
INTELLIGENT QUERY ANSWERING BY
KNOWLEDGE DISCOVERY TECHNIQUES

A11 righls ~ w e u x d . T1~i.s u~orl: 7nny not be

~ ~ C ~ I Y) ~ Y I C C (~ iu ,who/c 0 1 - j71 par,/,, Oy pimtocopy

or other 1ncn11.~, .coilhou/ /lac, p c u n i s s i o ~ ~ o j t h e u,utI~or.

APPROVAL

Name: Yue Huang

Degree: Master of Science

Title of thesis: Intelligent Query Answering By Knowledge

Discovery Techniques

Examining Committee: Dr. Louis Hafer , Chairman

-

Dr. Jiatvei Han,

Senior Supervisor

7

Dr. Nick Cercone,

Supervisor

. - - _ .-- 1

Y
Dr. Fred Popowich,

External Examiner

Date Approved:

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon F

my thesis, pro ject o r extended essay

t o users o f the Simon Fraser Unlvers

s i ng le copies only f o r such users o r

l i brary o f any other univers

i t s own behalf o r f o r one o f

f o r mu l t ip le copying o f t h i s

I ty , o r other educational I n s t i t u t i o n , on

i t s users. I fu r t he r agree t h a t permission

work f o r scholar ly purposes may be granted

COPY i ng

I lowed

I t i s understood t h a t

i a l gain sha l l not be a
I

by me o r the Dean of Graduate Studies.

o r publ lcat ion o f t h i s work f o r financ

wi thout my wr i t t en permission.

raser Un ivers i t y the r i g h t t o lend

(the t i t l e o f which i s shown below)

i t y Library, and t o make p a r t i a l o r

i n response t o a request from the

T i t l e o f Thes l s/Project/Extended Essay

I n t e l l i g e n t ~ u e r y Answering by Knowledge Discovery Techniques

Author: , ,,, , , .. 1 1 -
3

Yue Huang

(name 1

(date)

ABSTRACT

Knowledge discovery in databases facilitates querying database knowledge, cooperative

query answering and semantic query optimization in database systems. In this thesis, we

investigate the application of discovered knowledge, concept hierarchies, and knowledge dis-

covery tools for intelligent query answering in database systems. A Itnowledge-rich data

model is constructed to incorporate discovered I~nowledge and Inowledge discovery tools.

Queries are classified into d a t a c ~ u ~ r i e s and knowledge queries. Both types of queries can be

answered directly hy simple retrieval or intelligently by analyzing the intent of query and

providing generalized, neighborhood or associated information using stored or discovered

knowledge. Techniques have been developed for intelligent query answering using discovered

knowledge and/or knowledge discovcry tools, which includes generalization, data summa-

rization, concept clustering, rule discovery, query rewriting, lazy evaluation, semantic query

optimization, etc. Our study shows that Itnowledge discovery substantially broadens the

spectrum of intelligent query answering and may have deep implications on query process-

ing in data- and lmowledge-base systems. A prototyped experimental database learning

system, DBLEAltN, has been constructed. Our experimental results on direct answering of

data and knowledge queries are successful with satisfactory performance.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my senior supervisor, Dr.

Jiawei Han for his valuable guidance, support and encouragement since I came to SFU. I

should also be thankful to the members of my esamining committee, Dr. Nick Cercone, Dr.

Fred Popowich, and Dr. Lou J. I-lafer for reading this thesis carefully and making thoughtful

suggestions.

I would also like to thank all nly friends in the School of Computing Science, Engineering

Science who certainly contributed to the work I have done in SFU.

I owe sincere thanlis to my parents and my sister for their unfailling support. I would

like to dedicate to them whatever I have achieved in this research.

I am grateful to Simon Fraser University and the Natural Science and Engineering Re-

search Council of Canada for the financial support.

Finally, my special tha.nks go to a special girl for her love, understanding, and support

throughout the entire effort.

CONTENTS

. ACKNOWLEDGMENTS iv

1 INTRODUCTION . 1

2 OVERVIEW: KNOWLEDGE DISCOVERY AND INTELLIGENT QUERY AN-

. SWERING IN LARGE DKL'A13ASES 5

2.1 I<nowleclge Discovery in T.a. rge Data.ba.ses . 6

. 2.1.1 Definition of' a KDD System 7

2.1.2 A Model I<DD System . 8

. 2.2 Intelligent Query Answering 12

2.2.1 Why Provide A d tlitional Information? 12

2.2.2 Techniques for Intelligent Query Answering in Rule Based Systems . . 13

2.2.2.1 Rule Tra~zsformation . 14

2.2.2.2 Query Rclasation . 15

3 DBLEARN: A IiNO\VLEI3GE DISCOVERY SYSTEM 17

. 3.1 Primitives for I<nowledge Discovery in Databases 18

3.1.1 Data relevant t o the discovery process 18

3.1.2 Background knowledge . 19

3.1.3 Represents. tion of learning results . 22

3.2 Basic Principles of Attribute-Oriented Induction 24

3.3 Extraction of Genera.lized Rule . 28

3.3.1 Further generalimtion and rule extra.ction 28

3.3.2 Direct extra.ct.ion of generalized features a.nd statistical rules 31

3.4 Experiments on the NSERC Grant Informa.tion Da.taba.se 35

3.4.1 The Da.ta.ba.se . 36

3.4.2 Background Iinowledge . 37

3.4.3 Experimental Examples . 39

4 A Data Model for Knowledge.R.ich Da.taba.ses . 45

4.1 Definition . 45

4.2 An Example . 48

5 Intellegent Query Answering in I<nowledge-rich Da.ta.ba.ses 52

5.1 Four Basic Categories of Query Answering Mechanisms in Knowledge-Rich

Data.ba.ses . 52

5.2 Direct answering of da.ta. queries . 54

. 5.3 Intelligent answerillg of data queries 55

. 5.3.1 Analysis of the intent of a query 56

. . . . 5.3.2 Query rewriting using associated or neighborhood information 59

5.3.3 Answer transformation and answer explanation 61

5.3.3.1 Generalization and summarization of answers 61

5.3.3.2 Answer explanation . 64

5.3.3.3 Answer comparison . 65

5.4 Direct answering of knowledge queries . 66

5.5 Intelligent ailswering of knowledge queries . 68

5.6 Semantic query optimization using generalized Imowledge 70

. 6 CONCLUSIONS AND DISCUSSION 75

. 6.1 Conclusions 75

6.2 Future Research . 76

A A TUTORIAL ON TIIE D13LEARN SYSTEM . 79

A . l The Architecture of the DDLEARN System 79

A.2 The Description of the Learning Programs . 80

A.2.1 1earn.h and tlblcarn.11 . 80

A.2.2 1es.c . 80

A.2.3 parse.c . 81

A.2.4 fetc11.c . 81

A.2.5 1eara.c . 82

A.2.6 adjust.^ . 82

A.3 The Specification of a Learning Request . 83

A.3.1 Getting Started . 84

A.3.2 Basic Structure . 84

A.3.3 Examples . 87

A.4 Miscellaneous f'uactions . 93

B Program Listing for Two Major Procedures . 95

REFERENCES . 126

...
V l l l

CHAPTER 1

INTRODUCTION

Knowledge discovery ill databases creates a new frontier for intelligent query answering and

query optimization in database systems. It has been estimated that the amount of informa-

tion collected by human beings in the world doubles every 20 months. The size and number

of databases probably increases cvcu fastcr. The growth in the size and number of existing

databases far exceeds human ahilitics to analyzc .;uch data, thus creating both a need and

an opportunity for extracting kmwledge froill databases.

William Frawley a,nd his collea.gues[l8] give a definition of lmowledge as follows.

"Given a set of fa.cts(da.ta,) F , a 1aagua.ge L, a,nd some measure of certainty C, a pattern

is defined as a sta.tement ,S' in I, t%ha.t describes rela.tions11ips a,mong a subset F, of F with

a certainty c , such t11a.t ,S' is simpler (in some sense) than the enumeration of all facts in

FS. A pattern that is interesting (according to a user-imposed interest measure) and certain

enough (aga,in a,ccording to the user's criteria.) is called knozoledge."

Although these definitions about the language, the certainty, and the simplicity and

interestingness measure are intentionally vague to cover a wide variety of approaches. Col-

lectively, these terms ca.pture our view of the fundamental characteristics of discovery in

databases.

The computer science community is responding t o both the scientific and practical chal-

lenges presented by the need to find the knowledge adrift in the flood of data. Some research

methods are already well enough developed to have been made part of commercially avail-

able software. Several espert system shells use variations of ID3[46] for inducing rules from

examples. Other systems use i11cluctive[41] or genetic learning approaches to discover pat-

terns in personal computer databases[l7]. A number of discovery algorithms have been

developed. Conceptual clustering works with non~inal and structured data and determines

clusters both by attribute similarity and by conceptual cohesiveness, as defined by back-

ground information. Recent examples of this approach include AutoClass[8], the Bayesian

Categorizer[S], and Cobwcb[l(i]. Once identified, useful pattern classes usually need to be

described rather than simply enumerated. Empirical learning algorithms, the most com-

mon approach to this problem, work by identifying commonalities or differences among

class members. Well-known examples of this approach include decision tree inducers[50],

neural networks[52], and attribute-oriented induction methods[24][25].

With the rapid develop~nent of knowledge discovery techniques, it is natural to study

the applications of the technology in querying datahase knowledge and processing queries in

database systems[20] [9]. At Sinion 1:1.ascr University, a prototyped experimental database

learning system, DBLEAltN[5][26], has been constructed. The system, DBLEARN, takes

learning requests as inputs, applies the li~lowledge discovery algorithm(s) on the data stored

in a database with the assistance of the concept hierarchy information stored in a concept

hierarchy base. The outputs of the system are knowledge rules extracted from the database.

In this thesis, we investigate the application of discovered rules, concept hierarchies and

knowledge discovery techniques to intelligent query answering in database systems. To study

query processing in a lmowledge-rich database associated with knowledge discovery tools,

it is often necessary to distinguish data, knowledge and queries defined a t the primitive

data level from those dcfined a t a relatively high concept level. Data in a knowledge-rich

database are classified into pri~nitive data and high-level data. The former are actual data

stored in data relations and, if' appearing in some concept hierarchies, correspond to the

primitive level (i.e., leaf) nodes of the hierarchies; whereas the latter are nonprimitive data

subsuming primitive ones and residing a t the nonprinlitive level of concept hierarchies.

Correspondingly, a primitive-level qnery is a query whose constants involve only primitive

data; whereas a high-level query is a query whose constants involve high-level data. Simi-

larly, rules (notice that integrity constraints can be viewed as a special kind of rules) can be

classified into primitive-1cvc.l and 11igl1-levcl rules, bascd 011 their reference to high-level data.

In many cases, a database user may not be able to distinguish between primitive and

high-level data and between information that is data and information that is knowledge.

A knowledge query can often be viewed as a follow-up to a data query when the answer

to a data query requires further explanation, reasoning or summarization. Therefore, it is

important to provide a single, coliercnt frameworlt to handle data and knowledge queries

and to handle direct query answering and intelligent query answering. There have been

some interesting studies on querying database l<nowledge and intelligent query answering

[45] [54] [49][34] [ll]. Previous studies emphasize the application or inquiry of deduction rules

and integrity constraints in relational or deductive databases. With the availability of gen-

eralized knowledge and lillowledge discovery tools, queries can be posed and answered a t

levels higher than that of primitive concepts, and knowledge about general characteristics

of data can be inquired or utilized in the processing of data or knowledge queries[27].

In this thesis, A knowledge-rich data model is constructed which consists not only of

the components from a deductive database (including database schemas expressed by an

extended deductive entity-relationshi data modcl, data relations, deduction rules and in-

tegrity constraints) but also the components relevant to knowledge discovery processes,

including concept hierarchies, generalized knowledge, and knowledge discovery tools. The

knowledge discovery tools are used to extract general knowledge dynamically, when neces-

sary, from any set of interested data, in the database. A unified framework is established for

answering data and knowledge queries in a knowledge-rich database. A systematic study is

performed on intelligent query answering of both data or linowledge queries in a database

system associated with discovered knowledge and knowledge discovery tools.

This thesis is organized aa ibllows. The next cllapter will give an overview of both the

methods developed for knowledge discovery in hrge dartabases and the methods for intelli-

gent query answering in da.ta.ba,se systems. Chapter 3 introduces the principles and imple-

mentations of DBLEARN. Chapter 4 presents a data model for knowledge-rich databases.

Chapter 5 examines four basic ca,tegories of query answering in linowledge-rich databases

based on the combina.tions of da.ta, vs.linowledge queries and direct vs.intelligent query an-

swering mecha.nisms. Chapter 6 presents the conclusion as well as discussion of future

research issues. The tutorial and source codes of DBLEAR.N are given in appendix.

CHAPTER 2

OVERVIEW: KNOWLEDGE

DISCOVERY AND

INTELLIGENT QUERY

ANSWERING IN LARGE

DATABASES

We survey some recent progress in two reseadl frontiers: (1) knowledge discovery in

database system which adopt the lecrming J 'ro~~z ezcr.nzples philosophy , and (2) some in-

telligent database query a.rrs\vering techniques.

2.1 Knowledge Discovery in Large Databases

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and po-

tentially useful information from data[l8]. In machine learning, discovery is often equated

with unsupervised learning, 1ea.rning from data with little or no guidance from a teacher.

A discovery system is then a program that automatically finds relationships in da ta that it

previously did not know about.

Several such discovery systems have been successful in scientific domains, e.g., AM[40],

GLAUBER[39], ABACI1 S[13], COl'ER[37], and FortyNiner[57]. These systems tradition-

ally have been applied to scientific data known to contain strong regularities(e.g., Ohm's

law, Kepler's law). 011 5uch problems, these systerns readily find functions that represent or

approximate the known laws. The systenls are said to "discover" these laws because, though

known to us, they were unknown to the systems, i.e., the laws were outside the systems'

representation of the world.

Another class of systems applies discovery methods to red-world databases. Such sys-

tems have come to be known a.s I<DD(knowledge discovery in databases) systems, e.g.

CoverStory[53], EXPLOItA[31] and DRLEAItN[26]. The differences between scientific dis-

covery systems and KDD systems primarily result from the different characteristics of the

data they are typicaly alpplied to. KDD systems, opera,ting on real da,tabases, have to deal

with difficult issues, sucli a.s fincling tendencies[29] ra.tlier that laws, data that is constantly

changing and often erroneous, critica.1 da.ta. that is missing beca,use it was not designed into

the databases, and an overwhelming qumtity of da,ta. Scientific discovery systems have had

the luxury of ignoring some or all of these issuse. But they too will have to confront these

issues if they are to be effectively applied to the rapidly growing scientific databases storing

vast amounts of information.

Regardless of the source of the da.ta, the value of automated discovery in the future will

be in finding truly novel aad interesting patterns in large, unexplored databases, and also

in providing plausible explana.tions for these discoveries. Many difficult problems remain to

be solved before a truly useful, a.utonomous discovery system will become possible.

2.1.1 Definition of a KDD System

A KDD system is defined a.s follows[48]:

((A K D D system is an nutonzated system for eficiently identifying and extracting

interesting patterns fmm dutu stored in real-world du2aBa~e~."

The important aspects of this delinition are: (1) the system has some autonomy, (2) i t

has efficient methods for extracting patterns, (3) it can identify when a pattern is interest-

ing, and (4) it interfaces t o a DBh/lS(database management system).

Inherent in the meaning of discovery is autonomy - if a system is told exactly where and

how to look for patterns it is not performing discovery(t11ough it may be doing some form

of supervised learning). Tot a1 autonomy is rlot required, but the system must be automated

t o the extent that it makes some of its own decisions about where to search for patterns,

and can decide when a pattern is likely to be of interest.

Clearly a discovery system must ha-ve methods for identifying and extracting patterns

7

from the data. These in fact form the core of any discovery system. The term pattern

refers t o any relation among elements of a database, i.e. the records, attributes, and values.

Databases are replete with patterns, but few of them are of much interest. A pattern is

interesting t o the degree that it is accurate, novel, and useful with respect t o the end-user's

knowledge and objectives[lS]. La.stly, to be usable on large active databases, a KDD system

requires direct access to a DBMS. This a t the very least implies the ability t o send queries

and process the results.

2.1.2 A Model KDD System

Piatetsky-Slzapiro and Matheus[4$] proposed the following model of an idealized system

shown in Figure 2.1.

The model comprised five maill cornpoiie~~ts:

0 Control ler : decides how to a.pply the focusing, pattern extraction, and pattern evalu-

ation to the releva.nt parts of the DBMS under the constraints provided by the domain

knowledge and user input

r D a t a b a s e In terface: accepts queries from the controller a.nd returns the results for

use by the ext.raction methocls

r Focus C o m p o n e n t : controls which portions of the database are t o be analyzed

r E x t r a c t i o n M e t h o d s : are the a.lgorithms used to extract potentially interesting

patterns

Queries Data

0 0
I DB Interface

Domain - Extraction

Knowledge -
,'\,

' \ \

\

c-, - -\-
1 L -

Figure 2.1: A Model MDD System

r Evaluation Component: screens the results of the extraction methods t o ensure

relevance t o the current task as defined by the user input and domain knowledge

Information comes into the system from the user input, domain knowledge, and DBMS

query results. The knowledge that is discovered is presented to the user and possibly added

t o the knowledge base for subsequent analysis.

In the above KDT) model the system's autonomy comes from the controller. The basis

for its decision making comes from the doma.in knowledge and user input. The controller

interprets this input and uses it to direct the focus, extraction, and evaluation compo-

nents. In practise, many KDD systems requires the end user to make the majority of these

decisions[48] [26].

Domain knowledge ca,n assume many forms including(but not limited to):

r lists of releva.nt fields

r definitions of new fields

r lists of useful cla.sses or ca.tegories

r generalization 11iera.rchies

r functional or causal models

The pri1na.r~ purpose of doma.in knowledge is to bia.s the search for interesting patterns.

This can be achieved by focusing aktention on portions of the data, biasing the extraction

algorithms, and a.ssisting in pattern eva.luation. The use of the domain knowledge in this

way can result in greater efficiency a.nd more useful results. It also can preclude the dis-

covery of potentially useful patterns by 1ea.ving portions of the sea.rch space unexplored.

For domain knowledge to be useful it needs to be accessible to the discovery system, either

directly from a knowledge base or through the user. In a completely automated system

all domain knowledge would be encoded and be available online. Most existing discovery

systems, however, require substantial guidance from the end user.

The focusing component of a discovery system determines what data should be retrieved

from the DBMS. This requires specifying which tables need to be accessed, which attributes

should be returned, and which os how many records should be queried. To do this the

focus component needs detailed information: it needs to 1mow about the database table

structures; it must know which attributes are appropriate for the current task; if it is doing

data sampling, it must have a way of randoinly selecting the appropriate number of records;

and, it must know the input required by the subsequent extraction algorithms.

A DBMS provides query routines for extracting records from ta-bles. Interfacing t o a

DBMS requires that the system be able to forinula.te queries and process the results. Real-

istically, queries on large data.ba,ses will have to be constructed and submitted as the need

for specified data axises.

At the core of a discovery system a.re the algorithms that extract patterns from data.

Virtually any machine-learning or statistical &a-analysis algorithm can be incorporated

into a KDD system.

Extracted pa.tterns may not a.1wa.y~ be intel-esting, a.nd even when they are there may

be too many patterns to repol-t all a t once. Post evaluation of the extracted patterns may

be required to select those of su lhcient or greatest interest. This can be achieved by a com-

bination of wa.ys:
11

a use statistical techniques to verify the significance of the results within the database.

Statistical significance alone, however, does not determine the appropriateness of a

discovery

test the results for consistency with available domain knowledge. (Note: testing the

consistency of a statement with a body of facts is a hard problem.)

0 defer evalua,tion t o the end user

Intelligent Query Answering

A good question answering syst,elu often needs to provide a response that specified more in-

formation than strictly required by the question. It should not, however, provide too much

information or provide information that is of no use to the person who made the query.

Intelligent query answering consists of' analyzing the intent of the query and providing gen-

eralized, neighborhood or associated information which is relevant t o the query.

2.2.1 Why Provide Additional Information?

It is important in defining an efficient cooperative answering method, to understand the

general reasons why an expert decides to provide such additional information. The basic

idea is that when a pel.so11 adis a question he is not interested in linowing the answer just

to increase his linowleclge, b u t hc has the intention of performing some action, and that the

answer contains information necessary or useful for realizing this action.

If we accept the basic idea that there is always an underlying intention behind each

question, then the expert who wants to be cooperative must try to recognize this intention,

in order to determine the most appropriate rearction implicitly expected by the interlocutor.

One method [I] of recognizing a user's intentions is to assume that an expert knows a set

of predefined sequences of actions, called plans, the clients may want to realize. Then, when

a client asks a question, the expert tries to at tach this question to an action. If he succeeds,

he then assumes that the user's intention is to perform this action, and the other actions

which belong to the same p1a.n. According to this point of view, the appropriate reaction of

the expert is to provide the additional information which can be useful in performing this

action or others in the same plan. Generally, the answer to a question can be useful not

only in executing a plan, but dso to help in building or modifying a plan.

