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Abstract 

Of the numerous formal approaches that deal with database inconsistencies with respect 

to integrity constraints, all share the view that such constraints are statements about the 

world the database models. An alternative perspective, however, considers constraints as 

statements about the knowledge the database has of its domain. The result of this shift in 

perspective allows us to regard integrity constraint violations as a fragment of the incomplete 

knowledge the system has of the world. We can then query the possibly inconsistent database 

for consistent query answers. 

We address the above considerations with an epistemic query language KC, where the 

possible ways to repair a database that violates its integrity constraints are characterized 

by a set of possible worlds, an epistemic state e c .  This culminates in a situation where only 

consistent information is known. We ascertain this by querying ec with KC, providing a 

knowledge-level formalization of consistent query answers. At the outset, we show that KC is 

an adequate language for querying databases by specifying a class of admissible formulas for 

which the set of answers to such queries are safe and domain independent. After formulating 

database dependencies in KC, we prove that they are members of this class. A Prolog-like 

sound and complete query evaluator, cqa, for admissible KC formulas is presented. Finally, 

we completely characterize what is known in e c  with a set of first-order sentences. 

iii 



The  investigation of the truth i s  in one way hard, in another easy. A n  indica- 

t ion of this i s  found i n  the fact that n o  one is  able t o  attain the truth adequately, 

while, o n  the other hand, n o  one fails entirely, but everyone says something true 

about the nature of things, and while individually they contribute little or  nothing 

t o  the truth, by the union of all a considerable amount  i s  amassed. 

- Aristotle, Metaphysics 
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Chapter 1 

Introduction 

[T]he computer i s  to  be envisioned as obtaining data o n  which it i s  to  

base its inferences from a variety of sources, all of which indeed may  

be supposed to  be o n  the whole trustworthy, but none of which can be 

assumed to  be that paragon of paragons, a universal truth-teller. . . the 

essential feature is that there i s  no  single, monolithic, infallible source 

of the computer's data, but that inputs come from several independent 

sources. I n  such circumstances the crucial feature of the situation 

emerges: inconsistency threatens. 

- Nuel D. Belnap, "How A Computer Should Think" 

The need to specify legal database states and relationships between values in 

a tuple for the relational model of databases has led to the study of integrity 

constraints and, particularly, data dependencies [I, 23, 521. While the standard 

database management system (DBMS) supports transactions where inconsistent 

updates are rejected, the violation of these constraints is a recurring problem 

for systems that utilize information stored in distributed "islands of informa- 

tion", where the constraints are locally satisfied but (possibly) globally violated 

[15, 18, 491. According to Stonebraker [49], the goal of these systems is to enrich 

the information available for decision making and to ensure that consistency is 

maintained across the various sources. The problem that emerges, however, is 

that these two goals are sometimes at odds with each other. 

For example, information in data warehouses gives access to historical and/or 
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aggregated data that has been compiled from an organization's operational 

databases [18]. As the data is extracted from the operational sources, data 

is cleaned to ensure consistency with a set of constraints [34]. While there are 

algorithms to handle common errors [42], Greenfield [25] indicates that check- 

ing for errors consumes more time than cleaning data. Handling inconsistent 

data is thus left to the application developer, a task that is formidable should 

either the amount of data be large [22] or should the developer not have the do- 

main knowledge to isolate relevant information. As a result of this, Mallach [34] 

explains that inconsistencies often frustrate decision makers, exacerbating the 

above noted tension between maintaining consistency while retaining as much 

of the source information as possible. 

Multidatabases, on the other hand, transform a user's global query into a 

plan that resolves any schematic heterogeneity with autonomous data sources 

and checks the integrity of the query with respect to a set of global constraints, 

constraints that are possibly different from those defined at the local sites. To 

preserve local autonomy, these global constraints are not enforced at the lo- 

cal level, thereby retaining all information locally while filtering inconsistencies 

globally [4, 14, 151. Thus, at any one time the global constraints may not be 

satisfied. 

To be sure, industrial applications have a broader range of practical issues to 

deal with, but this dilemma nonetheless frames the various formal approaches for 

modeling and providing a semantics for relational database inconsistencies. Since 

the problem can be phrased at the level of the content of relational databases 

and not their implementation, these formal methods allow researchers and de- 

velopers to think about the problem at a different, and arguably 'natural', level 

[16]. We thus represent database instances as finite sets of atomic sentences in 

some first-order language, or database schema, and view query evaluation as a 

form of logical entailment or deduction [43]. And the goal of the formal meth- 

ods we discuss and use aim to handle extensional inconsistency as opposed to 

intensional inconsistency [38]. 

Intensional inconsistency deals with the resolution of different ontologies and 

schemas across various sources [32, 53). This is a vexing problem in itself, but 

we assume a uniform ontology and database schema and consider the equally 
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challenging problem of extensional inconsistency. This simplifying assumption 

allows us to consider various database instances as a single instance [4, 8, 101, 

which reinforces the view that inconsistencies arise as a fragment of the global 

nature of the system. This is the perspective from which we view the problem of 

extensional inconsistencies; we hereafter refer to such global database instances 

as 'database instances' or 'databases'. 

Extensional inconsistency involves the truth of conflicting sentences in the 

database with respect to a set of integrity constraints. Consider the constraint 

"Social security numbers of employees are unique". Suppose that an employee 

database of Acme Inc. in the City X has an employee named Jane Smith whose 

social security number is '123'. Jane Smith in City Y has a social security num- 

ber '456' and also works for Acme. The individual employee databases satisfy 

the constraint, while the system violates it if we view the sources from a global 

perspective. Ultimately, we do not want to lose either piece of information but 

we also want to know that the constraint is violated, that an extensional incon- 

sistency exists. This poses problems for regarding query evaluation as entailment 

since all sentences are entailed by an inconsistent instance. 

What we propose is to treat consistent information as data that our system 

knows. We can ask "Does Jane have a social security number?" or "Is it possible 

that Jane has a social security number?" to which the system should respond 

with "Yes", and "Do you know Jane's social security number?", to which the 

system should answer "No"; in the worlds that the system considers possible, 

Jane has different social security numbers at  different worlds and there is no 

known number for Jane that is common to all these states of affairs. So asking 

"Is Jane's social security number 123?" should result in the answer "I don't 

know." The system does not have any further information to prefer either social 

security number (ssn) for Jane. It tolerates uncertainty regarding Jane's ssn but 

the constraint is nonetheless satisfied since there is no known data that violates 

the constraint. 

Adopting this approach is intuitive for a number of reasons. In the face of 

conflicting information, the system believes exactly what it is told to believe 

while enforcing the integrity constraints. Essentially, it treats integrity con- 

straint violations as a fragment of the incomplete knowledge it has of the world; 
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additional information can expel this incompleteness. Until then, however, dif- 

ferent states of affairs are possible and we can minimize information loss. Jane 

can either have '123' as her social security number or '456' but not both. Fur- 

thermore, information that is not involved in the violation of the constraints are 

quarantined from inconsistent data. The social security numbers of other em- 

ployees, employees' salaries, etc. are still known. This is ascertained by querying 

the system about its knowledge. We call information a consistent query answer 

[4] if and only if it holds across all possible states of affairs. The system's under- 

standing of the world is thus teztured since we can ask about known, unknown 

or possibly known facts. 

But why focus on querying the inconsistent system? Why not simply fix 

the problem before any querying whatsoever? As noted above, in contexts such 

as data warehousing, cleaning data is performed by an automated process and 

the problem of inconsistency is left in the hands of the application programmer 

who does not necessarily need specialized knowledge of the application domain 

to isolate data inconsistencies. Information is lost as a result since such errors 

should be dealt with by decision makers [34]. The proposed approach allows us 

to distinguish consistent from inconsistent information; to  establish which data 

is in fact inconsistent, some querying will have to occur [4, 161. In the context of 

multidatabases, this approach respects the local autonomy of distributed sources 

by not enforcing local consistency on global constraints [14]. The task therefore 

is to tolerate the inconsistencies until further information allows us to isolate 

and remove inconsistent data; this is what consistent query answering allows us 

to do. 

What we present in this thesis is a formalization of a notion of consistent 

query answers in Levesque's [29] epistemic logic KL, therefore providing a query 

language within which to reason about examples such as those presented above. 

Intuitively, a consistent query answer is an answer that holds in every repair of a 

possibly inconsistent database. We characterize these repairs as a set of possible 

worlds, or an epistemic state that represents the current state of knowledge of 

the database. We call this epistemic state e c .  A query answer that is consistent 

with the integrity constraints is then understood to hold in all possible worlds 

in eC; it is known. We can then query the database with KL and ask what the 
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possibly inconsistent database knows, possibly knows or does not know. This 

provides a perspective of consistent query answers characterized by the knowl- 

edge of the system, a knowledge-level view [39]. 

We first need to refine many of the notions concerning knowledge bases to 

the special requirements of databases. This is the work of Chapters 3 and 4. 

In Chapter 3 we introduce Levesque's ICL [29, 301 as a query language for first- 

order databases by ensuring finite answers, or safety, and domain independence. 

We call this class of formulae admissible. Chapter 4 reviews the work of Reiter 

[44] and shows how ICL reinforces his understanding of integrity constraints as 

statements about the knowledge the system has of the world. We provide an 

extended discussion on the allowed form of integrity constraints in ICL and iso- 

late an important class of constraints called database dependencies [52]; we show 

that they can be expressed as admissible and allowed formulas in ICL. Chapters 

3 and 4 therefore investigate ICL's utility as a database query language and as a 

logic for integrity constraints. 

Following this in Chapter 5, we define the epistemic state e c  and the notion of 

a consistent query answer in ICL. And unless we apply the closed-world assump- 

tion on the repairs, tuple-generating dependency violations lead to information 

loss. We extend the applicability of consistent query answering as conceived by 

Arenas et al. [4]. These considerations show how to effectively query e c  with a 

variation of Reiter's [45] query evaluator for KL, which we call cqa. This evalu- 

ator is sound and complete with respect to e c  and admissible formulas. 

Chapter 6 provides an analysis of the knowledge of e c  and characterizes 

the conditions under which something is known by formally investigating some 

properties of repairs with respect to a set of dependencies; this leads to a repre- 

sentation theorem for e c .  We then summarize our work and discuss directions 

for further research. 

Chapter 2 explores existing work in the area and contextualizes the contri- 

bution of this thesis, which is a non-trivial application of ICL in the context of 

handling database inconsistencies by formalizing the concept of consistent query 

answer. 



Chapter 2 

Literature Review 

True stability results when presumed order and presumed disorder are 

balanced. A truly stable system expects the unexpected, i s  prepared to  

be disrupted, waits to  be transformed. 

- Tom Robbins 

Copious philosophical and mathematical accounts exist discussing the nature of 

acquiring new information. It is not that a reasoning agent needs to simply 

store information indifferently, and that researchers are solely concerned with 

the myriad ways of doing this, a major problem is understanding how an agent 

should adjust itself with respect to how new information fits with the rest of 

what it knows. It is entirely possible that new information conflicts, overlaps 

or is irrelevant with what is already known. What does an agent choose to be- 

lieve? Belnap [ll] suggests that an agent should believe exactly what it is  told 

to  believe while enforcing the integrity constraints, even if what it is told con- 

flicts with what it knows. This is the approach taken in this thesis. Thus it is 

worthwhile surveying related work that adheres to this assumption, along with 

those approaches that reject it. 

We distinguish two categories that attempt to deal with inconsistencies in 

knowledge-based systems [8, 91: paraconsistent-based and coherence-based. 

Paraconsistent-based methods use a parconsistent formalism to identify incon- 

sistent information. One can then either remove inconsistencies or retain them. 

In the latter case, inconsistencies are accessible as inconsistent information. In 
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the former case, inconsistent information is first pinpointed and then removed. 

Coherence-based methods, on the other hand, use meta-logical techniques that 

attempt to restore consistency at the expense of losing (arguably) useless in- 

formation without necessarily identifying the inconsistencies. In this chapter, 

we also explore approaches that attempt to  harmonize the goals of maintain- 

ing information and ensuring consistency. These methods focus on querying 

inconsistent knowledge bases. This has the benefit of viewing knowledge-based 

systems functionally; the original information is not altered and only consistent 

answers are returned. How this relates to  approaches dealing with incomplete 

information is likewise discussed. 

This categorization is not meant to fully articulate the subtle and impor- 

tant differences between the approaches, nor is it meant to indicate that their 

goals are pairwise similar, but is intended merely to highlight the techniques and 

strategies of the formal methods used. 

2.1 Paraconsistent Approaches 

In [ll, 121, Belnap discusses the utility of a four-valued logic for a computerized 

question-answering system. If we use a twc-valued logic, he argues, the trivial- 

ization of entailment is a possibility. The system could be told that the Blue 

Jays won the Series in 1992 and that the Braves won the Series in the same year, 

for example. Assuming the system knows that only one team can win the Series 

per year, inconsistency emerges and threatens meaningful entailment. Since we 

do not want this inconsistent information to  "pollute" the system's knowledge 

of crowd attendance, batting averages, runs-batted-in, etc., we can reject either 

fact. However, we assume that the sources of information are equally trustwor- 

thy in the sense that we have no reason to believe that they relate falsehoods. 

Alternatively, we have no reason to prefer any piece of information. So the com- 

puter should not be expected to do something other than report what it has 

been told; Belnap thus proposes a four-valued logic for this problem. 

The idea is that the computer will code each fact it is told with one of four 

truth values at a particular point in time. So the tuple (Blue Jays,  1992) would 

be marked with Both, indicating that the computer was told it is true and that 
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it was told it is false, as would the tuple (Braves, 1992). This assumes that the 

computer knows that only one team can win the Series a year. The point is that 

nothing is ever subtracted from what is already known by the system; "incon- 

sistent" information (in the twevalued sense) is stored as part of the database 

itself and reasoning proceeds according to some alternative notion of entailment. 

By similarly labeling inconsistent information with a truth value, De Amo 

et al. [I91 use a paraconsistent formalism to maintain all the information that a 

database system has been told by external sources with respect to a set of possi- 

bly conflicting integrity constraints. A method called REPAIR takes a database 

instance and a set of integrity constraints to produce a paraconsistent database, 

essentially labeling the "controversial" information with a third truth value. Like 

Belnap's [ll] approach, the conflicting information is stored as such and logical 

entailment and constraint satisfaction are defined using this third truth value 

(see Example 2.1.2 below). Yet paraconsistent formalisms can also be used to 

remove inconsistency once the inconsistent information is discovered. The work 

of Arieli and Avron [5] aims at recovering consistent information from inconsis- 

tent knowledge-bases using an extension of Belnap's [ll] formalism. 

Their use of a paraconsistent logic, based on the notion of a bilattice, func- 

tions to pinpoint inconsistent information. The logic's associated consequence 

relation kcon allows them to isolate the core of the inconsistency and define 

various support sets for recoverable literals in the language of the knowledge base 

[5]. A knowledge base is recoverable if there exists at lease one recoverable lit- 

eral, a literal that is entailed by all the most consistent models. Contradictory 

information is considered either spoiled or damaged and therefore discarded with 

respect to kcon; consistency is maintained at the expense of some (arguably) 

useless information. 

Example 2.1.1 Let (where x is universally quantified): 

of which there are four support sets: 
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K B a  = {heavy(A), heavy(B), heavy(A) + red(A), heavy(B) + ontable(B)), 

KBb = {heavy(A), i red(B) ,  heavy(A) + on-table(A)), 

K B c  = {ion-table(A), heavy(B), heavy(B) + on-table(B)), 

K B d  = {ion-table(A), i red(B)) .  

According to Arieli and Avron [5], K B a  is to be preferred since it is the largest 

set and supports more literals than any other support set. Observe that if 

heavy(x) + red(x) is an integrity constraint, it is not a member of KBd. If 

integrity constraints are supposed to be enforced, this is undesirable. 

A similar approach can be found in the work of Baeza [lo] which uses an 

annotated predicate calculus with a ten-valued lattice to specify the "degree" 

of truth certain facts have in relation to integrity constraints. For instance, the 

values td and fd indicate truth values according to what is actually in a database, 

while ta and fa are "advisory" values that aid in the specification of repairs of 

a database instance. These repairs can then be generated with a logic program, 

and querying can thus proceed over these repairs. This is an extension of con- 

sistent query answering in the framework of annotated logic. We will have more 

to say about consistent query answering, below. 

The work of Arieli et al. [8, 91 analogously uses a three-valued logic to provide 

a model-theoretic characterization of inconsistent facts and uses this informa- 

tion to specify repairs. They then use an abductive logic program to generate 

such repairs.' No querying system is provided for this latter work, but it is an 

arguably straightforward extension. In Chapter 5, we suggest our extension of 

Reiter's [45] query evaluator demo could be used as a front-end for this system, 

or any logic programming system that generates repairs. 

Although these last two approaches have implementations in Prolog, the se- 

mantics of such implementations are non-classical in the sense that other truth 

values are used. The benefit of this is that we can retain all information by 

formally characterizing inconsistent data. The dilemma, however, is that we 

'See the work of Gertz [24] for techniques from model-based diagnosis to generate repairs. 



CHAPTER 2. LITERATURE REVIEW 

inherit the underlying semantic characterization of integrity constraints and of 

databases. The LFIl logic used by De Amo et al. [19] labels violated integrity 

constraints with the same truth value as inconsistent database facts. And Arieli 

and Avron [6] consider knowledge bases without integrity constraints. So if con- 

straint is a sentence in the knowledge base, it will contribute to the inconsis- 

tency and be labeled "spoiled" or "damaged" (see Example 2.1.1). In addition, 

De Amo et al.'s [19] paraconsistent databases are non-standard in that the third 

truth value is part of the object language and sentences labeled with this value 

are part of the database itself. 

Example 2.1.2 From De Amo et al. [19], we have: 

where IC is a set of integrity constraints. Their method REPAIR produces the 

following paraconsistent database: 

where indicates the associated fact contributes to the inconsistency. With DB' 

we can then ascertain entailments with respect to the logic LFI1. So a set of 

sentences C entails sentence a whenever a is true in all the models of C. a is true 

in a structure if and only if the model assigns a the truth value 1 or i. Therefore, 

the sentences in IC follow from DB' but their truth value is i. Information loss 

is minimized but the constraints have the same truth value as database facts. 

Since constraints are not part of DB,  then this fact can be effectively ignored 

because they label inconsistent data with in DB', indicating a truth value of 

a in the models of DB'. 

These properties make the above formalisms unsuitable to a relational database 

setting where integrity constraints enforce legal states and where we model the 

database in first-order logic. 
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2.2 Querying Possibly Inconsistent Databases 

To isolate inconsistent information, Bry [16] uses classical logic with restrictions 

on the proof theory, forbidding deductions based on reductio ad absurdurn. The 

restriction on reducti*based deductions ensures that Y I + A for any A; any 

inconsistencies are localized and effectively quarantined from the rest of the 

database. We can then focus on querying a database that violates its integrity 

constraints. A consistent answer F is a formula that can be deduced without 

information involved in the derivation of I. It is important to note that I can 

still be derived, but from this neither can any other formula. An inconsistent 

answer is any data from the inconsistency kernel, which is a minimal set of facts 

that derive I together with the integrity constraints. Like paraconsistent-based 

approaches, Bry does not attempt to remove any inconsistency in the original 

database but instead restricts deductions so that querying only returns consistent 

answers. 

The work of Arenas et al. [4] extends the work of Bry [16] by revisiting the 

notion of a consistent query answer, which they define as an answer that holds 

in all repairs of a possibly inconsistent database. 

Example 2.2.1 Let: 

D B  = {WorldSeries(Braves,0304),WorldSeries(Jays,0304), 

HomeStadium(Jays, Skydome)), 

IC = {Vx, y, z[WorldSeries(x, y) A WorldSeries(z, y) + x = z]) 

where WorldSeries(x, y) asserts that x won the World Series in season y and 

HomeStadium(a, b) indicates that b is the home stadium of team a. IC expresses 

the uniqueness of World Series winners. There are two repairs of this inconsistent 

database: 

rl = {WorldSeries(Braves, 0304), HomeStadium( Jays,  Skydome)), 

1-2 = {WorldSeries(Braves, 0304), HomeStadium(Jays, Skydome)). 

The constant Jays  is a consistent query answer to the query 

HomeStadium(x, Skydome). We denote this state of affairs with the relation 
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where a: is the textual substitution of free variable x with a. This is to be 

distinguished with the approach of Arieli and Avron's [5] since, in this latter 

work, "support sets" are required to be subsets of the original database. As we 

see in the next example, Arenas et al. [4] consider insertions as possible repairs 

of a database. 

Arenas et al. [4] also define an operator Tw on queries that rewrites the 

query such that an answer is entailed by all repairs of the possibly inconsistent 

database. Particularly, Tw attaches an associated residue to the query, which is 

borrowed from work in semantic query optimization [17]. This rewritten query 

is then posed to the database as if it is querying the set of all repairs. This 

method is sound with respect to the notion of a repaired database and complete 

with respect to a certain class of database dependencies and queries. 

This approach is attractive because the database is not cleaned and we can 

query the system to debug faulty or conflicting information. The idea is that 

to establish which data is in fact inconsistent, some querying will have to oc- 

cur 14, 161. In the context of multidatabases, this approach respects the local 

autonomy of distributed sources by not enforcing local consistency on global con- 

straints [14]. Consistent query answering therefore tolerates the inconsistencies 

until further information allows us to isolate and remove inconsistent data; we 

sacrifice consistency for some measure of completeness of information since only 

consistent answers are returned. Yet the following example shows that solely 

querying DB with respect to kc results in information loss. 

Example 2.2.2 Let DB, IC be the following: 

We have: 
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as the two repairs. 

