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ABSTRACT

Knowledge discovery in databases facilitates querying database knowledge, cooperative
query answering and semantic query optimization in database systems. In this thesis, we
investigate the application of discovered knowledge, concept hierarchies, and knowledge dis-
covery tools for intelligent query answering in database systems. A knowledge-rich data
model is constructed to incorporate discovered knowledge and knowledge discovery tools.
Queries are classified into data queries and knowledge queries. Both types of queries can be
answered directly by simple retrieval or intelligently by analyzing the intent of query and
providing generalized, neighborhood or associated information using stored or discovered
knowledge. Techniques have been developed for intelligent query answering using discovered
knowledge and/or knowledge discovery tools, which includes generalization, data summa-
rization, concept clustering, rule discovery, query rewriting, lazy evaluation, semantic query
optimization, etc. Our study shows that knowledge discovery substantially broadens the
spectrum of intelligent query answering and may have deep implications on query process-
ing in data- and knowledge-base systems. A prototyped experimental database learning
system, DBLEARN, has been constructed. Our experimental results on direct answering of

data and knowledge queries are successful with satisfactory performance.

1i



ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my senior supervisor, Dr.
Jiawei Han for his valuable guidance, support and encouragement since I came to SFU. I
should also be thankful to the members of my examining committee, Dr. Nick Cercone, Dr.

Fred Popowich, and Dr. Lou J. Hafer for reading this thesis carefully and making thoughtful

suggestions.

I would also like to thank all my friends in the School of Computing Science, Engineering

Science who certainly contributed to the work I have done in SFU.

I owe sincere thanks to my parents and my sister for their unfailling support. I would

like to dedicate to them whatever I have achieved in this research.

I'am grateful to Simon Fraser University and the Natural Science and Engineering Re-

search Council of Canada for the financial support.

Finally, my special thanks go to a special girl for her love, understanding, and support

throughout the entire effort.

v



CONTENTS

ACKNOWLEDGMENTS . . . o e e e e s s e s
1 INTRODUCTION . . . . e e e e e e e e

2 OVERVIEW: KNOWLEDGE DISCOVERY AND INTELLIGENT QUERY AN-
SWERING IN LARGE DATABASES . . . ... .. . .

2.1 Knowledge Discovery in Large Databases . . . ... ... ... ... ...,
2.1.1 Definition of a KDD System . . . . . .. ... ... ... ... ...,
2.1.2 A Model KDD System . . . .. ... ... e

2.2 Intelligent Query Answering . . . . . . . . . o i i e
2.2.1 Why Provide Additional Information? . . .. ... ... ... ....
2.2.2  Techniques for Intelligent Query Answering in Rule Based Systems . .

2.2.2.1  Rule Transformation. . . . ... .. ... ... ... ...,
2.2.2.2 Query Relaxation . . ... ... .. ... ... . ...

3 DBLEARN: A KNOWLEDGE DISCOVERY SYSTEM . ... ... .......

Vv



3.1 Primitives for Knowledge Discovery in Databases . . . .. ... ... ... .. 18

3.1.1 Data relevant to the discovery process . . . . . ... ... ... ... . 18

3.1.2 Background knowledge . . . . . . .. ... o oL 19

3.1.3 Representation of learning results . . . . . .. ... 0000000, 22

3.2 Basic Principles of Attribute-Oriented Induction . . ... ... ... ... .. 24

3.3 Extraction of Generalized Rule . . .. ... ... ... ............. 28

3.3.1 Further generalization and rule extraction . . ... ... ... ..... 28

3.3.2 Direct extraction of generalized features and statistical rules. . . . . . 31

3.4 Experiments on the NSERC Grant Information Database . . . .. ... ... 35

3.4.1 The Database . . . . . . . . .. . .. 36

3.4.2 Background Knowledge . . .. ... ... ... ... ........... 37

3.4.3 Experimental Examples . . . .. ... .0 o 0 L. 39

4 A Data Model for Knowledge-Rich Databases . . . . . .. ... ... ........ 45

4.1 Definition . . . .. . 45

42 AnExample. . . . . . .. 48

9 Intellegent Query Answering in Knowledge-rich Databases . . . ... ... .. ... 52
9.1 Four Basic Categories of Query Answering Mechanisms in Knowledge-Rich

Databases . . . . . .. .. 52

5.2 Direct answering of data queries . . . ... ... ... ... .. ... . ..., 54

Vi



5.3 Intelligent answering of data queries . . . ... ... ... ... ... 55

5.3.1 Analysis of the intent of a query . . ... ... ... ... .. ... 56
5.3.2 Query rewriting using associated or neighborhood information . ... 59
5.3.3 Answer transformation and answer explanation . . . .. ... ... .. 61
5.3.3.1 Generalization and summarization of answers . . . . . .. .. 61

5.3.3.2 Answer explanation . ... ... ... . o L 64

5.3.3.3  Answer COMPparison . . . . . . . v v v v v v vt 65

5.4 Direct answering of knowledge queries . . . . .. .. ... ... .o .. 66
5.5 Intelligent answering of knowledge queries . . . . .. ... ... ... . 68
5.6 Semantic query optimization using generalized knowledge . . . ... ... .. 70
CONCLUSIONS AND DISCUSSION . . . . .. e e 75
6.1 Conclusions . . . . . . . . e e e 75
6.2 Iuture Research . . . . . . . . . . . . . . e 76
A TUTORIAL ON THE DBLEARN SYSTEM . .. ... ... ... . ... 79
A.1 The Architecture of the DBLEARN System . .. .. ... ... ........ 79
A.2 The Description of the Learning Programs . . . . . . .. .. .. ... ... .. 80
A.2.1 learn.h and dblearn.h . . . . .. .. o oL oL 80
A22 lexic o oo e e 80

vil



A2.3 parse.C. . . v i e e 81

A24 fetchic . . . o oL e 81

A25 learn.c . . ... e 82

A.2.6 adjust.c ... 82

A.3 The Specification of a Learning Request . . . .. ... ... ... ....... 83
A3.1 Getting Started . . . .. .. L 84

A.3.2 Basic Structure . . . . ... .. 84

A33 Examples . . . . .. 87

A4 Miscellaneous functions . . . .. ... ... L L, 93

B Program Listing for Two Major Procedures . . . .. ... ... ... ........ 95
REFERENCES . . . . . . 126

viii



CHAPTER 1

INTRODUCTION

Knowledge discovery in databases creates a new frontier for intelligent query answering and
query optimization in database systems. It has been estimated that the amount of informa-
tion collected by human beings in the world doubles every 20 months. The size and number
of databases probably increases even faster. The growth in the size and number of existing
databases far exceeds human abilities to analyze such data, thus creating both a need and

an opportunity for extracting knowledge from databases.
William Frawley and his colleagues[18] give a definition of knowledge as follows.

“Given a set of facts(data) I, a language L, and some measure of certainty C, a pattern
is defined as a statement 5 in L that describes relationships among a subset F; of F with
a certainty ¢, such that .5 is simpler (in some sense) than the enumeration of all facts in
Fs. A pattern that is interesting (according to a user-imposed interest measure) and certain

enough (again according to the user’s criteria) is called knowledge.”



Although these definitions about the language, the certainty, and the simplicity and
interestingness measure are intentionally vague to cover a wide variety of approaches. Col-
lectively, these terms capture our view of the fundamental characteristics of discovery in

databases.

The computer science community is responding to both the scientific and practical chal-
lenges presented by the need to find the knowledge adrift in the flood of data. Some research
methods are already well enough developed to have been made part of commercially avail-
able software. Several expert system shells use variations of ID3[46] for inducing rules from
examples. Other systems use inductive[41] or genetic learning approaches to discover pat-
terns in personal computer databases[17]. A number of discovery algorithms have been
developed. Conceptual clustering works with nominal and structured data and determines
clusters both by attribute similarity and by conceptual cohesiveness, as defined by back-
ground information. Recent examples of this approach include AutoClass[8], the Bayesian
Categorizer[3], and Cobweb[16]. Once identified, useful pattern classes usually need to be
described rather than simply enumerated. Empirical learning algorithms, the most com-
mon approach to this problem, work by identifying commonalities or differences among
class members. Well-known examples of this approach include decision tree inducers[50],

neural networks[52], and attribute-oriented induction methods[24][25].

With the rapid development of knowledge discovery techniques, it is natural to study
the applications of the technology in querying database knowledge and processing queries in
database systems[20][9]. At Simon Iraser University, a prototyped experimental database

learning system, DBLEARN[5]{26], has been constructed. The system, DBLEARN, takes



learning requests as inputs, applies the knowledge discovery algorithm(s) on the data stored
in a database with the assistance of the concept hierarchy information stored in a concept

hierarchy base. The outputs of the system are knowledge rules extracted from the database.

In this thesis, we investigate the application of discovered rules, concept hierarchies and
knowledge discovery techniques to intelligent query answering in database systems. To study
query processing in a knowledge-rich database associated with knowledge discovery tools,
it is often necessary to distinguish data, knowledge and queries defined at the primitive
data level from those defined at a relatively high concept level. Data in a knowledge-rich
database are classified into primitive data and high-level data. The former are actual data
stored in data relations and, if appearing in some concept hierarchies, correspond to the
primitive level (i.e., leaf) nodes of the hierarchies; whereas the latter are nonprimitive data
subsuming primitive ones and residing at the nonprimitive level of concept hierarchies.
Correspondingly, a primitive-level query is a query whose constants involve only primitive
data; whereas a high-level query is a query whose constants involve high-level data. Simi-
larly, rules (notice that integrity constraints can be viewed as a special kind of rules) can be

classified into primitive-level and high-level rules, based on their reference to high-level data.

In many cases, a database user may not be able to distinguish between primitive and
high-level data and between information that is data and information that is knowledge.
A knowledge query can often be viewed as a follow-up to a data query when the answer
to a data query requires further explanation, reasoning or summarization. Therefore, it is
important to provide a single, coherent framework to handle data and knowledge queries
and to handle direct query answering and intelligent query answering. There have been
some interesting studies on querying database knowledge and intelligent query answering

[45][54][49][34][11]. Previous studies emiphasize the application or inquiry of deduction rules



and integrity constraints in relational or deductive databases. With the availability of gen-
eralized knowledge and knowledge discovery tools, queries can be posed and answered at
levels higher than that of primitive concepts, and knowledge about general characteristics

of data can be inquired or utilized in the processing of data or knowledge queries[27].

In this thesis, A knowledge-rich data model is constructed which consists not only of
the components from a deductive database (including database schemas expressed by an
extended deductive entity-relationship data model, data relations, deduction rules and in-
tegrity constraints) but also the components relevant to knowledge discovery processes,
including concept hierarchies, generalized knowledge, and knowledge discovery tools. The
knowledge discovery tools are used to extract general knowledge dynamically, when neces-
sary, from any set of interested data in the database. A unified framework is established for
answering data and knowledge queries in a knowledge-rich database. A systematic study is
performed on intelligent query answering of both data or knowledge queries in a database

system associated with discovered knowledge and knowledge discovery tools.

This thesis is organized as follows. The next chapter will give an overview of both the
methods developed for knowledge discovery in large databases and the methods for intelli-
gent query answering in database systems. Chapter 3 introduces the principles and imple-
mentations of DBLEARN. Chapter 4 presents a data model for knowledge-rich databases.
Chapter 5 examines four basic categories of query answering in knowledge-rich databases
based on the combinations of data vs.knowledge queries and direct vs.intelligent query an-
swering mechanisms. Chapter 6 presents the conclusion as well as discussion of future

research issues. The tutorial and source codes of DBLEARN are given in appendix.



CHAPTER 2

OVERVIEW: KNOWLEDGE
DISCOVERY AND
INTELLIGENT QUERY
ANSWERING IN LARGE
DATABASES

We survey some recent progress in two research frontiers: (1) knowledge discovery in
database systems which adopt the learning from ezamples philosophy , and (2) some in-

telligent database query answering techniques.



2.1 Knowledge Discovery in Large Databases

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and po-
tentially useful information from data[18]. In machine learning, discovery is often equated
with unsupervised learning, learning from data with little or no guidance from a teacher.
A discovery system is then a program that automatically finds relationships in data that it

previously did not know about.

Several such discovery systems have been successful in scientific domains, e.g., AM[40],
GLAUBER(39], ABACUS[13}, COPER([37], and FortyNiner[57]. These systems tradition-
ally have been applied to scientific data known to contain strong regularities(e.g., Ohm’s
law, Kepler’s law). On such problems, these systems readily find functions that represent or
approximate the known laws. The systems are said to “discover” these laws because, though
known to us, they were unknown to the systems, i.e., the laws were outside the systems’

representation of the world.

Another class of systems applies discovery methods to real-world databases. Such sys-
tems have come to be known as KDD(knowledge discovery in databases) systems, e.g.
CoverStory[53], EXPLORA[31] and DBLEARN[26]. The differences between scientific dis-
covery systems and KDD systems primarily result from the different characteristics of the
data they are typicaly applied to. KDD systems, operating on real databases, have to deal
with difficult issues, such as finding tendencies[29] rather that laws, data that is constantly
changing and often erroneous, critical data that is missing because it was not designed into
the databases, and an overwhelming quantity of data. Scientific discovery systems have had
the luxury of ignoring some or all of these issuse. But they too will have to confront these

issues if they are to be effectively applied to the rapidly growing scientific databases storing



vast amounts of information.

Regardless of the source of the data, the value of automated discovery in the future will
be in finding truly novel and interesting patterns in large, unexplored databases, and also
in providing plausible explanations for these discoveries. Many difficult problems remain to

be solved before a truly useful, autonomous discovery system will become possible.

2.1.1 Definition of a KDD System

A KDD system is defined as follows[48]:
“A KDD system is an automated system for efficiently identifying and extracting

interesting patterns from data stored in real-world databases.”

The important aspects of this definition are: (1) the system has some autonomy, (2) it
has efficient methods for extracting patterns, (3) it can identify when a pattern is interest-

ing, and (4) it interfaces to a DBMS(database management system).

Inherent in the meaning of discovery is autonomy - if a system is told exactly where and
how to look for patterns it is not performing discovery(though it may be doing some form
of supervised learning). Total autonomy is not required, but the system must be automated
to the extent that it makes some of its own decisions about where to search for patterns,

and can decide when a pattern is likely to be of interest.

Clearly a discovery system must have methods for identifying and extracting patterns



from the data. These in fact form the core of any discovery system. The term patiern
refers to any relation among elements of a database, i.e. the records, attributes, and values.
Databases are replete with patterns, but few of them are of much interest. A pattern is
interesting to the degree that it is accurate, novel, and useful with respect to the end-user’s
knowledge and objectives[18]. Lastly, to be usable on large active databases, a KDD system
requires direct access to a DBMS. This at the very least implies the ability to send queries

and process the results.

2.1.2 A Model KDD System

Piatetsky-Shapiro and Matheus[48] proposed the following model of an idealized system

shown in Figure 2.1.

The model comprised five main components:

e Controller: decides how to apply the focusing, pattern extraction, and pattern evalu-
ation to the relevant parts of the DBMS under the constraints provided by the domain

knowledge and user input

e Database Interface: accepts queries from the controller and returns the results for

use by the extraction methods
¢ Focus Component: controls which portions of the database are to be analyzed

¢ Extraction Methods: are the algorithms used to extract potentially interesting

patterns



DBMS
Queries Data

DB Interface

User Focus
Input
Controller Pattern
Domain Extraction
Knowledge Evaluatio
I Presentation

S

Figure 2.1: A Model KDD System
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¢ Evaluation Component: screens the results of the extraction methods to ensure

relevance to the current task as defined by the user input and domain knowledge

Information comes into the system from the user input, domain knowledge, and DBMS
query results. The knowledge that is discovered is presented to the user and possibly added

to the knowledge base for subsequent analysis.

In the above KDD model the system’s autonomy comes from the controller. The basis
for its decision making comes from the domain knowledge and user input. The controller
interprets this input and uses it to direct the focus, extraction, and evaluation compo-
nents. In practise, many KDD systems requires the end user to make the majority of these

decisions[48][26].

Domain knowledge can assume many forms including(but not limited to):
o lists of relevant fields

definitions of new fields

o lists of useful classes or categories
o generalization hierarchies

functional or causal models

The primary purpose of domain knowledge is to bias the search for interesting patterns.
This can be achieved by focusing attention on portions of the data, biasing the extraction
algorithms, and assisting in pattern evaluation. The use of the domain knowledge in this
way can result in greater efficiency and more useful results. It also can preclude the dis-

covery of potentially useful patterns by leaving portions of the search space unexplored.

10



For domain knowledge to be useful it needs to be accessible to the discovery system, either
directly from a knowledge base or through the user. In a completely automated system
all domain knowledge would be encoded and be available online. Most existing discovery

systems, however, require substantial guidance from the end user.

The focusing component of a discovery system determines what data should be retrieved
from the DBMS. This requires specifying which tables need to be accessed, which attributes
should be returned, and which or how many records should be queried. To do this the
focus component needs detailed information: it needs to know about the database table
structures; it must know which attributes are appropriate for the current task; if it is doing
data sampling, it must have a way of randomly selecting the appropriate number of records;

and, it must know the input required by the subsequent extraction algorithms.

A DBMS provides query routines for extracting records from tables. Interfacing to a
DBMS requires that the system be able to formulate queries and process the results. Real-
istically, queries on large databases will have to be constructed and submitted as the need

for specified data arises.

At the core of a discovery system are the algorithms that extract patterns from data.
Virtually any machine-learning or statistical data-analysis algorithm can be incorporated

into a KDD system.

Extracted patterns may not always be interesting, and even when they are there may
be too many patterns to report all at once. Post evaluation of the extracted patterns may
be required to select those of sufficient or greatest interest. This can be achieved by a com-

bination of ways:

11



e use statistical techniques to verify the significance of the results within the database.
Statistical significance alone, however, does not determine the appropriateness of a

discovery

e test the results for consistency with available domain knowledge. (Note: testing the

consistency of a statement with a body of facts is a hard problem.)

o defer evaluation to the end user

2.2 Intelligent Query Answering

A good question answering system often needs to provide a response that specified more in-
formation than strictly required by the question. It should not, however, provide too much
information or provide information that is of no use to the person who made the query.
Intelligent query answering consists of analyzing the intent of the query and providing gen-

eralized, neighborhood or associated information which is relevant to the query.

2.2.1 Why Provide Additional Information?

It is important in defining an eflicient cooperative answering method, to understand the
general reasons why an expert decides to provide such additional information. The basic
idea is that when a person asks a question he is not interested in knowing the answer just
to increase his knowledge, but he has the intention of performing some action, and that the

answer contains information necessary or useful for realizing this action.

12
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If we accept the basic idea that there is always an underlying intention behind each
question, then the expert who wants to be cooperative must try to recognize this intention,

in order to determine the most appropriate reaction implicitly expected by the interlocutor.

One method [1] of recognizing a user’s intentions is to assume that an expert knows a set
of predefined sequences of actions, called plans, the clients may want to realize. Then, when
a client asks a question, the expert tries to attach this question to an action. If he succeeds,
he then assumes that the user’s intention is to perform this action, and the other actions
which belong to the same plan. According to this point of view, the appropriate reaction of
the expert is to provide the additional information which can be useful in performing this
action or others in the same plan. Generally, the answer to a question can be useful not

only in executing a plan, but also to help in building or modifying a plan.

