
THE PROBLEM OF TWO OR MORE INDENTORS 

MOVING OVER THE SURFACE OF 

A VISCOELASTIC HALF-PLANE 

He-zhi Fan 

B.Eng., Tsinghua University, Beijing, China, 1982 

M.Eng., Tsinghua University, Beijing, China, 1984 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

in the Department of Mathematics & Statistics 

@ He-zhi Fan 1993 

SIMON FRASER UNIVERSITY 

August 1993 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



Name: 

Degree: 

Title of thesis: 

Examining Committee: 

Chairman: 

Date Approved: 

APPROVAL 

He-zhi Fan 

Doctor of Philosophy 

The Problem of Two or More Indentors Moving over the Surface 

of a Viscoelastic Half-plane 

Dr. S.K. Thomason 

-- 

Dr. G.A.C. Graham 

Senior Supervisor 

Dr. M. Singh 

Dr. M. R. Trummer 

Dr. T .  Tuna 

Dr. G.M.L. Gladwell 

External Examiner 

Professor of Civil Engineering and 

Professor of Applied Mathematics 

University of Waterloo, Ontario 

August 13, 1993 



PARTIAL COPYRIGHT LICENSE 

I hereby grant t o  Simon Fraser Un ive rs i t y  the r i g h t  t o  lend 

my thes is ,  p r o j e c t  o r  extended essay ( the  t i t l e  of which i s  shown below) 

t o  users o f  the Simon Fraser Un ive rs i t y  L ib ra ry ,  and t o  make p a r t i a l  o r  

s i n g l e  copies on ly  f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any o ther  u n i v e r s i t y ,  o r  o ther  educational i n s t i t u t i o n ,  on 

i t s  own beha l f  o r  f o r  one o f  i t s  users. I f u r t h e r  agree t h a t  permission 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposes may be granted 

by me o r  the  Dean of Graduate Studies. I t  i s  understood t h a t  copying 

o r  p u b l i c a t i o n  o f  t h i s  work for f i n a n c i a l  gain s h a l l  no t  be allowed 

wi thout  my w r i t t e n  permission. 

T i t l e  o f  Thesis/Project/Extended Essay 

Author: 

(s ignature)  

(name) 

(date) 



Abstract 

The problem of several indentors moving on a viscoelastic half-plane is considered in 

the non-inertial approximation. The solution of this mixed boundary value problem is 

formulated in terms of a coupled system of integral equations in space and time. These are 

solved numerically in the steady-state limit for the case of two indentors. The phenomena 

of hysteretic friction and the interaction between the two indentors are explored. 

First, after the introduction in Chapter 1, the fundamental equations due to Golden and 

Graham based on the Kolosov-Muskhelishvili equations are given in Chapter 2 and Chapter 

3. A coupled system of integral equations in space and time is finally deduced. By using 

the decomposition of hereditary integrals, the solutions for two and more moving loads are 

derived as an extension of the method for one loading treated by Golden and Graham [19]. 

In Chapter 4, viscoelastic material behavior is taken to be that of the standard linear 

solid. The steady-state limit case of the integral equations is considered. The solution for a 

single load due to Golden is extended to the case of two indentors. For the standard linear 

solid, the coupled integral equations are reduced to implicit algebraic equations with the 

constraint conditions. Considerable analytical progress is made before resorting to numerical 

techniques of solution. An expression for the hysterestic friction is also given. 

The last chapter presents the numerical results. Two values of the viscous parameter 

C, = GI/Go are chosen. The kernels of the integral equations contain integrable singulari- 

ties, and integrals involving them are evaluated by suitable numerical quadrature formulae 

and iteration schemes. The numerical results for the pressure distributions and contact 

regions are studied. The behaviour of the hysterestic friction and other numerical results 

are discussed in this chapter. 

. . . 
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Chapter 1 

Introduction 

We consider here the moving contact problem in viscoelasticity, which is the problem 

of one or more indentors, or punches, pressed into a viscoelastic half-space and moving over 

the surface. The indentors are assumed to be infinite in one direction, with a uniform cross- 

section and to be parallel. Thus, plane strain conditions prevail. The material is assumed 

to occupy the half-space y > 0, and the indentors are taken to be moving in a negative 

x direction. To solve this problem means finding the relationship between the loads W; 

which act on the ith indentor, the pressure distribution under the indentors and the contact 

regions C;. Deformation or displacement derivatives may also be determined. 

As Johnson [30] points out, 'the subject of contact mechanics may be said to have started 

in 1882 with the publication by Heinrich Hertz [25] of his classic paper On the contact 

of elastic solids'. Using certain approximations, he gave a normal pressure distribution, 

known as the ellipsoidal-Hertzian-distribution, as the contact area is an ellipse under his 

assumption. He also gave an expression for the indentation. In spite of the approximations, 

the theory does yield predictions which are a useful first step in the analysis of real contacting 

bodies. In the numerical analysis here, the Hertzian results, in their two-dimensional limit, 

are taken as initial data. 

The Hertz contact theory is restricted to frictionless surfaces and perfectly elastic solids 

[30]. Progress in contact mechanics in the second half of this century has been associated 
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largely with the removal of these restrictions. To quote Gladwell 161, 'this theory is widely 

regarded as one of most beautiful and challenging fields of classical linear mechanics.' Glad- 

well points out that during the last hundred years it has been the cradle in which a number 

of powerful mathematical methods have grown. Among these are the complex variable 

method conceived by Kolosov and brought to maturity by Muskhelishvili [40] in the 1950's. 

'Muskhelishvili's great contribution was the introduction of a systematic, direct method to 

replace the guess work by which the complex potentials had previously been chosen.' Such 

complex variable techniques, one of the most powerful methods of applied mathematics, are 

used here for solution of viscoelastic contact problems. 

The second powerful mathematical tool which has been shaped by its use in elastic- 

ity theory is the integral transform [6]. Integral transforms were developed in piecemeal 

fashion during the nineteenth century but it was the seminal work of I.N. Sneddon [46] in 

his Fourier Tmnsforrns (1951) that showed they could be used for the actual solution of 

the difficult boundary value problems of elasticity theory. By employing the classical cor- 

respondence principle [19], some time-dependent viscoelastic equations may be reduced to 

standard elastic form by taking the integral transform over time t. Therefore the difficulties 

of such problems are no more than that for the corresponding elastic ones apart from inte- 

gral transform inversion. Unfortunately this method can not be applied to all viscoelastic . 

problems directly as there would be some points of the boundary at which the entire history 

of boundary conditions is unavailable. For the last three decades, work in this area has 

largely been devoted to such problems [19]. 

For a long time the mechanics of deformable bodies has been based upon Hooke's law, 

that is to say, upon the assumption of linear elasticity which leads to elegant mathemati- 

cal structures. Almost all routine stress analysis in industry is still based on this theory. 

Timoshenko and Goodier [50] gave a presentation of the theory more suited to the engineer. 

It is well known that no mathematical theory can completely describe the complex world 

around us. Every theory is aimed at a certain class of phenomena, formulates their essential 

features, and disregards what is of minor importance. Engineers have become increasingly 

conscious of the importance of the inelastic behavior of many materials and mathematical 

formulations of this behaviour have been attempted and applied to practical problems. Out- 

st anding among them are the theories of ideally plastic and of viscoelastic materials. While 
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plastic behavior is essentially nonlinear, viscoelasticity, which exhibits time-dependent be- 

havior in the relationships between stress and strain, like elasticity, permits a linear theory. 

This theory of linear viscoelasticity is applied in the work here. 

The earliest attempts at mathematically modeling viscoelastic behavior were those of 

Maxwell and Meyer [35]. Meyer's model is generally associated with the names of Kelvin 

and Voigt, who however made their contributions much later. This model is equivalent 

to simple differential constitutive relations which represent material response in the terms 

of springs and dashpots in series or parallel. Boltzmann [2] (1874) proposed the general 

hereditary integral form of the constitutive relations which is the basis of most theoretical 

work on viscoelastic materials of the past three decades [19]. Until the nineteen fifties, 

development of the subject was slow. The emergence into common use of a large variety 

of polymeric materials in the post-war years focussed increasing attention on the topic. 

The standard linear solid is a convenient non-trivial but simple model, frequently used in 

theoretical analysis for purposes of illustrating techniques. In the following chapters, detail 

about this model will be given. This was one of the special forms of the viscoelastic functions 

that have been found useful in practice. 

There are a few books devoted exclusively to contact mechanics as Kalker [31] points out. 

In 1953 the book by L.A. Galin [7] appeared in Russian summarizing the pioneering work 

of Muskhelishvili in elastic contact mechanics. This theory is two-dimensional, considering 

a wide range of problems, by casting them in the form of a Riemann-Hilbert problem. 

Also in 1980 Galin [8] published Contact problem in the classical theory of elasticity and 

viscoelasticity which is only in Russian so far. An up-to-date and thorough treatment of same 

field was published in 1980 by Gladwell [7]. In 1985 Johnson's [30] book on contact mechanics 

appeared, in which a complete survey is given of engineering practice and concentrated on 

contact theory which considers contact of bodies that touch first at a point or along a line and 

then have a small contact patch. There is a chapter on rolling contact of elastic bodies and 

one on inelastic rolling contact. In Golden and Graham's [19] book, three decades of research 

on viscoelastic boundary value problems, mainly with moving boundary regions, are drawn 

together into a systematic and unified text including some new results and techniques. The 

plane isotherm and viscoelastic Hertz problem and its application to the impact problem 

are discussed, while crack and The book by Kalker [31] is the a culmination of 30 years 
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research by him. It represents a comprehensive account of the theories developed by himself 

and others to explain and predict rolling contact phenomena. Some of these theories are 

classical, bearing names such as Hertz, Boussinesq, Galin and Mindlin; others are at the 

forefront of the modeling and theory making process. A large part of the book is devoted 

to practical problems solved by various computer methods. 

The moving boundary load problem is one typical kind of viscoelastic Hertz contact 

problem. The normal indentation problem is the other kind. Both involve time-dependent 

regions. The normal contact problem considers a rigid smooth indentor pressed into a 

viscoelastic half-space under varying load. Such a problem was first treated by Lee and 

Radok [33] in 1960, and extended by Hunter [26] and Graham [22] later. Recently, Golden 

and Graham [13] gave the steady-state solution to the problem subject to normal periodic 

loading for a standard linear solid. Lan [32] in 1991 considered this in three-dimensions for 

a general viscoelastic material. In this thesis the tangentially moving boundary load case is 

considered. 

Even in a linear theory the viscoelastic moving load problem is not simple, while the 

theory of dry rolling contact problem for an elastic solid is now at an advanced state of 

development [29]. The reason for the difficulty is easy to appreciate [30]. During motion, 

the material lying in the front part of the contact is being compressed, while that at the rear 

is being relaxed. For a perfectly elastic material the deformation is reversible so that both 

the contact area and the stresses are symmetrical about the center line of the indentor. 