However, the specification of the actual plan inference process is not detailed enough

to allow it to perforin in coinples domains. One of the major problems in large domains is

the effective management of the large number of potential expectations. Considerable work

needs to be done to specify more control heuristics.

2.2.2 Techniques for Intelligent Query Answering in Rule

Based Systems

Deductive databa.ses a.re comprised of syntactic information and semantic information.

The syntactic information consists of the intentional dcitu,bnse(IDB) and the extensional

database(EDB). The semantic information consists of a set of integrity constraints(1C).

Some techniques have been developed t o cope with intelligent query answering in deductive

databases.

2.2.2.1 Rule Transforlnation

Imielinski [34] introduced a new concept of an answer for a query which includes both atomic

facts and general rules. In a large knowledge base system, data is represented both in the

form of general laws (given as 1Iorn clauses) and assertions representing specific facts (e.g.,

tuples of relations). It is frequently beneficial to structure the answer for a query in a similar

way, i.e., both in terms of tuples, as is traditionally the case, and in terms of general rules.

He provided a method of transfor~ning rules by relational algebra expressions built from

projection, join, and s t k t i o n and demonstrated how the answers consisting of both facts

and general rules can be generated.

Conceptually, rules we often more informative and easier to comprehend than corre-

sponding sets of derived tuples. For example, the fact that all students who specialize in a

given area have to take all courses oflered in this area can be represented better by a rule

than by a corresponding derived set of tuples. Rules from the database can be transformed

by the query if some of the rules can be evaluated after the evaluation of the query without

affecting the final result. It is much less expensive to evaluate rules over the answer to the

query than over the database state itself, since the result of the query is much smaller than

the database. Besides, rule transformation extends the algebraic spirit of query processing

from purely relational databases to databases with rules and is also another example of

"lazy evaluation"[42] known in the area of programming languages.

Imielinski first described conditions under which single rules can be transformed by sin-

gle relational operations. Then lie generalized the discussion to relational expressions, and

finally t o sets of rules. Since the transformation of the sets of rules is particularly difficult,

it is preferable to decompose the problem of transformation of sets of rules into the transfor-

mation of individual rules. In case the given set of rules is not transformable, an equivalent

set of rules which can be transformed could be frequently constructed.

2.2.2.2 Query Relaxation

As noted by many researchers, including [2][12][43][54], one form of cooperative behavior

involves providing associated infornia.tion t11a.t is relevant to a, query. Generalizing a query in

order t o capture neighboring infbrnmtion is a. means to obtain possibly relevant information.

Gaasterland[lS] defined a. method to relax a. query in order to find neighboring informa-

tion and to control the relaxa.tioii process with user constraints. A query can be relaxed in

a t least three ways:

1. Rewriting a predicate with a more general predicate;

2. Rewriting a constallt (term) with a more general constant (term); and

3. Breaking a join dependency across literals in the query.

The first two relaxa.tions a.re a.chieved in a general manner using taxonomy clauses that

define hierarchical type relationships between predicates and constants in the database lan-

guage. For example, the following clauses define relationships between the predicates travel,

flight, and train:

TI: travel(Fronz, To) c serves-c~rea(A, From), servesarea(B, To), f light(A, B).

T2: travel(From, To) c serves-area(C, From), servesarea(D, To), train(C, D).

With the relaxation technique, a user can ask a specific query and get related answers

as well as direct answers. I-Iowever, for la.rge databases, many relaxations may be possible.

In order to control the relaxation process, one approach is to allow the user to express their

restrictions on the lil~owledge tloma.in t11a.t they would like to have addressed for every query

that is asked. A user's restriction on a, tla.ta.11a.se ca.n be modeled as a set of constraints,

called user constraints. User constradnts express the states that a user wants to disallow

and the states that a user wants to always persist. Each time a user asks a query, user

constraints are applied to the query using semantic query optimization techniques. The

resulting query produces answers that sa,tisfy the user's restrictions. Also, a set of heuris-

tics based on cooperative answering techniques are presented for controlling the relaxation

process.

CHAPTER 3

DBLEARN: A KNOWLEDGE

DISCOVERY SYSTEM

Knowledge discovery is the nontrivial extraction of implicit, previously unknown, and po-

tentially useful information from data [ls]. In the previous studies [4][24][26], an attribute-

oriented induction inethocl has been developed for Itnowledge discovery in databases. The

method integrates learning-from-examples techniques with database operations and extracts

generalized data from actual data in databases. A key to this approach is the attribute-

oriented concept tree ascension for generalization which applies well-developed set-oriented

database operations and substantially reduces the coinputational complexity of database

learning processes.

In this thesis, the at tribute-oriented approach is developed further for the discovery of

multiple, statistical rules in h r g e databases(based on number of records in a database).

A special intermediate generalized relation, prime relation, is extracted during attribute-

oriented induction, which can be used not only for further generalization and extraction of

inquired rules but also for direct extraction of general features and generation of multiple,

statistical rules. Many interesting chara.cteristic and discriminant properties of generalized

data can be described using such statistical rules. Based upon these principles, a proto-

typed database learning system, DBLEARN, has been constructed and experiments have

been performed on a relatively large Grant-Information Database with satisfactory perfor-

mance.

Primitives for Knowledge Discovery in Databases

Three primitives should be provided for the specifica,tion of a learning task: task-relevant

data, background knowledge, a.nd expected representation of learning results. For illustrative

purposes, we examine re1a.tiona.l tlil.ta.ba.ses only, however, the results can be generalized to

other kinds of da.ta.ba.ses a.s well [MI.

3.1.1 Data relevant t o the discovery process

A database usually stores a large a,mount of data, of which only a portion may be relevant

t o a specific learning task. Relevaant data may extend over several relations. A query can

be used to collect ta,sk-relevant da.ta. from the da.ta,ba.se.

Task-relevant data can be viewed as exa,mples for 1ea.rning processes. Undoubtedly,

learning-from-examples [41][22] should be an important strategy for knowledge discovery in

databases. Most learning-from-exainples algorithms partition the set of examples into posi-

tive and negative sets and perform generalization using the positive data and specialization

using the negative ones [41]. Unfortunately, a relational database does not explicitly store

negative data, and thus no explicitly specified negative examples can be used for specializa-

tion. Therefore, a database induction process relies mainly on generalization, which should

be performed cautiously to avoid over-generalization.

3.1.2 Background knowledge

Concept hierarchies represent necessary bacligroulld lmowledge which directs the general-

ization process. Different levels of concepts are often organized into a taxonomy of concepts.

The concept taxonomy can be partially ordered according to a general-to-specific ordering.

The most general concept is the null description (described by a reserved word "ANY"),

and the most specific concepts correspond to the specific values of attributes in the database

[30]. Using a concept hierarchy, the rules learned can be represented in terms of generalized

concepts and sta,ted in a simple and explicit form, which is desirable to most users.

Example 3.1 The concept hiemrchy table of a typical university database is shown in Fig-

ure 3.1 , where A c B inclicates that B is a generalization of A. Notice that

Birthplcr.ce(C'?.ty C Province C Country)

indicates that the concept hierasclly for the attribute Birthplace is given by the data stored

in the relation Student following the partial order: Ci ty , Province and Country. A concept

tree, such as status shown in Figure 3.2, represents a taxonomy of concepts of the values in

(f r e s h m a n , ..., senior) c undergraduate
{M.A. , M.S., Ph .D.) c graduate
(undergraduate, graduate) c ANY (s ta tus)
(0.0 N 1.99) C poor
(2.0 - 2.99) C average
(3.0 N 3.49) C good
(3.5 N 4.0) c excellent
{poor, average) c weak
(good, excellent) C strong
{weak , strong) c ANTr(GPA)
.
Birthplace(City C Province C Country)
(Canada, U.S.A.) c NorthAn2ericn
{Ch ina , ..., Japan} C Asin
.
{ A s i a , ..., Europe} c OtherRegions
(Nor thAmerica , OtherReyions) C ANY(Cou12try)
Bir thdate(Da9 C Month C Y e a r)

Figure 3.1 : Concept hierarchies in t h e database.

an attribute domain.

Concept l~iera~rchies ca.n be provided by knowledge engineers or dolnain experts. This is

reasonable for even large dataabases since a concept tree registers only the distinct discrete

attribute values or ranges of numerical values for an attribute which are, in general, not very

large and can be input by domain esperts. Many concept hierarchies, such as Birthplace in

Example 3.1, are a.ctua1ly stored in the da.ta.lmse implicitly. Also, concept hierarchies can be

discovered automa.tically or refirled dyna.mica.lly based on the sta.tistics of data distribution

and the relationships between attributes [15].

ANY

M.A. M.S. Ph.D.

Figure 3.2: A concept tree for status.

Different concept hiera,rchies can be constructed on the same attribute based on different

viewpoints or preferences. For exa.mple, the 11irthpla.ce could be organized according t o ad-

ministative regions, geographic regions, sizes of cities, etc. Usually, a commonly referenced

concept hierarchy is a.ssociated with a a a.ttribute as the default one. Other hierarchies can

be chosen explicitly by preferred users in the leaxning process.

Notice that different lii~lds of' set-subset relationships are represented as concept hierar-

chies in our study. For example, China is a part-of Asia, while senior is a specialization-of

undergraduate. They are treated simila,rly in our concept hierarchies as set-subset relation-

ships since they play similar roles in a,ttril>ute-oriented induction. However, it will be useful

to discriminate difE'erent roles in a detailed semantic analysis of learning intentions.

3.1.3 Represent at ion of learning results

Many kinds of rules, such as characteristic rules, discriminant rules, statistical rules, etc.

can be discovered by induction processes. A characteristic rule is an assertion which char-

acterizes a concept satisfied by all or most of the examples in the class undergoing learning

(called the target class). For example, the symptoms of a specific disease can be summarized

by a characteristic rule. A discriminant rule is an assertion which discriminates a concept

of the class being learned (the target class) from other classes (called contrasting classes).

For example, to distinguish one disease from others, a discriminant rule should summarize

the symptoms that discriminate this disease from others.

From a logical point of view, each tuple in a relamtion is a logic formula in conjunctive

normal form, and a da,ta rehtion is characterized by a large set of disjunctions of such con-

junctive forms. Thus, both thc da,ta for learning a.nd the rules discovered can be represented

in either relational form or first-order predicate cakulus.

A relation which represents intermediate (or final) learning results is called an interme-

diate (or a final) generalized relation. In a generalized relation, some or all of its attribute

values are generalized da.ta, that is, non1ea.f nodes in the concept hierarchies. An attribute

in a (generalized) relaction is a t a desirable level if' it contains only a small number of distinct

values in the relation. A user or an expert may like to specify a small integer for an attribute

as a desirable attribute threshold. In this ca.se, an a.ttribute is a t the desirable level if it

contains no more distinct values tha,n its attribute threshold. Moreover, the attribute is

a t the minimum desirable level if it would contain more distinct values than the threshold

when generalized or specia.lized to a level lower than the current one. A special intermediate

generalized rela.tion R' of ail original rela.tion R is the prime relation of R if every attribute

in R'is a t the minimum desirable level.

Some learning-from-examples algorithms require the final learned rule to be in con-

junctive normal form [41]. This requirement is unreasonable for large databases since the

generalized data often contain different cases. However, a rule containing a large number

of disjuncts indicates that it is in a complex form and further generalization should be

performed. Therefore, the final generalized rela tion should be represented by either one

tuple (a conjunctive rule) or a small number (usually 2 to S) of tuples corresponding t o a

disjunctive rule with a srnall nulnber of disjuncts. A system may allow a user to specify the

preferred generalization tl~reshold (or generalized relation threshold), a maximum number

of disjuncts of the resulting formula. For example, if the threshold value is set to three, the

final generalized rule will consist of a t most three disjuncts.

Exceptional data often occur in a large relation. It is important to consider exceptional

cases when learning in databases. St atistical information helps learning algorithms handle

exceptions and/or noisy data [42][7]. A special attribute, vote, can be added t o each gener-

alized relation to register the number of tuples in the original relation which are generalized

to the current tuple in the generalized relation. The attribute vote carries database statistics

and supports the pruning of scattered data and the generalization of the concepts which

take a majority of votes. The filial generalized rule will be the rule which represents the

characteristics of a majority number of facts ill the database (called an approximate rule) or

indicates statistical ineasure~nent of each conjunct or disjunct in the rule (called a statistical

rule).

3.2 Basic Principles of Attribute-Oriented Induc-

tion

A set of basic principles for attribute-oriented induction in relational databases are summa-

rized as follows [24].

1. Generalization only on the relevant set of data: Generalization should be performed

only on the set of data in the dutabuse wh,ich is relevant to the learning request.

2. Generalization on the smallest decoinposable componeats:Generalization should be

performed on the snzullest deco?~1aposn.6le conaponents (or attributes) of a data relation.

3. Attribute removal: If there is a lurge set o l distinct values for an attribute but (1) there

is no higher level concept provirlecl for the attribute, or (2) its higher-level concepts

are expressed in anotlzer attribute of the sanze tuple, the attribute should be removed

in the generudizcl.tion process.

4. Concept tree ascension: If there exists (1. higlzer level concept in the concept tree for

an attribute vulrre of (L tecple! the substitution of tlze vcr.1ue by its higher level concept

generalizes the tuple.

5. Vote propagation: Tlte volu.e of the vote of a tuple slzould be carried to its generalized

tuple and the votes should be accunaulated when merging identical tuples i n general-

ization.

6. Attribute threshold control: Ij tlze number of clistinct volues of an attribute in the

target class is larger t/ta,n 2'1.5 attribute threshold, furtlzer generalization on this attribute

should be performed.

Remarks: The above strutegies are correct and necessary for the extraction of generalized

rules from databases.

Reasoning: Principle 1 is based on the concept of query processing in databases. Prin-

ciple 2 is based on the least colnrnitment principle (commitment to minimally generalized

concepts) which avoids over-generalization. Principle 3 corresponds to the generalization

rule, dropping conditions, in learning-from-examples [41]. Principle 4 corresponds t o the

generalization rule, climbing generalimtion trees, in learning-from-examples [41]. Principle

5 is based on the merging of' identical tuples. Principle 6 is based on the desirability of

representation of each attribute a.t its desirable level.

The attribute-oriented inductlion process is illustrated in Example 3.2.

Example 3.2 Let the university dutabuse be naoclelecl by a deductive ER model [28] in which

the eztensional database (EDB) is nacr.pped lo the following schema.

Course(Cnum, Title, Semester, Departnaent, Instructor, TA, Enrollment, Time).

. . .

Student(Nanze, Status, S e x , Rd(ljor, Biriladute(Day, Month, Year),

Birthplace(City, Province, Country), GPA).

Suppose a truth-valued virtual a.ttribut,e IsTA is defined in Student, and the value is

true only if the studer~t is a T A i n some course, i.e., the computation of I s T A involves the

join of two relations, Student and Course. Suppose that the learning task is t o learn char-

acteristic rules for cs (computing science) students relevant to the attributes Name, Sex,

Status, Age, Birthplace, GPA, and IsTA using the default concept hierarchies presented in

Figure 1.2 and the default threshold values. The learning task is represented in DBLEARN

as follows.

l ea rn charac te r i s t i c r u l e f o r A 4 ~ ~ j o r = "CS"

f r o m Student

i n re levance to Name, Sex, Age, Birthplace, G P A , IsTA

For this learning request, preprocessing is performed by selecting cs students and pro-

jecting on relevant attributes h'ame, Sex, etc. A special attribute vote is attached t o each

tuple of the result relation wit11 its initial value set to 1. Such a preprocessed data relation

is called an initial relamtion.

Since there is no higher level concept specified on the first attribute Name, the at-

tribute should be removed in generalization, which implies t11a.t a generalized rule cannot be

characterized by the attribute Name. The Birthdate information can be transformed into

Age since the learning ta.sk is interested not in Birtlzclute but in Age. Moreover, city and

province attributes should also be removed since they contain a large number of distinct

values but their generalized information is contained in the attribute Birthplace(country)

in the same tuple. After removing these a t tributes, the da.ta relation contains 6 remaining

attributes: Stcltus, Sex, Age, Birthplace(country), IsTA a.nd GPA (plus one special attribute

vote).

1 Status I Sex Age 1 Bir thi~lace 1 GPA I IsTA 1 vote /
I I V , I I I J

I grad 1 M 1 25-30 1 Canada I good I Y 1 8 1

I I I I I I 1 underg 1 M 1 1625 1 Asia I m o d I N / 6 1

-

grad
. . .

Table 3.1: A prime relation from t h e initial set of data.

By removing the removable attribute and generalizing each generalizable attribute t o

its minimum desirable level, the initia.1 data. rehtion is generalized to the prime relation.

In our example, the prime relation, as shown in Table 3.1, contains a small number of

distinct values in each attribute as follows: Status: {grad, undergrad}, Sex: { M , F}, Age:

(16-25, 26-30, > 301, Birth11luce: {C'c~,iiadu, USA, Asia, Europe}, GPA: {poor, average,

good, excellent), a.nd IsTA: {Y".s, ATo}.

F
. . .

The basic attribute-oriented induction process is summarized in the following algorithm.

Algorithm 3.1 Atti-ibrrte-orie~ited inductioii in the derivation of the prime relation from a

large relationad data set.

Input: (i) A learning ta.sk-releva.nt data. set R, of arity n with a set of attributes Ai

(1 5 i 5 n); (ii) a set of concept hierarchies, N; on attribute A;; and (iii) a set of attribute

thresholds, Ti for attribute A;.

Output. The prime relation 12'.

Met hod.

Rt = R; /* Rt is a temporary relation. * /
for each attribute A; in l Z 1 do {

if Ai is removable then remove A;;

25-30
. . .

, ./
Y
. . .

Canada
...

2
. . .

excellent
. . .

if A; is not a t the desirable level

then generalize A; t o the desirable level.

1
/* Identical tuples in Rt axe merged with the number of identical tuples registered in

vote. */

R' := Rt.

Notice that generalization for ea.ch attribute A; is implemented by (1) collecting the

distinct A; values in the relation, (2) computing the ininimum desirable level L, and (3)

generalizing the attribute to this level T, by repla.cing each value in Ai's with its correspond-

ing superordinate concept in Hi a.t level L.

3.3 Extraction of Generalized Rule

Since only attribute thresholds are utilized in the aitribute-oriented induction in Algo-

rithm 3.1, the derived prime relation ma.y often contain more tuples than the generalization

threshold. Two methods have been developed for the extraction of generalized rules from

the prime relation: (1) further generalization to a final generalized relation confined by the

generalization threshold and extra.ction of the inquired rule(s), and (2) direct extraction of

generalized features a,nd presenta.tion of feature-based multiple rules.

3.3.1 Further generalization and rule extract ion

Method 1 is realized based on the following two additional principles.

2 5

1. Generalization threshold control: If the nunzber of tuples of a generalized relation i n

the target class is larger than the generalization threshold, further generalization on

the relation should be performed.

2. Rule formation: A tuple i n a final generalized relation is transformed to conjunctive

normal form, and multiple tuples are transformed to disjunctive normal form.

Notice that during further generalization by generalization threshold control, there are usu-

ally alternative choices a t selection of a candidate attribute for further generalization. Crite-

ria, such as the preference of a larger reduction ratio on the number of tuples or the number

of distinct attribute values, the simplicity of the final learned rules, etc. can be used for

selection. Interesting rules can often be discovered by following different paths leading t o

several generalized relatio~is for examination, comparison and selection. Following different

paths corresponds to the way in w11ich different people may learn differently from the same

set of examples. The generalized relations can be examined by users or experts interactively

to filter out trivial rules and preserve interesting ones [57] .

Let the default generalization threshold be 8. If the prime relation in Table 1 consists of

40 tuples, it is obviously necessary to perform further generalization. Suppose the preference

is to retain 3 attributes: S'tnlus, Birllzplcice and GPA. Tllen, other attributes are generalized

t o A N Y and removed from the generalized relation. Birthplace and GPA are further gener-

alized, which results in the final generalized relation with seven tuples, as shown in Table 3.2.

By rule transformation, the final generalized relation is equivalent to rule (r l) , that is,

a computing science student is in one of the following seven cases: (1) North-America-born

graduate students ioith strong G'PA (13.2%), ..., and (7) Other-regions-born undergraduate

students with w e d GPA (4%). Notice that since a charateristic rule characterizes all of the

I grad 1 NorthAmerica 1 weak 1 2 1

V J I V I 1 uncler~ NorthAmerica I weak 1 65 1

vote

33
Status

grad

Table 3.2: Final generalized relation.

data in the target class, its then-part represents the necessary condition of the class.

Birthplace

NorthAmerica

(r l) v (x) cs-student(~:) -+

(Birthplnce(x) C NorthAmerica A Stc~ tus (x) C graduute

A G P A (x) c strony)[13.2%]

v.v

(Birtlzplace(z) c OtherR,egions A Stc~ tus (x) c undergraduate

A G P A (x) C wenk)[4%].

GPA

stro~in

Rule rl is a statisticd rule. It ca.n also be expressed as an approximate rule by dropping

the conditions or conclusions with negligible proba.bilities.

