
A DEDUCTIVE AND OBJECT-ORIENTED APPROACH 

FOR SPATIAL DATABASES 

Wei Lu 

B.Sc., Zhejiang University, China, 1982 

M.Sc., Zhejiang University, China, 1985 

M.Sc., Cornell University, 1988 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 
in the School 

of 
Computing Science 

@ Wei Lu 1993 
SIMON FRASER UNIVERSITY 

August 1993 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

T i t le  of thesis: 

Wei Lu 

Doctor of Philosophy 

A Deductive and Object-Oriented Approach for Spatial 
Databases 

Examining Committee:  Dr. Woshun Luk 
Chair 

Dr. Jiawei H m ,  Se@or Supervisor 

Date Approved: 

Dr. Tom I<. Poiker, Supervisor 

Dr. Tom Calvert, Supervisor 

Dr. Rayrngnd Ng, &erna,l Emminer 

p~ - 

Dr. Peter Tria.ntafi'llou, S.F.U. Exa,miner 



PARTIAL COPYRIGHT LICENSE 

i hereby grant  t o  Simon Fraser U n i v e r s i t y  the  r i g h t  t o  lend 

my thes i s ,  p r o j e c t  o r  extended essay ( the  t i t l e  o f  which i s  shown below) 

t o  users o f  the Simon Fraser U n i v e r s i t y  L i b r a r y ,  and t o  make p a r t i a l  o r  

s i n g l e  copies on l y  f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any o the r  u n i v e r s i t y ,  o r  o the r  educat ional  i n s t i t u t i o n ,  on 

i t s  own beha l f  o r  f o r  one o f  i t s  users. I f u r t h e r  agree t h a t  permission 

f o r  m u l t i p l e  copying o f  t h i s  work f o r  scho la r l y  purposes may be granted 

by me o r  the Dean o f  Graduate Studies. I t  i s  understood t h a t  copying 

o r  p u b l i c a t i o n  o f  t h i s  work f o r  f i n a n c i a l  gain s h a l l  no t  be al lowed 

w i thou t  my w r i t t e n  permission. 

T i t l e  o f  Thesis/Project/Extended Essay 

Author: 

(s ignature)  

I,. 1 9 9 3 .  
(da tu) 



Abstract 

With the rapid development of deductive and object-oriented database technology, it 

is promising to explore the application of deductive and object-oriented techniques 

in the development of spatial databases. This thesis investigates the design and im- 

plementation of deductive and object-oriented spatial databases (DOOSDB). Several 

important issues on such spatial databases are studied, including modeling complex 

spatial objects, spatial data manipulation functionality, a spatial deductive query 

language, and extensibility of the system. This thesis contributes to the studies on 

spatial query optimization and processing in DOOSDB in the following aspects: (1) 

a method for compilation of deduction spatial rules and expressions is proposed with 

simplification of compiled queries using relational and geo-relational algebra. (2) 

an algorithm for spatial query plan generation and selection using a dynamic con- 

nection graph analysis; (3) techniques for set-oriented optimization and processing 

of computationally-intensive spatial operators and methods; and (4) a spatial join 

indexing technique using information associated with frequently used spatial join op- 

erations. 

This thesis presents an integrated view of a deductive and object-oriented spatial 

database system and provides an effective mechanism for spatial data handling and 

efficient algorithms for spatial query processing. 
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Chapter 1 

Introduction 

Motivations 

A spatial database stores and manipulates data about objects relating to their loca- 

tions and spatial extensions. Many database applications, such as geographic infor- 

mation systems, engineering databases, medical databases, need to store and access 

large volumes of spatially referenced data [19, 31, 141, 112, 114, 1381. A spatial 

database stores large volumes of spatially referenced data which usually have com- 

plex structures and require sophisticated data manipulation routines, data modeling 

tools, compilation, query processing, and indexing methods. Therefore, design and 

implementation of spatial databases is an important and challenging issue in database 

research. 

A spatial database stores both spatial and non-spatial data (components) of spa- 

tial objects. Spatial database operations, such as union of two polygons, are in general 

more costly to process than traditional database operations. Spatial data represen- 

tation in the database may directly affect the efficiency of query execution. Spatial 

indices are multi-dimensional and there may be many possible variations for different 

purposes, such as point location, spatial range search, etc. Spatial indices are usually 

more difficult to construct and to maintain than those used in relational databases 
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because they may be multidimensional. Since relational and many geo-relational op- 

erations are set-oriented, whereas spatial methods usually compute features for one 

spatial object at a time (i.e. tuple-oriented), impedance mismatch problems must 

be solved to achieve reasonable performance. These problems are difficult to handle 

elegantly and efficiently using the traditional relational database technology [75]. 

Starting in mid-1980s, deductive database and object-oriented database have been 

two influential directions in database research [131]. A deductive database system 

integrates logic programming with relational database technology and constructs a 

high-level, deductive query interface supported by rules; whereas an object-oriented 

database system integrates object-oriented programming with database technology 

and provides us with powerful tools for semantic data modeling, construction of class 

hierarchy and property inheritance, method manipulation, etc. Furthermore, an in- 

tegration of the two paradigms leads to a deductive and object-oriented database 

(DOOD), which has also become a focus in recent research [76, 771. This trend will 

undoubtedly influence the development of spatial database systems. 

Interestingly, the challenging research issues on spatial data handling demonstrate 

a high demand for deductive and object-oriented database technologies and their 

integration in spatial databases. First, many spatial relationships can be expressed 

concisely and conveniently as logical rules and/or integrity constraints, on which pow- 

erful spatial reasoning mechanisms can be developed. A declarative query interface 

constructed based on deductive database methodology will allow users to define rules 

and pose queries at a much higher level than primitive representations of spatial 

objects, release users' burden of understanding and programming low-level primi- 

tive spatial data structures and lead to a desirable high-level programming interface 

[20, 23, 24, 37, 101, 107, 1101. Second, the complexity of spatial data modeling and 

complex spatial object management can be coped with object-oriented database tech- 

nology [46, 71, 741. Many spatial primitives are computationally intensive and are 

difficult to be defined by pure deduction rules. However, they can be naturally to be 

defined as methods by spatial functions or procedures implementing geometric algo- 

rithms and be associated with classes and class hierarchies. Therefore, a promising 
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direction in spatial data modeling is an integration of object-oriented and deductive 

(including extended-relational) methodologies, which leads to a deductive and object- 

oriented spatial database. 

Problem Specification 

The construction, utilization and maintenance of spatial databases, such as a geo- 

graphical information system (GIs), include the following major tasks. 

1. Data collection - A GIs system involves the capturing, transferring, validating 

and editing of spatial data in order to acquire and load error-free digital data 

into the GIs [40]. 

2. Database system design - A GIs system should support complex spatial data 

modeling, handling and management. 

3. Query processing - The task of query processing and data analysis in a GIs is 

tremendous. Because of the huge volume of spatial data, the efficiency issue 

becomes more crucial in such a system. 

4. Result presentation - The retrieved data will usually be presented to end users 

in a graphical format. A graphic user interface (GUI) provides an intuitive 

medium between human and computers 1991. 

This study concentrates on the second and the third steps in spatial database sys- 

tem design. In this thesis, a deductive and object-oriented spatial database (DOOSDB) 

is designed, which provides us with complex spatial data modeling functionality, a 

declarative query interface, spatial data handling functionality, and efficient query pro- 

cessing mechanisms. The DOOSDB spatial data model enhances a spatial database 

system with deductive and object-oriented features, such as complex objects, class 

hierarchies, property inheritance, data encapsulation and rules. A dual syntax, either 
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Prolog-like or SQL-like, is adopted in the specification of spatial rules/relationships 

and queries. Issues on spatial query optimization and processing in DOOSDB are 

investigated and spatial query optimization techniques are developed. The study 

presents an integrated view of a deductive and object-oriented spatial database, and 

a set-oriented query processing mechanism in such a database system. Next, we 

present an overview of this study: the DOOS database design, a spakial query lan- 

guage, spatial query optimization and spatial join indices. 

1.3 System Structure and the Query Interface 

In the DOOSDB, the relational model is extended with deductive and object-oriented 

features. A spatial database contains spatial data, nonspatial data, deduction rules 

and geometric procedures. It consists of three components: (i) GDB (which stores 

geometric facts extracted from an image database by preprocessing), (ii) EDB (an 

extensional database [139], i.e. a traditional relational database) and (iii) IDB (an 

intensional database [139], which consists of derived virtual relations defined by de- 

duction rules and geometric procedures). The system is organized into three levels: 

(i) a primitive level, which contains the data about primitive geo-objects extracted 

from raw image data by image preprocessing techniques, such as edge-detection, line 

formation; (ii) a procedural level, which consists of a set of primitives defined in a 

procedural language in cooperation with logical and relational operators similar to 

the geo-relational algebra proposed in [53, 541, and (iii) a deductive level, which pro- 

vides users with new geo-objects and the relationships among geo-objects and other 

EDBIIDB objects defined by a set of deduction rules. 

In such a system, spatial and nonspatial data are effectively modeled. The inter- 

action between a spatial database and a traditional relational database is supported 

uniformly in our design. Query optimization is the key for a high-performance spatial 

database. The system is constructed such that optimization can be performed at 

different levels to achieve maximal efficiency. 
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An extended-relational and object-oriented framework is adopted for modeling 

complex objects with class hierarchies, set-valued and list-valued attributes, etc. 

[61, 113, 1211. Essential spatial data types and spatial data handling operators are 

provided by the system. Objects are organized in class hierarchies with each class 

inheriting properties and operations from its super-classes. 

An extended SQL-like language, DOOSQL is designed for handling spatial data. 