However, the specification of the actual plan inference process is not detailed enough
to allow it to perform in complex domains. One of the major problems in large domains is
the effective management of the large number of potential expectations. Considerable work

needs to be done to specify more control heuristics.

2.2.2 Techniques for Intelligent Query Answering in Rule

Based Systems

Deductive databases are comprised of syntactic information and semantic information.

The syntactic information consists of the intentional database(IDB) and the eztensional

13



database(EDB). The semantic information consists of a set of integrity constraints(IC).
Some techniques have been developed to cope with intelligent query answering in deductive

databases.

2.2.2.1 Rule Transformation

Imielinski [34] introduced a new concept of an answer for a query which includes both atomic
facts and general rules. In a large knowledge base system, data is represented both in the
form of general laws (given as Horn clauses) and assertions representing specific facts (e.g.,
tuples of relations). It is frequently beneficial to structure the answer for a query in a similar
way, i.e., both in terms of tuples, as is traditionally the case, and in terms of general rules.
He provided a method of transforming rules by relational algebra expressions built from
projection, join, and selection and demonstrated how the answers consisting of both facts

and general rules can be generated.

Conceptually, rules are often more informative and easier to comprehend than corre-
sponding sets of derived tuples. lor example, the fact that all students who specialize in a
given area have to take all courses offered in this area can be represented better by a rule
than by a corresponding derived set of tuples. Rules from the database can be transformed
by the query if some of the rules can be evaluated after the evaluation of the query without
affecting the final result. It is much less expensive to evaluate rules over the answer to the
query than over the database state itself, since the result of the query is much smaller than
the database. Besides, rule transformation extends the algebraic spirit of query processing
from purely relational databases to databases with rules and is also another example of

“lazy evaluation”[42] known in the area of programming languages.

14



Imielinski first described conditions under which single rules can be transformed by sin-
gle relational operations. Then he generalized the discussion to relational expressions, and
finally to sets of rules. Since the transformation of the sets of rules is particularly difficult,
it is preferable to decompose the problem of transformation of sets of rules into the transfor-
mation of individual rules. In case the given set of rules is not transformable, an equivalent

set of rules which can be transformed could be frequently constructed.

2.2.2.2 Query Relaxation

As noted by many researchers, including [2]{12][43][54], one form of cooperative behavior
involves providing associated information that is relevant to a query. Generalizing a query in

order to capture neighboring information is a means to obtain possibly relevant information.

Gaasterland[19] defined a method to relax a query in order to find neighboring informa-
tion and to control the relaxation process with user constraints. A query can be relaxed in

at least three ways:

1. Rewriting a predicate with a more general predicate;
2. Rewriting a constant (term) with a more general constant (term); and

3. Breaking a join dependency across literals in the query.
The first two relaxations are achieved in a general manner using tazonomy clauses that

135



define hierarchical type relationships between predicates and constants in the database lan-
guage. For example, the following clauses define relationships between the predicates travel,
flight, and train:

T1: travel(From,To) « serves_area(A, From), servesarea(B,To), flight(A, B).

T2: travel(From,To) « serves_area(C, From), servesarea(D,To),train(C, D).

With the relaxation technique, a user can ask a specific query and get related answers
as well as direct answers. However, for large databases, many relaxations may be possible.
In order to control the relaxation process, one approach is to allow the user to express their
restrictions on the knowledge domain that they would like to have addressed for every query
that is asked. A user’s restriction on a database can be modeled as a set of constraints,
called user constraints. User constraints express the states that a user wants to disallow
and the states that a user wants to always persist. Each time a user asks a query, user
constraints are applied to the query using semantic query optimization techniques. The
resulting query produces answers that satisfy the user’s restrictions. Also, a set of heuris-
tics based on cooperative answering techniques are presented for controlling the relaxation

process.

16



CHAPTER 3

DBLEARN: A KNOWLEDGE
DISCOVERY SYSTEM

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and po-
tentially useful information from data [18]. In the previous studies [4][24][26], an attribute-
oriented induction method has been developed for knowledge discovery in databases. The
method integrates learning-from-examples techniques with database operations and extracts
generalized data from actual data in databases. A key to this approach is the attribute-
oriented concept tree ascension for generalization which applies well-developed set-oriented
database operations and substantially reduces the computational complexity of database

learning processes.

In this thesis, the attribute-oriented approach is developed further for the discovery of

multiple, statistical rules in large databases(based on number of records in a database).

17



A special intermediate generalized relation, prime relation, is extracted during attribute-
oriented induction, which can be used not only for further generalization and extraction of
inquired rules but also for direct extraction of general features and generation of multiple,
statistical rules. Many interesting characteristic and discriminant properties of generalized
data can be described using such statistical rules. Based upon these principles, a proto-
typed database learning system, DBLEARN, has been constructed and experiments have
been performed on a relatively large Grant-Information Database with satisfactory perfor-

mance.

3.1 Primitives for Knowledge Discovery in Databases

Three primitives should be provided for the specification of a learning task: task-relevant
data, background knowledge, and expected representation of learning results. For illustrative
purposes, we examine relational databases only, however, the results can be generalized to

other kinds of databases as well [24].

3.1.1 Data relevant to the discovery process

A database usually stores a large amount of data, of which only a portion may be relevant
to a specific learning task. Relevant data may extend over several relations. A query can

be used to collect task-relevant data {rom the database.

Task-relevant data can be viewed as examples for learning processes. Undoubtedly,

learning-from-examples {41]{22] should be an important strategy for knowledge discovery in

18



databases. Most learning-from-examples algorithms partition the set of examples into posi-
tive and negative sets and perform generalization using the positive data and specialization
using the negative ones [41]. Unfortunately, a relational database does not explicitly store
negative data, and thus no explicitly specified negative examples can be used for specializa-
tion. Therefore, a database induction process relies mainly on generalization, which should

be performed cautiously to avoid over-generalization.

3.1.2 Background knowledge

Concept hierarchies represent necessary background knowledge which directs the general-
ization process. Different levels of concepts are often organized into a taxonomy of concepts.
The concept taxonomy can be partially ordered according to a general-to-specific ordering.
The most general concept is the null description (described by a reserved word “ANY”),
and the most specific concepts correspond to the specific values of attributes in the database
[30]. Using a concept hierarchy, the rules learned can be represented in terms of generalized

concepts and stated in a simple and explicit form, which is desirable to most users.

Example 3.1 The concept hierarchy table of a typical university database is shown in Fig-

ure 3.1 , where A C B indicates that B is a generalization of A. Notice that

Birthplace(City C Province C Country)

indicates that the concept hierarchy for the attribute Birthplace is given by the data stored
in the relation Student following the partial order: C'ity, Province and Country. A concept

tree, such as status shown in Figure 3.2, represents a taxonomy of concepts of the values in

19



{freshman, ..., senior} C undergraduate
{M.A.,M.S., Ph.D.} C graduate
{undergraduate, graduate} C ANY (status)
{0.0 ~ 1.99} C poor

{2.0 ~2.99} C average

{3.0 ~ 3.49} C good

{3.5 ~ 4.0} C excellent

{poor, average} C weak

{good, excellent} C strong

{weak, strong} C ANY(GPA)

Birthplace(City C Province C Country)
{Canada,U.8.A.} C NorthAmerica
{China,...,Japan} C Asia

{Asta, ..., Europe} C Other Regions
{NorthAmerica, Other Regions} C ANY (Country)
Birthdate(Day C Month C Year)

Figure 3.1: Concept hierarchies in the database.

an attribute domain.

Concept hierarchies can be provided by knowledge engineers or domain experts. This is
reasonable for even large databases since a concept tree registers only the distinct discrete
attribute values or ranges of numerical values for an attribute which are, in general, not very
large and can be input by domain experts. Many concept hierarchies, such as Birthplace in
Example 3.1, are actually stored in the database implicitly. Also, concept hierarchies can be
discovered automatically or refined dynamically based on the statistics of data distribution

and the relationships between attributes [15].




undergraduate graduate

Jresh sophomore  junior senior MA. M.S. Ph.D.

Figure 3.2: A concept tree for status.

Different concept hierarchies can be constructed on the same attribute based on different
viewpoints or preferences. I'or example, the birthplace could be organized according to ad-
ministative regions, geographic regions, sizes of cities, etc. Usually, a commonly referenced
concept hierarchy is associated with an attribute as the default one. Other hierarchies can

be chosen explicitly by preferred users in the learning process.

Notice that different kinds of set-subset relationships are represented as concept hierar-
chies in our study. For example, China is a part-of Asia, while senior is a specialization-of
undergraduate. They are treated similarly in our concept hierarchies as set-subset relation-
ships since they play similar roles in attribute-oriented induction. However, it will be useful

to discriminate different roles in a detailed semantic analysis of learning intentions.
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3.1.3 Representation of learning results

Many kinds of rules, such as characteristic rules, discriminant rules, statistical rules, etc.
can be discovered by induction processes. A characteristic rule is an assertion which char-
acterizes a concept satisfied by all or most of the examples in the class undergoing learning
(called the target class). For example, the symptoms of a specific disease can be summarized
by a characteristic rule. A discriminant rule is an assertion which discriminates a concept
of the class being learned (the target class) from other classes (called contrasting classes).
For example, to distinguish one disease from others, a discriminant rule should summarize

the symptoms that discriminate this disease from others.

From a logical point of view, each tuple in a relation is a logic formula in conjunctive
normal form, and a data relation is characterized by a large set of disjunctions of such con-
junctive forms. Thus, both the data for learning and the rules discovered can be represented

in either relational form or first-order predicate calculus.

A relation which represents intermediate (or final) learning results is called an interme-
diate (or a final) generalized relation. In a generalized relation, some or all of its attribute
values are generalized data, that is, nonleaf nodes in the concept hierarchies. An attribute
in a (generalized) relation is at a desirable level if it contains only a small number of distinct
values in the relation. A user or an expert may like to specify a small integer for an attribute
as a desirable attribute threshold. In this case, an attribute is at the desirable level if it
contains no more distinct values than its attribute threshold. Moreover, the attribute is
at the minimum desirable level if it would contain more distinct values than the threshold
when generalized or specialized to a level lower than the current one. A special intermediate

generalized relation R’ of an original relation R is the prime relation of R if every attribute



in R’is at the minimum desirable level.

Some learning-from-examples algorithms require the final learned rule to be in con-
junctive normal form [41). This requirement is unreasonable for large databases since the
generalized data often contain different cases. However, a rule containing a large number
of disjuncts indicates that it is in a complex form and further generalization should be
performed. Therefore, the final generalized relation should be represented by either one
tuple (a conjunctive rule) or a small number (usually 2 to 8) of tuples corresponding to a
disjunctive rule with a small number of disjuncts. A system may allow a user to specify the
preferred generalization threshold (or generalized relation threshold), a maximum number
of disjuncts of the resulting formula. For example, if the threshold value is set to three, the

final generalized rule will consist of at most three disjuncts.

Exceptional data often occur in a large relation. It is important to consider exceptional
cases when learning in databases. Statistical information helps learning algorithms handle
exceptions and/or noisy data [42][7]. A special attribute, vote, can be added to each gener-
alized relation to register the number of tuples in the original relation which are generalized
to the current tuple in the generalized relation. The attribute vote carries database statistics
and supports the pruning of scattered data and the generalization of the concepts which
take a majority of votes. The final generalized rule will be the rule which represents the
characteristics of a majority number of facts in the database (called an approximate rule) or
indicates statistical measurement of each conjunct or disjunct in the rule (called a statistical

rule).



3.2 Basic Principles of Attribute-Oriented Induc-

tion

A set of basic principles for attribute-oriented induction in relational databases are summa-

rized as follows [24].

1. Generalization only on the relevant set of data: Generalization should be performed

only on the set of data in the database which is relevant to the learning request.

2. Generalization on the smallest decomposable components: Generalization should be

perfarmed on the smallest decamposable components (or attributes) of a data relation.

3. Attribute removal: If there is a large set of distinct values for an attribute but (1) there
is no higher level concept provided for the attribute, or (2) its higher-level concepts
are expressed in another attribute of the same tuple, the attribute should be removed

in the generalization process.

4. Concept tree ascension: If there exists a higher level concept in the concept tree for
an attribute value of a tuple, the substitution of the value by its higher level concept

generalizes the tuple.

5. Vote propagation: The value of the vote of a tuple should be carried to its generalized
tuple and the votes should be accumulated when merging identical tuples in general-

ization,

6. Attribute threshold control: If the number of distinct values of an attribute in the
target class is larger than its attribute threshold, further generalization on this attribute

should be performed.



Remarks: The above strategies are correct and necessary for the extraction of generalized

rules from databases.

Reasoning: Principle 1 is based on the concept of query processing in databases. Prin-
ciple 2 is based on the least commitment principle (commitment to minimally generalized
concepts) which avoids over-generalization. Principle 3 corresponds to the generalization
rule, dropping conditions, in learning-from-examples [41]. Principle 4 corresponds to the
generalization rule, climbing generalization trees, in learning-from-examples [41]. Principle
5 is based on the merging of identical tuples. Principle 6 is based on the desirability of

representation of each attribute at its desirable level.

The attribute-oriented induction process is illustrated in Example 3.2.

Example 3.2 Let the university database be modeled by a deductive ER model [28] in which

the extensional database (EDB) is mapped to the following schema.

Course(Cnum, Title, Semester, Department, Instructor, T A, Enrollment, Time).

Student(Name, Status, Sex, Major, Birthdate( Day, Month,Year),

Birthplace(City, Province, Country), GPA).

Suppose a truth-valued virtual attribute IsT' A is defined in Student, and the value is

true only if the student is a TA in some course, i.e., the computation of IsT A involves the




join of two relations, Student and Course. Suppose that the learning task is to learn char-
acteristic rules for cs (computing science) students relevant to the attributes Name, Sez,
Status, Age, Birthplace, GPA, and IsTA using the default concept hierarchies presented in
Figure 1.2 and the default threshold values. The learning task is represented in DBLEARN
as follows.

learn characteristic rule for Major = “cs”

from Student

in relevance to Name, Sezx, Age, Birthplace, GPA,I1sT A

For this learning request, preprocessing is performed by selecting ¢s students and pro-
jecting on relevant attributes Name, Sez, etc. A special attribute vote is attached to each
tuple of the result relation with its initial value set to 1. Such a preprocessed data relation

is called an initial relation.

Since there is no higher level concept specified on the first attribute Name, the at-
tribute should be removed in generalization, which implies that a generalized rule cannot be
characterized by the attribute Name. The Birthdate information can be transformed into
Age since the learning task is interested not in Birthdate but in Age. Moreover, city and
province attributes should also be removed since they contain a large number of distinct
values but their generalized information is contained in the attribute Birthplace(country)
in the same tuple. After removing these attributes, the data relation contains 6 remaining

attributes: Status, Sex, Age, Birthplace(country), IsTA and GPA (plus one special attribute

vote).
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| Status | Sex | Age | Birthplace | GPA | IsTA | vote |
grad M | 2530 | Canada good Y 8
grad I 12530 ) Canada |excellent| Y 2

underg | M | 16.25 Asia good N 6

Table 3.1: A prime relation from the initial set of data.

By removing the removable attribute and generalizing each generalizable attribute to
its minimum desirable level, the injtial data relation is generalized to the prime relation.
In our example, the prime relation, as shown in Table 3.1, contains a small number of
distinct values in each attribute as follows: Status: {grad, undergrad}, Sez: {M, F}, Age:
{16_25, 26_30, >30}, Birthplace: {Canada, USA, Asia, Europe}, GPA: {poor, average,
good, excellent}, and IsT A: {Yes, No}.

The basic attribute-oriented induction process is summarized in the following algorithm.

Algorithm 3.1 Attribute-oriented induction in the derivation of the prime relation from a
large relational data set.
Input: (i) A learning task-relevant data set R, of arity n with a set of attributes A;
(1 <4 < m); (ii) a set of concept hierarchies, H; on attribute A;; and (iii) a set of attribute
thresholds, T; for attribute A;.
Output. The prime relation R".
Method.

R, = R; [* R, is a temporary relation. */

for each attribute A; in R; do {

if A; is removable then remove A;;



if A; is not at the desirable level

then generalize A; to the desirable level.

}

/* Identical tuples in R; are merged with the number of identical tuples registered in
vote. */

R, = Rt.

Notice that generalization for each attribute A; is implemented by (1) collecting the
distinct A; values in the relation, (2) computing the minimum desirable level L, and (3)
generalizing the attribute to this level L by replacing each value in A;’s with its correspond-

ing superordinate concept in f/; at level L.

3.3 Extraction of Generalized Rule

Since only attribute thresholds are utilized in the attribute-oriented induction in Algo-
rithm 3.1, the derived prime relation may often contain more tuples than the generalization
threshold. Two methods have beeu developed for the extraction of generalized rules from
the prime relation: (1) further generalization to a final generalized relation confined by the
generalization threshold and extraction of the inquired rule(s), and (2) direct extraction of

generalized features and presentation of feature-based multiple rules.

3.3.1 Further generalization and rule extraction

Method 1 is realized based on the following two additional principles.
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1. Generalization threshold control: If the number of tuples of a generalized relation in
the target class is larger than the generalization threshold, further generalization on

the relation should be performed.

2. Rule formation: A tuple in a final generalized relation is transformed to conjunctive

normal form, and multiple tuples are transformed to disjunctive normal form.

Notice that during further generalization by generalization threshold control, there are usu-
ally alternative choices at selection of a candidate attribute for further generalization. Crite-
ria, such as the preference of a larger reduction ratio on the number of tuples or the number
of distinct attribute values, the simplicity of the final learned rules, etc. can be used for
selection. Interesting rules can often be discovered by following different paths leading to
several generalized relations for examination, comparison and selection. Following different
paths corresponds to the way in which different people may learn differently from the same
set of examples. The generalized relations can be examined by users or experts interactively

to filter out trivial rules and preserve interesting ones [57].

Let the default generalization threshold be 8. If the prime relation in Table 1 consists of
40 tuples, it is obviously necessary to perform further generalization. Suppose the preference
is to retain 3 attributes: Status, Birthplace and GPA. Then, other attributes are generalized
to ANY and removed from the generalized relation. Birthplace and GPA are further gener-

alized, which results in the final generalized relation with seven tuples, as shown in Table 3.2.

By rule transformation, the final generalized relation is equivalent to rule (r{), that is,
a computing science student is in one of the following seven cases: (1) North-America-born
graduate students with strong GPA (13.2%), ..., and (7) Other-regions-born undergraduate

students with weak GPA ({%). Notice that since a charateristic rule characterizes all of the
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( Status ] Birthplace l GPA ] vote ]
grad | NorthAmerica | strong | 33
grad | NorthAmerica | weak 2
grad | OtherRegions | strong | 15

underg | NorthAmerica | strong | 105

underg | NorthAmerica | weak | 65

underg | OtherRegions | strong | 20

underg | OtherRegions | weak | 10

Table 3.2: Final generalized relation.

data in the target class, its then-part represents the necessary condition of the class.