Table 3.3: A Status feature table mapped from t h e pr ime relation.

3.3.2 Direct extraction of generalized features and stat isti-

cal rules

Since every feature (attribute value) has been generalized to a desirable level in the prime

relation, interesting relationships and statistics of features can be extracted directly from

the derived prime relations. The generation of general rela.tionsl~ips and rules can be facili-

tated by extraction of generalized fcature tables from the priine relation.

IsTA
Y N
30 20
0 200
30 220

G PA
poor avg good exclnt
1 1 30 18
15 60 100 25
16 61 130 43

Example 3.3 Let Table 1 be the prime relation ge~zeralited from the learning task. Gen-

eralized feature tables can be extructed from the priine relation. For example, to compare

students with different stc~b~r.s (grcrtluc~.te vs. undergruduute), the prime relation can be mapped

into a Status feature table (Tkble 3.3).

vote
-

50
200
250 -

Status

grad
underg

total

The Status feature table consists of 3 rows: each of the two distinct Status values in

the prime relation {"grcrd", "undergrctd') corresponds to one row, and the last row (total)

is the summation of inforination in the previous rows. It consists of 5 major columns, each

corresponding to one attribute in the prime relation, plus one special column for vote. Each

major column in the table is further divided into k s~ibcolumns, each corresponding to one

distinct value in the attribute. For example, GPA is divided into 4 subcolumns: poor, avg,

good, exclnt, each corresponding to one distinct value in GPA.

Age
1625 2630 >30
10 20 20
140 60 0
150 80 20

Sex
M F
40 10
120 80
160 90

Birthplace
Canada USA Asia Europe
30 5 10 5
130 40 30 0
160 45 40 5

The table contents are derived from the prime relation as follows. Each slot in the table

(except for the last row) corresponds to the number of occurrences of the corresponding val-

ues in the prime relation. For example, the slot for "grad' and "good (GPA)" corresponds to

the number of grad's with good GPAs, that is, the summation of all the votes of those rows

with Status = "grad" and G P A = "good" in the prime relation. The special column vote

registers the number of occurrences of the corresponding class in the relation. For example,

50 in "grad' indicates that there are in total 50 gra,duates in the prime relation. The special

row total summarizes the total number of occurrences with each feature in all the classes.

For example, total = 160 in the column " S e x = A I " indicates that there are totally 160

male students computed in the prime relation. 0

In general, we have the following algorithm for the extraction of a feature table from a

prime relation.

Algorithm 3.2 Extraction of tlze feciture table TA for an attribute A from the prime relation

R' .

Input: A prime rela.tion R' consists of (i) an attribute A with distinct values { a l , ..., a,),

(ii) k other attributes B1, ..., Bk (suppose different attributes have unique distinct values),

and (iii) a special attribute, vote.

Output. The feature table TA for the attribute A.

Met hod.

1. The feature ta.ble TA consists of nl + 1 rows and 1 + 1 columns, where 1 is the total

number of distinct values in all the k attributes. Each slot of the table is initialized

2. Each slot in TA (except the last row) is filled by the following procedure,

for each row r in R' do {

for each attribute B; in R1 do

TA[r.A, r.B;] := TA[r.A, r.BJ + r.vote;

TA[r.A, vote] := TA[r.A, vote] + r.vote; }

3. The last row p in TA is filled by the following procedure:

for each coluinn s in TA do

for each row t (except the last row p) in TA do

TA[P, S] := TA[P, s] -t T A [~ , s];

Remark. Algorithm 3.2 correctly registers the number of occurrences for each general fea-

ture in the prime relation R'.

Reasoning. Following the algorithm, each tuple in the prime relation is examined exactly

once with every feature registered in the corresponding slot in the feature table. Their

column-wise summation is registered in the la.st row.

The extracted feature table ca,n be used to derive the rela.tionships between the classi-

fication attribute a,nd other attributes at a, high level. For example, a rule, all the TAs are

graduate students, ca.n be extmcted from Table 3 based on the fact that the class grad takes

all the Is TA count. The table is especially useful for extra.ction of multiple, statistical rules.

For example, from the first row gmd a.nd the first major column Sex, we have:

which indicates that SO% of graduate (cs) students are male and 20% are female.

In general, the following algorithm is summarized for the extraction of generalized rules

from a feature table.

Algorithm 3.3 Extraction of generalized rules from the feature table TA.

Input: A feature table TA for the attribute A, where A has a set of distinct generalized

values {al, ..., a,). Another attribute B in the table has a set of distinct generalized values

{bl, ..., b,). The slot of the ta.ble corresponding to the row with the value a; and the column

with the value b j is referenced by TA[ci;, hi].

Output. A set of generalized rules relevant to A and B extracted from the feature table.

Met hod.

1. For each row a;, the following rule is generated in relevance to attribute B, which

presents the distribution of different generalized values of B in class a;.

~ (x) - b~[pi l] V V bn[pin].

where pig is the probability that the value bj of B is in class a;, which is computed

by,

p;j = TA[ai, bjJ/TA[~;, vote] .

2. For each column bj, the following rule is generated in relevance t o all the classes,

which presents the distribution of the generalized value bj of B among all the classes.

bj(x) -+ ~ ~ [q l j] V ..- V am[qmj].

where q;j is the proba.bility t1ia.t the value b, of B is distributed in class a; among all

the classes, which is computed by,

q;j = TA[ai, bj]/TA[totnl, bj]. 0

Remark. Algorithm 3.3 correctly generates relationships between two attributes A and B

at a high level using the feature table.

Reasoning. Algorithm 3.2 shows that the feature table registers all of the number of

occurrences of each feature and two specific properties, total and vote, in each class. The

above algorithm extracts generalized rules from each column and each row in the feature

table by computing the proportion of the number of occurrences of each generalized feature

vs. its corresponding total number of occurrences in each row or each column.

Experiments on the NSERC Grant Informa-

tion Database

Based upon the attribute-oriented induction technique, a prototyped experimental database

learning system, D B L E A R N , has been constructed. The system is implemented in C with

the assistance of UNIX softwa.re packages LEX a,nd YACC (for compiling the D B L E A R N

language interface) and operates in conjunction with the SyBase DBMS software. A database

learning language for D B L E A R N is specified in an extended BNF grammar. The archi-

tecture of the system is shown in Figure 3.3. In the learning process, the DBLEARN system

first accepts the user's request through the user-interface. Based on the specified learning

task, the DBLEARN system obtains the releva.nt data from a database and the relevant

concept hiera.rchies from a file. The leaaning program performs attribute-oriented induction

t o extract generalizecl rules. After learning is performed, the learning result is reported t o

the user through the user-interface.

User Lear~~ing

I Learning Program
I I

1):ttabase 1)ah Concept Hierarchy

Figure 3.3: The architecture of DBLEARN.

3.4.1 The Database

Experimentation using DBLEARN has been conducted on a real database, the Grants In-

formation database, which contains the information about the research grants awarded by

NSERC (the Natural ,Sciences nnd Enginee~.iny Resetrrclz Council of Canada) in the year

of 1990-1991. The central table Awml in the database is made up of tuples each of which

describes an award by NSERC to a researcher. The fields constituting each tuple specify

the different properties of the award, including the name of the recipient, the amount of

the award and so on. In the schema diagram shown in Figure 3.4, nodes representing the

properties of awards are rcprcscntctl hy nodes linked to the dward node.

There are a number of subsidiary t,ables which record details about some of the prop-

erties of awards, (e.g., the province of the organization in which the recipient is to carry

Figure 3.4: The NSERC database schema.

out the research). Most subsidixy tables are used simply to associate a code denoting a

particular entity to phrases describing the entity. In the schema diagram, table are specified

by rectangu1a.r nodes.

3.4.2 Background Knowledge

Recall that the background lmowledge in DBLEARN is represented by a set of concept

hierarchies. In each hierarchy, the most general concept is the null description (described

by a reserved word "ANY"), aad the nlost specific concepts correspond to the specific val-

ues of attributes in the data.ba.se. Figure 3.5 shows the concept hierarchy for provinces in

Canada, where A c B indica.tes tlmt 13 is a, generalization of A. Notice that the superordi-

nate concepts for 3 provinces B.C., Ontcr.rio, and Quebec remain ungeneralized since these

3 provinces take most of research grants and it is our intention to distinguish these 3 from

other provinces.

{BritishColumbia) c B.C.
{Alberta, Saskatchewan, Manitoba) c Prairies
{Ontario) C Ontario
{Quebec) c Quebec
{NewBrunswick, NovaScotin, New f ozindland, PrinceEdward-Island)
c Maritime
{B.C., Prairies, O~ztario, Quebec, Maritime, Others) c ANY(province)

Figure 3.5: A concept hierarchy for a t t r ibu te province.

ANY

A n A
British-Col. Alb. Sask. Man. Ontario Quebec N.B. N.S. NFL PEI

Figure 3.6: A concept hierarchy before adjus tment .

Other concept hierarchies, such as (1 ... 19,999) C 1-20K, (20,000 ... 39,999) C 20-40K,

..., (26000 ... 26499) C A1 (where 26000, ... and 26499 represent NSERC discipline codes),

are also stored in the concept hierarchy table.

The concept hierarchies were first constructed by domain experts. However, a concept

hierarchy can be adjusted autolnatically in DBLEARN based on clustering behavior and

database statistics. A concept hierarchy for provinces in Canada provided by a domain

expert or a user could look like Figure 3.6.

The automatic adjustment is perfol:med by first obtaining the distribution of attribute

ANY

Figure 3.7: A concept 11iera.rchy a.fter a,djustment.

A
values in the da,tabase and then spliting or merging node/nodes in order to make the number

of tuples covered by each node in the same level of the hierarchy even. After the adjustment,

the hierarchy in Figure 3.6 looks like the one shown in Figure 3.7.

A

3.4.3 Experiment a1 Examples

British-Col. Alb. Sask. Man. Ontario Quebec N.B. N.S. NFL PEI

Many learning requests have be posed to this database during our experimentation. Inter-

esting knowledge rules/relatioiisl~ips about NSERC reseach grant awards in relevance to

geographic location, rescarclz areas, etc. liavc been discovered by our experimentation. One

such experimental example is illustrated as follows.

Example 3.4 Let tlze qrrery be to cliscoeier u characteristic rule for NSERC support of

operating gra,nts for A I (Artificiul Intelligeizce) resecidzers in relevance to the geographical

locations, the number of grtl7zt.s nncl the cimount distribution of tlze grants in 1990 to 1991.

The learning tusk is presented in D B L E A R N us follows.

learn characteristic rule for disc-code = "AI"

f rom award

wheregrant-code = "011ert~ti12g-Grants"

in relevance to amozimt, province, prop(vote), prop(amount)

Notice that prop(uttribute) is a built-in f~inction which returns the percentage of the

summation of the attribute value in the generalized tuple divided by the summation of the

same attribute va.lue in the whole generalized rehtion.

When the query is posed to the system, relevant data are collected by data retrieval

from the Grant Information Database. Then attribute-oriented induction is performed on

the collected data.. The learning result of the query is presented in Table 3.4. The row

"Amount = 20-401<, G'eo-Area = B.C., prop(#-ofigrants) = 12.7%, and prop(amount) =

16.3%'' indicates that for the Operating Grants in A1 in the amount between $20,000 and

$39,999, B.C. resea.rchers take 12.7% of the t,otal number of grants and 16.3% of the total

amount of grants. The last row contains the sumnary informakion of the entire generalized

relation. Some negiligible proportion (about 0.2%) of the A1 operating grants scattered

across Canada are ingored in the table. Thus, the total number of grants in the table takes

99.8% of the total available A1 opera.ting gra,nts.

Notice t11a.t the relationships between amount-category, geo-area, number-ofgrants,

amount-of-grants, etc. can be also presented in the pairwise form, when necessary, using

the extracted prime relation. The system interacts with users for explicit instructions on

the necessity of such a presentat,ion.

I Discipline = "AI" I grant-code = "Operating Grant" I
Amount

1 -20M
I 1 2 0 K I

I I I

Geo-Area
B.C.

Prairies 1 15.5%

40-60K
>60K

Ta,ble 3.4: Genera.lizec1 relation for A1 Operating Grants.

10.3%

1 $1,464,250 1 Canada I I - I I

The performaixce of the DBLEARN syst,enl is satisfa.ctory. The average response time

of the above query (including the SyBa.se da.ta. retrieval time) is about 20 seconds on an

IPX SPARC worl~sta~tion.

prop(# -of -grants)
5.6%

0nta.rio
Quebec

99.8%

We present two more experirnenlal examples as follows, which give some interesting

results and show how DBLEARN worlts in some complicated cases.

prop(amount)
4.1 %

9S.9%

Example 3.5 Let the q w r y Oe to discover u charci~cteri.stic rule for NSERC support of

operating grunts for conzputer science reseurclzers in relevame to the geographical locations,

the number of grants o n d the anaoernt distribution of the grants in 1990 to 1991. The learning

task is presented in D B L E A R N as follows.

4.2%
1.4%

11.3%
4.2%

learn characteristic rule for "CS Operating Grants"

from award A , organization 0, grunt-type G

where 0,org-code = A.org-code and G.grunt-order = "Operating-Grants"

and A.grunt-code = G.gmnt-code and A.disc-code = "Computer"

in relevance to amount, province, prop(vote), prop(amount)

using table threshold 18

Interacting with the user who issucd the query, DBLEAltN generates a feature table for

attribute amount showll in Table 3.5. Multiple statistical rules can be extracted from this

table. Two examples are shown as follows.

V(x) BC-CS-Operating...Grunts(x) +--

(amount = 0 - 20I{.s[52.174%])~ (anzount = 20Ks - 40Ks[37 .683%])~

(amount = 40Ii's - 60I i s [8 .697%])~ (amount = 40Ks - 60Ii's[1.446%])

V(x) Prairies-CS-Operuti~zg-Grc~nZs(z) c

(amount = 0 - 201irs[59.97%])~ (umount = 20Ii's - 401trs[37.683%])~

(amount = 40Ii's - 60Ii 's[1.446%])~ (n.rnount = 40Ks - 60Ii's[1.891%])

Example 3.6 Let the query be to discover a discriminant rule for NSERC support for

computer science reseuc1zer.s in Onturio in contrast to that in ATewfoundland , which is in

relevance to the discipline, tlze grcml type and tlze anaount of grant. The learning task is

presented in D B L E A R N as follows.

learn discriminant rule for 'COnt-Gra~zts"

where 0.province = "Ontario"

amount

0-20Ih

Table 3.5: An amount feature table.

province
B.C. Prairies Ontario Quebec Mari t ime

3 6 4 0 119 6 7 33
20Ks-401<~
4OKs-60Ks

60Ks-
Tot a1

in contrast to "Ne~ufoundland-Grants"

where 0.province = "Neulfoudlcrnd"

from award A , organimtion 0, grunt-type G

where A. grant-code = G. grcmt-code and A. org-code = 0. org-code

and A .disc-code = "Computer"

in relevance to disc-code, grunt-order, amount

26 2 6 6 2 25 5
6 1 25 5 0
1 2 6 1 0

69 6 9 212 98 3 8

Since the task is to learn a discrinlirlant rule, two data sets should be first retrieved by

relational operations: (1) the target c1a.s~: the gra.nts awasded to Ontario computer science

researchers, and (2) the contmsting cla,ss: the grants awarded to Newfoundland computer

science researchers.

Generalization is performed synchronously in both classes. The prime relation is shown

in Table 3.6. Overlapping tuples are marked by "*".

After excluding the properties that overlap in both classes in the prime relations, a final

generalized rela,tion is generated as shown in Table 3.7.

Computer
Computer
Computer
Computer
Computer
Computer
Computer
Computer
Computer
Computer
Computer
Computer
Computer

Learning Concept grant -order

Operating-Grants
Operating-Grants

0 t her
0 t her

Operating-Grants
Other
O t her

Strategic-Grants
Opera,ting-Grants
Strategic-Gra,nts
Operating-Grants

0 t her
Other

disc-code L amount

0-20%
20I<s-4OKs

0-20Ks
20Ks-40Ms
40Ks-60Ks

6OI<s-
40I<s-60Ks

6OIh-
GOI<s-

40Ks-60Ks
0-2OKs
0-20Ks

20Ks-40Ms

-

-

votes mark

119 *
62
10 *
10 *
25
7
5
8
6
1
9 *
1 *
1 *

Table 3.6: A prime relation for both the ta,rget and the contrasting classes .

disc-code

Computer
Computer
Coinpu ter
Cornpu ter
Computer
Computer
Computer

Table 3.7: A final generalized relation.

grant-order

Operating-Grants
Operating-Grants

Other
0 t her

S trategic-Grants
Operating-Grants
S tra tegic-Grants

amount

20Ks-40Ks
$OMS-GOKs

GOKs-
4OIi's-GOKs

60Ii'~-
GiOKs-

4OKs-6OKs

votes mark

62
25
7
5
8
6
1

CHAPTER 4

A Data Model for

Knowledge-Rich Databases

4.1 Definition

As an extension to the logic da,ta. model proposed in deductive database research [56], a

knowledge-rich data model is constructed for databases with both deduction and knowledge

discovery ~apa~bilities.

Definition. A knowledge-rich database (I i D B) consists of six components: (1) Schema,

a knowledge-rich database schema.; (2) EDB, an extensional database; (3) IDB, an inten-

sional database; (4) I-I, cr set of concept hicmrclzies; (5) GDB, a generalized database; and

(6) K D T , a set of kizowlerlge d i scove~y tools , defined as follows. Ii'DB = {Schema, EDB,

IDB, H, GDB, II'DT).

Schema, a knowledge-rich clatabase schema , describes the general structure and or-

ganization of KDB including (i) physical and virtual entities, attributes and relation-

ships, and (ii) the organization of rules, integrity constraints and concept hierarchies,

based on a deductive entity-relationship data model [28].

E D B , an extensio~zal database , consists of a set of predicates, each corresponding to

an extensional data relation.

IDB, an intensional datcr.ba.se , consists of a set of deduction rules and integrity

constraints (ICs).

H, a set of concept hiercrrclzies , specifies ta.xonomies of concepts on top of primitive

data in extensioilal and intensional databases.

0 G D B , a generu.lizec1 du,tc~ba.se , consists of a set of generc~Jized rules which summarize

the regularities of the da,ta at a high level.

KDT, a set of knowledge discovery tools , performs knowledge discovery efficiently in

databases, when necesmry.

The first component, Scizerizcl , follows from a deductive entity-relationship data model

[28] which extends aa entity-rela.tions11ip model [10][55] to incorpora.te rules, integrity con-

straints and complex data. objects for deductive dahbases. The second and third compo-

nents, EDB and IDB , are the same a.s in deductive databases [56] except that IDB rules can

be defined by some nonprilnitive da.ta as well. Notice that a. rule (or an integrity constraint)

in the IDB can be first discovered by a, lmowledge discovery process and then be recognized

and stored in the IDB a.s a reguhr rule or integrity constraint. I-Iowever, once a discovered

regularity is recognized and stored, it will pla,y the same role a.s the originally defined one,

which means tl1a.t any data in the EDB viola.ting this constraint have to be discarded first.

Thus, we assume that all of the rules in IDB axe defined ones.

The last three components, 13, GDB and KDT , are the newly introduced knowledge

discovery components which are used to incorporate discovered knowledge and knowledge

discovery in databases.

H , a set of concept hierarchies , represents the relationships among concepts a t dif-

ferent levels. The inforlnation about concept hierarchies can be provided by knowledge

engineers or domain experts or be discovered automatically or semi-automatically using

knowledge discovery tools ba.sed on the statistics of data distribution in databases and the

relationships among different attributes [Xi?]. Many concept hierarchies are implicitly stored

in the database. For esample, the hieraachical relationship among "city ", L'province " and

"country " attributes are usually stored in the database and can be made explicit a t the

'schema level by indicating a pa.rt-of-hieraachy, "city C province C country". It is realistic

t o have some concept hieraschies provided by knowledge engineers or domain experts even

in a large da.tabase systern since a concept Ilierarchy registers only the distinct discrete

attribute values or rcr.n!ges of nunierical values for an a.ttribute, which is, in general, not

very large. Further, by providing diflerent concept hierarchies, users or experts may have

preference t o control the knowledge discovery or intelligent query answering processes.

GDB , the generalized clatu.bc~se , is another important colnponent in the knowledge-

rich database. Since there a,re usually a very large set of generalized rules which can be

extracted from any interesting subset of da.ta in a, da.taba.se by performing generalization

in different directions, it is unrealistic to store all of the possible generalized rules. How-

ever, it is often useful to store some generalized rules or irltermediate generalized relations

in the GDB based upon the importance of the knowledge and the frequency of inquiries.

The stored generalized rules are useful for querying database knowledge and semantic query

optimization. Notice that a stored generalized rule should be incrementally updated after

the updates of the relevant data set in order to preserve its correctness. This can be per-

formed by an incremental learning algorithms provided in knowledge discovery tools [18][24].

