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ABSTRACT 

Knowledge discovery in databases facilitates querying database knowledge, cooperative 

query answering and semantic query optimization in database systems. In this thesis, we 

investigate the application of discovered knowledge, concept hierarchies, and knowledge dis- 

covery tools for intelligent query answering in database systems. A Itnowledge-rich data  

model is constructed to incorporate discovered I~nowledge and Inowledge discovery tools. 

Queries are classified into d a t a  c ~ u ~ r i e s  and knowledge queries. Both types of queries can be 

answered directly hy simple retrieval or intelligently by analyzing the intent of query and 

providing generalized, neighborhood or associated information using stored or discovered 

knowledge. Techniques have been developed for intelligent query answering using discovered 

knowledge and/or knowledge discovcry tools, which includes generalization, data  summa- 

rization, concept clustering, rule discovery, query rewriting, lazy evaluation, semantic query 

optimization, etc. Our study shows that  Itnowledge discovery substantially broadens the 

spectrum of intelligent query answering and may have deep implications on query process- 

ing in data- and lmowledge-base systems. A prototyped experimental database learning 

system, DBLEAltN, has been constructed. Our experimental results on direct answering of 

data  and knowledge queries are successful with satisfactory performance. 
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CHAPTER 1 

INTRODUCTION 

Knowledge discovery ill databases creates a new frontier for intelligent query answering and 

query optimization in database systems. It has been estimated that  the amount of informa- 

tion collected by human beings in the world doubles every 20 months. The size and number 

of databases probably increases cvcu fastcr. The growth in the size and number of existing 

databases far exceeds human ahilitics to analyzc .;uch data, thus creating both a need and 

an opportunity for extracting kmwledge froill databases. 

William Frawley a,nd his collea.gues[l8] give a definition of lmowledge as follows. 

"Given a set of fa.cts(da.ta,) F ,  a 1aagua.ge L,  a,nd some measure of certainty C, a pattern 

is defined as a sta.tement ,S' in I, t%ha.t describes rela.tions11ips a,mong a subset F, of F with 

a certainty c ,  such t11a.t ,S' is simpler (in some sense) than the enumeration of all facts in 

FS. A pattern that  is interesting (according to a user-imposed interest measure) and certain 

enough (aga,in a,ccording to the user's criteria.) is called knozoledge." 



Although these definitions about the language, the certainty, and the simplicity and 

interestingness measure are intentionally vague to  cover a wide variety of approaches. Col- 

lectively, these terms ca.pture our view of the fundamental characteristics of discovery in 

databases. 

The computer science community is responding t o  both the scientific and practical chal- 

lenges presented by the need to find the knowledge adrift in the flood of data. Some research 

methods are already well enough developed to have been made part of commercially avail- 

able software. Several espert system shells use variations of ID3[46] for inducing rules from 

examples. Other systems use i11cluctive[41] or genetic learning approaches to  discover pat- 

terns in personal computer databases[l7]. A number of discovery algorithms have been 

developed. Conceptual clustering works with non~inal and structured data  and determines 

clusters both by attribute similarity and by conceptual cohesiveness, as defined by back- 

ground information. Recent examples of this approach include AutoClass[8], the Bayesian 

Categorizer[S], and Cobwcb[l(i]. Once identified, useful pattern classes usually need to  be 

described rather than simply enumerated. Empirical learning algorithms, the most com- 

mon approach to  this problem, work by identifying commonalities or differences among 

class members. Well-known examples of this approach include decision tree inducers[50], 

neural networks[52], and attribute-oriented induction methods[24][25]. 

With the rapid develop~nent of knowledge discovery techniques, it is natural to  study 

the applications of the technology in querying datahase knowledge and processing queries in 

database systems[20] [9]. At Sinion 1:1.ascr University, a prototyped experimental database 

learning system, DBLEAltN[5][26], has been constructed. The system, DBLEARN, takes 



learning requests as inputs, applies the li~lowledge discovery algorithm(s) on the data  stored 

in a database with the assistance of the concept hierarchy information stored in a concept 

hierarchy base. The outputs of the system are knowledge rules extracted from the database. 

In this thesis, we investigate the application of discovered rules, concept hierarchies and 

knowledge discovery techniques to intelligent query answering in database systems. To study 

query processing in a lmowledge-rich database associated with knowledge discovery tools, 

it is often necessary to distinguish data, knowledge and queries defined a t  the primitive 

data  level from those dcfined a t  a relatively high concept level. Data in a knowledge-rich 

database are classified into pri~nitive data and high-level data. The former are actual data 

stored in data relations and, if' appearing in some concept hierarchies, correspond to  the 

primitive level (i.e., leaf) nodes of the hierarchies; whereas the latter are nonprimitive data  

subsuming primitive ones and residing a t  the nonprinlitive level of concept hierarchies. 

Correspondingly, a primitive-level qnery is a query whose constants involve only primitive 

data; whereas a high-level query is a query whose constants involve high-level data. Simi- 

larly, rules (notice that  integrity constraints can be viewed as a special kind of rules) can be 

classified into primitive-1cvc.l and 11igl1-levcl rules, bascd 011 their reference to high-level data. 

In many cases, a database user may not be able to  distinguish between primitive and 

high-level data and between information that is data and information that  is knowledge. 

A knowledge query can often be viewed as a follow-up to  a data  query when the answer 

to  a data query requires further explanation, reasoning or summarization. Therefore, it is 

important to provide a single, coliercnt frameworlt to handle data  and knowledge queries 

and to  handle direct query answering and intelligent query answering. There have been 

some interesting studies on querying database l<nowledge and intelligent query answering 

[45] [54] [49][34] [ll]. Previous studies emphasize the application or inquiry of deduction rules 



and integrity constraints in relational or deductive databases. With the availability of gen- 

eralized knowledge and lillowledge discovery tools, queries can be posed and answered a t  

levels higher than that  of primitive concepts, and knowledge about general characteristics 

of data  can be inquired or utilized in the processing of data  or knowledge queries[27]. 

In this thesis, A knowledge-rich data  model is constructed which consists not only of 

the components from a deductive database (including database schemas expressed by an 

extended deductive entity-relationshi data modcl, data relations, deduction rules and in- 

tegrity constraints) but also the components relevant to knowledge discovery processes, 

including concept hierarchies, generalized knowledge, and knowledge discovery tools. The 

knowledge discovery tools are used to  extract general knowledge dynamically, when neces- 

sary, from any set of interested data, in the database. A unified framework is established for 

answering data  and knowledge queries in a knowledge-rich database. A systematic study is 

performed on intelligent query answering of both data  or linowledge queries in a database 

system associated with discovered knowledge and knowledge discovery tools. 

This thesis is organized aa ibllows. The next cllapter will give an overview of both the 

methods developed for knowledge discovery in hrge  dartabases and the methods for intelli- 

gent query answering in da.ta.ba,se systems. Chapter 3 introduces the principles and imple- 

mentations of DBLEARN. Chapter 4 presents a data  model for knowledge-rich databases. 

Chapter 5 examines four basic ca,tegories of query answering in linowledge-rich databases 

based on the combina.tions of da.ta, vs.linowledge queries and direct vs.intelligent query an- 

swering mecha.nisms. Chapter 6 presents the conclusion as well as discussion of future 

research issues. The tutorial and source codes of DBLEAR.N are given in appendix. 



CHAPTER 2 

OVERVIEW: KNOWLEDGE 

DISCOVERY AND 

INTELLIGENT QUERY 

ANSWERING IN LARGE 

DATABASES 

We survey some recent progress in two reseadl frontiers: (1) knowledge discovery in 

database system which adopt the lecrming J 'ro~~z ezcr.nzples philosophy , and (2) some in- 

telligent database query a.rrs\vering techniques. 



2.1 Knowledge Discovery in Large Databases 

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and po- 

tentially useful information from data[l8]. In machine learning, discovery is often equated 

with unsupervised learning, 1ea.rning from data with little or no guidance from a teacher. 

A discovery system is then a program that  automatically finds relationships in da ta  that  it 

previously did not know about. 

Several such discovery systems have been successful in scientific domains, e.g., AM[40], 

GLAUBER[39], ABACI1 S[13], COl'ER[37], and FortyNiner[57]. These systems tradition- 

ally have been applied to scientific data  known to  contain strong regularities(e.g., Ohm's 

law, Kepler's law). 011 5uch problems, these systerns readily find functions that  represent or 

approximate the known laws. The systenls are said to  "discover" these laws because, though 

known to  us, they were unknown to the systems, i.e., the laws were outside the systems' 

representation of the world. 

Another class of systems applies discovery methods to  red-world databases. Such sys- 

tems have come to  be known a.s I<DD(knowledge discovery in databases) systems, e.g. 

CoverStory[53], EXPLOItA[31] and DRLEAItN[26]. The differences between scientific dis- 

covery systems and KDD systems primarily result from the different characteristics of the 

data  they are typicaly alpplied to. KDD systems, opera,ting on real da,tabases, have to deal 

with difficult issues, sucli a.s fincling tendencies[29] ra.tlier that  laws, data  that  is constantly 

changing and often erroneous, critica.1 da.ta. that  is missing beca,use it was not designed into 

the databases, and an overwhelming qumtity of da,ta. Scientific discovery systems have had 

the luxury of ignoring some or all of these issuse. But they too will have to  confront these 

issues if they are to  be effectively applied to the rapidly growing scientific databases storing 



vast amounts of information. 

Regardless of the source of the da.ta, the value of automated discovery in the future will 

be in finding truly novel aad interesting patterns in large, unexplored databases, and also 

in providing plausible explana.tions for these discoveries. Many difficult problems remain to 

be solved before a truly useful, a.utonomous discovery system will become possible. 

2.1.1 Definition of a KDD System 

A KDD system is defined a.s follows[48]: 

((A K D D  system is an nutonzated system for eficiently identifying and extracting 

interesting patterns fmm dutu stored in real-world du2aBa~e~." 

The important aspects of this delinition are: (1) the system has some autonomy, (2) i t  

has efficient methods for extracting patterns, (3)  it can identify when a pattern is interest- 

ing, and (4) it interfaces t o  a DBh/lS(database management system). 

Inherent in the meaning of discovery is autonomy - if a system is told exactly where and 

how to  look for patterns it is not performing discovery(t11ough it may be doing some form 

of supervised learning). Tot a1 autonomy is rlot required, but the system must be automated 

t o  the extent that  it makes some of its own decisions about where to search for patterns, 

and can decide when a pattern is likely to be of interest. 

Clearly a discovery system must ha-ve methods for identifying and extracting patterns 

7 



from the data. These in fact form the core of any discovery system. The term pattern 

refers t o  any relation among elements of a database, i.e. the records, attributes, and values. 

Databases are replete with patterns, but few of them are of much interest. A pattern is 

interesting t o  the degree that  it is accurate, novel, and useful with respect t o  the end-user's 

knowledge and objectives[lS]. La.stly, to  be usable on large active databases, a KDD system 

requires direct access to  a DBMS. This a t  the very least implies the ability t o  send queries 

and process the results. 

2.1.2 A Model KDD System 

Piatetsky-Slzapiro and Matheus[4$] proposed the following model of an idealized system 

shown in Figure 2.1. 

The model comprised five maill cornpoiie~~ts: 

0 Control ler :  decides how to  a.pply the focusing, pattern extraction, and pattern evalu- 

ation to  the releva.nt parts of the DBMS under the constraints provided by the domain 

knowledge and user input 

r D a t a b a s e  In terface:  accepts queries from the controller a.nd returns the results for 

use by the ext.raction methocls 

r Focus  C o m p o n e n t :  controls which portions of the database are t o  be analyzed 

r E x t r a c t i o n  M e t h o d s :  are the a.lgorithms used to  extract potentially interesting 

patterns 
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Figure 2.1: A Model MDD System 



r Evaluation Component: screens the results of the extraction methods t o  ensure 

relevance t o  the current task as defined by the user input and domain knowledge 

Information comes into the system from the user input, domain knowledge, and DBMS 

query results. The knowledge that  is discovered is presented to  the user and possibly added 

t o  the knowledge base for subsequent analysis. 

In the above KDT) model the system's autonomy comes from the controller. The basis 

for its decision making comes from the doma.in knowledge and user input. The controller 

interprets this input and uses it to direct the focus, extraction, and evaluation compo- 

nents. In practise, many KDD systems requires the end user to  make the majority of these 

decisions[48] [26]. 

Domain knowledge ca,n assume many forms including(but not limited to): 

r lists of releva.nt fields 

r definitions of new fields 

r lists of useful cla.sses or ca.tegories 

r generalization 11iera.rchies 

r functional or causal models 

The pri1na.r~ purpose of doma.in knowledge is to  bia.s the search for interesting patterns. 

This can be achieved by focusing aktention on portions of the data,  biasing the extraction 

algorithms, and a.ssisting in pattern eva.luation. The use of the domain knowledge in this 

way can result in greater efficiency a.nd more useful results. It also can preclude the dis- 

covery of potentially useful patterns by 1ea.ving portions of the sea.rch space unexplored. 



For domain knowledge to be useful it needs to  be accessible to  the discovery system, either 

directly from a knowledge base or through the user. In a completely automated system 

all domain knowledge would be encoded and be available online. Most existing discovery 

systems, however, require substantial guidance from the end user. 

The focusing component of a discovery system determines what data  should be retrieved 

from the DBMS. This requires specifying which tables need to  be accessed, which attributes 

should be returned, and which os how many records should be queried. To do this the 

focus component needs detailed information: it needs to  1mow about the database table 

structures; it must know which attributes are appropriate for the current task; if it is doing 

data  sampling, it must have a way of randoinly selecting the appropriate number of records; 

and, it must know the input required by the subsequent extraction algorithms. 

A DBMS provides query routines for extracting records from ta-bles. Interfacing t o  a 

DBMS requires that  the system be able to  forinula.te queries and process the results. Real- 

istically, queries on large data.ba,ses will have to be constructed and submitted as the need 

for specified data  axises. 

At the core of a discovery system a.re the algorithms that extract patterns from data. 

Virtually any machine-learning or statistical &a-analysis algorithm can be incorporated 

into a KDD system. 

Extracted pa.tterns may not a.1wa.y~ be intel-esting, a.nd even when they are there may 

be too many patterns to repol-t all a t  once. Post evaluation of the extracted patterns may 

be required to select those of su lhcient or greatest interest. This can be achieved by a com- 

bination of wa.ys: 
11 



a use statistical techniques to  verify the significance of the results within the database. 

Statistical significance alone, however, does not determine the appropriateness of a 

discovery 

test the results for consistency with available domain knowledge. (Note: testing the 

consistency of a statement with a body of facts is a hard problem.) 

0 defer evalua,tion t o  the end user 

Intelligent Query Answering 

A good question answering syst,elu often needs to  provide a response that  specified more in- 

formation than strictly required by the question. It should not, however, provide too much 

information or provide information that is of no use to the person who made the query. 

Intelligent query answering consists of' analyzing the intent of the query and providing gen- 

eralized, neighborhood or associated information which is relevant t o  the query. 

2.2.1 Why Provide Additional Information? 

It is important in defining an efficient cooperative answering method, to  understand the 

general reasons why an expert decides to provide such additional information. The basic 

idea is that when a pel.so11 adis a question he is not interested in linowing the answer just 

to  increase his linowleclge, b u t  hc has the intention of performing some action, and that  the 

answer contains information necessary or useful for realizing this action. 



If we accept the basic idea that there is always an underlying intention behind each 

question, then the expert who wants to be cooperative must try to  recognize this intention, 

in order to determine the most appropriate rearction implicitly expected by the interlocutor. 

One method [I] of recognizing a user's intentions is to assume that an expert knows a set 

of predefined sequences of actions, called plans, the clients may want to realize. Then, when 

a client asks a question, the expert tries to at tach this question to  an action. If he succeeds, 

he then assumes that the user's intention is to perform this action, and the other actions 

which belong to the same p1a.n. According to this point of view, the appropriate reaction of 

the expert is to provide the additional information which can be useful in performing this 

action or others in the same plan. Generally, the answer to a question can be useful not 

only in executing a plan, but dso  to help in building or modifying a plan. 

However, the specification of the actual plan inference process is not detailed enough 

to  allow it to  perforin in coinples domains. One of the major problems in large domains is 

the effective management of the large number of potential expectations. Considerable work 

needs to be done to specify more control heuristics. 

2.2.2 Techniques for Intelligent Query Answering in Rule 

Based Systems 

Deductive databa.ses a.re comprised of syntactic information and semantic information. 

The syntactic information consists of the intentional dcitu,bnse(IDB) and the extensional 



database(EDB). The semantic information consists of a set of integrity constraints(1C). 

Some techniques have been developed t o  cope with intelligent query answering in deductive 

databases. 

2.2.2.1 Rule Transforlnation 

Imielinski [34] introduced a new concept of an answer for a query which includes both atomic 

facts and general rules. In a large knowledge base system, data  is represented both in the 

form of general laws (given as 1Iorn clauses) and assertions representing specific facts (e.g., 

tuples of relations). It is frequently beneficial to  structure the answer for a query in a similar 

way, i.e., both in terms of tuples, as is traditionally the case, and in terms of general rules. 

He provided a method of transfor~ning rules by relational algebra expressions built from 

projection, join, and s t k t i o n  and demonstrated how the answers consisting of both facts 

and general rules can be generated. 

Conceptually, rules we often more informative and easier to  comprehend than corre- 

sponding sets of derived tuples. For example, the fact that all students who specialize in a 

given area have to take all courses oflered in this area can be represented better by a rule 

than by a corresponding derived set of tuples. Rules from the database can be transformed 

by the query if some of the rules can be evaluated after the evaluation of the query without 

affecting the final result. It is much less expensive to evaluate rules over the answer to  the 

query than over the database state itself, since the result of the query is much smaller than 

the database. Besides, rule transformation extends the algebraic spirit of query processing 

from purely relational databases to databases with rules and is also another example of 

"lazy evaluation"[42] known in the area of programming languages. 



Imielinski first described conditions under which single rules can be transformed by sin- 

gle relational operations. Then lie generalized the discussion to  relational expressions, and 

finally t o  sets of rules. Since the transformation of the sets of rules is particularly difficult, 

it is preferable to  decompose the problem of transformation of sets of rules into the transfor- 

mation of individual rules. In case the given set of rules is not transformable, an equivalent 

set of rules which can be transformed could be frequently constructed. 

2.2.2.2 Query Relaxation 

As noted by many researchers, including [2][12][43][54], one form of cooperative behavior 

involves providing associated infornia.tion t11a.t is relevant to  a, query. Generalizing a query in 

order t o  capture neighboring infbrnmtion is a. means to  obtain possibly relevant information. 

Gaasterland[lS] defined a. method to  relax a. query in order to find neighboring informa- 

tion and to  control the relaxa.tioii process with user constraints. A query can be relaxed in 

a t  least three ways: 

1. Rewriting a predicate with a more general predicate; 

2. Rewriting a constallt (term) with a more general constant (term); and 

3. Breaking a join dependency across literals in the query. 

The first two relaxa.tions a.re a.chieved in a general manner using taxonomy clauses that  



define hierarchical type relationships between predicates and constants in the database lan- 

guage. For example, the following clauses define relationships between the predicates travel, 

flight, and train: 

TI:  travel(Fronz, To) c serves-c~rea(A, From), servesarea(B, To), f light(A, B). 

T2: travel(From, To) c serves-area(C, From), servesarea(D, To), train(C, D). 

With the relaxation technique, a user can ask a specific query and get related answers 

as well as direct answers. I-Iowever, for la.rge databases, many relaxations may be possible. 

In order to control the relaxation process, one approach is to allow the user to express their 

restrictions on the lil~owledge tloma.in t11a.t they would like to have addressed for every query 

that is asked. A user's restriction on a, tla.ta.11a.se ca.n be modeled as a set of constraints, 

called user constraints. User constradnts express the states that a user wants to disallow 

and the states that a user wants to always persist. Each time a user asks a query, user 

constraints are applied to the query using semantic query optimization techniques. The 

resulting query produces answers that sa,tisfy the user's restrictions. Also, a set of heuris- 

tics based on cooperative answering techniques are presented for controlling the relaxation 

process. 



CHAPTER 3 

DBLEARN: A KNOWLEDGE 

DISCOVERY SYSTEM 

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and po- 

tentially useful information from data [ls]. In the previous studies [4][24][26], an attribute- 

oriented induction inethocl has been developed for Itnowledge discovery in databases. The 

method integrates learning-from-examples techniques with database operations and extracts 

generalized data  from actual data  in databases. A key to  this approach is the attribute- 

oriented concept tree ascension for generalization which applies well-developed set-oriented 

database operations and substantially reduces the coinputational complexity of database 

learning processes. 

