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Abstract 

This thesis has its origin in a series of theoretical investigations on the aspects of the 

standard model in particle physics. It summarizes some relatively independent but 

intrinsically related research work that I have done in the past four years. Diverse 

topics are presented and used to prove the relevance of certain theoretical models to 

the particle phenomena in nature. 

I investigate a measure of CP violation in strong interactions. In the presence of 

nontrivial topological gauge configurations, the 6'-term in QCD has a profound effect: 

it breaks the CP symmetry. The CP-violating amplitude is shown to be determined 

by the vacuum tunneling process, where the semiclassical method makes most sense. 

I discuss the important issue of whether or not the instanton dynamics satisfies the 

anomalous Ward identity (AWI). The strong CP violation measure, when comply- 

ing with the vacuum alignment, is proportional to the topological susceptibility. To 

solve the IR divergence problem of the instanton computation, I present a 'classically 

gauged' Georgi-Manohar model and derive an effective potential which uniquely de- 

termines an explicit U(l)A symmetry breaking sector. The CP violation effects are 

analyzed in this model. It is shown that the strong CP problem and the U(1) problem 

are closely related. Some possible solutions to both problems are discussed. 

I examine an interesting scenario to solve the cosmological domain wall problem 



from the viewpoint of particle physics. The effective potential for Higgs fields is 

calculated in the presence of the QCD axial anomaly. It is shown that some discrete 

symmetries such as CP and Z2 can be anomalous due to a so-called K-term induced 

by instantons. It is pointed out that Z2 domain-wall problem in the two-doublet 

standard model can be resolved by two types of solutions: the CP-conserving one and 

the CP-breaking one. In the first case, there exist two Z2 -related local minima whose 

energy splitting is provided by the instanton effect. In the second case, there is only 

one unique vacuum so that the domain walls do not form at  all. The consequences of 

this new source of CP violation are discussed. 

I study the behavior of the self-mass for a quark with a current mass larger than 

AgcD, as a function of its Euclidean momentum and mass, in QCD. An expression 

for the Bethe-Salpeter kernel of the Schwinger-Dyson (SD) equation valid in both 

the infrared and ultraviolet regions is obtained based on a renormalization group 

analysis. The resulting SD equation is solved numerically. It is found that the quark 

constituent mass at zero momentum is substantially enhanced due to its effective 

gauge interaction. The solution in the ultraviolet region agrees well with the known 

asymptotic solution. The self-mass scales exactly as the on-shell current mass at a 

fixed momentum. 

A dynamical mechanism that may yield a natural chiral symmetry for fermions 

is presented. The small fermion mass generated by various dynamical interactions is 

obtained. 
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Chapter 1 

Introduction 

1 1 Motivations 

There are two obvious trends in today's theoretical research in particle physics. One 

is to explore the fundamental force for all kinds of interactions: strong interactions, 

electromagnetic interactions, weak interactions and gravity. The ultimate goal is 

the establishment of the unification of these four interactions. Though tremendous 

efforts have been made along this direction, it seems that we are still far away from a 

complete understanding of the problem, let alone a solution to it. A direct extension 

of an idea that led to the unification of the electromagnetic and weak interactions does 

not appear to be as successful when strong and electroweak interactions are unified. 

A solution based on the superstring theory has not been fully satisfactory. 

The other direction is less ambitious but has much richer phenomenological con- 

tents. It studies various aspects of the standard model which has been extremely 

successful in the past couple of decades in describing particle phenomena at relevant 

energy scales or temperatures. The standard model is based on the gauge symmetry 
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group S U ( 3 )  x S U ( 2 )  x U ( 1 )  and consists of quantum chromodynamics (QCD) and 

the Glashow-Salam-Weinberg electroweak theory, which are a theoretical syntheses of 

our understanding of the particle spectroscopy over many years. The foundation of 

the standard model is the gauge invariance principle and that the gauge symmetry 

may be hidden in the manner of Higgs mechanism. Theoretical predictions based on 

this model have been tested and so far there has been no single definite experiment 

that betrays it. The extreme success of the standard model indicates that a theo- 

retical framework of strong and electroweak interactions has been well established, a 

point of view shared by most physicists today. Therefore, it is clearly desirable to 

explore theoretical aspects of the standard model beyond the tree-level, mean field 

approximation, in order to test the validity of the standard model in many domains. 

The thesis is devoted to studies of such a task, in particular, to investigating 

the various quantum effects in gauge field theory. Historically, the prototype of an 

underlying theory may have been built from observing essential features of relevant 

phenomena, often from the existence of manifest symmetries. Parameters such as 

coupling constants, masses, mixing angles and phases are put in by hand to fit ex- 

perimental data, and the model stays as a classical theory and descriptive. However, 

some experiments may probe purely quantum phenomena and cannot be accounted 

for in the classical theory. In addition, the quantum effects of a theory often not only 

make quantitative corrections to a certain process but predict phenomena that cannot 

been obtained from a classical theory. Therefore, the verification of a mature theory, 

applied to the standard model, requires a full study of physical phenomena including 

those that caused by the quantum effects. 

Among these effects, what seems most interesting is symmetry breaking. There 
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are many symmetries, either exact or approximate, in the standard model at the clas- 

sical level: gauge symmetries, global symmetries, discrete symmetries and accidental 

symmetries. Some appear broken in nature. It is hence desirable to examine if they 

can be broken by quantum effects and what consequences the symmetry breaking 

may produce. The standard way to carry out this task is to consider the generating 

functional for a given theory, instead of the lagrangian which only gives a classical 

description on the theory. A complete evaluation of the path integral 

gives both the classical and the quantum considerations, where cj is the general field 

excitation, C(4) is the lagrangian and J is the external source. However, an exact 

integration of (1.1) would be extremely difficult if not impossible. 

In this thesis, I shall discuss various quantum effects associated with fundamental 

fermions which have non-abelian gauge interactions. These fermions are referred to as 

quarks in most chapters. One needs to consider an integration in (1.1) over fermions. 

It turns out that even this is not so trivial, and approximate methods have to be 

employed. Often encountered approximations are the one-loop approximation, the 

semi-classical approximation and the ladder approximation. It is found that these 

gauge interactions indeed significantly change the symmetry structure of the theory 

and the qualitative behavior of the theory in certain domains. 

1.2 Outline of Topics 

In Chapter 2, I study CP symmetry in strong interactions. In a gauge theory, a 

mysterious term called kterm 

e F,, P (1-2) 
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where Fw is the gauge field strength tensor and P p U  = r~'puFpu, can be added into 

the lagrangian since it also satisfies gauge invariance. Although this term is formally 

P- and CP-odd, it does not cause any P or CP violating consequences at the classical 

level since it is a total divergence which yields a surface term in the classical action. 

However, in a non-abelian gauge theory, the 0-term breaks CP symmetry explicitly 

in the presence of a special type of quantum effect, the instanton effect. The CP- 

violating amplitude is shown to be determined by the quantum tunneling between two 

topologically different vacua. I also discuss a long-standing puzzle on the conventional 

way to estimate the strong CP violation by use of current algebra, which does not by 

itself exhibit the topological feature of this effect. The anomalous Ward identity does 

not, as claimed, put a constraint on how the measure of strong CP violation should 

behave. I show, however, that it is unambiguously proportional to the topological 

susceptibility when a vacuum alignment is done properly. An effective chiral model 

of the constituent quarks is proposed to study the relation between the measure of 

strong CP violation and the U(1) problem. CP violating processes are calculated in 

the effective theory. 

In Chapter 3, a Z2 discrete symmetry in the electroweak sector of the two-Higgs 

standard model is discussed. It has been long realized that spontaneously broken dis- 

crete symmetry, which may be an attractive possibility in building models of particle 

physics, can lead to a grave domain wall problem in the context of cosmology. When 

several degenerate ground states are approached homogeneously in an expanding uni- 

verse, adjacent domains filled by different vacua are separated by domain walls. The 

energy density of these walls turns out to be so high that existence of just one in the 

observable part of universe leads to unacceptable cosmological consequences. We shall 

argue, however, that there is a quite natural and appealing way out in the context of 
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particle physics: the discrete symmetry can be anomalous. In this case the ground 

states which appear, at the classical level and to all orders of perturbation theory, to 

be degenerate, are found instead to be separated by a finite energy difference when 

they are compared non-perturbatively in the quantized theory. The effective poten- 

tial for Higgs bosons is calculated in the presence of the QCD axial anomaly. It is 

shown that some discrete symmetries such as CP and Z2 can be explicitly broken by 

a so-called K-term induced by instantons. We also point out that the quantum effect 

may drive a spontaneous CP violation which would be impossible in the two-Higgs 

model with a Z2 symmetry. 

Chapter 4, however, investigates not so much on the symmetry issue, rather, the 

behavior of the quark mass in both the ultraviolet and infrared regions. Dynamical 

chiral symmetry breaking in QCD has been studied extensively and yet has not been 

completely understood. The difficulty to obtain an infrared solution to the Schwinger- 

Dyson (SD) equation arises when the validity of the ladder approximation is not 

justified in the infrared region. In this chapter, I study a slightly different aspect 

of the solution to the SD equation however, approaching to the same problem: the 

self-mass for a very massive quark. When the quark current mass is much larger than 

AQcD, a renormalization group equation (RGE) allows us to derive an approximation 

to  the integral kernel valid both in the UV and in the IR regions. A complete solution 

to the non-linear SD equation is then obtained by numerical means. We find that self- 

mass acquires a substantial enhancement due to gauge interactions when the current 

mass becomes small, especially when the external momentum tends to zero. It is then 

expected based on extrapolation, that the constituent mass for a light quark (defined 

as the self-mass at zero momentum) can be very large compared with its current mass. 

In addition, it gives a complete description of the self-mass for the very massive quarks 
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such as the charm and the bottom quarks, and a picture of the transition going from 

the heavy quarks to the less massive quarks. 

I shall show, in Chapter 5, a converse possibility that the quantum effects may 

restore the chiral symmetry or yield an approximate chiral invariance in certain mod- 

els. 

All in all, let us begin the journey. 



Chapter 2 

Measure of Strong CP Violation 

2.1 Introduction to Strong CP 

The discovery of instantons [2.0] has been associated with some of the most interesting 

developments in strong interaction theory. It has led to a resolution [2.1] of the 

long-standing U(1) problem [2.2], and also pointed to the existence in QCD [2.3] of 

vacuum tunneling and of a vacuum angle 8,  which combining with the phase of the 

determinant of the quark mass matrix, signals the CP violation in strong interactions. 

The difficulty in understanding the very different hierarchies of the strong CP violation 

and weak CP violation in the standard model has been targeted as the so-called strong 

CP problem (for a review, see Ref. [2.4]). 

The theoretical understanding of weak CP violation is well-established in the 

framework of Kobayashi-Maskawa mechanism [2.5] in spite of the challenge in higher- 

precision experimental measurements. It has been shown [2.6] that the determinant 

of the commutator of the up-type and down-type quark mass matrices [MU, Md] = iC 
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given by 

where 

Jwed = sin2 sin O2 sin 63 cos el cos O2 cos O3 sin 6 (2.2) 

is the unique measure of the weak CP violation. All CP-violating effects in weak 

interaction must be proportional to det C. Even though the CP-violating phase sin 6 

can be of order 1, the physical amplitude is naturally suppressed by the product of 

Carbibo mixing angles. 

However, the measure of CP violation in QCD, which we shall denote as Jstrong7 

is not so clear. It has long been realized that OQcD and phases of quark masses are 

not independent parameters in QCD. In the presence of the chiral anomaly [2.7], they 

are related through the chiral transformations of quark fields. Thus Jstrong must be 

proportional to a combination 

6 = BQcD + arg det M (2.3) 

which is invariant under chiral rotations. It is well-known that if one of quarks is 

massless, 8 can take any arbitrary value since one can make arbitrary rotations on the 

chiral field. This suggests that the 6- dependence of Jstrong disappears in the chiral 

limit. Thus in the case of L = 2 where L is the number of light quarks, Ztrong has a 

form 

- 
Jstrong = numdK sin 6 (2.4) 

where we have written sin 8 instead of 8 to take care of the periodicity in 8. Is there 

any other common factor that we can extract from strong CP effects? Or, is K in 

(2.4) only a kinematical factor which varies with different physical processes? 
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To answer the question, we need to know whether there is any other condition 

under which the strong CP violation vanishes. Recently, the reanalysis of strong CP 

effects has shed some light on this issue. Several authors [2.8] have pointed out by 

studying an effective lagrangian that the strong CP violation should vanish if the 

chiral anomaly is absent. We regard their work as constructive and enlightening. 

However, how to realize such a feature in QCD with quarks is not apparent in their 

approaches. In QCD theory, indeed, if the chiral anomaly is absent, the phases of 

quark masses can be rotated away without changing the 8-term. But it is not clear 

why OQcD itself does not lead to CP violation in strong interactions. In addition, the 

presence of the chiral anomaly in a gauge theory may not be directly related to CP 

violation. One example is QED. It is well-known that QED is a CP-conserving theory 

even if it is chirally anomalous, and, in principle, could have a 8-term and a complex 

electron mass term. 

In this chapter, however, we show that the measure of strong CP violation does 

acquire a factor referred to as the measure of the non-triviality of the non-abelian 

gauge vacuum. It is simply due to the fact that the 8-term is a total divergence whose 

integration over space-time yields a surface term. It can be dropped unless there are 

non-trivial gauge configurations at the boundary. K in (2.4) will be shown to be the 

vacuum tunneling amplitude between different vacua characterized by the winding 

numbers 

where a semiclassical method makes most sense to deal with it. To probe the property 

of the K-factor, we proceed to consider a classically gauged linear o-model. A deriva- 

tion of a U(1)* sector of the model can be made by taking into account the fermion 
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zero modes in the instanton fields. Contrary to the conventional result [2.9, 2.111 

where K has a singularity in quark masses such that Jstrong is a linear function of the 

quark mass, our model clearly shows that K is to be explained as the mass difference 

between the U(1) particle and pions. Thus, Jstrong has a form 

In the context of the effective model, the strong CP effects can be explicitly calculated 

and various solutions to the strong CP problem will be discussed with new insights. 

This chapter is organized as follows. In sect. 2.2, we discuss a long-standing 

problem raised by Crewther [2.9, 2.101 on whether or not the instanton is consistent 

with the anomalous Ward identity (AWI). We find t,hat the AWI does not put any 

constraint on the topological susceptibility ((v2)) in QCD. The AWI is automatically 

satisfied by instanton dynamics if the singularity in the chiral limit of some fermionic 

operator is taken care of. Sect. 2.3 deals with an instanton computation of ((v2)) in the 

dilute gas approximation. The vacuum alignment equations of the quark condensates 

are derived based on the path integral formalism. Upon making alignment among 

strong CP phases, we rederive an effective CP-violating lagrangian. In sect. 2.4 we 

present a classically gauged linear a-model. In the semiclassical approximation, the 

instanton fields are integrated out. An effective one-loop potential is obtained by 

integrating over fermions in the instanton background where the fermion zero modes 

are essential to yield an explicit U(l)A symmetry breaking. The strong CP effects and 

the U(1) particle mass are calculated in the model. Sect. 2.5 devotes to discussions 

on various possible solutions to the strong CP problem. Sect. 2.6 is reserved for 

conclusions. 
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2.2 Does Instanton Satisfy the AWI? 

