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Abstract 

Using ninety economic data sets from forty-four publications, robust estimates are 

compared with the original ordinary least squares' results. Robust methods, insen- 

sitive to large errors, have recei~red a great deal of attention by statisticians and 

econorrietricians; economists have been exhorted to use them. Do these robust meth- 

ods make a difference with economic data, in terms of the estimated coefficients. the 

results of hypothesis tests, or the quality of forecasts? The results of this thesis sug- 

gest that on the whole robust met hods do make a difference, albeit more so on some 

criteria than on others. Forecasting differences are not great, for example, but hy- 

pothesis testing differences are large enough to be of special concern. This result led 

to an extension of the thesis, examining the quality of the standard error estimates 

produced by popular econornetrics packages. This extension included the use of ran- 

domization tests and Monte Carlo work. Results indicate some methods in common 

use are markedly inferior to others and should be avoided. 
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Chapter 1 

Introduction 

1.1 The Purpose of the Thesis 

he purpose of this thesis is to confront robust estimators with econornic data. 

These estimators are novel in the sense that while versions of them have been 

known for a long tirne, they do not enjoy such widespread use as ordinary least squares. 

Their description as robust is meant to convey the notion that these estimators can 

withstand a wide variety of unusual situations like very large errors or outlying points 

in the data. Hogg and Craig (1978) offer the practical definition of robust as: 

An estimator that is fairly good (small variance, say) for a wide 

variety of distributions (not necessarily best for any one of them) 

is called a robust estimator. (p402) 

The idea is t o  select a number of these robust estimators. so as to  avoid the possibility 

of results being dependent on a single estimator, and see if this set of estimators givcs 

"different results" when usctl with economic data sets. 

i\/fa11y things can be meant by "different results" and here we approach the problem 

from a rnlrnber of perspectives such as changes in the size of an interesting coefficient or 

the ability to  provide better forecasts. Particular emphasis is placed on the hj~pol hesis 

tested by the original researcher. We want to know if using robust esti~nators changes 

the results of these tests. 



While this is a noble exercise, the immediate difficulty is where does one obtain 

rnany data sets? We obtain data sets from three sources. First, many articles provide 

data. Second, one journal sells data sets used in articles it has published. Finally, some 

econometric texts now provide data for replication of interesting studies in economics. 

Armed with ninety data sets (seveny-four time-series, sixteen cross-section) from forty- 

four articles we replicated the original study and applied the robust methods to the 

same data. With at  least fourteen ways of determining what is a "different result" 

the robust estimates were compared to the original results as replicated. 

1.2 A View of the Literature 

Ecoriometrics has seen an almost unprecedented expansion in the area of robust esti- 

mation. An impetus for this growth is the misgivings of some researchers. the most 

notable being Mandelbrot (1963a. 196313 and 1969). concerning the densities produc- 

ing economic data. Economics ~nust  respond to Mandelbrot's work as he is attempting 

a. critique of uses of the central limit theorem and the Gauss Markov theorem. Under 

a number of assumptions, least squares is the bcst linear unbiased estimator. A key 

assumption supporting the theorcm is that the error density has a finite variance. 

For Mandelbrot the requirement of a finite variance is the "Achilles heel" of econo- 

metric~.  Mandelbrot, looking at  cotton price changes, noticed there were too many 

outlicrs in the data for the density of the changes to be normal. When there arc 

outlicrs of this type it bccomes exceedingly difficult to estimate the population vari- 

ance. .is one draws a sample there is the possibility of obtaining some outliers and the 

exact values of these outliers can affect the sample variance estirnate drastically. Man- 

delbrot then suggests the hypothesis that the popidation variance is infinite. IJpon 

investigation, these wtrerne price rhanges and the possibility of an infinite variance 

seemed cvnsistent with the probability density termed "l'areto's Law" or hyperbolic 

density. The term hyperbolic indicates some feature of the distribution is exaggerated 

and here that  is the distribution has exaggerated tails. Mandelbrot argues the possi- 

bility of an infinite variance is best handled by a family of densities known as stable 

L6vy densities. Such densities hai~e been called L6vy stable, Pareto-Ldvy and stable 



Paretian. This raises the possibility that economic series come from the non-~lomlal 

siblings of the L6vy distribution. These non-normal densities have infinite variances. 

An infinite variance implies the sample estimate of the variance does not converge to a 

particular value as the sample size increases. Sadly the sarnple estimate can fluctuate 

wildly. Or as one wag put it: The standard deviation is highly variable. 

It is not easy to formulate a response to  the possibility of a density with an infinite 

variance if one is an econometrician. One might say ' ' t t ~ t "  for such a possibility. 

There are three ways to do this. First plot the empirical currlulative density against 

the cunlulative density produced by the normal. If the plot is a straight line one 

can reject the infinite variance hypothesis. A famous paper that adopts this method 

is Fama (1965) for first differences of the logarithm of stock prices. He uses da ta  

from 1957 to 1962 broken down into thirty samples with a range of observations from 

twelve hundred to  seventeen hundred. A visual inspection of the plot supports the 

Mandelbrot hypothesis of an infinite variance. 

T ~ P  next method is to plot the sample variance as T (the sample size) changes. 

Evidence against the normal is a non-converging variance. 'I'he last and possibly the 

best test is the "log-tail" test. Plotting the n i rmb~r  of errors greater than some large 

error against the logarithm of the errors one should obtain a straight line with slope 

equal to -a also known as the characteristic exponent of the density. If a is less 

than two in absolute value l he density has an infinite variance. Based on these tests 

Granger and Orr (1972) state: 

The evidence from the three tests we have described here is in 

some cases so strong that it should convince most research work- 

ers that infinite variance is a distinct possibility. Most certainly 

the longtailedness of some distributions arising in economics has 

been established. (p277) 

or as Fama (1963) conclildes: 

For commodity markets the most impressive single piece of ev- 

idence is a direct test of the infinite variance hypothesis for the 

case of cotton prices. Mandelbrot computed the sample second 



moments of the daily first differences of the logs of cotton prices 

for increasing samples . . . . He found as the sample size is in- 

creased the sample moment does not settle down to any limiting 

value but rather continues to vary in absolutely erratic fashion, 

precisely as would be expected under the stable Paretian hy- 

pothesis. (p428) 

Koenker and Basset (1978) in providing their regression quantile estimator. 

suggest there are other reasons for using robust estimators not related to  the possibility 

of an infinite error variance. There is a, view in econometrics that if the errors are not 

normally distributed, then least squares and statistical tests based on least squares 

are still valid. This view comes from the Gauss Markov theorem that, for errors of 

finite variance. posits least squares is the best linear unbiased estimator no matter the 

error distribution. Further, testing of hypotheses is possible if the researcher is willing 

to accept the idea the test can be supported on asymptotic grounds. Koenker (1982) 

points out least squares estimates can be changed substantially if the distribution of 

the errors only deviates slightly from the normal. ,41so, the asymptotic justifications 

for testing using the normal distribution have to do with the size of the test. Koenker 

shows how in an environment where there is some departure from the normal the 

power of least squares is much lower than that of robust tests. He states: 

. ..that classical tests need 40% more observations than the ro- 

bust test to achieve the same power. (p236) 

As Monte Carlo studies have one drawback, the manufactured data may bear little 

resemblance to real data, Stigler (1977) rnaintains robust and non-robust estimators 

should be c-ompareti using real data. He does this using twcnty data svts and eleven 

(ten robust) estirmtors. Stiglor's data sets are rneasurenients at lcast a cmtury old 

of constants like the velocity of light for which there exist "modern" true vahxes. The 

results indicate a small amount of trimming can produce gains. One would not say 

the result is a stunning endorsement of robust methods but at issue is the need to 

work with real data. This is a valid method to provide an environment in which 

estimators can be compared. The reason: Monte Carlo data does not guarantee to 



be like real data. Rocke, Downs and Rocke (1982) take up Stigler's idea to  use 

real data; they compare twelve estimators using forty-seven analytical chemistry data 

sets. Unlike Stigler they recommend using a robust estimator. Rocke, Downs and 

Rocke also provide a concise statement of the methodology which is an alternative 

to the Monte Carlo technique as follows: 

Given the variation in the quality and character of data that may 

exist across disciplines and over time, it seems probable that the 

utility of robust methods can be demonstrated only by applying 

the method described here to a substantial number of "typical" 

and current data sets chosen from specific fields. (p97) 

A cursory survey of the economics literature shows that very little work uses robust 

estimators. Hogg (19'79) argues it is these estimators' computational complexity 

that causes econornetricians and applied economists to shy a m y  from thern. This is 

changing but slowly. There are sorne very good reviews of robust estimators that are 

accessible to those with even i he most rudimentary statistical skills, for example Berk 

(1990). Statistical software is available allowing easy computation of reconmended 

robust estimators. 

Another reason for the scarcity of robust estimation is that many rely on the usual 

asymptotic justifications for hypothesis testing with economic relationships. This no- 

tion is as old as the modern concern with robustness. When the term robust was 

first applied to statistics by Box (1953). it was evident even then statistical prore- 

dures could be robust regarding non-normality. This view could still have widesprc.ad 

support especially because of the acceptance of the Gauss Markov theorem. 

A final reason for the less than widespread use of robust estimators is that the 

data to which the infinite variance hypothesis has application majJ be a small subset 

of all the data anal.ysed by economists. The Mandelbrot and Fama empirical work, 

for cxample, concerns itself solely with the logarithm of price changes. specifically 

cotton and stock prices. In addition, the error environments that point to the effi- 

ciency of robust estimators have large variances. even infinite variances (See Fama 

(1960, p427)) and many economists could perceive these variances as being patently 



CHAP'TEK. 1. ILVTROD UCTION 

unrealistic. 

The last two reasons above provide some impetus for a study, using economic 

data, attempting to find out if the use of robust estimators would have changed 

anjr conclusions based on least squares' associated hypothesis tests. Using forty- 

four published studies in applied economics we wish to replicate original results and 

then re-estimate and evaluate using robust methods. The following two quotes aptly 

summarize the problem. First Taylor (1974) states: 

The implications of an infinite variance for conventional met h- 

ods of estimation, least squares in particular, are rather grim. In 

a finite-variance world, we hardly need remind ourselves of the 

virtues of least squares: I t  provides the Gauss-Markov est ima- 

tor and, in addition, the maximum likelihood estimator in the 

context of normality. Normality also opens up the door to the 

vast apparatus of classical and Bayesian inference. However in an 

infinite variance world, the Gauss-Markov theorem no longer ap- 

plies, and least squares becomes another estimator. And a poor 

one a t  that. An infinite variance means thick tails and thick tails 

mean a lot of outliers. Least squares, as we know, gives outliers a 

lot of weight, and accordingly becomes extremely sample depen- 

dent. Thus, in this context, an estimator which gives relatively 

little weight to outliers is clearly to be preferred. (p170) 

Four years later Koenker and Basset (1978) note: 

Indeed one somtimes encounters the view that infinite variance 

of the errors constitutes the only possible rationale for seeking 

robust alternatives to least squares in the linear model. This 

is emphatically false. While least squares is obviously abysmal 

for distributions having infinite variance (having zero efficiency 

for the Cauchy for example) its gross inferiority to a variety of 

nonlinear estimators is by no means confined to distributions 

wit h infinite variance. (p35) 



1.3 New Avenues of Research 

Given the renewed interest in robust estimation (Berk (1990), for example) we feel a 

need for a study of robust estimators with real data. This thesis adds to and builds 

upon existing studies in some unique ways: 

I A11 existing studies focus on a particular data set be it demand analysis or 

stock returns. 'This is obviously useful for those economists who specialize 

in these areas. This thesis atternpts a new twist in that we want to know 

if general statements can be made concerning all economic data and move 

away from limiting ourselves to one data set. 

I1 Each data set, of the many we use, has itself supported results in published 

studies. With this data set of "data sets" more can be gleaned about 

robust estimation than would be the case from applying least squares and 

a robust method to  a new data set. We too could get data for a given 

specification and apply a robust method besides least squares but the 

choice of specification would be somewhat arbitrary. It makes sense to 

use specifications (and data) that have survived the refereeing process. 

Given the way applied economics is conducted, this means avoiding other 

problems, such as heteroskedasticit~ resulting in fewer influences from 

these sources than if we used new data whether real or artificial. 

111 An important unaddressed question in the literature is: How often are 

results from published studies reversed with robust estimators? What we 

attempt to do here is to find out if robust methods change the conclusions 

others have reached with a simple testing procedixre using economic data. 

'I'hus in a sense this thesis tests a ('null" of robust esti~nators not making 

any differe~lce. A failure to reject this "null" hypothesis could happen for 

two reasons: 

1. Researchers may have employed both least squares and robust meth- 

ods and only reported least squares results they know agree with 

robust methods; 



2. Or economic data is such that robust methods give results close to 

those of least squares indicating economic data is free of the problems 

those robust methods avoid. 

Thus we have the common problem of a joint "null" hypothesis. There 

is nothing that can be done to separate the two possibilities but taken 

together a finding in favour of the "null" is still a useful exercise. We 

obtain more information concerning testing and data in economics. One 

study, fro~n which a data set is taken for this thesis, replaces a dependent 

variable observation with lower values whenever the author noted an out- 

lying observation. This was done in a very ad hoe fadlion; non of the usual 

robust procedures were performed to accomplish this. This study is the 

only one that explicitly deals with an outlier. To some extent, we do not 

know if others changed their data, not explicitly mentioning any form of 

robust analysis mitigates against the first part of the joint "null". 

To address further the problem of a joint null. where our robust methods 

do show a difference for a particular data, set we apply four of the diag- 

nostic statistics in Bollen and Jackman (1990, page 268) that should 

reveal outlying errors (outliers proper) and leverage points or extreme val- 

ues of the independent variables. Researchers have two choices, some use 

these tests to purge the data of the outliers before embarking on estima- 

tion: an exanlple being Granger, White and Kamstra (1989). Other 

researchers use tests for outliers, and where the tests point to possible 

problerns in the data. they may use robust methods. We want to ad- 

dress the objection that robust methods may not have been considered 

by the original researchers because available diagnostics failed to reveal a 

pro ble~n. 

IV The study with the largest number of regressions comparing robust meth- 

ods with least squares is twenty-one by Connolly (1989), for one data 

set divided into seven periods. We improve on this by looking at ninety 
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regressions from forty-four published studies in many more economic con- 

texts. 

V Hogg (1979) argues for least squares to be accompanied by a robust 

method. Any sizeable difference between the two methods should be inves- 

tigated. This thesis provides some "rules of thumb" to help one establish 

what is a sizeable difference. 

V1 Randomization tests, an alternative to the traditional testing methodol- 

ogy, do not require that errors be distributed normally and do not rely 

on asymptotic properties. Consequently: they offer an attractive alterna- 

tive to robust estimation and testing. This thesis compares randomization 

tests. as well as traditional robust tests, to tests based on least squares' 

results. A discussion of randomization tests in the econometric context 

can be found in Kennedy (1993). 

Why be Concerned with Robust Regression? 

1.4.1 Introduction 

We all at  some time or another have used a regression package to estimate a linear 

equation from a favourite theory. It is usual to have the package perform its array of 

diagnostic tests and the tcmptation is always there to look at  another model specifi- 

cation if the original equation fails one or more of these tests. This is not the place 

to discuss the merits of such a procedure but rather to point out there is one "diag- 

nostic" that is not explicitly calculated by regression packages but is recommended 

by statisticians and econornetricians. This "diag~lostic" concerns the use of robust 

estimators. Itobust has a particular ~neaning as Stigler (19'73) has suggested: 

In the eighteenth century, the word "robust" was used to refer 

to someone who was strong, yet boisterous, crude, and vulgar. 

By 1953 when Box first gave the word its statistical meaning, 



the evolution of language had eliminated the negative connota- 

tion: robust meant simply strong, healthy, sufficiently tough to 

withstand life's adversities. (p872) 

Given that Stigler does refer to Box (1953) it is useful to review the latter's (p318) 

definition of robust: 

The tests mentioned are derived on a number of assumptions, 

in particular, that the observations are normally distributed. 

Usually, however, since little is known of the populations from 

which the samples are drawn, these tests are used, of necessity, 

as if the assumption of normality could be ignored. So far as 

comparative tests on means are concerned it appears (perhaps 

rather surprisingly) that this practice is largely justifiable . . . 

It  would appear, however, that this remarkable property of 

"robustness" to non-normality which these tests for comparing 

means possess, and without which they would be much less ap- 

propriate to the needs of the experimenter, is not necessarily 

shared by other statistical tests, and in particular is not shared 

by the tests for equality of variances. 

1.4.2 Some Quotations Supporting Robust Methods 

The following is a series of quotations reflecting the widespread call by statisticians 

and econometricians for the use of robust methods. 

As regards nomiality as an assumption Granger and Orr (1972) suggest the 

following: 

It is standard procedure in economic modeling and estimation 

to assume that random variables are normally distributed. In 

empirical work, confidence. intervals and significance tests are 

widely used, and these usually hinge on the presumption of a 
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normal population. Lately, there has been a growing aware- 

ness that some economic data display distributional characteris- 

tics that are flatly inconsistent with the hypothesis of normality. 

(p2751 

To justify the concern over normality the following is from the preface of Robust 

Inference by Tan, Tiku and Balakrishnan (1986): 

Most classical statistical procedures are based on two assump 

t ions, that the sample observations are independently and ident i- 

cally distributed, and t hat t he underlying distribution is normal. 

While the first assumption may not be unrealistic in certain situ- 

ations, it is the second assumption that is rather unrealistic from 

a practical point of view. To quote R. C. Geary (Biometrika, 

1947): "Normality is a myth; there never was, and never will 

be, a normal distribution." This might be an overstatement, 

but the fact is that nonnormal distributions are more prevalent 

in practice, and to assume normality instead might lead to erro- 

neous statistical inferences. (piii) 

One of the most enthusiastic proponents of robust methods is the statistician Itobert 

Hogg who maintains in Hogg (1979): 

The method of least squares and generalizations of it have served 

us well for many years. It is recognized, however, that outliers, 

which arise from heavy-tailed distributions or are simply bad 

data points due to errors, have an unusually large influence on 

the least squares estimators. That is, the outliers pull the least 

squares "fit" toward them too much, and a resulting examination 

of the residuals is misleading because then the residuals look 

more like normal ones. Accordingly, robust methods have been 

created to modify least squares procedures so that the outliers 

have much less influence on the final estimates. (p108) 
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In the book Robust Statistics (1981) which a t te~npts  to  deal with many aspects of 

these methods, Huber offers as a reason for wanting to consider robust methods the 

following: 

During the past decades one has become increasingly aware 

that some of the most common statistical procedures (in par- 

t icular, t hose opt imized for an underlying normal distribution) 

are excessively sensitive to seemingly minor deviations from the 

assumptions, and a plethora of alternative "robust" procedures 

have been proposed. (pl)  

The same sentiments are echoed in the preface to a book e~ititled Robust Regression 

published in 1991 by Tan, Tiku and Balakrishnan (1986): 

Statistical inference deals with the extraction of information 

from observations. Of equal importance to the empirical data 

are the assumptions underlying the analysis. While it is granted 

that these assumptions concerning randomness, independence, 

and so forth are not precisely true in the real setting, they are 

nonetheless invoked in order to provide theoretical foundat ions 

for the ensuing analysis. 

The implicit assumption made in many such situations is that 

small deviations from the assumed model will result in only small 

errors in the final results. Recent studies have indicated, how- 

ever, that this is not always the case. As a result, the use of 

more robust statistical procedures has been an area of increased 

interest, both for the theoretician and the applied statistician. 

(piii) 

Another proponent of robust met hods is Andrews (1974) 

Least-squares is an optimal procedure in many senses when the 

errors in a regression model have a Gaussian distribution or when 

linear estimates are required (Gauss-Markov Theorem). Least 
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squares is very far from optimal in many non-Gaussian situations 

with longer tails (see Andrews et al. 1972, Chapter 7 for further 

discussion). I t  is unlikely that the use of least squares is desirable 

in all instances. Some alternative to least squares is required. 

A recent study (Andrews et al. 1972) clearly demonstrates the 

inefficiency of least-squares relative to more robust est imates of 

location for a wide variety of distributions. (p523) 

In an article providing examples of uses of robust methods Mallows (1979) provides 

a summary of the Hogg (1979) suggestion for using robust estimators in empirical 

work: 

A simple and useful strategy is to perform one's analysis both 

robustly and by standard methods and to compare the results. 

If the differences are minor, either set can be presented. If the 

differences are not, one must perforce consider why not, and 

the robust analysis is already at hand to guide the next steps. 

(p1841 

In the article concerning regression quantiles, a robust estimator, Koenker and 

Basset (1978) posit: 

Unfortunately the extreme sensitivity of the least squares es- 

timator to modest amounts of outlier contamination makes it 

a very poor estimator in many non-Gaussian, especially long- 

tailed, situations. (p34) 

Swartz and Welsh (1986) concerning themselves with problern independent variable 

values note: 

The linear model is probably the most common statistical frame- 

work used in econometric analysis. Unfortunately the majority 

of applied work done with this model begins and ends with ordi- 

nary least squares (OLS) family of estimators. It is certainly true 



that OLS is an attractive estimator; it is very easy to compute, 

and, of course, it is efficient among linear unbiased estimators 

for problems that satisfy a certain set of assumptions. However, 

these assumptions seldom correspond to the situation facing us 

when we work with economic data. A more satisfactory ap- 

proach to the linear model would still involve the OLS family 

of estimators, but only as a starting point around which diag- 

nostic analysis can be used to identify assumptions that might 

be descriptive as well as theoretically useful. Given that under- 

standing, the reliability of coefficient estimates and forecasts can 

then be enhanced by using estimators based on the assumptions 

we believe and robust to the breakdown of the assumptions we 

distrust. (p154) 

Given that we do use robust methods in conjunction with ordinary least squares Hogg 

(1979) does point to an additional advantage: 

If a robust element is added to our present methods, we will 

detect many simple, and not so simple errors. These procedures 

have been used very successfully (e.g., Los Alamos Scientific Lab- 

oratory has the option of using them in all regression problems 

and this opt ion is exercised frequently ) . Many interesting things 

have been discovered through of these procedures. My hope is 

that by 1980 almost all statistical investigation will include a 

robust aspect. (p114) 

The hope for the widespread use of robust mcthods in addition to ordinary least 

squares has yet to be realised. Contrasting least squares and robust methods could 

be ternled the neglected "diagnostic" in t:conornetrics. It is important to note that 

robust mcthotls are not meant to substitutt~ for conventional ~rlethods but rather act 

as a method complementary to least squares. 

Koenker (1982) is an attempt to get more econometricians interested in robust 

methods. He maintains: 



The classical statistical paradigm . . .is gradually giving way to 

robust methods. This robustness revolution does not represent 

an attack on traditional statistical models, rather it reflects a 

heightened awareness of the potentially serious consequences of 

modest departures from classical hypotheses. Indeed the objec- 

tive of robust methods is to extend the domain of validity of the 

classical models. (p246) 

Finally we have Koenker (1988) provide his view of robust estimation as it applies 

to the error distribution: 

Robust estimation of the linear model as expounded for exam- 

ple, by Huber (1973, M estimators), Koenker and Basset (1978, L 

estimators), and Hett mansperger and McKean (1977, R estima- 

tors) has a very limited objective. Given a model specification, 

find an estimator of the regression parameter that achieves rea- 

sonable efficiency over some large neighborhood of error spec- 

ifications. In  practice this means finding estimation met hods 

less sensitive than classical least squares to outliers in the yi7s. 

( ~ 4 4 7 )  

1.4.3 Summary 

This section justifies the use of robust methods, especially robust regression by pre- 

senting some statements made by those who, either indirectly or directly. support 

their use. A noteworthy feature of these quotes is they point to the possibility of 

large absolute errors drawn with greater probability than the normal and the pos- 

sibili ty of errors in the independent variables both resulting in problems with least 

squares. However if one uses a robust method in iddition to ordinary least squares 

not only does one have another "diagnostic" but it is likely one also will have a greater 

knowledge of the data. This alone makes robust methods worth consideration. 
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Some Prior Work 

1.5.1 Introduction 

Although some have argued that the use of robust methods is likely to decline, Bax- 

ter (1990), our survey of the literature, did reveal recent applied studies that use 

robust estimators and economic data. Eddy and Kadane (1982) use robust regres- 

sion as a check on least squares' results that give the cost of drilling an oil well in a 

particular region in the United States. Lioukas (1982) in a niultinomial model uses 

robust methods to find the cost of business and non-business travel in Greece. To the 

extent marketing data is economic, it is necessary to mention Mahajan, Sharma 

and Wind (1982) who show how robust methods can help establish profitable areas 

of a company's activities. These last two endorse the use of robust methods. Coursey 

and Nyquist (1988) use robust regression to estimate price and income elasticities. 

