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ABSTRACT

Product differentiation is a feature of most modern markets.
The economics of product differentiation has relied on two major
approaches: the representative consumer approach and the address
approach. It is argued in the literature that address models are more
appropriate for studying most real cases of product differentiation.
Yet little empirical work has been done in this framework, due
primarily to the absence of preferences recovery techniques for address
models.

The purpose of this thesis is to begin the development and
implementation of preferences recovery techniques for address models.
In address models, goods are described by points in a continuous space
of attributes or characteristics. Consumer preferences are defined over
all potential products and each consumer has a most preferred product
known as his or her ideal address in the product-attributes space.
Aggregate consumer preferences for diversity are captured by a
preferences density function in some space of utility parameters.
Preferences recovery involves the estimation of the preferences density
function, given aggregate data on product attributes, prices, and
quantities sold.

The bulk of the thesis is on recovering preferences in the
space of lotteries. Lotteries are chosen because we need "products™
that can be easily created in the laboratory to generate sufficient
data. Given a parametric form for preferences from theories of choice
under uncertainty, we create a parameter space that describes

individual preferences for lotteries. Aggregate preferences are

iii



represented by a probability density function in this parameter space.
This density function is estimated using data generated from
experiments and the proposed technique. A test based on the recovered
preference density function is constructed to test if a particular
theory of choice under uncertainty adequately explains the choices
people make.

Using this approach, we test the expected utility (EU) theory
and three generalized expected utility (GEU) theories. The results show
that none of the GEU models is an improvement over the EU model in
explaining the data, and that all models must be rejected as adequate
models of choice under uncertainty.

As an additional application, we also demonstrate the
-preferences recovery in a standard address model of product
differentiation and apply it to a real case of product differentiation

in the context of BC ferry services.
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Chapter One
"INTRODUCTION

Traditional economic theory has been based on the assumption
that firms produce a single homogeneous product---one product for each
industry. Today, virtually all firms produce capital goods, consumers’
goods, or services over a range of differentiated products. Over the
past two decades, economists have learned to model the demand for
differentiated products and the competition among firms producing
differentiated goods. These developments have created a Dbetter
understanding for a number of issues in international trade, industrial
organization and the economics of growth.

The econdmics of product differentiation has relied on two
major approaches: the address approach and the representative consumer
approach, or non-address approach. The representative consumer approach
follows Chamberlin’s monopolistic competition model in which goods are
simply goods, and in which any pair of goods is viewed by the consumers
as having the same deéree of substitution (Chamberlin’s symmetric
assumption in demand). In contrast, address models of product
differentiation follow Hotelling’s (1929) seminal article by assuming
that products have meaningful descriptions, or addresses, in some
product-attributes space; and that consumers have well~defined
"locations™ in this space. Thus, in this world, the consumer’s degree
of substitution between any pair of goods is not idenpical, and the

competition among firms is localized. In their 1989 survey, Eaton and



Lipsey argue that address models seem to be more appropriate for
studying most real cases of product differentiation because they are
more consistent with the observed facts.1

In address models, goods are described by points in a
continuous space of attributes or characteristics. Such models assume
that (1) individual consumers have preferences defined over the space
of product attributes, (2) the preferences of consumers are diverse,
(3) it is possible to produce any product in the attribute space, and
(4) there are significant costs of developing any product in the
attribute space. In such models an array of differentiated products
emerge as profit-seeking firms vie for the patronage of diverse
consumers. Product development costs limit the number of products that
are produced in egquilibrium with the consequence that firms can
exercise market power. In addition, there can be too much or too little
differentiation in free-entry equilibrium, and the divergence from the
optimum can be significant. This view of product differentiation raises
a number of difficult policy issues. See Archibald, Eaton and Lipsey
(1986) for a full discussion.

We see a key deficiency in the existing literature. While there

has been some notable empirical work in the non-address branch, there

Anderson, de Palma, and Thisse (1989) argue that there is no necessary
distinction between these approaches when the dimentionality of the
space in which products are differentiated is large relative to the
number of ©products, and goods are exogenously located in a symmetrical
pattern in this space. Although interesting, this does not remove the
distinction since the two approaches are not necessarily equivalent

when the number and location of goods are endogenous.



has been little on preference estimation in the address branch.2 In
most potential applications, a major difficulty is a preference
recovery problem: given aggregate data on product attributes, prices,
and quantities sold, how does one go about recovering the diverse
preferences that generated the data? Without knowledge of the
underlying preferences, one cannot offer convincing, empirically based
answers to such important questions as: Is there too much or too little
product differentiation? What new product niches are 1likely to be
profitable? What role should public policy play in markets for
differentiated products? In short, we have as yet no empirical
foundation which can be used either to test the theory or to calibrate
it for purposes of public policy.

It is the objective of this thesis to begin the development and
implementation of preference recovery techniques for address models of
product differentiation. The ultimate purpose is to use these
techniques to determine empirically the usefulness of the address

approach to product differentiation. In particular, do real consumers

For example, and Harris (1984) used a general equilibrium analysis to
calibrate a Chamberlinian model of product differentiation embedded in
an open-economy model. There is also much empirical work in the
discrete-choice, random preferences models arising from the early work
of McFadden (e.g., McFadden, 1974). These include Train (1986),
Feenstra and Levinsohn (1989) and Berry (1992) . Anderson, de Palma, and
Thisse (1993) contain an excellent exposition on how these models fit
into the literature on product differentiation and under what
conditions these models can be synthesized from an econometrics point
of view. Recently, Burton (1992) adopts some nonparametric smoothing
techniques to estimate an expenditure density function in the address
framework of product differentiation. Finally, preferences recovery
methods also have considerable . appeal in marketing research (see,e.qg.,

Kamakura and Srivastava, 1986).



see real products as points in some common attribute space? Can we
recover those preferences from observed behavior and then use these
preferences to predict further behavior?

To develop these preference recovery techniques and test their
usefulness, we need "products" that can be created and nanipﬁlated at
will in the laboratory. For this purpose, we choose lotteries. Our
lotteries can be represented by a probability distribution (pl, P

Py p3)

over a set of outcomes, (xl, X x3). Given a parametric form for

o
preferences from theories of choice under uncertainty, we create a
parameter space that describes individual preferences over these
lotteries. Aggregate preferences are represented by a probability
density distribution in this parameter space. Preferences recovery
refers to estimating such a density function, using choices people make
in classroom experiments. To illustrate the wusefulness of the
technique, we construct a new test, based on the recovered preferences,
to test theories of choice under uncertainty. Consequently, the bulk of
the thesis is on recovering preferences in the space of lotteries and
testing theories of choice under uncertainty. But to show that the
preference recovery is a much more generalized issue than demonstrated
in the case of lotteries, we also include an additional example, in
which a standard address model of demand for differentiated products is
estimated using the same methodology and applied to a real case of
product differentiation.

The rest of the thesis is organized as follows. Chapter two

presents a review of literature on theories of <choice under

uncertainty. While including a brief overview of the theoretical



development, the survey focuses on the empirical studies of this branch
of the literature.

In Chapter three, we present the experimental data that is used
to recover preferences in the subsequent chapters. It also includes a
description of the experimental design and a brief analysis of the data
using existing methodologies in the literature.

The preferences recovery technique is developed in Chapter four
for the expected utility model. A test is constructed based on the
recovered preferences to determine if the theory adequately explains
our experimental data.

Chapter five presents three generalized expected utility models
as alternative models for the demand for lotteries. These models are
estimated and tested using the same data and the same testing
methodology.

Finally, as an additional application, Chapter six develops the
preference recovery techniques in a standard address model of product
differentiation and applies them to a real case of product
differentiation in the context of BC ferry services. Conclusions and

extensions of the thesis are also provided in this chapter.



Chapter Two
LITERATURE REVIEW

ON THEORIES OF CHOICE UNDER UNCERTAINTY

Over the past five decades, expected utility (EU) theory has
dominated the theory of choice under uncertainty. However, cumulative
empirical evidence in the literature has shown that people’s actual
choice behavior under uncertainty is systematically inconsistent with
the predictions of the EU theory (For example, see Allais, 1953, 1979;
MacCrimmon, 1968; Kahneman and Tversky, 1979). The "Allais paradox"
(Allais, 1953) was the first example of the limited descriptive
ability of the EU model.

The inadequacy of the EU model in explaining experimental data
has led to theoretical efforts to propose alternative theories of
choice under uncertainty. Since most alternative models are considered
generalizations of the EU theory (e.g. Karmarkar, 1979, and Machina,
1982), they are classified as generalized expected utility (GEU)
theories. The GEU models were designed to accommodate EU violations.
Since they all include the EU model as a special case, they have more
descriptive power than the baéic EU model. The question is: How much
better are these GEU models in explaining the data generated from
laboratory experiments? Several recent empirical studies including
Battalio, Kagel, and Jiranyakul (1990), Camerer (1989), Chew and Waller
(1986), and Marshall, Richard, and Zarkin (1992) have been conducted to
test alternative models of choice under uncertainty. The results are

rather disappointing: No single theory could explain all the data



collected from these studies.

This chapter reviews both the theoretical development of
theories of choice under uncertainty and empirical studies of them.3
Section 2.1 provides a historical overview of theories of choice under
uncertainty. The intention is to show how the economics of uncertainty
has gone from one of tﬁe most settled branches of ecocnomics to one of
the most unsettled over the past decade. Section 2.2 presents the
expected utility paradigm developed by Von Neumann and Morgenstern
(1944) and violations associated with it. Section 2.3 outlines and
examines several generalized expected utility models. Section 2.4
briefly surveys some empirical studies on testing theories of choice
under uncertainty. Thé survey focuses on the common approach used in
this branch of literature and major results found in these studies. The
last section, Section 2.5, discusses problems associated with existing
empirical studies, and how the current study contributes to this line

of literature.
2.1 A HISTORICAL OVERVIEW

From a historical point of view, theories of choice under
uncertainty can be traced back to the 17th century when modern
probability was developed. Early theories of games of chance assumed

that the attractiveness of a gamble with payoffs, x.,. ..., X . and

ll

For a more thorough survey of literature, see Schoamaker (1989),
Machina (1983a, 1983b, 1987, 1989) and Camerer (1989).



associated probabilities Pys Pyr --er P Was given by the mathematical

n
expectations of monetary gains or losses, i.e. x = Z pixi. The St.
=1

Petersburg Paradox revealed the inadequacy of this principle: Suppose
someone presents you a game that involves tossing}a fair coin until it
comes up heads, and offers to pay you $1 if it happens on the first
toss, $2 if it happens on the 2nd toss, $4 if it takes three tosses,

.., s2@D)

if it takes n tosses to land a head. How much would you
be willing to pay to play this game? According to the principle of

mathematical expectations, the expected value of this game is

E=1/2) x 1+ (/2% 24 ...+ /2% 2™+ L.
= (1/2) + (1/2) + ...+ (1/2) + ...
=

However, the actual amount that people are willing to pay is finite,
often less than $10. This is the St. Petersburg paradox.
To explain why people would pay only a small amount for a game
of infinite mathematical expectation, Bernoulli proposed that people
n

maximized expected utility EU=Z piu(xi) rather than expected monetary
i=1

value. The utility function u(xi) he proposed was logarithmic,
exhibiting diminishing marginal utility of wealth. It can be shown that
the expected utility of the coin tossing game given such a utility
function is indeed finite, which was the key to resolving the St.
Petersburg paradox. However, Bernoulli did not address the issue of how
to measure utility, nor why his expectation principle would be

rational.



It was not until John Von Neumann and Oskar Morgenstern (1944)
that expected utility maximization was formally proved to be a rational
decision criterion. Using five quite reasonable postulates, they

showed the existence of a utility index, u(.), such that the expected

n

utility of a risky prospect, EU=} piu(xi), represents the individual’s
=]

preference ordering over risky prospects, (pl, ...pn; xl, ceey xn).

This is the famous expected utility theory that has played a leading
role in theories of choice under uncertainty to date. Given its
normative appeal and simplicity, the BEU theory has been used in many
applications in the economics of uncertainty since the second world
war.

While most researchers at first accepted VNM’s theory, Allais
(1953) questioned the independence axiom, which is one of the crucial
axioms in EU. By devising -counter examples, he showed that the EU
theory is not compatible with the preference for lotteries in the
neighborhood of certainty. This has become widely recognized as the
"Allais Paradox".

The Allais paradox involves the following two questions:

1) Do you prefer situation A to situation B?

Situation A:
— certainty of receiving $1 million

Situation B:

4
Though axiomatic expected utility theory had . been developed earlier by

Ramsey (1931), the account of it given in the ' Theory of Games and
Economic Behavior’ by Von Neumann and Morgenstern is what made it
"catch on".



—- a 10% chance of winning $5 million
an 89% chance of winning $1 million

and a 1% chance of winning nothing

(2) Do you prefer situation C to situation D?
Situation C:
— an 11% chance of winning $1 million
and 89% chance of winning nothing
Situation D:
— a 10% chance of winning $5 million

and a 90% chance of winning nothing

It can be shown that, according to the EU theory, an answer of "A" to
the first question implies an answer of "C" to the second question, and
a choice of "B" in the first question implies a choice of "D"™ in the
second question. However, after analyzing the answers, Allais found
that 53 percent of subjects chose "A" in the first question and "D" in
the second question, which is clearly inconsistent with EU predictions.

Just as the St. Petersburg paradox led Daniel Bernoulli to
replace the principle of maximization of the mathematical expectation
of monetary values by the principle of maximization of expected
utilities, the Allais paradox has led researchers to reconsider
the expected utility theory.

Over the 1last decade, many researchers have developed
generalized expected utility theories in attempt to resolve the Allais

paradox. Unfortunately, unlike the case of the St. Petersburg paradox,

10



. . . 5
the Allais paradox has not yet been resolved satisfactorily.

2.2 THE EXPECTED UTILITY MODEL AND ALLAIS PARADOX

Consider the following lottery with three final outcomes: (pl,
3

; , = >x > i
p2, p3 X0 x2, x3), where Z 1pl 1 and x1 x2 x3, (x1 is preferred to
1=

x, which is preferred to x3). This lottery would yield outcome X, with
probability P, - Given fixed outcomes, such a lottery <can be
represented by a point in the Marschak-Machina triangle { (pl,ps);
p120, p320 and p1+p3S1 } as in Figure 2.1.6 According to the expected

utility theory, the expected utility of consuming such a lottery is

given by
== + .
EU P1 u(xl) P2 u(x2) + P3 u(x3), (2.1)
where u(.) denotes the Von-Neumann Morgenstern utility index. The
assumption x1>x2>x3 implies that u(x1)>u(x2)>u(x3). Given the utility

index, EU has the property of linearity in probabilities. Graphically,

the linearity property of the EU model can be illustrated in terms of

As will be discussed in section 2.3, no single alternative theory
could explain all the data generated from experiments conducted in
existing empirical studies.