In this thesis, the at  tribute-oriented approach is developed further for the discovery of 

multiple, statistical rules in h r g e  databases(based on number of records in a database). 



A special intermediate generalized relation, prime relation, is extracted during attribute- 

oriented induction, which can be used not only for further generalization and extraction of 

inquired rules but also for direct extraction of general features and generation of multiple, 

statistical rules. Many interesting chara.cteristic and discriminant properties of generalized 

data  can be described using such statistical rules. Based upon these principles, a proto- 

typed database learning system, DBLEARN, has been constructed and experiments have 

been performed on a relatively large Grant-Information Database with satisfactory perfor- 

mance. 

Primitives for Knowledge Discovery in Databases 

Three primitives should be provided for the specifica,tion of a learning task: task-relevant 

data, background knowledge, a.nd expected representation of learning results. For illustrative 

purposes, we examine re1a.tiona.l tlil.ta.ba.ses only, however, the results can be generalized to  

other kinds of da.ta.ba.ses a.s well [MI. 

3.1.1 Data relevant t o  the discovery process 

A database usually stores a large a,mount of data, of which only a portion may be relevant 

t o  a specific learning task. Relevaant data  may extend over several relations. A query can 

be used to collect ta,sk-relevant da.ta. from the da.ta,ba.se. 

Task-relevant data  can be viewed as exa,mples for 1ea.rning processes. Undoubtedly, 

learning-from-examples [41][22] should be an important strategy for knowledge discovery in 



databases. Most learning-from-exainples algorithms partition the set of examples into posi- 

tive and negative sets and perform generalization using the positive data and specialization 

using the negative ones [41]. Unfortunately, a relational database does not explicitly store 

negative data, and thus no explicitly specified negative examples can be used for specializa- 

tion. Therefore, a database induction process relies mainly on generalization, which should 

be performed cautiously to avoid over-generalization. 

3.1.2 Background knowledge 

Concept hierarchies represent necessary bacligroulld lmowledge which directs the general- 

ization process. Different levels of concepts are often organized into a taxonomy of concepts. 

The concept taxonomy can be partially ordered according to a general-to-specific ordering. 

The most general concept is the null description (described by a reserved word "ANY"), 

and the most specific concepts correspond to the specific values of attributes in the database 

[30]. Using a concept hierarchy, the rules learned can be represented in terms of generalized 

concepts and sta,ted in a simple and explicit form, which is desirable to most users. 

Example 3.1 The concept hiemrchy table of a typical university database is shown in Fig- 

ure 3.1 , where A c B inclicates that B is a generalization of A. Notice that 

Birthplcr.ce(C'?.ty C Province C Country)  

indicates that the concept hierasclly for the attribute Birthplace is given by the data stored 

in the relation Student following the partial order: Ci ty ,  Province and Country.  A concept 

tree, such as status shown in Figure 3.2, represents a taxonomy of concepts of the values in 



( f r e s h m a n ,  ..., senior) c undergraduate 
{M.A. ,  M.S., Ph .D. )  c graduate 
(undergraduate, graduate) c ANY (s ta tus)  
(0.0 N 1.99) C poor 
(2.0 - 2.99) C average 
(3.0 N 3.49) C good 
(3.5 N 4.0) c excellent 
{poor, average) c weak 
(good, excellent) C strong 
{weak ,  strong) c ANTr(GPA) 
. . . . . .  
Birthplace(City C Province C Country)  
(Canada,  U.S.A.) c NorthAn2ericn 
{Ch ina ,  ..., Japan} C Asin 
. . . . . .  
{ A s i a ,  ..., Europe} c OtherRegions 
(Nor thAmerica ,  OtherReyions)  C ANY(Cou12try)  
Bir thdate(Da9 C Month  C Y e a r )  

Figure 3.1 : Concept hierarchies in t h e  database.  

an attribute domain. 

Concept l~iera~rchies ca.n be provided by knowledge engineers or dolnain experts. This is 

reasonable for even large dataabases since a concept tree registers only the distinct discrete 

attribute values or ranges of numerical values for an attribute which are, in general, not very 

large and can be input by domain esperts. Many concept hierarchies, such as Birthplace in 

Example 3.1, are a.ctua1ly stored in the da.ta.lmse implicitly. Also, concept hierarchies can be 

discovered automa.tically or refirled dyna.mica.lly based on the sta.tistics of data  distribution 

and the relationships between attributes [15]. 



ANY 

M.A. M.S. Ph.D. 

Figure 3.2: A concept tree for status.  

Different concept hiera,rchies can be constructed on the same attribute based on different 

viewpoints or preferences. For exa.mple, the 11irthpla.ce could be organized according t o  ad- 

ministative regions, geographic regions, sizes of cities, etc. Usually, a commonly referenced 

concept hierarchy is a.ssociated with a a  a.ttribute as the default one. Other hierarchies can 

be chosen explicitly by preferred users in the leaxning process. 

Notice that  different lii~lds of' set-subset relationships are represented as concept hierar- 

chies in our study. For example, China is a part-of Asia, while senior is a specialization-of 

undergraduate. They are treated simila,rly in our concept hierarchies as set-subset relation- 

ships since they play similar roles in a,ttril>ute-oriented induction. However, it will be useful 

to  discriminate difE'erent roles in a detailed semantic analysis of learning intentions. 



3.1.3 Represent at ion of learning results 

Many kinds of rules, such as characteristic rules, discriminant rules, statistical rules, etc. 

can be discovered by induction processes. A characteristic rule is an assertion which char- 

acterizes a concept satisfied by all or most of the examples in the class undergoing learning 

(called the target class). For example, the symptoms of a specific disease can be summarized 

by a characteristic rule. A discriminant rule is an assertion which discriminates a concept 

of the class being learned (the target class) from other classes (called contrasting classes). 

For example, to distinguish one disease from others, a discriminant rule should summarize 

the symptoms that discriminate this disease from others. 

From a logical point of view, each tuple in a relamtion is a logic formula in conjunctive 

normal form, and a da,ta rehtion is characterized by a large set of disjunctions of such con- 

junctive forms. Thus, both thc da,ta for learning a.nd the rules discovered can be represented 

in either relational form or first-order predicate cakulus. 

A relation which represents intermediate (or final) learning results is called an interme- 

diate (or a final) generalized relation. In a generalized relation, some or all of its attribute 

values are generalized da.ta, that is, non1ea.f nodes in the concept hierarchies. An attribute 

in a (generalized) relaction is a t  a desirable level if' it contains only a small number of distinct 

values in the relation. A user or an expert may like to specify a small integer for an attribute 

as a desirable attribute threshold. In this ca.se, an a.ttribute is a t  the desirable level if it 

contains no more distinct values tha,n its attribute threshold. Moreover, the attribute is 

a t  the minimum desirable level if it would contain more distinct values than the threshold 

when generalized or specia.lized to a level lower than the current one. A special intermediate 

generalized rela.tion R' of ail original rela.tion R is the prime relation of R if every attribute 



in R'is a t  the minimum desirable level. 

Some learning-from-examples algorithms require the final learned rule to  be in con- 

junctive normal form [41]. This requirement is unreasonable for large databases since the 

generalized data often contain different cases. However, a rule containing a large number 

of disjuncts indicates that  it is in a complex form and further generalization should be 

performed. Therefore, the final generalized rela tion should be represented by either one 

tuple ( a  conjunctive rule) or a small number (usually 2 to  S) of tuples corresponding t o  a 

disjunctive rule with a srnall nulnber of disjuncts. A system may allow a user to  specify the 

preferred generalization tl~reshold (or generalized relation threshold), a maximum number 

of disjuncts of the resulting formula. For example, if the threshold value is set to  three, the 

final generalized rule will consist of a t  most three disjuncts. 

Exceptional data often occur in a large relation. It is important to  consider exceptional 

cases when learning in databases. St atistical information helps learning algorithms handle 

exceptions and/or noisy data  [42][7]. A special attribute, vote, can be added t o  each gener- 

alized relation to  register the number of tuples in the original relation which are generalized 

to  the current tuple in the generalized relation. The attribute vote carries database statistics 

and supports the pruning of scattered data and the generalization of the concepts which 

take a majority of votes. The filial generalized rule will be the rule which represents the 

characteristics of a majority number of facts ill the database (called an approximate rule) or 

indicates statistical ineasure~nent of each conjunct or disjunct in the rule (called a statistical 

rule). 



3.2 Basic Principles of Attribute-Oriented Induc- 

tion 

A set of basic principles for attribute-oriented induction in relational databases are summa- 

rized as follows [24]. 

1. Generalization only on the relevant set of data: Generalization should be performed 

only on the set of data in  the dutabuse wh,ich is relevant to the learning request. 

2. Generalization on the smallest decoinposable componeats:Generalization should be 

performed on the snzullest deco?~1aposn.6le conaponents (or attributes) of a data relation. 

3. Attribute removal: If there is a lurge set o l  distinct values for an attribute but (1)  there 

is no higher level concept provirlecl for the attribute, or (2) its higher-level concepts 

are expressed in  anotlzer attribute of the sanze tuple, the attribute should be removed 

in  the generudizcl.tion process. 

4. Concept tree ascension: If there exists (1. higlzer level concept in  the concept tree for 

an attribute vulrre of (L tecple! the substitution of tlze vcr.1ue by its higher level concept 

generalizes the tuple. 

5. Vote propagation: Tlte volu.e of the vote of a tuple slzould be carried to its generalized 

tuple and the votes should be accunaulated when merging identical tuples i n  general- 

ization. 

6. Attribute threshold control: Ij tlze number of clistinct volues of an attribute in  the 

target class is larger t/ta,n 2'1.5 attribute threshold, furtlzer generalization on this attribute 

should be performed. 



Remarks: The above strutegies are correct and necessary for the extraction of generalized 

rules from databases. 

Reasoning: Principle 1 is based on the concept of query processing in databases. Prin- 

ciple 2 is based on the least colnrnitment principle (commitment to  minimally generalized 

concepts) which avoids over-generalization. Principle 3 corresponds to  the generalization 

rule, dropping conditions, in learning-from-examples [41]. Principle 4 corresponds t o  the 

generalization rule, climbing generalimtion trees, in learning-from-examples [41]. Principle 

5 is based on the merging of' identical tuples. Principle 6 is based on the desirability of 

representation of each attribute a.t its desirable level. 

The attribute-oriented inductlion process is illustrated in Example 3.2. 

Example 3.2 Let the university dutabuse be naoclelecl by a deductive ER model [28] in which 

the eztensional database (EDB) is nacr.pped lo the following schema. 

Course(Cnum, Title, Semester, Departnaent, Instructor, TA, Enrollment, Time). 

. . . 

Student(Nanze, Status,  S e x ,  Rd(ljor, Biriladute(Day, Month, Year), 

Birthplace(City, Province, Country), GPA). 

Suppose a truth-valued virtual a.ttribut,e IsTA is defined in Student, and the value is 

true only if the studer~t is a T A  i n  some course, i.e., the computation of I s T A  involves the 



join of two relations, Student and Course. Suppose that  the learning task is t o  learn char- 

acteristic rules for cs (computing science) students relevant to  the attributes Name, Sex, 

Status, Age, Birthplace, GPA, and IsTA using the default concept hierarchies presented in 

Figure 1.2 and the default threshold values. The learning task is represented in DBLEARN 

as follows. 

l ea rn  charac te r i s t i c  r u l e  f o r  A 4 ~ ~ j o r  = "CS" 

f r o m  Student 

i n  re levance to Name,  Sex,  Age, Birthplace, G P A ,  IsTA 

For this learning request, preprocessing is performed by selecting cs students and pro- 

jecting on relevant attributes h'ame, Sex, etc. A special attribute vote is attached t o  each 

tuple of the result relation wit11 its initial value set to  1. Such a preprocessed data  relation 

is called an initial relamtion. 

Since there is no higher level concept specified on the first attribute Name,  the at- 

tribute should be removed in generalization, which implies t11a.t a generalized rule cannot be 

characterized by the attribute Name.  The Birthdate information can be transformed into 

Age since the learning ta.sk is interested not in Birtlzclute but in Age. Moreover, city and 

province attributes should also be removed since they contain a large number of distinct 

values but their generalized information is contained in the attribute Birthplace(country) 

in the same tuple. After removing these a t  tributes, the da.ta relation contains 6 remaining 

attributes: Stcltus, Sex, Age, Birthplace(country), IsTA a.nd GPA (plus one special attribute 

vote). 



1 Status  I Sex Age 1 Bir thi~lace  1 GPA I IsTA 1 vote / 
I I V ,  I I I J 

I grad 1 M 1 25-30 1 Canada I good I Y 1 8 1 

I I I I I I 1 underg 1 M 1 1625  1 Asia I m o d  I N / 6 1 

- 

grad 
. . . 

Table 3.1: A prime relation from t h e  initial set of data. 

By removing the removable attribute and generalizing each generalizable attribute t o  

its minimum desirable level, the initia.1 data. rehtion is generalized to  the prime relation. 

In our example, the prime relation, as shown in Table 3.1, contains a small number of 

distinct values in each attribute as follows: Status: {grad, undergrad}, Sex: { M ,  F},  Age: 

(16-25, 26-30, > 301, Birth11luce: {C'c~,iiadu, USA, Asia, Europe}, GPA: {poor, average, 

good, excellent), a.nd IsTA: {Y".s, ATo}. 

F 
. . . 

The basic attribute-oriented induction process is summarized in the following algorithm. 

Algorithm 3.1 Atti-ibrrte-orie~ited inductioii in the derivation of the prime relation from a 

large relationad data set. 

Input: (i) A learning ta.sk-releva.nt data. set R, of arity n with a set of attributes Ai 

(1  5 i 5 n); (ii) a set of concept hierarchies, N; on attribute A;; and (iii) a set of attribute 

thresholds, Ti for attribute A;. 

Output. The prime relation 12'. 

Met hod. 

Rt = R; /* Rt is a temporary relation. * /  
for each attribute A; in l Z 1  do { 

if Ai is removable then remove A;; 

25-30 
. . . 

, ./ 
Y 
. . . 

Canada 
... 

2 
. . . 

excellent 
. . . 



if A; is not a t  the desirable level 

then generalize A; t o  the desirable level. 

1 
/* Identical tuples in Rt axe merged with the number of identical tuples registered in 

vote. */ 

R' := Rt. 

Notice that generalization for ea.ch attribute A; is implemented by (1) collecting the 

distinct A; values in the relation, (2) computing the ininimum desirable level L, and (3) 

generalizing the attribute to this level T, by repla.cing each value in Ai's with its correspond- 

ing superordinate concept in Hi a.t level L. 

3.3 Extraction of Generalized Rule 

Since only attribute thresholds are utilized in the aitribute-oriented induction in Algo- 

rithm 3.1, the derived prime relation ma.y often contain more tuples than the generalization 

threshold. Two methods have been developed for the extraction of generalized rules from 

the prime relation: (1) further generalization to a final generalized relation confined by the 

generalization threshold and extra.ction of the inquired rule(s), and (2) direct extraction of 

generalized features a,nd presenta.tion of feature-based multiple rules. 

3.3.1 Further generalization and rule extract ion 

Method 1 is realized based on the following two additional principles. 

2 5 



1. Generalization threshold control: If the nunzber of tuples of a generalized relation i n  

the target class is larger than the generalization threshold, further generalization on 

the relation should be performed. 

2. Rule formation: A tuple i n  a final generalized relation is transformed to  conjunctive 

normal form, and multiple tuples are transformed to disjunctive normal form. 

Notice that  during further generalization by generalization threshold control, there are usu- 

ally alternative choices a t  selection of a candidate attribute for further generalization. Crite- 

ria, such as the preference of a larger reduction ratio on the number of tuples or the number 

of distinct attribute values, the simplicity of the final learned rules, etc. can be used for 

selection. Interesting rules can often be discovered by following different paths leading t o  

several generalized relatio~is for examination, comparison and selection. Following different 

paths corresponds to the way in w11ich different people may learn differently from the same 

set of examples. The generalized relations can be examined by users or experts interactively 

to  filter out trivial rules and preserve interesting ones [57] .  

Let the default generalization threshold be 8. If the prime relation in Table 1 consists of 

40 tuples, it is obviously necessary to perform further generalization. Suppose the preference 

is to  retain 3 attributes: S'tnlus, Birllzplcice and GPA. Tllen, other attributes are generalized 

t o  A N Y  and removed from the generalized relation. Birthplace and GPA are further gener- 

alized, which results in the final generalized relation with seven tuples, as shown in Table 3.2. 

By rule transformation, the final generalized relation is equivalent to  rule ( r l ) ,  that  is, 

a computing science student is in one of the following seven cases: (1) North-America-born 

graduate students ioith strong G'PA (13.2%), ..., and (7) Other-regions-born undergraduate 

students with w e d  GPA (4%). Notice that since a charateristic rule characterizes all of the 



I grad 1 NorthAmerica 1 weak 1 2 1 

V J I V I 1 uncler~  NorthAmerica I weak 1 65 1 

vote 

33 
Status 

grad 

Table 3.2: Final generalized relation. 

data in the target class, its then-part represents the necessary condition of the class. 

Birthplace 

NorthAmerica 

( r l )  v ( x )  cs-student(~:)  -+ 

(Birthplnce(x) C NorthAmerica A Stc~ tus (x )  C graduute 

A G P A ( x )  c strony)[13.2%] 

v. . . . . .v  

(Birtlzplace(z) c OtherR,egions A Stc~ tus (x )  c undergraduate 

A G P A ( x )  C wenk)[4%]. 

GPA 

stro~in 

Rule rl is a statisticd rule. It ca.n also be expressed as an approximate rule by dropping 

the conditions or conclusions with negligible proba.bilities. 



Table 3.3: A Status  feature table mapped from t h e  pr ime relation. 

3.3.2 Direct extraction of generalized features and stat isti- 

cal rules 

Since every feature (attribute value) has been generalized to  a desirable level in the prime 

relation, interesting relationships and statistics of features can be extracted directly from 

the derived prime relations. The generation of general rela.tionsl~ips and rules can be facili- 

tated by extraction of generalized fcature tables from the priine relation. 

IsTA 
Y N 
30 20 
0 200 
30 220 

G PA 
poor avg good exclnt 
1 1 30 18 
15 60 100 25 
16 61 130 43 

Example 3.3 Let Table 1 be the prime relation ge~zeralited from the learning task. Gen- 

eralized feature tables can be extructed from the priine relation. For example, to  compare 

students with different stc~b~r.s (grcrtluc~.te vs. undergruduute), the prime relation can be mapped 

into a Status feature table (Tkble 3.3). 

vote 
- 

50 
200 
250 - 

Status 

grad 
underg 

total 

The Status feature table consists of 3 rows: each of the two distinct Status  values in 

the prime relation {"grcrd", "undergrctd') corresponds to  one row, and the last row (total) 

is the summation of inforination in the previous rows. It consists of 5 major columns, each 

corresponding to  one attribute in the prime relation, plus one special column for vote. Each 

major column in the table is further divided into k s~ibcolumns, each corresponding to  one 

distinct value in the attribute. For example, GPA is divided into 4 subcolumns: poor, avg, 

good, exclnt, each corresponding to  one distinct value in GPA. 

Age 
1625 2630 >30 
10 20 20 
140 60 0 
150 80 20 

Sex 
M F 
40 10 
120 80 
160 90 

Birthplace 
Canada USA Asia Europe 
30 5 10 5 
130 40 30 0 
160 45 40 5 



The table contents are derived from the prime relation as follows. Each slot in the table 

(except for the last row) corresponds to the number of occurrences of the corresponding val- 

ues in the prime relation. For example, the slot for "grad' and "good (GPA)" corresponds to 

the number of grad's with good GPAs, that is, the summation of all the votes of those rows 

with Status = "grad" and G P A  = "good" in the prime relation. The special column vote 

registers the number of occurrences of the corresponding class in the relation. For example, 

50 in "grad' indicates that there are in total 50 gra,duates in the prime relation. The special 

row total summarizes the total number of occurrences with each feature in all the classes. 

For example, total = 160 in the column " S e x  = A I "  indicates that there are totally 160 

male students computed in the prime relation. 0 

In general, we have the following algorithm for the extraction of a feature table from a 

prime relation. 

Algorithm 3.2 Extraction of tlze feciture table TA for an attribute A from the prime relation 

R' . 

