol's 
Average 
Session Costs 

Echo's 
Average 
Session Costs 
(Whole File 
Caching) 

Echo's 
Average 
Session Costs 
(Disk Block 
Caching) 

Deceit's Average 
Session Costs 

HARP'S Average 
Session Costs 

Read 
Sessions 

Write 
Sessions 

Read 
Sessions 

Write 
Sessions 

Read 
Sessions 

Write 
Sessions 

Read 
Sessions 

Write 
Sessions 

Read 
Sessions 

Write 
Sessions 

# Msgs 

# Rounds 

6+[1 1 

6+[l] 

4 

6 

8 

10 

6 

6+[7+ 
log N] 

6 

6+[5] 

wlo 
mcast 

2M+2+ 
[N-I] 

2M+2+ 
[N-I] 

4 

2N+2 

8 

2N+6 

6 

6+[5N+ 
log N-31 

6 

6+[31\'- I ]  

wl rncast 

4+M+[1] 

4+M+[1] 

4 

N+4 

8 

N+8 

6 

6+ [N+6+ 
log N] 

6 

6+[N+3] 

Data Xfers 

w,o 
mcast 

1 ft 

2+[N-1]ft 

1 ft 

N+l ft 

3 dt 

N+3 dt 

3 dt 

3+[N] dt 

3 dt 

3+[N] dt 

W/ mcast 

1 ft 

2+[1] fi 

1 ft 

3 fi 

3 dt 

3 dt 

3 dt 

3+[2] dt 

3 dt 

3+[2] dt 



Table 6-10: Average Session Cost Summary By Number of Replicas. 
Includes average for all sessions using a 90%/10% readwrite mix. 

# Msgs 

w/ mcast 

Read 
Sessions 

-- 

Our Protocol's 
Average 
Session Costs 

Write 
Sessions 

All 
Sessions 

Read 
Sessions 

Echo's 
Average 
Session Costs 
(Whole File 
Caching) 

Write 
Sessions 

All 
Sessions 

Echo's 
Average 
Session Costs 
(Disk Block 
Caching) 

Read 
Sessions 

Write 
Sessions 

All 
Sessions 

Deceit's 
Average 
Session Costs 

Read 
Sessions 

Write 
Sessions 

All 
Sessions 

HARP'S 
Average 
Session Costs 

Read 
Sessions 

Write 
Sessions 

All 
Sessions 



6.3 Conclusions 

From the tables presented in the previous sections, a rough comparison of the different protocol's 

performances can be drawn. When comparing the relative message costs, one should consider that our 

protocol is providing stronger consistency ginrantees and therefore is required to perform more work. 

The tables show that our protocol achieves similar performance to the other protocols for a small number 

of replicas. As the number of replicas grows i t  can be seen, from Table 6-10, that the cost of our protocol 

increases faster than the costs increase for the other systems. This shows that achieving such strict consistency 

in large networks with our protocol is not feasible, but for "smaller" systems we are competitive. 

It is interesting to note that by using whole file caching, our system provides the fewer number of data 

transfer messages. This is not to say that we transfer less data, but that we pay a lower overhead cost. The 

benefit should be countered with the fact that an open operation, when using whole file caching, can take 

longer than when using disk block caching, and that whole file caching will send more data than is required 

for some file sessions. 

These comparisons leave out many performance issues: the effects of load balancing on the servers, 

bottlenecks in the system, costly failure handling, and the effect of distance on communication costs. Taking 

into account these factors would benefit our protocol more than others. 



Implementation 

This section describes the implementation of a prototype and gives some test results. The tests were 

developed to compare the performance of the prototype to NFS and to a non-replicated version of the file 

system. The comparisons were designed to approximate the costs of the replication protocol and the costs of 

achieving UNIX semantics. 

7.1 Prototype 

The prototype was implemented on NeXT workstations. The choice of platforms was driven by the 

simple IPC interface, and elegant threads package offered by the NeXT mach operating system. The 

distributed nature of the project, and the structure of the protocol required good communication, and process 

management primitives. 

The prototype did not contain all of the fimctionality of the protocol. The basic file operations, open, 

close, read, and write, were implemented. The failure handling mechanism, change of contact, was not 

implemented. The hardware did not include any UPSs, nor did it include stable memory. 