They suggest taking the Mandeibrot and Fama findings seriously and push for ro- 

bust estimation. In a study of the weekend effect, negative returns to stocks on a 

Monday. Connolly (1991) uses robust regression to show that this effect concerns 

assumptions about the error distribution, naniely the distribution has "normal" tails, 

rather than economic forces. Lichtenberg and Siege1 (1991) use outlier deletion to 

check whether least squares estimates are sensitive to large errors. They find their 

least squares results are not dramatically changed. Another study giving support to 

the use of least squares is Swinton and King (1991) but this may be due to the 

peculiar nature of their data as we explain in more detail below. Geske and Torous 

(1990) use robust methods to estimate the variability of stock returns and find robust 

methods can reduce price rnisspecifications. It seems as if robust cstirnation becarne 

more popular in the late eighties and nineties . although the number of studies is still 

small. 

From these studies one gains the impression robust analysis is not used a lot and 

often it is used as something to try other than least squares. Not all the studies 

motivate the use of robust estimators. While the focus for this thesis is parametric 

robust regression, Magee, Burbidge and Robb (1991) use a nonparametric robust 



analysis to re-examine an economic hypothesis. The motivation for this thesis to use 

parmetric robust estimators is first, to determine if the choice of such estimators is 

warranted with economic data and second, we feel that although a nonparametric 

analysis to be equally, if not more, important than the usual parametric analysis, it 

is the parametric form that predominates in economics. About half of the studies 

discussed here find robust analysis does not change regression parameters, but it is 

not always made clear how this is determined by the authors of the studies. It has 

become an important question, given these results, whether robust estimation does 

give different results with econornic data in general rather than in a few scattered data 

sets? At this stage one would be equivocal about the ability of robust regression to 

change the results from a technique like least squares. Further what it means to get 

a different result with a robust, estimator needs to be covered in much greater detail 

than it has in the literature to date. We examine the studies in more detail in the 

next section. As an important aside, a feature of the nonparametric robust analysis is 

a "different" result is usually one that reverses a previously held economic hypothesis. 

While our focus here is para~netric robust analysis we feel it is important enough to 

adopt as a criterion to determine if robust estimates are different from least squares' 

estimates. 

1.5.2 Two important studies 

We single out the following two studies as they both generalize from their respective 

data sets. This is not to say the studies in the next section are unimportant. We 

highlight Swinton and King (1991) and Coursey and Nyquist (1988) as they 

attempt what this thesis attempts, although they are concerned with particular eco- 

nomic data. We use many more data sets. Also we use techniques they develop for 

comparing estimates, robust or otherwise, and on this basis feel they rrlust be given 

some prominence. 

Where a researcher suspects an outlier, and can identify the same, the usual pro- 

cedure, according to Swinton and King (1991) is to omit the outlicr. This ad hoe 

procedure can be avoided if one uses a robust method as these estimators achieve 
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the same purpose. Other approaches, see Robb, Magee and Burbidge (1992): 

transform the dependent variable, for instance. Returning to discuss Swinton and 

King, crop yield data has the peculiarity, when detrending, that an end of sample 

observation can influence the least squares' results. Despite this feature of such data, 

least squares is still better than robust methods argues Swinton and King (1991). 

For instance, corn yield data (used in agricultural economics) can have low values: at  

odds with what one expects from a normal distribution. Regressing corn yields on a 

variable year, with least squares, gives residuals skewed to the left. This might be an 

environment where robust estimates are better than the outlier removal method. If 

the disturbances are normal, least squares gives the maximum likelihood estimates. 

If they are not, least squares is still the best linear unbiased estimator and the vari- 

ance estimator is unbiased and consistent. Also the maximum likelihood estimator 

is not least squares thus both the estimates of least squares will not be efficient or 

asymptotically efficient. Swinton and King attempt to see if robust estimates can 

produce estimates that are better than least squares. They do this in three ways. 

l. By using a number of robust estimates, six of which we also use: they find the 

robust estimates lay within one least squares' standard deviation of the the least 

squares estimate. For them this meant least squares did not differ significantly 

from the robust estimates. Use is made of this idea in our own comparison of 

estimators. For them the ad hoe method would be better as long as you can 

identify the outlier. It is this problem which is addressed next. 

2. Swinton and King obtain eight corn yield data series of varying length but 

ending in 1984. They then replaced the actual 1984 observation with an "arti- 

ficial': observation. Thus they create eight data sets mostly of real observations 

but also having one outlier at  the end of the series which t,hey deliberately set 

below the actual value. Various robust estimators all available in SHAZAM 

(White (1978)) plus two popular measures of outliers are applied to these de- 

liberately altered data sets. The idea is to determine if the robust estimators 

and the outlier measures are able to single out the created outlier in 1984. For 

samples sizes greater than five and less than twenty-five, tri~nmed least squares 
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performed the best with the benchmark of "within two standard deviations of 

the least squares estimate" , based on the uncontaminated data, with the "arti- 

ficial" observation replaced with the actual observation. Also, of the two widely 

accepted means of identifying outliers, one: DFBETAS, spotted the outlier. We 

employ this one, in addition to others, in this thesis. 

3. Finally, least squares and a trimmed estimator are compared, using the Monte 

Carlo method with errors drawn from the beta and nor~nal distribution and least 

squares gives "more accurate" estimates as the coefficient ranges and standard 

deviations are smaller. 

On the basis of these three approaches Swinton and King (1991) argue, at  least 

for crop yield data, least squares is preferred and DFBET'4S can be used to identify 

outliers. In the first approach, use is made of the least squares' estimates to ask if 

a robust estimate lies beyond the usual range implied by those estimates. Robust 

estimates are deemed to be different if this range is exceeded. We employ the same 

idea with many data sets as one shortcoming of Swinton and King is they use one 

special data set. 

Errors need 11ot be , but sometimes are assumed to be normal. Without normality 

least squares is still best linear unbiased and this has led to the perception that least 

squares is impervious to aberrant errors. There are non-linear estimators that will 

do better than least squares. The econo~nic literature is replete with evidence that 

economic data is generated by distributions having infinite variance and fat tails. The 

problem is what estimation techniques are required if this is the case? It is no secret 

that the whole opus of robust estimation arose to deal with such distributions. This 

provides a ruison d7&e for Coursey and Nyquist (1988) to examine price and 

income clasticities using Swedish and American data with five robust estimators. A 

feature of their study is to make explicit the distributional assumptions of the error 

distributions. 

They have four regressions covering food. transportation. hotels and restaurants 

and housing for Sweden. For the United States there are five regressions as the 

category gas and oil is used in addition to the others already mentioned. Most income 



elasticities were significant. Results were not as good for the price elasticities. The 

novelty they use to determine if the robust estimates are different from least squares, 

is to determine if the largest percentage change of coefficients between least squares 

and the robust estimators is greater than thirty percent in the nine regressions. For 

three of the regressions the largest percentage change exceeded thirty percent for 

the income elasticities. For the price elasticities this is the case in four regressions. 

Coursey and Nyquis t  take these results to  mean that the different distributional 

assumptions concerning the error term are "significant" using their term. With five 

robust estimators and different distributional assumptions concerning the error term 

Coursey  and Nyquis t  obtain coefficient estimates that differ from least squares 

according to  a thirty percent benchmark. For them these differences arise from the use 

of the robust estimators coupled with the error distribution assumptions they employ 

or, in other words, robust estimators do make a difference. An implicit implication 

of Coursey  and Nyquist ,  for empirical work is the need to do preliminary tests 

to help determine the distribution of the errors in a regression. This thesis differs 

from their work in that we make the decision t o  remain ignorant about the error 

distribution. Coursey and Nyquist  make particular distributional assurnp tions. 

We feel that ignorance describes most economic research and we can use their thirty 

percent benchmark to  ascertain if robust estimators make a difference with many more 

data  sets and, further, not just dernand analysis. Even though we choose to remain 

ignorant of the error distribution, this does not preclude us from testing the errors of 

our ninety regressions for normality. This is done at the beginning of Chapter Four, 

1.5.3 The Other Studies 

E d d y  and Kadane (1982) in a study of oil well drilling, argue the logarithm of the 

cost of drilling for an oil well has a distribution with outliers possible in both ends of 

the density. Instead of rejecting the outliers they adopt the so-called accommodation 

method where a robust estimator is used which does the same thing but according 

to a fixed rule. Rejecting outliers can be at the discretion of the researcher. The 

use of the word accommodation is confusing as the outlier rejection method is also 
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a way of "accommodating" them. ilcconlmodation means using a robust method 

to identify and deal with outliers. Eddy and Kadane are interested in estimating 

the cost of oil wells, given well characteristics and regression estimates of coefficients. 

As they are uninterested in the variability of their forecasts, they do not calculate 

the standard errors of the Huber estimates for twenty-nine American regions giving 

the same number of regressions. They also used least squares for comparison and 

conclude: 

For this data set, the use of robust methods led to only a slight 

change in the estimates and predictions. Nonetheless, given that 

our task was to propose a method to be used on a data set as 

yet unseen, we feel the protection provided by robust methods 

is an important advantage and worth the premium paid in loss 

of efficiency. (p269) 

What is meant by slight is never explicitly defined by Eddy and Kadane as 

regards changes in estimates of coefficients. Comparing coefficient estimates of one of 

their least squares' regressions with the robust estimates. has no estimate changing 

by more than four percent. This is the lower limit of their unstated benchmark. It is 

not possible to determine the upper limit of their implicit benchmark. As Eddy and 

Kadane are no help in this regard we have used the percentage changes proposed by 

Coursey and Nyquist in this thesis. Eddy and Kadane also refer to predictions 

and use a single statistic, PRESS-the average forecast error from deleting one depen- 

dent variable at a time from the regression and forecasting (an analysis of PRESS 

can be found in Magee and Veal1 (1991)) the excluded value with least squares 

and the remaining observations-for a rtygession to determine whether robust or least 

squares provides the better fit. For their data. robust estimation provides the better 

fit. Again Eddy and Kadane provide no benchmark to determine what is a wor- 

riso~ne difference in their statistic relative t o  the residual mean squared error for the 

robust procedure and least squares. However. we do sympathize with the intention 

to  use predictions and thus we also focus on forecasts of observations produced by 

least squares and robust techniques. Our addition is to make explicit the benchmark 
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used to  ascertain if the two methods produce different forecasts. Robust estimators 

have been used to good effect in forecasting macroeconomic time series observations. 

Two such studies are Fair (1974) and Hallman and Kamstra (1989) and it is these 

studies and the Eddy and Kadane study that provides the rational to compare 

estimators on their ability to forecast. Details are provided in Chapter Three. 

Another study using robust methods is Lioukas (1982). In order to evaluate 

transport investment projects. the value of time needs to be estimated. Typically 

what is done in developing countries is to use estimates of the opportunity cost of 

time from developed countries which is not feasible for Greece which some consider 

a developing country. Also as Greek market wage rates are distorted these cannot 

be used. Using a microeconomic justification Lioukas shows how the the choice of 

travel is influenced by the relative price of travel and other characteristirs, such as 

income. After estimating the preferred equation it is discovered that there are many 

outliers and thus robust estimates are made using estirnators from the class called 

M-Estimators. These estimators reduce the weight that least squares gives to large 

errors. Although the robust standard errors are reported no mention is made of how 

they were calculated and the study does not do any significance tests. Lioukas ends 

by reporting: 

The robust maximum-likelihood method of estimation appears 

somewhat superior to others for the analysis of residuals. (pl74) 

Lioukas never provides any details of the analysis of the residuals so it is difficult 

to determine how the superiority of one method over another is established . The 

problem of not making explicit criteria used to choose amongst estimators is a general 

feature of studies using robust methods. This thesis makes explicit the criteria used 

to evaluate whether robust estimators are different from least squares. 

Many are uncomfortable with the practice of deleting outliers and subsequent 

use of the reduced data set. Mahajan, Sharma and Wind (1984) fall into this 

category. Their primary aim is to identify salespeople and departments within firms 

that are different from each other usually according to performance criteria. In this 

context to discard outliers may be inappropriate as they could be the rnost valuable 



observation points in that they contain useful information on performance. You can 

identify outliers with robust methods. They recommend robust analysis as it is a 

procedure that can identify outliers that may not be identified by least squares or 

other ad hoe procedures. They also recommend the use of robust procedures as the 

impact of outliers on estimates is reduced. This may be at  odds with their dislike 

of outlier rejection as you may want the outlier to affect the estimates. The outlier 

may be telling you something important about sales performance. However, they do 

exonerate themselves wit h the following statement: 

. . . perform the usual OLS analysis along with a robust procedure. 

If the resulting estimates are in essential agreement, report OLS 

estimates and relevant statistics. If substantial differences are 

found, however, carefully examine the observations with large 

residuals and check to determine whether they contain errors of 

any type or if they represent significant situations in which the 

postulated regression model is not appropriate. (p276) 

This study does provide a formula for calculating the variance covariance matrix 

although the focus is not on hypothesis testing. The standard deviations are reported 

but not used in the a~ialysis of sales and department performance. This is also a study 

that does not make explicit what is a substantial difference between estimates. 

A study which uses a robust estimator is Lichtenberg and Siegel (1991). They 

use the Least ilbsolute Errors estimator to <:alculate rates of return to various research 

activities. This estimator gives rates of rctlxrn as high as thirty percent lower than 

obtained with weighted (to correct for heteroskedasticity) least squares. No hypoth- 

esis tests were perfornied using this estimator as Lichtenberg and Siegel maintain 

the "standard errors for the parameter estimates are unknown" for Least Absolute 

Errors. As these changes are cause for some concern, hjrpothesis tests of interest were 

conducted using the parameter estimates, after deleting inhential  outliers. The hy- 

pothesis tests were unchanged and for Lichtenberg and Siegel this meant there is 

little to worry about outliers influencing their results. It is recognized by many, such 

as Hogg (1989): that there are a number of ways to estimate the variance covariance 



matrix for robust estimators. We found that while the standard errors are unknown 

they can be estimated and thus play an important role in determining whether hy- 

pothesis tests change. We did estimate standard errors in a number of ways in this 

thesis and found there is cause for concern with these estimates but we do offer some 

solutions to the problem in Chapter Five. 

Another study falling into this vein is Small (1986) who uses hypothesis tests as 

a means to compare robust results with least squares and: 

. . . conclude that although the robust estimations weaken the re- 

sults somewhat, there is still tentative evidence for an energy- 

scarcity effect. (p379) 

As we are to use standard deviations it makes sense to compare robust estimators 

with least squares. at  the level of hypothesis testing, following Small. For each data 

set in this thesis there is an associated hypothesis test performed by the original 

researchers. We redo these tests, be they t or F-tests, to see if results are altered 

using the robust estimates. 

In the financial economics literature there is some evidence that the return of a 

stock market index is significantly negative on Mondaj~s. Connolly (1989) investi- 

gates this issue but from the perspective that financial data is not norrnally distributed 

and thus inferences as usually made with coefficients and standard deviations are not 

valid. if there are outliers. Connolly worries that inferences. especially those made 

about the negative return on 1Llondays may be reversed if inference is performed using 

robust es tirnal ors. 

IJsing data on three return measures and covering twenty years Connolly finds 

a significant and negative return on Mondays. The residuals from the regressions 

are tested for normality and it is found "there is substantial evidcnce of nonnormal- 

ity" . The suggestion is 1 he original inferences on the negati\lc> return on Mondays is 

cast in doubt. Using Least Absolute Errors. Trimmed Least Squares and the Huber 

M-Estimator. the general result. for inferences based on the robust estimates, is the 

Monday effect on returns disappears in the middle of the seventies. This study esti- 

mates the variance covariance matrix of the estimates with a different formula than 
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that used by Mahajan, Sharma and Wind (1984). A study similar to Connolly's 

is Geske and Torous (1990) who examine the prices of a specialized financial instru- 

ment and find robust estimation changes conclusions based on least squares results. 

1.5.4 Least Median Squares 

An increasingly popular robust estimator is one introduced by Rousseeuw (1984) 

called the least median squares (LMS) estimator. This estimator chooses parameter 

estimates to minimize the magnitude of the squared median residual. In contrast, 

OLS minimizes the sum of the squared residuals. Finding the parameter estimates 

which produce the lowest median squared residual is not as easy as estimating the 

least squares coefficient, but there is an algorithm to do this and is available in the 

statistical programme S-Plus. Rousseeuw (1984) points to a shortcoming of LMS: 

A disadvantage of the LMS method is its lack of efficiency . . . 

(p8761 

In recognition of this. the statistics programme S-Plus does not even provide estimated 

standard errors for LMS. On this basis alone we do not use LMS. given that one focus 

of this thesis is hypothesis testing. There is. however, another reason to exclude this 

estimator from the present study. LMS, as pointed out by Hetmansperger and 

Sheather (1992), is not itself robust to  slight changes in the data, but unlike least 

squares it is not data points a long way from the mean that are the problem. It 

turns out. LMS is very sensitive to changes in data points close to the mean and 

Hetmansperger and Sheather provide some examples which show this is the case. 

Given these two problems we decided not to include LMS as one of the estimators 

used in this thesis. 

1.5.5 Summary 

It appears not much robust work has been done to date with economic data aatl nor 

does it seem that the robust estimators emerge as winners in a race against more 

conventional techniques. Clearly what is needed is an analysis of many economic 
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data sets using robust techniques to help form an initial conclusion as to their general 

impact. 'C% also found a weakness of existing work to be the lack of any explicit 

benchmarks that helps determine whether robust analysis does indeed give different 

results. 

1.5.6 What is to be done? 

From reviewing these studies, using robust estimators, it is clear that there is sorne 

reticence to use the robust standard errors. Lichtenberg and Siege1 (1991) is an 

example. Others like Connolly (1989) grip the nettle and use then1 to reexamine 

well-established inferences. One study, Swinton and King (1991) uses the robust 

estimators available in the statistical package SHAZAM (White (1978)). i2 hitherto 

unexamined question is whet her met hods of calculating the robust standard errors, 

such as SHAZAM (White (1978)) provides, are satisfactory? We attempt to answer 

this question in Chapter Five. Also an obvious lacuna in the empirical robust liter- 

ature is an extension to many data sets in a particular field like economics. There 

are even not many for particular data-sets. This paucity provides a springboard from 

which this thesis can begin to add to our understanding of robust estimation. 



Chapter 2 

Robust Estimators 

2.1 Introduction 

C lassical statistical tests in the regression context require the errors to be nor- 

mally, independently and identically distributed. CQe are concerned with the 

sampling properties ofestirnators for 0 and test statistics when considering y = X@+€. 
If c is nornlally distributed i t  is well known what are the finite sampling distributions 

of estimators. However this knowledge of normality is tenuous at best as pointed out 

by Koenker (1978, 1982) including many others. To overcome this problem econo- 

metricians have had recourse to large sample theory, also known as asymptotic theory, 

to make inferences about D. The result of this theory enables one: when the finite 

distribution of an estimator is not known to be normal. to  presume the large sample 

approximation distribution is normal. Thus one can still employ the Classical t-test 

to reject or accept hypotheses. 

Our knowledge of the extent of outliers is also limited. This limitation can be 

reduced by cornparing robust estimates with ordinary least squares as suggested by 

Hogg (1979). Thus this chapter has a twofold purpose: first there is a need to 

review the robust estimators and cover their interesting properties. Second we need 

to determine how tests of hypotheses can be performed using robust methods. 
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Empirical Work In Economics 

This section gives a brief outline of empirical economics. Central to empiricism is 

hypothesis testing, thus some discussion is devoted to this topic. Further there is 

a need to  bring together hypothesis testing and robust estimators in the context in 

which a comparison is made with ordinary least squares. 

Darnell and Evans (1990) give the procedure of empirical work as: 

1. A hypothesis is deduced from economic theory that is feasible to refute; 

2. This hypothesis is recast as a linear regression rnodel and is estimated using 

ordinary least squares; 

3. Residual analysis is undertaken to ascertain if the actual errors satisfy s number 

of assumptions-such as zero expected value. uniform variance and are uncorrelated 

-allowing the researcher to test the hypothesis; 

4. Once three has been completed the appropriate statistical test can be performed 

and the hypothesis accepted or rejected. It is likely that all the studies used here have 

gone through this process. 

What is not certain is whether, in going through the above. much, if any, attention 

is paid to the possibility of outliers in the errors. It could be, applied economists 

take the robust literature seriously and use robust methods in conjunction with least 

squares and find little evidence of outliers. In the next chapter we consider what it 

means for a robust esti~nator to give the same results as least squares. 

2.3 Properties of Ordinary Least Squares 

To provide a basis for considering the properties of robust estimators we pause to 

review ordinary least squares. This and the next section draws from Judge, Hill, 

Griffiths, Lutkepohl and Lee (1988). 

Linear regression uses the following equation 

y = X p + e  (1) 

where X is fixed with rank k (limT,, T-'XTX is a nonsingular and finite matrix) and 

it is assumed the residuals have the following properties: E(e) = 0 and E(eel)= a21 
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with o2 finite. If e is not drawn from the normal distribution and if it is the case 

E(e) = 0 and E(eel)= 021 with o2 finite then: 

0 The estimator b is unbiased and has the minimum variance from the class of linear 

unbiased estimators and is consistent; 

b is not efficient or asymptotically efficient, especially for those distributions with 

fatter tails than the normal. If the exact nature of the distribution is unknown, as is 

likely to be the usual case. a robust technique may be better than the classical normal 

linear estimator b; 

0 Hypothesis tests are no longer valid unless one is willing to accept an asymptotic 

justification for their use. In a sense we are forced to accept this. despite the large 

sample requirement never being an empirical possibility. It is the best a researcher 

can possibly accomplish. 

Assuming e is normally distributed brings the following results: 

0 The ordinary least squares estimator b =(XTX)-'XTy is asyniptotically efficient; 

The distribution for b is Normal. in small samples; 

0 F-tests of linear restrictions of the form RO = r, and t-tests on individual coefficients 

are possible in small samples. 

Thus even if non-normality is true, the estimator b is still appropriate if one wishcs 

to use a linear unbiased estimator and hypothesis tests are possible asymptotically. 

Obviously it is not at all a settled issue in economic testing whether one should choose 

a linear estimator. The adjective linear. in linear estimator. refers to estimator being 

a linear function of the dependent variable. In the fornnda b =(XTX)-'XTy notice 

the estimator is a matrix times the y's. Robust estirnators cannot be written in this 

fashion. The problem with using linear estirnators and an asymptotic justification for 

hypothesis testing. as is pointed out by Koenker  (1982). is first, to restrict oneself 

to linear estimators may cause one to ignore many non-linear estimators and second. 

the power of the asymptotic hypotheses' tests: or the ability of the tests to reject the 

null when the null is false. is sensitive to the assumed distribution of the errors and 

the power is reduced when, for example. the error distribution has "fat" tails. 

We saw in Chapter One that outlying errors affect the ordinary least squares re- 

gression line. Robust estimators attempt to reduce the effect of these errors. Thus 
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it seems reasonable to exploit this difference in rcsponsiveness between ordinary least 

squares and robust estimates to these errors in the context of hypothesis testing. In 

principle there is no difference in the method of hypothesis testing with either a ro- 

bust estimator or ordinary least squares. One needs a coefficient estimate and an 

estimate of the coefficient's standard error. 'These can be calculated. To be frank, the 

calculation of the variance-covariance matrix with robust estimators, which provides 

estimates of the standard errors, is not as easy nor does it it leave one the same degree 

of comfort as would be the case for ordinary least squares. The reason is the f o r m u l ~  

associated with the robust estimators are complicated and econometric packages do 

not use the recommended ones in the literature but have their own fo r rnu l~  for esti- 

mating standard errors. However as long as one is aware of the possible pitfalls that 

might arise with robust estimators and take steps to guard against those situations 

that could present problems. enough of the difference in responsiveness remains to be 

able to compare estimators at the level of hypo1 hesis testing. The one step we take 

in this thesis is to perform a Monte Carlo study for one robust estimator using three 

ways to estimate the standard deviations. If any of these three ways gives different 

results compared to the "true" standard error. the hypotheses tests are redone using 

the alternate standard error estimates. This is done in Chapter Five. 

2.4 Some Robust Estimators 

The following sections gives details of robust estimators. We know robust estimators 

are recommended where the error density is infinite or for those densities for which 

the sample median is a more efficient estimator of location. From examining the 

small number of studies in economics using robust estimators it appears three classes 

of robust estimators are popular. na~nc>ly M-Estimators. L-Estimators and Trimmed 

Least Squares. The first class is so named because of its relationship to rnaxirnu~n 

likelihood techniques. The second class is named because its estimators are derived 

from linear combinations of the quantiles. In the third class some observatior~s are 

discarded, or trimmed. from the data. 
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Least Squares and Maximum Likelihood 

Least squares finds a ,O to minimize CL, (?lt -x:,O)%nd this ,O must satisfy the normal 

equations 

Using a maximum likelihood approach we need to find a P that minimizes 

where the density function is f  (yt - -:P). This procedure entails finding a P that 

must satisfy 
T 

It is well known that if f  (yt --X#) is the normal distribution then f l /  f  is (yt-x#) 

and thus least squares is the rnaxirrmm likelihood estimator for this distribution. 