Input: A prime rela.tion R' consists of (i) an attribute A with distinct values { a l ,  ..., a,), 

(ii) k other attributes B1, ..., Bk (suppose different attributes have unique distinct values), 

and (iii) a special attribute, vote. 

Output. The feature table TA for the attribute A.  

Met hod. 

1. The feature ta.ble TA consists of nl + 1 rows and 1 + 1 columns, where 1 is the total 

number of distinct values in all the k attributes. Each slot of the table is initialized 



2. Each slot in TA (except the last row) is filled by the following procedure, 

for each row r in R' do { 

for each attribute B; in R1 do 

TA[r.A, r.B;] := TA[r.A, r.BJ + r.vote; 

TA[r.A, vote] := TA[r.A, vote] + r.vote; } 

3. The last row p in TA is filled by the following procedure: 

for each coluinn s in TA do  

for each row t (except the last row p) in TA do  

TA[P, S] := TA[P, s] -t T A [ ~ ,  s]; 

Remark. Algorithm 3.2 correctly registers the number of occurrences for each general fea- 

ture in the prime relation R'. 

Reasoning. Following the algorithm, each tuple in the prime relation is examined exactly 

once with every feature registered in the corresponding slot in the feature table. Their 

column-wise summation is registered in the la.st row. 

The extracted feature table ca,n be used to derive the rela.tionships between the classi- 

fication attribute a,nd other attributes at  a, high level. For example, a rule, all the TAs are 

graduate students, ca.n be extmcted from Table 3 based on the fact that  the class grad takes 

all the Is TA count. The table is especially useful for extra.ction of multiple, statistical rules. 

For example, from the first row gmd a.nd the first major column Sex, we have: 



which indicates that  SO% of graduate (cs) students are male and 20% are female. 

In general, the following algorithm is summarized for the extraction of generalized rules 

from a feature table. 

Algorithm 3.3 Extraction of generalized rules from the feature table TA. 

Input: A feature table TA for the attribute A,  where A has a set of distinct generalized 

values {al, ..., a,). Another attribute B in the table has a set of distinct generalized values 

{bl, ..., b,). The slot of the ta.ble corresponding to the row with the value a; and the column 

with the value b j  is referenced by TA[ci;, hi]. 

Output. A set of generalized rules relevant to A and B extracted from the feature table. 

Met hod. 

1. For each row a;, the following rule is generated in relevance to  attribute B, which 

presents the distribution of different generalized values of B in class a;. 

~ ( x )  - b~[pi l ]  V V bn[pin]. 

where pig is the probability that the value bj of B is in class a;, which is computed 

by, 

p;j = TA[ai, bjJ/TA[~;,  vote] . 

2. For each column bj, the following rule is generated in relevance t o  all the classes, 

which presents the distribution of the generalized value bj of B among all the classes. 

bj(x) -+ ~ ~ [ q l j ]  V ..- V am[qmj]. 

where q;j is the proba.bility t1ia.t the value b, of B is distributed in class a; among all 

the classes, which is computed by, 

q;j = TA[ai, bj]/TA[totnl, bj]. 0 



Remark. Algorithm 3.3 correctly generates relationships between two attributes A and B 

at a high level using the feature table. 

Reasoning. Algorithm 3.2 shows that  the feature table registers all of the number of 

occurrences of each feature and two specific properties, total and vote, in each class. The 

above algorithm extracts generalized rules from each column and each row in the feature 

table by computing the proportion of the number of occurrences of each generalized feature 

vs. its corresponding total number of occurrences in each row or each column. 

Experiments on the NSERC Grant Informa- 

tion Database 

Based upon the attribute-oriented induction technique, a prototyped experimental database 

learning system, D B L E A R N ,  has been constructed. The system is implemented in C with 

the assistance of UNIX softwa.re packages LEX a,nd YACC (for compiling the D B L E A R N  

language interface) and operates in conjunction with the SyBase DBMS software. A database 

learning language for D B L E A R N  is specified in an extended BNF grammar. The archi- 

tecture of the system is shown in Figure 3.3. In the learning process, the DBLEARN system 

first accepts the user's request through the user-interface. Based on the specified learning 

task, the DBLEARN system obtains the releva.nt data  from a database and the relevant 

concept hiera.rchies from a file. The leaaning program performs attribute-oriented induction 

t o  extract generalizecl rules. After learning is performed, the learning result is reported t o  

the user through the user-interface. 



User Lear~~ing 

I Learning Program 
I I 

1):ttabase 1)ah Concept Hierarchy 

Figure 3.3: The  architecture of DBLEARN. 

3.4.1 The Database 

Experimentation using DBLEARN has been conducted on a real database, the Grants In- 

formation database, which contains the information about the research grants awarded by 

NSERC (the Natural ,Sciences nnd  Enginee~.iny Resetrrclz Council of Canada) in the year 

of 1990-1991. The central table Awml in the database is made up of tuples each of which 

describes an award by NSERC to a researcher. The fields constituting each tuple specify 

the different properties of the award, including the name of the recipient, the amount of 

the award and so on. In the schema diagram shown in Figure 3.4, nodes representing the 

properties of awards are rcprcscntctl hy nodes linked to the dward node. 

There are a number of subsidiary t,ables which record details about some of the prop- 

erties of awards, (e.g., the province of the organization in which the recipient is to  carry 



Figure 3.4: The NSERC database schema. 

out the research). Most subsidixy tables are used simply to associate a code denoting a 

particular entity to  phrases describing the entity. In the schema diagram, table are specified 

by rectangu1a.r nodes. 

3.4.2 Background Knowledge 

Recall that  the background lmowledge in DBLEARN is represented by a set of concept 

hierarchies. In each hierarchy, the most general concept is the null description (described 

by a reserved word "ANY"), aad the nlost specific concepts correspond to  the specific val- 

ues of attributes in the data.ba.se. Figure 3.5 shows the concept hierarchy for provinces in 

Canada, where A c B indica.tes tlmt 13 is a, generalization of A. Notice that  the superordi- 

nate concepts for 3 provinces B.C., Ontcr.rio, and Quebec remain ungeneralized since these 

3 provinces take most of research grants and it is our intention to  distinguish these 3 from 

other provinces. 



{BritishColumbia) c B.C. 
{Alberta, Saskatchewan, Manitoba) c Prairies 
{Ontario) C Ontario 
{Quebec) c Quebec 
{NewBrunswick, NovaScotin, New f ozindland, PrinceEdward-Island) 
c Maritime 
{B.C., Prairies, O~ztario, Quebec, Maritime, Others) c ANY(province) 

Figure 3.5: A concept hierarchy for a t t r ibu te  province. 

ANY 

A n A  
British-Col. Alb. Sask. Man. Ontario Quebec N.B. N.S. NFL PEI 

Figure 3.6: A concept hierarchy before adjus tment .  

Other concept hierarchies, such as (1 ... 19,999) C 1-20K, (20,000 ... 39,999) C 20-40K, 

..., (26000 ... 26499) C A1 (where 26000, ... and 26499 represent NSERC discipline codes), 

are also stored in the concept hierarchy table. 

The concept hierarchies were first constructed by domain experts. However, a concept 

hierarchy can be adjusted autolnatically in DBLEARN based on clustering behavior and 

database statistics. A concept hierarchy for provinces in Canada provided by a domain 

expert or a user could look like Figure 3.6. 

The automatic adjustment is perfol:med by first obtaining the distribution of attribute 



ANY 

Figure 3.7: A concept 11iera.rchy a.fter a,djustment. 

A 
values in the da,tabase and then spliting or merging node/nodes in order to  make the number 

of tuples covered by each node in the same level of the hierarchy even. After the adjustment, 

the hierarchy in Figure 3.6 looks like the one shown in Figure 3.7. 

A 

3.4.3 Experiment a1 Examples 

British-Col. Alb. Sask. Man. Ontario Quebec N.B. N.S. NFL PEI 

Many learning requests have be posed to this database during our experimentation. Inter- 

esting knowledge rules/relatioiisl~ips about NSERC reseach grant awards in relevance to  

geographic location, rescarclz areas, etc. liavc been discovered by our experimentation. One 

such experimental example is illustrated as follows. 

Example 3.4 Let tlze qrrery be to cliscoeier u characteristic rule for NSERC support of 

operating gra,nts for A I  (Artificiul Intelligeizce) resecidzers in relevance to the geographical 

locations, the number of grtl7zt.s nncl the cimount distribution of tlze grants in  1990 to 1991. 

The learning tusk is presented in D B L E A R N  us follows. 



learn characteristic rule  for disc-code = "AI" 

f rom award 

wheregrant-code = "011ert~ti12g-Grants" 

in relevance to amozimt, province, prop(vote), prop(amount) 

Notice that prop(uttribute) is a built-in f~inction which returns the percentage of the 

summation of the attribute value in the generalized tuple divided by the summation of the 

same attribute va.lue in the whole generalized rehtion. 

When the query is posed to the system, relevant data are collected by data retrieval 

from the Grant Information Database. Then attribute-oriented induction is performed on 

the collected data.. The learning result of the query is presented in Table 3.4. The row 

"Amount = 20-401<, G'eo-Area = B.C., prop(#-ofigrants) = 12.7%, and prop(amount) = 

16.3%'' indicates that for the Operating Grants in A1 in the amount between $20,000 and 

$39,999, B.C. resea.rchers take 12.7% of the t,otal number of grants and 16.3% of the total 

amount of grants. The last row contains the sumnary informakion of the entire generalized 

relation. Some negiligible proportion (about 0.2%) of the A1 operating grants scattered 

across Canada are ingored in the table. Thus, the total number of grants in the table takes 

99.8% of the total available A1 opera.ting gra,nts. 

Notice t11a.t the relationships between amount-category, geo-area, number-ofgrants, 

amount-of-grants, etc. can be also presented in the pairwise form, when necessary, using 

the extracted prime relation. The system interacts with users for explicit instructions on 

the necessity of such a presentat,ion. 



I Discipline = "AI" I grant-code = "Operating Grant" I 
Amount 

1 -20M 
I 1 2 0 K  I 

I I I 

Geo-Area 
B.C. 

Prairies 1 15.5% 

40-60K 
>60K 

Ta,ble 3.4: Genera.lizec1 relation for A1 Operating Grants. 

10.3% 

1 $1,464,250 1 Canada I I - I I 

The performaixce of the DBLEARN syst,enl is satisfa.ctory. The average response time 

of the above query (including the SyBa.se da.ta. retrieval time) is about 20 seconds on an 

IPX SPARC worl~sta~tion. 

prop(# -of -grants) 
5.6% 

0nta.rio 
Quebec 

99.8% 

We present two more experirnenlal examples as follows, which give some interesting 

results and show how DBLEARN worlts in some complicated cases. 

prop(amount) 
4.1 % 

9S.9% 

Example 3.5 Let the q w r y  Oe to discover u charci~cteri.stic rule for NSERC support of 

operating grunts for conzputer science reseurclzers in relevame to the geographical locations, 

the number of grants o n d  the anaoernt distribution of the grants in 1990 to 1991. The learning 

task is presented in D B L E A R N  as follows. 

4.2% 
1.4% 

11.3% 
4.2% 



learn characteristic rule for "CS Operating Grants" 

from award A ,  organization 0, grunt-type G 

where 0,org-code = A.org-code and G.grunt-order = "Operating-Grants" 

and A.grunt-code = G.gmnt-code and A.disc-code = "Computer" 

in relevance to  amount, province, prop(vote), prop(amount) 

using table threshold 18 

Interacting with the user who issucd the query, DBLEAltN generates a feature table for 

attribute amount showll in Table 3.5. Multiple statistical rules can be extracted from this 

table. Two examples are shown as follows. 

V(x) BC-CS-Operating...Grunts(x) +-- 

(amount = 0 - 20I{.s[52.174%])~ (anzount = 20Ks - 40Ks[37 .683%])~  

(amount = 40Ii's - 60I i s [8 .697%])~  (amount = 40Ks  - 60Ii's[1.446%]) 

V(x) Prairies-CS-Operuti~zg-Grc~nZs(z) c 

(amount = 0 - 201irs[59.97%])~ (umount = 20Ii's - 401trs[37.683%])~ 

(amount = 40Ii's - 60Ii 's[1.446%])~ (n.rnount = 40Ks  - 60Ii's[1.891%]) 

Example 3.6 Let the query be to discover a discriminant rule for NSERC support for 

computer science reseuc1zer.s in Onturio in contrast to that in ATewfoundland , which is in 

relevance to the discipline, tlze grcml type and tlze anaount of grant. The learning task is 

presented in D B L E A R N  as follows. 

learn discriminant rule for 'COnt-Gra~zts" 

where 0.province = "Ontario" 



amount  

0-20Ih 

Table 3.5: An amount  feature table. 

province 
B.C. Prairies Ontario Quebec Mari t ime 

3 6 4 0 119 6 7 33 
20Ks-401<~ 
4OKs-60Ks 

60Ks- 
Tot  a1 

in contrast to "Ne~ufoundland-Grants" 

where 0.province = "Neulfoudlcrnd" 

from award A ,  organimtion 0, grunt-type G 

where A. grant-code = G. grcmt-code and A. org-code = 0. org-code 

and A .disc-code = "Computer" 

in relevance to disc-code, grunt-order, amount 

26 2 6 6 2 25 5 
6 1 25 5 0 
1 2 6 1 0 

69 6 9 212 98 3 8 

Since the task is to  learn a discrinlirlant rule, two data sets should be first retrieved by 

relational operations: (1) the target c1a.s~: the gra.nts awasded to Ontario computer science 

researchers, and (2) the contmsting cla,ss: the grants awarded to Newfoundland computer 

science researchers. 

Generalization is performed synchronously in both classes. The prime relation is shown 

in Table 3.6. Overlapping tuples are marked by "*". 

After excluding the properties that  overlap in both classes in the prime relations, a final 

generalized rela,tion is generated as shown in Table 3.7. 



Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 
Computer 

Learning Concept grant -order 

Operating-Grants 
Operating-Grants 

0 t her 
0 t her 

Operating-Grants 
Other 
O t her 

Strategic-Grants 
Opera,ting-Grants 
Strategic-Gra,nts 
Operating-Grants 

0 t her 
Other 

disc-code L amount 

0-20% 
20I<s-4OKs 

0-20Ks 
20Ks-40Ms 
40Ks-60Ks 

6OI<s- 
40I<s-60Ks 

6OIh- 
GOI<s- 

40Ks-60Ks 
0-2OKs 
0-20Ks 

20Ks-40Ms 

- 

- 

votes mark 

119 * 
62 
10 * 
10 * 
25 
7 
5 
8 
6 
1 
9 * 
1 * 
1 * 

Table 3.6: A prime relation for both the ta,rget and the contrasting classes . 

disc-code 

Computer 
Computer 
Coinpu ter 
Cornpu ter 
Computer 
Computer 
Computer 

Table 3.7: A final generalized relation. 

grant-order 

Operating-Grants 
Operating-Grants 

Other 
0 t her 

S trategic-Grants 
Operating-Grants 
S tra tegic-Grants 

amount 

20Ks-40Ks 
$OMS-GOKs 

GOKs- 
4OIi's-GOKs 

60Ii'~- 
GiOKs- 

4OKs-6OKs 

votes mark 

62 
25 
7 
5 
8 
6 
1 



CHAPTER 4 

A Data Model for 

Knowledge-Rich Databases 

4.1 Definition 

As an extension to the logic da,ta. model proposed in deductive database research [56],  a 

knowledge-rich data model is constructed for databases with both deduction and knowledge 

discovery ~apa~bilities. 

Definition. A knowledge-rich database ( I i D B )  consists of six components: (1) Schema, 

a knowledge-rich database schema.; (2 )  EDB, an extensional database; (3) IDB, an  inten- 

sional database; (4) I-I, cr set of concept hicmrclzies; (5)  GDB,  a generalized database; and 

(6) K D T ,  a set of kizowlerlge d i scove~y  tools , defined as follows. Ii'DB = {Schema, EDB, 

IDB, H, GDB,  II'DT ). 



Schema, a knowledge-rich clatabase schema , describes the general structure and or- 

ganization of KDB including (i) physical and virtual entities, attributes and relation- 

ships, and (ii) the organization of rules, integrity constraints and concept hierarchies, 

based on a deductive entity-relationship data model [28]. 

E D B ,  an extensio~zal database , consists of a set of predicates, each corresponding to 

an extensional data relation. 

IDB,  an intensional datcr.ba.se , consists of a set of deduction rules and integrity 

constraints ( ICs ). 

H, a set of concept hiercrrclzies , specifies ta.xonomies of concepts on top of primitive 

data in extensioilal and intensional databases. 

0 G D B ,  a generu.lizec1 du,tc~ba.se , consists of a set of generc~Jized rules which summarize 

the regularities of the da,ta at a high level. 

KDT, a set of knowledge discovery tools , performs knowledge discovery efficiently in 

databases, when necesmry. 

The first component, Scizerizcl , follows from a deductive entity-relationship data model 

[28] which extends aa entity-rela.tions11ip model [10][55] to incorpora.te rules, integrity con- 

straints and complex data. objects for deductive dahbases. The second and third compo- 

nents, EDB and IDB , are the same a.s in deductive databases [56] except that IDB rules can 

be defined by some nonprilnitive da.ta as well. Notice that a. rule (or an integrity constraint) 

in the IDB can be first discovered by a, lmowledge discovery process and then be recognized 

and stored in the IDB a.s a reguhr rule or integrity constraint. I-Iowever, once a discovered 

regularity is recognized and stored, it will pla,y the same role a.s the originally defined one, 

which means tl1a.t any data in the EDB viola.ting this constraint have to be discarded first. 

Thus, we assume that all of the rules in IDB axe defined ones. 



The last three components, 13, GDB and KDT , are the newly introduced knowledge 

discovery components which are used to incorporate discovered knowledge and knowledge 

discovery in databases. 

H , a set of concept hierarchies , represents the relationships among concepts a t  dif- 

ferent levels. The inforlnation about concept hierarchies can be provided by knowledge 

engineers or domain experts or be discovered automatically or semi-automatically using 

knowledge discovery tools ba.sed on the statistics of data  distribution in databases and the 

relationships among different attributes [Xi?]. Many concept hierarchies are implicitly stored 

in the database. For esample, the hieraachical relationship among "city ", L'province " and 

"country " attributes are usually stored in the database and can be made explicit a t  the 

'schema level by indicating a pa.rt-of-hieraachy, "city C province C country". It is realistic 

t o  have some concept hieraschies provided by knowledge engineers or domain experts even 

in a large da.tabase systern since a concept Ilierarchy registers only the distinct discrete 

attribute values or rcr.n!ges of nunierical values for an a.ttribute, which is, in general, not 

very large. Further, by providing diflerent concept hierarchies, users or experts may have 

preference t o  control the knowledge discovery or intelligent query answering processes. 

GDB , the generalized clatu.bc~se , is another important colnponent in the knowledge- 

rich database. Since there a,re usually a very large set of generalized rules which can be 

extracted from any interesting subset of da.ta in a, da.taba.se by performing generalization 

in different directions, it is unrealistic to  store all of the possible generalized rules. How- 

ever, it is often useful to store some generalized rules or irltermediate generalized relations 

in the GDB based upon the importance of the knowledge and the frequency of inquiries. 



The stored generalized rules are useful for querying database knowledge and semantic query 

optimization. Notice that  a stored generalized rule should be incrementally updated after 

the updates of the relevant data  set in order to preserve its correctness. This can be per- 

formed by an incremental learning algorithms provided in knowledge discovery tools [18][24]. 

The last component, ICDT , consists of a set of knowledge discovery tools , which could 

be a set of knowledge discovery algorithms or a database-oriented knowledge discovery sub- 

system, such as INLEN [ 3 5 ] ,  KDW++ [lg], DBLEARN [24], etc. Since a knowledge-rich 

database stores only a. small portion of all of the possible generalized knowledge, it is often 

necessary to evoke a linowledge discovery process dynamically a,nd extmct general regularity 

from a specific set of data  relevant to the query. The KDT tools can be used for on-line 

knowledge discovery and intelligent query answering. 

4.2 An Example 

The university database presented in Example 4.1 is an illustrative example of such a 

knowledge-rich databaae. 

E x a m p l e  4.1 Let a ~iniriersity $atribuse be modeled by  n deductive entity-relationship model 

in  which the eztensiorzwb datnbase (EDB) is mapped to a relational-like schema presented in  

Figure 4.1, where Cnum stands for course number , T A  for tea.ching assistant , and GPA 

for grade point average . 



