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ABSTRACT 

A relatively general dynamical formulation applicable to a large class of systems, 

characterized by a rigid central body with flexible, deployable and slewing appendages, 

is presented. In general, the extremely lengthy, highly nonlinear, nonautonomous 

and coupled equations of motion are not amenable to a q  closed-form solution. A 
general purpose computer code is developed, in a modular fashion, to help undertake 

a parametric study of the system dynamics. Validity of the formulation and the 

computer code are assessed through comparison with known particular cases. 

Versatility of this formulation is illustrated through its application to a variety 

of spacecraft configurations of contemporary interest. To that end, two distinctly 

different approaches are used: 

I. Analytical procedures for simple rigid as well as flexible systems. This involves 

stability study using the Liapunov method; and planar dynamics of a satellite 

with a flexible slewing appendage. 

11. Numerical simulation of the complete nonlinear, nonautonomous and coupled 

equations of motion to study dynamics of: 

(a) a Japanese spacecraft called the Space Flyer Unit (SFU) to be lawched in 

February 1994; 

(b) the Space Shuttle based slewing mast, similar to the experiment once pro- 

posed by NASA; 

(c) the Two-Dimensionally Deployable Array, an experiment that will be car- 

ried out using the SFU. 

Besides showing the potential of the methodology developed, the results obtained 

are of fundamental character and have long range value to spacecraft design engineers. 
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1. INTRODUCTION 

l. l Preliminary Remarks 

The motion of spacecraft presents two aspects of interest: the orbital motion of 

the center of mass, nominally governed by the classical Keplerian relations; and the 

attitude motion about its mass center referred to as libration. It is desirable for 

scientific and application satellites to maintain a fixed orientation wit h respect to 

the earth for successful completion of their intended objectives. Hence the spacecraft 

attitude dynamics has become a very active field of study since the launching of the 

first artificial satellite in 1957. 

To maintain the satellite in a fixed orientation, active as well as passive control 

techniques have been adopted [l-31. Active control procedures involve large expen- 

diture of energy in the form of microthruster units, momentum gyros and reaction 

control wheels. On the other hand, the passive control aims at designing satellites 

with proper inertia distribution (using physical characteristics like booms, solar pan- 

els, flaps, etc.), to generate stabilizing moment in the gravity gradient field thus 

maintaining a specified orientation. Passive control demands very little or virtually 

no power consumption, however the pointing accuracy that can be achieved is limited 

to a few degrees. In general, communication satellites demand stationkeeping preci- 

sion of around 1/10 to 1/100 of a degree. This can be achieved only through active 

control. 

With the evolution of spacecraft in size, power and mission capabilities, dynami- 

cists are facing increasingly challenging problems. Two major contributing issues are 

described below: 

(a) In the early stages of space exploration, satellites were usually small in 

size, consisting of only a few, essentially rigid, interconnected bodies. For 

modern spacecraft with their large, light weight appendages in the form 

of solar panels, antennas, booms, masts, etc., it is no longer true. These 

significant changes are brought about by the following factors: 

The increasing demand on power for operation of the on board instru- 

ment ation, scientific experiment S, communication systems, et c. has 
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been reflected in the size of the solar panels. For example, the commu- 

nication satellite 'Olympus' of the European Space Agency (ESA) has 

two solar panels extending to 33 m for generation of 7 kW of power 

(Figure 1-1). 

Large members are essential in some missions. For example, the Radio 

Astronomy Explorer (RAE) satellite used four 228.8m antennas to 

detect low frequency signals. 

The U. S. proposed space station 'Freedom', to be operational towards 

the end of this century, will be a gigantic structure about the size of 

a soccer field. Serving as a multimission platform with permanent hu- 

man presence on board (4-6 astronauts), it will be a multibody system 

with interconnected flexible (main truss, solar panels, radiators, etc.) 

and rigid (habitat, experiment, laboratory, etc. modules) members 

(Figure 1-2). The space station represents a highly flexible system 

with the fundamental system frequency of around 0.1 Hz. 

(b) There are several other factors of importance besides flexibility. They lead 

to changes in shape, mass and inertia of the system. 

Depending on the spacecraft mission, often slew maneuvers are re- 

quired to reorient antennas, telescopes and other scientific instruments. 

Manipulators mounted on the spacecraft, e.g. the Canadian built Re- 

mote Manipulator System (RMS) on the Space Shuttle, have slewing 

capability for launching and retrieval of spacecraft, repositioning of the 

payload, etc. The proposed Mobile Serving System (MSS) will assist 

in construction, operation and maintenance of the Space Station. 

Large and complex space structures are stored in compact forms during 

launch. Later, they evolve like a butterfly coming out of its cocoon. 

The Solar Array Flight Experiment (SAFE, 1984) involved deployment 

and retrieval of a solar array for testing its dynamical characteristics 

(Figure 1-3). 

0 The Space Station will be constructed using around 17 to 22 flights of 

the Shuttle. The structural components will be integrated using the 

MSS and extravehicular activities of the astronauts. Thus the Space 



Figure 1-1 ESA's communications satellite 'Olympus'. Note the large solar panels 
extending to 33m. 

(Provided by the Department of Mechanical Engineering, University of British Columbia) 



Figure 1-2 A schematic diagram of the U.S. proposed Space Station Freedom 
representing a system with rigid and flexible interconnected bodies. 

(Provided by the Department of Mechanical Engineering, University of British Columbia) 



Figure 1-3 Orbiter based deployment of a 4 X 31 m solar array 

(Provided by the Department of Mechanical Engineering, University of British Columbia) 



Station represents an evolving structure with its geometry, mass, in- 

ertia, flexibility, damping, etc. characteristics changing with time. 

Docking of the Space Shuttle and even movement of the astronauts 

contribute to these effects. 

Thus multi-body character, flexibility, deployment and retrieval, and slew maneu- 

vers make the dynamical analyses of spacecraft a challenging task. Various environ- 

mental disturbances contributed by gravitational and magnetic forces of the earth, 

free molecular effects, solar pressure, thermal radiation, etc. add to the problem 

[Figure 1-4, 31. 

In the early stages of the space age, when the spacecraft were small in size and 

essentially rigid, ground based tests proved to be adequate [3]. However, this is no 

longer true for modern satellites. It is commonly agreed that gravitational, magnetic, 

plasma, solar radiation and free molecular forces cannot be modeled precisely with 

the ground based simulation facilities. Hence carefully planned space based experi- 

ment S are the only means of checking dynamical simulations through mat hemat ical 

modeling. To that end, the NASA proposed experiment SCOLE (Spacecraft Control 

Laboratory Experiment) involves prescribed slewing maneuver of a reflector plate 

type antenna, attached to a flexible mast, supported by the Space Shuttle [Figure 

1-5; 4,5]. Another joint experiment by NASA and the Italian Space Agency (PSN) 

involves deployment of a 20 km long electrodynamic tether from the Space Shuttle 

and its subsequent retrieval (Figure 1-6). 

However, these experiments still remain proposals for the future. In fact, since 

launching of the Sputnik in 1957, there has not been a single successful experiment 

aimed at dynamics and control of flexible structures in space. The only attempt to- 

date has been the SAFE mentioned before which, unfortunately, failed due to the 

instrumentation malfunction. Furthermore, the space based experiments tend to be 

enormously costly. Thus the emphasis has been, and will continue to be so in fu- 

ture, on the development of more sophisticated and reliable mathematical models for 

dynamical and control analyses of such complex structures. 

A comment concerning the effect of the librational and vibrational motions on the 

spacecraft orbit would be appropriate. It has been established that, for most practical 

purposes, the influence is negligible [6]. Only when the satellite dimensions become 

comparable to the orbital distance, the coupling effects become noticeable. In other 
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Figure 1-4 A chart showing the variation of environmental torques with altitude on 
the GEOS-A satellite. 

(Provided by the Department of Mechanical Engineering, University of British Columbia) 



Figure 1-5 The SCOLE configuration consisting of the Space Shuttle based slewing 
mast asymmetrically supporting a reflector plate. 

(Provided by the Department of Mechanical Engineering, University of British Columbia) 



Figure 1-6 Electrodynamic tether experiment to be conducted jointly by NASA and 
PSN. 

(Provided by the Department of Mechanical Engineering, University of British Columbia) 
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words, the Keplerian equations can be used to predict the trajectory. 

1.2 A Brief Review of the Relevant Literature 

Multibody dynamics is a vast area with several branches including machine dy- 

namics, ground vehicle motion, robotics, biosys tem kinetics and others. A common 

feature is the interconnection of rigid and/or flexible bodies through joints, which 

themselves may be flexible and dissipative. Compared to other fields, the study of 

spacecraft dynamics has proved to be particularly challenging because of the highly 

flexible character of the structures, operating in the presence of environmental distur- 

bances and demanding a high level of accuracy in design, never encountered before. 

Comprehensive reviews of the vast body of literature on spacecraft attitude dy- 

namics have been presented by Likins, Modi, Bainum and others 17-111. Theses by 

Ibrahim, Ng, and others [12-151 have also surveyed contributions aimed at specific 

problems of deployment, thermal deformations, slewing, etc. at considerable lengths. 

Some aspects regarding the modeling, formulation and computer implementation ap- 

proaches are briefly touched upon here. 

1.2.1 Model evolution 

The mode1 for multibody systems is generally described by a tree topology [l61 as 

shown in Figure 1-7. One of the bodies is selected as the central body. The bodies 

are c o ~ e c t e d  through joints which, in general, can be elastic and dissipative. 

One of the early contributions to the multibody spacecraft dynamics is attributed 

to Fletcher, Rongved and Yu 1171, who studied the behavior of a satellite composed 

of two interconnected rigid bodies. With the evolution of the spacecraft, the field of 

study has also shown the corresponding growth. 

Hooker and Margulies [IS] in 1965, and Roberson and Wittenburg [l91 in 1966, 

independently derived the dynamical equations for sateIlites composed of n intercon- 

nected rigid bodies. Until early 1980's, the attention was primarily focused on rigid 

systems 120, 211, although there were some efforts at understanding the flexibility 

effects by Hooker [22, 231, Likins [24, 251, Ho [26] and others [27]. By early 1980's, 

the multi-rigid-body dynamics was well established, and the analysis of flexible-multi- 

body systems became a problem of major concern. 



Figure 1-7 A tree topology model for multibody systems. 



The dynamical study during appendage deployment and slew maneuver was initi- 

ated in the 1970's. Hughes [28] studied the deployment dynamics of a communication 

satellite in 1976, while Lips and Modi [29] provided a relatively general formulation, 

in 1978, applicable to a large class of systems involving deployment of beam type 

appendages. Ibrahim and Misra [30], in 1982, and Modi and Ibrahim [31, 321, in 

1984, investigated the dynamics during plate and beam-type appendage deployment. 

Turner and Junkins studied the large angle, single axis rotational maneuver of flexible 

spacecraft [33], while Mah and Modi 1341 investigated the dynamical response during 

slewing and translational maneuvers of the Space Station based MRMS. Meirovitch 

and associates have also studied the maneuver of flexible spacecraft using simpler 

models [35, 361. 

The relative translations between members of the spacecraft has also received some 

attention [37]. Dynamics of the Orbiter based construction of structural components 

for the space platform was investigated by Modi and Ibrahim [38]. Some attention 

has also been directed towards the effect of the motion of the internal objects on the 

dynamics of a rigid space platform [39]. 

1.2.2 Dynamical approaches 

Methodologies for deriving the equations of motion of multibody systems may 

be classified in a number of ways. One division may be based on the vectorial or 

analytical approaches used. 

Vectorial approaches refer to the Newton-Euler method and apply theorems of 

linear and angular momenta, to individual parts of the system, to arrive at the equa- 

tions of motion. Characterization of the subsystems affects the efficiency with which 

the equations of motion can be obtained. 

In the beginning, the choice of individual bodies as objective parts was quite 

common [18, 191. The difficulty in doing so lies in the constraint torques at the 

joints. To eliminate them from the equations, Hooker suggested to take the sum of all 

the equations of bodies outside some particular joint [40]. On the other hand, Russel 

adopted a straightforward method which takes the subsystem of all the bodies outside 

some joint as an objective part to apply theorems of linear and angular momenta [41]. 

By doing so, the treatment of joint constraint torques is essentially avoided and the 

equations are formulated efficiently with clear physical appreciation. This method 



was called 'Momentum Approach' by Russel, or 'Nested Bodies Method' by Frisch 

[42], and was accepted by Hooker and other researchers later. The procedure may be 

referred to as the 'Subsystem Method'. 

Procedures which use the principles in analytical dynamics, such as the Lagrangian, 

Hamilton, or Kane's approach, are termed analytical methods [43]. Note, Kane's ap- 

proach [44] is essentially the generalization of Lagrangian form of the D7Alembert 

Principle. As the entire system is considered, the constraint forces and moments do 

not appear. The analytical method leads to true coordinate equations for holonomic 

systems; and quasi-coordinate equations of non-holonomic systems. From the point 

of view of the formulation complexity, some authors have shown preference for Kane's 

approach [45, 161. This is because the components of absolute or relative angular 

velocities can be chosen as generalized velocities, and the orientation parameters, 

such as the Euler Angles, are not involved in the first stage of the formulation. It is 

argued that Kane's Equation combine the advantages of both vectorial and analyt- 

ical approaches; however, this is a controversial point that has aroused considerable 

debate. 

On the other hand, the Lagrangian procedure has its own unique advantages. At 

the outset it must be recognized that the methodology has served us well in tackling 

a wide variety of problems for more than 200 years. It satisfies holonomic constraints 

implicitly as pointed out before, and provides useful functions of energy, Lagrangian, 

Hamiltonian, conjugate rnornenta, etc. The kinetic and potential energy functions 

have been used in stability studies. Note, differentiation of the scalar energy functions 

can be accomplished by a computer. Judicious application of the symbolic manip- 

ulation in conjunction with the Lagrange principle can provide equations of motion 

applicable to a wide class of systems. For example, Ibrahim and Modi 1461 estab- 

lished equations of motion for spacecraft with arbitrary number of flexible deployable 

appendages; while Modi and Ng [47] formulated the dynamical and control problem 

for a system of interconnected flexible members accounting for the solar radiation 

induced thermal effects. 

A systematic comparison of several dynamical methods has been presented by 

Kane and Levinson, as well as Shen [48,49]. It is pointed out that different identifica- 

tion of subsystems in vectorial approaches corresponds to different selection of general- 

ized velocities in analytical methods. The equations formulated by the Newton-Euler 

method applying the theorems of linear and angular momenta to individual bodies, 

13 



and those by Kane's approach using absolute angular velocities, have the same form. 

On the other hand, the equations established by the 'Subsystem Method' and the 

Kane procedure using relative angular velocities have different forms 1491. 

1.2.3 Matrix notation 

Matrix notation plays an important role in the formulation of the equations of 

motion. In the early days, the equations were obtained and then cast into a matrix 

form to look compact. Later, Ho [26] designed an incidence matrix describing the 

topological structure of multibody systems. For instance, the incidence matrix for 

the system in Figure 1-7 takes the following form: 

Introduction of incidence matrix has contributed significantly to the development 

of multibody dynamics. With such a tool in hand, some researchers have started to 

derive the equations of motion as a whole in matrix form [20]. Adopting Ho's incidence 

matrix, Shen [21] designed 'Position Vector Matrix' and 'Rotating Axes Matrix' to 

obtain equations of motion for multi-rigid-body systems through Kane's approach. 

It should be noted that, for using matrix manipulations, analytical approaches 

must be adopted. As pointed out before, analytical approaches treat the system as 

a whole instead of its individual parts. Matrices describe integral structure of the 

system and hence they are consistent. The use of matrices during formulation renders 

the process relatively simple, more efficient, and idealy suited for computer simulation. 

1.2.4 Discretization 

One of the important aspects in the study of the flexible body dynamics is the 

represent at ion of the elastic deformations. A literature review suggest S that this 

is. normally accomplished through the use of admissible or assumed mode functions 



First mode 

Second mdde 

Third mode 

Figure 1-8 The first three modes of a cantilever beam. Ni refers to nodes. 

where ii; is the elastic displacement of the i-th body; & i i ( ~ i )  is the j-the mode function 

of the i-th body satisfying the end conditions; and Sij(t) is the generalized coordinate 

associated with the Gij.  In practical applications only finite number of terms are 

taken. 

For simple isotropic structures, such as homogeneous beams and plates, closed 

form expressions are available for frequencies and shape functions. For the intercon- 

nected bodies, 'free-free' modes are usually chosen; while for terminal bodies, 'fixed- 

free' modes are preferred. The first three modes of a cantilever beam are shown in 

Figure 1-8 [50]. 

For complex and nonisotropic systems, a finite element method is usually used to 

obtain this information. This is a subject in itself and there is an extensive literature 

available; only a small sample of it is cited here [51-541. 