Each server used the local file system of the computer to store its copies of the files. Access to these files 

was through the standard file system open, close, read and write system calls. This allowed us to concentrate 



on implementing the protocol, rather than spending time on other unrelated issues such as a block service, or 

a directory service. There was also no server caching included other than that provided by the operating 

system. 

The prototype included a client interface, agent process code, and server code. The agent process is made 

up of a number of threads to service client requests, and a number of threads to service file server requests. 

Client requests are all sent to the agent; those destined for the servers are passed on, the others are performed 

on the cache by the agent. The agent also accepts commands from the server to destroy or flush files in the 

client's cache. 

The server code consists of a number of threads, all in a single server process. There is a set of worker 

threads that accept and fulfill agent requests, and another set to accept and perform requests from other 

servers. There is also a thread responsible for applying all updates in the write log to disk. 

Each replica of the file system was implemented by executing a server process on a NeXT workstation, 

using the local disk for file storage. There were 1023 files, numbered 0 through 1023, all in a single directory 

thus providing a flat file sysreln. The files used range in size from a couple hundred bytes to 15000 bytes. The 

state information for each file is not saved to disk in the prototype. Instead, each file starts with an empty state 

(but the file is not empty) and the state grows/shrinks as the system accesses the file. The file state is kept only 

by the servers, and does not get propagated to the agents. The only state information seen by an agent process 

is the version numbers of the cached files and the agreement id's that involve that client machine. 

The non-replicated version of our protocol has the same agent interface as the replicated version. This 

version provides the same consistency guarantees that the replicated version offers. The single-server version 

has less file state information to track, fewer situations to consider, and therefore requires significantly less 

processing. 

7.1.1 Session Generator 

In order to test the prototype, we developed a simple file system session generator. The generator creates 

file sessions with an exponential inter-arrival rate. There are a number of inputs that control the creation of 

the file sessions, and the accesses that they perform. Among those inputs are: file session inter-arrival 

time, % readwritelread-write file sessions, # of operations per session, operation inter-arrival times, % of the 



sessions that read the whole file v.s. a single part of the file v.s. randomly selected parts of the file, and the 8 of 

the file sessions that operate in write-shared mode. 

For each session, the generator spawns a thread that performs all of the file accesses for the session. In 

order to keep the model simple, each file session has a constant operation inter-arrival time, along with the 

amount of data readwritten per operation. This allows the operations to be performed without using arandom 

number generator during the file session. As the system is run in real-time, and the delays are not controllable, 

accessing the random number generator within the file sessions would result in elements of the random 

number sequence to be used for different instances depending on which test is performed. We wanted to use 

the same executions for testing each file system setup, and this allowed us to achieve that without using some 

form of trace file, which would have competed for disk resources with the tests we were running. 

7.1.2 Test Variations 

There are a number of different aspects to the protocol that were examined. The effects of caching, 

replication, and strong consistency semantics were tested, along with server load capabilities. In order to 

perform these tests we created different instances of the prototype. The test variations performed were: the 

standard protocol with and without caching, a single server version of the protocol, and an interface to NFS. 

These variations allowed us to examine the performance of the protocol with respect to replication and 

caching, and to compare the performnnce to an existing file system. 

7.2 Test Runs 

All of the test runs of our prototype and its variations were made with 6 NeXT machines, 3 clients and 3 

servers. All but one of the machines was a standard 68040 based NeXT workstation with 16 Meg of memory. 

The final machine was a Turbo NeXT 68040 with 48 Meg of memory. The faster machine was used as a server 

in our tests. For the NFS test, we used 3 NeXT machines that issued requests to a NeXT NFS server on the 

same LAN that the workstations were on. In  order to reduce any conflicts with other processing all of our test 

runs were performed at night during low usage times. The computers were all running version 3.0 of the 

NeXT Mach O/S and were connected by a I0 Mbit ethernet. 

Each client machine produced more file sessions than a 'real' client machine would in order to simulate 
1 

the load of many clients. Each of the three client machines produced - of the total load per experiment. 
3 



The parameters used to generate the file sessions were obtained from [BAKEgl]. The general settings 

for the type of file sessions are generated are shown in Table 7-1. To determine the number of operations per 

Table 7-1: Types of sessions generated ([BAKEgl]). 

