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ABSTRACT 

Since it was first conceived in 1965, fuzzy logic has been an important way of simu- 

lating human reasoning. Fuzzy logic provides an effective conceptual framework for 

dealing with uncertainty and imprecision, which are inherent in preliminary engineer- 

ing design. 

In this thesis, we present an approach based on fuzzy logic and mathematical mod- 

elling of potential design components. We develop an algorithm for fuzzy calculation 

of functions, and compare it with previously published methods. We review some of 

the literature on fuzzy logic in design, in particular the work of Antonsson and his 

students. Then we develop a novel approach, which introduces a vocabulary of lin- 

guistic variables to describe potential design components. This vocabulary is stored in 

a knowledge base. Linguistic variables are also used to describe design requirements, 

and a metric is suggested to allow trade-off between multiple performance parameters 

and design requirements. 

A detailed example is given for the design of Stirling engine heat exchangers. 
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CHAPTER 1 

NATURE OF DESIGN 

1.1 Design and Design Process 

Design leads to the creation of new products, processes, software, and systems. Every 

field of engineering includes the design or synthesis process. The design goals are 

satisfied to provide the desired output, following specified requirements. Each decision 

made at the initial stage of design affects all subsequent stages. 

Design involves a continuous interplay between what we want to  achieve and how 

we want t o  achieve it. The objective is stated in the functional domain, whereas the 

solution is generated in the physical domain. Design is the transformation between 

a functional and a physical description of a device, which involves interlinking these 

two domains at every hierarchical level of the design process. These two domains are 

inherently independent of each other. So, design may be formally defined as creating 

an artifact's description, which meets perceived goals through mapping between the 
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functional domain and design domain [19, 211. 

Design involves three distinct aspects: a problem def ini t ion from uncertain facts 

into a coherent statement; the creative process of devising a proposed solution; and 

the analytical process of determining whether the proposed solution is correct and 

rational. These aspects are illustrated in Figure 1.1. Here it shows that the design 

process (shown in dotted lines) begins with expectations of social needs and goals. 

These goals are converted into engineering specifications, such as design parameters 

(DPs), functional requirements (FRs) and so on. Once the need is formalized, ideas 

and methods are generated to create a prototype. This prototype is then analyzed 

and compared with the original set of functional requirements. When the prototype 

does not fully satisfy the specified requirements, either a new idea must be suggested 

or the functional requirements must be modified. This iterative process continues 

until the designer produces an accept able product. 

1.1.1 DPs and FRs 

During the design process, the important step is to generate specifications for an 

artifact. Two specifications to represent an artifact are commonly used. They are 

design parameter (DP) and functional requirement (FR). 

A design parameter is a variable to be determined in the beginning of the de- 

sign process. These parameters are independent of each other. Normally they are a 

minimum set to present the system. 

A functional requirement is another form of the statement to describe a design 

task. It refers to goals them that the final product must satisfy. 
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Social ) Def 
Need 

Modify 

Product c3 
Figure 1 .l: Design Process 

In heat exchanger design, for example, the functional requirement is "transfer heat 

from one fluid stream to another". This is a formal statement of the social need. The 

designer may choose a shell-and-tube heat exchanger to meet the requirement. By 

making this choice, he introduces the design parameters "number-of-tube", "tube- 

length", etc. These design parameters are not given by the social need. They are a 

minimum set to represent the shell-and-tube heat exchanger. 

1.1.2 Hierarchy of FRs and DPs 

Every design has a hierarchical nature. That is, the design problem can be decom- 

posed into new, small problems including information. The hierarchical decomposition 

makes the design process possible since it would otherwise be too complicated. The 
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hierarchical nature of design can be concluded from two facts [19]: 

1. FRs and DPs have hierarchies, and they can be decomposed; 

2. FRs at the ith level can be decomposed into the next level of the FR hierarchy 

by first going over to the physical domain and developing a solution that meets 

the ith level FRs. 

We provide personnel transportation as a top-level functional requirement. The 

motorized vehicle is one top-level solution. Decomposing the requirement into more 

detailed sub-goals, we can provide protection from weather, supply motive power, 

provide storage for luggage. Choosing solutions to each sub-goal, we can select either 

a gasoline engine or a diesel to supply motive power. We can continue this process 

until we get the final solution. This hierarchy is shown in Figure 1.2. 

1.1.3 Creative and Analytic Design 

The creative design process is a process of translating FRs into a design solution. It 

requires synthesis of new ideas and methods, and may involve untried combinations 

of them. The creative ideas and synthesis process depend on the specific knowledge 

possessed by the designer, and on his ability to integrate knowledge. 

The creative process in design is complemented by the analytical process, which 

is a verification with design principle. In this process, design decisions are made 

by evaluating proposed prototype. It implies making correct decisions as well as 

evaluating the details of specific design features. 
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Top-level Requirement 

[Solution 3 1 

I Sub-Goal 1 I 

Sub-Sub Goal 1 I 

Figure 1.2: Hierarchical Structure of the functional requirement 

These two processes are interrelated, since one must be able to abandon or discard 

bad ideas by exploring different possibilities. The creative process must be checked 

through analysis and corrected for differences between the perceived problem defini- 

tion and the proposed solution, according to design principle. 

1.1.4 Design Axioms 

The design axioms provide basic standards or principles for analysis and decision 

making. They guide the creative process to identify good designs from a infinite 
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number of plausible designs. Hence, they offer a basis for comparing and selecting 

designs. According to Suh, there are two design axioms [19] that govern a good design. 

The declarative form of the axioms is: 

1. Axiom 1: The Independence Axiom 

Maintain the independence of the FR's 

2. Axiom 2: The Information Axiom 

Minimize the information content of the design 

Axiom 1 deals with the relationship between functions and physical variables. We can 

say that in an acceptable design, the DPs and the FRs are related so that any specific 

DP can be adjusted to satisfy its corresponding FR without affecting other functional 

requirements, while Axiom 2 deals with the complexity of a design. It states that 

among all the designs satisfying the Independence Axiom (Axiom l), the one with 

minimum information is the best design. 

Design axioms are not only a criterion for evaluating decision but also can be 

thought of as an objective function that directs the generation of design alternatives. 

They can greatly simplify the design process by eliminating many alternatives at an 

early stage of the process that ultimately could prove to be unsatisfactory. They 

establish a scientific foundation for the design field. 

To conclude, the engineer's job is to design an objective solution to a problem. 

This process may be motivated to identify the need for a product. The need must 

be synthesized into a small group of requirements and solved by a mathematical or 

some other method. The prototype should follow design axioms in order to be tested . 

against a feasibility analysis to confirm or disqualify the product design. 
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Intelligent Design 

Engineering practice and scientific enquiry are undergoing a profound change, due to 

the advent of the computer. Computers have a significant impact in the design field. 

Since the mid-1980s, artificial intelligence (AI) techniques have begun to be used in 

design. 

A1 is the study of mental faculties using computational models. It can embody 

the knowledge of experts, who engage in thinking alternating with calculations. It is 

the study of ideas that may enable computers to be intelligent. A great deal of human 

thinking and experimentation has been devoted to the use of A1 techniques. 

Intelligence is the capability to acquire knowledge, the faculty of thought and 

reason, and the ability to perceive and manipulate things. It is an amalgam of in- 

formation representation and information processing talents. Intelligent behaviour is 

characterized by a collection of general strategies that use knowledge. Intelligent de- 

sign [3] is intelligent behaviour in design and can be described as a knowledge-based 

reasoning task [6]. It is composed from suitable elements represented in a knowledge 

base, subject to rules expressing the characteristics of the elements. Using general 

strategies, it exploits qualitative heuristic knowledge about the physical domain. 

1.2.1 Fuzzy Logic in Intelligent Design 

Advances in science and technology have made our modern society very complex and 

our design process increasely uncertain. As the complexity of a system increases, our 

ability to make precise statements about its behaviour diminishes. To simplify this 
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complexity, an option is to increase the amount of allowable uncertainty by sacrificing 

some of the precise information. Rarely is a problem initially presented to an engineer 

in exam-paper precision of definition. Some words, such as "quiten, "cheap", "very 

tall", and so on, are merely subjective and vague as design requirements until they 

have been translated into figures [9, 251. As human beings, we must learn to accept 

that uncertainty is part of our life and will continue to be part of it in the future as 

well. The human being possesses some special characteristics that make it possible 

to learn and reason in a vague and fuzzy environment. He can arrive at decisions 

based on imprecise, qualitative data, in contrast to formal mathematics and formal 

logic demanding precise and quantitative data. Most human thought is approximate 

in nature, while the conventional approaches to knowledge representation lack the 

means for representing the meaning of everyday type facts exemplified by 

1. L L U ~ ~ a l l y "  it takes 'Labout" "an hour" to drive from SFU to Downtown Vancou- 

ver in "heavy" traffic 

2. Unemployment is not "likely" to undergo a "sharp" decline during the next 

"few" months 

3. "Mostn experts believe that the likehood of a "severen earthquake in the "near" 

future is "very" low 

where words in the quotation involve uncertainty. 