For P (a )  E DB, D B  kc P(a)  and D B  kc l P ( a ) .  Notice, however, that for 

atomic a @ D B  we have D B  kc a and D B  kc -a; completely absent informa- 

tion is indistinguishable from P(a) ,  which is in the database. The knowledge- 

level view of consistent query answers proposed in this thesis attempts to cir- 

cumvent this shortcoming. See Chapter 5 for a formal discussion on Arenas et 

al. [4] and consistent query answering. 

Likewise, Dung [22] focusses on querying an integrated relational database, 

allowing an epistemic query to quantify over the maximally consistent subsets 

of an infomationally closed database. Aside from a special null constant I, 

representing unknown information, the semantic development is the same as the 

propositional fragment of modal logic KD45. "Worlds" in this work are single 

relations-such as WorldSeries or HomeStadium-and the elements of these 

worlds are the tuples in the relation. Because of the special semantics for I, 

Dung uses two consequence relations kt, kf to indicate when a formula F fol- 

lows from a model, which is a set of worlds W and the real world W, denoted 

(W, W). The closed world assumption is built into this language called the in- 

tegrated relational calculus. It is used to deal with integration on databases with 

respect to functional dependencies. A formula F is thus known if it holds in all 

the maximal consistent subsets of an integrated database. 

While this approach has the benefit of an expressive query language, the 

underlying data model only considers maximally consistent subsets, appropriate 

for functional dependency violations but inapplicable to tuple-generating depen- 

dencies, in contrast to the work of Arenas et al. [4]. Moreover, the notion of a 

query answer considers the union of the answers for each of the worlds in W to 

obtain the possible instances to a first-order query. 

Dung defines answers to a query with respect to (W, W), ANSQ(W, W), to 

be the set of tuples 2 such that (W, W) kt ~ ( 2 )  for query ~ ( 2 ) .  Furthermore, 

the set ANSQ(W) is defined as: 

Thus, queries of the form K a  are evaluated IWI times because of the union. 

However, subjective formulas only depend on the epistemic state; it is enough 
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to  call ANSQ(W, W)  once in the definition of ANSQ(W). Why Dung chose 

this definition for query answer seems to stem from the idea that the possible 

instances to  a first-order query can only be obtained by taking the union of 

the answers to  the individual worlds W E W. This is not the case, however. 

Consider the worlds wl, w2 defined as: 

where P ( a ,  b) is read "a has a salary of b thousand  dollar^".^ Let W = {wl, 202). 

The answers to  the query Q1 := K(3zP(x,  z) A z < 30) with respect to  W are: 

ANSQ, (W) = {peter) 

Now let Q2 := 3zP(x,  z) A z < 30, the answers to  this query are as follows: 

ANSQ2(W) = {peter, terry) 

In the latter case, we are asking the system to give the names of all employees 

whose salary is possibly less than 30. Since we take the union of the answers 

with respect to W for this first-order query, we get the answers that hold in at 

least one of the worlds W E W. That is, both Peter and Terry have salaries 

less than 30 thousand dollars in a t  least one world in W. This seems to give 

Dung's system the power it needs to  list possible instances of queries. However, 

the equivalent answers can be returned using the query l K l 3 z P ( x ,  z) A z < 30, 

which looks for an x such that it is not known that x does not have a salary less 

than 30 thousand dollars. Is there some world such that x has a salary less than 

30 thousand dollars? If so, then any constant bound to  x will be a query answer 

in Dung's language. Yet, we have simply used the dual of K to get possible 

instances to queries. Thus, that we need to take the union is redundant. 

But this design decision stems from forbidding negation in the integrated 

relational calculus, into which Dung [22] transforms sentences with K operators, 

where the dual of K has no straightforward translation. Because we focus on the 

 his is not exactly the way Dung [22] phrases worlds. Worlds are sets of tuples on a single relation; 
multiple relation worlds have not been defined. We have used sets of ground atomic formulas of one relation 
as the content of a world instead. 
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semantics of consistent query answering at the outset, we employ the expressive 

power to query possible instances using KC. The approach presented in this 

thesis therefore uses a general knowledge representation query language [29, 301 

that we refine with considerations stemming from database theory, deductive 

databases and logic programming. This refinement culminates in its application 

to the problem of database inconsistencies due to integrity constraint violations 

and a formalization of consistent query answers. 

As a final consideration, Benferhat et al. [13] investigate inference relations 

on inconsistent knowledge bases. They propose a safely supported consequence 

relation defined over consistent subbases of the original knowledge base. The 

intuition is that if there is no argument in favour of the formula's negation, the 

formula is a safely supported consequence. So the entailment relation does not 

pick out inconsistences but uses the amount of support for a formula's negation. 

A notion of level of paraconsistency is associated with formulas in the knowledge 

base that aids in determining arguments in favour of the formula and its negation. 

Since inconsistent knowledge bases are semantically equivalent in a trivial way, 

this approach is syntactic in nature and so considers only formulas that explicitly 

appear in the stratified knowledge base, which is modeled in possibilistic logic; 

no repairing is attempted to regain consistency. 

Nonetheless, what distinguishes these methods from others is that they focus 

on query answering: the rewritten query T, does not aim to produce a consistent 

instance, but is concerned only with those answers that are consistent with the 

integrity constraints; the query Ka only asks whether something holds in all 

consistent subsets of an inconsistent database; the safely supported consequence 

considers subbases as arguments for the consequence but does not alter the 

original stratified knowledge base. In other words, the database instance or 

knowledge base need not be in any consistent state a t  all. Information is not 

removed. This understanding of querying over some set of information resembles 

work on handling incomplete information. 

Querying Incomplete Databases 

While we can model relational databases as sets of atomic sentences, the infor- 

mation of the world is nonetheless limited to definite information. The problem 
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is that if a database knows 3xP(x ) ,  then asking whether P(a)  holds for any con- 

stant a is only a possible answer. Moreover, if we use first-order entailment for 

answering queries, 3xP(x)  F P(a) for any constant a. Database systems on the 

other hand have a definite answer property where if a database D B  k 3xP(x )  

there is a witness such that DB + P(a)  [35]. What if we have incomplete infor- 

mation of the world? How do we model this? The standard approach is to allow 

disjunction, and even existential quantification in the database, what Reiter [45] 

calls elementary knowledge bases. Querying thus proceeds on the models of this 

knowledge base, denoted Mod(D). A certain answer is one that holds in all 

M E Mod(D). A possible answer is one that holds in a t  least one M E Mod(D) 

[l, 33, 351. 

With disjunctive information, however, the notion of possible answer is ob- 

scured. If Mod(D) is the set of structures in which P(a)  V P(b) is true, then 

neither Mod(D) k P(a) nor Mod(D) k P(b) hold. There are no certain an- 

swers to  the query P ( x ) ,  which is to be expected. However, the set of possible 

answers is the set of all constants. This ignores the singular role of a and b 

with respect to Mod(D). Various solutions to this problem have been suggested 

[35], but the system we propose does not suffer from this difficulty because it 

treats incomplete information as incomplete knowledge. We can ensure that if 

K P ( a )  V KP(b)  is known by our system, then it will know either P(a) or P(b); 

the set of possible answers to the query P ( x )  consists only of a and b. This is 

called the determinacy of knowledge by Levesque and Lakemeyer [31] and Reiter 

[47], which we investigate in Chapter 3. 

How do we find out whether a constant is a possible answer? We can ask 

whether 3xP(x)  k P(a) and 3xP(x)  F l P ( x ) .  This shows that P(a) and 

l P ( a )  are possibly known since 3xP(x)  does not specify which x is a P ;  it could 

be a or not. In this thesis, we formalize this behaviour in ICL and in what we call 

an epistemic state eC. We can then query ec  for known ( K a ) ,  possibly known 

( 1 K l a )  or unknown ( 1 K a )  facts using formulas in the language. Neither Are- 

nas et al. [4] nor Dung [22] formally investigate whether possible answers are 

distinguishable from absent information-see Example 2.2.2 regarding 141--or 

whether the query language is strong enough to  ask about possible answers-see 

the discussion in the previous section regarding 1221. We envision the system we 
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develop to be a step in this direction, allowing us to retrieve answers that are 

possible using KC and to minimize information loss while maintaining consis- 

tency. 

2.3 Coherence-Based Methods 

Notice that the above querying techniques require the computation of repairs or 

maximally consistent subsets of the original database. In this sense, they differ 

from paraconsistent-based approaches that mark inconsistent data because an 

attempt is made to fix the inconsistency. These methods of revising an incon- 

sistent knowledge base to restore consistency are what Arieli et al. [8, 91 call 

coherence- based. 

Mendelzon and Lin [32] define a merging operator on finitely satisfiable 

knowledge bases with constraints that takes the majority m l e  of the knowl- 

edge bases that support a consequence. When there is no majority, we take 

disjunction of all the theories that need to be merged. This is a syntactic char- 

acterization of the operator. The semantics is based on the minimum distance 

between the models of the integrity constraints and the models of the first-order 

theories that need to be merged. Because of the majority rule property of this 

operator, some information may be lost. This work is also applied to schematic 

heterogenity where different vocabularies of different theories can also be merged. 

The work of Motro [38] identifies consistent entailments of a database with re- 

spect to  the i n fomat ion  goodness of the information sources, and Qi et a l . ' ~  [41] 

work considers classical knowledge base merging as a specialization of possibilis- 

tic knowledge base merging; they sufficiently "weaken" inconsistent information 

so that not all information is lost. Since this latter work deals with inconsistent 

knowledge bases, integrity constraints are disjoined with any counterexamples, 

thus weakening the constraints. Finally, Delgrande and Schaub [20] extend their 

work in belief revision to support different consistency-based methods of knowl- 

edge base merging with entailment and consistency-based integrity constraints. 

While the above approaches deal with a set of first-order formulas, Meyer [36] 

suggests merging epistemic states. He defines basic properties that a merging 

operation on knowledge bases should have, and distinguishes two extensions to  a 
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merging operator on epistemic states: arbitration, which takes as many differing 

opinions as possible into account, and consensus, which is concerned with the 

opinion of the majority. This approach is relevant for the work presented in this 

thesis, but we consider this a direction for future study. 

Suffice it to say, these approaches attempt to restore consistency at the ex- 

pense of arguably useless information. 

2.4 Conclusion 

The purpose of exploring these approaches and their motivations is to evaluate 

whether we can employ their insights and methods to the special circumstances 

of querying possibly inconsistent databases. We adopt the perspective suggested 

in the work of Arenas et al. [4] and Dung [22] by considering query answering as 

a method that harmonizes the goals of pinpointing relevant, although possibly 

inconsistent information, and that of maintaining consistency. We accomplish 

this with an epistemic logic KC querying an epistemic state, which represents 

all that is known about the domain. This epistemic state is constructed using 

techniques from coherence-based methods of considering the repairs of a database 

instance. Information is not necessarily lost because we can quantify over these 

repairs, as suggested by techniques on handling incomplete information [33, 351; 

consistent information are the only known facts, while those that are inconsistent 

are possibly but hitherto unknown. The hope is that while balancing these goals, 

we have a glimpse of Belnap's computer doing, and believing, exactly what it is 

told. 



Chapter 3 

The Logic ICL 

To sing i n  truth i s  quite a different breath. 

- Rainer Rilke, Sonnets to  Orpheus 

All our knowledge is, ourselves t o  know. 

- Alexander Pope, A n  Essay o n  Man  

If we adopt the standard view that a set of first-order sentences represents a 

knowledge base, we can understand query evaluation as a form of logical en- 

tailment where the instances of a query's free variables that make it true with 

respect to the knowledge base determines its value [43]. However, there is no 

reason to suppose that the query can only be phrased in the idiom of the rela- 

tional calculus; the relational algebra and tableau's are equivalent in expressive 

power, and in some cases, better suited to certain tasks than the relational cal- 

culus for querying databases [I]. We can thus distinguish between the query 

language or interaction language, which is used to ask questions or relate facts 

about the world the knowledge base models, and the representation language, 

which consists of the symbolic structures representing that world [30]. 

By separating these concerns we can use an epistemic query language to 

ask what a knowledge base knows, in addition to asking about aspects of the 

external world. For instance, if the system knows that Jane has a social secu- 

rity number, but cannot identify it, we can distinguish between asking "Do you 

know that Jane has a social security number?" and "Do you know Jane's social 
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security number?". As we see in the next chapter, kX also allows us to view 

integrity constraints as statements about the knowledge the knowledge base has 

of the world, as opposed to statements about the world itself [45]. Th' is per- 

spective about integrity constraints and K L  as query language allows us to treat 

database inconsistencies with respect to integrity constraints as properties of the 

knowledge the system has of its domain; consistent answers are those that are 

known. We can then formalize Arenas et al.'s [4] notion of a consistent query 

answer in KL. 
In this chapter we outline the basic syntax and semantics of a subset of 

K L  that we call K F O P C E  and its first-order counterpart (without the modal 

operator K )  F O P C E ,  which stands for "First-Order Predicate Calculus with 

Equality". We also consider some of the logic's properties as well as a basic 

operator that allows us to pose queries. While the motivation for using KC 

is to  formalize consistent query answers, that we can use it as a query langauge 

for databases enhances its applicability. This means that we need to restrict the 

language to ensure that queries are safe and domain independent, both with and 

without closure constraints; this is the topic of the last section. 

The majority of definitions and results presented in this chapter are from 

Levesque and Lakemeyer [30] and/or Reiter [45] unless there is no reference to 

these works in the definitions, lemmas or theorems. Section 3.4.2 on domain 

independent K F O P C E  formulas and Section 3.4.3 on AC formulas, however, 

can be seen as straightforward extensions of these works. 

3.1 Syntax 

K F O P C E  is a first-order modal language with equality augmented with the 

modal operator K ,  which stands for "know". Expressions in K F O P C E  are 

constructed from the following sets [30]: 

Logical symbols consist of the distinct sets: 

a countably infinite set of variables, which we write as x, y or z ,  possibly 

with subscripts. 

a countably infinite set of parameters B, written schematically as pl, p2, . . .. 
We will also write parameters either as lower-case letters a,  b, c ,  . . . or 
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as proper names ( e g  mary, car, coffee, etc.) Intuitively, parameters 

are the unique names of domain elements. 

0 the equality symbol, =. 

the logical connectives b', 3, A,  V, 1, >. 
0 the usual punctuation symbols (,),,. 

0 the single modal opemtor, K for "know" 

Non-logical symbols are domain specific elements of the vocabulary distinct 

from the logical symbols. They consist of only: 

a set of predicate symbols, which we usually write as P, Q or R. These 

are understood to be domain specific relations or properties. Predi- 

cate symbols have an arity, which is a number indicating how many 

arguments it takes. 

From these symbols, the expressions of K F O P C E  are built. There are two 

types of expressions: terns, which are used to identify individuals in the domain 

and which we schematically name as t l ,  t2 , .  . ., and (well-formed) fornulas, which 

are statements about the domain and which we schematically identify with lower- 

case Greek letters a, p, etc. Sets of wffs are usually denoted with C, possibly with 

subscripts. 

Definition 3.1.1 (Term) A term is either a parameter or a variable. 

Definition 3.1.2 (Atomic Formula) An atomic formula or atom is of the forn  

P ( t l , .  . . , tk) where P is a predicate symbol of arity k and ti are terns. We write 

equality atoms as tl = ta. 

Definition 3.1.3 (Well-Formed Formula) A well-formed formula in K F O P C E ,  

or wff, is one of the following where a and ,6 are wffs: an atom, l a ,  ( a  V P), 

(a p), (a > p), 3xa, b 'm, K a .  

Notice that wffs in F O P C E  are K F O P C E  formulas without the modal 

operator K; they will henceforth be called objective formulas. A variable x 

is bound if it appears in a subwff of the form 3xa or Vxa, in which case we say 

that x is within the scope of the quantifier 3 or b', respectively. A variable x is 

free otherwise. 
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We define the set of sentences, which are the only wffs that can receive a 

truth value. 

Definition 3.1.4 (Sentence) A sentence is  a K F O P C E  wfl  with n o  free vari- 

ables. A n  atomic sentence is  a n  atom P( t l ,  . . . , tk) where each ti is  a parameter. 

Finally, by a; we mean the textual substitution of the variable x for the 
4 

term t .  a 3  means that we simultaneously substitute each free xi  with the 
t -+ 

corresponding t i ,  assuming that the sequences 2 and t are the same length. 

We will sometimes write textual substitution as all$ to make it easier to read 

with the subscripted a. 

Databases and Knowledge Bases 

Our language for representing information about the world is F O P C E ,  since 

there is no reference to "knowledge" in such formulas. 

Definition 3.1.5 (Database [45]) A database instance or  database i s  a finite 

set of non-equality atomic sentences, i.e. of wffs P(pl , .  . . ,pk)  where P is  a 

predicate symbol of arity k and pi are parameters for 1 5 i 5 k. 

Where required, we will need to define supersets of databases, which are 

nonetheless proper subsets of an unrestricted set of F O P C E  sentences. We 

therefore define the widest class of F O P C E  sentences that we discuss. 

Definition 3.1.6 (Knowledge Base [30]) A knowledge base is  a set of F O P C E  

sentences. 

3.2 Semantics 

We have seen how to build sentences and formulas in K F O P C E .  In this section, 

we look at how the sentences we build can be true or false. 

Definition 3.2.1 (World [45]) A world is  any set of atomic sentences that in-  

cludes p = p for each parameter p and does not include pl = pa for diflerent 

parameters p l ,  p2. 
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Parameters are therefore pairwise distinct at a world and are isomorphic to 

the application domain; every element has a name in the form of a parameter. 

The unique names assumption is therefore part of the logic [43].l This also 

means that our domain of quantification is countably infinite, but we shall see in 

the coming sections how to prove results for K F O P C E  analogous to the issue 

of safety in database theory which guarantee finite answers to queries [45]. 

Definition 3.2.2 (Epistemic State [30]) A n  epistemic state is a (possibly empty) 

set of worlds. 

Definition 3.2.3 (Satisfaction [30, 451) We  define how an epistemic state e and 

world w satisfy a K F O P C E  sentence q5 (denoted e, w k 4 )  as follows: 

If q5 is an atomic sentence, then e ,  w k q5 iff q5 E w .  

If q5 is of the fonn T IT ,  then el w k q5 i f f  el w IT 

Ifq5 i s o f t h e  fonn.rrlA.rr2, thene ,w  k q 5 i f f e , w   FIT^ ande ,w   FIT^. 
If q5 is of the fonn ' ~ X I T ,  then el w k q5 iff for every parameter p we have 

e , w  k IT;. 

If q5 is of the form K I T ,  then el w k q5 iff for every s E e, we have that 

el s k IT. Since q5 does not depend on the world w ,  we sometimes write 

e k K I T .  

The cases for 3 x 1 ~ )   IT^ V  IT^ and  IT^ >  IT^ are defined in  the usual way in  terms 

of 1, A and 'd. When q5 is objective, we sometimes write w k q5 to emphasize its 

independence from the epistemic state. We  say that q5 is true in  (el  w )  whenever 

el w k 4. 

Definition 3.2.4 (Model [45]) For C a set of K F O P C E  sentences, (e l  w )  is a 

model of C iff el w k q5 for all q5 E C .  If C is a set of F O P C E  sentences, the 

set of first-order models for C is denoted M ( C )  = { w  I w k 4, for all q5 E C ) .  

If there is at least one model for C ,  we say that C is satisfiable. If a K F O P C E  

sentence a is true in all models of 8, we say that a is valid. 

'1n ICL, parameters serve as names of equivalence classes of co-referring terms. Function symbols f are 
members of a particular equivalence class only when it is known that f ( t l ,  . . . , t k )  = p for any parameter p 
and k 2 0. 
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We write C bKFOPCE 4 whenever the K F O P C E  sentence 4 is true in all 

models of C. Similarly, we write C bFOPCE 4 just in case for all w E M ( C )  

we have e, w b 4 for any epistemic state e, a set of F O P C E  sentences C and 

F O P C E  sentence 4. Whenever C is strictly F O P C E  and a is K F O P C E ,  we 

use k,  which we define below. 

A sentence is objective if it is a F O P C E  sentence, since deciding its truth 

or falsity does not depend on the epistemic state e (i.e. on what is known). A 

subjective sentence is one where all predicate symbols appear in the scope of a 

K operator, thus whose truth or falsity solely depends on the epistemic state 

e. For instance, K(P(p l )  V Q(pa)) is subjective, 'dx(P(x) > Q(x)) is objective 

and (P(pl) A yKP(pl ) )  is neither. Intuitively, objective formulas say something 

about the world whereas subjective formulas refer to the knowledge a system has 

about the world, and hence only depend on the epistemic state. Mixed formulas 

such as (P(pl) A yKP(pl ) )  allow us to address both aspects: the world and the 

epistemic state. Without knowing the sentences that are actually in a knowledge 

base, these sentences allow us to express facts about the world that would not 

have been possible otherwise [30]. They hence enhance the expressivity of the 

query language. 

3.2.1 Some Properties of KFOPCE 

For the propositional fragment of K F O P C E ,  the semantic specification given 

above is equivalent to the modal logic K45; in addition to the axiom K ,  the 

positive and negative introspection axioms (below) are valid in K F O P C E  [26, 

301. That is, for K F O P C E  sentence a, P: 

Theorem 3.2.5 (Levesque and Lakemeyer [30]) b K ( a  > P) 3 ( K a  3 KP) 

Lemma 3.2.6 ([30]) b K a  > K K a  and + 7 K a  > K l K a .  

Theorem 3.2.7 ([30]) For any subjective sentence a we have that + a > KO. 

