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ABSTRACT

In this thesis, we present a design method for the detection, isolation and identification
of multiple actuator failures in linear dynamical systems. This scheme is based on the

theory of Unknown Input Observer (UIO).

It 1s known that a UIO exists under certain necessary as well as sufficient condi-
tions. One of the necessary conditions is that the number of unknown inputs be less
than or equal to the number of outputs. Unfortunately, this necessary condition is
not always satisfied. In such a case no UIO will exist. On the other hand, it has been
shown in the past that variety of actuator failures in a linear system can be modelled
as unknown inputs to the system. If this formulation of actuator failures is used, then
siate estimation using a UJO would be possible only if the number of actuators is less

than or equal to the number of system outputs.

In this thesis, this problem has been attacked by special multiple unknown input
observers, called MUIOs. It has been shown that by careful formulation of MUIOs not
ouly stale estimation is possible, but also identification of multiple actuator failures
could be accomplished in certain systems with parameter uncertainties. In addition,
the shape and magnitude of the failures can be estimated which is useful in fault

accommodation.

i



Finally, the applicability of the proposed MULO approach has been lustrated

through a numerical example.
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Chapter 1

Introduction

Fault detection, isolation and accommodation (FDIA) in dynamic systems remains
to be of tremendous importance in modern industry and technology, and is receiving
increasing theoretical and practical attention. FDIA provides reliability, salety and
survivability which are fundamental features in the design of any complex engincering
system. Dynamical systems are often subjected to unexpected changes, such as com-
ponent failures and variations in operating conditions that tend to degrade overall
system performance. In particular, failure of actuators or sensors used to provide a
feedforward or feedback signal in a control system can cause serious deteriorations
in the performance of the system. A fault s normally understood to be any kind
of malfunction in the actual dynamic system that leads to an unacceptable system
performance. Such malfunctions may occur either in the sensors or actuators (in-
struments), or in the components of the processes. Any of these failures may lead
to unacceptable economic loss or hazards to personnel. In order to maintain a high

level of performance, it is important that failures be promptly detected and isolated
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so that appropriate remedies can be applied.

(ienerally, a computer controlled system is composed of actuators, a main struc-
ture {or process) and sensors. For example, in an airplane flight-control system, the
actuators are the servomechanisias which drive the control surfaces and engine which
i Lurn provide the driving thrust. An autopilot controller provides input signals to
the actuators. The core part of the plant — the main structure or the process — is the
airframe with its cargo and appendages, along with the aerodynamic forces exerted
on the coutrol surfaces. The instrumentation consists of several sensors or transducers
rzttta(‘.hed to thQ airframe, which provide signals proportional to the vital motions of
the airframe, including airspeed, altitude, heading, acceleration attitude and rates of
change of attitude, control surface deflections and engine thrust. Obviously, sensor
signals provide feedback information to the autopilot, but they are also used in the
fault monitoring subsystem. In the early 1970’s when failure detection theory and
its applications were first developed, detection schemes concentrated primarily on de-
tecting sensor failures, which, once detected, could usually be corrected by electronic
switching techniques not requiring the reconfiguration of mechanical parts. Compen-
sating for faults in actuators is usually more difficult than redirecting electrical signals.

The configuration malfunction in the main structure (process) is even less feasible.

Over the past two decades, fundamental research on failure detection and isolation
(F'DI) has gained increasing consideration world-wide. This interest is stimulated by
the trend towards more complex and the corresponding growing demand for higher
availability and security of control systems. Nevertheless, a strong impetus also comes
from the area of modern control theory that has brought forth powerful technologies

of mathematical modelling, state and parameter estimation that are made feasible by
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the spectacular progress of modern computer technology. During the same period,
numerous approaches to the problem of failure detection and isolation (FDU) in dy-
namical systems have been developed (Willsky, 1976; Frank, 1987 and 1990; Clark,
1978 a and b; Clark and Setzer, 1980; Clark et al., 1975; Chow and Willsky, 1984;
Isermann, 1984; Saif and Villaseca, 1986, 1937; Saif and Guan, 1992; Guan an Saif,
1991; etc.). Among many methods, the detection filter, or observer (state estimator)
based methods (e.g. Wang, S. H., 1975; Guan and Saif, 1991) and the generalized
likelihood ratio (GLR) method (Willsky and Jones, 1976), and the multiple model
method (Willsky et al., 1980) are some examples. We also noticed in recent years
the detection and isolation of sensor and actuator failure has received much attention
in control theory and its application literature (Clark et al 1975; Willsky and Jones,

1976; Wang, S. H., 1975; Saif and Guan, 1992).

Fault detection and isolation has been widely discussed by many authors. But
the remaining task of the monitoring system — the identification of the failure and,
most importantly, reconfiguration of system signals in order to maintain satisfactory
operation of the system, have not been dealt with extensively. Another issue that has
concerned many researcher for many years is that, although sensor failure detection
has been dealt with extensively and attention has been given to develop computa-
tionally attractive schemes, work on actuator failure detection has not progressed in
parallel. Some approaches proposed are computationally tedious (Willsky and Jones,
1976). Actuator failure jeopardizes the whole control strategy, and our focus has been
on this specific category. This thesis provides somne thoughts on how to detect; isolate,
identify and, most importantly, to accommodate failures in actuators and keep the

system functioning smoothly.
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Chapter 2 begins with a brief review of various steps that need to be taken in tack-
ling DI problems, followed by brief discussions of three basic types of approaches:
the hardware redundancy, knowledge-based (expert system) and the analytical (func-
tional) redundancy methods. The analytical redundancy method is the only approach
used in this thesis and hence it attracts the most detailed discussions. Among many
analytical approaches, the analytical redundancy method described in this chapter
outlines the principles and the most important techniques of model-based residual
generation using state estimation methods with attempts to achieve robustness with
respect to modelling errors, and finally, the state estimator (observer) scheme which
~ 1s the main approach to the FDIA problem presented in this thesis work is dealt with

in this chapter.

Chapter 3 provides background on the historical development for the design of a
single unknown input observer (UIO) to detect, isolate, and identify failures. Various
schemes that use unknown input observers or estimators, full order or reduced order
are also reviewed. The existence of a single observer in a dynamical system is con-
ditional to the relationship between the total number of its output signals and the
total number of its unknown input signals. These unknowns may be modelling errors,
disturbances and parameter variations; sometimes other sources of unmeasurable in-
formation can be organized into so called “unknown inputs” of dynamical system.
The theorem for the existence of a single observer is presented and its limitation with
respect to the applications of such an observer to FDIA issues are also discussed in

this chapter.

Chapter 4 is the core of this thesis. It presents a novel design scheme for multiple

unknown input observers (MUIOs). Unlike the previous work of Guan (1990), the
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approach presented in this chapter can cope with certain situations where the total
number of unknown inputs is greater than the total number of outputs. In this -
thesis, a robust approach for FDIA in linear systems with parameter variations or
uncertain elements is presented. This approach 1s based on the fact that the model of
a linear dynamical system under plant parameter variations and uncertainties can he
transformed to make the application of the UIO theory for state estimation purposes
possible. The design scheme of MUIOs for the linear dynamical system under such
parameter variations and uncertainties are taker into account. The proposed fault-
tolerant control system is based upon MUIOs that can estimate unavailable state
variables of the system at the same time for the purpose of control. The limitation of
the proposed scheme is also discussed in this chapter. This chapter also discusses how
the above design method is used for failure detection and isolation for actuators and
provides the corresponding results. It also describes detailed system accommodation
~ techniques that enable us to keep the dynamic system, which is subject o system
uncertainties or parameter variations, functioning smoothly subsequent to an actuator
failure. Systematic detection methodology along with the system reconfiguration
technology used in this chapter could be implemented in a real-time dynamical control

system.

In Chapter 5, the MUIO design scheme and the FDIA technigues which are de-
veloped in Chapter 4 are applied to a linear, time-invariant, dynamic systerm which de-
scribes the longitudinal dynamics of the F18 High Alpha Research Vehicle (IF18/HARV).
The discussion of this application demonstrates the usefulness of MUIO design method-
ology and the FDIA scheme. The results of simulations indicate that the scheme for

fault diagnosis in dynamical systems using multiple unknown input observers can
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detect, isolate, and accommodate multiple actuator failures under the existence con-

dition of MUIO.

Conclusions and future work are presented in Chapter 6. The contributions of this

thesis work are also sunimarized here.



Chapter 2

Approaches to FDIA Problem

Over the past few decades numerous approaches to the problem of failure detection,
isolation and identification in dynamical systems have been reported. In geneval, there
are three major approaches: the hardware redundancy method, the knowledge-based
method, and the functional or analytical redundancy method. The following scctions

describe each of these schemes.

2.1 Hardware Redundancy Method

Traditionlly, fault diagnosis in dynamical systems is conducted through the use of
hardware redundancy. Repeated hardware elements (actuators, measurement. sensors,
process components, etc.) are usually distributed spatially in the system to prevent

localized damage. Such methods typically function in a set of three (triplex) or a
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set of four (quadruplex) redundancy configurations, and they compare redundant
signals for consistency. Consider the case of sensing as an example. The idea is that
three (or more) sensors measuring the same variable are installed where one would
be sufficient if it were completely reliable. Signals from these sensors are monitored
by a logic circuit which ignores small differences in signals due to electronic noise,
manufacturing toléramce, and the monitoring error inherent in the instrument. This
monitoring device declares that a sensor is faulty if its signal deviates too far from the
average value of others (assuming that only one fails at a time and the difference among

the others remains small). This fault-tolerance approach is simple and straightforward

- and is therefore widely utilized. It is essential in the control of airplanes, space vehicles

and in certain process plants which are safety-critical such as nuclear power plants

bandling dangerous chemicals.

Major problems encountered in using the hardware redundancy approach are that
first they require extra cost for the redundant hardwares and that second they take
extra spaces and weights. In aircraft, the additional room could be used for more
mission-oriented equipment. Another limitation of this approach is that it has been
realized that since redundant components (seusors) tend to have similar life expecta-
tions, it is more likely that when one of a set of sensors malfunctions others will soon

become faulty as well.

2.2 Knowledge-Based (Expert System) Method

Knowledge-based (expert system) methods complements existing analytical (see Sec-

tion 2.3) and algorithmetical methods of fault detection; they open a new dimension of
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possible fault diagnosis for complex process by adding new algorithms to improve the
process. In recent years, attempts have been made to apply arfi’ﬁcial mtelligence and
knowledge-based techniques which combine numeric and symbolic methods for per-
forming fault diagnosis. Research on computer-based automated diagnosis is receiv-
ing increasing attention and currently available numeric and non-numeric (symbolic)
tools are already sufficient for developing practical systems for on-line and off-line au-
tomated diagnosis and supervision of electronic, mechanical, chemical, aerospace and
other devices and processes. Knowledge-based technology has now reached the level
of full-scale, efficient, productive utilization in industrial systems and other complex

modern life systems.

In this section, the knowledge-based approach to fault diagnosis is briefly discussed
and its advantages and drawbacks are also given. A knowledge-based expert system
is designed using artificial intelligence (Al) techniques, emulating human performance
and presenting a human-like action to the user. Expert systems are currently finding
applications in an increasing repertory of human-life domains, at the center of which

lies fault diagnosis and the repair or reconfiguration of technological processes.

Fault diagnosis and reconfiguration are knowledge-intensive, experiential tasks
which in reality could sometimes go beyond the capabilities of skilled technicians,
operators, or engineers. Expert systems can perform at least at the level of a highly
experienced human trouble-shooting/repair expert whose knowledge greatly exceeds
the contents of service manuals. This expert system provides the critically required
assistance for prompt detection, location and repair of process faults and improves
overall field service efficiency and performance. The field of system diagnosis/repair is

presently at the heart of industrial automation and has all the required characteristics
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(closed domain, rich expertise available, good underlying models, heuristic methods,
readily performed test/validation procedures) that make expert systems very likely

to succeed in industrial environments.

The main advantages of using a knowledge-based (expert system) method to solve
the problem of fault diagnosis are:

. They provide a homogeneous representation of knowledge;

2. They allow incremental growth of knowledge about faults through addition of

’ I‘eELSOl]'.iI’lg PIOCESSES]

3. They allow unplanned but useful interactions.

On the other side of the coin, knowledge-based diagnosis methods have their own

drawbacks:

1. A great deal of prior knowledge of the system is necessary; and sometimes we

can obtain only limited knowledge;

2. The knowledge acquisition from the domain expert is time consuming and dif-

ficult;

3. All possibilities have to be explicitly enumerated and there is no capability for

system generalization.

An example of available knowledge-based diagnosis (supervision) systems is called
LATEST, which was developed by IBM (contracting with GHC Corp. and funded by
NASA) for troubleshooting the Space Shuttle launch countdown (Wood et al., 1989).
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LATEST is a rule-based expert system written in Ada language that gives the reason
for a hold or abort within about three seconds. Occasionally duving the launch of
the Space Shuttle, an abnormality demands a detailed explanation of how the general
purpose computers and their programs reacted to particular inputs. Nevertheless,
the software responses to a hold or abort command in a {raction of a second and
may leave even the experts puzzled as to the exact sequence ol events leading to the
interpretation of the countdown. Manual analysis of the data often takes hours since
experts must print out the data and find anomalies by comparing data blocks to com-
puter program design documents. This is an expensive use of manpower. Automated
diagnosis technologies of countdown failures, such as LATEST - which provides a
cost-effective launch countdown anomaly tool using expert system technology - have
become essential given the frequency of Shuttle missions returning to normal after the

Challenger disaster with up to 10 flights scheduled each year.

Methods of diagnosing/detecting failures in industrial systems based on hardware
redundancy and knowledge do not need any mathematical model of the plant (al-
though some expert system approaches are more or less model based). The third
major scheme applies to the problem of FDIA is the analytical redundancy method
which will be presented in full detail in the next section. My thesis project focns
is on this category of failure detection, isolation and identification and on the de-

sign method we developed that is based on state estimation (observer scheme) in

dynamical systems.
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2.3 Analytical (Functional) Redundancy M-=thod

In this section we outline the general procedure of FDIA using analytical redundancy.
The procedure for evaluating redundancy information given by a mathematical model
of the system can be roughly divided into the following two steps: residual generation
and decision making. We will describe these two steps in depth. The schematic of

the ['DIA procedure using analytical redundancy is illustrated in Fig. 2.1.