The qualitativeness of decisions implies that intelligence merely obtains an ap- 

proximate solution from uncertain physical domain. Qualitative and approximate 

reasoning, which is close to human being's thinking, can produce intelligent design. 
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Fuzzy logic, as its name suggests, is one logic underlying approximate reasoning. It 

is much closer to human reasoning and commonsense. Using fuzzy logic, design can 

simulate human reasoning and cognition. It can develop novel methods for systems 

.hat are too complex for analysis by conventional quantitative techniques. It can de- 

scribe different aspects of imprecision, inexactness and uncertainty of the real world, 

which are difficult, sometimes impossible to describe in terms of traditional meth- 

ods. It can provide a direct representation for knowledge, allowing closer and closer 

approximations to reality. 

Fuzzy logic uses fuzzy set theory as a basis for reasoning with imprecise concepts. 

In following chapters, we will give more detailed information about fuzzy theory and 

its application. 



CHAPTER 2 

BACKGROUND OF FUZZY 

THEORY 

2.1 Ambiguity and Uncertainty 

The sciences construct exact mathematical models of empirical phenomena and use 

these models to make predictions. Most aspects of the real world escape such precise 

mathematical models, and usually there is an elusive inexactness as part of the original 

phenomena. For example, if we say "tall person", we cannot always clearly determine 

how high it is. The ambiguity of "tall person" arises when we try to turn a qualitative 

statement into a quantitative range. In engineering, the adjectives that describe the 

states and conditions of various things are almost always connected to amounts in 

this way. Fuzzy mathematical properties provide a practical guide for this kind of the 

model. 
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Essentially, fuzziness is a type of imprecision that is found in such expressions 

as "quite easy". Such expressions correspond to fuzzy sets that do not have sharply 

defined boundaries [30]. These sets arise whenever we attempt to describe ambiguity, 

vagueness, and ambivalence in mathematical models of empirical phenomena. As one 

of its aims, fuzzy set theory develops a methodology for the formulation and solution of 

problems that are too complex or too ill-defined to analyze by conventional techniques. 

In this chapter, we first introduce fuzzy set concepts and properties. Then we 

present fuzzy numbers and an algorithm for calculating with them. Finally, we study 

the theory of fuzzy logic. 

2.2 Fuzzy Sets 

The theory of fuzzy sets deals with subsets (represented as A) of a universe of dis- 

course, X. The transition between full membership (1) and non-membership (0) in a 

fuzzy set is gradual rather than abrupt, as shown in Figure 2.1 (a), where p represents 

the degree of membership in A and x is an element in the X. By contract, the crisp set 

in Figure 2.1 (b) has sharp bounds at 2 and 10. The fuzzy subset has no well-defined 

boundaries, although the universe of discourse, X, covers a defined range of objects. 

This gradual boundary dividing membership in the class from nonmembership allows 

us to represent vagueness. 

A fuzzy set can be defined mathematically by assigning a membership value to 

each possible individual in the universe of discourse, X. This value represents the 

individual's degree of membership in the set, ranging from 0 to 1: 
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Figure 2.1: Fuzzy Set (a) and Crisp Set (b) 

If this universal set is countable, it can be defined by listing each member and its 

degree of membership in the set A 

Similarly, when X is continuous, then, a fuzzy set A can be defined in the form 

Note that in the above definitions, "-" does not refer to a division and is used as a 

notation to separate the element from its degree of the membership. 

For instance, suppose the universe of discourse, B, is a set of people's ages , and 

A is a set of the ages of "young" people in a town. Then B can be represented as 
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Figure 2.2: Distribution of "young" People 

and A, the fuzzy set shown in Figure 2.2, is represented as 

In the set of "young" people, the age of 30, element b5, has membership value of 0.8; 

the age of 50, element b7, has a membership value of 0.3, and so on. 

In general, we distinguish three kinds of inexactness: generality, that a concept 

applies to a variety of situations and occurs when the universe is not just one point; 

ambiguity, that it describes more than one distinguishable situation and occurs when 

there is more than one local maximum of a membership function; and vagueness, that 

precise boundaries are not defined and occurs when membership function takes values 

rather than just 0 and 1. We mainly discuss the vagueness. 

2.3 Properties of Fuzzy Sets 

Four important properties of fuzzy set theory are the resolution principle, normality, 

convexity and the extension principle. But in order to discuss these, we must introduce 
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the concept of a-cuts [32]. 

2.3.1 a-cuts 

When we want to exhibit an element z E X belonging to a fuzzy set A, we may 

demand that its membership value be greater than some threshold a E [0, 11, which 

leads to a crisp set. This crisp set of elements in the universe X is called the a-cut, 

A,, of A. Each element of A, has a membership value in A greater than or equal to 

the specified value of a, where 

The subscript a standing for a-cuts can be chosen arbitrarily in the interval [0, I]. 

This value is often designated at some value of membership function appearing in the 

fuzzy set. For instance, the a-cuts equal to 0.2, 0.8 and 1.0, respectively, of the fuzzy 

set "young" in Figure 2.2 can be written as 

A fuzzy set A may be constructed from its a-cuts through the resolution principle: 

Where a A, is the product of a scalar a with set A,. In other words, a fuzzy set A 

is decomposed into a A&, a E [0, 11 and is expressed as the union of these. It comes 

out as shown in Figure 2.3. As can be seen from the figure, if a 2  < al, A,, > A,,. 
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Given sets such as A,, and A,,,  we can retrieve the original membership function 

of fuzzy set A by connecting their membership functions. Therefore, a fuzzy set can 

be expressed in terms of the concept of a-cuts without resorting to the membership 

function. It is very convenient for the calculation of operations on fuzzy sets. 

Figure 2.3: Decomposition of a Fuzzy Set 

2.3.2 Normal and Convex Fuzzy Sets 

We now define normality and convexity. A fuzzy set A is normal if and only if 

for all x E X, where V stands for maximum. This means that the highest membership 

value of equals 1. 

A fuzzy set is convex if and only if each of its a-cuts is a convex set. That is: A 
is convex if 
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for all x1,x2 E X and 7 E [0, 11. 

2.3.3 Extension Principle 

One of the basic principles of fuzzy set theory is the extension principle [5]. It extends 

calculation in crisp sets to fuzzy sets. This allows the fuzzy domain of a function to 

be extended to the conventional field. Suppose that we have an n-ary function, f ,  

which is a mapping from the Cartesian product X1 X 2 .  - Xn to a universe Y such 

that y = f(x1, x2, . ., 5,). And A1, A2, . . . , an, which are n fuzzy sets in XI,  X2, 

. . ., Xn, respectively, are characterized by a set of membership functions pi(xi), i = 

1, 2, - , n. Then, the extension principle allows us to induce from n-ary function, f ,  

a fuzzy set, A, on Y such that 

where the V stands for the maximum and A minimum. 

2.4 Fuzzy Numbers 

If the universe of discourse is the real number, a normal and convex fuzzy set is called 

a fuzzy number [lo, 12, 131. Fuzzy numbers have membership functions like the ones 

in Figure 2.4 such as 5 in this figure (a) and 8 in the figure (b). By a-cuts, a fuzzy 

number is changed to a set of closed intervals with lower bound, al ,  and upper bounds, 

a2. These values greater than or equal to al  and smaller than or equal to a2 can be 

expressed as the symbol 
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Figure 2.4: Fuzzy Numbers 

We approximate the fuzzy number by a series of a-cuts. By the extension principle, 

we can define addition, subtraction, multiplication, division, minimum and maximum 

on the fuzzy number. Using these definitions, we get the solution for each a-cut. 

Then by the resolution principle, we reassemble the a-cuts to get the solution as a 

fuzzy number. 

2.4.1 Addition 

Let A and B be two fuzzy numbers and A, and B, their intervals for an a-cut, 

a E [0, 11. We can write the addition operation for the a-cut as 

C, = A, + BO = [a:, a;] + [b:, b;] = [a: + b:, a; + b;] (2 .5)  

The addition operation can be expressed as 

~ = A + B  

where 
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2.4.2 Subtraction 

Considering the following definitions and symbols, for all cr E [0, 11, subtraction can 

be defined by 

C, = A, - B, = [a:, a;] - [b:, b;] = [a: - b i ,  a; - by] (2.6) 

The method for addition can also be extended to subtraction. Subtraction is, in 

fact, the addition of the image of B- to A, where 

for all cr E [0, 11. 

At this point we consider multiplication in R+. Let us consider two fuzzy numbers A 
and B in R+. From the cr-cuts, we can write 

C, = A, B, = [a:, a;] [b:, b;] = [a: . b:, a; . b;] (2.7) 

for all cr E [0, 11. 

2.4.4 Division 

Division of two fuzzy numbers is defined in R+ by 

a: a; 
C, = A, : B, = [a:, a;] : [by, b;] = [- -1 

b$ ' b? 

Division is a multiplication by the inverse; that is by 
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B,' = [L '1 
b,a ' b y  

for all o E [0,  11. 

2.4.5 Minimum and Maximum 

Consider two fuzzy numbers A and B, 

Va E [0, 11, we define the fuzzy minimum of and i( as 

A, A B, = [a;, a;] A [by, b;] = [a: A by, a; A b:] 

and the fuzzy maximum of A and B as 

Aa V Ba = [a:, a;] V [b:, b;] = [a; V by, V b;] (2.10) 

The symbols A and V will be used for representing the minimum and maximum of 

the fuzzy numbers A and B. 
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2.5 Common Types of Fuzzy Numbers 

2.5.1 Triangular Fuzzy Numbers 

Triangular fuzzy numbers (TFN's) shown in Figure 2.5 are a particular type of fuzzy 

numbers. It can be represented as: 

Figure 2.5: The Shape of TFN 

Assume that a l ,  a2 and a3 are finite. A TFN is completely represented by a triplet 

At the a-cut, the interval is given by 
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2.5.2 Trapezoidal Fuzzy Numbers 

Trapezoidal fuzzy numbers (TRFN) shown in Figure 2.6 are another special case of a 

fuzzy number. 