The Link To M-Estimators 

Notice the height and slope (see equation three above) of the density, crudely speaking, 

are important for the maximurn likelihood approach as one would expect when fitting 

a density to data both play a role in finding the best "fit" of the density to that data. 

which is a t  a simple or conceptual level, the procedure of maximurn likelihood. The 

ratio of the slope and height. a function of the errors. is the v ] ( € )  function and in 

equation form is 

and it is a t  this point M-Estimators come into their own by suggesting different $I 

functions. The above is the usual way to characterize M-Estimators. \,lie now look at 

an alternative way that is easier to grasp. 
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A Better Formulation 

A more intuitive method is to  examine the original minimization problem xTz1 ( g t  - 

x:/3)' which c m  be re-written as cT=~ I gt - xi$ I I yt - X# I and we can use this in a 

unique manner. Notice we could have have obtained this last equation by minimizing 

C:=, I yt - X# 1 10 and replacing equal to I yt - xi$ I. Now ordinary least squares is 

an M-Estimator where the absolute error is weighted by the absolute error. Any other 

M-esti~nator is derived, rather easily, by changing the weight used in the function to be 

minimized but keeping in mind the weights should have the feature of not becoming 

large if indeed the absolute value of the error is large. Going back to the usual 

formulation. it is the function @ ( c t )  which is the central part of M-Estimators for they 

capture the intuitive notion of how the errors are weighted. To be consistent with 

their description in the literature we return to  the usual formulation of M-Estimators. 

M-Est imators Again 

M-Estimators use different forms of the I / J ( Q ) .  There is a natural way one rnight 

choose the form of the function. Where very large absolute errors are possible we 

would like the @ ( c t )  to be smaller as the error gets larger and larger in absolute 

value. Thus one would choose @ ( c t )  ensuring the resulting estimator has acceptable 

properties if the distribution is nor~nal. It must also have excellent properties if the 

errors come from a distribution where outliers are possible with greater probability 

than the normal. Given that one, to  begin with. is ignorant of the true distribution 

one trys a weighting scheme that does well if the distribution is not normal but also 

one that does not result in too great a loss if it turns out the distribution is normal. 

In the following section we present the weighting schemes of some M-Estimators. 

M-Estimators thus exploit the ideas of maximum likelihood but in a strict sense 

they are not max i~r~um likelihood as one does not specify any particular distribution. 

As maximurn likelihood estimation uses the logarithm of the density, any attempt at 

optimization entails the derivative of a logarithm. This can be written as f'l f .  To the 

extent that M-Estimators use substitutes for this derivative. not from any particular 

distribution. proponents regard them as a close cousin of the method of maximum 
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likelihood. Many describe them as " m ~ ~ i m u m  likelihood like" . Typically, looking for 

estimators like these involves changing the particular form of f'/ f that will do well if 

there are outliers in samples. The estimators must be efficient, but not perfectly so, 

if the distribution turns out to  be normal. The estimator must be extremely efficient 

if the distribution produces outliers. Less-t han-perfect efficiency with normal errors 

is a premium paid to insure against distributions other than the normal. 

2.5.2 Three M-Estimators 

In the regression context, we want to use M-Estimators to estimate the vector P ( k  X 1) 

with et independent and identically distributed. The et have a distribution function 

F ( e t )  and density f ( e t )  symmetrical about zero. If the distribution is not symmetric, 

Carroll (1979) has shown in the regression context, the slope coefficients are hardly 

affected. 

We cover the li, functions of Huber, Tukey and Hampel. In the followingexpositio~~ 

all errors are divided by a robust measure of the spead of the errors. Different studies 

use different robust estimates and common measures are the so-called median of the 

absolute values of the Least Absolute Errors' residuals. 

rnedinnl residual, - mrdian(residua1,) l 

known in the literature as the MAD. or the interquartile range of Least Absolute 

Errors' residuals is used instead. 

Huber 

For the Huber M-Estimator the v ( e t )  fimction is 

if I et II a 
,$(et) = 

asigu(et)  otherwise 

Residuals less than a in absolute value are treated in the usual manner. Any other 

residual has a $ weight of either plus or minus a. This $(e t )  funct,ion looks like 
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a "linear" hill passing through the origin. The hill starts at  sea level (-a) with a 

rise until a plateau is reached at  (a). The new set of residuals are the "winsorized" 

(defined in Section 2.5.3) residuals. Hogg (1974) recommends using one and a half 

as the value for a.  

Tukey (Also called the Biweight or Bisquare) 

This estimator has a 4 function that is wave shaped. E'or a value of a = 6 as recom- 

mended by Hogg (1974): the wave rises out of the origin reaches a peak just beyond 

two then falls to zero at six. Thus until unity this estimator is much like least squares 

but after that it is very different until it reaches its peak where an error just above 

two has a q weight just below two. After the peak all the error weights are replaced 

by lower and lower values until the point is reached, say six, above which all error 

weights are zero. M-Estimators that have y3 functions eventually reaching zero are 

called "hard redescenders". The Tukey is one. 

Hampel 

sign (et) a i f n <  I et I < b  
$(et) = 

i n ( ) a ( ( c -  et ) ( c - ) )  i f b <  / e t  I < c  

I 0 otherwise 

This estimator looks complicated but is really like a linear version of the 'rukey csti- 

mator. It requires one to set three "tuning" ronstants. Up to the first constant all 

error weights are replaced by themselves, the least squares solution. After that until 

the next constant is reached all error weights are the second constant. This is like 

the plateau of the Huber or the peak of the Tukey. Between the second and the third 

constant each error weight within that range is replaced by lower and lower values anti 

once the error is larger than the third constant its weight is zero. This M-Estirnator 

is a "hard redescender". 

The M-Estimators are weighted least squares estimators. For instance, BMDP 
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Statistical Software (Dixon (1990)) uses an iterative procedure to minimize 

with 

All N of the wt are formed into a diagonal matrix W and the estimator becomes, 

where the data is defined for a Gauss-Newton procedure, 

The robust estimators provide the appropriate $(et) to use for determining the weights. 

The econometrician used to classical least squares can see M-Estimators in the same 

way except as least squares on transformed data where the transformations are pro- 

vided by the ever active d~ functions. The effect of this transformation is the resulting 

residuals, once all the iterations have been completed, are like "normal" ones. 'The 

logic behind this is we majr begin with errors that are not normal. As we apply the 

robust method it "ignores" outliers and on each iteration the resulting residuals will 

contain fewer and fewer outliers. The residuds thus will begin to look like they came 

from a normal distribution. The process gives residuals that are more "normal" look- 

ing. On the basis of this, Koenker (1982) maintains hypothesis testing is possible, 

on an asymptotic basis, using the transforrncd data but points out this does not work 

for an L-Estimator like least absolute errors. 

2.5.3 The Estimation Process 

One proble~n with M-Estimators is they are not always scale invariant. If we multi- 

plied all the errors by a constant the estirnate based on the transformed errors would 

not be that constant times the estinlate based on the raw errors. To overcome this 

problerr~ one divides the errors in the $ function by a robust measure of scale, such 

as the intcrquartile range of Least Absolute Errors' residuals. A better approach is 

to estirnate both P and o together. Before we begin one defintion from Dixon and 

Tukey (1963) is needed: 
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If yl 5 y2 /2 . . . 5 yn are the ordered obserl~ations of a sample, the pand-y 

times Winsorized observations are defined by: 

and their mean 
- Zl +Z2+...+2, 
Z = 

n = Yw (2) 
is the (gand-g times) Winsorized mean of the original sample. (p83) 

This is to be distinguised from a trimmed mean 

4s an example, some raw data and the Winsorized values are shown in Table 2.1 

taken from Dixon and Tukey (1968). Armed with this definition of "winsorized" we 

can examine one of the many algorithms to do this: usually variants of the following 

structure: 

l .  Start with a least absolute errors estirnate of P and a robust estimate of a 

(Harvey,  1977); 

2. For the Huber function replace those errors with absolute values greater than 

a wit h -a or +a. These are the "winsorized" residuals. The term a is the tuning 

constant associated with the $1 function. Subsection 2.5.2 gives values [or the 

tuning constants. For the Huber estimator this might be one and a half. Other 

estimators would "winsorize" using their Q functions; 

3. Use the "winsorized" errors to determine the weight each error receives; 

4. Find the weighted least squares estimate using the weights calculated using the 

"winsorized" errors, the so-called updated estimate of B; 
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I Raw Values I Once Winsorized I Twice Winsorized I 

%hie 2.1 : ;In Example of Raw and Winsorized Data 

5. Use this updated estimate of to obtain the new or updated errors to make a 

new robust esti~nate of o using, for example, the interquartile range of the new 

residuds ( Street, Carroll  and Ruppert, 1988); 

6. Now steps one to five can be repeated until the final estimates are those for 

which certain convergence requirements have been satisfied. These requirements 

ixsually entail the estimates not changing by a specified very small (lop*) amount 

from one iteration to the next or the residual sum of squares from the regression 

not changing by a specified very small (10-9 amoixnt frorn one iteration to the 

next. 

There are also a number of algorithms to calculate the asymptotic variance and co- 

variance matrix for the estimators and thus hypothesis testing is possible with M- 

Estimators. More details are provided in Subsection 2.5.4. The software package 

BMDP (Dixon (1990)) is used to generate M-Estimator in this thesis. 
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2.5.4 Hypothesis Testing 

Hypothesis testing with M-Estimators, speaking loosely, takes the usual form of co- 

efficients divided by standard errors. There are complications. These concern the 

estimated variance covariance matrix. While there exist f o r m u l ~  for the estimated 

variance covariance matrix of each M-Estimator, see equation (1 1) below for the Hu- 

ber M-Estimator, but statistical software such as BMDP (Dixon (1990)) does not use 

them. Rather they have another way of estimating the standard errors. This problem 

is recognized by Hogg, Ruberg and Yuh (1990) who point out programmes use 

other estimates of the variance covariance matrix. They also mention there is no con- 

sensus on which estimate is the best one to  use. We adopt the BMDP (Dixon (1990)) 

approach here as it is likely that economists would have calculated M-Estimators us- 

ing BMDP (Dixon (1990)) as it is widely available and easy to use. Thus our results 

are likely to have been conducted in the same manner as that adopted by other re- 

searchers. In addition, some other results concerning hypothesis testing are discussed 

below. 

Asymptotic Distributions of M-Est imators 

It is possible for the asymptotic distribution of the estimator to be normal no matter 

the density of the errors. This means t tests of hypotheses are feasible with M- 

Estimators. 

Yohai and Maronna (1979) show that 

and where 4' is the first derivative of 4 

For the Huber estimator the above asymptotic variance covariance matrix is esti- 

mated with 

(1/T - k) ( ( ( l  + (k/T)) ((l - m ) / m ) ) / 7 n ) ' e * ' e * ( ~ ' ~ ) - ~  (11) 
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where e* are the "winsorized" residuals and m is the proportion of errors such that, 

This estimate of the variance-covariance matrix has done well in a Monte Carlo study 

by Huber (1973) although one should exercise caution for T / k  lower than eight. If 

one looks at the expression for the variance covariance matrix one sees familiar terms 

except for an odd looking squared adjustment in the middle. The reason for this 

adjustment is an attempt to correct for not knowing the true density of the errors. 

The Tukey and the Hampel have their own correction factors. The programme we 

are to use to calculate our set of M-Estimators is BMDP (Dixon (1990)) as we feel 

others would have opted for this easy to use programme when employing the Hogg 

(1978) call to do both least squares and use a robust method. BMDP (Dixon (1990)) 

uses a Gauss-Newton algorithm to find estimates of 8. This process is iterative and 

ends when certain criteritia are met. One criterion is the weighted residual sum of 

squares from one iteration to the next change by a small pre-set amount. During the 

iterative process a matrix that BMDP (Dixon (1990)) calls the G matrix is inverted. 

The asymptotic variance covariance matrix of the estimated coefficients is calculated 

as a combination of the elements of the inverted G matrix. after the process has 

converged and the final weighted residual sum of squares adjusted by the number of 

observations and the number of estimated coefficients including a constant term as 

outlined by Dixon (1990. p1299). 

Iterative Weighted Least Squares 

Given a robust estimate, termed /? by Bickel (Discussion appended to Bickel (1976); 

page 167) creates the pseudo observations 

where 

The least squares estimate of P using the pseudo observations is the robust estimate 

using the original data. Bickel argues testing of hypotheses is possible with the 



CHAPTER 2. R,OB US?' ESTILVLI1ORS 40 

pseudo observations using least squares techniques. Koenker (1982, p235) also makes 

the same point. When the robust regression takes the form of estimating B and 

IT simultaneously Huber (1977, p38) maintains ordinary weighted least squares is 

one possible way to generate estimates. Obviously the $ function plays a major 

role in determining the weights. One way to view weighted least squares is as least 

squares applied t,o the transformed data. Now applying I he same idea suggesting the 

pseudo observations could be used in the classical manner to the iterative reweighted 

method. Wit h the latter method the robust est imate based on the original data is the 

same as least squares applied to the reweighted or tranformed data. The residuals. 

calculated using the original data, the robust estimate of P and an estimate of cr. 

after all iterations and reweighting should be close to "normal" ones, or as if they 

were generated from the norrnal distribution. The idea is to exploit this and conduct 

hypothesis tests in the usual way based on the estimated variance covariance matrix 

calculated as it would be for least squares but with the residuals-calculated using the 

original data, the robust estimate of B and an estimate of cr-after all the iterations 

are completed. These estimates are inconsistent. Schrader and Hettmansperger 

(1980) put it this way: 

The most natural tests derive from the iteratively reweighted 

least squares algorithm for computing g, . . .. If the final config- 

uration of weights is treated as fixed and given n przori, a least 

squares weighted analysis of variance could be done. This may 

be a reasonable procedure with small sample sizes; we have no 

evidence to the contrary. Asymptotic theory does not support 

it, however. (p96) 

For the Tukey estirnator this inconsistency produces lower standard errors than 

would be the case had the correct method been used. This would mean the t value 

would be higher than it should. To ovcrcorne this problern one can adjust the critical 

values from tables upwards (Magee (1991) points out it is often easier to adjust the 

test statistic) to produce the correct decision when testing hypotheses. Using the 

'I'ukey with a = 6 and a sample size of twenty (Gross, 1977) one uses at  the five 



CHz4PlER 2. ROB LST ESTLVL4TORS 

percent level 1.36 times the critical t (from tables) with degrees of freedom 

where T is the sample size. This procedure will produce critical t values about twenty 

percent higher. 

Other Met hods 

Usually in economics the researcher evaluates the Student t test when testing hy- 

potheses. If we entertain the possibility the et come from a distribution other than 

the normal, the Student t test will result in an acceptance of the null with greater 

frequency. The reason: the estimate of the variance can be come very large if the 

errors come from a distribution with fatter tails than the normal. 4 solution to this 

is to substitute robust estimates of parameters and scale into the test statistic. It is 

not obvious what degrees of freedom one must use to obtain the critical values from 

tables for purposes of conipsrison. 

One way to avoid this is to construct critical t values using the M-Estimators and 

Monte Carlo methods. For the rI'ukey (biweight or bisquare) estimat,or critical values 

have been worked out for the location model and shown in the box below the five 

percent level and a value of a = 9. 4 problem with these   net hods is they are riot 

comprehensive and are limited to given levels of significance and particular sample 

sizes. 

CK,ITICAL VALUES* 

Tu key 

a=9 

T 

10 

t 

2.57 
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Where the critical values are calculated in the above manner the t value is adjusted 

to ensure the robust test has the same level of significance of the most conservative 

test, usually that assuming a normal distribution. 

Another approach for location is to take the t values from tables and increase 

them by a constant where the constant is determined by Monte Carlo methods. For 

a Hampel (with a = 2.25, b = 3.75, c = 15.0) one would use 0.6(T - 1) degrees of 

freedom. For the Tukey with a = 9 this corresponds to using 0.75(T - 1) degrees of 

freedom for sample size of ten. For larger sample sizes the usual degrees of freedom 

suffice. Hogg (1979) recommends one use the Tukey with n = 6. Also, notice in the 

table the t values are close to two. Even though the critical values are for the case 

where a = 9 we are to do hypothesis testing in the usual rnanner with the Tukey 

M-Estimator as it is unlikely that econornic researchers made these refinements. ,41so 

the problem is compounded by the fact that the proponents of robust estimators 

like Hogg (1979) recommend an estimator yet the refinements apply to a different 

estimator not recommended. We opted for the recommended estimator under the 

supposition that is what others would have done. 

For the Huber Estimator of location and values of a between unity and two, one 

possible interpretation of Boos (1980) is the usual t statistic will be adequate for 

sample sizes of twenty or more. 

Summary 

If we calculate the M-Estimators in a weighted least squares manner, using alternative 

critical values by adjusting t values can be avoided. To do this requires consistent 

estimates of the standard errors. Also if one wanted to use adjusted t values it is 

necessary to have a consistent estimate of the standard errors. None of these options 

are possible with software we chose to use: namely L3PUIL)P. We chose to use BMDP 

as it is widely available and easy to use. We found with just a few commands, one 

can produce estimates of coefficients and standard errors without spending hours 

in manuals and learning a complicated language. Though BMDP does not use the 
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doing economic research in economics would have used BMDP to check their least 

squares' results. There are adjustments that can be used with the M-Estimators 

when doing hypothesis tests, although they are not used by those doing empirical 

work a great deal. These we feel are not widely known and nor do they apply to 

reco~nmended M-Estimators. For these reasons we use the BMDP estimates to do 

hypothesis testing. 

2.5.5 Monte Carlo 

The evaluation of M-Estimators with Monte Carlo methods has focussed on an esti- 

mate of the average often called location. These studies, such as Gross (1976), do 

not, except a column of ones for the independent variable. cover the linear regression 

case. One exception is Holland and Welsch (1977) although it is not comprehen- 

sive. They consider eight M-Estimators including the Tukey and the Huber. Using 

the normal distribution these estimators lose nine and six percent in efficiency for a 

sample size of twenty. With a long tailed distribulion, the Tukey achieves the lowest 

variance for sample sizes ten. twenty and forty. 

The general impression from Monte Carlo studies of M-Estimators in the regression 

context is they tend to outperform least squares in non-normal situations. The more 

difficult problem is to decide whether these studies can point to which M-estimator 

to use as an alternative to least squares. Monte Carlo studies point to the "hard 

redescenders" being better than other options. Examples of "hard redescenders" are 

the 'I'ukey and the Harnpel (See Subsection 2.5.3 for details of these M-Estirnators). 

The Monte Carlo studies also show the sacrifice of efficiency at  the norrnal with the 

"hard redescenders" can be high. One M-Estimator that is not a " hard redescender" is 

the Hirber estimator and does not give up as much efficiency at  the normal. It does do 

well when the dist,ribution has %t-tails" but not as well ILS the "hard redt:s(:enders". 

Looking at  the Monte Carlo results it seems wise to use a "hard retlescentler" and the 

Huber. This provides good efficiency at  the normal and gives excellent protection for 

more elongated distributions. '4 problem we have is the need to perform hypothesis 

testing and the "hard redescender" we use for this purpose is the 'I'ukey. 
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2.5.6 So Which M-Estimator? 

There is a clear message from the work on M-Estimators for econometricians. The 

normal distribution is not the only distribution to  consider. For instance some eco- 

nomic data has errors associated with fatter tailed distributions. Some economists 

recognize this and may employ some form of observation deletion when doing ernpir- 

ical work. An example is Coate and Uri (1988). Although, one might do much 

better with an M-Estimator. Relles and Rogers (1977) asked statisticians to make 

estimates of a location parameter using outlier rejection as a means for making those 

estimates. M-Estimators were also used to  make estimates. The estimates by the 

statisticians and the M-Estimators were compared using variances of estimates in a 

Monte Carlo study. Three M-Esti~nators of location prevail over the statisticians. We 

now look at  this study in more detail. 

Outlier Rejection and Robust Estimates 

Relles and Rogers (1977) are interested in the performance of the outlier reject- 

ing statistician relative to robust estimators. Five statisticians were shown fifty data 

"configurations". drawn from the Student distribution and they had to  provide their 

own estimate of location based on the "configurations". Also. robust estimates are 

made using 250 "configurations" from the Student distribution. To show the statisti- 

cians all the "configurations" would have been too time consuming. You can show the 

statisticians less than 250, but this requires a means of obtaining the distribution of 

their location estimates: had they been able to look at all 250 "configurations". This 

is done with a numerical procedure amounting to a Bayesian calculation and, using 

crude terms but which capture the essence of the procedure, the posterior distribution, 

of the statisticians' estimates, is calculated. Or as they put it: 

they are exactly the computations one would perform to obtain 

. . . Bayesian posterior means, (p109) 

Relles and Rogers has been cited by Simonoff (1984); inter alia, and to quote 

from the latter is constructive: 



CH-4 PTER 2. R,OB LET ESTLVIATORS 

One comparison of robust and out lier-de tection method esti- 

mates is a study by Relles and Rogers (1977). Rather than use 

the "objective" outlier detection procedures in the literature, 

however, they used the subjective opinions of several statisti- 

cians to trim off outliers. They found that this outlier detection 

procedure worked fairly well, although not as well as the robust 

procedures. (p8 15) 

While this result may not carry over to the regression case it is nonetheless reassuring. 

and we have also seen that M-estimators are nothing more than weighted least squares 

estimators. They are more familiar to us than we realize. Statistical software has not 

caught up with theoretical developments as Hogg, Ruberg and Yuh (1990) do point 

out that available programmes provide their own estimate of the variance covariance 

matrix. and thus hypothesis testing ~nus t  be done with caution, although as we point 

out others are likely to have made use of this software. In Monte Carlo studies, a 

Tukey estimator with a "tuning" constant of 6 is popular as it has performed well 

(and some say the best in the location case) with many distributions, and it has done 

well in forecasting (Fair (1974)) and as Hogg does suggest 6 we adopt it in this 

thesis. Hogg, Ruberg and Yuh (1990) do point out that the weighted least squares 

method does provide an estimate of the variance covariance matrix. As long as we 

realize it is an estimate it can still be used. Thus. in addition, we are to estimate the 

Huber with a " tuning" const ant of 1.5. We are careful to use robust starting values. 

from Least Absolute Errors, in the BMDP procedures. 

This section has the following struc7iure: 

1. The formula for the 0th regression quantilc an ingredient of L-Estimators. is given; 

2. The asymptotic distribution results are shown for the quantile estimate * ;  

3. For expository purposes: attention is paid to the least absolute error estimator and 

how it is used to conduct hypothesis testing. 
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The process underlying hypothesis testing with a robust estimator such as the least 

absolute error estimator is in principle no different from testing with ordinary least 

squares. We need an estimate, and an estimate of the standard error of the esti- 

mate. Usually with these a t-test would be constructed and the significance of the 

estimate checked with a critical value from the t-distribution. Some adjustments to 

this procedure are presented. 

2.6.1 Regression Quant iles 

The 0th regression quantile (0 < 0 < l) ,  results from minimizing the following with 

respect to p 

lf $ = 112, (16) is the same as minimizing the sum of the absolute values of the 

rcsiduals or the least absolute errors estimator. Although this looks formidable to cal- 

culate, there are algorithms (Narula  and Wellington (1986) and Rech, Schmid- 

bauer and Eng (1989)) that exploit the linear programming nature of the problem 

and can find a solution efficiently. 

Koenker  and Basset {Theorem 4.2, page 43) (1978) is reproduced exactly below. 

Let (_i+(Qt),f$(02), . . . P;T.(OM)} with 0 < 0, < 82 < . . . < %M < 1 denote 

a sequence of unique regression quantiles from model (16). Let [ ( O )  = F-l(Q), 

,$(S) = ( I($) ,0:  . . . , 0) E R" , and ,$ (0) = (Q) - p. Assume: 

(i) F is continous and has continous and positive density, f ,  at $(Oh), i = 1,2. .  . .M. 

and 

(ii) X,, = 1 : t = 1: 2 , .  . . arid li~n~,, T- 'X 'X  = Q, a positive definite niat,rix. 

converges in distribution to an (MK)-variate Gaussian random vector with mean 0 

and covariance matrix Q(O1, . . . , OILf; F) €9 Q-' where !2 is the covariance matrix of the 



CHAPTEIZ. 2. ROBUST ESTIMATORS 4 7 

corresponding M ordinary sample quantiles from random samples from distribution 

F. 

In the theorem R is the variance-covariance matrix of the A4 quantiles' with ele- 

ments, 

Let us try and make sense of this theorem. First T represents the sample size and 

the * indicates an estimate. Second c($) has many zero elements. In fact only the 

intercept has a non-zero element. This non-zero element is an adjustment equal to 

the 8th quantile. So if we look at the expression 

we note that the estimated value is subtracted from the true value except for the 

intercept where there is an adjustment made for each 8 equal to the 6th quantile. 

The quantile estimates of coefficients can be compared to their true values in the 

usual way but not for any constant terrn you need to estimate. The notation of 

the proof, especially concerning [(O) attempts to capture this notion concerning the 

intercept term. Notice the data xli = 1 : t = 1,2, .  . . includes a column of ones 

for the intercept. Missing is the fact that there rnust be T, t's. This theorem is 

paramount as it is the ~nost  important result of a procedure that allows hypothesis 

testing wit h L-Estimators. The key elements of the theorem are a set of qtrantile 

estimates for various values of 8, an adjustment to the inlerccpt, a gilren distribution 

with a continuous non-zero density and the data must have some benign features. In 

this environment the limiting distribution of the the difference between an estimate 

and its true value has a normal distribution. 