Course (Cnum, Title, Semester, Department, Instructo~; TA, Enrollment, Time). 
Professor (Pname, Department, Salary). 
Student (Sname, Status, Sex, Majo~;  Birth-date(Day, Month, Year), 
Birth-place (Cit y, Province, Country), GPA). 
Grading (Student, Course, Grade). 

Figure 4.1: Sclieina of t h e  University database.  

The concept hierarchies defined in the database a.re shown in Figure 4.2. The first three lines 

imply that  the primitive data, for S t a f w s  is { f reshnzciiz, ..., Plz. D.), and their corresponding 

high-level data. is u.ndergrciducrtc or grod~rute respectively. The entry "Birth-place(City C 

Province c Country)" inclica.tes t11a.t the concept hierarchy for the attribute Birth-place is 

given by the data, stored in the relation Student according to  the part-of hierarchy: City, 

Province and Country. For example, a tuple, 

Student(Tom-Jackson, ..., Birth-~~lace(Vuncouver, BC,  Canada),  ...), 

indicates that  Vancouver is a part of British Columbia (BC), which is in turn a part of 

Canada, in the concept hierarchy for Birth-place. 

Notice that  there are many different liilld~ of hierarchical relationships among data in 

a database, such as part-of, is-a, subset-of, etc., which may play different roles in concep- 

tual analysis. The different semantics among concept hierarchies are not essential in the 

knowledge discovery algorithm itself since different concepts are generalized to  their cor- 

responding higher level concepts by Sollo\ving their corresponding concept hierarchies in a 

similar manner in the generalization proccss. However, such semantic differences will be 

important in the analysis of query intent and provision of intelligent answers. 



{ f r e s h m a n ,  sophomore, junior ,  sen ior )  c undergraduate 
{M.S., M.  A., P h .  D . )  c gi-aduate 
{undergraduate ,  graduate)  c A N Y ( s t a t u s )  
{biology, c h e m i s t r y ,  coinputing, .. ., physics)  c science 
{ l i t e ra ture ,  m u s i c ,  ..., pain.ting} C art  
{science,  a r t }  C A N Y ( m a j o r )  
(0.0 N 1.99) C poor 
(2.0 N 2.99) c average 
13.0 3.49) C good 
(3.5 N 4.0)  c excellent  
{poor, average,  good, excel lent)  c A N Y ( G P A )  
B i r t h p l a c e ( C i t y  C Province C Cotinti-y). 
B i r th -da te (Day  c M o n t h  c Y e a r ) .  

Figure 4.2: A concept hierarchy table of t h e  database  

IDB rules are defined on top of EDB predicates. For example, award-candidate and 

pre-requisite are two IDB predicates defined as follows. 

( la)  award-canclidale(A~cr.nze) - 
status(X) = gruduate, gya(A7ame) 3.7'5. 

( l b )  award-cuodirlate (Nanze) - 
status(X) = ~~i?,dergrc{,duete, gpci(Nume) >_ 3.5. 

(2a) pre-requisite (Course, Pre-reqziisite-co.1rrse) t 

pre-requisite (Course, he-requisite-course). 

(2b) pre-requisite (Course, Pre-requisite-cotirse) +-- 

pre-requisite (Course, Required-course), pre-requisite (Required-course, Pre-requisite-course). 

Let the following generalized rules be extracted by knowledge discovery tools from EDB 

and stored in GDB. 
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( 1 )  All of the teaching assistunts [ire gruduade students. 

s E Student and c E Course and c. TA  = s.Sna,me + s.Status = "graduate". 

( 2 )  Every teaching assistunt lzns c1 good or excellent grade point average. 

s E Student and c E Course and c.TA = s.Sname -, 

s.GPA = { "excellent") . 

Our study on intelligent query answering inechailisms in next chapter will reference this 

database substantia.lly. 



CHAPTER 5 

Intellegent Query Answering in 

Knowledge-rich Databases 

We now introduce a unified framework for answering data  and knowledge queries in a 

knowledge-rich database. The study is performed on intelligent query answering with the 

focus on the applica.tion of discovered knowledge, concept hierarchies, and knowledge dis- 

covery tools t o  intelligent query answering in database systems. 

5.1 Four Basic Categories of Query Answering 

Mechanisms in Knowledge-Rich Databases 

In a knowledge-rich da.ta.ba.se systern, there may exist two kinds of queries, data queries and 

knowledge queries , where a, data query .is to find concrete data stored in  databases, which 



corresponds to  a basic retrieval statement in  a database system ; whereas a knowledge 

query is t o  find rules and other kinds of knowledge i n  the database, which corresponds to 

querying database knowledge [45] including deduction rules, integrity constraints, generalized 

rules and other regularities , For example, "retrieving all of the students who took the 

course CMPT-459 in 1992 " is a data  query; whereas "describing the general characteristics 

of those students " is a lillowlcdge query. Furthermore, it is often desirable t o  provide 

intelligent and assisted answers to queries besides (or instead of ) direct retrieval of data  

and knowledge. Thus, query answering mechanisms in a knowledge-rich database can be 

classified based on their responses to  queries into two categories: direct query answering and 

intelligent (or cooperative) query answering . Direct query answering is a direct, simple 

retrieval of data or k~zowledg/e from the knowledge-rich database ; whereas intelligent query 

answering consists of u,nalyting the intent of query and providing generalized, neighborhood 

or associated information relevant to the query [Ill. For example, simple retrieval of the 

names of the students who take the designated course is direct query answering t o  the above 

data  query; whereas sulnmarizing the characteristics of those students, such as "90% of them 

majored i n  compt ing  science a,nd took CMPT-359 as prerequisites ", provides an  intelligent 

answer to  the sa.me &tam query. Therefore, there are four basic combinations of queries and 

query answering mecha.nisms: 

DD (Data query - Direct answering): direct answering of data  queries; 

DI (Data query - Intelligent answering): intelligent answering of data  queries; 

KD (Knowledge query - Direct. a.nswering): direct answering of knowledge queries; 

and 

0 KI (Knowledge query - Intelligent. answering): intelligent answering of knowledge 

queries. 



In this chapter, query answering mechanisms are examined in each of these four categories. 

5.2 Direct answering of data queries 

Direct answering of data queries corresponds to direct data  retrieval in knowledge-rich 

databases. Traditional query processing in relational and deductive databases belongs t o  

direct answering of da.ta queries. 

Data in a knowledge-rich da.ta.ba.se a.re cla.ssified into primitive data  and high-level data. 

The former are actual data stored in data relations and, if appearing in some concept hi- 

erarchies, correspond t o  the primitive level (i.e., leaf) nodes of the hierarchies; whereas the 

latter are nonprimitive data  subsuming primitive ones and residing a t  the nonprimitive level 

of concept hierarchies. Correspondingly, a primitive-level query is a query whose constants 

involve only primitive data; whereas a high-level query is a query whose constants involve 

high-level data. A primitive-level dntu query can be processed directly using relational and 

deductive query processing techniques. 

A high-level data query can be processed in two steps. First, a query rewriting pro- 

cess can be performed to  rewrite the query into one or a set of equivalent primitive-level 

data queries by substituting ea.ch high-level concept in the query with a set of or a range 

of its subordinate primitive-level concepts by consulting concept hierarchies in the KDB. 

Second, each rewritten query is then fed into a relational or deductive query processor for 

processing. Answers shoulcl be returned a t  the primitive level. Presentation of answers a t  a 

nonprimitive level, when desired, is considefed as a task of irztelligent query answering and 



will be discussed in the next subsectioiz. One example of a high level query is illustrated 

below. 

Example 5.1 To find the gra.dua.te students born in Canada, majoring in science, and with 

excellent GPAs , the query cu12 be fornzulnted in a syntax siinilar to SQL as follows. 

retrieve Name 

from Student 

where Status = ('gmdua.te" andMnjor = "science" andBirth-place = "Canada" and 

GPA = ((excellent" 

Notice that "yrnduate ", "science " and "excellent " are high-level concepts which are 

not stored in the relation Student . Using the information stored in concept hierarchy H, 

the query can be reformulated by substituting graduate with {M.S., M.A., Ph.D. ), and 

GPA = "excellent" with G P A  2 3.5 and G P A  _< 4.0 , etc. The rewritten query can be 

answered by direct data. retrieval. 

5.3 Intelligent answering of data queries 

Intelligent answering of data, queries refers to the mechanisms which answer data queries 

cooperatively and intelligently. Intelligent query answering is accomplished by analyzing 

the intent of a query and providing some generalized, neighborhood, or associated answers. 

There are ma,ny ways for a data, query to be answered intelligently, including generalization 

and summariza.tion of answers, explanation of answers or returning intensional answers, 



query rewriting using associated or neighborhood information, comparison of answers with 

those of similar queries, etc. Several mechanisms for intelligent answering of data queries 

using (generalized) database knowledge are examined. 

5.3.1 Analysis of the intent of a query 

To answer a query intelligently, the first important step is to analyze the intent of the query, 

determine whether it is necessary to provide assistcd answers, and if it is, what kind of assis- 

tance should be provided. Such an analysis should be based on the available or discovered 

knowledge about database, queries, and users. Since a large volume of linowledge may exist 

or can be discovered in a database, one may often find that there exist too many "intelli- 

gent" ways to associate a query with the available or discoverable database knowledge. It is 

crucial to have knowledge about user's background and the role that he/she plays in order 

to understand user's intention, avoid superfiuous answers, and provide users with quality 

assistance. 

When posing a query, different users often have quite different intentions. For example, 

when asking the highest monthly ba1a.nce of an account, a customer and a bank manager 

likely have different intentions. Therefore, an important task of query intent analysis is 

user modeling , which amlyzes the user's background and intention and constructs different 

models for different classes of users. 

Several interesting methods for query intent analysis lmve been developed in the studies 

on intelligent query answering [33][34][44][11][54]. Such analyses are based on the notions of 



generalization, association, aggregation, concept clustering, etc. Semantic da ta  modeling, 

classification of topics of interests , and plan analysis and formation are powerful techniques 

for query intent analysis [34][44][11][54], which can be applied t o  the  analysis of query intent 

in the KDB. 

Since the l<nowledge-rich database is constructed based on an extended (deductive) 

entity-relationship model together with the deductive and knowledge discovery components, 

the new components provide powerful support for query intent analysis. Considering an air- 

line reservation system as a.n emmple, the method for query intent analysis in the KDB is 

outlined as follows. 

1. D a t a  classification a n d  concept  c lus ter ing : Based upon the extended entity- 

relationship model of the system, entities, relationships, attributes and specific condi- 

tions can be cla.ssified a.nd clustered. For exa.mple, departure time and arrival time can 

be a~socia~ted with time-ta.ble, a.irports can be clustered a.ccording to  some local dis- 

tance, etc. The da.ta. cla.ssification a.nd clustering task is facilitated by the availability 

of concept hierarchies a.nd knowledge discovery tools. 

2. User mode l ing  : Based upon user's professional position (e.g., manager, clerk, 

business customer, tourist, etc.), confidence level (e.g., eligibility of accessing some 

sensitive data), a.ccessing history (e.g., frequent flyer, business class traveler, being 

interested in some particula.r airlines, new customer, etc.) or other related informa- 

tion, a user can be associa.tecl with a particula,r user category built in the system. The 

linkage between a category of users and a class of preferred concepts or entity sets 

is constructed by experts in the development of intelligent query answering system. 

With the availamble knowledge-rich da.ta. model and knowledge discovery components, 



users can be naturally categorized into some high-level user classes (e.g., luxury, econ- 

omy, or regular classes for travelers) and be associated with a set of high-level concepts 

(e.g., the traveler's major interests expressed a t  a high concept level) to  assist query 

intent analysis. 

3. Q u e r y  classification : A query can also be classified into different categories accord- 

ing to  the query condition and the information to  be inquired. For example, queries 

on travel plan can be categorized into long distance travel, short distance travel, etc. 

according to  the conditiolls given in the query, or categorized into general browsing, 

detailed examina.tion, ticket booking a.ccording to  query actions. A query class can 

be linked with certain user ca,tegories, generalized concept classes and transformation 

rules t o  guide appr~pr ia~ te  intelligent query answering for particular classes of queries. 

4. T r a n s f o r m a t i o n  r u l e  specification : A set of transformation rules can be specified 

by experts based upon user category, query category, concept hierarchies and the 

relationships among high-level entities, attributes, and conditions. For example, if 

a user is in the category of tourist and new customer, the cost could be of a major 

concern at  flight hooking, and the information about low airfares could be of major 

interest. Such heuristics can be specified as transforination rules t o  guide intelligent 

query answering. 

Query intent analysis ca,n be performed by systematically applying techniques of user mod- 

eling, concept classification and clustering, query classification and transformation. Further, 

the constructed models and transformation I-ules should be testified by experiments and be 

tuned according to their effectiveness in intelligent query answering and the feedbacks from 

users[21][14]. The query rewriting and a.nswer transformation processes discussed below are 

directed by the results of query intent a,nalysis. 



5.3.2 Query rewriting using associated or neighborhood in- 

format ion 

Direct data retrieval may not always find enough answers for a user. Furthermore, a user 

may like to know more information than the direct answers to a query for decision making. 

Therefore, it is often useful to provide associated or neighborhood answers to a query. As- 

sociated query answering can be performed by (1) presenting the information about some 

additional attributes which are not directly inquired but are relevant to the query ; ( 2 )  re- 

laoation of certain query corzditio12.s. ; and (3)  ncldiny an alternu.tive query which is closely 

related to the originar! one [ll]. 

Let the answer set be viewed as a relation t a l k  Three nzeclza,nisms can find their corre- 

sponding relational tra.nsforma,tions: width-extension, height-extension , and table-extension 

a Width-extension : The first case (a.ddition of relevant attributes) can be viewed as 

extension of the width of the answer table by a.dding some closely related attributes 

to the table. For example, an inquiry on the arrival time for air-flight booking can be 

answered by returning also the depa,rture time and the possible transfer time, as well. 

Height-extension : The second case (relaxation of certain query conditions) can be 

viewed as an extension oi' the height of the table. For example, an inquiry on the 

available flights for a.ir-flight booking ca,n be answered by relaxation of the maximum 

dollar restriction, flight-lime restriction, a.irline selection restriction, etc. 

0 Table-extension : The third case (answering a,n alternative query) can be viewed 

as an extension of the answer table or a switch to a similar table. For example, an 



inquiry on the available flights for air-flight booking can be answered by returning the 

flights t o  a neighborhood arrival or departure airports, or even a suggestion of other 

means of transportation, such as by train, ferry, or bus, depending on the distance, 

time and cost of the transportation, etc. 

Query rewriting rewrites a query according to  the intent of the query. Clearly, query in- 

tent analysis plays an  important role in the selection of appropriate extensions. For example, 

the selection of associaked additional attributes (as width-extension) should be determined 

by analysis of the semantics of the query a,nd the a.ssociated attributes a t  the higher concept 

level, and the selection of rela.set1 constraints (as height-extension) should be based on the 

analysis of query semantics a.nd the role of query constraints. 

Query rewriting can be implemented by mapping query constants to  an appropriate level 

via generalization or specialization and mapping a query to  a neighborhood one by providing 

with additional, associated or neighborhood information. The knowledge discovery compo- 

nents, which specify or discover generalization, aggregation, neighborhood, or association 

relationships among da,ta in the database, provide importa.nt assistance in the analysis of 

query intent and in the rewriting of queries into their alternatives based on hierarchical or 

neighborhood relationships. 

Example 5.2 Consicler a query to find the n a n m  of the teadzing assistants of database 

courses in the University dutnbase. The query tun be rewritten in  the following ways. 

1. table width extension : e.g., providing more information about the teaching assistants, 

such as their GPA, courses-taken, teaching experience, etc. 

2. table height extension : e.g., providing teaching assista,nt information for other related 
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courses, such as other computing science courses. 

3. table extension : e.g., providing other relations, such as information about research 

assistants and project a.ssistants in computing science if the user is a graduate student 

and the time is the beginning of a new semester (a  job hunting season). 

Obviously, the success of a query rewriting depends on the query intent analysis and the 

availability of associated, generalized and neighborhood information. Such information may 

exist in concept hierarchies or discovered knowledge rules or can be discovered by knowledge 

discovery tools. 

5.3.3 Answer transformation and answer explanation 

Together with the rewriting of queries, the set of mswers nmy also be transformed, ex- 

plained, compared or suini-tmized in different ways for intelligent query answering. 

5.3.3.1 Generalization and sunlmarization of answers 

A database user ma,y be interested in general description or overall statistics of the answer 

set to  a query but not interested in the deta.iled answer set itself. Thus, a data query can 

be answered by generalization a.nd summarization of the answer set, that is, by presenting 

generalized data only, a conlbina,tion of generalized and primitive data, or a summarization 

of concrete answers (possibly together with the presentation of concrete answers) using gen- 

eralized data and database statistics. Such a process belongs to answer transformation . 



Example 5.3 A query which inquires about the information of a student T o m  Jackson in 

the University database can be answered us 'Tom Jacl<son is an undergraduate student (a 

concept at a level higher tlzan senior student), born in Canada (not mentioning the specific 

city and province) in 1971 (not mentioning the specific date)". This is meaningful i f  the 

user (such as a university administrator) is concerned of the general information but not the 

detailed one. Also, a query which inquires ''who have good or excellent GPAs in computing 

science ?" can be answered intelligently in  several ways: (1) "100% graduate students, 55% 

senior students, and 25% junior students " (general, statistical information only), (2) "all 

of the graduate students and the following undergra.duate students ... " (a combination of 

generalized and primitive datn), (3) concrete answer (student names) plus a summarization 

of the answers ut o high level, etc. 0 

By presentation of general information or associating such information with concrete an- 

swers, answers to  a query can be presented in a general and concise manner, thus making 

the implications of the answers better undesstood. 

An important technique for answer transformation is the mapping between different lev- 

els of data based on concept hierarchies . Constants in a query or answers t o  a query can be 

mapped up or down along a concept hierarchy depending on the semantics and the intent 

of the query. A high-level query can be rewritten into a primitive-level one by mapping the 

high-level data in the query to a set of primjtive data using concept hierarchies. Similarly, 

a low-level answer set can be transformed into a high-level one by mapping a set of prim- 

itive data in the answer set to  a set of corresponding high-level ones according t o  user's 

need. The interactions between query conditions and rule bodies (conditions) also need the 

data/constant mapping among different levels. For example, to  examine whether a query 

is relevant to  a certain generalized relation, the query can be restated a t  the same concept 



level as that  in the rule. 

Another important technique for answer transformation uses lazy evaluation , that  is, 

providing rule bodies (conditions) without presenting the full answers set. Detailed and 

concrete answers are provided only by further requests. Lazy evaluation as an intelligent 

query answering mechanism has been studied in deductive database research [34][45][54][49]. 

Instead of returning the concrete answer set, the query answering mechanism instantiates a 

deduction rule using query constants and returns the instantiated condition (body) of the 

rule or a mixture of instantiated rule condition (body) and concrete da ta  as the answers t o  

the query. Assume that  the generalized rule is also in the form of "head + body" .Lazy 

evaluation can be perforincd by returning the body of a generalized rule if the query matches 

the head of the rule. Besides directly using the available rules, generalized rules can also 

be obtained by further generalization 011 the portion of an intermediate generalized relation 

which matches the query conditions. 

Furthermore, generalization and summarization of answers can be implemented by tak- 

ing advantage of the available generalized information and ltnowledge discovery tools. If 

there is a corresponding generalized rule, the processor returns the instantiated body of 

the rule when the query matches the hex1 of the rule. If there is a corresponding interme- 

diate generalized relation, further genera.liza,tion and summarization can be performed on 

the portion of intermediate genera.lized data which ma,tches the query condition. Further 

generalization may produce a generalized rule with a summary of statistical information 

in terms of generalized concepts. Otherwise, when there is no corresponding generalized 

information, generalization is performed by first retrieving the required answer set and then 

performing generaliza.tion on the retrieved answer set using the knowledge discovery tools. 



5.3.3.2 Answer explanation 

Another intelligent query answering method is answer explanation , which explains the 

answers to a query by presenta.tion of the associated rules, demonstration of the reasoning 

process, or illustration of the general information[51][23][21]. The summarization of the 

statistics of an answer set discussed above call also be employed as a technique for answer 

explanation. 

The following example demonstrates that it is often necessary to provide explanations to  

the answers when the query condition follows or contradicts a rule or an integrity constraint. 