Figure 2.6: The Shape of TRFN 

Assume that al,  a2, a3 and a4 are finite. A trapezoidal fuzzy number is completely 

represented by four elements as 

At the a-cut, the interval is given by 

A, = [Al ,  A21 = [a1 + a(a2 - a l ) ,  a4 - a(a4 - a3)] 
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Linguistic Variables 

The core of fuzzy set theory models an imprecise situation. However, the theory 

can be difficult to use directly without linguistic variables. The linguistic variables 

[18] built on fuzzy set theory offer imprecise statements like "lown, "somewhat low", 

"very low" and "fairly low". They allow a natural specification of values for imprecise 

concepts and can be used as a quantitative expression of the statement. 

A linguistic variable is a variable whose values are natural language expressions 

referring to some quantity of interest. These natural language expressions are names 

for the fuzzy sets. These fuzzy sets are composed of the possible numerical values 

that the quantity of interest can assume. An example of a linguistic variable demon- 

strates its structure. Let us define a linguistic variables as "NUMBERn. The quantity 

of interest "NUMBER will be an integer between 1 and 10. The sets of natural 

expressions of "NUMBER" are "few", "several" and "manyn. These in turn are the 

following fuzzy sets: 

"NUMBER = 

"fewn = {y, 
{ '(few", "severaln, "many" ) 

where the numerator of each fraction is the degree of membership and the denominator 

an element in the set. A linguistic variable NUMBER has three values, .'fewn, 'several" 

and "many", which are natural language expressions and represented by their fuzzy 

sets. 
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A linguistic variable differs from a numerical variable in that its values are not 

numbers but words or sentences in a natural or artificial language. Since words, 

usually, are less precise than numbers, the concept of a linguistic variable can provide 

a means to characterize phenomena which are too complex or too ill-defined. Since 

these are represented in fuzzy logic by fuzzy numbers, linguistic variables can be 

manipulated using the operations of fuzzy algorithm [20]. 



POLE COMPUTATION 

ALGORITHM (PCA) 

3.1 Prior Work 

The application of fuzzy logic to engineering design described in this thesis requires 

the frequent calculation of functions of fuzzy numbers. Algebraic operations on real 

numbers can be extended to fuzzy numbers by means of the extension principle of 

Zadeh. Therefore, fuzzy numbers can be processed similar to the non-fuzzy case, 

and the operations are sometimes called the extended operations (extended addition, 

extended subtraction, etc.). Although the solution of these operations is defined 

by the extension principle of Eq(2.4), the implementation of the solution procedure 

is not trivial. The reason is that the solution procedure corresponds to a nonlinear 

programming problem which is very complex except for the simplest mapping function . 
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Prior methods for calculating the results of mappings on fuzzy numbers can be 

classified according to whether they seek approximate or exact solutions. Examples 

of the class of approximate methods include the numerical procedure suggested by 

Schmucker [18], the analytic method of Dubois and Prade [8] and the method of 

Dong and Wong [7]. In [7], Dong and Wong show that Schmucker's discretization 

method can give quite irregular and incorrect membership functions. Dubois and 

Prade7s method requires that the function f be increasing over the solution space; 

this is equivalent to requiring that the solution space be uniform as introduced below. 

An example of an exact solution method is the non-linear programming technique 

of Baas and Kwakernaak [2]. The applicability of this method depends on certain 

restrictive conditions, given as Lemma 1 in [2]. These conditions are equivalent to the 

requirement that the solution space be uniform or quasi-uniform [29]. 

In this chapter, we describe an original approach for calculating the result of ap- 

plying any function to fuzzy numbers [lo, 12,131. A classification scheme for functions 

on fuzzy numbers is presented, based on the behaviour of the partial derivatives of 

the function. It will be shown that there is a class of problems - these having interior 

extrema - for which no existing method can give reliable results. A generally appli- 

cable alternative is suggested. We will also show that there is a class of problems - 

those having uniform solution spaces - for which the output may be calculated very 

rapidly, and a calculation method is given. Finally, for the class of problems having 

quasi-uniform solution spaces, we recommend the method of Wong and Dong. Minor 

modifications to their method can take advantage of special features of the problem 

to reduce computational complexity. 
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3.2 FWA Algorithm 

The FWA [7]  algorithm is a way of computing the output of a function supplied with 

fuzzy inputs, according to Zadeh's extension principle. The method is based on the a -  

cut representation of fuzzy sets and interval analysis. This method provides a discrete 

solution to extended weighted averages. 

For N real fuzzy numbers, o1,. . - , &, let ui be an element of Oi, (i E [I, N]). 

Given a performance parameter represented by the expression z = f (ut ,  - , UN), let 

2 be the fuzzy output of the expression. The following steps lead to the solution of 

2. 

1. For each o;, discretize the preference function into a number of a values, 

al, . . . , a ~ ,  where M is the number of steps in the discretization. 

2. Determine the intervals [u:, $1 for each parameter o;, i = 1, - - - ,  N, for 

each a-cut, a j ,  j = 1, , M. 

3. Using one end point from each of the N intervals for each aj, combine 

the end points into an N-ary array, [ up ,  . . a ,  up., . . -, u p ] ,  where V i, 

Pi E {L, R). A total of 2N distinct permutations exist for the array. 

PN 4. For each of the 2N permutations, determine z k  = f ( u p ,  m a - ,  U N  ), k = 1, 

. a * ,  2N. 

5. Give Zj=[V(zk), A(zk)]  as the resultant interval for the a-cut, aj. 

6. Repeat step 3 through 5 for other a-cuts, then apply the resolution prin- 

ciple to obtain 2. 

For N fuzzy inputs and M discrete points on the preference function, the algorithmic 
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complexity of the FWA implementation is on the order of 

where H equals the number of operations. 

The most serious drawback of the FWA algorithm arises when f is non-monotonic 

in one or more of the fuzzy variables Al, - .  . ,An.  A second drawback of the FWA 

is the necessity of performing 2N calculations for every value of a. This becomes 

computationally expensive when N is large, as will often be the case in engineering 

applications. 

3.3 Definitions and Notations 

Let X be a Cartesian product of universes: X = X1 x - . x Xn and let Al , .  . -, An be 

fuzzy sets in XI,  - . , Xn, respectively. Let f be a bounded, continuously differentiable 

function from X to a universe Y. The fuzzy set B induced on Y by applying f to the 

sets A; is calculated. If we write y = f (z l , .  . ., xn) where x; E Ai and y E B, then 

the set B is defined by the extension principle in Eq(2.4). We know that if the A; are 

normal and convex, and f is bounded, then B is also normal and convex. A series of 

a-cuts of fuzzy sets is considered. For each choice of a, there are n intervals [xf, xf], 

- - . , [xi, xf], with Cartesian product A,. Calculating the corresponding interval [yL, 

yR], B, = f (A1 ,, . - - , An,) = [yL, yR] can be obtained. The yL and yR correspond 

respectively to the global minimum and maximum of f over the space A,. So the 

problem here is to locate these minimum and maximum values. In broad outline, we 
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do this by identifying a short list of candidates, called poles, for these values, then 

selecting the highest and lowest values from this list. 

The algorithm described below does not depend on any continuous function asso- 

ciated with the variables used. We will be working with general sets and membership 

functions. We introduce some definitions and notations first in order to make the 

description easier. 

3.3.1 Representation of a point 

Consider the n-dimensional space Al, x . . . x A,,. A point in this space can be 

written as X = (xl, - . , x,). For any given point X ,  three sets are defined: the left 

set, L, containing those values of i for which x; = xf;  the right set, R, containing 

those values of i for which x; = xr; and the interior set, M, containing the remaining 

values of i. Then any point is described in the space as a triple (xr, x,, x,), where XI 

represents the set of variables x; for which i E L, and similarly for x, and x,. 

3.3.2 Weighting Function 

Consider the partial derivatives of f with respect to each of the variables x; 

A weighting function 8 is defined as follows: 

1 if x; = xf; 

-1 if x; = x?; 

0 otherwise. 
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The weighted partial derivative of the function f at a point X is then written as: 

$;(X) = qx;) h ( X )  

3.3.3 Poles 

A point Xp = (xl, x,, x,) is a first class of the pole if 

1. $l(Xp) > 0 v1 E L; 

2. $%(Xp) > 0 Vr E R; 

3. dm(Xp) = 0 Vm E M ;  

4. = Q;(x,) > 0 rn E M, (if 4; = 0, then $: > 0, etc.) at, 

and a second class of the pole, if 

1. $l(Xp) < 0 v1 E L; 

2. h ( X p )  < 0 Vr E R; 

3- dm(Xp) = 0 Vm E M; 

4. 2 = d,(xP) < 0 m E M, (if 4; = 0, then 4; < 0, etc.) 