Following the existing literature, we restrict our discussions to the
three-event lotteries. The Marschak-Machina triangle adopted by
Marschak (1950) and popularized by Machina in the 1980’'s is a very

convenient graphical representation of such a lottery.

11



(best)p1

0 P3 (worst)

Fig. 2.1: The Marschak-Machina Triangle
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indifference curves in the Marschak-Machina triangle. An indifference
curve of the EU model is a set of probabilities (pl, pa) with the same
expected utility u:

u = plu(xl) + (1-p1—p3) u(x2) + p3u(x3) (2.2)

Rewriting equation (2.2) in slope-intercept form,

u - u(x_) u(x_)-u(x)
p. = 2 + 2 3 p (2.3)
1 u(xl)—u(xz) u(xl)—u(xz) 3
”m
The indifference curve is a straight line of slope

[u(xz)—u(xa)]/[u(x1)~u(x2)]. Given the wutility index, the slope is
constant. Thus indifference curves are parallel straight lines with
more preferred indifference curves lying to the northwest as in Figure

2.2a.
2.2.1 Allais Paradox and the "Fanning-Out" Effect
The Allais paradox 1is restated here for the purpose of

illustrating the fanning-out effect. This problem involves choosing one

lottery from each of the following pairs:

A : (0,1,0; xl, x2, x3)
B : (0.1, 0.89, 0.01; xl,xz,x3)

13



cC: (0.0, 0.11, 0.89; xl,xz,x3)

D : (0.1 r 0, 0.9; xl,xz,x3)

where {xl,xz,x3}={$5m,$1m.$0}. These four lotteries form a
parallelogram represented by the broken lines in the (pl, p3) triangle,
as in Figures 2.2a and 2.2b. The parallel straight lines in Figure 2.2a
are EU indifference curves. If these indifference curves are flatter
than the broken lines connecting lotteries A and B, or C and D, EU
implies a choice of B in the first pair and D in the second pair:;
similarly if EU indifference curves are steeper than the broken lines,
the choice would be A in the first pair and C in the second pair.
However, many researchers including Allais (1953), Morrison (1967),
Slovic and Tversky (1974), and Kahneman and Tversky (1979) have found
that the modal if not majority of subjects have chosen A in the first
pair and D in the second. According to Machina (1987), this suggests

that indifference curves are not parallel but rather fan out as in

Figure 2.2b.

2.2.2 Violations of the EU Theory

The Allais paradox exemplifies a class of similar violations of
expected utility theory. The two most well-known violations are the
common consequence effect and the common ratio effect. The Allais

paradox is a common consequence violation.

14



Fig.2.2a: EU Indifference Curves Fig.2.2b: Fanning-out Indifference
and Allais Paradox Curves and Allais Paradox
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The common consequence effect can be demonstrated in Allais’
experimental problem, rewritten using the compound lottery structures
shown in Figure 2.3. Here each branch represents a sublottery.
Accordihg to the expected utility theory, A is preferred to B if and

only if

u($1M) > 0.89 u($1M) + 0.1 u($sSM) + 0.01 u(0)

or 0.11 u($iM) > 0.1 u($5M) + 0.01 u(0).

This also implies that C is preferred to D. However, as mentioned in
the previous section, researchers have found a tendency for subjects to
choose A in the first pair and D in the second pair. The difference
between the first pair (A, Bi and the second pair (C, D) is that the
sublotteries in the lower branches of the first pair have a “common
consequence" of $1 m, and the sublotteries in the lower branches of the
second pair have a “common consequence" of $0. EU implies that these
common consequences would be “irrelevant" in choosing between A and B
in the first pair and C and D in the second pair. However researchers
such as Kahneman & Tversky (1979), MacCrimmon(1968) and MacCrimmon and
Larsson (13979), and many others, have found a tendency for subjects to
choose A in the first pair and D in the second pair. Given that the
sublotteries of the upper branch are the same in both pairs, such a
swing in preference from more risky to less risky sublotteries in one

branch of a compound lottery as the sublottery in the other branch

16
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Fig. 2.3: The Common Consequence Effect
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improves (in the sense of stochastic dominance) is generally known as
the "common consequence effect". Intuitively speaking, as we move from
the lower-right corner of the Marschak - Machina triangle to the upper
left corner, people prefer not to bear further risk in the worst event,
and prefer the less risky lottery.

Another class of systematic violation is called the "common
ratio" effect. It can be illustrated in Figure 2.4. In Figure 2.4, p>q,
0 < x <y and 0 < r < 1. The term common ratio derives from the
equality of prob(x)/prob(y) in the first pair and in the second pair,
which 1s p/q. Given the expected utility hypothesis, a rational
individual should choose either L. in the first pair and L, in the

1 3

second pair, or L, in the first pair and L

2 in the second pair. However

4
researchers have found from experiments that the modal response is
inconsistent with this EU prediction. The following is an example
initially proposed by Allais (1953) and later used by Kahneman and
Tversky (1979) to demonstrate the common ratio effect. In this example,

y=$4000, x=$3000, p=1.0, g=0.8, and r=0.25, as shown in the parenthesis

of Figure 2.4. The “common ratio" here is 1.0/0.8=1.25,

Pair 1: Choose between

L1 {0,1,0; $400, $3000, O)

and

L2 (0.8, 0, 0.2; $4000, $3000, 0)

18
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Pair 2: Choose between

L3 (0, 0.25, 0.75; $4000, $3000, 0)

and

L4 (0.2, 0, 0.8; $4000, $3000, 0)

Kahneman and Tversky presented the gamble pairs to 95
respondents and found that that 80% of the subjects preferred L. in the

1

first pair and only 65% of the subjects preferred L3 in the second

pair. Given that EU predicts either a choice of L, and L3 or a choice

1
of L2 and L4, the results show the common ratio effect. It can also
be shown, as in Figure 2.5, this effect is consistent with fanning-out
indifference curves.

In summary, a wide range of experimental violations of the EU
theory have been observed. Most of them, if not all, can be interpreted
by the fanning-out hypothesis.7 Thus this hypothesis has been

considered an important key in developing a generalized expected

utility framework to explain violations of the EU model.

7

A summary of the literature is given by Machina (1982). Attention
here was confined to experimental findings that have had an important
impact on the development of generalized theories of choice under
uncertainty.
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Fig.2.5: The Common Ratio Effect

* and Fanning-out Effect

21



2.3. THE GENERALIZED EXPECTED UTILITY MODELS

The g;gy}pg’ b9§¥_,9f empirical evidence against the EU
hypothes;;E has motivated researchers to develop alternative models.
Some examples of these Generalized Expected Utility (GEU) models, the
researchers who have developed them, and theoretical predictions for
indifference curve patterns for the three-event scenario are listed in
Table 2.1.8 Many are flexible enough to rationalizgwggm¢Hbehavior
observed in experiments and inconsistent with EU theory while
maintaining such basic properties as stochastic dominance, risk
aversion and transitivity.

A common feature of these alternative models, except for
prospect theory, is that the functional forms of the individual
preference functions are more general than the EU functional form. This
occurs because EU is a special case of these alternative models.

For each of the forms listed in Table 2.1, u(.) represents the
utility function and w(.) stands for a probability weighting function.
The other functional term, T(xi), in the weighted utility model, is
also a weighting function that depends on final outcomes or the utility

index. A superb overview and exposition of these alternative models may

8
For thorough surveys of the GEU models, see Machina (1987) and

Camerer (1989).
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Table 2.1: Examples of the Alternative Models to EU

Prospect Theory Kahneman & Tversky
(1979)
n
.Z wip,) ulx,)
i=1
Subjected Weighted Karmarkar (1978,1979)
Utility
n n
.Z wip,) ulx,)/ .Z wi(p,)
i=1 i=1
Weighted Utility Chew & Maccrimmon (1979)
n n
.Z P T(x,) u(xi)/.Z P, T(x,)
i=1 i=1
Rank-dependent Utility Quiggin (1982)

n i i-1
¥ u(xi)[f( Y pj) - £( Y P.)]

i=1 3= j=1
The Fanning Out Machina (1982)
Hypothesis
Implicit Expected Utility Chew (1985)
Dekel (1986)
n
*
_Z p, ulx,, u¥)
i=1

o~

2N
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be found in Camerer (1989). In chapter five, we provide detailed

e

descriptions of the theories of interest here. What follows is a
brief description of each theory listed in this Table.

The prospect theory of Kahneman and Tversky (1979) is the only
alternative model that does not generalize EU. It differs from EU in
the following ways: first, all outcomes in the prospect theory are
framed as changes from a reference point; second, prospects (i.e.,
lotteries) are edited to make them simpler to evaluate (e.g. outcomes
and probabilities are rounded off or lumped together); and third, the
expected utility over an edited prospect 1is given by a weighted
probability formula as presented in Table 2.1. Kahneman and Tversky
suggest that the weight funétion, w(p), is increasing in p, subadditive
(w(p)+w(1l-p)<1l), and discontinuous at the endpoints 0 and 1. They also
hypothesize that the utility function u(x) is asymmetrical for gains
(x>0) and losses (x<0). Specifically, u(x) 1is concave for gains and
convex for losses. This theory is difficult to test because it has many
more degrees of freedom, especially in the editing stage, than any
other theory.

The subjective weighted utility theory was proposed by

Karmarkar, 1978 and 1979. According to this model, the expected utility

for a risky prospect (p., pz, p3; .4

1 X ,xa), as given in Table 2.1,

2! T2

depends on a weighting function w(pi), where w(pi)=p?/(p?+(1—pi)a, and

e

o is an additional parameter regarded by Karmarkar as a measure of

-

information processing performance. Low values of & (0<a<l) underweight

—
T -

the objective probability P/ high values (a>1) overweight P/ and when

a=1, this model reduces to the EU model. This model will be further
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explained in chapter five.

Weighted utility theory was developed by Chew and MacCrimmon,
1979 (see also Chew, 1983). As can be seen from Table 2.1, the
weighting function, pit(xi)/z pit(xi) is somewhat novel in the sense
that it combines both probabilities and utilities. Depending on the
choice of t(xi), the indifference curves of the weighted utility model
can either fan-out (this corresponds to the light hypothesis of Chew
and MacCrimmon), as in Table 2.1, or fan-in (the heavy hypothesis).
Although the axioms suggest no obvious psychological interpretation to
the weighting function, the weights seem to modify probabilities,
possibly reflecting mental distortions or misperceptions, to a degree
that depends on outcomes xi.

Quiggin (1982,1985) was the first to consider a rank-dependent
utility theory (called anticipated utility). This theory uses a
nonlinear probability transformation function that depends on the order
or rank of the outcomes. Certain specifications of the weighting
function could generate nonlinear fanning-out indifference curves as in
Table 2.1. As proved by Quiggin, this theory has strong axiomatic
foundations. It has been used in some important applications (Quiggin,
1992). This theory is also further explained in chapter five.
\j/# In the fanning-out hypothesis, Machina uses the notion of
(first-order) stochastic dominance. For three-outcome gambles, lottery
A:(pl, P,r Pyi X4 X, x3) stochastically dominates B:(ql, qyr A Sy
X, x3) if p3<q3 , and p1>q1. Graphically, point A stochastically
dominates B if A lies to the northwest of B in the Marschak-Machina

triangle. However, Machina 'did not propose specific preference
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functions, rather he hypothesized that the local utility functions of

I

W§tqphastically dominant gambles will exhibit more risk aversion (by the
Arrow-Pratt measure) than lécél utility functions o£ “sﬁgchastically
dé@inated gambles. ?his hypothesis érediq;sytha;rindiffe;gnce curves,
usually n?plin§ar, will be steeper for ggmbles,to the northwe;pﬂgf the

Marschak-Machina triangle. _

Finally, the Implicit Expected Utility function (Dekel, 1986)

generalizes the EU model by replacing u(x) by u{x,u*), where u* is the

expected utility, i.e.,
* = *x) 4 *x) + *) .
u plu(xl,u ) pzu(xz,u ) p3u(x3,u )

Indifference curves of Implicit EU are straight lines, but their slopes
vary because u(x,u*) varies with u*. Thus this model describes a person
who uses a different utility function, perhaps reflecting different

degrees of risk aversion along each indifference curve.
2.4 TESTING BETWEEN ALTERNATIVE MODELS

Experiments have identified a number of well-known violations

of the eéxpected utility theory, thus giving rise to alternative models

[

of choice under uncertainty. These alternative models, with quite

TN g

.different views of the behavioral processes underlying choices under

uncertainty, are often able to explain some violations of EU

predictions. The questions is: Are theoretical predictions of these

alternative models consistent with people’s actual choice behavior?
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Several recent empirical studies (Chew and Waller, 1986; Camerer, 1989;
Battalio, Kagel and Jiranyakul, 1990; and Marshall, Richard and Zarkin,
1992) have attempted to answer this question by designing new
experiments or new empirical methods. Of these empirical studies, all
but one use experimental evidence to test between the alternative
models.9

The general tenor of conclusions from these empirical studies
confirm violations of the EU predictions, but no single theory has
emerged as a satisfactory alternative. In what follows, we provide only
a brief description of experiments and testing methods of each study
and their major results.

Chew and Waller (1986) emploved a four-pair lottery structure,
called the HILO lottery structure, to test weighted utility theory. The
HILO lottery structure involves choices over four pairs of lotteries.
Figure 2.6 shows a typical HILO structure in which gamble pairs (Ai,
Bi), i=1,2,3,4 are plotted on the Marschak-Machina triangle. As can be
seen from the triangle, these four gamble pairs form three parallel
straight lines labelled 1, 2, 3, and 4. Since EU indifference curves of
an individual are also straight lines, the EU theory predicts that the

individual’s choice over these four lottery pairs is either A1A2A3A4 if

the slope of EU indifference curves is greater than the slope of line

9

Using seat-belt-usage data, Marshall, Richard and Zarkin (1992) test
Machina’s fanning out hypothesis and the "light" hypothesis of Chew
and Waller (1986).
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Fig. 2.6: HILO Lottery Structure
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segments connecting lotteries Ai and Bi (i=1,2,3,4), or B1B2B3B4
otherwise. Note that pair 2 and pair 3 form an Allais type of problem.
For this problem, EU predicts a choice of either A2A3 or B2B3. To
elaborate, Allais’ Jlottery structure 1is wused to test whether
individuals behave consistently over two pairs of lotteries, and
theHILO lottery structure tests the consistency over four pairs.
Thereforethe HILO lottery structure permits stronger empirical tests
than those in the Allais lottery structure.lO With every HILO lottery
structure, there are 16 possible choice patterns. Based on observed
frequencies of choice patterns implied by a particular theory, one can
then test if the theory predicts the subjects’ choices better than a
chance prediction model. Using two HILO lottery structures, Chew and
Waller tested the expected utility hypothesis (the "neutral"
hypothesis), the fanning-out hypothesis (the "light" hypothesis), and
the fanning-in hypothesis (the "heavy" hypothesis) of weighted utility
theory. The results indicate that the "light" hypothesis with linear
fanning-out indifference curves is supported by their data, that is, it
predicts significantly better than a pure chance prediction model.
Camerer (1989) also conducted an experimental test of several
generalized expected utility theories using an analysis of indifference
curves drawn in the Marschak-Machina triangle. The theories evaluated
were weighted utility theory, implicit expected utility theory, the

fanning~-out hypothesis, rank-dependent expected utility.