Example 5.4 If a query condition follows or contraclicts a rule or an integrity constraint, 

the query can be answered by presentation of the knowleclge (such as the rule) rather than 

primitive data. Data retrievcr.6 is necesmry only if ihe direct presentation of primitive data 

is explicitly required. For example, szrlq~ose there is a generalized rule, ('all of the teaching 

assistants are graduate students". The query ''Find all of the undergraduate students who 

are teaching assistants7? ca72 be answered by returning at2 empty set without accessing the 

extensional database. However, it is user-friendly to also give an ezplanation by simply 

presenting the rule itself'. Si171ilarly, if ('a11 of the teaching assistants have good or excellent 

GPAs" is a generalized rule, the query "find all of the tea.ching assistants whose GPAs are 

greater than 2.5", may r ~ t u r n  "a.11 of the tea.ching a.ssista~its", together with the rule. Specific 

teaching assistant m m e s  are presented only zulzen the user requests for more details. 0 

The process described above can be impleinented by testing of the query condition 



against the rule for containment or contradiction. If the query passes the test, lazy evalua- 

tion can be applied rather than returning detailed answers. 

5.3.3.3 Answer conlparison 

Queries can also be answered intelligently by answer comparison , which compares or 

contrasts the general cllaracteristics of its answers with some similar queries. Answer com- 

parison may involve two steps: (i) rewriting a query into a neighborhood query, and (ii) 

generalization, summarization and coinparison of two answer sets, one to  the original query 

and one t o  the neighborhood query, a t  a general level. The first step, rewriting a query 

into a neighborhood query, can be performed by query intent analysis and substitution of 

some query constant(s) in the original query by some similar concept(s) using the knowledge 

about concept hierarchies. The second step involves leaaning characteristic and discrimi- 

nant rules using 1~nowledge discovery techniques [24] which has been explained in Chapter 3. 

Example 5.5 In answering the query, ('find all of the graduate students with excellent 

GPAs ", it is interesting to find the undergraduate students with siinilar characteristics or the 

graduate students with weaker GPAs nnd coiiapcr.re the general characteristics and statistics 

between these answers. Such co~npurisons nmy lead to some interesting observations, such 

as "more than 50% graduate students but only about 20% undergraduate students have 

excellent GPAs ". 0 



5.4 Direct answering of knowledge queries 

A knowledge query is a statement which inquires about database ltnowledge, including 

concept hierarchies, deduction rules, integrity constraints and general characteristics of a 

particular set of data  in a database. Direct answering of knowledge queries means that  

a query processor receives a knowledge query and answers it directly by returning the in- 

quired knowledge. Since IDB knowledge and concept hierarchy information are stored in 

the database according to  our assumption, a query on such lmowledge can be answered 

by direct retrieval. However, the situation is different a t  querying generalized knowledge. 

A generalized database (GDB) usually stores only a small, but frequently used portion of 

generalized ltnowledge. Thus, an inquiry on general knowledge should be answered by direct 

retrieval only if the knowledge is available in GDB. Otherwise, the knowledge should be dis- 

covered dynamically by a Imowledge discovery process, which has been discussed in detail 

in Chapter 3. In general, a lmowledge query can be answered by consulting the concept 

hierarchy, retrieving stored rules (if available) or triggering a discovery process. 

Different syntactic specifications ca.n be adopted to  distinguish lmowledge queries from 

data queries. A data  query is to  retrieve the data elements that satisfy a condition ; 

whereas a knowledge query is to  describe the clatci eleinents that satisfy @ . Following the 

notion proposed by Motro and Yuan [45], data. queries and knowledge queries are distin- 

guished in syntax by starting the former with re t r i eve  but the latter with desc r ibe  . 
Further, t o  distinguish different types of knowledge being inquired, concrete keywords such 

as generalized rule, cledu.ction rtrle, concept Aiemrclzy, integrity constraint , etc. can be used 

after the keyword desc r ibe  . Moreover, to query a discriminant rule which distinguishes 

the general chara.cteristics of one class (ta.rglet class ) from others (contrasting classes ), the 

following syntax is adopted: desc r ibe  generalized ru le  for relation which dist inguishes 



target-class from contrasting-class where condition @. 

Several knowledge queries are presented in the following examples. 

Example 5.6 To find the deduction rule award-candidate for Canadian graduate students, 

a query can be formuluted as beloru. 

describe deduction rule c~~u~arcl~cctndi~late(candida.te) 

where Status(candidute) = "gruduate" and Birth-place(candidate) = "Canada" 

This query can be answered by direct retrieval of deduction rules. Notice that  only the 

condition, Status(cnndida.te) = "graduate" , matches the boody of a deduction rule for 

award-candidate, which indica.tes that  there is no further distinction on birth place in the 

condition for an award cmdidate. Thus the rule ( l a )  is presented as the answer t o  the query. 

Example 5.7 To describe the chara.cteristics of the gradua.te students in computing science 

who were born in Canada with excellent GPA , the query can be formulated as below. 

describe generalized rule 

for Student 

where Statzts = ('grrr.rlua,te" and Mujor = "cs" and Birth-place = "Canada" 

and GPA = "excellerzt " 

Notice that  the query represents a, high-level knowledge query since "graduate ", "Canada 

" and "escellent" are not stored as primitive data in the University database. The query 
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can be answered by directly retrieving the discovered rule, if available, or by performing 

induction on the relevant data  set [24]. 

Example 5.8 To distinguish the chara,cteristics of the graduate students from undergrad- 

uate students in computing science, born in Canada with excellent GPA , the query can be 

formulated as below. 

describe generalized rule for Student 

which distinguishes Status = "graduate" 

from Status = "undergraduate" 

where Major = '(cs" and Birth-place = "Cunacla" and GPA = "excellent" 

Notice that  the query wishes to find a discrimina.nt rule which contrasts the general prop- 

erties of the two classes. The rule can be discovered dynamically by a lmowledge discovery 

process from primitive data. or from an intermediate generalized relation as illustrated in 

Chapter 3. CI 

5.5 Intelligent answering of knowledge queries 

Intelligent answering of knowledge queries means that  a knowledge query is answered in 

an intelligent way by analyzing the intent of the query and providing generalized, neigh- 

borhood or associated informa.tion. Simi1a.r to the intelligent amwering of data  queries, a 

knowledge query can be amwered i n  many wa,ys, such as generalization and summarization 

6 S 



of answers, explanation of answers, query rewriting using associated or neighborhood in- 

formation, comparison of answers with those of neighborhood queries, etc. The availability 

of database knowledge and knowledge discovery tools enhances the power and efficiency of 

intelligent query answering of knowledge queries. The ideas are illustrated in the following 

examples. 

Example 5.9 The knowledge query of Example 5.6, which is to find the deduction rule 

award-candidate , can be answered in,telligently not only by returning the award-candidate 

rule eligible to Cana$z'an graduate students but also by (i)  providing an explanation that 

both Canadian and foreign gruduate studen,ts slzcire the same condition for the award, (ii) 

returning the award-candidate rule eligible for undergrc~duute students as well, or (iii) 

returning other associated inform,ation, suclz as awad name, amount, application deadlines, 

regulations, sunanzn.ry of award history, or stutis2icnl information, etc. 0 

Example 5.10 The knowledge query of Eaample 5.7, which is to find the characteristics of 

designated graduate students, cnn be answered intelligently by returning the characteristic 

rule for Canadian grudua.te students with excellent GPA's, together with ( i)  the character- 

istics of Canadiam gradua.te students ~oitlz di?rferent mrjors or weaker GPAs for comparison, 

or (ii) an explanation of the reasons why suclz students got excellent GPA's. 0 

Intelligent answering of knowledge queries can involve great complexity in query intent 

analysis and demand sophisticated implementation techniques. Therefore, the efficient re- 

alization of the underlying mechanisms is a.n interesting issue for future research. 



5.6 Semantic query optimization using general- 

ized knowledge 

Semantic query optimization method applies database semantics, integrity constraints and 

knowledge rules to  query optimization [GI. Techniques have been developed for semantic 

query optimization based on data.base semantics, deduction rules and integrity constraints 

[6][36][38]. With the availability of concept hierarchies and generalized knowledge, new 

techniques can be explored to  en1ia.nce the power and applicability of semantic query opti- 

mization. 

A generalized rule can be t;rea.ted like a deduction rule or an integrity constraint in seman- 

tic query optimiza.tion. Therefore, the techniques developed for semantic query optimization 

in relational and deductive da,taba.ses [6][36][38] can be directly applied to  knowledge-rich 

databases with discovered knowledge. Furthermore, with the availability of concept hierar- 

chies and generalized knowledge, query optimization using a generalized rule can be explored 

for the query conditions which a.re subsuined by the rule body (condition) or the rule head 

(conclusion) a,t a different level of concept 11iera.rchies. This is based on the following theo- 

rem. 

Theorem 5.1 (Condition specialization and conclusion generalization ) Let a knowledge 

rule be in the forin of 

131 A P2 A ... A ZIi A ... A jIn + Q. 

The specialization of a condition pi to pi and/or the yenemlizcition of the conclusion q to q' 

based on that the iizfot'rnntion i,2 concept hierarchies will not change the validity of the rule. 

That is, 



p1 Apz A... Ap: A ... Apn  + (1. 

p1 A p2 A ... A pi A ... A pn + 9'. 

Proof. Since p: is a specialization of pi, p: --t pi. Similarly, q --t q'. Based on the transitivity 

property of logic rules, the above rules hold. 0 

As a simple example for the theorem, if the GPA of every graduate student is greater 

than 3.2 , then tlze GPA of eeiery M.,Sc. stuclent must be either good or excellent. 

According to  Theorem 5.1 and the principles of semantic query optimization in rela- 

tional and deductive databa.ses [6][36][38], the sema.ntic query optimization techniques for 

application of generalized lmowledge are presented a.s follows. 

Q u e r y  cond i t ion  s u b s u m e d  b y  t h e  r u l e  b o d y  (condi t ion)  : I f a  query condition 

is subsumed by the body of a rule, the conclusion (head) of the rule applies . 
For example, if there is a generalized rule: all of tlze teaching assistants for 400 level 

courses are P12.D. s t d e n t s  , then querying the sta,tus of a student who is assisting 

459 will return "Status = Ph. D. " without searching the EDB. Further, the rule can 

be returned as an explanation to the answer. 

Q u e r y  cond i t ion  conflicting w i t h  t h e  r u l e  conclusion : If some query con- 

j u n c t ( ~ )  in a conjunctive query is subsumed by the body of a rule but some other 

conjunct(s) conflicts with the 1zeu.d (conclusion) of the rule, the answer to the query 

is empty . 

For exa.mple, if there is a generalized rule: all  of the teaching assistants are graduates 

, then querying the courses which an ~ndergradua~te  is assisting returns an empty set 
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without searching EDB. Also, the rule can be presented as an explanation. 

0 Query conjunct elimination : If a query conjunct is implied by another condition 

in the query, the query co~zjrrnct ca12 be removed from the query . 

For example, if a query contains both ,S.Status = "M.Sc." and S.GPA > 3.0 , the 

second conjunct can be removed from the query since it is implied from the first one 

in the generalized rule. 

0 Query conjunct introduction : If a query conjunct is subsumed by the body of a 

rule, the head (conclusion,) of tlze rule can be introduced as a new conjunct to the query 

if such an introcluction muy improve seu,rclz eficiency (e.g. exploration of indexing or 

clustering properties of dn.tabuses, etc.) . 

For example, to  Jind ~1.11 of the foreign students mujoring 2'12 science with GPA between 

3.2 to 3.4 , the query is subsumed by the body (condition) of a generalized rule in 

GDB: all of' the foreign stuclents mujoring in science with a good GPA are graduate 

students . The new conjunct, Status = "graduate" , can be added to  the query. The 

search can be improved if the tuples in Student are grouped or partitioned according 

to  Status . 

0 Sharpening query condition . If some query conjunct(s) is subsumed by the body 

(condition) of a rule, and tlze rule hend (conclusion) introduces a more selective condi- 

tion than some query conjunct, then Ihe less selective query conjunct should be replaced 

by the more selective one . 

For example, if some query condition is subsurned by a generalized rule which con- 

cludes that  S.GPA = "ezcclle~it " (> .3.5), then a less selective query conjunct, 

S.GPA '1 2.0, can be replaced by a more selective one. 



0 Query in relevance only to  generalized knowledge . If the conditions of a query 

and its inquired information are relevant only to the generalized knowledge, it can be 

answered by consulting the generalized knowledge only . 

For exa.mple, a query, ''IIOIU many grclduclte students i n  Computing Sciences were born 

in  foreign countries? ", can be answered directly by examining the corresponding 

prime relation if it is stored in the GDB. 

As a summary of the discussion, an algorithm is presented here, which explores semantic 

query optimiza,tion using generalized rules. 

Algorithm 5.1 Seinantic query optimization usin.g gerzera,lized rules. 

Input : (i) A set of generalized rules R, (ii) a. set of concept hierarchies, H, and (iii) an  

input data  query q which consists of a set of conjuncts. 

Output . A possibly optimized processing pla,n for query q. 

Method . 

1. Test whether there is a conjunct ci implied by another conjunct c j  in the conjunctive 

query q. If there is, remove c;. 

2. Test whether some query conjunct(s) in a conjunctive query is subsumed by the body 

(condition) of a rule but some other conjunct(s) conflicts with the head (conclusion) 

of the rule. If it is so, the answer set is empty. 

3. Test whether all of the (remaining) query conjuncts are subsumed by the body (con- 

dition) of a generalized rule. If so, return the conclusion (head) of the rule as the 

(intensional) answer to the query. 

4. Test whether some of the query conjuncts are subsumed by the body of a generalized 

rule. If so, examine whether the conclusion (head) of the rule may (i) sharpen a 



conjunct in the query or (ii) reduce the search effort. If so, replace the conjunct by 

the rule head (conclusion) in case (i), and add the rule head (conclusion) as a new 

conjunct to the query in case (ii). CI 

Remark. Algorithnz 5.1 co~rectly perforins senzantic query optimization using the rules 

stored in GDB. 

Reasoning. Step 1 corresponds to query conjunct elimination, Step 2 to query condition 

conflicting with rude head (conclusion), Step 3 to query conclusion subsumed by rule body 

(condition) and query in relevance only to genera.lized Knowledge, and Step 4 to  sharpening 

query condition and query conjunct introduction. 



CHAPTER 6 

CONCLUSIONS AND 

DISCUSSION 

6.1 Conclusions 

In this thesis, a fra.mework has been presented for intelligent query answering in a knowledge- 

rich database composed of deductive a.nd ]<nowledge discovery components. A knowledge- 

rich data model is constructed which consists of an extended entity-relationship schema, an 

extensional database, an intensional database, a set of concept hierarchies, a set of general- 

ized rules, and a set of knowledge discovery tools. 

Query answering mechanisms are classified into (1) direct answering of data queries, 

(2) intelligent answering of data, queries, (3) direct answering of howledge queries, and (4) 

intelligent answering of linowlcdge queries. Techniques lmve been developed for implemen- 

tation of such mecha,nisms using discovered l<nowledge and/or knowledge discovery tools, 



which include deduction, generalization, data  summarization, rule discovery, concept clus- 

tering, query rewriting, lazy evaluation, semantic query optimization. 

The availability of ge~leralized rules, concept hierarchies and knowledge discovery tools 

greatly enhances the power of intelligent query answering in the following aspects. 

It  expands the spectrum of knowledge queries from inquiring deduction rules t o  in- 

quiring general regula.rity of da.ta,, such as cha,racteristic rules, discriminant rules, da ta  

evolution regula.ri ties, etc. 1241. 

It facilitates the query intent analysis since the notions of generalization, aggregation, 

neighborhood, simila.rity, etc. can be studied systematically using the generalized 

knowledge and concept hierarchies. 

It facilitates intelligent query answering since answers can be presented in general 

terms, summa.rized by statistical information, and compared with similar groups of 

data  a t  a high level. 

The intelligent query answering ca.n be implemented efficiently using generalized rules 

and knowledge discovery tools using prime relations, feature tables, semantic query 

optimization and other implementation techniques. 

6.2 Future Research 

The enhanced power of intelligent query answerirzg leads to two problems: superfluous "in- 

telligent" answers and the risk on chtnbase security. 



The first problem indicates that  one may suffer from obtaining too many superfluous 

"interesting" answers to  a query because there are many ways for a query t o  be answered 

intelligently. Techniques should be developed to  control the answer generation process in 

intelligent query answering. In general, one may assume that  an  appropriate knowledge 

level is associated with each user. A user usually poses queries a t  his/her corresponding 

knowledge level and expects the a,nswers to  be presented a t  the same level. If the contents of 

the answer set are not a t  such level, generalization or specialization should be performed on 

the answer set as concept level adjustment. Further, with user modeling and query intent 

analysis, only those answers which inatch the query intent and the user model will be pre- 

sented. More de~ira~bly, an intelligent query answering process can be triggered or directed 

by interaction with users. For example, after obtaining the preliminary set of answers t o  

a query, some following-up questions can be raised by users, such as "in more detail?", 

((in summary?", "why?", "other options?", "conzpnriny with others?", etc. These questions 

indicate what kind of intelligent answers are expected. Then the corresponding intelligent 

query-answering inechanislns can be evoked. 

The second problem indica.tes that with the extended power of intelligent query answer- 

ing, some sensitive or confidential inforimtion could be disclosed inappropriately to  someone 

who should not linow it [47]. One technique which may enhance the database security is t o  

associate with a user model certa.in kinds of constraints on accessing rights. For example, 

if the user is a student (easily linown from the login name), the constraints on intelligent 

answering of his/her query in a university data,base will be quite different from the same 

query posed by a professor. Sensitive inforrna.tion will not be disclosed to  the users who 

do not have appropria.te access rights. However, because of the power and complexity of 

deduction and knowledge discovery, it is difficult to tell to what extent that  accessing cer- 

tain piece of information may eventua.lly. lead to  the disclosure of sensitive information by a 



sequence of deduction and induction. Therefore, more study should be performed on ensur- 

ing database security in intelligent query answering in databases augmented with deduction 

and knowledge discovery components. 



APPENDIX A 

A TUTORIAL O N  THE 

DBLEARN SYSTEM 

The DBLEARN system is designed to discover the data.base knowledge, including charac- 

teristic rules and discriminant rules, from a rela(tiona1 da,tabase supported by the SyBase 

system. Recall tl1a.t A chcr.ru.cteri.stic rule is an assertion which characterizes the concepts 

satisfied by all of the data  stored in the data.ba.se, and a discriminant rule is an assertion 

which discriminates the concepts of one claas from other class(es). The DBLEARN system 

is implemented in C and runs under Unix on a Sun workstation. 

A. l  The Architecture of the DBLEARN System 

The architecture of the DI3LEAR.N system was shown in the Figure 3.3, which consists of 

user-interface, learning program, database data and concept hierarchies. In the learning 

process, the DBLEARN system first accepts the user's request through the user-interface. 



Based on the specified learning task, the DBLEARN system obtains the relevant data  from 

a database and the relevant concept hierarchies from a file. The learning program performs 

attribute-oriented induction t o  extract generalized rules. After learning is performed, the 

learning result is reported to  the user through the user-interface. 

The Description of the Learning Programs 

The DBLEARN system consists of six programs which accomplish different functions of a 

learning process. 

A.2.1 1earn.h and db1earn.h 

The file "1earn.h" is a library of the DBLl2AR.N system which contains the declarations 

of data  structures and constant variables. It is included in the program parse.c. The file 

"db1earn.h" is similar to the file 1earrz.h except the variables defined in db1earn.h are external 

variables. "db1earn.h" is included in the programs fetch.c and 1eana.c. 

The program "1ez.c" is lexical a.nalyzer which uses the program LEX ( a  lexical analyzer 

generator) supported by the UNIX system. The program "1es.c" contains lexical specifica- 

tions of the pr0gra.m. The genera,tecl program ca,n recognize the learning request in an input 

stream and partition the input strea.ni into lexical units which matches the expressions of 

the parsing tree. The cornmaad used to compile the 1ez.c program is "lez 1ez.c" which will 

generate a program named lex. yy .c. 



The program "parse.c7' is a syntax analyzer which is implemented using the program YACC 

( a  compiler-compiler) supported by the UNIX. A collection of grammar rules is specified in 

the program. Each rule describes an allowable structure and the corresponding action(s). 

The program accepts the "token" generated by the program 1ex.c and invokes a certain 

action when the token matches a. specified structure. 

The compilation of the pcrr.se.c program has two steps. The command "yacc parse.c7' 

will first generate a file named y.tub.c, then the command "cc y.tab.cV will generate the 

executable code. 