2.3.1 Analytical Redundancy Method

[u the course of developing the basic research on FDI, a novel philosophy for the FDI
methodology has emerged and is increasingly discussed in the research literature. It
is hbased on the use of analytical (i.e. functional) rather than physical or hardware
redundancy. This method implies that the inherent redundancy contained in the
static and dynamic relationships among the system inputs and the measured outputs
is exploited for FDIA. In other words, one makes use of a mathematical model of the
system or of a part of it for generating redundant information for FDIA purpose.
Contrary to the hardware redundancy approach, where redundancy measurements
from each sensor are compared, values of estimated variables of sensor measurements
are used as redundant information for fault detection purposes. As opposed to the
previous approaches discussed, analytical redundancy approach requires advanced
information processing technology such as state estimation, parameter estimation,
adaptive filtering, variable threshold logic, and some more sophisticated approaches
such as cost functions or statistical tests, and various logical operations, all of which

can be implemeuted on a digital computer.
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Figure 2.2: Two-stage structure of the FDI process

The first essential process of failure detection, isolation and identification is the
generation of the so-called residuals. Often these residuals are generated by first
estimating certain outputs or variables of the system, and obtaining the estimation
error which is commonly referred to as the estimator’s residual, or simply the residuals.
For a particular set of hypothesized failures, an FDI system has the structure shown

in Fig. 2.2.

Output from sensors are initially processed to enhance the effect of a failure (if
present) so that it can be recognized. An enhanced failure effect on the residual is
called the signature of the failure. Residuals should be unbiased in the absence of
a [ailure, showing agreement between the observed and expected normal behavior of
the system; a failure signature typically takes the form of residual bias which is a
characteristic of the failure. Thus. residual generation is based on knowledge of the
normal behavior of the system. The actual process of the residual generation varies
in their complexity. For example, in some voting systems, residuals are simply the
difference between outputs of various like sensors, whereas in a GLR test scheme

(Willsky and Jones, 1976), residuals are innovation process of the Kalman filter.

In the second stage of an FDI algorithm, the decision-making process, residuals

are examined for the presence of failure. Decision functions or statistics are calculated



CHAPTER 2. APPROACHES TO FDIA PROBLEM 15

using residuals, and a decision rule is then applied to the decision statistics to deter-
mine if any failure has occurred. A decision process may consist of a simple threshold
test on instantaneous values or the moving average of residuals, or it may be based
directly on methods of statistical decision theory and the sequential probability ratio

test (Willsky, 1976). More specifically, decision making consists of the following tasks:

1. Failure detection; i.e. an indication that something is going wrong in the systen:

2. Failure isolation/identification; i.e. determination of a faulty compouent and
determination of the size and/or the shape of the fault and its removal from the

system;

3. Failure accommodation; i.e. reconfiguration of the system so that it can continue

to function without interruption.

The idea to replace hardware redundancy by analytical redundancy was originated
by Beard (Beard, 1971) and Meier et. al. (Meier, 1971). Beard developed methods of
self-recognization to maintain closed-loop stability. Such issues as identifying failures
and changes in system sensors were solved by comparing the outputs of observers.
Meier ef. al. mvestigated the usefulness of functional redundancy to detect aircralt
control data instrument failures. The functional redundancy was obtained from fe-
tional relations that existed among different measurements. These were checked for

consistency with the aid of two Kalman filters and several algebraic relations.

An innovation test using a single Kalman filter was proposed by Mehra and Peshon
in 1971 (Mehra and Peshon, 1971). In their method, an innovation sequence was gen-

erated and subjected to statistical tests of whiteness, mean, and covariance. Knowing
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the time history of the output variables under normal conditions allows for the detec-
tion of any deviations by statistical decision theory. This approach is only capable of
detecting failures. But the failures can not be isolated. To do this, more advanced

techniques such as the M-ary hypothesis testing, etc. were developed.

More software expenditure 1s needed for failure accommodation using Baysian
decision theory as proposed by Montogomery and Caglayan in 1976 (Montogomery
and Caglayan, 1976). They provide a bank of parallel Kalmman filters designed for
a set of M-/ (M is the number of outputs) possible failure’ modes and for normal
operation. The erroneous instrument is detected with the aid of M-array hypothesis
testing. A moving window of the innovation of each Kalman filter drives a detector
that calculates the likelihood ratio for each hypothesis corresponding to a possible

failure mode.

To relax the computation cdmp]exity of techniques such as the M-ary hypothesis
testing and GLR test discussed above, Deskert et. al. (1977) presented a functional
redundancy scheme combined with dual sensor redundancy of the process. The iden-
tification of the failure is achieved on the basis of functional relationships among
outputs of dissimilar iustruments by performing sequential probability ratio tests of
differences among outputs. Similar work had been done by Onken and Stuckenberg
(Onken and Stuckenberg, 1979). By using dual sensors and state estimators for the
generation of analytical redundancy, they obtained the quality of a triplex system.
Other schemes using the Kalman filters for the analytical redundancy include Cun-

“nimgham and Poyneer, 1977; Montgomery and Tabak, 1979.

Several contributions to IFD with state estimation methods using either an ob-

server or Kalman filter were made by Clark (Clark, 1977, 1978, 1980 and Clark et.
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al., 1975). In 1977, Clark proposed the dedicated observer scheme (DOS) for 11D
using a bank of Luenberger observers, each driven by one sensor output. If none of
the sensors fails, all reconstructed state vectors converge to the actual state vector,
However, if one of the sensor fails, then a difference occurs in the oulput vector of the
corresponding observer. The difference can be used to identify the faulty sensor. A
simplified IFD scheme was also introduced by Clark in 1978 by using a single observer
driven by one of the measured variables. If all sensors work perfectly, no differeuce
will be seen between reconstructed outputs and actual instrument outputs. If one
of sensors that does not drive the observer fails, there will be a recoustruction error
in correspdndiﬁg channels. But, if a sensor failure occurs in the chaunel that drive
observers, all reconstructed outputs will be erroneous. Therefore, a unique means of
detecting and 1solating of the faulty sensor is possible. Since tlhe introduction of DOS

by Clark, other more sophiscated aproaches based on it have been proposed (Frank,

1987, 1990; Saif and Villaseca, 1986, 1987 a, b).

In 1979, Shapiro and Decarli developed an analytical redundancy scheme for the
flight control sensors of the Lockheed L-1011 aircraft. They used Luenberger observers
to reconstruct signals of failed sensors from associated unfailed sensors. Instead of
using a set of observers for each failure configuration, they used an observer that is

driven by the airframe input and the output of the sensor with the highest reliability.

In order to deal with the IFD problem in the presence of random disturbances as
well as to increase the robustness of observer schemes, several authors have proposed
some schemes using a Kalman filte. Clark and Setzer (1980) proposed to modify the

simplified IFD by using a Kalman filter with modified detection logic.

In the instrument fault detection (IFD) and actuator fault detection (AFD) schemes
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so far described, errors of reconstructed states that are used for IFD and AFD are
affected by sensor malfunction, actuator malfunction, and variations of the process
parameters. Frank and Keller (1980) developed an observer design scheme in which
insensitivity to parameter variations as a design specification was first included. They
extended dedicated observer (DOS) schemes by duplicating observers to allow distinc-
tion between the parameter variation and instrument malfunctions. One observer in
each pair 1s designed to be insensitive to parameter variations but sensitive to in-
strument malfunctions, and the other is insensitive to both. This method is robust
with respect to parameter variations and applies to single output systems as well as

mu]ﬁp]e oth])ut syétems.

A general approach to generating robustness in failure detection and isolation sys-
tems has been pursued by Willsky and others (Deckert et. al., 1977; Chow, 1980;
Leininger, 1981; Lou, 1982; Chow et. al. , 1984 and Lou et. al. , 1986), and by
Watanabe (Watanabe et. al. , 1981, 1982). They researched the problem of robust
residual generation from the viewpoint of analytical redundancy relations and have
itroduced the coucept of general parity equation checks. They then considered inno-
vations of an observer or a Kalman filter as the most general residual containing the
complete set of redundancy relations. The underlying idea of robustness generation

is now to utilize only those redundancy relations for FDI that are most reliable.

Another important approach to increasing the robustness of observer schemes by
using a “robust” or so-called “unknown input” observer was recently dealt with by
Wimnenberg and Frank (1986), Guan and Saif (1991) and Saif and Guan (1992).
Saif and Guan proposed a novel scheme of robust estimation with application to

failure detection and identification in dynamical systems (Saif and Guan, 1993). The
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system being dealt with i1s subject to plant parameter variations or uncertainties in
the system, and this fault tolerant control system is based on a single robust estimator
that can simultaneously estimate unmeasurable state variables of the system for the
purpose of feedback control. The available results provide the necessary information
for a detection logic device capable of detecting and isolating actuator and sensor
failure. Additionally, Saif and Guan’s scheme is also able to identify the exact shape
and magnitude of the failure. The essence of this method was the robust observer
design scheme along with the necessary and sufficient condition for the existence of a

single observer.

While most of the work on FDI is concerned with instrument (sensor) flailures, some
attention has been given to component failures and actuator failures in dynamical
systems. One of crucial issues of component failure detections (CFD) is the problem of
failure isolation which is much more complex than the isolation of failed instruments.
"The actuator failure in the control system jeopardizes the entire control strategy
and recent work has been done on restructurable control strategies for maintaining

stability and performance in the presence of these failures (Athans, 1982).

The advantage of the analytical redundancy approach lies in the fact that the
existing redundancy can simply be evaluated by information processing under well-
featured operating conditions (i.e. at the operation center) without the need of ad-
ditive physical instrumentation in the plant. Although a price, which arises from the
need for the mathematical model, has to be ‘paid for this benefit, considerably less
computational expenditure is required for on-line modelling of the process with the
assistance of modern computer technology. Our focus is on this category of actuator

failure detection and isolation, and also on the design method we developed that is
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based on state estimation (an observer scheme).

2.4 Summary

In this chapter, we have discussed the various approaches for FDIA in dynamic sys-
tems. It has been pointed out that there are many techniques and very elaborate
procedures ready for application. Simulation studies and experimental results have
shown that the FDIA schemes using analytical redundancy have reached a certain
“degree-of maturity. There are, in particular, a number of encouraging results in the
application to mechanical systems such as aircraft or advanced transport systems.
It should be noted, however, that in cases where only poor or imprecise analytical
models are available, such as in chemical plants, the model-based FDIA approach is
still problematical. In such cases the support by knowledge-based methods may be

unavoidable.

Finally, one can see that the question of application of any model-based FDIA
scheme is primarily a question of the quality of the available mathematical model of
the systemn. Additionally, the reachable quality of fault isolation decisively depends

on1 the number of available measurements.



Chapter 3

Unknown Input Observer: Theory

and Design

This chapter describes a unified method for the design of a robust observer scheme
for sensor, actuator,rand component fault detection, isolation and identification in
dynamic systems. This method focuses on the problem of residual generation with
the goal of providing effective discrimination between different faults in the presence
of unknown inputs such as system disturbances, modelling uncertainties, process pa-
rameter variations and measurement noises. The approach is based on the theory of
the unknown input observer (UIO) which provides complete fault decoupling and the
modes of faults and disturbances. In this chapter we will focus our attention on the
first stage of FDIA, i.e., the process of residual generation using state estimation tech-
niques with emphasis on robustness with respect to unknown input. As mentioned
earlier, a few algorithms have been proposed for the design of full order or reduced

order unknown input observers to achieve better results of an observer-based FDIA

21
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scheme by providing increased robustness with respect to unknown inputs (Yang and
Wilde, 1988; Viswanadham and Ramakarishna, 1980; Gopinath, 1971; Viswanadham
and Srichander, 1987; Kudva, Viswanadham and Ramakarishna, 1980; Wang, Davison

and Dorato, 1975; Kurek, 1983).

The crucial point in any model-based FDIA scheme is the influence of unmodelled
disturbances such as system uncertainties, changes in the system parameters, and
systemn and measurement noises. These influences can be summarized as unknown
inputs acting on the system. The effects of unknown inputs hinder the performance of
fault detection, isolation and identification scheme and act as a source of false alarms.
Therefore, in order to minimize the false alarm rate, one should design the observer
such that it becomes robust with respect to unknown inputs. The first essential step
in-the development of an observer-based FDIA scheme is a realistic representation of
the physical process under consideration, which includes system dynamics, faults and
all kin'ds of possible unknown inputs. The resulting mathematical equation, the state
space equation, then serves as a basis for the mathematical derivation of the FDIA
procedure described here. Residual generation using an observer-based (full-order or
reduced-order) method is presented in this chapter, followed by the design of unknown
input observer. This chapter also describes how a UIO can be built with the presence
of unknown inputs. A major result rof the derivation is a necessary and sufficient

condition for the existence of an unknown input fault detection observer.
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3.1 System Specification and Problem Formula-

tion

Since as described in Chapter 2 the achievable quality of the FDIA scheme mainly
depends upon the quality of the system’s model, it is important to start with a
thorough and realistic specification of the given process. Such a specification will be
the basis for the later fundamental solution of the FDIA problem. We consider the
linear, time-invariant, dynamical system (i.e. the plant in a feedback control system),

as shown in Fig. 3.1. In general, the system consists of actuators, the plant dynamics
(components) and sensors. For a realistic and thorough representation with respect
to later use in the FDIA task, it is important to model all effects that can lead to
alarms and false alarms. Such effects are:

(a) Faults in the actuators, the components and the sensors of the plant dynamics;

(b) Modeling errors between the actual system and its mathematical model;

(c) System noises and measurement noises.

Fig. 3.2 shows the simplified block representation where all faults are represented
by a fault vector f and all the other effects such as modelling errors, system noises and
measurement noises that obscure the fanlt detection are represented hy the so-called

vector of unknown inputs, v.

As discussed in Chapter 2, actuator failures in dynamic systems impede the proper
function of the system. Therefore, solving this problem requires special effort. We
will also pay attention to the issues of uncertainties and parameler variations in
the system. In this thesis, we consider the time-invariant, linear, dynamic system,

assuming that all sensors in the system are free of failures. Such a system can be
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Figure 3.1: System Representation
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Figure 3.2: Simplified Block Representation of the System
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expressed in the following state-space form
x = Ax+ Bu+Dv (3.1)
y =Cx (3.2)
where x € R" is the state vector, u € R7 is the known input vector, v. &€ R™ is
the unknown input, which can be treated as the effect of actuator failures, system
uncertainties and parameter variations and higher order terms in case ol linearizing
a nonlinear system, etc, and y € R? is the measurable output vector. A, B, C are
the known matirces of appropriate dimensions. Notice that A, B, C are the nominal
matrices of the system. Faults that are principally reflected in the changes of A, B,
C and modelling errors are considered by v associated with the proper chioce of D.
While theses matrices A, B, C, D are usually given, the modes (i.e. the evolution)

of v must generally be considered as unknown.