0
The HILO lottery structure is discussed in more detail in Chapter

three.
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Using responses from 14 gamble pairs with each one involving
more risky and less risky gambles of the Allais type, Camerer depicted
an approximate indifference curve pattern based on percentages of
subjects who chose the less risky gambles over the more risky ones in a
Marschak-Machina diagram. He compared these approximate indifference
curves with theoretical predictions of each theory, and concluded that
(Camerer, P82)

"No theory can explain all the data, but prospect theory and ;

the hypothesis that indifference curves fan out can explain “

most of them." N

Just when the fanning-out hypothesis appeared to be the
solution to Allais paradox, Battalio, Kagel and Jiranyakul (BKJ, 1990)
found evidence of fanning-in rather than fanning-out. Battalio et al
designed four series of binary choice questions of the Allais type,
involving both losses and gains. Each question required subjects to

indicate which of two gambles they preferred. Based on the frequencies

of choice patterns generated from the subjects, and theoretical

ﬁfédictions of several GEU models including Rank-dependent expected

utility theory (RDEU), Prospect theory and Machina’s generalized

expected utility model,. they concluded that no single model

consistently- explains._ choices. Among the more important {

J
<

inconsistencies, they identified conditions generating systematic [

fanning-in instead of fanning-out of indifference curves in the /)

Marschak-Machina triangle.
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Like other experimental economics, the experimentally based
study of theories of choice under uncertainty is open to criticism
regarding the validity of the method and the generalization of the
results. In the light of this criticism, Marshall, Richard and 2Zarkin
(MRZ) (1992), for the first time, used non-experimental data
(seat-belt-usage data) to construct posterior probabilities of specific
types of EU violations. Adopting a Bayesian framework, MRZ estimated
the basic conditional probabilities characterizing the commuter-safety
lotteries and assigned posterior probabilities to the violation of the
independence axiom, to Machina’s fanning-out hypothesis, and to the
"light"™ hypothesis of Chew and Waller. The results show that similar to
other experimental studies, the nonexperimental data also exhibit
systematic departures from the EU model and that while the
nonexperimental evidence is not inconsistent with Machina’s fanning-out
hypothesis, it is inconsistent with the "light"™ hypothesis of Chew and
Waller.

In summary, among the four recent empirical studies that test
between alternative models of choice under uncertainty, the Chew and
Waller study supports the "light" hypothesis of weighted utility
theory, but MRZ found non-experimental data inconsistent with the
"light" hypothesis. Both Camerer and MRZ found evidence supporting
Machina’s fanning-out hypothesis, yet BKJ found conditions generating
systematic fanning-in of indifference curves instead of fanning-out.

Prospect theory was supported by Camerer’s study, but not by BKJ. To

conclude this section, we borrow the statements of BKJ (P.46) as .

follows:
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"Our overall conclusion is that none of the alternmatives to
expected utility theory considered here consistently organize the data,
so we have a long way to go before having a complete descriptive model
of choice under uncertainty.™

Other independent studies (Harless, 1987; Starmer and Sugden,

1987a, 1987b) also seem to share this view.
2.5 A CRITIQUE ON EXISTING EMPIRICAL METHODS

More than two decades after Allais first challenged expected
utility theory by using experimental evidence, a number of alternative
models were proposed to improve the descriptive ability over the EU
model. Yet existing empirical studies have not found one single theory
that could explain all data. This raises questions about testing
methodology and the validity of the empirical techniques used in the
literature to test theories of choice under uncertainty.

As mentioned in the previous section, a common method used to
test the adequacy of such models typically, the Allais type, is to
compare the frequency of each choice pattern generated from the
experiments with the theoretical predictions of each model. If the
modal response is inconsistent with the theory, then the theory is
considered to be inadequate. Typically, effort is devoted to create a
new generalized expected utility model to explain the modal response.

To see what is involved in this approach, 1let us take one
experiment from BKJ (1990) for example. Table 2.2 reproduces Table 8§

for experiment set 1.1 in their paper (p.43). As shown in Figure 2.7,
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Fig. 2.7: An Experiment from BKJ

33



given this experiment, there are four possible choice patterns that
could be generated from a sample population. Column 1 of Table 2.2
lists these choice patterns. The hypothesis that predicts each choice
pattern and choice frequencies are reported in columns 2 and 3
respectively.

Table 2.2 shows that 44.5% (i.e., 16.7%+27.8%) of the subjects
made choices consistent with EU theory, 11.1% of the responses is
consistent with fanning-out hypothesis and 44.4% of the choices is
consistent with fanning-in hypothesis. It is suggested from this result
that since expected utility theory organizes less than half the data
(44.5%), it 1is considered inadequate. Moreover, with fanning-out
comprising only 20% and fanning-in 80% of the deviations from expected
utility theory, the validity of fanning-out falls dramatically in this
data set. In contrast, the fanning-in hypothesis may be a better
alternative model with EU as a special case.

As another example, let us focus on a more complicated version
of this approach adopted by Chew and Waller (1986). The following set

of lotteries is picked from their study.11

Al: {(0,1,0; $100,540,50) Blz (0.5,0,0.5; $100,%$40,50)

AZ: {(0,1,0; $100,540,50) BZ: (0.05,0.9,0.05; $100,%40,%0)

A3: (0,0.1,0.9; $100,$40,50) 33: (0.05,0,0.95; $100,%540,%0)

A4: (0.9,0.1,0; $100,540,50) B4: (0.95,0,0.05; $100,540,50)
llThis set of lotteries corresponds to experiment 1l: context la of Chew

and Waller, 1986.
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Table 2.2: Illustration of an

existing test

lottery set 1.1:
A1:(0,1,0; $27,%18,0) vs

A2:(0.74,0.2,0.06; $27,518,0) vs

B1:(0.72,0,0.28; $27,518,0)

BZ:(0.90,0,0; $27,%18,0)

Possible Patterns Choice
Choice Patterns Consistent with Frequencies
A1A2 EU 6(16.7%)
8182 EU 10(27.8%)
B1A2 Fanning-out 4(11.1%)
A1B2 Fanning-in 16(44.4%)
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These lotteries are also shown in Figure 2.8. From this figure, EU with
parallel indifference curves predicts choice patterns: A1A2A3A4 and

B1B2B3B4; the fanning-out Thypothesis predicts additional choice
patterns: A1A2B3A4 and B1B2B3A4; and the fanning-in hypothesis predicts
additional choice patterns A1A2A3B4 and B1B2A3B4. Table 2.3 reproduces
their results generated from 56 subjects. Column 1 contains all
possible choice patterns, column 2 lists the suitable hypotheses and
column 3 reports the observed frequencies. To test weighted utility
theory, Chew and Waller used the observed choice frequencies to
determine whether the EU hypothesis, the fanning-out, or fanning-in
hypotheses predicted the subjects’ choice pattern better than a chance
prediction model. In particular, referring to Table 2.3, two of the 16
choice patterns are consistent with the EU hypothesis, therefore, for
this hypothesis to predict better than a chance prediction
model,the relative frequency of correct predictions would have to be
significantly greater than the chance hit rate of 1/8, or 12.5%.
Furthermore, since 4 of the 16 patterns are consistent with the
fanning-out (or fanning-in) hypothesis, for these hypotheses to predict
better than a chance prediction model, the relative frequencies of
correct predictions would have to be significantly greater than the
chance hit rate of 1/4, or 25%. As shown in Table 2.3, 23% (i.e., 7% +
16%) of responses are consistent with EU; 32% (7% + 16% + 4% + 5%) are
consistent with fanning-in; and 53% (7% + 16% + 5% + 25%) of choices is
consistent with fanning-out. Therefore from these numbers, the EU and

the fanning-out hypothesis predicted significantly better than chance.
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Table 2.3: Possible Choice Patterns, Implications of
Weighted Utility and Observed Frequencies

Possible Choice Weighted Utility Observed
Patterns Choice Frequencies
AAAR EU,FO,FI 4(7%)

1 2 3 4
A A AB FI 2(4%)
1 2 3 4
AlAzB3A4 FO 3(5%)
A1A2B3B4 No 0(0%)
A BAA No 2(4%)
1 2 3 4
A1B2A3B4 No 3(5%)
A B B.A No 11(20%)
1 2 3 4
A B BB No 2(4%)
1 2 3 4
-3
BlA2A3A4 No 0(0%)
B1A2A3B4 No 0(0%)
B1A2B3A4 No 0(0%)
B1A2B3B4 No 0(0%)
B B A A No 3(5%)
1 2 3 4
B B A B FI ‘ 3(5%)
1 2 3 4
B B B A FO 14(25%)
1 2 3 4
B B B B EU,FO,FI 9(16%)
1 2 3 4

*EU, FO, FI indicate that the choice pattern is consistent with
Expected Utility theory, the Fanning-out and Fanning-in hypotheses,
respectively.
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Moreover, by comparing the three hypotheses in terms of predictive
ability (i.e.,number of choices consistent with each hypothesis), Chew
and Waller concluded that the fanning-out hypothesis performs the best
in explaining their data.

A couple of problems are apparent from such approaches. First,
results from these studies (in fact from all studies) clearly showed
variations of choice patterns from a sample population, but the
existing tests focus on only the modal response. The criterion that
determines whether a particular theory is appropriate seems to depend
on whether the modal response is consistent with the theory. This f
clearly ignores the possibility that different people make different
choices due to taste variations. Surely, from each data set, there are
always choices inconsistent with all theories. Hence, as a matter of
logic, all theory should be rejected by such choices. Therefore, any
attempt to find a theory that explains all choices is doomed to
failure. Secondly, these tests are rather ad hoc and unsystematic,
since no systematic statistical test was constructed to test the
adequacy of theories of choice under uncertainty at the aggregate
level.

In the light of these criticisms, a new approach is developed
here to testing theories of choice under uncertainty. This approach is
based on one important point, that is, to understand the data, one
needs heterogeneity of preferences. In particular, it is assumed that
individuals have diverse tastes, and that there exists a probability
density function which describes the diverse tastes across individuals.

Given data generated from laboratory experiments on choices over gamble
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pairs, the density function is estimated through maximum likelihood
estimation techniques. A likelihood ratioc test based on the recovered
density function is constructed to evaluate a particular theory of
choice. The next chapter describes the data. Chapter four explains the

new empirical approach.
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Chapter Three

THE EXPERIMENTAL DATA

Empirical studies on testing theories of choice under
uncertainty found to date have been based on experimental evidence,
with the exception of Marshall, Richard and Zarkin (1992). In general,
there is an inherent trade-off between experimental and nonexperimental
data. Laboratory experiments offer a high degree of control over the
sampling environment, but the wvalidity of the approach and the
generalization to “real-world" phenomena is perhaps questionable. On
the other hand, nonexperimental data is more convincing, but sampling
controls are typically poor. Given that the primary purpose of this
study is to develop some empirical techniques to calibrate models of
choice under |wuncertainty, sampling control is important. Thus
experimental data is employed in this study. Section 3.1 explains the
current experimental design and procedure. Section 3.2 presents the
experimental results. A brief analysis of the data using existing
methodologies in literature is provided in section 3.3. Section 3.4

concludes this chapter.
3.1 Experiments

In this study, three experiments were conducted on three
separate groups of subjects at three different times. Two of the

experiments were used for preliminary studies. The other one was used

to generate data to estimate preferences and test theories of choice
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under uncertainty. This section explains the experiments: lotteries,

subjects and experimental design and procedure.

3.1.1 Lotteries

The lotteries were generated from the Marschak-Machina
triangle. Each lottery involves three levels of payoffs: a coffee mug,
a pen and nothing. The coffee mug, which cost $5.95, was a good quality
mug with a landscape of Simon Fraser University (S.F.U.). The pen, with
a price of $2.15, was a fine pen specially made with an S.F.U. logo on
it.12 Lotteries involving these prizes can be represented by different
points on the Marschak-Machina triangle. Mugs, pens and nothing were
used as prizes to avoid the possibility of local risk-neutrality
results. According to the literature, such results usually arise in a
choice between small money gambles when subjects make choices based on
expected values of the lotteries rather than expected utilities. If
students were given dollar prizes, and thought that there is a correct
choice in each situation, they might be tempted to choose the lottery
offering the highest expected payoff. Though preliminary experiments

did not significantly show such results, we chose to use non-monetary

prizes: a mug, a pen, and nothing as a precaution.

3.1.2 Subjects

Subjects were undergraduate economics students at Simon Fraser

12
The monetary values of these prizes were not known to the subjects at

the time of experiments.
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University. These students were either taking a principles of economics
course or an intermediate economics course. Most ©of them were not
familiar with the decision theory, and they had not been exposed to
this type of experiment before. Some subjects were given a Crunchie
chocolate bar for participating in the experiments. Some were given a
chance, on a random selection basis, to actually play the lottery they
picked from an experiment. A poll showed 99% of the subjects from one

class claimed to have given serious responses in these experiments.

3.1.3 Experimental Design and Procedure

The experiments were conducted in two stages: a preliminary
stage and a final stage. The purpose of the preliminary experiments was
to gain experience in designing a more efficient and more careful
experiment, that is, to generate more accurate responses for our study,
and to use the data to establish appropriate empirical techniques to
calibrate theories of choice under uncertainty. In this stage, we
designed six sets of lotteries involving both monetary payoffs ($5, $2,
$0) and non-monetary payoffs. Each set contains three lotteries
generated from the Marschak-Machina triangle. The monetary payoffs were
used primarily to examine the 1local risk-neutrality results as
discussed in the literature (e.g., Quiggin, 1992). The experimental
results from five different undergraduate economics classes, showed no
significant difference between using money and non-money payoffs. The
preliminary study also showed that the initial experimental design was
limited in a number of ways: first, there was not sufficient data

generated for estimation and testing; second, it was difficult to make
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any direct comparisons between our experiments and others since other
empirical studies in the literature all used binary choices data, and
we used choices from three lotteries; finally, the design was not
systematic in the sense that the lotteries were generated from the
Marschak-Machina triangle in a somewhat arbitrary fashion.