1.2.5 Computer simulation 

Based on the formalisms, several computer codes simulating multibody systems 

have been developed commercially. Some of them are listed below: 



Code 

ADAMS 

ALLFLEX 

AUTOLEV 

MESA VERDE 

NBOD and DISCOS 

SD/FAST 

TREETOPS 

UCIN-DYNOCOMBS 

Contributors 

R.R.Ryan [55] 
J.Y .L.Ho,D.R.Herber,B.R.Clapp,R. JSchultz [56] 
D. A-Levinson, T.R.Kane [55] 
J.Wittenburg, U.Wolz, A.Schmidt [55] 
H.P.Frisch [57] 

M. Sherman [58] 
R.P.Singh, R. J.VanderVoort , P. W.Likins [59] 

R.L.Huston, T.P.King, J. W.Kamman [55] 

They accommodate mechanisms, robots, manipulators, spacecraft, rail and road ve- 

hicles, as well as biosystems. They are written in FORTRAN and the numerical 

integration generally requires methods for nonstiff differential equations. The st an- 

dard output is time history plots of motion. 

As can be expected, each one claims some distinctive advantage; and there are 

limitations peculiar to a specific program. Furthermore, it takes enormous time and 

effort to render the program operational, and the user end modifications are virtually 

impossible. The program packages often become "black boxes", thus impeding in 

physical appreciation of the system behavior at the fundamental level. This has 

motivated many researchers in development of their own programs which are often 

more versatile and efficient [60-651. 

1.3 Purpose and Scope of the Investigation 

With this as background, the thesis focuses on a large class of problems, of contem- 

porary and future interests, characterized by a central rigid body, in orbit, supporting 

an arbitrary number of beam and plate type slewing, deployable structural members. 

The joint between the central body and the flexible member permits rotations (slew 

or free) about the three orthogonal axes. Besides a large family of satellites which 

conform to this geometry as shown in Figure 1-9 [3], the configuration exhibits a de- 

gree of versatility that is attractive and has never been studied before. It is applicable 

to the dynamical simulations of: 



Figure 1-9 Several examples of spacecraft with flexible appendages connected to an 
essentially rigid central body. 

(Adopted from ~ a t e l l i t e  ~ e c h n o l o ~ ~  and its Application, by P.R.K. Chetty) 



(a) communications and scientific satellites, which normally have central rigid 

body, with deployable solar panels, antennas and booms; 

(b) the space shuttle based robotic manipulator useful in relocating the payload 

along a prescribed trajectory; and capturing of a disabled satellite or a 

stranded astronaut; 

(c) the multi-arm robotic manipulators; 

(d) the evolving Space Station Freedom with the cluster of modules represent- 

ing the central rigid body, and the main truss as a pair of flexible beams; 

(e) experiments involving slewing motion of the on board equipment such as 

telescope, armament, etc.; 

(f) the offset control strategy for space manufacturing in the desired micro- 

gravity environment ; 

and many other situations. Some of the above mentioned applications are schemati- 

cally shown in Figure 1-10. 

Development of a relatively general formulation for studying dynamics of this 

class of problems, as given in Chapter 2, forms the backbone of the thesis. The 

derivation of the equations of motion for such a complex system is so formidable 

that the assessment of its validity becomes a challenge. This issue is addressed in 

Chapter 3. This is followed by the stability study of a particular simple configuration 

representing a rigid satellite with two rigid appendages, each free to rotate about one 

axis. This study in Chapter 4 also helps towards the validating efforts, as the system 

behaviour must conform to the physical reality. 

Encouraged by the stability results for the rigid system, attention is now directed 

towards the analytical, closed-form solution for a relatively difficult particular case 

involving the planar dynamics of a satellite with a flexible, slewing, beam type ap- 

pendage. The nonlinear analysis is based on the variation of parameter method as 

suggested by Butenin [66]. Accuracy of the solution is assessed through compari- 

son with numerical solution of the exact equations of motion. Finally, in Chapter 6, 

the 'backbone' meets the 'head' of the thesis. The original highly nonlinear, nonau- 

tonomous and coupled equations of motion are computer coded through a general 

purpose program "Dynamics of Spacecraft with Deployable and Slewing Appendages" 

(DSDSA, 23 subroutines). Accuracy of the program is checked through comparison 
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of results for a known particular case. Now the general purpose program is applied 

to study dynamics of three different systems of contemporary interest: 

Japan's Space Flyer Unit (SFU) to be launched in 1994; 

0 Space Shuttle based articulating appendage; 

the Two-Dimensionally Deployable Array Experiment. 

The objective is to study the effects of deployment, slew maneuver and flexibility. 

The thesis ends with concluding remarks and recommendations for future extensions 

to the study. 



2. FORMULATION OF THE PROBLEM 

2.1 System Description 

As pointed out before and indicated in Figure 1-9, a wide variety of scientific, 

application a id  military satellites are characterized by a rigid central body with an 

arbitrary number (n) of flexible beam and plate type appendages attached to it. 

That is the model considered here for study (Figure 2-1). To make it more versatile, 

the appendages can undergo prescribed deployment or retrieval along some specified 

direction and have three degrees of freedom for slewing maneuvers or free rotations 

w.r.t. the central body. The central rigid body is numbered 'O', and the appendages 

are referred to as body 'l', '2', ......, 'n'. The spacecraft is free to negotiate any 

. specified trajectory. 

The inertial coordinate system 0 - Xo,Y,, Zo has its origin at the earth centre. 

An orbiting frame C - X, Y, Z is located at the instantaneous centre of mass of the 

system with X axis along the local vertical, Y axis normal to the local vertical in 

the plane of the orbit, and Z axis perpendicular to the orbital plane. There are also 

body fixed frames o; - X;, y;, z; ( i=O, 1, 2, ......, n ) with their origins U; at the centre 

of mass of the central body ( o, ) and at the hinges for the appendages. The axes 

X,, g, and z, are aligned with the principal axes of inertia of the central body. For 

the beam-type appendage i, the 2;-axis is along the beam; while for the plate-type 

appendage i, the origin of the plate-fixed frame is at the midpoint of the edge attached 

to the central body with the zi-axis along the plate and perpendicular to the edge. 

The yi-axis is perpendicular to zi in the plane of the plate, and the X;-axis is normal 

to the y;, z;-plane. 

At the instantaneous mass centre of the spacecraft, 'system frame' C - X,, yc, z, is 

located (not shown to retain clarity of the figure) with the direction of its axes fixed 

on the central body; and in any nominal orientation, the X,, yc and z, axes are aligned 

with X, Y and Z axes of the orbital frame, respectively. 

General motion of the spacecraft has contributions from the following sources: 

Orbital motion-translation of'the spacecraft as a point mass w.r.t. the inertial 

frame. 



deployable 

Figure 2-1 Model of the spacecraft considered for investigation. It consists of a 
central rigid body with flexible, deployable, and slewing appendages 
having beam and/or plate-type character. 



Librational motion-angular motion of the spacecraft as a rigid body about the 

system c.m. represented by the relative motion of the system frame w.r.t. the 

orbital frame. 

System rotation-angular motion of the spacecraft as a rigid body w.r.t. the 

inertial frame, i.e. the angular motion of the orbital frame w.r.t. the inertial 

frame plus the librational motion. 

Appendage rotation-slew maneuver or free rotation of an appendage w.r.t. the 

central body. 

Relative motions-motions of individual parts or mass elements of the spacecraft 

w.r.t. the system frame including appendage rotation, deployment or retrieval, 

and vibrations. 

The librational motion of the spacecraft is described by a set of three orientation 

angles (X, 4, $). The row matrix [ a, ] = [X 4 $1 defines motion of the system 

frame C - X,, y,, z, w.r.t. the orbital frame C - X, Y, 2. Euler angles or modified 

Euler angles (Bryant angles) [67] are often used as the orientation angles with the 

rotation sequences shown in Figures 2-2 and 2-3. 

Consider the orbital frame C - X, Y ,  Z as indicated in the diagram. Objective is 

to provide any arbitrary orientation to the system through three successive rotations 

X, 4 and t,$. Let the initial position of the system frame, coincident with the orbital 

frame, be designated as a,, b,, c, as shown in the figure. By definition, rotation about 

the local vertical is referred to as yaw, about the 'local horizontal' as roll, and about 

the 'orbit normal' as pitch. The Eulerian or Bryant rotations may represent yaw, 

roll and pitch but not necessarily so. In the classical Eulerian case, X about X = a, 

gives al, bl, cl; rotation 4 about bl yields a2, b2, CZ; and finally ~,6 about a2 leads to 

a3, b3, c3 r X,, y,, z,. In the Bryant rotations, the sequence is the same as before 

(X, q5,$); however, now the rotations are applied about a different set of.axes: X 

about X r a, as before; 4 about bl; and $ about c2. Note, for the modified Euler 

angles (Bryant case), X being about the local vertical represents yaw. However, 4 and 

$ are not about the local horizontal and orbit normal, respectively. One may look 

upon them as modified or approximate roll and pitch, respectively, if the rotations 

are small. 



Local Vertical 

C------- 

Orbit Normal 

Figure 2-2 The classical Euler angles 



Figure 2-3 The modified Euler angles (Bryant angles) 



Using Bryant angles, the transformation matrix from the C - X, Y, Z frame to the 

frame C - X,, y,, z, (or the central-body-fixed frame o, - X,, y,, 2,) is 

i cosg5cos+ cosXsin$ + sinXsin$coslC, sinXsinzC, - cosXsin$coszC, 

[A] = -cosg5sin+ cosXcos$ - sinXsing5sinlC, sinXcoszC, + cosXsinqkinlC, . 
sing5 -sin~cos4 C O S A C O S ~  I 

(2.1) 
The general three dimensional slewing or free rotation of the 'i'-th appendage is 

represented by three angles cua , a;~, a;3 of the system oi - X;, y;, z; w.r.t. its nominal 

position on the central body. The deployment or retrieval of the 'i'th appendage is 

taken to be along the zj axis. 

The vibratory displacement of a mass element ( on the flexible appendage ) is 

represented by sets of admissible modal functions associated with time-varying gen- 

eralized coordinates, 

i i j  = [ E; ] [fj] [ U; IT. (2.2) 

For the beam-type appendages, displacements in X and y directions are considered, 

For the plate type appendages, only the displacement in xi direction normal to the 

plate is usually significant, hence 

where Q j ( [ )  is the j-th bending mode of a cantilever beam: 



and ib ( v )  is the j-th bending mode of a free-free beam: 

In equations (2.7) and (2.8),  X j  and pj are the roots of the transcendental equations: 

1 + cos h(X)cos ( X )  = 0 ; 

1 - cos h ( p ) w s ( p )  = 0 ; 

respectively; and a j ,  Sj are constants depending on X j  and pj. 

2.2 Kinematics 

The position vector of an arbitrary mass element dm, on the central body is 

expressed as the sum of three vectors, 

where iii, is the vector from the centre of the earth '0' to the instantaneous centre of 

mass 'C' of the system; is the vector from C to the mass center of the central body 

0,; and 'iS, extends from o, to the mass element dm,. 
The position vector of a mass element dmi on the 'i'-th appendage is expressed as 

the sum of four vectors, 
- - 
p ; = p c + f E , + - Z i + c ,  (2.12) 

where Ei is a vector from the mass centre of the central body to the hinge connecting 

the appendage i and 
- - 
ri = ri, + 5; , (2.13) 

with F;o representing the position vector of dm; for the undeformed appendage. 

As 'C' is the centre of mass of the entire spacecraft, the following identity holds, 



where: 'M' is the total mass of the system; m;, the mass of the 5'-th appendage; and 

Jcdm0 vanishes since o, is the centre of mass of the rigid central body. 

Let: 

Note, v; is the density per unit length of the appendage i along the z; direction. It is 

assumed that the undeployed part is concentrated at line X; = zi = 0. Substituting 

equations (2.16) and (2.17) into (2.15) gives 

The angular velocity of the orbital frrune w.r.t. the inertial system is where 
- 
k is the unit vector perpendicular to the orbital plane. The angular velocity of the 

central body w.r.t. the orbiting system is giving by 

Using Bryant angles, 

cos+cos$ -cos$sinll, sin$ 

cos+ 

0 0 1 

The angular velocity of the appendage i, w.r.t. the central body, is 

- 
W; = [&;  ] [B;] [ G  IT, (2.21) 

where the dimensions of [ &; ] and [B;] depend on the dimension of slewing (or free 

rotation) of the appendage i. 

The time derivatives of the position vectors are as follows: 
- 
Li= (QZ + a,) X Zi , 2 = 0, l, ..., n; (2.22) 

f,= (G +a) X y0 ; (2.23) 
- 
; = ( + o ) x i + i ,  i = l ,  ..., n. (2.24) 
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The second part in equation (2.24) is due to slewing, deployment and elastic vibration 

of the appendage. In case Fi corresponds to the rigid (or undeployed) part of the 

appendage, 

For a flexible, deploying and slewing appendage, 

where vi is the deployment rate and & defines the direction of motion of dm; due to 

the deployment, 

(2.27) 

Thus when Fi refers to an undeployed mass element, both vi and hi vanish. 

The deployment and slewing of the appendages, as well as their vibration, affect 

the system center of mass. This can be evaluated quite readily. Recognizing that 

represents the first moment of the mass (2.17), 

with 

where m: is the mass of the deployed part of the appendage i. 

Now X, represents the position vector between the c.m. of the spacecraft and c.m. 

of the central body. Therefore, 

0 

Note, X, describes movement of the centre of mass of the spacecraft due to its defor- 

mation. 



2.3 Kinetic Energy 

2.3.1 Composition' of the kinetic energy 

The total kinetic energy of the spacecraft is the sum of the contributions from the 

constituent bodies, 

where To and 7; are inertia tensors of the central body and appendage i, respectively. 

Note: 

with 7 as the unit tensor. 

In expression (2.31), the first term represents the kinetic energy contribution due 

to motion of the spacecraft as a point mass. The second term is the kinetic energy of 

the rotational motion of the whole spacecraft as a rigid body about its mass center C 
(system rotation). As shown in the next section, terms in the first pair of curly braces 

correspond to the instantaneous inertia tensor of the spacecraft about its centre of 

mass. The last term is the kinetic energy of the spacecraft due to relative motions, 

including slewing, deployment and vibrations. The third term represents the kinetic 



energy due to coupling between the system rotation and relative motions. The terms 

in the second pair of curly braces express relative angular momentum of the spacecraft 

w.r.t. the system frame. 

Putting: 

the kinetic energy expression can be rewritten as  

1 1 T = -M& .$c+5(m+zo).f.(~z+~) 
2 

2.3.2 Inertia tensor and energy of the system rotation 

To determine the total inertia tensor 7, the inertia tensor of the appendage i is 

derived fist .  From 

it can be shown that - - 
J i  = [ C  ] ( J P [  I ] - [J:]) [z; lT ,  

where: 

For a beam-type appendage, 
P - 

and for a plate-type structural member, 



Next, expanding R, R, and using equation (2.18), 

Now the inertia tensor of the entire system can be written as 

Let [C;] be the matrix for transformation from system 0, - X,, y,, z, to o; - X;, y;, 2;. 

Putting: 

gives 
- - 
J =  [ K ]  ( J O [ l ] -  [J'] )  [z0lT = [ % ] [ ~ ] [ h ] ~ .  

Let [ a1 lT, [ a2 lT and [ a3 jT be columns of the transformation matrix A (2.1), 
then the angular velocity of the system rotation is given by 

m + Go = ([ a3 10 + [ b0 ] [Bo])[  To IT- (2.50) 

Therefore the kinetic energy of system rotation, i.e. the librational contribution in 

equation (2.38), takes the form 



2.3.3 Relative angular momentum; energy of coupling be- 

tween the system rotation and relative motions 

Substituting from equation (2.26)) the integral Jh X +i dmi appearing in the ex- 

pression for c (2.37) can be expressed as 

where: 

[ S , ]  = J i ; , x [ f , ] d m i = [ ~ i ] [ ~ ; ] = [ ~ i ] ( [ F / * ]  +[F:]). (2.54) 

0 

Expanding M Z ,  X 2, as 

and substituting from equation (2.52), (2.55) and (2.28) gives 

where: 

( 
1 " 

= [ E o ] [ L i l ] T = [ Z o ]  [ L , - L o ] - - C [ H j ] [ C j ]  
M  j=1 

1 = [clT ((J:  + [ L s  ] [GIT [ Hi l T )  [I] - [J;] 

- [ Hi I T [  Lil ] [cilT) ; (2.58) 

[M13Ii = [Di] [Ci] - [ H;' ] [C;] [ Li1 I*  ; (2.59) 

[ M I ~ ] ;  = [cilT [S;] + [ Lil I* [F'] (2.60) 
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Here '*' implies skew-symmetric matrix associated with the vector inside the braket. 

Now the kinetic energy due to coupling between the system rotation and relative 

motions can be written as 

Tcoup = (a% + GO) .C , 

It is clear that [Ml2];, [Ml3]; and [Ml4]; are inertia matrices associated with the 

coupling between the system rotation and slew, deployment or retrival, and appendage 

vibration, respectively. 