Read Write Readwrite Constraint / 1 Sessions 1 Sessions 1 Sessions I 
I Session Type 1 88% ( 11% I 1% I 

Whole File 

1 Contiguous 
Portion 

file session we processed some file traces acquired from ([MUMM93]). These traces also confirmed the read/ 

writelread-write file session mix reported in [BAKEgl]. The values used for the majority of the tests are 

shown in Table 7-2. The average observed was about 8 operations per session, but this was due to a few 

Random 

Table 7-2: Average operations per file sessions generated in the tests 

78% 

67% 

I Read 1 Write 1 ReadIWrite 1 

0% 

sessions having a very large number of operations, the vast majority of sessions consisted of 2 operations or 

less as can be seen in Table 7-3 . Tests were also run with 25 operations per session for all session types to 

determine how file sessions with significantly more operations would be affected by the protocol. 

19% 

29% 

Due to the amount of time required to perform the experiments, only one parameter was varied from test 

to test, the file session inter-arrival time. The file session inter-arrival time controls the number of file sessions 

that are present in the system at any given time. This determined the load placed on our servers. For our 

comparisons to NFS, and the non-replicated prototype under expected loads, we performed tests where each 

client generated file sessions with the inter-arrival times: of 1.0, 1.5, 2.0, 2.5 and 3.0 seconds. Given that the 

tests were performed with 3 clients generating this load, these values correspond to 3.0, 2.0 1.5, 1.2 and 1.0 

file sessions per second. The Sprite paper showed loads of about 1.0 file sessions per second. Since this was 

averaged over the period of a day., we took this to be the low end of the load that we should test. 

3% 

4% 

0% 100% 



Table 7-3: Observed operationslfile session by file session type. 

1 8 or more 11 1.58 1 16.7 1 7.56 I 

# 
Operations 
/ Session 

In order to determine when the servers would start to thrash, we decreased the inter-arrival times. For the 

stress portion of the test, we only tested the replicated and non-replicated protocols; we did not stress-test 

NFS. The inter-arrival times that were used were: 0.8.0.7, 06,0.5, 0.4 seconds (i.e., 3.75,4.3, 5 ,6,  and 7.5 

file sessions/second.) We attempted runs with an inter-arrival time of 0.3 seconds, (10 file sessionslsecond,) 

but the non-replicated version could not handle the load and would crash. 

Read 
Session 

I I  I I 

The single server test was used to determine the cost our protocol paid to achieve replication. We decided 

the best way to show the cost of replication was to compare our protocol with a similar structured non- 

replicated file system. I n  doing so we were able to remove bias due to code optimizations of well tested, 

mature, commercial grade file systems (NFS), and the differences due to the kernel space processing of NFS 

V.S. the user space processing of our prototype. 

Average 

The comparison to NFS shows how our model compared to a widely accepted file system with weak 

semantics. This comparison is subject to those biases mentioned above. The biases can be partially factored 

out by comparing the costs obtained by the NFS test, and those shown by our single server tests. The bias 

cannot be completely determined as there are some costs our protocol must pay in order to guarantee UNIX 

semantics. 

Write 
Sessions 

ReadIWrite 
Sessions 

1.96 33.3 29.2 



7.3 Test Output 

The most relevant data produced by the testing shows the achieved response times of the different setups; 

how efficient the system appears to client processes. A summary of each tests' output is shown in Table 7-4. 

Table 7-5 and Figure 7-1 show the results of the stress testing of the replicated and non-replicated protocols. 

The results of testing non-caching client machines are shown in Table 7-6. An experiment to examine the 

effects of file sessions with more operations per session is summarized in Table 7-7. The measured response 

times for each operation and the file session times, all in milliseconds, are shown. All of the client machines 

exhibited roughly the same behavior, so rather than show the results generated by all of the clients, only those 

measurements collected by one of the client machines are summarized in the tables. 

For all of the tests, NFS performs significantly better than both the replicated and the non-replicated 

protocols. This is true not only for open and close operations, that always include server participation, but 

also for write operations that only include the servers some of the time. We believe that this is due to 

optimizations achieved through years of fine tuning NFS, and due to the fact that NFS executes in kernel 

space, requiring fewer transfers between user space and kernel space. 

From Table 7-4 it can be seen that under the expected load, the cost paid for replication is completely 

contained within the cost of opening the file. This is as expected as most reads and writes are fulfilled using 

the cache. The close operation for the replicated and non-replicated cases are effectively the same, as the cost 

of replicating updates and notifying servers are performed outside of the critical path. The extracost paid on 

open ranges from 17 to 28% of the open cost, or 6.4 to 16% of the total session cost. The confidence intervals 

for the data produced are also shown in  Table 7-4. The results are accurate for the lower load levels, but the 

confidence intervals drop off as the load increases. This is due to a lack of time in which to run enough tests 

to tighten the confidence intervals at all load levels. 