In the light of these preliminary studies, we designed another
set of experiments to generated the data for estimating and testing the
models of <choice wunder uncertainty. In this experiment, only
non-monetary payoffs were used. Subjects were 284 undergraduate
economics students, who were taking a principles of economics course.
They were asked to respond to 13 binary choice situations. The binary
choices are described in Table 3.1 in which column 1 lists the pair
numbers; column 2 will be explained later. For each pair, columns 3 and
4 describe lotteries A and B respectively, where P,r Py and p, are the
probabilities of winning a coffee mug, a pen and nothing. For example,
pair 13 involves a choice between a 100% chance of winning a coffee mug
{lottery A) and a 100% chance of winning a pen (lottery B). This
lottery pair was designed to divide the sample into two parts: one in
which subjects prefer the mug to the pen and the other one contains
subjects who prefer the pen to the mug. Though both may be used to
recover preferences, they should be used as separate experiments, since
the assumption that u(xl) > u(x2) > u(x3) is necessary to maintain the
graphical interpretation of EU indifference curves. The results from

this show that 250 out of 284 subjects preferred the coffee mug to the

44



Table 3.1. Lottery Pairs Presented to Subjects

Lottery A* Lottery B
Pair No. Situation (pll P, p3) (pll Py p3)
1 1-0 (0, 1, 0) (0.5, 0, 0.5)
2 1-I (0, 1, 0) (0.1, 0.8, 0.1)
3 1-L (0, 0.2, 0.8) (0.1, 0, 0.9)
4 1-H (0.8, 0.2, 0) (0.9, 0, 0.1)
5 2-0 (0, 1, 0) (0.8, 0, 0.2)
6 2-1I (0, 1, 0) (0.2, 0.75, 0.05)
7 2-L (0, 0.25, 0.75) (0.2, 0, 0.8)
8 2-H (0.75, 0.25, 0 (0.95, 0, 0.05)
9 3-0 (0, 1, 0) (0.2, 0, 0.8)
10 3-I (0, 1, 0) (0.05, 0.75, 0.2)
11 3-L (0, 0.25, 0.7) (0.05, 0, 0.95)
12 3-H (0.75, 0.25, 0) (0.8, 0, 0.2)
13 (1, 0, 0) (0, 1, 0)
*Prizes: x = a coffee mug, x,= a pen, and x, = nothing
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pen. We will use only this sample because of the larger sample size.13

The other 12 pairs of lotteries were designed according to Chew
and Waller’s HILO lottery structure. As discussed in Section 2.4 of
Chapter 2, the HILC lottery structure is a straightforward
generalization of the Allais lottery structure. The structure is
specified by two probabilities, « and B, and three outcomes, xH, X s
xL, where XH>XI>XL (H~-high outcome, I- intermediate outcome, L-low
outcomes). These parameters are combined into four binary choice
situations (referred to as the O, I, L, and H situations). In the
O-situation, Ao offers a 1.00 chance of winning X, while B° offers a B
chance of winning x and (1-B) chance of winning X, In the other
situations, A° (i=I,L,H) is obtained by constructing a lottery with an
a chance of yielding Ao and a l-a chance of yielding the i outcome
(i=I, L, H), as shown in Table 3.2.14 Bo (i=I,L,H) is obtained by
constructing a lottery with an « chance of yielding B° and a l1l-a chance
of yielding the i outcome (i=I,L,H).

In the current experiment, x, = a coffee mug, x = a pen, x =
nothing. As indicated in column 2 of Table 3.1, Lottery pairs 1-4 in

Table 3.1 form HILO structure 1 in which «=0.2, B=0.5; pairs 5-8 form

3
Given that the purpose here is to recover prefe r ences over lottery
pairs, not the final outcomes of lotteries, the current treatment of

the sample population should not cause any sample selection bias.

14

The description of the HILO lottery structure is taken from Chew and
Waller (1986). Table 3.2 1is basically the same as Table 1 in their
paper. ’

46



Table 3.2: The HILO Lottery Structure

situation Lottery A Lottery B
+(1-

0 xI BxH (1-8) xL

I oA +(l-x)x 0B +(l1-a)x

o I o I

L A +(l-a)x aB +(l-a)x
[} L o L

H A +{(1l-0)x B +(l-a)x
[} H o H
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HILO structure 2 in which «=0.25, (=0.8; and HILO structure 3 with
a=0.25, PB=0.2 includes lottery pairs 9-12. These structures are plotted
in Figures 3.1, 3.2, and 3.3 respectively.

The figures show that each structure has a different slope for
the lines connecting lottery Ai and Bi: 1 for structure 1, 4 for
structure 2 and 0.25 for structure 3. The numbers that appear above or
below the line segments in each figure represent the lottery pair
number corresponding to data given in Table 3.1.

As also illustrated by these figures, the 12 lottery pairs
cover all corners of the triangle space. The objective is to use
lotteries from different regions of the Marschak-Machina triangle to
calibrate models of choice under uncertainty.

The experiment proceeded as follows: First, the experimenters
explained to students what the experiment was all about. At the same
time, sample coffee mugs and pens were circulated among students to
familiarize them with the prizes. Second, a response sheet with simple
instructions, reproduced in the appendix to this chapter, was handed
out and explained to each student. The students were asked to read the
instructions first and then wait for the experimenter to explain the
lotteries. Third, using an overhead projector, the experimenter
presented each pair of lotteries on a separate transparency using the
diagram shown (for pair 1) in Figure 3.4. Lotteries A and B in each
pair are represented by two rectangular areas of unit 1. Each
rectangular area was divided into three colored areas, with the red

area measuring the probability of winning a mug, the yellow area
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AL P3
Fig 3.1: Lottery Structure 1

0 AL P3
Fig 3.2: Lottery Structure 2

P1

Ay

0 L P3
Fig 3.3: Lottery Structure 3
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A: (0,1,0; mug, pen, nothing)

PEN

B: (0.5,0,0.5; mug, pen, nothing)

COFFEE MUG NOTHING

Fig. 3.4: Gamble pair 1 as presented to subjects
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measuring the probability of winning a pen, and the blue area measuring
the probability of winning nothing. In this example, lottery A with
probability (0,1,0) is represented by the rectangular area entirely
colored by yellow, and indicates a 100% chance winning a pen. Lottery

B with probability (0.5,0,0.5) is represented by the rectangular area
colored half in red and half in blue. It indicates a 50% chance of
winning a mug and a 50% chance of winning nothing. When presenting each
pair, the experimenter also verbally explained the lotteries. The
students were asked to make a choice by circling either A or B on the
response sheet after each pair was presented..ls Finally, after
completing all 13 pairs, the experimenters collected response sheets
and rewarded each student with a crunchie chocolate bar. The experiment

took approximately 30 minutes.

3.2 RESULTS

The results are reported in two parts. First, descriptive data
is presented regarding the subjects’ choices. Second, these choices are
analyzed using the previous empirical methods adopted in the
literature.

Table 3.3 reports the frequencies of A, and B, choices in each
1 1

5
Following majority of the researchers, indifference curves between two

lotteries was not allowed in this experiment.
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Table 3.3: Frequencies of choices

choices structure 1 structure 2 structure 3
A 175(70%) 94 (38%) 232 (93%)
B° 75(30%) 156 (62%) 18(7%)

250(100%) 250(100%) 250(100%)
AI 74(30%) 28(11%) 153 (61%)
BI 176(70%) 222(89%) 97(39%)

250(100%) 250(100%) 250(100%)
A 140 (56%) 57(23%) 212 (85%)
BL 110(44%) 193(77%) 38(15%)

250(100%) 250(100%) 250(100%)
A 214 (86%) 231(92%) 229 (92%)
B 36(14%) 19(8%) 21(8%)
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of the three HILO structures. From this table, we can see that the
results from the 12 pairs of lotteries differ from one structure to
another. In lottery structure 1, a tendency to prefer Ai alternative
over Bi alternative (i=1,2,3,4) was evident, except in the
I-situation. For lottery structure 2, the tendency was to prefer Bi
over Ai {(i=5,6,7,8), except in the H-situation. Finally in structure 3,
the majority of subjects chose Ai over Bi in all H-I-L-O0 situations
(1i=9,10,11,12). Notice that the slopes of the segments connecting

lottery pairs A and B are different between HILQO structures (1 for
1 1

structure 1, 4 for structure 2 and 1/4 for structure 3 ) as shown in
Figures 3.1, 3.2, and 3.3 respectively. Therefore these disparate
results may simply reflect these slope differences, as will be seen in

the following analysis.

3.3 DATA ANALYSIS

The data is first analyzed using the existing empirical methods
in the literature. The purpose here is to obtain some prior information
on whether the EU theory is consistent with our data and if not, what
theory could serve as a better alternative. Table 3.4 reports the
observed frequencies for each HILO structure. The modal response was
ABAA in structure l(pairs 1-4), BBBA in structure 2 (pairs 5-8) and
AAAA in structure 3 (pairs 9-~12). The expected utility theory predicts

either AAAA or BBBB in all three structures. But the percentages of the
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Table 3.4: Possible Choice Patterns and Observed Frequencies

of the HILO structures

Possible .
hoice Alternative Structure 1 Structure 2 Structure 3
ehes Hypothesis* pairs 1-4 pairs 5-8 pairs 9-12
parttens
1 AAAA ALL 49(19.6%) 21(8.4%) 133(53.2%)
2 BAAA NO 2(0.8%) 0(0%) 2(0.8%)
3 ABaA NFO 56(22.4%) 20(8%) 61(24.4%)
4 BBAA NO 21(8.4%) 15(6%) 2(0.8%)
5 AABA LFO 12(4.8%) 5(2%) 12(4.8%)
6 BABA NFO 6(2.4%) 3(1.2%) 1(0.4%)
7 ABBA NFO 41(16.4%) 47(18.8%) 12(4.8%)
8 BBBA LFO 27(10.8%) 120 (48%) 6(2.4%)
9 AAAB FIN 4(1.6%) 0(0%) 5(2%)
10 BAAB NO 0(0%) 0(0%) 0(0%)
11 ABAB NO 6(2.4%) 1(0.4%) 9(3.6%)
12 BBAB FIN 2(0.8%) 2(0.8%) 1(0.4%)
13 AABB NO 1(0.4%) 0(0%) 0(0%)
14 BABB NO 0(0%) 0(0%) 1(0.4%)
15 ABBB NO 6(2.4%) 1(0.4%) 0(0%)
16 BBBB ALL 17(6.8%) 15(6%) 5(2%)
ALL indicates all hypotheses listed in this table including EU.
NO means that no existing hypothesis could explain the choice.
NFO indicates non-linear fanning-out indifference curves.
LFO indicates linear fanning-out indifference curves.
FIN stands for fanning-in indifference curves.

54



subjects who made these choices are only 26.4% ( 19.6% + 6.8%) in
structure 1, 14.4% (8.4% + 6%) in structure 2, and 55.2% (53.2% + 2%)
in structure 3. Hence the EU model does not explain almost 74% of
subjects in structure 1, 86% in structure 2 and 45% in structure 3.
Also in Table 3.4, column 2 1lists alternative hypothesis of
indifference curve that may be used to explain the choices shown in
column 1. For example, choices AAAA and BBBB, accounted for 26.4%
(19.6% + 6.8%) may be explained by all theories including EU. Figures
3.5 and 3.6 show these choices with EU parallel indifference curves in
the Marschak-Machina triangle. Choices ABAA and ABBA, which accounts
for 38.8% of total population, may be explained by non-linear
fanning-out hypothesis for structure 1 as in Figures 3.7 and 3.8.

To summarize the results from Table 3.4, we make the following
observations: (1) No single hypothesis can organize all the data; (2)
up to 14.4% of choices could not be explained by any theory listed;
(3) the fanning-out hypothesis, including both linear fanning-out (LFO)
and non-linear fanning-out (NFQO), seem to explain a large portion of
the data set. The frequencies of the choices implied by this hypothesis
(i.e., choices 1,3,5,6,7,8,16 from Table 3.4) were summing up to 83.2%
for structure 1, 92.4% for structure 2 and 92% for structure 3. These
results suggest that the fanning-out hypothesis may be an attractive
hypothesis for our data. It reflects certain behavioral regularities:
sure gains are much more attractive than uncertain gains with equal
expected value and small chance of a zero payoff.

To further explore the choice patterns, we also adopt an
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Fig. 3.5: Choice of AAAA with EU Indifference Curves

Fig. 3.6: Choice of BBBB with EU Indifference Curves
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A p3

Fig. 3.7: Choice of ABAA with NFO Indifference Curves

P3

Fig. 3.8: Choice of ABBA with NFO Indifference Curves
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empirical method used by Camerer (1988). In his study, Camerer proposed
two ways of analyzing the data: between-subjects and within-subjects.
Between~-subjects tests look at patterns of averaged choices;
within-subjects tests look at the averaged patterns of choices. Camerer
used between-subject analyses to suggest conclusions that were verified
by within-subjects analyses. This approach is another version of the
representative consumer approach, because between-subject measurements
of average behavior provide a picture of how such a hypothetical
representative agent might act. Figure 3.9 shows the analysis for HILO
structure 1 of our data set. In this figure, the thin lines connect the
two lotteries A and B in each pair. The thick line represents the
fraction of subjects who chose lottery A in the pair (the fraction is
written next to the thick line). For instance, the thin line labelled 4
connects (0.8, 0.2, 0) and (0.9, 0, 0.1), the two lotteries in pair 4,
85.5% of the subjects chose A over B. The slope of the thick line is a
linear function of this fraction. If all subjects chose lottery A, the
thick line will be perfectly vertical; if all chose lottery B, it will
be horizontal. If half chose A and half chose B, the thick line will
have a slope of one (it will superimpose on the thin line connecting A
and B). Therefore, according to Camerer, the thick lines are analogous
to indifference curves even though they have no formal meaning. The EU
model predicts that these lines will be parallel over the space of the
triangle. But our results show that these lines are becoming steeper as
we move from the lower-right corner to the upper-left corner of the

triangle. In addition, the results from pairs 1 and 2 indicate that the
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Fig. 3.9: Observed "Indifference Curve" Pattern
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indifference curves may not even be straight lines inside the triangle.
Its slope gets bigger when we move from the origin to the edge of the
triangle. The broken line in Figure 3.9 depicts an approximate pattern
of the "indifference curves". It shows that the "indifference curves"
indeed fan out as we move from the lower-right corner to the upper-left
corner of the Marschak-Machina triangle. Furthermore, these
indifference curves may be nonlinear in the neighborhood of the origin
inside the triangle. This provides a good starting point for us to
search for alternative models of choice under uncertainty, which will

be explained in Chapter 5.

3.4 CONCLUDING REMARKS

This chapter so far has analyzed choices generated from
classroom experiments using existing methods. It was found, like many
other studies, that vioclation of the EU model was evident in this data
set, and that the fanning-out hypothesis does explain a big part of the
data set. However, the data also exhibits many other different choice
patterns. If we continue to pursue the analysis of a representative
consumer, any theory with homogenecus preferences will be directly
rejected by our data, because the data shows that there are choice
patterns that are inconsistent with any theory. This 1is the key
deficiency we see with existing methods. Furthermore, as we have also
seen, the previous analysis 1is rather unsystematic in that no

statistical inferences were made about the hypothesis. To use all
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information to construct a systematic test of theories of choice under
uncertainty, we develop in the following chapter a new approach in

which heterogeneity of preferences among individuals is assumed.
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Appendix To Chapter Three
RESPONSE SHEET PROVIDED TO STUDENTS

I. Introduction

This is an experiment about lotteries. You are under no
obligation to participate. The result will be used for a research
project. Your cooperation would be greatly appreciated. It is not a
test of whether you can pick the ’best’ lottery. Which lotteries you
prefer is a matter of personal taste. Please make sure that your
choices are not affected by others by working silently.