A viscoelastic material, on the other hand, relaxes more slowly than it is compressed so 

that the two bodies separate at a point closer to the center line than the point where 

they first make contact. The geometry of the moving contact problem in viscoelasticity 

is different, therefore, from that in the perfectly elastic case, and the viscoelastic solution 

cannot be obtained directly from the elastic solution. Furthermore the points of separation, 

which represent the contact region, cannot be prescribed; they have to be located from the 

solution process as the points where the contact pressure falls to zero, if the indentor is 

smooth. For two and more indentors, we need to study not only the viscoelastic effects on a 

particular indentor, but also the interference of viscoelastic effects from all those indentors. 

In other words, the history of the mixed boundary conditions, must be taken into account. 

The problem of a moving indentor on a viscoelastic half-plane has received attention 
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for over three decades [19]. The problem of a single indentor is of considerable interest, 

largely because it offers a theoretical framework in which to investigate the phenomenon of 

hysteretic friction. If surface friction is neglected, the problem can be regarded as an indentor 

sliding across a lubricated half-plane, or a cylinder rolling over the plane. In 1961, Hunter 

[26] first presented a rigorous solution. In order to simplify the solution to the problem, 

the viscoelastic solid was idealized as being a standard linear material with a constant 

Poisson's ratio. He did this by transforming the equations into elastic form, and replacing 

the displacement and pressure by these quantities acted upon by differential operators. 

In the early work of Morland [38, 391, integral representations for the displacements and 

stresses were derived, leading to two pairs of linked dual integral equations for the two 

functions involved in the pressure representation. The method of solution, in terms of series 

of Bessel functions, imposed no restriction on the viscoelastic behavior. The final solution 

was necessarily numerical. Golden [18] presented a formalism, both simple and transparent, 

for this problem, with arbitrary viscoelastic behavior. The formalism, though different from 

that of Hunter and Morland, is related to both and clarifies the connection between the two. 

This method shows that the problem ultimately reduces to the solution of a linear integral 

equation for a quantity v(x, t), closely related to the displacement outside the region of 

contact. This method also works well for the problem involving limiting friction [14, 171. 

This moving load problem has also been considered for the transient case [12], in three- 

dimensions [41] and in the nonlinear case [I, 431. Expressions were derived for the hysteretic 

friction in several works [14, 19, 26, 411. General theorems concerning the existence and 

uniqueness of solutions to the contact problem have been given by Signorini and Fichera [4] 

for the elastic case and Boucher for the viscoelastic case [19]. 

The case of two and more moving indentors was briefly mentioned by Golden and Gra- 

ham [19], but has not previously been solved. The solution of this problem will be discussed 

here. When there is more than one moving indentor involved there is considerable extra 

complexity. This is analogous to the complexity arising in vibration theory in the step from 

a system with a single degree of freedom to  one with many. However the method used to 

obtain the solutions from one to two then become very relevant. We will obtain a set of 

coupled integral equations rather than single one. 

Possible areas of practical application of the results presented here would be to wheels 
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on rails, the cylinder pressed against the image carrier in a printing press and so on. 

The contents of this thesis are now summarized. 

In Chapter 2 and Chapter 3, the fundamental equation due to Golden and Graham based 

on the Kolosov-Muskhelishvili equations is derived. This equation reduces to a system of 

coupled integral equations in space and time. The method of solution for two and more 

moving loads is described as an extension of the approach for dealing with one loading. 

Second, in Chapter 4, viscoelastic material behaviour is taken to be that of the standard 

linear solid, and an expression for the hysteretic friction is given. The steady-state limit is 

taken in Chapter 5. The solution for a single load due to Golden is extended to the case 

of two indentors. For a standard linear solid, the coupled integral equations are reduced to 

implicit algebraic equations with the constraint conditions. Considerable analytical progress 

can be made before resorting to  numerical techniques of solution. 

Chapter 6 presents the numerical results. Two values of the viscous parameter, C, = 

G1/Go, are chosen. The kernels of the integral equations contain integrable singularities, and 

integrals involving them are evaluated by suitable numerical quadrature formulae. Using 

an iteration scheme, we obtain the numerical results for the pressure distributions and 

contact regions. The behaviour of the hysteretic friction and other numerical results are 

also discussed in this chapter. 

The last part contains conclusions and discussion on further work such as the case of an 

infinite number of indentors and the effects of inertial. 



Chapter 2 

The Fundamental Equations 

2.1 The Moving Contact Problem 

The constitutive equations of an elastic isotropic medium have the form: 

where Ui j  and E i j  are the stress and strain tensors which are in general functions of the 

position r' = (x, y,z) in the material and time t. The quantities p and X are Lamd's 

constants. 

In a linear viscoelastic isotropic medium, the constitutive equations are replaced by 

t 

oij(F', t) = 2 J__  dtJp(t - tJ)€ij(C t') + 6ij dtJX(t - tJ)ekr(i, t'). (2.1.2) 

The quantities p(t) and A(t), both are zero for negative t, are related to the shear and bulk 

relaxation moduli, G(t) and M(t), respectively as follows: 
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where H(t) is the Heaviside step function defined by 

and 6(t) is the singular delta function defined by 

07 t f 0 ,  00 and JOO 6(t)dt = 1. 
00, t = 0, 

The bulk relaxation modulus M(t) is simply related to the shear and volumetric relaxation 

moduli, G(t) and K(t), by 
0 

Taking the Fourier 

where 

transforms of (2.1.2) with respect to time yields 

Bij(< Ld) = 2P(w)2ij(r', W )  + 6iji(w)2kk(f7 w), 

00 

f(w) = / dte.-jWt f (t). 

Note the formal identity between (2.1.7) and (2.1.1), where the complex moduli, P(w) and 

i(w), play the role of Larne"s constants. This is the basis of the Classical Correspondence 

Principle [19], which is a general method of solving viscoelastic boundary value problems. 

Whenever those regions over which different types of boundary conditions are specified do 

not vary with time, viscoelastic solutions may be generated in terms of elastic solutions 

that satisfy the same boundary conditions. This result may be extended in a restricted 

manner to problems involving time-dependent regions and is then referred to as the Extended 

Correspondence Principle [19]. 

We are considering the problem of n rigid indentors pressed into a viscoelastic half-plane 

(y > 0) and moving across it in the negative x direction. On the boundary of the x-axis, 

we denote the contact region by c(t), 
n 

~ ( t )  = U cj(t), cj(t) = [aj(t),bj(t)], j = 1, n, (2.1.8) 
j=1 

and its complement on the boundary by c1(t). The speed of the indentors is assumed to be 

sufficiently small for inertial effects to be neglected. The quantities, aj(t), bj(t) j = 1, N, 

are not known until the problem is solved. 
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The boundary conditions on the x-axis are formulated as follows. The displacement in 

the y direction is given by 

dj(t) - Fj(x - ioj(t)), x E cj(t), 
'112(x, t) = 

unknown, x E cl(t), 

and the complex stress, if Coulomb's law applies, is given by 

- ( I +  i f)p(x), unknown, x E cj(t), 
C(x,t) 022 - ia12 = 

x E cl(t), 

where Fj is the shape function of the j th  indentor, dj is the displacement under the deepest 

point ioj(t) of the indentor and f is the coefficient of friction. The displacement in the x 

direction is unprescribed. This is a mixed boundary value problem with moving boundary 

regions. 

This viscoelastic moving contact problem is not amenable to solution by the Correspon- 

dence Principle[lS, 201, even though some elastic solutions of the indentation problem are 

available in [6, 401. The reason is simply that the boundary conditions change while the 

indentors are moving. The contact region, representing the part of the boundary in contact 

with the indentor, is unknown until the problems are solved. We have to investigate this 

problem directly. 

2.2 Kolosov-Muskhelishvili Equations 

Complex variable techniques, based on the Kolosov-Muskhelishvili (KM) equations [40], 

are very powerful for solving two-dimensional boundary value problems in elasticity. The vis- 

coelastic KM equations also provide a useful starting point for considering two-dimensional 

viscoelastic boundary value problems and in particular plane strain problems of the kind 

under discussion. 

Applying the theory of the biharmonic equation to the plane theory of viscoelasticity, 

we find that all the functions involved depend on time t as well as the complex variable 

z = x + iy and its complex conjugate. Then the viscoelastic KM equations involve two 

complex potentials, cp(z, t) and $(z, t) .  For our moving contact problem, the boundary is 
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the x axis. Both p(z, t) and $(z, t) are analytic in the upper plane y > 0, the domain of the 

material. As described in [40, 191, the latter may be eliminated and the region of analyticity 

of the former may be extended to the whole complex plane, by putting 

p(z, t) = -cp(z, t) - zcpt(z, t) - $(z ,  t). (2.2.1) 

The bar indicates complex conjugation; over the function alone, it indicates complex con- 

jugation, leaving z untouched; over z it affects only that quantity. In other words, if 

then 

F(z,t) = u(x, -y,t) - iv(x,-y,t). 

The KM equations, adapted in this manner, have the form 

t t 

2L dttP(t - t l)~'(r ' ,  t') = dt'lc(t - tl)cp(z, t') + cp(2, t )  + ( Z  - z)(pt(8, t), (2.2.4) L 
where the function cp(z, t) is analytic in the whole complex plane, except on portions of the 

real axis. Also 

D1(r', t) = ui (F, t) + iu;(F, t), 

with the dash indicating differentiation with respect to x only and where u1 and u2 are the 

displacements in x and y directions, respectively. Also, the function ~ ( t )  is defined by the 

fact that its Fourier transformation is given, in the case of plane strain, by 

where D(w) is a generalized Poisson's ratio for the material. 

We will sometimes refer to C(r',t) and Dt(F,t) as the complex stress and the complex 

displacement derivative. 

As z approaches the real axis from within the material, which is taken to be in the upper 

half plane, cp(z,t) and cp(E,t) approach cp+(x,t) and cp-(x,t), respectively, which are the 

limit of this complex function from above and below the x-axis. 
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We see from (2.2.3) that on the free boundary (regions with no stresses acting) cp(z, t) 

is continuous. It is discontinuous only on regions of contact. In the case of a half plane 

under load, we assume that stresses and rotations vanish at infinity. Also, we assume that 

the boundary stresses along the x-axis fall off as l /x2 or faster at large distance from the 

origin. Under such assumptions, cp(z, t) behaves as l / z  for large 1 . ~ 1 .  

Methods of solution for the boundary value problems have relied heavily on analogies 

with elasticity. The most striking formal difference between viscoelastic equations (2.2.2) - 

(2.2.4) and the corresponding elastic equations is the convolution of ~ ( t )  and cp(z, t) on the 

right of (2.2.4). Unless this can be eliminated, there is no hope of applying the standard 

Hilbert theory in the manner developed for elastic problems. 

The obvious restriction that will remove this integral is to assume that the material 

possesses the proportionality property [19], from which it follows that 

where KO = 3 - 4v0. Equation (2.2.4) then becomes 

dtfp(t - tf)D'(r', t') = ~ ~ c p ( z ,  t) + P(Z, t) + (2 .  - z)(~'(2., t). 

Thus, a significant mathematical simplification of the fundamental equations results from 

assuming that the isotropic material possesses the proportionality property. This amounts 

to assuming that the shear and bulk relaxation modulus, G(t) and M(t), or, p(t) and X(t), 

are proportional. The latter pair is related to G(t) and M(t) by equations (2.1.3) and 

(2.1.4). Following this, it is immediate that 

In other words, the material has a unique Passion's ratio vo. 