Both of them are called poles for short. 
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3.3.4 Particular Zone 

A particular zone, Z;, of A, is an (n - 1)-dimensional subspace of A, for which 

4; = 0, where the i identifies each particular zone with the corresponding axis xi of 

the solution space. If A, has no particular zones, it is said to be a uniform solution 

space. If A, has one or more particular zones, and none of these zones Zj intersects 

the corresponding axis, xj, or any line parallel to this axis, then A, is said to be 

a quasi-uniform solution space. Otherwise, A, is said to be a non-uniform solution 

space. 

3.3.5 Normal Pole and Particular Pole 

If a point X p  is both a pole and a corner of the solution space A,, then X p  is said to be 

a normal pole. If X p  is a pole and is located at an intersection between m particular 

zones and n - m boundaries of A,, 1 5 m 5 n, then X,  is a particular pole. 

3.4 Solution Space 

In the solution space, any extremum of f (x) must be either a normal or a partic- 

ular pole. Here, we first discuss the method for two special cases: uniform and 

quasi-uniform solution space. In the next section, we develop a general method for 

computation. 
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3.4.1 Uniform Solution Space 

In a uniform solution space A, over the given interval [xf, xf], - .  -, [x;, x;], with 

4; > 0, 1 < i < (k-1) for some integer k, 2 < k < n and $;(x) < 0, k < i 5 n,  there 

are exactly two poles, 

Both poles are at corners of A,; the minimum pole, XL,  is a global minimum, the 

maximum, XR,  is a global maximum. Hence yL = f (XL) and yR = f (XR) [I]. 

Example 3-1: Consider the function y = f (xl, x2) = ~ 1 x 2 ,  21 E A1, = [l, 51, 

2 2  E A2, = [-4, -31. We note that 41 = x2 < 0 and 4 2  = x1 > 0, SO A, = A1, x A2, is 

uniform. Therefore, there are no particular poles and only two normal poles. These 

two poles are shown in Figure 3.1. The arrows on the boundaries of the solution space 

in the figure denote the directions in which the 4i are increasing. The dots represent 

poles, where PI is the lowest position for the point of (xl, 22) and P2 is the highest 

position for the point of (xl, 22). From the Equation (3.1) and (3.2), the two poles 

can easily be got, 

Hence yL = f (Pl)  = 5 - (-4) = -20 and yR = f(P2) = 1 -(-3) = -3 
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Figure 3.1: Normal Poles in Uniform Space 

3.4.2 Quasi-Uniform Solution Space 

In a quasi-uniform solution space, there are only normal poles. So, the result can be 

obtained through comparing these normal pole's values 

Example 3-2: Consider the function y = f (xl, 22) = XI  12, XI  E A1, = [-I, 51 and 

~2 E A2a = [-4, 31. 

and 
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Figure 3.2: Normal Poles in Quasi-Uniform Space 

From Figure 3.2, we note that = 2 2 ,  which is zero when 2 2  = 0, and $2 = xl, 

which is zero when xl = 0, neither of which intersects with its axis or any line parallel 

to that axis. Therefore, A, = Al, x A2, is quasi-uniform. Then we need to examine 

the weighted partial derivatives at each vertex to find normal poles. In this example, 

the partial derivatives are calculated at each corner of the space and tabulated in the 

Table 3.1. There are four normal poles, PI, P2, P3, and P4, which are shown in Figure 

3.2. The arrows in the figure are for the position trend. Comparing the values of the 

function at these four poles gives us: y L  = f(P3) = -20 and y R  = f(P2) = 15 

Table 3.1: Finding Normal Poles 

21 

-1 
5 
-1 
5 

2 

-4 
-4 
3 
3 

4 )  
< O  
< O  
> O  
> O  

$1(x) 
< O  

&(x) 
1 
-1 
1 
-1 

$42)  
< O  

i 

042)  
1 

> O  
> O  
< O  

$42) 
< 0 

Pole 
Yes 
Yes 
Yes 
Yes 

> O  
< O  
> O  

1 
-1 
-1 

> 0 
> 0 
< 0 
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3.5 Pole Computation Algorithm 

In the last section, we discussed methods for uniform and quasi-uniform solution 

spaces. But the non-uniform solution space is left. For this problem, the function 

may have extrema at points other than the corners of the space, ie., particular poles. 

Neither of the methods defined so far can locate these extrema. Hence, neither can 

have a correct result. Here we introduce a general method for solution of any type of 

bounded function. 

Because they are located at either corners or intersections, all the poles, not only 

normal poles but also particular poles, can be found. The function is evaluated in two 

classes of poles, where the first class includes the poles, PI,. . . , Pk, and the second 

class the poles, Pk+l, .  - .  , P,. After comparison, the global minimum and maximum 

values, yL and yR,  can be obtained. 

Example 3-3: Consider the function f(x1, x2, x3) = x: + xi + xi + X I  2 2  + 
x2 53, where xl E [-5, 11, x2 E [-4, 21 and 23 E [6, 81. We record expressions for the 

derivatives of the function with respect to each variable: 

This is a non-uniform solution space, where the particular zone $,, = 0 intersects 
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with the surfaces xl = -1, x2 = 2, $3 = 6 and x3 = 8. These two points (-1, 2, 6) 

and (-1, 2, 8) are intersections. Similarly, we can find another three points(-5, -0.5, 

6), (-5, -1.5, 8) and (1, -3.5, 6) from $,, and d,, . Besides, there are eight corners in 

this example. We form a table for these points, where c; ,  i =1, . , 8 for corners, and 

sj, j = 1, - .  . , 5 for intersections. 

Table 3.2: Normal Poles and Particular Poles in Non-Uniform Space 

In the Table 3.2, N.P. and P.P stand for the normal poles and particular poles, 

respectively. From the weighted partial deviative functions, a particular pole, PI, (1, 

-3.5, 6) and three normal poles, P2 at (-5, -4, 6), P3 at (-5, -4, 8) and P4 at (1, 2, 8) 

are calculated. Pl belongs to the first class of the pole, and its function is a global 

minimum value. Pz, P3 and Pq belong to the second class. Comparing the value of 

the function at these three poles, the global maximum value is attained at P3. The 

result value is [24.75, 991. 

- 5 
1 

-1.5 
-3.5 

8 
6 

< 0 
> 0 

=O 
=O 

> O  
> O  

< O  
> O  Yes 24.75 24.75 - 
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3.6 Bounded Function 

We want to be able to classify functions as having a uniform, quasi-uniform, or non- 

uniform solution space in advance of knowing their arguments. Three types of func- 

tions are listed below: 

Type 1 

y = f (x) = C ci xi 

Where the c;, dl and k are real numbers and the xi, X i j )  zl,m and w; are members of 

fuzzy numbers xi, 2, and J&. Any function not falling under one of the above types 

can be classed as Type 4. 

There are some characteristics for different types. Functions of Type 1 will always 

induce a uniform solution space; functions of Type 2 and 3 will induce solution spaces 

which are either uniform or quasi-uniform, depending on input fuzzy numbers. Type 

4 functions may induce non-uniform solution spaces. Several fast methods of calcula- 

tion, which together will allow us to handle all three types of bounded continuously 

differentiable function, are introduced. 
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3.6.1 Deletion Rule 

Consider the type 2 functions obtained when dl = 0, k = 1, c, = 1, i = 1, . . ., n: 

Given the fuzzy numbers . f l , - . .  , x,, to which the arguments belong, and given a 

particular value of a, the arguments can grouped into three disjoint classes. Thus it 

can be written 

where 2, J and K are indicia1 sets which label the variables (xf, xf, xf, x?, xf 

and xf are all positive) as belonging to "zero", "positive" and "negative" intervals 

respectively, these intervals corresponding to the "zero", "positive" and "negativen 

fuzzy numbers as defined by Mizumoto and Tanaka in [16]. 

It is then easy to show that the extrema of the function are given by 

n n 

y L  = A(-$ n xP), y R  = 11 xP, if IKI even 
i €Z  I=l#i I 

This is referred to as the Deletion Rule. 

Example 3-4: Given y  = xl 22 ~ 3 x 4 ~ 5 ,  where xl E [-I, 21, 2 2  E [-2, 11, x3 E [-3, 

-11, x4 E [-5, -21, x5 E [4, 61. We note that this function belongs to special case in 



CHAPTER 3. POLE COMPUTATION ALGORITHM (PCA) 38 

Type 2, where Z = (1, 21, J = (5)  and IC = (3, 4 ) .  IC is even, so the deletion rule 

is applied to obtain 

3.6.2 Selection Rule 

Consider a function of Type 3, which is a fuzzy weighted average: 

The derivatives of this function are 

where 

We can always choose to define our weights such that K is positive. Therefore, the 

partial derivative, &, will have the same sign as w;. If the lower bound and upper 

bound of w; have the same sign, (i.e., both positive or both negative), the minimum 

of the function will be attained when x; = xt or x:, immediately. If, on the other 

hand, the support of w, includes zero, the sign of 4,; must be determined first. 

This observation leads to an efficient way of locating the extrema: suppose the 

support of w; includes zero for 1 5 i 5 1, where 1 5 1 5 n, while for 1 < i 5 k, 
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1 < k 5 n, the support of wi is wholly positive and for the remaining values of i, the 

support of wi is wholly negative. Then the extrema of the function are 

where 

and 

where ZR, PR and NR are defined exactly as ZL, PL and NL, except with the 

superscripts of xL and xR interchanged. Evaluating these extrema requires a total of 

2"+' function evaluations, while FWA would require 22n for the same problem. 