Let us leave our discussion on J'&,, aside for the moment and turn to a problem 

which turns out to be key to understanding both strong CP violation and the U(1) 

problem. It is pointed out long ago that instanton physics, in some ways, suffers from 

difficulties. It is well-known that the integration over the instanton size is infrared 

divergent. It is further argued by Witten [2.12] that the semiclassical method based 

on the instanton solution of Yang-Mills equation is in conflict with the most successful 
1 

idea of & expansion in QCD. The reason is that instanton effects are of order e - 7  or 

e-Nc, for g2 is of order $ in the large N, limit, which is smaller than any finite power 

of & obtained by summing Feynman diagrams. These problems, as they stand now, 

indeed reflect various defects in the instanton calculation (we will come back to these 

points in later sections). 

However, there was another type of objection initiated by Crewther [2.9] followed 

by others [2.10], which would be even more serious if it were correct. For many 

years Crewther has emphasized that the breakdown of U ( ~ ) A  symmetry by the chi- 

ral anomaly and the instanton is related to the breakdown of the SU(L) x SU(L) 

symmetry. This relation is represented by the so-called anomalous Ward identity. He 

claimed that the instanton dynamics failed to satisfy the AWI and one would still ex- 

pect the unwanted U(1)A goldstone boson. It was further shown that the topological 

susceptibility defined as 

((v2)) = / dlx (T ~FP(X) i FP(o)) (2.7) 

when the AWI is satisfied, must be equal to rn(&b) (m is the quark mass. We have 

assumed that all quarks have equal masses). As we shall see in sect. 3, ((v2)) is to be 

identified as the measure of strong CP violation. If Crewther is right, it would seem 
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that the strong CP has no direct relation with the topological vacuum structure. 

To see where the problem lies, we carefully follow a path integral derivation of the 

AWL Consider a fermion bilinear operator $LII,R with chirality $2 (a sum over flavor 

indices is understood). Its vacuum expectation value (VEV) is formally given 

where the QCD action in Euclidean space is 

and Z is the normalization factor, V is the volume of space-time. Under an infinites- 

imal U(1)" transformation 

the measure V(A, $, t,b) will change because of the chiral anomaly. However, the 

integral (2.8) will not change since (2.10) is only a matter of changing integration 

variables. (2.8) then becomes 

where the U(1)* current is J,S = $T*IYS$ and L is the number of light quarks. The 

independence of (tJLt+hR) on a (x)  implies the vanishing of the first derivative which 

yields the AWI 
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Crewther's arguments go as follows. If there is no U(1)* goldstone boson coupling to 

J;, the 1.h.s. of Eq. (2.12) vanishes. In the chiral limit, the first term of the r.h.s. 

would vanish too. Thus one has when m -, 0 

The instanton dynamics assumes that the integration over the gauge field is separated 

into a sum over gauge configurations characterized by the integer winding number v 

in (2.5)) i. e. J[dA] = xu J[dA] ,  and ($L+R) = xu J ( $ L + R ) ~ .  Eq. (2.13) would then 

imply 

By assuming the spontaneous chiral symmetry breaking caused by ( q L + ~ )  # 0, (2.14) 

cannot be satisfied if v is an integer. Moreover, by noting that 

one obtains 

which is unacceptable because the 0-dependence of (qLt,bR) would have a wrong peri- 

odicity 27rL. Along the same line, one could derive the AWI for operator t , J R + ~  and 

F P  and combine them with (2.12) to obtain 

Assuming that the first term in the r.h.s of (2.17) is of order 0(m2),  one would 

conclude that ( ( v 2 ) )  was a linear function of m, which, again, contradicts with the 

instanton computation. 
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We argue, however, that all these inconsistencies arise from dropping the first 

term of the r.h.s.of (2 .12 )  in the chiral limit or treating it as a higher order term. 

The U ( ~ ) A  fermion operator $iy5+, when the fermion fields are integrated out first 

as they should be, may observe a 5 singularity in certain gauge configurations. To 

see this, we first calculate the VEV of $iy5+ in a fixed background field A,. Upon 

the fermion integration, one has 

where 

iy5m2 iy5m2 
T ( m 2 )  = Tr = Tr 

- p 2 + m 2  - D2 + igu,, F,, + m2 * 

It is easy to check that &T(m2) r 0, i. e. T(m2)  is independent of m2.  Thus it can 

be calculated in the limit m2 + oo [2.19] 

d4p m2 
lim T ( m 2 )  = -iL J d4x t r 7 5 ( ~ u p v ~ , , ) 2  J - 

m2-+, ( 2 ~ ) ~  ( p 2  + m2)3 

and therefore 

It has a pole at rn = 0. It is clear that m($i75+)A may be finite in the limit m + 0 

if F F  is nontrivial. Performing the fermion integration for the first term of r.h.s. of 

(2 .12 ) ,  we obtain 
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imy5 1 + 75 1 ( T r  (--- p + m  2 @ + m  

Identifying the second term in (2.23) with ( $ L $ R ) ,  we find that the r. h. s. of (2.12) 

vanishes identically for any m. This is not surprising since if we had considered a global 

U(1)* transformation instead of a local one in (2.10) at the beginning, we would have 

come up with the same conclusion immediately. Similarly, (2.17) is an identity to 

be satisfied (trivially) by any dynamics which respects the basic rule of the fermion 

quantization (and of course the anomaly relation. If there were no anomaly, the 

second term of r.h.s. of (2.12) would be absent. The cancellation would be incomplete 

indicating the existence of a massless excitation coupling with J i .  Thus the chiral 

anomaly is essential to solve the U(1) problem.). 

There is a delicate problem about taking the chiral limit. One may ask what if 

the quark mass term is simply absent in the lagrangian in the first place. Crewther's 

problem seems to come back if the first term of the r. h. s. of (2.12) is not present. 

Actually this is where the puzzle comes about. In this case, however, a nonvanishing 

value of the quark condensate is not well-defined. It relates to a general feature 

of the spontaneous symmetry breaking mechanism. For example, in the d4-theory 

with spontaneous breaking of the reflection symmetry (4 + -4)) the VEV of is 

calculated 

Since the action is perfectly reflection-symmetric and 4 is an odd operator under 

reflection, we have (4) 0. Mathematically this is true because of the equal weight 



2.2 Does Instanton Satisfv the AWI? 16 

of the degenerate vacua. But what is of physical interest is a situation where one of 

the degenerate vacua is chosen as the ground state. The way to do it is to introduce 

a source term J  d 4 x J 4  into the action which breaks the symmetry explicitly. The 

degeneracy of the vacua in the absence of the source implies that (q5)J is a multi- 

valued function of J  at J  = 0 .  The VEV's of 4 crucially depends on the way that J  

tends to zero. In particular, (r#)J,o+ = -(q5)J-rO- # 0 .  

The same procedure should follow for the spontaneous chiral symmetry breaking 

in QCD. In order to define the quark condensate ( q L + ~ ) ,  one ought to add the source 

term J d 4 x ~ $ L + R ( x )  to the action. Then a U ( l ) A  transformation changes the source 

term as well 

We also need to take this change into account because ( q L + ~ )  defined by the way 

that J  + 0  would be different from the one defined by Je2'" + 0 .  By differentiating 

( q L + ~ )  with respect to cr we obtain an equation exactly the same as (2 .12)  except 

that m is replaced by J .  For the same reason as we have discussed, the r. h. s. of the 

equation is identically zero for any value J  (even in the limit J  + 0 ) .  There is no 

U ( l ) A  goldstone boson, and, in general, (2 .13) ,  (2.14) and (2.16) do not hold. 

We have shown that the AWI for the isosinglet current J,5 is trivially satisfied 

by QCD dynamics including the axial anomaly. (2.17) is an identity satisfied by 

any dynamics if the singularity of the singlet operator $irs$ in the zero mass limit 

is appropriately handled. It does not put any constraint on how the topological 

susceptibility ((v2)) should behave as a function of the quark mass. Thus, it does not, 

from the context of the field theory, rule out the instanton computation. However, 

this should not be confused with the case of the AWI's for non-singlet currents where 
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the assumption on the lowest lying resonances has to be made. For a non-singlet 

axial current J; = $+yPy5$$ (Xa's are generators of SU(L) ,  a = 1 , .  . . , L2 - I ) ,  the 

corresponding AWI reads 

It can be readily checked by integrating the fermion fields that (2.26) is satisfied in 

QCD. Unlike the singlet current in (2.18) 

because the Xa's are traceless. Assuming that pions are lowest lying resonances which 

dominate the correlation function, one obtains 

leading to F:m: = -Lrn ($$ ) .  L Can we do the same analysis for the singlet operator 

such that we may get a phenomenological value for ( ( v 2 ) )  from (2.17) without resorting 

to instanton computations? It is, however, very difficult to do that. For the axial 

singlet operator, we cannot generally assume pion dominance. In fact, mdi +yS$ does 

not couple to pions because the Xa's commute with the identity [2.11]. In addition, 

4iy5$ has pole behavior at m = 0 whose residue is F P .  It may couple to a gauge 

ghost [2.13] as well as glue balls and the U ( ~ ) A  particle. It may also exhibit a non-zero 

subtraction constant in the spectral dispersion representation [2.14], which by itself 

is not surprising in the presence of anomaly. All these factors may overlap with each 

other, causing double counting. This has made an estimation of (2.29) extremely 

difficult if not impossible. 
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In summary, the AWI and the low energy phenomenology may not put a constraint 

on the topological susceptibility. Therefore, it leaves us a task of calculating ( ( v 2 ) )  and 

the measure of strong CP violation from instanton dynamics. To avoid the infrared 

divergence, we further relate ( ( v 2 ) )  to the U(l)A particle mass in an effective theory. 

2.3 Effective CP-Violating Lagrangian in QCD 

In Sect. 2.2 we have shown that the axial singlet operator $ih$ is related to F P  in a 

fixed gauge background. When the gauge fields are integrated out, (2.21) becomes a 

relation on VEV's. It can be easily proven that such a relation is true for each flavor. 

In general, when the quark mass is complex, one derives 

where cp;  is the phase of the ith quark mass ( i  = 1, . . . , L), no sum over i is understood 

in (2.30). Now define 

($'$') I - 6; cos 8; ; ($'iy5 @) a C; sin 8; (2.32) 

where C; > 0 and 8; is the phase of the ith quark condensate. Eq. (2.30) yields 
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which is to be referred to as the vacuum alignment equation (VAE) 12.161. It can also 

be derived directly by taking vacuum expectation values on both sides of the anomaly 

relation [2.20](see a detailed discussion on the vacuum alignment in Appendix A). 

Eq. (2.33) means that if the first moment of the topological charge is non-zero in the 

presence of instanton, the quark condensate develops a phase Pi different from -9;. 

If the phase of the fermion mass y, is zero as it can always be made so by making a 

chiral rotation, the fermion condensate has a non-trivial phase Pi # 0 i. e. develops an 

imaginary part which is determined by the topological structure of the theory. This 

of course would not happen in a theory like QED where only the trivial topological 

configuration exists. We shall see that it is the combination cp; + Pi's that determine 

the CP violating amplitude in strong interactions. 

( F P )  can be calculated from instanton dynamics in the dilute gas approximation 

(DGA) 12.151. The vacuum to vacuum amplitude in the presence of the 8-term is 

given 

where we have not explicitly included the gauge fixing and the ghost terms. Inclusion 

of them must be understood when a practical computation is performed. The phase 

of the quark masses have been rotated away and 8 = OgcD + C; pi  In the DGA, 

where Z+ (2-) is the single instanton (anti-instanton) amplitude 
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with 

The factor d(Mp) in (2.36) is connected with the so-called fermion determinant, which 

introduces important physics. It was first discovered by 't Hooft [2.17] that there exists 

a zero mode of the operator in the instanton field. Thus we expect d(Mp) cx det M 

( M  is the quarks mass matrix). For small quark masses, d(Mp) is equal to [2.17,2.18] 

Combining (2.37) and (2.36) with (2.35) one obtains 

~ ( 8 )  = exp[2V cos 8mlm2. . mLK(L)] 

where K(L) is of dimension 4 - L 

The first moment ( iFP)  is calculated by taking an average of the topological charge 

over 4-space 

= -2mumd.. ~ L K ( L )  sin e (2.40) 

and the topological susceptibility is equal to 

1 d2 (b2H = v s  In ~ ( 8 )  = -2mUmds . mLK(L) cos 8. (2.41) 

Clearly, when 8 is small we have 
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The vacuum alignment in QCD can be readily made through the VAE (2.33). By 

defining the quark field, one can change the phase of the quark mass cp; and phase of 

the quark condensate Pi. However, cp; + P;'s will not change under the redefinition. 

They are only functions of e as shown in (2.33). One may choose f i  = 0 (i = 1, . - , L) 

such that the vacuum is CP-conserving 

Then the phases of the quark masses are no longer arbitrary. They are uniquely 

determined by the vacuum alignment equation (2.33), 

where we have assumed 9;'s are small and C;'s are all equal t aligned with 

the vacuum, the strong CP phase 9 must be distributed among the 8-term and the 

quark mass terms according to their determined weights. The effective CP-violating 

part of the QCD lagrangian reads 

with dQcD given in (2.44). 

It is worth emphasizing that the effective CP-violating interactions in (2.45) are 

only valid in the CP-conserving vacuum where P;'s are zero. One can alternatively 

choose a certain pattern of the phase distribution and ask in what direction the 

vacuum is to align with it. In general, the vacuum angles are not zero and should be 

determined by the VAE (2.33). For example, we can choose y; = 0 (i = 1,. . , L) such 

that ~2;' = i8F'f'. In this case, the vacuum condensates are complex 8, = - 9 9 .  
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A physical CP-violating amplitude gets contributions from both the CP-violating part 

of the lagrangian and the CP-violating part of the quark condensate. A proof of the 

equivalence of different chiral frames on strong CP effects is given in Ref. [2.21] where 

it is shown that the vacuum alignment equation (2.33) plays an essential role. 

Does the left-over @-term in the effective lagrangians play any role in computing the 

strong CP effects? So far there have been only two CP violating processes available: 

77 -) 27r and the electric dipole moment (EDM) of the neutron. The latter process 

depends on a computation on the effective CP-odd 7r-N coupling [2.23]. Both of them 

would involve in an evaluation of the commutator [Q;, FBI if the 8-term were to 

contribute 

~ ~ Q C D  
(ra7rbl @QcD FB it)) = -- ( '1 

F, r [Q:, FBI It)) ; 

~ ~ Q C D  
( r a ~ ~ ~ Q c D ~ ~ ~ ~ l )  = -- (NI  [Q:, FPI IN') (2.46) 

FiT 

where we have used the soft-pion theorem. It is obvious that [Q;, FP] = 0 since Q; is 

a non-singlet charge and thus the canonical commutation relation applies. The &term 

in our particular choice of the effective lagrangian and the vacuum can be ignored. 