The proportionality assumption means that the time behavior in shear and bulk vis- 

coelastic functions have same shapes. However, this would not be expected to be true in 

general since the molecular mechanisms have little in common in these two cases. In mate- 

rial experiments, viscoelastic effects tend to  be less pronounced for volume than for shear 

deformation. 
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This would seem to indicate that the proportionality assumption has no physical basis. 

But, in many cases, the bulk modulus is much larger than the shear modulus so that , for 

practical purposes, we can take uo = 112, as a limiting case. Also for many plastics, uo is a 

constant but less than 112, typically having values in the range 0.35 N 0.41. In such cases, 

the proportionality assumption would seem to have approximate validity. In summary, 

therefore, this assumption, which is motivated primarily by the need for mathematical 

simplicity, is a reasonable approximation for many materials. 

2.3 Hilbert Problem 

Equations (2.2.3) and (2.2.4) are suitable for treating problems in which C(r',t) = 

all - iaz2 and D1(r', t) = u' + iv' are known on portions of the boundary. But it is often the 

case that D1(r', t), for example, is not known completely at any point. What is known in the 

contact regions is the imaginary part of D1(r', t), which is the normal displacement derivative 

uk(x, 0, t). This means that we must take real and imaginary parts of the equations to extract 

the quantities that are given. This means introducing another function, namely @(z, t). If 

the problem is then to reduce to simple Hilbert problem as we wish, it is necessary to have 

some relationship between cp(z, t) and @(z, t). Consider the case of limiting friction on the 

boundary. Since the motion is towards the negative x direction, Coulomb's Law takes the 

form 

012(x, t) = - f 0 2 2 ( 2 ,  t), 

where f is the coefficient of Coulomb's friction. We deduce from (2.2.3) that 

(1 -  if)^^^ = (P-(x, t) - ~ ' ( 2 ,  t). 

It follows that 

at all points on the x-axis. Since ~ ( z ,  t) is analytic in both the upper and lower half plane, 

except on parts of the red  axis, it follows that ~ ( z ,  t )  is also. From (2.3.1) and the fact that 

cp(z, t) N 1/z as IzI + oo, it follows from Liouville's theorem that [19] 
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for all t. Using (2.3.2), we can replace equation (2.2.4) by 

1 
dt1p(t - tf)u;(F, t') = -[(I - a~o)cp-(x, t) + (KO - a)cp+(x, t)] 

2i 

on the boundary for a material that has the proportionality property. 

If there is no friction on the boundary, f = 0, then a = -1, giving 

so that (2.3.3) becomes 

2 dtlp(t - tl)u;(< t') = $[(I + ~o)cp-(x, t) + (KO f l)cp+(x, t)], 1-i 
which gives 

,i 

cp+(x, t) + cp-(2, t) = i dt1l(t - t1)u;(x, 0, t'), 11, 
where 

However, in the frictionless case, it is not necessary to assume ~ ( t )  = rco6(t) [19]. One can 

get the same equation as above on the boundary, but where the function l(t) is defined by 

the Fourier transform relation 

The applied stresses are zero on ct(t). We only know the normal displacement derivative 

ui in c(t). Under the assumption of limiting friction and ~ ( t )  = ~ 0 6 ( t ) ,  we have that 

where p(x, t) is the normal pressure on the x-axis, s(x, t) is the shear stress along the x-axis, 

and 

cp+(x, t) - cp-(2, t) = 0, x E c1(t), 

cp+(z, t) - qcp-(x, t) = iv(x, t), x E c(t), (2.3.10) 

where 

dttl(t - tl)u;(x, t'), 
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and 

It will be convenient to put 

lnq 1 g = - =  h 
-tan-'(-), 

1 
2ni n f 9 E [O,I l .  

Equations (2.3.10) define a Hilbert problem [40], the general solution of which can be 

written down as 

where P(z, t) is a polynomial of degree m not higher than 2n, c(t) consists of n intervals 

[aj(t), bj(t)], j = 1, n. There are 2n endpoints. We can allow the possibility of singularities at 

some or all of these endpoints by choosing an appropriate form of X(z, t). The discussion will 

be confined to the case where all the indentors are smooth, so that no endpoint singularities 

occur. Then m = 0 and P(z, t) = 0. In this case, the quantity X(z, t )  has the form [19] 

n 

X(Z, t) = n ( z  - aj(t))'-*(z - l~;(t))~. (2.3.14) 
i=l 

This function is discontinuous on c(t) and continuous on cl(t) and the following subsidiary 

conditions must be obeyed: 

An expression for v(x, t) outside of the contact region is required. Extending the second 

relation of (2.3.10) outside of c(t) and using the first relation gives 

v(x, t) = -2 s i n ( ~ 6 ) e " ~ ~ ( x ,  t), x E cl(t), , (2.3.17) 

since 
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where p(x, t) is the unique value of cp(z, t) on ct(t). We will also denote the unique value of 

X(z, t) on ct(t) by X(x, t). More explicitly, 

Also, the stresses in the contact region c(t) can be written down. Note that there is 

discontinuity in cp(z, t) for x E c(t). We apply the Plemelj formulas, 

1 
F(z) = - J f ( 4  dt- 

2ni 1 t - z' 

1 1 f (t) 
F-(x) = -- f (x) + - Jdt-, x E 1, 

2 
(2.3.19) 

2ni I t - x  
where 1 is any smooth arc in the complex plane and the integrals in the last two relations 

are principal values. Substituting cp/X for F, iv/X+ for f ,  and using equations (2.3.9) and 

(2.3. lo), one can deduce that 

Then, the pressure p(x, t) on the contact region is given as 

1 dxtv(x', t) 
p(x,t) = --[(I - 

1 
1 + zf + $1 + ;)v(x, t)]. 

Using 

we find that the above formula for the pressure p(x, t) becomes 
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It vanishes for x E ct(t). 

The integrals in (2.3.21) - (2.3.22) are understood to be the Cauchy principal values [40]. 

When the integrands are singular in the range of integration, this will always be understood 

in what follows. The contact intervals {c(t) : [aj(t), bj(t)], j = 1,n)  are usually unknown 

before the problem is solved, while the overall motion of the indentors and the load on each 

indentor are generally specified. The loads Wj per unit length on each indentor are given 

by 

where 

This gives a total of another n conditions. 



Chapter 3 

Decomposition of Hereditary 

Integrals 

For the moving indentation problem, the solutions depend on the complex potential 

function cp(t,t), which is given by equation (2.3.13) under the conditions (2.3.15,2.3.23). 

Whenever cp(z, t) is known, all the interesting quantities can evaluated from the KM equa- 

tions, (2.2.2,2.2.3, 2.2.4). But the complex potential function cp(z, t) contains an unknown 

quantity v(x, t), (2.3.11), which is known in the elastic indentation problem. In that case, 

u(x, t )  is proportional to the derivatives of the indentor profiles, since the displacement curve 

on the contact regions is same as the shape of indentors. In viscoelasticity, the quantity 

v(x, t )  is related to the displacement in the contact region from past to present and therefore 

depends on the displacement outside of contact region also. The problem is now transformed 

to determining the quantity v(x, t). 
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3.1 Decomposition Met hod 

In this section, we derive an integral equation for the quantity u(x,t), x E c(t), given 

by equation (2.3.11) where 

d 
u(x,t) E u2(x,t); uf(x,t) = -u(x,t). (3.1.1) 

dx 

The function u' may be expressed as function of v(x, t) 

dttk(t - t1)v(x, t'), 

where k(t), l(t) are two causal functions, related by 

Under the proportionality assumption, l(t) is given in equations (2.3.11). 

Let Ow(x,t) be the set of the present and all past times, (-oo,t], which we decompose 

into two disjoint sets W,(x, t) and W,(x, t), i.e. 

where W,(x, t) is all those times (see figure (3.1)) t' 5 t such that x E c(tt) which consists 

of the contact regions in which the displacement in the y direction is known, and W,(x, t) 

is a i l  those times t' 5 t such that x E c'(tt) i.e. outside the contact interval in which stress 

distributions are known to be zero. When the j th  indentor is passing point x at time t ,  we 

take the quantity taj-i(x) to be the time when the front end point of first contact interval 

coincided with point x and t2j-2(x) to be the time when the rear end point of the first 

contact interval passed x. The point x is in cj(t), the jth contact interval at time t. Also 

tl(x) is the time when the front end of the j th indentor coincided with the point x. Thus, 

if x lies in j th  contact interval, 
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Figure 3.1: The number of the transition times and their values depend on which contact 
interval x  belongs to. Transition times are a set of past times when the end points of the 
indentors passed x.  Here x  is in the j th  contact interval c j ( t )  = [ai ( t ) ,  b j ( t ) ] .  

We will sometimes refer to the time t l  ( x ) ,  t 2 ( x ) ,  as transition times. 

Now we decompose equation (2.3.11) for v ( x ,  t )  when x  in the contact regions by using 

equation (3.1.2). First we have 

where in the second term from equation (3.1.2) 

dtk(tl - t ) v ( x ,  t ) .  
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Then carrying out an interchange of integrations, we have 

where 

T l ( t ,  t'; X )  = l:(x) dtUk(t - t")l(tn - t'). 

The procedure can be repeated. We obtain 

+ / t 2  dt1T2(t, t'; x)u'(x, t'), 

where 

T2(t, t'; 2 )  = ~ , t 2 ' x '  d t " ~ ~ ( t ,  t"; x)k(tU - t'). 

Continuing this process gives the decomposition for x E c( t )  or t E W,(x, t )  [19], 

where 

To(t, t') = l ( t  - t'),  (3.1.16) 

It St, dt Tj-1( t ,  t"; x)l(tU - t'), if j even , 
T j ( t ,  t'; X )  = (3.1.17) h?Ix) d t " ~ j - ~ ( t ,  tu; x)k(tf t  - t'), if j odd , 
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and 
1, t E [tk+l,tk], 

R(t; tk+l, tk) = k =  1,2, . . .  . 
0, otherwise, 

The quantity v(x, t'), occurring in the second integral on the right of equation (3.1 .l3), 

is always evaluated outside of c(tf), by definition of W,,(x, t). We substitute the expression 

(2.3.18) for it to obtain the integral equation: 

v(x, t) = 1 dt' l(t,, dxlK(x, 2'; t, t1)v(x', t') + I(%,  t), x E c(t), (3.1.19) 
Wd.4 

where 
sin(d)eine n,,(t, t'; x)X(x, t') 

K(x, 2'; t, t') = - 
7rX+(z', tt)(x' - 2) 7 

t, = Jw,,(r,t) 
dt'n, (t, t'; x)ul(x, t'). 

3.2 Equations for N Moving Indentors 

We now discuss this integral equation (3.1.19) in more detail for the problem of n 

indentors under the action of certain loads and moving across the half plane. We assume 

that the n indentors are all moving in the same direction, taken to be along the negative x 

direction for convenience. 

In each interval cj(t) of the contact region 

we have that the displacement derivative is given by 

where the ZOj  are the deepest points of each indentor at time t. The number of quantities 

tj(x), their values, and therefore W, and W,, depend on which contact interval x belongs 

to. 