The fault modes of the system might be classified as:
(1) Abrupt (sudden) faults, for example, step-like changes;

(2) Incipient (slowly developing) faults, for example, bias or drift.

Typically, an abrupt fault plays a role in safety-related systems where hardware
failures have to be detected early enough so that catastrophic consequences can be
avoided by prompt system reconfiguration. It also keeps the system functioning
smoothly. On the other hand, incipient faults are of major relevance in connection
with maintenance problems where early detection of worn equipment is required. In
this category, faults are typically small and not easy to detect. In this thesis, we will
deal with the FDIA issue of both types of faults in actuators. The uncertaintics aud
parameter variations of the system will also be taken into account. The following

section describes the design of an unknown input observer (UIO).
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3.2 Unknown Input Observer(UIO) Design

In this section, we will focus on the issue of the state estimation for the system with
unknown inputs. First, the definition of unknown input observer is given, then the
condition for the existence of a single unknown input observer will be described, and

finally, the detailed procedure for designing a UIO will be described.

3.2.1 Definition of UIO

The unknown input observer is defined as follows.

Definition: A dynamic system:
w=Fw+Ey+Lu (3.3)

X =w+ Ny (3.4)

is called an unknown input observer (UIO) of the system described in equations
(Eq. 3.1 - 3.2), if ||x(¢t) — X|| — 0 as ¢ — oo. Matrices F, E, L and N have
appropriate dimensions and w is the (n-p)-dimensional state vector of the estimator
and X is the estimate of the state x. Detailed procedures for finding suitable matrices
F, E, L and N and problems associated with the procedure is given in (Saif and

Guan, 1992).
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o

3.2.2 Necessary Condition for the Existence of a Single UIO

Consider the system given in (Eq. 3.1 - 3.2). We make the following assumptions: (1)
the C matrix has a special form which is given by C = [0 I}; 1(2) D is of full rank;

(3) the sensors are all healthy.

As mentioned earlier, a few algorithms have been proposed for the design of a
single full-order or reduced-order UIO (Yang and Wilde, 1988; Viswanadham and
Ramakarishna, 1980; Gopinath, 1971; Viswanadham and Srichander, 1987; Kudva,
Viswanadham and Ramakarishuna, 1980; Wang, Davison and Dorato, 1975; Kurck,
1983; Guan and Saif 1991). Although the design of UlOs in the akbove literature
varies, the condition for the existence of a single 10 in their schemes is essentially
the same. The following theorem presents the necessary condition for the existence
of a single UIO.

THEOREM A: A necessary condition for the existence of any order obscerver for

the system (Eq. 3.1 - 3.2) is that:
1. The total number of unknown inputs is less than or equal to the total munber
of outputs, that is, m < p; which implies
2. Rank(CD) = m, which in our formulation implies

3. Rank(D;) = m.

'Note: This is not a restrictive assumption becanse as long as C is of full rank, there will always
exist a similarity transformation that if performed on the system will bring the matrix C of the
transformed system in this special structure.(Chen, 1984)
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wlicre
D, ‘
D = (3.5)
D;
D, is a (n-p)xm, and Dy is p>xm matrices. The proof of this theorem is given in (Saif

and Guan, 1992).

The remainder of this section, describes m detail the procedures for designing a
single UIO, but only the final results of the design scheme proposed by Guan and Saif
(1991) are presented. It is assumed that existence conditions for the system (Eq. 3.1

- 3.2) are satisfied. There are two cases discussed in their method:

1. p>m, the eigenvalues of the observer can be [reely chosen;

2. p=m, the eigenvalues of the observer are fixed.

3.2.3 Casel: p>m

In this case, the system that the UIO is based on is as follows:

A, B, D,
Xx=| Ay | X+ | By |ut+| Dy |V (3.6)
A, B; D;
y=1[0 Ijx (3.7)
The Observer is given by:
w=Fw+4 Ey + Lu (3.8)

where

G _ Ar}_ —_ MA?‘Z - Jile - M.AQlM (39)
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H=A;-MAy+(A;; - MA,)(D, — MD,)D;' (3.10)
F=A, -MA, (3.11)
E=[G H] (3.12)
L=B,-MB, (3.13)

here M is the observer’s gain and

A;=A; -DD;'A, (3.14)
B; = B, - D,D;'B; (3.15)
A,’ = [Ai] Aig Ai_g] (3“))

From (Eq. 3.8) and (Eq. 3.11), it is easy to see that the necessary and suflicient con-
dition for a stable observer to exist is given in the following theorem.

THEOREM B: The necessary and sufficient condition for the existence of an ob-
server capable of estimating the states of the dynamical system given in (LIiq. 3.1 - 3.2)
is that the pair {A};, Ay} given in (Eq. 3.11) must be completely observerable. Tu
addition, if the above condition is satisfied, then the eigenspectrum of the closed loop
obsél'\fer can be assigned arbitrarily as long as complex conjugate eigenvalue appear in
pairs. The proof of this theorem is given in (Saif and Guan, 1992). Then the estimate

of the state is:

w + y (3.17)

»y
Il

where

N=|wM (DI—MDz)Dgl] (3.18)
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324 Case2: m=7p

In this case, the systemn which the UIO based on is as follows:

)'(1 :A“X] —|—A12y—|—B1u—|—D1V (319)

S’ = A21X1 + Azzy + BQll + DzV (320)

The ohserver is given by:

w = Gw+ Hu+ Ly (3.21)

The estimate of the state is:
X =w+ Ny (3.22)

where

N = D,D;! (3.23)
G=A;; —NA, (3.24)
L=A;; —NA,,+GN (3.25)
H=B; -NB, (3.26)

Given above equations, it can be seen that the eigenspectrum of the observer can
not be arbitrarily assigned and it is fixed by G (See Saif and Guan (1992) for more

details).
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3.3 Residual Generation Using State Estimation

It 1s well known from observer theory that a linear or nonlinear, full-order or reduced-
order state observers (in deterministic cases) or Kalman filters (when noise is consid-
ered)can be used for state estimation. In cither case a mathematical model of the
process 1s involved. The standard observer-based residual generation configuration
for the case of a full-order observer is given in Fig. 3.3. In this figure, the observer is
driven by the input and output signals of the system. The estimate of state variables

is X € ®™ and the estimate of the measurable output vector is ¥ € R?.

The key problem of the observer-based fault detection, isolation and identification
procedure is the generation and evaluation of a set of residuals, which permit not only
the detection but also a unique distinction (the location, and most importantly, the
size and the shape of the fault) between different faults in the face of an unknown
input. Generally, this goal can be achieved by a bank of observers or an observer
scheme (c.g. a UIO scheme), where each observer is made sensitive to a different, fault
or a group of faults and insensitive to unmodelled disturbances, noises, modelling
uncertainties and process parameter variations. The idea of residual generaiion via
state estimation is to reconstruct the state variables and outputs of the process and
to use the estimation error or innovation, or some functions of them as residuals.

Residual generation using a full-order observer is briefly described as follows.

Consider a system in the form of state equations (Iq. 3.1 - 3.2). The state estimate

% and the output estimate ¥ of a full-order observer obey the equations:
%= (A —-MC)% +Bu+My, %,=%(0) (3.27)

y=Cx (3.2%)
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Figure 3.3: Residual Generation with full-order observer
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where M denotes the observer feedback gain. With equations (Eq. 3.1 - 3.2) and
(Eq. 3.27 -3.28), the equations of the state estimation error and the output estimation

error, € =y — ¥, become:

Ee=xX-—-3X (3.29)
¢ = (A —MC)e+ Dv (13.30)
e=v -y =Ce (3.31)

When e is taken as the residual r, one can see from equations (Eq. 3.30 - 3.31) that v
is a function of € and v. In a similar way, one can find the residuals for reduced-order
observers due to the well established state estimation theory. Residual generations
based on the state estimator (observer) scheme lay the foundation of FDIA using
analytical redundancy in the dynamical system. This scheme has been adopted for

this thesis project.

3.4 Summary

In this chapter, we discussed the reduced-order unknown input observer design ap-
proach. This approach is computationally simple and attractive. In Theorem A, the
conditional existence of the ULO was given. [t was shown that the eigenvalues of the
estimator can be freely chosen if and only if the total number of outputs is greater
than the total number of unknown inputs, and certain observability condition is sat-
isfied. Tt is also shown (Saif and Guan, 1992) that, if the total mumber of unknown
inputs is equal to that of the total number of outputs, the eigenvalues of the estimator
can not be freely chosen; however, au observer with fixed eigenspectrum may exist.

Another important issue about the UlO is that a single UIO design is simply not
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possible if the total number of unknown inputs is greater than the total number of
outputs. Residual generations based on the state estimator (observer) scheme are also

discussed in this chapter.

It should be pointed out that the review of the UIO theory presented in this
chapter was restricted to deterministic, continuous, linear, time-invariant systems.
However, recent works (Saif, 1993 a, b) have extended the theory to discrete systems,
syétcms with stochastic noise, as well as a special class of nonlinear systems, namely

bilinear systems.

‘The next chapter shows that failure detection, isolation, identification and ac-
commodation in dynamical systems is still possible using multiple unknown input
observers (MUIOs) under the condition that the total number of unknown inputs is
greater than the total number of outputs. The UIO design scheme presented in this
chapter is still used in our MUIO design scheme. Based on our MUIO design scheme,
a method for detecting, isolating, identifying actuator failure in an uncertain dynam-
ical system will be possible. The accommodation or the reconfiguration of dynamical

systems will also discussed in the next chapter.



Chapter 4

Robust Estimation and Actuator

FDIA

In this chapter, we will develop a scheme for robust estimation, actuator failure de-

tection, identification and isolation and system reconfiguration.

4.1 Model Formulation

Developing the UIO design scheme presented in Chapter 3 relied on the assumptions
that the dynamic system in (Eq. 3.1 - 3.2) was known perfectly and that no parameter
varialions would occur. In practice, however, there are many disturbances affecting
plant state and output trajectories such as system uncertainties, plant parameter
variations, and sensor and actuator failures. In addition, some of the plant parameters

might be unknown or time-varying. In this section, we will consider these effects and

3 5
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build a system’s model after we arrive at a model of a practical dynamical system

that accounts for all of these effects.

4.1.1 TUncertainty Effects in the System

Consider the following linear, time-invariant, dynamical system described in state
space formulation

x = Ax + Bu (4.1)
y=0Cx (4.2)

where x € R" is the state vector, u € ¢ is the input and y € R? is the measurable
_output vector. We assume that matrices A and/or B in (Eq. 4.1)contain uncertainty
effects; and only the nominal value of matrices A and B are known. In the rest of
this section, we will reformulate the systems described in (Eq. 4.1 - 4.2) in the form
of a known system with unknown inputs. In order to achieve this reformulation, the

following definition is given.

DEFINITION: The n by [, uncertainty indicator matriz of any n by k matrix A
is defined as I4(aq,az, -..... ,yai,), where [, is the number of rows in A that contain
uncertain elements. The jth column of this matrix has zero entries except for the a;th

entry which has a value of one.

We illustrate the above definition using the following example: If A is a 4 by 4
matrix and there are uncertain elements in the first and the fourth rows ( I, = 2),

then @y = 1 and ay = 4. In addition, it is assumed that

A=A,+AA (4.3)
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where A, is the known nominal value, and

AA,

‘ AA, |
AA=| (4.4)

AA,

is the uncertainty matrix associated with A.

Assuming that only [, number of rows of A have uncertain elements associatec

with them (I, < n), (Eq. 4.4) can then be rewritten as

| AA., |

AA,, ;
AA =T4(ay,a,......,q41,) (4.5)

| AA,, |
where AA,., ¢ = 1,2,..., 1, is the a;th row of the matrix AA. Therefore, we denote
the AA as |

AA =14AA, (4.6)

Similar definitions will apply to the matrix B in (Eq. 4.1), and the uncertain system

can be written as

x = Apx +Bou+ I2AA x + IgAByu (47)
y=0Cx (4.8)
where I5(by, by, ......, b;,) has the similar definition and /4 is the number of rows in B

that contain uncertain elements.

Therefore, we have the equivalent

x =Apx+ Bou+Dv (4.9)
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y =Cx (4.10)
where
D=1, Ig] (4.11)
AA X
v = (4.12)
AB(,U

We can see that an uncertain dynamic system described in (Eq. 4.1 - 4.2) can be
transformed into (Eq. 4.9 - 4.12) — the form of a known system with uncertainty

effects as its unknown inputs.

4.1.2 Actuator Failure Models

Let u represent the output of a healthy actuator. Let @ be the actual output of the
actuator where the possibility of a failure has been taken into account (See Fig. 4.1).
Then we have .

G=u+v (4.13)

where v is a time-varying vector with elements v;. By the appropriate choice of v; we
can capture various f@ilure modes of the ith actuator. For example, if the ith actuator
freezes at its zero position providing no output at all, then v; = —u;; if there is a bias
h; appearing on the actuator for some reasons, then v; = hy; if the ith actuator is
stuck at a constant value k;, then v; = k; — u;. Multiple failures can be captured in

the above setting by specifying elements of v; corresponding to the unfailed actuator
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Yy
—=\ Plant >

Figure 4.1: System with actuator failures (Sensors are all good)

to be zero. The model presented in (Eq. 4.9 - 4.12) does not. take into account the
actuator failure effects. Now, taking into account the effects of actnator failures, we

will arrive at the following model

x = Aox+ Bou+D'v" (4.14)
where
D" = [D I IB] (’l l(‘;)
A\'4
vi = AAuX (417)
AB(,u

We will, in the rest of this thesis, adopt this system represented in equations (Iq. 1.14
- 4.17) — the form of a known system with uncertainty effects and actuator fatture

effects as its unknown inputs — to deal with the actuator FDIA problem using the

MUIQ scheme.
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4.2 Necessary Condition for UIO based FDIA

Failure detection, isolation and identification in dynamic control systems using the
state estimation concept and a single UIO scheme is conditional to the relationship
hetween the total number of unknown mputs and the number of output signals. Guan
and Saif proposed a scheme for the FDIA in the dynamic system (Guan and Saif,
1991). In their scheme, they stated that the FDIA task would be possible by using a
single UlO scheme if the total number of uncertain rows in the plant matrices A and
B plus the total number of actuator failures minus the number of common rows in
A and B for which there exists uncertain parameters is less than the total number of
output signals. It should be pointed out that the FDIA task would not be possible
by using a single UlO scheme if the total number of unknown inputs is greater than

the total number of output signals.