This important property tells us that any knowledge base system has com- 

plete knowledge of its internal state; we cannot tell it a fact about itself that it 

does not already know. For our purposes, since we are only interested in query- 

ing a possibly inconsistent database, we can be sure that there are no questions 
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about its knowledge to which it does not have a "yes" or "no" answer (See Corol- 

lary 3.3.3 below). 

Does the converse of the theorem hold? That is, are known subjective sen- 

tences true? Consider the empty epistemic state e ,  which represents inconsistent 

knowledge; all possible worlds have been ruled out as the actual one. If 4 is any 

atomic sentence, then ~ K q 5  is true iff there exists some world w in e such that 

w 4. Since e is empty, this cannot be the case and hence lKq5 is false. How- 

ever, K l K 4  will be true trivially since e is empty. Hence, the known subjective 

sentence lKq5 is not true. We can ensure consistent epistemic states, and hence 

accuracy of subjective knowledge, with the following theorem. 

Theorem 3.2.8 (Levesque and Lakemeyer [30]) For any a and any subjective 

a, + ( 1 K a  > ( K a  > a ) ) .  

The following is a useful corollary that will be employed in Chapter 6. 

Corollary 3.2.9 Whenever e is non-empty, then e + K a  > a for subjective a 

If we assume that e is non-empty, the resulting logic, or propositional frag- 

ment thereof, is therefore equivalent to modal logic KD45 [45]. 

Properties of K F O P C E  With Respect To Parameters 

KFOPCE ' s  treatment of parameters also gives us a uniform domain across all 

the world states. This means that the Barcan formula and its converse hold in 

K F O P C E .  

Theorem 3.2.10 (Levesque and Lakemeyer [31]) + Vxl . . . x k K a  = KVxl..  . xka 

A similar result does not work for existential quantifiers, however. 

Theorem 3.2.11 ([30]) + 3xKP(x)  > K3xP(x)  but not conversely. 

Theorem 3.2.12 (Determinacy of Knowledge [31]) Suppose a is objective and 

p an objective formula with free variable x such that + K a  > 3xKP. Then for 

some parameter we have + Ka > K&. 
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So not only does our treatment of parameters let us move K operators around 

universal quantification, it allows us to distinguish when an individual is known 

to have a property from knowing that an individual has that property. The 

determinacy of knowledge theorem furthermore gives us what has been called 

the definite answer property in the context of databases [35]; in standard first- 

order logic 3 x P ( x )  FFOPCE P ( p )  for any parameter p, but in K F O P C E  we 

can be sure that there will always be such a p whenever 3 x K P ( z )  holds. 

3.3 Querying a Knowledge Base 

The definition of an answer to a query is given as follows: 

Definition 3.3.1 (Answer to a Query [45]) Let C be a knowledge base, and 

q a K F O P C E  formula with free variables 3. Let ex = M ( C ) .  A tuple of 

parameters 3 is an answer to q (wrt C )  i f l  e x ,  w + q Z ,  for each w E ex  (i.e. 
P 

ex + ~ ~ 2 ) .  W e  will sometimes wfite i t  as C + q;. 
P 

Definition 3.3.2 (Instances of a Query [45]) Suppose C is a set of F O P C E  

sentences, and a a K F O P C E  formula with free variables 2. Define: 

+ 
Instances(a,  C )  = (3 I 5 are parameters and C +a?} 

W e  overload this definition when the second argument is an epistemic state e: 

- 
Instances(a,  e )  = (3 I 3 are parameters and e i= K a 3 }  

When a is a K F O P C E  sentence, then C + a means "yes", C + l a  means 

"no" and neither means "unknown". This latter case occurs when ex  + 7 K a  

and ex  + 1 K ~ a ;  neither a nor l a  are known. However, whenever a is subjec- 

tive, we have the following consequence of Theorem 3.2.7. 

Corollary 3.3.3 (Levesque and Lakemeyer [30]) If C is a set of F O P C E  sen- 

tences and a is subjective, then either C + a or C + l a .  

This reflects the intuition that we can ask a database something about its 

knowledge and be sure that there are no facts about itself to which it does not 

have complete knowledge. 
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What happens when C = {)? Based on the above properties and theorems 

we can show that, with the exception of tautologies, not only is nothing known 

in the corresponding epistemic state eo = M ( { ) )  but that the knowledge base 

knows this; it knows that it has incomplete knowledge of every aspect world. 

Theorem 3.3.4 (Levesque and Lakemeyer [30]) If cr is [3xP(x) 3 3x(P(x) A 

l K P ( x ) ) ]  for any unary predicate symbol P, then {) k a. 

What cr says is that eo knows that it has incomplete knowledge of P :  if one 

instance of P exists, it must be ~ n k n o w n . ~  Of course, the objective validities 

will also be known, and so will 7 K a  when l c r  is satisfiable. That is, C k 1 K a .  

Since we have assumed that our system has complete knowledge of its own 

epistemic state, like all other epistemic states, eo knows the valid sentences as 

well as the true subjective ones. 

This epistemic state is important for integrity constraint satisfaction: since 

we view integrity constraints as statements about the knowledge a system has of 

its domain, they must be true when nothing is known that violates them. That 

an integrity constraint IC is known in eo will distinguish this approach from the 

standard definitions of constraint satisfaction. We investigate these remarks in 

the next chapter. 

What if our query q is a mixed formula (i.e. neither objective nor subjective)? 

Consider the query q := 3x(P(x) A l K P ( x ) ) ;  q asks whether there are possible 

but hitherto unknown instances of P. Examine, however, the query q' := P(x)  A 

l K P ( x ) .  Is q' asking the knowledge base to  list the possible instances of P ?  

Unfortunately, this is not the case. Instances(qf, C) is the set of parameters $ 
such that for free variables T' in q', ex, w C q'l; for every w E ex. For the first 

conjunct in q' and parameter pl ,  we are asking whether P(pl) holds in all worlds 

in ex; we are asking KP(pl ) .  

This "strengthening" of queries seems to prevent us from asking for a list of 

possible answers to a query as a naive use of q leads us to believe, but we can 

simply using the dual of K:  1 K l .  The query q" := l K l P ( x )  A l K P ( x )  lets 

us ask for a list of possible answers. Suppose we substitute pl for x in q". Then 

we have l K I P ( p l )  A l K P ( p l ) .  We are asking whether there is some world in 

 his theorem can easily be extended to the non-unary case. 
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which pl is a P and this pl is also unknown, or equivalently whether there is also 

some world in which pl is not a P. We henceforth leave it to the query writer 

to specify when he/she wants the possible instances of a query. 

3.3.1 Other Properties of + 
We have the following consequences of the above definitions from Reiter [45]. 

Proposition 3.3.5 (Reiter [45]) C bKFOPCE a implies C p a  but not con- 

versely. 

Proposition 3.3.6 ([45]) Whenever a is a FOPCE sentence, then C a iff 

C ~ F O P C E  

Theorem 3.3.7 (Levesque and Lakemeyer [30]) Suppose that C is a knowledge 

base and a ,  p are KFOPCE sentences. Then  C pa: and a bKFOPCE P implies 

C kt:. 

This means that if + a = P, then we can use the query that is computationally 

more feasible and get the same results. 

The following is a useful proposition on the equivalent formulation of in 

terms of an epistemic state e for KFOPCE a.  

Proposition 3.3.8 e + K a  iff for all w E e we have {w) + K a  for KFOPCE 

sentence a .  

Proof: The proof is by induction on the structure of a.  When a is atomic, then 

e + K a i f f f o r a l l w ~ e w e h a v e e , w + a i f f w + a i f f  { w ) + K a .  

The result follows trivially for a of the form Kal and a1 A a2. When a is 

of the form 3xal then e + K3xal iff el w + 3xal for all w E e. This holds iff 

el w + all; iff e + KallF since w E e. The result thus follows by induction. 

Finally, consider the case when a is of the form l a 1  . e + K l a l  iff e l  w + l a1  

iff e l  w p a1 for all w E e. This is the same as saying e p Kal since there is 

at least one world where a1 is false. But by the induction hypothesis, we have 

{w) p Kal for all w E e. So, {w), w p a1 iff {w), w + l a 1  since we are 

metalogically quantifying over all worlds in e. Thus, {w) K l a .  
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Thus, if we were to find a representative set of sentences for each world w E e, 

then we can effectively use k to get the same answers as if we were querying e. 

In the next section we investigate what refinements are needed for K F O P C E  

queries if we want to use K F O P C E  as a query language for relational databases, 

since certain restrictions need to be respected for this particular setting. 

3.4 Specializations to Database Theory 

This section presents a summary, specialization and extension of Reiter's [45] 

results on a query evaluator for K F O P C E .  Up to this point, our assumptions 

about knowledge bases and k supervene the requirements of relational database 

theory where the relational theory of Reiter [43] is assumed to hold. In particular, 

since the unique names assumption is built into the logic, our only concern are 

queries with possibly infinite answers and closed world databases. We see how 

Reiter [45] restricts K F O P C E  queries to  guarantee finite answers, and show 

that the definition of admissible queries also ensures domain independence. We 

finally look at the closed-world assumption. The results of this section show that 

K F O P C E  can be used as a query language for databases. 

3.4.1 On Finite Answers for KFOPCE Queries 

Since our domain of quantification is countably infinite, our definition of query 

answer does not guarantee finite answers. For instance, when our epistemic state 

is eo, then the set (3 I eo -KP($)) is infinite. In this section we define a 

subset of K F O P C E  formulas that guarantee finite answers under k.  

Definition 3.4.1 ([45]) FE is a set of F O P C E  formulas with the property that 

whenever f E FE, then Instances(f, C) is finite. 

Henceforth, we call formulas f E Fz safe [I, 511. Reiter's [45] definition 

of safe queries is different from ours. Safety for Reiter means "safe for nega- 

tion" in the context of a Prolog-like query evaluator where unbound variables 

on negated subgoals are discouraged. Aside from this difference in terminology, 

the definition above for FE is Reiter's [45] original. 
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Remark 3.4.2 3~ need not be the entire set of formulas with the aforemen- 

tioned property, but could be a proper subset. We define such a subset below 

once we establish that Instances(a,  C) for K F O P C E  formula a built from 3~ 

is finite as well. 

Definition 3.4.3 (Almost Admissible Formulas wrt FZ [45]) The K F O P C E  

formulas which are almost admissible with respect to (wrt) 3~ are the smallest 

set such that: 

1. I f f  E Ex, then f is almost admissible wrt to 3~ 

2. If a is an almost admissible formula wrt FE, so is K O .  

3. If a is a subjective almost admissible sentence wrt Fz, then l a  is almost 

admissible wrt 3 ~ .  

4. If a is a subjective almost admissible formula wrt Fz, then ( 3 x ) a  is almost 

admissible wrt 3 ~ .  

5. If 01 with free variables is almost admissible wrt Fz, and a2 is any 

K F O P C E  formula such that 0212 is almost admissible wrt FE, then so is 
P 

a1 A 02.  

Definition 3.4.4 (Admissible Formulas wrt 3~ [45]) When all quantified vari- 

ables of an almost admissible formula wrt FE are distinct from one another and 

from the free variables of the query, then we call the formula admissible wrt FC. 

Example 3.4.5 Whenever f , g  E Fz, the following formulas are admissi- 

ble wrt FE: 1 K f 7 3 x K f , K f ,  and f A 1 K g .  We will look at the form of f ,g 

once we define the class of formulas 3 ~ .  The following are not admissible: 

- P ( x ) ,  3 x Q ( x ,  Y ) ,  +(x) A 7 K Q ( x 7 y ) ,  K 3 x l Q ( x ,  Y ) .  

Lemma 3.4.6 (Reiter [45]) Whenever a is admissible wrt FE, Instances(cr, C) 

is finite. 

Remark 3.4.7 Queries whose answers are finite are not necessarily admissible 

wrt FE, although we have proved that the converse holds for a particular 3 ~ .  For 

example, Instances(QyR(x,  y), C )  is necessarily finite for databases but is not 

admissible wrt 3 ~ .  Since y ranges over the entire domain and since databases 

are finite, Instances(q, C )  is the empty set. 
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What remains is to find a set of F O P C E  formulas a such that Ins tances(a ,  C) 

is finite. The above lemma then guarantees that K F O P C E  formulas built from 

such a set has the desired property. Reiter [44] defines such a set, which he calls 

positive existential formulas. 

Definition 3.4.8 (Positive Existential Formulas [45]) The positive existential 

(p.e.) F O P C E  formulas are the smallest set such that: 

1. A n  atomic formula other than an equality atom is p.e. 

2. If a i s  p.e., so i s  (3x)a. 

3. If  al, a 2  are p. e., so are a1 A a 2  and a1 V az. 

A rule is of the form V Z A  > B where A is a conjunction of atomic formulas 

other than equality and the variables of occur free in A .  

A knowledge base is elementary if it is a set of p.e. sentences and rules. 

Remark 3.4.9 A database is therefore a finite elementary knowledge base, 

without disjunctions, conjunctions, existential quantifications and rules. 

We need the following lemma to ensure that finite answers are returned for 

the class of queries we define below. So we need to move from a knowledge base 

C to one of its models that mentions only parameters occurring in C because 

querying is defined in terms of the models of C. F'rom this point, if a$ is true 

in that model, then the set of parameters is be finite, which we prove later. 

Lemma 3.4.10 (Reiter [44]) Suppose C is an elementary knowledge base. Then  

C has a model with the property that each atomic non-equality sentence i n  that 

model mentions only parameters occurring i n  C. 

This is not enough, however. Consider the set of answers to the query 

P(x,  y) V Q(y, 2). If either disjunct is true for parameters pl, p2 then the en- 

tire disjunction is true for these parameters as well as for all parameters. Why 

this is so depends largely on the fact that the free variables of the first disjunct 

are not the same as those of the second. If the free variables are the same, and if 

the query is true, then there must be some atomic sentence in a model of C that 

binds the variables to parameters mentioned only in this model. The variables 

in the other disjunct, whether true or false, would therefore be bound to the 
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same parameters mentioned only i n  that model. If we ensure that the knowledge 

base mentions only a finite number parameters, then the model will as well. We 

therefore need to restrict the free variables of queries, otherwise known as mnge 

restriction in the theory of query languages [ I ] .  

Definition 3.4.11 (Formulas with Disjunctively Linked Variables [45]) Suppose 

a is an  F O P C E  formula with free variables 3. Then a has disjunctively linked 

variables iff for each of its subformulas of the form a1 V aa, those free variables 

of a1 which are among 2 are precisely those of which are among 2. 

Example 3.4.12 The following do not have disjunctively linked variables: 

V x P ( x )  v Q ( p )  for parameter p, P ( x ,  y )  V Q ( y ,  z )  and V x P ( x )  V Q ( x ,  3). 

With this restriction on disjunctively linked variables on p.e. formuals, we can 

now show that such formulas always have finite answers. 

Lemma 3.4.13 ( [45])  If C is an  elementary knowledge base mentioning only 

finitely many  distinct parameters, and a is a p.e. formula with disjunctively 

linked variables, then Ins tances(a ,  C )  i s  finite. 

Finally, we show that K F O P C E  formulas built from this set also guarantee 

finite answers. 

Theorem 3.4.14 (Reiter [45]) Suppose C i s  an elementary knowledge base men- 

tioning only finitely many  parameters. Let 

FE = {IT I IT i s  a p.e. formula  w i t h  dis junct ively  linked variables) 

U { p  = p' I p and are parameters)  

U { p  # p' 1 p and are parameters)  

U { x  = p,p = x 1 x i s  a variable and p i s  a parameter) .  

Then  for all K F O P C E  formulas a that are admissible with respect to  FE, 

Ins tances (a ,  C )  i s  finite. 

Example 3.4.15 The following formulas are admissible wrt .&: 
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The following are not admissible formulas wrt FE: 

3 x K i P ( x ) ,  

3x[P(x) i K P ( x ) ] ,  

i K Q ( x ,  Y) A i K P ( x ) ,  

i K i P ( x ) ,  

K(P(x)  v Q(x, Y)). 

Unless specified otherwise, we assume that C is an elementary knowledge 

base and that 3~ is as in Theorem 3.4.14, above (see Remark 3.4.2). With this 

assumption, we henceforth call admissible the admissible formulas wrt 3 ~ .  

Remark 3.4.16 Since Reiter [45] defines admissible formulas as a superset of 

admissible formulas wrt 3~ and since we will always consider admissible formulas 

wrt FE, we abuse the terminology here by describing these different classes with 

the same name. 

A problem with these class of queries is that we lose the ability to ask the 

knowledge base about its possible but hitherto unknown knowledge: 3x(P(x) A 

i K P ( x ) )  is not admissible. There does not seem to be a way of formulating an 

admissible query that addresses this aspect of the knowledge of our system. We 

can, however, ask whether pl is an unknown instance of P, i K P ( p l ) ,  but this 

does not say that it is a possible instance. Similarly, we can ask if there is a 

possible instance with K3xP(x),  but this does not mean that such an x is an 

unknown instance. Intuitively, an unknown instance pl of P requires a world in 

which i P ( p l )  holds while a possible instance p2 of P requires a world in which 

P(pa) holds. So it seems that we can only ask about unknown instances if we 

already have an individual in mind, and that we can ask about possible instances 
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only if we do not have such an individual in mind. Yet when a knowledge base 

is acquiring its knowledge incrementally, it is not unreasonable to prohibit ques- 

tions asking about its incomplete knowledge requiring infinite answers. 

Informally, these problems arise from the fact that our domain of quantifi- 

cation is countably infinite, and the set of unknown or possible instances for 

a query is potentially infinite because of this. Asking about an unknown or 

possible individual may require values from "outside" the values that actually 

appear in the knowledge base; such queries depend on the underlying domain. 

Alternatively, queries addressing this aspect of the knowledge base are not do- 

main independent. We discuss domain independence and its importance in the 

next section. This does not mean that the power afforded by the K operator 

is lost, however; there is still an important distinction between K3xP(x) and 

3xKP(x) ,  which are both admissible, and even being able to ask about unknown 

or possible instances at all distinguishes K F O P C E  as a useful query language 

for elementary knowledge bases. From an implementational point of view, more- 

over, the sizable class of queries we have defined above is suitable for Reiter's 

[45] K F O P C E  query evaluator demo, which is sound and complete with re- 

spect to these queries. We investigate an extension of demo for consistent query 

answering in Chapter 5. 

3.4.2 Domain Independence for KFO PCE Formulas 

With the restriction on disjunctively linked variables, p.e. formulas as queries 

guarantee finite answers with respect to an elementary knowledge base. This 

restriction also entails that these formulas are domain independent [l, 501, as we 

prove below. This property is particularly important because the answers to any 

domain independent query are the same regardless of the underlying domain, 

up to isomorphism. An example of a domain dependent query is VyR(x,y). 

As noted in the previous section, if y ranges over a countably infinite domain, 

Instances(VyR(x, y), C) is the empty set. Otherwise, this set could be non- 

empty. This is undesirable because the information about the domain is not 

available to the user of the system when he/she phrases queries. It would be 

interesting to know whether K F O P C E  admissible formulas wrt 3= are also 

domain independent. 
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Definition 3.4.17 (Domain Independence [I, 50, 511) Let C be a knowledge 

base and a a K F O P C E  formula. For any two non-empty subsets dl dl G IF', if 

Ins tancesd(a ,  C )  = Ins tancesd~(a1  C ) ,  then a is domain independent, where all 

fwe variables range over d, d' and where quantifiers range over dl dl, respectively. 

W e  assume that the parameters mentioned i n  C and cr are a subset of both d, dl. 

The intuition is that for every free variable x in a query, it does not make sense 

to  exclude the parameters either in the query or the knowledge base C from the 

possible set of values that x can take. This set of values is called the active 

domain of the query [I]. However, if Instances(a,  C )  contains tuples whose pa- 

rameters are not members of the active domain, then the query is not paying 

attention to the information that is given; data is being used from "somewhere 

else", i.e. from the underlying domain [51]. Since we have assumed that our 

domain is infinite, then it make sense to ensure that queries pay attention to  the 

active domain. 

It is interesting to note why we have not ignored domain independence and 

directly evaluated queries with respect to the active domain. This could happen 

if we let d in Ins tancesd(a ,  C) range over the parameters mentioned in C, or 

inserted domain closure axioms in C [43]. This no doubt guarantees that our 

queries are safe. However, this benefit is achieved at  the expense of keeping the 

user ignorant of information that is not easily accessible to aid in the phrasing of 

queries [I]. Thus, queries that are domain independent ensure that the answers 

are true with respect to any underlying domain, up to isomorphism. The se- 

mantic specification is thus cleaner because the user need not worry about how 

queries are evaluated, or relative to  what domain, but only on their specification. 

Hopefully a few examples will clarify this property. 

Example 3.4.18 The following formulas are domain independent: K P ( x )  and 

3 x 3 y ( P ( x )  V Q ( y ) )  since, in the former case, x will be bound to parameters that 

actually occur in the elementary knowledge base. Because we assume domains 

are identical across possible worlds, then the K operator introduces no new 

parameters. In the latter case, it is a sentence which depends only on the content 

of P and Q relations. Similarly, P ( x )  V Q ( x )  is domain independent since when 

either x is bound to  a parameter p such that the disjunct is true, then the 
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other disjunct must be bound to that parameter is well; x does not depend on 

the underlying domain but only on the parameters in either relation P or Q. 

Clearly, all the valid first-order sentences are domain independent as well [50]. 

Example 3.4.19 The following are not domain independent: l P ( x )  and 

P (x )  V KQ(y) since, in the former case, if we let d = P, then 

Instancesd(lP(x) ,  {P(pl))) is infinite while for d = {pl,p2, p3) ,  it is not. In the 

latter case, if d = P, then Instancesd(P(x) V KQ(y), {P(pl))) is infinite while 

for finite d, it is not because it is asking us to list the instances of P or the 

known instances of Q. So if P(p l )  follows from C, then the disjunction is true 

and since y is free, we get known and unknown instances of Q, which is infinite 

if d = P, and finite otherwise. Similarly, P(x)  V Q(y) is not domain independent. 