2.3.4 Energy due to relative motions 

From equation (2.38), 

0 0 

The integral JT;  F; dm; can be expressed as 

0 0 - - - /h * F ;  dm; = w;.J;.~;+2ij , .  ( ~ ; v ; + [ S ; l [ i ~ ; ] ~ )  

+(md);v: + 2v;[mds];[ 2; IT + [ G; ] [q2] [ G; IT, (2.63) 

with: 

The remaining part can be expressed as 

-I -f + viH;*Hjvj + 2viB;.[ Fj  I [  G j  ]lT + [ G; I[ F; l T * [  F j  I [  C j  ]lT) (2.66) 

Combining equations(2.63) and (2.66), the kinetic energy of relative motions is ob- 

tained as 



where: 

Note, [M22Iij7 [M23Iij and [Mz4Iij are the inertia matrices associated with the 

coupling between rotation of the appendage i and slew, deployment (or retrival), 

as well as vibration of the appendage j, respectively. and [M%Jij represent 

coupling between deployment of the appendage i, and deployment as well as elastic 

vibration of the appendage j, respectively. Similarly, [M441ij is associated with the 

coupling between vibrations of the appendages i and j. 

2.4 Potential Energy 

The potential energy of the system is composed of two contributions: gravitational 

potential energy; and elastic strain energy. 

2.4.1 Gravitational potential energy 

For a spacecraft with mass M and inertia tensor 7, the gravitational potential 

energy is given by 



where 'K' is the gravitational constant of the earth, p, is the distance from the center 

of the earth to the center of mass of the spacecraft; '?, the unit vector along 7,; and 
0 

with 0 representing the true anomaly. For the spacecraft under consideration, the 

inertia tensor about its center of mass is 

+ 2 (7; + m ; m i  + (L;  - L,) H;  + ~i (Li - L,)) 
;=l 

Note, equations (2.76) and (2.46) are identical. It can be shown that: 

Therefore the gravitational potential energy expression takes the form as  

2.4.2 Elastic strain energy 

The strain energy expressions for a beam and a plate are: 

2 

~ , p ~ a t e  = 2 J J {(g)2 + 2~ (g) (g) + (g) 

where D and v are the flexural rigidity and Poisson's ratio of the plate material, 

respectively; and EIxx, E I y y  are the bending rigidity of the beam about the y and 

X axes, respectively. Substituting for the elastic deflections (2.2-2.6) into equation 



(2.81), the strain energy for a plate is obtained a .  

wit h: 

l n;;, = J zm;eqo:s,dqdf ; 

-Q?"* [ r rqdr ld f  ; n;irS = J il p 

I I : ~ ,  = J $ , p ~ ; ~ r ~ : d q d t ;  

1 
H;';' = 1 ;ii@i*:@:Q:dqdf . 

For a rectangular plate with the width 'd' and the length 'l', the 

the form as follows, 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

expression takes 

Here: 

The strain energy for a beam can be written as 



The expressions (2.87) and (2.94) can be written in a compact matrix form as 

1 
Ki = ,[U; ] [K;] [uiIT.  (2.95) 

Here [K;] is the stiffness matrix of the appendage i. For example, assuming i to be a 

beam and taking two modes in X; and y; directions, the stiffness matrix can be written 

with: 

kil = E J ; ~ ~ A ~ I ' ~ / Z :  ; 

kf2 = ki, = E ; I ; ~ X : X ~ I ' ~ / Z :  ; 

ki2 = E ; I ; ~ A ~ I ' ~ / z ~  ; 

ki3 = E ; I ~ ~ ~ A ~ I ' ~ / Z ?  ; 
2 ~ I ' I P P  3 kid = ki3 = EiIiZ=X1X2 12 /li ; 

ki4 = EilkXh:I '~/l? . 

The associated generalized coordinates are 

[ ui ] = [uizl(t) ~ i z2( t )  U i y l  ( t )  uiy2(t)] 

For a rectangular plate appendage, with three modes in the zi direction and two 

in the yj direction, the stiffness matrix is 

[K;] = 

wit h: 



2.5 Governing Equations of Motion 

The governing equations of motion were obtained using the Lagrangian formulation 

procedure, 

where [Q] is a column matrix of generalized forces corresponding to the group of 

generalized coordinates [ q ] . The generalized coordinates are divided into three 

groups: 

f, 
librational motion: X, 4, +; 



free rotation of the appendages (as against the prescribed slew ) : [ crk ] . 

2.5.1 Librational equations 

Librational velocities [ h. ] = [i ) $1, being contained in Zib and Tmup , give 

Similarly, librational angles appear in Xib, Tcoup and V, resulting in: 

dT 
p- 

d 
a[ Q0 l 

h. ] [Bo] [J ]  ([ a3 ITn + [B0lT [ h. l T )  

Substituting from equations (2.99)-(2.101) into the Lagrangian equation (2.98), the 

librational equations of motion are obtained as 

It is convenient and more meaningful in practice to use true anomaly 8 as the 

independent variable instead of time. Using the relations: 

d d d - = +n-. 
dt dB ' 
dL - dt2 = i2 (g - €c-$) = n2 (g - € c - $ ) ,  
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with 
2esin6 

Ec = 
l + €cos0 ' 

the equations of librational motion become: 

2.5.2 Vibrational equations 

The equations corresponding to vibration of the elastic appendage k are derived 

as follows: 
dT - -  

a[ G k  ] - [&l: ([ a3 lTQ + p o l T  [ b o  l T )  



Combining the above contributions leads to the vibrational equations of the appendage 

k as 

In terms of the true anomaly B as the independent variable, the equations take the 

form 



Equations of motion for free rotation of the appendage 

If the appendage k is permitted to rotate freely with respect to the central body, 

the corresponding equations of motion can be derived as follows: 

the above contributions, the equations corresponding to free rotation of 

the appendage k are: 



As before, with the true anomaly as the independent variable, the equations for free 

rotation of appendage k take the form: 

4- [Bk] [%If {(p) a0 1 + [B:]'} [ a: IT 





3. CHECKS ON THE FORMULATION METHODOLOGY 

In order to assess validity of the formulation, two particular configurations were se- 

lected and the corresponding specific equations of motion, as given by the Lagrangian 

procedure, obtained. These equations were compared with those obtained indepen- 

dently using a different approach or by a different researcher. 

3.1 Test Configuration 1 

The first configuration selected for comparison consist S of three interconnected 

rigid bodies as shown in Figure 3-1. The governing linearized equations of motion for 

this particular case have been obtained by Shen [49] using Kane's approach. They 

are compared with those given by the Lagrangian method. Of course, the present 

approach, being quite general, treats the system as a particular case. Furthermore, 

the equations are linearized to permit comparison. The independent variable is taken 

to be time. 

3.1.1 System description 

A three-body rigid satellite, composed of a central body with two rectangular 

plate shaped appendages, is taken to be in a circular orbit around the earth. The 

appendages are considered identical, each with mass 'm', length 'I' and width '2d'. 

The dotted straight line cl - ol - o, - m - c2 is a principal axis of inertia for each of 

the three bodies, and the hinge position parameters L1 = L2 = L. The appendages 

are free to undergo rotations (al, a2) about the principal axis. Note, the body fixed 

coordinate systems are such that X,, zl and 22 are aligned with the principal axis, 
- - 

with To = kl = -k2. The system has five degrees of freedom: the librational angles 

. X, 4, 1C) and the appendage rotations al, oz. 

To facilitate comparison of the particular set of equations of motion for the system 

under consideration, the first step is to linearize the equations of motion, as given by 

the Lagrangian procedure, about the system's equilibrium position X = 4 = $ = al = 

a 2  = 0. To that end, all the angles and their time derivatives are considered small. 



Figure 3-1 A satellite configuration, with three interconnected rigid bodies, con- 
sidered to check the equations of motion. 



For the particular configuration under consideration: 

[L11 = [L 0 01 ; 

[L21 = [-L 0 01 ; 
1 

[Hi]  = [H21 = [O 0 Zml]  ; 

J," = J," = -m d2 + 12 . 
l (  1 9  3 

The transformation matrices are: 

3.1.2 Librat ional equations of motion 

- Neglecting the nonlinear terms, librational equation (2.102) reduces to: 



2 a[ a1 l + Z[MI~];[B~]' i=i .i} -egn2-  a[ a0 l [ J ~ ]  [ a1 IT = [o] . 
From the expressions obtained in the last section, the following relation involving 

inertia matrices can be derived: 

1 
J0 = '4- J f +  J;+ 5 (Jol+ JO2 + JO3) ; 

with 

and 

' m ( @  + P )  + fmLI 3 0 
[M1212 = p 2 1 T  0 fm12+ fmLl 0 

0 0 'm@ 
3 O 1 -  

Substituting the above expressions and their derivatives in equation (3.1), and 

omitting the nonlinear terms, the following equations are obtained: 

with: 



These equations are the same as those obtained by the Kane procedure in reference 

[49]. Note, with a1 = = 0, and &=G2= 0, equations (3.3) - (3.5) represent the 

classical librational cases for a single rigid body. 

3.1.3 Equations of motion for the appendage rotation 

For the particular configuration, equation (2.115), when linearized, reduces to 

Here: 

Substituting the inertia matrices and their time derivatives as well as partial deriva- 

tives w.r.t. ak in equation (3.6), followed by considerable amount of algebraic manipu- 

lations eventually lead to the equations corresponding to free rotations of appendages 

1 and 2 as: 

respectively. 

Note, equations (3.7) and (3.8) are exactly the same as those obtained in reference 

[49l. 
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3.2 Test Configuration 2 

Ng et al. [72] have investigated planar dynamics of a spacecraft, with two beam 

type appendages, orbiting along an elliptic trajectory around the earth. The equations 

of pitch motion and appendage vibration in the orbital plane were obtained. The same 

spacecraft is selected to compare the equations of motion obtained as a particular case 

here. 

A comment concerning the planar motions of spacecraft, i.e., motions in the orbital 

plane corresponding to pitch, deployment or retrieval, slewing, and vibrations of the 

appendages, would be appropriate. Note, the spacecraft is not constrained to move 

in the orbital plane but can respond in three dimensions. However, as is known, a 

planar disturbance does not excite the out-of-plane motion. Only in this sense, there 

exists the so called "planar motion". Of course, the original nonlinear equations for 

planar and out-of-plane motions are coupled as shown in the formulation. 

3.2.1 System description 

The spacecraft is composed of a circular cylindrical shaped rigid body with two 

flexible beam-type appendages fixed at centres of its two ends. The two appendages 

are identical in geometry and attached at the same distance from the centre of the 

central body, i.e. ml = m2 = m; El = 12 = E; and L1 = L2 = L. Here m is the 

mass of the appendage; E, its length; and L, the distance to the attachment point. 

The cylinder being axisymmetric, its transverse moments of inertia about the y, and 

z, axes are the same, i.e. JO2 = JO3. Transverse vibrations of appendage 1 in the 

xl direction and of appendage 2 in the x2 direction are considered. The system is 

discretized using the first bending mode of a cantilever beam. 2ul and 2u2 represent 

tip deflections of the upper and lower beams, respectively. 

Figure 3-2 shows a typical orientation of the spacecraft. For the present case, the 

transformation matrices take the form as follows: 



Figure 3-2 A satellite with two beam type appendages considered to check the 
equations of motion 



The basic inertia elements are: 

[L11 = [L1 - L,] = [ L  0 01 ; 

[L21 = [L2 - L,] = [ -L 0 01 ; 

[HI]  = [ P ~ m u ,  O O.5ml] ; 

[Hz] = [&mu2 0 0.5ml] ; 

and the integral matrices associated with the vibration take the form: 

with 
1 a = / e , ( ( ) d t  = 0.7830 , p2 = 1' t ~ , ( o  d t  = 0.5688 . 

0 0 (3.9) 
All other matrices are zero. 
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3.2.2 Librat ional equations 

For the particular system under consideration, the librational equations (2.104) 

now reduce to: 

[Bo] [ J ]  { [ B o y  [ 1' + ((p) a0 1 + [B:]') [ at I }  

From the basic inertia elements and integral niatrices, the following inertia matrices 

can be obtained: 



in J O  and [J1]  is: 
2 J" = 2rnL2 + 2mlL + -m12 . 
3 

Substituting the above expressions and their derivatives in equation (3.10), the 

following equations are obtained: 

with: 

The first two equations for yaw and roll show that they are not excited by inplane 

disturbances. The pitch equation is the same as that given in reference [72]. 

3.2.3 Vibrational equations 

For the particular configuration under consideration, vibrational equations (??) 

reduce to 



Now: 

Neglecting terms of higher order of smallness, the following vibrational equations are 

obtained: 

with 

These are identical to the vibrational equations in reference [72]. 



4. STABILITY STUDY 

In the absence of any internal or external disturbances, including appendage ma- 

neuvers and dissipation, a spacecraft in a circular orbit attains a fixed orientation 

w.r.t . the earth. In other words, motion of the spacecraft with respect to the orbiting 

frame is absent: no librational motions, no appendage rotation, no vibration. Such 

fixed orientation is designated variously as: equilibrium orientation; torque free equi- 

librium; relative equilibrium; stationary orientation; et c. For a single rigid body, it is 

well known that, when the three principal inertia axes at the mass centre of the body 

are parallel to the orbital frame, the earth-oriented equilibrium persists [l, 681. 

Among the relative equilibria, only a few are stable. For a single rigid body, only 

when its major axis is normal to the orbital plane and the minor axis along the local 

vertical, the equilibrium state is stable, referred to as the 'Lagrange Configuration'. 

The moon is in the Lagrange configuration and hence presents one side facing the 

earth all the time. 

For a multibody, multidegrees of freedom spacecraft, determination of the relative 

equilibria and their stability properties remains a field that has received relatively less 

attention [69, 701. This chapter studies stability of the relative equilibria associated 

with the particular configuration considered in Chapter 3 (Test Case 1 ). To reca- 

pitulate, the system consists of three interconnected rigid bodies and has five degrees 

of freedom: pitch, roll and yaw librational motions; and rotation of the individual 

appendage about an axis. 

4.1 Methodology 

As in the case of the general formulation, effect of the attitude motion on the 

spacecraft trajectory is neglected. The librational motion is the relative motion with 

^ respect to the orbiting frame, which is a noninertial reference having a prescribed 

motion. In the situation of a circular orbit, the orbiting frame rotates at a constant 

angular velocity R. The system operates in the gravitational potential field. The 

independent variable 't' or '8' does not appear explicitly in the kinetic energy 'T' 



or the potential energy 'V', hence there exists the generalized energy integral (also 

referred to as the ' Jacobi-Poincark integral'), 

H = T2 -To + V = T2 + K = constant, (4.1) 

where V, = V - To is called the 'equivalent potential energy' or 'dynamical potential 

energy'. Here To is the part of the kinetic energy without the generalized velocities, 

and T2 represents quadratic part of the kinetic energy. 

For a conservative system, it is wellknown that equilibrium state corresponds to the 

stationary point of the potential energy. Furthermore, stable equilibrium represents 

the state of minimum potential energy. For the relative motion under consideration 

here, one arrives at a similar conclusion with the 'potential energy' replaced by the 

'equivalent potential energy' 1431. This can be expressed in the form of a theorem as 

follows: 

Theorem: 

For relative motion of a mechanical system with respect to a noninertial 

coordinate frame, when only the potential forces exist and the indepen- 

dent variable is not contained explicitly in the Lagrangian function of the 

system: 

(a) a relative equilibrium is attained at the stationary point of the equi- 

valent potential energy; 

(b) a stable relative equilibrium is attained at the minimum point of 

the equivalent potential energy. 

To prove the part (a), let the Lagrange equation be rewritten as 

where T2 is as defined before; and Tl, the linear part in the kinetic energy expression. 

If the relative motions are quiescent, i.e. all q= 0, then the first two terms in equation 

;h giving 
aK LW- To, .-. 

Thus equation (4.3) governs the relative equilibrium. It shows that when the equiva- 

lent potential energy reaches its stationary value, a relative equilibrium persists. 
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To prove the stability part of the theorem in (b), a Liapunov function is used. At 

a relative equilibrium: 

T2 = 0 ; and V ,  =V,, ; 

where V,, is a constant. In the neighbourhood of the equilibrium, let 

then from equation (4.1), H* is also a constant. 

It is known that T2 has a positive definite quadratic form. If V, - V,, is a positive 

definite function too, or in other words, if V' reaches its minimum at the relative 

equilibrium, then H* can be used as a Liapunov function to demonstrate the stability 

of the said equilibrium. 

To show that the equivalent potential energy reaches its minimum value at some 

relative equilibrium, a sufficient condition is: for the following matrix, with the second 

partial derivatives of V,  at the said equilibrium as entries, to be positive definite: 

Note, here 'r' generalized coordinates are taken for the system. 

Another approach to the stability study would be through linearization of the 

equations in the neighbourhood of the equilibrium. The linearized equations may be 

cast into the standard form as 

where: [M] is a positive definite, symmetric inertia matrix; and [Gl is a gyroscopic 

skew-symmetric matrix. For the linearized system, the necessary and sufficient condi- 

tion for equilibrium [ q ] = [ q, ] to be stable is the stiffness matrix [K] to be positive 

definite. However, this is only a necessary condition for the original nonlinear system 

to be stable [71]. 

If one investigates the equilibrium condition by the above two methods, an inter- 

esting identity emerges, 

[D] [K] . (4-7) 



This is not surprising. Comparing equations (4.6) and (4.2), it can be seen that the 

term [K] {q - q,} arises from dV,/d[ q 1. Now a&/a[q] is a set of functions of the 

generalized coordinates: 

Expanding fk(q1, . . . , qr) for k = l, . . . , r into the Taylor series around {q} = {q,), 

But at the relative equilibrium, 

av, -- -fk(q10 ,..., qrO)=O for k = l ,  ..., r. 
aqk 

Therefore 

In the matrix form, 

... 
- - 

a2ve qr - qro 

From the above derivation, it can be seen that [D] r [K]. Two apparently different 

methods are intrinsically consistent. 