In order to deal with the FDIA problem in certain cases where the above condition
is not satisfied, here we propose an approach that would somewhat relax the condition
described in Guan (1990)‘, We will introduces a design scheme for state estimation
which makes it possible to deal with actuator FDIA problem and to implement system
reconfiguration for a linear dynamic system subject to plant parameter variations or
nncertainties if certain conditions are met. Assume that the total number of uncertain
rows in the plant matrices A and B minus the number of common rows with uncertain
parameters is m; and the total number of actuators is ¢. In the remainder of this
thesis, we assume that m; + 2 is less than the number of output signals in the

dynamic system, re., m; + 2 < p.
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4.3 Unknown Input Sub-system Formulation

Note that the minimum number of UIO’s needed to accomplish the FDIA task is
dependent on the existence condition of the sub-UIO"s. In the rest of this chapter, we
have assumed that at most one actuator can be accommodated with cach sub-U10.
This is the worst scenario which results iu the number of sub-UlQs to be equal to
the number of the actuators. It is clear that depending on the problem on hand, the
FDIA could be accomplished using fewer UlOs (see Case 1 in the unmerical example

of Chapter 5).

For FDIA purpose, we will have “¢” sub-systems which are called unknown inpul
sub-systems. The unknown input to each sub-system will consist of mode of one of
the actuator failures and the uncertainty effects of A and B matrices. For the il
sub-system the output consists of all of the ontputs of the system except the idh
one. In the rest of this thesis, superscript notation is used for referring to variables
corresponding to different sub-systems. Therefore, the ith nnknown input sub-system
will be

X =Aox'+Bou+D V", ¥V i=12 .4 (1.18)

yi = Cixi (4]‘))

where

D™ = {d, I IB] (4.20)
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v

V=] AAX | € Rt (4.21)

AByu

where y* is the ontput signal of unknown input sub-system i and is obtained by
deleting the ith outpnt signal, y,, from the system’s output, d; is the ith column of
the matrix D described in (Eq. 4.16) and v; is the #th actuator failure signal to the
system described in (Eq. 4.14). In (Eq. 4.22) the y* and the u are the measurable
signals required to obtain j. an estimate of y;, where 3! is defined as the estimate of
the ith element of the system’s output vector, i.e., y; using the ith UIO. Therefore, we
can see that the ith UIO is driven by all of the inputs and all of the outputs except
the ith output. By the nature of the construction of unknown input observer (see
Chapter 3), the value of v*' does not affect ji. Thus, for the ahove system, assuming

that the following conditions are satisfied:

1. Rank(C'D™)=Rank(D*') = m; + 1: where : = 1.2, ..., q;

2. Observability condition in THEOREM B in Chapter 3 is satisfied.

We will build ¢ UlOs for which the dynamics of the ith one is given by

w' =F'w' + E'y' + Lin (4.22)
The estimation of state variables is:
&= w4 Y (4.23)

where F', Ef, L', N'. can be obtained as described in Chapter 3.
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4.4 Estimation Error Dynamics Under Actuator

Failures

Consider the dynamic system representations (Iq. 4.18 - 4.19) and the #h UIO dy-

namics (Eq. 4.22 - 4.23).
We define the ervor

€=x{-%, V i=12..q (4.24)

3 ?

where x! € R"Pt! is the vector in the ith unknown input sub-system that need to
be estimated, and X is its estimate obtained from the ith UTO (given in liq. 4.23),

We can obtain 3, the estimate of y;, by using the relation,
gi=cx, ¥V oi=1,2...,4 (4.25)
Therefore the observation error, or the residual can be obtained:
=y —Ji=yi—cx, ¥V i=12..,q (1.26)
where ¢ is the ith row of matrix C.
It can be shown easily that

&= (A}, -MA}))e, ¥V i=1,2..¢g (4.27)

Since (A%, — M'AL,) is stable, ¢ — 0, X} estimates X} asymptotically, therefore the
observation error €' = y; — ji = y; — %} — 0 as t — o0, where Ay;’s are as defined

in (Eq. 3.16).

The error dynamics of the ith UIO has two characteristics:
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. ith Actuator has failed:
In this case, we have proven that ¢ = x} — %% — 0, and observation error
¢ =y; — g = y; — ¢%% — 0. Thus the error equation of the ith UIO is not

affected by the failure of the ith actuator.

2. jth Actuator, j # i has failed:

In this case, ¢* will have a steady state error in its dynamics.

4.5 Actuator FDIA Using MUIOs

In order to conduct actuator FDIA for dynamical system using MUIOs scheme, there
are some conditions have to be met in this thesis work:
1. Only one actuator fails at any instant of time;
2. The failures occur only after the estimator’s transients have died out;
3. The subsequent failure in a certain actuator occurs only after the transient
effects from previous failure has died out.
[n order to detect and identify actuator failures in dynamical systems, we will first

introduce the following result:

We consider the following linear, time-invariant system

x=Ax+Dv (4.28)

For the above system we can prove the following theorem.
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THEOREM B: Let the value of x and v at time kT by x(k) and v(k), where T is
the sampling time of the system. If T is small enough, then for system (Iq. 4.28),

given x(k), the input v(k) can be calculated (or retrieved) as follows:
v(k) = (DTD)'DTS(k) (4.29)
where

S(k) = A(eAT — 1)V (x(k 4 1) — eATx(k)) (4.30)

The proof (_)f this theorem can be found in (Guan, 1990). Equation (1iq. 1.29)
shows that once we obtain system’s states x, we can calculate the value of v 7\,,lsing
this equation. However, since the entire state x in (Eq. 4.30) is not available from the
measurements, we can use the state estimate X of x in (Eq. 4.30) and (Eq. 1.29) to
get the estimate of v, i.e., V. Note also that by simple modification of the above we

can account for additional terms such as known inputs in (Eq. 4.28).

4.5.1 On-Line Detection and Accommodation of Actuator

Failures

Assume that the dynamical system is in actual operation. If there are no actuator
failures, all failure estimates, i.e., %, i = 1,2, ..., ¢ should be zero and as well all the
estimation residuals e should also be zero. Without loss of generality, assume that
after sometime the first actuator fails. When the first actuator fails, all the MUIOs
except MUIO1 will give wrong estimate of state variable x. With the knowledge of
)'("'2 we can use (Eq. 4.29) to obtain the estimate of vi, i.e., 0}, i= I, 2, ..., q, where

! is the estimate of ith actuator failure element obtained by using the ih MUJO. At
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this point we should observer that all 9! # 0, which would indicate the presence of a

failure. To detect the source of the failure, we would furthermore check the residuals

e'. We would declare the failure of actuator #1 if the following two conditions are

met:
1. 9y #0;
2. ¢! = 0.

It should be noted that if actuator #1 has failed, then the error residuals obtained

from all MUiOé other 'than the first would be non-zero.

Here we present a possible approach for accommodating some class of incipient
{ailures. Once we have detected and identified the failure of the first actuator we can
account for it by compeusating for this failure from the corresponding input signal
and keep the system functioning smoothly. In this way, the dynamic system we are
considering with actuator failure vy can be offset to a non-faulty system. In other
words, the first actuator failure has been accommodated. Once the first actuator
failure has been detected and identified, the failure becomes a known input to the
system. When other actuators fail, the FDIA task will be undertaken in the similar

way as the first one and will be dealt with similarly.

In practical applications, the residuals could be nonzero due to the presence of
disturbances and unmodelled dynamics. Hence a threshold (§) is fixed by conducting

simulation studies and failure is signalled if the residual cross the thresholds.

In summary, using the MUIO design scheme and applying the actuator FDIA

method discussed in this chapter, inultiple actuator failures can be detected, isolated
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Figure 4.2: Multiple Actuator FDIA Scheme Using MUIOs

and identified in certain cases where the total number of unknown inputs is greater
than the total number of outputs in dynamical systems. The accommodation of

actuator failures would be possible by using the techniques described above.

Fig. 4.2 summarizes the architecture of the multiple actuator FDIA scheme in a

dynamical system subject to system uncertainties.



Chapter 5

Example and Simulation Results

To show the applicability of the proposed actuator FDIA scheme using MUIOs, in
this chapter, we will consider designing a bank of MUIOs for a linear, time-invariant
system based on the theoretical results of the previous chapters. The system under
consideration is a fourth-order dynamical model describing the longitudinal dynamics
of the F18 High Alpha Research Vehicle (F18/HARV) (Voulgaris and Valavani, 1991).
We will use the scheme we have developed to detect , isolate and identify actuator
failures when the total number of unknown input is greater than the total number of
output. To demonstrate the actuator FDIA scheimne by using MUIOs, we will consider

the following two cases:

1. Assume that all actuators fail at the different time and the plant dynamics are
known perfectly. This is to demonstrate that multiple actuator failures can be

detected, isolated and identified;
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2. All actuators fail, and there are uncertain elements in the fourth row of the plant
matrix A. In practice, however, the states of the system are not always available
for comstructing feedback control law. So although the states are available for
use, the estimates of the system’s states will be used to build feedback control
law, i.e., u = —kX + uy, where u is the coutrol input in the system, k is the
feedback gain, X is the estimates of the system’s states and uy is the reference
input to the system. This is to demonstrate that multiple actuator lailures can
be detected, isolated and identified in an uncertain system while the estimates

of the system are used in feedback control law.

5.1 Case1l: FDIA Using MUIOs in a Certain Sys-

tem

In this section, we will implement FDIA scheme when all actuators in the system fail

at the different time.

The dynamics of the FI8/HARV is given as follows:

~0.0750 —24.0500 0 —32.1600
~0.0009  —0.1959  0.9896 0

X = X
~0.0002  —0.1454 —0.1677 0
i 0 0 1.0000 0 |
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where
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u = pnd

éles

6Les

or

Lel us denote

EXAMPLE AND SIMULATION RESULTS

—0.0230 0 —0.0729

—0.0002 —0.0001 -0.0004

Af}- =

0 0

r

—-0.0750 —24.0500
—0.0009 —0.1959
—=0.0002 —-0.1454

0 0

0

0.0393
—0.0000
-0.0067 —0.0007 -0.0120 —-0.0006 —0.0007

0 —32.1600

0.9896 0
—0.1677 0
1.0000 0

0

perturbation in true airspeed (ft/s)
perturbation in angle attack (rad)
perturbation in pitch rate (rad/s)

perturbation in pitch angle (rad)

perturbation in throttle position (deg)

—0.0411
—0.0003

0

0.1600
—0.0003
0.0005

0

perturbation in symmetric thrust vectoring vane deflectio, (deg)
perturbation in symmetric aileron deflection (deg)

perturbation in symmetric stabilator deflection (deg)
perturbation in symmetric leading edge flap deflection (deg)

perturbation in symmetric trailing edge flap deflection (deg)

50
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and
—0.0230 0 —0.0729 0.0393 —0.0411 0.1600 ]
—0.0002 —0.0001 —0.0004 —0.0000 —0.0003 —0.0003

—0.0067 —0.0007 —0.0120 —0.0006 ~0.0007  0.0005

0 0 0 0 0 0

The parameters (i.e. Ay and By) in the above dynainic system are nominal valnes,

It 1s assumed that the output equation is given by:

0 0 0 1
0100
y=Cx = X (5.4)
0010
1 000

In order to perform FDIA task for actuators in the system, here we transform the
above system into the following system by using a linear transtformationx = Px. The

P matrix is given by:

00 0 1

0100
P = (5.5)
00 1 0
100 0]

Therefore, the transformed system becomes:

0 0  1.0000 0
0 —0.1959 09896 —0.0009
0 —0.1454 —0.1677 —0.0002

—32.1600 —24.0500 0 —0.0750
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0 0 0 0 0 0
—-0.0002 -0.0001 -—0.0004 —0.0000 —0.0003 -0.0003
¥ -0.0067 -0.0007 —0.0120 -0.0006 —0.0007  0.0005
| —0.0230 0 —0.0729 0.0393 —0.0411  0.1600
The output equation becomes:
(100 0]
010 0]._
y = X
0010
|0 0 0 1]
Denote
0 0 1.0000 0-
A= | 0 —0.1959 0.9895 —0.0009
0 —0.1454 —0.1677 —0.0002
| —32.1600 —24.0500 0 —0.0750 |
0 0 0 0 0 0|
B, = —-0.0002 —0.0001 —0.0004 —0.0000 -—-0.0003 —0.0003
—0.0067 —0.0007 —0.0120 —0.0006 —0.0007  0.0005
_—~0.0230’ 0 —0.0729  0.0393 —0.0411  0.1600 |
and
(100 0]
o= 01 00
0 010
| 00 0 1]

u (5.6)
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where

2XAMPLE AND SIMULATION RESULTS

Ay, = PAP!
B, = PB,
éo - (jl)_1

Because the eigenvalues of matrix Ay, i.c., open-loop poles of the system are located

at [-0.2433+4j0,3619, 0.0240+j0.1222], the system is unstable and the feedback control

is needed to stablize this system. We use state feedback to stablize the system. We

arbitrarily put closed-loop poles of the system at [-2, -3, -4, -5] by using the folowing

feedback control law:

0
0
—747.5279

0
0
664.6876
0

—13567.3417

—3332.5751

0
0
~305.3252

| 0
—2061.8171
—709.7493

where u; is the reference input of the system.

Therefore, the closed-loop system is then modeled as:

0 0 1.0000
0 —5.0000 0
—8.0000 0 —6.0000
0 0 0

-

0
0
0

~3.0000 |

0

0

1.4865

0
—14.2739

15.2919

X+ ur
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0
—0.0002
—0.0067
—0.0230

—0.0001
—0.0007

0
—0.0004
—0.0120
—0.0729

0
—0.0000
—0.0006

0.0393

and the output equation is given by (Eq. 5.7).