It is important to note that none of these examples are admissible. 

From these last examples, one can gauge the importance of disjunctively 

linked variables, not only for safety, but also for domain independence. Without 

such a restriction, even positive existential formulas are not domain independent, 

as shown above. 

Lemma 3.4.20 Positive existential formulas with disjunctively linked variables 

a are domain independent queries with respect to an elementary knowledge base 

C mentioning only finite many parameters. 

Proof: By induction on the shape of the query a .  

Base: If cr is atomic with free variables F' and if a2 is true in a first-order model 
P 

M with the property that it mentions only parameters occurring in C (guar- 

anteed by Lemma 3.4.10), then j? consists of parameters occurring only in 

C. Call this set of parameters active@). Therefore, Instancesd(a, C) = 

Instancesd~(cr, C) for any two d, dl c P, since active@) c d, dl by defini- 

tion. Therefore a is domain independent. 

Inductive: The result follows trivially for a of the form a1 A a 2 .  When a is of 
+ 

the form crl V a 2  then either al12 is true in M or a213 is. Since a1 V a 2  has 
P P 

disjunctively linked variables, every variable of T' occurs in both al, a 2 ,  so 

the result follows by induction. Finally, when a is of the form 3yal then for 
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+ 
some parameter T, a1 is true in M. By induction 3, T are mentioned 

P ,n 

in C, and we are done. 

We can now extend domain independence to K F O P C E  queries admissible wrt 

Fc 
Theorem 3.4.21 K F O P C E  formulas admissible wrt FE are domain indepen- 

dent. 

Proof: By Proposition 3.3.6 above and the definition of k , C k a iff C FFOPCE 
a iff C k K F O P C ~  K a  for p.e. a with disjunctively linked variables. Therefore, 

formulas K a  for p.e. a with disjunctively linked variables are also domain inde- 

pendent. This completes the base case. 

For the inductive case, if a is of the form la1 then since a is an admissible 

formula wrt FE, then a1 must be a sentence and domain independent by in- 

duction. Then Instancesd(a,  C) = Ins tancesd~(a,  C) = 8 for any two d, d' P. 

If a is of the form 3yal and if 3yal is not domain independent, then .rr E d' 

but .rr $! d for parameter .rr such that C F a l l $ .  So .rr E Instancesd1(a, C) but 
+ 

.rr $! Instancesd(a,  C). This means that all:" is not domain independent ei- 
P 7 

ther. This contradicts our induction hypothesis. Finally, if a is of the form 

a1 A a2 then the result follows trivially by induction. 

Observe that domain independence implies safety, since if a query q is do- 

main independent, it must return the same answers in both a finite and infinite 

domain. The converse does not hold, however, as we have seen. Theorem 3.4.21 

is therefore an alternative proof that the instances of admissible formulas are 

finite. We mention both proofs because Reiter's [45] development of safe queries 

is motivated by equally important, and perhaps more intuitive considerations of 

finiteness of query answers. 

Corollary 3.4.22 (Abiteboul et al. [I]) Domain independent formulas are safe. 

What we have is a class of K F O P C E  queries (i.e. those admissible wrt 

Fz for elementary knowledge base C) that are domain independent and hence 

safe. This is a straightforward yet important extension of Reiter's [45] results 

on the class of admissible formulas wrt .Fz since it explicitly addresses domain 

independence. 
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3.4.3 On Closure Constraints 

Relational databases are assumed to  satisfy the closed-world assumption, where 

facts that are not in the database are assumed to  be false [43]. In the context 

of k ,  we want to  have queries such that they are answers wrt k iff they are 

answers under a closed world assumption. And we certainly want these queries to  

be a subset of the admissible queries we defined above. However, this assumes 

that C has definite information about what is true of the world; incomplete 

knowledge characterized by 3a and a V P will not be allowed. 

To begin with, we need to  define what we mean by "closure". 

Definition 3.4.23 (Closure [45]) 

Closure(C) = C U {TIT I T i s  an  atomic sentence and C kFOPCE T }  

Some Properties of Closure(C) 

Proposition 3.4.24 (Reiter [45]) IM(Closure(C))(  5 1. 

This means that: 

Lemma 3.4.25 ([45])  I f a  is a F O P C E  sentence and r is a knowledge base, 

then: 

Theorem 3.4.26 When C is a database, M(Closure (C) )  is non-empty. 

Proof: The only way for M ( C l o s u r e ( r ) )  to be empty is when Closure(r)  

has no models, or is unsatisfiable. Since r is satisfiable by Lemma 3.4.10, 

then Closure(r)  can only be unsatisfiable if a ,  l a  E Closure(r) .  Since l a  E 

Closure(r)  iff r kFOPCE a. But if a E Closure(r) ,  then a E r because r 

is a database with only atomic sentences. This means that r kFOPCE a if 

l a  E Closure(r) .  This is impossible. 

Corollary 3.4.27 IM(Closure(C))I = 1 
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Proof: By Proposition 3.4.24 and Theorem 3.4.26. 

Now, since M ( C l o s u r e ( C ) )  C M ( C )  when C is a database, then some queries 

are true with respect to Closure(C) that are not true with respect to C .  A 
simple example is querying negative information. If we let C = { Q ( a ) )  then 

C b l K l Q ( b )  but Closure(C) b K l Q ( b ) .  

So we define a set of sentences that will allow us to use to query C directly 

rather than on Closure(C),  since this set is potentially infinite, but will also give 

us equivalent answers as if we had queried Closure(C) directly. 

Definition 3.4.28 ( [45] )  Let a be a F O P C E  formula. The K F O P C E  formula 

K ( a )  is defined as follows: 

1. If a is an atom, then K ( a )  = K a .  

2. K( -a )  = 1 K ( a ) .  

3. K ( 3 x a )  = 3 x K ( a ) .  

4. n(a, A a2) = K ( W )  A ~ ( a 2 )  

Since we are essentially putting every atomic formula in the immediate scope 

of a K ,  every K ( a )  formula is subjective without iterated modalities. We call 

such formulas K 1  formulas. We can now evaluate these queries with respect to 

knowledge base with the following theorem. 

Theorem 3.4.29 (Reiter [45]) Suppose a is a F O P C E  sentence and r is a 

knowledge base such that C losure ( r )  is satisfiable. Then, 

Reiter [45] does not pursue further the topic of a class of formulas a for which 

K ( a )  is admissible, which we do here. 

Definition 3.4.30 Let A C  be the smallest set such that: 

0 If a is an atomic formula, then a E A C ,  

0 i f  a E A C ,  then 3 x a  E A C ,  

0 if2 are the free variables o f a l  E AC, and ifazls E AC for all parameters 
P 

+ 
p , then a1 A a2 E AC, 
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if a1 E AC is a sentence, then la1 E AC. 

We furthermore assume that all quantified variables are distinct from each other 

and from the formula's free variables. 

Example 3.4.31 The following are AC formulas: P(x)  A ~ Q ( x ,  y), 3xQ(x, y) 

and 13xP(x) .  The following are not AC formulas: i P ( x )  7Q(x, a) for param- 

eter a, 3yi3xQ(x, y) and P(x)  A i Q ( x ,  y). 

Theorem 3.4.32 K(a)  is admissible wrt FE for a E AC. 

Proof :  Note that if C is a database, then it is also an elementary knowledge 

base (See Remark 3.4.9). 

If cu is an atomic formula, then K a  is admissible by definition of admissiblity 

wrt FE and Remark 3.4.16. This completes the base case. For the inductive 

cases, assume that K(cul), K(a2) are admissible, for al, a 2  E AC. For cu of the 

form 3xcul, then 3xx(cul) is admissible since an admissible subjective formula is 

in the scope of 3. When cu is of the form lal,  then lK(cul) is admissible since 

cul is a subjective sentence and admissible by induction. Finally, when cu is of 

the form a1 A a 2  then the result follows trivially by induction. 

Remark  3.4.33 Of particular interest in the definition of K(cu) is the con- 

struction rule for 3xcu. It will always be replaced by a K F O P C E  formula of 

the form 3xKcu; therefore, we will not be able to ask C whether there exists 

an x such that cu without knowing what that x is (i.e. K3xcu). Therefore, the 

formulas K(cu) are a proper subset of the admissible formulas wrt FE. 

This may seem like a limitation of the query language if we are discussing a single 

relational database, but for our particular application, we will be quantifying 

over the first-order models of a set of databases, so we can evaluate queries with 

respect to Closure(C) as opposed to C itself. But it is comforting to know that 

we can use F to query C directly as if Closure is applied. 

We have a stronger and novel result, however. Admissible formulas can also 

be used to query a database C as if we were querying Closure(C). 

Lemma 3.4.34 Whenever a is a positive existential formula and C a database 

instance, Closure(C) Fa iff r F a .  
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Proof: (t) This direction is trivial since M(Closure(C)) M(C) .  
(+) The proof is by induction. For the base case, if a is an atomic for- 

+ 
mula, then we have Closure(C) k al$. This means that als E C otherwise 

+ 
r kFOPCE a /$ .  But then Closure(C) t-3 yals, contradiction. 

For the inductive cases, assume that for al, a 2  we have Closure(C) P a1 i f  A 
+ + 

an 1; iff C p al 1;. If a is of the form a1 A a 2 ,  the the result follows trivially 

by induction. When a is of the form a1 V a 2 ,  then we have Closure(C) k (al V 
+ + + 4 4 + 

a2 )1 '1 .  p , q  If C k (a1 va2);:;, then we have C p y K ( a l  va2);:$. This holds iff 
+ 

C k y ~ a l l ?  and C k;:-Ka21%. By (t) we have Closure(C) k y ~ a ~ l ?  and 
+ 4 + 

Closure(C) k yKa21;. This implies that Closure(C) k (al V a2)1'z, contra- 
P , q  

diction. Finally, when a is of the form 3xal,  then we have Closure(C) k a1 I;;;. 
+ + 

By (t), we have C ball;:+ which implies C P 3xall;. 

Theorem 3.4.35 Whenever a is admissible wrt FE and C a database instance, 

Closure(C) k a iff r k a .  

Proof: (t) This direction is trivial since M(Closure(C)) 2 M ( C ) .  

(+) The base case follows by Lemma 3.4.34. The inductive cases proceed 

thus: when a is of the form K a l ,  then by Corollary 3.2.9 and that database 

instances are satisfiable (Theorem 3.4.26) we have Closure(C) k a l .  By in- 

duction the result follows. When a is of the form la l ,  since a is admissi- 

ble, then a1 must be a subjective sentence. So either C Fa1 or C k la1 by 

Corollary 3.3.3. If the latter, then we are done. Otherwise, by (t) we have 

Closure(C) k a1 , contradiction. Whenever a is of the form 3xal,  then we have 
+ + 

that Closure(C) k al 1;:;. By induction, C k al l x ' <  which implies C k %al I<. 
P, q 

Finally, when a is of the form a1 A a 2 ,  the result follows trivially since for free 
+ 

variables 2 of al, is admissible. 
P 

With this result, our AC formulas seem redundant. Yet we see in Chapter 4 

that a set of first-order constraints called dependencies are AC formulas. And 

since we construe integrity constraints as subjective K1 formulas, we can then 

use the results in this section to show that formulas IC(AC) are admissible. So 

whenever C is a database instance, we can query it directly as if we were querying 

its Closure. 
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If, however, our query q is evaluated with respect to Closure(C) then we 

have the following: 

Theorem 3.4.36 (Reiter [45]) If C is a knowledge base and q a K F O P C E  

formula with free variables 2, then for all parameters j? 

-+ -+ 
Closure(C) q$ iff Closure(C) FFOPCE Q+ 

where q is q with all occurrences of the K operator removed. 

Under the closed-world assumption, query evaluation is equivalent to first-order 

entailment. We thus lose the distinctions provided by the K operator. Since we 

plan to query over a set of database instances, K allows us quantify over these 

possible states of affairs, or possible worlds. 

3.5 Summary 

Representing facts about some domain in some formalism is distinct from inter- 

acting with the system housing those facts; there is no reason to suppose that the 

representation language should be the same as the interaction language. Indeed, 

there are good reasons why we would want these to be different. One reason 

investigated in this chapter is that we are then able to ask a database system 

about itself, or about what it knows. We have phrased this specification in the 

epistemic query language K F O P C E ,  a subset of KL. 
We introduced the basic syntax and semantics of K F O P C E  and noted that 

our countably infinite supply of parameters required that our domain of quantifi- 

cation be countably infinite and pairwise distinct. This is enforced by defining a 

world as a set of atomic sentences, of which p = p for parameters p are included 

and atoms p = p' for distinct parameters p,p' are excluded. As a result of this, 

the unique names assumption is part of the logic. 

As a set of world states, an epistemic state contains information about what 

the system knows; each world in the epistemic state is considered possible, where 

the system has not ruled out all possibilities as to the actual state of affairs. Thus, 

any formula within the scope of a K depends solely on the epistemic state. Since 

the semantics is equivalent to that of the logic K45, the positive introspection 
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and negative introspection axioms hold. Consequently, any subjective sentence 

is either known to be true or known to be false. This gave us that epistemic 

states always know what is true about its own knowledge, as well as that what 

is known about its knowledge will be true. Logical entailment between a set 

of K F O P C E  sentences C and K F O P C E  query a was defined as was entail- 

ment for FOPCE,  the first-order counterpart of K F O P C E .  If C is strictly 

first-order, and a K F O P C E ,  then we defined a new operator k .  C P a  iff 
ex + K a ,  where ex is the set of first-order models of C. 

Up to this point in our explorations, the logic only satisfied the unique names 

assumption of Reiter 's relational theory 1431 for relational database systems. We 

therefore reiterated Reiter's 1451 results ensuring finite answers for K F O P C E  

queries with respect to a class of sets of sentences: elementary knowledge bases. 

We considered the effect such knowledge bases had on queries, with and without 

closure constraints. What we showed is that admissible K F O P C E  queries are 

sufficiently expressive yet scalable enough to prevent infinite answers, in addi- 

tion to being domain independent. We furthermore isolated a class AC of queries 

that are admissible for closed-world databases. K F O P C E  as a query language 

is thus made more flexible with these results. 

In the following chapter, we see that an important class of constraints, de- 

pendencies in K F O P C E ,  are admissible with respect to FE. And one of the 

benefits of treating integrity constraints as statements in K F O P C E  is that they 

capture intuitions about what an integrity constraint is and how they are satis- 

fied. In accordance with Corollary 3.3.3, we show that such statements are either 

always known to be true or known to be false since they are purely subjective; 

integrity constraints or their negations are never unknown. 

Moreoever, in the state in which no definite objective facts are known, eo, we 

have that the system knows that it has incomplete knowledge of every aspect of 

the world. This epistemic state is important for integrity constraint satisfaction, 

because the idea is that if {) is all that is known, then constraints should still be 

satisfied. All these properties are made explicit by defining allowed constraints 

as those that are subjective sentences without iterated modalities and are known 

in eo. 



Chapter 4 

A Knowledge-Level View of 

Integrity Constraints 

Integrity without knowledge is  weak and useless, and knowledge without 

integrity i s  dangerous and dreadful. 

- Samuel Johnson, Rasselas 

From the definition of a database instance (see Definition 3.1.5), we have a lim- 

ited way of representing truths about the world. Various frameworks for adding 

a richer semantics to the representation language have therefore been proposed. 

One such framework involves integrity constraints, which are statements that 

either restrict the allowable states of a database or specify relationships between 

data, relationships that aid in designing the database schema. We can fur- 

ther distinguish two types of integrity constraints: static and dynamic. Static 

integrity constraints enforce valid current states of a database while dynamic 

integrity constraints enforce valid changes of states. Since the problem we are 

modeling involves individual databases whose current state satisfies a given set 

of constraints but possibly globally violates those constraints, we focus on static 

integrity constraints. 

In this chapter, we explore Reiter's [44] results on treating integrity con- 

straints as statements about the knowledge a knowledge-based system has of its 

domain. This perspective nourishes certain intuitions about what it means for 
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a knowledge base to satisfy an integrity constraint, and makes K F O P C E  a for- 

malization of such properties. Integrity constraints are sentences in our epistemic 

language K F O P C E  and constraint checking is equivalent to querying a knowl- 

edge base with a constraint. While Reiter [44] briefly outlines some restrictions 

on integrity constraints in K F O P C E ,  we provide an extended discussion of the 

various forms that such formulas can take and a desiderata on their appropri- 

ateness; any K F O P C E  sentence that satisfies these properties are allowed. We 

then isolate an important class of constraints called dependencies and show that 

they can be expressed in K F O P C E  and that in such form they are allowed and 

admissible wrt FE, where C is an elementary knowledge base and FE is defined 

as in Theorem 3.4.14. 

4.1 Integrity Constraints in KFOPCE 

The standard view of integrity constraints is that they are statements about the 

world the database should model. They have been used to describe relationships 

between information in databases [I, 51, 521 and traditionally formulated in the 

same language as the model itself, which has been first-order logic [40, 431. As 

such, integrity constraint satisfaction is defined in terms of either first-order 

entailment or satisfiability [20]. 

Consider the entailment-based definition given by Reiter [43] which states 

that a database C satisfies an integrity constraint I C  iff C + I C .  Contrast 

this with the consistency-based definition given by Kowalski [28]: C satisfies 

I C  iff C + I C  is satisfiable. Under the closed world assumption, these two are 

equivalent [45] but for general knowledge bases they are not. This divergence 

can be found in how these definitions of constraint satisfaction do not respect 

our intuitions as to what an integrity constraint is. Let I C  be the F O P C E  

constraint Vx [emp(x) > (3y)ssn(x, y)] , which states that all employees must 

have a social security number. 

1. Let C = {emp(mary)). C + I C  is satisfiable in a world w such that w + 
emp(mary) A ssn(mary, 123). Yet it seems that C should not satisfy I C  if 

C is all that is known. 

2. If C = {), then C I C  since I C  is not a logical truth. Intuitively, this 
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should satisfy I C  since nothing is known that violates IC .  

Reiter [44] suggests that integrity constraints should be construed as state- 

ments about knowledge, or about what a knowledge base knows. Rewriting 

the above I C  in the idiom of K F O P C E ,  the constraint should be read as 

Vx[Kemp(x) > (3y) Kssn(x, y)], or "For every known employee there is a known 

social security number." The functional dependency Vx, y, z[ssn(x, y ) ~ s s n ( x ,  z) > 
y = z] should be rewritten as Vx, y, z[Kssn(x, y) A Kssn(x, z) > K y  = z]. These 

modalized sentences represent truths about the knowledge of a knowledge base 

C, whereas the sentences in C represent truths about the world; integrity con- 

straints are not sentences of C itself. Thus, to say that a knowledge base C 

satisfies an integrity constraint is to say that the constraint is known to be true. 

To test whether a constraint is satisfied or not, we query C using b . 

Definition 4.1.1 (Integrity Constraint Satisfaction [45]) When a is a K F O P C E  

sentence, and C is a knowledge base, C satisfies the integrity constraint a iff 

C b a, or equivalently ex k K a .  We say that a constraint is violated when 

C pa, or equivalently when ex k 1 K a .  

Let us return to our two counterexamples above. Do they apply to integrity 

constraint satisfaction in KFOPCE?  Consider C = {emp(mary)) and a := 

Vx[Kemp(x) 3 (3y)Kssn(x, y)], where mary is assumed to be a parameter. It 

is easy to see that C pa since there is no known social security number for 

Mary. That is, there is no single social security number that is Mary's for every 

world in ex. For C = {), however, ex is the set of all worlds, which represents 

the epistemic state in which no definite objective facts are known, eo (Recall 

Theorem 3.3.4). The antecedent in a therefore never holds in eo and K a  is 

trivially true in eo; C a .  So integrity constraint satisfaction in K F O P C E  

does not run afoul of these counterexamples. 

That integrity constraints should hold in eo does not mean that they need 

to be valid, since this is not the case, but only that they do not specify that 

any objective formula need be known without there being any sentences in C, 

apart from the first-order valid sentences [30]. Since integrity constraints are 

statements about the knowledge a database has of its domain, and are hence 

subjective sentences, the question is how to characterize the subjective sentences 
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that are true in eo. The problem, however, is that the definition of constraint 

satisfaction only requires that u be a K F O P C E  sentence. No other restrictions 

on the form of a are stated, or that it be satisfied by eo. Thus, constraints can 

be represented in any number of ways. 

Example 4.1.2 The functional dependency in FOPCE:  

Vx, y, z[ssn(x, y) A ssn(x, z) > y = z] 

can be represented as either: 

Vx, y, z[Kssn(x, y) A Kssn(x, z) > K y  = z], ( 4 4  

Vx, y, zK[ssn(x, y) A ssn(x, z) > y = z] or, (4.2) 

KVx, y, z[ssn(x, y) A ssn(x, z) > y = z ] .  (4.3) 

Observe that 4.3 logically implies the other two but only 4.1 holds in eo.' 

Example 4.1.3 Consider the constraint that no individual is both a male and 

a female. Since we have specified this in natural language, it is not immedi- 

ately obvious what K F O P C E  sentence should be used. This constraint can be 

represented as one of the following: 

The first and second are implied by the other two, which are equivalent, 

and only 4.4 and 4.5 are satisfied by eo since we can find a w E eo such that 

w male(a) A f emale(a) in which case neither 4.6 nor 4.7 are satisfied. In this 

case, however, both 4.4 and 4.5 are satisfied since there is no single individual a 

that is both male and female in all worlds w E eo. 