A special case of the regression quantile est.irriator is the least absolute error es- 

timator and is obtained when 8 = 112. Further the estimate is denoted as /3*(1/2). 

Without limiting ourselves to any distribution of the errors we can use the lirniting 

distribution of the quantile estimator to obtain the elements of the variance-covariance 
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matrix for this estimator. If we consider the median error it is going to be the me- 

dian of the errors. zero: the value dividing the distribution into two equal halves, or 

F (0) = 112. Recall & = FP1 (8) is the 8th quantile. If this is the case = 0, or 

those values of the errors for which P ( y  - X'$ < 0) = 112. The Q matrix which is an 

element of the limiting distribution of the quantile estimator has <l/2 thus we have 

UJ,~ = J,, and i equal to  the number of quantiles which is one, thus = and using 

(17) obtain 

giving the limiting distribution of ~ ~ ( 6 * ( 1 / 2 )  - ;9) as N(0,  [2 f (011-'Q-'). As we are 

not making any assumptions about f , we need to estimate f .  A way to do this has 

been suggested by Cox and Hinkley  (1974) and has 

and E ( ' ) ,  k(2) , . . . , d(T) are the ordored i?*(1/2) residuals. The residual G(,) is the one 

closest to T /2  that is zero. The main difficulty with this estimate is "d" . As can be 

seen from the formula for f(0) .  "d" is used to select which ordered residuals one uses 

to estimate the height of the density. A well-known (Rech, S c h m i d b a u e r  and Eng 

(1989)) result in Least Absolute Errors esti~nation is at  least k of the residuals are 

zero and thus it is possible if two zero residuals are selected and subtracted from one 

another the denominator in equation 10 will be zero and thus [2J^(0)]-' is very small. 

Thus the estimated variance covariance ~natr ix  is sensitive to the choice of "8. The 

statistical package SHilZAM ( W h i t e  (1978)) without rnuch justification calculates 

"d' as -7, where T allows. As the abymptotic distribution of the least absolute error 

estimator is normal and the variance covariance matrix is capable of being estimated, 

it is possible to perform t-tests of hypotheses concerning 0. But "8 is going to be a 

problem when k /T  is large. We should guard against this possibility by checking to 

see if the estimated variances produced for our data sets are too low. This we do in 
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Chapter Four. It is possible the t-test is sensitive to the chosen value of "d" and we 

now consider this issue. 

The least absolute error estimator is the 0.5th quantile estirnator, so the asymp- 

totic distribution results of the quantile estimator can be used to aid in the construc- 

tion of the "P-value" with this estimator. Recognizing that with the least absolute 

error estimator. 0 equals one half produces a particular expression for the variance- 

covariance matrix of the estimator. The constituent parts of this expression are either 

calculated from the data or estimated. The one item that is estimated is the height 

of the density function of the errors for the least absolute error that is zero. The 

econometrics package uses equation 19 to do this. We could rewrite this equation as 

notice hl(d) is positive and if the residuals are ordered frorn highest to lowest then it 

must be gf(d) is also positive. This can help us examine the question:-what happens 

to f (0) when "d" changes? This estimate could fall or rise depending on the sign of 

g(d )  - dyf(d), obtained from using equation 20 and the quotient rule and selecting 

the possibly non-positive parts of the resulting expression. If this latter expression is 

positive. a higher value of "d'' raises the "P-Value" . For every data set, at least for the 

least absolute value estimator i t  is possible to examine how the "P-value" changes 

when changing "d" around the value used by the econometrics package SHAZAM 

(White (1978)) . This suggests a Monte Carlo study is needed to see if the sensitivity 

is so great that it makes inference difficult. Such a study is performed in Chapter 

Five. 

21s regards the quantile estimator us~rally what is done is to estimate the coef- 

ficients based on a number of quantiles. These estimates are a function of 0 and 

de~loted 0" (8). Having done this, these estimates are then corrlbined with a weighting 

scheme. The weights denoted by n, thernsdves hrnctiorls of the chosen 0's. Possible 

weighting schemes that have been suggested are the following: 

1. The five-quantile with 0 = 0.1, 0.25, 0.5, 0.75, and 0.9 and ~ ( 8 )  = 0.5, 0.25: 0.4, 

0.25, 0.05; 
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2. The Gastwirth with 0 = 0.33, 0.5, 0.67 and n(0) = 0.3, 0.4, 0,3; 

3. The Tukey trimean with B = 0.25, 0.5, 0.75 and K(@) = 0.25, 0.5, 0.25. 

The symbol K captures the symmetrical weighting scheme and the quantile esti- 

mators are linear functions of the regression quantiles. Generally these estimators can 

be written as 

where K = [(n(O1). n(B2). . . . , 7r(B,))IT. We need to have some way of differentiating 

between the five-quantile, the Gastwirth and Tukey: one scheme is Bj, 0; and 8;. As 

~ ( 0 , )  and t, are symmetric B(K) is an estimator of ,h' and the limiting distribution 

of U/TD(K) - 13 is N ( 0 .  K~CIKQ-'). This is theorem 4.3 of Koenker and Basset 

(1978. page 46). The limiting distribution provides the avenue for statistical testing 

as long as we are able to obtain a consistent estimator for Q. However the elements of 

Q, d., require an estimate of f (EB)), f (to,). As in the case of the least absolute errors 

estimator we were able to estimate densities for the regression quantiles as 

where r = [TB] + d and s = [?'@]-d. Also note the estimate is sensitive to the value 

of "d". Considering the least absolute value estimator as a special case of estimation 

using quantiles, so far we have four alternatives to ordinary least squares. Further 

we can perform hypothesis testing using these four procedures although there are 

problems associated with their calculation. However this does not stop us using t h e ~ n  

as long as we realize the limitations of such an exercise. 

S .  

E( 

I So Which L-Est imator? 

One advantage to L-Estimators is they can be used to generate regression counter- 

parts to  the location estimator of Gastwirth and Tukey's triniean, see items 2. and 

3. above. With the regression quantiles. we get three estimators to choose from, four 
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counting least absolute errors. Monte Carlo work on these estimators is sparse partly 

because it is well known that they will outperform least squares for a number of error 

densities where the median is preferred to  the mean on efficiency grounds. These in- 

clude densities leading to Mandelbrot's concerns with economic data. It also includes 

densities with variances that are defined such as the double exponential. We covered, 

in Chapter One the applied study that has used all four estimators, Swinton and 

King (1991) and with the particular data of interest not much is gained using these 

robust estimates. We propose to do the same. Koenker and Basset (1982) do point 

out the loss of efficiency of the least absolute errors estimator can be "quite high". 

This estimator can be better in non-normal situations. It is the maxi~num-likelihood 

estimator for the double exponential or Laplace distribution. 

In the context of tests of location, we noted earlier that for M-Estimators any 

critical t value may have to be adjusted or the degrees of freedom need to be changed. 

Similar adjustments are recommerided for estimates of location using the L-Estimators 

oPTukey and Gastwirth by Patel, Mudholkar and Fernando (1988). Even though 

these adjustments exist: few employ them in empirical work. T ~ I I S  we do not employ 

them here as we want to use the methods that the original researchers used to test 

hypotheses. Also these adjustments are for the location case which we do not have. 

Trimmed Least Squares 

Another estimator that has been used by (Hallman and Kamstra (1989)), for 

example, to  deal with outliers is the trimmed least squares estimator. This estima- 

tor. like the M-Estimators, has an easy characterization. One begins by selecting a 

trimming proportion a between zero and one half. Applied work uses five, ten and 

twenty percent and we use the same. Using a quantile estimator determine b*(rr) and 

:')*(l - a). Drop all observations where 
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and use least squares on the remaining observations. This is the trimmed least squares 

estimator and its limiting distribution is normal and the variance covariance matrix 

is easy to calculate. Monte Carlo work, Ruppert and Carrol (1980) and de Jongh 

and de Wet (1985) show this to be a good alternative to least squares where large 

errors are possible. Empirical studies have used this estimator, for example Connolly 

(1989). Even though Patel, Mudholkar and Fernando (1988) recommended using 

adjusted degrees of freedom we do not use l h e ~ n  as others have not done so. tQe do 

not wish to complicate matters but are to use the methods that others have followed 

when doing empirical work. 

Summary and Conclusion 

Chapter One proposes a novel idea. Given that economists use data to substantiate 

xrarious economic ideas, obtain data used in empirical work and determine if robust 

estimators give different results from least squares when using robust estimators. 

Before showing exactly how to i~nplement this idea, which is done in the next chapter, 

Chapter Three, details of hypothesis testing and some important features of the robust 

estimators are provided here. On the basis of available software, hypothesis testing, 

Monte Carlo studies and the robust estimators used to date in economics we are to use 

the Tt~key and Huber (M-Estimators) and four quantile estimators (L-Estimators). 

One of the quantile estimators is also called the Tukey but should not be confused 

with the M-Estimator of the same name. The least absolute error estimator can be 

both an L-estimator and an M-Estimator but we place it in the former category for 

this thesis. We also propose to use the trimmed least squ'ares estimator, using two 

trimming proportions. Thus. in total, we use eight robust estimators in this thesis. 

Although there exist adjustments that can be made to critical values for hypothesis 
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Criteria to Compare Robust to 

Least Squares 

3.1 Criteria for Comparing Estimates 

3.1.1 Introduction 

I 11 the previous chapter: we pointed out that st,atisticians and econornetricians have 

been suggesting that for diagnostic purposes researchers should compare ordinary 

least squares and robust methods. Casual observation irldicates this suggestion is 

rarely taken seriously. il possible reason for this is that data typically used in economic 

research does not result in robust methods making any difference. 

The purpose of this thesis is to investigate this issue. What does it mean to 

say that robust methods produce "different" results? Fourteen metrics are provided 

below to address this question: falling into fivt: general categories. Four criteria fall 

into Category One: called I Coefficient Estimates' Differences / 
Criteria I and 11 which are rncasures comparing the ~nagnitudes of particular 

estimates; 

Also in Category One are Criteria 111 and IV which are magnitudes relative to 

standard deviations. 
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Making up Category Two: l ~ e s t s  of Differences I are: 

0 Criteria V and V1 being tests of the joint "null" mentioned in Chapter One: 

either outliers are not a problern in economic data or applied economists use 

the Hogg (1978) technique and only publish least squares results if they agree 

with a robust estimate. 

[variance ~ifferences ] comprise the Third Category: 

0 Criteria VII and VIII concern themselves with the variances of estimates. 

0 Criteria IX and X use forecasting rnethods to establish whether robust estimates 

The fourth category is called  oreca cast in^ Differences 

are different frorn least squares. 

and: 

The final and fifth category is called the I Hypothesis Testing Differences' Category 

made up of: 

0 Criteria XI through XIV which use hypothesis testing as a basis for comparison. 

For each criterion is provided a subjective opinion of how different on that criterion 

the robust estimators need to be, to be thought "different" from least squares to a 

"significant" degree. The idea is to provide target levels for the vaiious criteria. 

nearly all the ones mentioned in this chapter. If in the next chapter where the actual 

outcomes are given, the calculated number exceeds the target then least squares and 

robust rnethods are viewed as different. For example, to have the robust techniques be 

viewed as different on the first criterion the average absolute percentage change must 

be above fifteen percent, where this number, fifteen, rcflects my personal judgement. 

In addition, each criterion is provided a subjective "grade" on a scale of one to ten 

to  indicate its importanct:. Here a "grade" of ten indicates extre~nely important and 

lower grades indicates less importance for the purposes at  hand. 
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3.1.2 The Fourteen Criteria 

Coefficient Estimate Differences-Category One 

Criterion-I Percentage of all robust estimates diflering from least squares by 

more than thirty percent. Also by more than f i f ty  percent. 

This criterion builds the distribution of the percentage change in the estimated slope 

coefficients relative to a "cutoff" (such as used by Coursey and Nyquist (1988, 

p607) ) and a decision made as to whether robust analysis is different from least 

squares. The average is calculated fro111 the many coefficient estimates: both robust 

and least squares. In the next chapter where the results are given we provide the 

sa~nple sizes for each calculation. At the end of this chapter is a summary of the 

sa~nple sizes. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

fifteen for changes more than thirty and above ten for changes more than fifty. 

0 In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve a seven. Usually in economics less attention is given the size 

of a coefficient and more weight put on the estimated standard errors. If one 

objects to this, the size has a high "grade" relative to other criteria. 

Criterion-I1 Percentage of the regressions in  which ut least one eskimated slope 

coeficient chmges by more than thirty percent. Also, changes by more 

than fifty percent are noted. 

In one of the few studies that attempts to compare least squares with robust estimators 

Coursey and Nyquist (1988. p606) adopt this thirty p m w t  criterion for the largtat 

percentage change in a coefficient and intercept in nine regressions. all with the samt: 

number of coeflicients. While the thirty and fifty percent are arbitrary we adopt 

thern here as Coursey and Nyquist seem to feel it was appropriate. In a footnote 

Coursey and Nyquist (1988. p607) report the number of cases where the largest 

difference is fifty percent for another data set. 
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in my subjective judgernent, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

fifteen for changes more than thirty and above ten for changes more than fifty. 

In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve a seven. Usually in econornics less attention is given the size 

of a coefficient and more weight put on the estimated standard errors. If one 

objects to this, the size has a high "grade" relative to other criteria. 

Criterion--I11 Percentage of the regressions in which at least one estimated slope 

coeficient changes by more than one ordinary least squares ' standard deui- 

ation. Also changes by more than two standard detxiations are calculated. 

Swinton and King (1991, pp446-47) adopt this criterion for determining whether 

robust methods provide coeficient estimates that differ significantly from those of 

least squares. Economists often work with an estimate and using the idea of repeated 

samples will build a confidence interval for an estimate that is based on the point 

estimate plus or rninus some rrlultiple of the standard error of that estimate. The 

reason is, for the normal distribution ninety-filre percent of the estimates from repeated 

samples should lie with two standard deviations of the estimate. A robust eslimate, if 

it falls outside of that confidence interval of the least squares' estimate, is regarded as 

different frorn the least squsrcs' estimate. In a sense. the robust estimate is producing 

an u~n~sua l  value, relative to the confidence interval that is expected in repeated 

samples and thus is regarded as different. A problem that we face is the interval 

produced with the least squares' estimate and the estimated standard error of the 

estimate, is itself an estimate of this confidence interval. However it has been used to 

compare estimates and we use it in l he same manner. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is more 

than eighty-two for one standard deviation and more than twenty-eight for two 

standard deviations. 
l, 
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0 In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an ten. This high grade reflects the i~nportance attached, 

either rightly or wrongly, to the estimated variances in economic hypothesis 

testing. 

This is a critical criterion and the hurdle has been set at  eighty-five percent for one 

standard deviation. It is twenty-three percent for two standard deviations, for reasons 

explained below. If we suppose that the coefficient differences are distributed normally 

with mean zero (the null hypothesis) then for any equation the biggest coefficient 

difference, which is the measure relevant for this criterion, will not be distributed 

normally. A rough calculation was performed to find (on the null) the percentile 

corresponding to the biggest coefficient being more than one (or two) OLS standard 

deviation(s). These percentiles were estimated to be eighty-five and twenty-three 

respectively. This calculation is described below. 

We have ninety regressions and on average there are five parameters per regres- 

sion. 

Assume that (the null hypothesis) the estimated coefficient differences are are 

distributed normally with mean zero. 

These assumptions imply for thc average equation, the probability that at  least 

exceeds one parameter exceeds two least squares' standard deviations is: 

1 - (0.95)" 

and the probability that at least exceeds one parameter exceeds one least squares' 

standard deviations is 

Criterion-IV Percentage of robust estimates diflering from least squares' by 

more than one standard deviation. Also more th,an two standard devia- 

tions. 
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This builds a distribution of the extent to which slope estimates differ relative to a 

benchmark. The benchmark is the least squares' standard deviation. 

In my subjective judgement: on this criterion the robust estimators are judged 

"different" from least squares to  a "significant" degree if this percentage is above 

thirty-two for one standard deviation. and above five for two standard devia- 

tions. 

In my subjective judgement: on a scale of one to ten, this criterion is important 

enough to deserve an ten. This high grade reflects the importance attached, 

either rightly or wrongly, to the estirnated l~ariances in economic hypothesis 

testing. 

Tests of Differences-Category Two 

Criterion-V Test of whether the intercept and slope are equal to zero and one 

in a regression of the least squares' slope estimates on the robust slope 

estimates. 

The rationale behind this is to see whether there is some systematic way in which or- 

dinary least squares differs from robust regression. Hogg (1979) counsels researchers 

to perform least squares and robust methods. Further, if these provide different es- 

timates they should both be reported. Causal empiricism indicates very few robust 

results are reported. This may be because {.here are no differences when using eco- 

norriic data. The issue of whether or not there are differences has not bcen studied 

before and thus we do it here. We make an adjustment for heteroskedasticity by di- 

viding the observations by the square root of the estimated variance for the ordinary 

least squares' estimate. 

In my subjective judgement,, on this criterion the robust estimators are judged 

"different" from least squares t o a  "significant" degree if this percentage is above 

five percent. 
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In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve a six. This "grade" is given as the measurement error problem 

may not be overcome. 

There is one other problem. The independent variable is measured with error in the 

regression of interest which is 

OLS = a + E ( R 0 B I J S T )  + to[, 

where E (R0BUST)  is the "true" variable. But we only observe 

ROBUST = E(ROBGrST) + trobust 

making the obvious substitutions gives 

OLS = a + PROBUST + c,[, - t,,b,st 

and the disturbance cols - ,!3~,,~,,~ is correlated with the the variable ROBUST which 

violates an assumption of least squares. Let us examine this estimator in more detail 

b = 
(1/T) C ROBUST X OLS 

(1 p) C RO  BUST^ 

seting a = 0 for ease of exposition 

ilssuming Cm(trObuSt, E ( R 0  BCJST)) and CO'O(F,~,, E(120BGiST)) are zero the bias 

The usual negative bias in b is olfset to some degree if C O U ( C ~ ~ ~ ~ ~ ~ ,  to[,) is positive. 

This is likely to be the case since both least squares and robust estimates are based 

on the same data . If least squares givcs an overestimate of B, we expect the robust 
I 

estirriators to "make a mistake" in the same direction. VG7hen least squares is "out", 

it is likely the robust results are awry in the same direction. Even though the usual 

downward bias will not be completely removed, for want of a better surrogate, this 

measurement error is ignored. 
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Criterion-V1 x b n d  Normal test of whether the sets of coeficients-least squares 

or robust-are dzflerent from one another. 

This criterion uses a X 2  and non-parametric tests to  determine if the sets of coefficients- 

least squares or robust-are different from one another. Assume: 

1. Each coefficient estimate can be considered independent and as this may not be 

the case for more than one coefficient taken from the same regression, the test is 

also performed on a sample that includes one coefficient taken at random from 

each of the regressions; 

2. Each coefficient estimate is normally distributed, at least asymptotically. 

If the above conditions are met, 

could be seen as a y2 with the degrees of freedom equal to the number of coefficients. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

five percent. 

In my su bjcctive judgement, on a scale of one to ten, this criterion is important 

enough to deserve an seven but the non-parametric tests are given a nine. The 

y2 test has a higher grade than the test in Criterion V as we select randorn 

coefficients here. Non-parametric tests get the highest grade as they require no 

distributional assumptions. 

could be made to the denominator of "testsix" reflecting the stochastic nature of brobust 

and capturing the possible covariance between the least squares and robust estimates. 
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However to obtain a "good estimate of the covariance could prove to be a difficult 

task and thus this correction is one of the items to include in the future research 

section. For this reason this test must at this stage rank lower than the Vth criterion. 

One problem we face here is that the degrees of freedom are going to be large. Thus 

when we cannot interpolate because available tables have at most degrees of freedom, 

v, equal to 200 we use the approximation (Murdoch and Barnes (1976)) that the 

critical value for degrees of freedom (v) can be calculated from: 

and $ is the standard normal "ordinate" associated with the area in the tail of the 

normal distribution such as. but not limited to. 1.96. 

This X' test is supplemented with two non-parametric tests of whether the least 

squares' sample is different from the robust sample of coefficients when considering 

both the size of the estimated coefficients divided by the the estimated standard 

errors of those coefficients. One way to bring these separate elements together is to 

use a non-parametric test to determine if the two samples come from populations that 

differ as to location. We can also test whether the samples come from populations that 

differ in variability. To borrow terminology we try to ascertain with these two tests 

whether there is any "treatment" effect both in location and variability from using 

robust methods rather than least squares. The first of these two non-parametric tests 

is thc Wilcoxon Rank-Sum test. The least squares' coefficient estimates divided by 

their standard deviations are the control group and the robust coefficient estimates 

divided by their standard deviations become the "treatment" group. One coefficient 

and associated standard error is selected from oach regression. This test is selected as 

the it is not the case that observations for least squares' and robust are independent of 

one another. Indeed they are paired with each other. 'l'he original research used least 

squares' and we have used robust to estimate the same coefficient and standard error. 

This test is also appropriate as it relies not only on whether least squares' or robust 

is larger, but also considers the size of the difference. Under the null hypothesis of no 

effect from robust estimation we would expect the direction (plus or minus) and size 

difference to be random over the sample. There should be as many pluses as minuses 
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and large changes with small changes. Also the assignment of pluses and minuses to 

large and small changes should be random. We consider the alternative that there is 

a difference between the least squares' estimated coefficient divided by the standard 

deviation and the robust estimate of the coefficient divided by its standard deviation. 

One proceeds as follows: 

1. Pick a coefficient at  random from each regression and divide by its standard 

deviation, call these g;; 

2. Make a robust estimate of the same coefficient and divide each by its standard 

error, call these X;; 

3. Calculate T which is the sum of the differences of ranks with the least frequent 

sign. If there are less negative differences between :(/; and X,, then sum these 

ranks, otherwise sum the ranks associated with the positive differences. 

4. As our sample size is greater than twenty then 

where 

has a standard Normal distribution and N is the number of matched pairs of 

estimates. 

The Wilcoxon Rank-Sum test tests for differences in location. Another question 

we could ask is wliet,her the least squares' cstirnate is morc dispersed around tha 

"true" value than is a robust methodc? The Siegel-Tukey (1960) test answers this 

question. The test orders both samples, niixed together but keeping track of which 

is least squares and which is robust, frorn srnallest to largest and then assigns ranks 

such that the smallest receives a one, two and three are given to the two largest, four 

and five to the second and third lowest. six and seven to the third and fourth highest 
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and so on: an alternating method. Under the null the mean rank, assigned in this 

way. of least squares should be equal to the mean rank of the robust sample. If the 

alternative is correct, more observations from the more variable population, are going 

to be at the ends of the the ordered mixed samples and be given a lower rank with 

the alternating method. 

l. Pick a coefficient at  randorn from each regression and divide by its standard 

deviation, call these yi; 

2. Make a robust estimate of the same coefficient and divide each by its standard 

error. call these X,; 

3. Combine yi and X; in a single series and order them from highest to lowest; 

4. Assign ranks according to the alternating method; 

5. Calculate RI which is the sum of the ranks for the one of the estimators. 

6. As our sarnple size is greater than twenty then 

has a standard Normal distribution and the f in the numerator must be chosen 

so as to make z smaller. 

Both these tests measure different aspects. The Wilcoxon Rank-Sum test concerns 

itself with location. The Siegel-Tukey focuses on variability. The observations we 

have are the estimated coefficients divided by estimated standard errors. 

Variance Differences-Category Three 

Criterion-V11 Pewen,tage of th,e esti,mat~d slope coeficierrts for which, th,e robust 

estimated variance is lower than the estimated least squares variance. 

Assuming a correct specification, least squares and robust estimators are both unbi- 

ased and thus there is a need to examine other features such as variances. Although 
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a lower estimated variance does not necessarily correspond to a lower actual variance 

i t  should be of interest to compare estimated variances. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is 

greater than or equal to fifty percent. 

In my subjective judgement, on a scale of one to ten, this criterion is important, 

enough to deserve an four. This criterion receives a low "grade" as we suspect 

the estimated variances may be understated. 

Criterion-VIII Average percentage change in the estimated variance for those 

instances out of the many estimated slope coeljicients for which the esti- 

mated 'robust variance i s  smaller than the least squares variance versus 

the average percentage change in the estimated variance for those instances 

out of the many cases in which the ordinary least squares estimated vari- 

ance i s  smaller. The median percentage change is also calculated. 

In m y  subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to  a "significant" degree if this percentage is above 

fifteen and above ten percent for the two possible outcomes (each of robust or 

least squares smaller) for each of the average and the median. 

In m y  subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an four. This criterion receives a low "grade" as we suspect 

the estimated variances may be understated. 

Forecast Differences-Category Four 

Criterion-IX Percentage of the forecasting e q u a t h s  jor wh,ich jorc-casts using 

robust estirnates bent forecasts using least squares' estimates on a mean 

absolute percentage error criterion. Also calculated for th,e median absolute 

percentage error. 
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A similar criterion is employed by Hallman and Kamstra (1989) and Fair (1974). 