0
—0.0003
—0.0007
—0.0411

—0.0003
0.0005
0.1600

It 1s assumed that the reference input (unit step with amplitude of 20) is only

connected to the first actuator and no other reference inputs will be connected to the

system. The followings describe the time and the failure parameters of the actuators:

v = 9sin(t) deg, for ¢ > 20 second

1 = -10 deg, for t > 40 second

vy = 6 deg, for ¢ > 60 second

vy = -8cos(t) deg, for { > 80 second

vs = 10 deg, for t > 100 second

g =

6 deg, for ¢t > 120 second

By using (Eq. 4.14 - 4.15), the system can be modeled as:

-0.0002
—0.0067
—0.0230

D 1.0000
—5.0000 0
0 —6.0000

0 0

0 0
~0.0001  —0.0004
—0.0007 —0.0120
0 —0.0729

0
—0.0003
—0.0007
—0.0411

0
—0.0003
0.0005
0.1600

Uy
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0
—0.0002
—0.0067

—0.0230

0 0
—0.0001 —0.0004
—0.0007 —0.0120

0 —0.0729

—0.0000
—0.0006

0

0.0393
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0

—0.0003
—0.0007

—0.0411

0
—0.0003
0.0005

0.1600

t

o

Again, the output equation is given by (Eq. 5.7). Recall the necessary condition for

UIO based FDIA described in Section 4.2. With the above formulation of the system’s

model, we know that the number of output signals in unknown input sub-system is 3

and the number of actuator failures allowed in unknown input sub-system is therefore

2. Since we have 6 actuators, the number of MUIOs we need is therefore 3. We then

construct three unknown input sub-systems by using the equations of (Eq. 1.18 - 1.19)

and build three MUIOs based on unknown input sub-systems we just obtained. The

first unknown input sub-system is formulated as follows:

0
.1 0
—38.0000

0

0
—0.0002
—0.0067
—0.0230

—0.0002
—0.6067
—0.0230

0 1.0000
—5.0000 0
0 —6.0000
0 0
0 0
—0.0001 —0.0004
—0.0007 —0.0120
0 —0.0729
.
—0.0001 | | v
—0.0007 | | v
0 .

0

—0.0000
—-0.0006
0.0393

0
—0.0003
—0.0007

—0.0411

0
—0.0003
0.0005

0.1600

Uy

2

[
~
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0100
001 0% (5.14)

|
y' = }

10001
where y' is the ontput signal of the first unknown input sub-system and is obtained
by deleting the first output signal, y;. from the system’s output signal y. It can
be seen obviously that the output equation (Eq. 5.14) is in the form of [0 1], no
sunilarity transformation is needed. Alos note the number of outputs of sub-system
#1 is three and the system we are considering is of fourth order, the minimal order
observer required to estimate the ninmeasurable state variable of the original system
is of dimension one. We will place the pole of the observer at -6. By applying the
design algorithm of a single UIO presented in Chapter 3. the first MUIO is obtained

as?

w! = —6w' 4+ [-5.2500 1.0000 —0.5183]y"
+ [0 0 0.0057 —0.0072 0.0082 — 0.0257Ju, (5.15)
The estimate of the state variables of the transformed system is:
I 52500 —0.7500 0.1723
-1 ] 1 0 0
X = (5.16)
0 0 1 0
] 0 0 1]

Therefore. the estimate of the state variables of the original system 1s given by:

Al
' =P 'x

The estimate of yy, §;. can be obtained using the relation.

n=cdx'=000 0 1% (5.17)
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-

where ¢! is the first row of matrix C in (Eq. 5.4). and the residual ¢! is obtained by

1 1
€ =1 — Y.

The remaining two MUIOs design results are given as
F,=F;= -6,
E, = [-24.5868 1.0000 0.0344]. N, = [24.5868 — 0.7500 — 0.0115]
L, =[-0.0004 0.0019 0 0.0000 0.0064 0.0096]
E; =[-1.1369 1.0000 —0.0134].N3 = [1.1369 —0.7500 0.0045]
L; = [-0.0047 —0.0001 —0.0082 —0.0006 0.0000 — 0.0000)
The residauls €7, j=2, 3 are obtained as:

e’ =y — i g7 = 'X
=y — 9.7 =%
Note, the ¢! is used in all residual generation relations. It should he mentioned here
that, in this particular case. the residual generation for the purpose of faully actuator
identification is not needed. The actuator failure FDI is done in the following way:
By using THEOREM B in Chapter 4 and (Eq. 4.21). it is possible to obtain the
the estimates of actuator failures fromr MUIOs. The failure of the first actnator can
be identified by observing that #, is non-zero and v, 1s zero (Note that ¢ and o) are

obtained from MUIO1) and ©3, 2;. ¢ and @ arc all non-zero (03 and 7y are obtained

from MUIO2 and ¢5 and &5 are obtained from MUIO3). Since practically al any
instant of time only one actuator can fail, this indicates that the first actuator has
failed and its shape can be identified easily. Once we have detected and identified
the failure of the first actuator we can account for it by compensating for this failure
from the corresponding input signal and keep the systemn functioning smoothly. When

other actuators fail, the FDIA task will be undertaken in the similar way as the first,

one and will be dealt with similarly.
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Simulation studies are conducted by u.ing MATLAB Software Toolbox (Control
Systemns Toolbox) on SUN Sparc Station and results are shown in Fig. 5.1 - 5.4.
Iig. 5.1 (a and b) show: actuator failure detection, i.e., the estimate of actuator failure
obtained Tom MUIOI. Fig. 5.1 (¢) shows the residual obtained from MUIO1. Fig. 5.1
(d) shows the compensation for the first actuator failure. From Fig. 5.1 we can declare
that the first actuator has failed this failure is a sinusoidal signal with an amplitude
of 5 degree and the second zictuator failed at 40 second with constant amplitude of
-10 degree. [ig. 5.2 (a and b) shows actuator failure detection, i.e., the estimate of
actuator failire obtained from MUIO2. -Fig. 5.2 (¢) shows the residual generation
obtasined from MUIO2. From Fig. 5.2 we can declare that the third actuator failed
at 60 second with constant amplitude of 6 degree and the fuurth actuator failed and
this failure is a cosine signal with the amplitude of -8 degree. Fig. 5.3 (a and b) shows
actuator failure detection, i.e., the estimate of actuator failure obtained from MUIO3.
Fig. 5.3 (¢) shows the residual generation obtained from MUIO3. From Fig. 5.3 we
can declare that the fifth actuator failed at 100 second with constant amplitude of
10 degree and the sixth actuator failed at 120 second with constant amplitude of 6
degree. Fig. 5.4 shows the actual and estimated state trajectories of the system. We
can see from 4 plots m Fig. 5.4 the estimated state trajectories converge to the actual
states. Therefore, it can be seen from Fig. 5.1 through Fig. 5.4 that multiple actuator
failures can be detected, isolated, identified and accommodated when the total number

of unknown inputs is greater than the total number of outputs in dynamic systems.
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Figure 5.1: Actuator failure detection, isolation and accommodation (FDIA): (a) The
estimate of failure - #; - obtained from UIOI1; (L) The estimate of failure - 0, -
obtained from UIOZ2; (c) Residual Generation: ¢'; (d) Compensation for the first
actuator failure
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Figure 5.3: Actuator FDIA: (a) The estimate of failure — 95 - obtained from UIO5;

(b) The estimate of failure — 9 — obtained from Ul06; (c) Residual Generation: ¢
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Figure 5.4: Estimation of system’s states: actual states (solid lines) and estimated

states (dashed lines)
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5.2 Case 2: FDIA Using MUIOs in an Uncertain

System — Some Practical Considerations

In this section, we will perform the same tasks for the system described in (Eq. 5.1)
when parameter variations or uncertainties exist in the system in the form of (q. 4.6).
We will give some practical considerations about MUIO design and FDIA scheme.

~ Assume that the fourth row of A contains parameter variations. The numerical values

of these parameter changes are:

Aa42 = 03, Aa43 = —0.05,Aa44 = US (5,]8)
Thus
AA,=[0 03 —005 0.38] (5.19)
" 0 -
0 ,

Iy = (5.20)

0

1

We can see that parameter changes in the fourth row of A is relatively large(as,
changes from 0 to 0.3, ay3 changes from 1 to 0.95 and a44 changes from 0 to (1.8). Also
assume that actuator failure scenarios, closed-loop poles of the system in this case are
the same as in the Case 1. In practice, however, not all of the state variables of the
system are available for establishing feedback control law, it is necessary to use the
estimates of the system’s states to build feedback control law, i.e., u = ~kX + u,. In

a MUIO-based actuator FDIA scheme, the estimates of the system’s stale variables,

i.e., & must be used to construct the feedback control law. This is to demonstrate that
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multiple actuator failures can be detected, isolated, identified and accommodated in

an uncertain system while the estimates of the system are used 1n feedback control

law.

The dynarnic system described in (Eq. 5.1) under the above consideration can then

be rewritten as

X = Aox+ Bou+ D*v*

where

D*=[D I,

v

AA,x

(5.21)

(5.22)

where Ao, Bo, AA, and I are given in (Eq. 5.2 - 5.3) and (Eq. 5.19 - 5.20) and

D =Bo.

1t is assumed that the ouput equation is given by:

1 000

0100
y=Cx= X

0 01O

0 0 01

The first unknown input sub-system is given as:
- 1.1
x! = A.OXI +Bou+D"v

yl — Clxl

(5.24)
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where

D =[d, I (5.27)
*l "Jl 2 N
v o= (5.28)
AA X!

1. . . . - . “
and D* is the first unknown input matrix and its first colwmn, dy, 1s the first column

of the matrix D and the remaining column is the uncertainty indicator matirx of A

(A=Aop+AA).

Because part of the system’s states is not available [or constructing leedback con-
trol law, the closed-loop poles of the system will be placed at the same locations as

in the Case 1 by using the estimates of system’s states:

u=—k&' +u, (5.29)
The first MUIO is given as
w!' =F'w' +E'y' + L'u (5.30)
where
I N!
%= w! + y! (5.31)
0 I
Let
R'= !
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and
P! = N
I

In order to obtain the estimates of the system’s state variables, the equations (Eq. 5.25)

follows:

and (Eq. 5.30) are augmented by adding (Eq. 5.29) and (Eq. 5.31). The result is as
X! [ Ao+ AA —BokP'C!
w! I E!C' — L'kP'C

Xl
Wl
-BO d} u,
+
| L! 0 "

Note that the C! matrix in (Eq. 5.26) is in the form of [0 I}. Hence the estimates

BokR!
F!' — L'kR!

(5.32)

of the system’s state variables are:

I
)A(I:___ W1+
0

When putiing numerical values of the parameters into the above equations, we have

Nl
I

y! (5.33)

—0.0750  43576.0839 —1314.2525 0 3.9250
—0.0009 —14.9920 0.30136 0 —0.0009
X! o
[ } = —0.0002 —2.2204 —-4.9330  —6.0000 —0.0002 [ }
Wl W]
0 0.3000 0.9500 0.8000 0
0 —11102.1870 334.8414 2009.0484  4.0000
—0.0230 0 —0.0729 0.0393 —0.0411  0.1600 -0.0230
—0.0002 —0.0001 —0.0004 0 —0.0003 -0.0003 —0.0002
+ | —0.0067 —0.0007 —0.0120 -0.0006 —0.0007  0.0005 -~0.0067
0 0 0 0 0 0 0
0 —0.8758 —0.4957 0.2402 -3.1374 -3.3381 0

u,

™"
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and the estimatese of the system’s state variables can be calculated as:

1.0000 | [ 11102.1870 334.8414 0
0.0000 1.0000  0.0000 0.0000
%! = w'+ y' (5.35)
0.0000 0.0000  1.0000 0.0000
| 0.0000 _ 0.0000  0.0000 1.0000 |

The residual e; is obtained by e! = y; — g! and the estimate of the first actutator

failure, 0y, can also be obtained from Eq. 4.29.

The remaining five MUIO design results are given below and the residauls ¢/, j=2,
3,4, 5, 6, are obtained simialrly.
F2=F=F!=F=F¢ =10,
E? =[111874.7930 —4726.7406 — 32.1600], N? = [—-11389.3443 1627.0492 0],
L? = [8.6004 0 14.8960 1.0155 —2.3190 - 4.0703],
E3 = [108968.3037 7294.4459 — 32.1600], N> = [—~11111.4347 376.4562 0],
L?=[0.2770 —0.8476 0 0.2652 —3.1110 - 3.3617],
E* = [107941.1583 11542.7004 — 32.1600], N* = [~11013.2222 — 65.5000 0],
L*=[-2.6645 —1.1472 —52642 0 —3.3909 - 3.1112],
E® = [120384.5137 — 39922.7886 — 32.1600], N® = [—12203.0175 5288.5789 0],
L® =[32.9700 2.4817 58.5088 3.2124 0 — 6.1452],
E® = [951810.2167 643183.9069 32.1600], N® = [-9793.1373 ~— 5555.8824 0],
L% = [-39.2060 —4.8684 —70.6607 —3.2942 —6.8682 0].

Different from the Case 1, the residual generation functions are used for actuator
FDIA in this case. The actuator failure FDIA is done in the [ollowing way: By using

THEOREM B in Chapter 4 and (Eq. 4.21), it is possible to obtain the the estimates
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of actuator failures from MUIOs. When the first actuator has failed, we can observe
that 9, is non-zero and e' is zero (Note that ¥; and e' are obtained from MUIO1).

We also observe that ©;, 03, 04, 75 and g are all non-zero, but the residuals e?, e3,

el ¢% and e are all non-zero. This indicates that the first actuator has failed and
its shape can be identified easily. Once we have detected and identified the failure
of the first actuator we can account for it by compensating for this failure from the
corresponding input signal and keep the system functioning smoothly. When other
actuators fail, the FDIA task will be undertaken in the similar way as the first one

and will be dealt with similarly.