The close operation costs are effectively the same in the replicated and non-replicated protocols. There 

is also no difference between the read and write operation times under normal loads. The timing of sessions 

shows the amortization of the open cost over the life of a file session. The session times include the time 

between file system operations when the client process is performing other functions. This is acceptable in 

that each protocol tested was run using the exact same set of file sessions, and therefore the same amount of 

extra processing time was included in the session time measurements for each system. 



Table 7-4: Response times for expected loads. 

LOAD REPLICATED NON-REPLICATED NFS 

Conf. In1 % hclow Conf. In(. % below Conf. Int 

OPEN 

CLOSE 

READ 

WRITE 

SESSION 



In order to test how the servers respond to increasing loads, the load was increased to 7.5 file sessions per 

second for the replicated and non-replicated protocols and is shown in Table 7-5. The replicated protocol was 

fairly constant in its behavior up to a load of 5 file sessions per second. Its performance dropped significantly 

once the load was increased beyond 5 file sessions per second. In contrast the non-replicated protocol 

remained constant only to about 3.75 file sessions per second and then exhibited a slower loss in performance. 

There were not enough test runs performed for the higher load tests in order to make them statistically 

accurate as the machines being used were reaching their processing limits and would crash. Tests were 

attempted for 10 file sessions per second, but the non-replicated version would crash the machines almost 

- - * - - - -- A - - - 

7.5 6 5 4.3 3.75 3.0 2.0 1.5 1.2 1 .O 

Replicated 0 Unreplicated 

Figure 7-1 : The effect of load on the replicated and non-replicated protocols. 

immediately. The replicated version would execute completely, but would exhibit extremely high file session . 
times, and many file sessions were aborted due to extreme response times from the servers. This behavior 

should be expected as at this load file sessions are being generated faster than they are removed from the 

system. Generating file sessions at a rate of 10 per second will quickly increase the number of file sessions 

being processed, from 2 or 3 in the system at a time, to 50 or more, if the system fails to service them fast 

enough. 



Table 7-5: Response times for heavy loads to determine thrashing points. 

READ 

LOAD 

WRITE 

1.2% 

13% 7 
3.75 -0.93% 

SESSION 

REPLICATED 

A set of tests was performed that shows the effect of caching on our protocol. The tests were executed 

100 

NON-REPLICATED 

na bclow 

OPEN 

7.5 

6 

5 

4.3 

3.75 

CLOSE 

101.9 

101.3 

96.4 

88.4 

83.2 

123.0 

106.8 

100.2 

102.7 

98.4 

17% 

2.4% 

3.8% 

14% 

15% 



Table 7-6: Caching costs 

I Open 1 100.9 1 55.3 1 
Session 

Close pq-y-q 
Write 24.9 

with a load of 1.2 file sessions per second, and an average of 3.5 operations per file session. The results are 

shown in Table 7-6. The results show the cost of transferring a complete file on open, and also shows the cost 

of always sending file system operations to the server. The measurements are interesting because they point 

out the costs paid by workstations that cannot support caching or that can only support a very small cache. 

The costs saved by not sending the file on open could be capitalized on by returning the result of an open 

operation to the agent, and then sending the file after the client has been allowed to continue processing. 

Although this lowers the cost of an open operation, the load on the networks increases slightly, along with the 

load on the servers and agents. 

To examine how an increase in the number of operations would affect the protocols, all of the tests were 

run with 25 operations per file session at a load of 1.0 file session per second. The measurements from these 

tests are shown in Table 7-7. The number of operations only had the effect of emphasizing the savings 

Table 7-7: Response times for runs with 25 operations per file session. 

Replicated 

141.7 

No Caching 

192.8 

noticeable with caching. The replicated and non-replicated protocols exhibited the same session time 

difference of approximately 25 ms. 
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Open 

Close 

Read 

Write 
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26.1 

2.9 
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21.2 

21.2 

Non-replicated 

189.6 

82.3 

26.5 

2.8 

3.0 

NFS 

79.2 

33.3 

11.7 

1.1 
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Concluding Remarks 

8.1 Future Work 

8.1.1 Directory Service 

We have outlined a protocol for file replication and client cache control, but have not included methods 

for handling a corresponding replicated directory service. In keeping with the basic characteristics of our 

protocol, the directory service should supply UNIX semantics and do so using a decentralized method. 