(r1) V(z) cs-student(z) —

(Birthplace(z) C NorthAmerica A Status(z) C graduate
A GPA(z) C strong)[13.2%)
(Birthplace(z) C Other Regions A Status(z) C undergraduate

A GPA(z) C weak)[4%].

Rule r; is a statistical rule. It can also be expressed as an approximate rule by dropping

the conditions or conclusions with negligible probabilities.
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Status Sex Age Birthplace GPA TsTA

vote

M F 1625 26320 >30 Canada USA Asia Europe poor avg  good exclnt Y N
grad 40 10 10 20 20 30 5 10 5 1 1 30 18 30 20 50
underg 120 80 140 60 Y 130 40 30 0 15 60 100 25 0 200 200
total 160 20 150 80 20 160 45 40 5 16 61 130 43 30 220 250

Table 3.3: A Status feature table mapped from the prime relation.

3.3.2 Direct extraction of generalized features and statisti-

cal rules

Since every feature (attribute value) has been generalized to a desirable level in the prime
relation, interesting relationships and statistics of features can be extracted directly from
the derived prime relations. The generation of general relationships and rules can be facili-

tated by extraction of generalized feature tables from the prime relation.

Example 3.3 Let Table 1 be the prime relation generalized from the learning task. Gen-
eralized feature tables can be extracted from the prime relation. For erample, to compare
students with different status (graduate vs. undergraduate), the prime relation can be mapped

into a Status feature table (Table 3.3).

The Status feature table consists of 3 rows: each of the two distinct Status values in
the prime relation {“grad’, “undergrad’} corresponds to one row, and the last row (total)
is the summation of information in the previous rows. It consists of 5 major columns, each
corresponding to one attribute in the prime relation, plus one special column for vote. Each
major column in the table is further divided into k subcolumns, each corresponding to one
distinct value in the attribute. For example, GPA is divided into 4 subcolumns: poor, avg,

good, ezxclnt, each corresponding to one distinct value in GPA.
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The table contents are derived from the prime relation as follows. Each slot in the table
(except for the last row) corresponds to the number of occurrences of the corresponding val-
ues in the prime relation. For example, the slot for “grad” and “good (GPA)” corresponds to
the number of grad’s with good GPAs, that is, the summation of all the votes of those rows
with Status = “grad” and GPA = “good” in the prime relation. The special column vote
registers the number of occurrences of the corresponding class in the relation. For example,
50 in “grad” indicates that there are in total 50 graduates in the prime relation. The special
row total summarizes the total number of occurrences with each feature in all the classes.
For example, total = 160 in the column “Sex = M” indicates that there are totally 160

male students computed in the prime relation. O

In general, we have the following algorithm for the extraction of a feature table from a

prime relation.

Algorithm 3.2 Eztraction of the feature table T4 for an attribute A from the prime relation
R

Input: A prime relation R’ consists of (i) an attribute A with distinct values {ay, ..., @z},
(ii) k other attributes By, ..., By (suppose different attributes have unique distinct values),
and (iii) a special attribute, vote.

Output. The feature table T4 for the attribute 4.

Method.

1. The feature tahle T’y consists of m + 1 rows and [ + 1 columns, where [ is the total

number of distinct values in all the & attributes. Each slot of the table is initialized
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to 0.

2. Each slot in T4 (except the last row) is filled by the following procedure,
for each row rin R’ do {
for each attribute B; in R’ do
Ta[r.A,r.B;] := Talr.A, r.B;] + r.vote;
Talr.A,vote] := Ta[r.A, vote] + r.vote; }

3. The last row p in Ty4 is filled by the following procedure:
for each column sin T4 do
for each row t (except the last row p) in T4 do

Talp,s) := Talp, s]+ Talt,s]; O

Remark. Algorithm 3.2 correctly registers the number of occurrences for each general fea-
ture in the prime relation R'.

Reasoning. Following the algorithm, each tuple in the prime relation is examined exactly
once with every feature registered in the corresponding slot in the feature table. Their

column-wise summation is registered in the last row.

The extracted feature table can be used to derive the relationships between the classi-
fication attribute and other attributes at a high level. For example, a rule, all the TAs are
graduate students, can be extracted from Table 3 based on the fact that the class grad takes
all the IsTA count. The table is especially useful for extraction of multiple, statistical rules.

For example, from the first row grad and the first major column Sez, we have:

grad(z) — male(2)[80%] vV female()[20%],
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which indicates that 80% of graduate (cs) students are male and 20% are female.

In general, the following algorithm is summarized for the extraction of generalized rules

from a feature table.

Algorithm 3.3 FEztraction of generalized rules from the feature table T4.

Input: A feature table T4 for the attribute A, where A has a set of distinct generalized
values {ay, ..., @y }. Another attribute B in the table has a set of distinct generalized values
{b1,...,b,}. The slot of the table corresponding to the row with the value a; and the column
with the value b; is referenced by T'4[a;, b;].

Output. A set of generalized rules relevant to A and B extracted from the feature table.

Method.

1. For each row a;, the following rule is generated in relevance to attribute B, which
presents the distribution of different generalized values of B in class a;.
ai(z) — b1[pi] V ... V bu[pin]-
where p;; is the probability that the value b; of B is in class a;, which is computed
by,

pi; = Tala;, b;]/Tala;, vote] .

2. For each column b;, the following rule is generated in relevance to all the classes,

which presents the distribution of the generalized value b; of B among all the classes.
bj(z) — arlgrs] V - V amlgmgl-

where ¢;; is the probability that the value b; of B is distributed in class a; among all
the classes, which is computed by,

¢i; = TA[ai,bJ’]/TA[tOtal,bJ’]. O
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Remark. Algorithm 3.3 correctly generates relationships between two attributes A and B
at a high level using the feature table,

Reasoning. Algorithm 3.2 shows that the feature table registers all of the number of
occurrences of each feature and two specific properties, total and vote, in each class. The
above algorithm extracts generalized rules from each column and each row in the feature
table by computing the proportion of the number of occurrences of each generalized feature

vs. its corresponding total number of occurrences in each row or each column.

3.4 Experiments on the NSERC Grant Informa-

tion Database

Based upon the attribute-oriented induction technique, a prototyped experimental database
learning system, DBLEARN, has been constructed. The system is implemented in C with
the assistance of UNIX software packages LEX and YACC (for compiling the DBLEARN
language interface) and operates in conjunction with the SyBase DBMS software. A database
learning language for DBLEARN is specified in an extended BNF grammar. The archi-
tecture of the system is shown in Figure 3.3. In the learning process, the DBLEARN system
first accepts the user’s request through the user-interface. Based on the specified learning
task, the DBLEARN system obtains the relevant data from a database and the relevant
concept hierarchies from a file. The learning program performs attribute-oriented induction
to extract generalized rules. After learning is performed, the learning result is reported to

the user through the user-interface.
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Figure 3.3: The architecture of DBLEARN.

3.4.1 The Database

Experimentation using DBLEARN has been conducted on a real database, the Grants In-
formation database, which contains the information about the research grants awarded by
NSERC (the Natural Sciences and Engineering Research Council of Canada) in the year
of 1990-1991. The central table Award in the database is made up of tuples each of which
describes an award by NSERC to a researcher. The fields constituting each tuple specify
the different properties of the award, including the name of the recipient, the amount of
the award and so on. In the schema diagram shown in Figure 3.4, nodes representing the

properties of awards are represented by nodes linked to the Award node.

There are a number of subsidiary tables which record details about some of the prop-

erties of awards, (e.g., the province of the organization in which the recipient is to carry
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Organization

@

Iigure 3.4: The NSERC database schema.

T

out the research). Most subsidiary tables are used simply to associate a code denoting a
particular entity to phrases describing the entity. In the schema diagram, table are specified

by rectangular nodes.

3.4.2 Background Knowledge

Recall that the background knowledge in DBLEARN is represented by a set of concept
hierarchies. In each hierarchy, the most general concept is the null description (described
by a reserved word “ANY?), and the most specific concepts correspond to the specific val-
ues of attributes in the database. Figure 3.5 shows the concept hierarchy for provinces in
Canada, where A C B indicates that B is a generalization of A. Notice that the superordi-
nate concepts for 3 provinces B.C., Ontario, and Quebec remain ungeneralized since these
3 provinces take most of research grants and it is our intention to distinguish these 3 from

other provinces.
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{BritishColumbia} C B.C.

{Alberta, Saskatchewan, Manitoba} C Prairies

{Ontario} C Ontario

{Quebec} C Quebec

{NewBrunswick, NovaScotia, New foundland, Prince_Edward_Island}
C Maritime

{B.C., Prairies, Ontario, Quebec, Maritime, Others} C ANY (province)

Figure 3.5: A concept hierarchy for attribute province.

ANY

Western Central Maritime

British_Col. Alb, Sask. Man. Ontario Quebec N.B. N.S. NFL PEI

Figure 3.6: A concept hierarchy before adjustment.

Other concept hierarchies, such as {1 ...19,999} C 120K, {20,000 ... 39,999} C 20_40K,
-+, {26000 ... 26499} C Al (where 26000, ... and 26499 represent NSERC discipline codes),

are also stored in the concept hierarchy table.

The concept hierarchies were first constructed by domain experts. However, a concept
hierarchy can be adjusted automatically in DBLEARN based on clustering behavior and
database statistics. A concept hierarchy for provinces in Canada provided by a domain

expert or a user could look like Figure 3.6.

The automatic adjustment is performed by first obtaining the distribution of attribute
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ANY

B.C. Prairies Ont. Queb. Maritime

British_Col. Alb. Sask. Man. Ontario Quebec N.B. N.S. NFL PEI

Figure 3.7: A concept hierarchy after adjustment.

values in the database and then spliting or merging node/nodes in order to make the number
of tuples covered by each node in the same level of the hierarchy even. After the adjustment,

the hierarchy in Figure 3.6 looks like the one shown in Figure 3.7.

3.4.3 Experimental Examples

Many learning requests have be posed to this database during our experimentation. Inter-
esting knowledge rules/relationships about NSERC research grant awards in relevance to
geographic location, research areas, etc. have been discovered by our experimentation. One

such experimental example is illustrated as follows.

Example 3.4 Let the query be to discover a characteristic rule for NSERC support of
operating grants for AI (Artificial Intelligence) researchers in relevance to the geographical
locations, the number of grants and the amount distribution of the grants in 1990 to 1991.

The learning task is presented in DBLEARN as follows.
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learn characteristic rule for disc_.code = “AI”
from award
wheregrant_code = “Operating_Grants”

in relevance to amount, province, prop(vote), prop(amount)

Notice that prop(attribute) is a built-in function which returns the percentage of the
summation of the attribute value in the generalized tuple divided by the summation of the

same attribute value in the whole generalized relation.

When the query is posed to the system, relevant data are collected by data retrieval
from the Grant Information Database. Then attribute-oriented induction is performed on
the collected data. The learning result of the query is presented in Table 3.4. The row
“Amount = 20_40K, Geo_Area = B.C., prop(#-of_grants) = 12.7%, and prop(amount) =
16.3%” indicates that for the Operating Grants in Al in the amount between $20,000 and
$39,999, B.C. researchers take 12.7% of the total number of grants and 16.3% of the total
amount of grants. The last row contains the summary information of the entire generalized
relation. Some negiligible proportion (about 0.2%) of the Al operating grants scattered
across Canada are ingored in the table. Thus, the total number of grants in the table takes

99.8% of the total available AI operating grants.

Notice that the relationships between amount_category, geo-area, number_of grants,
amount. of_grants, etc. can be also presented in the pairwise form, when necessary, using
the extracted prime relation. The system interacts with users for explicit instructions on

the necessity of such a presentation.
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Discipline = “Al” grant.code = “Operating Grant”
Amount | Geo_Area | prop(#-of _grants) | prop(amount)
1.20K B.C. 5.6% 4.1%
120K Prairies 15.5% 10.3%
120K Quebec 14.1% 9%
120K Ontario 25.3% 17.8%
120K Maritime 2.8% 1%
20_40K B.C. 12.7% 16.3%
20_40K Prairies 5.6% 6.2%
20_.40K | Ontario 9.8% 13%
20_40K | Maritime 1.4% 1.7%
40_60K B.C. 1.4% 4%
40.60K Ontario 4.2% 11.3%
>60K Quebec 1.4% 4.2%
$1,464,250 | Canada 99.8% 98.9%

Table 3.4: Generalized relation for Al Operating Grants.

The performance of the DBLEARN system is satisfactory. The average response time
of the above query (including the SyBase data retrieval time) is about 20 seconds on an

IPX SPARC workstation.

We present two more experimental examples as follows, which give some interesting

results and show how DBLEARN works in some complicated cases.

Example 3.5 Let the query be to discover a characteristic rule for NSERC support of
operating grants for computer science researchers in relevance to the geographical locations,
the number of grants and the amount distribution of the grants in 1990 to 1991. The learning

task is presented in DBLEARN as follows.




learn characteristic rule for “CS Operating Grants”

from award A, organization O, grant_type G

where O.org_code = A.org.code and G.grant.order = “Operating_Grants”
and A.grant.code = G.grant.code and A.disc.code = “Computer”

in relevance to amount, province, prop(vote), prop(amount)

using table threshold 18

Interacting with the user who issued the query, DBLEARN generates a feature table for
attribute amount shown in Table 3.5. Multiple statistical rules can be extracted from this

table. Two examples are shown as follows.

V(z) BC.CS_Operating Grants(z) —
(amount = 0 — 20/ s[52.174%])A (amount = 20K s — 40K s[37.683%])A
(amount = 40K s — 60K s[8.697%])A (amount = 40K s — 60K s[1.446%))

Y(z) Prairies.CS_Operating-Grants(z) —
(amount = 0 — 20K s[59.97%])A (amount = 20K s — 40K s[37.683%])A
(amount = 40K s — 60K s[1.446%])A (amount = 40K s — 60K s[1.891%])

Example 3.6 Let the query be to discover a discriminant rule for NSERC support for
computer science reseachers in Ontario in conirast to that in Newfoundland , which is in
relevance to the discipline, the grant type and the amount of grant. The learning task is

presented in DBLEARN as follows.

learn discriminant rule for “Ont_Grants”

where O.province = “Ontario”



armount province vote
B.C. Prairies Ontario Quebec Maritime
0-20Ks 36 40 119 67 33 295
20Ks-40Ks | 26 26 62 25 5 144
40Ks-60Ks 6 1 25 ) 0 37
60K s- 1 2 6 1 0 10
Total 69 69 212 98 38 486

Table 3.5: An amount feature table.

in contrast to “Newfoundland.Grants”

where O.province = “Newfoundland”

from award A, organization Q, grant_type G

where A.grant.code = G.grant.code and A.org_code = O.org_code
and A.disc_code = “Computer”

in relevance to disc.code, grant.order, amount

Since the task is to learn a discriminant rule, two data sets should be first retrieved by
relational operations: (1) the target class: the grants awarded to Ontario computer science
researchers, and (2) the contrasting class: the grants awarded to Newfoundland computer

science researchers.

Generalization is performed synchronously in both classes. The prime relation is shown

in Table 3.6. Overlapping tuples are marked by “*”,

After excluding the properties that overlap in both classes in the prime relations, a final

generalized relation is generated as shown in Table 3.7.
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| Learning Concept | disc_code | grantorder | amount | votes mark |

Computer | Operating-Grants | 0-20Ks 119 *
Computer | Operating-Grants | 20Ks-40Ks | 62
Computer Other 0-20Ks 10
Computer Other 20Ks-40Ks | 10
Ontario_CS_Grants Computer | Operating-Grants | 40Ks-60Ks | 25
Computer Other 60K s- 7
Computer Other 40Ks-60Ks 5
Computer | Strategic_Grants 60Ks- 8
Computer | Operating_Grants 60Ks- 6
Computer | Strategic.Grants | 40Ks-60Ks 1
Computer | Operating_Grants | 0-20Ks 9
Newfoundland_CS_Grants | Computer Other 0-20Ks 1
Computer Other 20Ks-40Ks 1

Table 3.6: A prime relation for both the target and the contrasting classes .

Ldisc_code I grant_order I amount Ivotes marg
Computer | Operating Grants | 20Ks-40Ks | 62
Computer | Operating_Grants | 40Ks-60Ks | 25
Computer Other 60Ks- 7
Computer Other 40Ks-60Ks 5
Computer | Strategic_Grants 60Ks- 8
Computer | Operating_Grants 60Ks- 6
Computer | Strategic_Grants | 40Ks-60Ks 1

Table 3.7: A final generalized relation.
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CHAPTER 4

A Data Model for
Knowledge-Rich Databases

4.1 Definition

As an extension to the logic data model proposed in deductive database research [56], a
knowledge-rich data model is constructed for databases with both deduction and knowledge
discovery capabilities.

Definition. A knowledge-rich database (/X DB) consists of six components: (1) Schema,
a knowledge-rich database schema; (2) EDB, an extensional database; (3) IDB, an inten-
stonal database; (4) H, a set of concept hierarchies; (5) GDB, a generalized database; and
(6) KDT, a set of knowledge discovery tools , defined as follows. KDB = {Schema, EDB,
IDB, H, GDB, KDT }.
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e Schema, a knowledge-rich database schema , describes the general structure and or-
ganization of KDB including (i) physical and virtual entities, attributes and relation-
ships, and (ii) the organization of rules, integrity constraints and concept hierarchies,

based on a deductive entity-relationship data model [28].

e EDB, an extensional database , consists of a set of predicates, each corresponding to

an extensional data relation.

e IDB, an intensional database , consists of a set of deduction rules and integrity

constraints (ICs ).

e H, a set of concept hierarchies , specifies taxonomies of concepts on top of primitive

data in extensional and intensional databases.

¢ GDB, a generalized database , consists of a set of generalized rules which summarize

the regularities of the data at a high level.

o KDT, a set of knowledge discovery tools , performs knowledge discovery efficiently in

databases, when necessary.

The first component, Schema , follows from a deductive entity-relationship data model
[28] which extends an entity-relationship model [10][55) to incorporate rules, integrity con-
straints and complex data objects for deductive databases. The second and third compo-
nents, EDB and IDB , are the same as in deductive databases [56] except that IDB rules can
be defined by some nonprimitive data as well. Notice that a rule (or an integrity constraint)
in the IDB can be first discovered by a knowledge discovery process and then be recognized
and stored in the IDB as a regular rule or integrity constraint. However, once a discovered
regularity is recognized and stored, it will play the same role as the originally defined one,
which means that any data in the EDB violating this constraint have to be discarded first.

Thus, we assume that all of the rules in IDB are defined ones.
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The last three components, H, GDB and KDT , are the newly introduced knowledge
discovery components which are used to incorporate discovered knowledge and knowledge

discovery in databases.

H , a set of concept hierarchies , represents the relationships among concepts at dif-
ferent levels. The information about concept hierarchies can be provided by knowledge
engineers or domain experts or be discovered automatically or semi-automatically using
knowledge discovery tools based on the statistics of data distribution in databases and the
relationships among different attributes {32]. Many concept hierarchies are implicitly stored
in the database. For example, the hierarchical relationship among “city ”, “province ” and

" attributes are usunally stored in the database and can be made explicit at the

“country ’
schema level by indicating a part-of-hierarchy, “city C province C country”. It is realistic
to have some concept hierarchies provided by knowledge engineers or domain experts even
in a large database system since a concept hierarchy registers only the distinct discrete
attribute values or ranges of numerical values for an attribute, which is, in general, not

very large. Further, by providing different concept hierarchies, users or experts may have

preference to control the knowledge discovery or intelligent query answering processes.