However, it is emphasized that this should not be considered as a general statement. 

The whole point has to do with the vacuum alignment. What really matters is the 

correlation relation between 4;'s and P i ' s  given by (2.33). 

The above statement can be exemplified in the following. For simplicity, let us 

assume mu = md = ... = m L  = m (for a non-equal mass case, a redefinition of pion 

fields is needed. See more in Appendix A) and L = 3 where pions and 9 are all light 

pseudoscalars and the soft-pion theorem applies. The amplitude of 77 + 27r is readily 

calculated when Pi's are zero 

~ ( g  + 2 r )  = (2~01 GFO 17) = 6 (2)3 ([Q:, [Q:, [Q!. $ ~ ~ ~ + I I I )  
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In deriving (2.47)' we have dropped F P  term. In a chiral frame where &'s are zero, we 

can still drop the &term. But the CP-conserving part of the lagrangian will contribute 

because the vacuum condensates are CP violating 

where pi = - 9 8 .  Both (2.41) and (2.48) yield the same result. 

We conclude that the measure of strong CP violation is given by the topological 

susceptibility 

However, K(L)  is still an unknown factor, in addition, the integral in (2.39) is simply 

divergent for large instanton density. This is the shortcoming of all instanton compu- 

tations if one uses the dilute gas approximation (DGA). More seriously, as we shall 

see below, K(L)  is to be related to the mass of the U ( ~ ) A  particle. If K(L)  is of order 

e-Nc as argued by Witten [2.12], it would be in conflict with Witten and Veneziano's 

solution to the ( i ( l ) ~  problem [2.13] in which the mass of U ( ~ ) A  particle is of O(&). 

This suggests that we should not take the expression for K(L) in (2.39) too seriously 

since it is divergent after all. Furthermore, the DGA may not be valid in the IR 

region of the QCD theory. It has been suggested in Ref. [2.24] that the instanton 

liquid can in principle avoid the IR problem, and gives rise to a description on the 

U(1)A particle mass consistent with Witten and Veneziano's scenario. Nevertheless, 

some main features of the instanton computation do not depend on the detail of the 



2.4 Effective Chiral Model 2 4 

topological configurations. For instance, those mass factors appearing in (2.49) will 

not change since they are the direct result of Atiyah-Singer index theorem [2.25] on 

the fermion zero modes. 

2.4 Effective Chiral Model 

2.4.1 The Model and Quantum Corrections 

We consider an effective chiral theory where meson degrees of freedom are explicitly 

introduced. The virtue of the model is that it reflects all flavor symmetries in strong 

interactions as described by QCD and the mesons as independent field excitations 

couple to fermions through Yukawa couplings. Unlike a conventional effective theory 

[2.26] in which the nucleons are involved, the model that we will be discussing contains 

quarks, gluons and mesons. It is a linear version of the gauged sigma model suggested 

by Georgi and Manohar [2.27], which describes strong interactions in the intermediate 

energy region between the scale of the chiral symmetry breaking and the scale of the 

quark confinement. 

The model reads 

where 4 is a complex L x L matrix, &(44t) is the most general form of a potential 

invariant under U ( L )  x U(L) (renormalizable) 



1 1 
Vm(4, 4') = --rneixTr$ - -me-lxTrdt. 

4 4 
(2.52) 

(2.50) needs some explanations. Under U(L)L x U(L)R, the quark fields as well as 

the complex meson field transform as 

In the absence of Vm, L is invariant classically under (2.53) but broken down to 

SU(L)L x SU(L)R x U ( ~ ) V  by the chiral anomaly. Vm, replacing the quark mass (m 

now is of dimension 3)) serves as an explicit symmetry breaking and must be treated 

as a perturbation. f is the Yukawa coupling, chosen to be real by redefining 4. Under 

U(l)A transformation 

the 0-term and Vm change as 0 -+ 0 - 2Lw, x - x + 2w. But 6 = 0 + LX remains 

unchanged. Except for the meson sector, the gauge interaction in (2.50) looks identical 

to QCD. One may wonder if we are double counting the degrees of freedom. It is 

explained in [2.27] that these quarks and gluons are not the same as in QCD. In 

particular, quarks are supposed to acquire constituent masses about 360MeV, which 

is huge compared to the current mass in QCD. The gauge coupling g, between quarks 

and gluons in the effective theory is found to be 
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much less than its QCD counterpart. This may explain why the nonrelativistic quark 

model works since the quarks inside a proton could be treated as weakly interacting 

objects. 

However, the drawback of the model is that it has a very serious U(1) problem. 

Indeed, if one calculates the physical spectrum from Kj + V,, one finds L2 would-be 

goldstone modes. In addition, the nontrivial topological structure of the theory has 

been totally overlooked. The classical excitations such as instantons have not been 

accounted for in the model, which, according to the original idea of 't Hooft [2.1], are 

crucial to solving the U(1) problem. 

We therefore consider the quantum correction to the lagrangian (2.50) in the 

presence of non-trivial classical gauge fields known as instantons. We argue that the 

effective gauge coupling a, in (2.55) is obtained only if those classical extrema to the 

action have been effectively summed over by semiclassical methods. We find that 

the l-loop quantum fluctuations around instantons lead to a dramatic change in the 

U(l)A sector of the model. The U(1) particle acquires an extra mass from the vacuum 

tunneling effects, which, in turn, results in the so-called strong CP problem. 

The effective action of the meson field is calculated as 

where 

and the quantum correction is given 
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The calculation of z[$, gt] in the instanton background follows the standard derivation 

of the vacuum-to-vacuum amplitude as in [2.17] 

where 

If only the effective potential is of concern, 4 and in M+ are to be taken as constant 

fields. The fermion determinant, as usual, needs special treatment: 

Det M+ = ~ e t ( ~ ) ~ + D e t ' M + .  (2.61) 

Det(') denotes contributions from the subspace of zero modes of P. In a single 

instanton field, p has a zero mode with chirality -1 (r5 = -1) [2.19]. Thus we have 

f DetcO)M+ = det + dt) + 2(4 - dt)(-1) = det(f mt) I 
where det only acts upon flavor indices. The prime in Det'M* reminds us of excluding 

zero modes from the eigenvalue product. Since [p, r5] # 0, M$ cannot be diagonalized 

in the basis of eigenvectors of q. The nonvanishing eigenvalues always appear in pair, 

i. e. if pvn = Xnvn where An # 0, then &5~5(~n = -% pvn = -AnT5(Pn, namely both 

An and -An are eigenvalues of p. In addition, 75 takes 9, to 9-,. Therefore 

(iXn + f ( 4  + 4t) 
Det tM+ = det n 

A.>O f (4 - mt) -iXn + f (4 + 8) 

= det n (A: + f 2q5@) = ~ e t " ' ~ ( -  p2 + f 2q5$t). (2.62) 
An>O 
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Now we are ready to make the DGA. We need to further assume a weak-field approx- 

imation of 4 and 4t. This can be justified since 4 and q5t fluctuate about their VEV's, 

which are about 300MeV. The large fluctuations are exponentially suppressed by 

exp(-Xllq514). In the DGA 

where 

det [1.34p (1  + f In f 2q5dt + . - .)I 
Z VK (L)eie det( f 4') (2.64) 

and K(L)  is given in (2.39). 

Combining (2.63) with (2.58)) and noticing that lnDet(-d2 + f2&$t) contains 

terms which can be absorbed into the tree-level lagrangian by redefinition of bare 

parameters, we obtain the following effective lagrangian 

where 

h ( d ,  4') = -K(L) fLeie det dt - K(L) f L  e-" det 4 (2.66) 

Several remarks on (2.65) are in order. The presence of Q in (2.65) is the direct result 

of fermion zero modes in the instanton field. It is invariant under SU(L)L x SU(L)R x 
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U(l)v but not invariant under U(1)*. Under U(l)* rotation (2.54), eaedet4 + 

ei(e-2wL) det 4. Thus Vk takes over the role of the 6-term and respects the anomaly 

relation. Again, 8 = 6 + X L  remains invariant. The prototype of Vk was suggested 

long time ago by several authors [2.28] and re-discussed by t' Hooft [2.29] in the 

context of instanton. It is different from a model originally proposed by Di Vecchia 

[2.32] and recently analyzed in Ref. [2.8], although physical contents of both models 

may be similar. The gauge interactions between quarks and gluons are still present in 

(2.65) as required in the nonrelativistic quark model. However, they differ from QCD 

in that the gauge coupling g, has a smaller value, and most importantly, the gauge 

field A, now possesses a trivial topology at infinity. The gauge interaction sector 

in (2.65) is very analogous to QED: the fermion chiral anomaly still exists, but any 

6-term J d 4 2 6 ~ , ~ 8  in the action would be simply a vanishing surface term and can be 

dropped. 

2.4.2 U ( l )  Particle Mass and Strong CP Violation 

We would like to discuss the physical spectrum of the model (2.65) (this part has 

been worked out in Ref. [2.29]) and show how the strong CP effects can be calculated 

effectively. To simplify the problem, we take L = 2 and u and d quarks have equal 

masses. In this case, q is identified as the U(1) particle and there will not be a mixing 

between T O  and q. 

The complex meson field 4 contains eight particle excitations a, q, T, and a, 

(a = 1'2'3): 

where 7 ' v 2 l 3  are the Pauli matrices. In terms of physical fields, b, V, and & can be 
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rewritten as 

1 
h ( $ , s t )  = - - ~ f ~ ( o ' - q ~  -Z2+ri2)cos0-  K ( q -  Z.?i)sin0 

2 

Assuming, for convenience, 

we get, by taking the extremum of Vo + V, + h with respect to v and p 

and 

Eq. (2.73) plays a role of the vacuum alignment in the effective theory. If we take 

9 = 0 as we wish, (2.73) implies a consistency constraint on x and 8: They are 

not separately independent parameters. They can expressed in terms of the physical 

parameter 8 = 8 + 2% as 

sinx 2 - 
KfZv  

sin 8 
m + 2K f2v 

m 
sine r - sin 8 

m t 2 K f 2 v  

where we have assumed that sin x is very small (< < 1). 
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Rewriting Leff in terms of the shifted field 4 + (4) + 4, we get 

1 2 X X2vd. (oa' + q'i') - -(02 + q2 + G2 + +12)2 - -(oZ + - L(z x P)2 
8 2 2 

where the meson mass matrices are given 

hlv2 + cos x + 2K f 2 ~ 0 ~ 8  f K f sin 8 
M:, = ( rn (2.77) 

LKf2sin8 2 - cos x 
The quark acquires a large constituent mass 

It is interesting to note that m~ arises from three parts: the spontaneous chiral 

symmetry breaking (from &), the explicit chiral symmetry breaking (from Vm) and the 

instanton induced symmetry breaking (from K). The instanton does spontaneously 

break chiral symmetry SIY(L)~ x SU(L)R [2.30]. The mass spectrum of mesonic states 

can be read off from diagonalizing (2.77). The mixing probability is proportional to 

( K  f sin 8)2 = m2 sin2 x which is of high orders thus hardly affects the physical masses 

m 2 m mi  = - cos x + 2K f 2cos8, m, = - cos X ;  
v v 

2 2 m m, =Xlv +-cosx, m: = X2v2 + - cos x + 2K f 2  cos 8. 
v v 

(2.79) 

(2.79) clearly shows how the instanton induced Vk leads to a mass splitting between 

pions and the U(1) particle q. When 0 thus 0 is small, 
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and in the chiral limit m -+ 0, m: -+ 0 but mi -+ 2Kf2. We conclude that the U(1) 

problem is solved in the framework of the effective theory if 2K f 2  is big enough. 

The CP-violating effects originate from the mixing between the scalar and pseu- 

doscalars eventhough the mixing is negligible in computing the meson masses. To 

diagonalize the quadratic terms in (2.76), we define the physical meson fields (the 

primed fields) 

u = u ' c o s y + q s i n y  , q=-uts iny+qcosy;  

-, Z = Z'cos y'+ ?sin y' , n = -Lisin y' + iicos y' 

such that the off-diagonal elements in (2.77) vanish. The mixing angles y and y' are 

determined 

which meet the criteria that the mixing and thus the strong CP violation must disap- 

pear as m: -+ 0 or mi = m: or # = 0. In terms of the physical fields, the CP-violating 

part of the effective potential is identified (for simplicity we drop the prime notations) 

X l  v VcP = - sin y q(u2 + q2 + Z2 + ii2) + X2v cos y' sin(y - y')Li. (qZ - air') + 
2 

X2v sin y cos(y - y')? (06 + r/?) (2.85) 

and the Yukawa coupling between quarks and mesons contains CP-violating part too 

The Feynman rules for CP-violating vertices and the typical CP-violating qq -+ qq 

amplitude are shown in Figure 2.1. 
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Figure 2.1: Feynman rules for q3 and qa2 couplings. The CP-violating qq + qq 
scattering. We have assumed that m: > m:, m: > m: and v = 2F,. 
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The amplitude of 77 + 27r decays reads from (2.85) 

where F, = :. It is worth noting that (2.87) does not have a direct comparison with 

the QCD calculation (2.47) and (2.48) where we worked in the case L = 3 and 7 is 

one of the would-be goldstone bosons. In (2.87), however, 17 has been referred to as 

the U(1) particle (the isosinglet). 

2.4.3 EDM for Constituent Quark 

The CP-violating Yukawa coupling in (2.86) results in an important strong CP effect: 

the EDM of the constituent quark. It can be examined by computing the effective 

interaction of the type 

when an external electromagnetic field kpm is introduced. The coefficient ~ E D M  is 

defined as the EDM of the quark. Since (2.88) is not invariant under chiral rotation, 

the EDM can be converted into the magnetic moment if the fermion field is chiral 

(the chirality flip). When rng # 0, we have to check the phase of the constituent 

quark mass rng since only the phase difference between the quark mass and the 

effective interaction makes sense. In our convention, rng is real at tree-level. At 

higher level, the mass acquires infinite renormalization. The renormalizability of our 

model guarantees that the renormalized mass will not develop a y5-dependent part. 

However, rng may acquire a finite renormalization which may contain a y5-part at 

high orders. But that phase would be too small to cancel (2.88). 
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In the background of EM field, the charged quarks and pions coupling to Azm 

through the covariant derivative DEm 

where 

DL; = d,, + eQAEm (2.90) 

and Q is the electric charge of the particle. Following Schwinger's formalism [2.33] on 

the derivation of the anomalous magnet moment of electron, we obtain the effective 

interactions 

where SA,'s and S$'S are pion and quark propagators in the background of ALm, 

Because f << 1, we can expand these propagators perturbatively in e 
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where the ellipses denote 0(e2).  The extraction of the effective interaction of (2.88) 

is done with the aid of Feynman diagrams in Fig. 2.2. The contributions from the 

second term in (2.91) correspond to Fig. 2.2(a), the third to Fig. 2.2(b) and the fourth 

to Fig. 2.2(c). Summing them up, we get 

d e f 2  
&DM = PEDM = 5 sin 27'mp [- Z + mb ln -1 . (2.95) 

3 m 6  - mz (m; - m;)2 m: 

A detailed computation can be found in Appendix B. The EDM of neutron is obtained 

by applying the SU(6) quark model, 

neutron - 4 d 1 e f 2  
PEDM - -BEDM - ~ P H D M  2mpm 

m6 sin 27' In - 
3 m: 

where we have used m$ << mz and 7' is given in (2.84). 