Simulation result;s are shown in Fig. 5.5 - 5.7. Fig. 5.5 (a) shows actuator failure
detection, i.e., the estimate of actuator failure obtained from MUIO1. Fig. 5.5 (b)
* shows the residual generation obtained from MUIOI. Similarly, Fig. 5.5 (¢), Fig. 5.6
(a), Fig. 5.6 (c), Fig. 5.7 (a) and Fig. 5.7 (c) show other actuator failure detection,
i.e., the estimates of other actuator failures obtained from MUIOQ2, MUIO3, MUIO4,
MUIO5 and MUIO6, respectively. Fig. 5.5 (d), Fig. 5.6 (b), Fig. 5.6 (d), Fig. 5.7 (b)
and Fig. 5.7 (d) show residual generation obtained from MUIO2, MUIO3, MUIO4,
MUIO5 and MUIOG6, respectively. The declaration of the multiple actuator FDIA
results shown in the following three figures are the same as described in Case 1.
We conclude that multiple actuator failures can be detected, isolated, identified and
accommodated when the total number of unknown inputs is greater than the total

number of outputs in dynamical systems with parameter variations.
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Detection of the first actuator failure
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Figure 5.5: Actuator failure detection, isolation and accommodation (FDIA): (a) The

estimate of failure — #; — obtained from UIO1; (b) Residual Generation: ¢'; {¢) The

estimate of failure — #, — obtained from G102; (d) Residual Generation: ¢*
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Detection of the third actuator failure
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Figure 5.6: Aciuator failure detection. isolation and accommodation (FDIA): (a) The
estimate of fatlure - £3 — obtained from UIO3; (b) Residual Generation: €3; (c¢) The
estimate of failure - &4 - obtained from UI04; (d) Residual Generation: ¢*
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Figure 5.7: Actuator failure detection, isolation and accommodation (FDIA): {a) The
estimate of failure — #5 — obtained from UIO5; (b) Residual Generation: ¢*; (¢) The

estimate of failure — 75 — obtained from UI06; (d) Residual Generation: ¢
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Chapter 6

Conclusions and Future Work

6.1 Conclusions
The major contributions of this thesis project are:

L. We have developed a scheme of designing multiple unknown input observers in
order to detect. isolate, identify and accommodate actuator failures when the
total number of uncertain rows in the plant matrices A and B plus the total
number of actuator failures is greater than the total number of output signals
in dynamic systems. We assume that the total number of uncertain rows in the
plaut matrices A and B plus two is less than the number of output signals in
the dynamic system. The algorithm of designing MUIOs and FDIA scheme for
multiple actuators m a dynamic system are presented in full detail. It is well
proven that a single unknown input observer will not exist if the total number

of unknown inputs is greater than the total number of output signals. However,

72
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by increasing the number of multiple unknown input observer, the shortcomings
of using a single UIO for FDIA purpose under the above conditions will be
overcome and multiple actuator failure detection, isolation, identitication and

accommodation becomes possible.

A fault detection, isolation, identification and accommaodation scheme based on
the MUIO design algorithm is presented in this thesis. The proposed FDIA
scheme keeps dynamic systems functioning smoothly. The scheme enables (o
accommodate the actnator failures by promiptly compensating for the actnator
failures from the corresponding input signals. At this poiut we should point
out that the simple accommodation approach presented here for sofl actnator
failure may not be very desirable in practice. Recall that the accommodation is
accomplished by simply compensating for the actuator failure once its shape has
been correctly estimated. However, it is probable in practical situations that an
incipient soft failure may get worsen and the device may actually [ail completely
after some time. In such sitnations the accommodation strategy proposed here
is not recommended and control reconfiguration should be investigated. This is

one topic for future research.

In order to fulfill the task of FDIA. an appropriate mathematical model which
consider system’s uncertaintics, parameter variations and actuator failure effects
is proposed. The final stage of model building is characterized by transforming
an uncertain system into a known system with unknown mpuats. This enables us
to utilize the mode! building and FDIA technologies suited for known systems

to design feedback controller and estimator for an uncertain systen.
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4. The MUILQO design algorithm is very straightforward and computationally at-
tractive, and system model transformation is simple in essence. The scheme
makes 1t possible to choose the eigenspectrum of the observer at arbitrary loca-
tions as long as the complex conjugate eigenvalues appear in pairs. Moreover,
unlike the other previous approaches that need calculating a set of matrix equa-
tions, the proposed scheme just requires simple matrix calculations (addition or

multiplication).

5. The approach can not only detect and isolate multiple actuator failures, actually
identify the exact shape of the failure, but most importantly, can accommodate
the actuator failures in dynamic systems and maintain the system functioning

smoothly.

Simulation tests are conducted for a linear aircraft longitudinal dynamical system
to give clear illustrations of the effectiveness of the MUIO design scheme and the

FDIA method.

6.2 The Areas of Further Investigations

The main contributions and the advantages of this thesis work have been demon-
strated. On the other hand. there are some future work need to be done. Some of

these issues are:

1. In this thesis. we only detect, isolate and identify actuator failures by using

MUIO design scheme under the condition that the total number of outputs is
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less than the total number of the unknown inputs in dvonamical system. Scnsor

failures, however, have not been dealt with and are the subject of future work.

2. In practice, many systems possess nonlinear properties, therefore, future in-
vestigations are needed to extend the applications to noulincar, and bilincar

systems.

3. A truly integrated fault-tolerant system would be some hybrid combinations of
analytical redundancy and knowledge-based schemes. This is a major topie thal,

need be investigated.



Appendix A

MATLAB Programs

% This is the main program which simulates Case 1
AN AN YN YN AN S NN AN N A SN YN AN YA A AN AN A
% This is the main program

WRRIRIIR IR RRI LD LALIARLL DI IIILALAIT I LD AID DDA AA
% Simulation time set up

t=140;

tt0=t*10;

22 2(0:0.1:¢)7;

ttpl=ttp(1:1400,:);

% Reference input

ull=ttp*0+20;

u21=ttp*0-0;

u31=ttp*0+0;

udl=ttp*0+0;
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ub1l=ttp*0-0;

u61=ttp*0+0;

% The time and the failure parameters of the actuators
vt1=20;

vt2=40;

vt3=60;

vt4=80;

vt5=100;

vt6=120;

tt11=(0:0.1:19.9);
tt12=(20:0.1:t);
Vi=[tt11’%0; (5*sin(tt12’))}];
v3=[0:0.1:vt2-0.1]’*040;
va=[vt2:0.1:t]’*0-10;
V2=[v3;v4];
v5=[0:0.1:vt3-0.1]’*0+0;
v6=[vt3:0.1:t]’*0+6;
V3=[v5;v6];
£t41=(0:0.1:79.9);
+t42=(80:0.1:t);
V4=[tt417%0; (-8*cos(tt42’))];
v9=[0:0.1:vt56-0.1]*0+0;
vi0=[vt5:0.1:t]’*0+10;
V5=[v9;v10];

v11=[0:0.1:vt6-0.1] *0+0;



APPENDIX A. MATLAB PROGRAMS 78

vi2=[vt6:0.1:t] ' *0+6;
Ve=[vil;v12];
% Initial condition of the variables in the main loop
x=x0 ;
x_out(:,1)=x0C;
y_out(:,1)=c*x0;
wil=wl10;
w2=w20;
w3=w30;
wl_out(:,1)=wl0;
w2_out(:,1)=w20;
w3_out(:,1)=w30;
xh1_out(:,1)=xh0;
xh2_out(:,1)=xh0;
xh3_out(:,1)=xho0;
% The main loop
for 1=1:tt0,
U=[u11(i) w21(i) uv31(i) u41(i) u51(i) uw61(i)]’;
v={V1(i) v2(i) V3(i) v4(i) V5(i) ve(i)]’;
[x,y}=sys(Ph1,Gal,Gc1,U,V,x);
x_out(:,i+1)=x;
y_out(:,i+1)=y;
i234=y(2:4,:);
% This is the UI0 parameter calculation

% Model: w= Fxw + [E L]*lyl
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A ful
% yw= cww + dw *|y]
A jul

[w1,z1,xh1]=esti(Phul,Gaul,R1,P1,y234,U,T1,wl);
wil_out(:,i+1)=wi;

xhl_out(:,i+1)=xh1;

ri=y_out-c*xhl_out;

rii=ri(1,:);
[w2,z2,xh2]=esti(Phu2,Gau2,R2,P2,y234,U,T1,w2);
w2_out(:,i+1)=w2;

xh2_out(:,i+1)=xh2;

r2=y_out-c*xh2_out;

r21=r2(1,:);
[%3,z3,xh3]=esti(Phu3,Gau3,R3,P3,y234,U,T1,w3);
w3_out(:,i+1)=w3;

xh3_out(:,i+1)=xh3;

r3=y_out-c*xh3_out;

r31=r3(1,:);

% This is failure detection and identification for actuator 1 to actuator 6
'Ac1=[a0];

Bci=[b0 d(:,1) 4(:,2)];
{Phiv,Gatv]=c2d(Ac1,Bc1,0.1);
dstarl=Galv(:,7:8);

xhhi=xhl_out;

s1(:,i)=xhh1(:,i+1)-Phivxxhh1(:,i)-Galv(:,1:6)*U;
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vih(:,i)=inv(dstarl’*dstarl)*dstarl’*s1(:,i);

getl=vih(1,:);

get2=vih(2,:);

Ac2=[a0];

Bc2=[b0 d(:,3) d(:,4)]1;

[Ph2v,Ga2v]=c2d(Ac2,Bc2,0.1);

dstar2=Ga2v(:,7:8);

xhh2=xh2_out;

s2(:,1)=xhh2(:,i+1)-Ph2v#xhh2(:,i)-Ga2v(:,1:6)*U;

v2h(:,1)=inv(dstar2’*dstar2)*dstar2’*s2(:,i);

get3=v2h(1,:);

getd4=v2h(2,:);

Ac3=[a0];

Bc3=[b0 d(:,5) d4(:,6)];

[Ph3v,Ga3v]=c2d(Ac3,Bc3,0.1);

dstar3=Ga3v(:,7:8);

xhh3=xh3_out;

s3(:,1)=xhh3(:,i+1)-Ph3v*xhh3(:,1)~-Ga3v(:,1:6)*U;

v3h(:,i)=inv(dstar3’*dstar3)*dstar3’*s3(:,i);

get5=v3h(1,:);

get6=v3h(2,:);

% Failure isolation and accommodation

if i >= (vt1-0.1)*10 & abs(geti(:,i)) >= 0.1 &
abs(r11(:,1)) <= 1e-2 & i < vE2%10

vvpll=V1(1:(i),:);

80
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vvp12=[((1)/10):0.1: ()] *0+V1(i-1)-get1(:,i);

 Vi=[vvpll;vvpl2];

end

if i >= (vt2-0.1)*10 & abs(get2(:,1)) >= 0.1 &
abs(get2(:,i)-get2(:,i-1)) <= 1le-2 & abs(r21(:,i)) <= 0.01
& i < vt3*10

vvp21=V2(1:(1),:);

vvp22=[((i)/10):0.1: (£)]1’*0+V2(i-1)-get2(:,1);

V2=[vvp21;vvp22];

Vend

if i >= (vt3-0.1)*10 & abs(get3(:,i)) >= 0.1 &
abs(get3(:,i)-get3(:,i-1)) <= 1e-2 & abs(r31(:,1)) <= 0.01
& 1 < vt4x10

vvp31=V3(1:(i),:);

vvp32=[((1)/10):0.1:(£)1’*04V3(i-1)-get3(:,1);

V3=[vvp31;vvp32];

end

if 1 >= (vt4-0.1)*10 & abs(get4(:,1)) >= 0.1 &
abs(r41(:,1i)) <= 1e-3 & 1 < vt5%10

vvp41=V4(1:(i),:);

vvpd2=[((i)/10):0.1: (£)1°*0+V4(i-1)-getd(:,1);

Va=[vvp41;vvp42];

end

if i >= (vt5-0.1)#%10 & abs(get5{(:,1)) >= 0.1 &

abs(get5(:,1)-get5(:,i-1)) <= 1le-2 & abs(r51(:,1)) <= 0.01
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& 1 < vt6%*10
vvp51=V5(1:(i),:);
vyp52=[((1)/10):0.1: ()1’ *0+V5(i-1)-get5(:,1);
V5=[vvp51;vvp52];
end
if i >= (vt6-0.1)*%10 & abs(get6(:,1i)) >= 0.1 &

abs(get6(:,1)-get6(:,i-1)) <= le-2 & abs(r61(:,1)) <= 0.01
vvp61=V6(1:(i),:);
vvp62=[((1)/10):0.1: ()]’ *0+V6(i-1)-get6(:,1);
V6=[vvp61;vvp62];
end
end J End of main loop
/ Transformation to the original system
x_out=inv(P)*x_out;
xh1_out=inv(P)*xhl_out;
xh2_out=inv(P)*xh2_out;
xh3_out=1inv(P)*xh3_out;
xh4_out=inv(P)*xh4_out;
xh5_out=inv(P)*xhS5_out;
th_qut=inv(P)*xh6_out;
% Plots of failure detection and residuals
clg
subplot(211)
axis([ 0 140 -50 30])

plot(ttpl,getl), title(’Detection of the first actuator failure’)
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s
-

xlabel (’ (a) Time(sec)’), ylabel(’The estimate of the failure’)
subplot (212)

axis([ 0 140 -40 40])

plot(ttpl,get2), title(’Detection of the second actuator failure’)
xlabel(’ (b) Time(sec)’), ylabel(’The estimate of the failure’)
pause ‘

clg

subplot (211}

axis([ 0 140 -0.03 0.02])

plot(ttp,r11), title(’Residual generation’)

xlabel(’ (c) Time(sec)’), ylabel(’Residual ei’)

pause

clg

subplot(211)

axis([ 0 140 -10 10])

plot(ttpl,get3),title(’Detection of the third actuator failure’)
xlabel(’(a) Time(sec)’), ylabel(’The estimate of the failure’)
subplot (212)

axis([ 0 140 -20 40])

plot(ttpi,getd),title(’Detection of the fourth actuator failure’)
xlabel(’ (b) Time(sec)’), ylabel(’The estimate of the failure’)
pause

clg

axis([ 0 140 -0.008 0.008])

plot(ttp,r21) ,title(Residual generation’)
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xlabel(’ (c) Time(sec)’), ylabel(’Residual e2’)

pause

clg

subplot(211)

axis([ 0 140 -20 40])

plot(ttpl,get5),title(’Detection of the fifth actuator failure’)
xlabel(’(a) Time(sec)’), ylabel(’The estimate of the failure’)
subplot(212)

axis([ 0 140 -20 20])

plot(ttpl,get6),title(’Detection of the sixth Actuator Failure’)
xlabel(’ (b) Time(zec)’), ylabel(’The estimate of the failure’)
pause

clg

axis([ 0 140 -0.01 0.005])

plot(ttp,r31),title(’Residual generation’)

xlabel(’ (c) Time(sec)’), ylabel(’Residual e3’)

pause

% Plots of the system’s states and their estimates

clg

subplot (221)

axis([0 140 -1 1)
plot(ttp,x_out(i,:),ttp,xh2_out(i,:)),title(’The First State’)
xlabel (’Time(sec)’)

subplot (222)

axis([0 140 -0.02 0.02])
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plot{ttp,x_out(2,:),ttp,xh2_out(2,:)),title(’The Second State’)
xlabel(’Time(sec)’)

subplot(223)

axis([0 140 -0.1 0.11)
plot(ttp,x_out(3,:),ttp,xh2_out(3,:)),title(’The Third State’)
xlabel (’Time(sec)’)

subplot (224)

axis([0 140 -0.1 0.1])
plot(ttp,x_out(4,:),ttp,xh2_out(4,:)),title(’The Fourth State’)
xlabel(’Time(sec)’)

pause

% This subroutine calculates the system parameters and linear

% transformation in Case 1

% System parameters

a0=[-0.0750 -24.0500 0 -32.1600;-0.0009 -0.1959 0.9896 0;
-0.0002 -0.1454 -0.1677 0;0 0 1.0000 0];

b0=[-0.0230 0 -0.0729 0.0393 -0.0411 0.1600;
-0.0002 -0.0001 -0.0004 -0.0000 -0.0003 -0.0003;
-0.0067 -0.0097 -0.0120 -0.0006 -0.0007 0.0005;
00000 0];

c={0001;0100;0010;100 0];

d=b0;