Example 3-5: Given the function 

where xi: [I, 81, 52: [2, 91, 53: [3, 101, w1: [-I, 21, WZ: [-2, 31 and wg: [4, 81. The 

selection rule is applied to get 
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Arrange the t i ,  i =1,  2 ,  3 ,  shown in Table 3.3, to obtain y' and yr. Minumum and 

maximum results for lower and upper bounds are yL = -14 and yR = 35, respectively. 

Table 3.3: Finding Extrema Using Selection Rule 



CHAPTER 4 

ONE APPROACH T O  

IMPRECISION IN DESIGN 

4.1 Introduction 

The engineering design process can be characterized as a collection of phases. Each 

phase can transform a description of a need, from a highly imprecise preliminary stage 

to a final configuration in the form of a precise, physical design description. At the 

beginning stage, the designer is not certain what values will be used for each design 

parameter, or at least, he can choose several different values for the design param- 

eter. In this stage, the level of imprecision in the description of design parameters 

is typically high. As the design process proceeds, the imprecision with each known 

design parameter is reduced. Because of the imprecision inherent in the preliminary 
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design stage, computational tools for this phase must be able to manipulate impre- 

cise representations of design alternatives, while directly incorporating the engineer's 

judgement. In this chapter, we introduce one method for engineering design, devel- 

oped by Wood and Antonsson. The next chapter will describe an alternative method. 

4.2 Wood & Antonsson's Approach 

In the preliminary stage, the designer determines the approximate or exact relation- 

ships governing the design configuration, and specifies the mat hematical expressions 

of the design. He selects imprecise inputs to these expressions as fuzzy numbers. 

These fuzzy numbers describe the set of design parameters. 

Once the input parameters and performance parameter expressions have been 

determined, an analytical or numerical method such as FWA is used to solve for the 

imprecise performance parameters. These results are also fuzzy numbers, representing 

the performance of the design. Then, these parameters are compared to the design 

criteria, and the "backward path" 124, 25,26,27], to be defined below, can be utilized 

to find out each input parameter. Peak values of inputs correspond to the peak in the 

output sets. Off-peak values of the output at a particular membership function level 

correspond to one or more off-peak inputs. 

In the design, some input parameters are very strongly coupled to the outputs, 

and others are nearly independent. A mathematical measure (7-level) will provide the 

means to determine this coupling. If the measure indicate that the input parameter 

contributes very little to the analysis, they may be fixed t o  the most desired value, 

resulting in a simplification of the design problem. 
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4.3 Interpretation of Parameters 

A designer would prefer not to fix parameters in the early stages [23], but rather to 

evaluate imprecisely defined alternatives. Fuzzy set theory forms the basis for inter- 

preting these input parameters in a design. We represent imprecision by a fuzzy set, 

a range associated with a membership function. The membership function describes 

the desirability of using these particular values. A most desired value or interval is as- 

signed to every input parameter. The more confident, or the more the designer desires 

to use an input value, the higher its membership in the parameter's set. Specifically, 

the parameter's values with membership of one are those in which the designer has 

the highest confidence; whereas parameter values with membership of zero are those 

he feels sure can be excluded from consideration. 

Just as the input design parameters may have fuzzy sets associated with them, 

the output of the design calculation also has a direct interpretation. The performance 

parameter will be in the form of a function, with an interval encompassing all possible 

output performance values, and with a preference function ranging between 0 and 1. 

The values of the set which takes on membership values of one can be directly traced 

back to the input parameter values which have a membership of one. Other output 

values with a membership value a which is less than one similarly correspond to at 

least one input parameter's having a membership value equal to a, the remaining 

parameters' membership being greater than a. This reasoning is called "the back- 

ward path", which is a natural consequence of calculations using the fuzzy method. 

If the resulting output value for the membership equal to one satisfies the functional 

requirement in the performance space of the design, the design may proceed with- 

out further detailed numerical analysis. However, if the functional requirement is 
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not satisfied, the output membership function is examined to determine where the 

acceptable output value falls. The input parameter may then be traced for all values 

on the characteristic curve itself, according to the backward path. 

4.4 Design Measure 

The Measure of Fuzziness [24] expresses the coupling of input parameters and output 

parameters in the design. Here, we define a 7-level measure, D, for the engineering 

design as 

where C is a fuzzy number. 

Let Cl, . . . , & be N imprecise inputs, and let D be the output of the computation 

y = f (xl, . - ., 2,). The y-level value is calculated from these steps: 

1. Determine D using numerical calculation, for instance, FWA. 

2. Discrete the intervals into n equally spaced steps when a6 equals to 0. 

3. For each input parameter , c;, i = 1, -.. , N, set all other c,, j # i , to 

their nominal crisp value (where a6 equals to I), use FWA to calculate the 

output ej. 

4. Calculate the y-level measure for D and all 6 from Equation (4.1). 

5. Normalize the D ( D ~  with respond to D(&). The result is an ordering 

of the inputs according to the strength of their effect on the performance 

parameter. 
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The design measure provides the ability to find out information on the coupling be- 

tween the inputs and outputs of the design. It can determine which parameters 

produce little or no effect on the performance and which parameters will alter the 

output the most. Those having little effect on the performance can be fixed on their 

peak values, which reduces the complexity of the deisgn. 

4.5 Heat Exchanger Design Example 

4.5.1 Requirement Statement 

A shell-and-tube heat exchanger consists of a number of tubes supported by two end 

plates (shown in Figure 4.1). The outer surface of the tubes is maintained at 100•‹C 

by condensing steam, and the tubes are made of a metal whose conductivity is high 

compared with the heat transfer coefficient between the inner surface of the tubes and 

the water flowing in them. In designing the heat exchanger, we can vary the number 

of tubes, n; the tube diameter, d l ;  and the tube length, I .  We assume the tubes are 

thin-walled, so the internal and external diameters are approximately the same. Our 

objective is to transfer about 5 kW of heat into water flowing through the tubes of 

the heat exchanger. The water will enter the heat exchanger at about 90•‹C, at a flow 

rate between 1.5 and 2.0 kgls. 
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Figure 4.1 : Structure of a Shell-and-Tube Heat Exchanger 

4.5.2 Performance Parameter Expression (PPE) 

From the structure of the heat exchanger, shown in Figure 4.1, we can choose the 

number of tubes, n; the tube diameter, dl, and the tube length, I, as design parame- 

ters. Also, the temperature of water flowing through the tubes of the heat exchanger 

and a flow rate of water are design parameters. The heat exchanger is designed to 

transfer 5kW of water through it. According to the heat transfer theory, the PPE [5] 

can be expressed as 

where t is the temperature of outer surface of tubes, tl temperature of water, h 

convective heat transfer coefficient, a area of the surface of tubes. To completely 

describe this problem, the expressions for h, a,  and relative equations, such as Nusselt 

number Nu, Reynold's number Re, and a flow rate m, are needed as follows: 
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where k is the thermal conductivity of the material, P, Prandtl number, u,, the flow 

rate of water, v, kinematic viscosity and p fluid density. 

4.5.3 Functional Requirement (FR) 

There is a requirement in this heat exchanger. The heat transferring through the 

tubes must be between the minimum value q,, and the maximum value q,,. Thus, 

the functional requirement for the heat exchanger in this example is: 

where the subscripts rl and r2 denote "requirement7'. 

4.5.4 Design Parameters (DPs) 

The designer specifies the input parameters as preference functions. These parameters 

in the heat exchanger are the temperature of entering water, t l ;  the number of tubes, 

n; the tube diameter, d l ;  the tube length, I ;  and the mass flow rate of water, m. Note 

that the flow rate of water u,, in Equation (4.5) and (4.6), is not an independent DP, 

since it depends directly upon the mass flow rate of water m. 

In the design, the subjective knowledge, experience, and desires of the engineer are 

used to imprecisely determine these input parameters. For example, the tube length, 
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I, is constrained by a maximum length proposed in the configuration of Figure 4.2 (a). 

The input parameter 1 is imprecisely defined in a range of possible values where the 

desirability increases from the minimum preference value (a = 0) in the range to the 

maximum preference value ( a  = 1) and decreases to the minimum preference value (cx 

= 0) shown in Figure 4.2 (a). In this case, the length 10 cm, which corresponds to the 

peak of the fuzzy number, is the most desired, while values of the length greater than 

or less than 10 cm are less desirable. Therefore, for support values to the right of the 

input fuzzy number's peak or left, the degree of the membership function is specified 

to have lower values. Design lengths of the minimum performance, in this particular 

example are 1 cm and 100 cm, respectively. We can apply a-cuts to this parameter, 

for example, the interval [I,  1001 under a = 0, to calculate its performance. 

The diagrams shown in Figure 4.2 (b), (c), (d) and (e) are the remaining design 

parameters: temperature, t l ;  the number of tubes, n; flow rate of water, m and the 

tube diameter, dl, respectively. Triangular fuzzy numbers are chosen to represent 

these input parameters. So, these fuzzy design parameters can be represented by 

three values: left-extreme value, the peak value and right-extreme value. The formulae 

below give numerical forms of each design parameter, according to  the order of Figure 
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where yl, ytl, y,, yh and ydl are the degree of membership functions between zero 

and one of 1, t l ,  n, m and d l ,  respectively. Table 4.1 provides the properties for 

this example, which are the thermal conductivity of the material, k; fluid density, 

p; kinematic viscosity, v,; Prandtl number, PR and temperature of outer surface, 

t. Combining these inputs and Equation (4.2-4.7), the performance value can be 

calculated. 