2.5 Solutions to Strong CP Problem 

In above, we have studied extensively the measure of strong CP violation and its 

physical effects from the viewpoint of QCD and of an effective chiral theory. Jstrong 

is a product of quark masses, e and the instanton amplitude Ii'(L). It should vanish 

when any one of them vanishes. The most stringent experimental constraint on Jstrong 

comes from the EDM of neutron, which has been measured a t  a very high precision 

[2.34] 

&$p < 1.2 x 1 0 - ~ ~ e c m .  (2.97) 

this implies 

At a typical hadron energy scale, one would suspect JStmng z AdcD z - 
I O - ~ G ~ V ~ ,  enormously larger than the upper limit. This is so-called strong CP 
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Figure 2.2: Diagrammatic representation of Schwinger's formulation on the EDM for 
the constituent quark. 
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problem. It has puzzled us for more than a decade, ever since the instanton was 

discovered. 

2.5.1 mu = 0 Scenario 

When mu = 0 thus Ztrong = 0, the strong CP problem is most neatly and elegantly 

solved. In the meantime, the U(l) problem can be solved by instanton without re- 

sorting to other assumptions. There is an additional U(l)A symmetry associated with 

u quark. mu = 0, unlike setting 8 = 0, does increase the symmetry of the system 

and thus does not violate 't Hooft's naturalness principle. However, mu = 0 seems to 

contradict with phenomenology where mrP 21 5 - lOMeV [2.35]. 

However, there is a loophole in this argument r2.361. The instanton explicitly 

breaks U(l)A, as well as U(1): associated with the massless u quark if all other light 

quarks are massive. The instanton is acting as a flavor-changing force, as a result, u 

quark acquires a radiative mass from other flavors! This is again due to  the existence 

of the zero modes of JJ in the nontrivial instanton field. In the presence of a massless 

fermion, the vacuum tunneling effect is suppressed unless we insert an operator that 

contains enough grassmann fields to eliminate all the zero modes. In the v = f 1 

sector, the only operator which survives is iiu. To see how it works, let's recall the 

partition function Z(8) in (2.38). (2121) is calculated by taking the average over space- 

time 

(GU) ins t ant on V V dm, 

where we have rotated 8 to zero as we can when mu = 0. (2.99) implies that U(1): 

symmetry is broken by instanton. Of course we would not have the goldstone boson 
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since it is referred to as an explicit breaking. We should not confuse the condensate 

(iiu) caused by the spontaneous symmetry breaking with ( i i ~ ) ~ ~ ~ ~ ~ ~ ~ .  The former 

can be non-zero even if all quarks are massless while the latter vanishes if d quark 

mass is zero. The instanton induced u quark mass can be roughly estimated [2.31] in 

the case L = 2 where K(2) is related to m:, 

where we take p z (:ApCD)-l, K = -&(m: - m:) and j = 2. minStmton u must 

be viewed as an explicit mass because of its proportionality to md. What seems 

remarkable is that the order of magnitude of mimtmton is consistent with the phe- 

nomenological value. The massless u quark is still the most favorable solution to the 

strong CP problem. 

2.5.2 Peccei-Quinn Symmetry 

Another possibility of rendering ZtrOng = 0 is that # = 0 for some dynamical reason. 

This is realized if the phase of the quark masses OQFD = z;~; is equal to -OgcD. 

A decade ago, Peccei and Quinn [2.37] suggested that the strong CP problem may 

be naturally solved if one or more quarks acquire current mass entirely through the 

Higgs mechanism where the lagrangian of quarks and scalars exhibits an adjoint chiral 

symmetry: the Peccei- Quinn symmetry. 

For simplicity, let us examine a toy model of a single quark 
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where 

(2.101) is invariant under the PQ symmetry 

The PQ symmetry is broken at the quantum level by the chiral anomaly, and effec- 

tively 

Choosing a = f yields = 0. 

The effective potential of the scalar fields can be calculated in a similar way to 

(2.65) 

1 
I/.*($, C) = -p24$* t - K f 'e-" det 4' - K f eiedet4 (2.105) 

where K is the instanton amplitude. The last two terms in the effective potential 

breaks the PQ symmetry. The VEV's of 4 and 4' are found to be 

and 

Thus the fermion mass reads from the Yukawa interaction rn = fve-" and 



2.6 Summary 

The axion [2.38] mass is readily derived from (2.105) by diagonalizing the quadratic 

terms 

Unfortunately, we have not been able to discover this particle yet so far. 

2.6 Summary 

We have studied the measure of CP violation in strong interactions. It arises from 

the nontrivial topological structure of Yang-Mills fields, a non-zero vacuum angle 6 as 

well as nonvanishing quark current masses. The instanton dynamics makes most sense 

in dealing with the topological gauge configurations where the semiclassical method 

applies. It has been shown that the instanton dynamics, as a consistent field theory, 

automatically satisfies the so-called anomalous Ward identity. Crewther's original 

complaints on the topological susceptibility and 9-periodicity of the fermion operator 

are a result of inconsistently handling the singularities in some fermion operators. 

We conclude that QCD theory itself does not put any constraint on the instanton 

computation. 

In the presence of the chiral anomaly, there is no would-be U ( ~ ) A  goldstone par- 

ticle. By studying an effective chiral theory, we find that the instanton leads to an 

explicit U ( ~ ) A  symmetry breaking. If the instanton is to solve the U(l) problem, the 

measure of the strong CP violation is connected to the mass of the U(l)  particle. It 

may be natural to think that strong CP problem is the side effect of the U(l) problem 

and both problems cannot be solved simultaneously in the context of QCD. 

However, we point out that the massless u quark scenario to solve the strong CP 

problem may not be such a silly idea. The u quark may acquire a mass from the d 



quark through the instanton interaction in which the fermion zero modes plays an 

essential role. In any case, with the failure so far to observe axions experimentally, 

the strong CP problem is wide open to new mechanisms [2.39]. 



Chapter 3 

Anomalous Discrete Symmetry 

3.1 Domain Wall Problem 

One of the most significant applications of cosmological arguments to fundamental 

particle physics is the observation by Kobsarev, Okun and Zeldovich (KOZ) [3.1] that 

spontaneously broken discrete symmetry, which may be an attractive possibility in 

building models of particle physics, can lead to grave difficulties in the context of cos- 

mology. The reason is the following. Spontaneously broken discrete symmetry implies 

the existence of several degenerate ground states or vacua. At high temperature, the 

symmetry is restored as shown by finite temperature field theory. As the tempera- 

ture drops in an expanding universe (the big bang), the symmetry is broken. But 

this symmetry breaking occurs independently in all causally unconnected regions of 

the universe, and therefore in each of such regions at the time of symmetry-breaking 

phase transition, different choices of the vacuum configurations can arise. Adjacent 

domains filled by different vacua are separated by domain walls. 

The energy per unit area of a domain wall is set by a microphysical parameter; call 
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it c (as in the case of ferromagnetic domain walls). Then the energy in the domain 

wall will be at least of order R2c, where R is the radius of the universe, corresponding 

to an energy density pd, x c/R. This decrease in energy density is much slower than 

ordinary radiation or matter. Thus stable domain walls will quickly come to dominate 

the mass of the universe, and continue to do so. 

This implies that a theory with spontaneous breaking of a discrete symmetry 

is in gross disagreement with cosmological observation. This conclusion is rather 

disappointing, since spontaneously broken symmetries are an important ingredient in 

many interesting models of particle physics. It would be nice if we could find a way 

to save some of those models. 

Recently, Preskill, Trivedi, Wilczek and Wise (PTWW) [3.2] have reported an 

interesting scenario to solve the cosmological domain wall problem. They have pointed 

out that because some discrete symmetry can be anomalous due to the QCD axial 

anomaly and instantons, a non-perturbative communication between the Higgs sector 

and the QCD sector leads to a tiny but cosmologically significant splitting of the 

vacuum degeneracy. Incorporating PTWW's idea, Krauss and Rey [3.3] have shown 

that certain models of spontaneous CP violation can in principle avoid the domain 

wall problem provided that CP is slightly broken by O,,, in strong interactions. In this 

chapter, we examine the idea by computing the effective potential for Higgs bosons in 

the presence of QCD chiral anomaly. We show that the instanton dynamics for light 

quarks does break Z2 symmetry of the two-doublet standard model. However, it may 

also lead to a spontaneous CP symmetry breaking. 
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3.2 A Simple Model 

To illustrate how the anomalous discrete symmetry arises, let us first consider a 

simple model with spontaneous CP violation. The prototype of this model was first 

considered by T. D. Lee [3.4]. The lagrangian is 

where the Higgs field cp belongs to a real representation. The minimum of the potential 

corresponds to (9) = f 7 and CP symmetry is spontaneously broken. It was first 

pointed out by KOZ that the degeneracy of CP conjugate vacua (cp) = 7 and (cp) = -7 

results in a serious domain wall problem in cosmology [3.1]. However, the situation is 

quite different if the fermion field 2C, suffers from non-abelian gauge interactions. In 

that case, (3.1) can be extended to include, for example, color interactions (cp is of 

course colorless) 

where F P  = &r,,, FWFP". Though CP is explicitly broken by the 8-term if 

8 # 0, n, the domain wall problem persists at the tree level because the vacua (9) = f 7 

are still degenerate. However, we show that the degeneracy of the vacua will be lifted 

by taking into account the chiral anomaly or the instanton effect. 

The effective action of the Higgs field is calculated as 

where 
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and the quantum correction is given 

The calculation of i [ c p ]  in the instanton field follows the standard semiclassical ap- 

proximation method as illustrated in, e. g. , Ref.[3.5] 

where 

and v st 

MA = -02 -2F 

Mgh = -02 

M+ = p + m - i f y s p  

,ands for the winding number of the non-trivial topological gauge configuration. 

If the effective potential is of concern, we can take c p  in M* as a constant field. The 

new physics comes from the zero modes of the fermion determinant in the instanton 

field A,,. We factorize detM* as follows 

detM+ = det(O)M*detf~* (3.8) 

where det(O) denotes contributions from the subspace of zero modes of p. According 

to the index theorem [3.6], p has a zero mode with chirality -1 ( y5  = -1) in a single 

instanton field [3.7]. Thus we have 

det(0)ML = m + i f p .  (3.9) 

The prime in detfMq reminds us to exclude zero modes from the eigenvalue product. 

Since [JD,y5] # 0, M* cannot be diagonalized in the basis of eigenvectors of p. The 
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non-vanishing eigenvalues of P always appear in pairs, i. e. if & ,  = Xnpn where 
I 

Xn # 0 ,  then &5vn = - 7 5  p p n  = -Xny5cpn, namely both An and - A n  are eigenvalues 

of p. In addition, 7 5  takes cpn to cp- , .  Therefore 

i X n + m  - i f q  
detlM, = n det ( = n (Xi + m2 + f 2192)  

An>O - i f v  -iXn + m 

i. e. det'M+ is a function of v2 which does not break the discrete symmetry. It is to be 

emphasized that the above analysis does not depend on the details of the instanton 

dynamics. It is the result of using the index theorem, which represents the general 

feature of the chiral anomaly in a gauge theory. 

Though we could proceed to analyze in general the effective potential based on 

Eqs. (3.9)  and (3.10),  we still would like to obtain the concrete form of Kfr in the 

dilute gas approximation ( D G A )  [3.8]. In the DGA, 

where 

and 

NZ-1 p is the instanton density, CNc = &, Nc is the number of colors. In deriving 

(3.12),  we have assumed that m $ f (9) is small compared to AgcD. Noticing that 

lndet(-d2 + m 2  + f 2 v 2 )  contains terms which can be absorbed into the tree level 
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lagrangian by redefining X2 and 7, we obtain the following effective potential (strictly 

speaking in the large Nc limit) 

l/,jf = X 2 ( q 2  - r12)2 + KeiB(m + if 9) + Ke-"(m - i fq) .  (3.14) 

Clearly, the last two terms (we shall call them the K-term) explicitly break CP 

symmetry when 8 # 0, for they are not invariant under TqT-' = -9. The split in 

the energy density between the CP conjugate vacua (9) = q and (9) = -7 is given 

Therefore, domain walls created at the scale (9) will feel an energy difference between 

the two sides of the wall. The false vacuum at some space point will begin to decay 

towards the true vacuum. 

3.3 Two-Higgs-Doublet Model 

Another perhaps more interesting example to observe the anomalous discrete sym- 

metry is to consider the two Higgs doublets model, which is the simplest allowed 

extension of the standard model. It has been known for many years that experimen- 

tally there are no flavor-changing neutral current (FCNC) weak interactions, none 

with anything like the strength of the familiar charged-current weak interactions. 

The observed suppression of the FCNC is so dramatic numerically that one finds it 

hard to believe that it comes about because the parameters of the theory just happen 

to take certain values. Glashow and Weinberg [3.9] propose that the conservation 

of flavors by the neutral currents is natural, and that it follows from the symmetry 

structure of the theory, and does not depend on the values taken by the parameters 

of the theory. 
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The condition for a natural neutral flavor conservation (NFC) puts stringent re- 

strictions on the system of Higgs bosons. It requires a certain form of the Yukawa 

couplings. Generally the Yukawa interactions that respect SU(2) x U(1) symmetry 

have the following terms 

where each Higgs boson 4; (i = 1,2) can couple with both the charge $ quarks (UR) 

and the charge -5  quarks (DR), fb and fb are 3 x 3 Yukawa coupling matrices in 
- 

flavor space, d2 = iu2&. When the Higgs bosons develop the vacuum expectation 

values, the quarks obtain the mass matrices 

It is clear that when Mu and MD are diagonalized by redefining the quark fields 

in flavor indices, the Yukawa coupling matrices are not in general diagonalized. A 

neutral Higgs boson H may have off-diagonal interactions such as d + H -+ s, then 

its exchange can produce an effective A S  = 2 Fermi interaction 

which may result in a contradiction with the observed small K,O-Kg mass difference. 

Therefore, under the requirement of naturalness, it is essential that each Higgs boson 

only couples with one type quarks, either UR or DR, but not both. 

Such an arrangement can be most naturally implemented by imposing some addi- 

tional symmetries. One way is to have a global symmetry, for instance, an additional 

U(1) symmetry under which UR and transform non-trivially but DR and d2 do not. 