The last component, ICDT , consists of a set of knowledge discovery tools , which could

be a set of knowledge discovery algorithms or a database-oriented knowledge discovery sub-

system, such as INLEN [3 5] , KDW++ [lg], DBLEARN [24], etc. Since a knowledge-rich

database stores only a. small portion of all of the possible generalized knowledge, it is often

necessary to evoke a linowledge discovery process dynamically a,nd extmct general regularity

from a specific set of data relevant to the query. The KDT tools can be used for on-line

knowledge discovery and intelligent query answering.

4.2 An Example

The university database presented in Example 4.1 is an illustrative example of such a

knowledge-rich databaae.

E x a m p l e 4.1 Let a ~iniriersity $atribuse be modeled by n deductive entity-relationship model

in which the eztensiorzwb datnbase (EDB) is mapped to a relational-like schema presented in

Figure 4.1, where Cnum stands for course number , T A for tea.ching assistant , and GPA

for grade point average .

Course (Cnum, Title, Semester, Department, Instructo~; TA, Enrollment, Time).
Professor (Pname, Department, Salary).
Student (Sname, Status, Sex, Majo~; Birth-date(Day, Month, Year),
Birth-place (Cit y, Province, Country), GPA).
Grading (Student, Course, Grade).

Figure 4.1: Sclieina of t h e University database.

The concept hierarchies defined in the database a.re shown in Figure 4.2. The first three lines

imply that the primitive data, for S t a f w s is { f reshnzciiz, ..., Plz. D.), and their corresponding

high-level data. is u.ndergrciducrtc or grod~rute respectively. The entry "Birth-place(City C

Province c Country)" inclica.tes t11a.t the concept hierarchy for the attribute Birth-place is

given by the data, stored in the relation Student according to the part-of hierarchy: City,

Province and Country. For example, a tuple,

Student(Tom-Jackson, ..., Birth-~~lace(Vuncouver, BC, Canada), ...),

indicates that Vancouver is a part of British Columbia (BC), which is in turn a part of

Canada, in the concept hierarchy for Birth-place.

Notice that there are many different liilld~ of hierarchical relationships among data in

a database, such as part-of, is-a, subset-of, etc., which may play different roles in concep-

tual analysis. The different semantics among concept hierarchies are not essential in the

knowledge discovery algorithm itself since different concepts are generalized to their cor-

responding higher level concepts by Sollo\ving their corresponding concept hierarchies in a

similar manner in the generalization proccss. However, such semantic differences will be

important in the analysis of query intent and provision of intelligent answers.

{ f r e s h m a n , sophomore, junior , sen ior) c undergraduate
{M.S., M. A., P h . D .) c gi-aduate
{undergraduate , graduate) c A N Y (s t a t u s)
{biology, c h e m i s t r y , coinputing, .. ., physics) c science
{ l i t e ra ture , m u s i c , ..., pain.ting} C art
{science, a r t } C A N Y (m a j o r)
(0.0 N 1.99) C poor
(2.0 N 2.99) c average
13.0 3.49) C good
(3.5 N 4.0) c excellent
{poor, average, good, excel lent) c A N Y (G P A)
B i r t h p l a c e (C i t y C Province C Cotinti-y).
B i r th -da te (Day c M o n t h c Y e a r) .

Figure 4.2: A concept hierarchy table of t h e database

IDB rules are defined on top of EDB predicates. For example, award-candidate and

pre-requisite are two IDB predicates defined as follows.

(la) award-canclidale(A~cr.nze) -
status(X) = gruduate, gya(A7ame) 3.7'5.

(l b) award-cuodirlate (Nanze) -
status(X) = ~~i?,dergrc{,duete, gpci(Nume) >_ 3.5.

(2a) pre-requisite (Course, Pre-reqziisite-co.1rrse) t

pre-requisite (Course, he-requisite-course).

(2b) pre-requisite (Course, Pre-requisite-cotirse) +--

pre-requisite (Course, Required-course), pre-requisite (Required-course, Pre-requisite-course).

Let the following generalized rules be extracted by knowledge discovery tools from EDB

and stored in GDB.

50

(1) All of the teaching assistunts [ire gruduade students.

s E Student and c E Course and c. TA = s.Sna,me + s.Status = "graduate".

(2) Every teaching assistunt lzns c1 good or excellent grade point average.

s E Student and c E Course and c.TA = s.Sname -,

s.GPA = { "excellent") .

Our study on intelligent query answering inechailisms in next chapter will reference this

database substantia.lly.

CHAPTER 5

Intellegent Query Answering in

Knowledge-rich Databases

We now introduce a unified framework for answering data and knowledge queries in a

knowledge-rich database. The study is performed on intelligent query answering with the

focus on the applica.tion of discovered knowledge, concept hierarchies, and knowledge dis-

covery tools t o intelligent query answering in database systems.

5.1 Four Basic Categories of Query Answering

Mechanisms in Knowledge-Rich Databases

In a knowledge-rich da.ta.ba.se systern, there may exist two kinds of queries, data queries and

knowledge queries , where a, data query .is to find concrete data stored in databases, which

corresponds to a basic retrieval statement in a database system ; whereas a knowledge

query is t o find rules and other kinds of knowledge i n the database, which corresponds to

querying database knowledge [45] including deduction rules, integrity constraints, generalized

rules and other regularities , For example, "retrieving all of the students who took the

course CMPT-459 in 1992 " is a data query; whereas "describing the general characteristics

of those students " is a lillowlcdge query. Furthermore, it is often desirable t o provide

intelligent and assisted answers to queries besides (or instead of) direct retrieval of data

and knowledge. Thus, query answering mechanisms in a knowledge-rich database can be

classified based on their responses to queries into two categories: direct query answering and

intelligent (or cooperative) query answering . Direct query answering is a direct, simple

retrieval of data or k~zowledg/e from the knowledge-rich database ; whereas intelligent query

answering consists of u,nalyting the intent of query and providing generalized, neighborhood

or associated information relevant to the query [Ill. For example, simple retrieval of the

names of the students who take the designated course is direct query answering t o the above

data query; whereas sulnmarizing the characteristics of those students, such as "90% of them

majored i n compt ing science a,nd took CMPT-359 as prerequisites ", provides an intelligent

answer to the sa.me &tam query. Therefore, there are four basic combinations of queries and

query answering mecha.nisms:

DD (Data query - Direct answering): direct answering of data queries;

DI (Data query - Intelligent answering): intelligent answering of data queries;

KD (Knowledge query - Direct. a.nswering): direct answering of knowledge queries;

and

0 KI (Knowledge query - Intelligent. answering): intelligent answering of knowledge

queries.

In this chapter, query answering mechanisms are examined in each of these four categories.

5.2 Direct answering of data queries

Direct answering of data queries corresponds to direct data retrieval in knowledge-rich

databases. Traditional query processing in relational and deductive databases belongs t o

direct answering of da.ta queries.

Data in a knowledge-rich da.ta.ba.se a.re cla.ssified into primitive data and high-level data.

The former are actual data stored in data relations and, if appearing in some concept hi-

erarchies, correspond t o the primitive level (i.e., leaf) nodes of the hierarchies; whereas the

latter are nonprimitive data subsuming primitive ones and residing a t the nonprimitive level

of concept hierarchies. Correspondingly, a primitive-level query is a query whose constants

involve only primitive data; whereas a high-level query is a query whose constants involve

high-level data. A primitive-level dntu query can be processed directly using relational and

deductive query processing techniques.

A high-level data query can be processed in two steps. First, a query rewriting pro-

cess can be performed to rewrite the query into one or a set of equivalent primitive-level

data queries by substituting ea.ch high-level concept in the query with a set of or a range

of its subordinate primitive-level concepts by consulting concept hierarchies in the KDB.

Second, each rewritten query is then fed into a relational or deductive query processor for

processing. Answers shoulcl be returned a t the primitive level. Presentation of answers a t a

nonprimitive level, when desired, is considefed as a task of irztelligent query answering and

will be discussed in the next subsectioiz. One example of a high level query is illustrated

below.

Example 5.1 To find the gra.dua.te students born in Canada, majoring in science, and with

excellent GPAs , the query cu12 be fornzulnted in a syntax siinilar to SQL as follows.

retrieve Name

from Student

where Status = ('gmdua.te" andMnjor = "science" andBirth-place = "Canada" and

GPA = ((excellent"

Notice that "yrnduate ", "science " and "excellent " are high-level concepts which are

not stored in the relation Student . Using the information stored in concept hierarchy H,

the query can be reformulated by substituting graduate with {M.S., M.A., Ph.D.), and

GPA = "excellent" with G P A 2 3.5 and G P A _< 4.0 , etc. The rewritten query can be

answered by direct data. retrieval.

5.3 Intelligent answering of data queries

Intelligent answering of data, queries refers to the mechanisms which answer data queries

cooperatively and intelligently. Intelligent query answering is accomplished by analyzing

the intent of a query and providing some generalized, neighborhood, or associated answers.

There are ma,ny ways for a data, query to be answered intelligently, including generalization

and summariza.tion of answers, explanation of answers or returning intensional answers,

query rewriting using associated or neighborhood information, comparison of answers with

those of similar queries, etc. Several mechanisms for intelligent answering of data queries

using (generalized) database knowledge are examined.

5.3.1 Analysis of the intent of a query

To answer a query intelligently, the first important step is to analyze the intent of the query,

determine whether it is necessary to provide assistcd answers, and if it is, what kind of assis-

tance should be provided. Such an analysis should be based on the available or discovered

knowledge about database, queries, and users. Since a large volume of linowledge may exist

or can be discovered in a database, one may often find that there exist too many "intelli-

gent" ways to associate a query with the available or discoverable database knowledge. It is

crucial to have knowledge about user's background and the role that he/she plays in order

to understand user's intention, avoid superfiuous answers, and provide users with quality

assistance.

When posing a query, different users often have quite different intentions. For example,

when asking the highest monthly ba1a.nce of an account, a customer and a bank manager

likely have different intentions. Therefore, an important task of query intent analysis is

user modeling , which amlyzes the user's background and intention and constructs different

models for different classes of users.

Several interesting methods for query intent analysis lmve been developed in the studies

on intelligent query answering [33][34][44][11][54]. Such analyses are based on the notions of

generalization, association, aggregation, concept clustering, etc. Semantic da ta modeling,

classification of topics of interests , and plan analysis and formation are powerful techniques

for query intent analysis [34][44][11][54], which can be applied t o the analysis of query intent

in the KDB.

Since the l<nowledge-rich database is constructed based on an extended (deductive)

entity-relationship model together with the deductive and knowledge discovery components,

the new components provide powerful support for query intent analysis. Considering an air-

line reservation system as a.n emmple, the method for query intent analysis in the KDB is

outlined as follows.

1. D a t a classification a n d concept c lus ter ing : Based upon the extended entity-

relationship model of the system, entities, relationships, attributes and specific condi-

tions can be cla.ssified a.nd clustered. For exa.mple, departure time and arrival time can

be a~socia~ted with time-ta.ble, a.irports can be clustered a.ccording to some local dis-

tance, etc. The da.ta. cla.ssification a.nd clustering task is facilitated by the availability

of concept hierarchies a.nd knowledge discovery tools.

2. User mode l ing : Based upon user's professional position (e.g., manager, clerk,

business customer, tourist, etc.), confidence level (e.g., eligibility of accessing some

sensitive data), a.ccessing history (e.g., frequent flyer, business class traveler, being

interested in some particula.r airlines, new customer, etc.) or other related informa-

tion, a user can be associa.tecl with a particula,r user category built in the system. The

linkage between a category of users and a class of preferred concepts or entity sets

is constructed by experts in the development of intelligent query answering system.

With the availamble knowledge-rich da.ta. model and knowledge discovery components,

users can be naturally categorized into some high-level user classes (e.g., luxury, econ-

omy, or regular classes for travelers) and be associated with a set of high-level concepts

(e.g., the traveler's major interests expressed a t a high concept level) to assist query

intent analysis.

3. Q u e r y classification : A query can also be classified into different categories accord-

ing to the query condition and the information to be inquired. For example, queries

on travel plan can be categorized into long distance travel, short distance travel, etc.

according to the conditiolls given in the query, or categorized into general browsing,

detailed examina.tion, ticket booking a.ccording to query actions. A query class can

be linked with certain user ca,tegories, generalized concept classes and transformation

rules t o guide appr~pr ia~ te intelligent query answering for particular classes of queries.

4. T r a n s f o r m a t i o n r u l e specification : A set of transformation rules can be specified

by experts based upon user category, query category, concept hierarchies and the

relationships among high-level entities, attributes, and conditions. For example, if

a user is in the category of tourist and new customer, the cost could be of a major

concern at flight hooking, and the information about low airfares could be of major

interest. Such heuristics can be specified as transforination rules t o guide intelligent

query answering.

Query intent analysis ca,n be performed by systematically applying techniques of user mod-

eling, concept classification and clustering, query classification and transformation. Further,

the constructed models and transformation I-ules should be testified by experiments and be

tuned according to their effectiveness in intelligent query answering and the feedbacks from

users[21][14]. The query rewriting and a.nswer transformation processes discussed below are

directed by the results of query intent a,nalysis.

5.3.2 Query rewriting using associated or neighborhood in-

format ion

Direct data retrieval may not always find enough answers for a user. Furthermore, a user

may like to know more information than the direct answers to a query for decision making.

Therefore, it is often useful to provide associated or neighborhood answers to a query. As-

sociated query answering can be performed by (1) presenting the information about some

additional attributes which are not directly inquired but are relevant to the query ; (2) re-

laoation of certain query corzditio12.s. ; and (3) ncldiny an alternu.tive query which is closely

related to the originar! one [ll].

Let the answer set be viewed as a relation t a l k Three nzeclza,nisms can find their corre-

sponding relational tra.nsforma,tions: width-extension, height-extension , and table-extension

a Width-extension : The first case (a.ddition of relevant attributes) can be viewed as

extension of the width of the answer table by a.dding some closely related attributes

to the table. For example, an inquiry on the arrival time for air-flight booking can be

answered by returning also the depa,rture time and the possible transfer time, as well.

Height-extension : The second case (relaxation of certain query conditions) can be

viewed as an extension oi' the height of the table. For example, an inquiry on the

available flights for a.ir-flight booking ca,n be answered by relaxation of the maximum

dollar restriction, flight-lime restriction, a.irline selection restriction, etc.

0 Table-extension : The third case (answering a,n alternative query) can be viewed

as an extension of the answer table or a switch to a similar table. For example, an

inquiry on the available flights for air-flight booking can be answered by returning the

flights t o a neighborhood arrival or departure airports, or even a suggestion of other

means of transportation, such as by train, ferry, or bus, depending on the distance,

time and cost of the transportation, etc.

Query rewriting rewrites a query according to the intent of the query. Clearly, query in-

tent analysis plays an important role in the selection of appropriate extensions. For example,

the selection of associaked additional attributes (as width-extension) should be determined

by analysis of the semantics of the query a,nd the a.ssociated attributes a t the higher concept

level, and the selection of rela.set1 constraints (as height-extension) should be based on the

analysis of query semantics a.nd the role of query constraints.

Query rewriting can be implemented by mapping query constants to an appropriate level

via generalization or specialization and mapping a query to a neighborhood one by providing

with additional, associated or neighborhood information. The knowledge discovery compo-

nents, which specify or discover generalization, aggregation, neighborhood, or association

relationships among da,ta in the database, provide importa.nt assistance in the analysis of

query intent and in the rewriting of queries into their alternatives based on hierarchical or

neighborhood relationships.

Example 5.2 Consicler a query to find the n a n m of the teadzing assistants of database

courses in the University dutnbase. The query tun be rewritten in the following ways.

1. table width extension : e.g., providing more information about the teaching assistants,

such as their GPA, courses-taken, teaching experience, etc.

2. table height extension : e.g., providing teaching assista,nt information for other related

6 0

courses, such as other computing science courses.

3. table extension : e.g., providing other relations, such as information about research

assistants and project a.ssistants in computing science if the user is a graduate student

and the time is the beginning of a new semester (a job hunting season).

Obviously, the success of a query rewriting depends on the query intent analysis and the

availability of associated, generalized and neighborhood information. Such information may

exist in concept hierarchies or discovered knowledge rules or can be discovered by knowledge

discovery tools.

5.3.3 Answer transformation and answer explanation

Together with the rewriting of queries, the set of mswers nmy also be transformed, ex-

plained, compared or suini-tmized in different ways for intelligent query answering.

5.3.3.1 Generalization and sunlmarization of answers

A database user ma,y be interested in general description or overall statistics of the answer

set to a query but not interested in the deta.iled answer set itself. Thus, a data query can

be answered by generalization a.nd summarization of the answer set, that is, by presenting

generalized data only, a conlbina,tion of generalized and primitive data, or a summarization

of concrete answers (possibly together with the presentation of concrete answers) using gen-

eralized data and database statistics. Such a process belongs to answer transformation .

Example 5.3 A query which inquires about the information of a student T o m Jackson in

the University database can be answered us 'Tom Jacl<son is an undergraduate student (a

concept at a level higher tlzan senior student), born in Canada (not mentioning the specific

city and province) in 1971 (not mentioning the specific date)". This is meaningful i f the

user (such as a university administrator) is concerned of the general information but not the

detailed one. Also, a query which inquires ''who have good or excellent GPAs in computing

science ?" can be answered intelligently in several ways: (1) "100% graduate students, 55%

senior students, and 25% junior students " (general, statistical information only), (2) "all

of the graduate students and the following undergra.duate students ... " (a combination of

generalized and primitive datn), (3) concrete answer (student names) plus a summarization

of the answers ut o high level, etc. 0

By presentation of general information or associating such information with concrete an-

swers, answers to a query can be presented in a general and concise manner, thus making

the implications of the answers better undesstood.

An important technique for answer transformation is the mapping between different lev-

els of data based on concept hierarchies . Constants in a query or answers t o a query can be

mapped up or down along a concept hierarchy depending on the semantics and the intent

of the query. A high-level query can be rewritten into a primitive-level one by mapping the

high-level data in the query to a set of primjtive data using concept hierarchies. Similarly,

a low-level answer set can be transformed into a high-level one by mapping a set of prim-

itive data in the answer set to a set of corresponding high-level ones according t o user's

need. The interactions between query conditions and rule bodies (conditions) also need the

data/constant mapping among different levels. For example, to examine whether a query

is relevant to a certain generalized relation, the query can be restated a t the same concept

level as that in the rule.

Another important technique for answer transformation uses lazy evaluation , that is,

providing rule bodies (conditions) without presenting the full answers set. Detailed and

concrete answers are provided only by further requests. Lazy evaluation as an intelligent

query answering mechanism has been studied in deductive database research [34][45][54][49].

Instead of returning the concrete answer set, the query answering mechanism instantiates a

deduction rule using query constants and returns the instantiated condition (body) of the

rule or a mixture of instantiated rule condition (body) and concrete da ta as the answers t o

the query. Assume that the generalized rule is also in the form of "head + body" .Lazy

evaluation can be perforincd by returning the body of a generalized rule if the query matches

the head of the rule. Besides directly using the available rules, generalized rules can also

be obtained by further generalization 011 the portion of an intermediate generalized relation

which matches the query conditions.

Furthermore, generalization and summarization of answers can be implemented by tak-

ing advantage of the available generalized information and ltnowledge discovery tools. If

there is a corresponding generalized rule, the processor returns the instantiated body of

the rule when the query matches the hex1 of the rule. If there is a corresponding interme-

diate generalized relation, further genera.liza,tion and summarization can be performed on

the portion of intermediate genera.lized data which ma,tches the query condition. Further

generalization may produce a generalized rule with a summary of statistical information

in terms of generalized concepts. Otherwise, when there is no corresponding generalized

information, generalization is performed by first retrieving the required answer set and then

performing generaliza.tion on the retrieved answer set using the knowledge discovery tools.

5.3.3.2 Answer explanation

Another intelligent query answering method is answer explanation , which explains the

answers to a query by presenta.tion of the associated rules, demonstration of the reasoning

process, or illustration of the general information[51][23][21]. The summarization of the

statistics of an answer set discussed above call also be employed as a technique for answer

explanation.

The following example demonstrates that it is often necessary to provide explanations to

the answers when the query condition follows or contradicts a rule or an integrity constraint.

Example 5.4 If a query condition follows or contraclicts a rule or an integrity constraint,

the query can be answered by presentation of the knowleclge (such as the rule) rather than

primitive data. Data retrievcr.6 is necesmry only if ihe direct presentation of primitive data

is explicitly required. For example, szrlq~ose there is a generalized rule, ('all of the teaching

assistants are graduate students". The query ''Find all of the undergraduate students who

are teaching assistants7? ca72 be answered by returning at2 empty set without accessing the

extensional database. However, it is user-friendly to also give an ezplanation by simply

presenting the rule itself'. Si171ilarly, if ('a11 of the teaching assistants have good or excellent

GPAs" is a generalized rule, the query "find all of the tea.ching assistants whose GPAs are

greater than 2.5", may r ~ t u r n "a.11 of the tea.ching a.ssista~its", together with the rule. Specific

teaching assistant m m e s are presented only zulzen the user requests for more details. 0

The process described above can be impleinented by testing of the query condition

against the rule for containment or contradiction. If the query passes the test, lazy evalua-

tion can be applied rather than returning detailed answers.