Although neither of these features are necessary, we believe they can be achieved efficiently and effectively. 

This section will briefly sketch a method that might be employed to provide the directory service. 

The protocol we have outlined for file replication can be altered to provide a method of replication for 

directories. When opening a file, all directories in the path of a file would be opened by the contact. When a 

contact sends the open notice to the other servers, each server performs the open operation for the file and for 

every directory in the path of the file that the contact does not already have open. The contact is required to 

communicate with a majority of the servers when opening the file, so each server will note that the opening 

contact is also opening all directories in the file's path. The state information for all of the directories in the 

path would be sent back along with the file's state, if necessary. If a server has the top n levels of a path already 

open, then the state for those n levels need not be passed to the contact. 



Since opening a file will cause the opening of all directories in its path by the contact, the top levels of 

the directory hierarchy will usually remain open at all servers. This will help to keep the open time down, by 

having all servers keep up-to-date copies of these directories. Alternatively, the servers could always keep the 

top nt levels open in order to lower the open cost, as the top levels are frequently accessed. 

Updates to directories would be performed at all servers that have the directories open. This will allow 

quick reading of directories at the expense of directory updates. Reads would be allowed at any server that 

has the directory open without contacting other servers, thus a form of the read-one-write-all approach. 

8.1.2 Wri te  Operat ion Methods 

8.1.2.1 Remote Writes Using Quorums 

In designing this protocol, we discussed a variety of methods for handling write operations while 

conflicting sessions exist in the system. The method chosen appears to be a good solution, but aquorum based 

write may be better. An investigation into the performance costs would be of practical value. 

Figure 8-1: Constraints on the Qw and Qr quorum values. 

The quorums would not be derived from the total number of servers, but from the number of contacts for 

the file. The quorum based method would be used when conflicting file sessions exist in the system and there 

is more than I contact serving agreements for the file. In order for an update to be applied to a file, only a 

write quorum (Qw) of the contacts need participate, rather than all of the contacts. This would require that 

read operations, in the same scenario, read from a read quorum (Qr) of the contacts. The two quorum values 

must abide by the constraints shown in Figure 8-1. 

The quorum based method may help write operations in times of failure, but only when there are more 

than 2 servers acting as contacts for the file. This method would hinder read operations, and it may be difficult 

to determine whether an improvement, or a degradation in availability is noticed in these situations. 



8.1.3 Open Operat ion Methods 

As mentioned in section 4.1.3, a ROWA scheme or a quorum based scheme for open operations could 

have been used. Although i t  does not appear that a ROWA scheme would benefit our protocol, a quorum 

scheme might. It would be interesting to compare the performances of our protocol using a quorum based 

scheme to the protocol outlined in this thesis. 

8.1.4 Caching Schemes 

8.1.4.1 Whole file vs. Disk Block Caching 

The style of caching used by the clients need not be whole file caching. This choice of caching style was 

made to allow clients to continue to access their caches even if the contact is not available. This has the 

disadvantage of transferring the whole file to the client even if the client does not need the whole file, wasting 

network bandwidth and cache space. The alternative, disk block caching, has the disadvantage of requiring 

extra processing by the server to lookup, and package all of the different disk blocks each time a new block 

is fetched. Which one of these methods is better for our protocol, would be an interesting question to examine. 

8.1.4.2 Write-through Caching 

During periods of conflicting file sessions, writer clients are forced to give up their file caches. This can 

cause unnecessary processing. If there is only a single writer client in the system, then the protocol may be 

better off if the writer keeps the file i n  its cache, when writing through to the server. If a second writing process 

appears in the mix, the original writer's cache would then be disabled. 

This style of caching would also benefit during situations where there are conflicting file sessions on the 

same client machine. The cache could be kept on the local machine, forcing all writes to be propagated 

through to the contact, before returning to the user. Meanwhile read requests could be satisfied by the cache 

as long as they do not conflict with any in-progress writes. This would have the benefit of guaranteeing that 

updates that are visible to other processes are stable, yet most read requests would remain as efficient as they 

would in non-write-sharing circumstances. 



8.1.4.3 Non-volatile Caches 

If client machines were to implement non-volatile caching, the protocol could be changed in order to take 

advantage of this stability. In cases of conflicting sessions on the same client site, the cache could be kept as 

long as all updates are written through to the local disk. Close operations could also be allowed to delay the 

timing of update propagation in order to wait out short lived files, although this could lower the availability 

of the file if the client becomes unreachable from the servers. 