Just as the V. is called the 'equivalent potential energy', dV,/a[q] can be referred 

to as the 'equivalent potential force', i.e. a sum of the ordinary potential force and 

the centrifugal inertia force. Equation (4.8) suggests that, when the equivalent po- 

tential force is a restoring force (or torque) near some relative equilibrium state, the 

equilibrium is stable. 
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In summary, to investigate stability conditions of a relative equilibrium, one only 

needs to find the stiffness matrix and then determine the conditions for the matrix 

to be positive definite. The conditions obtained are both necessary and sufficient for 

the equilibrium to be stable. 

4.2 Determination of the Stationary Orientations 

For the particular configuration, 

K M  3 1 1 v, = --- -02[ a1 ] [J'] { a , }  + $l2[ a3 1 [J'] { Q }  - 5M $c $C . (4.9) 
P c  2 

Differentiating equation (4.9) w.r.t. [ a, 1, 

Differentiating equation (4.9) w.r.t . a k ,  

The stationary orientation or relative equilibrium is governed by five equations 

represented in (4.10) and (4.11). The six orientations shown in Figure 4-1 satisfy 

them, i.e., they are relative equilibria as explained before. 

The relative equilibria are represented by the three Bryant angles [X,, 4,, $,l 
of the central-body-fixed frame o, - X,, y,, 2, with respect to the orbital frame C - 
X, Y, 2. The transformation matrix 'A' (Chapter 2, p.24) and its partial derivatives 

a[ a1 ]/a[ a, ] and a[ a3 ]/a[ a, ] in the six orientations are listed in Table 4-1. 

The other two partial derivatives are: 



Figure 4-1 Stationary orientations of a rigid spacecraft with two plate type 
appendages free to rotate about the X,-axis. 





The linearized equations for the motion around the orientation (a) were presented 

in Chapter 3. The stiffness matrix can now be obtained as, 

The necessary and sufficient condition for a square matrix to be positive definite is 

to have all the principal minor determinants to be positive. This leads to stability 

[K] = R2 

conditions for the orientation (a) as: 

J3 - J2 
0 4 

0 

'm# 3 

..-lm@ 
3 

These conditions are verified by the plots in Figures 4-2 and 4-3. Geometric and inertia 

parameter values used in the simulation are indicated in the diagram. In Figure 42, 

both the conditions in equation (4.17) are satisfied, hence the stationary orientation 

is stable. Note, the system is subjected to an initial disturbance of 4 = cul = 3'. 
Through coupling, pitch and yaw of the central body areexcited, however, appendage 

2 remains unaffected. Figure 4 3  considers the case where the second condition of eq. 

(4.17) is not satisfied. The system is now subjected only to the roll disturbance of 

3", however it becomes unstable in yaw. Note, the yaw of the central body and the 

rotation of the appendages are all in the range of 0" to 180•‹, but in the opposite sense. 

Next, consider the stability of motion around the equilibrium orientation in (b). 

To find the stiffness matrix, the linear part of equations (4.10) and (4.11) are taken. 

From equation (3.2), the following expressions can be obtained: 



-2" -4" O" F 
0 1 2 3 

true anomaly (number of orbits) 

Figure 4 2  Stable response of the system around the equilibrium orientation (a) when 
.both the conditions in eq. (4.17) are satisfied. Note the initial conditions 
are: 4(0) = a1(0) = 3 O .  



0 1 2 
true anomaly (number of orbits) 

Figure 4-3 Unstable response around the equilibrium in (a) when one of the stability 
conditions in eq. (4.17) is not satisfied. The system is initially subjected 
to a roll disturbance of 3". 



The stiffness matrix can now be written as 

This is not a positive definite matrix, i.e., the orientation in (b) is always unstable. 

This is substantiated by the plots in Figure 4-4 where the parameters are the same 

as in Figure 4-3. 

For the orientation (c): 

(4.18) [K] = a2 

with the stiffness matrix 

5 2  - 53 O O -2mdd 3 :m8 

0 4 (J2 - J1) 0 0 ' 0  
0 0 3(J3-Ji) 0 0 

- f m 8  3 0 0 -imd2 3 0 

_ fm# 3 0 0 0 --?.m@ 3 

The stability conditions are: 

The stable response with all the three conditions satisfied is presented in Figure 

45. It can be seen that the appendages are short and wide. However, with the first 

condition unsatisfied (larger size and mass of the appendages), the system becomes 

unstable in pitch (Figure 4-6). In fact, the motion is a f 90" oscillation around the 

stable equilibrium orientation in (a). 
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(4.19) [K] = Cl2 

- - 
J3 - J1 0 0 0 0 

0 4 (J3 - J2) O 4 m 8  3 -2mb 

0 0 3 (Jl - J2) 0 0 

O 4md2 3 O 4 m 8  3 O 

0 -4m8 
m 3 0 .  0 $ m 8  



1 2 
true anomaly (number of orbits) 

Figure 4-4 Unstable response around the equilibrium orienration (b). The configu- 
ration is always unstable irrespective of the parameters' values. 



1 2 
true anomaly (number of orbits) 

Figure 4 5  Typical response plots showing stable character of the equilibrium orien- 
tation in (c) when the appendages are short and wide. 



0 1 2 
true anomaly (number of orbits) 

Figure 4-6 Unstable motion around the orientation (c) when one of the stability 
conditions in (4.20) is not satisfied. Note, the unstable degree of free- 
dom is pitch. 



Following the same procedure, the stiffness matrix for orientation (d) is obtained 

as 

Obviously it is impossible for the matrix to be positive definite. The equilibrium 

orientation is unstable as shown in Figure 4-7. 

The stiffness matrix for motion around the orientation (e) was found to be: 

[K]  = Q2 

with conditions for stability as: 

- (J2 - 31) 0 0 0 0 

0 ~ ( J z - J ~ )  0 -4md2 3 $ m 8  
0 0 3 ( J l - J 3 )  0 0 
0 - 4 m 8  3 0 -4md2 3 0 

' 0 4md2 3 0 0 - 4 m 8  3 

[K]  = Q2 

Short and wide appendages would help satisfy the conditions rendering the system 

stable as shown in Figure 48. Figure 4-9 shows the unstable motion when these 

conditions are not met. 

. (4.21) 

The stiffness matrix for motion around the orientation (f) is 

- (51 - J3) 
- 

0 0 0 0 

0 ~ ( J I - J z )  0 0 0 
0 0 3 ( J 3 -  J2) -m# md2 

0 0 -m# m 8  0 

0 0 md2 0 m 8  - * 

, (4.22) 

Obviously the matrix can not be positive definite, and the equilibrium orientation is 

always unstable (Figure 4 10). 

[K]  = Cl2 

- (h - J2) 
- 

0 0 0 0 
O 4 (Ji  - J3) O O O 

0 0 3 ( J 2 - J 3 )  -md2 m# 

0 0 - m 8  - m 8  0 

0 0 m# 0 -m#- .. 

. (4.24) 



- Figure 4-7 Response plots showing unsatble character of the equilibrium orienration 
(d) presented in Figure 4-1. 



-4" 1 I I I 
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true anomaly (number of orbits) 

Figure 4-8 Response plots showing stable character of the equilibrium orientation 
(e) when the conditions in eq. (4.23) are satisfied. Note the appendages 
are short and wide. 



-180" I 
I I 

0 1 2 3 
true anomaly (number of orbits) 

Figure 4 9  Unstable response around the orientation (e) when the conditions in eq. 
(4.23) are not met. Note, all the five degrees of freedom are unstable in 
this particular case. 



Figure 4-10 Response plots showing unstable character of the equilibrium orientation 
(f). Note, the instability is limited to the free rotations of the appendages 
and the motion of the central body is stable for this particular case. 



5. APPROXIMATE ANALYTICAL SOLUTION 

Approximate analytical solutions, if able to capture essence of the problem, of- 

ten provide better physical appreciation and insight into the system behavior at a 

.considerable saving in time, effort and computational cost. It can thus complement 

numerical analysis of complex problems, such as the present one, in a useful way. 

To that end, Modi et al. have studied dynamics of spacecraft with two beam-type 

appendages [72, 471 using the K-B [73] and Butenin's method [66]. Modi and Misra 

[61] have presented an approximate analytical solution for a tethered satellite sys- 

tem during deployment and retrieval, while Kalaycioglu and Misra [74] obtained a 

simple closed-form solution for the system dynamics during deployment of flexible 

appendages. 

This chapter investigates dynamics of spacecraft with a beam-type appendage, 

free to undergo librational and vibrational motions in the orbital plane, during a 

prescribed slew maneuver. The governing equations are first simplified to confirm to 

the standard nonlinear form and then solved by Butenin's method. Validity of the 

analytical solution is assessed over a range of system parameters and initial conditions 

by comparing it with numerical integration of the exact equations of motion. The 

results show good correlation and provide better insight into the dynamical behavior 

of the system. 

5.1 System Description and the Equations of Motion 

The spacecraft consists of a triaxial rigid central body and a beam-type appendage 

undergoing a prescribed slew maneuver, as shown in Figure 5-1. It has the following 

features: 

0 a circular orbit around the earth; 

the mass and inertia of the beam are much smaller than those of the central 

body; 



Earth 
Centre 

Figure 5-1 A satellite with the beam-type slewing appendage, undergoing planar 
motion, considered for the study using Butenin's method. 



a the beam is aligned with one of the principal axes at the mass centre of the 

central body and attached to it by a joint permitting slew as a cantilevered 

appendage; 

0 the time history of the slew maneuver is taken to be sinusoidal [63], 

Magnitude of the maneuver Acu is 30•‹, and the slewing time, in terms of true 

anomaly, A8, is varied in the interval of 5" - 10". The system response during 

and after the slew maneuver is determined. 

0 the fundamental cantilever mode is used to discretize the vibratory motion. The 

flexural rigidity of the beam is varied with the corresponding frequencies in the 

range of 60-120 cycles per orbit. 

0 the scope of this investigation includes assessment of the pitch motion and elastic 

vibration of the beam in the orbital plane. 

For the planar motion: 

X =)= 0; and j=)= 0 .  

The transformation matrices are: 

The integral matrices associated with the elastic vibration, and the inertia matrices 

of the appendage, are the same as in Test Configuration 2 of Chapter 3. The other 
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matrices are: 

with: 
.l 1 mom1 ( 2) 12cos2a + - 3rr = 5 (Jo2 + Ja3 - Joi) + m1 - - - 

M 
L ( L  + lcosa - 2/31ulsina) 

-mtIul (h - 2 / 3 1 )  s in fa  ; 

-1  1 
3 ,  = 5 (J03 + JOI - Jo2) + m1 (i - 2) 12sin2a + rnllul ( h - - ;a) sin2a ; 

1 
j:, = 5 (JOI + J02 - Jo3) ; 

1 ja = --m1z2 2 (1 3 - S) 4~ sin2a - m l ~ u l  (p2  - %h) M  COS^, 

mom1 -- 
M L (&ulcosa + 0.5lsincu) ; 



m1 2 (M44),, = (1- = P , )  
Substituting the above expressions into equations (2.104) and (2.1 ll), and taking 

the nondimensionized variable U = ul / l  for the elastic vibration, where U represents 

ratio of half the tip deflection over its length; the governing equations during a spec- 

ified slewing maneuver are obtained as follows: 

A"=(); (54 

#"L; (5.3) 

{&3 + Em &C: + A( 1 + € 1   COS^ - € 1  &U sina) ) $" 
1 + cm 

cm € 1  +- 2 ( d 3 2  + l-Z""~} P + ~ ~ U  ( A u s i n a -  cosa) 
1 

1 + em 

Z" € 1  -- {h  U' + (@l cosa U + &a) d ( 1 + +' + d)  
1 + €m 2 
3 .., h +z { ~ 0 2  - JOI + - ( 1 + €1 cosa - E& U sina) 

1 + Em 

In equations (5.2) to (5.5), c, = rnl/rno; Q = I / L; r. = BJK, with 'k', the 

bending rigidity of the beam and 'R', the angular velocity of the orbital motion; 
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&; = Jo;/(moL2), i = 1,2,3; and 

Equations (5.2) and (5.3) show that yaw and roll are not excited by the pitch and 

vibrations in the orbital plane if they are initially quiescent. 

Note , a' and a" vanish at the beginning (0 = 0') and at the end (8 = AO) of 

the slew due to the sinusoidal character. However during the slew they are varying. 

After the slew, since a is fixed at af = cyo + Aa, d and a" vanish, and the equations 

become simpler: 

+c 2 { E &  + m ull - - l + E m  Em € 1  sincyf u1 ( 1 + + l )  
1 + Em 

Em +- J02 - Joi + - 2 " a  

1 + cm ( 1 + €1 c o s ~ ~ f  - e1P1 U ~ i n a f )  

5.2 Simplification of the Equations 

Equations (5.4)-(5.7) are highly nonlinear, nonautonomous and coupled. To deter- 

mine their approximate analytical solution, they were simplified using the following 

assumptions: 

the coefficients in the equations are either constants or vary slowly over a small 

range with respect to the independent variable; 



The first assumption implies that em is small and A a  is not large. To ensure the 

second condition, the dependent variables must be selected carefully. The problem 

may occur with $ since the equilibrium of + may not be zero because of the orientation 

change of the beam with respect to the central body. Consider $ = $0 + $, where $0 

is a constant angle representing the equilibrium and $ is the new variable replacing $. 

To determine $0 during a slewing maneuver, set the 'average gravitational moment' 

(with the small terms having 'U' ignored) to zero, 

Then 
u s i n a  + em E; P3 sin2a 

tan2+0 = - l+% 

h2 - j o l +  $--(l + er m) + em e: ,& cos2a ' (5.8) 

where the overline represents average value of the function beneath it during slewing: 

- 1 
sina = - (cosao - cosaf) ; 

A a  
1 m = - (sinaf - sin ao) . 

A a  

To determine qbo after the slewing, formula (5.8) is still applicable with: 

sina = sinaf ; cosa = cosaf . 

Butenin's Method deals with equations of the form 

In equation (5.9), all the entries in the inertia and stiffness matrices are constants. 

The frequency wi, the initial phase yi and amplitudes D1;, Dgi of the forcing terms 

are constants too. The functions f and g have small values. To solve equations (5.4), 

(5.5) and (5.6), (5.7) by the Butenin method, the first step would be to transform 

them into the required form (5.9). Consider equations (5.4) and (5.5) first. 



Entries of the inertia matrix are easy to obtain except for Cl1. To get an accurate 

value of Cll, the term involving 'U' in the coefficient of $"(= 4") is introduced into 

the function f and the average value of coscr taken. Thus: 

Entries for the stiffness matrix (except C24) have terms involving sin2$ and cos2$. 

Using the following formulas: 

and approximating: 

the terms involving sin2$ and cos2$ in equation (5.4) become 

Similarly, the terms involving sin2$ and cos2$ in equation (5.5) become 



Thus, the stiffness constants C13, Cl4, and C23 are obtained as the coefficients of 4 
and u in expressions (5.10) and (5.11): 

Now, the terms without the dependent variables are treated as forcing functions 

and the nonlinear terms are included in the functions f and g. From equation (5.1): 

A a  Acr 
s ina  sin(- 6 + a0) ; COSQ M COS(- 6 + a0) . 

A6 A6 
(5.13) 

Collecting and arranging terms in equations (5.4) and (5.5), seven forcing components 

can be identified. Their frequencies, initial phases and amplitudes are: 

(5.14) 

The frequency is due to the inertia force caused by the slew. 

The nonlinear functions f(6,~,$',$",u,uf) and g(0,$,$',u,uf) up to the third 

degree can be written as: 



-- p, sina (2 4' + a' G' + dR)  . 
1 + Em 

Following the similar procedure, the simplified equations (5.6) and (5.7) for the 

system motion after the slew take the form: 

where: 

and 



5.3 Solution of the Equations of Motion 

The equations of motion during slewing are solved first. For the linearized equation 

with f and g ignored, the solution can be written as 

where: 



with 

A; = det C13 - 4 c l 1  Cl4 -W;2C12 
c23  - 4 c 2 1  c24 - 4 Cz2 l 

As to the nonlinear system represented by equation (5.9), the forced response is 

considered to remain the same, while the amplitude and phase of the free vibration 

vary slowly with 6. It is also assumed that 4' and U' take the same form as the 

amplitudes and phases of the free vibration are constant. This assumption leads to 

two equations involving Ak(6), Ak(6) and y;(6), yi(6). Substitution of the chosen 

form of the solution, i.e. equation (5.20) into equation (5.9), results in two additional 

equations. These four algebraic linear equations can be written as: 

with 71 = up@ + yp(B); and 72 = U,@ + %(B). Solving equation (5.24) gives: 



where 

A = (cllc22 - Cl2C21)(1 - a p a w )  

Since the rates of change of Ap(B), Av(8), yp(B) and yv(8) are small, the average 

values of the righthand side are used: 

l 
7: A wv AV(0) 

((c21 + ~ & ' m )  + ( 3 2 2 )  3'3 - (41 + C12) G) (5.25) 
Now, the approximate closed form solution for the system during s1ewing can be 

written as: 

+ (A: 6 + A d o )  [ ";' 1.i. {(W. + y:) 8 + yv(0)) 

where Ap(0), yp(0), A,(O) and y,(O) are the initial conditions. 