The intervals making up c(t) are unknown before the problem is solved. They will be 

determined by equation (3.1.19) together with the 2n equations, (2.3.15) and (2.3.23). We 
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give the forms of W,, W, and various quantities of interest for x  belonging to different 

contact regions: 

1. If x  lies in the first interval c l ( t )  = [a l ( t ) ,  b l ( t )] ,  there is only one transition time t l  

when the front end point a l ( t )  passed point x ,  satisfying 

The functions K ( x ,  x'; t ,  t') and I ( x ,  t )  have the form 

K ( x ,  x'; t ,  t') = K l ( x ,  x'; t ,  t ') = -Tl( t ,  t'; x ) Y ( x ,  x'; tl)R(t'; -00, t i )  (3.2.3) 

s i n ( . ~ r f l ) e ~ " ~ ~ ( x ,  t') 
Y ( x ,  2'; t') = t' E (-00, t l )  

?rX+(xl, tl)(x' - 2 )  ' 

2. If x  lies in the second interval c2(t )  = [a2(t ) ,  b2(t)],  we have 

where 
t l  satisfies az ( t l ( x ) )  = x ,  

t2  satisfies bl( t2(x))  = x ,  

t3 satisfies al ( t3 (x ) )  = x ,  

and t 4 ( x )  = -00. 

The function K ( x ,  x'; t ,  t') takes the form 
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t' E (t2, t l ) ,  (3.2.8) 

K ( x ,  2'; t ,  t') = K3(x,  2'; t ,  t') = -T3(t, t'; x ) Y ( x ,  x'; tl)R(t' : -00, t 3 ) ,  

t' E ( -m, t3) ,  (3.2.9) 

while I ( x ,  t )  is given by 

T h e  integral equation for v ( x ,  t )  is given by 

v ( x ,  t )  = Crn dt' l(t,) dx1K3(x,  5'; t ,  t ')v(z1, t') 

+ 1; dt' L(q 
dxfK1(x ,  X I ;  t ,  t ')v(xl, t') + I ( x ,  t ) .  (3.2.11) 

3. For the general case, i f  x lies in the j th  interval c j ( t ) ,  we have that W,(x, t )  and 

W,(x ,  t )  are the same as in (3.1.7) and (3.1.8), where 

t l  satisfies a j ( t l ( x ) )  = x ,  

t 2  satisfies b jWl( t2 (x ) )  = X ,  

t3 satisfies aj-1(t3(x)) = x ,  

t2k  Satisfies b j - k ( t 2 k ( ~ ) )  = X ,  

t2k+l satisfies a j - k ( t 2 k + l ( ~ ) )  = x ,  1 5 k < j 

t2j-lsatisfies a l ( t2 j - l (x ) )  = x ,  

and t2j = -00. 

T h e  function K ( x ,  x'; t ,  t') is defined b y  
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The function I has the form 

where to = t. The integral equation v(x, t) reads 

Equation (3.1.19) involves both space and time variables occurring in an interdependent 

manner, which renders it unlikely that exact solutions will be available, even for simple 

problems. The only methods of solution, with any wide degree of applicability, would be 

numerical or iterative. This is for the general transient case. However, if the assumption 

is made that steady-state conditions prevail, the integral equation simplifies considerably. 

This case will be discussed later. 



Chapter 4 

Viscoelast ic Material Response 

and Hysteretic Friction 

4.1 Viscoelast ic Material Response 

4.1.1 Proportionality Assumption 

In the fundamental equations, there is a convolution of ~ ( t )  and cp(t, t) on the right side 

of (2.2.4). When we solve this set of equations, we assume that the isotropic material pos- 

sesses the proportionality property [19] (see also [28]). This is a mathematical simplification, 

generally necessary to make any progress in solving the contact problem in viscoelasticity 

when friction between the half-space and the indentors is present. In the case of frictionless 

contact it is not necessary to make this assumption. The rationale for this assumption is 

briefly discussed as follows. 

In linear elastic theory, the property of isotropic materials is characterized by two fun- 

damental constants, the bulk (volume) modulus, K, and the shear modulus, G [47]. The 

first governs changes in size, the second, changes in shape. Their reciprocals (compliances), 

combinations of these, such as Poisson's ratio, v, and other moduli can be expressed in 
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terms of any two of the others. In particular, every one of the constants defined as needed 

may be expressed in terms of the fundamental moduli, K and G, or Young's modulus, E 

and Poisson's ratio v. The latter pair can be measured easily in a simple tensile test [44]. 

The theory of linear viscoelasticity is a generalization of linear elasticity to accommodate 

certain time-dependent material behavior. The various elastic constants become functions 

of time or, equivalently, of frequency. Just as the theory of isotropic linear elasticity involves 

two elastic constants, the corresponding viscoelastic theory involves two distinct transform 

moduli or creep functions or relaxation functions or complex moduli [28]. Several standard 

test procedures are described in [5, 451. But the experiment to determine these functions is 

not as simple as that for elastic constants. 

The proportionality assumption means that time-dependent behaviors in viscoelastic 

shear and bulk functions have similar shapes. In other words, the quantity i(w) is pro- 

portional to fi(w). It follows from equation (2.2.6) that assuming Possion's ratio to be a 

time-invariant constant is an equivalent of the proportionality assumption. Under this as- 

sumption, the property of isotropic materials in viscoelasticity is described by only one creep 

function or one relaxation function or one complex modulus. The rest of the moduli can 

be obtained from relations analogous to those in elasticity connecting the elastic constants 

[47l- 

The proportionality assumption holds for ad incompressible materials. For such mate- 

rials v = 0.5 and their stress-strain relation can be expressed in terms of a single function 

describing their behavior in shear. This is often implicit in experimental work. Many rub- 

bers and elastomers are approximately incompressible. In small deformations of rubbers 

and elastomers, the values of v range from 0.48 to 0.49 [28]. There is also the experimental 

result that for all but the highest frequencies, measured values of the bulk modulus K ( W )  in 

polymeric systems are often greater than the absolute value of the complex modulus ~ ( w )  

by two orders of magnitude or more [5, 271. By examing equation (2.1.6) and (2.2.6), it is 

seen that thses materials behavior are approximately incompressible. 

Because of experimental and computational difficulties, the exact interrelations between 

the material functions are often difficult to obtain and use in practice. Therefore we consider 

approximate relations where possible. As Hunter [28] points out, solely for mathematical 

convenience it is often helpful to assume that i(w) is proportional to fi(w). Hunter [28] (see 
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also Tschoegl [52]) states that experimental evidence on the behavior of viscoelastic solids 

suggests that the variation of Poisson's ratio with frequency in periodic oscillations is not 

large. It follows that the generalized Poisson's ratio in equation (2.2.6) is approximately 

independent of w;And then equation (2.2.7) holds where Poisson's ratio can be taken as a 

time-invariant constant, uo. From this, it follows that R(w) = 3 - vo = KO, which is a another 

equivalent of the proportionality assumption, where no is a time-invariant constant. The 

proportionality assumption, when uo # 0.5, is of some advantage for calculations in which 

it is desired to take dilatational behavior into account at least to a first approximation [27]. 

This assumption was discussed by Kolsky and Shi (see [27]). 

In summary, therefore, the proportionality assumption, which is motivated primarily by 

the need for mathematical simplicity, in the frictional case, is a reasonable approximation 

for many materials. But we need to keep it in mind that the shear and bulk deformation are 

essentially different in character and accompanied by quite different molecular processes. 

For polymeric materials in the small-strain case, Ferry [5] points out that the complex bulk 

compliance is formally analogous to the complex shear compliance, but the two functions 

present several marked contrasts. For general materials, the appropriateness of the pro- 

portionality assumption will depend on the results of experiment. In the computation of 

the moving indentor problem in this thesis, the frictionless condition applied. The propor- 

tionality assumption is helpful to simplify the problem but not necessary. Without such 

assumption, the quantity fi(w)/(l - t(w)) appears in the frictionless case. This quantity 

can in the future be measured by the method outlined in [ll]. 

4.1.2 Standard Linear Solid 

In integral equation (3.1.19), the material properties in viscoelasticity are represented 

by the functions l(t) and k ( t )  which are two causal functions, related to each other by 

(3.1.5). The quantity l(t) for constant Poisson's ratio, is related to the relaxation function 

G(t). There are two categories of choices for the functions: exponential decay models and 

degenerate limits of these; and power law models discussed in detail in [19]. The exponential 

decay models emerge from the traditional mechanical models of viscoelasticity, consisting of 

springs and dashpots connected in series or parallel. The standard linear solid is a convenient 

non-trivial but simple material which contains no special degenerate features and has the 
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Maxwell and Voigt materials as the limiting cases. 

We now specialize to the case where the material is a standard linear solid [I91 with a 

unique Posson's ratio, which is a convenient starting point in theoretical analysis for the 

purposes of illustrating techniques. Its relaxation function has the form 

where Go and G 1  are positive constants and T is the positive decay constant. The function 

p ( t ) ,  from (2.1.3) ,  has the form 

go = Go + GI = G(O),  (4.1.3) 

91 = -G l / r  < 0 .  (4.1.4) 

Under (2.3.11) ,  the function l ( t )  can be shown to have a similar form to G ( t )  

where lo, l1 and a are given by 

lo =  G GO + G I ) ,  

- 4 
h = - .  (4.1.9) 

KO - a 

The quantity h is complex if friction is present. In the frictionless case, 

Also, from equation (3.1.5) ,  the function k ( t )  can be shown to have the form 

where 

ko = l / l o ,  
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The quantity T' is the creep function decay constant. It is always greater than the 

relaxation decay constant r. We refer to the quantities cr and p as inverse decay times for 

relaxation and creep respectively. 

It is interesting to observe that if we take YO = 1/2, which means that the material is 

incompressible, then no -t 1 and 

more over 

e -t 112, 

The solution has the same form as in the frictionless case. The effect of friction enters the 

equations only through the coefficient I;. in equation (4.1.9). This is a significant simplifica- 

tion. 

4.2 Hysteretic Friction 

The friction between sliding surfaces has two main components. The first arises from 

adhesion at the points where the surfaces are in molecular contact. For clean metals this 

adhesion may be great, as if the surfaces were welded together and the forces required to 

shear the junctions formed at the interface may be very large indeed no matter what load 

is acting on the surface. In general though, the friction is load dependent because the load 

determines the extent of actual contact. The second factor arises if the surface irregularities 

on one surface produce appreciable grooving or deformation in the other. 