GDB , the generalized database , is another important component in the knowledge-
rich database. Since there are usually a very large set of generalized rules which can be
extracted from any interesting subset of data in a database by performing generalization
in different directions, it is unrealistic to store all of the possible generalized rules. How-
ever, it is often useful to store some generalized rules or intermediate generalized relations

in the GDB based upon the importance of the knowledge and the frequency of inquiries.
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The stored generalized rules are useful for querying database knowledge and semantic query
optimization. Notice that a stored generalized rule should be incrementally updated after
the updates of the relevant data set in order to preserve its correctness. This can be per-

formed by an incremental learning algorithms provided in knowledge discovery tools [18][24].

The last component, KDT , consists of a set of knowledge discovery tools , which could
be a set of knowledge discovery algorithms or a database-oriented knowledge discovery sub-
system, such as INLEN [35], KDW++ (18], DBLEARN [24], etc. Since a knowledge-rich
database stores only a small portion of all of the possible generalized knowledge, it is often
necessary to evoke a knowledge discovery process dynamically émd extract general regularity
from a specific set of data relevant to the query. The KDT tools can be used for on-line

knowledge discovery and intelligent query answering.

4.2 An Example

The university database presented in Example 4.1 is an illustrative example of such a

knowledge-rich database.

Example 4.1 Let a university database be modeled by a deductive entity-relationship model
in which the extensional database (EDB) is mapped to a relational-like schema presented in
Figure 4.1, where Cnum stands for course number , TA for teaching assistant , and GPA

for grade point average .




Course (Cnum, Title, Semester, Department, Instructor, TA, Enrollment, Time).
Professor (Pname, Department, Salary).

Student (Sname, Status, Sex, Major, Birth_date(Day, Month, Year)
Birth_place(City, Province, Country), GPA).

Grading (Student, Course, Grade).

)

Figure 4.1: Schema of the University database.

The concept hierarchies defined in the database are shown in Figure 4.2. The first three lines
imply that the primitive data for Statusis { freshman,..., Ph.D.}, and their corresponding
high-level data is undergraduate or graduate respectively. The entry “Birth_place(City C
Province C Country)” indicates that the concept hierarchy for the attribute Birth_place is
given by the data stored in the relation Student according to the part_of hierarchy: City,

Province and Country. For example, a tuple,

Student(T'om. Jackson, ..., Birth_place(Vancouver, BC,Canada),...),

indicates that Vancouver is a part of British Columbia (BC), which is in turn a part of

Canada, in the concept hierarchy for Birth_place.

Notice that there are many different kinds of hierarchical relationships among data in
a database, such as part_of, is.a, subset_of, etc., which may play different roles in concep-
tual analysis. The different semantics among concept hierarchies are not essential in the
knowledge discovery algorithm itself since different concepts are generalized to their cor-
responding higher level concepts by following their corresponding concept hierarchies in a
similar manner in the generalization process. However, such semantic differences will be

important in the analysis of query intent and provision of intelligent answers.
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{freshman, sophomore, junior, sentor} C undergraduate
{M.S.,M.A., Ph.D.} C graduate

{undergraduate, graduate} C ANY (status)

{biology, chemistry, computing, ..., physics} C science
{literature, music, ..., painting} C art

{sctence,art} C ANY (major)

{0.0 ~ 1.99} C poor

{2.0 ~ 2.99} C average

{3.0 ~ 3.49} C good

{3.5 ~ 4.0} C excellent

{poor, average, good, excellent} C ANY(GPA)
Birth_place(City C Province C Country).
Birth_date(Day C Month C Year).

Figure 4.2: A concept hierarchy table of the database

IDB rules are defined on top of EDB predicates. For example, award_candidate and

pre_requisite are two IDB predicates defined as follows.

(la) aeward.candidate(Name) —

status(X) = graduate, gpa(Name) > 3.75.
(1b) aeward_candidate(Name) —

status(X) = undergraduate, gpa(Name) > 3.5.
(2a) pre_requisite (Course, Pre_requisite_course) «

pre_requisite (Course, Pre_requisite_course).
(2b) pre_requisite (Course, Pre_requisite_course) «

pre_requisite (Course, Required_course), pre_requisite (Required_course, Pre_requisite_course).

Let the following generalized rules be extracted by knowledge discovery tools from EDB

and stored in GDB.
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(1) All of the teaching assistants are graduate students.

s € Student and ¢ € Course and ¢.TA = s.Sname — s.Status = “graduate”.
(2) Every teaching assistant has a good or exzcellent grade point average.

s € Student and ¢ € Course and ¢.TA = s.Sname —

s.GPA = {“good”, “excellent™} .

Our study on intelligent query answering mechanisms in next chapter will reference this

database substantially.
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CHAPTER 5

Intellegent Query Answering in

Knowledge-rich Databases

We now introduce a unified framework for answering data and knowledge queries in a
knowledge-rich database. The study is performed on intelligent query answering with the
focus on the application of discovered knowledge, concept hierarchies, and knowledge dis-

covery tools to intelligent query answering in database systems.

5.1 Four Basic Categories of Query Answering

Mechanisms in Knowledge-Rich Databases

In a knowledge-rich database system, there may exist two kinds of queries, data queries and

knowledge queries , where a data query -is to find concrete data stored in databases, which
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corresponds to a basic retrieval statement in a database system ; whereas a knowledge
query is to find rules and other kinds of knowledge in the database, which corresponds to
querying database knowledge [45] including deduction rules, integrity constraints, generalized
rules and other reqularities . For example, “retrieving all of the students who took the
course CMPT-/59 in 1992 is a data query; whereas “describing the general characteristics

? is a knowledge query. Furthermore, it is often desirable to provide

of those students
intelligent and assisted answers to queries besides (or instead of ) direct retrieval of data
and knowledge. Thus, query answering mechanisms in a knowledge-rich database can be
classified based on their responses to queries into two categories: direct query answering and
intelligent (or cooperative) query answering . Direct query answering is a direct, simple
retrieval of data or knowledge from the knowledge-rich database ; whereas intelligent query
answering consists of analyzing the intent of query and providing generalized, neighborhood
or associated information relevant to the query [11]. For example, simple retrieval of the
names of the students who take the designated course is direct query answering to the above
data query; whereas summarizing the characteristics of those students, such as “90% of them
magjored in computing science and took CMPT-359 as prerequisites”, provides an intelligent
answer to the same data query. Therefore, there are four basic combinations of queries and

query answering mechanisms:

e DD (Data query - Direct answering): direct answering of data queries;
o DI (Data query - Intelligent answering): intelligent answering of data queries;

e KD (Knowledge query - Direct answering): direct answering of knowledge queries;

and

o KI (Knowledge query - Intelligent answering): intelligent answering of knowledge

queries.
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In this chapter, query answering mechanisms are examined in each of these four categories.

5.2 Direct answering of data queries

Direct answering of data queries corresponds to direct data retrieval in knowledge-rich
databases. Traditional query processing in relational and deductive databases belongs to

direct answering of data queries.

Data in a knowledge-rich database are classified into primitive data and high-level data.
The former are actual data stored in data relations and, if appearing in some concept hi-
erarchies, correspond to the primitive level (i.e., leaf) nodes of the hierarchies; whereas the
latter are nonprimitive data subsuming primitive ones and residing at the nonprimitive level
of concept hierarchies. Correspondingly, a primitive-level query is a query whose constants
involve only primitive data; whereas a high-level query is a query whose constants involve
high-level data. A primitive-level data query can be processed directly using relational and

deductive query processing techniques.

A high-level data query can be processed in two steps. First, a query rewriting pro-
cess can be performed to rewrite the query into one or a set of equivalent primitive-level
data queries by substituting each high-level concept in the query with a set of or a range
of its subordinate primitive-level concepts by consulting concept hierarchies in the KDB.
Second, each rewritten query is then fed into a relational or deductive query processor for
processing. Answers should be returned at the primitive level. Presentation of answers at a

nonprimitive level, when desired, is considered as a task of intelligent query answering and
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will be discussed in the next subsection. One example of a high level query is illustrated

below.

Example 5.1 7o find the graduate students born in Canada, majoring in science, and with

excellent GPAs , the query can be formulated in a syntaz similar to SQL as follows.

retrieve Name
from Student
where Status = “graduate” and Major = “science” and Birth_place = “Canada” and

GPA = “excellent”

Notice that “graduate ”, “science ”

and “ezxcellent ” are high-level concepts which are
not stored in the relation Student . Using the information stored in concept hierarchy H,
the query can be reformulated by substituting graduate with {M.S., M.A., Ph.D. }, and
GPA = “excellent” with GPA > 3.5 and GPA < 4.0 , etc. The rewritten query can be

answered by direct data retrieval.

5.3 Intelligent answering of data queries

Intelligent answering of data queries refers to the mechanisms which answer data queries
cooperatively and intelligently. Intelligent query answering is accomplished by analyzing
the intent of a query and providing some generalized, neighborhood, or associated answers.
There are many ways for a data query to be answered intelligently, including generalization

and summarization of answers, explanation of answers or returning intensional answers,
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query rewriting using associated or neighborhood information, comparison of answers with
those of similar queries, etc. Several mechanisms for intelligent answering of data queries

using (generalized) database knowledge are examined.

5.3.1 Analysis of the intent of a query

To answer a query intelligently, the first important step is to analyze the intent of the query,
determine whether it is necessary to provide assisted answers, and if it is, what kind of assis-
tance should be provided. Such an analysis should be based on the available or discovered
knowledge about database, queries, and users. Since a large volume of knowledge may exist
or can be discovered in a database, one may often find that there exist too many “intelli-
gent” ways to associate a query with the available or discoverable database knowledge. It is
crucial to have knowledge about user’s background and the role that he/she plays in order
to understand user’s intention, avoid superfluous answers, and provide users with quality

assistance.

When posing a query, different users often have quite different intentions. For example,
when asking the highest monthly balance of an account, a customer and a bank manager
likely have different intentions. Therefore, an important task of query intent analysis is
user modeling , which analyzes the user’s background and intention and constructs different

models for different classes of users.

Several interesting methods for query intent analysis have been developed in the studies

on intelligent query answering {33][34]{44]{11][54]. Such analyses are based on the notions of
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generalization, association, aggregation, concept clustering, etc. Semantic data modeling,
classification of topics of interests , and plan analysis and formation are powerful techniques
for query intent analysis (34]{44]{11][{54], which can be applied to the analysis of query intent
in the KDB.

Since the knowledge-rich database is constructed based on an extended (deductive)
entity-relationship model together with the deductive and knowledge discovery components,
the new components provide powerful support for query intent analysis. Considering an air-
line reservation system as an example, the method for query intent analysis in the KDB is

outlined as follows.

1. Data classification and concept clustering : Based upon the extended entity-
relationship model of the system, entities, relationships, attributes and specific condi-
tions can be classified and clustered. For example, departure time and arrival time can
be associated with time_table, airports can be clustered according to some local dis-
tance, etc. The data classification and clustering task is facilitated by the availability

of concept hierarchies and knowledge discovery tools.

2. User modeling : Based upon user’s professional position (e.g., manager, clerk,
business customer, tourist, etc.), confidence level (e.g., eligibility of accessing some
sensitive data), accessing history (e.g., frequent flyer, business class traveler, being
interested in some particular airlines, new customer, etc.) or other related informa-
tion, a user can be associated with a particular user category built in the system. The
linkage between a category of users and a class of preferred concepts or entity sets
is constructed by experts in the development of intelligent query answering system.

With the available knowledge-rich data model and knowledge discovery components,
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users can be naturally categorized into some high-level user classes (e.g., luxury, econ-
omy, or regular classes for travelers) and be associated with a set of high-level concepts
(e.g., the traveler’s major interests expressed at a high concept level) to assist query

intent analysis.

3. Query classification : A query can also be classified into different categories accord-
ing to the query condition and the information to be inquired. For example, queries
on travel plan can be categorized into long distance travel, short distance travel, etc.
according to the conditions given in the query, or categorized into general browsing,
detailed examination, ticket booking according to query actions. A query class can
be linked with certain user categories, generalized concept classes and transformation

rules to guide appropriate intelligent query answering for particular classes of queries.

4. Transformation rule specification : A set of transformation rules can be specified
by experts based upon user category, query category, concept hierarchies and the
relationships among high-level entities, attributes, and conditions. For example, if
a user is in the category of tourist and new customer, the cost could be of a major
concern at flight booking, and the information about low airfares could be of major
interest. Such heuristics can be specified as transformation rules to guide intelligent

query answering.

Query intent analysis can be performed by systematically applying techniques of user mod-
eling, concept classification and clustering, query classification and transformation. Further,
the constructed models and transformation rules should be testified by experiments and be
tuned according to their effectiveness in intelligent query answering and the feedbacks from
users[21][14]. The query rewriting and answer transformation processes discussed below are

directed by the results of query intent analysis.
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5.3.2 Query rewriting using associated or neighborhood in-

formation

Direct data retrieval may not always find enough answers for a user. Furthermore, a user
may like to know more information than the direct answers to a query for decision making.
Therefore, it is often useful to provide associated or neighborhood answers to a query. As-
sociated query answering can be performed by (1) presenting the information about some
additional attributes which are not directly inquired but are relevant to the query ; (2) re-
lazation of certain query conditions ; and (3) adding an alternative query which is closely

related to the original one [11].

Let the answer set be viewed as a relation table. Three mechanisms can find their corre-

sponding relational transformations: width-extension, height-extension , and table-extension

¢ Width-extension : The first case (addition of relevant attributes) can be viewed as
extension of the width of the answer table by adding some closely related attributes
to the table. For example, an inquiry on the arrival time for air-flight booking can be

answered by returning also the departure time and the possible transfer time, as well.

¢ Height-extension : The second case (relaxation of certain query conditions) can be
viewed as an extension of the height of the table. For example, an inquiry on the
available flights for air-flight booking can be answered by relaxation of the maximum

dollar restriction, flight-time restriction, airline selection restriction, etc.

¢ Table-extension : The third case (answering an alternative query) can be viewed

as an extension of the answer table or a switch to a similar table. For example, an
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inquiry on the available flights for air-flight booking can be answered by returning the
flights to a neighborhood arrival or departure airports, or even a suggestion of other
means of transportation, such as by train, ferry, or bus, depending on the distance,

time and cost of the transportation, etc.

Query rewriting rewrites a query according to the intent of the query. Clearly, query in-
tent analysis plays an important role in the selection of appropriate extensions. For example,
the selection of associated additional attributes (as width-extension) should be determined
by analysis of the semantics of the query and the associated attributes at the higher concept
level, and the selection of relaxed constraints (as height-extension) should be based on the

analysis of query semantics and the role of query constraints.

Query rewriting can be implemented by mapping query constants to an appropriate level
via generalization or specialization and mapping a query to a neighborhood one by providing
with additional, associated or neighborhood information. The knowledge discovery compo-
nents, which specify or discover generalization, aggregation, neighborhood, or association
relationships among data in the database, provide important assistance in the analysis of
query intent and in the rewriting of queries into their alternatives based on hierarchical or

neighborhood relationships.

Example 5.2 Consider a query to find the names of the teaching assistants of database

courses in the University database. The query can be rewritten in the following ways.

1. table width extension : e.g., providing more information about the teaching assistants,

such as their GPA, courses_taken, teaching experience, etc.
2. table height extension : e.g., providing teaching assistant information for other related
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courses, such as other computing science courses.

3. table extension : e.g., providing other relations, such as information about research
assistants and project assistants in computing science if the user is a graduate student

and the time is the beginning of a new semester (a job hunting season).

Obviously, the success of a query rewriting depends on the query intent analysis and the
availability of associated, generalized and neighborhood information. Such information may
exist in concept hierarchies or discovered knowledge rules or can be discovered by knowledge

discovery tools.

5.3.3 Answer transformation and answer explanation

Together with the rewriting of queries, the set of answers may also be transformed, ex-

plained, compared or summarized in different ways for intelligent query answering.

5.3.3.1 Generalization and summarization of answers

A database user may be interested in general description or overall statistics of the answer
set to a query but not interested in the detailed answer set itself. Thus, a data query can
be answered by generalization and summarization of the answer set, that is, by presenting
generalized data only, a combination of generalized and primitive data, or a summarization
of concrete answers (possibly together with the presentation of concrete answers) using gen-

eralized data and database statistics. Such a process belongs to answer transformation .
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Example 5.3 A guery which inquires about the information of a student Tom Jackson in
the University database can be answered as “Tom Jackson is an undergraduate student (a
concept at a level higher than senior student), born in Canada (not mentioning the specific
city and province) in 1971 (not mentioning the specific date)”. This is meaningful if the
user (such as a university administrator) is concerned of the general information but not the
detailed one. Also, a query which inguires “who have good or excellent GPAs in computing
science ?”7 can be answered intelligently in several ways: (1) “100% graduate students, 55%
senior students, and 25% junior students ” (general, statistical information only), (2) “all
of the graduate students and the following undergraduate students ... ” (a combination of
generalized and primitive data), (3) concrete answer (student names) plus a summarization

of the answers at a high level, etc. O

By presentation of general information or associating such information with concrete an-
swers, answers to a query can be presented in a general and concise manner, thus making

the implications of the answers better understood.

An important technique for answer transformation is the mapping between different lev-
els of data based on concept hierarchies . Constants in a query or answers to a query can be
mapped up or down along a concept hierarchy depending on the semantics and the intent
of the query. A high-level query can be rewritten into a primitive-level one by mapping the
high-level data in the query to a set of primitive data using concept hierarchies. Similarly,
a low-level answer set can be transformed into a high-level one by mapping a set of prim-
itive data in the answer set to a set of corresponding high-level ones according to user’s
need. The interactions between query conditions and rule bodies (conditions) also need the
data/constant mapping among different levels. For example, to examine whether a query

is relevant to a certain generalized relation, the query can be restated at the same concept



level as that in the rule.

Another important technique for answer transformation uses lazy evaluation , that is,
providing rule bodies (conditions) without presenting the full answers set. Detailed and
concrete answers are provided only by further requests. Lazy evaluation as an intelligent
query answering mechanism has been studied in deductive database research {34][45][54]{49).
Instead of returning the concrete answer set, the query answering mechanism instantiates a
deduction rule using query constants and returns the instantiated condition (body) of the
rule or a mixture of instantiated rule condition (body) and concrete data as the answers to
the query. Assume that the generalized rule is also in the form of “head — body” .Lazy
evaluation can be performed by returning the body of a generalized rule if the query matches
the head of the rule. Besides directly using the available rules, generalized rules can also
be obtained by further generalization on the portion of an intermediate generalized relation

which matches the query conditions.