5.3.3.3 Answer conlparison

Queries can also be answered intelligently by answer comparison , which compares or

contrasts the general cllaracteristics of its answers with some similar queries. Answer com-

parison may involve two steps: (i) rewriting a query into a neighborhood query, and (ii)

generalization, summarization and coinparison of two answer sets, one to the original query

and one t o the neighborhood query, a t a general level. The first step, rewriting a query

into a neighborhood query, can be performed by query intent analysis and substitution of

some query constant(s) in the original query by some similar concept(s) using the knowledge

about concept hierarchies. The second step involves leaaning characteristic and discrimi-

nant rules using 1~nowledge discovery techniques [24] which has been explained in Chapter 3.

Example 5.5 In answering the query, ('find all of the graduate students with excellent

GPAs ", it is interesting to find the undergraduate students with siinilar characteristics or the

graduate students with weaker GPAs nnd coiiapcr.re the general characteristics and statistics

between these answers. Such co~npurisons nmy lead to some interesting observations, such

as "more than 50% graduate students but only about 20% undergraduate students have

excellent GPAs ". 0

5.4 Direct answering of knowledge queries

A knowledge query is a statement which inquires about database ltnowledge, including

concept hierarchies, deduction rules, integrity constraints and general characteristics of a

particular set of data in a database. Direct answering of knowledge queries means that

a query processor receives a knowledge query and answers it directly by returning the in-

quired knowledge. Since IDB knowledge and concept hierarchy information are stored in

the database according to our assumption, a query on such lmowledge can be answered

by direct retrieval. However, the situation is different a t querying generalized knowledge.

A generalized database (GDB) usually stores only a small, but frequently used portion of

generalized ltnowledge. Thus, an inquiry on general knowledge should be answered by direct

retrieval only if the knowledge is available in GDB. Otherwise, the knowledge should be dis-

covered dynamically by a Imowledge discovery process, which has been discussed in detail

in Chapter 3. In general, a lmowledge query can be answered by consulting the concept

hierarchy, retrieving stored rules (if available) or triggering a discovery process.

Different syntactic specifications ca.n be adopted to distinguish lmowledge queries from

data queries. A data query is to retrieve the data elements that satisfy a condition ;

whereas a knowledge query is to describe the clatci eleinents that satisfy @ . Following the

notion proposed by Motro and Yuan [45], data. queries and knowledge queries are distin-

guished in syntax by starting the former with re t r i eve but the latter with desc r ibe .
Further, t o distinguish different types of knowledge being inquired, concrete keywords such

as generalized rule, cledu.ction rtrle, concept Aiemrclzy, integrity constraint , etc. can be used

after the keyword desc r ibe . Moreover, to query a discriminant rule which distinguishes

the general chara.cteristics of one class (ta.rglet class) from others (contrasting classes), the

following syntax is adopted: desc r ibe generalized ru le for relation which dist inguishes

target-class from contrasting-class where condition @.

Several knowledge queries are presented in the following examples.

Example 5.6 To find the deduction rule award-candidate for Canadian graduate students,

a query can be formuluted as beloru.

describe deduction rule c~~u~arcl~cctndi~late(candida.te)

where Status(candidute) = "gruduate" and Birth-place(candidate) = "Canada"

This query can be answered by direct retrieval of deduction rules. Notice that only the

condition, Status(cnndida.te) = "graduate" , matches the boody of a deduction rule for

award-candidate, which indica.tes that there is no further distinction on birth place in the

condition for an award cmdidate. Thus the rule (l a) is presented as the answer t o the query.

Example 5.7 To describe the chara.cteristics of the gradua.te students in computing science

who were born in Canada with excellent GPA , the query can be formulated as below.

describe generalized rule

for Student

where Statzts = ('grrr.rlua,te" and Mujor = "cs" and Birth-place = "Canada"

and GPA = "excellerzt "

Notice that the query represents a, high-level knowledge query since "graduate ", "Canada

" and "escellent" are not stored as primitive data in the University database. The query

67

can be answered by directly retrieving the discovered rule, if available, or by performing

induction on the relevant data set [24].

Example 5.8 To distinguish the chara,cteristics of the graduate students from undergrad-

uate students in computing science, born in Canada with excellent GPA , the query can be

formulated as below.

describe generalized rule for Student

which distinguishes Status = "graduate"

from Status = "undergraduate"

where Major = '(cs" and Birth-place = "Cunacla" and GPA = "excellent"

Notice that the query wishes to find a discrimina.nt rule which contrasts the general prop-

erties of the two classes. The rule can be discovered dynamically by a lmowledge discovery

process from primitive data. or from an intermediate generalized relation as illustrated in

Chapter 3. CI

5.5 Intelligent answering of knowledge queries

Intelligent answering of knowledge queries means that a knowledge query is answered in

an intelligent way by analyzing the intent of the query and providing generalized, neigh-

borhood or associated informa.tion. Simi1a.r to the intelligent amwering of data queries, a

knowledge query can be amwered i n many wa,ys, such as generalization and summarization

6 S

of answers, explanation of answers, query rewriting using associated or neighborhood in-

formation, comparison of answers with those of neighborhood queries, etc. The availability

of database knowledge and knowledge discovery tools enhances the power and efficiency of

intelligent query answering of knowledge queries. The ideas are illustrated in the following

examples.

Example 5.9 The knowledge query of Example 5.6, which is to find the deduction rule

award-candidate , can be answered in,telligently not only by returning the award-candidate

rule eligible to Cana$z'an graduate students but also by (i) providing an explanation that

both Canadian and foreign gruduate studen,ts slzcire the same condition for the award, (ii)

returning the award-candidate rule eligible for undergrc~duute students as well, or (iii)

returning other associated inform,ation, suclz as awad name, amount, application deadlines,

regulations, sunanzn.ry of award history, or stutis2icnl information, etc. 0

Example 5.10 The knowledge query of Eaample 5.7, which is to find the characteristics of

designated graduate students, cnn be answered intelligently by returning the characteristic

rule for Canadian grudua.te students with excellent GPA's, together with (i) the character-

istics of Canadiam gradua.te students ~oitlz di?rferent mrjors or weaker GPAs for comparison,

or (ii) an explanation of the reasons why suclz students got excellent GPA's. 0

Intelligent answering of knowledge queries can involve great complexity in query intent

analysis and demand sophisticated implementation techniques. Therefore, the efficient re-

alization of the underlying mechanisms is a.n interesting issue for future research.

5.6 Semantic query optimization using general-

ized knowledge

Semantic query optimization method applies database semantics, integrity constraints and

knowledge rules to query optimization [GI. Techniques have been developed for semantic

query optimization based on data.base semantics, deduction rules and integrity constraints

[6][36][38]. With the availability of concept hierarchies and generalized knowledge, new

techniques can be explored to en1ia.nce the power and applicability of semantic query opti-

mization.

A generalized rule can be t;rea.ted like a deduction rule or an integrity constraint in seman-

tic query optimiza.tion. Therefore, the techniques developed for semantic query optimization

in relational and deductive da,taba.ses [6][36][38] can be directly applied to knowledge-rich

databases with discovered knowledge. Furthermore, with the availability of concept hierar-

chies and generalized knowledge, query optimization using a generalized rule can be explored

for the query conditions which a.re subsuined by the rule body (condition) or the rule head

(conclusion) a,t a different level of concept 11iera.rchies. This is based on the following theo-

rem.

Theorem 5.1 (Condition specialization and conclusion generalization) Let a knowledge

rule be in the forin of

131 A P2 A ... A ZIi A ... A jIn + Q.

The specialization of a condition pi to pi and/or the yenemlizcition of the conclusion q to q'

based on that the iizfot'rnntion i,2 concept hierarchies will not change the validity of the rule.

That is,

p1 Apz A... Ap: A ... Apn + (1.

p1 A p2 A ... A pi A ... A pn + 9'.

Proof. Since p: is a specialization of pi, p: --t pi. Similarly, q --t q'. Based on the transitivity

property of logic rules, the above rules hold. 0

As a simple example for the theorem, if the GPA of every graduate student is greater

than 3.2 , then tlze GPA of eeiery M.,Sc. stuclent must be either good or excellent.

According to Theorem 5.1 and the principles of semantic query optimization in rela-

tional and deductive databa.ses [6][36][38], the sema.ntic query optimization techniques for

application of generalized lmowledge are presented a.s follows.

Q u e r y cond i t ion s u b s u m e d b y t h e r u l e b o d y (condi t ion) : I f a query condition

is subsumed by the body of a rule, the conclusion (head) of the rule applies .
For example, if there is a generalized rule: all of tlze teaching assistants for 400 level

courses are P12.D. s t d e n t s , then querying the sta,tus of a student who is assisting

459 will return "Status = Ph. D. " without searching the EDB. Further, the rule can

be returned as an explanation to the answer.

Q u e r y cond i t ion conflicting w i t h t h e r u l e conclusion : If some query con-

j u n c t (~) in a conjunctive query is subsumed by the body of a rule but some other

conjunct(s) conflicts with the 1zeu.d (conclusion) of the rule, the answer to the query

is empty .

For exa.mple, if there is a generalized rule: all of the teaching assistants are graduates

, then querying the courses which an ~ndergradua~te is assisting returns an empty set

7 1

without searching EDB. Also, the rule can be presented as an explanation.

0 Query conjunct elimination : If a query conjunct is implied by another condition

in the query, the query co~zjrrnct ca12 be removed from the query .

For example, if a query contains both ,S.Status = "M.Sc." and S.GPA > 3.0 , the

second conjunct can be removed from the query since it is implied from the first one

in the generalized rule.

0 Query conjunct introduction : If a query conjunct is subsumed by the body of a

rule, the head (conclusion,) of tlze rule can be introduced as a new conjunct to the query

if such an introcluction muy improve seu,rclz eficiency (e.g. exploration of indexing or

clustering properties of dn.tabuses, etc.) .

For example, to Jind ~1.11 of the foreign students mujoring 2'12 science with GPA between

3.2 to 3.4 , the query is subsumed by the body (condition) of a generalized rule in

GDB: all of' the foreign stuclents mujoring in science with a good GPA are graduate

students . The new conjunct, Status = "graduate" , can be added to the query. The

search can be improved if the tuples in Student are grouped or partitioned according

to Status .

0 Sharpening query condition . If some query conjunct(s) is subsumed by the body

(condition) of a rule, and tlze rule hend (conclusion) introduces a more selective condi-

tion than some query conjunct, then Ihe less selective query conjunct should be replaced

by the more selective one .

For example, if some query condition is subsurned by a generalized rule which con-

cludes that S.GPA = "ezcclle~it " (> .3.5), then a less selective query conjunct,

S.GPA '1 2.0, can be replaced by a more selective one.

0 Query in relevance only to generalized knowledge . If the conditions of a query

and its inquired information are relevant only to the generalized knowledge, it can be

answered by consulting the generalized knowledge only .

For exa.mple, a query, ''IIOIU many grclduclte students i n Computing Sciences were born

in foreign countries? ", can be answered directly by examining the corresponding

prime relation if it is stored in the GDB.

As a summary of the discussion, an algorithm is presented here, which explores semantic

query optimiza,tion using generalized rules.

Algorithm 5.1 Seinantic query optimization usin.g gerzera,lized rules.

Input : (i) A set of generalized rules R, (ii) a. set of concept hierarchies, H, and (iii) an

input data query q which consists of a set of conjuncts.

Output . A possibly optimized processing pla,n for query q.

Method .

1. Test whether there is a conjunct ci implied by another conjunct c j in the conjunctive

query q. If there is, remove c;.

2. Test whether some query conjunct(s) in a conjunctive query is subsumed by the body

(condition) of a rule but some other conjunct(s) conflicts with the head (conclusion)

of the rule. If it is so, the answer set is empty.

3. Test whether all of the (remaining) query conjuncts are subsumed by the body (con-

dition) of a generalized rule. If so, return the conclusion (head) of the rule as the

(intensional) answer to the query.

4. Test whether some of the query conjuncts are subsumed by the body of a generalized

rule. If so, examine whether the conclusion (head) of the rule may (i) sharpen a

conjunct in the query or (ii) reduce the search effort. If so, replace the conjunct by

the rule head (conclusion) in case (i), and add the rule head (conclusion) as a new

conjunct to the query in case (ii). CI

Remark. Algorithnz 5.1 co~rectly perforins senzantic query optimization using the rules

stored in GDB.

Reasoning. Step 1 corresponds to query conjunct elimination, Step 2 to query condition

conflicting with rude head (conclusion), Step 3 to query conclusion subsumed by rule body

(condition) and query in relevance only to genera.lized Knowledge, and Step 4 to sharpening

query condition and query conjunct introduction.

CHAPTER 6

CONCLUSIONS AND

DISCUSSION

6.1 Conclusions

In this thesis, a fra.mework has been presented for intelligent query answering in a knowledge-

rich database composed of deductive a.nd]<nowledge discovery components. A knowledge-

rich data model is constructed which consists of an extended entity-relationship schema, an

extensional database, an intensional database, a set of concept hierarchies, a set of general-

ized rules, and a set of knowledge discovery tools.

Query answering mechanisms are classified into (1) direct answering of data queries,

(2) intelligent answering of data, queries, (3) direct answering of howledge queries, and (4)

intelligent answering of linowlcdge queries. Techniques lmve been developed for implemen-

tation of such mecha,nisms using discovered l<nowledge and/or knowledge discovery tools,

which include deduction, generalization, data summarization, rule discovery, concept clus-

tering, query rewriting, lazy evaluation, semantic query optimization.

The availability of ge~leralized rules, concept hierarchies and knowledge discovery tools

greatly enhances the power of intelligent query answering in the following aspects.

It expands the spectrum of knowledge queries from inquiring deduction rules t o in-

quiring general regula.rity of da.ta,, such as cha,racteristic rules, discriminant rules, da ta

evolution regula.ri ties, etc. 1241.

It facilitates the query intent analysis since the notions of generalization, aggregation,

neighborhood, simila.rity, etc. can be studied systematically using the generalized

knowledge and concept hierarchies.

It facilitates intelligent query answering since answers can be presented in general

terms, summa.rized by statistical information, and compared with similar groups of

data a t a high level.

The intelligent query answering ca.n be implemented efficiently using generalized rules

and knowledge discovery tools using prime relations, feature tables, semantic query

optimization and other implementation techniques.

6.2 Future Research

The enhanced power of intelligent query answerirzg leads to two problems: superfluous "in-

telligent" answers and the risk on chtnbase security.

The first problem indicates that one may suffer from obtaining too many superfluous

"interesting" answers to a query because there are many ways for a query t o be answered

intelligently. Techniques should be developed to control the answer generation process in

intelligent query answering. In general, one may assume that an appropriate knowledge

level is associated with each user. A user usually poses queries a t his/her corresponding

knowledge level and expects the a,nswers to be presented a t the same level. If the contents of

the answer set are not a t such level, generalization or specialization should be performed on

the answer set as concept level adjustment. Further, with user modeling and query intent

analysis, only those answers which inatch the query intent and the user model will be pre-

sented. More de~ira~bly, an intelligent query answering process can be triggered or directed

by interaction with users. For example, after obtaining the preliminary set of answers t o

a query, some following-up questions can be raised by users, such as "in more detail?",

((in summary?", "why?", "other options?", "conzpnriny with others?", etc. These questions

indicate what kind of intelligent answers are expected. Then the corresponding intelligent

query-answering inechanislns can be evoked.

The second problem indica.tes that with the extended power of intelligent query answer-

ing, some sensitive or confidential inforimtion could be disclosed inappropriately to someone

who should not linow it [47]. One technique which may enhance the database security is t o

associate with a user model certa.in kinds of constraints on accessing rights. For example,

if the user is a student (easily linown from the login name), the constraints on intelligent

answering of his/her query in a university data,base will be quite different from the same

query posed by a professor. Sensitive inforrna.tion will not be disclosed to the users who

do not have appropria.te access rights. However, because of the power and complexity of

deduction and knowledge discovery, it is difficult to tell to what extent that accessing cer-

tain piece of information may eventua.lly. lead to the disclosure of sensitive information by a

sequence of deduction and induction. Therefore, more study should be performed on ensur-

ing database security in intelligent query answering in databases augmented with deduction

and knowledge discovery components.

APPENDIX A

A TUTORIAL O N THE

DBLEARN SYSTEM

The DBLEARN system is designed to discover the data.base knowledge, including charac-

teristic rules and discriminant rules, from a rela(tiona1 da,tabase supported by the SyBase

system. Recall tl1a.t A chcr.ru.cteri.stic rule is an assertion which characterizes the concepts

satisfied by all of the data stored in the data.ba.se, and a discriminant rule is an assertion

which discriminates the concepts of one claas from other class(es). The DBLEARN system

is implemented in C and runs under Unix on a Sun workstation.

A. l The Architecture of the DBLEARN System

The architecture of the DI3LEAR.N system was shown in the Figure 3.3, which consists of

user-interface, learning program, database data and concept hierarchies. In the learning

process, the DBLEARN system first accepts the user's request through the user-interface.

Based on the specified learning task, the DBLEARN system obtains the relevant data from

a database and the relevant concept hierarchies from a file. The learning program performs

attribute-oriented induction t o extract generalized rules. After learning is performed, the

learning result is reported to the user through the user-interface.

The Description of the Learning Programs

The DBLEARN system consists of six programs which accomplish different functions of a

learning process.

A.2.1 1earn.h and db1earn.h

The file "1earn.h" is a library of the DBLl2AR.N system which contains the declarations

of data structures and constant variables. It is included in the program parse.c. The file

"db1earn.h" is similar to the file 1earrz.h except the variables defined in db1earn.h are external

variables. "db1earn.h" is included in the programs fetch.c and 1eana.c.

The program "1ez.c" is lexical a.nalyzer which uses the program LEX (a lexical analyzer

generator) supported by the UNIX system. The program "1es.c" contains lexical specifica-

tions of the pr0gra.m. The genera,tecl program ca,n recognize the learning request in an input

stream and partition the input strea.ni into lexical units which matches the expressions of

the parsing tree. The cornmaad used to compile the 1ez.c program is "lez 1ez.c" which will

generate a program named lex. yy .c.

The program "parse.c7' is a syntax analyzer which is implemented using the program YACC

(a compiler-compiler) supported by the UNIX. A collection of grammar rules is specified in

the program. Each rule describes an allowable structure and the corresponding action(s).

The program accepts the "token" generated by the program 1ex.c and invokes a certain

action when the token matches a. specified structure.

The compilation of the pcrr.se.c program has two steps. The command "yacc parse.c7'

will first generate a file named y.tub.c, then the command "cc y.tab.cV will generate the

executable code.

The program "fetch.c" is written using C supported by the SyBase system. It collects

task-relevant data based on the user's 1ea.rning request and passes the data to the learning

program learn. c.

The compilation of the fetch.c progra,nl involves some library routines provided by the

SyBase system. The comma.nd used to compile the 1ex.c program is

This program is a C program and performs the induction process. The learning program con-

sists of two modules, LCIIR and LDIR, which learn a characteristic rule and a discriminant

rule, respectively. Either of these two modules will be invoked based on the user's learning

request. The program applies an attribute-oriented induction method which performs gen-

eralization on the selected da.ta attribute by a,ttribute. The generalization strategies used in

the learning process are the removal of nongeneralizable attributes and the ascension along

the concept hierarchies. The 1ea.rning process can be viewed as a sequence of table transfor-

mations, from a less generalized relation to a more generalized one. The generalization is

controlled by a user-specified threshold value. The output of this program is a generalized

relation that contains a, small number (5 threshold value) of tuples. The learning results is

also presented in a corresponding logic form.

This progra,m can be compiled using the command "cc -c 1earn.c" which will generate

an object code 1earn.o.

A.2.6 adjust .c

This program performs some n~iscellaneous functions of DBLEARN, such as the refine-

ment of concept hierarchies a.nd the disphy of a pa.rticular concept hierarchy. The display

of a concept hierarchy is realized by calljng some routines of HOOPS. This program can

be compiled using the command "cc -c acljust.cV which will generate an object code adjust.0.

All the commands for compilation of the above four programs have been collected in

a file named makefile shown as follows. The programs should be recompiled after any

HOOPS-LIBS = -1hoops 4x1 1 -lpixrect -1suntool -Isunwindow -1in
S Y B A S E = /usr/local2/Sy base

SOURCES = adjust.^ parse.c fetc1z.c 1earn.c
OBJECTS = y.tab.0 adjust.0 fetc1z.o 1earn.o
EXECUTABLES = dblearn

all: 1ex.yy.c y. tab.c dblearn

1ex.yy.c : 1ex.c
lex 1ex.c

y.tab.c: 1ex.yy.c parse.c learn.h
yacc pa.rse.c

adjust.0: adjust.^ dblearn. h
cc -g -c uslju.sl.c dllearn: $OBJECTS
cc -I$SYBASE/inclucle -g -0 $EXECUTABLE,? $OBJECTS $SYBASE/lib/libsybdb.a
$HOOPS-LIBS

Figure A. 1: Malcefile

modification, whiclz can be done by simply typing the command "make".