It, however, turns out that when a continuous symmetry such as a U(1) is sponta- 

neously broken, it is always accompanied with a massless physical excitation (known 
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as the axion on general grounds) which is nowhere to be found so far. The other way, 

as we shall consider below, is to impose a Z2 discrete symmetry under which 

The most general, renormalizable Higgs potential and Yukawa interactions which 

respect (3.19) read 

and 

where a natural neutral flavor conservation is achieved at the tree level since the 

Yukawa coupling matrices will be diagonal in the basis in which the mass matrices 

are diagonal. The hermicity of Vo requires coefficients in (3.20) except for X to be 

real. We shall examine the CP violation (SCPV) in this model in the next section. 

We first choose fv and fD to be real, OQ,, = 0 in the QCD sector and a real but 

positive X (the reason for it will be stated in the next section) in order to study a 

CP-conserving theory. When 41 and 4 2  acquire VEV's, Z2 symmetry in (3.19) is 

spontaneously broken, which poses dangers for cosmology. PTWW have argued that 

when the non-perturbative QCD effect turns on, it breaks Z2 symmetry and solves 

the domain wall problem. 

To see explicitly how PTWW's idea works, we attempt to compute the I(-term in 

the effective potential following the same procedure as in the previous model. We will 

first consider one generation of light quarks consisting of u and d (mu, md << AecD) to 
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simplify the problem. The Higgs coupling to light quarks can be rewritten in a form 

where 

Thus it is easy to identify 

where det M+ runs over color, spinor as well as flavor indices, 

[ det Ht  = fu  fdq$$2 for a single instanton 
d e t ( O ) ~ &  = 

( det H = fu  f d r j f d l  for a single anti-instanton 

and 

where 

It is clear that det1M+ can be absorbed into &(dl, $2) in (3.20) but d e t ( O ) ~ +  con- 

stitutes the so-called the K-term which breaks Z2 symmetry. The effective potential 

reads 
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An mstanton vertex 

An instanton vertex 

Figure 3.1: The instanton vertex and the instanton-induced coupling between 91 and 

9 2 -  
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K is of dimension 2. The derivation of the K-term is illustrated in terms of the 

Feynman diagrammatics in Figure. 3.1. 

When X > 0, it can be readily shown that the Z2-related (vl, v2) and (vl, -02) 

(where vl and v2 are real) are local minima of V,jj(&, 42). However, they are not 

degenerate because of the K-term. The difference in the energy density between these 

two vacua (vl, v2) and (vl, -v2) is given by 

K is the vacuum-to-vacuum amplitude in the instanton field. It is also the amplitude 

of the axial U(1) symmetry breaking in QCD needed to solve the U(1) problem. It 

has been estimated in [3.11] in connection with the U(1) particle mass 

2 I- - (mi - m,). (3.30) 

Thus AE,,, ct 10-'GeV4, which is tiny but significant enough to solve the 

domain wall problem associated with Z2 symmetry [3.2]. 

The main feature of the cosmological argument is the following. The symmetry 

breaking sets in at the weak scale, and the energy barrier between the nearly degen- 

erate vacua are generically also of this magnitude. The energy difference between the 

vacua, on the contrary, is set by the strong scale - and actually, as we have seen, fur- 

ther suppressed by light quark masses. Furthermore, this energy difference depends 

sharply on the temperature [3.12] and vanishes rapidly as this temperature exceeds 

the strong scale, thus we expect that at the temperatures where the symmetry is 

spontaneously broken, the energy difference has negligible dynamical import. At and 

below these temperatures, until the strong interactions kick in, the cosmology will 

develop as if it were heading towards a domain-wall dominated universe. However, 
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at the strong scale the energy difference will cease to be negligible. It creates a pres- 

sure difference driving the domain walls into the false vacuum regions, and ultimately 

squeezing them out. 

3.4 Induced Weak CP Violation 

3.4.1 The CP-Violat ing Phase 

When X < 0, it turns out that neither (vl, v2) nor (vl, -v2) is a minimum. In fact, they 

are both local maxima of V,jj. The true vacuum configuration, denoted by (vl, v2eiQ), 

which minimizes the effective potential acquires a non-trivial phase a (a # 0, T ) .  The 

domain wall problem associated with Z2 is hence automatically resolved since the Z2- 

related configuration (vl, -v2eiQ) is no longer the minimum of the effective potential. 

However, what interests us is that the existence of the relative phase between (y l )  

and (y2) breaks CP symmetry in weak interactions I3.131. To see how it is possible, 

we calculate the a-dependent terms in the effective potential 

By minimizing V,jj(a) with respect to a one obtains 

cosa = - 
Kmumd t2 i f X < O  
414v4 (1 + t2)2 

where v = 4-, which is 250 GeV (the electroweak scale) and t = 2. Typically, 

t takes values from to O(1). As long as the scalar fields couple only weakly to 

themselves, we must have IXI << 1, say [XI  - Then cos cr in (3.32) is estimated 

lo-* to 10-12. Contrary to one's suspicion that Z2 symmetry in the two-doublet 

model actually forbids a CP violation, it can occur when Z2 is explicitly broken by 
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the quantum effects. The strength of the effect is dynamically determined by the 

instanton amplitude factor K. 

Does this new source of CP violation lead to any observable effects in electroweak 

interactions? Obviously, the phases of quark masses and Yukawa couplings originating 

from SCPV can be rotated away by making appropriate hypercharge transformation. 

Thus the CP-breaking Cabbibo-Kobayashi-Maskawa (CKM) matrix does not arise 

in this model. The CP nonconservation is entirely due to neutral Higgs boson ex- 

changes, i.e. through the mixing between scalar fields and pseudoscalar fields while 

the mixing probability is proportional to sin a cos cr which is about to 10-12. 

All CP-violating processes are to be suppressed by this factor. Its contribution to 

KL + 27r can be neglected since this process involves charged flavor changing. The 

electric dipole moment of the neutron (NEDM) will receive suppression factors, a lo-' 

from Higgs propagators if Higgs bosons are of lOOGeV and a lo-' to 10-l2 from the 

mixings. Thus the NEDM is estimated to be to 10-32e-cm, which can be six 

orders of magnitude larger than the standard model prediction based on the CKM 

mechanism (which is ~ O - ~ ~ e - c m )  and may be detectable in future experimental mea- 

surements. The current experimental upper limit on the NEDM is about 10-26e-cm, 

two more orders of magnitude precision in experiment is required to test this model. 

It may not be sufficient to generate the electroweak baryogenesis based on the weak 

phase transition since the instanton effect is greatly suppressed at temperature char- 

acteristic of the weak scale [3.14]. Even though there are several ways of enhancing 

the CP violating effects by, for example, allowing a larger difference between vl and 

v2, or having nearly degenerate masses for Higgs bosons, it would seem unnatural to 

accommodate them in the standard model from a theoretical viewpoint. 
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3.4.2 Origin and Generalization 

There are many theoretical questions raised regarding this model that we intend to 

address below. What is the origin of this new source of weak CP violation? Is it a 

spontaneous CP symmetry breaking so that the Z2 domain wall problem is replaced 

by a CP domain wall problem? Is there a strong CP problem in this model with the 

appearance of a non-zero a? 

To answer these questions, we must first understand what has happened when X 

changes sign. In the presence of strong interactions, the phase of the scalar coupling 

X is not a physical parameter. One can always make an appropriate hypercharge 

transformation (or a redefinition of the related fields) 

where p is the phase of X (A = IXle'P), such that 

without changing any other terms in the weak interaction sector. Therefore, only the 

absolute value of X is defined as the physical couping constant. A positive X (where 

,8 = 0) and a negative X (where p = n) do not make any physical distinctions - 
they are simply equivalent. CP symmetry is conserved for any value of /3, as is well 

known. However, when the quarks suffer from the non-abelian strong interactions, 

the transformation in (3.33) induces a change in the strong interaction sector, more 

specifically, in the 0 term 
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where nc is the number of quark generations. This can be also seen without making 

the transformation in (3.33). One can keep the original phase of A and compute the 

vacuum configuration by minimizing &($I, $2). The VEV at the classical level is 

( 4 ,  v2eiPI2) and the quark mass matrices are 

Rotate the down-type quark fields to get rid of eiPI2, then the 0 term becomes 

(0 + Y ) F ~ .  Hence, if initially 0 = 0 and @ = T (where A is negative) as ear- 

lier, at  the classical level, one has an effective 0 term (?)Fk', which rnazimally 

violate CP symmetry in strong interactions if nc = 1 or 3. Of course, (vl, v2einI2) is 

not CP-violating in the weak sector since the mixing probability is proportional to 

cos $ sin $ = 0. Only when the quantum effects or the instanton effects are taken into 

account, the weak CP violation arises from balancing between the induced K-term 

and the A-term in the potential, and the VEV's develop a relative phase a slightly 

different from 

where cos a sin a # 0. Therefore, the weak CP violation is possible only when CP is 

explicitly broken in the strong interactions. Since both a cr and a -a are degenerate 

solutions as cosa in (3.32) is an even function of a, the weak CP violation in this 

model should be referred to as a spontaneous symmetry breaking, which may also 

cause a domain wall problem in cosmology. 

To further clarify these issues, we need to extend our discussion to a more realistic 

case where there may be any number of generations, the Yukawa coupling matrices fv 

and fD can be complex to incorporate an explicit CP violation in the manner of CKM 



3.4 Induced Weak CP Violation 58 

mechanism. The phase of det fu and det fD can be rotated away by redefining the 

right-handed quark fields while 8 changes correspondingly according to the anomaly 

relation. The phase of X can be removed by making a transformation of the type 

(3 .33) .  Now the 8 term has a coefficient 

We parametrize and d2 in terms of their phase fields a l ( x )  and a 2 ( x )  as 

and denote the relative phase field by a ( x )  = a l ( x )  - a 2 ( x ) .  The al- and cr2- 

dependence of the Yukawa couplings can be removed by making local chiral rotations. 

Because of the chiral anomaly, the kterm becomes 

The effective potential for a ( x )  can be calculated without resorting to an explicit 

instanton computation [3.15] 

Vejj  = ( (u2) ) , , ,  cos (OQCD + n G a )  - 2IXlv:vi cos 2 a  

where the topological susceptibility ( ( u ) ) ~ , ,  is defined by 

By minimizing (3.41) one obtains 

- 3 ( ( d ) ) , , ,  sin (B,,,  + 3 a )  + 4 1 ~ 1 ~ : ~ :  sin 2 a  = O 

and 
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for stability, where we have taken nc = 3. Bearing in mind that JXlv,2vi >> ( ( u ~ ) ) ~ ~ ~ ,  

one needs 1 sin 2al << 1 and a not too small value for I sin(OQcD + 30) 1 in order for 

(3.43) to have a solution. Clearly, when OQcD = 0, the only solutions are a = 0, n 

where cos2a > 0 ( a  = f $ are not minima since they do not satisfy the stability 

condition cos 2a  > 0). This corresponds to the solution provided by PTWW, i.e. 

both (vl, v2) and (vl, -vz) are local minima whose energy splitting is caused by the 

instanton effects. Again, a weak CP violation is not possible in this case. 

However, when OQCD = &5,  which corresponds to a negative A, a non-trivial 

solution a or n - a is found where 

The non-vanishing relative phase between and ($2) indicates a spontaneous CP 

violation in the Higgs sector. The CP-violating mixing probability is proportional 

to cos a s i n a .  Expectedly, as it is a general feature of the spontaneously broken 

discrete symmetry, the vacua characterized by a or n - cr are degenerate in energy 

density. In the general case where OQcD takes arbitrary values, a non-trivial solution 

always exists. It will lead to a mixture of an explicit CP violation and an induced 

spontaneous CP breaking. The order of magnitude of the CP angle a, however, is 

mainly determined by the strength of the SCPV, typically by the ratio of ((u*))~,, to 

J A I v ~ v , ~ ,  if sin(OQcD + 3a) is of O(1). The Z2 domain wall problem is of course resolved 

by admitting a CP-violating solution. And better yet, when 8,,, # f :, the solution 

is unique because sin(BQcD + 3a) and sin 20 do not have a common periodic structure. 

The domain walls associted with CP violation simply do not form. 
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3.5 Discussions 

We have studied a two-Higgs-doublet standard model with a Z2 symmetry. In the 

presence of strong interactions, particularly, the QCD 6 term, the analysis of the do- 

main wall structure changes drastically. Depending on different values of the QCD 

6-parameter, the theory exhibits different dynamical phases. A CP violation in the 

Higgs sector is in general possible, with strength typically 10-8-10-12. The cosmolog- 

ical domain walls associated with Z2 or CP need not to form. 

PTWW have analyzed a special case when OQcD = 0, in which, as is extensively 

studied in Chapter 2, CP is conserved in strong interactions. However, without a 

plausible solution to the strong CP problem, choosing this particular value for OQCD 

is very unnatural from a theoretical point of view. They further point out that 

incorporation of Peccei-Quinn symmetry into this model so that OQCD can dynamically 

relax to zero from any initial value does not reproduce the desired results. It comes 

with other cosmological problems known as axion domain walls. In spite of lack of an 

understanding of the strong CP problem, we have unbiasedly studied a general case 

where OQcD is arbitrary and shown an interesting possibility to have a spontaneous CP 

violation in the weak interaction sector. This new CP violation is compatible with 

that in the CKM matrix and serves as a supplement to it, especially in the NEDM. 

The problem of this scenario is of course the strong CP problem, which, I believe, 

is an independent problem and should be solved separately from the Z2 domain wall 

problem. An investigation on this issue is in progress. 



Chapter 4 

Self-mass for Massive Quark 

4.1 Introduction 

Dynamical chiral symmetry breaking in QCD has been studied extensively [4.1] and 

yet has not been completely understood. A rigorous proof of this phenomenon based 

on a reliable non-perturbative scheme has not so far been given. The standard method 

to study this problem is to start with the Schwinger-Dyson (SD) equation [4.2]. How- 

ever, some difficulties arise when applying this equation. The most serious one is the 

use of a single gluon exchange (the ladder approximation). Although the SD equa- 

tion incorporates non-perturbative features, the ladder approximation of the integral 

kernel is essentially a perturbative scheme and its validity must be justified by the 

smallness of the effective gauge coupling. 

Some efforts have been made in order to establish the validity of the ladder approx- 

imation by making use of the asymptotic freedom in QCD. Instead of the complete 

solution of the SD equation, the asymptotic solutions when p2 + m have been dis- 

cussed where the effective coupling is small [4.3]. Two types of solutions, the irregular 
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and regular ones, have been found by linearizing the differential SD equation in the 

ultraviolet region. In the presence of a current mass, a linear combination of both 

solutions satisfies the UV boundary condition while the irregular solution is dominant 

in the UV region. It is then speculated that the regular solution which goes to zero 

faster than the irregular one in the UV region may become important, and perhaps 

becomes dominant in the infrared region if the current mass is small. As a result, 

the light quark may acquire a dynamical mass much larger than its current mass in 

the IR region. This has been referred to as the dynamical chiral symmetry break- 

ing. However, the above statement stays as a speculation as long as we do not have 

an appropriate approximation to make the SD equation solvable in the IR region. 

Some attempts on this issue have been made by assuming a certain behavior of the 

effective coupling constant in the IR region [4.4]. In general, there has not been a 

complete solution to the SD equation valid both in the UV and in the IR regions with 

approximations based on QCD. 