The program "fetch.c" is written using C supported by the SyBase system. It collects 

task-relevant data  based on the user's 1ea.rning request and passes the data  to  the learning 

program learn. c. 

The compilation of the fetch.c progra,nl involves some library routines provided by the 

SyBase system. The comma.nd used to  compile the 1ex.c program is 



This program is a C program and performs the induction process. The learning program con- 

sists of two modules, LCIIR and LDIR, which learn a characteristic rule and a discriminant 

rule, respectively. Either of these two modules will be invoked based on the user's learning 

request. The program applies an attribute-oriented induction method which performs gen- 

eralization on the selected da.ta attribute by a,ttribute. The generalization strategies used in 

the learning process are the removal of nongeneralizable attributes and the ascension along 

the concept hierarchies. The 1ea.rning process can be viewed as a sequence of table transfor- 

mations, from a less generalized relation to a more generalized one. The generalization is 

controlled by a user-specified threshold value. The output of this program is a generalized 

relation that contains a, small number ( 5  threshold value) of tuples. The learning results is 

also presented in a corresponding logic form. 

This progra,m can be compiled using the command "cc -c 1earn.c" which will generate 

an object code 1earn.o. 

A.2.6 adjust .c 

This program performs some n~iscellaneous functions of DBLEARN, such as the refine- 

ment of concept hierarchies a.nd the disphy of a pa.rticular concept hierarchy. The display 

of a concept hierarchy is realized by calljng some routines of HOOPS. This program can 

be compiled using the command "cc -c acljust.cV which will generate an object code adjust.0. 

All the commands for compilation of the above four programs have been collected in 

a file named makefile shown as follows. The programs should be recompiled after any 



HOOPS-LIBS = -1hoops 4x1 1 -lpixrect -1suntool -Isunwindow -1in 
S Y B A S E  = /usr/local2/Sy base 

SOURCES =  adjust.^ parse.c fetc1z.c 1earn.c 
OBJECTS = y.tab.0 adjust.0 fetc1z.o 1earn.o 
EXECUTABLES = dblearn 

all: 1ex.yy.c y. tab.c dblearn 

1ex.yy.c : 1ex.c 
lex 1ex.c 

y.tab.c: 1ex.yy.c parse.c learn.h 
yacc pa.rse.c 

adjust.0:  adjust.^ dblearn. h 
cc -g -c uslju.sl.c dllearn: $OBJECTS 
cc -I$SYBASE/inclucle -g -0 $EXECUTABLE,? $OBJECTS $SYBASE/lib/libsybdb.a 
$HOOPS-LIBS 

Figure A. 1: Malcefile 

modification, whiclz can be done by simply typing the command "make". 

The Specification of a Learning Request 

A user-friendly interface is built in the DBLEARN system, by which users can specify the 

learning task, the tliresl~olcl value, the relations and the a t  tributes relevant to  the learning 

task, the concept to  be learned(target class) and the concept to  be compared (contrasting 



class). 

A.3.1 Getting Started 

Type a t  your Unix prompt the command "dblearn  HierarchyNameV and on your screen, 

you will then see the prompt: 

DBLEARN 1> 

A HierarchyhTame is a directory under which the concept hierarchies you are interested 

in are stored. If you don't specify the HierarclzyNanze here, you have t o  specify it after you 

get into DBLEARN by typing: 

DBLEARN 1 > use HierarchyATume 

A.3.2 Basic Structure 

The basic structure of an  DBLE.4RN expression consists of seven clauses: l ea rn ,  for ,  f r o m ,  

w h e r e ,  i n  re levance to, using,  and in con t ras t  to. 

a The l ea rn  cla.use specifies the learning ta.sk. Currently, only characteristic rule and 

discriminant rule ca.n be specified. 

a The fo r  clause caa specify the name of the target class. A string should follow the 

reserved word for and will be printed out in the final result as the name of the extracted 

rule. 

a The f r o m  cla.use lists the relations from which the task-relevant data  can be retrieved. 
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r The w h e r e  clause consists of a predicate involving attributes of the relations that  

appears in the i n  re levance to clause. If the w h e r e  clause is omitted, all of the 

tuples in the relations specified in the f r o m  clause are retrieved as the task-relevant 

data. 

r The i n  re levance to clause is used to list the attributes desired in the generalized 

rule. If it is omitted, all of the attributes in all the relations appearing in the from 

clause will be involved in the learning process. 

r The using cla.use could be used in the following three ways. 

1. The us ing a t t r i b u t e  th resho ld  cla.use specifies the desired threshold value. 

The number of distinct values in each attribute should not be greater than the 

attribute threshold value. If it is omitted , a default value, 5, will be chosen. 

2. The us ing t a b l e  t h r e s h o l d  clanse specifies the desired threshold value. The 

number of tuples in the final generalized relation should not be greater than the 

table threshold va.lue. Tf it is omitted, a. default value, 10, will be chosen. 

3. The us ing h ie ra rchy  clause specifies the files which contain the required con- 

cept hierarchy information. If it is omitted, the system will invoke a default file 

named concept for the required concept hierarchy information. 

r The i n  c o n t r a s t  to cla.use is used to specify the name of the contrasting class. 

A typical DBLEARN query [or lecr.nairzy clzcc.r(~deri.stic rule has the form: 

learn  character is t ic  r u l e  

fo r  Target-Cless-Name 

f r o m  r1, r2, ..., r,  

w h e r e  P 



in relevance to A l ,  A2, ..., A,  

using a t t r i bu t e  threshold N1 

using table  threshold N 2  

using hierarchy H I ,  H 2 ,  ..., H k  

Each r;  represents a relation. P is a predicate. Each A;  represents an attribute. Nl 

and N 2  are the attribute threshold value and table threshold value respectively. Each Hi 

represents a file which contains some of the required concept hierarchy information. 

A typical DBLEARN query for learning discrinziizant rule 11a.s the form: 

learn discriminant rule  

for Target-C1u.s~-Name 

where  PI 

in contrast  t o  Contra.sting-Clcr,ss-Nam 

where  P2 

f rom T I ,  r2, ..., r ,  

where  P3 

in  relevance t o  A1, A z ,  ... , A, 

using a t t r i bu t e  threshold N1 

using tab le  threshold N2 

using hierarchy H I ,  H 2 ,  ..., f I k  

The first where  clamuse is used to define w11a.t the ta,rget class is. The second where  clause 

specifies the contrasting class. The third where  clause specifies the common restrictions 

shared by the taxget claas a.nd the contra.sting class. The third whe re  clause could be 



omitted by adding P3 with PI a.nd Pz respectively. 

A.3.3 Examples 

The following are some samples of learning request. 

E x a m p l e  A . l  The learning task '(learning the characteristic rule for the operating grants 

awarded to computer science discipline froin relation award, organization, and grant-type 

i n  relevance to attributes amount und province, with a table threshold value equal to 18, 

and using the concept hierarchy file disc, ammount, prov, and grant-type" can be specified as 

follows. 

DBLEARN 1> l ea rn  character is t ic  ru le  

DBLEARN 2> fo r  "CS-Op-Grants" 

DBLEARN 3> f r o m  award A, organization 0 ,  grant-type G 

DBLEARN 4> w h e r e  O.org-code = A.org-code a n d  G.grant-order = "Operating-Grants" 

a n d  A.grant-code = G.grant-code a n d  A.disc-code = "Computer" 

DBLEARN 5> in  re levance to amount, province, prop(votes), prop(amount) 

DBLEARN 6> using t a b l e  t h r e s h o l d  18 

DBLEARN 7> using h ie ra rchy  disc, amount, prov, grant-type 

DBLEARN a >  g o  

Notice tha,t prop(cc.t%ribzcte) is a. built-in function which returns the percentage of the 

summation of the attribute value in the generalized tuples divided by the summation of the 



same attribute value in the whole generalized relation. The type of the attribute must be 

"int" or "float". Votes is a special attribute which registers the number of tuples in the orig- 

inal relation which are generalized to one tuple in the final generalized relation. Prop(votes) 

returns the percenta.ge of tuples covered by a generalized tuple in the final relation. 

A default attribute threshold value, 5, is used in this query. Notice that  in this example, 

"Computer7' is a high level concept for attribute disc-code and DBLEARN can translate 

it into the corresponding primitive level concepts by consulting the corresponding concept 

hierarchy information stored in the file clisc. Finally, you have to  type "go" on a line by 

itself. It is the command termina.tor in DBLEARN, a,nd lets DBLEARN know that  you are 

done typing and ready for your command to be executed. 

By performing attribute-oriented induction, DBLEARN first presents the prime relation 

and then gives users two altermtives, which a,re performing further generalization on the 

prime relation and extra.cting feature table for a particular attribute respectively. Based on 

users' selection, corresponding action will be taken to generate final results. One possible 

output of example A.l is given as follows. 

.......................................................................... 
* The Prime Re la t ion  * 
.......................................................................... 
.......................................................................... 

I amount I p rovince  I p rop(votes1 I prop(amount) I 
.......................................................................... 

I 40Ks-60Ks I B . C .  I 1.23% I 7.62% 

I 20Ks-40Ks I B . C .  1 5.35% I 6.20% 



B.C. I 

B . C .  I 

P r a i r i e s  I 

P r a i r i e s  

P r a i r i e s  

P r a i r i e s  

Ont . 

Ont . 

Ont . 

Ont . 

Queb . 

Queb . 
Queb . 
Queb. 

Mar it ime 

Mar it ime 

[I] . Perform f u r t h e r  genera l iza t ion  [2] . Extract  f e a t u r e  t a b l e  

Select ion:  2 

Available a t t r i b u t e s  : 

Cil . amount 

C21. province 

Select ion:  1 



........................................................................... 
* Amount Feature Table * 
........................................................................... 

I 40Ks-60Ks 1 6 1  2 5 5 0 1 37 1 

I 20Ks-40Ks 1 26 2 6 62 2 5 5 1 144 1 

I 0-20Ks 1 36 40 119 67 3 3 1 295 1 

I 60Ks- 1 1  2 6 1 0 I 10 I 
........................................................................... 

I Total 1 69 6 9 212 98 3 8 1 486 1 
........................................................................... 

In this example, the user prefers to generating a feature table for attribute amount. 

Example A.2 Sinzilarly, the following lectrning request learns the discriminant rule that 

can distinguish the computer science grants awarded to Onturio from those awarded to New- 

foundland. 

DBLEARN 1 > learn discriminant rule 

DBLEARN 2> for "Ontario-CS-Grants" 

DBLEARN 3> where 0.province = "Onta.rio" 

DBLEARN 4> in contrast to "Newfoundland-CS-Grants" 

9 0 



DBLEARN 5> where 0.province = "Newfoundland" 

DBLEARN 6> from award A, organization 0, grant-type G 

DBLEARN 7> where A.gra.nt-code = G.grant-code and A.org-code = O.org-code and 

A.disc-code = "Computer" 

DBLEARN 8> in relevance to disc-code, amount, grant-order 

DBLEARN 9> g o  

Notice tha.t both a.ttribute and table threshold value are default ones . All the concept 

hierarchy information required is stored in a default file concept. Generalization is performed 

synchronously in both the target chss and the contrasting class. The prime relation for both 

classes is shown first. Overlapping tuples are marked by "*". After removing overlapping 

tuples from the tasget class, the final generalized relation is generated. The following is the 

output of DBLEARN for example A.2. 

* The Prime Relation * 
....................................................................... 

1 Learning Concept (disc-codel grant-order I amount lvotes mark I 
....................................................................... 

I l Computer I Operating-Grants 10-20Ks 1 119 * I 

I IComputer loperating-Grants120Ks-40Ks 1 62 I 

I l Computer l Other 10-20Ks 1 10 * I 

I IComputer lother 120Ks-40Ks 1 10 * I 

IOntario-CS-Grants IComputer IOperating-Grants140Ks-6OKs 1 25 I 



I IComputer lother 140Ks-60Ks 1 5 I 

I l Computer I Strategic-Grants l60Ks- 1 8  I 

I IComputer [Operating-Grants160Ks- 1 6  I 

I l Computer I Strategic-Grants l40Ks-6OKs I 1 I 
....................................................................... 

I 1 Computer I Operating-~rants 10-20Ks 1 9 * I 

INewfoundland-CS IComputer lother 10-20Ks I 1 * I 

1 Grants IComputer lother 120Ks-40Ks 1 1 * I 

....................................................................... 
* The Final Generalized Relation * 
....................................................................... 

I disc-code I grant-order I amount I votes mark I 
....................................................................... 

I Computer I Operating-Grants I 20Ks-40Ks 1 62 I 

I Computer I Operating-Grants I 40Ks-60Ks 1 25 I 

I Computer I Other I 60Ks- I 7 I 

I Computer 1 Other 1 40Ks-60Ks 1 5 1 

I Computer 1 Strategic-Grants I 60Ks- I 8 I 

1 Computer I Operating-Grants I 60Ks- I 6 I 

I Computer I Strategic-Grants I 40Ks-60Ks I 1 I 
....................................................................... 



A.4 Miscellaneous functions 

Currently, DBLEARN provides a, limited number of miscellaneous functions. 

0 set demo 1 

Some intermediate results will be displayed. Users may get some detailed views how 

DBLEARN worl<s. 

set demo 0 

Only final rules will be given. 

print schema from Ilelcr.tior7~Nanl.e 

Print out the sclzeina of a relation. 

0 display Attribute-Name in File-Name 

Display the concept hierarchy informa.tion(tree structure) of an attribute stored in 

the file File-Name. 

0 adjust hierarchy File-Nunze : Attribute-Nume 

based on relation Relation-Name 

The concept hierarchy of the attribute Attribute-Name stored in the file File-Name 

can be refined dynamically ba.sed on the statistics of data distribution in the relation 

Relation-Nanze. 

0 help 

On-line ma,nual is given. 



quit 

Quit from DBLEARN. 



APPENDIX B 

Program Listing for Two Major 

Procedures 

The D B L E A R N  source program is written in C, assisted by UNIX software packages LEX 

and YACC. The whole code is arbout 5,000 lines of C program. To save the space of printing, 

only two major source programs: ( 1) pnrse.c, the D B L E A R N  grammar specifications,(2) 

1earn.q the implementa.tion of a.ttribute-oriented induction algorithm are listed here. 

............................................................................... 
/ *  The program   parse.^" is a syntax analyzer which is implemented * / 
/* using the program YACC (a compiler-compiler) supported by the UNIX. A * /  

/ *  collection of grammar rules is specified in the program. Each rule */ 



/* describes an allowable structure and the corresponding action(s). The * / 
/*  program accepts the "token" generated by the program 1ex.c */ 

/ *  and invokes a certain action when the token matches a specified structure.*/ 

............................................................................... 

#include "1earn.h" 

%token tID tINTVAL tSTRING tLEARN tCHAR tDISC tRULE tFOR tFROM 

tWITH tTHRESHOLD tGO tCOLON tDOT tEQ tCOMMA tLEFT tRIGHT 

tSM tLG tNOEq tWHERE tFLOAT tIN tRELAT tRELEV tTO tUSING 

tHIERARCHY tCONTRAST tDIST tRETR tCREATE tSUPER tCLASS 

tVALUE tSTEP tUPDATE tSET tALIAS tDISCOVER tCLASSIFY 

tSCHEMA tINHERI tAND tOR tDISPLAY tPROP tSIGN tTABLE tATTR 

tDEMO tADJUST tBASED tON tPRINT tSCHEMA tSELECT tHELP tUSE 

t DELETE 

DBLEARN : (init(); remove-file(); 3 selection (remove-file(); return; ) 

selection : tLEARN rule-type (int-q = 0; ) 

I tDIST item 

I tCREATE hierar tGO 

I tUPDATE (printf("Sorry, this function is not available now!\nl'); 

return; ) 

I tSET alias tGO 

I tDISCOVER (printf ("Sorry, this function is not available now! \n") ; 

return; ) classify (getinfo ("classify", "source"); 

getinf o (relat ion-str , "source") ; 

getinf o (pos-where, "source") ; getinf o (hie-str, "source") ; 

if (strlen(tab1e-thres) == 0) strcpy(tab1e-thres, "threshold 5"); 



getinf o (table-thres, "source") ; 

if (strlen(attr-thres) == 0) strcpy(attr,thres, "attr-threshold 5"); 

getinf o(attr-thres, "attr-threshold 5") ; 3 

I tDISPLAY tID tBASED tON tID tGO (read-bias,2($5); 

display-concept-2 ($2) ; 3 

I tSET tDEMO tINTVAL (demo = atoi($3); 

if (demo) (printf(11\n\n*************************************\n11); 

printf ('I* DBLearn learning request *\nl') ; 

pr in t f ( "*********************************** \ \ ) ;  3 )  

I tADJUST tHIERARCHY tID tCOLON tID tBASED tON tRELAT tID 

(strcpy(attr-str, "attribute ") ; strcat (attr-str, $5) ; 

getinfo (attr-str, "source"); 

strcpy(re1ation-str, "relation "); strcat(re1ation-str, $9); 

getinf o (relation-str, llsource") ; strcpy(hie-str, "hierarchy ") ; 

strcat (hie-str, $3) ; getinfo (hie-str, "source") ;) 

tGO {adjust_hierarchy($5);) 

1 tPRINT tSCHEMA (init-str(str); strcpy(pos-where, "positive In);) 

relation where (strcat (pos-where, str) ; 

getinf o (relation-str , "sourcet1) ; 

getinfo (pos-where, "source"); ) tGO (print-schema-table(); ) 

1 tSELECT (int-q = 1; strcpy(attr-str, "attribute ") ; 

strcpy (relation-str , "relation ")  ;) data-query tGO 

(get info ("data-query" , "source") ; getinf o (attr-str, "source") ; 

getinfo (relation-str, "source"); strcpy(data-query, "positive "); 

strcat (data-query , str) ; getinf o (data-query , "source") ; 

strcpy(data-query , "prop ")  ; strcat (data-query , prop-str) ; 

getinf o(data-query , "source") ; int-query() ; ) 



data-query : attr tFROM table-list where hier-thre 

rule-type : charact-rule tGO (getinf o ("charact-rule" , "source") ; 

getinf o(attr-str, "sourceu) ; 

getinfo(relation,str, "source"); getinfo(pos-where, "source"); 

getinf o(hie-str , "source") ; 

if (strlen(tab1e-thres) <= 0) 

strcpy(table,thres, "table-threshold 10") ; 

getinf o(tab1e-thres, "source") ; 

if (strlen(attr-thres) <= 0) 

strcpy(attr-thres, "attr-threshold 5"); 

getinf o (attr-thres, "source") ; getinfo(tit1e-str, "source") ; 

getinfo(prop,str, "source"); learn-charact-rule(); ) 

I discrim-rule tGO {getinfo ("discrim,rule", "source"); 

getinfo (attr-str, "source"); getinfo(re1ation-str, "source"); 

getinfo(pos-where, "source"); getinfo(neg-where, "source"); 

getinfo(hie-str, "source"); 

if (strlen(tab1e-thres) == 0) 

strcpy(table,thres, "table-threshold 10") ; 

getinf o(tab1e-thres, "source") ; 

if (strlen(attr-thres) <= 0) 



strcpy(attr-thres, "attr-threshold 5") ; 

getinfo(attr-thres, "source"); getinfo(tit1e-str, "source"); 

getinf o(prop-str, "source" ; learn-class-rule0 ; 1 

1 inherit-rule tGO (getinfo ("inherit-rule", "source"); 

getinf o (attr-str, "source") ; getinfohelation-str, "source1') ; 

getinf o(pos-where, "source") ; getinf o(hie-str, llsourcell) ; 

if (strlen(tab1e-thres) == 0) 

strcpy(table,thres, "table-threshold 10") ; 

getinf o(tab1e-thres, "source") ; 

if (strlen(attr-thres) == 0) strcpy(attr-thres, "attr-threshold 5") ; 

getinf o(attr-thres, "source") ; getinfo(tit1e-str, llsource") ; 

getinfo(prop-str, "source") ; 3 

charact-ru1e:tCHAR tRULE tFOR (init-str(str); strcpy(tit1e-str, "title "); 

strcpy(pos-where, "positive ")  ; ) name 

(if (strlen(str) > 0) (strcat(pos-where, " ( ") ;  

strcat (pos-where, str) ; strcat (pos-where, " ) "1 ; 

strcat (title-str, str) ; 3) 

relation where (if (strlen(pos-where) > 9) 

strcat (pos-where, " AND ") ; 

strcat(pos-where, str); 3 attr-list hier-thre 

discrim-ru1e:tDISC tRULE tFOR (init-str(str); strcpy(tit1e-str, "title "); 

strcpy(pos-where, "positive "1; ) name (if (strlen(str1 > 0) 