For each of the forecasting equations ten percent of the observations are removed from 

the end of tirne series data and randomly from cross-section data, estimation is un- 

dertaken using both least squares and a robust method, and the omitted observations 

are forecast. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

seventy and below thirty percent. If the percentage is in some sense an interme- 

diate one one might be equivocal in recommending either technique. We have 

set the zone of indifference at forty thus robust is different for percentages shove 

seventy and below thirty. 

In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an eight. This "grade" is given as forecasting has an impor- 

tant role in econo~netrics and should be ranked higher than say the criterion 

concerned with the size of coefficients. 

Average Mean Absolute Percentage Error Comparison 

Criterion-X Average improvement in  the m,ean absolute percentage error for 

those inwtances out of the Jorecasting equations for which, the robust fore- 

cast is superior versus th,e improvement in, the average mean absolute 

percen,tage error for th,ose inslances out of the forecasting  equation,^ for 

which the ordinary least squares forecast is superior. This is also done for 

the improvement in  the median, absolute percentage error. 

'The reason for this calculation is to determine in what type of environment does each 

estimator do wcll on forecasting consicierations. 

In my subjective judgement, on this criterion the robust estimators are thought 

"different" from least squares to a "significant" degree if this improvement is 

higher for the robust estimators. 
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In my subjective judgement, on a scale of one to ten, this criterion is important 

enough t o  deserve an eight. This "grade" is given as forecasting has an impor- 

tant role in econometrics and should be ranked higher than say the criterion 

concerned with the size of coefficients. 

Hypothesis Testing Differences-Category Four 

Criterion-XI Percentage o j  the tested coe@cien,ts for which robust estimation 

changes the hypoth,esis that the author deemed to be of interest. 

For each of the many tested coefficients the hypothesis test is the one the author of 

the study saw as important. \Ye are concerned with those instances where the robust 

regression changes the results of an important hypothesis test. 

This is the most important criterion and the hurdle we have set is five percent. 

It is this low as hypothesis testing is so fundamental to empirical work and anyone 

using the results of empirical work would be worried if five percent of the results did 

not stand up to scrutiny. In addition to the above, four popular measures of aberrant 

observations are used, with each data set. to determine if there are outliers. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

five percent. It is this low as hypothesis testing is so fundamental to empirical 

work and anyone using the results of empirical work would be worried if five 

percent of the result,s did not stand up to scrutiny in much the same spirit in 

which a five percent level is chosen for a Type I error. 

In my subjective judgement, on a scale of one to ten. this criterion is important 

enough to tieserve an ten. it is the rnost important. 

In addition to the usual t and F tests, randornization tests of hypotheses, a testing 

methodology alleged to be robust. are also used to test the same hypotheses. AS 

described in Kennedy (1993), a randornization test recalculates the original test 

statistic after shuffiing the data. Repeating the process builds a "distribution" of test 
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statistics allowing the researcher to decide whether the original test statistic is very 

different from the "distribution" of test statistics. 

In the regression context we randorrily shuffle the relevant independent variable. 

redo the test and calculate the percentage of times the t values from many shufiles 

exceeds the original t value; this estimates the test's P-Value. Armed with this P- 

Value it is possible to make a comparison with the original P-Value from least squares 

and determine if the hypothesis test outcome is changed. An alternative way of 

conducting the randomization test is also employed. The generic procedure remains 

the same however one uses the residirals from a regression of the dependent variable 

on the data bar the independent variable being subject to the hypothesis test. known 

as residualized "y" . The variable being used in the hypothesis test is residualized as 

well. Kennedy (1993) indicates that it is not clear which method is superior. 

Criterion-XI1 Percentage of tim,es the P-value gets bigger using robust regres- 

sion. 

The E'-Value is the probability under the null hypothesis of obtaining a test statistic 

value greater than or equal to the value actually obtained. As pointcd out by Gold- 

berger (1991 pp 238-240) among many others, since it is the readers of research who 

must make a decision on the outcome of the hypothesis test, the test statistic's 1'- 

value should be reported rather than simply declaring coefficients that are statisticalljr 

significant at an arbitrary significance level. 

In my subjective judgcment, on this criterion the robust estimators are judged 

"differe~lt'~ from least squares to a "significant" degree if this percentage is less 

than or equal to ten. and equal to. or above ninety percent. For each coefficient 

there is a P-Value produced by least squares and also by the robust estimators. 

If many of the P-values are smaller with least squares then many will be larger 

with the robust estirnator. Based on this we have to decide if robust is "different" 

from least squares. So. if only thirty percent of the P-values are larger with a 

robust estirnator this means seventy percent are smaller with least squares and 

it is the "seventy" which gains at tention. The problem is how do you set these 
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bounds? This is not an easy question to answer but on a subjective basis they 

have been set at  less than or equal to ten, or greater than, or equal to ninety. 

In my subjective judgement, on a scale of one to ten, this criterion is impor- 

tant enough to deserve seven as the results have been covered in the tests of 

hypo theses. 

Criterion-XIII Average percentage change i n  the P-value when it gets larger. 

Also the average percentage point ch,ange. Also calculated are the medians 

of these changes. Further, all of this is calculated for the P-value becoming 

smaller. 

In my subjective judgement, on this criterion the robust estimators need to are 

thought "different" from least squares to  a "significant" degree if this percentage 

is above eighty percent for the rneans and above sixty percent for the medians. 

In rny subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an selJen. 

P-values are reported as deci~rlal fractions of one, for example, 0.049 and this indi- 

cates a marginal significance level. Because of the link to significance levels we also 

show changes in these decimal fractions of the P-value and refer to these changes as 

percentage point changes. 

Crittxion-XIV Percentage of times the P-value changes by less than five percent 

or jive percentage points. Also ten and tu~enty percent or ten and h e n t y  

percentage points. 

In my subjective judgement, on this criterion the robust estimators are thought 

"tlilfcwnt" from least squares to a "significant" degree if this percentage is above 

five percentage points for the means, and above Iwo percentage points for the 

medians. 

0 In my subjed,ive judgement, on a scale of one to ten, this criterion is important 

enough to deserve an seven. 
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3.1.3 Sample Sizes 

In the following chapter regression estimates, both robust and least squares are made 

of many slope coefficients from ninety data sets typical in economics. The criteria of 

comparison, in this chapter, make use of the estimated coefficients in addition to their 

standard deviations. It must be pointed out the sazmple size applicable to the empirical 

appraisal of the data sets on the basis of these criteria differs from criterion to criterion. 

For instance, not all of the slope coefficients wcre subjected to conventional hypothesis 

tests as the original research may have included many variables in a regression but only 

chose to test a subset of the~n.  'This subset sometimes only comprises one coefficient. 

Further some of the robust estimation methods cannot be employed with srnall sarnple 

sizes. so the nilrnber of "observations" for the robust estimators varies from technique 

to technique for the same reason. The number of estimated coefficients varies from a 

high of two hundred and twenty-nine for the Least Absolute Errors Estimator to  a low 

of forty-nine for the Five-Percent Trimmed Estimator. Table 3.1 presents the number 

of coefficients. Where a description of a criterion refers to a coefficient it is the nu~nbers 

in the table that are used. As the L-Estimators use linear programming methods to 

obtain estimates there is the possibility some solutions are going to be non-unique. 

But to do hypothesis tests one needs unique solutions. As the important focus of this 

study is hypothesis tests, the regressions, where there are no unique solutions, are not 

used. Where this effect is most evident is for the Five Quantile estimator. Also the 

trimmed estimators do not function well if the number of observations is small. So the 

trimmed estimators also lost data sets. Another reason is the trimmed estimators rely 

on initial quantile estimates to identify which observations to discard. The particular 

quantiles depend on the trimming proportion. If the trimming proportion is low with 

iL  small number of observations the necessary quantile cannot be calculated. The 

rlurrlber of estimated regressions corresponding to the numbcr of coefficients of Table 

3.1 is given in Table 3.2. 

Criteria [X and X which use forecasts, refer to  forecasting equations and Table 

3.3 gives the number of equations for which forecasting is possible with each estimator. 
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Estimator 

Least Absolute Errors 
Five Quantile 

Gastwirth 
Tukey L-Estimator 

Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

Sample Size-Cot:fficients 

Table 3.1 : Sample Size-Coefficients 

Estimator 

Least Absolute Errors 
Five Quantile 

Gastwirth 
'I'ukey L-Estimator 

Ten Percent Trirnmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

Sample Size-Regressions 

Table 3.2: Sample Size-Regressions 

Estimator I Equations Forecast 

Table 3.3: Equations Fbrecast 

-- 

Least h bsolut e Errors 
Ten Percent Trirnrrd 
Five Percent Trimmed 

Hi1 ber M-Estimator 
Tukey M-Estimator 

64 
31 
11 
6 6 
6 5 



Chapter 4 

Results 

4.1 Introduction 

T his chapter presents the results for our data and the criteria outlined in the pre- 

vious chapter. Recall the previous chapter outlined fourteen ways to compare 

robust estimates with estimates from least squares. This chapter gives the outcomes 

of those criteria for comparison. The results are provided in tables and care has been 

taken to ensure each table is explicitly linked to a method. Commentary is provided 

for the tables. The aim is to see if all the criteria point towards a particular conclusion 

on the basis of five categories. It is as if we have a "null hypothesis" of robust estima- 

tors being no different from least squares and this chapter determines how that "null" 

is altered as we consider the five categories which include rneasures that allow one to 

see if robnst estirnates are difkrent. We are interested to see if robust methods would 

have resulted in a widespread reversal of the original results or caused those original 

researchers to say "the robust methods are trying to tell us something". prompting 

further investigation. Based on the studies in Chapter One our prior belief is that 

robust estirnators make no difFerence. It appears, however, that on the basis of some 

of the criteria examined here that robust estimators do indeed make some difference. 

For the variance criterion the robust estimators made so much of a difference that the 

variance results are treated with caution. This caution led to a further examination 

of the robust variances in the next chapter. 
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4.2 The Data 

To make the comparisons, described in the prel~ious chapter, a collection of data sets 

is required. Also, one has to be fairly sure the data sets are those the the original 

researcher used and that the results of the researchers do not differ markedly from 

those we obtained upon replication. We began with about eighty studies which were 

reduced ultimately to forty-four published studies in economics which could be used 

here. Exact replication is not always possible in economics, as Dewald, Thursby 

and Anderson (1986) have found. The process of selecting data sets, in this thesis, 

uses a weaker definition of replication, in anticipation of not being able to replicate 

exactly each study. For twenty-six studies exact replication was possible. 

For eleven studies although exact replication was not possible. the coefficients were 

sufficiently similar that we judged them to be usable for our purposes. In two of these 

the coefficient estimates are matched to two decimal places. To give the reader a 

sense of what subjective judgements were ~nade  here, the worst nine are reported in 

Table 4.1. The first four of these have the biggest differences. In these studies we have 

ignored differences in the intercept (on the grounds that interest is seldom shown in 

such estimates) and have subjectively judged the replication to  be close enough for the 

studies to be employed in our sample. In all cases the test statistics used to test the 

hypothesis of interest was little affected. and and continued to produce the same test 

result. These examples show what judgements were made. What is important here is 

our goal: we want to be confident that we are working with the same data set that 

the original authors used. Few would argue that, for the nine really proble~rlatic data 

sets, we are working with a completely different data set than the one originally used. 

In a11 cases here this is the data set that the authors said they used. It is interesting 

that most of the nine come from the Journul of Money, Credzt and Banking. For 

some of those data sets the observations were captured clectronically by hand from 

typewritten pages provided by the journal. The pages of data had been provided to the 

journal by the original authors. Other data sets were transferred from microcomputer 

floppy diskettes. We are confident that we are working with the original data. 

A data set is also eligible for inclusion if the original inference is replicated by 
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Study 
Boyer and Adams 

Edwards 

Kim 

Kassekh and Wilbratte 

Gerlach 

Ladenson and Bombara 

Nerlove 

Replicated 
0.00144 
0.421 

-13.619 
1.3286 
-0.3084 
-0.0798 
0.353 
0.054 

-1.4168 
0.357 
0.433 
-0.180 
0.326 

Table 4.1: Rounding 
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rounding the test statistic to two decimal places (but not so as to reverse the original 

conclusion). There are two studies in this category. Berndt (1991) includes exercises 

which use economic data sets, and describes replications as "close", and in some 

instances gives the least squares results for a data set or updates an older data set. 

These seven data sets are included. This is the process by which studies are selected. 

The final number of studies (total forty-four) in each category is given in Table 4.2 

and note ~nos t  of the studies fall into the exact replication category. The extent of 

exact replication is much better than obtained in other replication work. for exa~nple, 

Dewald, Thursby and Anderson who obtained a success rate of one point three 

percent as pointed out by Mirowski and Sklivas (1991). Our success rate, on their 

ternis for lea& squares is just over fifty percent but in fairness about thirty data sets, 

in addition to the four described above, were obtained for which replication proved 

difficult and thus were discarded. But we feel the above process of selection is a 

fair one and representative of econoniic data. Given the problem with replication in 

economics we have done well to produce a data set of data sets. 

In Chapter Two we saw how changing assumptions about the distributional form 

of the errors can have an i~npact on the regression. robust or otherwise, we might use. 

With this in mind. the rcsitiuals from the ninety regressions are tested for normality 

using a y2 goodness of fit test. testing whether the actual distribution of the residuals 

in groups follows a normal distribution. The test has been applied to residuals by 

Klein (1974). Of the ninety regressions, the null that the errors follow a normal 

distribution is rejected for 45.6 percent of the regressions. This provides some comfort 

that the data is not overly representative of only normal residuals or of only non- 

normal residuals. In fact. based on the percent failing the normality test the odds are 

skewed somewhat in favour of least squarcs. 

The data. for this thesis. making it through the above selection process comes fro111 

three sources. The book by Berndt serves as a source for thirteen of the studies. 

The Journal oj Money, Credit and Banking requires authors of articles to submit the 

data on which their results are based, The journal makes these data sets available to 

others for a norninal fee. Most data sets from the 1980's were purchased. The process 

of replication. described above, produced fourteen studies for which the data could 
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I Type of Replication I Number I 
Exact 

Replicated Inference 
Two Decimal Places 

With Rounding 
Nearest Integer 

I 

Berndt 7 

Table 4.2: T.ypes of Replication 

be used. Finally the econometrics book by Lott and Ray (1992) provides seventeen 

usable studies. Overall this gave forty-four studies and as some studies estimate 

more than one equation the result: ninety data sets. The computer package used 

is SHAZAM (White (1975)) primarily because it is the only econornetrics package 

providing an easy to use command for robust estimation that allows one to properly 

estirnate (since Version 7.0) the standard errors of coefficients. Given SHAZAhll's 

robust estimates can be obtained at  low cost we feel other researchers are likely to have 

opted for the same easy to use robust command, and thus we also use the comrnand 

and its many options. During the replication procedure where exact replication proved 

difficult the student version of TSP (Hall and Lilien (1990)) was used to ensure 

different results were not just as s result of using one econornetrics package. Both 

packages gave the same result for the same data when using least squares. To obtain 

M-Estimators. the programme 3R in BMDP (Dixon (1990)) is used. 

4.3 Results for the thirteen criteria 

Coefficient Estimate Differences-Category One 

4.4 Criterion I 
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Percentage Changes More Than Stated 
Criterion-l 

Least Absolute Errors 

Table 4.3: Percentage Changes of Robust Slope Coefficients Changing By More than 
Stated 

Five Quantile 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trirnnled 
Five Percent Trimmed 

Huber M-Estimator 
'l'ukey M- Estimator 

more th,an I h i r t y  percent. Also by more than f i f t y  percent. 

Percentage 
changes more 

than thirty 
48.04 

111 my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

fifteen for changes more than thirty and above ten for changes more than fifty. 

19.3 
39.64 
41.17 
27.21 
32.65 
22.43 
32.38 

In rrly subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve a seven. Usually in economics less attention is given the size 

of a coefficient and more weight put on the estirriated standard errors. If one 

objects to this, the size has a high "grade" relative to other criteria. 

Sample 
Size 

229 

In Table 4.3 (the item in the third colu~nn is the sample size) is reported the percentage 

of robust estimated coefficients digering from least squares by more than thirty anti 

fifty percent. Given the benchmarks of Coursey and Nyquist (19881, and the 

target percentages, all the robust esti~nates are different. Thus we reject the cnltiely 

Percentage 
changes more 

than fifty 
34.93 

57 
222 
221 
136 
49 
214 
210 

constructed "null" that robust estimators are the same as least squares. 

14.04 
27.48 
27.6 
15.44 
18.37 
12.62 
25.71 
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Criterion 11 

Criterion-I1 Percentage of th,e regressions i n  which at least one estimated slope 

coeficient changes by more than thirty percent. Also, changes by more 

than fiSty percent are noted. 

In my subjective judgement. on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

fifteen for changes more than thirty and above ten for changes more than fifty. 

In my subjective judgement, on a scale of one to ten, this criterion is irnportant 

enough to deserve a seven. Usually in economics less attention is given the size 

of a coefficient and more weight put on the estimated standard errors. If one 

objects to this, the size has a high "grade" relative to other criteria. 

In Table 4.4 are the results from the second criterion where we are concerned with the 

percentage of the regressions in which at  least one estimated slope coefficient changes 

by more than thirty percent when estimated using robust ~nethods. Overall, what is of 

note is all estimators have more than fifteen percent of the regressions in which at  least 

one estimated slope coefficient changes by more than thirty percent. In Table 4.4 we 

consider the percentage of the regressions in which at least one estimated slope coeffi- 

cient changes by more than fifty percent using robust rnel hods. All estimators exceed 

the cut-off of ten percent posited in the previous chapter as a critical percentage for 

the robust estimators to he considered having produced different results. 

4.6 Criterion I11 

Criterion- 111 Percentage of the regressions i n  which at least one eslimated slope 

coe f'cient ch,an,ges by more than one ordinary least squares ' standard devi- 

ation. Also ch,an,ges by more than two standard deviations are calculated. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree this percentage is more 
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Average Percentage Change of Slope Coefficients 
L, ., 

Cri terion-11 I Percentage I Sample I Percentage 

Least Absolute Errors 
Five Quantile 

Gastwirth 

Table 4.4: Percentage Changes More Than Thirty and Fifty 

changes more 
than thirty 

58.3 

Tukey L-Estimator 
Ten Percent Trimmed 
Five Percent Trimmed 

Hu ber M-Es timator 
'l'ukey M- Estimator 

than eighty-five for one standard deviation and more than twenty-three for two 

standard deviations. 

34.6 
50 

a In my subjective judgement, on a scale of one to ten: this criterion is important 

erlough to deserve an ten. This high grade reflects the importance attached, 

either rightly or wrongly: to the estirnated variances in economic hypothesis 

testing. 

Size 

73 

52.2 
45.7 
38.1 
38.6 
47.8 

No estimators (Table 4.5) exceed the crucial cut-off for one standard deviation of 

eight-five percent and here we would conclude robust estimators are not making a 

marginal difference on the basis of this standard. Changes more than two standard 

deviations are calculated in Table 4.5 and the percentages presented for each estima- 

tor. The reason for choosing two standard deviations has some basis in hypothesis 

testing. The largest is 1 he twcnty-three percent for the 'I'ukey M-Estimator. The order 

changes rather znarkedly from the one sta~ldard deviation case. suggesting the Tltkey 

M-Estimator has some large percentage changes as it placed fourth when consider- 

ing changes more than one standard deviation. For this criterion all estimators have 

percentages below the target, with the exception of the Tukey M-Estimator. Robust 

estimators are not different at two standard deviations. 

changes more 
than fifty 

51.4 
2 6 
71 

15.4 
41.4 

70 
4 7 
2 1 
7 1 
70 

40.6 
37 

38.1 
24.3 
36.2 
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'I'able 4.5: Changes More Than OLS Standard Deviation 

Regressions 

4.7 Criterion IV 

Criterion-I 11 

Least Absolute Errors 
Five Quantile 

Gastwirt h 
Tukey L-Estimator 

Ten Percent Trimmed 
Five Percent Trimmed 

Hirber M-Estirnator 
Tukey kl-Estimator 

Criterion-IV Percentage of robust estimates dijjfering from least squares ' b y  

more than one starcdard deviation. Also rnore than two standard devia- 

Changes more 
than one 

standard deviation 
55.6 
23.1 
35.7 
27.5 
34.8 
33.3 
18.6 
33.3 

tions. 

0 In my subjective judgement, on this criterion the robust estimators are judged 

Sample 
Size 

73 
2 6 
7 1 
70 
4 7 
2 1 
7 1 
70 

"different" from least squares to a "significant" degree this percentage is above 

Changes more 
than two 

standard deviations 
18.1 
15.4 
8.57 
5.8 
8.7 
9.5 
8.57 
23.2 

thirty-two For one standard deviation, and above five for two standard devia- 

tions. 

In my subjective judgenlent . on a scale of one to ten. this criterion is important 

enough to deserve an ten. This high grade reflects the importance attached. 

tbitller rightly or wrongly, to the estinlat ed variances in economic hypothesis 

testing. 

Tdble 4.6 shows the percentage chmges of the robust estirriates differing from least 

squares by more than one and two least squares' standard deviation. Only two exceed 

the cutoff For one least squares' standard deviation and thus we would accept the 

"null" that robust and least squares are the same on this basis. For two least squares' 
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I I I 

Least Absolute Errors 1 32.62 1 229 1 8.30 I 

Coefficients 
Cri terion-IV 

Five Quantile 
Gastwirth 

Tukev L-Estimator 

Table 4.6: Changes more than OLS standard deviations 

Changes more 
than one 

standard deviation 

standard deviations, only four exceed the cutoff and here we might also want to  accept 

our "null". 

14.04 
19.36 
18.1 

l 

S ummary-Category One 

Sample 
Size 

136 
49 

Ten Percent rl?rimmed 
Five Percent 'Trimmed 

At this stage what can be made of the results? Looking a t  coefficients we see some 

changes that suggest robust estimators are making a difference, especially for Criterion 

11. For changes relative to one least squares' standard deviation the results are not in 

the robust estimators' favour and when we consider changes relatixre to two standard 

deviations we also see the robust estimators are not different. The direction of the 

previous result is also confirmed when looking at  the total number of coefFicients. 

Further these are important criterion as has been indicated, although more importance 

is attached to the standard deviation criteria, On the latter basis, we might say we 

are beginning, speaking loosely, to lean towards the "null" that robust estimators do 

not make a difference. These results, especially those related to standard deviations, 

are in agreement with Swinton and King ( l g ! ~ ) .  

For the criteria in this category each estimator is examined to  see if tlittre is 

anything unusual about any of them. This is ultimately done for all the categories 

Changes more 
than two 

standard deviations 

57 
222 
221 

5.15 
4.08 

23.52 
38.61 

7.02 
3.15 
1.81 
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but the process is outlined here. 

1. For each table in a category the estimators were ranked according to whether 

they produced a small or large change for the criterion in question. 

2. The two robust estimators associated with the extreme rankings were noted. 

3. In deciding which estimators were unusual or extreme, the two estimators with 

low sample sizes, namely the Five-Quantile and Five Percent 'I'rirnmed , are not 

considered. 

4. This process is then repeated for the next criterion or where possible the next 

table as some criteria generated more than a single table of information. 

For this category it is the case that two estimators stand out. The first is the Huber 

M-Estimator which has the feature that it usually has the lowest percentage for the 

differences of the criteria. Least Absolute Errors is distinctive as it usually has the 

largest percentage. If one were to recommend which robust estimators to use: these 

would thus be obvious candidates. The re~ason two are suggested is both seem to 

behave differently. Thus if you were to use only one, you would never know what 

the other estimator could tell you. On the basis of this and other categories these 

two estimators are on separate sides of a spectrum so to speak. Given their different 

behavior there is some reluctance to endorse only one as one aspect of robust esti- 

mation requires looking for differences and atte~npting to explain them away or deal 

with them. Using only one of two apparently dilffercnt estimators may mean possible 

differences from the other are not considered. And it is quite possible these missed 

differences could provide additional insights. 

4.8 Criterion V 

Tests of Differences-Category Two 

Criterion-V Test of whether the intercept and slope are equal to zero and one 

i n  a regression of the least squares' slope estimates on  the robust slope 

estimates. 
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In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

five percent. 

In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve a six. This "grade" is given as the measurement error problem 

may not be overcome. 

If estimates are not too far apart then a regression of the least squares' estimates on 

the robust estimates should pass through the origin and have slope of unity. On the 

basis of the regression test it is the case that the coefficients are not in agreement 

as %dble 4.7 shows. The intercept and slope estimates are shown in Table 4.7. The 

P-Values. sometimes called marginal significance values. are a11 below the five percent 

cutoff and we should reject the null. To obtain some confirmation of these results (for 

the slope estimates are "close" to unity) the slope standard deviations are provided. 

For example. for the Least Absolute Errors case we reject the null that the slope is 

unity and if one adds twice the slope standard deviation (0.0156) to the slope estimate 

one obtains 0.97926 which is below unity. An analysis of the constituent parts of the 

estimated variance of the slope estimate for the test, reveals the observations are 

matched over the range minus ten to plus ten. This means the elements of ( X I X ) - '  

are very s~nall: this is the source of the low estimated variances of the slope estimates 

of the test. 