For most unlubricated surfaces the adhesion component dominates. In the lubricated 

case, the friction is very greatly reduced and its dependence on load is very different. For a 
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well lubricated surfaces, the friction is in fact dominated by deformation losses. Such losses, 

for a ball or cylinder sliding on a surface, can be estimated by comparing its rolling and 

sliding on same surface. When rolling, the body experiences resistance due to hysteresis 

losses, or in other words, those arising primarily from the viscoelastic nature of the material 

[48,49]. Thus in rolling, there is no 'friction' in the conventional sense of the word - there is 

little shear force against the motion. Some adhesion may occur at the interface between the 

rolling ball and the surface, so that some work may be expended in separating the ball from 

the surface as rolling proceeds. This will be reduced by lubricants and its contribution to the 

overall rolling resistance appears, in general, to  be negligible. Even in the absence of surface 

shear tractions, the net force on the ball or cylinder possesses a nonvanishing component 

opposing the forward motion. It happens as follows. The material in contact with the front 

portion of the contact region is compressed by the rolling ball so that work is done on it; the 

material in contact with the rear portion of the contact region recovers elastically and urges 

the ball forward. If the material were ideally elastic, the energy restored as the material 

recovered would be exactly equal t o  the energy supplied to  the front portion of the region 

of contact and no net force would be required to  roll the ball over the material. However, in 

practice all materials, especially polymers, lose energy when they are deformed, as a result 

of internal friction or hysteresis and it is this loss which is reflected in the work required to 

roll the ball along. Similar losses will be involved in 'frictionless' sliding, that is in sliding 

where interfacial adhesion is so small that no tangential force can be transmitted across the 

interface [24, 391. 

TO study the hysteretic force in moving contact problems, we first need to give an 

expression for the rate of energy input required to cause this movement. We consider that 

the indentors are in motion along the x-axis for simplicity. On the boundary, the contact 

region is denoted by c(t), the surface tractions are the contact pressure p(F, t)  and the shear 

stress s(F, t).  If Coulomb's Law applies, then 

where U is the velocity of the indentors, not necessarily constant. So, the rate of energy 
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input, by the moving load, is given by 

where ui = ui(F, t) are the surface displacements. In the one-load case, the normal displace- 

ment into the material will typically be of the form 

where D(t) is the displacement under the lowest point of the indentor and F describes its 

profile. It is clear that F will be zero at the lowest point. The position of the lowest point 

is denoted as 

r'o(t) = ( ~ o ( t ) ,  0), xo(t) = U. 

Then, the rate of energy input (4.2.2) is expressed by 

where W(t) is the total load, 
c. 

In the case of frictionless contact, s(F,t) = 0, so that 

where FH is the magnitude of the force resisting the horizontal motion, 

The deformation caused by the moving load results in mechanical energy loss, which is 

manifested by the presence of a resisting force. This is just the well-known force of hysteretic 

friction, which is zero for a elastic material. It was demonstrated experimentally by Tabor 

[48, 491. 

The coefficient of hysteretic friction is defined as 
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So in the frictionless case, 

If U has been constant for a long period, then steady-state conditions eventually prevail 

and all quantities depend on space and time coordinates only through the combination 

F- Fo(t), where Fo(t) = (Ut, 0). Transferring to coordinates moving with the indentor, with 

the origin at the lowest point Fo(t) of the indentor, we obtain 

and 

The contact region is the region S, which is no longer time-dependent. 

If the contact is frictional, we must assume to begin with that steady-state conditions 

apply. The reason for this is that in formula (4.2.4), we cannot otherwise be sure that 

ul(F, t) depends only on F -  F0(t), which is a necessary property for the argument to go 

through. Under steady-state conditions, D is zero. The same argument which gave (4.2.7) 

now gives 

If Coulomb's Law applies, formula (4.2.8) can be simplified by using (4.2.1). 

Note that there is also the ordinary frictional force 

if (4.2.1) is valid, which is not shown in the rate of energy (4.2.4) at all. The formula for 

the hysteretic friction coefficient was given by Golden [14] and earlier authors and discussed 

in [19] in more detail. 



Chapter 5 

The Steady-state Limit 

In Chapter 3 we obtained a set of coupled integral equations, (3.1.19), and conditions 

(2.3.15) and (2.3.23), for the moving indentor problem. The detailed form for the N moving 

indentor case is given in section 3.2. This is not particularly amenable to analytic treatment. 

The steady-state form of these equations is considerably simpler. We discuss this steady- 

state limit in this chapter. The term 'steady state' implies conditions of uniform motion 

after transient effects have died away. 

5.1 Solution for a Single Load 

We consider the one-indentor case first. The problem of a rigid indentor moving across 

a viscoelastic half-space is of considerable interest, largely because it offers a theoretical 

framework in which to investigate the phenomenon of hysteretic friction. Also, the solution 

for a single load is useful in the analysis of the multi-load case. If surface friction is neglected, 

the problem can be regarded as an indentor sliding across a lubricated half-plane, or a 

cylinder rolling over the half-plane. 
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constitutive equations for the standard linear solid, so he could apply results for the elastic 

indentation problem (Green & Zerna [23], for example). This procedure, Hunter found, 

is invalid for a more complicated solid with a number of relaxation mechanisms since the 

intermediate steps entail consideration of divergent integrals of type 

However, it works for n = 1, the case of standard linear solid, since all the integrals involved 

converge as Cauchy principal values. 

Morland [39] considered the same problem by a different method. He formulated it 

as a set of dual integral equations which he then solved approximately. This approach 

requires no restriction on the form of the viscoelastic function though there was no question 

of the final results being given in analytic form. Later, Morland [37, 381, using a different 

technique, closer to Hunter's differential equation approach, gave a complete solution for two 

viscoelastic cylinders rolling on each other and also for a rigid cylinder on a viscoelastic half- 

plane. The viscoelastic behaviour of the material is described in term of a finite spectrum 

of decay times. 

Golden [18] developed a general technique for solving problems of this kind and applied 

it to  both quasi-static and inertial problems. This method, essentially that described here, 

is not restricted to  particular types of material and works equally well for problems involving 

limiting friction [14, 171. Also, the transient problem was considered by Golden and Graham 

[121- 

As with the work of Hunter and Morland, the inertial terms are neglected here. The 

discussion will be confined to the steady-state problem. Figure(5.1) shows the cross-section 

of the moving indentor with a loading W. The contact region is [a(t), b(t)j. 

The indentor is taken to be moving in the negative x direction with a velocity V for a 

long time. The deepest point of indentation is at  zo(t). We have 

a(t) = a0 - Vt, b(t) = bo - Vt. (5.1.1) 

where [ao, bo] is the initial contact interval at  t = 0. All quantities such as u', v, p, X and so 

on will be the functions of x + Vt rather than x, t separately. The moving indentor can be 

studied in a fixed coordinates, or a moving system, with x -+ y = x + Vt. Also we choose 
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Figure 5.1: Cross section of one moving indentor. 

4 I 

X I 
-1 

length units and origin so that [ao, bo] becomes [-I, 11 and time units such that V becomes 

one. This means that a length L in the initial units, will have dimentionless length 

I 

I dimensionless system 
0 1 

in the new system. Any time of duration T in the initial units becomes 

1 

in the new units. In the moving system the indentor is stationary and we refer to this system 

as the stationary (i.e. not time-dependent) coordinate system. The indentor is assumed to 

be smooth, with slope u1(x) given by a polynomial, 

where the contact region is x E [-I, 11 in the dimensionless moving coordinates mentioned 

above. 
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Equation (3.1.19) becomes [19] 

where 

and 

T(x, y) = J-I dy1l(x - yl)k(y' - y), 1x1 < 1, y < -1 
Y 

m(xl) = (2' + l)l-'(l- XI)', lxl) < 1, 

n(y) = (-1 - y)l-'(l - Y ) ~ ,  y < -1, 

8 is given in equation (2.3.12). Also, 

The subsidiary conditions are 

where 

2W qJ-:dx?$$=~l=- b - a '  

These relations determine v(x) and the contact interval [a, b]. The quantity 8 + 0q5 in the 

frictionless case when f + 0, or for an incompressible when v 4 0.5. Henceforth, 

we shall confine the discussion to the frictionless case. 

We ca~ l  decompose v(x) into a polynomial q(x) and a function De(x), which in general 

has no polynomial part; in an exponential decay model, it decays exponentidlY with . The 

polynomial q(x) is given by 

In terms of Chebyshev polynomials Tl(x) we have 
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where the a! can be determined without difficulty in any given case. The quantity q ( x )  

is known apart from the fact that it depends on the contact interval which is not given a 

priori, but must be determined as a result of solving the problem. 

We now specialize to a particular model of viscoelastic behavior, a discrete spectrum 

model. The proportionality assumption will be adopted. We have for this model [19] 

In the dimensionless coordinates, 

in terms of the decay constants T, and r: for relaxation and creep respectively. 

The solution of (5.1.5) has the form 

where the C, are solutions of the linear algebraic equations 

where Ul-l(y) are Chebyshev polynomials and lo, KO, Il and K1 are the modified Bessel 

functions with imaginary argument. The values of these functions can be found by referring 

to  [36] and [53]. The system of equations (5.1.8) is essentidy the form taken by (5.1.5) for 

a discrete spectrum material. 

The subsidiary conditions, (5.1.6) and (5.1.7), become 
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Equations (5.1.8)  together with (5.1.9)  can be used to determine the constants Ck and 

the parameters a and b. 

For a cylindrical indentor 

b + a  b - a  d ( x ) = d o + d l x ,  d o = - -  dl = -- 
2 R  ' 2 R  ' 

and for a material behaving as a standard linear model (N = I ) ,  equations (5.1.8) and 

(5.1.9)  become 

where 
b - a  b - a  

a=- G1 
~ V T  = 2~r" l - P I a =  G o + G 1 ,  

and 

Also, 

Equations (5.1.10) - (5.1.12) are equivalent to those of Hunter [26]. 

5.2 The Case of Two Indentors 

We consider the case of two indentors, which has not been solved to date. Suppose the 

indentors have been moving in a negative x direction (see figure (5 .2) )  at the same speed 

V ,  for a long time. When transient effects have died away, then 

a j ( t )  = aoj - V t ,  b j ( t )  = boj - V t ,  j = 1,2 .  (5.2.1) 
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Figure 5.2: Two indentors moving along the negative direction of x-axis. Contact regions 
are [al, bl] and [a2, b2]. The distance between the deepest points, 301 and 302, of indentation 
of the two indentors is 2C. 

Introducing the variable y = x +Vt, we find that all physical quantities and in particular 

u'(x, t), v(x, t) and p(x, t) will be functions of y rather than x, t separately. Also, the function 

X(z, t) has the form 

and we can reduce X+(x, t) to X+(y), where 

and 

m(y) = (y - aol( l- ' (~ - bo1('Iy - ao2l1-'(~ - bO2l8. (5.2.4) 

Note that outside of the contact intervals, X-(y) = X+(y), so that they can be taken as 

one function X(y) = X-(y) = X+(y). 
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The form of the integral equation, (3.1.19), depends on which part of the contact region 

x belongs to, that is [al(t), bl(t)] or [az(t), b2(t)]. Now, we consider in more detail how 

integral equation (3.1.19) in the stationary coordinates depends on the stationary contact 

interval which y belongs to. The stationary contact intervals are given as 

S1 = [sol, boll and $2 = [aoa, bod- (5.2.6) 

First, we consider the case where y belongs to S1 = [aol, boll, corresponding to x belong- 

ing to [al(t), bl(t)]. From the preceding chapter, 3, we have that the sets Wu(x, t), WO(X, t) 

are given by equations (3.1.7) and (3.1.8) From equations (3.2.2) and (5.2.1) we have 

In equation (3.1.19), the functions K and I are read as 

sin(m9)eiT8 n, (t, t'; x) X (x, t') 
K(x, x'; t,t1) = - 

7rX+(x1, tt)(x' - 2) 
7 

where 

TI(t,tt; x) = 1; dt"l(t - t")k(tn - t'). 