(strcat (pos-where, " ( ") ; strcat(pos-where, str) ; 

strcat (pos-where, " ")  ; strcat (title-str, str) ; 33 

where (if (~trlen(~os-where) > 9) strcat(pos-where, " AND "); 



s t r c a t  (pos-where, s t r )  ; 3 

t I N  tCONTRAST tTO ( i n i t - s t r ( s t r )  ; strcpy(neg-where, "negative ")  ; 

s t r c a t ( t i t 1 e - s t r ,  " vs " ) ;  3 name ( i f  ( s t r l e n ( s t r )  > 0) 

( s t r c a t  (neg-where, I '  ( ")  ; 

s t r c a t  (neg-where, s t r )  ; s t r c a t  (neg-where, " ) " )  ; 

s t r c a t  ( t i t l e - s t r ,  s t r )  ; 33 

where ( i f  ( ( s t r lenheg-where)  <= 9) && ( s t r l e n ( s t r )  <= 0) )  

(printf("No cont ras t ing  c l a s s  specif ied!  \n l ' ) ;  r e t u r n ;  ) 

i f  ((strlen(neg-where) > 9) && ( s t r l e n ( s t r 1  > 0) )  

{ s t r ca t  (neg-where, I '  AND ")  ; s t r c a t  (neg-where, s t r )  ; 3 

e l s e  i f  ( s t r l e n ( s t r 1  > 0 )  s t rca theg-where ,  s t r ) ;  3 

r e l a t i o n  where ( i f  ( s t r l e n ( s t r )  > 0) 

( i f  (strlen(pos-where) > 9) strcat(pos-where, I '  AND 'I); 

strcat(pos-where, s t r ) ;  1 

i f  ( s t r l e n ( s t r )  > 0) { i f  (strlen(neg-where) > 9) 

s t r c a t  (neg-where, " AND ") ; 

s t r c a t  (neg-where, s t r )  ; 3) a t t r - l i s t  h i e r - th re  

inherit-ru1e:tHIERARCHY t I N H E R I  tRULE t F O R  t I D  ( i n i t - s t r ( s t r ) ;  

s t r c a t  ( s t r ,  " a t t r i b u t e  ")  ; 

s t r c a t ( s t r ,  $5); ge t info  ( s t r ,  "source") ;)  r e l a t i o n  where 

a t t r - l i s t  h i e r - th re  

item : { i n i t - s t r ( s t r )  ; strcpy(pos-where, "pos i t i ve  ") ; 3 cond 

( s t r c a t  (pos-where, " ( " )  ; s t r c a t  (pos-where, s t r )  ; 

s t r c a t  (pos-where, " ) " )  ;) r e l a t i o n  where ( s t r c a t  (pos-where, s t r )  ; 

tFROM ( i n i t - s t r ( s t r ) ;  s t rcpy (neg-where, "negative "1; ) cond 



(strcatheg-where, str); 3 

relation where {strcat(neg-where, str); attr-list 

hierar : tHIERARCHY tFOR tID tSUPER tCLASS tID 

{strcpy(title-str, "concept") ; 

init,str(attr,str) ; if (check,name($3, "hie-table") == 0) 

strcpy(attr-str, $3); 

else (printf(I8\n concept hierarchy for %s alread exists ...\ n", $3); 

return;) 3 

I tHIERARCHY tFOR tID tSUPER tCLASS tID 

{strcpy(title-str, "concept") ; 

init-str(buf 1) ; strcat(buf 1, $3) ; init-str(attr,str) ; 

if (check_name($3, "hie-table") == 0) strcpy(attr,str, $3) ; 

else (printf(I1\n concept hierarchy for %s alread exists ... \nl', $3); 
return;) 3 

class {if (strlen(attr-str) > 0) getinfo(attr,str, "hie-table"); ) 

I tHIERARCHY tID tFOR tID tSUPER tCLASS tID (strcpy(tit1e-str, $2); 

init,str(attr-str); 

if (check_name($4, "hie-table") == 0) strcpy(attr-str, $3); 

else {printf("\n concept hierarchy for %s alread exists . . .  \nu, $4); 
return;) 3 

I tHIERARCHY tID tFOR tID tSUPER tCLASS tID {strcpy(title,str, $2); 

init,str(buf 1) ; strcat(buf 1, $4) ; init-str(attr,str) ; 

if (check_name($4, "hie-table") == 0) strcpy(attr-str, $4); 

else {printf("\n concept hierarchy for %s already exists ...\ n", $4); 

return; 3 ) 

class (if (strlen(attr-str) > 0) getinfo(attr-str, "hie-table"); ) 



c l a s s  : c l a s s  tLEFT tCLASS t I D  ( in i t - s t r (buf2)  ; s t r ca t (bu f2 ,  $4); ) 

tVALUE value tRIGHT 

I tLEFT tCLASS t I D  ( i n i t - s t r (bu f2 )  ; s t r c a t  (buf2, $3) ; 3 tVALUE 

value tRIGHT 

value : value t C O M M A  tSTRING ( i n i t - s t r ( s t r )  ; s t r c a t  ( s t r ,  $3) ; 

remove-quote(str1; 

s t r c a t  ( s t r ,  " ")  ; s t r c a t  ( s t r ,  buf2) ; s t r c a t  ( s t r ,  " "1 ; 

s t r c a t  ( s t r ,  buf 1) ; get inf  o  ( s t r ,  t i t l e - s t r )  ; 3 

I value t C O M M A  d i g i t  € s t r c a t ( s t r ,  " ") ; s t r c a t ( s t r ,  buf2) ; 

s t r c a t ( s t r ,  " "1 ; s t r c a t  ( s t r ,  buf I )  ; ge t in fo  ( s t r ,  t i t l e - s t r )  ; 3 

I   STRING ( i n i t - s t r ( s t r 1 ;  s t r c a t  ( s t r ,  $1) ; remove-quote(str) ; 

s t r c a t  ( s t r  , ") ; s t r c a t  ( s t r ,  buf 2)  ; s t r c a t  ( s t r ,  I '  " )  ; 

s t r c a t  ( s t r ,  buf 1) ; 

ge t in fo  ( s t r ,  t i t l e - s t r ) ;  1 

I d i g i t  ( s t r c a t  ( s t r ,  " ")  ; s t r c a t  ( s t r  , buf2) ; s t r c a t  ( s t r ,  I ,  1 1 ) .  , 

s t r c a t ( s t r ,  b u f l ) ;  ge t info  ( s t r ,  t i t l e - s t r ) ;  ) 

d i g i t  : tINTVAL Cst rcpy(s t r ,  $1) ; ) 

I tFLOAT ( s t r c p y ( s t r ,  $1);  ) 

a l i a s  : tALIAS t I D  tFOR tID ( i f  (check_name($4, "hie- table")  == 0) 

( pr in t f  ("\n concept hierarchy f o r  1 s  does not e x i s t . .  . \nt', $4);) 3 

c l a s s i f y  :   CLASSIFY   SCHEMA   FOR ( i n i t - s t r ( s t r )  ; 
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s t r c a t  (pos-where, "pos i t ive  "1 ; 3 

cond ( s t r c a t  (pos-where, s t r )  ; r e l a t i o n  h i e r - th re  

name : cond 

I tSTRING ( s t r c a t ( t i t 1 e - s t r ,  $1); 3 

r e l a t i o n  : tFROM (s t rcpy(re1a t ion-s t r ,  " r e l a t i o n  "1; 3 t a b l e - l i s t  

t a b l e - l i s t  : t a b l e - l i s t  t C O M M A  t I D  ( s t r c a t  ( r e l a t i o n - s t r ,  " , ") ; 

s t r c a t  ( r e l a t i o n - s t r ,  $3) ; ) 

I t a b l e - l i s t  t C O M M A  t I D  t I D  ( s t r ca t ( r e1a t ion - s t r ,  " , " ) ;  

s t r c a t  ( r e l a t i o n - s t r ,  $3) ; 

s t r c a t  ( r e l a t i o n - s t r ,  " " )  ; s t r c a t  ( r e l a t i o n - s t r ,  $4) ; 3 

I t I D  t I D  Cs t rca t ( re1a t ion-s t r ,  $1) ; s t r c a t  ( r e l a t i o n - s t r ,  " ")  ; 

s t r c a t  ( r e l a t i o n - s t r  , $2) ; ) 

I t I D  ( s t r c a t  ( r e l a t i o n - s t r ,  $1) ; 3 

a t t r - l i s t  : t I N  tRELEV tTO (strcpy ( a t t r - s t r ,  " a t t r i b u t e  " ) ;  

s t rcpy  (prop-s t r ,  "prop " ) ;  ) a t t r  

I 

a t t r  : a t t r  t C O M M A  ( s t r c a t ( a t t r , s t r ,  " , I1) ;  3 a t t r - t y p e  

I a t t r - t ype  

a t t r - t ype  : ( i n i t - s t r ( s t r )  ; ) attr-name Cstrcat  ( a t t r - s t r ,  s t r )  ; 

s t r c a t ( a t t r - s t r ,  'I) ; 3 

I   PROP   LEFT   ID ~ R I G ' H T  ( s t r c a t  (prop-str ,  $3) ; 



strcat (prop-str, " ") ; 

if (attr-str [strlen(attr-str) -11 == ' , ' ) 

attr-str [strlen(attr-str)-l] = ' ' ; ) 

hier-thre : tUSING tHIERARCHY (strcpy(hie-str, "hierarchy 

hierarchy hier-thre 

I tUSING tTABLE tTHRESHOLD tINTVAL 

(strcpy(tab1e-thres, "table-threshold ") ; 

strcat(table,thres, $4); ) hier-thre 

I tUSING tATTR tTHRESHOLD tINTVAL 

(strcpy(attr-thres, "attr-threshold "1 ; 

strcat(attr-thres, $4); 3 hier-thre 

I 

hierarchy : hierarchy tCOMMA tID (strcat (hie-str, 'I, ") ; strcat (hie-str, $3) ;) 

I tID (strcat (hie-str, $1) ; ) 

concept : tID tIN tID tGO (init-str(str); strcat(str, $1); 

display-concept (str, $3) ; 

where : tWHERE (init-str(str); strcat(str, " ( "); 1 cond 

(strcat(str, " ) "1; 

I (init,str(str); 3 

cond : condl 

I tLEFT (strcat(str, " ( 11) ; 3 condl tRIGHT (strcat(str, ) It); ) 
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condi : cond t A N D  ( s t r c a t ( s t r ,  l 1  AND " ) ;  ) cond 

I cond t O R  ( s t r c a t ( s t r ,  OR lo) ; ) cond 

I condition 

condition : 

I 

I 

I 

I 

I 

I 

I 

I 

I 

attr-name t E Q  ( s t r c a t  ( s t r ,  = " ) ;  ) attr-name 

attr-name tSM ( s t r c a t ( s t r ,  < ") ; ) attr-name 

attr-name t L G  ( s t r c a t ( s t r ,  ' I  > It);  ) attr-name 

attr-name tEQ tINTVAL ( s t r c a t ( s t r ,  l 1  = " ) ;  s t r c a t ( s t r ,  $3);  ) 

attr-name tSM tINTVAL ( s t r c a t ( s t r ,  'I < ") ; s t r c a t ( s t r ,  $3) ; ) 

attr-name t L G  t INTVAL ( s t r c a t ( s t r ,  " > l o ) ;  s t r c a t ( s t r ,  $3);  3 

attr-name t E Q  tFLOAT ( s t r c a t ( s t r ,  = ")  ; s t r c a t ( s t r ,  $3);  3 

attr-name tSM tFLOAT ( s t r c a t ( s t r ,  < ")  ; s t r c a t ( s t r ,  $3);  ) 

attr-name t L G  tFLOAT ( s t r c a t ( s t r ,  " > ")  ; s t r c a t b t r ,  $3) ; 3 

attr-name tEQ tSTRING ( s t r c a t  ( s t r ,  l 1  = ")  ; s t r c a t ( s t r ,  $3) ; 3 

attr-name : t I D  tDOT t I D  Cs t rca t  ( s t r ,  $1) ; s t r c a t ( s t r ,  " . 'I) ; s t r c a t ( s t r ,  $3) ;) 

I t I D  ( s t r c a t ( s t r ,  $1); ) 

............................................................................... 
/* This program is  a  C program and performs the  induction process.  The * / 
/*  l earn ing  program cons i s t s  of two major procedures, learn-charact-rule  and */ 
/*  l earn-c lass - ru le ,  which l ea rn  a  c h a r a c t e r i s t i c  r u l e  and a  discriminant */ 
/*  r u l e ,  respec t ive ly .  E i ther  of these two modules w i l l  be invoked based on */ 
/* t h e  u s e r ' s  l earn ing  reques t .  */ 
............................................................................... 

#include "1ex.yy.c" 
#include "dblearn . h" 



............................................................................... 
/* Procedure: main */ 
/* Parameter: Directory in which a perticular concept hierarchy is stored */ 
/* Function : Main routine * / 
............................................................................... 

main(argc , argv) 
int argc ; 
char **argv; 
C 

int i; 

if (argc > I) strcpy(dir-str, argvCll ; 
lineno = 0; 

remove-f ile0 ; 
newline0 ; 
while (1) 

x = yyparseo; 
lineno = 0; 

3 

............................................................................... 
/* Procedure: learn-charact-rule * / 
/* Parameter: None */ 
/*  Function : Learning process for characteristic rule * / 
............................................................................... 

learn-charact-rule () 

C 
/* only positive tuples are selected for learning characteristic rule */ 
/ *  the exptype is set to 1 * /  
int exptype = 1, ind; 
int i = 0; 
int debug = 0; 
char attr-name [MAXSTR] ; 
char line [MAXLINE] , word [MAXSTR] ; 



if (check-dire == 0) return(0); 
fp = f open ("source1', "r") ; 
if (fp == NULL) 
C 

printf ("unable to read file %s\n" , "source") ; 
return (-1); 

3 
while (fgets (line, MAXLINE, fp) != NULL) 
< 

get-one,value(line, 0, word); 
if (strcmp(word, "table-threshold") == 0) ( 

get-one-value(line, 15, word); 
max-tuple = atoi(word) ; 

1 
if (strcmp(word, "attr-threshold") == 0) ( 

get-one-value (line, 14, word) ; 
max-value = atoi(word1; 

3 

max-num = pos-tuple.index; 
if (debug) 

print-pos (1) ; 

............................................................................... 
/* Procedure: learn-class-rule */ 
/* Parameter: None * / 
/ *  Function : Learning process for discriminant rule */ 
............................................................................... 

learn-class-rule (1 
C 

/* both positive tuples and negative tuples are selected for learning */ 
/ *  discriminant rule, the exp-type is set to -1 */ 
int exptype = -1; 



int i = 0; 
int debug = 0; 
char attr-name CMAXSTRI ; 
char pos-target CMAXSTRI ; 
char neg-target [MAXSTR] ; 
char line [MAXLINE] , word CMAXSTR] ; 

if (check-dir() == 0) return(0) ; 
fp = fopen ("source", "r"); 
if (fp == NULL) 
C 

printf ("unable to read file %s\nl', llsourcell) ; 
return (-1); 

1 
while (fgets (line, MAXLINE, fp) ! =  NULL) 
C 

get,one-value (line, 0, word) ; 
if (strcmp(word, "table-threshold") == 0) 

get,one-value(line, 15, word) ; 
max-tuple = atoi(word1; 

if (strcmp(word, "attr-threshold") == 0) ( 
get-one-value (line, 14, word) ; 
max-value = atoi (word) ; 

1 
1 
f close(fp) ; 

max-num = pos-tuple.index; 
if (debug) 

print-pos (2); 
class,tuple-reduction() ; 

3 

............................................................................... 
I* Procedure: char-tuple-reduction * / 
/* Parameter: None */ 
/* Function : Induction process for learning characteristic rules * / 
............................................................................... 



i n t  i = 0 ,  j = 0 ,  s e l e c t ;  
i n t  debug = 0 ;  
i n t  attr-num = schema-table. attr-num; 
i n t  rule- type = 1 ;  
char attr-name-array CMAXATTRI [MAXSTR] ; 
s t r u c t  r e l a t i o n  temp-rel; 

i f  (debug) p r i n t f  (" threshold %d\nl1, max-tuple) ; 

f o r  ( i  = 0 ;  i < attr-num; i + + )  
s t rcpy  (attr-name-array [il , schema-table. a t t r  [i] . attr-name) ; 

/*  f o r  each a t t r i b u t e ,  i f  t h e  number of d i s t i n c t  values  is g rea t e r  
than t h e  th reshold ,  a l l  t h e  values i n  t h i s  a t t r i b u t e  should 
be general ized */ 

f o r  ( i  = 0 ;  i < attr-num; i + + )  
i f  ( d i s t i n c t - v a l  ( a t t r - n m a r r a y  [i] ,max-value == 1)  < 

genera l ize  (attr-name-array [i] , rule- type)  ; 

3 

/* i f  t h e  number of t up l e s  i n  t h e  general ized r e l a t i o n  i s  g r e a t e r  
than t h e  th reshold ,  f u r t h e r  genera l iza t ion  on some se l ec t ed  
a t t r i b u t e ( s 1  should be performed * /  

i f  (pos,tuple.index > max-tuple) 

/* when t h e  s i z e  of t a b l e  has been reduced t o  max-tuple * 2,* /  
/ *  check t h e  noise  da ta  and remove it * /  
i f  (pos- tuple .  index < (max-tuple * 2) )  

remove-noise-data ( rule- type)  ; 
3 

3 
i f  ( i n t -q  == 0) € 

i f  (pos-tuple.index > max-tuple) ( 

p r i n t f  ( " \n[ l l  .Further  genera l iza t ion  121 . Extrac t  f e a t u r e  t ab l e \n i l ) ;  
p r i n t f  (" \nSelect ion:  ' ' )  ; 



scanf ("%dl', &yes-no) ; 
if (demo) printf (I1 %d\nl', yes-no) ; 
if (yes-no == 2) ( 

do( 
printf ("\n\nAvailable attributes : \n\nl') ; 
for (i = 0; i < schema-table.attr-num; i++) 

printf (I1 [%i] .%s\nU , i+l, schema-table. attr [i] . attr-name) ; 
printf ("\nSelection: 11) ; 
scanf ("%d1I, &select) ; 
if (demo) printf (I1 %d\nl1, select) ; 
else printf ("\nl') ; 

) while ((select < 1) I I (select > schema,table.attr-num)); 
extract-f eature-table(attr-name-array Cselect-11) ; 

3 
else ( 
if (pos-tuple. index > max-tuple) further-general(ru1e-type) ; 
printf ("\nl') ; 

f 
else ( 

printf ("\n") ; 
printf ("\nl1); 
printf("\n\n***************************************\nt1); 
printf ("* The final generalized relation *\nu) ; 
printf("***************************************\n\nt1); 
print-pos ( I )  ; 
printf (I1\n\n [I] . Print out generalized rule [21 .Extract feature 

table\nl1) ; 
printf("\nSelection: " ) ;  

scanf (I1%d", &yes,no) ; 
if (demo) printf(" %d\nU,, yes-no); 



if (yes-no == 2) ( 
do€ 

printf ("\n\nAvailable attributes : \n\n1I) ; 
for (i = 0; i < schema-table.attr-num; i++) 
printf (" C%il. %s\nl', i+l , schema-table. attr [il . attr-name) ; 
printf ("\nSelection: ") ; 
scanf ("%d1I, &select) ; 
if (demo) printf ("  %d\nI1, select) ; 
else printf ("\nl') ; 

3 while ((select < 1) I I (select > schema-table. attr-num)) ; 
extract-f eature-table(attrextract_feature_table(attr_name_arrayCsenameearray [select-I1 ; 

3 
else ( 

printf("\n**********************************************\n1'); 
printf (I1 The characteristic rule for %s is: \n" , target-str) ; 
printf("**********************************************\n\nt1); 

simplify(1) ; 
printf ("\nu) ; 
printf ("\ntl); 
3 

3 
3 
else ( /*  answer explanation for intelligent query answering */ 

do€ 
temp-rel.index = pos-tuple.index; 
for (i = 0; i < pos-tuple.index; i++) ( 

temp-re1 .table Cil .votes = pos-tuple. table [il .votes; 
strcpy(temp-rel. table [il .data, pos-tuple. table [il .data) ; 
for (j = 0; j < schema-table.attr-num; j++) 

temp-rel. table Cil .prop [jl = pos-tuple. table [il .prop [j] ; 