It supports (i) complex data modeling, (ii) geometric operations, (iii) spatial rule 

definitions, and (iv) extension of data types and their associated operations. This 

spatial database language provides an effective way to model and manipulate spatial 

data and extensibility for spatial database applications. The detailed design of the 

system, the data model and the query language will be discussed in Chapter 3. 

Spatial Query Optimization 

To ensure efficient evaluation of a high-level query language in large spatial databases, 

set-oriented query optimization must be explored in DOOSDB. Our study focuses on 

the performance improvements of spatial query evaluation in the following aspects. 

1.4.1 Deductive query compilation and algebraic 

simplification 

A compilation approach is developed to decompose rules and queries into primitives 

containing no IDB components [92]. 

Compilation also performs parameter specification (denoting parameter types and 

instantiation requirements referred as modes) consistency checking of rule definition 

and parameter specifier derivation for IDB predicate parameters. 

Algebraic simplification is then performed on the compiled rule expressions based 
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on relational algebra, geometric algebra and equivalence rules. Some implicit spa- 

tial relationships can be derived based on the existing spatial data and geometric 

properties without spatial object retrieval or geometric computation. 

Spatial rule/query compilation transforms a high-level spatial query into a query 

consisting of only relational primitives, spatial primitives and method calls. Compiled 

queries may also have some transitive closure operations on those predicates/primitives. 

A detailed study of spatial query compilation is presented in Chapter 4. 

1.4.2 Access plan generation and evaluation for deductive 

and ob ject-oriented spatial queries 

The second step in query optimization is the generation and selection of query ac- 

cess plans for compiled spatial queries. A dynamic connection graph transformation 

approach is proposed for optimizing compiled spatial query expressions consisting of 

EDB primitives, spatial primitives, and built-in functions [93]. A dynamic connec- 

tion graph of a compiled spatial query represents the possible legitimate data flow 

among the EDB predicates and spatial predicates with the instantiation constraints. 

A heuristic algorithm is developed for access plan enumeration and selection. A 

connection graph transformation provides a dynamic picture for spatial query opti- 

mization. Suboptimal query access plans can be selected from among the candidate 

plans generated based on the analysis of the connection graphs. 

It is important to optimize the processing of relational and geo-relational op- 

erat ions together with comput ationally-intensive spatial met hods. Since relational 

and precomputed geo-relational operations are set-oriented, whereas spatial meth- 

ods usually compute features for one spatial object at  a time (i.e. tuple-oriented), 

impedance mismatch problems must be solved in order to achieve reasonable perfor- 

mance. Set-oriented spatial operation techniques, such as preprocessing and the reuse 

of preprocessed or intermediate computations, are developed. Examples are used to 

demonstrate the potential improvements that set-oriented techniques can bring to 
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spatial operations. Detailed study will be presented in the second part of Chapter 5. 

Informat ion- Associated Spatial Join Index 

Spatial indexing is a multi-dimensional task and therefore is more challenging than 

that for relational databases. Spatial join relationships are especially computationally 

intensive. A flexible spatial-information-associated join index is developed in Chapter 

6 to facilitate dynamic spatial range queries [94]. The idea is to associate some spatial 

information, e.g. distance measurement (distance-associated join index), with each 

join index record in order to reduce geometric computations at query processing time. 

By organizing index records into B+-trees, spatial range queries as well as other 

distance-related queries can be processed efficiently. Based on this basic distance- 

associated join index structure, two structured distance join indices, ring-structured 

and hierarchical, are proposed to enhance search performance in more sophisticated 

geometric environments. Other spatial information can also be associated with the 

join index to improve spatial join operations. Experiment a1 results demonstrate that 

the precomputation of spatial join indices and their storage may substantially improve 

the performance of query processing. 

1.6 Thesis Organization 

This thesis is organized as follows. Chapter 2 contains a review of previous related 

work on new data models, new database systems, database query languages, query 

optimization techniques and spatial indexing methods. Chapter 3 presents the design 

philosophy, system structure and functionality of a DOOSDB system. A declara- 

tive spatial query language DOOSQL is developed. Spatial query examples are also 

presented to illustrate the flexibility and expressiveness of the language. Chapters 

4 and 5 address the optimization issues and techniques for spatial databases based 

on the set-oriented query processing philosophy. Chapter 4 presents an algebraic 
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optimization approach, namely compilation and simplification of spatial rules and 

queries. Chapter 5 describes access plan generation and evaluation for compiled spa- 

tial queries. A dynamic connection graph technique is developed for generating sub- 

optimal access plans. Set-oriented optimization techniques for ob ject-oriented spatial 

operations are also presented with illustrative examples. An information-associated 

join indexing technique for efficient implementation of spatial join operations is de- 

veloped in Chapter 6. Index construction and retrieval algorithms, variations of the 

join indices for different applications, complexity analysis and performance studies, 

etc. are presented. Chapter 7 summarizes this research and discusses future research 

issues, including knowledge discovery in large spatial databases and the construction 

of intelligent spatial databases. 



Chapter 2 

Related Work 

In this chapter, we briefly survey previous work related to the development of deduc- 

tive and object-oriented database systems, including discussions on new data models, 

new generation database systems, query optimization techniques and spatial database 

systems. 

2.1 New Generation of Data Models and Database 

Systems 

New database applications have become increasingly important in database research 

[56, 127, 134, 1491. Traditional database systems are inadequate for many new 

database applications, such as spatial applications where complex data relationships 

and structures must be handled [30, 751. There are many approaches to the develop- 

ment of new database systems [18, 1331, such as extending existing database systems, 

e.g. relational databases with new data types and their associated manipulation func- 

tionality, etc. Three new data modeling approaches are surveyed here: (i) an extended 

relational approach, (ii) an object-oriented approach, and (iii) a deductive approach. 

These approaches lead to new database systems which support complex objects, 
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knowledge management, class inheritance, integrity constraints, time traversal and 

transitive closures. These features are indispensable components of any effective spa- 

tial database. 

2.1.1 Extended relational database systems 

Relational database techniques and query languages are well developed 132, 1391. 

It is natural to take advantage of existing systems and extend them to serve new 

applications. Research in this area is exemplified by the following systems. 

Starburst, developed at the IBM Almaden Research Center, is an extended re- 

lational database system that provides set-oriented operations and a declarative 

language [56]. User-defined data types and complex objects are supported with 

rule-based optimization. 

The DASDBS project at ETH, Zurich supports complex objects by nested rela- 

tional schema, set-orientation in spatial data retrieval, communication between 

different interfaces and multi-transaction management [127]. Due to its ex- 

tensibility, application-oriented front ends and externally defined types can be 

implemented. Generic access methods for image objects are also provided. 

POSTGRES is an extension to INGRES for supporting new application databases 

[134]. The database management system is extended with object management 

and knowledge management capabilities. User-defined types, functions and ac- 

tive semantics, such as triggers, are supported. Path expressions, nested queries, 

transitive closure, inheritance, and time travel are also provided. The rule sys- 

tem and the storage management system are used for query optimization. 

The EXODUS project at the University of Wisconsin is an extensible system 

that facilitates the fast development of high performance, application-specific 

databases [20]. Because of the variety of applications, no single data model can 

meet all of the requirements of the new application domains simultaneously. 
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Hence, a reasonable compromise is for the system developers to provide a pow- 

erful set of basic building blocks that can be configured, in an extensible way and 

with minimal efforts, to meet the needs of different applications [20,47, 89, 1271. 

EXODUS consists of a set of tools for constructing user friendly front ends, such 

as a type manager and a rule-based query optimizer. 

2.1.2 Deductive and object-oriented database systems 

Object-oriented database systems integrate object-oriented programming with data- 

base systems to support the new functionality required by applications and to improve 

database programming productivity. The object-oriented data model supports rich 

data semantics, class hierarchies, methods, property inheritance, extensibility and 

persistence. [67, 81, 791. There are many object-oriented database systems that have 

been developed as research projects or commercial products, such as Gemstone [97], 

Ontos [6], Orion [12], Iris [142], Objectstore [I061 and 0 2  [lo]. Some of these systems 

are reviewed next. 

Gemstone, from Servio Logic, uses a general purpose database programming 

language, OPAL, as its data definition language (DDL) and data manipulation 

language (DML). OPAL supports navigational access as well as associative re- 

trieval. Indexing and clustering on objects are also supported for performance 

tuning. 

Ontos, a commercial product of Ontologic, is an object manager that uses C++ 

as its host language. Persistence is supported through a library of system classes. 

A generic type is provided to facilitate the translation of memory objects and 

disk objects. 

0 Iris at Hewlett-Packard Laboratoryrepresents attribute values, relationships and 

the behavior of objects based on an object and a function model. A rule-based 

query translator compiles Iris functional expressions into execution trees. The 

execution trees are optimized using rule-based transformation routines. 



CHAPTER 2. RELATED WORK 

The 0 2  project built at Altair is an object-oriented database system supporting 

complex objects, object identity, encapsulation, typing inheritance, overriding 

and extensibility [lo]. A user interface generation tool is provided and a pro- 

gramming environment is also supported. 

The Orion project at MCC defines a complex object hierarchy as a nested 

relation. Object-oriented queries can be transformed into corresponding SQL- 

like relational queries. Objects with simple structures and predicates can be 

processed more efficiently. 

Object Store, a commercial product by Object Design Inc., supports persistency 

and a C++ programming environment. New functionality, such as collaborative 

concurrent control and versioning, is provided for database design. Objectstore 

focuses on object mapping, caching and clustering techniques for efficient query 

processing. 

A declarative query interface allows the user to pose queries at a much higher level 

than the primitive level [20, 23, 24, 37, 101, 107, 1101, thus releasing the user from the 

burden of understanding and programming low-level spatial data structures. This is 

the philosophy of deductive databases [139]. 