What if we chose to ignore the property of constraints that they be known in 

eo? Is there an intuitive reason that we should choose 4.4 or 4.5? In a system that 

 ormu mu la 4.2 is actually equivalent to 4.3 by Theorem 3.2.10. 
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acquires its knowledge incrementally (i.e. does not have a complete description 

of the world at any one time), are we to enforce, as in 4.6 and 4.7, that the 

knowledge of the system should never consider that an individual a is both male 

and female? If so, this interpretation precludes situations where an individual's 

gender becomes known after it acquires more knowledge; in a situation in which 

an agent considers all worlds possible, nothing is known about the world, except 

objective validities, and nothing is known that violates the constraints. Similarly, 

if the system receives conflicting reports from multiple sources, the system will be 

inconsistent with its integrity constraints. But if we want to maintain integrity 

and retain as much information as possible, it seems plausible that we prescribe 

incomplete knowledge of definite objective information, as opposed to complete 

knowledge of objective negative information. So we do not want to consider 

an agent's knowledge inconsistent until it receives more information about the 

world. 

That being said, since our system has complete knowledge of its epistemic 

state, it is not at all obvious why iterated modalities should be considered [44]. 

We enumerate some properties that a K F O P C E  integrity constraint should 

(arguably) have and then go on to show in the next section that a class of useful 

constraints have these properties when phrased in KFOPCE.  

Definition 4.1.4 (Allowed Integrity Constraint) A n  integrity constraint a will 

be allowed if i t  satisfies the following properties: 

1. a is a subjective sentence. 

2. a does not have iterated modalities. W e  call subjective formulas without 

iterated modalities K1 formulas. 

3. C + a  where C = {). 

Remark 4.1.5 The set of allowed integrity constraints is not a subset of the 

admissible formulas wrt .&, where C is an elementary knowledge base. Why is 

this true? Consider a := 3x iKP(x ) .  This holds in eo since nothing is known in 

that epistemic state; there are no known P instances in eo. However, a is not 

admissible wrt .FE because the negation sign does not quantify over a sentence. 
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Why is admissibility not a stipulated property of allowed constraints? In 

Reiter's [44] definition of constraint satisfaction, given above, C is a knowledge 

base; it need not be elementary. Since admissibility is defined relative to C and 

FE, and since we have assumed that C is an elementary knowledge base, we 

did not choose to restrict allowed constraints by the assumption of the knowl- 

edge base to which they apply. Admissibility is particular to the Prolog-style 

evaluator that Reiter [45] provides, and is therefore not a general property that 

integrity constraints should have. Admissibility implies a certain syntactic form 

for constraints, and it is not immediately obvious what form allowed integrity 

constraints should take aside from those enforced by the properties above. Be- 

cause of this-or in spite of this-we isolate a large class of constraints called 

dependencies studied extensively in the relational database literature [1, 23, 521, 

which have a particular syntactic form which most integrity constraints, we will 

assume, possess. We show that they can be expressed in K F O P C E  and prove 

that they are allowed and admissible with respect to FE. 

4.2 Dependencies in KFOPCE 

Not only does the use of integrity constraints enhance the expressivity of the 

relational model, by allowing the designer to specify legal database states, but it 

also permits the designer to design a better relational schema using relationships 

that are already inherent in the database [52]. We focus on a specific class of 

constraints called dependencies, which have a form general enough for many 

relationships to be expressed [1, 24, 521. 

We present two examples that highlight the form these dependencies take 

before proceeding with the formal development. 

Consider the database instance C: 

C = {P(hilbert, math, gauss), P(pythagoras, math, gauss), 

P(turing, cmpt, won-neumann)) 

where P(a ,  b, c) says that a is in department b, whose manager is c. The problem 

is that that Gauss is the manager of the Math department is redundant, and the 

updating of Hilbert's manager to Von Neumann indicates that Math has two 
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managers, a change that was probably not intended [52]. So the dependency 

we isolate here is that every department has a unique manager; there is a func- 

tional dependency between departments and managers. We can define two new 

relations S, T that do not suffer from these "anomalies". 

C = {S(math, gauss), S(cmpt, von-neumann), 

T(hilbert, math), T(pythagoras, math), T(turing, cmpt)) 

S(a, b) says that department a has b as a manager. T(c, d) says that c is a mem- 

ber of department d. 

Written in first-order logic, the functional dependency (fd) between depart- 

ments and managers can be written as: 

However, even in the absence of functional dependencies, dependencies still 

exist. Other dependencies may be inherent in the data. We consider multivalued 

dependencies as an example. Let C be the following database: 

C = {R(pythagoras, peter, math), R(pythagoras, p a d ,  math)) 

where R(a, b, c) says that b is the child of a and that a has the skill c. Again, 

there is redundancy in the fact that Pythagoras is skilled in mathematics and the 

deletion of any one of these tuples could be seen as an indication that Pythagoras 

is no longer skilled in math and that Peter or Paul is no longer his child [52].  

The multivalued dependency (mvd) inherent in this database is that the first 

argument determines a set of children and a set of skills. The solution to this 

problem is to decompose R into two relations relating a to b and another relating 

a to c. In first-order logic, this mvd can be written as the following sentence: 

There are many more semantic constraints and dependencies that have been 

studied, which we do not explore [e.g. embedded mvds, inclusion dependencies, 

join dependencies, etc.]. Fortunately, a unifying characterization has been de- 

veloped for all these types of dependencies that relies on the fact that they say, 
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roughly: "if you see a certain tuple or tuples in a relation, then you will also see 

this particular pattern or tuple", where this can either refer to the equality of 

certain values, as in the case of fds, or can refer to the existence of a tuple in a 

particular relation, as in the case of mvds 1521. Other classes of constraints can 

be transformed into this form, according to Gertz [24]. 

Formalizing these intuitions, we have the following definition: 

Definition 4.2.1 (Dependencies [52]) A dependency is  a FOPCE sentence 

where the Ai 's are non-equality atomic formulas in x l  . . . xk ,  Bj 's are atomic for- 

mulas and p, q ,  k > 1 and 1 > 0. W h e n  1 = 0,  the dependency is  called full. If the 

Bj 's consist of equality formulas, then the dependency is  a n  equality-generating 

dependency (egd). Otherwise, it is  called a tuplegenerating dependency (tgd). 

Remark 4.2.2 There is another restriction when 1 > 1: no equality atoms in 

the consequent can involve existentially quantified variables [I]. 

In KFOPCE, we write dependencies according to the following definition. 

Definition 4.2.3 A KFOPCE dependency is  a KFOPCE sentence 

where the Ai 's are non-equality atomic formulas in X I .  . . xk ,  Bj 's are atomic 

formulas and p, q ,  k 2 1 and 1 2 0. W h e n  1 = 0, the dependency is  called full. 

W e  overload the definition of egds and tgds for KFOPCE dependencies where 

required. So, i f  the Bj 's consist of equality formulas, then the dependency is  a n  

equality-generating dependency (egd). Otherwise, it i s  called a tuplegenerating 

dependency (tgd). 

Does satisfaction of the first-order dependency imply satisfaction of the 

KFOPCE dependency? Unfortunately, this is not the case because of the ex- 

istential quantifiers. Since C k a iff C k Ka by Theorem 3.2.6, we can "dis- 

tribute" K past the universal quantifiers due to Theorem 3.2.10. Therefore, for 

full dependencies, satisfaction of the first-order dependency implies satisfaction 

of the KFOPCE dependency (see Example 4.1.2), so no expressive power is 

lost by considering full dependencies in K FO PCE. 
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Proposition 4.2.4 When C is a knowledge base, o is a first-order full depen- 

dency and a' is its KFOPCE dependency written as: 

Vxl . . . xk3yl. . . yl[(KAl A . . . A KA,) > ( K B 1  A . . . KB,)] 

then 

C kFOPCE a implies C tc a'. 

Proof: By Proposition 3.3.6, we have that C kFOPCE a iff C p a .  k KO > a' 

by Theorems 3.2.5 and 3.2.10. Finally, by Theorem 3.3.7, C Fa'. 

Yet the existential quantifiers pose a problem for dependencies in KFOPCE. 

In general, it is the case that K3xP(x )  > 3 x K P ( x )  by Theorem 3.2.11 but 

k 3xKP(x)  > KP(p)  for some parameter p. But when C is a database, we 

have C P 3 x ( K P ( x )  A x  = p)  iff C F 3 x ( P ( x )  A x  = p) when P(a) E C. Thus, 

having the Bj immediately within the scope of K has the advantage of allowing 

the dependency to talk about knowing individuals in the database, which seems 

like the intended interpretation of first-order dependencies in a database setting 

since C p 3xP(x)  means that P(p) is in the database for some parameter p. 

This reveals an ambiguity between 3xKa and K3xa when C is a database.2 

So atomic formulas are immediately in the scope of K operators because 

FOPCE dependencies say "if you see a certain tuple or tuples in a relation, 

then you will also see this particular pattern or tuple". However, if we use the 

language of KFOPCE, then this could be read as: "if a certain tuple or tuples 

in a relation are known, then this particular pattern or tuple will also be known". 

Since the contents of databases are atomic sentences, it makes intuitive sense 

to specify what is known in terms of the types of formulas that appear in the 

actual database. Consequently, a referential constraint such as Vx[emp(x) > 
3y salary(x, y ) ]  would be reinterpreted as Vx[Kemp(x) > 3yKsalary(x, y ) ] .  

We can thus rewrite this KFOPCE dependency in an equivalent form based 

on the transformation rules given by Lloyd and Topor [27] for extended logic 

programs, and adapted by Reiter [45] for KFOPCE formulas (note that the Ai 

2See Example 5.1.13 in Chapter 5 for an extended discussion. 
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are atomic formulas are formulas in xi, .  . . , xk as per Definition 4.2.3): 

7 [ 3 ~ 1 . .  . xk]((KA1 A . .  . A KAp) A 7[3y1.. . 3yl](KB1 A . .  . A KB,)) 

Admissibility of Dependencies 

The above form is also motivated by the following observation. Consider the 

FOPCE dependency: 

It turns out that this FOPCE dependency is an AC formula (recall Definition 

3.4.30) when written in the following form (again, by the Lloyd and Topor [27] 

rules) : 

Theorem 4.2.5 FOPCE Dependencies written as 

are AC formulas. 

Proof: The Ai are members of AC; they are atomic. Since conjunctions are left 

associative in the definition of AC, then the entire A1 A . . . A Ap is admissible. 

This latter is of course not a formal inductive proof. 

Lemma 4.2.6 A1 A .. . A Ai is  AC for all i. 

Proof: A1 is AC by construction. This completes the base case. 

Assume that ai := Al A . . . Ai is AC for i 2 1. Consider ai A Ai+1 and let 
--+ x be the free variables of ai. ~ ~ + ~ l z  is AC since it is an atomic formula. Since 

cq is AC by induction, ai A KAi+1 is AC for all i. /I3 
Thus, KA1 A . . . A KA, is AC for i = p. 

Next, the inner negation is permissible because by substituting all the free 

variables F' of the subformula A1 A.. .AAp with parameters $' in the subformula 

4 y 1  . . . 3yl(B1 A . . . A B,), the resulting subformula is a sentence. The outer 

"//" indicates the completion of a proof of a lemma within the proof of the enclosing theorem. 
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negation is applied to a sentence. This makes a AC. 

Notice then that if a is the FOPCE dependency as in the above theorem, 

then K(a)  (see Definition 3.4.28) is equivalent to the form of KFOPCE de- 

pendencies in Definition 4.2.3. This shows that KFOPCE dependencies are 

admissible. 

Theorem 4.2.7 When an FOPCE dependency is written as 

then K(a) is admissible. 

Proof: By Theorems 4.2.5 and 3.4.32. 

Henceforth, when we mention K FOPCE dependencies, we envision K ( a )  

where a is a FOPCE dependency transformed by the Lloyd and Topor [27] 

rules, the final form of which is illustrated in the following theorem. 

Theorem 4.2.8 Dependencies written as 

a := 7[3x1 . .  . xk] ( (KA1 A . .  . A KA,) A -3y1.. . 3yl(KB1 A . .  . A KB,)) 

are allowed integrity constraints. 

Proof: By construction, a is subjective without iterated modalities. We have 

to show that C a for C = {). Since no objective information is known in eo, 

the antecedent of a does not hold. The implication thus holds trivially. 

Corollary 4.2.9 When r is a set of dependencies in KFOPCE, r is satisfi- 

able. 

Proof: Since every dependency in KFOPCE is satisfied in eo, it has at least 

one model, (eo, w )  for any w. 

Notice that KFOPCE dependencies exclude admissible and allowed con- 

straints such as VxKP(x)  > K3xQ(x), or VxKP(x)  > l K Q ( x )  since neither 

are in the form of a dependency. Nonetheless, we consider such constraints when 

the need arises, but it is comforting to know that we have a large and useful 

class of KFOPCE constraints that are applicable to databases. 
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Known Instances of Dependencies 

Can we also ask the knowledge base to list all the known instances of these 

constraints? What does the resulting query look like? If we simply omit the 

universal quantifiers then we get: 

l ( ( K A 1  A .. . A K A p )  A 1391.. . yl(KB1 A .. . A KB,)) 

Unfortunately, this is not admissible since the outer negation is not applied to 

a subjective sentence. This makes intuitive sense. Consider the query K P ( x )  > 
KQ(x) .  Whenever a parameter p is not known to have property P ,  then the 

entire implication is true and p is a known instance. However, the set of x for 

which l K P ( x )  is true is potentially infinite if our knowledge base is finite. We 

therefore want to ask about the known definite instances. We can do that with 

the following formula, which we call ofTee whenever a is a dependency:4 

Definition 4.2.10 Whenever a i s  a dependency i n  KFOPCE,  we denote ofTee 

as the following formula: 

Theorem 4.2.11 ofTee is  admissible with respect to  &, where C is  a n  elemen- 

tary knowledge base and a a dependency in KFOPCE. 

Proof :  The Ai are members of Fc; they are atomic and hence p.e. with dis- 

junctively linked variables. Because the K operators have them as their scope, 

Ai are formulas in 2 1 , .  . . , xk, and since conjunctions are left associative in the 

definition of admissibility, then the entire KA1 A . . . A K A p  is admissible. This 

latter is of course not a formal inductive proof. 

Lemma 4.2.12 KA1 A . . . A KAi i s  admissible for all i .  

Proof :  KA1 is admissible by construction. This completes the base case. 

Assume that ai := KA1 A. . . KAi is admissible for i 1 1. Consider ai A KAi+1 
* 

and let be the free variables of ai. KAi+1l$ is admissible since the scope 

of K is an atomic formula. Since ai is admissible by induction, ai A KAi+1 is 

40bserve that of,,, is not allowed. 
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admissible for all i. // 
Thus, KA1 A . . . A KA, is admissible for i = p. 

For all parameters 3, l ( (KAIA. .  . A K A p ) ~ l [ 3 y l . .  . yl](KBIA.. .AKBJ)I;  

is a sentence. Therefore, the outer negation is applied to a subject sentence and 

is hence admissible. 

Henceforth, whenever we ask for the instances of a dependency a, this form 

is the one we envision, which we write as of,,,. 

4.3 Summary 

The results presented in this chapter are supported by Reiter's [44, 451 results 

on treating integrity constraints as statements about the knowledge a knowledge 

base has of its domain, as opposed to statements about the world. While Re- 

iter's work provides a simple discussion on the actual form that such constraints 

take, that they should hold in eo has not been subsequently acknowledged; we 

made such obligations explicit here by defining allowed integrity constraints. We 

furthermore showed that dependencies expressed in K F O P C E  are both admis- 

sible and allowed. 

What remains is to show how the foundation we have built in previous chap- 

ters provides a knowledge-level formalization of what Arenas et al. [4] call con- 

sistent query answers, which are query answers that are true in all repairs of a 

database inconsistent with its integrity constraints. This is the topic of the next 

chapter. 



Chapter 5 

Consistent Query Answers 

It was her voice that made The sky acutest at its vanishing. 

- Wallace Stevens, "The Idea of Order at Key West" 

We begin with an example. Consider the constraint "Social security numbers 

of employees are unique". Suppose that an employee database of Acme Inc. in 

the City X has an employee named Jane Smith whose social security number is 

'123'. Jane Smith in City Y has a social security number '456' and also works 

for Acme. The individual employee databases satisfy the constraint, while the 

system taken as a whole produces a database instance where social security num- 

bers are not unique. 

Now, we want to retain as much information as possible but we would also 

like to distinguish which answers are consistent with our integrity constraints, 

and whether a constraint has been violated. Using our epistemic query language 

KFOPCE, we want to be able to ask "Does Jane have a social security num- 

ber?", to which the system responds with "Yes", and "Do you know Jane's social 

security number?", to which the system answers "No". The system considers 

possible worlds in which Jane has the social security number 123 and worlds 

in which she has the number 456, yet there is no perspective from which the 

system knows that either of them are in fact Jane's social security number. This 

is because the integrity constraint enforces that the system does not consider 

known any state of affairs in which Jane's social security number is not unique. 

Any consistent information is therefore known and is not affected by inconsistent 
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information. 

Example 5.0.1 (Running Example 1) Formalizing this in our language 

K F O P C E ,  we have the following scenario: 

C = {ssn(jane, 123), ssn(jane, 456), ssn(james, 234)), 

IC := Vx, y, z(Kssn(x, y) A Kssn(x, 2)) > Ky = 2). 

32 ssn(jane, x) formalizes the question asking whether Jane has a social security 

number without necessarily knowing what that number is. In this case, the 

answer is "Yes". What if we ask whether there is a known social security number, 

3xK ssn(jane, x)? In this case, the answer is still "yes" because Jane in fact has 

two numbers. How do we incorporate the integrity constraint IC?  Simply adding 

I C  to C will not work because the resulting epistemic state is the inconsistent 

state in which everything is known. We can attempt to formalize what we 

want the system to answer. In this case, we want C 3xKssn(jane,x) but 

where C 3x ssn(jane, x). Using C, however, will not work. So we could find 

some C' that gives us the behaviour required; this is what we do in Chapter 

6. Another avenue is available to us. Since C a is equivalent to ex t= K a ,  

we find some epistemic state e c  that does the exact same thing (i.e. e c  

3xKssn(jane, x) A K3x ssn(jane, x)). 

In this chapter, we present a perspective of Arenas et al.'s [4] notion of a 

consistent query answer that treats the consistent information as the only facts 

that are known. Although this is proved in Chapter 6, the intuition is that we 

do not remove any information from the database but isolate the information 

that is consistent with a set of integrity constraints. The developments of the 

previous chapters allow us to formalize this notion using our epistemic query 

language K F O P C E .  Furthermore, we find that the notion of a consistent query 

answer can be extended to consider sets of dependencies, as opposed to simply 

full dependencies, as has been studied by [4]. And unless we apply the closed- 

world assumption on the repairs, tuple-generating dependency violations lead to 

information loss. 

The incompleteness illustrated in the example above regarding Jane's social 

security number is characterized as a set of possible worlds, what we define as 

the epistemic state ec ,  in which consistent answers are those that hold across all 



CHAPTER 5. CONSISTENT QUERY ANSWERS 

worlds in ec .  This state is constructed from the possible repairs of a database 

which themselves satisfy the integrity constraints. 

We not only provide examples illustrating these ideas but go on to show that 

we can use k to query e c  by querying the repairs. This leads us to a Prolog-like 

sound and complete query evaluator with respect to e c  and admissible formulas, 

which we call cqa. This is an extension of Reiter's [45] query evaluator demo for 

admissible formulas. We conclude this chapter with a correspondence theorem, 

linking the pioneering notion of consistent query answers with the one developed 

here. 

In the remainder of this chapter, C is a database instance C and IC is a set 

of dependencies in K F O P C E .  

5.1 Basic Definitions 

In the following, when IC is a set of dependencies in K F O P C E ,  C k IC means 

that C P a  for every a E I C .  Next, we define a general notion of inconsistent 

database with respect to any set of allowed constraints I C .  

Definition 5.1.1 (Inconsistent Databases) When C is a database and IC a set 

of K F O P C E  allowed constraints, then C is inconsistent just in case C violates 

some constraint a E I C  (see Definition 4.1.1). 

Example 5.1.2 (Running Example 1) Define: 

C = {ssn(jane, 123), ssn(jane, 456), ssn(james, 234)), 

I C  = {Vx, y, z(Kssn(x, y) A Kssn(x, a)) > Ky = a)). 

I t  is clear that C IC. Thus, C violates integrity constraint a and is inconsis- 

tent. 

To reproduce the behaviour described in the introduction, we attempt to 

repair C so that we generate instances that satisfy the constraints based on the 

information in C. We first define the distance between databases: 

Definition 5.1.3 (Distance [4]) Let r, r t  be database instances. Then the dis- 

tance between them is their symmetric difference, denoted A(r, r'). That is: 
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Next we define a partial order 5, on the set of database instances with respect 

to another database instance r .  

Definition 5.1.4 ([4]) For databases instances r, r', r", we have that: 

r 5, r' ifl A (r, r') C A (r, r") 

While this definition of distance uses a set-inclusion notion of ordering, others 

have been used, such as set cardinality [8, 91. Gertz [24] suggests that the set- 

inclusion definition of repair is in fact less restrictive than the set-cardinality 

definition, and goes on to define properties of repair strategies that allow him to 

order them with respect to "permissibility". This is one reason we choose this 

particular notion. Also, since we are investigating the semantics of consistent 

query answers, we use Arenas et al.'s [4] original definition although different 

notions of distance can be used. 