Equation (5.17) for the system response after the slewing maneuver can be'solved 

following the same procedure with the solution as: 



with: 

The other parameters W,", 4 and a;, a: are evaluated using equations (5.21), (5.22) 
and (5.23); and $, 72 through eq. (5.25). A: and A> vanish in this case. Note, 

A:, 7; and A:, %'.are determined by the values of the state variables right after the 

slewing maneuver. 

5.4 Results and Discussion 

The validity of the closed form solution as given by eqs. (5.26) and (5.27) is 

assessed, over a range of the system parameters and initial conditions, through its 

comparison with the numerical solutions of the exact equations of motion as given 

by (5.4) - (5.7). As can be expected, the amount of information obtained is literally 

enormous. For conciseness, only the results of eight test cases are presented here to 

help establish trends. 

For all the cases, components of the moment of inertia of the central body are: 
W W 

yaw-Jol = 0.1; roll-Jo2 = 0.5; pitch- = 0.6. The ratio of the appendage mass 

to that of the central body is taken as 1:50. The length ratio (a = ZIL) is varied as 

2:1, 3:1, and 5:l. In general, the duration of integration is 1/12 of an orbit; however, 

for the first four cases, the pitch response over the entire orbit was obtained. The 

analytical solutions are represented by lines, and the numerical results with dots. 

Except for Case 8, the two sets of results virtually coincided and hence the dots are 

not visible. 

Case 1 may be taken as the reference. It represents slewing of the beam-type 

appendage, with a stiffness of 60 cycles/orbit, through 30" as the spacecraft traverses 

10" of the circular orbit. All other initial disturbances are taken to be zero. The 

parameter affected by a change in a given case is indicated by an underline. Case 

2 studies the effect of initial conditions, with all the other parameters held fixed 

at the values used in Case 1. Similarly, Case 3 assesses the influence of fast slew 

(6" per orbital degree), higher stiffness, and shorter appendage length; while Case 4 

adds to this a pitch initial disturbance. Case 5 is similar to Case 2 except that the 

length ratio €1 is larger. In Case 6, the initial orientation of the beam-type appendage 
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with respect to the central body is 60' instead of 0'. Case 7 shows that even if the 

slewing angle changes to 45', i.e. the slewing rate increases to  4.5' per orbital degree, 

the correlation between the response results continues to be quite good. Perhaps a 

demanding situation would be represented by the faster slew of a beam with lower 

stiffness (compared to Case 4) in presence of a pitch disturbance. This is shown 

in Case 8. A small discrepancy in the pitch response appears which increases with 

time. However, the vibrational response of the appendage continues to be predicted 

accurately. Even in this extreme situation, the response results would be considered 

sufficiently accurate during the initial design stage. 

Based on th response results, following general comments can be made: 

0 pitch motion has very little effect on the appendage vibration. On the other 

hand, the appendage vibration significantly modulates the pitch response at the 

appendage frequency. 

0 Both the magnitude of the slewing angle as well as the slewing velocity signifi- 

cantly affect the system response. 

0 As can be expected, longer and flexible appendage is more susceptible to vibra- 

tion during a given slew maneuver. 



Case l : cm = 0.02; A 0  = 10"; $(0) = 0"; u(0) = 0.0; cl = 3.0; 
Aa = 30"; +'(O) = 0.0; u'(0) = 0.0; r, = 60; a0 = 0'. 

U 
-0.05 
-0.1 "'" i-f--l---- -0.15 

0•‹ 10" 20" 30" 
true anomaly (8) 

I I ,  
-5" 
-10" 

0" 90" 180" 270' 360" 
true anomaly (8) 

Figure 5-2 The pitch and vibrational response during the slew maneuver under the 
nominal conditions. 

During slew: 

$ = (0.02970 + 0.0639)sin(1.46698 + 2.9826) - 0.0102sin(66.02128 - 0.0002) 
-0.1138sin(3.00068) + 0.0175sin(3.00060 - 0.0823) 
+0.0109sin(36.00680) + 0.0036sin(6.00110- 0.0823) 
+0.00l5sin(33.00620) + 0.0015sin(39.00740) - 0.0084 

After slew: 
= -0.0798 + 0.0190sin(1.44310 + 1.0589) - 0.0021sin(66.06038 - 7.3535) 

U = -0.0005 + 0.0213sin(66.06030 - 7.3535) 



Case 2 : c, = 0.02; AB = 10"; $(0) = 5.7"; u(0) = 0.1; q = 3.0; 
Aa = 30"; $'(0) = 0.0; u'(0) = 0.0; r, = 60; cro = 0'. 

0.15 I 

U 

- 
I 

0" 10" 20" 30" 
true anomaly (6) 

10" 1 I I 1 I 

0" 90" 180" 270" 360" 
true anomaly (0) 

Figure 5-3 Effect of the initial pitch and the appendage disturbances on the system 
response as compared to Case 1. 

During slew: 

$ = -0.0084 + (0.00378 + 0.1375)sin(1.53978 + 2.0548) 
-0.0995(0.00078 + 0.1023)sin(66.02548 + 1.3585) - 0.1138sin(3.00068) 
+0.0109sin(36.00680) + 0.0015sin(33.00628) + 0.0015sin(39.00748) 
+0.0175sin(3.00068 - 0.0823) + 0.0036sin(6.00116 - 0.0823) 

U = -0.0003(0.003719 + 0.1375)sin(1.53978 + 2.0548) 
+(0.00.079 + 0.1023)sin(66.02548 + 1.3585) - 0.0010sin(3.00068) 

After slew: 
$ = -0.0798 + 0.1257sin(1.43768+ 1.4557) - 0.0082sin(66.06048 - 11.1283) 
U = -0.0005 + 0.0821sin(66.06049 - 11.1283) 



Case 3 : ern = 0.02; A8 = 5"; $(0) = 0"; u(0) = 0.0; €1 = 2.0; 
Aa = 30"; ?,ht(0) = 0.0; ut(0) = 0.0; r, = 120; a0 = 0". 

After slew: 
$ = -0.0453 + 0.0131sin(1.4388 + 0.8995) - 0.0018sin(127.78 - 7.1555) 

U 
-0.05 
-0.1 '"? -0.15 

0" 10" 20" 30" 
true anomaly (6) 

111 
-5" l:! 0" ! 90" 
-10" 

180" 270" 360" 
true anomaly (0) 

Figure 5-4 Influence of the faster slew of the appendage, with higher stiffness and 
shorter length, on the system response. 

During slew: 

$ = -0.0029 + (0.06068 + 0.0595)sin(1.4208 + 3.0898) 
-0.0551(-0.00010 + 0.0246)sin(127.78) - 0.0558sin(5.9988) 
+0.0057sin(71.978) + O.OOllsin(65.978) + O.OOllsin(77.978) 
+0.0025sin(5.9988 - 0.0471) + 0.0004sin(12.008 - 0.0471) 

U = -0.0001(0.06068 + 0.0595)sin(1.4208 + 3.0898) 
+(-0.00018 + 0.0246)sin(127.78) - 0.0006sin(5.9988) 
-0.0461sin(71.978) + 0.0007sin(65.979) + 0.0018sin(77.978) 
-0.0001sin(5.9988 - 0.0471) - 0.0001sin(12.008 - 0.0471) 



Case 4 : em = 0.02; A8 = 5"; +(0) = 5.7"; u(0) = 0.1; q = 2.0; 
Aa = 30"; @(0) = 0.0; uJ(0) = 0.0; r, = 120; a0 = 0". 

0.15 
0.1 
0.05 

U 0 
-0.05 
-0.1 
-0.15 

0" 10" 20" 30" 
true anomaly (0) 

10" [ I 1 I I 

0" 90" 180" 270" 360" 
true anomaly (0) 

Figure 5-5 Effect of the initial pitch and the appendage disturbances on the 
system response as compared to Case 3. 

During slew: 

?b = -0.0029 + (0.01518 + 0.1238)sin(1.6878 + 2.0715) 
-0.0551(0.00048 + 0.1030)sin(127.78 + 1.3295) - 0.0558sin(5.9988) 
+0.0057sin(71.978) + O.OOllsin(65.978) + O.OOllsin(77.978) 
+0.0025sin(5.9988 - 0.0471) + 0.0004sin(12.008 - 0.0471) 

U = -0.0001(0.01518 + 0.1238)sin(1.6878 + 2.0715) 
+(0.00048 + 0.1030)sin(127.78 + 1.3295) - 0.0006sin(5.9988) 
-0.0461sin(71.978) + 0.0007sin(65.978) + 0.0018sin(?7.978) 
-0.0001sin(5.9988 - 0.0471) - 0.0001sin(12.008 - 0.0471) 

After slew: 
$ = -0.0453 + 0.1157sin(1.43328 + 1.4599) - 0.0043sin(127.78 - 11.2645) 
U = -0.0002 $ 0.0783sin(127.78 - 11.2645) 



Case 

U 

0" 10" 20" 30" 
true anomaly (0) 

Figure 5-6 System response, during the nominal slew of the beam with its length 
much longer than that of the central body, in the presence of the ini- 
tial pitch and appendage disturbances. 

Case 6 : c, = 0.02; A8 = 10"; +(0) = 0"; u(0) = 0.1; q = 3.0; 
Aa = 30'; +'(0) = 0.0; ut(0) = 0.0; r, = 60; a0 = 60'. 

U 

0" 10" 20" 30" 
true anomaly (6) 

Figure 5-7 System response during the slew maneuver of the beam which initially 
has an 60" offset with respect to the central body. 



Case 7 : E ,  = 0.02; A0 = loo; $(0) = 5.7"; u(0) = 0.1; €1 = 3.0; 
A a  = 45"; $'(O) = 0.0; ul(0) = 0.0; r, = 60; a0 = 0". 

U 

-0.2 I I 

0" 10" 20" 30" 
true anomaly (8) 

Figure 5-8 Effect of a larger slewing magnitude (45") and higher slewing rate (4.5" 
per orbital degree) on the system response in the presence of a combined 
initial pitch and appendage disturbance. 

Case 8 : cm = 0.02; A8 = 5"; +(0) = 5.7"; u(0) = 0.1; €1 = 3.0; 
Acu = 30"; +'(0) = 0.0; ul(0) = 0.0; r, = 60; a0 = 0'. 

0" 5" 10" 15" 20" 
true anomaly (8) 

Figure 5-9 System response during the faster slew maneuver (6" per orbital degree) 
of the beam with a lower stiffness. Initially, the central body had a pitch 
disturbance and the appendage was deflected. 



6. NUMERICAL IMPLEMENTATION 

6.1 Computational Considerat ions 

With the general formulation in hand, the next formidable task is the numerical 

integration of the governing equations of motion with acceptable accuracy as well as 

economy of time and effort. The computer code developed to integrate the nonlinear, 

nonautonomous and coupled equations of motion, is named DSDSA, standing for 

"Dynamics of Spacecraft with Deployable and Slewing Appendagesn. It was written 

in FORTRAN and calls NAG mathematical library subroutine D02BBF to solve the 

equations. 

The set of equations to be integrated is of the form 

where yl , y ~ ,  ..., yr are the dependent variables, and y,+l, yr+l, ..., Yr+r represent their 

derivatives w.r.t. the true anomaly. M is the inertia matrix of the system and U the 

identity matrix. 

Figure 6-1 is the computational flow chart. The program MAIN is the core routine 

which receives initial conditions from the subroutine INCD, calls D02BBF to integrate 

equations determined by FCN, and then sends the output data to the subroutine OUT 
for print. The subroutine FCN calculates derivatives of the variables. It uses the 

inverse of M prepared by the subroutine INVER, and Gi (i = 1,2,. . . , r )  obtained by 

the subroutines LIBRA, ELAVIB, as well as ROTAT, if there exist rotational degrees 

of freedom for the appendages. 

The subroutines INLIB, INANMO and INRELA evaluate the inertia matrices J, 
M12, M13, M14, M22, M23, M24, M33, M34, M44 and their first derivatives. 

PARU and PARA give the partial derivatives with respect to the variables of the 
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l I INCD H MAIN 4 OUT] 
t 

Figure 6-1 Flow chart for the program DSDSA 

I -4 F C N ~  

l ELAVIB l l ROTAT l 
[ INVE+- -+LIBRA J T T 

elastic vibration and appendage rotation (if they are free), respectively. TRANMA 

calculates the elements of the transformation matrix of libration, A and Bo. CBPA 

A 

evaluates elements of the transformation matrix of appendage rotation, C and B, as 

well as their partial derivatives with respect to the rotation angles. BAMODE is a 

block data providing integrals of the modal functions for INTMAT; and the latter 

evaluates all the matrices associated with the appendage deformations. BAINEL 
provides the basic inertia elements, such as H, Ji, D, S, etc. 

Among the family of subroutines mentioned, INCD , GENFOR, DEP SLE and 

STRUCTURE are developed by the user. INCD determines the initial conditions, 

while GENFOR gives the generalized forces, such as the free molecular reactions, so- 

lar radiation pressure, earth's magnetic field, etc. Control forces can be included in 

the GENFOR too. DEPSLE specifies slew maneuver and deployment or retrieval of 

appendages. STRUCTURE is the main input subroutine describing the configuration 

l PARU l I PARA ( 
t l 

of the spacecraft, including masses, inertia moments, size, location and orientation of 

I t ,  l l t 
l INLIB] I INANMO 1 I INRELA / I SUM l I TRANMA l I GENFOR] 

the appendages, as well as their shape and rigidity. 



The computer code is relatively easy to use. The computational time involved in 

assessing system dynamics depends on the complexity of the problem, the precision 

requirement and the length of the integration period. In particular, the degree of 

flexibility of the appendages affects the computing time significantly. 

6.2 Validity of the Program 

As discussed in Chapter 3, to help assess validity of the formulation, two test 

configurations were analyzed. However, a question remains concerning correctness 

and accuracy of the computer code. One indication of its proper functioning was 

already obtained in Chapter 5, where the approximate analytical solution agreed quite 

well with the 'exact' numerical results over a range of system parameters and initial 

conditions. To gain further confidence in the overall functioning of the formulation 

and the computer code, dynamics of a different particular configuration was studied, 

and the results compared with those obtained by other researchers [47]. 

Modi and Ng [47] studied dynamics of a satellite with two beam-type appendages, 

nominally aligned with the local vertical. Typical response of the system, when sub- 

jected to a rather severe disturbance corresponding to the appendage excitation in 

the first mode of U:, (0) = 0.5 and 2140) = 0.025, as obtained by them is presented in 

Figure 6-2. For the same system, subjected to the identical disturbance, the response 

results obtained by the present computer code DSDSA are shown in Figure 6-3. Note, 

the two sets of results are identical. 

6.3 The Space Flyer Unit 

With the validity of the formulation and the computer code reasonably well ascer- 

tained, the next logical step would be to demonstrate its versatility through applica- 

tion to several diverse configurations. 

The first example pertains to the Japanese satellite called the Space Flyer Unit 

(SFU). It is an unmaned, reusable and free flying platform for multipurpose use, and 

is developed by a consortium of Japanese government agencies including the Institute 

of Space and Astronautical Science, the National Space Development Agency, and 

the Ministry of International Trade and Industry. SFU is scheduled to be launched 

in February, 1994. 
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1 2 3 4 
8 ,  number of orbits 

Figure 6-3 Dynamical response obtained by DSDSA for the configuration studied 
by Modi and Ng [47]. A comparison with their results given in Figure 
6-2 showed them to be identical. 



Configuration of the SFU is shown in Figure 6-4. It consists of an octagonal shaped 

central body which includes eight modules of scientific experiments. Two deployable 

solar array paddles (SAP), each 9.7m X 2.4m, are deployed at either end of the central 

body. The SAPs, besides generating power, are used for the High Voltage Solar Array 

(HVSA) experiment. The objectives of the experiment are to determine: 

0 dynamical characteristics of the unit during deployment and retrieval of the 

flexible SAPs; 

the upper limit of the voltage generated which would be free from surface break- 

down, power drain through space plasma, and enhancement of the aerodynamic 

drag. 

The relevant parameters used in this investigation are listed below: 

Orbital motion: 

Central body: 

orbit eccentricity(e) = 0 ; 

altitude = 300 km ; 

period = 90 min. 

mass(mo) = 4000 kg ; 

Jol = 4250 kg m2 ; 

Joz = 9290 kg m2 ; 

JO3 = 11150 k g . m 2  ; 

length = 5 m .  

Solar arrav ~addles: 

mass(ml or m2) = 60 kg ; 

length = 10 m (fully deployed) ; 

width = 2.4 m ; 
3 2 bending rigidity ( E I )  = 6572 kg. m / S  . 