In this chapter, we study a slightly different aspect of the solution to the SD 

equation however approaching to the same problem: the self-mass for a very massive 

quark. When the quark current mass is much larger than AQcD, a renormalization 

group equation (RGE) allows us to derive an approximation to the integral kernel 

valid both in the UV and in the IR regions. A complete solution to the non-linear 

SD equation is then obtained by numerical means. To observe how the gauge inter- 

action affects the result, we rescale all dimensionful quantities such as the self-mass, 

the momentum and the current mass by the current mass. As an effect of the renor- 

malization, the interaction strength and the rescaled quark self-mass are functions of 

the current mass. We find that it does go up in the IR region when the current mass 

becomes small, especially when p2 + 0. It is then expected based on extrapolation 
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that the constituent mass for a light quark (defined as the self-mass at p2 --+ 0) can 

be very large compared with its current mass. Certainly, we cannot quite approach 

the point where the quark current mass is as small as a few MeV's. Our method is 

only applicable when the current mass is bigger than AqcD. Thus at best the strange 

quark may be accounted for in our method. We do not claim that our result is a proof 

of the dynamical chiral symmetry breaking. However, it may approach to  the same 

limit from a different point of view, as much as the approach based on the momentum 

extrapolation from the UV region to the IR region, if not better. In addition, it gives 

a complete description of the self-mass for the very massive quarks such as the charm 

and the bottom quarks, and a picture of the transition going from the heavy quarks 

to the less massive quarks. 

The plan of this chapter is as follows. In section 4.2 we derive the renormalized SD 

equation in the framework of QCD. Section 4.3 illustrates the RGE-improved integral 

kernel for the massive quark. The numerical solutions for different current masses are 

found and discussed in section 4.4. 

4.2 Renormalized SD Equation 

The standard form for the quark propagator is defined in the momentum space as 

where A(p2) is the wave function and B(p2) is referred to as the quark self-mass. In 

the absence of gauge interactions B(p2) is equal to the quark current mass mo. When 

the gauge interaction is turned on, B(p2) receives corrections. In general, B(p2) is a 

function of the momentum and the quark current mass mo. The quark propagator 
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satisfies the following Schwinger-Dyson equation 

d4 k 
S(P) =$ - mo + ig2c2(N) / iZ;;j?rP(~, k)S(k)Dru(~ - k)yY (4-2) 

where g is the gauge coupling constant, Cz(N) = 9 for SU(N) gauge group, 

is the complete quark-antiquark vertex and D,, stands for the complete gluon 

propagator. As we can see from (4.1), if we are to solve S(p) from (4.2)) jdA(p2) may 

dominate B(p2) in the UV region and we have to look for the subleading behavior 

of S(p) in order to determine the self-mass. This complication may be simplified by 

use of the Ward identities (for simplicity, we consider all quarks having the same bare 

mass) 

where r&'s are the vertices of the colorless axial-vector currents JL5 = $ 7 , 7 5 ~ ~ ,  

F;'s are the vertices of the colorless pseudoscalar densities J; = dy5 $$, Xi's are the 

SU(Nj) matrices. The vertices I?;, and satisfy equations of the Bethe-Salpeter 

type: 

X i  d4q 
r&(P7 k)ao = 2 ( ~ 7 s ) ~ ~  + J m K ( ~ ,  k, ~ ) a b , a .  

[s(n)G,(q, q + P - k)S(q + P - k)] ,lbI ; (4.4) 

where K(p, k, q)aparpl is the 2PI fermion-antifermion scattering kernel. 

Substituting (4.4) and (4.5) into (4.3) we get 
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By taking the limit p - k + 0 and defining q = f ( p  + k) we obtain 

d4 k 
r5B(q2) = mars + / --K(q, k )  [s(k)r5B(k2)s(k)] . 

(27rI4 

Eq. (4.7) may be visualized by a skeleton diagram shown in Figure 4.1. 

Figure 4.1: The skeleton diagrams of the SD equation and their perturbative expan- 
sions 

Eq. (4.7) stands for the most general relation which the bare quark self-mass 

must satisfy. So far we have not made any approximations. To actually solve the 

equation, we need to know A(q2) and K(q, k), which, in turn, satisfy another set of 

equations involving B(q2) and S(q). This seems a hopeless circle unless we make 

some approximations. If the coupling constant in K(q, k) is small, we can expand 
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the kernel perturbatively in the sense of the Hartree-Fock approximation. The whole 

point of studying the SD equation in this perturbative scheme is that it still represents 

a resummation of infinitely many ladder diagrams which cannot be done in a pure 

perturbative calculation. 

It is then clear that we have to renormalize the SD equation such that the quanti- 

ties appearing in Eq. (4.7) become renormalized in order to carry out the perturbative 

expansion. Let us consider the renormalized functions 

where the bare quantities depend on an ultraviolet cutoff A, Z+(p, A) is the renormal- 

ization constant for the fermion propagator and p is the renormalization point. The 

bare current mass mo, of course, is also dependent on A. Substituting (4.8) and (4.9) 

in (4.7) one then obtains the renormalized SD equation 

d4k 
75BfI(p2) = Z*(P, A)mO% + 1 @-+KR(P, k) [ sR(k)%~R(k~)sR(k) ]  (4.10) 

where the bare mass mo(A) is related to the renormalized mass in the leading- 

logarithmic approximation 

and d = 3C2(N)/Po where Po = 11 - 2Nj/3. It is noteworthy that the renormal- 

ized quantities in (4.10) are in general functions of the momentum, the renormalized 

coupling constant g(p), the renormalized current mass m(p), the renormalized gauge 

parameter t ( p )  and the renormalization point p. B R ( ~ ~ ) ,  for example, is just a short 

hand notation. Below, we further drop the subscript "R" but it should be understood 

implicitly throughout the rest of the chapter. 
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4.3 Bethe-Salpeter Kernel for Massive Quark 

Our goal is to solve the renormalized SD equation for the self-mass B(p2) of the heavy 

quark whose current mass is larger than AgcD. We expand the Bethe-Salpeter kernel 

K(p, k) perturbatively if the relevant coupling is small. A lowest few diagrams in the 

straightforward expansion in terms of the renormalized coupling g(p) are depicted in 

Figure 4.2 and the contributions are 

where d,, is the free gluon propagator and ai's are some kinetic constants. In general, 
I 

the renormalized gauge coupling g(p) is not small in strong interactions, the series 

[ . . . ] in (4.12) does not converge and the perturbative expansion makes no sense. 

However, thanks to the asymptotic freedom in QCD, g(p) can be very small if the 

renormalization point p is chosen to be much larger than AQcD. Recall that in the 

leading-logarithmic approximation 

The kernel at different renormalization points are related through the RGE. Thus one 

can expand K(p, k) at  a very high scale where the effective coupling is very small and 

calculate K(p, k) at a desired scale from the RGE. In the meantime, we also have 

to get rid of a large multiplicative logarithmic factor in (4.12) to guarantee that the 

higher order terms are negligible compared to 1. It is thus clear that p2 must be 

scaled to the biggest among p2, k2,(p - k)2 and m2 so that the logarithmic factor is 

small, in addition, it must be much larger than AtcD SO that g2(p) is also very small. 

Since there is always a factor l / (p  - k)2 in the gluon free propagator, the integral in 
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+ . . . . a .  

Figure 4.2: The perturbative expansion of the Bethe-Salpeter kernel K(p,  k) 
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(4.12) gets its main contribution around (p - k)2 - 0. Therefore we should expand 

the kernel at a scale characteristic of  ma^{^^, k2, m2) which itself must be larger than 

AtcD and use the RGE to obtain a kernel at the physical scale. 

The RGE analysis proceeds as follows [4.6]. The renormalized kernel satisfies an 

RGE 

which basically tells us how the kernel changes as the renormalization point p changes. 

The solution to (4.14) is known and is given by 

where 

Let us emphasize that ~ ( t ) ,  m(t) and ((t) are functions of the new scale pet and A q c ~ ,  

and are not functions of p. The other useful relation is based on dimensional grounds 

when rescaling the dimensionful parameters. For example, the following relation holds 

(t = In dm) 

To obtain a RGE-improved integral kernel, we choose a rescaling factor et where 
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and the on-shell current mass is defined by 

m = m(p = m ) .  

Combining (4.15) and (4.17), one gets [4.7] 

= K (p, k; ij(t), rii(t), fit);  pet) exp [-2 /'('I dx-] 
d P )  P ( 4  

'(') ] . (4.21) = e2'K (e-tp,e-tk;ij(t),e-'fi(t),((t); p) exp [-2/ dx- 
d P )  P ( 4  

Now we can calculate the effective kernel K (e-'p, e-' k; ij(t), e-lrii(t), C(t);  p) instead 

and substitute it back in (4.21). According to (4.18), the largest among e-'p, e-'k and 

e-'m(t) is p, thus there is no large logarithmic factor in the expansion. The effective 

coupling g(t) is given in the leading-logarithmic approximation 

jzo= 47r 
47r In max (p2, k2, m2) /A&CD 

which can be very small if max (p2, k2, m2) >> AtcD. This requirement can be achieved 

if p2 >> AicD or m2 >> A;,,. k2, however, is the integral variable which must run 

from 0 to oo. Therefore, we can neglect the high order terms and write the effective 

kernel to a good approximation 

Substituting (4.23) into (4.21) we obtain a RGE-improved kernel 
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In the region where p2 > m2 > A&D, 

which has been discussed by many authors [4.5] in studying the UV behavior of the 

solution. In the region where p2 < m2, but still m2 > A t c D  

which combining with (4.25) gives a complete description of the kernel for the massive 

quarks in the entire momentum region. 

4.4 Numerical Solutions 

In above, we have derived a Bethe-Salpeter kernel suitable for heavy quarks based 

on the RGE analysis. The same analysis can be made on the wave function A(p2). 

The leading-logarithmic corrections to A(p2) are proportional to ij2(s) where s = 

f lnmax(p2, m2)/AacD. However, when we work in the Landau gauge, these correc- 

tions are absent and the problem can be further simplified. In the Landau gauge, we 

have 

and the anomalous dimension " y ~  is equal to zero. Substituting the kernel and (4.27) 

into the SD equation, we obtain two coupled integral equations which are valid in 

different regions respectively. We would like to observe how the effective gauge inter- 

action affects the quark self-mass when the quark current mass changes. Thus it is 

instructive to measure all dimensionful quantities in unit of the on-shell current mass 
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m, i. e. we define new variables 

Clearly, if there are no interactions, B ( x )  = 1 .  In addition, we are interested in 

the self-mass function at the scale of the on-shell current mass. Thus we choose the 

renormalization point p = m ( p  = m )  = m .  Putting everything together, we obtain 

the following integral equations in the Euclidean space 

where 

n m 2 / A & ~  d 
d 

= ( In A 2 / A2 QCD ) d = ( A , , l n A 2 + d )  

where d = 3Cz(N)/Po.  Eqs. (4.29) and (4.30) are coupled equations since (4.29) 

contains an integration from 1 to A2 which requires the solution for x > 1 while 

(4 .30)  contains an integration from 0 to 1 which requires the solution for x < 1. It 

is easily seen from (4 .29)  and (4.30) that B ( x )  is continuous at x = 1 because both 

equations give the same limit B(1). The derivative B 1 ( x ) ,  however, is not continuous. 

The discrepancy between the limits from x < 1 and x > 1 



4.4 Numerical Solutions 73 

is of higher order and is an artifact of the leading-logarithmic approximation that we 

have used to model the kernel. 

When x + w, an asymptotic solution to (4.30) can be obtained analytically as is 

done by many authors by converting (4.30) into a differential equation. The regularity 

of B ( x )  when x -+ oo allows one to linearize the differential equation in the UV region. 

The solution reads 

where c2 is the coefficient of the regular solution which cannot be determined by 

the UV boundary condition. It is expected that when x becomes small, the regular 

solution is important in the self-mass. The first term in the r. h. s. of (4 .33)  goes to 

zero much more slowly than the regular solution when x -t ca and is referred to as 

the irregular solution. It completely dominates the self-mass in the UV region. 

To solve the coupled integral equations (4.29) and (4.30) numerically in the entire 

region, clearly, we have to specify the integration cutoff A2 since practically we cannot 

reach A2 = w. This will bring us some ambiguities of choosing A and we have to 

estimate the computation errors with it. Fortunately, the asymptotic solution (4.33) 

provides a useful hint as to how the solution should behave when x is very large. We 

can actually use the irregular solution to perform the integration from a very large x, 

say X = e40, to A2 both in (4.29) and in (4.30) 

and add this term to the inhomogeneous term Bo( A) .  The A2-dependence in the new 

inhomogeneous term cancels as can be seen from (4.31) and (4 .34) .  The accuracy of 

the computation is controlled by X and the total number of integration points, and 
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we find X = e40 is sufficient to require the relative errors to be less than We 

further change the momentum variable from x to ln(1 + x) in order to deal with the 

huge integration interval from 0 to e40. The IR behavior of the solution, which we are 

particularly interested in, is not deformed very much from this transformation since 

ln(1 + x) behaves like x when x is very small. We then integrate a trial function from 

0 to 40 and iterate the results till the desired accuracy is reached. 

Figure 4.3 illustrates the numerical solutions to the SD equation as a function of 

the momentum and Xo or the current mass m. We truncate the graphs at  ln(1 +x) = 6 

in order to make the IR behavior of the solution more obvious. The discontinuity of 

the slope at ln(1 + x) = In2 where x = 1 is present as expected because (4.29) and 

(4.30) are not smoothly connected. The corner grows sharper when Xo becomes larger 

which is also predicted by (4.32). The overall feature of the curves is that the quark 

self-mass monotonically decreases as the momentum gets large and eventually goes 

to zero when x + oo. The speed is controlled by the current mass, the smaller m 

is, the faster it goes down. There is a value of the momentum around the current 

mass, above which the self-mass is less than the current mass while below which the 

self-mass is enhanced from the current mass by interactions. The constituent mass 

defined as the self-mass at x = 0 can substantially differ from the current mass when 

m is around a few hundred MeV. The enhancement can be as high as 60% when 

m = 1.3AQcD = 270MeV for example. 

There is another point in Figure 4.3 that we would like to address. The different 

curves seem to cross at the same point where ln(1 + x) = 1 or x = 1.7. This can be 

a matter of the normalization condition of the self-mass implied in the SD equation. 

It by itself is not surprising in the perturbation theory where we can normalize the 

renormalized self-mass as BR(p, p) Ig=rnrn  = m. In our case, we do not need to 
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Figure 4.3: The quark self-mass functions for massive quarks 
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impose such a condition since we simply look for a solution to the SD equation. It is 

likely that the SD equation has incorporated a similar condition implicitly. 

Conclusions and Discussions 

In this chapter, we have studied a renormalized Schwinger-Dyson equation for the 

quark self-mass. An RGE-improved kernel valid in both UV and IR regions is obtained 

provided that the quark current mass is larger than AqcD. The numerical solution to 

the SD equation as function of the momentum and the quark current mass is found. 