% Linear transformation

P=[0001;0100;0010;100 0];
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a0=P*a0*xinv (P);

bO=P*b0;

c=c*inv{P);

d=P*d;

% Closed-loop poles placement
pa=[-2 -3 -4 -5]’;

% Feedback control gain
ka=place(a0,b0,pa);

% Closed-loop system
a0=a0-bO0*ka;

[n,nl]=size(al);

% Get equivalent zero-order hold discrete system
b=[b0 4d];
[Ph1,Ga1]l=c2d(a0,b,0.1);
[phr,phc]=size(Ph1l);
[gar,gacl=size(Gal);

Gcl=c;

[ch,cl]l=size{c);

% This subroutine calculates three UID parameters in Case 1
% Design of :the first UIO

A=a0;B=b0;C=c(2:4,:);D=[d(:,1) d(:,2)];

% Linear transformation when designing UIO

ci=[1 0 0 0];

% Observer’s gain
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fl=~6;

% Unknown input observer design algorithm
thesis_uio

% The Results of the first UID
F1=F;E1=E;L1=L;N1=N;

/ Design and results of the second UIO
D=[a(:,3) d4(:,4)];

thesis_uio

F2=F;E2=E;L2=L;N2=N;

% Design and results of the third UIO
D=[d(:,5) d(:,6)];

thesis_uio

F3=F;E3=E;L3=L;N3=N;

% Get equivalent zero-order hold discrete system
[Phul,Gaull=c2d(F1,[E1 L1],0.1);
[Phu2,Gau2]=c2d(F2, [E2 L2],0.1);

[Phu3,Gau3d]=c2d(F3, [E3 L3],0.1);

k% This subroutine is the UIO design algorithm for both Case 1 and Case 2
% The above is for p>m.

Cl=input (’Insert C1=’)

Ti=[C1;C]

RANKT1=rank(T1)

pause

[n,nl=size(h)
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[n,k]}=size(B)
[n,m]=size(D)
[p,n]l=size(C)
AH=T1#A*inv(T1)
BH=T1*B

CH=C*inv(T1)

DH=T1x*D

pause

if p>m;
Al1=AH(1:n-p,:)
A2=AH(n-p+1l:n-m,:)
pause
A3=AH(n-m+1:n,:)
B1=BH(1:n-p,:)
B2=BH(n-p+1:n-m,:)
B3=BH(n-m+1:n,:)
D1=DH(1:n-p,:)
D2=DH(n-p+1:n-m,:)
D3=DH(n-m+1:mn,:)
AH1=A1-D1*inv(D3)*A3
AH2=A2-D2*inv (D3) *A3
BH1=B1-D1*inv(D3) *B3
BH2=B2-D2*inv(D3) *B3
A11=AH1(:,1:n-p)

A12=AH1(:,n-p+1:n-m)

38
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’ A13=AH1(: ,n-m+1i:n)
A21=AH2(:,1:n-p)
A22=AH2(: ,n-p+1:n-m)
£23=AH2(: ,n-m+1:n)
[k1,k2]=size(A11)
[11,12]=size(A21)
0B=obsv(A11,A21)
RANKOB=rank (0B)
pause

Fsize=k1
F=input (’ Insert F=’)
M=place(A11’,A21° ,F)’
F=A11-M*A21

eig(F)
G=A12-M*A22+(A11-M%kA21)*M

H=A13-M*A23+(A11-M*A21)*(D1-M*D2)*inv(D3)

L=BH1-M*BH2

% Observer:

E=[G H]

N={M (D1-M*D2)*inv(D3)]
else;
A11=AH(1:n-p,1:n-p);
A12=AH(1:n~p,n-p+l:n);
A21=AH(n-p+1:n,1:n-p);

A22=AH(n-p+1:n,n-p+i:n);
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Bi=BH(1:n-p,:)
B2=BH(n-p+1:m,:);
D1=DH(1:n-p,:);
D2=DH(n-p+1:n,:);
N=D1*inv(D2);
G=A11-N*A21;
EIGG=eig(G)

pause

H=B1-N*B2
L=A12-N*A22+G*N;
[ts,s] = size(N);
M = eye(ts);

end

% This subroutine calculates the initial conditions of the variables and
% the variables needed to obtain the estimate of state variables in Case 1
x0=[1 -1 2 -2]’;

x0=P*x0;

[fr,fcl=size(F);

[elc,elll=size([E L]);

[nc,nll=size(N);

Ri=[eye(fc) ;zeros(phr-fr,fc)];

R2=R1;

R3=R1;

Pi=[N1;eye(nl)];
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P2=[N2;eye(nl)];

P3=[N3;eye(nl)];

xho=[-4 -1 2 -2]’;

xh0=P*xh0;

z10=T1*xh0;

z20=T1*xhO0;

z30=T1*xhO0;
w10=1nv(R1’*R1)*R1’*(z10-P1*c(2:4, :)*x0) ;
w20=inv (R2’*R2) *R2’ * (220-P2*c(2:4, : ) *x0) ;

w30=inv(R3’*R3)*R3’ *(230-P3*c(2:4,:)*x0) ;

% This subroutine is the function which calculates the state variables
% and output varaibles in Case 1

function [x,y]=sys(Ph1,Gal,Gcl,U,V,x);

x=Ph1*x+Gal*[U;V];

y=Gcl*x;

% This subroutine calculates the estimates of the state variable in Case 1
function [w,z,xh]=esti(Phu,Gau,R,P.y,U,T1,w);

w=Phuxw+Gaux*[y;U] ;

Z=R*w+P*y;

xh=1nv(T1)*z;

% This is the main program which simulates Case 2
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Il e T T T Tl ol A AT T T T ok ot s ki
% This is the main program

Il T I oo to le Je T T o o ol T T T T o o e o e
% Simulation time set up

t=140;

tt0=t*10;

ttp=(0:0.1:t)";

ttpl=ttp(1:1400,:);

% Reference input

ull=ttp*0+20;

u2l=ttp*0;

u31=ttp*0;

u41=ttp*0;

uS1=ttp*0;

u61=ttp*0;

% The time and the failure parameters of the actuators
vt1=20;

vt2=40;

vt3=60;

v4=80;

vt5=100;

vt6=120;

+£11=(0:0.1:19.9);

t£12=(20:0.1:%);

Vi=[tt11°*0;(5*sin(1t12’))];
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v3=[0:0.1:vt2-0.1] 7 *0+0;
vd=[vt2:0.1:t]’*0-10;
v2=[v3;v4];
v5=[0:0.1:vt3~-0.1]7*0+0;
v6=[vt3:0.1:t]°*0+6;
V3=[v5;v6];
tt41=(0:0.1:79.9);
tt42=(80:0.1:t);
V4=[tt41’*0; (-8*cos(tt42°))];
v9=[0:0.i:vt5—0.1]’*0+0;
v10=[vt5:0.1:t]’%0+10;
V5=[v9;v10];
v11=[0:0.1:vt6-0.1] ’*0+0;
v12=[vt6:0.1:1]’*%0+6;

Vé=[vi1;v12];

% Initial condition of the variables in the main loop®

x=x0 ;
xh1=xhO0;
xh2=xh0;
xh3=xh0;
xh4=xh0;
xh5=xh0;
xh6=xh0;
x_out(:,1)=x0;

y_out(:,;1)=c*x0;
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wi=w10;

w2=w20;

w3=w30;

wA=w40;

wb=wbo0;

w6=w60;

wi_out(:,1)=wi10;

w2_out(:,1)=w20;

w3_out(:,1)=w30;

w4_out (:,1)=w40;

ws_out (:,1)=w50;

w6_out(:,1)=w60;

xh1_out(:,1)=xh0;

xh2_out(:,1)=xh0;

xh3_out(:,1)=xh0;

xh4_out(:,1)=xh0;

xh5_out(:,1)=xh0;

xh6_out(:,1)=xh0;

% The main loop

for i=1:tt0,

U=[u11(i) u21(i) u31(i) u41(i) u51(i) u61(i)]’;
V=[V1(i) v2(i) v3(i) v4(i) v5(i) V6(i)]’;
xx=xhl_out(:,i);
[x,y]=syskxh(Ph1,Gal,Gcl,xx,U,V,x);

x_out(:,i+1)=x;
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y_out(:,i+1)=y;

y234=y(2:4,:);

% This is the UIO parameter calculation
[wi,z1,xh1]=estikxh1(Phul,Gaul,R1,P1,y234,xx,U,T1,wl);
wil_out(:,1+1)=wi;

xhl_out(:,i+1)=xhil;

rl=y_out-c*xhl_out;

rii=r1(i,:);
[w2,22,xh2]=estikxh1(Phu2,Gau2,R2,P2,y234,xx,U,T1,w2);
w2_out(:,i+1)=w2;

xh2_out(:,i+1)=xh?2;

r2=y_out-c*xh2_out;

r21=r2(1,:);
[w3,2z3,xh3]=estikxh1(Phu3,Gau3,R3,P3,y234,xx,U,T1,w3);
w3 _out(:,i+1)=w3;

xh3_out(:,i+1)=xh3;

r3=y_out-c*xh3_out;

r31=r3(1,:);
[w4,z4,xh4]=estikxh1(Phu4,Gau4,R4,P4,y234,xx,U,T1,wd) ;
w4_out(:,i+1)=w4d;

xh4_out(:,i+1)=xh4;

r4=y_out-c*xh4_out;

rdi=r4(1,:);
[w5,2z5,xh5]=estikxh1(Phu5,Gau5,R5,P5,y234,xx,U,T1,w5) ;

wh_out (:,i+1)=w5;
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xh5_out (:,1i+1)=xh5;

r5=y_ount-c*xh5_out;

r51=r5(1,:);
[w6,z6,xh6]=estikxh1(Phu6,Gau6,k6,P6,y234,xx,U,T1,w6) ;
w6_out(:,i+1)=w6;

xh6_out(:,i+1)=xh6;

ré=y_ount-c*xxh6_out;

r61=r6(1,:);

% This is failure detection and identification for actuator 1 to actuator &
Ac1=[A0];

Bci=[-bixka b1 d(:,1)];

[Phiv,Galv]l=c2d(Ac1,Bc1,0.1);

dstari=Galiv(:,11);

xvh=xhl_out;
s1(:,1)=xvh(:,1+1)-Phlv*xvh(:,i)}-Galv(:,1:10)*[xx;U];
vih{(:,1)=1inv{(dstari’*dstarl)*dstarl’*s1(:,1i);
get1=vih(1,:);

Ac2=[A0];

Bc2=[-bl*ka bl d(:,2)];

[Ph2v,Ga2v]=c2d(Ac2,Bc2,0.1);

dstar2=Ga2v(:,11);
s2(:,1)=xvh(:,1+1)-Ph2v*xzvh(:,i)-Ga2v(:,1:10)*[xx;U];
v2h(:,1)=inv(dstar2’*dstar2) *dstar2’*s2(:,i);
get2=v2h{1,:);

Ac3=[4a0];
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Bec3=[-bl*ka bl d(:,3)];

[Ph3v,Ga3v]=c2d(Ac3,Bc3,0.1);

dstar3=Ga3v(:,11);
£3(:,1)=xvh(:,1+1)-Ph3v*xvh(:,i)-Ga3v(:,1:10)*[xx:U];
v3h(:,i)=inv(dstar3’*dstar3)*dstar3’*s3(:,i);
get3=v3h(1,:);

Ac4=[A0];

Bc4=[-blxka bl d(:,4)];

[Ph4v,Gadv]=c2d(Ac4,Bc4,0.1);

dstar4=Ga4v(:,11);
s4(:,1)=xvh(:,i+1)-Ph4v*xvh(:,i)-Gadv(:,1:10)*[xx;U];
v4h(:,1)=inv(dstard’*dstard)*dstard’*s4(:,i);
getd=v4h(1,:);

Ac5=[A0];

Bcs=[-bl¥ka bt d(:,5)];

[Ph5v,Ga5v]=c2d(Ac5,Bc5,0.1);

dstar5=Ga5v(:,11);
s5(:,1i)=xvh(:,i+1)-PhSvxxvh(:,i)-Ga5v(:,1:10)*[xx;U];
vSh(:,1)=1inv(dstar5’*dstar5)*dstar5’*s5(:,i);
getb=v5h(1,:);

Ac6=[A0];

Be6=[-bixka b1l d(:,6)];

[Ph6v,Ga6v]l=c2d(Ac6,Bc6,0.1);

dstar6=G36v(:,11);

s6(:,i)=xvh{(:,i#1)=-Ph6v¥xzvh(:,i)~Ga6v(:,1:10)*[xx;U];
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v6h(:,i)=inv(dstar6’*dstar6)*dstar6’*s6(:,1);

get6=v6h(1,:);