IXI. Choices

Row Lottery
1 A B
2 a B
3 A B
4 A B
5 A B
6 A B
7 A B
8 A B
9 A B
10 A B
11 A B
12 A B
13 A B
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Chapter Four

PREFERENCE RECOVERY FOR THE EXPECTED

UTILITY MODEL

Models of preference evaluation and demand analysis have
traditionally been based on data obtained by direct observation of
individual choice behavior., Such models often involve specifying a
utility structure for a representative consumer. By using the
appropriate statistical technique, the utility functions can be
inferred. This type of approach falls into the category of either
hedonic price analysis (see, for example, Rosen (1974) and Brown and
Rosen (1982)) or the more conventional revealed preference analysis.
Our approach differs from these approaches by assuming that individual
preferences are diverse and that there exists a preference parameter
space in which "consumers" are located with different "addresses"™ or
preference parameters. Aggregate preferences for a group of individuals
are described by a probability density function in the space of
preference parameters. In this thesis, the notion of preferences
recovery refers to the estimation of such a density function.

This chapter develops the empirical techniques used for the
preference recovery for the EU model. It also constructs a test on
individual choice behavior under the EU model. Section 4.1 describes
the preferences recovery techniques for the EU model.Section 4.2
reports a Monte-Carlo study of the estimates. In section 4.3, the

experimental data presented in Chapter 3 is regrouped for the purpose
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of estimating and testing the EU model. Section 4.4 ©provides
estimations of the EU model using the preference recovery technique
described above. A test, based on the recovered preference density
function, is constructed to test if the EU model adequately explains
the data generated from laboratory experiments. The last section

summarizes the results.

4.1 PREFERENCE RECOVERY

Recall equation (2.1) in Chapter 2, the expected utility of an

individual choosing lottery (pl, Pyr Pgi X X x3) under the EU model

1’ ~2f

is

EU = p1 u(xl) + p2 u(x2) + p3 u(x3) (4.1)
It is assumed that u(x1)>u(x2)>u(x3). Without loss of generality, we
assume that u(x1)=1, u(x2)=v, u(x3)=0. The consumer’s expected utility

of choosing the lottery then becomes

EU = P, + P, Vi (4.2)

In the case of monetary payoffs, v 1s the certainty equivalence

parameter. Higher values of v imply that the consumer is more risk
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averse.16 However, when non-monetary payoffs are used, this
interpretation of the v parameter is not appropriate. In this case, we
shall consider v only as a diversity parameter that distinguishes one
individual from another. Since the choice of any one consumer, given a
set of 1lotteries, depends on that consumer’s value of v, each
consumer’s preferences can be completely represented by a single value
of v. Given a sample population, aggregate preferences of consumers can
then be represented by a probability density function £(v). The
question addressed is how to estimate f(v) using choices generated from
laboratory experiments.

Different approaches may be used to estimate such a density
function. Examples are nonparametric smoothing techniques and maximum
likelihood estimation techniques. We shall choose the latter in this
thesis because it is a well known and widely accepted technique. To use
the maximum likelihood approach, we need to specify a parametric form
for the aggregate preference density function f(v;A), where A is a set
of unknown parameters to be estimated. The statistical problem
presented is to estimate A using choices from experiments.

To see what is involved in the estimation procedure, consider

the following set of binary choice lotteries:

A_: (0,1,0; x X X vs. B.: (0.5,0,0.5; x x x.)

1 ( 14 14 ’ ll 2' 3) l ( 14 4 ’ ll 2' 3

16
Machina (1982) pointed out that v/(l-v) can be used to measure risk
aversion of a consumer much like the Arrow-Pratt measure. The larger
is the v wvalue, the more risk. averse 1is the individual (larger v means

steeper EU indifference curves).
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A_: (0,1,0; x x

2

A3: (0,1,0: x

o7 x3) vs. BZ: (0.8,0,0.2; Xy X, x3)

o7 x3) vSs. 33: (0.2,0,0.8; xl, x2, x3)

1l

1’ %

According to eguation 4.1, the expected utility of an individual

choosing each of these lotteries is given by

EUA)) = v, EU(B ) = 0.5
EU(R,) = v, EU(B,, = 0.8
EU(Ay) = v, EU(By) = 0.2

Note that given Equation (4.2), the expected utility of choosing any
lottery with probability data (pl, Py p3) is a linear function of wv.
We shall call these EU lines. Figure 4.la shows the EU lines of all six
lotteries listed above. The 45° degree line labelled EU(Al), EU(AZ),
EU(A3) represents expected utilities from lotteries Al' A2, and A3 for
all possible values of v. The other three horizontal lines labelled
EU(Bl), EU(BZ), EU(B3) represent the expected utilities for lotteries

B and B, respectively. Given any pair of lotteries, EU implies

1 Bar 3

that the individual will choose the lottery with the higher expected
utility calculated by Eguation 4.1. Consider lottery pair 1 for
instance; the EU lines for A1 and B1 intersect at v=0.5 as in Figure
4.la. Under the EU model, any individual whose v value is less than 0.5
would choose B1 over Al; otherwise, B1 will be chosen over Al'

Similarly, lottery pair 2 divides the v space into two parts (0, 0.8)

and (0.8, 1), and pair 3 splits the v space into two parts (0, 0.2) and
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(0.2, 1). Therefore, the three lottery pairs divide the v space into
four intervals: (0, 0.2), (0.2, 0.5), (0.5, 0.8), and (0.8, 1). Under
the expected utility theory, an individual who has a v value in (0,
0.2) should choose Bl in the first pair, B2 in the second pair and B3
in the third pair. Hence a choice pattern BlBZBB result for the three
binary choice lotteries. Similarly, an individual with v value inside
(0.2, 0.5) should choose B1B2A3; an individual whose v value lies

between 0.5 and 0.8 should choose A1B2A3; finally, interval (0.8, 1)

) C e 7

contains all the individuals who should choose A1A2A3.1
In summary, given the above three pairs of lotteries, if the
underlying theory (EU) is true, there will be four possible choice
patterns generated from a sample population: B1B2B3, B1B2A3, A1B2A3,

and AlA each with a corresponding subset of v. For convenience, we

2P3
denote these choice patterns by 1,2,3,4. Given the number of subjects
who choose each of these choice patterns in a sample population, a
histogram based on the percentage of individuals choosing each choice
pattern can be constructed as in Figure 4.l1b. The probability density
function f(v;A) drawn over the histogram is the density function to be
estimated.

If we know f(v;A), the probability of an individual choosing

pattern 1, 2, 3, 4 can be derived from Figure 4.1b as follows:

17
Any individual who lies at the boundary of these intervals would be
indifferent between two lotteries. Since the experimental data
discussed in Chapter 3 does. not include individuals who expressed

indifference, this case is dismissed for simplicity.
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0.2

G(1) = [ f(v:A)dv
0
0.5

G(2) = [J £(viAd)dv
0.2
0.8

G(3) = [ f(v:A)dv (4.3)
0.5
1.0

G(4) = J f£f(vi;Ad)dv
0.8

G(j) (3j=1,2,3,4) represents the probability that the jth choice pattern
is chosen. Let Q(j) denote the number of subjects who chose choice
pattern j. Then the likelihcod function for this data is proportionate
to

Q3

4
L) = ] G(I (4.4)

Jj=1

To get the maximum likelihood estimates of A, we must maximize
L{(A) with respect to A.

The above estimation procedure assumes that individuals in
choosing between lottery pairs strictly follow the expected utility
theory. Under this circumstance, only four cheocice patterns from the
three lottery pai_rs described above are possible. However, in our

experimental data, more than four choice patterns are generated. In
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fact, for any set of three lottery pairs, there were eight possible

i : A A A A
choice patterns: BleB3, B1B2A3, 182 37 1A2 3 B1A2A3, B1A2B3,

A BB, AAB,, which are also indexed by 1, 2, 3, 4, 5, 6, 7, 8 for
convenience. Therefore given the data, without some elaboration of the
model that permits other choices, one must immediately reject the
model. We elaborate by introducing a trembling hand in the execution of
intended choices. In particular, we make the following assumption:
Individuals in making choices over a lottery pair have trembling hands
and sometimes pick the lottery with the lower expected utility.18 That
is, people simply make mistakes in picking the "correct™ lottery. Let 8
be the mistake parameter representing the probability of an individual
choosing the less-preferred lottery. Given the intention to choose
lottery A in preference to lottery B, the individual actually chooses A
with probability 1~8, and B with probability 6. To elaborate further,
suppose that an individual presented with lottery pair A and B has a
higher expected utility for iottery A. Without a trembling hand, the
probability of choosing A is 1.0 and the probability of choosing B is 0
under the EU model. In contrast, with a trembling hand, the

probability of choosing A and B are (1-6) and 8, respectively.

Given the probability of an individual falling in the 3th

An alternative elaboration is to introduce an added error term to
(4.2), which leads to the random utility model or a class of
probabilistic choice models in econometrics literature. However this
error term is often interpreted as “"omissions" {e.qg., unobservables
and model misspecification) by researchers {See, for instance,
Anderson, de Palma and Thisse, 19%2). In addition, such models with
systematic taste variations . across individuals {i.e., different v

values) are not identified with aggregate data.
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choice interval: G(j), 3=1,2,3,4, and the mistake parameter 6, the
probability of any individual choosing each of the eight possible

choice patterns is constructed as follows:

R(1)=(1-8) >G(1)+0 (1-6) 2G(2)+6° (1-8) G (3)+6°G (4) (4.5)
R(2)=6(1~0) 2G(1)+(1-6) *G(2)+6 (1-8) °G(3)+6” (1-8)G (4)
R(3)=(1-0) 02G (1) +6(1-0) 2G(2) +(1-8) G (3)+ (1-8) *6G (4)

R(4)=0°G (1) +82 (1-8) G (2) +6 (1-8) 2G(3) + (1-8) “G (4)

R(5)=0° (1-8) G (1)+6(1-0)°G(2) +6° (1-8) G (3) +6 (1-8) >G(4)
R(6)=0(1-0) 2G(1)+8° (1-0) G(2) +6°G(3) +6° (1-8) G (4)

R(7)=6(1-0) G (1) +6° (1-8) G(2) +6° (1-8) G (3) +6° (1-8) G (4)

R(8) =62 (1-8) G (1) +6°G (2)+6° (1-8) G (3) +8(1-8) °G (4)

To show exactly how these R(j)’s (j=1, ..., 8) were obtained,
let’s take R(1l) as an example: R(l) represents the probability of any
individual choosing choice pattern 1, or B1B2B3. From Figure 4.la and
Equations (4.3), the probabilities of an individual falling into each
of the four choice intervals are given by G(l), G(2), G(3), and G(4).
If the subject falls in the first interval, her best choice pattern
would be B152B3, but with mistake O, she will execute this choice
pattern with probability (1—9)3. Therefore, the probability of an
individual falling into interval 1 and choosing choice pattern 1 is
(1-9)3 G(l); if the individual falls into the second interval, her best
choice pattern would be B1B2A3. For her to choose B1B2B3, she has to
make no mistakes in pairs 1 and 2 and one mistake in pair 3. Hence the

probability of an individual falling into the second interval and

71



choosing choice pattern 1 is (1—6)266(2). Similarly, the probabilities
of an individual falling into intervals 3, 4 and choosing choice
pattern 1 are 92(1—9)6(3) and'63G(4) respectively. Summing up all the
probabilities, we obtain R(1l) as shown in Equation (4.5). Figure 4.2
summarizes the construction of R(1).

Let Q(j) be the number of subjects choosing choice pattern j,
j=1,...,8. Then the 1likelihood function for generating Q(j) is

proportionate to

8 .
L) = r(H%9 (4.6)

j=1

A set of maximum likelihood estimates of A and 6 are obtained
by maximizing L(A,0) with respect to A and 9.19

The maximum likelihood estimation technique described above
requires a choice of function f(v;A). What we need in a density
function is: (1) a function with domain {v|ve(0.1)}, and (2)
flexibility. Since the beta distribution satisfies both, we choose the
beta distributions to represent the preference density functions.

The flexibility of the beta distribution is illustrated in

19 . ;
A computer program for the estimation written in FORTRAN by the author

is available upon request.
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B1B2B3
(interval 1)

B; B, A3
(interval 2)

A1B2A3
(interval 3)

AjAyA,

(interval 4)

Fig. 4.2: Constructing Probability R(1)
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Figure 4.3 in which the probability density function exhibits a large
degree of variability to the extent that distribution has a single
mode. Such flexibility is needed to recover preferences given little
knowledge about the distribution of v. However, it should be noted that
such flexibility is also limited. For example, the beta distribution
function does not include multi-mode distributions.

The beta probability density function (PDF) is defined as

f(v; Rl, Az) = ’ (4.7)

where B(Al,hz) is the beta function, and

1 Al—l Az—l
v (1-v) dv

I
o

B(Al, A)

Parameters Al and Az are the parameters to be estimated (R1>0,
A2>0). Putting f(v;Al,Az) into Equation (4.3), we obtained the
estimates of Al and Az using numerical methods to maximize Equation

(4.6).

The mean and variance of v are given by the following

Equations.

Mean = Al/(A1+A2)

. _ 2
Variance = AIAZ/(A1+A2) (A1+A2+l)
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Fig. 4.3: The Beta Distribution Functions
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4.2 Monte Carlo Studies

To judge the quality of the maximum likelihood estimates for
our model, we conducted a series of Monte Carlo studies in the
following way: (1) Choose a set of parameter values for Al, Az’ 6, then
the beta distribution f(v;Al,Az) is given. (2) Draw a group of
consumers, say 250,20 from this distribution function. Each consumer
then has a specific v value. (3) Given probabilities on a set of binary
choice 1lotteries, make choices for each consumer according to the
expected utility theory. (3) Allow for mistakes (with 6) and enumerate
the choices to get aggregate data. (4) Use the aggregate data and the
maximum likelihood approach to estimate the parameters; (5) Repeat the
above procedure 600 times to generate a sampling distribution. Sampling
properties of these estimates are examined to assess the usefulness of
the estimation technique. For the chosen parameter values, (Al=2.0,
A2=5.0, 6=0.05) and sample size (600), the estimated mean, variance and

mean square error are reported as follows:
MEAN(A1)=2.0286, MEAN(A2)=5.0988, MEAN (8)=0.0498
VAR(A1)=0.1188, VAR(A2)=0.8588, VAR(6)=0.0002

MSE(A1)=0.1196, MSE(A2)=0.8686, MSE (8)=0.0002

Based on these results, a standard test on unbiasedness of each

20
This number corresponds to the number of subjects who participated in

our experiment and preferred a coffee mug to a pen.
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parameter estimate was performed. Test statistic in this case is
(MEAN-TRUE)/(VAR/600)1/2. The calculations are 2.0327, 2.6138 and
0.3466 for A, AZ and © respectively. The null hypothesis that
parameter estimate is unbiased is weakly rejected for both Al and Az’
but accepted for 8 at the 5% level of significance. It is accepted,
however, in all cases at the 1% significant level. These can be taken
as evidence that our estimates are reasonably good for the sample size

chosen. Nonetheless, one should keep in mind the small sample bias when

judging the results.21

4.3 Data regrouping

The HILO lottery structure discussed in Chapter 3 is a powerful
tool for testing violations of the expected utility theory, however,
each structure produces only two choice patterns (i.e.AAAA or BBBB)
under the EU model. This raises a technical difficulty of estimating
the aggregate preferences of the subjects. Referring to Equation (4.4),
with two choice patterns, only two data points can be used in forming
the likelihood function, which is insufficient for estimating the three
parameters: Al, Az and O. To generate more variations in choice
patterns for estimation purposes, we regroup the data into four sets,
based on the following rationale: (1) The preliminary study on the data

from Chapter 3 shows that the choices are not perfectly consistent with

1
Monte Carlo study shows that .it is a small sample |Dbias, since when

increasing sample size from 250 to 2000 the bias disappears.
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any theory. Furthermore, choice patterns seem to be sensitive to
lotteries generated from different parts of the Marschak-Machina
triangle. Hence it would be interesting to use data from one portion
to calibrate the model in other portions of the triangle; (2) More than
one data set was needed for testing.