Since the rigidity of the paddles is relatively large, only one bending mode is 

taken to represent their deformation. The corresponding generalized coordinates are 

102 



F
ig

ur
e 

6-
4 

A
 s

ch
em

at
ic

 d
ia

gr
am

 o
f 

th
e 

Sp
ac

e 
F

ly
er

 U
ni

t.
 T

he
 s

ol
ar

 a
rr

ay
 e

xt
en

ds
 

to
 2

4.
42

 m
 t

ip
-t

o-
ti

p 
w

it
h 

a 
w

id
th

 o
f 

2.
4 

m
. 

(P
ro

vi
de

d 
by

 t
he

 D
ep

ar
tm

en
t o

f 
M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

, U
ni

ve
rs

ity
 o

f 
B

ri
tis

h 
C

ol
um

bi
a)

 



ul (lower paddle) and uz (upper paddle), respectively, representing half of the tip 

deflections (in meter, for all the figures in this section). 

Three different orientations associated with the SAP'S deployment and retrieval 

are indicated in Figure 6-5: 

(a) In the orientation B, the SAPs are deployed in 15 minutes. 

(b) The SFU then undergoes a 90" roll to the orientation C. 

(c) At the end of the mission, the SAPs are retrieved in 15 minutes in the same 

orientation as in (b). 

Note, the deployment can also be carried out in the orientation indicated in 'A'. 

Actually, orientation A is the only stable equilibrium for the SFU. The orientation 

B is unstable in the yaw degree of freedom and the orientation C is unstable in all 

the three librational degrees of freedom. In order to get more useful results, the 

orientation B is purposely modified so that the major axis (with an inertia moment 

of 11150 kg m2) of the central body is normal to the orbital plane and the minor axis 

(inertia moment 4250 kg m2) along the local vertical giving a stable equilibrium. 

In fact, the orientation A has some obvious advantages: 

The possible elastic vibrations are perpendicular to the orbital plane, hence the 

inplane deployment won't excite the out-of-plane motion. 

The inertia moment about the pitch axis is larger in the orientation A than that 

in the orientation B, hence the excited pitch motion will be smaller. Of course 

the effect will be more pronounced when the solar paddle is wider. 

6.3.1 Solar paddle deployment or retrieval 

Influence of the appendage deployment or retrieval is studied first. Both the solar 

array paddles are deployed in 15 minutes as in the actual situation, at a constant rate 

and extending from 1 m to 10m. Effect of rapid deployment in 2.5 minutes, or some 

times in 7.5 minutes, is also assessed. In fact, the parametric study covers a wide 

range. In the following figures, X, 4 and $ represent yaw, roll and pitch, respectively. 

Orientation A 



0 
earth 

Orientation A 

l 
1 
I 0 

1 

8 
I 

% earth l 8 

'8 
8 

'8 

# 

*.  .'# .. -. #.I0 ----- -----_--------- ---I 

Orientation B 

Orientation C 

Figure 6-5 Three orientations of the Space Flyer Unit (SFU) during possible deploy- ' 

ment and retrieval of the solar paddles. 



Figures 6-6 to 6-8 pertain to the dynamical response of the SFU in the config- 

uration A. Essentially they assess the behavior of the SFU during the solar paddle 

deployment. Figure 6-6 studies the effect of the solar paddle deployment rate. Several 

characteristic features of the response should be noticed: 

During deployment in the orbital plane, the out-of-plane degrees of freedom 

(roll, yaw, and appendage vibration) remain unexcited. 

The basic character of the response remains essentially the same at the higher 

deployment velocity except for an increase in the magnitude of the pitch motion. 

Figure 6-7 shows the system behavior during the failure of one of the SAPS to 

deploy, i.e. only one of the solar paddles is extended in 15 minutes. Fortunately, as 

before in Figure 6-6a, only the pitch motion is excited. However, the Coriolis force 

induced pitch moment being small, the resulting 2C, response has a smaller magnitude. 

Figure 6-8 studies response of the SFU, during deployment of the paddles in 15 

minutes in the presence of a roll disturbance. Note, now both the inplane and out-of- 

plane motions are excited. With the initial disturbance in roll of l", the yaw excited 

through coupling reaches a magnitude of around 2.5" in that many orbits. In fact, the 

system becomes unstable in yaw with a larger disturbance in roll (Figure 6-8c). The 

vibrational motion of the appendages, though present, was found to be quite small, 

and hence purposely not shown. 

Orientation B 

Figure 6-9 through 6-11 explore response of the SFU in the Orientation B during 

deployment of the solar paddles. Note, deployment is still along the local vertical, 

however, the two solar array paddles of SFU have now undergone a 90' yaw from their 

Orientation A. This results in two major changes: (a) pitch inertia reduces leading 

to a higher pitch response corresponding to that in the Orientation A; (b) stiffness 

of the solar paddles in the local horizontal direction is lower compared to that in the 

previous case making them susceptible to vibration, though it still remains quite small. 

It is of interest to recognize that during the deployment, the appendage deflect in one 

direction under the action of the Coriolis force. At the termination of the deployment, 

the deformed state acts as an initial condition for the subsequent periodic motion of 

the appendage. The general trends of the response in Figures 6-9 and 6-10 are similar 

to those for the Orientation A. 
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A word concerning the postdeployment beat-type response of the appendages 

would be appropriate. This is attributed to a slight difference in the stiffness of 

the solar paddles due to a difference in their position in the gravitational field, and 

coupling through the central body. 

Figure 6-11 shows the SFU response, in the Orientation B, during a 15 minute 

retrieval maneuver. Note, a relatively large pitch motion is excited rather quickly. 

This is understandable as the angular momentum must be conserved. 

Orientation C 
Figure 6-12 corresponds to the SFU response in the Orientation C during retrieval 

of the appendages. Note, the orientation represents equilibrium, however, it is un- 

stable. Yet the system remains unexcited during the retrieval maneuver if there is 

no other disturbance (Figure 6-12a). However, with a yaw disturbance of 3", large 

librational motions set in, particularly in the roll and yaw degrees of freedom, which 

eventually drive the system unstable (Figure 6-12b). Note, the solar paddles remain 

unexcited by the librational instability, due to the difference in the characteristic 

frequencies. 



I I I I I I I 
0" 30" 60" 90" 120" 150" 180" 

8, true anomaly 

Figure 6-6 Effect of the deployment rate on the librational response of the SFU. 
SAP'S deploy in: (a) 15 minutes; (b)  7.5 minutes; (c) 2.5 minutes. 

l I I 1 

0" 90" 180" 270" 
8, true anomaly 

Figure 6-7 Response of the SFU when only the upper SAP deploys in 15 minutes 
in the Orientation A. 
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Figure 6-8 Librational response of the SFU with deploying solar paddles in the 
presence of a roll disturbance: (a) $0 = l"; (b) q$, = 5'; (c) $0 = 10". 
Note, yaw becomes quite large through its coupling with roll when 
the initial roll disturbance is relatively large. 



( i )  0 

(iii) 0 

-0.0001 1 I I I I I I 
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8, true anomaly 

0.0001 

(;v) 0 

-0.0001 
65" 70" 75" 80" 85" 90" 

8 ,  true anomaly 

Figure 6-9 Response plots for the SFU in the Orientation B, showing the effect of 
velocity during the simultaneous deployment of the two solar paddles. 
The time of deployment is: (a) 15 minutes. ~ o i e  the bottom diagram 
magnifies the vibrational response ul in (ii). 
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0" 30" 60" 90" 120" 150" 180" 

B, true anomaly 

0.0005 

(;v) 0 

-0.0005 
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B, true anomaly 

Figure 6-9 Response plots for the SFU in the Orientation B, showing the effect of 
velocity during the simultaneous deployment of the two solar paddles. 
The time of deployment is: (b) 2.5 minutes. Figure ( iv)  magnifies the 
ul response in (ii). 
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Figure 6-10 Effect of initial roll disturbance 4(O) = 1" on the response of the SFU 
during a 15 minute deployment maneuver of .the solar paddles. 
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Figure 6-11 Response of the SFU in the Orientation B during retrieval of the SAPS 
in 15 minutes. 



0" 30" 60" 90" 120•‹ 150" 180" 
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Figure 6-12 Response of the SFU in the Orientation C during the retrieval of SAPS 
in 12 minutes: ( a )  the SFU remains unexcited when there is no other 
disturbance; (b) the SFU reveals the unstable character of the equilib- 
rium Orientation C under an initial yaw disturbance of 3". Note, vibra- 
tory motion of the SAPS is not excited in both the cases. 



5 10 
time, minutes 

Figure 6-13 Time history of the nominal slew maneuver. 

6.3.2 Slew maneuvers of the solar paddles 

Next, the influence of slew maneuvers of the solar paddles is investigated. Two 

different slewing situations are considered: the two paddles slew together at the same 

time, and slew maneuver of the lower paddle alone. In each case, a typical maneuver 

takes place about the pin joint at the central body. Thus in the Orientation A, the 

slew maneuvers are perpendicular to the orbital plane and towards the positive 2,- 

directions. In the Orientation B, they are in the orbital plane and the two paddles 

slew in opposite directions (Figure 6-14). Usually, the slewing magnitude is either 

from -30" to $30' passing through the nominal equilibrium Orientation A or B, or a 

$60" slew from the nominal Orientation B, both maneuvers completed in 15 minutes. 

Note, in the -30" to +30•‹ slew case, neither the initial nor the post-slew orientation 

represents an equilibrium state. Figure 6-13 shows typical time history of the slewing 

maneuver. The maneuver profile is sinusoidal to avoid disturbances during initial 

and terminal phases of the maneuver, i.e. velocity and acceleration are zero at the 

beginning and end of the slew. 

Orientation A 
Figure 6-15 through 6-18 study behavior of the SFU, in the Orientation A, dur- 

ing the slewing maneuvers described earlier. Effects of faster than nominal rate of 

maneuver (15 minutes) as well as failure of one of the appendages to slew are also 

considered. At the outset it is apparent that the predominant response is in the pitch 

degree of freedom with roll and yaw excited, relatively, by a small amount (Figure 

6-15). Vibratory response of the appendages is also quite small. 

The effect of a faster slew (Figure 6-16) is somewhat surprising, particularly with 

reference to the pitch response which is significantly lower than that in the previous 
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Figure 6-14 Schematic diagrams showing nominal slew maneuvers with the SFU in 
the Orientations A and B. 
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Figure 6-15 Response of the SFU, in the Orientation A, to  the nominal slew man- 
euver of 60" with both the appendages moving in the same direction. 
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Figure 6-16 Effect of a faster slew rate of 60' in one minute on the SFU response 
in the Orientation A. The third plot magnifies the u2 response in the 
interval 0 - 30". 
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Figure 6-17 Effect of the upper appendage slew failure on the system response when 
occupying the Orientation A. 
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Figure 6-18 System response due to the faster 1 minute slew of the lower appendage 
(failed upper solar paddle). 
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case. On the other hand, the vibratory response is now larger at least by one order 

of magnitude. 

With the failure of the upper appendage (the one away from the earth) to slew, 

the system quires an unsymmetrical configuration and the equilibrium q5 attains a 

negative value (Figure 6-17). Note, the amplitude of the steady state pitch oscilla- 

tions is now significantly smaller while the out-of-plane librations (roll and yaw) are 

relatively larger. As can be expected, the steady state roll motion is now about the 

new equilibrium position. With the faster maneuver the librationd response does not 

seem to change significantly; however, the vibratory response is considerably higher 

(Figure 6-18) as in the case of the two appendage slew response shown in Figure 6-16. 

Orientation B 

Typical response of the SFU in the B Orientation is shown in Figures 6-19 and 

6-20. Note, as against the previous case (slew maneuvers in the Orientation A), now 

the slewing motion occurs in the orbital plane. Also the upper and lower appendages 

are slewing in the opposite sense (Figure 6-14). The system response with both the 

appendages undergoing nominal slewing motion is presented in Figures 6-19(a) (-30" 

to +30•‹) and 6-20(a) (0" to 60'). As can be expected, the dominant motion is in the 

pitch about the new equilibrium position. The following observations can be made 

by comparing Figure 6-20(a) with 6-19(a): first, the pitch response is much larger in 

the 0" to 60" slew than that in the -30" to +30•‹ case due to the larger deviation from 

the equilibrium orientation after the slew rnaneuver; secondly, the appendages deform 

inducing stress but do not vibrate after the slew, due to the absence of appendage 

deflection before the slew in the nominal equilibrium Orientation B. With the failure 

of the upper appendage to slew (Figures 6-19b), the pitch response is significantly . 
reduced, as can be expected, and now occurs about the new equilibrium position 

(= -6O). Vibratory response of the appendages remains essentially the same as 

before. Comparing Figure 6-20(b) with Figures 6-19(b), it can be seen that the two 

observations mentioned above still hold, and the deformation of the upper SAP is 
smaller than that of the lower SAP. 

6.3.3 Combined deployment and slew maneuvers 

Dynamics and control during simultaneous deployment and slew for a system has 

not been reported in the open literature yet. Only recently its importance in efficiently 
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Figure 6-19 Response of the SFU to the slew maneuvers in the Orientation B: (a)  
nominal slew of both the appendages in the orbital plane. 
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Figure 6-19 Response of the SFU to the slew maneuvers in the Orientation B: ( b )  
nominal slew of the lower appendage with the upper solar paddle failed. 
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Figure 6-20 Response of the SFU to the slew maneuver, deviating from the nominal 
equilibrium Orientation B by 60" in 15 minutes: (a )  both the appen- 
dages finished the maneuver. 
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Figure 6-20 Response of the SFU to the slew maneuver, deviating from the nominal 
equilibrium Orientation B by 60" in 15 minutes: (b) the upper appen- 
dage failed to slew. 



tracking a desired trajectory by a manipulator was recognized. This has led to a few 

investigations in that direction by several research groups around the world since 1991. 

It was thought appropriate to study simultaneous deployment and slew maneuvers in 

the present case as the algorithm can analyze this situation quite readily. As before, 

the SFU is taken to be either in the Orientation A or Orientation B (Figure 6-14). 

The nominal maneuver involves: 

deployment of the solar paddle(s) from 1 m to 10 m at a constant rate in 15 

minutes; and 

slewing of the solar paddle(s) through 60" in 15 minutes following the sinusoidal 

time history. 

Any deviation from the nominal maneuver is indicated during the discussion. 

Orientation A 

Figure 6-21 (a) shows response of the SFU, around the equilibrium Orientation A, 

during the nominal maneuver. Note, the deployment is in the orbital plane; however, 

the slewing occurs normal to the orbital plane. The dominant response is the pitch, 

which is essentially the same as that during deployment (FZ 13", Figure 6-6). The 

out-of-plane librational motions, roll and yaw, remain relatively small by around two 

orders of magnitude. The maneuver has virtually no influence in exciting the vibratory 

motion of the appendages. 

Effect of increasing the slew and deployment velocities by a factor of 6 (maneuver 

completed in 2.5 minutes) is shown in Figure 6-21(b). The pitch response remains 

essentially unchanged, so is the vibration of the appendages. The major effect ap- 

pears to be on the roll and yaw librations which now increase almost by an order of 

magnitude. 

Figure 6-22 considers the same maneuvers with one major difference: the top 

appendage fails to slew (although it deploys as required). The pitch and vibratory 

responses remain essentially the same as before, however, the out-of-plane librations, 

show a significant increase (Figure 6-22a; the roll from around 0.015" to 7", and the 

yaw from around 0.02" to 5"!).  Increasing the deployment and the slewing rate only 

accentuates the out-of-plane librations (Figure 6-223). 
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Figure 6-21 Response of the SFU, in the Orientation A, to the simultaneous deploy- 
ment and slew of the solar paddles: (a) nominal maneuvers. 
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Figure 6-21 Response of the SFU, in the Orientation A, to the simultaneous deploy- 
ment and slew of the solar paddles: ( b )  maneuvers completed in 2.5 
minutes. 
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Figure 6-22 The SFU response (in the Orientation A), during failure of the upper 
paddle to slew: ( a )  nominal maneuvering rate of 15 minutes. 
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Figure 6-22 The SFU response (in the Orientation A), during failure of the upper 
paddle to  slew: (b )  maneuvers completed in 2.5 minutes. 
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Orientation B 

The corresponding results were also obtained for the SFU in the Orientation B. 

Now both the deployment and slew of the solar paddles take place in the orbital plane. 

Note, the slew results in an asymmetric configuration about the local vertical leading 

to a new pitch equilibrium of +, = -13' (Figure 6-23a). The major influence of the 

combined deployment-slew maneuver is on the pitch response, which is essentially a 

synthesis of the t WO individual responses, corresponding to deployment (Figure 6-9) 

and slew (Figure 6-19). Thus the resultant response is the periodic planar librations, of 

approximately 17' in amplitude, around the new equilibrium position. The effect of a 

faster maneuver (completed in 2.5 minutes) is to more than double the pitch amplitude 

(NN 37', Figure 6-23b). In both the cases, although the out-of-plane librations are 

excited, they remain rather small (maximum amplitude 0.025') and hence are 

of little consequence. The same is true with the paddle vibrations which remain 

negligibly small. 

Effect of the failure of the top Solar Array Paddle (SAP) to slew is studied in 

Figure 6-24. As can be expected, the system now responds in pitch around the new 

equilibrium position of +O x -7.5' with an amplitude of around 15' (Figure 6-24a). 

With the faster maneuver, the pitch amplitude increases to around 25' (Figure 6-243). 