The LDL system is a logic-based database system [28] which supports advanced 

data and knowledge representation, set operations and recursion using a declarative 

logic-based language. Some other deductive databases include CORAL at the Univer- 

sity of Wisconsin, GlueNail at Stanford University and EKV-1 at ECRC [116]. Some 

deductive database languages include COL which manipulates complex objects and 

CRL which works on nested relations [3, 1481. The magic sets, counting and transitive 

closure algorithms are used to resolve recursion [4, 11, 15, 57, 60, 1241. F-Logic and 

HiLog are recently proposed in the study of high-order logics and integration of de- 

ductive and object-oriented databases [77, 261. Theses high-order logics can represent 

features of object-oriented languages, such as inheritance, so that a language with a 

high-order syntax can be mapped to its first-order semantics. 
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The integration of deductive and object-oriented database systems becomes an 

active area in new database design [82]. Research has been done to extend deductive 

databases with object identity and inheritance [149]. Inference rules and deductive 

query interfaces are integrated into object-oriented programming systems [145]. Beeri 

proposed formal models for object-oriented databases [14]. Declarative query lan- 

guages are presented with SQL extensions, the full calculus and deduction. Functions 

can be viewed as restricted relations. Abiteboul proposed a deductive and object- 

oriented database language with a logic-based core language supporting types, objects 

and extensibility [2]. Grumbach proposed the integration of functions with rewrite 

rules in Datalog [49]. Deductive and object-oriented databases present a promising 

direction in new database design. 

2.2 Query Optimization Techniques 

One of the objectives of query optimization is to minimize the response time for a 

given query language and mix of query types in a given system environment [72, 1331. 

Different techniques have been developed for relational systems [85, 88, 129, 1361. 

Strategies for spatial query optimization have been proposed recently 17, 641. 

2.2.1 Query optimization in relational databases 

Early topics studied on relational query optimization include equivalence of relational 

expressions[l39], access path selection [I291 and query decomposition techniques [144]. 

Query decomposition is a strategy used for query processing in INGRES [144]. A 

multi-variable query is decomposed into a sequence of one-variable queries. The exe- 

cution sequence is determined by estimating the cost using statistics and heuristics. 

Access plan generation is a process that generates execution plans for a given query 

so that the plan with the least computational cost may be selected for efficient query 

execution [68, 1291. A major efficiency concern is join order selection. Even for a 
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medium size query, e.g. 10-20 conjunctive predicates, the search space is enormous. 

Heuristics, statistical information, and dynamic programming are used in access plan 

generation and selection. The optimizer of System R generates access paths by re- 

stricting the solution space to binary processing trees and by using dynamic program- 

ming for the search [129]. Krishnamurthy, Boral and Zaniolo proposed optimization 

of nonrecursive queries in deductive databases that has a quadratic complexity [85]. 

An acyclic recursive query optimization approach has also been proposed [86]. Nested 

block SQL-like query optimization and global query optimization are studied in [78]. 

For complex queries in large databases, randomized optimization has been pro- 

posed to improve an initial solution until a local optimum is obtained. Typical exam- 

ples of such an approach include simulated annealing [69] and iterative improvement 

[136]. Lanzeloott and Valduriez extended randomized and generic search strategies 

for query optimizers 144, 881. 

Parametric optimization generates several execution plans, each of which is opti- 

mal for a subset of possible values of run-time system parameters, such as buffer size 

[70]. Based on two phase randomized optimization algorithms, sideway information 

passing is used to increase efficiency for new plan generation at the parametric vicin- 

ity. Thus, multiple suboptimal access plans can be generated according to different 

parameters without significant time increase. 

2.2.2 Query optimization in extensible object-oriented 

database systems 

Extensibility is a desired feature for new application databases. However, query op- 

timization in an extended system is a challenging task [9, 67, 81, 1261. For examples, 

information about new operators in object-oriented database systems may not be 

available. Two general approaches are used: a graph-based approach for algebraic 

simplification and a transformation rule-based approach for application-dependent 

optimization. Object clustering is important for object retrieval in such systems. 
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Greafe and DeWitt [47] proposed transformation rules and implementation rules 

for reconstructing a query tree and for replacing query language operators with exe- 

cutable methods. An expected cost factor is associated with each rule. The estimated 

cost is the current cost times an estimated cost factor. At each step of the search, 

the rule with the least estimated cost is selected. Rule-based optimization is used in 

many new database systems [13, 56, 1421. 

Optimization in Orion is based on a query graph [80]. An access plan is generated 

by ordering the nodes of the query graph. Its two-file approach for retrieval of parts 

of a complex object is more flexible and efficient than a single file. 

Straube and Ozsu proposed a two stage optimization in object-oriented databases 

[135]. During the first stage, the logical expression is simplified by rewriting rules. 

During the second stage, each logic operation is mapped to a set of physical data 

manipulation operations. Access plan selection is based on estimated execution cost. 

Efficient clustering is important for efficient object retrieval. Cheng and Hurson 

proposed an effective clustering schema for complex objects in object-oriented systems 

[27]. Chan, Ooi and Lu proposed extensible buffer management of indexes [22]. Object 

clustering is also a major optimization concern in DASDBS and Objectstore 1127, 

1061. 

2.2.3 Query languages 

Research on query languages for supporting new applications takes several approaches, 

including (i) extending a traditional database query language, such as SQL, with new 

data representation and manipulation functions, (ii) developing logic-based languages, 

(iii) developing functional languages. 

Extended relations with 11NF nested relational normal form to represent complex 

objects in new applications [120]. A nested relational algebra and an SQL-like nested 

query language SQL/NF are also proposed [122]. 
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Pistor and Traunmuellet suggested a database language for sets, lists and tables 

[113]. The language is based on non-first-normal-form (NF2) .  An extended N F 2  

algebra is provided. An SQL-like query interface provides a liberal syntax for handling 

the new data types. 

Logic-based Data Language (LDL), designed and implemented at MCC, is a de- 

ductive database manipulation language which supports advanced data and knowledge 

representation, set operations and recursion [28]. 

Han and Li proposed a deductive-ER model and its query language DERDL [61]. 

The language supports complex objects, such as tuple-valued, list-valued attributes 

and recursive definitions. Rule definitions use a Prolog-like syntax. The query lan- 

guage has a dual syntax, namely either SQL-like or Prolog-like. It combines the 

declarative style of relational languages with the expressive power of Prolog. 

Spatial Databases 

A spatial database system requires effective data and knowledge representation, a 

high-level query language and efficient spatial data manipulation functions [34, 92, 

101, 108, 1251. Spatial query languages should provide essential spatial data types 

and commonly used spatial manipulation operators in addition to relational database 

functionality. We review briefly recent work on the spatial data representation and 

new database query languages. 

2.3.1 Spatial data modeling, manipulation functionality, 

query languages 

Research on spatial data representation has been performed in the fields of computer 

graphics, geographic information systems, etc. [5, 39, 83, 96, 1041. Spatial object 

representation includes the topology, geometry and thematic of spatial objects. 
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Poiker and Christman established an effective data structure, Triangulated Irreg- 

ular Networks (TIN), for terrain modeling [114]. The data structure interpolates a 

terrain surface from a set of point data samples from the surface by an effective tri- 

angulation algorithm. Other data structures for thematic maps are proposed in [19]. 

Other frameworks have been presented in the GIs area for a unified representation 

of geographical phenomena [40, 1121. These studies describe the requirements for 

geographical information systems and multilevel abstraction of spatial data and its 

relationships, such as conceptual representation, high-level functional representation, 

detail implementation format, etc. 

In the area of computer graphics, data structures such as winged edge and bound- 

ary representation are developed for solid geometric modeling and image synthesis 

[39, 103, 1041. Bezier patches and B-spline surfaces are used for modeling smooth 

surfaces, and fractal techniques are applied for terrain simulations [17]. 

Giiting proposed a geo-relational algebra language (Gral) which extends relational 

algebra by integrating geometric data types and operations [53]. Most commonly used 

topological relations, geometric object generation functions and geometric measure- 

ment functions are included in Gral. Geo-relational algebra is aimed at providing the 

functionality needed to handle spatial data. 

Egenhofer summarized the functionality requirements for a spatial system [34], 

which include abstract data types with corresponding operations, display mechanism 

for visualization, pointing devices for extended dialog, legends for maps, windowing 

operations, etc. Spatial data operations involve procedural and complex computa- 

tions. Interactive query mechanisms and SQL-like extensions for spatial query lan- 

guages have been explored [23, 1211. 

Efficient geometric routines are crucial to an operational spatial database system. 

Many spatial algorithms have been developed in the field of computational geometry, 

such as Voronoi diagrams for spatial location [25, 33, 111, 115, 1371. An extended 

spatial system extracts spatial data from satellite image data. Image enhancing and 

object extraction techniques are used for image processing [146, 45, 1111. 
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2.3.2 Spatial system examples 

ARCIINFO at ESRI is a commercial geographic information system [102]. It em- 

ploys a combination of traditional geographic data handling techniques and relational 

database techniques to handle geographic data. A relational DBMS is used to handle 

non-spatial information. Spatial data is processed by the specialized procedures. 

The PROBE project at the GTE Lab and the IBM Almaden Research Center 

is a system gearing for spatial applications [110]. Z-ordering is used for linearizing 

two-dimensional bitmap objects by a curve passing through a full plane. Z-ordering 

indexes are effective for accessing image objects, and for performing operations on 

them, such as spatial join. 

System Gral extends a relational system for spatial applications with geometric 

algebra which provides geometric types and their manipulation functions [54]. An 

algebraic language is used for querying. Queries are translated into their equivalent 

procedure sequences. Rule-based query optimization is systematically developed [13]. 