These results were robust in the sense that instead of using least squares (not to 

be confused with the least squares' observations) to perform the test of this criterion, 

the regression of the test is estimated using the Least Absolute Errors estimator. 

With these Least Absolute Errors' results the P-Values of the test are recalculated. 

For all but the Gatwirth Estimator are the r~sul ts .  based on these now P-Values, 

unchanged. Looking at  the observations (least squares' and Gastwirth csti~nates of 

many coefficients) for this estimator a number of standardized residuals wcre found to 

be outliers. For the Gastwirth the P-Value becomes 0.1043 suggesting this estimator 

is no different from least squares. For the seven other estimators this robust analysis 

does not change the original test results. On doing this robust analysis it became 
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Table 4.7: Standard Deviation 

Intercept and Slope Test 

clear that using the Hogg suggestion of doing your analysis with least squares and 

a robust estimator is more difficult than first appears. Assume you have solved the 

Criterion-V 

Least Absolute Errors 
Five Quantile 

Gastwirth 
Tukey L-Estimator 

Ten Percent Trimmed 
Five Percent Trimmed 

problem of what it means for a robust estimator to make a difference. Here we used 

changes in P-Values and compared 0.0067 and 0.1043 to five percent to say the robust 

estimators produced a different result. The difficulty is what to do now. We identified 

some outliers but there is no apparent reason why these are outliers. But what do 

you do? There is no reason to discard Illem. It is probably this uncertainty that has 

kept robust methods from taking hold in economics. 

For the tests of this criterion all variables were adjusted by dividing by the standard 

error of the least squares estimate as this is a known form of heteroskedasticity. It 

is also the case that the robust estirrlate is measured with error but as if any least 

squares' estirnate is an overestimate say, it is believed the robust estimate will be in 

error in the same direction. This should mitigate against the usual downward bias in 

the estimated coefficients of the regression for this criterion. Despite this optimism, 

the slope estimates all lie below one and it may be the measurement error elTect 

is stronger than anticipated in the previous chapter. This may be what causes the 

rejection of our "null". Because of this we might want to place less emphasis on this 

particular test and thus t,he "grade" given is a six. The same test is performed,as 

already mentioned, using Least Absolute Errors and for the Tukey L-Estimator the 

Intercept 

0.0000008 
0.0004 

0.0000014 
0.0000008 
0.000007 
0.000068 

Slope 

0.96366 
0.97472 
0.97472 
0.97904 
0.97833 
0.97965 

Sample 
Size 
229 
57 
222 
221 
136 
49 

P-Value 

0.0003 
0.0021 
0.00093 
0.00012 
0.0005 
0.02792 

Slope SD 

0.0078 
0.0068 
0.0067 
0.0048 
0.0054 
0.0073 
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Results of x2 test 

Table 4.5: ?c"~est Results 

Estimator 
L e a t  Absolute Errors 

Five Quantile 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 

P-Value beconies 0.1043 suggesting this estimator is no different from least squares. 

For the seven other estimators this robust analysis does not change the original test 

results. 

4.9 Criterion V1 

116.3 
65.5 
101.5 

Criterion-VI y2 and non-parametric tests of whether th,e sets of coeficients-least 

squares or  robust-are the same. 

Null 
R 
R 
R 
A 

0 In my subjective judgement, on this cariterion the robust estimators arc, judged 

"differe~lt" from least squares to a "significant" degree if this percentage is abovc 

five percent. 

Critical 
272.8 
79.1 
265.2 
264.1 

testsix 
468.6 
79.734 
317.4 
169.2 

136 
49 
214 

0 In my subjective judgement, on a scale of one to tcn. this criterion is impor- 

tant enough to dcserve an seven but nine for the non-parametric tests. The 

';' test has a higher grade than the test in Criterion V as we select random 

coefficients here. Non-parametric tests get the highest grade as they require no 

distributional assumptions. 

DOF 
229 
57 
222 
221 

170.2 
66.3 
236.4 

A 
A 
A 
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R,esults of  vest: random coef 
Estimator 

Five Quantile 
Gastwirth 49.7 91.7 

90.5 
Ten Percent Trimmed 

32.7 
91.7 A 

'I'able 4.9: y2 Test Results: random coef 

The "testsix" as described in Chapter Three for each estimator is shown in Table 4.8 

and with the critical values also shown in Table 4.8 we have to reject the null hypoth- 

esis for four of the robust estimators. The problem here is the degrees of Freedom (v) 

are large and above even comprehensive "critical" value tables. For these large degrees 

of freedom, to obtain critical values, one can use the approxiniation f rom (Murdoch 

and Barnes (1976)) which gives the critical values for degrees of freedom ( U ) :  

where % is the standard normal "ordinate" associated with the area in the tail of the 

normal distribution such as, but not limited to, 1.96. 

The test is repeated but selecting one estimated coefficient at random from each 

regression and this is reported in Table 4.9. The results are the reverse four of the 

"Reject" results in Table 4.8 and given the rarido~n selection of coefficients one might 

be more inclined to accept them. Based on the latter random test it is the case that 

in all the cases accept the null and thus this test is in not in agrcernent with the 

F-test. But in order to be sure two non-parametric tests are also performed. 

To complement Category Two, two non-parametric tests are used. The Lirst is 

the Wilcoxon Rank-Sum test which is available in UMDP (Dixon (1990)). The least 

squares' coefficient estimates divided by their standard deviations are the control 



group and the robust coefficient estimates divided by their standard deviations become 

the "treatment" group. One coefficient and associated standard error is selected at 

random from each regression. For all but the Ten Percent Trimmed Estimator, it is the 

case that the null hypothesis is rejected (Table 4.10) and the robust estimates of the 

coefficients divided by standard deviations are larger than the least squares' estirnates 

divided by their standard deviations. The Ten Percent Trimmed observations are 

larger than least squares, but not significantly larger. The Siegel-Tukey (1960) tests 

the null hypothesis with the alternative that the populations have different variances 

about the median. 

The results of the Siegel-Tukey non-parametric test show (Table 4.11) the Huber 

M-Estimator, Tukey M-Estimator (there is no relation between the two other than 

they are named after Tukey to credit his having pointed them out). Least Absolute 

Errors and the Ten Percent 'I'rim~ned have the same variabilily as least squares. It 

must be pointed out that this test will not correctly reject as often as it should if the 

locations of the two samples are not the same, or in other words, the power is reduced. 

This problem manifests itself for the Least Absolute Errors Estimator. The Wilcoxon 

test shows the location to  be very different from least squares but the P-Value for the 

second test is 0.238 yet there is a large difference in the standard deviations. 

It appears that the populations from which these sarnples are drawn have very 

different medians (of estimates divided by their standard deviations) although the 

variability about those medians is the same, for half of the estimators, with the 

exceptions noted above. The results of the Wilcoxon Rank-Sum tcst suggest that 

robust estimators make a difference for Category Two. One problem here is the 

estimated variances associated with l he robust estimators are underestimated and this 

could be causing us to conclude the medians (of estimates divided by their standard 

deviations) are different. 

S ummary-Category Two 

This is the third most important category as indicated by the evaluation given to the 

tests here when compared with other criterion. The F-test indicates that the results 
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Table 4.10: Wilcoxon Signed Ranks Test 

Wilcoxon 
Estimator 

Least Absolute errors 
Five Quantile 

Gastwirth 
Tukey L-Estimator 

Ten Percent 'rrirnmed 

Table 4.1 1: Siegel-Tukey Alternating Ranks Test 

P- Value 
0.0022 
0.0001 
0.0000 
0.0000 
0.6264 

Ten Percent rTrinirned 
Five Percent Trimmed 

Huber M-Estimator 
'I'ukcy M-Estimator 

0.58 
0.0033 
0.3628 
0.327 
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of robust estimation are different from those of lea& squares but we did point to two 

possible reasons for this: the persistent measurement error problem and the actual 

scatter of observations reduces a component of the estimated variance calculation. The 

)i2 test shows the coefficients to be the same when the sample includes one coefficient 

from each regression. Again it is not clear whether we are "rejecting' the "null" 

that robust estimators are the same EIS least squares. The Wilcoxon test suggests 

the robust results are different but this result may depend on the lower estimated 

variances associated with the robust estimators. 

For this Category the estimators are examined to see if they display any un- 

usual features. The Tuley M-Estimator, Least Absolute Errors and the Ten Percent, 

Trirn~ned estimator stand out here as they reject the null more than the others. 

Criterion V11 and V111 

Variance Differences-Category Three 

Criterion-V11 Percentage of the estimated slope coeficients for which the robust 

estimated uariarm i s  lower than th,e estimated least squares variance. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is 

greater than or equal to fifty percent. 

0 h my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an four. This criterion receives a low "grade" as we suspect 

the estimated vasiances may be understated. 

Criterion \:l11 Average yercerstage churlge i n  Ihe estimated .c~arian,ce for those 

in,star~ces out of the manq eskirrlated slope coeficients for which the esti- 

mated robust variance i s  smaller than the least squares variance versus 

the average percentage change i n  Ih,e estimated variance for those instances 

out of the many  cases i n  which the ordinary least squares estimated vari- 

aace is smaller. The rnedian percmtage change i s  also calculated. 



Cri terion-V11 
Size 

Gastwirth 
Tukey L-Estimator 

Ten Percent Trimmed 

Table 4.12: Percentage of robust estimators with a lower estimated variance 

Five Percent Trirnrned 
Huber M-Estimator 

a In my subjective judgement, on this criterion the robust estimators are judged 

"diifere~lt" from least squares to a "significant" degree if this percentage is above 

fifteen and above ten percent for the two possible outcomes (each of robust or 

least squares smaller) for each of the average and the median. 

98 
99.5 
8 7 

a In my subjective judgement, on a scale of one to ten, this criterion is importarit 

enollgh to deserve an four. This criterion receives a low "grade" as we suspect 

the est,imated variances may be understated. 

Having dealt with the size of estimates and-the size compared to the original standard 

deviation, Table 4.12 considers the estimated variance. Caution must be exercised 

in interpreting the tables dealing with variances as the sample size is small. For 

instance, least squares never has a lower estimated variance than that of the Five 

Quantile Estimator. The percentage of cases in which the robust estimator has a 

lower estimated variance is very high. Again the Least Absolute Errors 

sta~ltls o ~ t  not because it has the highest percentage but because it has the lowest 

perce~ltage nrith a lower estimated variance. These lower estimated variances are 

almost too good to be true. One suspects the estimates of the robust variances are 

not very good. ,411 the robust estimators exceed the subjective level. In the next 

chapter, ~c.e turn to examine a possible source of the lower i~ariances which Chapter 

222 
221 
136 

86 
9 5 

49 
214 
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Average Percentage Change when robust, estimated variance lower 

Table 4.13: Average l'erccntage Change when robust estimated variance lower 

Criterion-V111 
Least Absolute Errors 

Five Quantile 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
'I'ukev M-Estimator 

Average Percentage Change when least squares' estimated variance lowef 1 

Robust lower estimated variance 
63(229) 
97(57) 

88(222) 
89(221) 
28(136) 
28 (49) 
35(214) 
43(210) 

Median 
64 
99 
85 
90 
24 
21 
34 
42 

.< 

- 

Table 4.14: Average Percentage Change when least square's estirnated variance lower 

Cri terion-VIII 
Least Absolute Errors 

Five Qirantile 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trimmed 
Fii~e Percent Trimmed 

Huber M-Estimator 
Tukev M-Estimator 

Two indicated could lie in Ihe method used to estimate the standard deviations of 

the estimate. At least. this is so for the estimators from the econornetrics package 

SHAZAM (White (1978)) . 

As the ultimate concern is with hypo1 hesis tests one would want to know whether 

the lower robust variance is a lot lower than those instances when the least squares' 

variancc is lower. These resillts are reported in Tables 4.13 and 4.14. The problem 

hero is so few of the cases have a lower least squarcs' variance. Thus the sa~nple 

sizes are small (just one for the Tirkey L-Estirnator) and inferences about the size of 

the smaller least squares' variance is just not possible. Further percentage cl!anges 

Least squares' lower estimated variance 
98(45) 

\ I 

- (0) 
43404(4) 

934(1) 
208(18) 
0.49 (7) 
643(11) 
2882f4) 

are calculated to agree with percentage changes in other criteria but as estimated 

Median 
45 
- 

1577 
934 
8 

0.18 
13 

2240 

variances can be very small' the percentage changes can becorne very large. 'l'his effect 
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is certainly evident in Table 4.14. We would do well to ignore this table. Overall. 

the robust estimators have more cases with lower estimated variances and using the 

more reliable results of Table 4.13 all estimators exceed the subjective level of fifteen 

percent. A suspicion is the programme SHAZAM (Whi t e  (1978)) is producing this 

effect. The fall in the variance is larger for the four quantile estimators (the first 

four of the table) compared to the BMDP (Dixon (1990)) estimators: the last two 

estimators in the table. Notice the percentage change for the Trimrned Estimators 

is the lowest. SHAZAM (Whi te  (1978)) calculates these correctly. C% correct for 

the problem of underetimated variances in this chapter by considering randomization 

tests and in the next chapter explore thc source of these lower estimated lrariances 

with Monte Carlo work. 

Summary-Category Three 

This has been judged to be the least important category relative to the others as we 

suspect the estimated variances are underestimated. Thus although most of the robust 

variances are lower, this we think is an irregularity. This possible underestimation is 

investigated in more detail in the next chapter. It is not possible based on variances to 

say whether we are in position to make another decision on our crudely set up "null" 

that least squares and robust estimators are the same. As there does seem to be 

a problem with standard deviations do not employ the non-parametric statistics 

for this category. We are to check the accuracy of the estimated variances in the 

next chapter. The 'litkey L-Estimator and the Huber stand out in this Category. 

The former as it has the largest percentage changes and the latter as it. like its 

performance in Category One, hay the lowest percentage changes. A pattern that 

begins to manifest itself after three categories is the Huber M-Estimator is different 

from the rest and tend to be "conser\~ative" in terms of percentage changes for the 

criteria. 
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Criterion IX 

Forecast Differences-Cat egory Four 

Criterion-IX Percentage of the forecasting equations for which forecasts using 

robust estimates beat forecasts using least squares' estimates on  a rnean 

absolute percentage error criterion. Also calculated for the median absolute 

percentage error. 

In rny subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is above 

seventy and below thirty percent. If the percentage is in some sense an interme- 

diate one one might be equivocal in recommending either technique. We have 

set the zone of indifference at forty thus robust is different for percentages above 

seventy and below thirty. 

In rny subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an eight. This "grade" is given as forecasting has an impor- 

tant role in econometrics and should be ranked higher than say the criterion 

concerned with the size of coefficients. 

The estimators were also compared on their ability to forecast known values. out of 

the the sample used to estimate the equations. in Tables 4.15 and 4.16. Ten percent 

of the observations for each data set were forecast but the equation for forecasting 

is based on the remaining ninety percent of the observations. For only five of 

the robust estimators was the forecast exercise possible. because to forecast known 

values one has to reduce the sample and with fewer observations the methods used for 

robust estimates do not have enough observations to cdculate all the quantiles. Using 

the mean absolule percentage error criterion for about fifty percent of the forecasts 

were the robust estimators able to outperform least squares. All five esti~nators F011 

in the "equivocal range" and thus on this basis we conclude the robust estimators are 

not different. This is also the case when we consider the median absolute percentage 

error instead of the rnean absolute percentage error in 'I'able 4.16. These lie within 
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Table 4.15: Percent age when robust forecast beats least squares (me (di) an percent age 

Percentage when robust forecast beats OLS 

error criterion) 

C ri terion-IX 

Least Absolute Errors 
Ten Percent Trimmed 
Fim Percent Trimmed 

Huber M-Estimator 
'litkey M-Estimator 

Sample 
Size 

6 3 
3 1 
11 
6 6 
6 5 

Percentage when 
robust forecast 

beats OLS mean 
41 
55 
4 5 
46 
43 

Average improvement in MAPE 

Table 4.16: Average improwment in MAPE when robust (OLS) forecast beats OLS 
(robust ) 

Percentage when 
robust forecast 

beats OLS median 
46 
45 
46 
3 9 
3 9 

Criterion -X 

Least Absolute Errors 
Ten Percent Trimmed 
Five I'ercent Trimmed 

Huber M-Estimator 
Tukcy M-Estimator 

11 
2 3 
13 
9 

Sample 
Size 

3 7 

Mean irnprovrnent 
in MAPE 

if robust forecast 
beats OLS 

12 
15 
5 
3 0 
2 8 

Sample 
Size 

2 6 

Mean improvment 
in MAPE 

if OLS forecast 
beats robust 

24 
24 
30 
18 
54 

16 
6 
36 
3 7 



Average improvement in MedianAPE 
Criterion-X ( Irnprovememt ( Sample l Improvement / Sample 

I I in MedAPE I Size I in MedAPE I Size 
I / if robust forecast 1 if OLS forecast / 

Least Absolute Errors 
I Ten Percent Trimmed I 

I I I I 

Table 4.17: Average irnprove~nent in MedianAPE when robust (OLS) forecast beats 
OLS (robust) 

beats OLS 
6 
10 

I Five Percent Trimmed I 
I I I 

the seventy to thirty percent range which we decided meant the robust estimates are 

not different. 

8 

Criterion X 

28 
13 

Criterion-X Average improvement in th,e mean absolute percentage error for 

th,ose zn,stances out of the Jorecasting equations Jor which the robust fore- 

cast is superior versus the improvement i n  the average mean absolute 

percentage error for those instances out of the forecastin,g equat.ions for 

which the ordinary least squares jorecast is superior. Yh,is is also done for 

the imy)rovernent in  the median absolute percentage error. 

5 4 

111 my subjective judgement. on this criterion the robust estimators are judged 

"t1ifFerent" from least squares to a "significant" degree if this improvement is 

higher for the robust esti111ators. 

beats robust 
15 
7 

6 

In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an eight and should be ranked higher than say the criterion 

concerned with the size of coefficients. This "grade" is given as forecasting h&s 

an irrlportant role in econometrics. 

3 3 
18 
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In Table 4.16 notice no robust estimators exceed the subjective requirement that they 

beat least squares. Looking at  Tables 4.17, only the trimmed estimators beat least 

squares. On the basis of this criterion and the subjective requirement, the robust 

estinlators are not different from least squares. Robust does beat least squares in a. 

number of cases but the irnprovement is not enough to  be judged different from least 

squares. Fair (1974) notes that for forecasting purposes the choice of an estimator. 

robust or otherwise is not that important. We reach a similar con(-lusion here, as least 

squares seems to do better in terms of a lower forecast errors (as defi~led) but not in 

enough cases to  be judged different frorn least squares. For the Median Absolute 

Percentage Error section of Criterion X it is the case the Trimmed Least Squares 

Estimators do better than least squares. This result is in line with Hallman and 

Kamstra (1989) and Stigler (1977). 

S ummary-Category Four 

The robust estimators did not manage to outperform least squa,res on the basis of 

forecasting. This is a somewhat disappointing given the use of forecasts by others to 

evaluate robust estimators. The pattern from cornparing estimators, for this category, 

is one in which Least Absolute Errors joins the Huber (as usual) in the "conservative" 

effects group. The 'Fe11 Percent Trimmed Estimator exhibits the largest changes in 

this the Forecasting Category. 

Criterion XI 

Hypothesis Testing Differences-Category Five 

Criterion-X1 Percentage of the tested coeficients for wh,ich robust estimntion 

changes the hypothesis that the author deemed to be of interest. 

a In my subjective judgement, on this criterion the robust estimators are ji~dgeti 

"different" from least squares to a "significant" degree if this percentage is'ubove 

five percent. It is this low as hypothesis testing is so fundanxntal to empirical 
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work and anyone using the results of empirical work would be worried if five 

percent of the results did not stand up to scrutiny in much the same spirit in 

which a five percent level is chosen for a Type I error. 

0 In my subjective judgement, on a scale of one to ten, this criterion is important 

enough to deserve an ten, i t  is one of the most important. 

In our view the niost important criterion is the extent to  which a robust estimate 

changed a test of interest to the original researcher. As not all coefficients arc of 

interest. the number of coefbcients is srnaller than the numbtlr used in other criterion 

of comparison. Given that just under one half of the studies report significant or 

mostly significant results and the lower esti~nated variances (with t tests done in the 

usual manner) will result in higher t values, some of these t values may cross critical 

values. If this is the case tested coeficients may beco~ne significant. We know from 

our discussion of Criterion V11 that the robust estimators provided lower variances. 

An examination of the Least Absolute Errors Estimator's results showed that the 

estimated slope coefficients increased (the decreases are consistent with Lichtenberg 

and Siege1 (1991)) in forty-nine percent of the cases. As a consequence of these 

two facts we expect the percentage of significant results becoming insignificant to 

be relatively small and the percentage of insignificant results becoming significant to 

be relatively large. The right hand columns of Table 4.18 show the the percentage 

of hypothesis tests that changed from being significant results to being insignificant. 

Care is taken to  perform the original hypothesis test, be it a t or F test. Five studies 

used the F-Test. The percentage of hypothesis tests originallj~ insignificant becoming 

significant is also calculated and reported in the left hand colurnn of Table 4.18. 

As expected the percentage becoming insignificant is smaller than the percentage 

bccorriing significant for all estimators. Only t hrec estimators did not exceed the five 

percent cutoff' and on this basis we would say robust tlstiniators are making some 

difference. The high percentages becoming significant are as a result of the lower 

estimated variances of the robust estimators. Also some of these are based on very 

small samples: insignificant rewilts are not reported as often as significant results. 

In Table 4.19 we sum all changes and calculate these as a percentage of the sum 
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of reported insignificant and significant coefficients. These percentages indicate we 

Percentage of Coefficients Becoming S(1ns)ignificant 

have a different result on the criterion the robust estimators. Some caution 

Criterion-XI 

Least Absolute Errors 
Five Quantile 

Gastwirth 
Tukey L-Estimator 

Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

Randomization 
Randornization (Residual) 

must be exercised as we know the percentage becoming significant is affected by 

the estimated variances of the robust estimators being too low which produces some 

Table 4.18: Percentage Becoming S (1ns)ignificant 

spurious significant results. We reFxarnine these percentages in the next chapter 

but the percentages of Table 4.19 are sufficiently high in relation to the five percent 

Percentage 
Changing From 
Insignificant To 

Significant 
48 
60 
6 7 
72 
42 
73 
19 
3 3 
2 1 
14 

requirement for one to conclude the robust estimators are different. 

Sample 
Size 

50 
5 

42 
39 
33 
1 1 
43 
40 
5 7 
57 

Percentage 
Changing From 
Significant To 
Insignificant 

10 
15 
3 
2 
8 
11 
4 
11 
43 
48 

Kandomization methods are also used to see if results become significant or in- 

Sample 
Size 

133 
48 
134 
135 
78 
2 8 
11 3 
118 
145 
145 

signilicarit. The two methods are are generally consistent, reflecting Kennedy's 

(1993) results. Comparing this result with the same percentage for each of the robust 

111ethods it is interesting the randornization techniques are the ones that reverse sig- 

nificant results to a. r n i ~ l i  greater extent than the robust methods. The opposite is 

true for the changing of insignificant results to significant results. If anything one can 

conclude f ro~n this economic data should bc subjected to closer scrutiny with random- 

ization tests in conjunction with robust methods, as more results became insignificant 

with the randomization  neth hods than is the case with the robust methods. These 



Percentage Sig/Insig 

I R,andomization (Residual) 1 38 1 

Criterion-XI 
Least Absolute Errors 

Five Quantile 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

Randomization 

Table 4.19: Percentage Becoming Significant and Insignificant 

Percentage 
20 
3 3 
17 
18 
18 
2 9 
8 
16 
37 

reversals arise from the concern. already men1 ioned, that the esti~nated standard er- 

rors of the robust estimators are too low. This has the effect of making significant 

results more significa~lt or not allowing insignificant results to remain so and this is 

on? cause of the difference between the randomization and robust methods. In the 

next chap1 er. this issue is explored in more detail using Monte Carlo methods. 

Randomiza t  ion and Est irnated Variances 

As we are already suspicious of the lower estimated variances. this anomaly in the 

changes from significant to insignificant (especially in the light of the randomization 

results) indicates more work needs to be done on the estimated variances. This we 

do in the next chapter where the various estimators of the standard deviation are 

examined using Monte Carlo methods. Randomization tests have the advantage over 

the robust methods in that the calculation of the mriance covariance matrix is avoided. 

Givcn the power of modcrn c.omputers the rantloniization method may be a better 

alttrnative to the estirnatcs of standard errors provided by the computcr packages 

SHilZAhI (Whi t e  (1978)) and BMDP (Dixon (1990)). 
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Table 4.20: Percentage With Bigger P-Value 

Cri terion-XI 

Least Absolute Errors 
Fixre Quantile 

Gastwirth 
Tukey L-Estimator 

Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

Criterion XI1 

Percentage With Bigger P-Value 

18.7(229) 
1.75(57) 
4.5(222) 
4.5(221) 
16.1(137) 
20.4(49) 
17.8(214) 
17.6(210) 

Criterion--XI1 Percentage of times th,e P-value gets bigger usin,g robust regres- 

sion. 