Furthermore, generalization and summarization of answers can be implemented by tak-
ing advantage of the available generalized information and knowledge discovery tools. If
there is a corresponding generalized rule, the processor returns the instantiated body of
the rule when the query matches the head of the rule. If there is a corresponding interme-
diate generalized relation, further generalization and summarization can be performed on
the portion of intermediate generalized data which matches the query condition. Further
generalization may produce a generalized rule with a summary of statistical information
in terms of generalized concepts. Otherwise, when there is no corresponding generalized
information, generalization is performed by first retrieving the required answer set and then

performing generalization on the retrieved answer set using the knowledge discovery tools.
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5.3.3.2 Answer explanation

Another intelligent query answering method is answer explanation , which explains the
answers to a query by presentation of the associated rules, demonstration of the reasoning
process, or illustration of the general information[51][23][21]. The summarization of the
statistics of an answer set discussed above can also be employed as a technique for answer

explanation.

The following example demonstrates that it is often necessary to provide explanations to

the answers when the query condition follows or contradicts a rule or an integrity constraint.

Example 5.4 If a query condition follows or contradicts a rule or an integrity constraint,
the query can be answered by presentation of the knowledge (such as the rule) rather than
primitive data. Data retrievael is necessary only if the direct presentation of primitive data
is explicitly required. For example, suppose there is a generalized rule, “all of the teaching
assistants are graduate students”. The query “find all of the undergraduate students who
are teaching assistants” can be answered by returning an empty set without accessing the
extensional database. However, it is user-friendly to also give an ezplanation by simply
presenting the rule itself. Similarly, if “all of the teaching assistants have good or excellent
GPAs” is a generalized rule, the query “find all of the teaching assistants whose GPAs are
greater than 2.5”, may return “all of the teaching assistants”, together with the rule. Specific

teaching assistant names are presented only when the user requests for more details. O

The process described above can be implemented by testing of the query condition
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against the rule for containment or contradiction. If the query passes the test, lazy evalua-

tion can be applied rather than returning detailed answers.

5.3.3.3 Answer comparison

Queries can also be answered intelligently by answer comparison , which compares or
contrasts the general characteristics of its answers with some similar queries. Answer com-
parison may involve two steps: (i) rewriting a query into a neighborhood query, and (ii)
generalization, summarization and comparison of two answer sets, one to the original query
and one to the neighborhood query, at a general level. The first step, rewriting a query
into a neighborhood query, can be performed by query intent analysis and substitution of
some query constant(s) in the original query by some similar concept(s) using the knowledge
about concept hierarchies. The second step involves learning characteristic and discrimi-

nant rules using knowledge discovery techuniques [24] which has been explained in Chapter 3.

Example 5.5 In answering the query, “find all of the graduate students with excellent
GPAs 7, it is interesting to find the undergraduate students with similar characteristics or the
graduate students with weaker GPAs and compare the general characteristics and statistics
between these answers. Such comparisons may lead to some interesting observations, such
as “more than 50% graduate students but only about 20% undergraduate students have

excellent GPAs 7. O
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5.4 Direct answering of knowledge queries

A knowledge query is a statement which inquires about database knowledge, including
concept hierarchies, deduction rules, integrity constraints and general characteristics of a
particular set of data in a database. Direct answering of knowledge queries means that
a query processor receives a knowledge query and answers it directly by returning the in-
quired knowledge. Since IDB knowledge and concept hierarchy information are stored in
the database according to our assumption, a query on such knowledge can be answered
by direct retrieval. However, the situation is different at querying generalized knowledge.
A generalized database (GDB) usually stores only a small, but frequently used portion of
generalized knowledge. Thus, an inquiry on general knowledge should be answered by direct
retrieval only if the knowledge is available in GDB. Otherwise, the knowledge should be dis-
covered dynamically by a knowledge discovery process, which has been discussed in detail
in Chapter 3. In general, a knowledge query can be answered by consulting the concept

hierarchy, retrieving stored rules (if available) or triggering a discovery process.

Different syntactic specifications can be adopted to distinguish knowledge queries from
data queries. A data query is to retrieve the data elements that satisfy a condition @ ;
whereas a knowledge query is to describe the data elements that satisfy ® . Following the
notion proposed by Motro and Yuan [45], data queries and knowledge queries are distin-
guished in syntax by starting the former with retrieve but the latter with describe .
Further, to distinguish different types of knowledge being inquired, concrete keywords such
as generalized rule, deduction rule, concept hierarchy, integrity constraint , etc. can be used
after the keyword describe . Moreover, to query a discriminant rule which distinguishes
the general characteristics of one class (target class ) from others (contrasting classes ), the

following syntax is adopted: describe generalized rule for relation which distinguishes
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target_class from contrasting_class where condition ®.

Several knowledge queries are presented in the following examples.

Example 5.6 To find the deduction rule award_candidate for Canadian graduate students,

a query can be formulated as below.

describe deduction rule cward.candidate(candidate)

where Status(candidate) = “graduate” and Birth_place(candidate) = “Canada”
This query can be answered by direct retrieval of deduction rules. Notice that only the
condition, Status(candidate) = “graduate” , matches the boody of a deduction rule for
award_candidate, which indicates that there is no further distinction on birth place in the

condition for an award candidate. Thus the rule (1a) is presented as the answer to the query.

Example 5.7 To describe the characteristics of the graduate students in computing science

who were born in Canada with excellent GPA | the query can be formulated as below.

describe generalized rule
for Student
where Status = “graduate” and Major = “cs” and Birth_place = “Canada”

and GPA = “excellent”

Notice that the query represents a high-level knowledge query since “graduate ”, “ Canada

” and “ezcellent” are not stored as primitive data in the University database. The query
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can be answered by directly retrieving the discovered rule, if available, or by performing

induction on the relevant data set [24]. O

Example 5.8 To distinguish the characteristics of the graduate students from undergrad-
uate students in computing science, born in Canada with excellent GPA |, the query can be

formulated as below.

describe generalized rule for Student
which distinguishes Status = “graduate”
from Status = “undergraduate”

where Major = “cs” and Birth_place = “Canada” and GPA = “excellent”

Notice that the query wishes to find a discriminant rule which contrasts the general prop-
erties of the two classes. The rule can be discovered dynamically by a knowledge discovery
process from primitive data or from an intermediate generalized relation as illustrated in

Chapter 3. O

5.5 Intelligent answering of knowledge queries

Intelligent answering of knowledge queries means that a knowledge query is answered in
an intelligent way by analyzing the intent of the query and providing generalized, neigh-
borhood or associated information. Similar to the intelligent answering of data queries, a

knowledge query can be answered in many ways, such as generalization and summarization
A b
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of answers, explanation of answers, query rewriting using associated or neighborhood in-
formation, comparison of answers with those of neighborhood queries, etc. The availability
of database knowledge and knowledge discovery tools enhances the power and efficiency of
intelligent query answering of knowledge queries. The ideas are illustrated in the following

examples.

Example 5.9 The knowledge query of Example 5.6, which is to find the deduction rule
award_candidate , can be answered intelligently not only by returning the award_candidate
rule eligible to Canadian graduate students but also by (i) providing an ezxplanation that
both Canadian and foreign graduate students share the same condition for the award, (ii)
returning the award_candidate rule eligible for undergraduate students as well, or (iii)
returning other associated information, such as award name, amount, application deadlines,

regulations, summary of award history, or statistical information, etc. O

Example 5.10 The knowledge query of Example 5.7, which is to find the characteristics of
designated graduate students, can be answered intelligently by returning the characteristic
rule for Canadian graduate students with excellent GPA’s, together with (i) the character-
istics of Canadian graduate students with different majors or weaker GPAs for comparison,

or (ii) an explanation of the reasons why such students got excellent GPA’s. O

Intelligent answering of knowledge queries can involve great complexity in query intent
analysis and demand sophisticated implementation techniques. Therefore, the efficient re-

alization of the underlying mechanisms is an interesting issue for future research.

69



5.6 Semantic query optimization using general-

ized knowledge

Semantic query optimization method applies database semantics, integrity constraints and
knowledge rules to query optimization [6]. Techniques have been developed for semantic
query optimization based on database semantics, deduction rules and integrity constraints
(6][36][38]. With the availability of concept hierarchies and generalized knowledge, new
techniques can be explored to enhance the power and applicability of semantic query opti-

mization.

A generalized rule can be treated like a deduction rule or an integrity constraint in seman-
tic query optimization. Therefore, the techniques developed for semantic query optimization
in relational and deductive databases [6]{36][38] can be directly applied to knowledge-rich
databases with discovered knowledge. Furthermore, with the availability of concept hjerar-
chies and generalized knowledge, query optimization using a generalized rule can be explored
for the query conditions which are subsumed by the rule body (condition) or the rule head
(conclusion) at a different level of concept hierarchies. This is based on the following theo-

rem.

Theorem 5.1 (Condition specialization and conclusion generalization ) Let a knowledge
rule be in the form of

MAPINLLADPIN AP, =g
The specialization of a condition p; to p. and/or the generalization of the conclusion q to ¢

based on that the information in concept hierarchies will not change the validity of the rule.

That is,



PLAPIAAPIA APy — G

PLAP A AN AP, — (.

Proof . Since p' is a specialization of p;, p! — p;. Similarly, ¢ — ¢'. Based on the transitivity
pz p B pq, pl

property of logic rules, the above rules hold. O

As a simple example for the theorem, if the GPA of every graduate student is greater

than 3.2 , then the GPA of every M.Sc. student must be either good or excellent .

According to Theorem 5.1 and the principles of semantic query optimization in rela-
tional and deductive databases [6]{36][38], the semantic query optimization techniques for

application of generalized knowledge are presented as follows.

¢ Query condition subsumed by the rule body (condition) : If a query condition
is subsumed by the body of a rule, the conclusion (head) of the rule applies .
For example, if there is a generalized rule: all of the teaching assistants for 400 level
courses are Ph.D. students , then querying the status of a student who is assisting
459 will return “Status = Ph.D. ” without searching the EDB. Further, the rule can

be returned as an explanation to the answer.

¢ Query condition conflicting with the rule conclusion : If some query con-
junct(s) in a conjunctive query is subsumed by the body of a rule but some other
conjunct(s) conflicts with the head (conclusion) of the rule, the answer to the query
s empty .
For example, if there is a generalized rule: «ll of the teaching assistants are graduates

, then querying the courses which an undergraduate is assisting returns an empty set
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without searching EDB. Also, the rule can be presented as an explanation.

Query conjunct elimination : If a query conjunct is implied by another condition
in the query, the query conjunct can be removed from the query .

For example, if a query contains both S.Status = “M.Sc.” and S.GPA > 3.0, the
second conjunct can be removed from the query since it is implied from the first one

in the generalized rule.

Query conjunct introduction : If a query conjunct is subsumed by the body of a
rule, the head (conclusion) of the rule can be introduced as a new conjunct to the query
if such an introduction may improve search efficiency (e.g. exploration of indexing or
clustering properties of databases, etc.) .

For example, to find all of the foreign students majoring in science with GPA between
3.2 to 3.4 , the query is subsumed by the body (condition) of a generalized rule in
GDB: all of the foreign students majoring in science with a good GPA are graduate
students . The new conjunct, Status = “graduate” , can be added to the query. The
search can be improved if the tuples in Student are grouped or partitioned according

to Status .

Sharpening query condition . If some query conjunct(s) is subsumed by the body
(condition) of a rule, and the rule head (conclusion) introduces a more selective condi-
tion than some query conjunct, then the less selective query conjunct should be replaced
by the more selective one .

For example, if some query condition is subsumed by a generalized rule which con-
cludes that S.GPA = “excellent ” (> 3.5), then a less selective query conjunct,

S.GPA > 2.0, can be replaced by a more selective one.
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¢ Query in relevance only to generalized knowledge . If the conditions of a query
and its inquired information are relevant only to the generalized knowledge, it can be
answered by consulting the generalized knowledge only .
For example, a query, “how many graduate students in Computing Sciences were born
in foreign countries? ”, can be answered directly by examining the corresponding

prime relation if it is stored in the GDB.

As a summary of the discussion, an algorithm is presented here, which explores semantic

query optimization using generalized rules.

Algorithm 5.1 Semantic query optimization using generalized rules.

Input : (i) A set of generalized rules R, (ii) a set of concept hierarchies, H, and (iii) an
input data query ¢ which consists of a set of conjuncts.

Output . A possibly optimized processing plan for query g.

Method .

1. Test whether there is a conjunct ¢; implied by another conjunct c; in the conjunctive

query g. If there is, remove ¢;.

2. Test whether some query conjunct(s) in a conjunctive query is subsumed by the body
(condition) of a rule but some other conjunct(s) conflicts with the head (conclusion)

of the rule. If it is so, the answer set is empty.

3. Test whether all of the (remaining) query conjuncts are subsumed by the body (con-
dition) of a generalized rule. If so, return the conclusion (head) of the rule as the

(intensional) answer to the query.

4. Test whether some of the query conjuncts are subsumed by the body of a generalized

rule. If so, examine whether the conclusion (head) of the rule may (i) sharpen a
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conjunct in the query or (ii) reduce the search effort. If so, replace the conjunct by
the rule head (conclusion) in case (i), and add the rule head (conclusion) as a new

conjunct to the query in case (ii). O

Remark. Algorithm 5.1 correctly performs semantic query optimization using the rules
stored in GDB.

Reasoning. Step 1 corresponds to query conjunct elimination, Step 2 to query condition
conflicting with rule head (conclusion), Step 3 to query conclusion subsumed by rule body

(condition) and query in relevance only to generalized knowledge, and Step 4 to sharpening

query condition and query conjunct introduction.
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CHAPTER 6

CONCLUSIONS AND
DISCUSSION

6.1 Conclusions

In this thesis, a framework has been presented for intelligent query answering in a knowledge-
rich database composed of deductive and knowledge discovery components. A knowledge-
rich data model is constructed which consists of an extended entity-relationship schema, an
extensional database, an intensional database, a set of concept hierarchies, a set of general-

ized rules, and a set of knowledge discovery tools.

Query answering mechanisms are classified into (1) direct answering of data queries,
(2) intelligent answering of data queries, (3) direct answering of knowledge queries, and (4)
intelligent answering of knowledge queries. Techniques have been developed for implemen-

tation of such mechanisms using discovered knowledge and/or knowledge discovery tools,
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which include deduction, generalization, data summarization, rule discovery, concept clus-

tering, query rewriting, lazy evaluation, semantic query optimization.

The availability of generalized rules, concept hierarchies and knowledge discovery tools

greatly enhances the power of intelligent query answering in the following aspects.

e It expands the spectrum of knowledge queries from inquiring deduction rules to in-
quiring general regularity of data, such as characteristic rules, discriminant rules, data

evolution regularities, etc. [24].

o It facilitates the query intent analysis since the notions of generalization, aggregation,
neighborhood, similarity, etc. can be studied systematically using the generalized

knowledge and concept hierarchies.

o It facilitates intelligent query answering since answers can be presented in general
terms, summarized by statistical information, and compared with similar groups of

data at a high level.

o The intelligent query answering can be implemented efficiently using generalized rules
and knowledge discovery tools using prime relations, feature tables, semantic query

optimization and other implementation techniques.

6.2 Future Research

The enhanced power of intelligent query answering leads to two problems: superfluous “in-

telligent” answers and the risk on database security.
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The first problem indicates that one may suffer from obtaining too many superfluous
“interesting” answers to a query because there are many ways for a query to be answered
intelligently. Techniques should be developed to control the answer generation process in
intelligent query answering. In general, one may assume that an appropriate knowledge
level is associated with each user. A user usually poses queries at his/her corresponding
knowledge level and expects the answers to be presented at the same level. If the contents of
the answer set are not at such level, generalization or specialization should be performed on
the answer set as concept level adjustment. Further, with user modeling and query intent
analysis, only those answers which match the query intent and the user model will be pre-
sented. More desirably, an intelligent query answering process can be triggered or directed
by interaction with users. For example, after obtaining the preliminary set of answers to
a query, some following-up questions can be raised by users, such as “in more detail?”,
“in summary?”, “why?”, “other options?”, “comparing with others?”, etc. These questions
indicate what kind of intelligent answers are expected. Then the corresponding intelligent

query-answering mechanisms can be evoked.

The second problem indicates that with the extended power of intelligent query answer-
ing, some sensitive or confidential information could be disclosed inappropriately to someone
who should not know it [47]. One technique which may enhance the database security is to
associate with a user model certain kinds of constraints on accessing rights. For example,
if the user is a student (easily known from the login name}, the constraints on intelligent
answering of his/her query in a university database will be quite different from the same
query posed by a professor. Sensitive information will not be disclosed to the users who
do not have appropriate access rights. However, because of the power and complexity of
deduction and knowledge discovery, it is difficult to tell to what extent that accessing cer-

tain piece of information may eventually lead to the disclosure of sensitive information by a
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sequence of deduction and induction. Therefore, more study should be performed on ensur-
ing database security in intelligent query answering in databases augmented with deduction

and knowledge discovery components.



APPENDIX A

A TUTORIAL ON THE
DBLEARN SYSTEM

The DBLEARN system is designed to discover the database knowledge, including charac-
teristic rules and discriminant rules, from a relational database supported by the SyBase
system. Recall that A characteristic rule is an assertion which characterizes the concepts
satisfied by all of the data stored in the database, and a discriminant rule is an assertion
which discriminates the concepts of one class from other class(es). The DBLEARN system

is implemented in C and runs under Unix on a Sun workstation.

A.1 The Architecture of the DBLEARN System

The architecture of the DBLEARN system was shown in the Figure 3.3, which consists of
user-interface, learning program, database data and concept hierarchies. In the learning

process, the DBLEARN system first accepts the user’s request through the user-interface.
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Based on the specified learning task, the DBLEARN system obtains the relevant data from
a database and the relevant concept hierarchies from a file. The learning program performs
attribute-oriented induction to extract generalized rules. After learning is performed, the

learning result is reported to the user through the user-interface.

A.2 The Description of the Learning Programs

The DBLEARN system consists of six programs which accomplish different functions of a

learning process.

A.2.1 learn.h and dblearn.h

The file “learn.h” is a library of the DBLEARN system which contains the declarations
of data structures and constant variables. It is included in the program parse.c. The file
“dblearn.h” is similar to the file learn.h except the variables defined in dblearn.h are external

variables. “dblearn.h” is included in the programs fetch.c and learn.c.

A.2.2 lex.c

The program “lex.c” is lexical analyzer which uses the program LEX (a lexical analyzer
generator) supported by the UNIX system. The program “lez.c” contains lexical specifica-
tions of the program. The generated program can recognize the learning request in an input
stream and partition the input stream into lexical units which matches the expressions of
the parsing tree. The command used to compile the lez.c program is “lex lez.c” which will

generate a program named lex.yy.c.
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A.2.3 parse.c

The program “parse.c” is a syntax analyzer which is implemented using the program YACC
(a compiler-compiler) supported by the UNIX. A collection of grammar rules is specified in
the program. Each rule describes an allowable structure and the corresponding action(s).
The program accepts the “token” generated by the program lez.c and invokes a certain

action when the token matches a specified structure.

The compilation of the parse.c program has two steps. The command “yacc parse.c”
will first generate a file named y.tab.c, then the command “cc y.tab.c” will generate the

executable code.