The quark self-mass exhibits a momentum dependence, and the relative splitting from 

the mechanical mass in the lagrangian depends on the current mass. For a very heavy 

quark, the self-mass repeats the current mass and strong interactions are negligible. 

However, a dynamical contribution to the light quark self-mass can be very important 

and the self-mass can look very differently from the mechanical mass. 

Inclusion of the asymptotic solution of the self-mass at a large momentum and a 

small current mass may bring us a more complete picture. The asymptotic behavior 

of B(p2, m2) as p2 > AbcD has been known for a long time [4.3]. It has been argued 

based on the asymptotic solution that B(p2,m2) should grow as p2 gets small and a 

large self-mass in the IR region is suspected even when the current mass is very small. 

What we have done in this chapter seems to approach the same limit, however with 

p2 and m2 interchanged. Indeed, a more careful study of Eq. (4.12) reveals that the 

condition for an RGE-improved kernel is 

P2 + m2 > AbcD . 

Either a large p2 or a large m2 satisfies (4.35). Thus the self-mass 

function of two variables p2 and m2 is known in the region far above the 

(4.35) 

B(p2,m2) as 

line satisfying 
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p2+m2 = A&-, in the p2-m2 plane. Different points in this region represent different 

physical situations, but the real IR region where p2 + m2 < AicD is not reached by 

both approaches. 



Chapter 5 

Smallness of Fermion Mass 

5.1 Introduction 

The smallness of fermion mass indicates an approximate chiral symmetry in quantum 

field theory. In particular, in strong interactions, the chiral symmetry for light quarks 

has its Goldstone realization, i.e. the spontaneous symmetry breaking. However, the 

understanding of the origin of the small fermion masses is a subtle problem. To a 

large extent, this is due to the advent of the standard model. Such a theory employs 

the Higgs mechanism to break the gauge symmetry while generating various fermion 

masses via Yukawa interactions. As a result, the fermion mass has a form m; = f;v 

(i=various fermions), where v (N  250 GeV) is the order parameter of the electro-weak 

symmetry breaking and f, is the Yukawa coupling. To account for the mass spectrum 

of light fermions like u, d quarks and leptons, the corresponding Yukawa couplings 

must be as small as 0(10-5). It is worth trying to understand why we have such a 

very special choice of these parameters. 

We will show, however, that chiral invariance in the massive fermion field can 
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be a natural consequence, if the fermion couples to a massless non-self-interacting 

scalar field I at the Lagrangian level. Such a scalar field system possesses a trivial 

symmetry of shifting iP by an arbitrary constant. This symmetry is broken by the 

presence of the Yukawa coupling with the massive fermion. As an effect of the fermion 

loop corrections, the effective potential for the scalar fields does not have the same 

shifting symmetry as appearing in the lagrangian. The minimum of the potential 

corresponds to a particular scalar vacuum expectation value (VEV). We find that it 

is always such that after we shift the scalar field about its VEV, the resulting fermion 

mass vanishes. A chiral symmetry is restored for the total Lagrangian involving the 

effective potential for scalar fields. This kind of dynamical restoration of a symmetry 

has been discussed by Peccei and Quinn [5.1] in explaining the strong CP problem. 

Let us illustrate this result first for a toy model consisting of a N-component single 

fermion flavor and a singlet complex scalar field. N may be referred to as the number 

of colors N, in the case of strong interactions. A more realistic implication of this 

model on gauge theories will be discussed later. The Lagrangian is 

The fermion mass m may have its origin from electro-weak symmetry breaking and f 

is an arbitrary complex constant. We can write the generating functional for Green's 

function as 

2 [J, J*] = / [d@] [d@] [dI]  [dm*] exp {i / cz [L(@, I) + J I  + J'Q*]}. (5.2) 
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One integrates over the fermion fields to obtain 

- J [da] [da*] exp {i J k x  [a,vapo + Ja + J*@*] + N T ~  ln s ~ '  (x, a)} 45.3) 

where 

and "Tr" traces over the space-time and the spinor indices. To obtain the effective 

action, we need to expand the integrand in (5.3) about its stationary point. In the 

leading large-N expansion (i.e. the leading loop expansion) [5.2] we have 

The minus sign in (5.5) is standard for fermion loops [5.3] since the integration over 

Grassmann fields always gives a det other than a det-'I2 for the bosonic integration. 

The effective potential V(ac, a:) is obtained from r [a,, a:] by taking a, and to be 

constants. It is important to note, from Eq.(5.4), that field always appears through 

the combination f a  + m. Thus one defines 

The effective potential is then 

where "trn denotes trace over only spinor indices. We then find that 
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and 

From this expression, one learns that the effective potential has an extremum at 

cp, = cpf = 0. To confirm that this indeed corresponds to a minimum, we need to 

obtain the explicit form of the effective potential by integrating (5.8) and (5.9) over 

the field variables pc and pf (i.e. by the tadpole techniques invented by Weinberg 

[5.4]). Note that (5.8) and (5.9) are ultraviolet divergent. We may renormalize the 

effective potential by adding counterterms and imposing the following renormalization 

conditions 

The renormalized effective potential is 

where Xo = 2N/16r2 is the standard factor for the loop expansion. 

It is noted that the effective potential is not bounded from below as the scalar 

field gets large. The logarithmic term reverses sign when 1 f l 2  cpcpf is greater than M2. 

However, there is no reason to believe the perturbative one-loop effective potential 

should be still valid when 9, is large compared to M (in fact, M can be as large as 

the grand unification scale), for the two-loop contribution would dominate over the 

one-loop contribution when tpc is large. Eq. (5.12) is only meaningful when the scalar 

field is small and the perturbative expansion is justified. More specifically, (5.12) 

should be understood as the asymptotic form of the effective potential in the limit of 
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cp, + 0 for any finite Ao. One learns from the above expression that a local minimum 

occurs at cpc = cpz = 0, or equivalently, (P and (P* develop non-zero VEVs 

The behavior of the effective potential at large cpc has to be obtained by a nonper- 

turbative method. Here, however, we simply assume that it is bounded from below. 

Even if it is not, we have to compute the life time of the local minimum and com- 

pare it with the age of universe. In any case, if the system perturbs around the local 

minimum, in terms of the shifted scalar variables (P', ( P I *  defined by (P' (P - ((P) 

and (PI* (P* - ((P*), the fermion acquires an additional mass -m and the effective 

Lagrangian is 

The fermion has become massless! Indeed, under the chiral transformations 

QL + eiaQL , QR + e-iaQR ; 

(PI + e 2 i a ~ t  
7 

at* + e 2 i a ~ f *  . 
7 (5.15) 

the Lagrangian (5.14) is invariant. The importance of this result is that the parameters 

m and f in the original Lagrangian are arbitrary. Because of the dynamical mechanism 

involving the fermion loop expansion, the scalar field picks up a vacuum expectation 

value such that the resulting fermion mass is zero. In addition, there remains no 

information on the original mass in the effective theory. 

5.3 Gauge Theories and Composite Models 

The generalization to gauge theories needs a more careful study. In the presence of 

gauge interactions among fermions and gauge bosons (the scalar is a singlet of the 
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gauge group and free of gauge interactions), the effective action is (in Euclidean space) 

where 

1 1 
S [A,] = --TrF,,FP - 8 - ~ r F , , p ~ '  + gauge fixing terms 

4 4 

is the gauge field action. Even though the exact integration over the gauge fields is 

not possible, a general analysis of the effective potential can be made. To proceed 

further, we need to know the properties of eigenmodes of the hermitian operator p. In 

a QED-like theory, the vacuum of the gauge configuration is trivial, has only non- 

zero eigenmodes A, which appear in pair (A, and -A,). Thus the effective potential 

has a form 

and we suspect that 9, = 9: = 0 is still a minimum point. However, in the theory 

like QCD, because of the nontriviality of the vacuum, the integration in (5.16) should 

sum over all inst anton configurations [5.5]. For one- (ant i-)instanton configuration, 

for example, i p  has one zeromode with chirality +1 (-1) [5.6]. To one-instanton 

approximation, we have 

where K is a small positive constant which involves an evaluation of the fermion 

determinant in the instanton background [5.7]. The term proportional to eie arises 

from the fermion zero eigenmode in the q = lsector, while the one with e-'e is from 

the q = -1 sector (q is the winding number of the gauge field configuration). Clearly 
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that 9, = 9: = 0 is no longer an extremum point of VQcD. The VEV's of 9, and 9: 

are determined by 

As K is small, (9,) differs from 0 only slightly. We can expand Vd around 0, to the 

first order, 

Eqs. (5.20) and (5.21) yield then 

Upon shifting the scalar field around its VEV, we obtain an effective fermion mass 

which is induced by the instanton interactions. It, again, does not depend on the 

original mass parameter m. 

A composite model may have a feature similar to the model with fundamental 

scalar fields. The consideration of a composite scalar field is more interesting in the 

sense that the gauge interaction of fermions may lead to an effective four-fermion 

interaction in the low-energy region [5.8]. We may apply the above arguments to the 

following Lagrangian 
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where G2 > 0 is an effective coupling constant. With the help of an auxiliary field 4 

[5.9] we can rewrite (5.25) as 

where f is an arbitrary complex parameter. Following the same steps as in the case of 

the fundamental scalar field, the effective potential for the composite field q5 is derived 

by integrating out the fermions. In terms of the combination f 9 = f 4 + m, it is given 

by 

where G& is the "renormalized" quantity defined by the fine tuning condition [5.10] 

and A2 is the Euclidean cutoff. Note that some coefficients of terms in (5.27) are differ- 

ent from those in Eq.(5.12). This arises from the different renormalization conditions 

because the four-fermion interaction is not essentially renormalizable. In the weak- 

coupling theory with G& > 0, cpc = & = 0 is the minimum point of the potential if the 

first two terms in (5.27) are absent. Inclusion of them, in virtue of (5.19), produces a 

non-zero fermion mass which is proportional to (+)'I3. In the strong-coupling theory 
C R 

with Gk < 0, we have the spontaneous chiral symmetry breaking [5.10]. The first two 

terms in (5.27) constitute an explicit symmetry breaking correction to the non-zero 

VEV's of c p ,  and Q:. 
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5.4 Summary 

We have shown in a class of models that the effective fermion mass spectrum may 

greatly differ from the one in the original Lagrangian [5.ll]. An approximate chiral 

symmetry may be a natural consequence of the mass cancellation mechanism arising 

from the quantum effect of the fermion loops. This may shed light on the smallness 

of the light quark and the lepton masses, as compared with the electro-weak scale. 

However, the role of the scalar field (which can be fundamental or composite) in the 

context of the standard model needs further study. 



Chapter 6 

Envoi 

In this thesis, I have studied the quantum effects in the standard model of particle 

physics with emphasis on the symmetry structure of the theory. I have shown various 

fascinating possibilities on CP violation, anomalous discrete symmetry and dynam- 

ical fermion mass. Many problems tackled are not quite yet close to their ultimate 

solutions. Sometimes it is due to the fact that we have not asked the right questions 

of nature. Let me quote what Richard Feynman had to say about quantum theory. 

In what surely must be poetry, he writes: 

We have always had a great deal of difficulty 

understanding the world view 

that quantum mechanics represents. 

At least I do, 

because I'm an old enough man 

that I haven't got to the point 

that this stuff is obvious to me. 

Okay, I still get nervous with it.. . 



You know how it always is, 

every new idea, 

it takes a generation or two 

until it becomes obvious 

that there's no real problem. 

I cannot define the real problem, 

therefore 1 suspect there is no real problem, 

but I'm not sure 

there's no real problem. 

The symmetries find their heaven in the classical theory and enjoy violations in quan- 

tum theory. The experiments will have to prove whether or not this belief is true. On 

this hopeful note, let me close. 



Appendix A 

QCD Vacuum Alignment 

In this appendix, we shall discuss in detail the issue of the vacuum alignment in 

QCD, which is crucial to identify the measure of strong CP violation as pointed out 

in Chapter 2. 

A. 1 Vacuum Alignment Equation 

In QCD lagrangian of strong interactions, there are two possible sources of CP viola- 

tion: the complex quark mass terms and the 6-term. It has been long realized that 

they are related to each other by chiral transformations associated with the quark 

fields. The physical effects of CP violation only depend on a chiral-rotation invariant 

8 defined as 
L f 

8 = ~ Q G D  + ~ Q F D  = ~ Q C D  + C 4; ( A 4  
I 

where eqcD is the coefficient of the 6-term, 4, is the phase of the ith quark mass 

term, and L j  is the number of light quarks1. However, there is another source of 

'The inclusion of heavy quarks will not change our discussion significantly if they are in the 
normal phase. Otherwise see Ref. [A.4]. 
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CP-violating angles, the phases of the quark condensates, which arise from dynamical 

chiral symmetry breaking (DCSB) 

where II, is the quark field and Ci's, @;'s are real. The QCD vacuum orientation is 

characterized by a set of phases of the quark condensates. If the vacuum angle Pi # 0 

it follows that (qiiy5$) = Cisin& # 0 which may also break CP symmetry since 

($iY5+) is a P-odd and CP-odd quantity. It has been proven by Vafa and Witten that 

when 8 = 0 and 4; = 0 for all i's, the parity symmetry in a vector-like theory such as 

QCD is not spontaneously broken [A.1] therefore P; = 0 or 7~ [A.2] for all i's. When 

8 # 0, on the other hand, one generally expects that the CP-violating interactions in 

the lagrangian may result in a CP-asymmetric physical vacuum. The purpose of this 

appendix is to study the vacuum orientation in the presence of strong CP violation 

and its potential effects on CP-violating processes in strong interactions. We find 

that the phases of quark condensates can be completely determined as functions of 8 

and 4,'s via a vacuum alignment equation. Thus Pi's are not spontaneously generated 

either even when the CP symmetry is explicitly violated by 8 # 0. 

Obviously, the quark condensates (A.2) cannot be referred to as fundamental 

parameters of the theory since they are subject to chiral transformations. In fact Pi's 

can be set to any values if we make appropriate chiral transformations for the quark 

fields. Such transformations also change the phases of the quark masses, as well as 

the coefficient of the 6-term because of the chiral anomaly. But what is important is 

the correlation between the vacuum orientation and the distribution of the strong CP 

phases among 6-term and quark mass terms, which is to be determined by the vacuum 

alignment. The effective CP-violating interactions in low energy hadron physics (for 
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instance, in current algebra) highly depend on this correlating feature. As we shall 

see below, the sole @-dependence of the strong CP effects is proven only when the 

orientations of the vacuum are properly considered. In addition, it is of interest to 

study DCSB in the presence of strong CP violation in its own right. 