Using stationary variables 

u = x + Vt* x = x + Vt', y = x + Vt, (5.2.10) 

we obtain from (3.1.19), the equation for V(Y) instead of v(x, t), in stationary coordinates 
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where fl (2) is the quantity defined by equation (3.2.1) in stationary coordinates. 

Second, we consider the case when y lies in S2, or x lies in c2 = [a2(t), bz(t)]. The sets, 

W,(x, t) and W,(x, t), are given by equations (3.1.7) and (3.1.8). 

Using the conditions, (3.2.7) and (5.2.1), we get 

Using the stationary variables u, z and y defined by (5.2.10), we obtain the steady state 

form of (3.1.19) to be in the same form as (5.2.11) but with y E S2, 
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where T2;(y ,  z ) ,  y E [ao2, bo2], i=O, 3,  are derived from To(t ,  t'), T l ( t ,  t'; x ) ,  T2( t ,  t'; x )  and 

T3(t, t'; x ) ,  x E [a2( t ) ,  b2( t )] ,  respectively. 

For the standard linear solid described in section 4.1, using the property of 6 ( t )  and H ( t )  

and noting in S1,  y > sol, y > z always, we find that 

Y - a01 a01 - .z 
T11(y, I) = koh B X P { - ~ - ~  - P ,  1 7  (5.2.22) 

for y E S1. In the same way, when y E S 2 ,  we have, 

Y - 2  Y - 2  
T ~ o ( Y ,  2 )  = + 11 exp{-aT}, (5.2.23) 

Y - a02 a02 - .z T21(y,  Z )  = I011 expi-a- - v P T I ,  

From these expressions for Tij,  the functions Kij can be determined. But we note that Kij 

have infinite range integral terms like 

b J__  dseBSg(s) ,  P > 0. 

which may be evaluated by the method mentioned in section 5.3. 

In equation (5.2.17), I ( y )  = 12(y) ,  
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where fl (2) and f2(z) are the functions (3.2.1) evaluated in the stationary coordinate system. 

Conditions (2.3.15) become 

where 

j )  = ( )  y E Sj, j = l ,2 .  

The pressure in the stationary contact region is 

where 

The load subsidiary conditions, (2.3.23), are given as, 

where 

Thus once the quantity v(y), y E S and the extent of S itself are known, other quantities of 

interest can be determined. The central problem is therefore the determination of v(x) and 

S. 

5.3 Computational Method 

In the case of two indentors moving on the viscoelastic half plane, in the steady-state 

limit, the problem reduces to an integral equation for v(y), 
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where the kernel function K(y, y') can be written as, 

as discussed in preceding section. All the Kjj have the same factor sin(nd)/n and are 

in integral forms. The stationary contact intervals are usually smaller than the distance 

2C = 3 0 2  - 301 between the two indentors. 

It may be pointed out that the kernels of (5.3.1) possesses no non-integrable singularities. 

One perceives that the only situations where singularities might arise are when y' is equal to 

one of the stationary end points aoi or boi, i = 1,2. The regions of integration for K(y, yt) are 

such that y, y' cannot in general become equal. There is another source of difficulty, though. 

The factor m(yt) in the denominator of K(y, yt), may cause an integrable singularity in the 

kernel. This does not necessarily render the equation singular, however, the singularity can 

be transformed away by a change of variable as we can see in a worked-out example by 

Golden and Graham (1988). 

Integral equation (5.3.1) can be regarded as a Fredholm Equation of the second kind: 

b 

v(x) = f (4 + J dtK(x, t)v(t), (5.3.4) 

even though the region of integration, or say the domain of the unknown function v(y) is 

over two intervals not only one. Also the intervals are unknown before the problem is solved. 

Some subsidiary conditions are required to determine the ends of interval. They are given 

in the previous section. 

The task of numerically solving integral equation (5.3.1) subject to the subsidiary con- 

ditions, (5.2.28) and (5.2.30), is clearly a substantial undertaking. It will be regarded as the 

limiting form as n -+ oo of a set of n linear algebraic equations: 
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where 6, are the subinterval lengths, 6, + 0 as n -t oo; z, are quadrature points; w, are 

quadrature weights. 

Now, faced with a choice of a suitable numerical quadrature formula, balance between 

convenience and efficiency, and then may use the simplest quadrature rules which are ad- 

equate. Our choice could be the repeated Trapezoid or Simpson's rule because they are 

familiar and trivial to program. Noting however that the ends of the contact regions may 

have integrable singularities (transformable), we need consider the mid-point rule to avoid 

evaluating the integrands at  the end-points of the intervals. 

There are also infinite range integrals which require special consideration. Given the 

behaviour of K(y, y'), which mostly depends on the material functions l(y), k( y), with their 

exponential decay, we may use brute force truncation of the range: 

where R is finite and large'. 

If convergence on the infinite range result is very slow, better techniques should be 

chosen. The most commonly used of these are the Gauss-Laguerre and Gauss-Hermite rule, 

or more generally, the mapped finite range rules [3, 9, 10, 421. Such techniques can be 

expected to be cheaper than the crude 'truncation interval' approach also. 



Chapter 6 

Computational Results 

6.1 Detailed Equations 

6.1.1 Dimensionless coordinates for The Two-indentor Case 

It is convenient to consider the moving indentor problem in a dimensionless system. 

Take the deepest points of indentation of the two indentors (see figure(5.2)) Zol(t) and 

Z02(t), respectively. They satisfy 

Let 

so that the two indentors are a distance 2C apart. The quantity x, can be chosen arbitrarily. 

We take it to be zero. 

We choose length units and origin so that, 
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and time unit such that the speed V of the indentors in this new system will be 1. We 

obtain that any quantity of dimension length, which has value of coordinate x = L in the 

initial system, becomes I, where 
L 1 = -  
C '  

and any time in the theory of value T in the initial system becomes ij where 

in this dimensionless system. 

Ln the new system, the stationary contact regions will be 

and one can set 

which are the contact interval lengths in the dimensionless system. 

It should be noted that the lengths of the contact intervals, (bol - aol) or (bO2 - aO2), are 

s m d  compared with radii, Rj ,  j = 1,2, of the indentors. So, Dl and D2 should be small 

quantities compared with Rj /C.  For the two-indentor case ( D l  + D 2 ) / 2  should be less than 

2, the dimensionless distance between the centers of the indentors. This means that the 

contact regions cannot overlap. Further we assume that the length of the free boundary 

between the indentors, A2 - B1, must be larger than the length of each contact region. 

The inverse decay times in dimensionless coordinates are 

The integral equation for v(y) in dimensionless coordinates is 

where K(y, y') is equal to 
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where the quantity m(y) now has the form 

For a standard linear solid (section 4.1), the Tij in dimensionless system are obtained from 

(5.2.21) to (5.2.26) as follows: 

when y E s l ,  

Tlo(y, z) = loS(y - z) + ~ ~ e - " ( ~ - ~ ) ,  E s l ,  (6.1.15) 

when y E s2, 

T20(y7 z) = loS(y - z) + lle-a(y-z), Z E s2, (6.1.17) 

T21(y, Z) = kOlle-a(~-A2)eP(z-A2), B1 < 2 < A2, (6.1.18) 

where lo, 11, ko and 6 are given by (4.1.6) - (4.1.9). 

Using these relations, we can simplify the equations for Kij(y, y') given by (6.1.10) - 

(6.1.13) to 

&(Y, Y') = C11e -a(y-Al) J l l ( ~ t )  Y E SLY' E s l ,  (6.1.21) 
m(y') ' 
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where 

In the integrand of Jjj, i, j = 1,2, a singularity may arise if y' equal to one of the end 

points, but it is integrable as will be shown later. 

For a standard linear solid, from equations (5.2.16) and (5.2.27), I(y) is given by 

There is a simple example in which the slopes of the indentor profiles are given as 

which is an approximate model of cylinders, where the lengths of the dimensionless con- 

tact intervals, Dl and D2, are small compared with the dimensionless radius Rj /C  of the 

cylinders, respectively. Alternatively, the indentors can be regarded as two parabolas. 

For this case, the elastic solutions are given as follows [6]. For the single parabolic 
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the contact pressure distribution has the form 

where the semi-contact length a0 satisfies the equation, which is related to the total load 

W. 

The elastic solutions are import ant as baseline data for the viscoelastic solutions. 

Let us now discuss the singularities in the integral Jij in detail. We take 

where 6 will be a small quantity of the same order as D;, i = 1,2. In Jij, we change the 

integration variable z to t, according to 

which gives 

y l - z = t + 6 ,  if y l c s l ,  y l - z = t + 6 ,  if y lEs l ,  

where Dl and D2 are given by (6.1.6), and A is chosen as a constant such that DIA << 1. 

Then 
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So we may evaluate Jll and J12 as follows 

where the region of the integration is reduced from the infinite interval to [0, A].  

There is a singularity in the integrand of Tll at t = 0 if 6 = 0. However, it is obviously 

integrable because 

where C* is some constant. This exists since 0 E [O, 1/21. Singularities arise in the 

integrand of J21 when y' = z = B1 and J22 when y' = t = A2. In both cases, J2l and J22 

are integrable too. 

For these integrable quantities, we can use a suitable numerical quadrature formula. For 

example, we can use the right-end point rule or mid-point rule to evaluate Jll, J12 or J21 

and the left-end point rule or mid-point rule for J22. 

In the dimensionless system, the solvability conditions (5.2.28) take the same form as 

(5.2.28) but evaluated in dimensionless region s 

The pressure in the contact region is given by (5.2.29) but now evaluated over the dimen- 

sionless region s. 

The expression for the pressure is 
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where 
4 sin(n6) sin(n6) 

h, = - - - -- 
~ + l  1 - v  ' 

and w(y) is a real function such that 

The two loading conditions (5.2.30) are given by 

where 

6.1.2 Algebraic Equations for The Two-load case 

Equation (6.1.9) may be reduced without difficulty to a set of algebraic equations. We 

rewrite it in a vector form: 

If the indentor profiles are given by the polynomials 

the inhomogeneous terms Il(y), 12(y) in equation (6.1.40) have the forms from equations 

(6.1.30) and (6.1.31), 
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which are obtained by integrating (6.1.30) and (6.1.31) by parts. The quantities e;o and qio 

are known explicitly apart from the fact that they depend on the contact intervals. For the 

indentor profiles given by (6.1.33), which are mainly of interest, we obtain 

hc 1 - G I C  1 el0 = -( 1 + a1 - -) = -(hGo)-( 1 + a1 - -), 
aR1 a GoR1 CY 

11c 1 IIC 
e20 = -(-I + a2 - -) + -1120 

ax2 cr crRl 

G1C 1 G I C  
= -(LGoNm ( - 1 + a 2 - - ) + -  Go& 11201, 

C I1 - C 
911 = -(-lo - --) = -(hGo)-, 

R1 R1 
C 11 I1 C G1 

qio = -(-lo - - + ;Ei) =  GO GO)[- ( I  + -)I, 
R1 a R1  GoCY 

C 11 C 
q21 = -(-4 - --) = -@Go)%, 

R2 
C El 11 C G1 

q20 = -( 10 + + --$ = @Go)[-(1- --)I, 
R2 R2 Goa 

where 
1 = e-P(az-bl [(- 1 + - - bl)  + e-aD1 

1 
CY ( 1 - - p 1 ) 1 .  

From (6.1.40) and (6.1.41), we have that v ( y )  can be expressed as 

Substituting equations (6.1.42) into (6.1.40) and comparing coefficients, we obtain 

where 
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T h e  constants Aij and B;O are related to  the parameters A; and B; implicitly. Combining 

(6.1.43) a n d  (6.1.44) with the constraint conditions, (6.1.37) and (6.1.39), we can determine 

t h e  constants glo and 920, which give the function v(y) and the parameters of the contact 

regions A; and  B;. Then the pressure p(y) and ~ t h e r  quantities of interest can be determined. 
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6.2 Numerical Results 

In this section, we present numerical solutions of the equations for the one indentor and 

the two indentor case. Detailed results are presented for two values of the parameter 

The computation was performed on the SUN Computer Network in the Department of 

Mathematics & Statistics, at Simon Fraser University, supported by various powerful soft- 

ware packages including Fortran 77, S-plus, Gnuplot, Latex, Fig2 and Matlab. 