Example 5.1.5 We can see that A(r, r') = {P(b), P(c),  Q(b)) and A(r, r") = 

{P(c)). Thus r" 5, r'. Let: 

We now define what we mean by a repair of a database [4] when IC is a set 

of K F O P C E  dependencies. It is important to note that while IC is a set of 

admissible formulas, their admissibility is merely a side effect of the particular 

form they take, which is agreed to account for a majority of constraints that 

appear in relational and deductive databases [24]. That is, we focus here on 

dependencies-qua-constraints as opposed to dependencies-qua-admissible formu- 

las. That they are admissible merely makes it easier for us to use ICfTee (see 

Definition 4.2.10) to ask for known instances when finite answers are required. 

Definition 5.1.6 (Repair) We say that r' is a repair of r if r' b IC and r' is 

<,-minimal with respect to other r" such that r" b IC. That is, if there is some 

r o  such that r o  5, r', then r o  = r'. Let repairs(C, I C )  be the set of repairs for 

C with respect to IC. 
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R e m a r k  5.1.7 Observe that this definition is not equivalent to the definition 

of repair in Arenas et al.'s [4] work since we assume that IC is a set of KFOPCE 

dependencies. As a result, our notion of constraint satisfaction employs tz as 

opposed to bFOPCE. See Section 5.4 below for a discussion on this issue. 

We prove the following properties for this notion of repair. 

Propos i t ion  5.1.8 If C tz I C ,  for database C and a set of K F O P C E  depen- 

dencies I C ,  then C Ic C' for any other database C'. 

P r o o f :  A ( C ,  C )  = 0 and C tz I C  by assumption. 0 

Propos i t ion  5.1.9 There exists a database r such that r S c  r' for any other 

database r'. That is, a database can always be repaired with respect to a set of 

K F O P C E  dependencies I C .  

P r o o f :  When C k I C ,  then r = C by Proposition 5.1.8. Otherwise, when 

C p I C  assume that there are no repairs of C.  This means that there are no 

database instances that could satisfy I C .  Let r = {I. Moreover, A ( r ,  C )  is 

finite since both r ,  C are databases. Then by Corollary 4.2.9, r I C .  This is a 

contradiction.0 

E x a m p l e  5.1.10 (Running Example 1) 

C = {s sn ( jane ,  123), ssn( jane ,  456), s sn ( james ,  234)}, 

I C  = {Vx,  y, z ( K s s n ( x ,  y )  A K s s n ( x ,  z ) )  > K y  = z ) } .  

It is clear that C p I C .  We consider possible repairs for C :  
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Observe that each 7-i iz I C  but that: 

7-1, 7-2 are therefore the only repairs of C. 

Not only does the notion of repair consider permit deletions of facts, but also 

insertions [4, 71, as the following example shows. 

Example 5.1.11 (Running Example 2) Let C, I C  be the following: 

Since C I C ,  consider the following possible repairs of C: 

Thus, TJ, 7-4 are the only repairs of C. 

It may be worthwhile to consider constraints with existential quantification. 

These examples show the presence of anomalies with our notion of a repair 

satisfying K F O P C E  dependencies. 

Example 5.1.12 (Running Example 3a) Let C and I C  be the following sets: 

C = {R(a), Q(b, 4 1  Q(h 41, 
I C  = {Vx(KR(x) > K3yQ(x, y))}. 
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Notice that IC is not a dependency but it is admissible. We use it here merely 

as a contrast to the next example. It is clear that C IC since there does not 

exist a y such that Q(a, y) is in our instance. Our set of repairs are the following: 

Because each of these repairs differ from C by a single tuple, we have a countably 

infinite set of repairs. The idea is that each pi should be a possible but unknown 

instance of Q(a, x). 

When we have existential quantification outside the scope of a K operator, how- 

ever, the situation becomes confusing. 

Example 5.1.13 (Running Example 3b) Consider: 

Again C /j& IC; not only do we need some y such that Q(a, y) is in C, we need a 

known y. But how are to know what y? Notice that the repairs are exactly the 

same as those above: 

In each of these repairs ri, i > 2, there is a known y such that Q(a, y) holds. 

But none of these repairs can agree what that y is. 

When V x K R ( x )  > 3yKQ(x, y) is violated by database C, y  can range over 
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the entire domain since there is no contextual information linking the set of 

values contributing to the violation and the set of values that would lead to its 

satisfaction. So it seems that integrity constraints with existential quantifiers 

provide very little definite information for building repairs. Not only that, the 

distinctions provided by 3xKa  and K3xa  disappear. When you must insert an 

atomic sentence in a repair r, then whether you do so to satisfy 3xKP(x) or 

K3xP(x) makes no difference. Technically, this means that if r is a database and 

P(p) E r for some parameter p, we have r 3x(KP(x) A X  = p) iff r b 3x(P(x) A 

x = p) (see discussion preceding Section 4.2). 

This is why dependencies with existential quantifiers are called embedded; 

their satisfaction depends on some possibly infinite domain providing contextual 

information [52]. One possibility is to extend the semantics of K F O P C E  to 

include null constants. However, the ambiguity of the concept of incomplete 

information becomes apparent: P(a) is unknown not only when there is a world 

w such that w P(a)  but also when the null constant indicates an unknown 

individual that is a P .  We suggest a rigorous analysis of this issue for future 

research. 

Regardless, that we have a potentially infinite set of repairs with K F O P C E  

dependencies is not much of a problem if our concern is with a principled or 

formal way of reasoning with inconsistent databases; the analysis is sufficiently 

general to permit considerations of optimization. 

In this section, we looked at repairing a database and how this is carried out 

in the presence of K F O P C E  dependencies. Next, we apply these definitions to 

consistent query answering. 

5.2 The Epistemic State ec  

Recall from the introduction that we want our system to be able to answer 

C 3xKssn(jane, x) but where C b 3x ssn(jane, x). However, since the for- 

mer is not true with respect to C and since C b a is equivalent to ex + K a ,  

we suggest finding some epistemic state e that will give us the knowledge, and 

answers, that we want. The idea is that we construct an epistemic state e c  

from the set of repairs and then query the epistemic state about its knowledge. 
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There is a further consideration, however. What happens with possible an- 

swers? How are we to distinguish inserted information from completely absent 

information? So if we have one state of affairs in which the Blue Jays won the 

World Series and another state of affairs where the Braves won, then either fact 

is possibly known. However, since nothing was said about the truth or falsity 

of the Red Sox winning the Series, is this fact also possible? It seems that we 

would want to distinguish the Blue Jays and the Braves from other teams such 

as the Red Sox. Since C is a database instance, and since database instances are 

supposed to satisfy the closed-world assumption, it makes sense to treat absent 

information as false. See Example 5.2.2 below for a formal example regarding 

the importance of this assumption. 

We have the following definition of eC. 

Definition 5.2.1 (Consistent Epistemic State wrt IC) Let C be a database, I C  

a set of K F O P C E  dependencies and R = repairs(C, IC)  . Define: 

When C and I C  are clear from the context, we denote this epistemic state as 

ec .  

Example 5.2.2 (Running Example 1) Let: 

C = {ssn(jane, 123), ssn(jane, 456), ssn(james, 234)), 

IC  = {Vx, y, z(Kssn(x, y) A Kssn(x,z)) > Ky = z)). 

Our two repairs of C and I C  are: 

We therefore have: 

Notice that in each of the sets of worlds M(Closure(ri)), I C  is satisfied by 

definition since M(Closure(ri)) M(ri) .  With respect to the union of worlds, 
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however, I C  is also satisfied (see Theorem 6.1.3). We have: 

e c  k KIC,  

e c  K3x ssn(jane, x), but 

e c  Kssn(jane, 123) A Kssn(jane, 456), and 

e c  /& K3xKssn(jane7 x). 

Moreover, Instances(ICfTee, ec) = {< james, 234 >), where I C  is our integrity 

constraint asking about definite known instances (see Definition 4.2.10). That 

is, there is one known definite instance of our constraint. Since neither of Jane's 

social security numbers are known to be hers, we know that a constraint has 

been violated. This is as it should be, even though e c  k K I C  since integrity 

constraints should be satisfied at all times. Note that even if the given social 

security numbers for Jane are unknown, they are nonetheless possible. 

e c  lK-mn( j ane ,  123) and 

e c  lK-ssn(jane,  456) but 

e c  Klssn( jane ,  000). 

ec  /& lK l s sn ( t a r zan ,  000) since 

e c  k Kissn(tarzan,  000). 

This last example illustrates the importance of using the Closure of the repairs. 

Otherwise, we would not be able to distinguish between absent information and 

possible but unknown information. 

We next consider the case when I C  consists of a single tuple-generating depen- 

dency. 

Example 5.2.3 (Running Example 2) Let C, I C  be the following: 

As noted earlier, there are two repairs of C, one in which we insert the missing 

tuple and the other where we remove the "enabling" tuple P(a): 

rl = {p(a),  Q(a), Q@), Q(c)), 

7-2 = {Q(b), Q(c)). 
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Defining e c  we have: 

With this, we can get: 

Observe that even though P(a)  E C, it becomes unknown after defining ec.  That 

is, we lose the information that it is a member of C. Again, without Closure on 

repairs, P(a)  will be possible, but so will other a $! C. Closure, in the case of 

tuple-generating dependencies, aids in pinpointing information that was in C at 

the outset. 

Under this notion of repair, all conflicting tuples will become possible and un- 

known instances even if it is a member of the original database. However, in the 

work of Arenas et al. [4], no notion of Closure is applied. We have extended 

this notion by explicitly including our reliance on this closure assumption. We 

explore this work, and its relation to the work presented here, in Section 5.4, 

below. 

We finally return to Examples 3a and 3b. 

Example 5.2.4 (Running Examples 3a and 3b) Consider: 

Recall that for both I C  and IC', C has exactly the same sets of repairs. Is 

this really a problem? When C /j4 IC ,  the point is to isolate the inconsistent 

information so that the consistent data is not affected. In both cases, e c  k 
K(Q(b, c) A Q(b, d)). All is not lost, however, since eC I= l K l R ( a ) ,  e c  I= 
l K l Q ( a , p )  for every parameter p and e c  -KlR(d) .  
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5.2.1 Consistent Query Answers 

W e  are ready to  define consistent query answers. 

Definition 5.2.5 (Consistent Query Answers) Let C be a database instance, I C  

a set of K F O P C E  dependencies, and q a K F O P C E  formula with free variables 
+ x . Let e c  = CUE, I C ] .  A tuple 3 is a consistent query answer to q (wrt C and 

I C )  i 8 e c  t= ~ q : .  

Definition 5.2.6 (Consistent Answers t o  a Query) Define 

CIns tances(E,  I C ,  q)  = Instances(q, CUE, I C I )  

to be the set of consistent query answers with respect to database C ,  a set of 

K F O P C E  dependencies I C  and K F O P C E  query q. 

W e  have the  following consequence. 

Proposition 5.2.7 When C I C ,  then CIns tances(C,  I C ,  a )  = Instances(a,  C ) .  

Proof: From the definition o f  CIns tances(C,  I C ,  a)  and Proposition 5.1.8. 

Example 5.2.8 (Running Example 1) Let 

C = {s sn ( jane ,  123), ssn( jane ,  456), ssn( james ,  234)), 

I C  = {Vx,  y, z ( K s s n ( x ,  y )  A K s s n ( x ,  2 ) )  > K y  = 2) ) .  

Consider the  following consistent query answers for a particular query. 

CIns tances(C,  I C ,  ssn( jane ,  x ) )  = 0 ,  

CIns tances(C,  I C ,  i K i s s n ( j a n e ,  x ) )  = {(123),  (456)) ,  

CIns tances(C,  I C ,  i K s s n ( j a n e ,  x ) )  = { ( l 2 3 ) ,  (456)) ,  

CIns tances(C,  I C ,  K i s s n ( j a n e ,  x ) )  = { ( p l ) ,  ( p z ) ,  . . .), 
where pi # 123 and pi # 456. 

CIns tances(C,  I C ,  s s n ( x ,  y ) )  = { ( j a m e s ,  234)) ,  

CIns tances(C,  I C ,  I C f r e e )  = { ( j a m e s ,  234)). 
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Example 5.2.9 (Running Example 2) Let C and IC be defined as follows: 

Then the consistent instances are: 

CInstances(C, IC, Q ( x ) )  = {(b)  , ( c ) } ,  

CInstances(C, IC, i K i Q ( x ) )  = { ( a )  , ( b ) ,  ( c ) } ,  

CInstances(C, IC, l K l R ( x ) )  = 0 ,  

CInstances(C, IC, ICfTee) = 0. 

Example 5.2.10 (Running Examples 3a and 3b) Consider: 

Thus, we have: 

CInstances(C, IC, Q(x ,  y ) )  

CInstances(C, IC, l K l Q ( a ,  x ) )  

CInstances(C, IC, l K Q ( a ,  x ) )  

CInstances(C, IC, K l Q ( a ,  x ) )  

CInstances(C, IC, l K l R ( x ) )  

CInstances(C, IC, l K R ( x ) )  

CInstances(C, IC, KT R ( x ) )  

CInstances(C, IC, ICfTee) 

CInstances(C, IC', ICiTee) 

Admissible Queries and ec 

In the examples given above, queries such as l K l s s n ( j a n e ,  x )  or l K l R ( x )  were 

not admissible because asking about negative objective information is forbidden 
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by the definition of admissibility. Is there any way for us to recover possible 

but unknown instances from e c  with admissible queries? As noted in Section 

3.4.1, we can ask whether there exists a possible but unknown instance with 

32  ssn( jane,  x )  or 3 x R ( x )  but finding possible instances may require "looking" 

into values from a possibly infinite domain. Nonetheless, using K F O P C E  as a 

query language allows us to distinguish between asking 3 x K P ( x )  and K 3 x P ( x )  

and to ask about particular unknown instances with l K P ( p )  for some parameter 

p; these are non-trivial distinctions. But this should not distract us from the 

goal of providing a formalization of consistent query answers in K F O P C E .  

Given these disclaimers, in the next section we design a sound and complete 

query evaluator with respect to e c  and admissible queries. 

5.3 ec and 

In this section we prove that we can use b to query the set of repairs of C .  

T h e o r e m  5.3.1 Whenever I C  is a set of K F O P C E  dependencies, C a database 

and cr an K F O P C E  sentence, we have that: 

e c  + Kcr i f l  for all r E repairs(C, I C ) ,  Closure(r)  b a .  

Proo f :  By Proposition 3.3.8, e c  + Kcr iff {w) + K a  for all w E e. By 

definition of e c  and b ,  M(Closure ( r ) )  + Kcr iff Closure(r)  b cr for all repairs 

r .  0 

Corollary 5.3.2 Whenever I C  is a set of K F O P C E  dependencies, C a database 

and cr an AC F O P C E  sentence (see Definition 3.4.30), we have: 

e c  + Kcr i f l  r b K(cr), r E repairs(C, I C )  

Proof :  Closure(r)  b cr iff Closure(r)  kFOPCE cr by Proposition 3.3.6. Because 

of Theorem 3.4.29, we have Closure(r)  kFOPCE a: iff r bK(cr ) .  0 

Example  5.3.3 (Running Example 1) Let: 

C = {ssn( jane,  123), ssn( jane,  456), ssn( james,  234)), 

I C  = {Vx,  y, z ( K s s n ( x ,  y)  A K s s n ( x ,  z ) )  > K y  = z ) ) .  
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Our two repairs of C and IC are: 

We therefore have: 

If our query is q := 3xKssn(james,x) then we want to know whether for all 

repairs r ,  Closure(r) k q. But Closure(r) k q holds iff 

M(Closure(r)) + K3xKssn(james, x )  iff M(Closure(r)) + Kssn(james, x )  1 ;  
for all repairs r and for some parameter p. For the parameter 234, the query 

holds for all repairs r.  

For q := 3xKssn(jane, x ) ,  for each parameter p there is some repair r such 

that M(Closure(r)) p ssn(jane, x)l;. Thus, Closure(r) k q; does not hold 

for all repairs r and for each parameter p; Jane does not have a known social 

security number. 

Example 5.3.4 Let C, IC be the following: 

We have: 

as the two repairs. 

If our query is q := P(x) ,  then we are asking for known instances of P. By 

Theorem 5.3.1, we are asking whether for all repairs r ,  Closure(r) k 91;. Since 

for each parameters p there is a repair r' for which Closure(r') Bt. ql;, then ql; 

does not hold for all repairs; there are no known instances of P in e c .  

For q := l K l P ( x ) ,  we are asking whether there is a possible instance of P. 

So for all repairs r ,  we ask Closure(r) k q;. But this holds iff M (Closure(r')) p 
KlP(x) l ;  for some repair r'. Let r' = rl and we are done. 
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This means that we can query the Closures of C's repairs. All we need is a 

sound and complete K F O P C E  evaluator for b,  then we can iterate through 

repairs(C, I C )  to retrieve consistent answers. This is what we investigate next. 

5.3.1 A Query Evaluator for Querying Consistent Answers 

From these results, we can use an extension of Reiter's [45] query evaluator demo 

to obtain consistent answers to our admissible queries. This assumes that a set 

of repairs R has been constructed from database C and K F O P C E  dependencies 

IC :  

qrepairs(a,[r ( I ] )  + prove(a,r). 

qrepairs(a, [rl 1 R ] )  + qrepairs(a, [ri]), qrepairs(a, R). 

cqa(a, R) t f ~ T S ~ O T ~ ~ T  (a), qrepairs(a, R). 

cqa(la ,  R) + modal (a), not cqa(a, R) . 

cqa(Ka,R) + cqa(a,R). 

cqa(3xa, R) + modal(a), cqa(a, R). 

cqa(al A az, R) + modal(a1 A a z ) ,  cqa(a1, R), cqa(a2, R). 

qrepairs iterates through the set of repairs R for the first-order query a. 

Why a f i ~ s t - o ~ d e ~  query? Suppose our original query is K a  and we ask ec.  

Then e c  + K a  iff for all w E e we have w + a ;  cqa mimics this behaviour 

before passing the "stripped" query to qrepairs. 

firstorder checks whether a is a first-order formula while modal checks 

whether a has any K operators. Notice that qrepairs is the only difference 

between cqa and Reiter's [45] demo. In order to prove soundness and complete- 

ness, therefore, it suffices to show that qrepairs terminates. 

Like demo, we assume that prove is a non-standard sound and complete 

first-order theorem prover that respects the semantics of parameters. So let T 
-+ 

be an enumeration of all the parameters 3 such that r kFOPCE a$. prove it- 

erates through T .  If it fails, then the second time prove is called when qrepairs 

fails, prove binds T' to the second $ in the enumeration, and so on. prove fails 

when .rr runs out of tuples. When .rr is infinite, then qrepairs and hence cqa will 
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not terminate, so it is important to use admissible formulas on cqa. Similarly, 

when the set of repairs repair@, I C )  is infinite, then cqa will not terminate. 

If repairs@, I C )  is finite, then we can guarantee that cqa is both sound and 

complete for admissible queries. 

The set of repairs R and a K F O P C E  query are inputs for the program. If 

there are any free variables in the query a ,  success implies that there is at least 

one tuple of parameters 9 such that e c  C  as. See Reiter [45] for details on 

how to retrieve all the answers to a query a. 

Soundness of cqa 

Lemma 5.3.5 Suppose that a is first-order, that a has free variables 2, and 

that the set of repairs repairs& I C )  is finite. 

1. If qrepairs(a,  repairs(C,  I C ) )  succeeds, then the variables 2 are all bound 

to  parameters 3 such that r p a$ for all r E repairs(& I C )  . 

2. If qrepairs(a,  repairs(C,  I C ) )  finitely fails, then for all parameters 9, for 
+ 

some r E repairs(C,  I C )  we have r a3 .  
P 

Proof: When a is first-order, repair@, I C )  finite and qrepairs(a,  repair@, I C ) )  

succeeds, then, by the assumed properties of prove, the free variables of a are 

bound to parameters 9 such that r CFopCE a3 .  This holds iff r pa;  by 
P 

Proposition 3.3.6. 

If qrepairs(a,  repairs@, I C ) )  finitely fails, then by the properties of prove, 
+ 

we have r kFOPCE a 3  for some repair r E repair@, I C ) .  Again, by Proposi- 
P 

tion 3.3.6, we have r p a 2  for all parameters 3. 
P 

Theorem 5.3.6 (Soundness of cqa) Suppose that K F O P C E  a is admissible, 

that a has free variables 2, and that the set of repairs repairs(C,  I C )  is  finite. 

1. If cqa(a ,repairs (C,  I C ) )  succeeds, then the variables 2 are all bound to 

parameters 9 and r p a; for a11 r E repairs (E,  I C )  . 

2. If cqa(a ,  repairs(C,  I C ) )  finitely fails, then for all parameters 3, r p a; 

for some repair r E repair@, I C ) .  
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Proof Idea: Lemma 5.3.5 establishes the base case when a is first-order. The 

inductive cases are similar to Reiter's [45] soundness proof for demo, which we 

omit here and to which we refer the reader. 

Completeness of cqa 

Lemma 5.3.7 I f a  is first-order with free variables T' and repairs(& IC) finite, 

then qrepairs(a, repairs(C, IC)) terminates. 

Proof: Since repairs@, I C )  is finite and since prove is a sound and complete 

first-order query evaluator, qrepairs(a, repairs(C, IC))  returns. 

Theorem 5.3.8 (Completeness of cqa) If K F O P C E  a is admissible and 

repairs(C, I C )  finite, then cqa(a, repairs(C, IC))  returns. 

Proof Idea: Lemma 5.3.7 establishes the base case when a is first-order. As 

with the proof of soundness, we refer the reader to Reiter [45] for the proof of 

completeness for demo, which is equivalent to cqa except for the base case. 

Soundness and Completeness With Respect To e c  

Notice that these results do not entail that cqa is a sound and complete query 

evaluator with respect to ec. This is because of our closure assumptions on the 

repairs. 

Example 5.3.9 (Running Example 2) Let C, I C  be the following: 

We have: 

as the two repairs. 