As before, both out-of-plane librations and vibrations continue to remain small and 

hence are of little importance. 

The response of the system during deployment and a 60' slew maneuver of the 

beam deviating from the equilibrium Orientation B is showed in Figure 6-25. As in 

the combined deployment and -30' to +30•‹ slew situation (Figure 6-23a), the pitch 

response here is a synthesis of the two individual responses. The response character 

and amplitude of the beam vibration are essentially the same as those in Figure 6-9(a) 

where the two appendages deployed in 15 minutes, with an equilibrium shift. 
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Figure 6-23 Response of the SFU, in the Orientation B, to the combined deploy- 
ment and slew maneuvers completed in: ( a )  15 minutes. 
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Figure 6-23 Response of the SFU, in the Orientation B, to the combined deploy- 
ment and slew maneuvers completed in: (b) 2.5 minutes. 
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Figure 6-24 Effect of the upper SAP slew failure during the combined maneuvers 
completed in: ( a )  15 minutes. 
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Figure 6-24 Effect of the upper SAP slew failure during the combined maneuvers 
completed in: (b )  2.5 minutes. 
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Figure 6-25 Response of the SFU during the combined deployment and slew maneu- 
vers, deviating from the nominal Orientation B by 60" in 15 minutes. 



6.3.4 Summary of results 

Before closing the SFU's dynamical analysis, it would be useful to summarize 

salient features of its response. Based on the simulation results following general 

observations can be made: 

Orientation A 

(i) The effect of inplane deployment is to induce pitch librational motion due to 

the Coriolis effect. The deployment rate has little effect on the pitch amplitude 

in the range 15 minutes (lower deployment velocity) to 2.5 minutes (higher 

deployment velocity). The out-of-plane librations and paddle vibrations are not 

excited by the deployment. 

(ii) The slew maneuver, being out-of-plane, excites all the three librational degrees 

of freedom. However, the pitch response is at least an order of magnitude higher 

(x 1.8' amplitude) compared to the roll and yaw responses (roll amplitude2 

O.lO, yaw amplitude x 0.01'). The large pitch response may be attributed 

to the reduction in the moment of inertia about the pitch axis during the slew 

maneuver. The increased slew rate has little effect on the out-of-plane librations. 

Although the slewing rate affects the vibrational motion significantly, it still 

remains negligibly small (tip amplitude B 2 cm during slew maneuver, and 

2 mm after slew). 

(iii) Effect of the upper appendage slew failure is to shift the roll equilibrium position, 

as expected, with a large amplitude roll oscillations ( x  5' compared to z 0.1' 

for the nominal case) about the new equilibrium position. As before, the faster 

slew has little effect on the response. 

(iv) During the combined deployment-slew maneuver, the pitch response is domi- 

nant. It is significantly larger than that caused by the individual maneuvers. 

An increase in the maneuver rate affects the out-of-plane librations significantly. 

The same is true during'the failure of the upper paddle to slew during the com- 

bined maneuver, particularly with respect to the roll. A faster maneuvering rate 

only accentuates the out-of-plane response. 

Orientation B 
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(v) The dominant response during the deployment still remains the pitch and it 

is slightly larger in the present case compared to that for the Orientation A 
( X  15" versus B 13.4' amplitude). Other observations in (i) remain valid here 

also. Retrieval is essentially an unstable maneuver. 

(vi) During slew, the dominant motion continues to be pitch about the new equi- 

librium position. However, with the failure of the upper paddle slew maneuver, 

the pitch response reduces significantly. This is in contrast to the roll response 

during the slew failure for the Orientation A as mentioned in (iii). 

(vii) Dominant response continues to be pitch during the combined deployment-slew 

maneuver. It is rather large, of B 17" amplitude, and occurs around the new 

equilibrium posit ion. The faster maneuver accentuates the pitch response. A 
similar behavior is exhibited during the failure mode. 

Orientation C 

(viii) Although the orientation represents an equilibrium state, it is unstable. 

The information is of fundamental importance in the design of a control system 

for the SFU, monitoring the SFU operation after launch and particularly during the 

conduct of the planned dynamical experiments. 

6.4 The Space Shuttle 'Orbiter' 

The second example considers the Space Shuttle 'Orbiter' based flexible beam 

extending to 33m. The Shuttle is in the Lagrange Orientation, which is relatively 

stable. The configuration corresponds to the Orbiter Mounted Large Platform As- 

sembler Experiment once proposed by the Grumman Aerospace Corporation. It also 

resembles the SCOLE (Structural Control Laboratory Experiment) proposed by the 

NASA Langley Research Center. The Grumman experiment aimed at establishing 

capability of manufacturing beams in space which would serve as one of the funda- 

mental structural elements in construction of the future space station. Objective of 

the SCOLE experiment is to assess dynamics and control of large flexible structures 

in space when excited by externaldisturbances including slew maneuvers. 

The relevant parameters used in the numerical simulation are listed below: 



Orbital motion: 

orbit eccentricity(€) = 0.1 ; 

alti tude = 300 k m  ; 

period = 90 min . 

Orbiter: 

m a s s ( m o )  = 79,710 kg ; 

I = 1077195 kg m2 ; 

Iyy = 8284868 kg m2 ; 

I,, = 8662178 kg  m2 . 

Beam: 

m a s s ( m l )  = 129 kg ; 

length = 33 m (f u l l y  deployed) ; 

bending rigidit3 ( E I )  = 436 kg m3/s2 . 
The cross section of the beam is such that the area moment 'I' in both directions 

have the same value. The beam is free to vibrate in the two transverse directions with 

the deformation in each direction represented by the first two modes of a cantilever 

beam. 2uij (in meter) refers to the beam tip deflection in the ith direction and the 

jth mode. The plane formed by the local vertical and orbit normal is referred to as 

the "local vertical planen. Similarly, the plane formed by the local horizontal and the 

orbit normal is called the "local horizontal plane". Thus ull and 2112 represent half the 

tip deflections of the beam, in the local vertical plane, in the first and second modes, 

respectively. Similarly, uzl and u22 are half of the tip deflections in the local horizontal 

plane corresponding to modes one and two, respectively. In general, contribution of 

the second mode was found to be, relatively, quite small. 

In this investigation, as in the previous example, behavior of the system during 

the beam deployment is considered first (Section 6.4.1). The beam deploys from 

3 m to 33 m at a constant rate. This is followed by the system response during 

slewing maneuvers in Section 6.4.2. The slew maneuver profile is sinusoidal to avoid 

disturbances during initial and terminal phases of the maneuver. Finally, Section 
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6.4.3 addresses the question of combined deployment and slew. As before, only a few 

typical results are presented to help establish trends. 

Figure 6-26 shows response of the orbiter, with the fully deployed 33m beam, to 

the orbital eccentricity induced disturbance. It serves as the reference in assessing 

the effects of deployment and slew. Note, only the Shuttle's pitch motion is excited, 

which is rather large and reaches an amplitude of around 12" in five orbits. 

6.4.1 Deployment 

The effect of the beam deployment in 112 orbit is almost negligible (Figure 6- 

27). The eccentricity induced disturbance appears to be quite dominant and response 

remains essentially the same as in the reference case. However, the things change 

somewhat with the beam tip excitation of 0.4 m in the first mode in the local vertical 

plane (Figure 6-28). Note, the vibratory motion, through coupling, excites both roll 

and yaw responses (in addition to pitch, of course) which are modulated at the vibra- 

tion frequency. The vibratory response (Figure 6-28(b)) clearly show the reduction 

in frequency during deployment as expected. The beat phenomenon is attributed to 

the coupling between the transverse vibrational degrees of freedom. The response 

in the second mode is at least two orders of magnitude smaller and hence of little 

importance. Figure 6-28(c) shows the tip deflection of the beam during and after the 

deployment. Note the precessional motion due to interactions between the orbital and 

vibrational dynamics. ul represents the tip deflection in the local vertical direction 

and 242 in the local horizontal direction, both in meters as stated before. 

The effect of deployment of the beam in directions inclined to the orbit normal is 

considered in Figures 6-29, which also assesses the influence of the rate of deployment. 

In Figure 6-29(a) the deployment, at a rate of 1/2 orbit, is in the direction 30" 

to the orbit normal in the local vertical plane. There is no beam tip excitation 

here. Corresponding case for the beam deployment in the local horizontal plane 

is considered in Figure 6-29(b). The pitch motion remains essentially the same as 

before (Figure 6-26) except for minor changes in the local details. However, now the 

other librational degrees of freedom are also excited , particularly the yaw. Both the 

transverse components of the beam vibrations are excited with amplitude modulations 

contributed by the beat-type motion. Note the variation of the frequency with true 
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Figure 6-26 Response of the Space Shuttle, with a 33 m beam along the orbit nor- 
mal, to the eccentricity induced disturbance. It serves as the reference 
to assess the influence of deployment and slew maneuvers. Note, only 
the pitch motion is excited. 
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Figure 6-27 The system response with deployment of the beam in 45 minutes (112 
orbit). The deployment has virtually no effect as  the response is 
essentially the same as that for the reference case. 
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Figure 6-28 System response, during deployment of the beam along the orbit normal 
in 112 orbit, with the tip displacement of 0.4 m in the first mode along 
the locd vertical: ( a )  librational response of the orbiter. 
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Figure 6-28 System response, during deployment of the beam along the orbit normal 
in 1/2 orbit, with the tip displacement of 0.4 m in the first mode along 
the local vertical: (b )  vibrational response of the beam. 
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Figure 6-28 System response, during deployment of the beam along the orbit normal 
in 112 orbit, with the tip displacement of 0.4 m in the first mode along 
the local vertical: (c )  tip deflection of the beam. 
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Figure 6-29 Effect of the deployment direction and rate on the system response: (a) 
deployment in 1/2 orbit at 30" to the orbit n o d  in the local vertical 
plane. 
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Figure 6-29 Effect of the deployment direction and rate on the system response: (b )  
deployment in 1/2 orbit a t  30' to the orbit normal in the local horizon- 
tal plane. 
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Effect of the deployment direction and rate on the system response: (c )  
faster deployment in 7.5 minutes (1/12 orbit) at 30' to the orbit normal 
in the local horizontal plane. 
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anomaly in the presence of an orbital eccentricity: higher frequency near the apogee 

compared to that at the perigee. Ng has also reported such 'frequency condensa- 

tion'[64]. The phenomenon is associated with the 1 + 6 cos0 term in the governing 

equations. 

The effect of increased deployment rate by a factor of six (deployment completed in 

7.5 minutes) for the case corresponding to (b) is presented in Figure 6-29c. Although 

the pitch motion remains essentially unchanged, all the other motions are significantly 

accentuated. Of particular concern would be the diverging yaw degree of freedom. 

Obviously, this would present a challenge in terms of design of a suitable control 

strategy using the Shuttle's primary and vernier engines. 

6.4.2 Slew maneuvers 

The proposed Space Station 'Freedom' will be constructed using around 17-22 

flights of the Space Shuttle as mentioned earlier. Integration and deployment of 

the structural members would involve slew maneuvers. Furthermore, orientation of 

the directional antenna, solar panels for optimum production of power, telescopes 

aiming at distant galaxies, etc. involve slewing motions. Thus slewing maneuvers are 

important aspects of 'the space based system. 

Here two different slewing motions of the beam were considered: 

the beam, originally along the local vertical, going through the 90" slew (about 

the local horizontal) to occupy the orbit normal position; 

the beam, originally along the local horizontal, going through the 90" slew 

(about the local vertical) to occupy the orbit normal position. 

Both the maneuvers nominally take place in half-orbit. Effects of the faster slew 

maneuvers (completed in 1/12 of an orbit) are also investigated. 

Figure 6-30(a) shows response results during the 90" slew in the local vertical 

plane for the nominal slew duration of 45 minutes (112 orbit). The corresponding 

tip deflection is shown in Figure 6-30b). Here u2 represents the tip deflection in the 

local horizontal direction and ul is perpendicular to us, both in centimeter. Note, the 

sense of u1 is changing, from normal to the orbit plane at the begining of the slew, to 

the local vertical at the end of it. Effect of the faster slew (1112 orbit) is presented 

in Figure 6-30c. Corresponding results for the slew maneuver in the local horizontal 

plane are given in Figure 6-31. It is apparent that: 
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Figure 6-30 The system response during a 90" slew maneuver in the local vertical 
plane: (a) the maneuver completed in 1/2 orbit. 



t vertical 

-10 0 10 
ul, cm; during slew 

-10 0 10 
ul, cm; after slew 

Figure 6-30 The system response during a 90' slew maneuver in the local vertieal 
plane: (b)  tip deflection. 
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Figure 6-30 The system response during a 90" slew maneuver in the local vertical 
plane: (c )  the maneuver completed in 1/12 orbit. 
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Figure 6-31 Effect of a 90" slew maneuver, of the Space Shuttle based beam, in the 
local horizontal plane. The maneuver completed in: (a)  112 orbit. 
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Figure 6-31 Effect of a 90" slew maneuver, of the Space Shuttle based beam, in the 
local horizontal plane; the maneuver completed in: (b) 1/12 orbit. 



The maneuvers excite relatively large motion in yaw, particularly during the 

slew in the local vertical plane. 

Vibrational response of the beam, in general, is small. It is almost negligible in 

the second mode. The faster maneuver accentuates the response, significantly, 

by at least an order of magnitude. 

As in the case of the deployment, the beat response is present due to coupling 

between the transverse vibrations. 

6.4.3 Combined deployment and slew 

Figure 6-32 shows the system response during the combined deployment and slew 

maneuvers. Two cases are considered: 

(a) simultaneous deployment from 3 m to 33 m and a 90' slew from the local 

vertical to the orbit normal; 

(b) simultaneous deployment from 3 m to 33 m and a 90' slew from the local 

horizontal to the orbit normal. 

In both the cases, the deployment and slew maneuvers are completed in 1/2 orbit. 

The pitch response is virtually the same as in the case of pure deployment (Figure 

6-27), however the out-of-plane librations (roll, yaw) and vibrations are distinctly 

smaller (Figures 6-30(a) and 6-31(a)). The response in the second mode is too small 

and hence purposely not shown. Figure 6-33 presents the tip deflection for both the 

cases, (a)  and (b ) .  
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Figure 6-32 System Response during the combined deployment and slew in 1/2 orbit: 
( a )  from local vertical to orbit normal. 
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Figure 6-32 System Response during the combined deployment and slew in 112 orbit: 
(b )  from local horizontal to orbit normal. 



Figure 6-33 Tip deflection of the beam during the simultaneous deployment and slew 
maneuvers in 1/2 orbit: (a) from local vertical to orbit normal; (b)  from 
local horizontal to orbit normal. The response is over one orbit. 



6.5 Two-Dimensionally Deployable Array Experiment: Slew 

Maneuvers 

The third example pertains to an experiment to be conducted using the Space Flyer 

Unit mentioned earlier. It is one of the first experiments aimed at dynamics and con- 

trol of flexible structural members in space. Referred to as the Two-Dimensionally 

Deployable ~ r r a ~  Experiment, it involves deployment of an initially stowed mem- 

brane like structure, strengthened by a grid of cables and supported through a pair of 

orthogonal deployable truss-type members (Figure 6-34). Unfolding of the membrane 

like structure is brought about through simultaneous deployment, in two directions, 

along the diagonal of the 6 m square array. Objective is to study vibration charac- 

teristics, damping properties and control of flexible structures in space. Eventually, 

one would like to predict their performance through numerical simulation. Thus de- 

velopment of the algorithm in present thesis is ideally suited for application to the 

proposed experiment of considerable contemporary interest. 

The numerical values used in the simulation are listed below: 

Orbital motion: 

orbit eccentricity ( E )  = 0 ; 

altitude = 300 km ; 

period = 90 min. . 

Central body: 

mass (mo) = 4000 kg ; 

I,, = 4250 kg m2 ; 

I,, = 9290 kg m2 ; 

I,, = 11150 k g - m 2  ; 

length = 5 m .  

Array structure: 

mass (ml) = 90 kg ; 

length of each side = 6 m ; 

f lexural rigidity ( D )  = 1643 kg m2/s2  . 
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The m a y  structure is assumed to have uniform thickness. The first bending mode 

of a cantilever rectangular plate is used to represent the deformation of the array 

structure. Note, the modal integrals are different here from those for the rectangular 

plate case. The generalized coordinate is U, representing half the tip deflection. 

The objective here is to predict the response of the system during slew maneuvers 

of the array. The slew maneuvers take place about the pin joint at the central body, 

which is in the plane of the array structure. Five nominal orientations and slew 

maneuvers examined are summarized below: 

Orientation A: 

The array structure is perpendicular to the orbital plane and slews about the 

diagonal truss aligned with the orbit normal at an orbital rate of 4O/minute to track 

the sun (Figure 6-35). This may be referred to as the sun tracking maneuver. 

Orientation B: 

The array is nominally in the local vertical, local horizontal-plane LV,LH-plane, 

i.e. the orbital plane) with its diagonal truss along the local vertical and directed 

towards the earth. The slew maneuvers take place in the direction normal to the 

orbital plane and about the local horizontal. 

Orientation C: 

Nominally, the array is in the local vertical, orbit normal LV,ON-plane with its 

diagonal truss towards the earth (i.e. aligned with the local vertical). The slew 

maneuvers take place in the orbital plane and about the orbit normal. 