Oosterom and van de Bos presented an object-oriented approach for the design 

of GIs [141], which explores data abstraction, extensibility and software reuse for 

the implementation of new application systems. Luk and Choi proposed a generic 

object-oriented spatial database which can be extended into domain-specific database 

systems by building additional software layers on top of it [29]. 

It is essential to model complex spatial objects and relationships among them with 

a spatial query language. There are some extensions of SQL for spatial applications 

such as PSQL [123], and GEOQL [108], which extend SQL with spatial data types 

and manipulation functionality. 

2.3.3 Spatial query optimization 

Spatial query optimization is a difficult task due to the complex spatial data type and 

sophisticated spatial manipulation functions. Rule- based optimizations and strategies 
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have been applied in some spatial database systems [13, 1341. We review some query 

optimization examples in spatial databases. 

Ooi proposed extended decornposition techniques for spatial query optimization in 

[log]. His thesis proposed a global optimization strategy for an extension of SQL which 

requires additional indexing structures to materialize the additional relationships. 

Optimization in Gral is based on optimization rules[l3, 1271. Geo-relation alge- 

bra is translated into a geo-relational database operation sequence. A query can be 

specified as a sequence of operations and each operation is defined by its collection of 

rules together with the selected control strategy. Aref and Samet presented a set of 

strategies for spatial query optimization [7] which can also be specified in the form of 

optimization rules. 

Optimization in PROBE utilizes Z-ordering to reduce a two-dimensional problem 

to a one-dimensional problem [log]. The transformed problem can be dealt with 

traditional techniques. This technique is effective for image objects. 

To assess spatial relationships among generated objects, one technique is to derive 

these relationships based on the known relationships among the component objects. 

Egenhofer proposed a matrix method for spatial reasoning [35]. If A and B satisfy 

one relationship, and B and C satisfy another, some possible relationships between 

A and C can be inferred from the existing relationships without spatial computation. 

Data in DASDBS is stored linearly with an index associated with each complex 

record. Spatial data is clustered with its geometric neighbors [127, 1431. An access 

manager is designed for managing spatial accesses. The clustering of spatial objects 

improves spatial query processing efficiency. 

2.3.3.1 Spatial index 

Spatial databases have been widely used in geographical applications, engineering ap- 

plications, and many others. Spatial indexing mechanisms are essential for processing 

queries involving spatial search. R-trees [55], R+-trees [130], Quad-trees [125], K-D-B 
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trees [118], and Grid files [105], among others, have been popular as indexing struc- 

tures for spatial object retrieval [48, 50, 65, 110, 132, 1281. There are also structures 

that can be used for multidimensional attribute indexing [66, 911. An index for large 

extended objects was proposed in [52]. 

Some research has been done for rectangular range searches, such as the range tree 

[16]. Circular range search has been approximated by rectangular range search [115]. 

In order to retrieve objects in a distance range, a rectangle circumscribing this range 

is searched. The search result needs to be further tested for the original range. K-D 

trees and range trees are used for rectangular range search. 

Join indices were first developed by Valduriez to enhance the performance of join 

operations in relational databases [140]. Join indices reduce the number of I/O oper- 

ations needed and thus improve the performance of join operations. As an extension 

to join indices for spatial database applications, Rotem proposed a spatial join index 

structure which converts geometric computations of certain spatial relationships into 

simple spatial join index files [119]. Join indices store spatial object identifier pairs 

for those objects having these spatial relationships. Queries involving spatial joins 

can be processed by retrieving spatial join indices rather than performing geometric 

algorithms. Furthermore, queries related to fixed distances can be processed by con- 

structing spatial join indices based on e-overlap, where E is a fixed distance defined 

by the database designer. 

This chapter presented a brief review of new database designs, query optimization 

with emphasis on query languages and spatial databases. Many successful database 

systems combine various techniques to provide effective data modeling and manipu- 

lation power for new applications. 



Chapter 3 

A DOOS Database System 

Based on previous studies, we present an overview of the proposed DOOS database 

system in this chapter. A user friendly interface for spatial data modeling and ma- 

nipulation is also provided. 

3.1 Architecture of a Deductive and Object- 

Oriented Spatial Database 

An object-oriented system provides rich semantic modeling power and extensibility 

which are essential for a spatial database system. Databases using the logic program- 

ming paradigm can be a natural evolution from relational databases [43, 84, 90, 981. 

The logic approach to databases ha.s a number of a,dvantage, such as it has a sound 

underlying theory and the language in first-order logic proof theory is richer than its 

counterpart in relational theory. The combination of object-oriented and deductive 

methodologies can provide the strengths of both approaches and achieve a deduc- 

tive and high performance system. With deductive techniques developed, such as 

transitive closure algorithms, recursive queries can be computed efficiently. 

A Deductive and Object-Oriented Spatial (DOOS) data model was proposed in our 
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study [92], which models complex spatial objects and supports a high-level deductive 

query interface. A DOOSDB system is aimed at spatial applications, such as GIs. The 

system adopts successful features from both object-oriented programming and logic 

programming, and develop a set of techniques to alleviate the impedance mismatch 

problem in integrating the relational technology with spatial application methods. 

In our design, a DOOSDB contains spatial data, nonspatial data, deduction rules 

and computationally-intensive methods. It consists of three major components: (i) 

GDB, which stores spatial facts extracted from an image database by preprocessing, 

(ii) EDB, an extensional database [139], which stores nonspatial data in a relational 

form, and (iii) IDB, an intensional database [139], which consists of virtual relations 

defined by deduction rules and spatial computational routines referred to as methods. 

The DOOSDB system supports a spatial database with a high-level query inter- 

face. The syntax of the interface may be either an SQL-like query language or a 

Prolog-like query language. High-level primitives are defined by deduction rules or 

computational routines. For efficient processing, deduction rules are precompiled, 

system supported spatial function are optimized, and the general control structures 

of the methods are analyzed and stored as well. Extensibility is supported. Moreover, 

the system analyzes and collects the database statistics and other met a-knowledge in 

order to assist in query optimization. Figure 3.1 outlines the general architecture for 

query processing and optimization in the DOOS database. 

Our design of spatial object storage structures adopts the SAND (Spatial And 

Nonspatial Data) architecture developed by Aref and Samet [7] (also in [107]), in which 

spatial information and corresponding nonspatial information are stored separately 

and linked together via forward and backward links. 

Suppose a collection of objects, 0, is referred to by the pair (R, S) where R is 

a relation that stores nonspatial attribute instances of 0, and S is a spatial data 

structure that stores the spatial attribute instances of 0. Notice that spatial and 

nonspatial components should be kept synchronized through all operations. For ex- 

ample, given a pair (R, S), op, (e.g. selection) or op, (e.g. windowing) should return 
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the pair (R1, S1) instead of just R1 or S1. That is, relational-based and spatial-based 

operators will be extended in the following way: 
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Figure 3.1: The general system architecture of a DOOS database 
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then extracting the corresponding spatial portion by speztract (opr(R), S). Similarly, 

we have a spatial-based operator x,,,((R, S)) defined in equation (3.2). 

Using the SAND architecture, a set of interesting query processing strategies has 

been developed for spatial query processing [7]. For instance, consider the optimiza- 

tion of the implementation of a spatial join, such as is-adjacent-to, contains, where a 

spatial join combines related entities from two spatial entity sets into a single entity 

set. The sequence of relational-based and spatial-based operations can be reordered 

to facilitate the merge of joined objects. A join can be performed based on the in- 

tersection of pointers (tupleids or spatialids). Relational operators can be pushed 

into dbeXtTact, and spatial operators can be pushed into ~p,,~,,,~ to reduce the size or 

number of objects to be worked on. Some intermediate results can be pipelined with 

subsequent operations to save the creation of temporary relations or the correspond- 

ing data structures. Under certain circumstances, subsequent operations can work 

directly on some temporary intermediate structures instead of creating new copies 

of the data. Projections can be performed as early as possible, especially when the 

target list contains only nonspatial at tributes or only spatial attributes. When two 

spatial or relational operations refer to the same spatial or relational attribute, only 

one ~p,,~,,,~ or dbeXtract need be performed. These optimization techniques have been 

discussed in [7] and will be applied by our optimizer when possible. 

Apart from being organized according to other class hierarchies and property in- 

heritance rules common in object-oriented database systems, spatial objects are also 

organized into hierarchies in the DOOSDB system. The primitive spatial types are 

POINT, LINE and POLYGON. A (super-)class can be constructed by combining sev- 

eral existing classes, such as GEO whose subclasses are the combinations of POINT, 

LINE and POLYGON. By constructing the object hierarchy, properties and methods 

defined for a class can be inherited by its subclasses. For example, geo-intersection 

is defined on two object instances of type GEO, hence it is applicable to any objects 

that belong to subclasses of GEO, e.g. intersecting a region (typed POLYGON)  and 

a highway (typed L I N E  ). Hierarchies are also used in spatial rule compilation to 

check predicate parameter type consistency and derive rule parameter types. 
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Conceptually, a DOOS database contains a collection of persistent spatial and 

nonspatial objects which belong to classes (and which are in turn organized into 

class hierarchies) in a database schema. The root of the class hierarchy is a special 

class "Object" which contains the common methods for all kinds of objects, such as 

"create-class", etc. Each class is associated with a set of attributes and/or methods 

which are defined by deduction rules, computational routines, property inheritance 

rules, class composition (aggregation) hierarchies, class associations, or concrete val- 

ues. An example of the schema outline of a DOOS database is presented in Figure 3.2, 

in which the class hierarchy/association information is defined as follows. 
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Figure 3.2: A spatial object hierarchy 
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1. is-a relationship (class/subclass hierarchy) is defined by a solid arrow in which 

the class at the arrow tail is a superclass of the class pointed by the arrow head. 