A.2.4 fetch.c

The program “fetch.c” is written using C supported by the SyBase system. It collects
task-relevant data based on the user’s learning request and passes the data to the learning

program learn.c.

The compilation of the feich.c program involves some library routines provided by the

SyBase system. The command used to compile the lez.c program is

ce =1/usr/local/Sybase/include -c fetch.c fusr/local/Sybase/lib/libsybdb.a ~Im.
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A.2.5 learn.c

This program is a C program and performs the induction process. The learning program con-
sists of two modules, LCHR and LDIR, which learn a characteristic rule and a discriminant
rule, respectively. Either of these two modules will be invoked based on the user’s learning
request. The program applies an attribute-oriented induction method which performs gen-
eralization on the selected data attribute by attribute. The generalization strategies used in
the learning process are the removal of nongeneralizable attributes and the ascension along
the concept hierarchies. The learning process can be viewed as a sequence of table transfor-
mations, from a less generalized relation to a more generalized one. The generalization is
controlled by a user-specified threshold value. The output of this program is a generalized
relation that contains a small number (< threshold value) of tuples. The learning results is

also presented in a corresponding logic form.

This program can be compiled using the command “cc ~c¢ learn.c” which will generate

an object code learn.o.

A.2.6 adjust.c

This program performs some miscellaneous functions of DBLEARN, such as the refine-
ment of concept hierarchies and the display of a particular concept hierarchy. The display
of a concept hierarchy is realized by calling some routines of HOOPS. This program can

be compiled using the command “cc -c adjust.c” which will generate an ob ject code adjust.o.
p g g

All the commands for compilation of the above four programs have been collected in

a file named makefile shown as follows. The programs should be recompiled after any

oo
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HOOPS_LIBS = -lhoops —-IX11 -lpizrect -lsuntool —lsunwindow -Im
SYBASE = /usr/local2/Sybase

SOURCES = adjust.c parse.c fetch.c learn.c
OBJECTS = y.tab.o adjust.o fetch.o learn.o
EXECUTABLES = dblearn

all: lez.yy.c y.tab.c dblearn

lez.yy.c : lezx.c
lex lex.c

y.tab.c: lex.yy.c parse.c learn.h
yacc parse.c

y.tab.o: y.tab.c
cc —g ~¢ y.tab.c

fetch.o: fetch.c dblearn.h
cc -I$SYBASE/include -g —c fetch.c $SYBASE/lib/libsybdb.a —Im

learn.o: learn.c dblearn.h
cc —g —c learn.c

adjust.o: adjust.c dblearn.h
cc —g —c¢ adjust.c dblearn: $OBJFECTS
cc -I18SYBASE/include —g -0 SEXECUTABLES $OBJECTS $SYBASE/lib/libsybdb.a
$HOOPS_LIBS

Figure A.1: Makefile

modification, which can be done by simply typing the command “make”.

A.3 The Specification of a Learning Request

A user-friendly interface is built in the DBLEARN system, by which users can specify the
learning task, the threshold value, the relations and the attributes relevant to the learning

k task, the concept to be Jearned(target class) and the concept to be compared (contrasting
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class).

A.3.1 Getting Started

Type at your Unix prompt the command “dblearn HierarchyName” and on your screen,

you will then see the prompt:
DBLEARN 1>

A HierarchyName is a directory under which the concept hierarchies you are interested
in are stored. If you don’t specify the HierarchyName here, you have to specify it after you

get into DBLEARN by typing:

DBLEARN 1> use HierarchyName

A.3.2 Basic Structure

The basic structure of an DBLEARN expression consists of seven clauses: learn, for, from,

where, in relevance to, using, and in contrast to.

e The learn clause specifies the learning task. Currently, only characteristic rule and

discriminant rule can be specified.

e The for clause can specify the name of the target class. A string should follow the
reserved word for and will be printed out in the final result as the name of the extracted

rule.

o The from clause lists the relations from which the task-relevant data can be retrieved.
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e The where clause consists of a predicate involving attributes of the relations that
appears in the in relevance to clause. If the where clause is omitted, all of the
tuples in the relations specified in the from clause are retrieved as the task-relevant

data.

e The in relevance to clause is used to list the attributes desired in the generalized
rule. If it is omitted, all of the attributes in all the relations appearing in the from

clause will be involved in the learning process.

e The using clause could be used in the following three ways.

1. The using attribute threshold clause specifies the desired threshold value.
The number of distinct values in each attribute should not be greater than the

attribute threshold value. If it is omitted , a default value, 5, will be chosen.

2. The using table threshold clause specifies the desired threshold value. The
number of tuples in the final generalized relation should not be greater than the

table threshold value. If it is omitted, a default value, 10, will be chosen.

3. The using hierarchy clause specifies the files which contain the required con-
cept hierarchy information. If it is omitted, the system will invoke a default file

named concept for the required concept hierarchy information.

e The in contrast to clause is used to specify the name of the contrasting class.

A typical DBLEARN query for learning characteristic rule has the form:

learn characteristic rule
for Target_Class_Name
from 7,79, ...,7y

where P‘

[04]
(571




in relevance to A, Ay, ..., A,
using attribute threshold N
using table threshold N,

using hierarchy H,, H,, ..., Hj

Fach r; represents a relation. P is a predicate. Each A; represents an attribute. N;
and N, are the attribute threshold value and table threshold value respectively. Each H;

represents a file which contains some of the required concept hierarchy information.

A typical DBLEARN query for learning discriminant rule has the form:

learn discriminant rule

for Target_Class.Name

where P;

in contrast to Contrasting_Class_Name
where P,

from ry,72,...,7y

where P;

in relevance to Ay, As,..., Ay

using attribute threshold N,

using table threshold N,

using hierarchy H,, H,, ..., Hy

The first where clause is used to define what the target class is. The second where clause
specifies the contrasting class. The third where clause specifies the common restrictions

shared by the target class and the cohtra.sting class. The third where clause could be
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omitted by adding P; with P, and P, respectively.

A.3.3 Examples

The following are some samples of learning request.

Example A.1 The learning task “learning the characteristic rule for the operating grants
awarded to computer science discipline from relation award, organization, and grant_type
in relevance to attributes amount end province, with a table threshold value equal to 18,
and using the concept hierarchy file disc, amount, prov, and grant_type” can be specified as

follows.

DBLEARN 1> learn characteristic rule
DBLEARN 2> for “CS_Op_Grants”
DBLEARN 3> from award A, organization O, grant_type G

DBLEARN 4> where O.org.code = A.org_code and G.grant_order = “Operating_Grants”

and A.grant_code = G.grantcode and A.disc.code = “Computer”
DBLEARN 5> in relevance to amount, province, prop(votes), prop(amount)
DBLEARN 6> using table threshold 18
DBLEARN 7> using hierarchy disc, amount, prov, grant_type

DBLEARN 8> go

Notice that prop(attribute) is a built-in function which returns the percentage of the

summation of the attribute value in the generalized tuples divided by the summation of the
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same attribute value in the whole generalized relation. The type of the attribute must be
“int” or “float”. Votesis a special attribute which registers the number of tuples in the orig-
inal relation which are generalized to one tuple in the final generalized relation. Prop(votes)

returns the percentage of tuples covered by a generalized tuple in the final relation.

A default attribute threshold value, 5, is used in this query. Notice that in this example,
“Computer” is a high level concept for attribute disc_.code and DBLEARN can translate
it into the corresponding primitive level concepts by consulting the corresponding concept
hierarchy information stored in the file disc. Finally, you have to type “go” on a line by
itself. It is the command terminator in DBLEARN, and lets DBLEARN know that you are

done typing and ready for your command to be executed.

By performing attribute-oriented induction, DBLEARN first presents the prime relation
and then gives users two alternatives, which are performing further generalization on the
prime relation and extracting feature table for a particular attribute respectively. Based on
users’ selection, corresponding action will be taken to generate final results. One possible

output of example A.lis given as follows.

ok o ok o o ok o o ok ok ok o ok ok o o ok o ok ok o ok 3 ok ok sk of o ok sk o o s sk sk o ok ok ok o o ok ok ok ok ok ok ok o ok sk ks ok sk o sk ok o ok ok 3 ok ok ok ok ok K K

* The Prime Relation *
S ok e K o o ok e oK e o e ok o Sk oK sk sk ke 3 o ok sk Rk ok e ok e sk e o ok ok ok ok ok ok ok ok o ok ok ok ok sk ok ok ook ok o ok ok ok ok ok ok ok

| amount | province |  prop(votes) | prop(amount) |
| 40Ks-60Ks | B.C. | 1.23% | 7.62% |
| 20Ks-40Ks I B.C. ’ | 5.35) | 6.20% I



| 0-20Ks B.C. 7.41Y% 7.64Y,
| 60Ks- B.C. 0.21% 4.15Y
| 20Ks-40Ks Prairies 5.35Y% 6.47Y
| 0-20Ks Prairies 8.23Y 3.76Y
| 40Ks-60Ks Prairies 0.21Y 1.88Y
| 60Ks- Prairies 0.41Y, 10.62Y
| 0-20Ks Ont. 24.49Y, 6.21Y%
| 20Ks-40Ks Ont. 12.76Y% 4.32Y
| 40Ks-60Ks Ont. 5.14) 5.36/%
| 60Ks- Ont. 1.23Y 11.03Y,
| 0-20Ks Queb. 13.79Y% 2.83Y
| 20Ks~40Ks Queb. 5.14Y 9.99Y
| 60Ks- Queb. 0.21Y 4.20Y%
|  40Ks-60Ks Queb. 1.03%, 2.74%
|  0-20Ks Maritime 6.79% 2.61Y
| 20Ks-40Ks Maritime 1.03% 2.36Y

[1]. Perform further generalization [2]. Extract feature table

Selection: 2

Available attributes:

[1]. amount

[2]. province

Selection: 1
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* Amount Feature Table *

3 3k 2k 2k ok 3K ok 3 ok ok ok 2k ok 3 3k ok ok 3k Ak B kK o ok oK ok ok ok ok 2 K ok b ok ok 2k 3k ok ok ok ok 3k ok ok 3k ok ok ok ok 3k ok ok 3k 3K ok 3k sk ok ok ok ok 3k 3k ok kK ok 3k 3K e 3 ok o ok K ok ok

|  Amount | Province Ivote |
| | B.C. Prairies Ont. Queb. Maritime ] |
| 40Ks-60Ks | 6 1 25 5 0 | 37 |
| 20Ks-40Ks | 26 26 62 25 5 | 144 |
} 0-20Ks | 36 40 119 67 33 | 295 |
| 60Ks~ o1 2 6 1 0 | 10 |
| Total | 89 69 212 28 38 | 486 |

In this example, the user prefers to generating a feature table for attribute amount.

Example A.2 Similarly, the following learning request learns the discriminant rule that

can distinguish the computer science grants awarded to Ontario from those awarded to New-

foundland,

DBLEARN 1> learn discriminant rule
DBLEARN 2> for “Ontario.CS_Grants”
DBLEARN 3> where O.province = “Ontario”

DBLEARN 4> in contrast to “Newfoundland_CS_Grants”
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DBLEARN 5> where O.province = “Newfoundland”
DBLEARN 6> from award A, organization O, grant_type G

DBLEARN 7> where A.grant_code = G.grant.code and A.org_code = O.org_code and

A.disc_code = “Computer”
DBLEARN 8> in relevance to disc_code, amount, grant_order

DBLEARN 9> go

Notice that both attribute and table threshold value are default ones . All the concept
hierarchy information required is stored in a default file concept. Generalization is performed
synchronously in both the target class and the contrasting class. The prime relation for both
classes is shown first. Overlapping tuples are marked by “*”. After removing overlapping
tuples from the target class, the final generalized relation is generated. The following is the

output of DBLEARN for example A.2.

3k ke 3k sk 3k ok 3K ok ok ok sk ok ok ok sk ok 3k ok ok sk ok sk ok ok Sk ok sk sk ok ok sk sk ok ok Sk ok sk Sk sk ok sk sk skook sk sk sk ok Sk sk ok sk sk ok sk ok ok ook ok sk ok sk dkokokok

* The Prime Relation *
34 ok ok ok o o ok ok ok o o oK ok o o oK ke ok o Kk ok ok o ok ok o ok o 3 o o ok ke ok ok o sk o o o ok ok ok ok ok ok ok ok K ok o o o K ok o o oK sk ok o oK o oK o ok sk ok

e - - e Ll - " A o T e e = T e e o S o . T S e A e o - - s v - ———

| Learning Concept |disc_code| grant_order | amount |votes mark |
| | Computer |Operating_Grants|0-20Ks f119 * |
| |Computer |Operating_Grants|20Ks-40Ks | 62 l
| |Computer |Other [0-20Ks | 10 x|
| |Computer |{Other |20Ks-40Ks | 10 *

Ontario_CS_Grants |Computer |Operating_Grants|40Ks-60Ks | 25 |

| |Computer |Other | 60Ks- I 7 |
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I [Computer |Other |40Ks-60Ks | S |
| |Computer |Strategic_Grants|60Ks- | 8 |
| |Computer |Operating Grants|60Ks- | 6 |

| |Computer |Strategic_Grants|40Ks-60Ks | 1

| | Computer |Operating_Grants|0-20Ks | 9 * |
INewfoundland_CS  |Computer |Other 10-20Ks | 1 * |
|IGrants |Computer [Other |20Ks-40Ks | 1 * |

sk ok o e ook o ke ok ok sk o ok ok e ok o s o sk ok ok ok o o o ok o e ok sk sk ok e sk sk ks o ok sk k e ok sk ke e o sk ko ok ko sk sk ok ok ok ok ok ok ok ke k ok

* The Final Generalized Relation *
ke K e ok ok K ok o ok o ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok o s ok ok o sk ok ok sk ok o ok s ok 3k ok 3k oKk ok 3k ok 3k ok 3k oK sk K ok 3k ok ke ok ok ok ok sk ok sk ok sk ok 3k

| disc_code | grant_order | amount | votes mark |
| Computer |  Operating_Grants | 20Ks-40Ks | 62 |
| Computer | Operating_Grants | 40Ks-60Ks | 25 |
| Computer |  Other | 60Ks- ] 7

| Computer |  Other | 40Ks-60Ks | 5 I
| Computer | Strategic_Grants | 60Ks- | 8 |
| Computer | Operating_Grants | 60Ks- I 6 I
| Computer | Strategic_Grants | 40Ks-60Ks | 1 |

- " " - - = - = S " e -~ " s i . = . e v -
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A.4 Miscellaneous functions

Currently, DBLEARN provides a limited number of miscellaneous functions.

e set demo !

Some intermediate results will be displayed. Users may get some detailed views how

DBLEARN works.

o set demo 0
Only final rules will be given.

e print schema from Relation_-Name
Print out the schema of a relation.

o display Attribute_Name in File_Name

Display the concept hierarchy information(tree structure) of an attribute stored in

the file File_Name.

e adjust hierarchy File_Name : Attribute_Name

based on relation Relation_Name

The concept hierarchy of the attribute Attribute_Name stored in the file File_Name

can be refined dynamically based on the statistics of data distribution in the relation

Relation_Name.
¢ help

On-line manual is given.
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*® quit

Quit from DBLEARN.
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APPENDIX B

Program Listing for Two Major

Procedures

The DBLEARN source program is written in C, assisted by UNIX software packages LEX
and YACC. The whole code is about 5,000 lines of C program. To save the space of printing,
only two major source programs: (1) parse.c, the DBLEARN grammar specifications,(2)

learn.c, the implementation of attribute-oriented induction algorithm are listed here.

Parse.c

[ FAAAAAAAAAK A o ok ok o R R oK o S o s o s s s s s o o o o o o o K K KK KKK KKK K KK K sk sk R R R KRR R ok sk ok ok kok ok ok /

/* The program ‘‘parse.c’’ is a syntax analyzer which is implemented */
/* using the program YACC (a compiler-compiler) supported by the UNIX. A */
/* collection of grammar rules is specified in the program. Each rule */



/* describes an allowable structure and the corresponding action(s). The */
/* program accepts the ‘‘token’’ generated by the program lex.c */
/* and invokes a certain action when the token matches a specified structure.*/

Kok ok o ok K oK o ok S K s R oK S RS ok K R R KSR KO oK 33K o ok oK 3K o ook o o ko o ok ok o o e ok ko o ok ook ok

#include "learn.h"

%token +tID tINTVAL tSTRING tLEARN tCHAR tDISC tRULE tFOR tFROM
tWITH tTHRESHOLD tGO tCOLON tDOT tEQ tCOMMA tLEFT tRIGHT
tSM tLG tNOEQ tWHERE tFLOAT tIN tRELAT tRELEV tTO tUSING
tHIERARCHY tCONTRAST tDIST tRETR tCREATE tSUPER tCLASS
tVALUE tSTEP tUPDATE tSET tALIAS tDISCOVER tCLASSIFY
tSCHEMA tINHERI tAND tOR tDISPLAY tPROP tSIGN tTABLE tATTR
tDEMO tADJUST tBASED tON tPRINT tSCHEMA tSELECT tHELP tUSE
tDELETE