6.2.1 Results for The One-indentor Case 

Figure (5.1) gives a schematic diagram of the contact geometry for a moving rigid 

indentor on a lubricated viscoelastic half plane. A uniform load W per unit length is acting 

on the indentor. The indentor is assumed to move at sufficiently low speed V in the negative 

direction of x-axis, so that inertial effects can be neglected. The indentor axis is displaced 

backward from the contact center, which is the origin of the dimensionless system. The 

semicontact width a0 for zero velocity has the relation (6.1.34) with load W and radius R of 

the indentor. For the linear theory of elasticity to apply, a0 must be small compared with 

R. In the computation the value of ao/R is fixed as 0.05. The material mechanical response 

are assumed to be that of a standard linear solid, with a fixed value of Passion's ratio uo. 

The one load case involves solving three implicit equations (5.1 .lo), (5.1.1 1) and (5.1.12) 

for dl, do and C1. When these three quantities are obtained, the problem is solved com- 

pletely. The quantity dl is related to the contact interval length (b - a) while do gives the 

shift (b + a)/2 away from the origin of the indentor tip and C1 determines the quantity v(x). 

The three implicit equations are solved here by an iteration method. All the corresponding 

results are similar to Hunter's [26]. Also they are same as that obtained directly by solving 

the integrals (5.1.5 - 5.1.7). 

Figure (6.1) shows the position of the end points of the contact region a/ao and b/ao 

as functions of velocity, (Vrl/ao), for Cv = 1, Cv = 9. Figure (6.2) gives do/ao and dl/ao 

as functions of (Vr1/ao) for Cv = 1 and Cv = 9. The results show that in the viscoelastic 

case, the length of contact region, b - a, always is smaller than 2ao, the length of the elastic 
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Figure 6.1: One indentor: variation of the values of a/ao and b/ao with velocity. The 
quantity a0 is the semi-contact width for a cylinder in the elastic case, a and b are the end 
points of the contact region, while T' is the decay parameter in the creep function. 

contact region. The larger the value of C,, the smaller the length. Also the contact region 

shifts toward the front. The variation of shift with velocity has a hump shape with velocity. 

The corresponding plots for fHR/ao are displayed in figure (6.3), where fH is the coef- 

ficient of hysteretic friction discussed in section (4.1). The figures are similar to the shape 

of the shift of the tip. The pressure distribution is shown in figure (6.4) and figure (6.5) for 

the cases of C, = 1 and C, = 9 respectively, when V T ' / ~ ~  = 1.0, which is roughly the value 

at which f~ is maximum. On each plot, we also display the Hertzian pressure distributions 

obtained for speeds V = 0 and V = oo. All of these give relations identical to those of 

Hunter [26], dowing for the different convention for velocity direction. 
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Figure 6.2: One indentor: variation of the shift of tip do and contact interval quantity dl 
with velocity. 

Figure 6.3: One indentor: variation of coefficient of hysteretic friction with velocity. 
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Pressure 
*(l/Go) 

Figure 6.4: One indentor: pressure distribution over the contact region, C, = 1. 

Pressure 
*(l/Go) 

Figure 6.5: One indentor: pressure distribution over the contact region, C, = 9. 
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6.2.2 The Two-indentor Case: Iteration 

For the two-load case, whose cross section is shown in figure (5.2), integral equation 

(6.1.9) for v(y), could not be simplified in terms of the modified Bessel functions with 

imaginary argument as in the single load case [19, 261. The kernels Kij(y, yl) given by 

equations (6.1.21 - 6.1.24) must be evaluated numerically. There are integrable singularities 

in the kernels Kij(y, yl) and in the integrals of both solvability conditions (6.1.37) and load 

conditions (6.1.39) as well. The appropriate quadrature formula, either the mid-point rule 

or the left-end-point rule or the right-end-point rule, was chosen depending on where the 

singularities were. The goal of such a choice was to ensure that integrands were not evaluated 

at y = y' points or the end of the contact regions, so that integrable singularities occurring 

at such points were avoided. 

A complication, arising in the moving indentation problem, is that the extent of the 

contact regions is unknown a priori. Integral equation (6.1.9) and the subsidiary conditions, 

(6.1.37) and (6.1.39), determine implicitly the function v(y) and the end points Aj and Bj 

of the contact regions. This system must be solved iteratively by numerical methods. 

The iteration scheme proposed here may be described as follows. Make some initial 

guess at the values of Aj and Bj, j = 1,2. The quantities Kij and Ij are then determined 

by equations (6.1.21 - 6.1.24) and (6.1.30,6.1.31). The results are substituted in (6.1.9), 

to obtain u( y).We refer to these as {AY),  B?), Applying the two-load conditions, 

(6.1.39), we adjust the lengths of each interval D; respectively. The shifts of the front end 

points, 6Aj, are determined by using solvability conditions (5.2.28), and the new lengths, 

Dj. From the values of 6Aj and Dj, we get a new set values of Aj and Bj, which we take 

as the next approximation. The iteration procedure may be repeated to the desired level 

of accuracy. We need to make a good guess at the initial values of Aj  and Bj, so that the 

iteration converges sufficiently rapidly. In particular, a natural starting point is to take each 

contact region for the single-indentor problem, and use the results given in the last section. 

The assumptions for the one-indentor case are assumed to hold for the two-indentor case 

here, such as low speed, small deformation and material properties. 
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rear - 
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Figure 6.6: The two-indentor case: Pressure distributions over the contact regions. For 
comparison, the two contact regions are plotted together with the deepest points, 301 and 
ito2, coinciding at x = 0. In this figure C/R = 1, C, = 1. 

6.2.3 The Two-indentor Case: Pressures 

In the two-indentor case, the contact geometry is described by two sets of data {a, b, 

R, W), one for each indentor, and the distance 2C between the two indentor axes (figure 

(5.2)). In the numerical results represented here, the ratios of static semicontact width to 

radius (ao/R) of both indentors are fixed as 0.05. Each supporting load W; depends on each 

radius in the manner indicated by (6.1.34). 

Taking both radii to be equal, R1 = R2, we show the pressure distributions under both 

indentors in figures (6.6, 6.7) for the case of C, = G1/Go = 1. For comparison, the two 

contact regions are plotted together with the deepest points Zol and So2 coinciding at x = 0 

in the figures. 

In each figure, three pairs of the pressure distributions are represented for V#/ao = 

0.1,1, and 10. When compared with figure (6.4), the pressure of the one-load case, the 

numerical results in figures (6.6, 6.7) show that the solution obtained degenerates into the 
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Pressure 
*(l/Go) 

Figure 6.7: The two-indentor case: Pressure distributions, C/R = 0.2, C, = 1. 

appropriate elastic solution, the Hertzian pressure distribution in two ways as follows. First, 

for sufficiently large velocities, the pressure distributions are symmetric about x = Zoj, the 

deepest points of the indentors. This is a reflection of the fact that the viscoelastic medium 

behaves in this limit as an elastic solid with shear modulus 

which is the dynamic shear modulus. In this case, the contact interval length reduced to 

about 100/JGd/Gi% of 2ao. The maximum pressure increases to about 100JGd/Go% of 

the maximum static pressure Po, Po is related to the mean elastic pressure Pm [30] by 

Second, for sufficiently small velocities, the results again reduce to the elastic case but with 

Gd replaced by the 'static' modulus Go, which is the shear modulus at the large time limit. 

We refer to Go as the elastic shear modulus. A similar argument applies in the one-load 

case [26]. 
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Also, the results in figures (6.6, 6.7) illustrate a phenomenon that the pressure distri- 

butions under the front indentor are always to the left of those under the rear indentor. In 

other words, the contact area of the front one is shifted a little more than that of the rear 

one, along the direction of motion. As CIR reduces, which means that the two indentors are 

close each other, there is a more pronounced difference between the shapes of the pressure 

distribution under each indentor. 

Pressure 
*(l/Go) 

Figure 6.8: The two-indentor case: Pressure distributions, CIR = 1, Cv = 9. 

For the case, Cv = G1/Go = 9, the pressure distributions under both indentors are 

shown in figures (6.8, 6.9). The results for the single-indentor case are shown on figure 

(6.5). 

Figures (6.10, 6.11) show the variation of the positions of the end points of the contact 

regions with velocity. Also they give the results of the elastic case and the one-load case 

for comparison. The two indentors have the same sizes and CIR = 0.2. The curves will 

presumably be asymptotic to the straight lines with the modulus Go+G1 or Go, which are the 

elastic limits. Figure (6.12) shows the variation of the shifts and the half-lengths of contact 

regions with velocity, where the shifts are dol = (bl + a1 + 2)/2 and d02 = (b2 + a2 + 2)/2, 

and the half-lengths are -dl; = (b; - ai)/2, i = 1,2. The lengths of each contact region 
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Figure 6.9: The two-indentor case: Pressure distributions, C/R = 0.2, C,, = 9. 

are Little different from each other, and are almost same as the one-load case. Comparing 

with the shifts in the elastic case, that of the front one is forward 0 . 0 6 5 ~ ~  and that of the 

rear one is backward 0 . 0 6 6 ~ ~ .  Both shifts have the same shape with respect to velocity, and 

when the velocity is large, the difference between them reduces and they are close to that in 

the one-indentor case. It is also noted that for symmetric loading and symmetric indentor 

profiles, the contact regions are not symmetric. 
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-0.6 v I 1 m 1 1 , 1 1 1  

Cv = G1/G1 = 1  

-0.7 - 

-0.8 - 

- 
elastic, (az - l ) / a o  

- 

elastic, (al + l ) / a o  - 

-1.2 

Figure 6.10: The two-indentor case: Variation of the positions of the front end points of 
contact regions with velocity, comparing with the elastic case which are straight lines. The 
quantities, a 1  and up, are the front end points of the front and rear indentors respectively 
in the dimensionless system. C I R  = 0.2, C, = 1. 