The Specification of a Learning Request

A user-friendly interface is built in the DBLEARN system, by which users can specify the

learning task, the tliresl~olcl value, the relations and the a t tributes relevant to the learning

task, the concept to be learned(target class) and the concept to be compared (contrasting

class).

A.3.1 Getting Started

Type a t your Unix prompt the command "dblearn HierarchyNameV and on your screen,

you will then see the prompt:

DBLEARN 1>

A HierarchyhTame is a directory under which the concept hierarchies you are interested

in are stored. If you don't specify the HierarclzyNanze here, you have t o specify it after you

get into DBLEARN by typing:

DBLEARN 1 > use HierarchyATume

A.3.2 Basic Structure

The basic structure of an DBLE.4RN expression consists of seven clauses: l ea rn , for , f r o m ,

w h e r e , i n re levance to, using, and in con t ras t to.

a The l ea rn cla.use specifies the learning ta.sk. Currently, only characteristic rule and

discriminant rule ca.n be specified.

a The fo r clause caa specify the name of the target class. A string should follow the

reserved word for and will be printed out in the final result as the name of the extracted

rule.

a The f r o m cla.use lists the relations from which the task-relevant data can be retrieved.

84

r The w h e r e clause consists of a predicate involving attributes of the relations that

appears in the i n re levance to clause. If the w h e r e clause is omitted, all of the

tuples in the relations specified in the f r o m clause are retrieved as the task-relevant

data.

r The i n re levance to clause is used to list the attributes desired in the generalized

rule. If it is omitted, all of the attributes in all the relations appearing in the from

clause will be involved in the learning process.

r The using cla.use could be used in the following three ways.

1. The us ing a t t r i b u t e th resho ld cla.use specifies the desired threshold value.

The number of distinct values in each attribute should not be greater than the

attribute threshold value. If it is omitted , a default value, 5, will be chosen.

2. The us ing t a b l e t h r e s h o l d clanse specifies the desired threshold value. The

number of tuples in the final generalized relation should not be greater than the

table threshold va.lue. Tf it is omitted, a. default value, 10, will be chosen.

3. The us ing h ie ra rchy clause specifies the files which contain the required con-

cept hierarchy information. If it is omitted, the system will invoke a default file

named concept for the required concept hierarchy information.

r The i n c o n t r a s t to cla.use is used to specify the name of the contrasting class.

A typical DBLEARN query [or lecr.nairzy clzcc.r(~deri.stic rule has the form:

learn character is t ic r u l e

fo r Target-Cless-Name

f r o m r1, r2, ..., r,

w h e r e P

in relevance to A l , A2, ..., A,

using a t t r i bu t e threshold N1

using table threshold N 2

using hierarchy H I , H 2 , ..., H k

Each r; represents a relation. P is a predicate. Each A; represents an attribute. Nl

and N 2 are the attribute threshold value and table threshold value respectively. Each Hi

represents a file which contains some of the required concept hierarchy information.

A typical DBLEARN query for learning discrinziizant rule 11a.s the form:

learn discriminant rule

for Target-C1u.s~-Name

where PI

in contrast t o Contra.sting-Clcr,ss-Nam

where P2

f rom T I , r2, ..., r ,

where P3

in relevance t o A1, A z , ... , A,

using a t t r i bu t e threshold N1

using tab le threshold N2

using hierarchy H I , H 2 , ..., f I k

The first where clamuse is used to define w11a.t the ta,rget class is. The second where clause

specifies the contrasting class. The third where clause specifies the common restrictions

shared by the taxget claas a.nd the contra.sting class. The third whe re clause could be

omitted by adding P3 with PI a.nd Pz respectively.

A.3.3 Examples

The following are some samples of learning request.

E x a m p l e A . l The learning task '(learning the characteristic rule for the operating grants

awarded to computer science discipline froin relation award, organization, and grant-type

i n relevance to attributes amount und province, with a table threshold value equal to 18,

and using the concept hierarchy file disc, ammount, prov, and grant-type" can be specified as

follows.

DBLEARN 1> l ea rn character is t ic ru le

DBLEARN 2> fo r "CS-Op-Grants"

DBLEARN 3> f r o m award A, organization 0 , grant-type G

DBLEARN 4> w h e r e O.org-code = A.org-code a n d G.grant-order = "Operating-Grants"

a n d A.grant-code = G.grant-code a n d A.disc-code = "Computer"

DBLEARN 5> in re levance to amount, province, prop(votes), prop(amount)

DBLEARN 6> using t a b l e t h r e s h o l d 18

DBLEARN 7> using h ie ra rchy disc, amount, prov, grant-type

DBLEARN a > g o

Notice tha,t prop(cc.t%ribzcte) is a. built-in function which returns the percentage of the

summation of the attribute value in the generalized tuples divided by the summation of the

same attribute value in the whole generalized relation. The type of the attribute must be

"int" or "float". Votes is a special attribute which registers the number of tuples in the orig-

inal relation which are generalized to one tuple in the final generalized relation. Prop(votes)

returns the percenta.ge of tuples covered by a generalized tuple in the final relation.

A default attribute threshold value, 5, is used in this query. Notice that in this example,

"Computer7' is a high level concept for attribute disc-code and DBLEARN can translate

it into the corresponding primitive level concepts by consulting the corresponding concept

hierarchy information stored in the file clisc. Finally, you have to type "go" on a line by

itself. It is the command termina.tor in DBLEARN, a,nd lets DBLEARN know that you are

done typing and ready for your command to be executed.

By performing attribute-oriented induction, DBLEARN first presents the prime relation

and then gives users two altermtives, which a,re performing further generalization on the

prime relation and extra.cting feature table for a particular attribute respectively. Based on

users' selection, corresponding action will be taken to generate final results. One possible

output of example A.l is given as follows.

..
* The Prime Re la t ion *
..
..

I amount I p rovince I p rop(votes1 I prop(amount) I
..

I 40Ks-60Ks I B . C . I 1.23% I 7.62%

I 20Ks-40Ks I B . C . 1 5.35% I 6.20%

B.C. I

B . C . I

P r a i r i e s I

P r a i r i e s

P r a i r i e s

P r a i r i e s

Ont .

Ont .

Ont .

Ont .

Queb .

Queb .
Queb .
Queb.

Mar it ime

Mar it ime

[I] . Perform f u r t h e r genera l iza t ion [2] . Extract f e a t u r e t a b l e

Select ion: 2

Available a t t r i b u t e s :

Cil . amount

C21. province

Select ion: 1

...
* Amount Feature Table *
...

I 40Ks-60Ks 1 6 1 2 5 5 0 1 37 1

I 20Ks-40Ks 1 26 2 6 62 2 5 5 1 144 1

I 0-20Ks 1 36 40 119 67 3 3 1 295 1

I 60Ks- 1 1 2 6 1 0 I 10 I
...

I Total 1 69 6 9 212 98 3 8 1 486 1
...

In this example, the user prefers to generating a feature table for attribute amount.

Example A.2 Sinzilarly, the following lectrning request learns the discriminant rule that

can distinguish the computer science grants awarded to Onturio from those awarded to New-

foundland.

DBLEARN 1 > learn discriminant rule

DBLEARN 2> for "Ontario-CS-Grants"

DBLEARN 3> where 0.province = "Onta.rio"

DBLEARN 4> in contrast to "Newfoundland-CS-Grants"

9 0

DBLEARN 5> where 0.province = "Newfoundland"

DBLEARN 6> from award A, organization 0, grant-type G

DBLEARN 7> where A.gra.nt-code = G.grant-code and A.org-code = O.org-code and

A.disc-code = "Computer"

DBLEARN 8> in relevance to disc-code, amount, grant-order

DBLEARN 9> g o

Notice tha.t both a.ttribute and table threshold value are default ones . All the concept

hierarchy information required is stored in a default file concept. Generalization is performed

synchronously in both the target chss and the contrasting class. The prime relation for both

classes is shown first. Overlapping tuples are marked by "*". After removing overlapping

tuples from the tasget class, the final generalized relation is generated. The following is the

output of DBLEARN for example A.2.

* The Prime Relation *
...

1 Learning Concept (disc-codel grant-order I amount lvotes mark I
...

I l Computer I Operating-Grants 10-20Ks 1 119 * I

I IComputer loperating-Grants120Ks-40Ks 1 62 I

I l Computer l Other 10-20Ks 1 10 * I

I IComputer lother 120Ks-40Ks 1 10 * I

IOntario-CS-Grants IComputer IOperating-Grants140Ks-6OKs 1 25 I

I IComputer lother 140Ks-60Ks 1 5 I

I l Computer I Strategic-Grants l60Ks- 1 8 I

I IComputer [Operating-Grants160Ks- 1 6 I

I l Computer I Strategic-Grants l40Ks-6OKs I 1 I
...

I 1 Computer I Operating-~rants 10-20Ks 1 9 * I

INewfoundland-CS IComputer lother 10-20Ks I 1 * I

1 Grants IComputer lother 120Ks-40Ks 1 1 * I

...
* The Final Generalized Relation *
...

I disc-code I grant-order I amount I votes mark I
...

I Computer I Operating-Grants I 20Ks-40Ks 1 62 I

I Computer I Operating-Grants I 40Ks-60Ks 1 25 I

I Computer I Other I 60Ks- I 7 I

I Computer 1 Other 1 40Ks-60Ks 1 5 1

I Computer 1 Strategic-Grants I 60Ks- I 8 I

1 Computer I Operating-Grants I 60Ks- I 6 I

I Computer I Strategic-Grants I 40Ks-60Ks I 1 I
...

A.4 Miscellaneous functions

Currently, DBLEARN provides a, limited number of miscellaneous functions.

0 set demo 1

Some intermediate results will be displayed. Users may get some detailed views how

DBLEARN worl<s.

set demo 0

Only final rules will be given.

print schema from Ilelcr.tior7~Nanl.e

Print out the sclzeina of a relation.

0 display Attribute-Name in File-Name

Display the concept hierarchy informa.tion(tree structure) of an attribute stored in

the file File-Name.

0 adjust hierarchy File-Nunze : Attribute-Nume

based on relation Relation-Name

The concept hierarchy of the attribute Attribute-Name stored in the file File-Name

can be refined dynamically ba.sed on the statistics of data distribution in the relation

Relation-Nanze.

0 help

On-line ma,nual is given.

quit

Quit from DBLEARN.

APPENDIX B

Program Listing for Two Major

Procedures

The D B L E A R N source program is written in C, assisted by UNIX software packages LEX

and YACC. The whole code is arbout 5,000 lines of C program. To save the space of printing,

only two major source programs: (1) pnrse.c, the D B L E A R N grammar specifications,(2)

1earn.q the implementa.tion of a.ttribute-oriented induction algorithm are listed here.

...
/ * The program parse.^" is a syntax analyzer which is implemented * /
/* using the program YACC (a compiler-compiler) supported by the UNIX. A * /

/ * collection of grammar rules is specified in the program. Each rule */

/* describes an allowable structure and the corresponding action(s). The * /
/* program accepts the "token" generated by the program 1ex.c */

/ * and invokes a certain action when the token matches a specified structure.*/

...

#include "1earn.h"

%token tID tINTVAL tSTRING tLEARN tCHAR tDISC tRULE tFOR tFROM

tWITH tTHRESHOLD tGO tCOLON tDOT tEQ tCOMMA tLEFT tRIGHT

tSM tLG tNOEq tWHERE tFLOAT tIN tRELAT tRELEV tTO tUSING

tHIERARCHY tCONTRAST tDIST tRETR tCREATE tSUPER tCLASS

tVALUE tSTEP tUPDATE tSET tALIAS tDISCOVER tCLASSIFY

tSCHEMA tINHERI tAND tOR tDISPLAY tPROP tSIGN tTABLE tATTR

tDEMO tADJUST tBASED tON tPRINT tSCHEMA tSELECT tHELP tUSE

t DELETE

DBLEARN : (init(); remove-file(); 3 selection (remove-file(); return;)

selection : tLEARN rule-type (int-q = 0;)

I tDIST item

I tCREATE hierar tGO

I tUPDATE (printf("Sorry, this function is not available now!\nl');

return;)

I tSET alias tGO

I tDISCOVER (printf ("Sorry, this function is not available now! \n") ;

return;) classify (getinfo ("classify", "source");

getinf o (relat ion-str , "source") ;

getinf o (pos-where, "source") ; getinf o (hie-str, "source") ;

if (strlen(tab1e-thres) == 0) strcpy(tab1e-thres, "threshold 5");

getinf o (table-thres, "source") ;

if (strlen(attr-thres) == 0) strcpy(attr,thres, "attr-threshold 5");

getinf o(attr-thres, "attr-threshold 5") ; 3

I tDISPLAY tID tBASED tON tID tGO (read-bias,2($5);

display-concept-2 ($2) ; 3

I tSET tDEMO tINTVAL (demo = atoi($3);

if (demo) (printf(11\n\n*************************************\n11);

printf ('I* DBLearn learning request *\nl') ;

pr in t f ("*********************************** \ \) ; 3)

I tADJUST tHIERARCHY tID tCOLON tID tBASED tON tRELAT tID

(strcpy(attr-str, "attribute ") ; strcat (attr-str, $5) ;

getinfo (attr-str, "source");

strcpy(re1ation-str, "relation "); strcat(re1ation-str, $9);

getinf o (relation-str, llsource") ; strcpy(hie-str, "hierarchy ") ;

strcat (hie-str, $3) ; getinfo (hie-str, "source") ;)

tGO {adjust_hierarchy($5);)

1 tPRINT tSCHEMA (init-str(str); strcpy(pos-where, "positive In);)

relation where (strcat (pos-where, str) ;

getinf o (relation-str , "sourcet1) ;

getinfo (pos-where, "source");) tGO (print-schema-table();)

1 tSELECT (int-q = 1; strcpy(attr-str, "attribute ") ;

strcpy (relation-str , "relation ") ;) data-query tGO

(get info ("data-query" , "source") ; getinf o (attr-str, "source") ;

getinfo (relation-str, "source"); strcpy(data-query, "positive ");

strcat (data-query , str) ; getinf o (data-query , "source") ;

strcpy(data-query , "prop ") ; strcat (data-query , prop-str) ;

getinf o(data-query , "source") ; int-query() ;)

data-query : attr tFROM table-list where hier-thre

rule-type : charact-rule tGO (getinf o ("charact-rule" , "source") ;

getinf o(attr-str, "sourceu) ;

getinfo(relation,str, "source"); getinfo(pos-where, "source");

getinf o(hie-str , "source") ;

if (strlen(tab1e-thres) <= 0)

strcpy(table,thres, "table-threshold 10") ;

getinf o(tab1e-thres, "source") ;

if (strlen(attr-thres) <= 0)

strcpy(attr-thres, "attr-threshold 5");

getinf o (attr-thres, "source") ; getinfo(tit1e-str, "source") ;

getinfo(prop,str, "source"); learn-charact-rule();)

I discrim-rule tGO {getinfo ("discrim,rule", "source");

getinfo (attr-str, "source"); getinfo(re1ation-str, "source");

getinfo(pos-where, "source"); getinfo(neg-where, "source");

getinfo(hie-str, "source");

if (strlen(tab1e-thres) == 0)

strcpy(table,thres, "table-threshold 10") ;

getinf o(tab1e-thres, "source") ;

if (strlen(attr-thres) <= 0)

strcpy(attr-thres, "attr-threshold 5") ;

getinfo(attr-thres, "source"); getinfo(tit1e-str, "source");

getinf o(prop-str, "source" ; learn-class-rule0 ; 1

1 inherit-rule tGO (getinfo ("inherit-rule", "source");

getinf o (attr-str, "source") ; getinfohelation-str, "source1') ;

getinf o(pos-where, "source") ; getinf o(hie-str, llsourcell) ;

if (strlen(tab1e-thres) == 0)

strcpy(table,thres, "table-threshold 10") ;

getinf o(tab1e-thres, "source") ;

if (strlen(attr-thres) == 0) strcpy(attr-thres, "attr-threshold 5") ;

getinf o(attr-thres, "source") ; getinfo(tit1e-str, llsource") ;

getinfo(prop-str, "source") ; 3

charact-ru1e:tCHAR tRULE tFOR (init-str(str); strcpy(tit1e-str, "title ");

strcpy(pos-where, "positive ") ;) name

(if (strlen(str) > 0) (strcat(pos-where, " (") ;

strcat (pos-where, str) ; strcat (pos-where, ") "1 ;

strcat (title-str, str) ; 3)

relation where (if (strlen(pos-where) > 9)

strcat (pos-where, " AND ") ;

strcat(pos-where, str); 3 attr-list hier-thre

discrim-ru1e:tDISC tRULE tFOR (init-str(str); strcpy(tit1e-str, "title ");

strcpy(pos-where, "positive "1;) name (if (strlen(str1 > 0)

(strcat (pos-where, " (") ; strcat(pos-where, str) ;

strcat (pos-where, " ") ; strcat (title-str, str) ; 33

where (if (~trlen(~os-where) > 9) strcat(pos-where, " AND ");

s t r c a t (pos-where, s t r) ; 3

t I N tCONTRAST tTO (i n i t - s t r (s t r) ; strcpy(neg-where, "negative ") ;

s t r c a t (t i t 1 e - s t r , " vs ") ; 3 name (i f (s t r l e n (s t r) > 0)

(s t r c a t (neg-where, I ' (") ;

s t r c a t (neg-where, s t r) ; s t r c a t (neg-where, ") ") ;

s t r c a t (t i t l e - s t r , s t r) ; 33

where (i f ((s t r lenheg-where) <= 9) && (s t r l e n (s t r) <= 0))

(printf("No cont ras t ing c l a s s specif ied! \n l ') ; r e t u r n ;)

i f ((strlen(neg-where) > 9) && (s t r l e n (s t r 1 > 0))

{ s t r ca t (neg-where, I ' AND ") ; s t r c a t (neg-where, s t r) ; 3

e l s e i f (s t r l e n (s t r 1 > 0) s t rca theg-where , s t r) ; 3

r e l a t i o n where (i f (s t r l e n (s t r) > 0)

(i f (strlen(pos-where) > 9) strcat(pos-where, I ' AND 'I);

strcat(pos-where, s t r) ; 1

i f (s t r l e n (s t r) > 0) { i f (strlen(neg-where) > 9)

s t r c a t (neg-where, " AND ") ;

s t r c a t (neg-where, s t r) ; 3) a t t r - l i s t h i e r - th re

inherit-ru1e:tHIERARCHY t I N H E R I tRULE t F O R t I D (i n i t - s t r (s t r) ;

s t r c a t (s t r , " a t t r i b u t e ") ;

s t r c a t (s t r , $5); ge t info (s t r , "source") ;) r e l a t i o n where

a t t r - l i s t h i e r - th re

item : { i n i t - s t r (s t r) ; strcpy(pos-where, "pos i t i ve ") ; 3 cond

(s t r c a t (pos-where, " (") ; s t r c a t (pos-where, s t r) ;

s t r c a t (pos-where, ") ") ;) r e l a t i o n where (s t r c a t (pos-where, s t r) ;

tFROM (i n i t - s t r (s t r) ; s t rcpy (neg-where, "negative "1;) cond

(strcatheg-where, str); 3

relation where {strcat(neg-where, str); attr-list

hierar : tHIERARCHY tFOR tID tSUPER tCLASS tID

{strcpy(title-str, "concept") ;

init,str(attr,str) ; if (check,name($3, "hie-table") == 0)

strcpy(attr-str, $3);

else (printf(I8\n concept hierarchy for %s alread exists ...\ n", $3);

return;) 3

I tHIERARCHY tFOR tID tSUPER tCLASS tID

{strcpy(title-str, "concept") ;

init-str(buf 1) ; strcat(buf 1, $3) ; init-str(attr,str) ;

if (check_name($3, "hie-table") == 0) strcpy(attr,str, $3) ;

else (printf(I1\n concept hierarchy for %s alread exists ... \nl', $3);
return;) 3

class {if (strlen(attr-str) > 0) getinfo(attr,str, "hie-table");)

I tHIERARCHY tID tFOR tID tSUPER tCLASS tID (strcpy(tit1e-str, $2);

init,str(attr-str);

if (check_name($4, "hie-table") == 0) strcpy(attr-str, $3);

else {printf("\n concept hierarchy for %s alread exists . . . \nu, $4);
return;) 3

I tHIERARCHY tID tFOR tID tSUPER tCLASS tID {strcpy(title,str, $2);

init,str(buf 1) ; strcat(buf 1, $4) ; init-str(attr,str) ;

if (check_name($4, "hie-table") == 0) strcpy(attr-str, $4);

else {printf("\n concept hierarchy for %s already exists ...\ n", $4);

return; 3)

class (if (strlen(attr-str) > 0) getinfo(attr-str, "hie-table");)

c l a s s : c l a s s tLEFT tCLASS t I D (in i t - s t r (buf2) ; s t r ca t (bu f2 , $4);)

tVALUE value tRIGHT

I tLEFT tCLASS t I D (i n i t - s t r (bu f2) ; s t r c a t (buf2, $3) ; 3 tVALUE

value tRIGHT

value : value t C O M M A tSTRING (i n i t - s t r (s t r) ; s t r c a t (s t r , $3) ;

remove-quote(str1;

s t r c a t (s t r , " ") ; s t r c a t (s t r , buf2) ; s t r c a t (s t r , " "1 ;

s t r c a t (s t r , buf 1) ; get inf o (s t r , t i t l e - s t r) ; 3

I value t C O M M A d i g i t € s t r c a t (s t r , " ") ; s t r c a t (s t r , buf2) ;

s t r c a t (s t r , " "1 ; s t r c a t (s t r , buf I) ; ge t in fo (s t r , t i t l e - s t r) ; 3