DBLEARN : {init(); remove_file(); } selection {remove_file(); return; }

selection : tLEARN rule_type {int_q = 0; }

| tDIST item

| tCREATE hierar tGO

| tUPDATE {printf("Sorry, this function is not available now!\n");
return; }

| tSET alias tGO

| tDISCOVER {printf("Sorry, this function is not available now!\n");
return; } classify {getinfo ("classify", "source");
getinfo (relation_str, "source");
getinfo (pos_where, "source"); getinfo (hie_str, "source");

if (strlen(table_thres) == 0) strcpy(table_thres, "threshold 5");
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getinfo (table_thres, "source");
if (strlen(attr_thres) == 0) strcpy(attr_thres, "attr_threshold 5");
getinfo(attr_thres, "attr_threshold 5"); }

| tDISPLAY tID tBASED tON tID tGO {read_bias_2($5);
display_concept_2($2); }

| tSET tDEMO tINTVAL {demo = atoi($3);
if (demo) {printf("\n\nkskkkksskikkkkiokkkiokkkiokkkkkkkiokkkkkkxk\n") ;
printf("* DBLearn learning request *\n");
PTIntE (Mkskokoksokkor ok ko dorokrok ook rokoRdkorkokok Rk koo \n\n" ) ; }}

| tADJUST tHIERARCHY tID tCOLON tID tBASED tON tRELAT tID
{strcpy(attr_str, "attribute "); strcat(attr_str, $5);
getinfo (attr_str, "source");
strcpy(relation_str, "relation "); strcat(relation_str, $9);
getinfo (relation_str, "source"); strcpy(hie_str, "hierarchy ");
strcat(hie_str, $3); getinfo (hie_str, "source");}
tG0 {adjust_hierarchy($5);}

| tPRINT tSCHEMA {init_str(str); strcpy(pos_where, "positive ");}
relation where {strcat(pos_where, str);
getinfo (relation_str, “source");
getinfo (pos_where, "source'"); } tGO {print_schema_table(); }

| tSELECT {int_q = 1; strcpy(attr_str, "attribute ");
strcpy(relation_str, "relation ");} data_query tGO
{getinfo (“data_query", "source"); getinfo (attr_str, "source");
getinfo (relation_str, '"source"); strcpy(data_query, "positive ");
strcat(data_query, str); getinfo (data_query, "source");
strcpy(data_query, "prop "); strcat(data_query, prop_str);

getinfo(data_query, "source") ; int_query(); }
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| tHELP {system("more /home/dk6/yhuang/Proj/prog/on-line"); }
| tUSE tID tGO0 {strcpy(dir_str, $2); }

| tCREATE tID tGO {create_db($2); }

| tDELETE tID tGO {delete_db($2); }

|

data_query : attr tFROM table_list where hier_thre

rule_type : charact_rule tGO {getinfo (“charact_rule", '"source");
getinfo(attr_str, ‘“source");
getinfo(relation_str, "source"); getinfo(pos_where, "source");
getinfo(hie_str, “source");
if (strlen(table_thres) <= 0)
strcpy(table_thres, "table_threshold 10");
getinfo(table_thres, 'source");
if (strlen(attr_thres) <= 0)
strcpy(attr_thres, "attr_threshold 5");
getinfo (attr_thres, "source"); getinfo(title_str, "gsource");
getinfo(prop_str, "source"); learn_charact_rule(); }

| discrim_rule tGO {getinfo ("discrim_rule", "source");

getinfo (attr_str, "source"); getinfo(relation_str, "source");
getinfo(pos_where, "source"); getinfo(neg_where, "source");
getinfo(hie_str, "source");
if (strlen(table_thres) == 0)
strcpy(table_thres, "table_threshold 10");
getinfo(table_thres, "source");

if (strlen(attr_threé) <= 0)
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strcpy(attr_thres, “attr_threshold 5");
getinfo(attr_thres, "source"); getinfo(title_str, "source");
getinfo(prop_str, "source"); learn_class_rule(); }

| inherit_rule tGO {getinfo ("inherit_rule", “source");
getinfo (attr_str, "source"); getinfo(relation_str, "source");
getinfo(pos_where, "source"); getinfo(hie_str, "source");
if (strlen(table_thres) == 0)
strcpy(table_thres, “table_threshold 10");
getinfo(table_thres, “source");
if (strlen(attr_thres) == 0) strcpy(attr.thres, "attr_threshold 5"):
getinfo(attr_thres, "source"); getinfo(title_str, "'source");

getinfo(prop_str, 'source"); }

charact_rule:tCHAR tRULE tFOR {init_str(str); strcpy(title_str, "title ");
strcpy(pos_where, "positive "); } name
{if (strlen(str) > 0) {strcat(pos_where, " ( ");
strcat(pos_where, str); strcat(pos_where, " ) ");
strcat(title_str, str); }}
relation where {if (strlen(pos_where) > 9)
strcat(pos_where, " AND ");

strcat(pos_where, str); } attr_list hier_thre

discrim_rule:tDISC tRULE tFOR {init_str(str); strcpy(title_str, "title ");
strcpy(pos_where, "positive "); } name {if (strlen(str) > 0)
{strcat(pos_where, " ( "); strcat(pos_where, str);
strcat(pos_where, " ) "); strcat(title_str, str); }}

where {if (strlen(pos_where) > 9) strcat(pos_where, " AND ");
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strcat(pos_where, str); }

tIN tCONTRAST tTO {init_str(str); strcpy(neg_where, '"negative ");
strcat(title_str, " vs "); } name {if (strlen(str) > 0)
{strcat(neg_where, " ( ");

strcat(neg_where, str); strcat(neg_where, " ) ");
strcat(title_str, str); }}

where {if ((strlen(neg_where) <= 9) && (strlen(str) <= 0))
{printf("No contrasting class specified! \n"); return; }
if ((strlen(neg_where) > 9) && (strlen(str) > 0))
{strcat(neg_where, " AND "); strcat(neg_where, str); }
else if (strlen(str) > 0) strcat(neg_where, str); }
relation where {if (strlen(str) > 0)

{ if (strlen(pos_where) > 9) strcat(pos_where, " AND ");
strcat(pos_where, str); }

if (strlen(str) > 0) { if (strlen(neg_where) > 9)
strcat(neg_where, " AND ");

strcat(neg_where, str); }} attr_list hier_thre

inherit_rule:tHIERARCHY tINHERI tRULE tFOR tID {init_str(str);
strcat(str, "attribute ");
strcat(str, $5); getinfo (str, “source");} relation where

attr_list hier_thre

item : {init_str(str); strcpy(pos_where, "positive "); } cond
{strcat(pos_where, " ( "); strcat(pos_where, str);
strcat(pos_where, " ) ");} relation where {strcat(pos_where, str);

tFROM {init_str(str)} strcpy (neg_where, '"negative "); } cond
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{strcat(neg_where, str); }

relation where {strcat(neg_where, str); } attr_list

hierar : tHIERARCHY tFOR tID tSUPER tCLASS tID

{strcpy(title_str, "concept');
init_str(attr_str); if (check_name($3, “hie_table") == 0)
strcpy(attr_str, $3);
else {printf("\n concept hierarchy for %s alread exists...\n", $3);
return;} }

| tHIERARCHY tFOR tID tSUPER tCLASS tID
{strcpy(title_str, “concept");
init_str(bufl); strcat(bufi, $3); init_str(attr_str);
if (check_name($3, "hie_table") == 0) strcpy(attr_str, $3);
else {printf("\n concept hierarchy for %s alread exists...\n", $3);
return;} }
class {if (strlen(attr_str) > 0) getinfo(attr_str, "hie_table"); }

| tHIERARCHY tID tFOR tID tSUPER tCLASS tID {strcpy(title_str, $2);
init_str(attr_str);
if (check_name($4, "hie_table") == 0) strcpy(attr_str, $3);
else {printf("\n concept hierarchy for %s alread exists...\n", $4);
return;} }

| tHIERARCHY tID tFOR tID tSUPER tCLASS tID {strcpy(title_str, $2);
init_str(bufl); strcat(bufil, $4); init_str(attr_str);
if (check_name($4, "hie_table") == 0) strcpy(attr_str, $4);
else {printf("\n concept hierarchy for %s already exists...\n", $4);
return; } }

class {if (strlen(attr_str) > 0) getinfo(attr_str, "hie_table"); }
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class : class tLEFT tCLASS tID {init_str(buf2); strcat(buf2, $4); }
tVALUE value tRIGHT
| tLEFT tCLASS tID {init_str(buf2); strcat(buf2, $3); } tVALUE

value tRIGHT

value . value tCOMMA tSTRING {init_str(str); strcat(str, $3);

remove_quote(str);
strcat(str, " "); strcat(str, buf2); strcat(str, " ");
strcat(str, bufl); getinfo (str, title_str); }

| value tCOMMA digit {strcat(str, " "); strcat(str, buf2);
strcat(str, " "); strcat(str, bufl); getinfo (str, title_str); }

| tSTRING {init_str(str); strcat(str, $1); remove_quote(str);
strcat(str, " "); strcat(str, buf2); strcat(str, " "),
strcat(str, bufl);
getinfo (str, title_str); }

| digit {strcat(str, " "); strcat (str, buf2); strcat(str, " ");

strcat(str, bufl); getinfo (str, title_str); }

digit : tINTVAL {strcpy(str, $1); }

| tFLOAT {strcpy(str, $1); }

alias . tALIAS tID tFOR tID {if (check_name($4, "hie_table") == 0)

{ printf("\n concept hierarchy for is does not exist... \n", $4);} }

classify : tCLASSIFY tSCHEMA tFOR {init_str(str);
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strcat(pos_where, "positive "); }

cond {strcat(pos_where, str); } relation hier_thre

name : cond

| tSTRING {strcat(title_str, $1); }

relation : tFROM {strcpy(relation_str, "relation "); } table_list

table_list : table_list tCOMMA tID {strcat(relation_str, ",");
strcat(relation_str, $3); }
| table_list tCOMMA tID tID {strcat(relation_str, ",");
strcat(relation_str, $3);
strcat(relation_str, " "); strcat(relation_str, $4); }
| tID tID {strcat(relation_str, $1); strcat(relation_str, " ");
strcat(relation_str, $2); }

| tID {strcat(relation_str, $1); }

attr_list : tIN tRELEV tTO {strcpy (attr_str, "attribute ");

strcpy (prop_str, "prop "); } attr

attr : attr tCOMMA {strcat(attr_str, ","); } attr_type

| attr_type

attr_type : {init_str(str); } attr_name {strcat(attr_str, str);
strcat(attr_str, " "); }

| tPROP tLEFT tID tRIGHT {strcat(prop_str, $3);
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strcat(prop_str, " “);
if (attr_str[strlen(attr_str)-1] == *,?)

attr_str[strlen(attr_str)-1] = * ?; }

hier_thre : tUSING tHIERARCHY {strcpy(hie_str, "hierarchy " ); }
hierarchy hier_thre
| tUSING tTABLE tTHRESHOLD tINTVAL
{strcpy(table_thres, '"table_threshold ");
strcat(table_thres, $4); } hier_thre
| tUSING tATTR tTHRESHOLD tINTVAL
{strcpy(attr_thres, "attr_threshold ");

strcat(attr_thres, $4); } hier_thre

hierarch : hierarchy tCOMMA tID {strcat(hie_str, ", "); strcat(hie_str, $3);}
y y

| tID {strcat(hie_str, $1); }

concept : tID tIN tID tGO {init_str(str); strcat(str, $1);

display_concept(str, $3); }

where : tWHERE {init_str(str); strcat(str, " ( “); } cond
{strcat(str, " ) "); }

| {init_str(str); }

cond : cond1l

| tLEFT {strcat(str, T ( "); } condl tRIGHT {strcat(str, " ) "“); }
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condl : cond tAND {strcat(str, " AND *); } cond

| cond tOR {strcat(str, " OR "); } cond

| condition
condition : attr_name tEQ {strcat(str, " = "); } attr_name
| attr_name tSM {strcat(str, " < "); } attr_name
| attr_name tLG {strcat(str, " > "); } attr_name
| attr_name tEQ tINTVAL {strcat(str, " = "); strcat(str, $3); }
| attr_name tSM tINTVAL {strcat(str, " < "); strcat(str, $3); }
| attr_name tLG tINTVAL {strcat(str, " > "); strcat(str, $3); }
| attr_name tEQ tFLDAT {strcat(str, " = "); strcat(str, $3); }
| attr_name tSM tFLOAT {strcat(str, " < "); strcat(str, $3); }
| attr_name tLG tFLOAT {strcat(str, " > "); strcat(str, $3); }
| attr_name tEQ tSTRING {strcat(str, " = "); strcat(str, $3); }
attr_name : tID tDOT tID {strcat(str, $1); strcat(str, "."); strcat(str, $3);}

| tID {strcat(str, $1); }

Learn.c

[ kksok Rk kR ko ko sk stk ok stokok skl ok stk koo stk ksl ok ok ol sk sk skklok stk kokok ok ok ok ko ksl ok skok ok ok f
/* This program is a C program and performs the induction process. The
/* learning program consists of two major procedures, learn_charact_rule and */
/* learn_class_rule, which learn a characteristic rule and a discriminant

/* rule, respectively. Either of these two modules will be invoked based on

/* the user’s learning request.
1Rk Kook kK kR kKoK koK sk skkok ok sk sk ok sk sk ke kol sk ok ik sk ok sk sk skok ok sk ok sk skok ok ok ok ok ok

#include "lex.yy.c"
#include “"dblearn.h"
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[ Kok ko sk ok ok sk o ok skl o ok sk skl sk sk ke ksl sk ok sk o ok sk sk iR R KoK s o AR K AR SRR SRRk KKK Kk ok sk ks ok ok ok f

/* Procedure: main x/
/* Parameter: Directory in which a perticular concept hierarchy is stored */
/* Function : Main routine */

[ 3ok ek sk sk o ok Kok ok sk sk ok ok o R sk ko o ko s sk ok sk sk ok o sk R KSR KSR R KoK Ko o K oK oK ek o K s o ok ok ok o ks ok sk ok sk sk ko

main(argc, argv)
int argc;
char **argv;

int 1i;

if (argc > 1) strcpy(dir_str, argv([il);
lineno = 0;

remove_file();
newline();
while (1)
{
x = yyparse();
lineno = 0;

}
}/*mainx/

/*****************************************************************************/

/¥ Procedure: learn_charact_rule */
/* Parameter: None x/
/* Function : Learning process for characteristic rule *x/

/*****************************************************************************/

learn_charact_rule ()
{
/* only positive tuples are selected for learning characteristic rule */
/* the exptype is set to 1 */
int exptype = 1, ind;
int 1 = 0;
int debug = 0;
char attr_name[MAXSTR];
char line[MAXLINE], word[MAXSTR];
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if (check_dir() == 0) return(0);

fp = fopen ("source", "r");
if (fp == NULL)
{

printf ("unable to read file %s\n", "source");
return (-1);

}
while (fgets (line, MAXLINE, fp) != NULL)
{
get_one_value(line, 0, word);
if (strcmp(word, "table_threshold") == 0) {
get_one_value(line, 15, word);
max_tuple = atoi(word);
}
if (strcmp(word, "attr_threshold") == 0) {
get_one_value(line, 14, word);
max_value = atoi(word);
}
}
fclose(fp);
fetch();

bias_table.index = bias_table.index - schema_table.attr_num;
max_num = pos_tuple.index;
if (debug)

print_pos (1);

char_tuple_reduction();

}

[k kR sk sk kK o sk koK ks ok o sk sk ok sk sk sk ok kR KKK oK KRR KKKk oK KKKk
/* Procedure: learn_class_rule x/
/* Parameter: None */
/* Function : Learning process for discriminant rule */

[ ke ok ko ok ok sk ok o s ok o sk ok o ook oK o sk ok ok K Kk KKK K K oK R K o ok ok K sk ok sk sk s sk sk s sk ok sk sk ok sksk oKk ok sk sk ok ok ok sk o f

learn_class_rule()

{
/* both positive tuples and negative tuples are selected for learning */
/* discriminant rule, the exp_type is set to -1 */
int exptype = -1;
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int i = 0;

int debug = 0;

char attr_name[MAXSTR];

char pos_target[MAXSTR];

char neg_target[MAXSTR];

char 1line[MAXLINE], word[MAXSTR];

if (check_dir() == 0) return(0);
fp = fopen ("source", "r");
if (fp == NULL)

{
printf ("unable to read file %s\n", "source");
return (-1);
}
while (fgets (line, MAXLINE, fp) != NULL)
{
get_one_value(line, 0, word);
if (strcmp(word, “table_threshold") == 0) {
get_one_value(line, 15, word);
max_tuple = atoi(word);
}
if (strcmp(word, "attr_threshold") == 0) {
get_one_value(line, 14, word);
max_value = atoi(word);
}
}
fclose(fp);
fetch();

max_num = pos_tuple.index;
if (debug)

print_pos (2);
class_tuple_reduction();

1

[ ks ook ok ok KR Ko KR o R o KoK R R KR R KK K KRR R Kok KR sk o sk Kk ok kR KRR Ko o Kok Kk Kok ok ok /
/* Procedure: char_tuple_reduction */
/* Parameter: None */
/* Function : Induction process for learning characteristic rules */

/*****************************************************************************/
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char_tuple_reduction()

{
int i = 0, j = 0, select;
int debug = O;
int attr_num = schema_table.attr_num;
int rule_type = 1;
char attr_name_array[MAXATTR] [MAXSTR];
struct relation temp_rel;

if (debug) printf (“threshold %d\n", max_tuple);

for (i = 0; i < attr_num; i++)
strcpy (attr_name_array[i], schema_table.attr[i].attr_name);

/* for each attribute, if the number of distinct values is greater
than the thresheld, all the values in this attribute should
be generalized */

for (i = 0; i < attr_num; i++)
if (distinct_val(attr_name_array[i],max_value) == 1) {
generalize(attr_name_array[i], rule_type);

¥

/* if the number of tuples in the generalized relation is greater
than the threshold, further generalization on some selected
attribute(s) should be performed */

remove_same_1(1);

if (pos_tuple.index > max_tuple)
{
/* when the size of table has been reduced to max_tuple * 2,%/
/* check the noise data and remove it */
if (pos_tuple.index < (max_tuple * 2))
{
remove_noise_data (rule_type);
}
}
if (int_q == 0) {
if (pos_tuple.index > max_tuple) {
printf("\n{1].Further generalization [2]. Extract feature table\n");
printf("\nSelection: ");
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scanf ("%d", &yes_no);
if (demo) printf(" ¥%d\n", yes_no);
if (yes_no == 2) {
do{
printf("\n\nAvailable attributes:\n\n");
for (i = 0; i < schema_table.attr_num; i++)
printf("[%4i].%s\n",i+1, schema_table.attr[i].attr_name);
printf("\nSelection: ");
scanf ("}d", &select);
if (demo) printf(" Y%d\n", select);
else printf("\n");
} while ((select < 1) || (select > schema_table.attr_num));
extract_feature_table(attr_name_array[select-1]);

X
else {
if (pos_tuple.index > max_tuple) further_general(rule_type);
printf ("\n");
printf ("\n");
printf("\n\n***************************************\n”);
printf ("x The final generalized relation #*\n");
PTIntE (Miksrksorsoksororkorkk Rk kool ook kokkokokkokkokkookokk \n \n"' )
print_pos (1);
Printf (" \nkkskokiorskokkoksokokokkokok ook kR ookRokok ok ok ok ok k ok KRk kR \n ') 3
printf(" The characteristic rule for %s is: \n", target_str);
printf(”**********************************************\n\n");
simplify(1);
printf ("\n");
printf ("\n");
}
}
else {

printf (“\n");

printf (“\n");

Printf (" \n\nkkkkksksonkokkokkkkkkkokkokkoRkookRkokkoo oo kok\n ) 3

printf ("x* The final generalized relation *\n");

printf(“***************************************\n\n");

print_pos (1);

printf("\n\n [i1]. Print out generalized rule [2].Extract feature
table\n");

printf("\nSelection: ");

scanf ("%d", &yes_no);

if (demo) printf(" ¥%d\n", yes_no);
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if (yes_no == 2) {
do{
printf("\n\nAvailable attributes:\n\n");
for (i = 0; i < schema_table.attr_num; i++)
printf("[%i]. %s\n", i+1, schema_table.attr[i].attr_name);
printf(“\nSelection: ");
scanf ("Yd", &select);
if (demo) printf(" Y%d\n", select);
else printf("\n");

} while ((select < 1) || (select > schema_table.attr_num));
extract_feature_table(attr_name_array[select-1]);
}

else {

printf ("\nkskskokskaokkskorkokkkok kkokok ok kok kR kok kol kokkok Kok ok ok kkk\ )
printf(" The characteristic rule for %s is: \n", target_str);
PTAntE (Mokskok ko kkoporkokopkokopopk ook RooooRokkok\n \n" ) ;
simplify(1);

printf ("\n");

printf ("\n");