In my subjective judgement, on this criterion the robust estimators are judged 

"different" from least squares to a "significant" degree if this percentage is less 

than, or equal to, ten and equal to, or above, ninety percent. For each coefficient 

there is a P-Value produced by least squares and also by t.he robust estimators. 

If many of the P-values are smaller with least squares then many will be larger 

with the robust estimator. Based on this we have to decide if robust is "different" 

from least squares. So, if only thirty.percent of the P-x~alues are larger with a 

robust estimator this means seventy percent are smaller with least squares and 

it is the "seventy" which gains attention. The problem is how do you set these 

bounds? This is not an easy question to answer but 011 a subjecti\re basis they 

have been set a t  ten and ninety. 

III my subjective judgement. on a s c s l ~  of one to ten, this criterion is i~npor-  

tant enough to deserve seven as the results have been covtmd in the tcsts of 

l~ypotheses. 

Finally the changes in the P-Value are exa~nined and shown in Table 4.20. On the 

basis of the subjective levels only three estimators fall below the ten percent (or ninety 
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'Fable 4.21: Average and Median Percentage Change When Bigger P-Value 

Average Percentage Change When Bigger P-Value 

for least squares) subjective level. For these three the actual number of increases is 

small as Table 4.21 indicates. Thus we may want to pay less attention to these three 

estimators. If they are ignored. on the basis of this criterion. the robust estimators are 

not "different" from least squares. The reason for this is by the time we analyse this 

criterion we have already established the esti~natttcd variances of the robust estimators 

are problematic. 

Criterion-XI11 
Least Absolute Errors 

Five Quantiie 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

Criterion XI11 

Criterion--XI11 Average percenlage change i n  the P-value when it gets larger. 

Also the average percentage point change. Also calculated are th,e medians 

of these changes. F I L ~ I I I ~ c ~ ,  all 01 this is  calculated for th,e P-value becoming 

smaller. 

Average: Change When Bigger P-Value 
559 (43) 
118(1) 
165(10) 
116(10) 

2064(22) 
557(10) 
154 (35) 
1367(37) 

In my subjective judgement. on this criterion the robust estirnators are thought 

"different" from least squares to a "significant" degree if this percentage is above 

eighty perccnt lor the rrleaus anti a bow six1 y y ercent [or the medians. 

Median 
192 
1 18 
76 
5 9 
99 
243 
2 9 
107 

In my subjective judgement: on a scale of one to ten, in my subjective judgement 

this criterion is important enough to deserve a seven. 

The average and median percentage change is calculated when the P-Value is bigger. 

The changes are based on small sa~nple sizes ;~nd not too much attention should be 
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I Average Percentage Change When Srnaller P-Value I 

I \ ,  I 

Five Quantiie 99(26) 1 100 1 

.- .- 

I Five Percent Trimmed I 
l 

6giigj  
I 

6 7 

Median 
100 

Criterion-XI11 
Least Absolute Errors 

Gastwirth 
Tukey L-Estimator 

Ten Percent Trirnmed 

Average: Change When Smaller P-Value 
83f128) 

Table 4.22: Average and Median Percentage Change When Srnaller P-Value 

96(162) 
94(161) 
69(67) 

Huber M-Estimator 
Tukey M-Estimator 

Average Percentage Point Change When Bigger P-Value 1 

100 
100 
72 

W L, L, L,<, 

Criterion-XIII I Average: Point Change When Bigger P-Value I Median I 

62(120) 
65(119) 

Least Absolute Errors 1 0.08(43) 1 0.05 1 

68 
71 

I 

Five Quantile 0.06i l i  I 0.06 / 

'I'able 4.23: Average and Median Percentage Point Change When Bigger P-Value 

~as t iv i r th  
Tuley L-Esti~nator 

'fin Percent Trimmed 
Five Percent Trimmed 

given to Table 4.21, although all exceed the subjective level with the exception of the 

Tukey L-Est imator and the Huber at  the median. Also comparisons with Tables 4.20 

do not mean much due to the sample sizes involved. The results are consistent with 

rnariy of the coefficients having lower estimated standard errors as already seen in 

criteria above and thus we do not want to inadvertently reject the crude "null" for it 

is the lower estimated variances producing this result. 

o . l l ( l 0 )  0.12 

4.16 Criterion XIV 

0.09(10) 
0.08(22) 
0.09(10) 

Criterion-XIV Percentage of times th,e P-value changes b y  less than hue percent 

or five percentage points. Also ten and tu~en,ty percent or ten and twenty 

0.02 
0.03 
0.03 
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percentage points. 

Average Percentage Point Change When Smaller P-Value 

0 In my subjective judgement: on this criterion the robust estimators are thought 

"different" from least squares to a "significant" degree if this percentage is above 

five percentage points for the means and above two percentage points for the 

rnedi ans . 

Criterion-XI11 
Least Absolute Errors 

Five Quantile 
Gastwirth 

Tukey L-Estimator 
Ten Percent Trirn~ned 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

0 In my subjective judgement, on a scale of one to  ten, this criterion is important 

enough to  deserve an seven. 

As a P-Value contains information at the percentage point level it is not enough to 

look at the percentage change. Thus the average and median percentage point changes 

are calculated when the P-Value is bigger in Table 4.23. For the Least Absolute Errors 

Estimator the average percentage point change is eight. Against a benchmark of five 

for a P-Value, this appears to be large. We know that many coefficients did not 

become insignificant thus it  must be the case that some of the initial P-Vdlues must 

have becn well bclow the benchmark. A problem with Table 4.23 is the srnall sample 

sizes but on the txrsis of the subjective lcvels of five and two percentage points the 

crude "null" is rejccted (excluding the Huber at the median) and robust estimators 

are different. The average percentage point change for a smaller P-Value in Table 4.24 

shows in seven cases the change is smaller than when the P-Value increases. As many 

more coefficients became significant this suggests the P-Values of these coefficients 

Table 4.24: Average and Median Percentage Point Change When Smaller P-Value 

Average: Point Change When Srnaller P-Value 
0.08(128) 
0.06(26) 
0.08(162) 
0.08(161) 
O.OS(67) 
0.05(19) 

0.04(120) 
0.05(119) 

Median 
0.02 
0.01 
0.03 
0.02 
0.02 
0.01 
0.01 
0.01 
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Percentage Points Bigger P-Value Changes Less Than Stated 

Table 4.25: Percentage Bigger P-Value 

Criterion-XIV 
Least Absolute Errors 

Five Quantile 
Gastwirth 

'I'ukey L-Estimator 
Ten Percent Trimmed 
Five Percent Trimmed 

Huber M-Estimator 
Tukey M-Estimator 

could not have been too far above the cutoffs used to determine the significance of 

the original coefficients. In terms of the subjective levels the Five-Percent Trimmed 

6 8 
50 
7 1 
43 

is not different a t  the mean and only four estirnators are different at the median. So 

Twenty Point 
67 
100 
100 
9 0 

Fivc Point 
5 8 
0 

2 0 
60 

again we can conclude that rnost of robust estimators are different on this criterion. 

Ten Point 
63 
100 
40 
60 
77 
80 
89 
59 

For P-Values it makes sense to consider percentage point changes as these contain 

8 6 
80 
97 
78 

J 

the information of interest to those interested in the marginal significance level. Thus 

our interest is focussed on the percentage point changes and specifically we work 

out, for both increases and decreases in the P-Value, changes less and more than 

five, ten and twenty percentage points. At the twenty percentage point level we note 

in 'I'able 4.25 for the smaller P-Value four estimators have percentages larger than 

those for a bigger P-Value (Table 4.26) at twenty percent. This reflects the results of 

Table 4.21 where the percentage changes for bigger P-Values are h,iyh,er. Although on 

a percentage point basis ('l'ables 4.23 and 4.24) the difFerence in percentage changes 

is muted as with percentage points while most estimators have larger percentages for 

bigger P - V d ~ ~ e s ,  the differences are not as pro~munced as the comparison of Table 4.21 

and 4.22. As we a1n:ady know the percentage changt:~ are large for changes in the 

P-Values, the division into five: ten and twenty percent is provided (See Tables 4.27 

and 4.28) but the number of coefficients in these three cases is small. 
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Percentage Points Smaller P-Value Changes Less Than Stated 
Criterion-XIV I Five Point I Ten Point I Twentv Point 

I Least Absolute Errors 1 
I I I 4 

I I I 
82 66 

Five Quantile 
Gastwirth 

Tukey L-Estimator 
l'en Percent Trimmed 
Five Percent Trimmed 

Tukey M-Estimator 1 
I I 

78 87 9 3 

73 

I Huher M-Estimator / 
I I l 

Table 4.26: Percentage Smaller P-Value 

6 1 
65 
6 6 
70 
73 
80 

Percentage Bigger P-Value Changes Less Than Stated 
Criterion-XIV I Five Percent I Ten Percent I Twentv Percent 

73 
71 
75 
82 
84 
89 

8 1 
J 

86 
86 
8 8 
9 5 
0 3 

I Least Absolute Errors I 
I I I 

0 
I I 

Table 4.27: Percentage Bigger P-Value 

Five Quantile 
2 

Gastwirth 
'hkey L-Estimator 

Ten Percent Trimmed 
Five Percent 'li-immed 

5 
0 

0 
10 
0 
0 

0 
10 
0 
0 

10 
10 
2 0 
10 

0 0 
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- 
Percentage Smaller P-Value Changes Less Than Stated 

Crit erion-XIV I Five Percent 1 ' kn  Percent 1 Twenty Percent 
Least Absolute Errors 

Five Quantile 
Gastwirth 

I Tukev L-Estimator I 
I I I 

Tukev M-Estimator I 
I l I 

4 8 16 

1 
l 
0 

Table 4.28: Percent age Smaller P-Value 

1 0 
8 

Summary-Category Five 

3 
36 
0.6 
0 
2 
0 

Ten Percent Trimmed 
Five Percent Trimmed 

For the most important criterion of direct testing of hj~potheses we find that robust 

estimators do make some difference and we can reject our "null" that they do not. 

Partly due to the reservation about the estimated standard errors and partly from 

a concern to verify our results we also relied on randomization tests to confir~n two 

findings. R,obust estimators make a difFerence wit h hypothesis tests, and that, indeed 

there is a problem with the standard error estimates of the robust estimators. An 

analysis of the P-Values confirms that robust estimators are different but there are 

problems with estimated standard errors. As to which estimator is distinctive no 

clear pattern emerges except the already well t:stablished "conservative" nature of the 

Huber Estimator is in evidence. 

5 
5 8 
1 

7 
0 

2 
0 

4.17 Outliers in the Studies' Data Sets 

For those studies and data sets that had a c h n g e  in the hypothesis test results 

occurring when using robust estimators, it is of interest to ask if standard diagnostics 

testing should have led the original researcher to question using least squares. 'L'his is 

done by checking the data sets for outliers using four indicators of outliers used and 

recommended by others. The four measures are: 
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1. The measure ht or the leverage, which is large for observations far from the 

mean of all the observations. and used by Judge et a1 (1988); 

2. The studentized residual which is a residual that is calculated to avoid the 

propensity of least squares to underestimate the residual, and used by Judge 

et al (1988); 

3. The contribution of any observation to the least squares estimates of the coeffi- 

cient vector, captured by the measure DFBETAS, recommended by C haterjee 

and Hadi (1986); 

4. Finally we consider the contribution of any observation to the predictions of 

the model as given by DFFITS, also recommended by Chaterjee and Hadi 

(1986). This measure is affected by large residuals and leverage points. 

For each of these measures there are recommended "critical values" and if any of the 

measures exceed the critical value, it indicates there may be problems in the regressors 

or the residuals. Exceeding a critical value does not mean the observation is useless; 

i t  becomes something to  be explained. For instance. is there something unusual say 

about April, leap years or individuals with low incomes or high incomes? 

If any data set gave a different result for Least Absolute Errors, the Tukey L- 

estimator or either M-Estimator the above four measures. These four estimators were 

chosen as they were likely to have been known to  the original researchers had they 

wished to use them. The DFBETAS measure is calculated for each observation, for 

each coefficient and the intercept. Thus the two (split into two to fit into the text) 

tables (they are the two tables, Tables 4.29 and 4.30, with the captions indicating 

parts one and two) of the results reports the number of measures that exceeded the 

"critical" value and the nimber of observations except for DFBErlX3 where we have 

the number of observations times the number of coelficients plus the constant. The 

effect of this can be seen in the two tables where in the colu~nn DFBETAS, are some 

large numbers in the denominator. In the other columns the denominator is the 

number of observations. Each numerator is the number of measures that exceeded 

the critical value. It is remarkable that out of the one hundred and forty-four cells 
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in the both tables; only five cases have a zero numerator. So if any of the original 

researchers cry foul and say "robust methods were not commonly used when the study 

done", we have done it for them. The overall conclusion on the basis of these 

measures seems to be the original researchers would have had cause to take a closer 

look at  their data as was hoped in Chapter One. Indeed, some of them probably did 

so but at least we have given those that chose not to use robust methods (and we 

cannot know how many) the benefit of checking for problems in the data. 

4.17.1 The Extent of Outliers 

We want to know if the studies, for which we have obtained changes in the hypothesis 

tests, have more outliers than the studies that did not have hypothesis tests change. 

For this we need an "index" of the extent of outliers calculated for a division of 

all data sets into two groups: first, hypothesis test changes and second, no change 

in hypothesis tests. This "index" is constructed from the DFBETAS measures in 

Tables 4.29 and 4.30 as this measure captures the effect of outliers on coeEcients and 

further is closely related to the lirst two measures. Also Swinton and King (1991) 

found it a useful method for finding outliers. 

The construction of the "index" proceeds as follows: 

1. The data sets were divided into the two groups, mentioned above; 

2. For each data set the critical value (A) of DFBEL'AS is calculated; 

3. The actual DFBETAS are calculated for each data set. There is a DFBETA for 

each estimated parameter; 

4. The critical value is subtracted from the actual absolute value of DFBETA. The 

positiw values From this procedure (the nurnber of positive values is the number 

of outliers) are averaged over all parameters for a data set; 

5. The averaging procedure is repeated for all the data sets; 

6. At this stage we have the average of the extent to which the identified outliers 

are different from the critical value: divided into the two groups; 
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7. Finally the means (the "index") of these averages are calculated and the data 

sets which had hypothesis tests cha.nge have a mean of 0.4 and the data sets 

which did not have hypothesis tests change had a mean of 0.35. 

8. This "index" calculates the extent of "outlierness" but does not take into ac- 

count the size of the data set. If a large data set produces a srnall number of 

outliers with large "outlierness" we would want an index to increase with the 

"outlierness" but also decrease if the number of outliers is small relative to the 

total possible outliers. a size of the data set effect. In other words the "index" 

should fall with fewer possible outliers but rise if, of the fewer possible, there 

are, on average. really "large" outliers. The "index" we have constructed thusfar 

does not capture this effect. 

9. To improve the "index" each measure of "ontlierness" from a data set is weighted 

by the inverse of the sample size for a data set to capture the size of the data 

set effect. When this is done, the weighted means corresponding to those above 

are 0.012 and 0.018. The sample size weighted "index" is higher for the data 

sets which did not have hypothesis tests change. The opposite being true for 

the unweighted index above. 

These results do provide some support for thinking the identification of outliers can 

help identify those observations that exert "inHuenceX on the outcomes of regression 

results, at  least on the basis of the first "index". The results do not support, nor were 

they designed to, the notion that such outliers be accommodated or deleted. Further 

the l~ariances of the indices as we have constructed them indicate these particular 

indices are unable to  discriminate between the two groups of data sets: hypothesis 

test changes and no hypothesis changes. 

4.17.2 A LOGIT Analysis of Outliers 

A logit analysis of the effect of outliers is possible. Divide the data sets into two 

groups, those that had a hypothesis test change and those that did not, creating a 

qu(t1itative response variable which we call HC. This is done for the Least Absolute 
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1 Christenson 1 2/26 1 3/26 1 18/130 1 4/26 1 

Outliers: Original Data 

I 

walsh j 2 j i 6  j 0 j16  j i / 4 8  1 1/16 

Study 
Barkley 

Christenson 

1 Lewis 12/18 12/18 1 1/64 1 1/18 1 

G 
2/45 
2/26 

.., I I 

Owen i 2730 i 1730 i 10190 I 5/30 l 
Lewis 

Conhlan 

Owen i 2 j30 i 3130 i 10i120 i 2 j30 l 

hJt 
3/45 
3/26 

1/23 
2/33 

Table 4.29: Outliers in Data Sets: Part One 

DFBErI'AS 
211135 
81130 

Ball 
Bodvarsson 

DFFITS 
2/45 
1 I26  

1/23 
1/33 

0134 
1/42 

5/69 
101165 

1/23 
1 133 

1/34 
6/42 

81102 
14/168 

3/34 
4/42 
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Table 4.30: Outliers in Data Sets: Part Two 
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Errors estimator using an estimate of the standard errors suggested in the literature 

and not those produced by the S H A Z A M  in-house method. Possible explanatory 

variables to include are: 

The number of estimated coefficients (least squares and Least Absolute Errors) 

differing by more more than two least squares' standard deviations, M2S;  

The number of estimated coefficients (least squares and Least Absolute Errors) 

differing by more more than one least squares' standard deviation; 

The sample size for each regression; 

The number of explanatory variables; 

The sample size less the number of estimated parameters, T M K ;  

The ratio of the number of estimated parameters to the sample size; 

The number of outliers chosen on a DFBETAS basis, N O ;  

The percentage of outliers relative to the sample size and number of estimated 

parameters; 

The average difference between an oixtlier and the "critical value", a measure of 

c L ~ u t l i e r n e ~ ~ ~ '  : E O ;  

An indicator capturing whether the residuals from a least squares' regression 

tested as normally distributed or not, N ;  

The vaiables included in the logit estimation have the boldface variable names. This 

subset is chosen as multicollinearity problems are likely to be avoided and also this 

s y ecification covers: 

One of the fourteen criteria-M2S-we expect this to have a positive effect on 

HC; 

The sample size less the estimated parameters-TMK-we expect this to have a 

negative effect on H C ;  
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Logit Results 

I 0.05-five percent significance level 

Variable 
Name 
M2S 
TMK 
NO 

I 0.1-ten  erc cent significance level I 

Table 4.31: Results froni the Logit ,4nalysis 

Estimated 
Coefficient 

3.4387 
-0.04 
0.06 

0 The number and ext,ent of outliers-NO and EO-we expect this to have a positive 

effect on HC; 

0 Whether the least squares' residuals come from a normal distribution-N-we 

expect this to have a negative effect on HC as the variable takes a value one if 

the residuals are normal and zero if they are not normal. 

Standard 
Error 
1.26 
0.02 
0.03 

The results are presented in Table 4.31. Two variables E 0  and N have the incorrect 

sign but are only significant at the ten percent level. The other three variables are 

T-Ratio 

2.740.05 
2.51•‹.05 
2.090.05 

all significant at the five percent level. Of interest here, as we are concerned with 

outliers, is the variable associated with the number of outliers (NO)  is positively 

and significantly related to HC the variable capturing whether a data set had a 

hypothesis test change. If the logit analysis is repeated but for hypothesis tests 

originally signzficant but becoming insiynijkant the only change to  the results in 

Table 4.31 is the variable E O ,  or the extent of outliers, is significant at  the five 

percent level. and NO is still positively arid significantly related to HC. 

4.18 Conclusions 

1. The percentage of the regressions in which at  least one estimate slope coefficient 

changes by more than one least squares' standard deviation is not above the 
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subjective level for all of the estimators. Refer to Table 4.5. One is getting a 

signal that is easy to interpret. The robust estimators do not make a difference. 

This result is confirmed at two standard deviations. 

2. Coefficients are changing a great deal with the Robust Estimators. Looking at 

Table 4.4 all the the estimators exceeded the subjective cut-off of fifteen percent 

For percentage changes more than thirty. Also, all exceeded the cut-off of ten 

for percentage changes more than fifty. These are stunning results at  least for 

these criteria. On the basis of percentage changes alone all estimators exceeded 

the expected cut-offs. There does seem to be a mixed message from the first 

category: the first two criteria show a difference but, the more important second 

two criteria do not. Due to the importance attached to standard deviations. we 

are of the opinion robust estimators are not different from least squares. 

3. Tht: Vth and VIth criterion and to some extent the XIth are other attempts 

to determine if the robust analysis give different results from least squares. 

Considering Table 4.7 it appears the robust results differ from that of ordinary 

least squares. As the econornetrics literature has suggested, at least since 1978. 

such differences be invcstigated we find it difficult to believe this investigation 

was undertaken and not reported on publication. Care is taken to ensure that 

nearly all the studies made no mention of robust results. Only one did correct 

for outliers. In every study that gave different results on the hypothesis test 

criterion we found evidence of proble~rlatic data points using widely accepted 

and available measures compared with the number of outliers in the studies 

that did not have results change. Another test (based on randomly selected 

coefficients) or the VIth criterion produced the result that least squares and 

robust estimates are not different for the robust estimators. There may be 

problems with the F-test and thus more importance is attached to the second 

test, suggesting the conclusion robust estimates are not different from least 

squares. 
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4. Estimated variances are much lower with the Robust estimators. These results 

were completely unexpected and not believable. This is especially so as the 

randomization methods indicated results becoming insignificant, see Table 4.18, 

rather than significant which the lower estimated variances produced for the 

Xth criterion. Also looking at  Table 4.13 one notices the estimated variances 

change erratically from one estimator to another. Something is not right here 

and although one might be led to conclude robust estimators are different on 

the basis of estimated variances, such a conclusion would be premature. In fact 

coupled with Chapter Two where it is suggested the method of calculating the 

standard errors may produce aberrant results, a Monte Carlo study is needed 

to compare methods of estimating the standard errors. This is done in the next 

chapter. 

5. Robust Estimators show some promise when pitted against least squares in a 

forecasting race, but they hardly overwhelm least squares. The thesis offers 

a seventy and thirty percent split as the percentage of regressions that the 

robust methods must beat least squares on a mean absolute percentage error 

criterion and thus be regarded as different. None of them do. Most are above 

forty percent, though. The forecasting criterion seems to show some promise, 

although one cannot say the robust estimators are very different on this basis. 

Least squares does have the largest improvement in the forecast error but not 

in a enough cases that it would be judged different from the robust estimators 

on the basis of our cutoff level. 

6. Robust estimators do result in significant results becoming insignificant. If one 

looks at Table 4.18, more than five percent of the coefficients, that were originally 

significant, became insignificant. Also the highest percentage becoming signifi- 

cant is eleven percent, excluding tht> Five Quantile and Fiw Percent Trimmed 

estimator due to small sample sizes. Thcre may bc some doubt about the hy- 

pothesis testing results, especially given the concern expressed about t h ~ .  lower 

estimated variances. Also the randomization tests produced the opposite result 

to the robust estimators for this criterion as Table 4.18 shows forty-three percent 
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of studies had coefficients become insignificant and twenty-one percent of the 

studies had coefficients become significant for one method of randomization. 

7. Overall, what emerges from this chapter is that the criteria for determining if 

robust estimators make a difference, present a set of results from which it is 

possible to distil1 the conclusion that robust results do give different coefficient 

estimates in terms of size and there are enough changes in hypothesis tests 

to be concerned, despite our initial supposition that they would not make a, 

diiference. But the criteria related to estimated variances in conjunction with 

other criteria, especially the randomization tests pointed towards the estimated 

variances used here as being suspect and possibly underestimated. It is this 

problem the next chapter addresses and redoes the hypothesis testing criterion- 

XI-with an additional two methods of calculating the standard errors. 

8. Also going through all of the tables for all of the methods and determining which 

of the robust estimators are different f ro~n the others points to two, based on 

larger sample sizes, namely the Huber M-Estimator and Least Absolute errors. 

that we felt stood out from the others. While it is difficult to establish the 

importance of this finding, thcre is some duty on our part to recommend one or 

more for general use. We do this solely on the basis of which stood out or could 

be grouped with others as being different from the rest. For this reason the 

recommendation must be treated with some caution: this is not a Monte Carlo 

Study. Based on the performance in the categories here. we would suggest using 

the Least Absolute Errors and Huber Estimator. If there is still an objection to 

the estimated standard errors associated with these estimators. use one of the 

Randomization methods instead. 
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Chapter 5 

Afraid of Heights: A Monte Carlo 

Study 

5.1 Introduction 

I n Chapter Two is noted the problem of estimating the variance covariance rnatrix 

with the quantile estimators. Specifically: one needs to select ordered residuals 

to esti~nate the height of a density. The selection relies on a value "d". 'I'here 

are complicated ways to determine "d". In fact: there are three ways available in 

SHAZAM (White (1978)) but only for the Least Absolute Errors estimator, which 

has B equd t o  h. One is SHAZhM's in-house method. The in-house method uses T+ 

when T is large enough. The second is the method of Bofinger (1975). Finally there 

is the method of Siddiqui (1960). 

The f o r m u l ~  for the latter two methods are 
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where 7, @ and @-l are the normal density, the cumulative normal and the inverse of 

the cumulative normal. For least absolute errors B is equal to i. SHAZAM (Whi te  

(1978)) uses 1.96 for z in the Siddiqui (1960) formula. As in other chapters B is the 

quantile. 