For instance, class employee is a superclass of class faculty. 

2. is-a-part-of relationship (class composition hierarchy) is defined by a dashed 

arrow in which the attribute at the arrow tail is a description of the "component" 

class pointed by the arrow head. For example, class department is a component 

(attribute) of class university. 

3. class association relationship is defined by a dashed line where two classes refer 

to each other. For example, the attribute course in the class department is 

associated with the attribute department in the class course. 

In summary, a deductive and object-oriented spatial system provides a uniform 

high-level interface to users. It supports data semantic modeling and spatial func- 

tionality. 

3.2 Spatial Components and Languages 

A high-level spatial database query language should provide spatial object modeling 

functions, rule definition capability for expressing complex spatial relationships and a 

declarative query interface. We now propose a deductive and object-oriented spatial 

query language DOOSQL to facilitate high-level spatial queries. This language ex- 

tends DERDL [61] and SQL/NF [I221 with spatial data modeling and manipulating 

functions. It has the following features, (i) a nested relational framework for repre- 

senting complex objects which supports tree-structured schema, set attributes and 

list-valued attributes, (ii) an object organization into a class hierarchy with inheri- 

tance, (iii) a rule definition language that uses in a Prolog-like syntax, (iv) a query 

interface with dual syntaxes, i.e. SQL-like or Prolog-like. 
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3.2.1 Spatial data representat ion 

Our nested relational framework is based on the non-first-normal-form relation(l1 NF) 

proposed in [120]. A nested relation R is of the form R = ( R1, . . ., R;, . . ., R,), where 

attribute R; can be either an atomic attribute or a nested relation. A nested relation 

is in a partition normal form(PNF) if all atomic attributes at the external level are a 

key of the relation and if all of its sub-relations are in PNF [120]. A nested relation 

in partition normal form has the nice property that the nestinglunnesting operations 

are reversible. We will assume that all relations are in PNF. A nonrecursive relation 

can be represented as a schema tree. 

A nested relational framework can accommodate list-valued attributes and set- 

valued attributes. A set-valued attribute is defined by the keyword setof while a list- 

valued attribute is described by the keyword sequenceof. A tuple-valued attribute 

can be referred to at either the attribute level or the component level. Sets and lists 

may optionally have a name. 

The followings are some meta-symbols for defining the query language in extended 

Backus Normal Form (BNF). 

::= defines non-terminal symbol 

( ) denotes a non-terminal symbol 

[ ] denotes an optional component of the language that may appear at  
most once. 

{ ) for an optional component of the language that may appear any 
number of times. 

( schema)  ::= schema (schema-body) 

(schema-body) ::= ( n a m e )  ( ( a t t r i d e f )  {, ( a t t r i d e f )  ) ) 

(attri-de f )  ..- . (a tom-at t r ide  f )  I setof (subschema) 

I sequenceof (subschema) 

(subschema) ::= ( type)  I (schema-body) 

(atom-attri-de f) ::= ( n a m e )  : ( type)  
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In addition to the basic attribute types in the traditional relation, namely REL4L, 

BOOLEAN, INT and STRING, a set of essential spatial types are supported in the 

extended schema. Here is a part of syntax for object definition. 

Example 3.1 Spatial primitive definitions. 

Typical primitive spatial data types/objects provided by the DOOS database sys- 

tem are POINT, LINE and POLYGON. 

1. POINT represent a point, i.e. a pair of real numbers in two dimensional space: 

schema POINT( x: REAL, y: REAL) 

For example, the center of an object can be represented by the point (2, 3). 

2. LINE is used to describe a line consisting of a number of line segments and a 

line is represented by a sequence of points: 

schema LINE( points: sequenceof POINT ) 

The key word sequenceof indicates that points is a list-valued attribute. For 

example, an instance of a line can be represented by ((2, 3), (6, 10)). 

3. POLYGON is used to describe a simple polygon by listing its contiguous ver- 

tices: 

schema POLYGON( points: sequenceof POINT ) 

A polygon data object is assumed with the last point on the list connected to 

the first one on the list. An instance of a POLYGON is ((0, 3), (3, 3), (3, 0)). 

These primitive spatial data types can be used to build more complex spatial 

objects. A sample object schema definition is presented in Example 3.2. 
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Example 3.2 A complex spatial object region is defined as follows. 

schema region( name : STRING,  

population : INT ,  

geo : POLYGON, 

setof highways( name : STRING,  

route : L I N E  ) 

setof districts( name : STRING,  

area : POLYGON ) 

1 

Notice that in this definition, highways and districts are two set-valued attributes. 

3.2.2 Spatial operations and procedure definitions 

Relational operations, such as selection, are extended to manipulate these newly added 

primitive spatial data types. Equality is extended for new primitive spatial structures 

as follows. 

1.  Structure and value equality of two non-atomic attributes indicates that 

both have the same structure and that corresponding components have the 

same values. For example, the equality of two points pl and pa is defined as, 

2. Semantic equality refers to the semantic equivalence of two representations 

for the same spatial object; these may not be necessarily structure or value 

equivalent. Here are some examples. 

a) LINE equality 

Given two undirected lines 11 (pll, . . . , pl;, . . . , pl,) and 12(p21, . . . , p2j, . . . p2m), 
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b) POLYGON equality 

Given regions r l  (pll, . . . , pln) and r2(p21, . . . , ~ 2 m ) ,  

A spatial database system should provide basic manipulation operations on geo- 

metric objects that include (i) logic operators, which describe the relationship among 

geometric objects, for example is-inside-of(X, Y) which returns TRUE if X is inside 

of Y, (ii) geometric transformation operators, which take geo-objects as parameters 

and create new geometric objects, for example, geo-union(X, Y) which computes the 

union of X and Y , (iii) feature evaluation functions, which evaluate properties of the 

geometric objects, for example, distance(X, Y) which calculates the distance between 

the two points X and Y, and (iv) aggregation functions, which calculate aggregation 

value of a set of data, for example, sum computes the sum of a set of numbers. Some 

typical geometric operators and their parameter specifiers are listed in Tables 3.1 and 

3.2. The names of the predicates and functions are self-explanatory. A function can 

be converted to the equivalent predicate [63] .  In the following discussion, a spatial 
-, 

function, geo- f unc, will be referred to as geo- f unc(X) or its corresponding predicate 
-+ 

form geo-func(z,Y), where X is the input vector and Y is an output parameter 

that will contain the function value. Similarly, spatial predicates are in an infix for- 

mat in an SQL-like query (to simulate natural language) and are in a prefix format 

in a Prolog-like query (to be consistent with Prolog). Commonly used aggregation 

functions include sum, minimum, maximum, average and count. 

User-defined or application-specific procedural methods, such as the maximum 

throughput of a highway network, are very important in an extensible spatial database 

system for new applications since it needs to be adaptable to different customers. 

An important distinction between a procedural primitive and a relational one lies 

in the specification of the application modes of the parameters in a procedure and 
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I Parameter t v ~ e s  I Predicate I Parameter t v ~ e s  I 
I " I  , I u 1 I 

1 GEO I overlaps I GEO 

isinside-of POLYGON 
POLYGON contains 

Table 3.1 : Spatial relation predicates. 

area(POLYG0N) 
boundary(P0LYGON) 
distance(POINT, POINT) 
geo-union(POLYGON, POLYGON) 
geointersection(POLYGON, POLYGON) 
geo-difference(POLYGON, POLYGON) 

Function (parameter types) 

length(L1NE) 
REAL 
LINE 
REAL 
POLYGON 
POLYGON 
POLYGON 

Function type 

REAL 

Table 3.2: Spatial functions. 

the attributes in a relation. Every attribute in a relation can be instantiated and 

inquired at  will. However, a parameter in a procedure is often restricted to some 

specific accessing mode(s), i.e. either instantiation only, denoted as in mode; inquiry 

only, denoted as out mode; or both, denoted as any  mode. For example, a geometric 

procedure geo-union(X, Y, Z )  returns the union of two polygons X and Y in 2. X 

and Y should be instantiated (with the mode in)  and Z could be either instantiated 

or inquired (with the mode any).  Otherwise, if X and Z were instantiated but Y 

were inquired, an infinite number of Y's could be derived since X and Y may partially 

overlap. Notice that the mode of a parameter of a finite relation is always any.  

Our system supports the extension to new data types and new operations. The 

declaration of a spatial procedure includes: a procedure name, procedure parameters, 

and their parameter specifiers. The syntax of procedure declarations is presented 

below and examples of procedure declarations will follow. 
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(procedure) ::= procedure (name) ( (para-de f )  {, (para-de f )  ) ) 

(para-de f )  ::= (Name) : (para-spec) 

(para-spec) ::= (type) (mode) 

Example 3.3 Procedures boundary and gMaxUnion are defined as follows. 

procedure boundary(X: POLYGON in,  Y: LINE out) 

procedure gMaxUnion(X: setof GEO in,  Y: setof GEO out) 

When a new procedure is defined, the system will register the procedure name and 

its parameter names with their specifiers. A user-defined procedure is treated in the 

same way as one defined by the system. For instance, boundary could be a system 

defined procedure, which takes a polygon and returns its boundary. A user-defined 

procedure, such as gMaxUnion, will be imported in the system by directly linking 

compiled code blocks with the system or by interpreting them. 

These operators inject a lot of vital power to the relational system for inquiring 

on and manipulating spatial information. 

3.2.3 Rule definitions 

Many spatial relationships, such as containment, within, connected-to, etc., are de- 

fined recursively. It is necessary to use recursive rule compilation techniques in a 

DOOS database. The syntax of the rule definition in DOOS is similar to that in 

Prolog. Examples of spatial rule definitions will be presented. 