% Failure isolation and accommodation

if i >= (vt1-0.1)%10 & abs(get1(:,i)) >= 0.1 &
abs(r11(:,1i)) <= 0.1 & 1 < vt2%10

vvpl1=V1(1:(i),:);

vvp12=[((i)/10):0.1:(t)]’*O+V1(i—1)—get1(:,i);

Vi={vvpil;vvpl2];

end

if i >= (vt2-0.1)%10 & abs(get2(:,i)) >= 0.1 &
abs(get2(:,1)-get2(:,1-1)) <= 1e-3 & abs(r21(:,i)) <= 0.1
& i < vt3*10

vvp21=V2(1:(1),:);

vvp22=[((i)/10):0.1: ()]’ *0+4V2(i-1)-get2(:,1i);

v2=[vvp21;vvp22]; |

end

if i >= (vt3-0.1)*10 & abs(get3(:,1)) >= 0.1 &
abs(get3(:,1)-get3(:,1-1)) <= le-3 & abs(r31(:,1i)) <= 0.1
& i1 < vt4*10

vvp31=V3(1:(i),:);

vvp32=[((i)/10):0.1:(t)]’*0+V3(i-1)—get3(:,i);

V3=[vvp31;vvp32];

end

if 1 >= (vi4-0.1)%10 & abs(get4(:,i)) >= 0.1 &

abs(r41(:,1)) <= 0.1 & 1 < vt5%10
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vvp41=V4(1:(i),:);

vvp42=[((i)/10):0.1: ()]’ *0+V4(i-1)-getd(:,1);

V4=[vvp41;vvp4a2];

end

if i >= (vt5-0.1)*10 & abs(get5(:,1)) >= 0.1 &
abs(get5(:,i)-get5(:,i-1)) <= le-3 & abs(r51(:,i)) <= 0.1
& 1 < vt6*10

vvp51=V5(1:(1),:);

vvp52=[((1)/10):0.1:(t)]’*0+V5(i-1)-get5(:,1i);

- V5=[vvp51;vvp52];

end

if 1 >= (vt6—0.1)$10 & abs(get6(:,i)) >= 0.1 &
abs(get6(:,i)-get6(:,i-1)) <= 1e-3 & abs(r61(:,1)) <= 0.1

vvp61=V6(1:(i),:);

vvp62=[((i)/10):0.1:(£3]1’'*0+V6(i-1)-get6(:,1i);

V6=[vvp61;vvp62];

end

end ¥ End of main loop

% Plots of failure detection and residuals

clg

subplot (211)

axis([ 0 140 -20 20]1)

plot(ttpl,getl), title(’Detection of the first actuator failure’)

xlabel(’ (a) Time(sec)’), ylabel(’The estimate of the failure’)

subplot(212)
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axis([ 0 140 -2 21)

plot(ttp,ri1), title(’Residual generation’)

xlabel(’ (b) Time(sec)’), ylabel(’Residual e1’)

pause

clg

subplot (211)

axis([ 0 140 -20 20])

plot(ttpl,get2), title(’Detection of the second actuator failure’)
xlabel(’ (c) Time(sec)’), ylabel(’The estimate of the failure’)
subplot(212)

axis([ 0 140 -5 5])

plot(ttp,r21), title(’Residual generation’)

xlabel(’ (d) Time(sec)’), ylabel(’Residual e2’)

pause

clg

subplot (211)

axis([ 0 140 -20 20])

plot(ttpl,get3), title(’Detection of the third actuator failure’)
xlabel(’ (a) Time(sec)’), ylabel(’The estimate of the failure’)
subplot(212)

axis([ 0 140 -2 2])

plot(ttp,r31), title(’Residual generation’)

xlabel(’ (b) Time(sec)’), ylabel(’Residual e3’)

pause

clg
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subplot(211)

axis([ 0 140 -20 20])

plot(ttpl,get4), title(’Detection of the fourth actuator failure’)
xlabel(’ (c) Time(sec)’), ylabel(’The estimate of the failure’)
subplot (212) ’

axis([ 0 140 -8 8])

plot(ttp,r41), title(’Residual generation’)

xlabel(’ (d) Time(sec)’), ylabel(’Residual e4’)

Ppause

clg

subplot (211)

axis([ 0 140 -20 20])

plot(ttpl,get5), title(’Detection of the fifth actuator failure’)
xlabel(’ (a) Time(sec)’), ylabel(’The estimate of the failure’)
subplot(212)

axis([ 0 140 -10 10])

plot(ttp,rél), title(’Residual generation’)

xlabel(’ (b) Time(sec)’), ylabel(’Residual e5’)

pausé

clg

subplot (211)

axis([ 0 140 ~10 10])

plot(ttpi,getﬁ), title(’Detection of the sixth actuator failure’)
xlabel(’ (c) Time(sec)’), ylabel(’The estimate of the failure’)

subplot(212)
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axis([ 0 140 -20 201)

plot(ttp,r61), title(’Residual generation’)

xlabel(’ (d) Time(sec)’), ylabel(’Residual e6’)

pause

% Plots of the system’s states and their estimates

clg

subplot (221)

axis([0 140 -20 20])
plot(ttp,x_out(l,:),ttp,xhl_out(1,:)),title(’The First State’)
xlabel (’Time(sec)’)

subplot (222)

axis([0 140 -0.1 0.1])

plot (ttp,x_out(2,:),ttp,xhl_out(2,:)),title(’The Second State’)
xlabel (’Time(sec)’)

subplot (223)

axis([0 140 -1 1])
plot(ttp,x_out(3,:),ttp,xhi_out(3,:)),title(’The Third State’)
xlabel (’Time(sec) )

subplot (224)

axis([0 140 -1 1])
plot(ttp,x_out(4,:),ttp,xh1_out(4,:)),title(’The Fourth State’)
xlabel (’Time(sec)’)

pause

clg

subplot (221)
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axis([0 140 -20 20])
plot(ttp,x_out(l,:),ttp,xh2_out(l,:)),title(’The First State’)
xlabel (’Time(sec)’)
subplot (222)
axis([0 140 -0.1 0.1])
plot(ttp,x_out(2,:),ttp,xh2_out(2,:)),title(’The Second State’)
xlabel (’Time(sec)’)
subplot (223)

axis([0 140 -1 11)
7rélgf(ftp,x_out(S,:),ffp,xh?_out(B,:)),title(’The Third State’)
xlabel (’Time(sec)’)
subplot (224)
axis([0 140 -1 1])
plot(ttp,x_out(4,:),ttp,xh2_out(4,:)),title(’The Fourth State’)
xlabel (’Time(sec)’)
pause
clg
subplot (221)
axis([0 140 -20 20])
plot(ttp,x_out(1,:),ttp,xh3_out(1,:)),title(’The First State’)
xlabel (’ Time(sec)’)
subplot(222)
axis([0 140 -0.1 0.1])
plot(ttp,x_out(2,:),ttp,xh3_out(2,:)),title(’The Second State’)

xlabel ('Time(sec)’)
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subplot (223)

axis([0 140 -1 1])

plot (ttp,x_out(3,:),ttp,xh3_out(3,:)),title(’The Third State’)
xlabel(’Time(sec)’)

subplot (224)

axis([0 140 -1 1])
plot(ttp,x_out(4,:),ttp,xh3_out(4,:)),title(’The Fourth State’)
xlabel (’Time(sec)’)

pause

clg

subplot(221)

axis ([0 140 -20 20])
plot(ttp,x_out(l,:),ttp,xh4_out(l,:)),title(’The First State’)
xlabel (’Time(sec)’)

subplot (222)

axis(f0 140 -0.1 0.1])
plot(ttp,x_out(2,:),ttp,xh4_out(2,:)),title(’The Second State’)
xlabel(’Time(sec)’)

subplot (223)

axis([0 140 -1 1])
plot(ttp,x_out(3,:),ttp,xh4_out(3,:)),title(’The Third State’)
xlabel(’Time(sec)’)

subplot (224)

axis([0 140 -1 1])

plot (ttp,x_out(4,:),ttp,xh4_out(4,:)),title(’The Fourth State’)
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xlabel (’Time(sec)’)

pause

clg

subplot (221)

axis([0 140 -20 20])
plot(ttp,x_out(l,:),ttp,xh5_out(l,:)),title(’The First State’)
xlabel(’Time(sec)?)

subplot (222)

axis([0 140 -0.1 0.1])
plot(ttp,x_out(2,:),ttp,xh5_out(2,:)),title(’The Second State’)
xlabel (’Time(sec)’)

subplot (223)

axis([0 140 -1 1])
plot(ttp,x_out(3,:),ttp,xh5_out(3,:)),title(’The Third State’)
xlabel (’Time(sec)’)

subplot (224)

axis([0 140 -1 1])
plot(ttp,x_out(4,:),ttp,xh5_out(4,:)),title('The Fourth State’)
xlabel(’Time(sec)’)

pause

clg

subplot (221)

axis([0 140 -20 20])
plot(ttp,x_out(l,:),ttp,xh6_out(1l,:)),title(’The First State’)

xlabel (°Time(sec)’)



APPENDIX A. MATLAB PROGRAMS 106

subplot (222)

axis([0 140 -0.1 0.1])

plot (ttp,x_out(2,:),ttp,xh6_out(2,:)),title(’The Second State’)
xlabel (’ Time(sec)?)

subplot (223)

axis([0 140 -1 11)
plot(ttp,x_out(3,:),ttp,xh6_out(3,:)),title(’The Third State’)
xlabel(’Time(sec)’)‘

subplot (224)

axis ([0 140 -1 1])

plot(ttp,x_out(4,:) .*tp,xh6_out(4,:)),title(’The Fourth State’)
xlabel (*Time(sec) ”)

pause

% This subroutine calculates system parameters in Case 2

% System Parameters

a0=[-0.0750 -24.0500 0 -32.1600;-0.0009 -0.1959 0.9896 0;
-0.0002 -0.1454 -0.1677 0;0 0 1.0000 0];

[n,nl]l=size(al);

b0=[-0.0230 0 -0.0729 0.9393 -0.0411 0.1600;
-0.0002 -0.0001 -0.0004 -0.0000 ~-0.0003 -0.0003;
-0.0067 -0.0007 -0.0120 -0.0006 -0.0007 0.0005;
00000 0];

c=[1000;0100;0010;000 1];

d=b0;
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% Uncertainty effects

Ta=[0 0 0 1]’;

deltA=[0 0.3 -0.05 0.8];
unA=Ia*deltA;

- % Closed-loop poles placement
pa=[-2 -3 -4 -5]’;

% Feedback control gain
ka=place(a0,b0,pa);

% System with uncertainties
 AO=a0+unA;

%rGet equivalent zero-order hold discrete system
b=[-bO*ka b0 d];
[Ph1,Ga1l=c2d(A0,b,0.1);
[phr,phcl=size(Ph1);
[gar,gac]l=size(Gal);

Gecl=c;

[ch,cl]l=size(c);

% This subroutine calculates three UI0 parameters in Case 2
% Design of the first UIO

A=a0;B=b0;C=c(2:4,:);D=[d(:,1) Ial;

c1=[1 0 0 0];

f1=-10;

thesis_uio

F1=F;E1=E;L1=L;N1=N;
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% Design and results of the second UIO
D=[d(:,2) Ial;

thesis_uio

F2=F;E2=E;L2=L;N2=N;

% Design and results of the third UID
D=[d(:,3) Ial;

thesis_uio

F3=F;E3=E;L3=L;N3=N;

% Design and results of the fourth UIO
D=[d(:,4) Ial;

thesis_uio

F4=F ;E4=E;L4=L;N4=N;

% Design and results of the fifth UIO
D={d(:,5) Ial;

thesis_uio

F5=F;E5=E;L5=L;N5=N;

% Design and results of the sixth UIO
D=[d(:,6) Ial;

thesis_uio

F6=F;E6=E;L6=L;N6=N;

% Get equivalent zero-order hold discrete system
[Phul,Gaull=c2d(F1, [E1 -Li*ka L1],0.1);
[Phu2,Gau2]=c2d(F2, [E2 -L2¥ka L2],0.1);
[Phu3,Gau3d]=c2d(F3, [E3 -L3xka L3],0.1);

[Phu4,Gaud]=c2d(F4, [E4 -L4*ka L4],0.1);

L8
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[Phu5,Gau5]=c2d(F5, [E5 -L5*ka L5],0.1);

[Phu6,Gaub]=c2d(F6, [E6 -L6%ka L6],0.1);

% This subroutine calculates the initial conditions of the variables and
% the variables needed to obtain the estimate of state variables in Case 2
x0=[1 ~1 2 -2]’;
[fr,fc]=size(F);
[elc,ell]l=size([E L]);
[nc,nl]l=size(N);
”7Ri=[eye(fc);zeros(phr—fr,fc)];
R2=R1;

R3=R1;

R4=R1;

R5=R1;

R6=R1;

P1=[Ni;eye(nl)];
P2=[N2;eye(nl)];
P3=[N3;eye(nl)];
P4=[N4;eye(nl)];
P5=[N5;eye(nl)];
P6=[N6;eye(nl)];

xh0=[0.9 -1 2 -2]";
z10=T1*xhO0;

z20=T1%xh0;

z30=T1*xhOQ;
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z40=T1*xhO0;
z50=T1*xhO;
z60=T1*xh0;
w10=inv(R1’*R1)*R1i’*(z10-Pi*c(2:4,:)*x0);
w20=inv(R2’*R2)*R2’* (z20-P2*c(2:4, : ) *x0) ;
w30=inv(R3’*R3)*R3’*(230-P3*c(2:4,:)*x0) ;

w50=1inv(R5’*R5) *R5’*(z50-P5*c(2:

4

4
wa40=inv (R4’ *R4)*R4’ *(240-P4*c(2:4,:)*x0) ;

4,:)%x0);

4

w60=inv (R6’*R6) *R6’ *(z60-P6*c(2:4, : )*x0) ;

% This subroutine is the functiom which calculates the state variables
% and output varaibles in Case?2

function [x,y]l=syskxh(Phi1,Gal,Gcl,xh,U,V,x);

x=Ph1*x+Gal*[xh;U;V];

y=Gcl*x;

7 This subroutine calculates the estimates of the state variable in Case 2
function [w,z,xh]=estikxh1(Phu,Gau,R,P,y,xh,U,T1,w);

w=Phu*w+Gau*[y;xh;U];

Z=R*w+P*y;

zh=1nv(T1)*z;
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