Notice that e c  3 x l K l P ( x )  but that c q a ( 3 x ~ K ~ P ( x ) ,  repairs(C, IC))  is 

not guaranteed to terminate since 3 x l K l P ( x )  is not admissible. 
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This gives us the following: 

Corollary 5.3.10 cqa(a, repairs(C, IC))  succeeds iff e c  k K a  for admissible 

formulas a .  Also, cqa(a, repairs(C, IC))  finitely fails iff e c  k 1 K a  for admis- 

sible formulas a .  

Proof: For admissible formulas a, we have Closure(r) pa iff r p a by Theo- 

rem 3.4.35. So for all repairs r, r pa iff Closure(r) p a .  By Theorems 5.3.6 

and 5.3.8, we are done. 

This means that our closure constraints on repairs does not lead to any 

decrease in expressivity with respect to admissible formulas. These results show 

that we have extended Reiter's [45] demo to the domain of querying possibly 

inconsistent databases. 

Example 5.3.11 (Running Example 1) Let 

C = {ssn(jane, 123), ssn(jane, 456)' ssn(james, 234)), 

I C  = {Vx, y, z(Kssn(x, y) A Kssn(x, z)) > Ky = z)). 

Then 

To evaluate ssn(james, x) A d y  ssn(tarzan, y) we ask cqa(Kssn(james, x) A 

13yKssn(tarzan, y),repairs(C, IC)).  cqa terminates with success since there 

is no y that is Tarzan's social security number. x will also be bound to 234. 

5.4 Correspondence Theorem 

In this section, we prove that, using ec ,  we capture Arenas et al.'s [4] notion of 

consistent query answer. 

In their work, however, a database instance is represented model-theoretically 

as a structure mapping attributes to  domain elements and relational schemas to 

relations on the domain [I]. This is not a big issue in itself because the notion of 
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distance is defined on the atomic formulas that follow from a database instance 

and constraint satisfaction is defined in terms of this structure. That is, a first- 

order integrity constraint is satisfied by a database iff it is true in that structure. 

In addition, the unique names assumption is not built-in to these notions but is 

assumed to hold. 

Given these caveats, we can nonetheless provide a mapping to K F O P C E  

since queries will strictly be first-order. If this is the case, then recall Proposi- 

tion 3.3.6 which states that whenever cr is a F O P C E  sentence, then C b cr iff 

C kFOpC~ a. The difference between kFOPCE and the standard entailment 

relation in standard first-order logic, however, is FOPCE's  treatment of pa- 

rameters [30]. Since we assume the unique names assumption holds, we can use 

kFOpCE safely and view database instances, in the sense employed by Arenas 

et al. [4], as a finite set of non-equality atomic sentences (i.e. databases in our 

sense). 

Definition 5.4.1 ([4]) For database C, a satisfiable set of first-order full depen- 

dencies I C ,  and first-order query q with free variables 3, define kc as follows: 

if for every repair r of C, we have that r k~~~~~ qz 
There are two further complications, however. Arenas et al. [4] consider first- 

order full dependencies, while we consider K F O P C E  dependencies. Moreover, 

their notion of constraint satisfaction is based on entailment: r satisfies I C  

iff r kFOPCE I C  for first-order IC .  In particular, we want to show that for 

first-order full dependency of,, we have that r kFOPCE ofo implies r b K(afo). 

Lemma 5.4.2 If r i s  a repair for C under F O P C E  full dependency of,, then 

it is a repair for C for K F O P C E  full dependency K(ofo). 

Proof: We have that r kFOPCE ofo iff r b ofo by Proposition 3.3.6. By Propo- 

sition 4.2.4, we have that r b K(ofo). 

Remember that r /z I C  iff r kFOPCE I C  for first-order I C  (see Proposition 

3.3.6), so we do not really need the above lemma. Yet we use K(ofo) since we 
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understand integrity constraints as statements about the knowledge a system 

has of the world. 

The second problem is that Arenas et al. [4] consider sets of satisfiable 

first-order full dependencies whereas we consider K F O P C E  full dependencies 

that are always (trivially) satisfiable (recall Corollary 4.2.9). We must therefore 

restrict our full dependencies by ensuring their first-order versions af, in K(afo) 

are satisfiable. But Lemma 5.4.2 guarantees that whenever a set I C  of first-order 

dependencies is satisfied, so is K(IC) (i.e. K applied to all dependencies in IC) .  

Theorem 5.4.3 (Correspondence Theorem) For database C, a set of satisfiable 

first-order full dependencies IC ,  and F O P C E  query q with free variables 2: 

C kc q; implies @[C, K(IC)] k ~ q ; .  

Proof:  Lemma 5.4.2 gives us that any repair r by I C  is also a repair by K(IC). 
+ 

By Proposition 3.3.6, r k F o P C ~  q 5  iff r b q;. Since M(Closure(r)) C 
P 

M ( r ) ,  any first-order a such that M ( r )  k K a  implies M(Closure(r)) k K a .  

Therefore, since r b q; implies Closure(r) b q$ for all repairs r .  By Theorem 

5.3.1, e c  k ~ q ; .  

The converse of this theorem does not hold because of the closure assumption 

on the repairs. 

Example 5.4.4 (Running Example 2) Let C, I C  be the following: 

We have: 

as the two repairs. 

So e c  k l K i P ( a )  but neither C kc l P ( a )  nor C /kc P(a)  hold. Notice also 

that e c  k K l P ( c )  but C kc l P ( c )  and C /kc P(c); under kc, P(a)  and P(c) 

are indistinguishable. 
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Otherwise, Arenas et al.'s [4] notion of consistent query answering is equiva- 

lent to the one presented here with respect to first-order queries and full depen- 

dencies. 

We furthermore have the following: 

Corollary 5.4.5 Whenever repairs(C, IC)  is finite, cqa(w, repairs(C, IC) )  is 

a sound and complete kc query evaluator for all admissible FOPCE queries w 

and FOPCE full dependencies IC: 

C kc w if l  cqa(w, repairs(C, IC) )  returns with success. 

In addition, cqa(w, repairs(C, IC) )  finitely fails i f l  C kc w .  

Proof: By Theorems 5.3.6 and 5.3.8 and the definition of kc, Definition 5.4.1. 

0 

Corollary 5.4.6 For admissible FOPCE queries w ,  e c  k K w  i f l  C kc w .  

Proof: This result follows by Corollary 5.3.10 for FOPCE admissible formulas, 

and Corollary 5.4.5. 

We have thus formalized the notion of consistent query answer in our query 

language KFOPCE. By the above theorem, whenever e c  p K l a  and e c  p K a  

then C kc a and C PC l a .  But this is equivalent to e c  k 1 K l a  A l K a ,  for 

FOPCE a.  Moreover, for admissible FOPCE queries, our notion of consistent 

query answer is equivalent to that defined by kc. 

5.5 Summary 

In answer to the question "What should our knowledge-based system believe 

if it contains conflicting information?", we suggested that it believe consistent 

data but still consider possible and unknown those data that are inconsistent 

with the given set of dependencies. We formalized this suggestion in our query 

language KFOPCE: databases inconsistent with their constraints are repaired 

either by inserting or deleting conflicting tuples. The resulting candidate repairs 

were chosen under a set-inclusion notion of preference. 
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Thus, if (Y holds in all repairs of a database then it must be consistent with 

the integrity constraints. If cr conflicts with an integrity constraint but is a mem- 

ber of the original database, we must be able to distinguish it from formulas not 

in the original database. To do this, we took the Closure of each repair r ;  atomic 

sentences not in any of these repairs are considered false. That is, they are not 

possibly known. In addition to being able to use dependencies, departing from 

the full dependencies used in Arenas et al. [4], we enhanced the dexterity of our 

system in handling such possible and unknown instances. A consistent query 

answer is an instance to a query such that that instantiated query holds in all 

repairs of a database, with respect to a set of dependencies. 

This querying is accomplished using an epistemic state e c ,  which is the union 

of all the models of the closure of our repairs. Throughout, we gave examples 

containing equality and tuple-generating dependencies as well as an example 

containing an embedded dependency. 

Although admissibility considerations prevented us from asking for a list of 

possible or unknown instances. We nonetheless formulated a sound and com- 

plete query evaluator cqa for admissible formulas with respect to eC. cqa was 

shown to be sound and complete with respect to kc, for which we provided a 

correspondence theorem formalizing the semantics of kc in K F O P C E  and e c .  

Reiter's [45] demo was thus extended to the domain of querying inconsistent 

databases. 

In the next chapter, we investigate some properties of our epistemic state e c  

and show that consistent facts are always known. This consistent kernel of C 

suggests how we can completely characterize the known objective sentences in 

e c  by isolating an infinite objective set of F O P C E  sentences, Re,, such that e c  

knows (Y iff M(Rec) knows cr also. Thus, we can use to query Re, as well as 

use cqa. 



Chapter 6 

Analysis of e~ 

Do I contradict myself? 

V e q  well then . . . I contradict myself; 

I  am large . . . I contain multitudes. 

- Walt Whitman, Leaves of Grass 

What is known in ec? Do we lose any information from C? Do we gain any? 

Is e c  a consistent epistemic state? What if C is consistent with its integrity 

constraints? Is e c  representable by some set of sentences? These questions and 

their answers occupy us in this chapter. 

Not only do we show that e c  satisfies the integrity constraints of C, we 

completely characterize the known KFOPCE sentences in e c  with a set of 

objective sentences Re,. This gives us an alternative method of querying e c  using 

b .  To do this, we formally analyze how repairs are constructed with respect to 

a set of KFOPCE dependencies. Although tedious, these investigations allow 

us to say that e c  knows a iff M(Rec)  knows a. This is the main result of this 

chapter. 

6.1 KFOPCE Dependencies and ec 

Before showing that KFOPCE dependencies IC are always known by e c ,  it 

makes sense to ask whether e c  trivially satisfies them by being empty. That eC 

is non-empty is important, otherwise there were no repairs of C under IC.  This 
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can only happen when I C  is unsatisfiable. But by Corollary 4.2.9, K F O P C E  

dependencies are always satisfiable by {). So e c  is built from at least one repair, 

even if it is the empty set (Proposition 5.1.9). 

Proposi t ion 6.1.1 For database C and a set of K F O P C E  dependencies I C  

e c  is non-empty. 

Proof :  The only way for e c  = 0 is when each of the M(Closure(r)) are empty, 

since we take their union to  construct ec .  By Theorem 3.4.26, there is a t  least 

one model of a repair r and at  least one repair, by Proposition 5.1.9. 

This proposition will be useful below for proving that we can represent e c  

using a set of objective sentences. 

We next consider what happens when C already satisfies I C .  Does our 

definition of e c  alter the way we answer queries? If we assume that C is a 

database where the closed-world assumption applies, then the answer is "No". 

Proposi t ion 6.1.2 Whenever C k I C  for a set of K F O P C E  dependencies I C  

and database C, we have that: 

Proof :  By Proposition 5.1.8 and the definition of ec .  

The problem is what Theorem 3.4.36 says about querying under the closed- 

world assumption: it is equivalent to first-order entailment. Whenever C satisfies 

I C ,  then e c  k K a  iff Closure(C) kFOPCE 5 where 5 is a with all the K op- 

erators removed. K F O P C E  thus provides no distinctions as a query language. 

Since we are interested in characterizing database inconsistencies over a set of 

possible worlds in ec ,  the above is a straightforward result. 

We can now show that K F O P C E  dependencies are always satisfied in ec.  

Theorem 6.1.3 Let e c  = C[C, IC]  for database C and a set of K F O P C E  

dependencies IC. Then 

e c  + K I C  
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Proof: Without loss of generality, assume that IC is a single dependency (see 

Corollary 4.2.9). e c  + K I C  iff for every w E e c  we have ec,  w + I C .  If there is 

a world w' E e c  such that ec ,  w' IC ,  then let w' = M(Closure(r)) for some 

repair r since M(Closure(r)) is singleton (Corollary 3.4.27), M(Closure(r)) E 

e c  by definition of ec,  and that e c  is non-empty by Proposition 6.1.1. In this 

case, since M(Closure(r)) M(r) then w' E M(r). Therefore, r IC since 

r I C  iff for every w E M ( r )  we have M ( r ) ,  w + IC.  Then r is not a repair 

of C, contradiction. 

Isolating consistent information entails looking for answers that apply to all 

repairs. And since there may be known instances of an integrity constraint 

in C, it makes sense that eC satisfy IC, which we could not possibly identify if 

e c  i+ K I C .  From this we can conclude that K F O P C E  dependencies are known 

in eC. 

6.2 The Consistent Kernel of C 

Since e c  is an epistemic state, it reflects the beliefs the system has of the world. 

How do we characterize such beliefs? Since we defined e c  with the hope of iso- 

lating data consistent with a set of integrity constraints, we want to show that 

no consistent information is lost. That is, in the previous chapter we considered 

what it meant for an answer to be consistent; here we briefly explore the condi- 

tions under which data from C is consistent. 

So how are we to isolate information from C that comes out known in ec? 

One way to do this is to delete certain atoms in C until we get a consistent 

database. So for C = {P(c), Q(a), Q(b)) and I C  = VxKP(x) > KQ(x) deleting 

P(c) leads to a consistent instance. C \  {P(c)) is known in ec.  However, for C = 

{ssn(jane, 123), ssn(jane, 456), ssn(james, 234)) and I C  = Vx, y, z[Kssn(x, y ) ~  

Kssn(x, z) > Ky = z], C\{ssn(jane, 123)) is a consistent database but eC does 

not know ssn(jane, 456). This is because deleting ssn(jane, 123) also leads to 

a consistent database. So we must incorporate the information about other 
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possible repairs of C in isolating the consistent information in c.' 

Definition 6.2.1 (Consistent Kernel) Define the consistent kernel of C to be 

the set of sentences C: 

C(C)  = { a  I cr E C and cr @ A ( r , C )  for all r  E repairs(C, I C ) )  

for K F O P C E  dependencies I C .  

Example 6.2.2 (Running Example 1) Define: 

C = {s sn ( jane ,  123), ssn( jane ,  456), s sn ( james ,  234)), 

I C  = {Vx,  y, z ( K s s n ( x ,  y )  A K s s n ( x ,  2 ) )  > K y  = 2 ) ) .  

We have the following repairs: 

Note that for each cr E C ,  only s sn ( james ,  234) E C(C)  because: 

Example 6.2.3 (Running Example 2) Let C ,  I C  be the following: 