(rule) ::= (predicate) :- (predicate) {, (predicate)). 

(predicate) ::= (name)((Name){, (Name)))  
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Example 3.4 Definitions of IDB predicates. 

Let rel-inside(X : GEO, Y : POLYGON) be a precomputed relation represent- 

ing the fact that X is inside of Y. The IDB predicate within(X, Y) is defined below. 

inside(X, Y) :- is-inside-o f (X, Y). 

inside(X, Y) :- rel-inside(X, Y). 

within(X, Y) :- inside(X, Y). 

within(X, Y) :- inside(X, Z),  wi-thin(Z, Y). 

Here the new predicate within is defined by a relation rel-inside, a geometric 

predicate is-insidea f and their transitive closure. An application-oriented predicate 

can also be defined. If an object class pollution-map(X : POLYGON) is defined in 

the database, a predicate pollutedqarcel-in(X, Y) indicating that X is polluted land 

parcel and is inside of Y can be defined as below. 

polluted(X) :- pollution-map(Y), overlaps(X, Y). 

polluted-parcel-in(X, Y) :- parcel(X), polluted(X), wit hin(X, Y). 

The parameter specifier of the IDB parameters is derived from those that define 

them by a rule compilation process which will be illustrated in the next chapter. 

3.2.4 Query interfaces 

The dual interface of DOOSQL is similar to that of the Deductive-ER query language 

[61]. A query can be posed using an SQL-like syntax or a Prolog-like equivalent form. 

The SQL-like query syntax is as follows. 
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( s ~ k l ~ e r ~ )  ::= select (result) {, (result) ) 
from (name) {, (name) ) 

where (pred-expression) 

(result) ::= (attribute) I (func-name) ( (attribute) {, (attribute) ) ) 

(pred-expression) ::= (pred-term) { (logic-lin k )  (pred-term) ) 

(logic-link) ::= and 1 or 

(pred-term) ::= [not] (predicate) I 
[not] ( (math-expression) (comp) (math-expression) ) I 
[not] ( (geo-obj) (geoqredicate) (geo-obj) ) 

Example 3.5 A spatial query in an SQL-like language. 

We examine the database illustrated in Figure 3.3, which consists of the following 

objects: districts, ranches, parcels and pollution maps, which are defined as follows. 

schema parcel(name : S T R I N G ,  region : POLYGON) ,  

district(name : S T R I N G ,  region : POLYGON) ,  

ranch(name : STRING,polluted : BOOLEAN,  region : POLYGON) .  

Suppose that the query is to "jind the total area of unpolluted ranches which are 

adjacent to polluted parcels in district A". In combination with the power of deduction 

and an easy-to-read SQL-styled language, this query can be posed effectively. The 

predicate is-adjacent-to is commonly used, therefore it is assumed to be supported by 

the system. An IDB predicate polluted-parcel-in(X Y )  is defined in Example 3.4. 

The query in SQL-like format is: 

select sum(area(ranch.region)) 

from ranch, parcel, district 

where district.name = 'A' 

and ranch.polluted = FALSE 

and polluted-parcel-in(parcel.region, district.region) 

and ranch.region is-adjacent-to parcel.region 
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district A 

.................... 
: C\1 

parcel 12 & : z  
: a, 52 

.................... 0 i g  
g ; a  parcel 13 a : 

Figure 3.3: A map which shows ranches, parcels and polluted areas 

As a result of the execution of this query, the areas of ranch3, ranch4 and ranch5 

are returned. 

It can be a good option sometimes to adopt the Prolog-like syntax in the pre- 

sentation of a query. The extended BNF of a query using the Prolog-like syntax is 

presented as follows. 

(logic-query) ::= ? - (predicate) {, (predicate)). 

(predicate) ::= (name)((parameter), (parameter)) 

(parameter) ::= (constant) I (Variable) 

A deductive and object-oriented spatial language has been outlined, data struc- 

tures have been developed and data manipulation functions have been proposed. The 

compilation of a spatial query transforms a query in either SQL-syntax or Prolog- 

syntax into a uniform compiled equivalence. The language structures involving defi- 

nition and data retrieval are specified by their BNF in Appendix A. 
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Chapter Summary 

An integration of the deductive and object-oriented paradigms in the design of spatial 

databases has been proposed in this chapter. The spatial database provides a declar- 

ative query interface which can be compiled and decomposed using well-developed 

compilation approaches. Such a design and implementation philosophy of spatial 

databases combines the advantages of both logic and procedural methods, thus treat- 

ing a user-friendly environment and achieving both processing efficiency and expres- 

siveness. The system is geared to spatial*applications and therefore it can be more 

effectively and efficiently for spatial queries. The system supports both built-in geo- 

metric data types with standard spatial operators and user-defined data types with 

associated spatial methods. The former can be processed efficiently while the later 

is indispensable for flexibility. An extended SQL spatial query language has been 

designed to support spatial data types, their manipulation functions, rule definitions, 

and extensibility. 
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DOOD Spatial Query Compilation 

A high-level deductive query interface has been implemented efficiently using the com- 

pilation approach [139]. The compilation process can be divided into three phases: ( i )  

query independent IDB rule compilation, (ii)  system independent optimization, which 

includes the compilation of a deductive spatial database and algebraic simplification, 

and (iii) the system dependent optimization of spatial queries. The first phase com- 

piles the IDB predicates defined in the IDB into operations on the EDB, the GDB 

and their transitive closures. Simplification and optimization can be performed on 

the compiled results. The second phase is invoked when a query is submitted to the 

system; it compiles and simplifies a specific spatial query using information about 

query instantiation. The third step is the continuation of the second phase which 

analyzes and optimizes a specific spatial query based on information about the query 

instantiation, inquiry, compiled geo-primi tives, and statistical information about the 

EDB and the GDB. The result is an optimized query processing plan which is then 

submitted to the query processor. We examine system independent optimization, 

namely the first phase and the second phase, in this chapter and leave the discussion 

of the third phase to the next chapter. 

Compilation of the IDB is a process which transforms rules into a form containing 

only relational and spatial primitives and method calls. Compilation of the IDB 
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has been studied extensively in deductive database research. Detailed compilation 

and optimization techniques can be found in previous studies on deductive databases 

[43, 59, 62, 73, 100, 1391. 

Many spatial relationships, such as containment, inside and connected-to, are de- 

fined recursively. Thus it is necessary to  apply recursive rule compilation techniques 

in DOOS databases. Fortunately, most recursive relationships in spatial data appli- 

cations are in relatively simple forms, such as transitive closures or linear recursions, 

whose implementations have been studied extensively in deductive databases. We 

will study deduction rules and their transformation techniques in spatial database 

systems. 

In a DOOS database system, deduction rules can be compiled into expressions con- 

sisting of primitive predicates and operations before queries are posed to the system. 

The compilation of a deduction rule transforms the rule definition into a sequence of 

primitive relational operations, spatial operations and method calls (if some primitives 

are defined by methods) on spatial and/or nonspatial data. The rule compilation may 

be performed independently of queries, and the compiled program can be optimized 

and stored for later query processing. 

Compilation of Spatial Rules 

When a query is submitted to the system, its deductive predicates should first be 

resolved against the compiled rules. The results should then be further simplified and 

analyzed according to simplification rules. 

As mentioned in Chapter 3, the instantiation constraints (modes) of procedure 

parameters distinguish spatial procedural predicates from data relations and therefore 

affect the processing of spatial queries. 

During query processing, each input parameter, denoted by in should be instan- 

tiated before the method is called. A parameter in a method can be instantiated 
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by query constants, GDBIEDB accessing, or from information computed using other 

procedures or query predicates. If a procedure contains some uninstantiated param- 

eters, the query processor should determine whether the data can be fetched from 

GDBIEDB or computed by other procedures. The invocation of such a procedure 

will have to be delayed until all of its input parameters have been instantiated. 

Since attributes in a relation and procedure parameters are typed, the compila- 

tion of an IDB should perform the type consistency checks. This validation process 

often results in eliminating contradicting rules. A compiled program usually has a 

simpler set of types, thus reducing the cost of query processing. Type checking is 

performed by checking the consistency of the types of the corresponding variables in 

the procedures/predicates. This checking process tosses away the conflicting portions 

of parameter specifiers in the compiled formula and results in a compiled formula 

which is associated with a set of consistent parameter specifiers. This set can then be 

used in further compilation and query processing. We now examine the type checking 

operation in details. 

Although an EDB attribute is defined to be of a specific type in its schema def- 

inition, its mode definition is omitted, since it always has a mode of any (either 

inquired or instantiated). On the other hand, a parameter (attribute variable) of an 

IDB predicate is defined to be of a specific type and mode using its IDB predicate 

definition. Since an IDB predicate may be defined by more than one rule, different 

rules may specify different types and modes for a specific parameter. One task of the 

compilation is to merge these parameter specifiers appropriately. 

The power set of geo-primitives, P O I N T ,  L I N E  and POLYGON, provides all 

of the types available for geo-objects. There exists a partial order among all possible 

geometric data types; this order can be defined by the type hierarchy. A spatial data 

hierarchy can be specified in a DOOS database, such as { POINT, LINE, POLYGON} 

c GEO, which indicates that a POINT type is a subtype of type GEO, denoted as " 

POINT 4 GEO". Notice that typel 4 type2 if typel is subsumed by (or is a special 

case of) type2, i.e. typel is compatible with and more restrictive than type2. The 
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type of an IDB predicate parameter can be derived by taking the most restricted of 

the compatible types given to the parameters in the rules defining the predicate. If 

the variables with the same name in different predicates which define an IDB have 

conflicting types, an error will be reported and the compilation of the rule fails. 