The four data sets summarized in Table 4.1 are also graphically
shown in Figure 4.4. They are labelled I, II, III and IV. For example,
data set I, consisting of pairs 1, 5, 9, is presented by the circle in
the middle of the triangle.

Figure 4.4 also reveals our experimental design, which defines
the precise hypotheses to be tested. The purpose now is to develop a
new approach to test whether a particular theory of choice works
uniformly on the Marschak-Machina triangle, or whether individuals make
consistent choices from one part of the triangle to another under a

particular theory.

4.4 TESTING THE EU MODEL

Qur Monte Carlo study shows that the maximum likelihood
technique produces reliable estimates for "artificial consumers™ who
follow the expected utility theory. The question arises: Do real
consumers make decisions under uncertainty in accordance with the
expected utility theory? More generally, how would we know that a

particular model is adequate in explaining the experimental data? To

78



Table 4.1: The Data Sets used for Preference Recovery

No. of data set Lottery Pairs Involved
I i, 5, ¢
I1 2, 6, 10
III 3, 7, 11
Iv 4, 8, 12
Py
4 IV
8
2
5
I
9
6
3
2 @)
0 !
0 II III P3

Fig.4.4: The Data Sets for Preference Recovery
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be able to answer these questions, we construct a test to determine if
subjects consistently follow the expected utility theory. More
specifically, we use each data set to estimate the preferences
density function and the mistake parameter. Since all data sets were
generated from the same population, if the underlying theory is true,
the parameters associated with the preferences function (i.e., Aland
Az) estimated from one set of data should not be significantly
different from another assuming that the subjects were consistent in
making these choices (the rationality assumption). Based on this
argument, a likelihood ratio (LR) test is constructed to test the
hypothesis that these parameters are statistically the same. Should the
null hypothesis not be rejected, we would conclude that the choices
generated under the expected utility theory were from the same
preferences density function. This may indicate the wvalidity of the
theory. Conversely, should the null hypothesis be rejected, the
adequacy of the theory in explaining these choices is questionable.

The LR test statistic is defined as LR=-21nTt, where 7T=RL/UL, RL
represents the constrained maximum likelihood value and UL stands for
the unconstrained maximum likelihood value. Given the two parameters
to be tested, there are two restrictions to be imposed for a test
between any two data sets. Thus, the LR test statistic follows a xz
distribution with 2 degrees of freedom. The critical value of x2(2) at
the 5% significance level is 5.99. Notice that we do not have a
standard regression equation in which restrictions can be explicitly
imposed in our model. Consequently, calculations of UL and RL are

somewhat different from the conventional method. In particular, 1nUL is
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the sum of the two maximum log-likelihood values from estimating two
sets of parameters using two data sets; the RL is obtained by pooling
the two sets of data through restricting Al, AZ, that is, to assume the
parameters Al and AZ are the same in two data sets.22

Notice that our central hypothesis is that the v values of the
same population in two different experiments are the same. However, if
the hypothesis that the two sets v values are drawn from the same
density function is rejected, then this central hypothesis will also be
rejected. This indicates that individuals under the expected utility
model make inconsistent choices. Therefore the wvalidity of the
underlying theory is questionable. Given this discussion, we conclude
that though the constructed test statistic is biased in testing our
central hypothesis, it is biased in the correct direction if the null
is rejected. However, if the null hypothesis is accepted, it is not
clear that we should immediately accept the theory. In this sense, the
proposed LR test can be considered a test of "false"™ models not the
"true™ model.

Table 4.2 presents the parameter estimates using all data sets.

The test results are reported in Table 4.3. Table 4.2 shows that the

estimates are very different from one set of data to another. In all

22
A Monte-Carlo study was conducted to test the validity of this test.

For 2000 simulation runs, the null hypothesis was rejected at the 5%
level of significance for 117 times, that is, 5.85% of the total
number. This indicates that the test is valid. We also conducted a

Monte~-Carlo study on the power of the test. The results show that the
power increases as we move further away from the null.
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Table 4.2: Parameter Estimates for the EU Model

Estimates Estimates Estimates Estimates
using data using data using data using data
set I set II set III set IV

A1= 1.5602 A1= 0.7042 A1= 1.3039 A1= 0.0217
A2= 0.8184 A2= 1.2888 A2= 1.0865 A2= 0.0010
0 = 0.0138 0 = 0.0334 0 = 0.0236 6 = 0.0676

Table 4.3: LR tests for the EU Model

data sets calculated LR hypothesis

I & II 116.29 rejected

I & III 18.90 rejected

I & IV 196.24 rejected

IT & III 50.14 rejected

II & IV 396.36 rejected

III & IV 280.30 rejected

*Critical value of x2(2) =
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5.99 at the 5% significance level.




cases, as shown in Table 4.3, the null hypothesis that the
parametersare the same 1is rejected. We suggest three possible
interpretations: First, the beta distribution density function used for
maximum likelihood estimation may be too inflexible (e.g, it 1is a
unimodal distribution) to approximate the real density function of the
population on the preference parameter v space; second, the expected
utility model 1is inadequate in explaining individual decisions under
risk.

To focus on the first possibility, we used the experimental
data to generate a histogram or frequency distribution for the subjects
in the v space. We then plotted both the histogram and the estimated
beta distribution on one diagram. In general, the recovered beta
distributions fit the histograms very well. The histograms shows
that all data sets gave rise to unimodal distributions. Figure 4.5
shows examples of the histograms and the recovered beta density
functions for the subjects.23 Since we have also shown in the previous
section that the maximum likelihood estimates in the simulation study
are approximately unbiased, we conclude that the assumption of a beta
density function is not responsible for failure of the test.

We therefore conclude that the EU model fails to explain our
data. This is consistent with the results found in all other studies

that people’s actual choice behavior is inconsistent with what expected

These histograms are constructed in . terms of v parameter space only.

Parameter 8 is being set at 0.
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Fig. 4.5: Histograms and the Recovered Beta Density Function
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utility theory predicts. The task now is to apply this new testing
technique to alternative models and see i1f there exists an adequate
theory to explain the experimental data. The next chapter explains

three alternative models and testing results.

4.5 SUMMARY

This chapter presented the preferences recovery techniques for
the EU model. A likelihood ratio test based on recovered preference
density function was provided to test the inadequacy of EU in
explaining the choices people make in laboratory experiments. The
results show that EU fails to predict all our experimental data, even
when we allow for randomness in the model. We then conclude that it is
not an appropriate model for the data.

It should be noted that although the empirical estimation
procedure was presented in terms of a particular example, its
generalization is straightforward. As will be seen in the next chapter,

it can be easily applied to other choice models.
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Chapter Five

THE ALTERNATIVE MODELS

As with the other overwhelming evidence from 1laboratory
experiments reporting that the expected utility model is a poor
descriptor of empirically observed decision making behavior, this study
found further evidence demonstrating the inadequacy of EU in explaining
choices. The question is: Does there exist an alternative theory that
could adequately explain the data? The purpose of this chapter is to
search for such a model. We have seen from the review of literature in
Chapter 2 that, over the past decade, many attempts have been made to
extend the EU model in various ways to improve on the descriptive
ability of the EU model. Roughly speaking, there are two classes of
extensions among the alternative models. One <class contains the
subjectively weighted utility (SWU) models where the criterion for
decision making is a weighted sum of the utility index, and the weights
are some transformations of probabilities (Karmarkar, 1978; Quiggin,
1979,). Another class replaces the utility index with some function of
probabilities and final outcomes (Coombs & Huang, 1970; Chew and Dekel,
1979; Machina, 1982). All these models are similar in spirit in that
they are more generalized forms of expected utility and describe
decision behavior in terms of maximization of the criterion. It is not
the purpose of this study to create a new generalized utility theory,
or to justify the existing theories. It is, rather, to search for an

"adequate" theory that explains our experimental data. Two criteria
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were used in the searching process: First, given the preference
recovery techniques presented in the previous chapter, the new models
should have manageable functional forms, at least to the extent that
preference can be readily parameterized; secondly, they should be able
to generate fanning-out indifference <curves, as the fanning-out
hypothesis appears to be the most attractive hypothesis.

Based on these criteria, we focused the search on the class Qf
subjectively weighted utility models (SWU). Such models assume that the
individual first transforms the known set of objective probabilities
{pi} of a risky prospect into corresponding "subjective probabilities™
{w(pi)} (or “decision weights"), and then maximizes the value of
¥ w(pi)u(xi). Notice that in this class of models, the decision weight
of a particular outcome xi does not depend on the outcome, it depends
only on the probability P, - This means that the parameterization of
utilities is identical to that of the EU model, as will be seen below.
The theories (and authors) considered in this study are the
subjectively weighted utility (SWU) theory (Karmarkar); the weighted
utility theory (Chew and MacCrimmon); and the rank-dependent expected
utility theory (Quiggin).

Section 5.1 presents Karmarkar’s SWU model. Preference recovery
and tests of this model are conducted in section 5.2. A model in which
indifference curves are linear and fan out from the lower right corner
to the upper left corner of the Marschak-Machina triangle, namely the
linear fanning-out model (LFQO), is created in section 5.3. As will be
seen, this model happens to be a special case of the weighted utility

theory developed by Chew and MacCrimmon (1979). This section also
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reports the test results for this model. Section 5.4 introduces the
rank-dependent utility theory proposed by Quiggin (1982). This theory
is based on a function, £(P), that satisfies the following general
conditions: £(0)=0, £(1/2)=1/2, and f£(l)=1. Following this theory, we
construct a quadratic functional form for £(P) in which the above
conditions are satisfied. This model is <called the quadratic
rank-dependent (QRD) utility model. Test results are also provided in
this section. Section 5.5 presents a test of relative explanatory power
for all the alternative models. Finally, section 5.6 makes a concluding

remark.
5.1 KARMARKAR’S SWU MODEL
Karmarkar (1978) proposed a subjectively weighted utility (SWU)

model as a descriptive extension of the EU model. According to this

model, the utility for a lottery (pl, Py p3; Xys Xy x3) is defined

by
3 3
SEU =} w (p,) u(x) / ¥ w (p,) (5.1)
i=1 i=1 *
where
w(p.)=p‘.z / [p‘.z + (1-p.)a] (5.2)
1 1 1 1

In this model, prizes are mapped into utilities in the usual manner:

X —>u(x), and probabilities are transformed into subjective weights:

p.—> w(p,) as defined above. « is an additional parameter that may be
kS kS

regarded as a measure of probability distortion. When «=1, the SWU
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model reduces to the EU model. The mapping for various « values is
sketched in Fig. 5.1. For « # 1 the mapping has three fixed points: 0,
1/2, and 1. Thus equiprobability, certainty, and impossibility are not
affected by the mapping. When 0<a<l, w(pi)>pi for pi<1/2, and w(pi)<pi
for pi>l/2. This is known in the literature (e.g., Dale, 1959; Kahneman
and Tversky, 1979) as subjects overestimating low probabilities (pi<
1/2) and underestimating high ones. Symmetrically, when &>1, w(pi) < P,
for pi< 1/2, and w(pi) > P, for pi> 1/2. This is the case of
overestimating high probabilities and underestimating low ones. Figure
5.2 shows a contour plot of the indifference map of an individual with
v=0.2 and «=0.5.

It is argued by Karmarkar (1979) that this model can be used to
explain the Allais paradox or fanning-out effect. Unfortunately, as
proved by Quiggin (1982), this model violates the stochastic dominance
property of the EU model.v When such a property is imposed on
Karmarkar’s SWU model, the model reduces to EU. Lottery A is said to
stochastically dominate lottery B if the expected utility from A is
larger than that from B for all monotonically increasing utility index
u(x). Given the nonlinear probability transformation of the SWU model,
Quiggin argued that under certain conditions, a stochastically dominant
lottery may generate a lower expected utility.24 Nonetheless we shall
use our preference recovery techniques and the LR test, to see if this

model could adegquately explain our data.

24
For a thorough proof, see Quiggin (1982).
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Fig. 5.1: Transformation of Probabilities
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Fig. 5.2: Indifference Curves of the SWU Model
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5.2 PREFERENCE RECOVERY AND TEST OF THE MODEL

From equation (5.1), an individual’s preference over lottery
(pl, P,r Pyi X4 X x3) is completely described by the utility index:
u(xl)=1, u(x2)=v and u(x3)=0 and the additional parameter «. Given the
value of v derived from a beta distribution and the value of «, the
individual’s subjectively expected utility (SEU) over this lottery can
be calculated by equation (5.1). With two lotteries, he or she picks
the one that gives the higher SEU. As in the EU model, we continue to
assume that there is a probability of O that the individual picks the
"wrong" lottery (i.e., the one with the lower SEU). Thus, preference
recovery for the alternative model involves estimating four parameters:
the two parameters from beta distribution function Al and Az, the
mistake parameter O, and the probability distortion parameter «. For
simplicity, both the mistake parameter and the distortion parameter are
assumed to be the same across individuals. Hence the diversity of
individual consumers is captured solely by the parameter v.25

To estimate the parameters, we construct likelihood functions
of the data sets in exactly the same way as under the EU model, after

transforming the objective probabilities into subjective weights. In

particular, given three pairs of lotteries, a typical set of data

25One could assume that the additional parameter for each alternative
model is different from individual to individual. In this case, the
subjects are considered to be drawn from a joint density function
f(v,z; A) . where z represents the additional parameter in each model,

A is a set of unknown parameters to be estimated.
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presented in Chapter 4, and with each lottery represented by (pl, P,

p3; xl, x2, Xé), there are eight choice patterns generated from a
sample population. Let Q(3j) be the number of subjects choosing choice
pattern 3j, 3j=1,...... (8. Given a beta distribution density function
f(v;Al, AZ) and parameters 8 and «, the probability of generating each
of the eight choice patterns, Rj(Al,Az,e,a), is calculated. The
likelihood function of generating the data is given by

Q) (5.3)

()
= o

L(Alrkzrera-) =, 1 (R(Al’ Azlel(x))

. . 26
The estimates are obtained by maximizing L(Al,hz,e,a).