CHAPTER 6. COMPUTATIONAL RESULTS 

h elastic, (b2 - l)/ao 

elastic, ( b l  + l)/ao 

Figure 6.11: The two-indentor case: Variation of the positions of the rear end points of 
contact regions with velocity, comparing with the elastic case given by straight lines. C/R = 
0.2, C, = 1. 
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Figure 6.12: Variation of the shifts, dol and do2, and the half-lengths, -dll and -dl2, of 
the contact regions with velocity, compared with the elastic case which are straight lines. 
C/R = 0.2, C, = 1. 

1.2 I 

- 

- d l l l a o  -d l z lao  - 

0.6 - C v  = G i / G o  = 1 

0.4 

elastic, dol / a o  = 0.065 oneload, d l l a o  

- elastic, do2/ao = -0.066 - 
do1 /a0 oneload, do/ao 0.2 - - 

- - - - 
do2 /ao 

-0.2 I I 

0.1 1 10 100 
(V7'1ao) 



CHAPTER 6. COMPUTATIONAL RESULTS 

6.2.4 The Two-indentor Case: Hysteretic Friction 

We now give the results for the coefficient of hysteretic friction [14, 18, 19, 24, 391. 

Equation (4.2.7), adapted to a dimensionless system for two cylindrical indentors, yields 

a coefficient of hysteretic friction which in the stationary coordinate system has a general 

form: 
C 

f~ = @ dxP(x)f (6.2.3) 

where p(x) is the pressure distribution in the contact regions while the function f(x) is the 

derivative of the indentor profiles given by (3.2.1), and s represents the stationary contact 

regions given by equation (6.1.5). Also 

is the total load. Functions (6.1.33) for f (x) are used in this two-indentor case. 

For each indentor, the tangential force coefficient has the form 

General form (6.2.3) shows that fH is a weight average obtained by summing the individual 

fHi, weighted with respect to loads: 

Each of the moving indentors considered here has an axis of symmetry, and the dis- 

tance, 2C, between these two indentors does not change. Equation (6.2.3) shows that the 

fundamental reason for hysteretic friction on a well lubricated surface is caused by defor- 

mation and recovery under the indentor or indentors. The deformation and recovery are 

not symmetrical with respect to each axis of symmetry in the viscoelastic case. In fact the 

asymmetry happens in the elastic case too, since the deformation on the surface between 

two indentors is much larger than that on the outer parts of the surface. In general, a 

non-zero tangential force acts on each indentor. However, on the whole system, the total 

tangential force must be zero as the total loss of energy is zero. 

This is easily demonstrated in the case of two indentors which have same size and sharpe. 

As the loading, material and pressure distribution are symmetrical about x = 0, and the 
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function f (x) is an odd one, f~ evaluated by (6.2.3) vanishes. Hysteretic friction is a 

viscoelastic effect. 

In general, in the elastic case, when the indentors are in motion, the force under the 

front one resists the motion, and the rear one exerts the same magnitude of the force, but in 

the opposite direction. The forces must cancel each other. We may refer to the force under 

the front indentor as Fel, the force under the rear indentor as Fe2. 

where fej, j = 1,2 are the coefficients of the elastic tangential forces under each indentor. 

In the two-indentor case, Fel +Fez = 0. Such forces will effect the tangential force under the 

individual indentor. Using formula (6.2.5) for the tangential force coefficient of an individual 

indentor, we see that it affected by both the viscous and Fej forces. The magnitude of the 

effect of elastic deformation, fej  , can be computed by a formula similar to equation (6.2.5). 

The solution for the elastic case can be obtained by setting Cv = 0 or by solving multi- 

indentor equations [6] in elasticity. 

Table (6.1) gives the values of fel compared with fH for four different cases. In each 

case, the two indentors have the same size and same loading, but the distance between 

them is different from the other cases. The results show that the closer the indentors, the 

larger fel becomes. Also the table gives the maximum values of the coefficient of hysteretic 

friction for the system, which we can take as the weighted average value mentioned above. 

Compared with the quantity, fH, when C,  = G1/Go = 1, the effect of fej can be ignored 

when C / R  > 1. If  C / R  > 1 then ao/C is less than 5% in our computation as the ratio 

C I R  is inversely proportional to ao/C,  the ratio of the static semicontact width to the half 

distance between the two indentors, and ao/ R is equal to 0.05. The effect of fej has same 

order of the magnitude as that of hysteretic when ao/C is close to 0.5 (CIR N 0.1). For 

C,  = 9, the viscous effect is about two and half times of that for C, = 1. Note that the 

quantity fH is not proportional to the coefficient Cv. 
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Table 6.1: Comparison of the elastic tangential force under each indentor with the hysteretic 
friction force for different distances between the two indentors. fel is the coefficient of the 
elastic tangential force under the front indentor. fH  is the coefficient of hysteretic friction 
for the two-indentor system. C,, = Gl/Go, ao/R = 0.05 

7 

fe17 Cv = 0 
f H ,  C,, = 1 

' - f H , C v = 9  

Table 6.2: The region of dimensionless velocity Vr'/ao in which the sign of the tangential 
force under the rear indentor is negative. 

C / R = 0 . 2  
0.0660 
0.201 
0.482 

Figure 6.13: The two-indentor case: Variation of the coefficient of hysteretic friction with 
velocity, C / R  = 5, C, = 1 and 9.  

C / R = 0 . 1  
0.148 
0.196 
0.470 

C / R = 5 . 0  
0.00252 

0.198 
0.481 

C / R =  1.0 
0.0129 
0.206 
0.498 
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I I 

front 

Figure 6.14: The two-indentor case: Variation of the coefficient of hysteretic friction with 
velocity, C I R  = 1, C,  = 1 and 9. 

average, C, = 9 
one indentor, C, = 9 

Figure 6.15: The two-indentors case: Variation of the coefficient of hysteretic friction with 
velocity, CIR = 0.2, C, = 1 and 9. 
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average, Cv = 9 
one indentor, C,, = 9 

Figure 6.16: The two-indentor case: Variation of the coefficient of hysteretic friction with 
velocity, CIR = 0.1, C, = 1 and 9. 

Intuitively, we can see that on a lightly viscoelastic material with moving indentors, the 

resistance to the motion of the front indentor will increase and the forward force on the rear 

indentor will diminish. The latter passes through zero for a certain level of viscoelastic loss 

which will depend on the separation of the indentors. As viscous effects increase further, 

both indentors experience resisting forces, although that on the rear indentor is less than 

that on the front indentor. For any level of viscoelasticity, the sum of the forces is non-zero 

and in a direction opposing the motion. This sum will contain no effect of asymmetrical 

deformation and depends upon hysteretic phenomena only. 

This intuitive prediction is supported by the numerical results shown in figure (6.13 N 

6.15) and table (6.1). In figure (6.17), fen is compared with fH1, fH2 and fH. 
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Figure 6.17: The two-indentor case: Hysteretic friction force compared with the tangential 
force under front indentor in the elastic case, CIR = 0.2, Cv = 1. 

Figures (6.13), (6.14), (6.15), and (6.16) give the coefficient of hysteretic friction as a 

function of (Vr'lao). Each one presents fH,, the average value fH, and the result for a 

single indentor. These are for two materials Cv = 1 and Cv = 9. Four values, C / R  = 
0.1,0.2,1.0, and 5.0, are used in each case respectively. The tangential force under the rear 

indentor is not always negative as in the elastic case. It takes a negative value only when 

the two contact regions are close and velocity is small or large (see table (6.2)). 

Table (6.3) gives the relative percentage difference  off^^ and f~~ which relates to the 

tangential forces under each indentor: 

where fH1 and f~~ take their maximum values. For a material characterized by Cv, the 

closer the indentors, the greater the difference between the two values of the tangential force 

coefficients. As the distance between the two indentors increases, the effect reduces. When 

C I R  > 5, the two indentors can be considered as two single indentors moving independently. 

Each indentor experiences the same tangential force. The interference effect between the 
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n I CIR = 5.0 1 CIR = 1.0 I C I R  = 0.2 1) 

Table 6.3: The relative percentage difference of fHj for two indentors when they take their 
maximum values. 

Figure 6.18: The two-indentor case: Variation of the coefficient of hysteretic friction with 
velocity. The size of the front indentor is smaller than the rear one. C / R 1  = 1.0, C / R 2  = 0.2, 
and C,, = 1. 

indentors is negligible. 
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A/ one jTont punch 

Figure 6.19: The two-indentor case: Variation of the coefficient of hysteretic friction with 
velocity. The size of the rear indentor is smaller than the front one. C / R 1  = 0.2, C / R 2  = 1.0, 
C,  = 1. Only if the velocity is large, will the friction under the rear indentor be negative. 

Figures (6.18, 6.19) show the results for the two-indentor case in which the sizes of the 

two indentors are not the same. When the smaller indentor is at the rear, the hysteretic 

friction shape moves forward to the direction the velocity increases in the figure. When 

velocity is low, it is smaller than that in one-indentor case. If Vrl/ao is greater than 2, it 

is great than that in the one-indentor case. Conversely, when the smaller indentor is in the 

front, the hysteretic friction does not change too much. But we find that if the velocity is 

large enough, the friction under the rear indentor will be negative. If Vrl /ao is greater than 

20 or so, the computation is not stable. 

These results for the coefficient of hysteretic friction also indicate that the hysteretic 

friction for the two-indentor case as a function of speed has, roughly speaking, the hump 

shape observed experimentally. It reaches the maximum value when the velocity is of order 

ao/rl.  For the four cases we chose, in each of which the sizes of two indentors are same, the 

function is very close to the fH curve of the one-indentor case. Also, it approaches zero for 

sufficiently small and large values of velocity. The later observation corresponds to the fact 
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that the pressure distribution tends to be symmetric form for V -, 0 or V -, oo, which are 

the two elastic limits mentioned above. 

Figure (6.20) shows the results of the stress 022 distribution in the material, y > 0. 

This is an example which shows that quantities of interest can easily be obtained after the 

quantity v(x) and the contact intervals are known. When y = 0, figure (6.20) illustrates the 

pressure distribution along the boundary. 

y axis 

Figure 6.20: The stress 022 distribution in the material, y > 0. When y = 0, this distribution 
illustrates the pressure on the contact regions. C, = 9, C / R  = 0.2. 
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6.3 Summary and Further Work 

The problem of two or more indentors moving over the surface of a viscoelastic plane 

is considered. The solution of this mixed boundary value problem with moving boundaries 

is formulated in terms of a coupled system of integral equations in space and time. The 

decomposition of hereditary integrals plays an important role in the derivation. These 

formulae are applicable to the general linear viscoelastic material. 

Equations for the two-indentor case are given in detail. For the standard linear solid 

and steady-state conditions, such equations form to a set of non-linear algebraic equations, 

which contain singular integrals on the unknown moving regions. Numerical results are 

obtained and analyzed qualitatively for two values of the viscous parameter, different dis- 

tances between the two indentors, and different sizes of each indentor. The phenomena of 

hysteretic friction and the interaction between the two indentors are explored. The latter 

one is compared with the elastic results which may be taken as a special case of the more 

general formulation. 

Further work would include the case of an infinite number of indentors. In this case, 

the pressure at infinity is not zero. The effect of inertia could be also studied. As the 

superposition principle is not applicable in this kind of moving contact problem, moving 

indentation problems under varying loads also would be interesting. 
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