One way of relating the phases of the quark condensates with eQcD and 4;'s is to 

consider the so-called anomalous Ward identity [A.3] 

(i = 1,2, ..., Lf)  

where ~ 1 ' ) ~  = t,&y,,y5$i, FP = & r e v p o ~ ~ " ~ ~ u  and FY" the non-abelian gauge field 

strength tensor. Taking the vacuum expectation values (VEV) on both sides of (A.3) 

yields [A.4] 

(FP) = -imi[e'bl ($' ~ $ k  ' ) - e-'O* (&$;)I (A.4a) 

=-m;C;sin(d;+p;) ( i = 1 , 2 , - . - , L f ) .  (A.4b) 

In deriving (A.4a) we have assumed that the VEV's of the divergence of the gauge 

invariant current vanish. Eq.(A.4b) is the master equation of this appendix. It is im- 

portant to point out that if the DCSB does not occur, (A.4a) would vanish identically 

and there is no constraint on those phases. Indeed even though the quark condensate 

can be non-zero due to the explicit chiral symmetry breaking (ECSB) i. e. the quark 

current masses, it does not contribute to (A.4a) because it possesses a phase opposite 

to the phase of the quark mass 4; and renders the RHS of (A.4a) zero. This can be 

easily seen by taking the free-quark limit in which the condensate is calculated as 
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where A2 is real. The substitution of (A.5) into (A.4a) yields (F%) = 0. Therefore, 

C;'s in (A.4a) should be understood as the purely dynamical condensates originating 

from DCSB. The kinematical part of the condensates that is induced by the ECSB 

and has a phase -4; has been subtracted out in (A.4a). It is the DSCB combining 

with the topological structure of QCD Yang-Mills fields (the instanton effect) that 

makes the strong CP phases non-trivial and relates them to each other. 

Eq.(A.4b) is not immediately useful to us since it has an unknown quantity (F'P). 
It involves no quark fields thus is independent of the chiral transformation. It is 

conceivable that (FP) is solely a function of 9 (not of 4;'s and pj's separately). A 

rigorous proof can be made by summing over instanton configurations in QCD 6 

vacua. For simplicity, consider QCD with a single quark field $. The VEV's of Ff' 

is given by [A.5] 

- 
1 1  - -- x e''"u J [dA,], det(i & + im) exp(- / d4x FF) 

V T  N .=,,* 1, ... 
where N is the normalization factor, VT is the volume of Euclidean space-time, 

and v is the winding number of the instanton field configuration, and the fermion 

determinant results from the integration over the quark field. We have made an 

appropriate chiral transformation such that the quark mass is real and OQcD = 8 (we 

can always do so because the generating functional is invariant under the redefinition 

of integral variables). It is shown that when v > 0 (< 0) i p, has Iul zero modes with 

negative (positive) chirality [A.6]. We thus obtain 
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i 

= m ~ ~ ( m ' )  sin 6 + m 2 ~ z ( m 2 )  sin 28 + - . = K(m, 8) sin 6 (A-7) 

where Alul(m2)'s are given in Euclidean space 

Here X,(A)'s are non-zero eigenvalues of ip,. Clearly Alul(m2)'s are some real func- 

tions of m2 and do not vanish as m -+ 0. If 8 is small as it must be, ( F P )  z K(m)6 = 

K ( ~ ) ~ Q c D  + K ( ~ ) ~ Q F D .  

Combining (A.7) with (A.4b), we derive the so-called vacuum alignment equa- 

tion (VAE) IA.4, A.81, which determines the orientation of the QCD vacuum in the 

presence of strong CP violation 

Eq.(A.9) has proven that P;'s are not spontaneously generated even when 4 # 0. 

The conclusion of Vafa and Witten's theorem [A.1] can be extended to the case where 

parity symmetry is explicitly violated. A similar result has been worked out previously 

[A.8] from different points of view. If mi's vanish, P;'s can be arbitrary. This is 

referred to as the degeneracy of QCD vacua when the ECSB is absent. Any vacuum 

characterized by a set of the vacuum angles Pi's is as good as any other and the 

orientation of the DCSB is arbitrary. However, the importance of (A.9) is that when 

the ECSB is turned on, the ground state must align with it in such a way that (A.9) 

is satisfied. Though both 4; and P, are not physical parameters and can be changed 

through chiral rotations, their sum is uniquely determined by the physical parameter 

8. When one is chosen the other is completely determined through making the vacuum 

alignment. As is emphasized by Dashen [A.9], a misaligned vacuum, whose orientation 
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angles do not satisfy (A.9), may cause an inconsistency such as the goldstone bosons 

(pions) acquiring negative mass squared. 

Once the DCSB and the ECSB align with each other, an absolute rotation of the 

whole system is of no concern. Thus a chiral transformation is allowed only if the 

corresponding change of the vacuum orientation has been taken into account. We can 

have two ways to make the vacuum alignment. We may choose one particular vacuum, 

for example, by requiring the quark condensate to be real Pi = 0 (i = 1,2, . - , Lr) 

and ask what perturbation (the ECSB) is aligned with it. Recalling that Ci's are 

dynamical condensates and thus C, = Cj = C (i, j = 1, 2, . - - , Lf),  we obtain by 

solving (A.9) for #;'s, to O(m; 8) 

where m = (C $-)-I and the CP-violating lagrangian 
t 

where I is an identity matrix. We shall call the solution (A.lO) basis (A). Another way 

is to assume a certain pattern of the ECSB and to ask which one of the degenerate 

vacua corresponds to the perturbation. For example, we may choose the quark mass 

terms real #, = 0 (i = 1,2, . . , L,) and determine the vacuum angle Pj's. Again, from 

(A.9) we have 
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and 

r f"  = ~ F P .  

Solution (A.12) is to be called basis (B). We would like to emphasize again that by 

performing the chiral rotation on quark fields one has distributed the strong CP phases 

among the 8-term and quark mass terms, and obtained different lagrangians, each of 

which corresponds to a certain vacuum orientation. When calculating the strong CP 

effects we must take this into consideration to assure the correct result. 

A.2 77- 27r Decays 

As an illustration, we compute the CP-violating 7 -+ 27r decays in two bases with a 

given 8. In basis (A) where the condensates are real, we apply the soft-pion theorem 

to extracting 7 and x's2 

where the pion decay constant F. R 93MeV and we have used [Q;, FP] = 0. The 

broken generators of SU(3)* corresponding to light pseudoscalars are given by 

(A. 15) 

where Xa's are Gell-Mann matrices and A* = 11 JZ(X1 iXz). (A.14) has been first 

derived by Crewther, Di Vicchia, Veneziano and Witten (CDVW) [A.10] and later by 

2We have worked in the context of s U ( 3 ) ~  x SU(3)R  where and r's are all light pseudoscalars. 
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Shifman, Vainshtein and Zakharov IA.71 in a different context. However, there have 

been doubts about the calculation since it does not explicitly exhibit the use of the 

topological non-triviality of the 6-vacuum. More concretely, one may shift the strong 

CP phases from OQFD to eQcD through chiral rotations and compute the amplitude, 

as one does in (A.14), 

which is zero if one imposes the canonical commutation relation by which Qg com- 

mutes with gauge fields. This contradiction has triggered a serious doubt on whether 

or not the strong CP phases lead to any physical effects at all [A.11]. 

We believe that this concern is not necessary. The vacuum alignment equation 

(VAE) has incorporated the non-perturbative features of QCD vacuum into the game. 

Both Cr$ and ndg1 are solutions of the VAE and should, if one does things correctly, 

result in the same conclusion. In basis (B) the quark masses are real but the con- 

densates are complex. The vacuum does not respect CP symmetry. In this case even 

though L74 does not contribute to the amplitude as shown in (A. l6), the CP conserv- 

ing part of the lagrangian may do. Moreover, when the quarks have non-degenerate 

masses (mass splitting), the condensates are of the form 

if Pi's are small. Apparently (A. l7a) is not invariant under SU(L f )V  transformations 

if Pi's are not all equal. In other words, the vector charges defined as generators of 
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SU(Lj)" do not annihilate the vacuum completely or 

Q a  10) # 0. (A. 18) 

Clearly, the subgroup of S U ( L j ) ~  x SU(Lj)R which leaves the vacuum invariant must 

satisfy 

u L + p u ~ = p  01- U R = p - l u ~ p  ( ~ . 1 9 )  

where UL and UR are left and right unitary representations of SU(Lf).  The broken 

generators, which excite the glodstone bosons known as pions, are those of the coset 

of the unbroken group. From (A.19) it is easy to understand that the broken group is 

not SIY(L/ )~  any more but to be rotated to P- 'SU(Lj )~P generated by 6. The pion 

generators, denoted by Q:, are thus 

Q; = 1 d3x{dtrs$d(x)+dt[$, i6]d(x)) + 0(b2),  (A.20) 

i. e. , the pions are mixing of P-odd and P-even components. 

Now that Cf$ = ~ F F  has no contribution to the amplitude, we have 

where m is the diagonal mass matrix which is real in this basis. The first three terms 

in parenthesis come from the modification of the pion generators and the last term 

reflects the complexity of the condensates which is absent in basis (A). They are of 

the same order of m and 8. Manipulations of these commutators yield, to O(m; 8 )  
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In deriving the final step of (A.22) we have substituted in ($'$') = -C cos p; 2 

-C and ($i iy5$i)  = C sin & 21 Cpi and solution (A.2). We therefore confirm that 

CDVW's result is independent of chiral frames. 

We conclude that the study of the vacuum orientation of the dynamical chiral 

symmetry breaking provides us an improved understanding of strong CP violation 

[A.11]. It has been shown that 7 + 2n decay occurs if 8 is non-zero. More precise 

experimental measurements on the decay rate is encouraged to constrain 8 . 



Appendix B 

EDM for Dirac Fermion 

B.l EDM Basics 

The electric dipole moment (EDM) of elementary particles has been extensively stud- 

ied since CP violation was discovered in nature. It is suggested that the non-zero 

EDM of a fundamental particle can be another evidence of CP nonconservation and 

put a stringent constraint on the various CP violation mechanisms. In general, the 

EDM /I of a Dirac fermion with an electric charge ef is defined by the coefficient of 

the P- and T-odd effective interaction of the type 

where a,, = i[r,,a] and FEU is the field strength tensor of an external (classical) 

electromagnetic field A:. This type of the effective interactions, together with those 

for the anomalous magnetic moment (AMM), can be written in a more general form 
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with ejp cos crz and ejp sin a 2  to be further identified with the AMM and the EDM 

respectively. 

However, this kind of naive identification cannot be physical since the phase cr2 is 

subject to change by a redefinition of the quark field. Under a global chiral transfor- 

mation 
.L . 4  

Q + e-t2%@ . @ + Ge-'~75 
7 (B-3) 

In particular, when we choose 4 = 0 2 ,  the EDM is rotated away completely and the 

AMM gets its maximum value p. 

It is obvious that if the theory possesses a chiral symmetry, i.e. an invariance 

under (B.3), the effective coupling can indeed be rotated away (the chirality flip). We 

therefore reach the conclusion that the EDM of a massless Dirac fermion must vanish. 

For a massive fermion, a chiral rotation like (B.3) will change the phase of the mass 

term and in general affect the CP-violating amplitude. However, the relative phase 

of the mass term and the effective interaction (B.2) does not change under the chiral 

transformation. We show below that a physical definition of the fermion EDM only 

depends on this relative phase. 

We write the Dirac equation , including the quantum effects such as those in the 

effective interaction (B.2), as follows 

with 

i 8 = i @ - e r b  
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where m and p are real, and a1 and a 2  are some arbitrary phases. The vector potential 

A; may be chosen such that A: = 0. In momentum space Eq. (B.5) leads to 

. a*  -. -. 
2- = 

a t  
[(Z . P )  + p m  cos a1 + i&sm sin a1 - iPZ E e pcosa2 

-. -. -. 

-PC-  Befpcosa2 +/3E.Eefrs ina2 - i @ -  Befpsina2]Q = o P . 6 )  
-. -# 

where P = p' - ef A,. To explore the physical interpretation of (B.6), we study a 

stationary solution of energy E, 

Eq. (B.6) reads 

-. -. -. 
(E - m cos a1 + e fpa'.  B1)cp = [(a'. P )  + im sin a1 - ie pa' - EllX (B.8a) 

where -. -. -. -. 
~ ' = c o s a 2 B - s i n a 2 E  ; %'=-s ina2B+cosa2E .  (B.9) 

Solving (B.8a) and (B.8b) for cp, one expresses x in terms of cp from (B.8b) and 

substitutes it into (B.8a). Noticing that the commutator of [a'.P+im sinol - ie fp~ .E1]  

and [E + m cos a1 - elpa' - g1]-' is of the order of O(ej), one obtains 

The spin dependences of the energy are through the magnetic interaction 3 - 6 and 
-. 

the electric interaction a'. E. As is expected, the Dirac equation only recognizes the 

relative phase al - a2, which is invariant under the chiral transformation. In the 
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non-relativistic approximation, we obtain the magnetic moment p~ and the EDM 

PEDM as follows 

f ~ P M I  = 2- + 2efpcos(crl - a ) ,  (B.11) 
2m 

Some simple observations can be made from Eqs. (B.ll) and (B.12). The mag- 

nitudes of the AMM and the EDM for a Dirac fermion are closely related by the 

relation IpEDM/pAMM I = tan(ol - 02),  both of which arise from the quantum correc- 

tions to the tree-level Dirac equation. Thus, on general grounds, the EDM is purely 

a quantum effect which should be absent at the tree level. Even though the fermion 

mass does not explicitly enter Eq. (B.12), the phase of the mass term ol does have 

an important effect on the EDM. In fact lpEDMl depends on the difference between 

crl and cr2. When the mass term in (B.5) is absent, crl is a free parameter and can be 

chosen to cancel 02, yielding a vanishing EDM. Needless to say, the mass m in Eq. 

(B.5) should be understood to be the renormalized effective mass. In order to have 

a non-zero CP-violating EDM, one has to calculate p, a 2  as well as the phase of the 

effective mass (1.1 from various CP violation sources and make sure that p # 0 and 

crl - cr2 # 0 or T .  

B .2 Schwinger's Formalism 

There are different ways to explicitly compute the EDM for a Dirac fermion. One 

usually goes to the momentum representation, calculates the Feynman diagrams and 

looks for terms which has a structure iy~a,,kU where k" is the momentum of the 

photon. Here I will present a simpler and more direct way based on Schwinger's 

formalism. To illustrate the character of this computation, I will exemplify it by 



B.2 Schwinger's Formalism 103 

considering the terms in (2.91) in Chapter 2. When a photon is emitted from the 

fermion line, we need to replace the fermion propagator in (2.91) by (2.93). Now, 

remember that we are looking for a term with structure like in (2.88). anticommutes 

with 7 5  so that the PGm-term in (2.93) does not contribute. In addition, we only keep 

terms up to 0(e2) .  Thus, we only need to substitute S$ in (2.91) by 

Do not forget a b4(x - y ) for each propagator. The relevant part in the RHS of (2.91) 

becomes 

(B. 14) 

(B.15) 

Performing the momentum integration yields the desired result. 

When a photon is emitted from a meson line, the same procedure follows except 

that one needs to consider the following 
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The above expression can be rewritten 

Using the Gordon identity 

i $ ( x )  (& + K) +(Y) 

where &A, - A,& = (&A,). Since a,, is anti-symmetric in p and v, (B.20) becomes 
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