Using all four data sets: I, II, III, IV (for convenience, Fig.
4.4 with data sets circled on the Marschak-Machina triangle is shown as
Fig. 5.3 in this chapter), we estimated the preference density
functions and performed the LR test for the SWU model. The test
statistic has 3 degrees of freedom instead of 2 due to the additional
parameter «. The critical value of x2(3) at the 5% significance level
is 7.81. The test once again, was used to test the hypothesis that the
parameters Al, AZ and « estimated using one set of data are the same as

those estimated using another data set.

The computer programs for these alternative models written in FORTRAN
are also available from the author. .

23



Fig. 5.3: Data Sets I, IL, III, and IV
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Parameter estimates are reported in Table 5.1 and test results
are provided in Table 5.2. Table 5.1 shows that the parameter estimates
for Al, Az’ and o vary significantly from one set of data to another.
Estimates for the mistake parameter 6, however, remain small and
relatively stable. It is interesting to note that the estimate of a is
1 in data set IV and nearly 1 in data set III. This means that the SWU
model does not improve on EU in these regions since the model reduces
to EU when a=1. The estimate from data set II (a=0.42) indicates that
on average . the subjects overestimate low probabilities and
underestimate high ones in the neighborhood of certainty (the area
around the origin and inside the triangle) — a case commonly reported
in the 1literature. But the estimate from set I (a=4.37) shows the
opposite. It is not clear what causes these disparate results. Table
5.2 shows that the null hypothesis is rejected in all cases except for
data sets I and III. In the context of five rejections, the one
acceptance could be interpreted as a type II error. This argument is
supported by comparing the estimates from data set I (A1= 0.27, A2=
0.11, ©6=0.01, a=4.37) and those from data set III (Al= 1.30, A2= 1.09,
6=0.02, a=1.01). Since they appear different, the hypothesis that these
parameters are the same should not be accepted even with visual

inspection.
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Table 5.1: Parameter Estimates for the SWU Model
Estimates Estimates Estimates Estimates
using data using data using data using data
set I set II set IIIT set IV

Al= 0.2674 A1= 5.7835 Al= 1.2934 Al= 0.0217
A2= 0.1106 A2= 7.6521 A2= 1.0865 A2= 0.0010
0 = 0.0139 0 = 0.0332 0 = 0.0236 0 = 0.0676
a = 4.3667 a = 0.4177 a = 1.0064 a = 1.0000
Table 5.2: LR tests for the SWU Model

Data sets Calculated LR Hypothesis

I & II 117.20 rejected

I & IIT 3.46 accepted
Is&1IV 197.08 rejected

II & III 31.76 rejected

II & IV 398.52 rejected

III & IV 281.26 rejected

Critical value of x2(3) ='7.81 at the 5% significance level.




5.3 THE LINEAR FANNING-OUT MODEL (LF' 0)

Inspired by Machina’s fanning-out hypothesis, we build an
alternative model that generates linear fanning-out indifference
curves, namely the Linear Fanning-out (LFO) model. The utility of a

risky prospect (pl, P, Py X, X x3) under this model is given by

SEU = iZwi(pll P,r P,) u(x) (5.4)
where
w(p., P, P,) = f1
’ ’ -
171 2 3 1+8p
3
P,
w {p., P.r P.) = (5.5)
2 2 3 1+6p
3
(1+[3)P3
w (p., P, P) =
31 2 3 1+Bp3

B is an additional parameter that determines the decision weights. This
parameter will be further explained below.
To show that this model has linear fanning-out indifference

curves in the (pl, p3) space,

P p (1+B)p

p3) U»(Xl) + (—1:'['3-p—3) u(Xz) + (_IIB_E:-

) u(x3)

Recalling the following normalization u(x1)=1, u(x2)=v, u(x3)=0,
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u = ) + )
1+[3p3 1+[3p3
Solving for p,r we have
_ v + B; u-v
pl = { EE— )] P3 + T —— ) (5.6)

Equation (5.6) clearly shows that the slope of the indifference curve
increases with u. It also increases with B. The larger the 8 value, the
more rapidly indifference curves fan out. Under the condition that
B=0, the linear fanning-out model collapses to the EU model. Hence B is
called a "rapidity" parameter that measures the degree of fanning-out.
Figure 5.4 shows the indifference curves for the LFO model when B=5.

Notice that the specification of the expected utility function
given in equation (5.4) is also a special case of the weighted utility
theory proposed by Chew and MacCrimmon (1979). In their theory, the
expected utility for a lottery is expressed by

plw (x1 Yu (xl) +p2w (xz) u (x2 ) +p3w (x3) u (x3)

SEU = (5.7)
plw(xl) + pzw(xz) + p3w(x3)

where w(x) 1is the weighting function of the final outcome =x. The
theory suggests no intuitive interpretation to the weighting function.
However,the weights seem to reflect misperceptions of objective

probabilities. When w(x1)=1,, w(x2)=1 and w(x3)=1+B, the weighted
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Fig. 5.4: Indifference Curves of the LFO Model
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utility model bécomes the LFO. Notice that from equation (5.7), these
decision weights depend upon both the probabilities and outcomes that
determine the wutilities, while in the class of the subjectively
weighted utility models decision weights (i.e., w(p)) depend on only
probabilities, p.

Preference recovery for the LFO model involves estimating Al,
Az’ 8, and B. Using the same method and procedure described for the SWU
model, we estimate these parameters and test the adequacy of the LFO
model in explaining our data. The results are shown in Tables 5.3 and
5.4. Table 5.3 shows that the estimated Al and Az for the LFO model
vary significantly from one data set to another, and that both the
mistake parameter and the additional parameter B are estimated to be
very small. A small B indicates a small degree of fanning-out
indifference curves. As presented in Table 5.4, the null hypothesis is
rejected for all data sets for the LFO model. The LR values are almost
the same as those calculated for the EU model for data sets I & II and
I and III. But The LR values for the other four data sets are much
smaller than those calculated for the EU model, indicating some
improvements. However, they are not small enough to accept the null

hypothesis. Therefore the LFO model is also not an appropriate model

for explaining the data.
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Table 5.3: Parameter Estimates for the LFO Model

Estimates Estimates Estimates Estimates
using data using data using data using data
set I set II set III set IV
A1= 1.9978 A1= 0.7932 A1= 1.3504 A1= 0.0218
A2= 2.1124 A2= 1.7749 A2= 1.1950 A2= 0.0010
6 = 0.0139 0 = 0.0332 6 = 0.0236 6 = 0.0676
B = 0.0382 B = 0.0029 B = 0.0026 B = 0.0000
Table 5.4: LR tests for the LFO Model

Data sets Calculated LR Hypothesis

I & II 117.66 rejected

I & III 139.60 rejected

I& 1V 56.12 rejected

II & III 28.08 rejected

II & IV 250.66 rejected

III & IV 54.84 rejected
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5.4 THE QUADRATIC RANK-DEPENDENT UTILITY MODEL (QRD)

In most of the subjectively weighted utility models such as the
one created by Karmarkar in section 5.1, the decision weight w(pi) of
outcome x, depends on only the probability P, - This means that outcomes
with the same probability must have the same decision weight. Quiggin
(1992) proposed a rank-dependent utility theory (initially called the
anticipated utility theory) in which the probability transformation of
P, not only depends on pi_but also depends on probabilities of other
outcomes. In particular, the transformation function wi(p) depends on
all pj for j=i. According to this theory, the expected utility of a

risky prospect (pl, Pyr Py X4 X, x3) is given by

3
SEU = ) w (plu(x) (5.8)

i=1

where,

p = (P, le P3)

wl(p) = f(pl) (5.9)
w,(p) = f(pl+p2) - f(pl)
w3(p) =1 - wl(p) - wz(p)

f(p) is a transformation function of lotteries with only two outcomes.
It is used here to form the weights wi(p) for lotteries involving three
outcomes. Quiggin did not suggest a specific form for £(p) in his
paper, but he did discuss the general properties of this function. In

particular, f(p) determines the pattern of probability distortion.
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f(p)>p for p<l/2 and f(p)<p for p>1/2 imply that subjects overestimate
small probabilities and underestimate high ones. More strictly, this
case requires that f(p) is concave on [0, 1/2] and convex on [1/2, 1],
and that £(0)=0, £(1/2)=1/2, £(l1)=1. This echoes to Karmarkar’s
decision weights function with 0<a<l.

According to this general description of £f(p), we create a

2
quadratic function as follows2

P - 2(7-—1)p2 for 0 <p =1/2

tp) =
(7—1)+(4—37)p+2(7—1)p2 for 1/2 =ps=s1

and satisfying the restrictions,

£(0)=0, £(1/2)=1/2, £(1)=1

The parameter 7y measures the distortion of objective probabilities.
When 7>1, f(p) is concave on [0, 1/2] and convex on [1/2, 1}, When
0<y<1, £(p) is convex on [0, 1/2] and concave on [1/2, 1}. When %=1,
there is no distortion.

Putting f(p) into equation (5.9), we obtain a version of the
rank-dependent utility model, namely the quadratic utility function

(QRD) . Given the definition of f(p), EU is a special case of QRD when

7
Later on, we found from a recent book (1992) Quiggin wrote that
Camerer and HO (1991) employed and estimated the following functional
v 1/2
form: £(p) = p (p7+(1-p)7) .
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7=1. As illustrated in Figure 5.5, the indifference curves of the QRD
model for ¥=1.5 are nonlinear and fan out from the lower right corner
to the upper left corner of the triangle.

Table 5.5 shows the estimates for all four data sets. Once
again, the estimates for Al and AZ differ significantly from one set of
data to another. The mistake parameter remains the same as in all
other models. The estimated ¥, however, shows that on average subjects
underestimate small probabilities (or overestimate high ones) in region
I (7=0.2) and region IV (9=0.41), and overestimate small probabilities
(or underestimate high ones) in region II (=3.0l1) and region III
(y=1.12) . The non-linear fanning-out is thus observed in regions II and
ITT.

Table 5.6 reports the test results of this model. Once again,
we see rejections of the hypothesis for all data sets. The difference
between this set of results and those found for the EU model is the
case for data sets I & III, and II and III. The LR values for the QRD
model are smaller than those for the EU model. One final interesting
observation from Tables 5.1, 5.3, 5.5 and 4.1, is that the estimated 6
is approximately the same across all models using the same data set.
Since O measures the probability of choosing the less-preferred lottery
under each model, the result indicates that the probability of an

individual making a mistake is quite consistent across all theories.

104



Fig. 5.5: Indifference Curves of the QRD Model
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Table 5.5: Parameter Estimates for the QORD Model
Estimates Estimates Estimates Estimates
using data using data using data using data
set I set II set III set IV

A1= 0.8640 Al= 0.9815 Al= 1.3278 Al= 0.0246
A= 0.4017 A= 1.,7018 A= 1.0641 A= 0.0011
2 2 2 2

6 = 0.0138 6 = 0.0333 @ = 0.0236 @ = 0.0675
¥ = 0.2000 ¥ = 3.0108 ¥y = 1.1263 ¥ = 1.0261

Table 5.6: LR tests for the QRD Model

Data sets Calculated LR Hypothesis

I& II 115.56 rejected

I & III 11.82 rejected

Is& IV 185.84 rejected

IT & III 30.08 rejected

II & IV 356.12 rejected

III & IV 125.26 rejected

Critical value of ¥°(3) =

7.81.
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5.5 A TEST OF MODEL PERFORMANCE

As discussed in the previous sections, all the alternative
models include EU as a special case. In particular, when a=1, SWU
becomes EU; when (=0, LFO converts into EU; and when 9=1, the QRD
models collapses to the EU model. To test if these alternative models
are improveménts on EU, one can perform a LR test of these
restrictions. For example, the LR test of hypothesis, Ho:a=1l, for the
SWU model is LR=-2(1lnRL-1nUL), which asymptotically has a Kz(l)
distribution. 1nRL is the maximum log-likelihood value under the null
hypothesis, 1nUL is the maximum log-likelihood value under the
alternative model. Acceptance of this hypothesis would, of course,
imply that the alternative model does not add more explanatory power to
the EU model, empirically.

Table 5.7 presents the LR tests of relative explanatory power
of the alternative models for all data sets. The numbers in parentheses
are the calculated LR values. The critical value of Kz(l) at the 5%
significance level is 3.84. The results show that the null hypothesis
under each model is accepted for all data sets. Therefore, these

alternative models are not improvements on EU for our data.
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Table 5.7: Testing Performance of the Alternative Models

Data Null hypothesis under
set SWU LFO QRD
Ho: a=1 Ho: B=0 Ho: =1
accepted accepted accepted
I (0.82) (1.36) (0.32)
accepted accepted accepted
I (0.64) (0.60) (0.18)
accepted accepted accepted
Tt (0.00) (0.04) (0.00)
accepﬁed accepted accepted
v (0.00) (0.00) (0.00)
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5.6 CONCLUDING REMARKS

This chapter has presented three alternative functional forms:
one from existing literature and the other two created by the author.
inadequacy tests were performed on the alternative models using the
same data sets. The results show that no theory can explain all the
data sets. Furthermore, a test of relative performance of these
alternative models as compared to the EU model shows the alternative
models are not significant improvements on the EU model. Therefore we
conclude that the three alternative models, each with an additional
parameter, do not add much explanatory power, and that until we find a
model that passes all adequacy tests, the expected utility theory,
characterized by its simplicity and normative appeal of its axioms,

retains its leading role in theories of choice under uncertainty.
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Chapter Six

ANOTHER ILLUSTRATION

The previous chapters presented a new approach to testing
theories of choice under uncertainty. In the approach it is assumed
that individuals under a particular theory of choice have diverse
preferences described by points in a parameter v-space, v € [0,1]}.
Aggregate preferences of a sample pcopulation are represented by a
probability distribution function of v. To study the aggregate choices
people make over a set of differentiated products (e.g., lotteries),
one needs to estimate such a probability density function. This way of
describing the heterogeneous preferences across individuals is the
spirit of all address models of product differentiation.