}

}

}

else { /* answer explanation for intelligent query answering */
do{

temp_rel.index = pos_tuple.index;
for (i = 0; 1 < pos_tuple.index; i++) {
temp_rel.table[i].votes = pos_tuple.table[i].votes;
strcpy(temp_rel.table[i] .data, pos_tuple.table[i].data);
for (j = 0; j < schema_table.attr_num; j++)
temp_rel.table[i] .prop[j] = pos_tuple.table[i].prop[j];
}
if (pos_tuple.index>max_tuple) further_general(rule_type);
Printf (" \nskskskrkokokskokokskorokskokok ok okok kR koK k R Rk Kok ok ok Rk \n ) 5
printf(" The generalized rule for the answer is: \n", target_str);
printf(”**********************************************\n\n");
simplify(1);
pos_tuple.index = temp_rel.index;
for (i = 0; i < temp_rel.index; i++) {
pos_tuple.table[i].votes = temp_rel.table[i].votes;
strcpy (pos_tuple.table[i] .data, temp_rel.table[i].data);
for (j = 0; j < schema_table.attr_num; j++)
pos_tuple.table[i].prop[j] = temp_rel.table[i].prop[j];
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}
printf("\n\nAvailable attributes:\n\n");
for (i = 0; i < schema_table.attr_num; i++)
printf("[4i]. %4s\n", i+1, schema_table.attr[i].attr_name);
printf("\nSelection: ");
scanf ("%d", &select);
if (demo) printf(" %d\n", select);
else printf("\n");
} while ((select < 1) || (select > schema_table.attr_num));
extract_feature_table(attr_name_array[select-1]);
print_feature_table();

¥
¥
[ ARk ko ok Kok o sk oK ok ok 3Kk KK o K ok K K R o KK K sk ok sk Kok Aok ok ok sk ok ok ok sk ok ok ok ok ks ok ko ok ook ok sk ok ok sk ok sk ok ok
/* Procedure: extract_feature_table *x/
/* Parameter: IN: attibute on which the feature table is based *x/
/* Function : Extract feature table for a perticular attribute */

/*****************************************************************************/

extract_feature_table(attr_name)
char attr_name[MAXSTR];
{

/* extract feature table from prime relation */

int attr_index = 0, index = 0, idx = 0;
int1i=0, j=0,k=0,1=0,m=0, n=0;
int length = O;

int found_set = 0;

int count = 0, ind = 0;

char value[MAXSTR];

strcpy(feature.prime_attr.attr_name, attr_name);
feature.prime_attr.fea_num = 0;

while (attr_index < schema_table.attr_num)

{
if (strcmp (attr_name, schema_table.attr[attr_index].attr_name) == 0)
break;
attr_index++;
}



length = schema_table.attr_length;

0; i < pos_tuple.index; i++)

for (i
{
index = attr_index * length;
/* copy the value in the attr_index attr */
get_one_value (pos_tuple.table[i].data, index, value);

for (j = 0; j < feature.prime_attr.fea_num; j ++)
if (strcmp (value, feature.prime_attr.fea_name[j]) == 0)
break;

if (j >= feature.prime_attr.fea_num) {
count = feature.prime_attr.fea_num;
strcpy(feature.prime_attr.fea_name[count], value);
feature.prime_attr.fea_num ++;

}

}

count = feature.prime_attr.fea_num;
strcpy(feature.prime_attr.fea_name[count], "Total");
feature.prime_attr.fea_num ++;

index = 0;
attr_index = 0;
while (attr_index < schema_table.attr_num)
{
if (strcmp (attr_name, schema_table.attr[attr_index].attr_name) != 0)
{
length = schema_table.attr_length;
strcpy(feature.fealind] .attr_name, schema_table.attr[attr_index].attr_name);
for (1 = 0; 1 < pos_tuple.index; i++)
{
index = attr_index * length;
/* copy the value in the attr_index attr */
get_one_value (pos_tuple.table[i].data, index, value);

for (j = 0; j < feature.feal[ind].fea_num; j ++)

if (strcmp (value, feature.fealind].fea_name[j]) == 0)
break;

if (j >= feature.fealind].fea_num) {

count = feature.fea[ind] .fea_num;

strcpy(feature.feal[ind] .fea_name[count], value);

feature.feal[ind] .fea_num ++;

113



}
}
ind ++;
}
attr_index ++;

¥

feature.attr_num = schema_table.attr_num;
strcpy(feature.fealind] .attr_name, "vote");
feature.fealind] .fea_num = 1;

attr_index = O;
while (attr_index < schema_table.attr_num)

{
if (strcmp (attr_name, schema_table.attr[attr_index].attr_name) == 0)
break;
attr_index++;
}

length = schema_table.attr _length;

il

for (i

{

0; i < pos_tuple.index; i++)

index = attr_index * length;

/* copy the value in the attr_index attr */
get_one_value (pos_tuple.table[i].data, index, value);
for (j = 0; j < feature.prime_attr.fea_num - 1; j++)

if (strcmp(value, feature.prime_attr.fea_name[j]) == 0) {
1=173;
break;

}

for (j = 0; j < schema_table.attr_num; j++)
if (j !'= attr_index ) {
if (j > attr_index) m = j-1;
elsem = j;
index = j * length;
get_one_value (pos_tuple.table[i].data, index, value);
for (k = 0; k < feature.fea[m].fea_num; k++)
if (strcmp(value, feature.fea[m].fea_name(k]) == 0) {
n = k;
break;
}
feat[1] [m] [n] = feat[1][m][n] + pos_tuple.table[i].votes;
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feat[feature.prime_attr.fea_num - 1] [m][n] =
feat[feature.prime_attr.fea_num - 1] [m][n] +
pos_tuple.table[i].votes;

feat[1] [schema_table.attr_num - 11[0] =
feat[1] [schema_table.attr_num - 1][0]
+ pos_tuple.table[i] .votes;
feat[feature.prime_attr.fea_num-1] [schema_table.attr_num - 1][0] =
feat[feature.prime_attr.fea_num - 1] [schema_table.attr_num - 1J[0] +
pos_tuple.table[i].votes;

if (int_q == 0) print_feature_table();
[ sk kR ok sk ks ok ko ok sk kSRR SR KK AR K KKK KRR R K KK KR KR KKKk kiR Kok ok
/* Procedure: class_tuple_reduction */
/* Parameter: None */
/* Function : Induction process for learning discriminant rules x/

/*****************************************************************************/

class_tuple_reduction()
{
int i =0, j = 0;
int rule_type = 2;
int attr_num = schema_table.attr_num;
int unmark_num = O0;
char attr_name_array[MAXATTR] [MAXSTR];
for (i = 0; i < attr_num; i++)
{
strcpy (attr_name_array[i], schema_table.attr[i].attr_name);

}

/* 1 indecates the positive tuple table, -1 the negtive tuple table */
/% for each attribute, if the number of distinct values is greater
than the threshold, all the values in this attribute should
be generalized */

for (i = 0; 1 < attr_num; i++)
if (distinct._val(attr_name_array[i],max_value) == 1) {
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generalize(attr_name_array[i], rule_type);
/*2 indicates discriminant rule */

}
/* determine the number of the unmarked tuples in the generalized relation */

remove_same_1(1);
remove_same_1(-1);
intersect();

for (i = 0; i < pos_tuple.index; i++)
if (pos_tuple.table[i].data[schema_table.attr_length *
schema_table.attr_num] != ’x%’)
unmark_num ++;

/* if the number of unmarked tuples is greater than the threshold value,
further generalization on some selected attribute(s) should be performed */

if (unmark_num > max_tuple)
{
/* when the size of unmarked pos_tuple has been reduced to */
/* max_tuple * 2, check the noise data and remove it */
if (unmark_num < (max_tuple * 2))
{
remove_noise_data (rule_type);
}
if (unmark_num > max_tuple)
further_general(rule_type);

by

printf ("\n\nkskskskskkkskokokokkokokokokkook ok ok ok dok kool ok ok kR okl ok ok \n ')
printf ("* The final generalized relation *\n");

Printf (Mskkokskokkkokorokok ok oR ok ok koRk ok ok dokokk ok kR dokok ko ok k\n M)
remove_mark_tuple ();

print_pos (2);

}

[k ok ook sk s ok sk ok ok ok ok ok ok sk ko ol o ok sk ok s o ok sk o ok sk ok ok Rk ok o o K Sk ok ks o ok sk ok ko s s ok sk o skl ok f
/* Procedure: distinct_val */
/* Parameter: IN: attribute name */
/* threshold value for this attribute */
/* Function : Determine if the number of distince value of a perticular */
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/* attribute is greater than a predefined threshold value */
/AR sk stk ook ok sk ok ksl ok ok stk sk sk ok ok ok ok s ko o sk sk ok ok ok sk sk ke ok sk o o ok ok s ok sk s o o K sk ok o K Kk K koK

distinct_val(attr_name, limits)
char *attr_name;
int limits;
{
/* return the number of distinct values in attribute "attr_name" */
int index = 0O;
int j = 0;
int attr_index = O;
int length = 0;
int distinct_num = O;
int same;
char value[MAXSTR];
char dist_val_table[MAX_THRES][MAXSTR];
struct tuple *pos_ptr = &pos_tuple.table[index];
/* find the attr whose name is "attr_name" */
while (attr_index < schema_table.attr_num)

{
if (strcmp (attr_name, schema_table.attr[attr_index].attr_name) == 0)
break;
attr_index++;
}

length = schema_table.attr_length;
for (index = 0; index < pos_tuple.index; index++, pos_ptr++)
{

if (distinct_num > limits) return (1);

if (pos_ptr->data[schema_table.attr_num * length] != ’x’)
{
get_one_value (pos_ptr->data, attr_index * length, value);
same = 0;

for (j = 0; j < distinct_num; j++)
if (strcmp (dist_val_table[j], value) == 0)

{
same = 1;
break;
}
if (same == 0)

{

strcpy (dist_val_table[distinct_num], value);
distinct_num++;
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3

return (-1);
[ Fkkk ook skokskkokokkok dokok ok ko okok ok ok ook ok ok ok ok ok ok koK ok KoKk k Kok sk ok sk ok kok ok koK ok oKk Kok Kok K sk kK kok o
/¥ Procedure: distinct_val_1 x/
/* Parameter: IN: attribute name x/

/* Function : Return the number of distince value of a perticular attribute */
7 33k ok ok ok oo sk ok ok o sk ok o ok ok ok Kok o sk ok sk sk Kok o o o ok Kok o o ok sk sk ok ok 3ok K Kok ok ok o ok ks ok Kok ok ok ok sk o ok sk ok ok ok ok ok ok /

int distinct_val_1(attr_name)
char *attr_name;
{
int index = 0;
int j = 0;
int attr_index = 0;
int length = 0;
int distinct_num = O;
int same;
char value[MAXSTR];
char dist_val_table[MAXTUPLE] [MAXSTR];
struct tuple *pos_ptr = &pos_tuple.table[index];
/* find the attr whose name is "attr_name" */
while (attr_index < schema_table.attr_num)

{
if (strcmp (attr_name, schema_table.attrlattr_index].attr_name) == 0)
break;
attr_index++;
}

length = schema_table.attr_length;
for (index = 0; index < pos_tuple.index; index++, pos_ptr++)

{

if (pos_ptr->datalschema_table.attr_num * length] != ’x?’)
{
get_one_value (pos_ptr->data, attr_index * length, value);
same = 0;

for (j = 0; j < distinct_num; j++)
if (strcmp (dist_val_table[j], value) == 0)
{

same = 1;
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break;

}

if (same == 0)

{
strcpy (dist_val_tablel[distinct_num], value);
distinct_num++;

}

}
}

return {(distinct_num);

ek ok koo stk sk ko skok sk sk o ok s o kool s ok s ok sk ks ks sk e ok o o sk sk skl o sk sk ok stk ol ko sk ek sk Kk ook ok

/*
/*
/*
/*

Procedure: generalize
Parameter: IN: attribute name

rule type -- 1. characteristic rule 2. discriminant rule
Function : Perform generalization on a perticular attribute

*/
*/
*/
*/

/*****************************************************************************/

generalize(attr_name, rule_type)
char *attr_name;
int rule_type;

{

int found = O;

int exptype = 1;

int bias_idx = 0;

int attr_idx = 0;

struct bias *bias_ptr = &bias_table.table[bias_idx];
struct attr_info *attr_ptr = &schema_table.attrlattr_idx]

/* find the index of attr_name in the schema */

while (attr_idx < schema_table.attr_num)

{
if (strcmp (attr_name, attr_ptr->attr_name) == 0)
break;
attr_idx++;
attr_ptr++;
}

/* check whether there is any bias for this attribute */
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for (bias_idx = O; bias_idx < bias_table.index; bias_idx++, bias_ptr++)

{

if (strcmp (attr_name, bias_ptr->attr_name) == 0)
{

found = 1;

break;
}

3

/* no bias for this attribute */
if (found == 0)

{
project (attr_name);
}
/* there is bias for this attribute */
else
{
/* for learning characteristic rule */
if (rule_type == 1)
{
do {
substitute (attr_name, exptype);
} while (distinct_val(attr_name,max_value) == 1);
}
/* for learning discriminant rule */
else
{
do {
exptype = 1;
substitute (attr_name, exptype);
/* remove_same_1(exptype); */
exptype = -1;
substitute (attr_name, exptype);
/* remove_same_1(exptype); */
/* intersect (); */
/*for NSerc project */
/*if (watch == 1)
print_both ();*/
} while (distinct_val(attr_name,max_value) == 1);
}
}
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/*****************************************************************************/

/*
/%
/%
/*
/%

Procedure: substitute
Parameter: IN: attribute name
example type -- 1. positive examples 2. negative examples

Function : substitute the lower level concept in a perticular attribute

by the higher level concepts

*/
*/
*/
*/
*/

[ 33Kk ok sk R ok o Kk o Kok kR sk sk ok sk ki ok o skok ok ok sk sk o kKR KKk Kok ok sk ok Kok kok /

substitute (attr_name, exp_type)
char *attr_name;
int exp_type;

{

/* substitute the lower level concept in attribute "attr_name"
by the higher level concepts */

int attr_index = 0, index = 0, idx = 0, id = 0;
int i =0, j=0, k=0, m=0;

int length = O;

int found_set=0;

int bias[MAXBIAS];

int b_index = 0, b_idx = 0;

char value[MAXSTR], valueil[MAXSTR];

while (attr_index < schema_table.attr_num)

{
if (strcmp (attr_name, schema_table.attr[attr_index].attr_name) == 0)
break;
attr_index++;
}

length = schema_table.attr_length;

for (i = 0; i < bias_table.index; i++)
if (strcmp (bias_table.table[i].attr_name, attr_name) == 0) {
bias{b_index] = i;
b_index ++;

¥

/* for positive examples */
if (exp_type == 1)
{

for (i = 0; i < pos_tuple.index; i++)
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index = attr_index * length;
/* copy the value in the attr_index attr */
get_one_value (pos_tuple.table[i].data, index, value);

for (k = 0; k < b_index; k++)
{
b_idx = bias[k];
if ((strcmp (value, bias_table.table[b_idx].low.concept) == 0) ||
(check_concept(value, b_idx) == 1))

{
/* substitute the lower concept by the higher concept */
idx = attr_index * length;

m = 0;
if (bias_table.tablelb_idx].num == -1)

strcpy(valuel, bias_table.table[b_idx].high.concept);
else {

id = bias_table.table[b_idx] .num;
strcpy(valuel, bias_table.table[id].low.concept);

¥
while (m < length && valuei[m] !'= ’ ’ && valuel[m] != ’\n’ &&
valuel[m] != ’\0’)
{
pos_tuple.table[i] .datalidx] = valuei[m];
m++;
idx++;
¥
while (m < length)
{
pos_tuple.table[i].datalidx] = * ’;
m++;
idx++;
¥
break;
)
¥
¥
/* for negative examples */
else
{

for (1 = 0; i < neg_tuple.index; i++)
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{
in

/*

dex = attr_index * length;
copy the value in the attr_index attr */

get_one_value (neg_tuple.table[i].data, index, value);

for

{

(k = 0; k < b_index; k++)

b_idx = bias[k];

if ((strcmp (value, bias_table.table[b_idx].low.concept) == 0) ||
(check_concept(value, b_idx) == 1))

{

/* substitute the lower concept by the higher concept */
idx = attr_index * length;
m= 0;
if (bias_table.table[b_idx].num == -1)
strcpy(valuel, bias_table.table[b_idx].high.concept);
else {
id = bias_table.table[b_idx] .num;
strcpy(valuel, bias_table.table[id].low.concept);
}
while (m < length && valuei[m] != > ’ && valuei[m] != ’\n’ &&
valuei[m] != ’\0°’)
{

neg_tuple.table[i] .datalidx] valuei[m];
m++;
idx++;

}

while (m < length)

{

]
-
-

neg_tuple.table[i].data[idx] ;
m++;
idx++;

}

break;

}

7 Aok ok ok ok ok okokeokok s o o e ke ok ok sk ok stk o sk ok ok ok Kok ok o ok ok ok sk o ok ok sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ksl ok ok ok ok ko ok ok okok ok /

Procedure: further_general */
Parameter: IN: rule type -- 1. characteristic rule 2. discriminant rule */

123



/* Function : Perform further generalization on prime relation */
/*****************************************************************************/

further_general (rule_type)
int rule_type;
{

/* perform further generalization x/

int 1 = 0, 1_index=0, 1l_dist_num, c_disc_num, tuple_num;
int unmark_num = 0;

int attr_num = schema_table.attr_num;

char max_attr[MAXSTR];

do {
i=0;
1_index = 0;

unmark_num = 0O;

strcpy (max_attr, schema_table.attr[i].attr_name);
/* for learning characteristic rules */

if (rule_type == 1)

{

/* select the attribute which has most distinct values */

i=1;
1_dist_num = distinct_val_i(schema_table.attr[l_index].attr_name);
while (i < schema_table.attr_num)

{
c_disc_num = distinct_val_1(schema_table.attr[i].attr_name);
if (1_dist_num < c_disc_num) {
1_index = 1i;
1_dist_num = c_disc_num;
+
i++;
}

strcpy(max_attr, schema_table.attr[l_index].attr_name);

generalize (max_attr, rule_type);

remove_same_1(1);

if (pos_tuple.index > max_tuple)

{
/* when the size of unmarked pos_tuple has been reduced to */
/* max_tuple * 2, check the noise data and remove it */
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if (pos_tuple.index < (max_tuple * 2))
{
remove_noise_data (rule_type);
¥
¥
tuple_num = pos_tuple.index;

¥

/* for learning discriminant rule */
else
{
while (i < schema_table.attr_num - 1)
{
if (distinct_val_1(schema_table.attr[i].attr_name) <
distinct_val_1(schema_table.attr[i+1].attr_name))
strcpy (max_attr, schema_table.attr[i+1].attr_name);
i++;
}
generalize (max_attr, rule_type);
remove_same_1(1);
remove_same_1(-1);
intersect();
for (i = 0; i < pos_tuple.index; i++)
if (pos_tuple.table[i].data[schema_table.attr_length *
schema_table.attr_num] != ’%?)
unmark_num ++;
if (unmark_num > max_tuple)

{
/* when the size of unmarked pos_tuple has been reduced to */
/* max_tuple * 2, check the noise data and remove it */
if (unmark_num < (max_tuple * 2))
remove_noise_data (rule_type);
¥

tuple_num = unmark_num;
¥
} while (tuple_num > max_tuple);
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