I STRING (i n i t - s t r (s t r 1 ; s t r c a t (s t r , $1) ; remove-quote(str) ;

s t r c a t (s t r , ") ; s t r c a t (s t r , buf 2) ; s t r c a t (s t r , I ' ") ;

s t r c a t (s t r , buf 1) ;

ge t in fo (s t r , t i t l e - s t r) ; 1

I d i g i t (s t r c a t (s t r , " ") ; s t r c a t (s t r , buf2) ; s t r c a t (s t r , I , 1 1) . ,

s t r c a t (s t r , b u f l) ; ge t info (s t r , t i t l e - s t r) ;)

d i g i t : tINTVAL Cst rcpy(s t r , $1) ;)

I tFLOAT (s t r c p y (s t r , $1);)

a l i a s : tALIAS t I D tFOR tID (i f (check_name($4, "hie- table") == 0)

(pr in t f ("\n concept hierarchy f o r 1 s does not e x i s t . . . \nt', $4);) 3

c l a s s i f y : CLASSIFY SCHEMA FOR (i n i t - s t r (s t r) ;

102

s t r c a t (pos-where, "pos i t ive "1 ; 3

cond (s t r c a t (pos-where, s t r) ; r e l a t i o n h i e r - th re

name : cond

I tSTRING (s t r c a t (t i t 1 e - s t r , $1); 3

r e l a t i o n : tFROM (s t rcpy(re1a t ion-s t r , " r e l a t i o n "1; 3 t a b l e - l i s t

t a b l e - l i s t : t a b l e - l i s t t C O M M A t I D (s t r c a t (r e l a t i o n - s t r , " , ") ;

s t r c a t (r e l a t i o n - s t r , $3) ;)

I t a b l e - l i s t t C O M M A t I D t I D (s t r ca t (r e1a t ion - s t r , " , ") ;

s t r c a t (r e l a t i o n - s t r , $3) ;

s t r c a t (r e l a t i o n - s t r , " ") ; s t r c a t (r e l a t i o n - s t r , $4) ; 3

I t I D t I D Cs t rca t (re1a t ion-s t r , $1) ; s t r c a t (r e l a t i o n - s t r , " ") ;

s t r c a t (r e l a t i o n - s t r , $2) ;)

I t I D (s t r c a t (r e l a t i o n - s t r , $1) ; 3

a t t r - l i s t : t I N tRELEV tTO (strcpy (a t t r - s t r , " a t t r i b u t e ") ;

s t rcpy (prop-s t r , "prop ") ;) a t t r

I

a t t r : a t t r t C O M M A (s t r c a t (a t t r , s t r , " , I1) ; 3 a t t r - t y p e

I a t t r - t ype

a t t r - t ype : (i n i t - s t r (s t r) ;) attr-name Cstrcat (a t t r - s t r , s t r) ;

s t r c a t (a t t r - s t r , 'I) ; 3

I PROP LEFT ID ~ R I G ' H T (s t r c a t (prop-str , $3) ;

strcat (prop-str, " ") ;

if (attr-str [strlen(attr-str) -11 == ' , ')

attr-str [strlen(attr-str)-l] = ' ' ;)

hier-thre : tUSING tHIERARCHY (strcpy(hie-str, "hierarchy

hierarchy hier-thre

I tUSING tTABLE tTHRESHOLD tINTVAL

(strcpy(tab1e-thres, "table-threshold ") ;

strcat(table,thres, $4);) hier-thre

I tUSING tATTR tTHRESHOLD tINTVAL

(strcpy(attr-thres, "attr-threshold "1 ;

strcat(attr-thres, $4); 3 hier-thre

I

hierarchy : hierarchy tCOMMA tID (strcat (hie-str, 'I, ") ; strcat (hie-str, $3) ;)

I tID (strcat (hie-str, $1) ;)

concept : tID tIN tID tGO (init-str(str); strcat(str, $1);

display-concept (str, $3) ;

where : tWHERE (init-str(str); strcat(str, " ("); 1 cond

(strcat(str, ") "1;

I (init,str(str); 3

cond : condl

I tLEFT (strcat(str, " (11) ; 3 condl tRIGHT (strcat(str,) It);)

104

condi : cond t A N D (s t r c a t (s t r , l 1 AND ") ;) cond

I cond t O R (s t r c a t (s t r , OR lo) ;) cond

I condition

condition :

I

I

I

I

I

I

I

I

I

attr-name t E Q (s t r c a t (s t r , = ") ;) attr-name

attr-name tSM (s t r c a t (s t r , < ") ;) attr-name

attr-name t L G (s t r c a t (s t r , ' I > It);) attr-name

attr-name tEQ tINTVAL (s t r c a t (s t r , l 1 = ") ; s t r c a t (s t r , $3);)

attr-name tSM tINTVAL (s t r c a t (s t r , 'I < ") ; s t r c a t (s t r , $3) ;)

attr-name t L G t INTVAL (s t r c a t (s t r , " > l o) ; s t r c a t (s t r , $3); 3

attr-name t E Q tFLOAT (s t r c a t (s t r , = ") ; s t r c a t (s t r , $3); 3

attr-name tSM tFLOAT (s t r c a t (s t r , < ") ; s t r c a t (s t r , $3);)

attr-name t L G tFLOAT (s t r c a t (s t r , " > ") ; s t r c a t b t r , $3) ; 3

attr-name tEQ tSTRING (s t r c a t (s t r , l 1 = ") ; s t r c a t (s t r , $3) ; 3

attr-name : t I D tDOT t I D Cs t rca t (s t r , $1) ; s t r c a t (s t r , " . 'I) ; s t r c a t (s t r , $3) ;)

I t I D (s t r c a t (s t r , $1);)

...
/* This program is a C program and performs the induction process. The * /
/* l earn ing program cons i s t s of two major procedures, learn-charact-rule and */
/* l earn-c lass - ru le , which l ea rn a c h a r a c t e r i s t i c r u l e and a discriminant */
/* r u l e , respec t ive ly . E i ther of these two modules w i l l be invoked based on */
/* t h e u s e r ' s l earn ing reques t . */
...

#include "1ex.yy.c"
#include "dblearn . h"

...
/* Procedure: main */
/* Parameter: Directory in which a perticular concept hierarchy is stored */
/* Function : Main routine * /
...

main(argc , argv)
int argc ;
char **argv;
C

int i;

if (argc > I) strcpy(dir-str, argvCll ;
lineno = 0;

remove-f ile0 ;
newline0 ;
while (1)

x = yyparseo;
lineno = 0;

3

...
/* Procedure: learn-charact-rule * /
/* Parameter: None */
/* Function : Learning process for characteristic rule * /
...

learn-charact-rule ()

C
/* only positive tuples are selected for learning characteristic rule */
/ * the exptype is set to 1 * /
int exptype = 1, ind;
int i = 0;
int debug = 0;
char attr-name [MAXSTR] ;
char line [MAXLINE] , word [MAXSTR] ;

if (check-dire == 0) return(0);
fp = f open ("source1', "r") ;
if (fp == NULL)
C

printf ("unable to read file %s\n" , "source") ;
return (-1);

3
while (fgets (line, MAXLINE, fp) != NULL)
<

get-one,value(line, 0, word);
if (strcmp(word, "table-threshold") == 0) (

get-one-value(line, 15, word);
max-tuple = atoi(word) ;

1
if (strcmp(word, "attr-threshold") == 0) (

get-one-value (line, 14, word) ;
max-value = atoi(word1;

3

max-num = pos-tuple.index;
if (debug)

print-pos (1) ;

...
/* Procedure: learn-class-rule */
/* Parameter: None * /
/ * Function : Learning process for discriminant rule */
...

learn-class-rule (1
C

/* both positive tuples and negative tuples are selected for learning */
/ * discriminant rule, the exp-type is set to -1 */
int exptype = -1;

int i = 0;
int debug = 0;
char attr-name CMAXSTRI ;
char pos-target CMAXSTRI ;
char neg-target [MAXSTR] ;
char line [MAXLINE] , word CMAXSTR] ;

if (check-dir() == 0) return(0) ;
fp = fopen ("source", "r");
if (fp == NULL)
C

printf ("unable to read file %s\nl', llsourcell) ;
return (-1);

1
while (fgets (line, MAXLINE, fp) ! = NULL)
C

get,one-value (line, 0, word) ;
if (strcmp(word, "table-threshold") == 0)

get,one-value(line, 15, word) ;
max-tuple = atoi(word1;

if (strcmp(word, "attr-threshold") == 0) (
get-one-value (line, 14, word) ;
max-value = atoi (word) ;

1
1
f close(fp) ;

max-num = pos-tuple.index;
if (debug)

print-pos (2);
class,tuple-reduction() ;

3

...
I* Procedure: char-tuple-reduction * /
/* Parameter: None */
/* Function : Induction process for learning characteristic rules * /
...

i n t i = 0 , j = 0 , s e l e c t ;
i n t debug = 0 ;
i n t attr-num = schema-table. attr-num;
i n t rule- type = 1 ;
char attr-name-array CMAXATTRI [MAXSTR] ;
s t r u c t r e l a t i o n temp-rel;

i f (debug) p r i n t f (" threshold %d\nl1, max-tuple) ;

f o r (i = 0 ; i < attr-num; i + +)
s t rcpy (attr-name-array [il , schema-table. a t t r [i] . attr-name) ;

/* f o r each a t t r i b u t e , i f t h e number of d i s t i n c t values is g rea t e r
than t h e th reshold , a l l t h e values i n t h i s a t t r i b u t e should
be general ized */

f o r (i = 0 ; i < attr-num; i + +)
i f (d i s t i n c t - v a l (a t t r - n m a r r a y [i] ,max-value == 1) <

genera l ize (attr-name-array [i] , rule- type) ;

3

/* i f t h e number of t up l e s i n t h e general ized r e l a t i o n i s g r e a t e r
than t h e th reshold , f u r t h e r genera l iza t ion on some se l ec t ed
a t t r i b u t e (s 1 should be performed * /

i f (pos,tuple.index > max-tuple)

/* when t h e s i z e of t a b l e has been reduced t o max-tuple * 2,* /
/ * check t h e noise da ta and remove it * /
i f (pos- tuple . index < (max-tuple * 2))

remove-noise-data (rule- type) ;
3

3
i f (i n t -q == 0) €

i f (pos-tuple.index > max-tuple) (

p r i n t f (" \n[l l .Further genera l iza t ion 121 . Extrac t f e a t u r e t ab l e \n i l) ;
p r i n t f (" \nSelect ion: ' ') ;

scanf ("%dl', &yes-no) ;
if (demo) printf (I1 %d\nl', yes-no) ;
if (yes-no == 2) (

do(
printf ("\n\nAvailable attributes : \n\nl') ;
for (i = 0; i < schema-table.attr-num; i++)

printf (I1 [%i] .%s\nU , i+l, schema-table. attr [i] . attr-name) ;
printf ("\nSelection: 11) ;
scanf ("%d1I, &select) ;
if (demo) printf (I1 %d\nl1, select) ;
else printf ("\nl') ;

) while ((select < 1) I I (select > schema,table.attr-num));
extract-f eature-table(attr-name-array Cselect-11) ;

3
else (
if (pos-tuple. index > max-tuple) further-general(ru1e-type) ;
printf ("\nl') ;

f
else (

printf ("\n") ;
printf ("\nl1);
printf("\n\n***************************************\nt1);
printf ("* The final generalized relation *\nu) ;
printf("***************************************\n\nt1);
print-pos (I) ;
printf (I1\n\n [I] . Print out generalized rule [21 .Extract feature

table\nl1) ;
printf("\nSelection: ") ;

scanf (I1%d", &yes,no) ;
if (demo) printf(" %d\nU,, yes-no);

if (yes-no == 2) (
do€

printf ("\n\nAvailable attributes : \n\n1I) ;
for (i = 0; i < schema-table.attr-num; i++)
printf (" C%il. %s\nl', i+l , schema-table. attr [il . attr-name) ;
printf ("\nSelection: ") ;
scanf ("%d1I, &select) ;
if (demo) printf (" %d\nI1, select) ;
else printf ("\nl') ;

3 while ((select < 1) I I (select > schema-table. attr-num)) ;
extract-f eature-table(attrextract_feature_table(attr_name_arrayCsenameearray [select-I1 ;

3
else (

printf("\n**\n1');
printf (I1 The characteristic rule for %s is: \n" , target-str) ;
printf("**\n\nt1);

simplify(1) ;
printf ("\nu) ;
printf ("\ntl);
3

3
3
else (/* answer explanation for intelligent query answering */

do€
temp-rel.index = pos-tuple.index;
for (i = 0; i < pos-tuple.index; i++) (

temp-re1 .table Cil .votes = pos-tuple. table [il .votes;
strcpy(temp-rel. table [il .data, pos-tuple. table [il .data) ;
for (j = 0; j < schema-table.attr-num; j++)

temp-rel. table Cil .prop [jl = pos-tuple. table [il .prop [j] ;

3
if (pos-tuple.index>max-tuple) further-general(ru1e-type);

printf("\n**\n1l);
printf (I1 The generalized rule for the answer is : \nl', target-str) ;
printf("**\n\n1');

simplify(1) ;
pos-tuple.index = temp-rel.index;
for (i = 0; i < temp-rel.index; i++) (

pos-tuple. table [il .votes = temp-rel. table [il .votes ;
strcpy(pos-tuple .table [i] .data, temp-re1 .table [i] .data) ;
for (j = 0; j < schema-table.attr-num; j++)

pos-tuple. table [il .propCjl = temp-rel. tableCi1 .prop[j] ;

3
printf ("\n\nAvailable attributes : \n\n") ;
for (i = 0; i < schema-table.attr-num; i++)
printf (It [Xi] . %s\nIt , it1 , schema-table. attr [il . attr-name) ;
printf (I1\nSelection: It) ;
scanf (It%dtt , &select) ;
if (demo) printf ('I %d\ntl, select) ;
else printf ("\nt') ;

3 while ((select < 1) I I (select > schema-table.attr-num));
extract-f eature-table(attrextract_feature_table(attr_name_arrayCsenameearray [select-11) ;
print-f eature-table() ;

1

/* Procedure: extract-feature-table */
/* Parameter: IN: attibute on which the feature table is based */
/* Function : Extract feature table for a perticular attribute */
...

extract-f eature-table(attr-name)
char attr-name [MAXSTR] ;

C
/* extract feature table from prime relation */

int attr-index = 0, index = 0, idx = 0;
int i = O , j = O , k = 0 , l = O , m = O , n = O ;
int length = 0;
int found-set = 0;
int count = 0, ind = 0;
char value [MAXSTR] ;

strcpy(f eature .prime-attr. attr-name, attr-name) ;
feature.prime-attr.fea-num = 0;

while (attr-index < schema-table.attr-num)

if (strcmp (attr-name, schema-table. attr [attr-index] . attr-name) == 0)
break ;

attr-index++ ;
>

length = schema-table.attr-length;

for (i = 0; i < pos-tuple.index; i++)
C
index = attr-index * length;
/* copy the value in the attr-index attr */
get-one-value (pos-tuple. table [i] .data, index, value) ;

for (j = 0; j < feature.prime-attr.fea-num; j ++)
if (strcmp (value, feature .prime-attr .fea-name[jl) == 0)

break ;
if (j >= feature.prime-attr.fea-nun) (
count = feature.prime-attr.fea-nun;
strcpy(feature.prime~attr.fea~name[countl , value);
feature.prime,attr.fea-nun ++;

3
3
count = feature.prime-attr-fea-nun;
strcpy(f eature .prime-attr .f ea-name [count] , "~otal") ;
feature.prime-attr.fea-num ++;

index = 0;
attr-index = 0;
while (attr-index < schema-table.attr-num)
C
if (strcmp (attr-name, schema-table. attr Cattr-index1 . attr-name) ! = 0)

C
length = schema-table.attr-length;
strcpy(feature.fea[indl.attr-name, schema-table.attr[attr-indexl.attr-name);
for (i = 0; i < pos-tuple.index; i++)

index = attr-index * length;
/* copy the value in the attr-index attr */
get-one-value (pos-tuple. table [i] .data, index, value) ;

for (j = 0; j < feature.fea[indl.fea-nun; j ++)
if (strcmp (value, feature . f ea[ind] . f ea-name [jl) == 0)

break ;

if (j >= feature . f eacindl . f ea-nun) C
count = feature.fea[indl.fea-nun;
strcpy (f eature . f ea [indl . f ea-name [count] , value) ;
feature .f eacind] .f ea-nun ++;

3
3
ind ++;

3
attr-index ++ ;

3

feature. attr-num = schema-table. attr-num;
strcpy(f eature .f eacind] . attr-name, "vote") ;
feature . f ea [ind] .f ea-num = 1 ;

attr-index = 0;
while (attr-index < schema,table.attr-num)
C

if (strcmp (attr-name, schema-table. attr [attr-index] . attr-name) == 0)
break;

attr-index++ ;
3
length = schema-table.attr-length;

for (i = 0; i < pos-tuple.index; i++)
C

index = attr-index * length;
/* copy the value in the attr-index attr */
get-one-value (pos-tuple.table[i] .data, index, value);
for (j = 0; j < feature.prime-attr.fea-num - I; j++)
if (strcmp(value, feature.prime-attr.fea-name[jl) == 0) (

1 = j;
break;

3
for (j = 0; j < schema-table.attr-num; j++)
if (j != attr-index) (

if (j > attr-index) m = j-1;
else m = j ;
index = j * length;
get-one-value (pos-tuple. table [i] .data, index, value) ;
for (k = 0; k < feature.fea[m].fea-num; k++)
if (strcmp(value, feature.fea[ml.fea-namdkl) == 0) C
n = k;
break;

3
feat [l] [ml Cn] = feat [l] [m] [n] + pos-tuple. table [il .votes;

feat Cf eature .prime,attr .f ea-num - 11 [ml [nl =
feat Cf eature .prime-attr .f ea-num - 11 Cml Cnl +

pos-tuple. table [il .votes ;
3

feat Ell [schema-table . attr-nun - I] [01 =
feat [l] [schema-table . attr-num - 11 [O]
+ pos-tuple. table [il .votes;

feat [feature .prime-attr. fea-num-11 [schema-table. attr-num - 11 [O] =
feat [feature .prime,attr .f ea-num - I] [schema-table. attr-num - 11 [O] +
pos-tuple. table Cil .votes;

3

if (int-q == 0) print-f eature-table () ;

...
/* Procedure: class-tuple-reduction */
/* Parameter: None */
/* Function : Induction process for learning discriminant rules * /
...

int i = 0, j = 0;
int rule-type = 2;
int attr-nun = schema-table. attr-nurn;
int unmark-nun = 0;
char attr-name-array [MAXATTR] [MAXSTR] ;
for (i = 0; i < attr-nun; i++)
C

strcpy (attr-nme-array [i] , schema-table. attr [i] . attr-name) ;
3

/* 1 indecates the positive tuple table, -1 the negtive tuple table */
/ * for each attribute, if the number of distinct values is greater

than the threshold, all the values in this attribute should
be generalized * /

for (i = 0 ; i < attr-num; i++)
if (distinct,val(attr-name_array[i],max-value) == 1) {

generalize(attr-name-array Cil , rule-type) ;
/*2 indicates discriminant rule * /

3

/* determine the number of the unmarked tuples in the generalized relation */

remove-same-1 (1) ;
remove-same-1 (-1) ;
intersect 0 ;

for (i = 0; i < pos-tuple.index; i++)
if (pos-tuple. table Cil .dataCschema-ta

schema-table.attr-num] != ' * ')
unmark-num ++;

/* if the number of unmarked tuples is greater than the threshold value,
further generalization on some selected attribute(s1 should be performed */

if (unmark-nun > max-tuple)

I* when the size of unmarked pos-tuple has been reduced to */
/* max-tuple * 2, check the noise data and remove it */
if (unmark-num < (max-tuple * 2))
<
remove-noise-data (rule-type) ;
3
if (unmark-num > max-tuple)
f urther-general (rule-type) ;

1

...
/* Procedure: distinct-val * /
/* Parameter: IN: attribute name * /
/* threshold value for this attribute * /
/ * Function : Determine if the number of distince value of a perticular * /

/* attribute is greater than a predefined threshold value */
...