Since C I C ,  consider the following repairs of C :  

~~~~~1) = { P ( a ) ) ,  

A(C77-2) = { Q ( a ) ) .  

We therefore have C(C)  = { Q  (b) , Q (c )  ). 

 h he following definition of C(C) is a cumbersome way of saying n r for r E repair@, ZC) but we leave 
it as is since the accompanying proofs are easier to understand with the given definition. 
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Maximality and Uniqueness of C(C)  

That C(C)  is a maximal subset of C is shown by the following result. 

Theorem 6.2.4 Suppose that r C for database C, that r tz I C  and that 

e c  + KI', then I' C(C) .  

Proof: The proof is by contradiction. Assume that I' C(C) .  Then for some 

cu E r we have cu 6 C(C).  Since a, E C, then cu E A ( r ,  C )  for some r .  This holds 

by definition of C(C) .  But since cr E C ,  then cr @ r .  Therefore, r  pa. But 

since cu is atomic then we have Closure(r)  tz i c u  by Lemma 3.4.25. This holds 

iff Closure(r)  pa. By Theorem 5.3.1 , we have e c  + lKa, contradiction. 

There are thus no other maximal consistent subsets of C that come out known 

in e c .  In the next two sections, we completely characterize what is known in e c  

for any K F O P C E  a. 

6.3 Characterization of Known Sentences in ec 

With the definition of C(C) ,  we can show that each sentence therein comes out 

known in e c ,  and are the only atomic sentences known. We need the following 

lemma. 

Lemma 6.3.1 cu E C(C)  zff cu E r  for all r  E repairs(C, I C ) .  

Proof: (+) Assume that cu E C(C) .  Then we know that cr E C .  If a, @ r ,  then 

cu E A ( r ,  C ) ;  that is, we delete cu from C to obtain r .  This is a contradiction. 

(+) This direction is a bit more involved. We want to say that if cu is in 

every repair r ,  then it must be in C(C).  So, let us look at the structure of the 

repairs closely. There are 4 cases to consider for atomic a: 

1. cu E A ( r , C )  and cr E C ,  

2. cu 6 A ( r , C )  and cu 6 C, 

3. cu 6 A ( r ,  C )  but cu E C ,  

4. a E A ( r ,  C )  but cr @ C.  
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Case 1: If a E C and a E A(r, C) then obviously a 6 r otherwise a 6 C. 

Thus, a cannot be a member of all r in this case. 

Case 2: Similarly, if a 6 A(r, C) and a @ C then a @ r since if it was in r, 

then it must either be in A(r, C) or C. 

Case 3: When a @ A(r, C) but a E C then a E C(C) by definition. This is 

also the only case where C k I C  gives us the result directly since C is the only 

repair of itself in this case. So C(C) = C by definition of C(C) and Proposition 

5.1.8. 

Case 4: Finally, if a E A(r, C) but a 6 C then a must have been inserted 

into all repairs r. We show that this can never happen when C I C .  When 

C k I C ,  then this case is impossible by the foregoing remarks in Case 3. In the 

remainder of this proof, we consider a single dependency I C  where its violation 

forces the insertion of atomic sentences into C to form a repair. If these inser- 

tions violate other dependencies, then the other cases above apply for whatever 

repairs remain. 

So how is a repair constructed by inserting atomic sentences into C to main- 

tain consistency? Let us look at  the form of our K F O P C E  dependencies. 

Lemma 6.3.2 If a E A(r,  C) but a 6 C then  there exists a repair r" such that 

a @ A(rl', C) and a @ C. 

+ 
Proof: The only way for C to violate this constraint is when Ai13 E C but some 

. - 
q,z + + Bj lGtj; $2 C for parameters pj , s j  . SO, we construct a repair r by completing 

++ + + 
the dependency.2 That is, let r = C U { B  ?%, . . . , B , I ? ! % }  for 1 5 j 5 q. 

llP1.31 P, ,s, 

When I C  is an egd, then no completions occur since repairs are databases, and 

databases only contain non-equality atomic sentences. 

Is r a repair? That is, is it minimal with respect to 5c?3 Since Bj E r and 

Bj @ C then Bj E A(r, C). Suppose there is another repair r' such that r' r .  

This means that A(rl, C) G A(r, C). If they are equal then r' = r so r is a 

 his terminology is from Gertz [24]. 

30bserve that the following deliberations do not work if we use a set-cardinality notion of minimality with 
respect to 5 ~ .  
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repair. Otherwise, there must be some a E A(r, C) such that a $! A(rl, C). But 
+ - ++ 4- 

A(r, C) = {Brlz:$, . . . , ~ , l % ? }  by definition of r, so some Bm12% $! A(rl, C) 
P , A  prn,srn 

for k < m < q. Since ~ i l z  E r' otherwise A(rl, C) & A(r, C). Therefore r' /$ I C  

and is not a repair. So r is a repair. 

This establishes that when repairing entails completing the dependency-in 

this case tgds-then the resulting set is a repair. If we have such a repair then 

we next prove that there is another repair r" for which there are no insertions 

but deletions. This means that there is always another repair where nothing is 

inserted and so no a that is inserted is always inserted. So if a is in all repairs, 

then Case 3 above is the only case that applies. 

When C /$ I C  in this case (Case 4), then we can construct a repair rl' such 
+ 

that r" gc  r and r gc r". Define r" as follows: r" = C - A,\"' for some i. 
+ z 

We know that Ails  E C by assumption above, so it is clear then that r" b I C  

since the antecedent does not hold. Is r" minimal? By a similar argument to 

the one above, we can show that it is. Assume that there is some repair r' such 

that r' 5~ r". This means A(rl, C) G A(r", C). But A(r", C) = {A~\:} by 

definition. So either A(rl, C) = A(rl', C), in which case r' = r", or A(rl, C) = 0, 
in which case r' = C and r' /$ I C ,  contradiction. So r" is a repair. This shows 

that there are at least two repairs r,rl' when some a such that a E A(r, C) 

but a $! C. This means that a can not be inserted into all repairs, due to the 

existence of rl'. This completes the proof of Lemma 6.3.2. // 
We can therefore conclude that if a E r for all r E repairs(C, IC) ,  then Case 

3 above is the only case that holds, and a E C(C). El 

Theorem 6.3.3 For atomic a, a E C(C) iflec Ka.  

Proof: (+) By Lemma 6.3.1, a E r for every r E repairs(C, IC) .  Therefore, 

Closure(r) b a since r E Closure(r) and a E r. By Theorem 5.3.1, a is known. 

(e) By Theorem 5.3.1, Closure(r) b a for all repairs r. Since a is atomic, 

then a E r for all r .  By Lemma 6.3.1, a E C(C). El 

Thus, C(C) contains the only known atomic sentences in ec. Are there other 

known objective sentences in e c  other than those entailed by C(C)? It  turns out 

that there are. 
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Definition 6.3.4 CL(C) = { l a  I a atomic and l a  E Closure(r) for every r E 

repairs(& IC)). 

Theorem 6.3.5 l a  E CL(C) iff e c  + K l a  for atomic a.  

Proof: (=+) We have CL(C) c Closure(r), so CL(C) + l a  for every r .  By 

Theorem 5.3.1, l a  is known in ec.  

(+) By Theorem 5.3.1, Closure(r) b l a  for every r. Therefore, because 

Closure(r) tz =! for every atomic P E r ,  since r Closure(r), then r a other- 

wise Closure(r) a. Since this is not the case, and by definition of Closure, we 

have l a  E Closure(r) for every r .  Thus, by definition of CL(C), l a  E CL(C). 

0 

6.3.1 Representation Theorem for e c  

We now have two sets of objective sentences, C(C) and CL(C) whose properties 

we investigate before proceeding to the main result of this chapter: a represen- 

tation theorem for ec. 

Definition 6.3.6 Rec = C(C) U CL(C) . 

Proposition 6.3.7 Re, C_ Closure(r) for every r E repairs(C, IC). 

Proof: That C(C) Closure(r) is given by Lemma 6.3.1 since r C_ Closure(r). 

That CL(C) Closure(r) for all r is given by the definition of CL(C). 0 

Proposition 6.3.8 Re, is satisfiable. 

Proof: By Proposition 6.3.7 and Corollary 3.4.27, which states that Closure(r) 

is satisfiable. 0 

Theorem 6.3.9 (Representation Theorem) e c  + Ka iff M(ReC) + Ka,  for 

K F O P C E  a.  

Proof: (e) When a is atomic, the result follows by Theorem 6.3.3. Assume, 

then, that ec  k Kal and e c  k Ka2 whenever M(Rec) k Kal and e c  + Ka2. 

When a is of the form a1 A a2 then the result follows trivially since Rec C_ 
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Closure(r) for all r by Proposition 6.3.7. If a is of the form yal, then since we 

know that Re, Closure(r) for all repairs T ,  then Closure(r) k la1 iff e c  k 
K 1 a l  by Theorem 5.3.1. When a is of the form 3xa1, then M(Rec) + K3xal  

iff M(Rec),  w k al 1; for all w E M (Re,) and some parameter p. By induction, 

e c  + Kallg iff e c  + K3xal  where x is distinct from all the free variables of 

a l .  When a is of the form Kal, then M(Rec) k K K a l  iff M(Rec) k Kal by 

Theorem 3.2.8 and that M(Rec) is non-empty since it is satisfiable (Proposition 

6.3.8). By induction the result follows trivially. 

(+) We prove this direction by contradiction. So assume that e, + K a  

but M(Rec) p Ka for K F O P C E  a .  This means that M(Rec) k 1Ka which 

means M(Rec) + K l K a  by Theorem 3.2.7 (i.e. using the negative introspection 

axiom). By (+), above, this means that e c  b KyKa which implies e c  k 1 K a  
since e c  is non-empty by Proposition 6.1.1 and Corollary 3.2.9 (i.e. accuracy of 

subjective knowledge). Then we have e c  1Ka iff e c  p Ka, contradiction. 

Corollary 6.3.10 e c  K a  iff Re, P a .  

Corollary 6.3.11 CInstances(C, IC,  a) = Instances(a, Re,). 

Theorem 6.3.9 allows us to use k to query Re, as if we were querying eC. The 

only difficulty is that Re, is potentially infinite because of CL(C). Furthermore, 

K F O P C E  is not compact since every finite subset of {3xP(x), l P ( p l ) ,  -.P(pz), . . .) 
is satisfiable, but the entire set is not [30]. 

Nonetheless, we have shown that we can capture e c  with a set of objec- 

tive sentences. Whether there is any other way of finitely representing e c  is a 

direction for future research. 

Example 6.3.12 (Running Example 1) Define: 

C = {ssn(jane, 123), ssn(jane, 456), ssn(james, 234)), 

I C  = {Vx, y, z(Kssn(x, y) A Kssn(x, z)) > Ky = 2)). 

Therefore, C(C) and CL(C) are given as: 
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From the definition of C L ( C )  we know that ssn( jane ,  l23) ,  ssn( jane ,  456) @ 

C L ( C )  . Therefore, 

We have: 

K I C ,  

K 3 x  ssn( jane ,  x ) ,  but 

K s s n ( j a n e ,  123) A K s s n ( j a n e ,  456), and 

K 3 x K s s n ( j a n e ,  x ) ,  

i K l s s n ( j a n e ,  123) and 

l K l s s n ( j a n e ,  456) so 

l K l s s n ( t a r z a n ,  000) since 

K l s s n ( t a r z a n ,  000). 

We also know that: 

I n s t a n c e s ( l K ~ s s n ( j a n e ,  x ) ,  Re,) = { ( l 2 3 ) ,  (456)). 

Example 6.3.13 (Running Example 2) Let C ,  IC be the following: 

Therefore: 
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We also know that: 

6.4 Summary 

In this chapter, we completely characterized the KFOPCE sentences that are 

known in e c  by first defining the consistent kernel of C. To prove that atomic 

sentences known in e c  came from this consistent kernel, we formally investigated 

how repairs are constructed from a set of K F O P C E  dependencies. We then 

extended the consistent kernel sentences by constructing Rec which we then 

proved to completely characterize the known K F O P C E  sentences in ec .  In 

addition to Re,, we showed that the dependencies are known in e c  and that when 

C iz IC, query answering proceeds under the closed-world assumption, which is 

equivalent to first-order entailment. Nonetheless, we explored the relationship 

between the epistemic state ec ,  which is a collection of possible worlds, and a 

symbolic knowledge base Re,, which is a collection of sentences about the world; 

in the former case, what is known is what is true in all these worlds whereas in 

the latter case, what is known is what is entailed from the sentences 1301. 



Chapter 7 

Conclusion 

If we envision a knowledge-based system obtaining its information from multi- 

ple sources-be it from sensors, from other systems, or from humans entering 

data at a terminal-then it is a possibility that these sources have conflicting 

descriptions of the world, culminating in a situation where our knowledge-based 

system has to decide what to believe. Furthermore, the system has no reason to 

doubt the correctness of the pieces of information it receives, or, alternatively, it 

has no reason to prefer any particular piece of information. It is not that these 

sources have different vocabularies that cause the problems that we consider, it 

is that these sources have different opinions as to what is true--"inconsistency 

threatens" [ll]. This inconsistency arises from the unified perspective the sys- 

tem gives to these sources of information. There are myriad practical settings 

of which this unified view is the synthesis, such as data warehousing, multi- 

databases and agent communication, but the problems are similar: what does 

our knowledge-based system choose to believe? 

This dilemma frames the techniques employed in this thesis, which looks at 

integrity constraint violations as a fragment of the incomplete knowledge the 

system currently has of the world. So we do not want to consider an agent's 

knowledge inconsistent until it receives more information. This is accomplished 

by leaving the database in its original state, and modeling this incompleteness 

using an epistemic state in which consistent information is known. This idea 

has roots in Arenas et al .3 [4] notion of a consistent query answer as one that 

holds in all repairs of a database. With the epistemic query language KC and 
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the subset KFOPCE that we consider, we formalize consistent query answers 

in our system by treating each of the repairs as a set possible worlds. The logic 

KFOPCE then allows us to quantify over these worlds using formulas with 

K operators as queries. The result is a knowledge-level semantics of consistent 

query answers, which is information that is known across all possible states of 

affairs, an incompleteness effected by integrity constraint violations. 

While other approaches attempt to clean the data, the proposed approach is 

supported by the view that to establish which data is in fact inconsistent, some 

querying will have to occur [16]. The benefit of this approach is that informa- 

tion loss is minimized since application programmers do not have the necessary 

domain knowledge to  isolate relevant information. Furthermore, we saw that 

without the closed-world assumption, information that caused constraint vio- 

lations are indistinguishable from completely absent information. This feature 

extends the work of Arenas et al. [4] and provides further justification for their 

approach of consistent query answering. Ultimately, a certain amount of tex- 

ture is added to the information because decision makers can then distinguish 

consistent and inconsistent information by querying the knowledge-based system 

about what it knows. 

In the remainder of this chapter, we present highlights of the techniques 

described above and directions for future research. 

7.1 Highlights and Discussion 

The Logic ICL 

The KFOPCE fragment of ICL is used as an epistemic query language for 

knowledge-based systems [30]. That is, we can ask what a knowledge base knows. 

We appropriate this language for querying databases, and show that it can be 

adapted to the special circumstances of databases. In particular, by defining 

and investigating the admissible queries of Reiter [45], we ensure that answers 

to these queries are finite. This is not enough since queries such as VyR(x, y) are 

necessarily finite but depend on the values over which the universal quantifier 

ranges. This is impractical since the answers to queries depend on informa- 

tion not accessible to the user writing queries. Thus, in addition to being safe, 
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queries need to be domain independent. Admissible queries in KFOPCE are 

indeed domain independent and provide us with an alternative proof of safety. 

Finally, since databases are assumed to satisfy the closed-world assumption, we 

explore the effect closure constraints have on our query operator k.  The result 

is that closed-world query evaluation is equivalent to first-order entailment, so 

we lose the distinctions provided by the K operator. However, we define a class 

of FOPCE formulas, which we call AC formulas, in order to query the database 

directly as opposed to  its closure, which is a possibly infinite set. 

All this assumes that we have a semantics that allows us to distinguish 

between some fact about the world and the system's knowledge of the world. 

KFOPCE furnishes us with this semantics where the truth of a formula K a  

depends only on the epistemic state, which is understood to  be a set of possible 

worlds. Objective formulas are evaluated with respect to  a "real" world w, which 

is not necessarily a member of e; the agent's beliefs need not be consistent with 

what is actually the case. Because of this, KFOPCE is considered a logic of 

belief. 

A knowledge-based system specified in KFOPCE also has complete and ac- 

curate knowledge of its beliefs, which means that we cannot tell it a fact about 

itself which it does not already know to be true or know to be false. So even in 

the state eo, where it knows nothing of the objective world, aside from objective 

validities, it completely and accurately knows about what it believes about the 

world. The difference is that there may be no known instances that it believes 

to be true. 

From the user's perspective, we can ascertain whether the system has def- 

inite knowledge about a property with 3xKP(x)  or ask whether the system 

knows that some individual has a property without necessarily knowing who 

that individual is, K3xP(x).  We can also ask about possibly known facts with 

1 K l a  or whether there is a possibly known yet currently unknown individual 

with some property, 3x[P(x) A l K P ( x ) ] .  In the end, in addition to being a 

general knowledge-base query language, these properties and distinctions of KIC 
enhances its utility as a database query language, even if we restrict ourselves 

to admissible queries. 
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Integrity Constraints in KL: 

Reiter [44] suggests that integrity constraints should be interpreted as statements 

about the knowledge a knowledge-based system has of the world rather than 

statements about the world itself. He provides counterexamples against stan- 

dard notions of constraint satisfaction and suggests that integrity constraints in 

epistemic logic evades these problems. Inherent in Reiter's examples of integrity 

constraints in KFOPCE is the assumption that each is satisfied by eo. The 

intuition being that if nothing is known that violates the constraints, then the 

constraints should be satisfied trivially. We make this assumption explicit in our 

definition of allowed integrity constraints. In addition to being satisfiable by eo, 

they are subjective sentences without iterated modalities. 

While allowed constraints are sufficiently general, they have no obvious syn- 

tactic form that we could use for our application to database inconsistencies. 

Fortunately, database dependencies are a sufficiently general class of constraints 

used in relational database systems. They specify relationships between data 

already known to be true of the database. This makes their translation to 

KFOPCE more intuitive. We formulate dependencies in KFOPCE and show 

that such KFOPCE dependencies are admissible. 

Consistent Query Answers and eC 

In answer to the question "What should our knowledge-based system believe if 

it receives conflicting data from multiple sources?", we suggest that it believe 

consistent data but still consider possible and unknown those data that are in- 

consistent with the given set of dependencies. Formally, we repair a database 

instance either by inserting or deleting facts so that the database satisfies the 

constraints. Then, we take the union of the Closures of these repairs to con- 

struct the epistemic state e c .  If cr holds in all repairs of a database, then it 

is considered known in e c  and is consistent with the integrity constraints; it is 

a consistent query answer. Otherwise, facts are considered either possibly but 

currently unknown or known to be false. 

We distinguish these cases by isolating facts that appear in one repair and 

facts that do not appear in any repair at all. This is accomplished by taking 
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the Closures of each of the repairs of C with respect to a set of K F O P C E  de- 

pendencies IC. Thus, for tuple-generating dependency (tgd) violations, we can 

"access" data in C that lead to the violation of the tgd. We therefore increase 

the flexibility of our system in handling such facts, departing from Arenas et 

al.3 [4] notion. 

Considerations of admissibility for consistent query answering reveals that 

asking about possibly known instances are prohibited. Yet this should not dis- 

tract us from showing that e c  formalizes Arenas et al.'s [4] notion of consistent 

query answer, which meta-logically quantifies over the set of repairs. Therefore, 

whenever e c  k K ~ Q  and e c  k K a  then C kc a and C kc l a .  But this is 

equivalent to eC /= 1 K l a  A 1 K a  for F O  P C E  a .  This leads to our query eval- 

uator cqa for admissible formulas with respect to e c  and Arenas et al.'s [4] kc. 
We thus extend Reiter's [45] demo to the task of consistent query answering. 

Finally, the analysis of e c  leads to a representation theorem that relates 

certain properties of repairs to sentences known in e c  using an infinite set of 

objective sentences Re,. This requires a formal investigation of how repairs are 

constructed with respect to a set of K F O P C E  dependencies and what set of 

sentences from C, and from every repair, come out known in e c .  Whenever 

C I C ,  we show that e c  preserves the closed-world query answers on C with 

respect to k .  And to ensure that we constructed e c  properly, we prove that 

I C  is known, although the known instances of I C  possibly differs from the infor- 

mation in C. In the examples presented in Chapter 5, while Jane has two social 

security numbers in the original database C, neither of these numbers are known 

to be hers because of the integrity constraint that social security numbers are 

unique. James, on the other hand, has a unique number, and this information is 

therefore known in e c .  Such information is formalized as the consistent kernel 

of C. Information from C is therefore retained since we simply treat consistent 

information as the only known facts. 
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7.2 Suggestions for Further Research 

Finite Representability of eC 

What we have covered of LC as an epistemic query language is horribly incom- 

plete; KFOPCE is essentially KC with no function symbols. Levesque and 

Lakemeyer's [30] work is a full examination, development and extension of LC. 
It is proved sound and complete, and the two operations ASK and TELL are 

defined. Our is equivalent to ASK with the exception that in the definition 

provided by Levesque and Lakemeyer [30], the models of C appear as a parame- 

ter. ASK is therefore defined over the models of a set of formulas but also over 

epistemic states that may or may not have a set of representative sentences. 

Chapter 6 shows that Re, is such a set, even if it is infinite. One avenue of 

research is to find a finite representative set of sentences for ec.  

Work in incomplete databases may provide insights into this problem [I, 2, 

33, 351. In [2], Abiteboul et al. discuss various representations of sets of possible 

worlds as conditional tables that include variables as values of particular tuples. 

There is an associated set of global and local conditions that impose restrictions 

on these variables. As such, the permutation of all values the variables can 

take that satisfy the conditions represent all the possible scenarios described by 

this incomplete database. It may be interesting to investigate whether e c  has a 

representation in such a model. 

Updates to ec 

What we have considered thus far is a system that is static; no additions to eC 

are considered. How are we to incorporate changes to eC such that it maintains 

its consistency with respect to a set of constraints? Levesque and Lakemeyer 

[30] provide an update operation on epistemic states called TELL defined as 

follows: 

Definition 7.2.1 ([30]) TELL[&, e] = e n {w ( w k a ) .  

If we use this definition of TELL, then TELL[ la ,  ec] = 8 where a is any 

KFOPCE dependency. This happens because e c  has complete knowledge of 

subjective sentences, since ec  k K a  by Theorem 6.1.3. Telling it that it does 
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not have complete knowledge of a subjective sentence results in an inconsistent 

epistemic state. Thus, a problem is to  define a new TELL operation, TELLc, 

that allows the system to evolve with the introduction of new facts or integrity 

constraints. 

De Amo et al. [I91 consider a repair operation in a paraconsistent setting 

that allows their system to change with the introduction of new information, 

while at the same time maintaining consistency. Since their notion of a repair 

is close to the one we have defined, it may be worthwhile to consider their al- 

gorithm for updates to extract a semantic specification that we could adopt for 

TELLc. Furthermore, the work of Alchourr6n et al. [3] is especially relevant 

since it provides a principled foundation for belief revision. But specific con- 

nections with the approach of this thesis have yet to be established although 

recent work on knowledge-base merging based on belief revision by Delgrande 

and Schaub [20] suggests connections with database inconsistencies with respect 

to integrity constraints. 

Meyer [36] extends the work of Spohn [48] and considers merging operations 

on epistemic states as opposed to knowledge bases of which work in belief revi- 

sion , so TELLc  could implement some version of his approach using either an 

arbitration operation, which tries to accommodate different sources' opinions, or 

a majority operation that simply takes the opinion of the majority. This tech- 

nique addresses a problem that seems to be related to the one with which we 

originally began, but in this thesis we considered constructing an epistemic state 

by simply taking the union of the models of repairs as opposed to performing 

complex operations on them. If we view M ( r )  for repair r as an epistemic state, 

then the proposed operations on epistemic states could be applied. We suggest 

this as a topic for further investigation. 

A Wider Class of Admissible Formulas 

Reiter's [45] Prolog-like query evaluator demo for KFOPCE has furnished our 

definitions of admissible queries. This definition stems from Reiter's adoption of 

the Lloyd-Topor [27] transformation rules for implementing definitional theories 

in Prolog. The resulting first-order formula has the form of normal Prolog goals, 

and successful termination of any pure Prolog interpreter ensures that the answer 
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is true with respect to the definitional theory, due to Clark's Theorem [46]. 

Furthermore, Reiter's definition was tailored for evaluation of K F O P C E  

queries by a Prolog interpreter. A side effect of this is that admissible queries are 

also "safe for negation". Since, it is assumed, implementation of this evaluator 

is straightforward once a first-order theorem prover is found that respects the 

semantics of parameters, then it will no doubt inherit Prolog's sensitivity to 

unbound variables on negated subgoals. It would be interesting to find a superset 

of the K F O P C E  admissible queries whose instances are finite, but are not 

required to be "safe for negation". 

Constraint Violations in K F O P C E  

The only known extension of Reiter's [44] work on integrity constraints is that 

of Demolombe and Jones [21] which clarifies the epistemic status of integrity 

constraints by refining what it means for a constraint to be violated in light of the 

understanding of integrity constraints put forward by Motro [37]. In this work, 

Demolombe and Jones provide a formalization of a constraint violation with 

respect to validity and completeness, where the violation of the former involves 

an unsatisfiable instance (i.e. false sentences have to removed) while the latter 

involves a failure of entailment (i.e. sentences have to be inserted). The formal 

system they develop is therefore able to check validity and/or completeness of 

the database's beliefs. Possible connections to this thesis have yet to be explored, 

but it is suspected that this distinction of constraint violation can lead to a more 

elegant treatment of the violation of dependencies than that presented in this 

thesis. 

Study of Dependencies in K F O P C E  

When we considered allowed K F O P C E  constraints, we overlooked complex sets 

of constraints that are only satisfied by eo. For instance: 

Example 7.2.2 Let 
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The problem is that I C  is satisfiable by {) but it is only satisfiable by {). 

Thus, the only repair of C is r = {), in which case all the information is lost. 

This is surely something we do not want. We avoided this problem by focussing 

on dependencies. Whether dependencies are non-trivially satisfied is discussed in 

[52], but an extension of this analysis to K F O P C E  dependencies would reinforce 

KFOPCE1s applicability as a logic for reasoning about integrity constraints. 

Construction of Repairs and e c  

Further analysis needs to be conducted on the notion of repair that we employ 

for K F O P C E  dependencies and constraints. The model-based characteriza- 

tions of paraconsistent-based approaches, such as those of Arieli et al. [8, 91, 

Baeza [lo] and De Amo [19], are attractive because the repairs can simply be 

"read" from the multiple-valued models under some notion of preference. Their 

resulting implementations and algorithms therefore characterize the conditions 

under which repairs are constructed. We have no equivalent formulation or in- 

vestigation here. 

Gertz [24] provides methods for generating repairs stemming from work on 

model-based diagnosis. Apart from the specific algorithms used, Gertz defines 

properties of repair strategies that imposes an ordering with respect to "permis- 

sibility". Gertz models the scenario in which a repair is required with a violating 

transaction T ,  which is a set of insertions or deletions of facts. A repair trans- 

action TI, or undo of T is a transaction in which for every insertion (deletion) in 

TI of a fact there exists a deletion (insertion) of that same fact in T .  Other no- 

tions of repair are defined, such as consistent completion, and cardinality-based 

versions of these. In any case, the point of pursuing repairs more formally is to 

characterize the knowledge in e c  more elegantly than presented in Chapter 6. 

Query Evaluators for Consistent Query Answers 

The work of Arenas et al. [4] uses the same semantics of repairs as we have, with 

respect to first-order dependencies, but provides an effective method for comput- 

ing consistent query answers without generating any repair. This is expedited 

with an operator T, which rewrites a first-order query and returns the consistent 
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answers a s  i f  it had been queried on all the repairs of the database. That is, it 

is complete with respect to the repair semantics, with some constraints on the 

form of the integrity constraints. 

Although our approach does not need such restrictions on constraints, an 

interesting proposal is to use the query evaluator that Levesque 1291 provides 

for KL coupled with T, to perform consistent query answering without gener- 

ating any repairs a t  all. This would extend T, to an epistemic query langauge. 

In particular, by using the operators ( 1  . I lc and RES of Levesque [29], we can 

eliminate the K operators from the query and answer it using first-order t h e e  

rem proving techniques. While this is inefficient [29, 451 and further analysis is 

required regarding complexity issues of consistent query answering, it suggests 

an intriguing alternative and fusion of approaches. 

Similarly embedding cqa in the framework of i nduc t i ve  logic programming 

would allow us to  use the system developed by Arieli et al. [9] that generates 

repairs of a possibly inconsistent database. 
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