3 
if (pos-tuple.index>max-tuple) further-general(ru1e-type); 

printf("\n**********************************************\n1l); 
printf (I1 The generalized rule for the answer is : \nl', target-str) ; 
printf("**********************************************\n\n1'); 

simplify(1) ; 
pos-tuple.index = temp-rel.index; 
for (i = 0; i < temp-rel.index; i++) ( 

pos-tuple. table [il .votes = temp-rel. table [il .votes ; 
strcpy(pos-tuple .table [i] .data, temp-re1 .table [i] .data) ; 
for (j = 0; j < schema-table.attr-num; j++) 

pos-tuple. table [il .propCjl = temp-rel. tableCi1 .prop[j] ; 



3 
printf ("\n\nAvailable attributes : \n\n") ; 
for (i = 0; i < schema-table.attr-num; i++) 
printf (It [Xi] . %s\nIt , it1 , schema-table. attr [il . attr-name) ; 
printf (I1\nSelection: It) ; 
scanf (It%dtt , &select) ; 
if (demo) printf ('I %d\ntl, select) ; 
else printf ("\nt') ; 

3 while ((select < 1) I I (select > schema-table.attr-num)); 
extract-f eature-table(attrextract_feature_table(attr_name_arrayCsenameearray [select-11 ) ; 
print-f eature-table() ; 

1 

/* Procedure: extract-feature-table */ 
/* Parameter: IN: attibute on which the feature table is based */ 
/*  Function : Extract feature table for a perticular attribute */ 
............................................................................... 

extract-f eature-table(attr-name) 
char attr-name [MAXSTR] ; 

C 
/* extract feature table from prime relation */ 

int attr-index = 0, index = 0, idx = 0; 
int i = O ,  j = O ,  k = 0 ,  l = O , m = O , n = O ;  
int length = 0; 
int found-set = 0; 
int count = 0, ind = 0; 
char value [MAXSTR] ; 

strcpy(f eature .prime-attr. attr-name, attr-name) ; 
feature.prime-attr.fea-num = 0; 

while (attr-index < schema-table.attr-num) 

if (strcmp (attr-name, schema-table. attr [attr-index] . attr-name) == 0) 
break ; 

attr-index++ ; 
> 



length = schema-table.attr-length; 

for (i = 0; i < pos-tuple.index; i++) 
C 
index = attr-index * length; 
/*  copy the value in the attr-index attr */ 
get-one-value (pos-tuple. table [i] .data, index, value) ; 

for (j = 0; j < feature.prime-attr.fea-num; j ++) 
if (strcmp (value, feature .prime-attr .fea-name[jl) == 0) 

break ; 
if (j >= feature.prime-attr.fea-nun) ( 
count = feature.prime-attr.fea-nun; 
strcpy(feature.prime~attr.fea~name[countl , value); 
feature.prime,attr.fea-nun ++; 

3 
3 
count = feature.prime-attr-fea-nun; 
strcpy(f eature .prime-attr .f ea-name [count] , "~otal") ; 
feature.prime-attr.fea-num ++; 

index = 0; 
attr-index = 0; 
while (attr-index < schema-table.attr-num) 
C 
if (strcmp (attr-name, schema-table. attr Cattr-index1 . attr-name) ! = 0) 

C 
length = schema-table.attr-length; 
strcpy(feature.fea[indl.attr-name, schema-table.attr[attr-indexl.attr-name); 
for (i = 0; i < pos-tuple.index; i++) 

index = attr-index * length; 
/* copy the value in the attr-index attr */ 
get-one-value (pos-tuple. table [i] .data, index, value) ; 

for (j = 0; j < feature.fea[indl.fea-nun; j ++) 
if (strcmp (value, feature . f ea[ind] . f ea-name [jl) == 0) 

break ; 

if (j >= feature . f eacindl . f ea-nun) C 
count = feature.fea[indl.fea-nun; 
strcpy (f eature . f ea [indl . f ea-name [count] , value) ; 
feature .f eacind] .f ea-nun ++; 



3 
3 
ind ++; 

3 
attr-index ++ ; 

3 

feature. attr-num = schema-table. attr-num; 
strcpy(f eature .f eacind] . attr-name, "vote") ; 
feature . f ea [ind] .f ea-num = 1 ; 

attr-index = 0; 
while (attr-index < schema,table.attr-num) 
C 

if (strcmp (attr-name, schema-table. attr [attr-index] . attr-name) == 0) 
break; 

attr-index++ ; 
3 
length = schema-table.attr-length; 

for (i = 0; i < pos-tuple.index; i++) 
C 

index = attr-index * length; 
/* copy the value in the attr-index attr */  
get-one-value (pos-tuple.table[i] .data, index, value); 
for (j = 0; j < feature.prime-attr.fea-num - I; j++) 
if (strcmp(value, feature.prime-attr.fea-name[jl) == 0) ( 

1 = j; 
break; 

3 
for (j = 0; j < schema-table.attr-num; j++) 
if (j !=  attr-index ) ( 

if (j > attr-index) m = j-1; 
else m = j ; 
index = j * length; 
get-one-value (pos-tuple. table [i] .data, index, value) ; 
for (k = 0; k < feature.fea[m].fea-num; k++) 
if (strcmp(value, feature.fea[ml.fea-namdkl) == 0) C 
n = k; 
break; 

3 
feat [l] [ml Cn] = feat [l] [m] [n] + pos-tuple. table [il .votes; 



feat Cf eature .prime,attr .f ea-num - 11 [ml [nl = 
feat Cf eature .prime-attr .f ea-num - 11 Cml Cnl + 

pos-tuple. table [il .votes ; 
3 

feat Ell [schema-table . attr-nun - I] [01 = 
feat [l] [schema-table . attr-num - 11 [O] 
+ pos-tuple. table [il .votes; 

feat [feature .prime-attr. fea-num-11 [schema-table. attr-num - 11 [O] = 
feat [feature .prime,attr .f ea-num - I] [schema-table. attr-num - 11 [O] + 
pos-tuple. table Cil .votes; 

3 

if (int-q == 0) print-f eature-table () ; 

............................................................................... 
/* Procedure: class-tuple-reduction */ 
/* Parameter: None */ 
/* Function : Induction process for learning discriminant rules * / 
............................................................................... 

int i = 0, j = 0; 
int rule-type = 2; 
int attr-nun = schema-table. attr-nurn; 
int unmark-nun = 0; 
char attr-name-array [MAXATTR] [MAXSTR] ; 
for (i = 0; i < attr-nun; i++) 
C 

strcpy (attr-nme-array [i] , schema-table. attr [i] . attr-name) ; 
3 

/* 1 indecates the positive tuple table, -1 the negtive tuple table */ 
/ *  for each attribute, if the number of distinct values is greater 

than the threshold, all the values in this attribute should 
be generalized * /  

for (i = 0 ;  i < attr-num; i++) 
if (distinct,val(attr-name_array[i],max-value) == 1) { 



generalize(attr-name-array Cil , rule-type) ; 
/*2 indicates discriminant rule * /  

3 

/* determine the number of the unmarked tuples in the generalized relation */ 

remove-same-1 (1) ; 
remove-same-1 (-1) ; 
intersect 0 ; 

for (i = 0; i < pos-tuple.index; i++) 
if (pos-tuple. table Cil .dataCschema-ta 

schema-table.attr-num] != ' * ' )  
unmark-num ++; 

/* if the number of unmarked tuples is greater than the threshold value, 
further generalization on some selected attribute(s1 should be performed */ 

if (unmark-nun > max-tuple) 

I* when the size of unmarked pos-tuple has been reduced to */ 
/* max-tuple * 2, check the noise data and remove it */ 
if (unmark-num < (max-tuple * 2)) 
< 
remove-noise-data (rule-type) ; 
3 
if (unmark-num > max-tuple) 
f urther-general (rule-type) ; 

1 

............................................................................... 
/* Procedure: distinct-val * / 
/* Parameter: IN: attribute name * / 
/* threshold value for this attribute * / 
/ *  Function : Determine if the number of distince value of a perticular * / 



/*  attribute is greater than a predefined threshold value */ 
............................................................................... 

distinct,val(attr,name , limits) 
char *attr-name ; 
int 1 imit s ; 
C 

/*  return the number of distinct values in attribute "attr-name" */ 
int index = 0; 
int j = 0; 
int attr-index = 0; 
int length = 0; 
int distinct-num = 0; 
int same; 
char value [MAXSTR] ; 
char dist-val-table [MAX-THRES] [MAXSTR] ; 
struct tuple *pos,ptr = &pos-tuple. table [index] ; 
/* find the attr whose name is "attr-name" */ 
while (attr-index < schema-table . attr-num) 

if (strcmp (attr-name , schema-t able. attr [attr-index] . attr-name) == 0) 
break; 

attr-index++ ; 
1 
length = schema-table.attr-length; 
for (index = 0; index < pos-tuple.index; index++, pos,ptr++) 
< 

if (distinct-num > limits) return (1); 
if (pos-ptr->data[schema-table.attr-nun * length] != '* ') 
< 
get-one-value (pos-ptr->data, attr-index * length, value); 
same = 0; 
for ( j  = 0; j < distinct-num; j++) 

if (strcmp (dist-val-table[j] , value) == 0) 
< 

same = 1; 
break ; 

J. 
if (same == 0) 

strcpy (dist-val-tablecdistinct-numl , value); 
distinct-nun++; 



> 
3 

3 
return (-1); 

3 

............................................................................... 
/ *  Procedure : distinct-val-1 */ 
/*  Parameter: IN: attribute name */ 
/ *  Function : Return the number of distince value of a perticular attribute */ 
............................................................................... 

int distinct-val-l(attr-name) 
char *at t r -name ; 
{ 

int index = 0; 
int j = 0; 
int attr-index = 0; 
int length = 0; 
int distinct-num = 0; 
int same; 
char value [MAXSTR] ; 
char dist-val-table [MAXTUPLE] [MAXSTR] ; 
struct tuple *pas-ptr = &pos-tuple. table [index] ; 
/* find the attr whose name is "attr-name" */ 
while (attr-index < schema-table.attr-num) 
{ 

if (strcmp (attr-name , schema-table . attr [attr-index1 . attr-name) == 0) 
break; 

attr,index++ ; 
3 
length = schema-table.attr-length; 
for (index = 0; index < pos-tuple.index; index++, pos-ptr++) 
{ 

if (pos-ptr->data [schema-table. attr-nun * length] ! = ' * '  ) 
{ 
get-one-value (pos-ptr->data, attr-index * length, value); 
same = 0; 
for (j = 0; j < distinct-num; j++) 

if (strcmp (dist-val-tableCjl , value) == 0) 

same = 1; 



break ; 
3 

if (same == 0) 

< 
strcpy (dist-val-table [distinct-numl , value) ; 
distinct-nun++; 

3 
1 

3 
return (distinct-num); 

1 

/* Procedure: generalize */ 
/ *  Parameter: IN: attribute name */ 
/ * rule type -- 1. characteristic rule 2. discriminant rule * / 
/ *  Function : Perform generalization on a perticular attribute * / 
............................................................................... 

generalize(attr-name, rule-type) 
char *attr-name; 
int rule-type; 
< 

int found = 0; 
int exptype = 1; 
int bias-idx = 0; 
int attr-idx = 0; 
struct bias *bias,ptr = &bias- tab le . tab le1bi .a~- idx] ;  
struct attr-info *attr-ptr = &schema-table.attr[attr-idxl; 

/* find the index of attr-name in the schema */ 

while (attr-idx < schema,table.attr-nun) 

if (strcmp (attr-name, attr-ptr->attr-name) == 0) 
break; 

attr-idx++ ; 
attr-ptr++ ; 

/*  check whether there is any bias for this attribute */ 



for (bias-idx = 0; bias-idx < bias-table.index; bias,idx++, bias,ptr++) 

€ 
if (strcmp (attr-name, bias-ptr->attr,name) == 0) 
€ 

found = 1 ; 
break; 

3 
3 
/* no bias for this attribute */ 
if (found == 0) 
€ 

project (attr-name) ; 
3 
/* there is bias for this attribute * /  
else 
{ 

/ *  for learning characteristic rule */ 
if (rule-type == 1) 
C 
do { 

substitute (attr-name, exptype); 
3 while (distinct,val(attr~name,max~value) == 1); 

3 
/ *  for learning discriminant rule */  
else 
{ 
do € 

exptype = 1; 
substitute (attr-name, exptype); 
/ *  remove-same-1 (exptype) ; */ 
exptype = -1; 
substitute (attr-name, exptype) ; 
/* remove-same-1 (exptype) ; */ 
/* intersect 0; * /  

/*for NSerc project * /  
/*if (watch == 1) 
print-both 0 ; */  

while (distinct-val(attr-name,max-value) == 1) ; 
3 

3 
3 



............................................................................... 
/* Procedure: s u b s t i t u t e  */ 
/* Parameter: I N :  a t t r i b u t e  name * / 
/ * example type -- 1. pos i t i ve  examples 2 .  negat ive examples * / 
/*  Function : s u b s t i t u t e  t h e  lower l e v e l  concept i n  a p e r t i c u l a r  a t t r i b u t e  */ 
/* by t h e  higher l e v e l  concepts * / 
............................................................................... 

s u b s t i t u t e  (attr-name, exp-type) 
char *attr-name; 
i n t  exp-type; 
{ 

/ *  s u b s t i t u t e  t he  lower l e v e l  concept i n  a t t r i b u t e  "attr,namel' 
by the  higher l e v e l  concepts * /  

i n t  a t t r - index  = 0,  index = 0,  idx = 0 ,  i d  = 0 ;  
i n t  i = 0,  j = 0 ,  k = 0 ,  m = 0;  
i n t  l ength  = 0 ;  
i n t  found-set=O; 
i n t  b i a s  [MAXBIAS] ; 
i n t  b-index = 0 ,  b-idx = 0 ;  
char value [MAXSTRI , value1 [MAXSTR] ; 
while (a t t r - index  < schema-table. attr-num) 
< 

i f  (strcmp (attr-name, schema-table. a t t r  [attr-index] 
break; 

a t t r - index++;  

1 
length = schema-table.attr-length; 

attr-name) == 0) 

f o r  ( i  = 0; i < bias- table . index;  i + + )  
i f  (strcmp (b ias - tab le .  t a b l e  [i] . attr-name, attr-name) == 0) ( 
b ia s  [b-index] = i ;  
b-index ++; 

3 

/ *  f o r  pos i t i ve  examples * /  
i f  (exp-type == 1) 

{ 
f o r  ( i  = 0 ;  i < pos-tuple.index; i++)  



C 
index = a t t r - i ndex  * l ength ;  
/* copy t h e  value i n  t h e  a t t r - index  a t t r  */ 
get-one-value (pas-tuple . t a b l e  [il . da ta ,  index, value) ; 

for (k = 0 ;  k < b-index; k++) 

C 
b-idx = b i a s  [kl ; 
i f  ((strcmp (value,  b i a s - t ab l e  .table[b,idxl .low. concept) == 0) I I 

(check-concept (value,  b-idx) == 1) ) 

C 
/ *  s u b s t i t u t e  t h e  lower concept by t h e  higher  concept */ 

idx = a t t r - i ndex  * l ength ;  
m = 0;  
i f  (bias-table.table[b-idx] .num == -1) 

s t rcpy(value1,  b i a s - t ab l e .  t a b l e  [b-idxl .high. concept) ; 
e l s e  ( 

i d  = b ia s - t ab l e  . t a b l e  [b-idx] .nun; 
s t rcpy(va lue1 ,  b i a s - t ab l e  . t a b l e  [id] .low .concept) ; 

3 
while (m < l ength  && value l  [m] != ' ' && valuel[m] != '\n' && 

value l  Cml ! = ' \ 0 '  

C 
pos-tuple . t a b l e  [i] . datacidx] = value1 [ml ; 
m++ ; 
idx++ ; 

3 
while (m < length)  

.c 
pos, tuple . table[ i ]  .data[idx] = ' ' ; 
m++ ; 
idx++ ; 

3 
break ; 

3 

/ *  f o r  negat ive examples */ 
e l s e  

< 
f o r  ( i  = 0; i < neg-tuple.index; i++) 



< 
index = a t t r - index  * l ength ;  
/* copy the  value i n  t he  a t t r - index  a t t r  */ 
get-one-value (neg-tuple.table[il.data, index, va lue) ;  

f o r  (k = 0 ;  k < b-index; k++) 

b-idx = b ia sck l ;  
i f  ((strcmp (value,  b ias - tab le  . t a b l e  [b-idxl .low. concept) == 0) I I 
(check,concept(value, b-idx) == 1 ) )  

< 
/ *  s u b s t i t u t e  t h e  lower concept by the  higher  concept */ 

idx = a t t r - index  * length;  
m = 0 ;  
i f  (b ias - tab le  .table[b-idx] .nun == -1) 

s t rcpy(value1,  b ias - tab le .  t a b l e  [b-idx] .high. concept) ; 
e l s e  C 

i d  = bias- tab le .  table[b-idx] .nun; 
s t rcpy(value1 , bias- tab le .  t a b l e  [id] .low. concept) ; 

3 
while (m < length && valuel[m] ! =  ' ' && valuel[m] !=  ' \n '  && 

valuelCm] ! =  ' \ 0 ' )  

C 
neg-tuple . t ab l e [ i l  .data[idx] = value1 Ern] ; 
m++ ; 
idx++ ; 

3 
while (m < length)  

C 
neg-tuple.  t a b l e  [il . data  [idx] = ' ' ; 
m++ ; 
idx++ ; 

3 
break; 

3 

............................................................................... 
/* Procedure: fur ther-general  * / 
/* Parameter: I N :  r u l e  type -- 1. c h a r a c t e r i s t i c  r u l e  2 .  discriminant r u l e  */ 



/* Function : Perform further generalization on prime relation * / ............................................................................... 

further-general (rule-type) 
int rule-type; 
x 

/* perform further generalization */ 

int i = 0, l-index=O, 1-dist-num, c-disc-num, tuple-num; 
int unmark-nun = 0; 
int attr-num = schema-table. attr-num; 
char max-attr CMAXSTR] ; 

do ( 
i = 0; 
1-index = 0; 
unmark-num = 0; 
strcpy (max-attr, schema-table. attr [i] . attr-name) ; 
/* for learning characteristic rules */ 
if (rule-type == 1) 

/ *  select the attribute which has most distinct values */ 

i = I; 
1-dist-nun = distinct-val-1 (schema-table. attrcl-index] . attr-name) ; 
while (i < schema-table. attr-nun) 

c-disc-num = distinct-val-I (schema-table. attr [i] .attr-name) ; 
if (1-dist-nun < c-disc-num) ( 

1-index = i; 
1-dist-nurn = c-disc-num; 

3 
i++; 

> 
strcpy (max-attr , schema-table . attr [l-index] . attr-name) ; 

generalize (max-attr, rule-type); 
remove-same- 1 (1) ; 
if (pos-tuple.index > max-tuple) 
x 

/ *  when the size of unmarked pos-tuple has been reduced to */ 
/ *  max-tuple * 2, check the noise data and remove it */ 



if (pos-tuple. index < (max-tuple * 2)) 
C 
remove-noise-data (rule-type) ; 
3 

3 
tuple-num = pos-tuple.index; 

3 

/* for learning discriminant rule */ 
else 
C 

while (i < schema-table.attr-nun - 1) 
C 
if (distinct-val-1 (schema-table. attr [i] . a t t r n e  < 

distinct-val-1 (schema-table. attr [i+1] . attr-name) 
strcpy (max-attr , schema-table. attr [it11 . attr-name) ; 

i++ ; 

3 
generalize (max-attr , rule-type) ; 
remove-same-1 (1) ; 
remove-same-1 (-1) ; 
intersect 0 ; 
for (i = 0 ;  i < pos-tuple.index; i++) 

if (pos-tuple. table [i] . data[schema-table. attrlength * 
schema-table. attr-nun] != ' * ' I  

unmark-num ++; 
if (unmark-num > max-tuple) 

/ *  when the size of unmarked pos-tuple has been reduced to */ 
/ *  max-tuple * 2, check the noise data and remove it */ 
if (unmark-num < (max-tuple * 2)) 
remove-noise-data (rule-type) ; 

3 
tuple-nun = unmark-num; 

3 
3 while (tuple-num > max-tuple); 

3 
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