Table 4.1: Constant Data in the Heat Exchanger 

r name - 1 constant I 

4.5.5 Performance Parameter 

With the input parameters specified in the last section and Equations (4.2-4.7), the 

preference function can be determined by the FWA algorithm. After the calculations 

have been performed, the fuzzy output for the rate of heat transfer to the water q, is 

shown in Figure 4.3. This figure shows the imprecise performance parameter result 

for the heat exchanger. 
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0.01 0.1 1 

(a) Tube Length 1 

(c) Number of Tubes n 

(e) Tube Diameter d I 

@) Temperature t 1 

(d) Flow of Water m 

Figure 4.2: Design Parameters for a Heat Exchanger 
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The next step is to compare the output set with the performance criterion. Com- 

paring the output q with the requirement values q,, and q,, , the output value at the 

peak of q under cr = 1 is not between q,, and q,, . Thus the output of the heat for 

most confident inputs does not satisfy the FR, while some values to the right of the 

peak in Figure 4.3 are found to satisfy the FR, in fact, for q between 6.3 kW under 

cr = 0.4 and 4.4 kW under o = 0.3. To respond to the FRs, the input parameters 

must deviate from the peak values. According to the 7-level measure shown in Table 

4.2, the values of the tube length, I ,  and diameter, d l ,  have strongest coupling with 

the output. These two design parameters are changed to the values 0.41 m and 0.04 

m, respectively, while other DPs are very little effect on their output and are set to 

their peak memberships. Thus, the heat transfer rate q = 5.25 kW can be obtained. 

This value corresponds to the most desirable set of values for the DP's and falls in 

the functional requirement. 

Table 4.2: y-Level for Heat Transfer Rate q 

I name I r-level I 
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The performance parameter (W) xi04 

Figure 4.3: Performance Parameter for the Heat Exchanger 



CHAPTER 5 

IMPLEMENTING FUZZY 

DESIGN 

5.1 Introduction 

While making use of Wood & Antonsson's approach, we found that their method has 

some shortcomings. Firstly, it appears to us difficult to attach rational preferences to 
b 

the values of isolated design parameters; for example, given a choice among a range 

of steel alloys, should we prefer the cheaper alloys or the stronger ones? We can 

see no sensible way of answering this question before seeing the impact on the final 

design. Secondly, there are no standards for how we can get the design parameters 

and performance goals. It is not clear whether the preference function for the DP 

denotes the designer's desire to use a particular values, or his expectation that the 

value will lie in a certain range. Thirdly, they have not used inexact, linguistic terms 
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to describe a library of components. Therefore the designer will have to select ranges 

for the DP for each new design problem. 

In this chapter, we develop an alternative method to manipulate the engineering 

design: introduce a vocabulary of component types, associating membership functions 

with design parameters and building knowledge bases; suggest a metric for trade-off 

strategies between the multiple performance parameters; and use algorithms described 

in chapter 3 for the fuzzy calculation. 

5.2 A Sense of Scale 

In developing a knowledge base to support engineering design, we face a trade-off be- 

tween efficiency and generality. It becomes impossible sometimes to identify a sharp 

threshold between impossibility and possibility. Here is an example: 

"Can you see a rubber band being used to power an aircraft weighting 10 gms?" 

"Yes, certainly." 

"And if the aircraft weights 1 kg?" 

"Perhaps; I don't think that would be the best way." 

"How about a 747?" 

"That's ridiculous!" 

There is a maximum size beyond which rubber-powered flight becomes impractical. 

Yet it would be very difficult to say what this size is. There might be no shorter way 

of proving it impractical than by examining a variety of attempts to reach the goal. 

It is unlikely to identify a sharp threshold between impossibility and possibility. As 
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we lower the power requirement, we eventually come to a rubber-power airplane that 

can be built. 

A sense of scale classifies experience into qualitatively different regimes. Within 

a regime, some effects are important, other can be ignored. Making distinctions of 

this sort is one of the respects in which an engineer differs from a physicist. This is 

illustrated by the engineer's use of non-dimensional numbers. In the Navier-Stokes 

equations, physics provides a complete and accurate description of fluid flow. But for 

design work, engineers rely on empirical correlations between the Reynolds number, 

the friction factor and Nusselt number-correlations which are only approximately 

true, but which provide a basis for making decisions. 

Originally, our sense of the scale comes from contingent details of our lives. Our 

bodies are a particular size, and the tasks important to us require particular amounts 

of effect. By contrast, scientific laws represent an attempt to describe the universe in- 

dependent of these contingent details. It would be surprising, then, if our judgements 

of scale could be deduced from the laws of physics. 

When working in the neigbourhood of the threshold between possibility and im- 

possibility, we would expect to take a long time to decide that the requirements were 

unachievable based on considering very unusual designs. But most design decisions 

are not like this. Most of the time we are far from the threshold, and can say very 

quickly whether or not a proposal is feasible. This is the characteristic we should like 

to see in a fuzzy intelligent design system. 
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5.3 Design Match 

Trade-off strategies are always present in the design process. We must balance dif- 

ferent aspects. We can compare the fuzzy numbers representing the predicted and 

desired performance for a given component or artifact, to implement an overall ap- 

proach of trade-off. 

Let the performance variable have predicted value (X, p)  where X is the range 

of possible values and p the preference function over that range, and let the desired 

performance for the same variable be (Y, v). Then match between the prediction 

and the requirement is a real number d in the range between zero and one, given as 

follows: 

where 

The diagram shown in Figure 5.1 illustrates the predicted value, X ,  the desired value, 

Y, and their relation, fd. Since fd is 0.6 in this figure, the match between X and Y 

is 0.6. The formulae of design match, fd, can be chosen in order to match the design 

closely. 

The match has the following characteristics: 

1. Given a second artifact with performance (X, pl) and p' 2 p, Vx E X n Y, 

fd(X, Y, PI ,  v) 2 fd(X, Y, p, v). 
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2. Given a second requirement with performance (Y, u') and u1 2 u, Vy E X n Y, 

fd(X7 Y7 ~ 1 7  ul) 3 fci(X7 Y7 Pr v) 

Figure 5.1 : Performance Parameter Values 

In general, we have a number of requirements. We can combine the matches for 

each requirement to get an overall measure. Let us denote this combined metric by 

fD = fD (dl, - . , d,). The operation fD should have the following characteristics: 

1. fD(dl, - - - , d,) = 0, if V i: d, = 0, i E [I, n]. 

2. fD(dl,.-a , d,) = d, if dl = = d, = d. 

One definition of fD that would satisfy these characters is 

f ~ ( d l , . . - , d , )  = min d, 
l<%(_n 

Other definitions of fD are possible. The choice of fD corresponds to the choice of a 

particular design strategy. 
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5.4 Building a Vocabulary of Components 

To develop a fuzzy knowledge base to support a preliminary design, we create and 

maintain a set of components. These are mechanisms, devices and artifacts qualita- 

tively different from one another. These are characterized by a number of parameters 

described by linguistic variables. A shell-and-tube heat exchanger, for example, can 

be classified as a "small", "medium" or "big" heat exchanger, whose parameters can 

be represented by fuzzy numbers. The preference functions for the diameters of these 

shell-and-tube heat exchangers are illustrated in Figure 5.2. The membership func- 

tions defined for these parameters represent the imprecision in the definition of these 

shell-and-tube heat exchangers. It is clear that there is no precise upper bound to 

the diameter of the exchanger, yet it is also clear that a tube having diameter 1 pm 

is not a heat exchanger. 

small medium big 

Figure 5.2: Diameters for Shell-and-Tube Heat Exchangers 

When the knowledge base is used for design, the user will supply a number of 

design requirements. These will also be naturally represented as linguistic variables. 

An engine designer, for example, is unlikely to be asked for an engine with a power 
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output of 500 kW. More probably the design requirement will be for "a sporty four- 

cylinder engine" or perhaps an engine with output "about 480 kW". "about 480 

kW" is a fuzzy number, with gradual bounds. There will typically be a number of 

requirements on a design. Some may be expressed as fuzzy targets for performance, 

others as fuzzy upper or lower bounds on variables. 

There is a difference in interpretation of membership functions between design 

parameters and performance requirements. In the former case, the degree of member- 

ship function reflects our estimate of how well a given value falls within the meaning 

of an imprecisely defined word in the vocabulary; in the latter, the degree of mem- 

bership function represents the desirability of a performance parameter achieving a 

given value. 

5.5 Parameters & Boundary Conditions 

The knowledge base is built up through device modeling, guided by an expert in the 

field. We put imprecise bounds on the geometric parameters of a device. From these 

we deduce the corresponding limits on its performance. The performance of a device 

is a function of its parameters and of its boundary conditions. 

A parameter is "internal" to the device. It describes the geometry and material 

properties of a device. For example, the parameters for a shell-and-tube heat ex- 

changer would include the number of tubes, the tube length and diameter, and the 

tube material. 

The boundary conditions are imposed by the context in which the device is used. 
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It may be a consequence of choices made in the design of neighboring components, 

or may be given explicitly or implicitly in the design requirements. For example, the 

boundary conditions for a shell-and-tube heat exchanger could include the volumetric 

flow rates of the two fluid streams and the physical properties of the two fluids. 