8.1.5 Variable File Control Methods 

The Deceit file system provides variable control methods in order to allow faster accesses to files that are 

rarely updated, or in which the consistency of the file is not of extreme importance. This idea could be a 

valuable tool in providing better efficiency in  any replicated file system. The consistency guarantees need not 

be compromised, but different access method could be exploited to benefit the different ways in which files 

are used. For example, executable files are mrdy modified, so making read sessions efficient (read one server) 

at the expense of update sessions (write all servers) would be beneficial. The ability to set the mode of 

replication on a per file basis, will allow those who know the access patterns of the file to exploit them. 

8.1.6 Disconnected Operation Suppor t  

In our protocol disconnected operation is not supported. A disconnected client cannot communicate with 

any servers and thus cannot perform any file opens, or closes. With a minor modification to the protocol 

disconnected operation can be supported. Disconnected operation refers to clients operating when not in 

contact with any servers, as might be done with laptop computers. 

There are a number of issues to be addressed when allowing disconnected operation. The most important 

being that the client needs access to the required files. Coda provides a mechanism called hoarding that 

caches copies of files at client machines to be accessed when the machine is disconnected. A form of hoarding 

could be implemented with our protocol to allow clients to operate while disconnected. In order to hoard files, 

the client would 'open' all files in its working set in a mode applicable to the type of access that would be 

required. The open operation would be performed by a hoarding process which caches the files on adisk local 

to the client. Any open operation into a conflicting mode would fail as the reason for opening the files is to 

get a copy onto the local disk and since this would not be allowed, the open should fail. Once disconnected, 

client processes would be allowed to perform file sessions on the copies that the hoarding process had opened. 

The clients' close operations would guarantee that updates are applied to the clients' local disk, to be applied 

later to the servers' disks upon reconnection. 



When the client machine reconnects to the server, the hoarding process would perform a 'close' for each 

file that it had hoarded. This close operation would allow other sites to then open the files in a mode that would 

have conflicted with the disconnected client's operation. 

Using a method like this would allow voluntary disconnected operation, but would not be useful for 

forced disconnected operation1. There is also an associated availability cost that would be incurred. When 

a client has hoarded a set of files and left, no conflicting accesses would be allowed. This should not be too 

much of a problem as most of the files would be the user's personal data files, and read-only system 

executables. As would be expected, the user would be unable to perform certain functions that would be 

available if the user were connected to the network. The user should also be restricted as to which files are 

allowed to be hoarded in order to keep mobile users from strangling the rest of the sites. In such a system, 

most applications should be developed in  such a manner that no global files are modified otherwise the 

application would not be a candidate for use during disconnected oper~t '   on. 

8.2 Conclusions 

This thesis has presented a protocol for a replicated file system that provides strict semantics and does so 

in a decentralized manner. The notable features of this protocol are: 

1) the enforcing of UNlX semantics under all circumstances, 

2) stronger permanence guarantees than UNIX semantics, 

3) the inclusion of client cache consistency control in the protocol, 

4) the low cost paid to enforce UNIX semantics, 

5) the comparably low cost of failure handling, 

6) and the decentralized nature of file control and file state memory, 

7) the amortization of the open and close operation costs over the whole file session in order 

to achieve efficient read and write operations. 

In staying away from a primary-copy configuration we have allowed the failure handling operations to 

be made more efficient and less of a bother to those using the file system. This has been achieved mostly 

through the sharing of responsibility at the server level, and by not requiring that all servers be up-to-date. 

Allowing servers to acquire missed updates when they are needed keeps the cost of failure handling down. 

1. Forced disconnected operation refers to disconnected operation due to failures in the system. 



The effects of failure handling is also lessened by allowing server participation in other operations to continue 

while the servers perform the failure handling functions. 

Achieving strict semantics in a replicated file system allows for replicated and distributed systems to 

behave more like their centralized counterparts. This better provides the transparency that is so strived for in 

computing systems. The low cost which is paid by the system to provide the stricter semantics makes this 

style of file system more desirable. A clear semantic definition is the basis with which a good file system 

design starts; the provision of strong semantics gives application designers the required knowledge of file 

system responses during conflicting accesses and in the face of failures. Our protocol provides strong 

consistency, and permanence without paying a high cost to attain them. 
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