To extend the analysis, we demonstrate, in this chapter, the
preference recovery techniques in a simple but standard address model
of product differentiation. We also apply the techniques to a real case
of product differentiation. Section 6.1 introduces the address model
in which the consumer’s preference takes a known parametric form. It
also outlines a general procedure for estimating the aggregate
preference density function. Section 6.2 illustrates an application to
a real case of product differentiation in the context of BC ferry
services. Section 6.3 reports the estimation and out-of-sample testing
results. The last section discusses the potential limitations of the

model and provides directions for further research.
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6.1 THE MODEL

Consider a market for M differentiated products which are
completely described by the guantities of K characteristics or
attributes embodied in them. Let the M variants be Wl, W2, WM,

¢/ W. 4 «..ew_), J=1,...,M. The characteristics space is

where W =(w, .
] j2 JK

i1
denoted IRK, then W € IRK Product j is offered for sale at price ijO.
]
Suppose there is a finite number of consumers, N, each of whom
is a potential customer in the market under discussion. It is assumed

that each consumer buys at most one unit of one variant of the M

products. The preference for variant j by an individual i is given by28

K

2
I, = - - - .
13 vy ) ck(uik wjk) pj (6.1)
k=1
W= amount of attribute k (k=1,...,K) possessed by variant j
(5=1,...,M).
u, = consumer i’s most preferred attribute k regarding to his

or her ideal brand since, when all prices are equal

wj= u, maximizes net utility given in Equation 6.1.

c = a positive constant, measuring the marginal disutility

from not buying the ideal brand with respect to

attribute k (In the geographical context, this disutility

28
This particular specification of the utility function has been used in

several models of product differentiation (see, e.qg., Eaton and
Wooders, 1985.).
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corresponds to the transportation cost).
pj = price associated with wvariant j, j=1,...,M.
v = consumer i’s reservation price for the most-preferred
good, since the consumer will not buy the most-preferred

good if pj exceeds Vs for all j=1,...,M.

Given the value of v and the most-preferred brand u, the
consumer chooses among the n variants of products in the following way:
(i) if maximal net (of price) utility calculated by Equation (6.1) is
non-negative, the consumer buys 1 unit of the product that offers
maximal nét utility; (ii) if maximal net utility is negative, the
consumer buys nothing.

Suppose that all consumer’s preferences are known to be in the
v and u parameter space Eﬁ+1 and that the population of consumers is
distributed over the parameter space according to distribution
function, f(u,v). The issue is how to estimate this density function
given aggregate data on prices, product descriptions and quantities
sold.

With M variants of products, the (u,v) parameter space can be

partitioned into mt+l sets:

1 . .
Sj= {(u,v)e Eﬁ+ H IjZ Ii and Ij>0, i=1,...,M}, 3=1,...,M

s = {(uve R, I,<0, for all 3=1,...,M}, (6.2)
nm .

where Sj is defined as the market space of the variant 3j (j=1i,...,M)

and SM+1 is the set that no good is purchased.

112



These sets are illustrated in Figure 6.1 for some arbitrary
prices and product descriptions in the M=3 and K=1 case. Given the
number of consumers who have purchased one unit of variant j, the data
provides what amounts to a histogram associated with the wunknown
distribution function. The statistical problem is then to recover such
a distribution function from the histogram. Following the previous
chapters, we adopt the maximum likelihood approach to estimate f(u,v).

In order to apply the maximum likelihood estimation technique,
we need to specify a functional form for f(u,v;A), where A is a set of
unknown parameters to be estimated associated with the distribution
function. For instance, if (u,v) is multi-variant normally and
independently distributed in RKH' with £(u,v)=MVN(B,Q), the unknown
parameters to be estimated are the mean vector B=(ﬁl,..., GK ;) and the

variance matrix Q defined as

02 0
b (6.3)
Q= .2 -
¢
K
0 o
\'4
Thus, A = (El,...,ﬁx, v, OLr evs O O

Now, let Q(j) be .the number of units of the 3jth product
purchased by a sample population. The likelihood function for such a
sample population is expressed by
Q(3)

14

M
L) = RN (6.4)

j=0
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V*
P3 .
)
p1
S4

Sl= {(u,v), uE(O,Al), and v—c(u—wl)z?_pl}

2
S = {(u,v), ue(Al,Az), and v—c(u—wz) sz}

S = {(u,v), uE(AZ,A), and v-c(u-w3)22p3}

S ={(u,v), ue(O,E), and v—c(u—wi)2<pi, i=1,..

Fig.6.1: The Market Space of Each Product
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where Rj(A) represents the probability that good j 1is purchased for
5=1,...,M, and RMH(A) is the probability of not buying any product.

Thus,

Rj(A) = JJ £ (u,v)dudv (6.5)

S,
J

sj is the market space of product j given in (6.2).29

The maximum likelihood estimates of A is obtained by maximizing

L(A). Therefore f(u,v) is recovered.
6.2 An Application to BC Ferries

For many years, local residents have petitioned the Government
for improved service. In an effort to meet the needs of the Powell
River community, the Government agreed to expand the sailing schedule
on a trial basis during the 1992 summer period (June 26th to September
8th) . Prior to the implementation of the new schedule, there were four
trips per day from Powell River on the Sunshine coast of British
Columbia to Comox on Vancouver Island. The expanded summer schedule
added one additional trip for a total of five sailings per day.

In this particular application, we focus our analysis on this
particular route because it allows us to conduct out-of-sample testing

of the model. Specifically, we will use 1991 data to estimate the

Note that in most potential applications, u and v are bounded. Thus
f(u,v) is a truncated distribution.
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density function and predict the demand for 1992 with the new service.
Model performance can be then evaluated by comparing the predicted data
and the actual data. In addition, it is our understanding that the
market for this route is largely composed of local residents. This is
important since we assume a unimodal distribution function to represent
aggregate preferences. Distinct market segments (e.g., local residents
and tourists) may lead to a multimodal distribution.

In this application, assume that the only characteristic
relevant to the consumer’s choice is the time of departure, w. This
implies that consumers do not choose the day of the week and/or the day
of the month, or other services. Thus the attribute space has only one
dimension (K=1). Given daily data on price and departure time, price
per trip and assuming that aggregate preferences density function is a

multiplication of two univariate normal distribution functions as

(u - w? v - ¥
f(u,viAd) = ——— exp{ - 5 - 5 }, (6.6)
v 20‘u 20‘v

the demand for different sailings on a particular day can be estimated
using the proposed model via estimating A = (E, o ov). Notice that
the mean of reservation price for the most preferred sailing, v and the
variance o, cannot be Jjointly identified given aggregate data.
Consequently, we must impose restrictions on one of them. Since we have
no a priori information on the variance of the reservation price but we
do know that the mean of the reservation price v should be higher than

the actual price, we choose to fix the mean. The next three
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sub-sections report data, estimation and out-of-sample testing results.

6.2.1 Data

The data obtained from B.C. Ferry Corporation consists of daily
vehicle volumes departing from Powell River to Comox for each departure
time and each day of the month in August 1991 and 1992. Since the daily
average size is rather small and since we are interested in
out-of~sample predictions with respect to some representative period of
time not so much with respect to a particular day of the month, we have
increased the sample size by aggregating the data in such a way that
vehicle volumes of each sailing for all Mondays, Tuesdays etc. of
August 1991 were summed up (see Table 6.1). The same aggregation method
has been adopted for August 1992. Thus the empirical estimation uses
the aggregate data for August 1991 as reported in Table 6.1 but not the
daily data.30 Finally, the price per sailing is flat at a rate of $20

per vehicle.

6.2.2 Monte-Carlo Study
Given that the only characteristic is time of departure (w),
and the price is fixed at $20, the preference density function given in

(6.6) can be estimated using the aggregate data from Mondays to Sundays

30
This aggregation is consistent with our assumption that consumers
choose the time of departure only. Holiday is excluded in the
aggregation.
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Table 6.1: Aggregate Vehicle Volumes By Sailing
August 1991

An Time of Departure(w,)
Aggregate J

Day 7:30 11:15 15:00 19:15
Monday 238 195 151 74
Tuesday 291 262 242 79

Wednesday 288 307 236 72

Thursday 358 379 326 97
Friday 437 443 391 149
Saturday 482 262 181 91
Sunday 285 295 235 97
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of August 1991. To do so, we need to choose a value for ;, the mean
reservation price. Given the actual price at $20 per trip, We fixed v
arbitrarily at $25. The parameter c is also fixed at 1 for simplicity.
We also need the potential population for this service since our model
includes a no-set, that is, the number of people who were active in the
market but did not take any sailing. Based on the data summarized in
Table 6.1, we fixed the population at 1500 vehicles per aggregate day.31

The maximum likelihood estimates of A are obtained using an
algorithm that contains a well-known and widely available (IMSL
routines) Quasi-Newton nonlinear optimization routine. Monte-Carlo
studies were conducted to examine the quality of the estimates. In
particular, we chose a set of parameters (e.g., u = 10.0, v = 25.0, o =
5.0, 6}=10.0) as "true" parameters in f(u,v). We then used a random
number generator to draw 1500 pairs of (u.v) from this distribution.32
Putting each pair of (u.v) into (6.1) and using 1991 prices as well as
departure times, we generate 1500 utility-maximizing choices, which are
aggregated to obtain the simulated vehicle volumes per sailing. Using
this data and our estimation program, we obtain one set of parameter
estimates. By repeating the process for 100 times, we generated 100

sets of parameter estimates. Table 6.2 reports the sampling mean and

1

Note that the assumptions about the mean of reservation price, the
marginal utility parameter c and the potential population do affect
the distribution of v but not u. Monte-Carlo studies show that these

numbers are within the range that the probability predictions of each

sailing are insensitive to choices of these values.

32 . . . :
This number is <chosen so as . to <correspond to the potential population

for each aggregate day.
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Table 6.2: Simulation Results

Estimates
Parameter True value Mean Variance
u 10.0 10.0613 0.0686
o, 5.0 4.9760 0.0617
o, 10.0 11.2686 1.3742
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variance of these estimates. The hypothesis of equality between the
mean and the "true" values was tested using a standard normal test. The
results show that the null hypothesis is accepted for parameter C but
weakly rejected for u and o at the 5% significance level. Given the
sample size, we consider the estimates as being acceptable.

The aggregate preferences density function is estimated using
1991 data given in Table 6.1. Table 6.3 presents the estimation
results. It suggests the following: Mondays and Saturdays are obviously
different from the other aggregate days of the week. In particular,
they both have a much flatter distribution of u than the other days. In
comparison, Tuesdays, wednesdays, Thursdays and Sundays look very
similar with a mean of the most preferred departure time (u) around

mid-day and a relatively small variances.

6.2.3 Out~-Of-Sample Testing

Now we have the underlying aggregate preferences for each
aggregate day of the week, we can then use this to project the
corresponding vehicle volumes for 1992. In doing so we assume of course
that consumer’s preferences are stable over time. Table 6.4 reports the
predicted and actual vehicle volumes for each aggregate day of the week
\ 33
in August 1992.

The predictive ability of the proposed model is examined by

33
The potential population of each aggregate day for 1992 is also set

at 1500.

121



Table 6.3: Parameter Estimates Using 1991 Data

Days u vu 0&
Mondays 7.17 9.52 8.09
Tuesdays 12.82 4.90 11.85
Wednesdays 12.91 4.44 10.74
Thursdays 12.87 4,65 3.29
Fridays 13.46 4.64 12.29
Saturdays 5.57 9.03 2.25
Sundays 12.95 4.98 8.56
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" Table 6.4

Actual and Predicted Vehicle Volumes for

August 1992
Aggregate Time of Departure
Day
6:00 9:00 12:00 15:30 19:15
actual 135 214 213 190 87
Mondays | edicted 258 168 152 124 91
actual 136 228 218 245 75
T
uesdays | edicted 173 214 253 197 91
actual 164 250 252 215 73
W
ednesdays| — edicted 159 229 280 206 79
actual 155 249 253 260 82
Thursdays| ., edicted 166 243 201 219 88
actual 168 305 322 314 98
Fridays | redicted 186 247 325 270 130
actual 294 317 258 207 88
Saturdays| . cdicted 491 240 203 151 105
actual 179 288 280 309 94
Sundays | edicted 174 222 265 212 102
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running simple OLS regressions of predicted volumes against actual
volumes. the regression results are reported in Table 6.5. The results
show the the slope coefficient ranging from .732 +tol.l175 is
insignificantly different from 1 and the intercept is insignificantly
different from 0 for the different days of the week with the exception
of Fridays. When pocling all data from Mondays to Sundays, the
prediction regression (the bottom row of Table 6.5) almost coincides
with the perfect prediction 1line, that is, the 1line with slope
coefficient of 1 and a constant term of zero as illustrated in Fig.6.2.
These results indicate that overall the proposed model predicts
surprisingly well, particularly considering the fact that these
predictions are based on estimates with only four effective data
points.

Hence, without comparing with other models, we make the
following conjecture: the performance of the proposed model in terms of
predictive power can be attributed to the fact that it accounts for
some heterogeneity in preferences among consumers, which is the spirit

of all address models.

6.3 CONCLUSIONS AND EXTENSIONS

This chapter has presented a simple address model and its
application to a real case of product differentiation. This model has
some attractive features for researchers interested in the positioning
of new products. It starts with the intuitively appealing assumption

that consumers’ preferences are heterogeneous and can be represented by
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Table 6.5

Regression of Predicted Volumes against Actual

August 1992
Days R-Square Slope Intercept
Mondays 0.8804 (g:zgé)* (:iééggf
Tuesdays 0.9686 (g:ggg) (isogéf
Wednesdays 0.9898 (g:gg;) (:Z:Zig)
Thursdays 0.8668 (g:igé) ((lf;zz?
Fridays 0.9526 (2332) sésgg)
Saturdays 0.4531 (é:géi) (:3:328)
sndays | o.seos G308 1SR
Sampie 0-8198 (506 (02660

* Numbers in parenthesis are the t-values. The null hypothesis

is Ho: slope=l1l, intercept=0. The critical value at the 5% level

of significance is 2.13.

125



@ The perfect prediction line

(@ The model prediction line

Predicted

6007

®

500t

400t

300¢

200t

100}

) 100 200 300 200 500 600
Actual

Fig. 6.2: The Regression Line of Predicted

Volumes against Actual Volumes
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a probability distribution function to be estimated. More importantly,
it has a distinct advantage of constructing and estimating a preference
density function which can be used with any new set of prices and
products. Thus the introduction of new goods on the implication of
different price structure can easily be investigated.

The preference recovery technique presented in this chapter, in
fact in the entire thesis, is not without limitations. First, the
maximum likelihood approach employed assumes a unimodal distribution of
aggregate preferences in (u,Q) parameter space. Should data give rise
to a multimodal distribution of preference (for instance, the
population is composed of distinct groups), the proposed empirical
estimation procedure will not be appropriate. Secondly, as a limitation
to all other discrete choice models, data is a major source of
constraint. As a result, the estimation procedure inevitably involves
some ad hoc restrictions.

The thesis can be extended along the following lines: first, to
compare our method of preferences recovery with other appropriate
discrete choice models with a given data set; second, to develop other
preference recovery techniques, such as nonparametric smoothing
techniques to estimate address models of product differentiation;
finally, to relax some of the assumptions made in this thesis to test
the robustness of our results.

The main purpose of thesis was to demonstrate the feasibility
of preference recovery in address models of product differentiation.
While the preference recovery techniques were illustrated within

particular applications, they should be considered general techniques
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that can be applied to other cases of product differentiation.
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