Refining the Design 

In the first stage of the design process, the designer faces a choice between a number 

of different mechanisms to meet the given requirements. For example, we might want 

to choose a small tubular, a medium tubular, a large finned or a extra large plain 

heat exchanger to meet the criterion. An initial selection can be made by using the 

match fd and fD to compare the imprecise performance with the given requirements 

for each alternative. 

This early stage of design may serve to rule out some candidate solutions, but the 

imprecise performance parameters of most candidates will have a broad plateau. This 

is what we would expect, reflecting the fact that many alternatives can be pursued 

to meet the requirements. To proceed with the design, it is necessary to refine the 

represent ation. 

There are several hierarchies in the design. We can distinguish different categories 

of potential design components, corresponding to the technical vocabulary of the field 

- for example, we might have a fuzzy model for a shell-and-tube heat exchanger, a 

finned heat exchanger and a plain heat exchanger. The first refinement occurs as the 

designer selects one of these categories. Each design choice reduces the imprecision in 

the predicted performance. At the next level of refinement, we can distinguish different 
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classes within the chosen category, such as a "small" heat exchanger, a "mediumn heat 

exchanger, a "large" heat exchanger and so on. These distinctions can be made by 

using linguistic variables. The value of the imprecise representation at this stage is 

that it allows the infeasibility of a particular design choice to be discovered at an early 

stage, before the design has been elaborated in full detail. After the results from the 

second level of refinement, the design process proceeds to the last level and gets a 

final value for each design parameter. 

5.7 Example 

A design is required for the hot-end heat exchanger in a Stirling engine. Here are three 

candidate designs: shell-and-tube, finned, and plain. We have some requirements for 

this design: 

1. The internal volume of the heat exchanger should be as small as possible, and 

certainly less than 300 cubic centimeters. 

2. The heat flow per unit degree temperature difference through the heat exchanger 

walls should be about 50 Watts per degree; lower than 10 Watts per degree is 

definitely not good enough, and greater than 500 Watts per degree would be 

overdesigned. 

3. The pressure drop across the exchanger should be as low as possible, and cer- 

tainly less than 100 KPa. 
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Three stages are made for the final design: the preliminary stage, the refining stage 

and the precise stage. During the first stage, the preliminary stage, the designer can 

get very broad ranges for each parameter to decide which category can be chosen 

among the shell-and-tube, finned and plain heat exchangers. Then, design moves to 

the second stage, refining stage, to select suitable size in certain heat exchanger types, 

such as "VerySmall" (standing for very small size of the heat exchanger), "Small", 

"Medium", etc. In this stage, the designer can focus on a smaller group and obtain 

narrow curves. Finally going to the third stage, precise stage, the designer can get 

accurate results under given conditions and criterion. 

5.7.1 Preliminary Stage 

In the preliminary stage design, the design parameters and functional requirements 

are fuzzy numbers. After calculation through the mathematical model - performance 

parameter expressions - the results, performance parameters, will also be fuzzy num- 

bers. We will choose one or more categories which fall in the functional requirements 

for the continuing design. 

Performance Parameter Expressions (PPEs) 

According to the theory of heat exchange, the design parameters for the heat ex- 

changers can be chosen for the heat flow per unit degree temperature, Q, pressure 

drop across the exchanger, P, and the internal volume of the exchanger, V. In equa- 

tion form, these PPEs for the shell-and-tube heat exchanger can be expressed as: 
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where h is the convective heat transfer coefficient; a area of the surface of tubes; f 

friction factor; D the gas density (4kg/m3); u mass flow rate; 1 the tube length; d the 

tube diameter; and n number of tubes. 

In order to completely describe this problem, the expressions for h,  a and relative 

equations, such as Nusselt number Nu, Reynold's number Re and mass flow rate, m, 

are as follows: 

where Ii' the thermal conductivity of water (0.169W/m2 O C ) ,  P, is the Prandtl number 

(2.22), V ,  the viscosity of water (0.000023 m2/s). 

The plain heat exchanger can be treated as a cylinder, closed at one end. It only 

has two design parameters, the cylinder diameter, d, and cylinder height, 1. The 

pressure drop of the heat exchanger is approximately equal to zero. PPEs for heat 

flow per unit degree temperature difference, Q, the internal volume, V, and related 

equations are: 
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where C is the engine speed (50 cycles) and S the piston stroke (0.05 m). 

The PPEs for the finned heat exchanger are identical to the plain heat exchanger, 

except that the surface area, a ,  is given by the expression: 

where n is the number of fin, 1 their length and h their height. The rest of parameters 

in PPEs for the plain and finned heat exchangers are similar to the tube's. The 

subscript of tube is for the shell-and-tube heat exchanger and plain for both finned 

and plain heat exchangers. 

Functional Requirements (FRs) 

In this design, the heat flow per degree temperature difference, Q, the pressure drop 

across the exchanger, P, and the internal volume, V, must fall in certain intervals. 

The functional requirements for them are shown in Figure 5.3. The equation forms are: 
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where the subscript r stands for its requirement, and the yg,, yp, , yv, for each cr-cut 

value. 

10 50 500 1 loo000 0.000001 0.0003 

Figure 5.3: Requirements for Design 

Design Parameters (DPs) 

The design parameters can be specified by membership functions and represented by 

a trapezoidal or a triangular fuzzy number for all stages. These parameters can be 

selected from the knowledge base to match linguistic meaning of their terms. They 

are stored in the knowledge base, according to their different groups. At the first 

stage, wide ranges are used to assign the design parameters. These parameters in 

the shell-and-tube heat exchanger are the tube length, I ;  the tube diameter, d; the 
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number of tubes, n; and the mass flow rate of water, m. The first three variables 

are design parameters and the last one is a boundary condition. Note that the flow 

rate of water u in Equation (5.6) is not an independent boundary condition since it 

depends directly upon the mass flow rate of water, m. 

The values in the knowledge base are employed to get ranges of their fuzzy numbers 

representing each design parameter. Curves shown in Figure 5.4 represent preference 

functions for each design parameter for the shell-and-tube heat exchanger in prelim- 

inary stage. For instance, the input parameter 1 can take a range of possible values. 

Its value is constrained by a minimum and maximum length shown in Figure 5.4 (a) 

and a trapezoidal fuzzy number is selected. The interval [0.01, 11 corresponding to 

its peak value is the maximum degree of its membership function. For values to the 

right of its fuzzy number's peak or left, membership functions are specified to have 

lower values. The values under the minimum membership function are 0.001 m and 

5 m, respectively. We can apply a-cuts to this parameter and get its intervals, for 

example, the interval [0.001, 51 corresponding to zero a-cut. 

Figure 5.4 (b), (c) and (d) show the remaining design parameters: the tube diame- 

ter, d, the number of tubes, n and mass flow rate of water, m, respectively. We choose 

trapezoidal fuzzy numbers to represent the tube diameter parameter and triangular 

fuzzy numbers for the last two parameters. So these parameters can be expressed by 

equations, according to Figure 5.4. 
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where yl, yd ,  y, and y h  are the degree of membership functions of I ,  d, n and m, 

respectively. 

Figure 5.4: Design Parameters for a Shell-and-Tube Heat Exchanger 

Since the plain heat exchanger is treated as a cylinder, closed at one end, it only 
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has two design parameters, the cylinder diameter, d, and the cylinder height, 1. The 

same values are taken in this example as Figure 5.5 (a) shows. Their formula follows: 

where yd is the value of their membership function for the diameter and height of a 

cylinder. 

Figure 5.5: Design Parameters for Plain and Finned Heat Exchangers 

The finned heat exchanger gives four parameters, number-of-fins, n; fin length, 1; 

fin diameter, d and fin height, h. The number-of-fins has the same preference function 

as the number of tubes shown in Figure 5.4 (c). The rest of the parameters are in 

Figure 5.5 (b), (c) and (d), respectively. The forms are: 
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where y,, yd and yh are the degree of membership functions for the length, diameter 

and height of a finned heat exchanger. 

Performance Parameters  ( P P s )  

Given the input parameters, performance parameters can be determined by the PPEs 

and a pole computation algorithm. After the calculations have been performed, the 

fuzzy outputs for the heat flow per unit temperature difference, the pressure drop 

across the exchanger and the internal volume of each heat exchanger are obtained. 

Since they are very broad ranges, a logarithmic scale is used for drawing their graphs. 

In Figure 5.6 (a), (b) and (c) diagrams are plotted for the performance parameters 

of the shell-and-tube heat exchanger. The heat flow rate per degree temperature 

difference of the exchanger is shown in Figure 5.6 (a). The performance value tutube, p )  

is drawn in a solid line and its requirement (Q,, v) in a dotted line. The requirement 

of the heat flow per unit degree temperature for the shell-and-tube heat exchanger is 

included in the heat flow per unit temperature difference output, as its graph shows. 
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10-2 106 

(c) V-tube 

Figure 5.6: PPs and FRs for a Shell-and-Tube Heat Exchanger 

Therefore, the design match fd equals to one: 

dot,,, = fd(Qtube7 Qr, P, v) = 1 

Similarly we can obtain matches for the pressure drop across the exchanger and 

the internal volume. They are : 
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where (P tube ,p)  is for the performance parameter of the pressure drop across the 

exchanger, ( K u b e ,  p )  for the internal volume of the exchanger, and (P,, u) and (V,,  v) 

for their requirements, respectively. 