Example  4.1 Derivation of types and modes for the variables in a co~npiled rule. 

Let the types and the modes of the attributes in the primitive relations road and 

city, and the variables in the geometric procedure geo-intersection be defined as 

1. road()<: LINE any),  

2. city(Y: POLYGON any) ,  and 

3. geo-intersection(X: GEO in,  Y: GEO in,  Z: GEO out ) ,  

Suppose that a rule road-thru-city is defined as follows. 

road-thru-city (X, Y, Z) :- road(X), city (Y), geointersection(X, Y, Z). 

Resolution is performed between the rule and the definition as follows: (1) the most 

specific type of the type hierarchy that is consistent with both the rule and the definition 

is resolved as the resulting type of the rule and (2) the most general mode which is 

consistent with both is resolved as the resulting mode. 

In this example, the resulting type of the variable X in the head of the rule, 

road-thru-city, should be of type L I N E  because the type of X in road is L I N E  and 

in geo-intersection is GEO. Similarly, the type of Y is POLYGON and that of Z is 

L I N E .  The resulting mode for X in road-thru-city is any  because X is any  in road 

and is in  in geo-intersection. Similarly, the resulting mode for Y is any  and that for 

Z is ou t .  0 
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Example  4.2 Compilation of a deductive rule. We examine the type checking in the 

compilation process of a predicate, 

availableriversidespace(X, Y), which returns TRUE if and only if X is a piece 

of available space adjacent to  river Y. The definition uses another IDB predicate 

adjacent(X, Y) which returns TRUE if and only if a geo-object X is a neighbor of 

another geo-object Y, or if X and Y share a common boundary. Suppose that schema 

relations, the headers of the procedures, and IDB rules are defined as follows. 

schema neighbor(X: POLYGON, Y: POLYGON), river(X: LINE), 

unusedspace(X: POLYGON). 

p rocedure  boundary(X: POLYGON in ,  Y: LINE o u t  ), geoisintersected(X: 

GEO in,  Y: GEO in ). 

adjacent(X, Y) :- boundary(X, Z),  boundary(Y, W), geo-is-intersected(W, 2). 

avai lableriverside-space(X,  Y) :- unusedspace(X), river(Y), adjacent(Y, X) .  

Type checking is performed during the compilation of the IDB predicates; it often 

results in eliminating some incompatible rules. For example, the compilation process 

of available-river-sidespace (X, Y) detects that the first definition of adjacent should 

be excluded from the compiled rules because the type of a river(Y) is LINE, which 

does not match the type POLYGON of the variable Y in the EDB predicate neighbor. 

In the compilation result, both the types and the modes of variables of adjacent 

are more restrictive than the originally declared, because of the restrictions on those 

of the variables in their defining rules. The type and mode of adjacent is either (X:  

POLYGON any  , Y: POLYGON any  ) or (X: POLYGON in,  Y: LINE ou t ) .  

adjacent(X, Y) = neighbor(X, Y) U 

(boundary(X, Z), boundary(Y, W), geo-is-intersected(W, 2 ) ) .  
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Similarly, the mode and type of availableriversidespace should be (X: POLY- 

GON in  , Y: LINE in). 

availableriversidespace(X, Y) = unusedspace(X), river(Y), 

boundary(X, Z), boundary(Y, W),  geo-is-intersected(W, 2). 

During compilation, the IDB predicates are transformed into forms which consist 

of only EDB predicates and spatial methods and are easy to analyze further when a 

query is submitted to the system. 

Example 4.3 The compilation of IDB rules for the spatial database of Example 3.4. 

Recall that from Example 3.4 we have the following definitions and IDB rules: 

schema pollution_map(P: POLYGON), relinside(X: GEO, Y:POLYGON), 

parcel()(: POLYGON). 

poEluted(X) :- pollution-map(Y), intersect(X, Y). 

polluted-parcel-in(X Y) :- parcel(X), polluted(X), wit hin(X, Y). 

inside(X, Y) :- is-inside-o f (X, Y). 

inside(X, Y) :- rel-inside(X, Y). 

within(X, Y) :- inside(X, Y). 

within(X, Y) :- inside(X, Z),  within(Z, Y). 

The rule polluted(X) indicates that X is polluted if X intersects with any pollu- 

t ionmap Y. The rule polluted-parcel-in-region (X, Y) indicates that X is a polluted 

parcel within region Y. The rule inside(X, Y) indicates that X is inside of Y based on 

either relation rel-inside(X, Y) or the geometric predicate is-inside-of (X, Y). The 

rule within (X, Y) indicates that X is within area Y if X is inside Y or if X is inside 

Z which is, in turn, within Y. 



CHAPTER 4. DOOD SPATIAL QUERY COMPILATION 

The compilation results are in the following compiled IDB predicates: 

polluted-parcel-in(X Y) = parcel(X), pollutionmap(Z), 

geo-is-intersected(2, X) ,  within(X, Y). 

within(X, Y) = inside+(X, Y). 

inside(X, Y) = rel-inside(X, Y) U is-inside-o f (X, Y). 

Notice that in the compiled form, the predicate polluted-parcel-in(X, Y) is still 

represented using an intermediate predicate within(X, Y). This should be viewed 

as a concise notation. It does not imply that the computation of the predicate 

polluted-parcelin(X, Y)  cannot start before the completion of the computation of 

the intermediate predicate within(X, Y). Similar arguments hold for the predicate 

within(X, Y) which is represented by an intermediate predicate is-inside-o f (X, Y). 

Furthermore, the predicate within(X, Y) is represented using the transitive closure 

notation, inside+(X, Y), since it is defined by a set of recursive rules. 

Most spatial database application programs can be written using deduction rules, 

procedural definitions or their combinations. By compiling IDB rules into simpler 

forms and performing the type checking at compilation time, most application pro- 

grams can be processed efficiently. Although recursive query processing poses new 

challenges to efficient evaluation, most recursive rules can be compiled into simple 

forms, such as transitive closures or asynchronous chain recursions which can be eval- 

uated efficiently [62]. The compilation and efficient processing of recursive queries 

have been studied extensively in deductive database research, such as [59, 1391; it will 

not be addressed here. 

4.2 Spatial Query Simplification 

Simplification of algebraic expressions has been studied extensively [I391 and most of 

the existing results can be applied to spatial query optimization. Furthermore, spatial 
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properties and spatial equivalence rules can be used to perform algebraic simplifica- 

tions which transform a compiled rule (obtained by rule compilation) or a compiled 

query expression (obtained by resolving query predicates with the compiled rules) into 

simpler expressions which can be evaluated more efficiently. In addition to relational 

algebra used for simplification of relational expressions, spatial query simplification 

uses geometric algebra and other spatial properties [54]. 

4.2.1 Spatial properties, equivalences and translation rules 

Spatial properties can be used to  simplify spatial expressions or to compute a virtual 

spatial relation using a set of existing or precomputed spatial relations. 

Definition 4.1 A predicate p(A, B) is symmetric if p(A, B) = p(B, A). A predicate 

P(A, B) is transitive if p(A, B) and P(B, C) imply p(A, C). A predicate pl(A, B) is a 

converse of another predicate P ~ ( A ,  B) if P ~ ( A ,  B) = p2(B, A). A predicate pl(A, B) 

is a complement of another predicate p2(A, B) if pl(A, B) = -7p2(A, B). 

Example 4.4 The symmetric, transitive, complement and converse properties of 

some common relations can be illustrated using the following logic rules. 

1. "symmetry" : is-adjacent_to(A, B) :- is-adjacent_to(B, A). 

2. "converse": is-inside-of (A, B) :- contains(B, A). 

3. "transitivity": is-inside-o f (A, B) :- is-inside-o f (A, T), is-inside-o f (T, B). 

4. "complement": is-disjoint-from(A, B) :- ~over laps(A,  B). 

Some spatial properties can be expressed by algebraic equivalence expressions. 

The computational cost is reduced if the transformed expression can be evaluated 

using fewer or less costly spatial operations than the original one. For example, using 

a set equivalence rule shown below, 
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a spatial computation that involves three spatial function calls, 

geo-union(geo-intersection(A, B), geo-intersection(A, C)), 

can be transformed into one that requires only two spatial function calls, 

geo-intersection(A, geo-union(B, C)). 

Similarly to the specification of query optimization rules in extensible spatial 

database systems 1131, integrity constraints and conditional simplification rules can be 

specified explicitly by spatial database experts to facilitate the simplification process. 

For example, since the total area of two non-overlapping regions can be computed by 

a simple summation of the areas of the two regions, the rule can be specified as a 

spatial transformation rule as shown below. 

ifA n B = q5 then area(A U B) = area(A) + area(B). 

Another important simplification technique in spatial query processing is to derive 

a complex spatial relationship from known spatial information without geometric 

computations. 

The spatial functions which generate new spatial objects, such as geo-union, are 

often costly to compute. However, using precomputed component information and 

precomputed spatial relationships among these components, dynamic computation of 

spatial functions sometimes can be avoided, thus the cost of such computations can 

be reduced. Precomputation of certain spatial relationships can be performed on a 

relatively stable domain if these relationships are primitive and frequently used. It 

is unrealistic to precompute and store all geometric predicates, or to register spatial 

relationships among all of possible generated objects. For example, one cannot store 

all possible objects constructed by geo-union. Nevertheless, it is desirable to derive 

spatial relationships for generated objects from the precomputed spatial relationships 

of their primitive components. The following are some possible ways to  derive such 

relationships. 
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1. [Equivalence condition] A compound relation can be determined from its com- 

ponent relations. For example, from A is disjoint from B and A is disjoint from 

C, it is derived that A is disjoint from ( B  U C). 