distinct,val(attr,name , limits)
char *attr-name ;
int 1 imit s ;
C

/* return the number of distinct values in attribute "attr-name" */
int index = 0;
int j = 0;
int attr-index = 0;
int length = 0;
int distinct-num = 0;
int same;
char value [MAXSTR] ;
char dist-val-table [MAX-THRES] [MAXSTR] ;
struct tuple *pos,ptr = &pos-tuple. table [index] ;
/* find the attr whose name is "attr-name" */
while (attr-index < schema-table . attr-num)

if (strcmp (attr-name , schema-t able. attr [attr-index] . attr-name) == 0)
break;

attr-index++ ;
1
length = schema-table.attr-length;
for (index = 0; index < pos-tuple.index; index++, pos,ptr++)
<

if (distinct-num > limits) return (1);
if (pos-ptr->data[schema-table.attr-nun * length] != '* ')
<
get-one-value (pos-ptr->data, attr-index * length, value);
same = 0;
for (j = 0; j < distinct-num; j++)

if (strcmp (dist-val-table[j] , value) == 0)
<

same = 1;
break ;

J.
if (same == 0)

strcpy (dist-val-tablecdistinct-numl , value);
distinct-nun++;

>
3

3
return (-1);

3

...
/ * Procedure : distinct-val-1 */
/* Parameter: IN: attribute name */
/ * Function : Return the number of distince value of a perticular attribute */
...

int distinct-val-l(attr-name)
char *at t r -name ;
{

int index = 0;
int j = 0;
int attr-index = 0;
int length = 0;
int distinct-num = 0;
int same;
char value [MAXSTR] ;
char dist-val-table [MAXTUPLE] [MAXSTR] ;
struct tuple *pas-ptr = &pos-tuple. table [index] ;
/* find the attr whose name is "attr-name" */
while (attr-index < schema-table.attr-num)
{

if (strcmp (attr-name , schema-table . attr [attr-index1 . attr-name) == 0)
break;

attr,index++ ;
3
length = schema-table.attr-length;
for (index = 0; index < pos-tuple.index; index++, pos-ptr++)
{

if (pos-ptr->data [schema-table. attr-nun * length] ! = ' * ')
{
get-one-value (pos-ptr->data, attr-index * length, value);
same = 0;
for (j = 0; j < distinct-num; j++)

if (strcmp (dist-val-tableCjl , value) == 0)

same = 1;

break ;
3

if (same == 0)

<
strcpy (dist-val-table [distinct-numl , value) ;
distinct-nun++;

3
1

3
return (distinct-num);

1

/* Procedure: generalize */
/ * Parameter: IN: attribute name */
/ * rule type -- 1. characteristic rule 2. discriminant rule * /
/ * Function : Perform generalization on a perticular attribute * /
...

generalize(attr-name, rule-type)
char *attr-name;
int rule-type;
<

int found = 0;
int exptype = 1;
int bias-idx = 0;
int attr-idx = 0;
struct bias *bias,ptr = &bias- tab le . tab le1bi .a~- idx] ;
struct attr-info *attr-ptr = &schema-table.attr[attr-idxl;

/* find the index of attr-name in the schema */

while (attr-idx < schema,table.attr-nun)

if (strcmp (attr-name, attr-ptr->attr-name) == 0)
break;

attr-idx++ ;
attr-ptr++ ;

/* check whether there is any bias for this attribute */

for (bias-idx = 0; bias-idx < bias-table.index; bias,idx++, bias,ptr++)

€
if (strcmp (attr-name, bias-ptr->attr,name) == 0)
€

found = 1 ;
break;

3
3
/* no bias for this attribute */
if (found == 0)
€

project (attr-name) ;
3
/* there is bias for this attribute * /
else
{

/ * for learning characteristic rule */
if (rule-type == 1)
C
do {

substitute (attr-name, exptype);
3 while (distinct,val(attr~name,max~value) == 1);

3
/ * for learning discriminant rule */
else
{
do €

exptype = 1;
substitute (attr-name, exptype);
/ * remove-same-1 (exptype) ; */
exptype = -1;
substitute (attr-name, exptype) ;
/* remove-same-1 (exptype) ; */
/* intersect 0; * /

/*for NSerc project * /
/*if (watch == 1)
print-both 0 ; */

while (distinct-val(attr-name,max-value) == 1) ;
3

3
3

...
/* Procedure: s u b s t i t u t e */
/* Parameter: I N : a t t r i b u t e name * /
/ * example type -- 1. pos i t i ve examples 2 . negat ive examples * /
/* Function : s u b s t i t u t e t h e lower l e v e l concept i n a p e r t i c u l a r a t t r i b u t e */
/* by t h e higher l e v e l concepts * /
...

s u b s t i t u t e (attr-name, exp-type)
char *attr-name;
i n t exp-type;
{

/ * s u b s t i t u t e t he lower l e v e l concept i n a t t r i b u t e "attr,namel'
by the higher l e v e l concepts * /

i n t a t t r - index = 0, index = 0, idx = 0 , i d = 0 ;
i n t i = 0, j = 0 , k = 0 , m = 0;
i n t l ength = 0 ;
i n t found-set=O;
i n t b i a s [MAXBIAS] ;
i n t b-index = 0 , b-idx = 0 ;
char value [MAXSTRI , value1 [MAXSTR] ;
while (a t t r - index < schema-table. attr-num)
<

i f (strcmp (attr-name, schema-table. a t t r [attr-index]
break;

a t t r - index++;

1
length = schema-table.attr-length;

attr-name) == 0)

f o r (i = 0; i < bias- table . index; i + +)
i f (strcmp (b ias - tab le . t a b l e [i] . attr-name, attr-name) == 0) (
b ia s [b-index] = i ;
b-index ++;

3

/ * f o r pos i t i ve examples * /
i f (exp-type == 1)

{
f o r (i = 0 ; i < pos-tuple.index; i++)

C
index = a t t r - i ndex * l ength ;
/* copy t h e value i n t h e a t t r - index a t t r */
get-one-value (pas-tuple . t a b l e [il . da ta , index, value) ;

for (k = 0 ; k < b-index; k++)

C
b-idx = b i a s [kl ;
i f ((strcmp (value, b i a s - t ab l e .table[b,idxl .low. concept) == 0) I I

(check-concept (value, b-idx) == 1))

C
/ * s u b s t i t u t e t h e lower concept by t h e higher concept */

idx = a t t r - i ndex * l ength ;
m = 0;
i f (bias-table.table[b-idx] .num == -1)

s t rcpy(value1, b i a s - t ab l e . t a b l e [b-idxl .high. concept) ;
e l s e (

i d = b ia s - t ab l e . t a b l e [b-idx] .nun;
s t rcpy(va lue1 , b i a s - t ab l e . t a b l e [id] .low .concept) ;

3
while (m < l ength && value l [m] != ' ' && valuel[m] != '\n' &&

value l Cml ! = ' \ 0 '

C
pos-tuple . t a b l e [i] . datacidx] = value1 [ml ;
m++ ;
idx++ ;

3
while (m < length)

.c
pos, tuple . table[i] .data[idx] = ' ' ;
m++ ;
idx++ ;

3
break ;

3

/ * f o r negat ive examples */
e l s e

<
f o r (i = 0; i < neg-tuple.index; i++)

<
index = a t t r - index * l ength ;
/* copy the value i n t he a t t r - index a t t r */
get-one-value (neg-tuple.table[il.data, index, va lue) ;

f o r (k = 0 ; k < b-index; k++)

b-idx = b ia sck l ;
i f ((strcmp (value, b ias - tab le . t a b l e [b-idxl .low. concept) == 0) I I
(check,concept(value, b-idx) == 1))

<
/ * s u b s t i t u t e t h e lower concept by the higher concept */

idx = a t t r - index * length;
m = 0 ;
i f (b ias - tab le .table[b-idx] .nun == -1)

s t rcpy(value1, b ias - tab le . t a b l e [b-idx] .high. concept) ;
e l s e C

i d = bias- tab le . table[b-idx] .nun;
s t rcpy(value1 , bias- tab le . t a b l e [id] .low. concept) ;

3
while (m < length && valuel[m] ! = ' ' && valuel[m] != ' \n ' &&

valuelCm] ! = ' \ 0 ')

C
neg-tuple . t ab l e [i l .data[idx] = value1 Ern] ;
m++ ;
idx++ ;

3
while (m < length)

C
neg-tuple. t a b l e [il . data [idx] = ' ' ;
m++ ;
idx++ ;

3
break;

3

...
/* Procedure: fur ther-general * /
/* Parameter: I N : r u l e type -- 1. c h a r a c t e r i s t i c r u l e 2 . discriminant r u l e */

/* Function : Perform further generalization on prime relation * / ...

further-general (rule-type)
int rule-type;
x

/* perform further generalization */

int i = 0, l-index=O, 1-dist-num, c-disc-num, tuple-num;
int unmark-nun = 0;
int attr-num = schema-table. attr-num;
char max-attr CMAXSTR] ;

do (
i = 0;
1-index = 0;
unmark-num = 0;
strcpy (max-attr, schema-table. attr [i] . attr-name) ;
/* for learning characteristic rules */
if (rule-type == 1)

/ * select the attribute which has most distinct values */

i = I;
1-dist-nun = distinct-val-1 (schema-table. attrcl-index] . attr-name) ;
while (i < schema-table. attr-nun)

c-disc-num = distinct-val-I (schema-table. attr [i] .attr-name) ;
if (1-dist-nun < c-disc-num) (

1-index = i;
1-dist-nurn = c-disc-num;

3
i++;

>
strcpy (max-attr , schema-table . attr [l-index] . attr-name) ;

generalize (max-attr, rule-type);
remove-same- 1 (1) ;
if (pos-tuple.index > max-tuple)
x

/ * when the size of unmarked pos-tuple has been reduced to */
/ * max-tuple * 2, check the noise data and remove it */

if (pos-tuple. index < (max-tuple * 2))
C
remove-noise-data (rule-type) ;
3

3
tuple-num = pos-tuple.index;

3

/* for learning discriminant rule */
else
C

while (i < schema-table.attr-nun - 1)
C
if (distinct-val-1 (schema-table. attr [i] . a t t r n e <

distinct-val-1 (schema-table. attr [i+1] . attr-name)
strcpy (max-attr , schema-table. attr [it11 . attr-name) ;

i++ ;

3
generalize (max-attr , rule-type) ;
remove-same-1 (1) ;
remove-same-1 (-1) ;
intersect 0 ;
for (i = 0 ; i < pos-tuple.index; i++)

if (pos-tuple. table [i] . data[schema-table. attrlength *
schema-table. attr-nun] != ' * ' I

unmark-num ++;
if (unmark-num > max-tuple)

/ * when the size of unmarked pos-tuple has been reduced to */
/ * max-tuple * 2, check the noise data and remove it */
if (unmark-num < (max-tuple * 2))
remove-noise-data (rule-type) ;

3
tuple-nun = unmark-num;

3
3 while (tuple-num > max-tuple);

3

REFERENCES

[l] J, A. Allen and C. R. Perrault. Analysing intention in utterance. Artificial Intelligence,

15:143-178, 1980.

[2] J.A. Allen. Towads a general theory of action and time. Artificial Intelligence, 23:123-

160, 1984.

[3] J.R. Anderson and M. Matessa.. A ra.tionale a.nalysis of categorization. In Proc. of 7th

International Ma.chine Leurning Cofzj'erence, pages 76-84, 1990.

[4] Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases.

In G. Piatetsky-Shapiro and W. J . Frawley, editors, Knowledge Discovery in Databases,

pages 213-228. AAAI/MIT Press, 1991.

[5] N. Cercone, J. Han, P. McFetridge, F. Popowich, D. Fass, C. Groeneboer, G. Hall,

and Y. Huang. System X and DBLEARN: How to get more from your relational

database, easily. accepted by Integrated Computer-Aided Engineering (a special issue

on Intelligent Information Systems), 1993.

[6] U. S. Chakravarthy, J. Grant, and J. Minlter. Logic-based approach to semantic query

optimization. ACM Trans. Database Syst., 15:162-207, 1990.

[7] K. C. C. Cha.n and A. I<. C. Wong. A sta.tistica1 technique for extracting classifica-

tory knowledge from da.ta,ha.ses. In G. Piatetsky-Shapiro and W. J. Frawley, editors,

Knowledge Discovery in Databuses, paoges 107-124. AAAIIMIT Press, 1991.

[8] P. Cheeseman, P. Kelly, J . Self, and J. Sutz. Autoclass: a bayesian classification

system. In Proc. of 5th International Conference on Machine Learning, pages 54-65,

San Mateo, CA, 1988.

[9] B.A. Cheikes. Methodological issues in the design of intelligent and cooperative in-

formation systems. In Proc. International Conference on Intelligenct and Cooperative

Information Systenzs, pa.ges 3-12, Rotterdam, Netherlands, May 1993.

[lo] P. Chen. The entity-relationship model : Toward a unified view of data. ACM Trans.

Database Syst., 1:9-36, 1976.

[l l] F. Cuppens and R. Demolombe. Cooperative answering: A methodology t o provide

intelligent access to databases. In Proc. 2nd Int. Conf. Expert Database Systems, pages

621-643, Fairfax, VA, April 1988.

[12] F. Cuppens and R. Demolombe. How to recognize interesting topics t o provide coop-

erative answering. Information Systems, 14:163-173, 1989.

[13] B. C. Falltenhainer and R. S. Michalski. Integrating quantitative and qualitative dis-

covery: the ABACUS system. Machine Learning, 1:367-401, 1986.

[14] T . Finin, A.K. Joshi, and B .L. Webber. Natural language interactions with artificial

experts. Proceedings of the IEEE, 74:921-938, 1986.

[15] D. Fisher. Improving inference through conceptual clustering. In Proc. 1987 AAAl

Conf., pages 461-465, Seattle, Washington, July 1987.

[16] D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2:139-172, 1987.

[17] D. Fisher, M. Pazza,ni, and P. Langley. Concept Formation: Knowledge and Experience

in Unsu.peruised Learning. Morgan Kaufmann, 1991.

[18] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge discovery in

databases: An overview. In C;. Piatetsky-Shapiro and W. J. Frawley, editors, Knowl-

edge Discovery in Databases, pages 1-27. AAAIIMIT Press, 1991.

[19] T. Gaasterland. Restricting query relaxation through user constraints. In Proc. In-

ternational Conference on Intelligenct and Cooperative Information Systems, pages

359-366, Rotterdam, Netherlands, Ma.y 1993.

[20] S. Gantimahapa.truai aad G.Ka.rabatis. Enforcing data dependencies in cooperative

information systems. In Proc. International Conference on Intelligenct and Cooperative

Information Systems, pages 332-341, Rotterdam, Netherlands, May 1993.

[21] L. Gasser. Social conceptions of knowledge and action: DAI foundations and open

systems semantics. Artificial Intelligence, 47:107-138, 1991.

[22] M. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan

Kaufmann, 1987.

[23] B.J. Grosz and C.L. Sidner. Attention, intentions, and the structure of discourse.

Computational Linguistics, 12:175-204, 1986.

[24] J. Han, Y. Cai, and N. Cercone. I<nowledge discovery in databases: An attribute-

oriented approach. In Proc. 18th Int'l Conf. Very Large Datu Bases, pages 547-559,

Vancouver, Canada,, August 1992.

[25] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational

databases. IEEE Trans. Knowledge and Data Engineering, 5:29-40, 1993.

[26] J. Han, Y. Cai, N. Cercone, and Y. Huang. DBLEARN: A knowledge discovery system

for databases. In Proc. 1st Int'l Conf. on Informadion and Knowledge Management,

pages 473-481, Baltimore, Maryland, Nov. 1992.

[27] J. Han, Y. Huang, and N. Cercone. Intelligent query answering by knowledge discovery

techniques. In IEEE Trans. Knowledge and Data Engineering, (to appear), 1993.

[28] J. Han and 2. N. Li. Deductive-ER: Deductive entity-relationship model and its data

language. Informution and Software Technology, 34:192-204, 1992.

[29] J. Han, Y.Cai, N. Cercone, and Y.Huang. Discovery of data evolution regularities in

large databases. In Journa.1 of Computer and Software Engineering(a special issue on

methodologies and tools for intelligent information systems), (to appear), 1993.

[30] D. Haussler. Bias, version spaces and valiant's learning framework. In Proc. 4th Int.

Workshop on Machine Learning, pages 324-336, Irvine, CA, 1987.

[31] P. Hoschka and W. Kloesgen. A support system for interpreting statistical data. In

G. Piatetsky-Shapiro aad W. J. Frawley, editors, Knowledge Discovery in Databases,

pages 325-346. AAAIIMIT Press, 1991.

[32] X. Hu. Conceptual clustering and concept 11iera.rchies in knowledge discovery. In M.Sc.

Thesis, Simon Fraser University, Canada, Dec. 1992.

[33] R. Hull and R. King. Semantic database modeling: Survey, applications, and research

issues. ACM Comput. Sum., 19:201-260, 1987.

[34] T. Imielinski. Intelligent query answering in rule based systems. J. Logic Programming,

4:229-257, 1987.

[35] K. A. Kaufman, R. S. Michalski, and L. Kerschberg. Mining for knowledge in databases:

Goals and general description of the INLEN system. In G. Piatetsky-Shapiro and W. J.

Frawley, editors, Ii'nowledge Discovery in DatuBases, pages 449-462. AAAIIMIT Press,

1991.

[36] J. King. QUIST: A system for semantic query optimization in relational databases. In

Proc. 7th Int. Conf. Very Large Data Buses, pages 510-517, Cannes, France, 1981.

[37] M. M. Kokar. Coper: a methodology for learning invariant functional descriptions.

In Michalski et. al., editor, Machine Learning: a Guide to Current Research, pages

151-154. Kluwer Academic Publishers, 1986.

[38] L. V. S. Lakshmanan and R. Missa.oui. On semantic query optimization in deductive

databases. In Proc. 8th Int. Conf. Data Engineering, pages 368-375, Phoenix, AZ, Feb.

1992.

[39] P. Langley, H.A. Simon, G.L. Bradshaw, and J.M. Zytkow. Scientific discovery: Com-

putational explorations of the creative process. MIT Press, Cambridge, MA, 1987.

[40] D. B. Lenat. On automated scientific theory formation: a case study using the AM

program. In J . E. Hayes, D. Michie, and L. I. Mikulich, editors, Machine Intelligence

9, pages 251-286. I-Ialsted Press, 1977.

[41] R. S. Michalslti. A theory and lnethodology of inductive learning. In Michalski et. al.,

editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 83-134.

Morgan Kaufmann, 1983.

[42] R. S. Michalski, J . G. Carbonell, and T. M. Mitchell. Machine Learning, A n Artificial

Intelligence Approach, Vol. 2. Morgan Kaufmann, 1986.

[43] A. Motro. Seave: A mechanism for verifying user presuppositions in query systems.

ACM Transactions on Ofice Information ,Systems, 4, pages 21-38, 1986.

[44] A. Motro. Using integrity constraints to provide intensional responses t o relational

queries. In Proc. 15th Int. Conf. Very Large Data Bases, pages 237-246, Amsterdam,

Netherlands, Aug. 1989.

[45] A. Motro and Q. Yuan. Querying database knowledge. In Proc. 1990 ACM-SIGMOD

Int'l Conf. Mancigemenl o j Data, pages 173-183, Atlantic City, NJ, June 1990.

[46] B. Nordhausen and P. Langley. An integrated approach t o empirical discovery. In

J. Shrager and P. Langley, editors, In Computational Models of Scientific Discovery

and Theory Formation, pages 97-128. Morgan Kaufmann, 1990.

[47] D. E. O'Leary. Knowledge discovery as a threat to database security. In G. Piatetsky-

Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 507-516.

AAAI/MIT Press, 1991.

[48] G. Piatetsky-Shapiro and C.J. Matheus. Knowledge discovery workbench: An ex-

ploratory environment for discovery in business database. Workshop Notes from

the Ninth National Conference on Artificial Intelligence: Knowledge Discovery in

Databases, pages 11-24, 1991.

[49] A. Pirotte and D. Roelants. Con~tra~ints for improving the generation of intensional

answers in a deductive database. In Proc. 5th Int. Conf. Data Engineering, pages

652-659, Los Angeles, CA, Feb. 1989.

[50] J.R. Quialan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[51] C.L. Rete. A fast algorithm for the ina,ny pattern/many object pattern matching

problem. Artificial Intelligence, 19:17-37, 1982.

[52] D .E. Ruminelhart and J .L. McClelland. Parallel distributed processing. MIT Press, 1,

1986.

[53] J. Schmitz, G. Armstrong, and J.D.C. Little. Coverstory - automated news finding in

marketing. DSS Transactions, pages 46-54, 1990.

[54] C.D. Shum and R. Muntz. Implicit representation for extensional answers. In Proc.

2nd Int. Conf. Expert Database Systems, pages 497-522, Vienna, VA, April 1988.

(551 T. J. Teorey, D. Yang, and J. P. Fry. A logical design methodology for relational

databases using the extended entity-relationship model. A CM Comput. Surv., 18:197-

222, 1986.

[56] J. D. ~ l l m a n . Principles of Database and Knowledge-Base Systems, Vob. I & 2.

Computer Science Press, 1989.

[57] J. zytkow and J. Baker. Interactive mining of regularities in databases. In G. Piatetsky-

Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 31-54.

AAAI/MIT Press, 1991.