We next combine all matches for the shell-and-tube heat exchanger to get an 

overall measure. 

Similarly, we can get the overall matches for the plain and finned heat exchangers. 

Since there is no intersection between the heat flow rate per unit degree temperature 

difference (a solid line in the diagram) and its requirement (a dotted line in the 

diagram) for the plain heat exchanger, shown in Figure 5.7 (a), the match for heat 

flow rate per unit degree temperature is zero. Therefore, it leads to zero overall 

measure, while the overall measure for the finned exchanger is close to 0.5, as the 

minimum of the match is 0.5 for the heat flow per degree of a finned heat exchanger, 

shown in Figure 5.7 (c). Figure 5.7 (b) shows the requirements and performance for 

the internal volume for the plain heat exchanger and (d) for the finned heat exchanger. 

At this stage of design, we face a choice between a number of different mecha- 

nisms, such as shell-and-tube, plain, and finned heat exchanger to meet the given 

requirements. By using the match fd and fD to compare the imprecise performance 

for each alternative with the given requirements, the shell-and-tube heat exchanger is 

chosen with a maximum measure. The next stage allows us to refine this result. 
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(b) V-Plain 

(c) QFinned (d) V-Finned 

Figure 5.7: PPs and FRs for Plain and Finned Heat Exchangers 

5.7.2 Refining Stage 

Now the shell-and-tube heat exchanger is selected for the continuing design. Since 

there are wide plateaux for each parameter, it is necessary to refine each representa- 

tion. The knowledge base supporting heat exchanger design contains fuzzy models 

of components for different classes of the shell-and-tube heat exchanger, for example, 

"VerySmall", "Small", and so forth. In the second level of the design, we should 

distinguish variants of each component by means of linguistic variables. 
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In the heat exchanger knowledge base, five classes can be selected to describe 

the shell-and-tube category, that is "VerySmall" , "Medium", "Smalln, "Big", and 

"VeryBig", according to its size. Each class of the exchanger has its own diameters and 

lengths. There are represented by linguistic variables which allow natural specification 

of values for the imprecise concept. The "VerySmall" heat exchanger, for instance, 

diameter has the range [0.00001, 0.0011 m. We can represent the possible ranges for 

the diameter of the shell-and-tube heat exchanger as follows: 

diameter = { "VerySmall" , "Small", "Medium", "Bign, "VeryBig" ) 

"VerySmall" = [0.00001, 0.0011 

"Small" = [0.0001, 0.011 

"Medium" = [0.001, 0.11 

"Big" = [0.001, 0.51 

"VeryBig" = [0.001, 5.01 

The design parameters for the shell-and-tube heat exchanger are the tube diame- 

ter d, tube length I, the number of tubes n and mass flow rate of gas m. The number 

of tubes and mass flow rate of gas are the same as at the first stage, shown in Figure 

5.4 (c) and (d), respectively. The diameter and length of different classes of the shell- 

and-tube heat exchanger are drawn in Figure 5.8, with trapezoidal fuzzy numbers. 

The formulae are below: 
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where yl and yd stand for membership functions of the length and diameter, respec- 

tively. 

With design parameters, Equations (5.1-5.9) and a pole computation, results can 

be obtained for the performance parameters. These performance parameters for the 

heat flow rate per degree, Q, pressure drop across the exchanger, P, and the internal 
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Figure 5.8: Design Parameters for a Shell-and-Tube Heat Exchanger 

volume of the exchanger, V, are shown in Figure 5.9. From left to right diagrams are 

drawn for the "VerySmall" , "Small", "Medium", "Big" and "VeryBign shell-and-tube 

heat exchangers, respectively. Dotted lines are plotted for the functional requirements. 

Using the metric fD, the overall measure for each class is obtained: 
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The maximum measure is 0.8 for the "Small" size of the shell-and-tube heat exchanger. 

5.7.3 Precisestage 

After first and second stages, design can be focused on a narrow range, such as "Smalln 

shell-and-tube heat exchanger in this design. Then, using Antonsson and Wood back- 

track method as described in chapter 4, precise results can be obtained, which is called 

defuzzification. This operation is necessary to produce a nonfuzzy result. Using back- 

tracking strategy, each parameter is obtained for the physical system. 

So choosing 0.01 m for the diameter, 0.01 m for the length and 5 tubes, we can get 

34 WI•‹C of heat flow per degree, 7826 Pa  pressure drop and 4 em3 internal volume, 

which are under requirements. 

5.7.4 Algorithm Analysis 

The algorithm used in the heat exchanger design is one example of a fuzzy calculation. 

From Equations (5.1-5.9), we can get the simplest expression for each performance 
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parameter. For instance, we simplify the form for the heat flow per degree temperature 

difference, Q, as follows: 

The intervals of design parameters d E Ad, 1 6 Al, n E A, and m E Ah are 

positive. $1, &, and &, are positive, and q5d is negative. Therefore, A = Ad x Al x 

An x Am is a uniform solution space. Only two normal poles under each a-cut exist. 

From equations (3.1) and (3.2) these two poles can be obtained. These two poles are 

a global minimum value and a global maximum value. If the design parameters of a 

small shell-and-tube heat exchanger are 

d = [0.0001, 0.011 m 

1 = [0.01, 0.51 m 

n = [1, 1001 

m = [1.5, 2.01 kgls 

under a = 0, we can obtain the interval for Q. The lower bound can be obtained by 

taking the minimum bound for design parameters with positive derivatives and the 

maximum bound for those parameters with negative derivatives, that is, 1 = 0.01, n 

= 1, m = 1.5, and d = 0.01. Vice versa, the upper bound can be obtained using 1 = 

0.5, n = 100, m = 2.0 and d = 0.0001. The result for this case is [21.17, 1.36 x105]. 

Similarly, we can obtain output intervals for other values of a - we used a = 0.1, 0.2, 

- - -, 0.9 - and combine them to give the fuzzy number representing Q. 
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v 

Figure 5.9: PPs and FRs for a Shell-and-Tube Heat Exchanger 
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5.8 Basic Architecture of Fuzzy Design 

Different approaches for developing a fuzzy design system have been suggested in the 

last two chapters. Fuzzy design allows us to describe a social need using linguistic 

variables. The fuzzy mathematical models stored in the knowledge base provide a 

basis for decision making. Then defuzzification is needed to choose a crisp set of 

parameter values for the design system. Figure 5.10 illustrates a structure for heat 

exchanger design. 

SELECTION 0 

t \ r \ 

Figure 5.10: Architecture of Fuzzy Design 

SOCIAL 

NEED 

From Figure 5.10, boundary conditions and functional requirements are defined 

by the social need. These are linguistic variables and are fuzzified as either triangular . 

or trapezoidal functions. The boundary conditions go to the fuzzy mathematical 

2 i 1 

FUZZIFIER 
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model, and the values calculated by this block are multiple fuzzy-valued performance 

parameters. So, we suggest a metric for trade-off between these various parameters 

and functional requirements in order to get the solutions. However, the solutions at  

this point are membership functions over ranges of values. Through the defuzzifier, 

we can get the exact solutions, that is, a single value for each parameter. In this 

thesis, we have suggested using the method of Antonsson and Wood, described in 

Chapter 4 for this purpose. 

5.9 Conclusion 

The design in previous sections cannot guide the designer through all phases of the 

design process. It can, however, be used for exploration to rule out certain possibilities 

at  an early stage. The level of exploration is similar to that in a brainstorming session 

held early in the design process. 

In the preliminary stage, the designer is not certain what value will be used for 

each design parameter, or at least, he can choose different values in a large range. At  

this stage, the imprecision is high. Fuzzy logic allows us to represent this range and 

a preference over the range. The approach described in chapter 5 is an example. It 

associates preference values with design parameters to reproduce the judgements of 

scale implicit in the vocabulary of a domain expert. 

Fuzzy logic is one key to intelligent design. It can cope with the vagueness, approx- 

imation and uncertainty of the terms used by a human expert. Fuzzy logic is a natural 

way of representing human thinking which cannot practically be represented by con- 

ventional mathematical means. Fuzzy methodologies can be very useful in analysis 
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and design, by allowing us to model vague and imprecise concepts and thus improve 

communication between the user and computer. It can narrow the gap between the 

precise and the cognitive. 

The original contributions of this thesis are that we introduced the pole compu- 

tation algorithm for calculating the result of applying any function to fuzzy number, 

presented a method for manipulating the engineering design, and used a vocabulary 

of component types to building a knowledge base. 

5.10 Suggestions for Further Research 

Further work will be continued on fuzzifier, that is, membership function selection. 

Although four types of fuzzy membership functions (shown in Figure 5.11) are most 

common, we only deal with (b) and (c) types in our design. The selection of member- 

ship functions affects the type of reasoning and the decision making to be performed 

by the knowledge base and the design system. Automating the process of Chapter 

5 and extending the knowledge base to include more components is necessary. More 

research is needed in high-level inferencing of design. Fully developing the knowledge 

base, we can create a natural language interface between the human and the design 

system. 
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(a) Monotonic 

(c) Trapezoidal 

(b) Triangular 

cr(4 

- 
(d) Bell 

Figure 5.1 1: Membership Functions 
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