In Chapter Four the estimated variances of the robust estimators were a lot lower 

than the estimated variances for least squares. For instance the Least Absolute Errors 

estimator gave seventy-seven percent of the coefficients a lower estimated variance 

three times lower than least squares when Least absolute Errors produced a lower 

estimated variance. These lower estimated variance fall into the category " "if it is 

too good to be true" it probably is" and thus it is necessary to ascertain the source 

of these lower variances. 

5.2 A Proposed Monte Carlo Study 

Until the publication of Version 7 of SHAZAM (Whi te  (1978)) the only option avail- 

able at low cost with robust estimation was to use the SHAZAM in-house method. 

The assumption made in this thesis is that others doing empirical work in economics 

used this option. To preserve consistency when trying to see if robust estimators 

make a differcnce, we have elected to do the same. In essence a level playing field 

is preserved. This does not relieve one of the duty to determine whether the differ- 

ent methods of estimating "d" are very different; this chapter attempts to fulfil this 

obligation. 

Some interesting quest ions arise concerning "d" . It is important to know if the 

SHhZAhf (Whi te  (1978)) in-house method deviates from the two methods suggested 

in the literature. A11 the least absolute errors' estimated deviations in Chapter Four 

use the SHAZAM in-house method for the reason given in the above paragraph. Also 

as 'W is liscd as part of the procedure to estimate the variance of an estimator. we 

would like to  know if there is a difference in the estimated variances produced by 

the three methods. This is a problem to solve using Monte Carlo methods as "d" is 

derived as part of a procedure assuming a large sample size. In reality, the data we 

have is based on small samples. So with a Monte Carlo study not only can we answer 
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some important questions about "d" but discern those properties in a small sample 

environment. 

Briefly, such a Monte Carlo study would have the following structure. For a 

given specification and particular error distribution, make 5000 Least Absolute Errors' 

estimates of the coefficient and 5000 estimates of the variance produced by the three 

ways to calculate "d". Work out the estimated variance of the 5000 estimates of 

the coefficient. Calculate the mean of each of the three sets of the 5000 estimated 

variances. Of interest is the comparison of the estimated variance from the former 

with the individual means of the latter. 

It has been suggested by Judge et a1 (1980) that the estimator for the height of 

the density, which requires "d", may not be adequate when k/T is large where k is 

the number of coefficients plus the constant and T the sample size. Also one would 

want to use least absolute errors when there is a suspicion the error distribution is 

one with possible outliers as it is the maximum likelihood estimator for a fat-tailed 

distribution, namely. the double exponential or Laplace distribution. Consequently, 

for this Monte Carlo study a set of fixed independent variables is selected from a data 

set (Benderley and Zwick, see the references at  the end of Chapter Four) that has 

a k/T equal to 3/23 and the possibility the errors have outliers. 

5.3 Steps of the Monte Carlo Study 

The following is not a flow chart but attempts to convey the steps of the Monte Carlo 

experiment. The cxact SHAZAM (White (1978)) commands are given later. 

1. I Specification: Yt = go + Xt + &Zt + 
Notice we have three coefficients, counting go and two independent variables 

fixed in repeated samples. Two independent variables is an advantage as anec- 

dotal evidence indicates much Monte Carlo work includes only one independent 

variable. While we have two independent variables, we focus on for the 

purpose of investigating standard error estimators. 

2. 1 Initial Values I 



CHAPTER 5. AFRAID OF HEIGHTS: A lI/lONTE CARLO STUDY 

Values chosen from an initial investigation of the data. Although these particular 

known values are immaterial, the estimates from the Five-Quantile estimator 

are used. 

3. 1 Sample Size: T = 23-1 

The sample size is deliberately small as it is in such an environment: coupled with 

three coefficients, that the estimator of the height of the density might not be 

adequate. h examining robust estimators others (Johnstone and Velleman 

(1955)) have used 5000 thousand drawings of an error vector. 

4. (Begin 00-LOOP / 
Generate 23 et ,  randomly from a N(O,Var(l))  with probability 0.9 and from 

N(0, Var(9)) with probability 0.1. 

This creates a distribution of errors with "outliers" according to what is known 

as a mixed Gaussian sampling density. A fraction of the errors comes from a 

nor~nal  with a zero mean and unit variance. Mixed with these (ten percent) are 

normal errors having zero mean and variance nine. 'rhese variances (Johnstone 

and Velleman (1985)) have been used to investigate robust estimators. 

1 Generate 23 K using X L ,  Zt and ft. 1 

Estimate /plae / and three versions of its estimated standard deviation namely m, )l ancl Fl. 
With the data generated and the fixed design estimate the ' S  using least ab- 

solute errors. Take care to keep all the 5000 estimates of O2 and the estimated 

standard errors. 

5. 1 End DO-LOOP alter 5000 iterations 1 

Now the process of collecting a large number of estimates of coefficients and 

standard deviations is complete. 



CHAPTER 5. AFRAID OF HEIGHTS: A MOMTE CARLO STUDY 

6. 1 Calculate the estimated standard deviation of the estimated PS. I 
With the 5000 drawings of the errors we have a small sample distribution of the 

p's and we estimate the standard deviation of the this distribution by finding 

the estimated standard deviation of the 5000 ,@""'S. 

We also have a distribution, for the three methods: of the estimated standard 

7. 

errors. Calculate the mean of each of these distributions by averaging the re- 

Calculate the mean of the PS' standard deviations. 

spective 5000 estimated standard errors. 

5.4 The SHAZAM Programme 

The following is the programme used to perform the Monte Carlo study. The c's are 

not an integral part of the programme. ,4n attempt is made to link the lines of the 

programme to the outline of the previous section. 

* Set up data and output files. 
file I1 tbl05.dat 

file 12 results1 .out 

* Set the sample size. See box 3. above. 

sample l 23 

* Set up some counters. 
genl av=O 

genl sq=O 

genl sesha=O 

genl sebof=O 

genl sesid=O 

genl sum=O 

* Read in the data. We are to use qf and p only. 

read(l1) intercpt qf p rs 
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* Get the Same Random Numbers Each Time The Programme Is Used * 
............................................................... 
set ranfix 

* Make sure you have enough memory. 
par 10000 

* Suppress useless output. 
set nodoecho nowarn 

* Begin the DO-LOOP. See box 4. above. 

do #=1,5000 

* Select the errors as described in the first box below box 4. above. 
* Bear in mind SHAZAM wants the standard deviation instead of the variance. 
genr a=uni (l ) 

genr d=dum (a-0.9 

genr dd=(2*d)+l 

genr ee=nor(l) 

genr e=ee*dd 

* The errors have been selected. 
* Generate the dependent variable. 
?genr rsl=-3.1673+6.0633*qf-2.4818*p+e 

................................................. 
* Perform Three Regressions. One for Each "d". * 
* Save Estimates of coefficients. * 
* Save Estimates of standard errors * 
................................................. 
?robust rsl qf p / lae coef=beta stderr=stdlb 

?robust rsl qf p / lae diff=-l stderr=std2b 

?robust rsl qf p / lae diff=-2 stderr=std3b 

* Focus on the estimated coefficient of p. 
* Accumulate the counters for means and standard errors. 
genl sq=sq+((beta:2)**2) 

genl sum=sum+(beta: 2) 
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Monte Carlo 

Standard Deviation P2 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

Standard Del~iation 

Table 5.1: Monte Carlo Results-Benderley and Zwick 

genl sesha=sesha+stdlb:2 

genl sebof=sebof+std2b:2 

genl sesid=sesid+std3b:2 

end0 

* End of the DO-LOOP. See box 5. above. 

* Calculate an item for the standard error estimate. 
genl av=sum/5000 

* Calculate the means of the standard deviations. 
genl msesha=sesha/5000 

genl msebof=sebof/5000 

genl msesid=sesid/5000 

* Calculate the standard deviation of the coefficient 
genl sebeta=sqrt ((sq-5000*av**2) /4999) 

* Save the results. 
write(12) sebeta msesha msebof msesid 

stop 

for p. 

5.5 Monte Carlo Results 

The tables present the results of the Monte Carlo study. To summarize: as shown 

in 'lhblc 5.1, the SHi1Zi1M (Whi t e  (1978)) in-house method substantially underes- 

timates the standard error and the Bofinger (1975) and Siddiqui (1960) methods 

substantially overestimates the standard error by the same amount. 

One can find the values of Table 5.1 in Figure 5.1 by reading the horizontal axis. 
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Density 

SDEV 
.l5 0.2 0.25 0.3 

Figure 5.1: Empirical Densities-STDERR-Solid,SHAZ14M-Dash,BOF and SID 

Density 

% , 
L- *>L 
0.3 

SDEV 
0.4 

Figure 5.2: Empirical Densities-STDERR-Solid,SHAZAM-Dash,BF and Dot Dash, 
SID 
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The numbers shown have darker ticks and as these are difficult to read a vertical line 

is drawn for each value in Table 5.1. For instance, the SHAZAM (White (1978)) 

method gave a x~alue of 0.099105 and this is the first (left) vertical line in Figure 5.1. 

The three methods of estimating this standard deviation produce the distributions 

shown in Figure 5.1. The bold distribution is the SHAZAM (Whi te  (1978)) method. 

As the Bofinger and Siddiqui method gave the same distribution, only the Bofinger 

method is plotted with a bold line. The mean of the SHAZAM (solid) distribution 

lies at 0.099105, or the first vertical line. This is an underestimate of the value 

of 0.138832. The rnean of the Bofinger and Siddiqui methods is 0.145077 (the last 

vertical line) and this is an overestimate. Notice all three estimates of 0.138832 ( 

the middle vertical line) are biased but the latter two methods are closest. Almost 

identical results (0.098, 0.136, 0.144) were obtained when the number of replications 

is expanded to  fifty-thousand. 

Further. for each of the means of the estimated standard errors it is possible 

to estimate a standard error of the mean using a simple formula. This standard 

deviation of the mean is not to be confused with the standard deviations of the 

coefficient estimates. Here we are interested in the standard deviation of the means 

of the standard deviations shown on the horizontal axis of Figure 5.1. The "true" 

value of the mean value is 0.138832. If one adds (it lay below) for the SHAZAM 

( Whi t e  (1978)) method and subtracts (they lay above) for the other methods, twice 

the estimated standard error of the mean to the mean values from the Monte Carlo 

study, it is possible to see "how close" are the three mean values using this measure of 

their standard deviation. to the "tnxe" value. This calculation using the mean values 

and twice the estimated standard error of the mean values produces the upper value 

of the range as 0.1004 for the SHAZAM (Whi t e  (1975)) method and the lower l~alue 

of the range as 0.1441 for the Bofinger and Siddiqui methods. Thus we can have more 

conlidence in the original mean r~alues as the same conclusion is drawn when we look 

a t  the estimates of the mean values plus or minus two estimated standard deviations 

(of the mean values) away from the mean values. 

As the Bofinger and Siddiqui methods gave the same answer for this data set, 
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Table 5.2: Monte Carlo Results-Barkley 

Monte Carlo 

Standard Deviation /J2 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

another data set (Barkley, see the references at the end of Chapter Three) with forty- 

five observations and k equal to eight is used with the same Monte Carlo procedure 

but selecting forty-five new errors. The empirical densities are plotted in Figure 5.2 

but for this data set the Bofinger and Siddiqui methods gave different results and thus 

we are able to plot the density of the Siddiqui method with an alternate dot and dash. 

For this data set the rnean of the 5000 B2's is 0.2727677. This value can be found on 

the horizontal axis of Figure 5.2 just below 0.3 or the last (right) vertical line and what 

is noteworthy here is the "true" value lies above ull the estimates unlike the "true" 

value in Figure 5.1. The mean of the Siddiqui density is 0.2493495 (the second vertical 

line) and is the density with the alternate dot and dash. The Bofinger method, the 

dash density, has a rnean of 0.2624396, or the third vertical line. All estimates are still 

biased and all underestimate, unlike the previous data set, the standard deviation of 

the B2's. The Bofinger method comes the closest to the standard deviation of theP2's. 

Overall on the basis of the empirical distribution of j32. the SHAZAM (Whi t e  

(1978)) in-house method fares rather badly as its estirnated standard error is the 

furtherest of the three methods from the estimate standard deviation of the Pz's. On 

the basis of this Monte Carlo study it can be said the possibility of "d" influencing 

results. that we had anticipated in Chapter Two is realized. Also the mystery of the 

lower estirnated variances of the robust methods is solved. The SHAZAM rnethod is 

the culprit. 

This result identifies one source of the lower robust estirnated variance especially 

for the quantile estimators from SHAZAM (Whi te  (1978)). It raises the possibility 

that the percentage of coefficients becoming significant or insignificant is incorrect. 

Standard Deviation 

0.2727677 
0.1349326 
0.2624396 
0.2493495 
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"Robust" HypothesisTest Results 
Criterion-XI I Percentage SialInsin 

I V L,, 1 Least Absolute Errors I 20 

Table 5.3: "Robust" HypothesisTest Results 

t tests 
BOFINGER 
SlDDIOUI 

For this reason it was decided to repeat Criterion XI for the Least Absolute Errors Es- 

timator but use both the Bofinger and the Siddiqui rnethods to compute the estimated 

standard errors for thirty-seven studies that use t-tests. We focus on t-tests as the re- 

sults for these mirror the original results as Table 5.3  shows. The original results had 

twenty percent of coefficients changing from significant to insignificant and changing 

frorn insignificant to significant. For t tests this percentage is twenty-two percent. The 

Bofinger and Siddiyui met hods reverse the relative magnitudes of the original changes 

and are almost identical. This unity serves to confirm these new results obtained with 

the Bofinger and Siddiqui methods. The SHAZAM (White (1978)) method should 

22 
26 
2 7 

be avoided as it has been shown to underestimate the estimated variances and this 

results in incorrect conclusions being made when looking at  many hypothesis tests. 

Note, however, that it remains the case that a substantial number of hypothesis test 

results are changed: we still must conclude that using robust methods does make a 

difference. 

5.6 More Monte Carlo Results 

To determine the nature of the relationship between k / T  and the extent to which the 

estimated standard error departs from the "true" vdue, nine data sets were selected 

at  random from those where a robust estimator gave a different result on the basis 

of comparing hypothesis tests. 'The k/T7s of these nine data sets ranged from a low 

of 0.0174 to a high of 0.16 and we felt this more than enough spread to perform the 
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experiment. Using a mixed distribution where the et are randomly drawn from a 

N(O: Var(1)) with probability 0.75 and from N(0: Var(9)) with probability 0.25, we 

performed the same Monte Carlo experiment as outlined in the previous sections. For 

each data set the SHAZAM (Whi t e  (1978)) estimated standard error is subtracted 

from the "true" ~ ~ a l u e  for the data set. This is called the SHAZAM ERROR and all 

were underestimates. Next the SHAZAM ERROR is regressed on k/T and the result 

showing nine data sets is plotted in Figure 5.3. Notice in Figure 5.3 all the data sets 

have positive and large SHAZAM ERROR above FIT equal to 0.065. In fact the two 

data sets with FIT at  or below 0.065 have very small SHAZAM ERR.ORS: 0.0009 

and 0.013 respectively. Although nine data sets is a small sample, this experiment 

does show how sensitive the estimated standard errors of the SHAZAM method are 

to the number of coefficients plus a constant relative to the sample size. In Figure 5.4 

we plot the SHAZAM ERROR against T - F and if the SHAZL4M ERROR increases 

as F/?' increases (Figure 5.3), the SHAZAM ERROR should decrease as T - k rises. 

This is indeed the case. In Figure 3 for the SHAZAM (Whi t e  (1978)) method to be 

satisfactory one needs a FIT less than 0.05 to obtain a low SHAZAM ERROR. To be 

fair to the SHAZA41LrI (Whi te  (1978)) method, with the Huber M-Estimator, Huber 

(1973) finds one needs a k / T  equal to 0.125 for the estimated variance covariance ma- 

trix to be satisfactory. Also one can infer from Sposito (In Lawrence and A r t h u r  

(1990)) that 1/T-for the location case-must be as low as 0.01. 

The Monte Carlo study is expanded to include three more distributions: the nor- 

mal, the slash-a unit normal divided by an independent unit uniform which has an 

infinite variance and less peaked than the Cauchy distribution, and a rnixed distri- 

bution where the ct are randomly drawn from a N(0, Vnr(1)) with probabilitj~ 0.75 

and from N(0, Var(9)) with probability 0.25. This is done for the Bender ley and 

Zwick and Barkley data sets. The results are shown in Tablcs 5.4 to Tables 5.9 

and the original results from Tables 5.1 and 5.2 are included for comparison. In every 

Monte Carlo experiment with the new distributions it is the case that the SHAZAM 

(Whi t e  (1 978)) method produces estimated standard errors below the "true" value. 

For the Benderley and Zwick data set it is still the case that the "true" value is 

between the the SHAZAM (Whi te  (1978)) and other estimates' levels. Again, for this 
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SHAZAM ERROR 

Figure 5.3: Relationship of k / T  to the Difference between the SHAZAM estimated 
standard error and the "true" standard error: SHAZAM ERROR 

SHAZAM ERROR 

Figure 5.4: Relationship of T - k  to the Difference between the SHAZAM estimated 
standard error and the "true" standard error: SHAZAM ERROR 
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Monte Carlo 
p- 

Standard Deviation ,& 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

Standard Deviation 

0.1245312(0.138832) 
0.09092599(0.099105) 
0.1304525(0.145077) 
0.1304525(0.145077) 

Table 5.4: Monte Carlo Results-Benderley and Zwick-Normal 

Table 5.5: Monte Carlo Results-Barkley-Normal 

Monte Carlo 

Standard Deviation p2 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

data set and the new mixed distribution, the Monte Carlo experiment is performed 

with seventy-two thousand drawings of the error t e r ~ n  with the following results (0.16, 

0.1 1, 0.17) which agree with those obtained with five thousand. Also for Barkley the 

"true" value is still underestimated by all three methods. For the nine data sets anal- 

ysed in the previous paragraph, all of them displayed the feature that the SHAZAM 

( Whi t e  (1978)) method underestimated the "true" value. The initial results using a 

mixed distribution (the ct are randomly drawn from a N(0, Var(1)) with probability 

0.90 and from N(0, Var(9)) with probability 0.10) are supported with many data sets 

and three new distributions. One should be careful if tk/T is above 0.05 and one opts 

to use the SHAZAM (Whi t e  (1978)) method to estimate standard errors. 

Standard Deviation 

0.2486139(0.2727677) 
O.l254389(O. 1349326) 
0.2390932(0.2624396) 
0.2273266 (0.2493495) 

Table 5.6: Monte Carlo Results-Benderley and Zwick-Mixed (.75) 

Monte Carlo 

Standard Deviation P2 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

Standard Deviation 

0.1643315(0.108832) 
0.1143268(0.099105) 
0.1742031 (0.145077) 
0.1742031 (0.145077) 
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Table 5.7: Monte Carlo Results-Barkley-Mixed (0.75) 

Monte Carlo 

Standard Deviation 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

Standard Deviation 

0.3127507(0.2727677) 
0.155697(0.1349326) 
0.3078626(0.2624396) 
0.2898554(0.2493495) 

Table 5.8: Monte Carlo Results-Benderley and Zwick-Slash 

!Monte Carlo 

Standard Deviation 
Standard Deviation (SHAZAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

I Monte Carlo I Standard Deviation ( 

Standard Deviation 

0.3284895(0.138832) 
0.2120562(0.099105) 
0.3713633(0.145077) 
0.3713633(0.145077) 

Table 5.9: Monte Carlo Results-Barkley-Slash 

Standard Deviation 
Standard Deviation (SHMAM) 
Standard Deviation (Bofinger) 
Standard Deviation (Siddiqui) 

0.9306974(0.2727677) 
0.2849713(0.1349326) 
0.6114121 (0.2624396) 
0.5650521(0.2493495) 



Chapter 6 

Summary and Conclusions 

0 n first discovering robust methods one is caught up in their revolutionary 

possibilities. For instance, the literature on robust methods does indicate that 

least squares is flawed. This opens up the possibility of trying to show robust methods 

work better with real data than does ordinary least squares. A literature review 

revealed that robust estimators had not made that much of an impact in economics 

despite theoretical developments in statistics and econometrics. This thesis attempts 

to determine if robust estimators do make a difference with economic data sets. If 

there was any bias initially, it fell on the side of the least squares. But before we could 

pit the robust methods against least squares many issues had to be covered. 

First, we felt it imperative to work with a large number of data sets as this is a 

shortcoming of a literature which typically sees one data set as sufficient. Ninety data 

sets are used from forty-four empirical studies in economics, both cross-section and 

time-series. One advantage from using real data, rather than artificial data from, say, 

a Monte Carlo study, is the latter is indeed artificial and need not be anything like 

real data. 

The next problem is how to  pit robust and least squares against each other. This 

is easy, given the economist's penchant for hypothesis testing. We ask if the robust 

methods changed the conclusion of the hypothesis test of interest to  the original re- 

searcher. Bear in mind we had mixed hopes for the robust estimators' ability to do 

this. As it turns out the robust estimators did reverse some results. This initial 
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finding, on further investigation, is sensitive to the method used for calculating the 

standard errors of the estimate. After some Monte Carlo work, the the robust es- 

timates of Least Absolute Errors, the one estimator for which we could obtain the 

"correct" calculation, still gave a different result, more in line with what had been 

obtained with randomization tests. 

Given the problem with the SHAZAM standard errors for the robust estimators 

and that we redid the hypothesis tests with standard errors calculated with both of the 

new SHAZAM options for the least Absolute Errors estimator, we were able to pose 

two interesting questions. First, "Typically. what types of data sets had hypothesis 

tests change?". It appears that what might be termed "monetary dat&' exhibited 

more changes in hypothesis tests than did other types of data sets. Second, "Was 

there one data set. possibly familiar to many economists, that had results originally 

significant become insign$cant?". Indeed. the Lucas and Rapping (1969) study 

of labour supply (specifically the determinants of the wage rate) had two of five 

coefficients singled out as important, on the basis of economic theory and originally 

reported as significant, become insignificant. ?tThilc the reason for this change may 

warrant some further investigation. it is a data set from a widely cited and accepted 

study and the change in test results using robust analysis  nayb be of interest to many 

economists. Also, there seemed to be more problems with time series data, but this 

may reflect the preponderance of time series data. 

To ensure the robust methods had been given a fair chance and to provide cover- 

age of all aspects of what it means to  work better, we also calculated the criteria 

for comparing estimates that others had provided in the literature. These results pro- 

vided s mixed picture of the tendency for robust methods to be different from least 

squares. The sizes of coefficients are clifrerent but not relative to the least squares' 

standard deviation. Tests of differences produced mixed results but opting for the 

more important test we conclude robust estimators are not different. They do not 

make a difference when forecasting known values. 4 s  mentioned, some hypothesis 

tests are changed. 

One problem that bedevils one is to  try to see through the faqade of the robust 

muvre in order to recommend one for general use. What emerges is, using SHAZAM 
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(White (1978)), only Least Absolute Errors, with alternate estimates of the standard 

errors, is a viable practical option. The two M-Estimators from BMDP (Dixon 

(1990)) also suffer from the defect that the incorrect formulze are used for the standard 

errors. However, if one looks at  all the tables, in Chapter Four, both the Huber M- 

Estimator and Least Absolute Errors stand out from the others and we suggest both 

be used. 

Another technique, closely related to robust methods in spirit, is a method of 

checking hypothesis tests called Randomization. We felt a two horse race (least 

squares and robust methods) to be insufficient. So we put the data set of data 

sets through the randomization process relying on two methods of randornization. 

The randomization methods were unanimous in reversing over thirty percent of the 

originally significant results. The direction of this result is partially supported by 

the robust estimators, after Monte Carlo results provided us with what are "better" 

methods of calculating robust standard errors. The conclusion from the exercise is 

while we should still use robust methods to vet our estimated equations, we should 

pay close attention to the methods of randornization which can also help in the same 

regard. Randomization tests have the advantage that the problems with estimating 

the variance covariance matrix are avoided. 

Topics for Future Research 

1. One criterion concerned itself with the difference of the robust estimate from 

that of least squares' relative to the the least squares' standard deviation. No 

adjustment is made here for the possible covariance between the coefficient es- 

timates. Whether such an adjustment is necessary is a moot point and thus a 

promising alrenue to pursue. 

2. Related to the above is a possible need to correct the test of Category Two, 

in Chapter Three and Four, for the covariance between the coefficient estimates. 

This has not been done here but is also another item for future research. 

3. We discovered (Chapter Four) the estimates of standard errors from popular 
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econometrics packages to be flawed and Monte Carlo (Chapter Five) work con- 

firmed this finding. Although we included four distributions and eleven data sets 

these could be increased and an even more comprehensive study performed. 

4. Also, the Monte Carlo work could be expanded upon to  allow an investigation 

of estimation of the standard errors using bootstrap methods. 

5. Further, instead of using the econometric packages to provide standard errors, 

the correct formula could be employed for the Huber M-Estimator. 

6. '4 final item for future work would be to link the the "index" of outliers to some 

of the criterion we have used to determine if robust estimators are different from 

least squares. 
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