Orient at ion D: 

The nominal position of the array is in the LV,LH-plane with its diagonal truss 

along the local horizontal. The slew maneuver is normal to the orbital plane and 

about the local vertical. 

Orientation E: 
The array is in the local horizontal, orbit normal LH,ON-plane with its diagonal 

truss along the local horizontal. The slew maneuvers take place in the orbital plane 

through rotation about the orbit normal. 

The Orientations B, C, D and E are shown in Figure 6-36. Except for the Orien- 

tation A, the major axis of the central body is aligned with the orbit normal, and the 

minor axis with the local vertical; i.e. it is in a stable equilibrium. 

Two types of slewing maneuvers are considered for the Orientations B to E: 
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Figure 6-35 The sun-pointing structural array. involving slewing around the orbit 
normal at the orbital rate. 





The array originally has a 90" deviation from its nominal position and slews 

through 90" to  retuin to the nominal position. 

The array initially oriented at -30' from its nominal position, slews through 

60" to occupy +30•‹ position w.r.t. the nominal configuration. Thus neither the 

initial nor the post-slew orientation represents the equilibrium state. 

.The slew maneuvers are nominally completed in 15 minutes (1/6 orbit). To study the 

influence of faster slew, maneuvers completed in 1 minute (4" variation of the true 

anomaly) are also considered . 
Orientation A: 

Figure 6-37 shows response of the array under two different disturbances. During 

tracking of the sun (Figure 6-37a), only the librational motion in the pitch, with a 

relatively large amplitude of 5", is excited. The roll, yaw degrees of freedom as well as 

the elastic deformation of the array are zero. The situation changes dramatically when 

a small initial disturbance (i.e. in addition to the sun tracking slew maneuver) through 

the array tip deflection of 0.4 m (2u = 0.4) transverse to its plane is introduced. Now 

all the three librational degrees of freedom are excited with system becoming unstable 

in yaw due to its coupling with the roll generalized coordinate. This also emphasizes 

inherently unstable character of the equilibrium in Orientation A, where the maximum 

moment of inertia axis is in the orbital plane and the minimum moment of inertia 

axis is along the orbit normal. 

Orientation B: 
Response of the system, occupying the Orientation B, to slew maneuvers normal to 

the orbital plane is shown in Figures 6-38 and 6-39. The array maneuvers from -30" 

to +30•‹ in 15 minutes, passing through the nominally stable equilibrium Orientation 

B, as explained before. As in the case of the Orientation A, two cases are considered: 

response in absence of the initial array tip disturbance (Figures 6-38a); and with the 

transverse tip disturbance 2u of 0.4 m (Figure 6-38b). The following observations can 

be made: 

Slew maneuvers normal to the orbital plane excite all the three librational de- 

grees of freedom. In particular, the roll, yaw responses are relatively larger in 

magnitude compared to the pitch. This is understandable as the maneuver is 

about the roll axis (local horizontal) and a strong coupling exists between the 
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Figure 6-37 System response during the sun tracking maneuver at a constant rate of 
4"/minute: (a)  in absence of any initial array tip disturbance; (b)  the 
array subjected to an initial tip deflection of 0.4 m. 
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Figure 6-38 Response of the system to the array slew maneuver normal to  the orbital 
plane. The array slews from -30" to +30•‹ passing through the nominal 
equilibrium of the Orientation B: ( a )  in absence of a tip disturbance; ( b )  
the tip of the array displaced transversely by 0.4 m initially. 



Figure 6-39 Response of the system to 90" slew maneuvers of the array towards 
the nominal Orientation B. The maneuver is completed in: (a)  15 
minutes; (b )  l minute. 
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roll and the yaw degrees of freedom. The vibratory motion of the panel is ex- 

tremely small (Figure 6-38a) due to widely separated librational and vibrational 

frequency spectra. 

Vibratory disturbance of the panel does not affect, significantly, overall character 

of the response, except for the small high frequency modulations of the roll 

libration. 

Effect of the slewing rate on the system response is studied in Figure 6-39. The 

array, initially in the LH,ON-plane, slews through 90' to return to the nominal Ori- 

entation B. Two slewing rates are considered: maneuver completed in 15 minutes ( 
i.e. 1/6 of the orbit, Figure 6-39(a)); and a faster rate with the maneuver completed 

in 1 minute (i.e. in 4" of the orbital motion, Figure 6-39(b)). As can be expected, the 

larger magnitude of the slewing angle (90" compared to 60' in the previous case) leads 

to both increased librational and vibrational amplitudes. This may affect the system 

mission suggesting a need for active control. In fact, the system may become unstable 

in yaw through its coupling with roll as seen before in Figure 6-37(b). However, for 

that information, response results will have to be obtained over a longer duration. 

This will demand higher computational effort and cost. 

The effect of the faster rate is to reduce the librational response as the system 

quickly returns to the nominal equilibrium state. 

Of particular interest is the change in frequency during the slewing maneuver. It 

is interesting to see how the gravitational force stiffens the panel as it approaches the 

LV,LH-plane. 

Orientation C 
Performance of the system during the inplane slew maneuvers is indicated in Fig- 

ures 6-40 and 6-41. Figure 6-40 considers the effects of the extent of the maneuver: 

(a)  from -30" to 3.30"; and (b)  from -90" to 0•‹, i.e. returning to the nominal equi- 

librium orientation from the LH,ON-plane. The effects of the speed of the maneuver 

and the initial panel tip deflection are studied in Figure 6-41, for the 90' slew case. 

Based on the results following general comments can be made: 

Maneuver in the orbital plane (inplane slew) excites only the librational motion 

in pitch. Vibratory motion of the panel remains rather small. Even for a 90" 

slew the tip amplitude is around 1 cm (Figure 6-40(b)). 
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Figure 6-40 Typical response of the system, in the nominal Orientation C, to inplane 
slew mmeuvers: ( a )  the array slews from -30" to +30•‹ passing through 
the Orientation C: ( b )  the array slews through 90" to occupy the nomi- 
nal Orientation C. Both the maneuvers are completed in 15 minutes. 
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Figure 6-41 Effect of speed and tip deflection during a 90" slew of the panel with the 
system in the Orientation C: (a) the maneuver completed in 15 minutes; 
( b )  the maneuver completed in 15 minutes with the tip of the array def- 
lected by 0.4 m initially; (c)  the maneuver completed in 1 minute. 



Stiffening of the panel due to gravitational field is again apparent (as in the case 

of the Orientation B) when the panel approaches the LV,ON-plane. 

A comparison of the results in Figures 6-41(a) and 6-41(c) suggests that faster 

slew maneuvers lead to larger amplitude pitch, however the vibratory response 

is not significantly affected. 

The effect of the panel tip disturbance is confined to small amplitude high 

frequency modulations of the pitch response. 

Orientation D 

To recollect, in the Orientation D, the array is in the LH,LV-plane with the diag- 

onal truss along the local horizontal. Figures 6-42 and 6-43 show the system response 

during out of the orbital plane maneuvers about the local vertical. As seen before, 

the out-of-plane maneuvers excite all the three librational degrees of freedom: pitch, 

roll and yaw. As before, the two different slewing maneuver magnitudes are consid- 

ered in Figure 6-42: -30" to 3-30' about the nominal equilibrium position (Figure 

6-42a); and 90' from the LV,ON-plane to regain the nominal Orientation D (Figure 

6-423). Figure 6-433 considers the same 90' maneuver completed at a faster rate (15 

times faster; in 1 minute instead of a nominal time of 15 minutes). Effect of initial 

tip displacement of the array is also assessed (Figure 6-43a). The results suggest the 

following trends: 

As the maneuvers are around the local vertical, the dominant librational mo- 

tion is the yaw. On the other hand, the pitch inertia being the highest, the 

corresponding motion about the orbit normal is the least sensitive. 

The large magnitude yaw response in the presence of significant roll suggests a 

possibility of instability. 

The faster maneuver can lead to, during the period of the maneuver, reasonably 

large panel tip deflection (Figure 6-433). In the present case, with the 90" 

maneuver completed in 1 minute, the displacement reached an amplitude of 

around 3.5 cm before reaching a steady state value of 0.4 cm. 

The effect of initial tip displacement during the slew maneuver is to superpose 

high frequency, negligibly small amplitude modulations on the yaw response. 
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Figure 6-42 Librational response during two typical slew maeuvers completed in 15 
minutes: ( a )  the array slews from -30" to +30•‹ about the local vertical; 
(b) 90' slew normal to the orbital plane to regain the nominal equilib- 
rium of the D Orientation. The vibratory response, being negligible, is 
purposely not shown. 
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Figure 6-43 Response of the system to 90" slew maneuvers normal to the orbital 
plane to occupy the nominal D Orientation: (a)  the maneuver com- 
pleted in 15 minutes and the array subjected to an initial tip deflection 
of 0.4 m; (b) the maneuver completed in 1 minute without the tip dis- 
turbance. 



Orientation E 
In this case, the array nominally in the LH,ON-plane, undergoes slew maneuvers 

about the orbit normal, i.e. in the orbital plane. The results are presented in Figures 

6-44 and 6-45. As can be expected, the inplane slew excites only the pitch motion, 

rather large in amplitude (z 17"). It serves as the forcing function for the panel which 

oscillates at the same frequency as the pitch libration with the minute modulations 

at the panel frequency superposed. 
In Figure 6-44a, the array slews from -30' to +30•‹ thus passing through the 

nominal E Orientation. Figure 6-443 attempts to assess the effect of a large 90•‹ 

maneuver, with the array initially in the LV,ON-plane and slewing to regain the 

nominal Orientation E, by comparison with the response in (a). Note, both the 

maneuvers are completed in 15 minutes, so the 90" slew represents both larger as 

well as faster rotation. As can be expected, the response is larger both in librational 

(pitch) and vibrational (panel tip deflection, 2u) degrees of freedom, with a phase 

difference. However, essential character of the response remains virtually the same. 

It is of interest to recognize that the peak response is reached, in both the cases 

after the completion of the maneuver; and relatively earlier for the faster slew (Figure 

6-44(b)). 

Figure 6-45 investigates the effects of initial tip deflection and faster slew. The 

array slews from -30" to $30". The faster slew maneuver results in larger amplitude of 

the panel vibration, however, the pitch response remains essentially the same (Figure 

6-45~). 

Influence of the initial panel tip displacement during the slew maneuver is rather 

interesting. Note, the vibratory motion is essentially periodic with the initial dis- 

turbance as the amplitude. Its effect is to superpose very small amplitude, high 

frequency modulations on the pitch response (Figure 6-45(b)). This is in contrast to 

the response in Figure 6-45(a). Thus the vibratory response, when small, is modu- 

lated at the pitch frequency; however when relatively large, it modulates the pitch 
response at the vibration frequency. 
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Figure 6-44 A comparative response study, for the Configuration E, to assess the 
effect of magnitude and speed of the slew maneuvers: (a) -30" to +30•‹ 
slew passing through the nominal Orientation E; (b) 90' slew to occu- 
py the nominal Orientation E, the array originally in the LV,ON-plane. 
Both the maneuvers are completed in 15 minutes. 
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Figure 6-45 The system response during a slew maneuver from -30" to +30•‹ passing 
through the nominal E Orientation in the orbital plane: ( a )  the maneu 
ver completed in 15 minutes; (b) effect of the initial 0.4 m tip deflection 
of the array during the maneuver; (c )  the maneuver completed in 1 mi- 
nute (in absence of the tip disturbance). 



6.6 Conclusions 

The main objective of this chapter was to investigate the influence of deployment 

and slew maneuvers on the system using three spacecraft of contemporary interest 

as examples. More significant and common features of the system performance as 

suggested by the results may be summarized as follows: 

(a) The effect of deployment in the orbital plane is to induce pitch and inplane 

vibration due to the Coriolis effect. In general, the out-of-plane deployment, 

along the direction inclined to the orbit normal, excites all the three librational 

degrees of freedom as well as  inplane and out-of-plane vibrations. As can be 

expected, no motion is excited when the spacecraft is in the stable Lagrangian 

configuration and the appendage deploys along the orbit normal. 

(b) Slew maneuvers induce librational and vibrational motions. As in the case of 

deployment, inplane slew leads to inplane motions only, while the out-of-plane 

slew excites all the three librational as well as vibrational degrees of freedom. 

(c) The vibrational response excited by deployment and slew maneuvers, in general, 

is small. For the cases considered, the tip deflection of the appendage varied 

in the range of a few millimeters to a couple of centimeters. This may appear 

small, however, can be quite critical depending on the mission objective. The 

vibrational response in the second mode is at least two orders of magnitude 

smaller and hence of little consequence. 

(d) The deployment and slewing rates do not affect the librational response signif- 

icantly. On the other hand, vibrational motion is accentuated by faster ma- 

neuvers. The magnitude of a slew maneuver has some effect on the response, 

however, the general trends remain essentially the same. 

(e) The pitch response during the combined inplane deployment and slew maneuvers 

is essentially a synthesis of the two individual responses. 

(f) Deployment and slew maneuvers change the ellipsoid of inertia of the spacecraft. 

The librational response after the maneuver is around the new equilibrium. In 

the new equilibrium, the appendages, if not aligned with the local vertical, local 

horizontal or orbital normal, will deform inducing the undesirable stresses. 



7. CLOSING COMMENTS 

7.1 Concluding Remarks 

The objective of the thesis has been to develop a relatively general formulation 

and the associated computer code applicable to a large class of systems characterized 

by a rigid central body with flexible, deployable, slewing beam and/or plate type 

appendages. There is no restriction as to the number of appendages, their orientations 

and character of the orbit. The Lagrangian approach with its built-in advantages 

is used in the matrix form, introduced early during the formulation, which leads 

to relatively compact set of governing equations even for such a complex system. 

Such general approach to the problem has not been reported before and represents a 

versatile tool of far-reaching consequence. 

As can be expected, the highly nonlinear, nonautonomous and coupled equations 

of motion, in general, do not admit any closed form solution. fiurthermore, the gov- 

erning equations as well as the numerical code developed for their integration have to 

be validated. Particular cases involving rigid as well as flexible systems are used to 

this end. Besides substantiating the equations of motion and the computer program, 

dynamical studies themselves, using the Liapunov direct method and Butenin's vari- 

ation of parameter approach as applied to the systems considered, represent useful 

contributions to the field. 

It should be emphasized that purpose of the thesis is not to generate vast amount 

of response data for a specific system, but to indicate the methodology in approaching 

studies aimed at dynamics of a large class of systems. Of course, with the formula- 

tion in hand and the program operational, it can easily provide the necessary design 

information pertaining to dynamics, if called upon. However, what is important is 

to recognize the potential of this versatile tool as demonstrated through its applica- 

tion to three different situations of contemporary interest. The objective here is to 

illustrate the capability of the algorithm in accounting for the interactions between 

librational and vibrational responses as affected by the orbital eccentricity, deploy- 

ment and slew induced disturbances. Though preliminary in character, such studies 



of the Space Shuttle and Space Flyer Unit represent important information that has 

not been reported in the literature. 

A comment concerning the damping would be appropriate. It was purposely not 

included here as the damping model and its level are still a matter of controversy. 

Most of the damping information obtained so far has been through ground based ex- 

periments. The only on-orbit study during the NASA/Lockheed Solar Array Flight 

Experiment (SAFE, 1984) showed discrepancy ranging to several orders of magni- 

tude! Once the accurate model is identified, it can be incorporated quite readily as a 

generalized force in the present formulation. 

7.2 Recommendation for Future Work 

Like many scientific pursuits, the thesis represents a small step in approaching 

the everwidening horizon of knowledge. Although it establishes a sound foundation, 

considerable challenge exists in building the superstructure. Some of the avenues for 

further studies, which are likely to be satisfying, are indicated below: 

(a) Perhaps the following three items need immediate attention in terms of 

further generalizing the model: 

(i) inclusion of joint flexibility; 

(ii) specified translational motion (in addition to slew); 

(iii) torsional degree of freedom for the appendages (in addition to trans- 

verse vibrations). 

(b) Environmental effects, particularly due to the free molecular reaction forces 

and solar radiation induced thermal deformations, can be significant and 

hence should be accounted for. 

(c) In the case of the proposed Space Station, the central body (main mast) is 

indeed quite flexible. It would be useful to incorporate this aspect through 

further generalization of the model. 

(d) Perhaps one of the most exciting aspects of the present study is its possible 

extension to an adaptive structure capable of assuming desired shape in 

space. By considering a series of deployable, slewing, connected links, each 



one of a desired length, a robotic arm can be created to assume and track 

any spatial trajectory as indicated in Figure 7-1. 

(e) A challenging extension of the above development could be to the closed 

loop system. This, of course, would involve introduction of appropriate 

constraint relations. 

(f) Obviously, the final objective would be the control of this class of systems, 

once the dynamics is understood. Particularly attractive would be the con- 

trol, using the Feedback Linearization Technique (FLT) accounting for the 

complete nonlinear dynamics. Control of even a simple slewing, deploying 

system has not been attempted yet. If successful, this would represent a 

major contribution towards evolution and utiiiation of adaptive structures 

in space. 



Figure 7-1 A schematic diagram of a robotic arm capable of assuming desired shape 
in space to track any spatial trajectory. 
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