2. [Necessity condition] If the component conditions do not hold, the compound 

condition will not hold. For example, the necessity condition for A overlaps with 

( B  n C), is that A overlaps with B and A overlaps with C .  

3. [Sufficiency condition] If the component relations hold, the compound condition 

will hold. For example, a sufficient condition for A is-disjoint-from (B n C) is 

that A is-disjoint-from B or A is-disjoint-from C. 

Equivalence conditions can be used in spatial query compilation [7, 13, 21, 72, 921. 

Compound relations can be replaced by their equivalent component relations. Neces- 

sary conditions can be used to derive a predicate to be FALSE from that its necessary 

condition is false. Sufficient conditions can be used to derive a predicate to be TRUE 

from that its sufficient condition holds. The geometric operation is performed only 

if the compound condition cannot be determined by the component conditions. The 

derivation of compound relationship is discussed in the next subsection. 

4.2.2 Derivation of compound relationships 

Let us examine a set of frequently used topological relations, i.e. contains, is-inside-of, 

is-adjacent-to, overlaps, is-disjoint-from in combination with three geometric set op- 

erators geo-union, geo-intersection and geo-diference denoted by U, n and - re- 

spectively. Notice that is-inside-of and contains are converse predicate relations, 

is-disjoint-from, overlaps and is-adjacent-to are symmetric predicates, contains and 

is-inside-of are both transitive relations and is-disjoint-from and overlaps are com- 

plement ary relations. 

The following symbols are used in the following discussion. The symbol 

connects two equivalence expressions. As some compound relations cannot be exactly 
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determined from their components, let + denote suficiency, and necessity. 

We adopt the set notation proposed in [35], where aA ,  A" and A-' are mutually 

exclusive and stand for the points of the boundary, the interior and the exterior 

of A respectively. The letter A stands for A" U ad. Symbol I9 is used to refer to 

an arbitrary binary relationship. Assume that point sets A, B, C and (B I9 C) are 

non-empty. 

Now, we prove some equivalence relationships, necessity conditions and sufficiency 

conditions. Examples will be given when the equivalent condition does not hold. 

4.2.2.1 Disjointness ( is-disjoint-from ) 

Definition 4.2 A is-disjoint-from B ::= A n B  = $ 

Formula 1 A is-disjointfrom (B U C) (A is-disjointfrom B) A 

(A is-disjoint f rom C) 

Proof: 

1. += If A is-disjointfrom B and A is-disjointfrom C, by definition, 

( A n B ) = $ , a n d  (AnC)  =$.  

Hence ( A n B ) u  ( A n C )  = $ U $  = $, 

and so An  (B u C )  = 4. 

Therefore A is-disjointfrom (B U C). 

2. ==+ The proof in the other direction is similar. 

Thus Formula 1 holds. 

Formula 2 A is-disjointfrom (B n C) += (A is-disjointfrom B) V 

(A is-disjointfrom C) 
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Proof: We consider the following two cases. 

case 1: if A is-disjoint from B, by definition, A n B = 4 

By associativity, we have A n (B n C) = (A n B) n C = 4 f l  C = 4. 

Therefore A is-disjointfrom (B C7 C). 

case 2: By symmetry, if A is-disjoint-from C, then A is-disjoint-from (B n C). 

Hence Formula 2 holds. 

Figure 4.1 shows an example where A is disjoint from (B n C) while A overlaps with 

both B and C. Therefore the converse of Formula 2, A is-disjoint-from (B n C) & 

(A is-disjoint-from B) V (A is-disjoint-from C), does not hold. 

Figure 4.1: A counter-example to the converse of Formula 2 

Formula 3 A is-disjointfrom (B - C) + (A is-disjointfrom B) V (C contains A) 

Proof: We consider the following two cases. 

case 1: if A is-disjoint from B, by definition, A n B = 4. 

Because (B - C) C B and A n  (B - C) = 4, A is-disjointfrom (B - C). 

case 2: if C contains A, C > A, (23 - C) C (B - A) 
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Because A is-disjointfrom (B - A), A is-disjointfrom (B - C). 

Hence Formula 3 is justified. 

Figure 4.2 shows a case where A overlaps (B - C) while A overlaps with B and C 

does not contain A. Therefore the converse of Formula 3, A is-disjoint-f ronz (B - C)  

+ (A is-disjoint-from B) V (C  contains A), does not hold. 

Figure 4.2: A counter-example to the converse of Formula 3 

4.2.2.2 Overlapping ( overlaps ) 

Definition 4.3 A overlaps B ::= An B # 4 

Formula 4 A overlaps (B U C) (A overlaps B) V (A overlaps C) 

Proof: This is the contrapositive of Formula 1. 

Formula 5 A overlaps (B n C) ==+ (A overlaps B) A (A overlaps C) 

Proof: This is the contrapositive of Formula 2. 

Figure 4.3 shows an example where A overlaps with both B and C whereas A does 

not overlaps with (B n C). Therefore the converse of Formula 5 ,  A overlaps ( B  n 
C)  -+= (A overlaps B )  A (A overlaps C), does not hold. 
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Figure 4.3: A counter-example to the converse of Formula 5 

Formula 6 A overlaps (B - C) & (A overlaps B) A 1 (C contains A) 

Proof: This is the contrapositive of Formula 3. 

Figure 4.4 shows an example where A does not overlap with (B - C) while A 

overlaps with B and C does not contain A. Therefore the converse of Formula 6, A 

overlaps (B - C) += (A overlaps B) A 1 (C contains A), does not hold. 

Figure 4.4: A Formula 6 

4.2.2.3 Inside ( isinside-of ) 

Definition 4.4 A is-inside-of B ::= A C_ B 

Formula 7 A isinside-of (B U C) + (A isinside-of B) V (A isinside-of C) 
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Proof: We consider the following two cases. 

case 1: If A isinside-of B, by definition, A G B G (B U C).  

Therefore A isinside-of (B U C). 

case 2: if A isinside-of C, then by definition A c C (B U C). 

Hence Formula 7 is true. 

Figure 4.5 shows an example where A is inside (B U C) whereas A is not in- 

side of either B or C. Therefore the converse of Formula 7, A is-inside-of (B U 

C)  =j (A is-inside-o f B) V (A is-inside-o f C) ,  does not hold. 

Figure 4.5: A counter-example to the converse of Formula 7 

Formula 8 A isinside-of (B n C) u ( A  isinside-of B) A (A isinside-of C) 

Proof: 

1. + If A isinside-of B and A isinside-of C, then A 2 B and A G C. 

If a E A, then a E B and a E C. 

Since this holds for all a E A, it follows that a E (B n C) therefore A C (B n C). 

A isinside-of (B n C) follows. 

2. & Analogously, the formula can be proven in other direction. 

Hence Formula 8 holds. 
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Formula 9 A isinside-of (B - C) (A isinside-of B) A (A is-disjointfrom C) 

Proof: 

1. * If A is-inside-of (B - C), then by definition 

A c (B n C-l ) B ,  and therefore A isinside-of B.  

Similarly, A c ( B  n C-l) C C-' and thus, A is-disjointfrom C. 

2: - If A is-inside-of B and A is-disjoint-from C ,  by definition, 

A G B  and A n C =  4, 

i.e. ( A  c C-l), and so A C (B n C-l) follows. 

Therefore A is-inside-of (B - C), and Formula 9 holds. 

4.2.2.4 Containment ( contains ) 

Definition 4.5 A contains B ::= A _> B  

Formula 10 A contains (B U C) u (A contains B) A (A contains C) 

Proof: 

1. + If A contains (B  U C),  then by definition A _> ( B  U C). 

Hence A _> B and A _> C, and therefore A contains B and A contains C. 

2. + The proof for the other direction is similar. 

Hence Formula 10 holds. 
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Formula 11 A contains (B n C) (A overlaps B) A (A overlaps C) 

Proof: If A contains (B n C), by definition, A _> (B n C). 

If (B n C) # 4 (assumption), A n (B n C) # 4. 

Therefore (A n B) # 4 and (A n C) # 4, and Formula 11 holds. 

Figure 4.6 shows that A overlaps with both B and C but A does not contain (B 

n C). Therefore the converse of Formula 11, A contains (B  n C) +== (A  overlaps 

B) A (A overlaps C), does not hold. 

Figure 4.6: A counter-example to the converse of Formula 11 

Formula 12  A contains (B n C) (A contains B) V (A contains C) 

Proof: If A contains B, then by definition A _> B. 

Because B _> (B n C), it follows that A > (B n C). 

Similarly, if A 2 C, then A 2 (B n C), and Formula 12 holds. 

Figure 4.7 shows that A contains (B n C) but does not contain either B or C. 

Therefore the converse of Formula 12, A contains (B  n C) ==+ (A  contains B) V 

(A contains C), does not hold. 
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Figure 4.7: A counter-example to the converse of Formula 12 

Formula 13 A contains (B - C) + A contains B 

Proof: If A contains B, then by definition, A 2 B. 

Because B 2 (B - C), it follows that A 2 (B - C). 

Therefore A contains (B - C) and Formula 13 holds. 

Figure 4.8 shows an example where A contains (B - C) while A does not contain 

B. Therefore the converse of Formula 13, A contains (B - C) ===+ A contains B ,  

does not hold. 

Figure 4.8: A counter-example to the converse of Formula 13 

4.2.2.5 Adjacency ( is-adjacent-to ) 

Definition 4.6 A is-adjacent-to B ::= ( d A n  dB # 4 )  A (A" f l  B0 = 4). 
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Formula 14 A isadjacent-to (B U C) 

((A isadjacent-to B) A (A is-adjacent-to C)) V 

((A isadjacent-to B) A (A is-disjointfrom C))V 

((A isadjacent-to C) A (A is-disjointfrom B)) 

Proof: 1. ==+ If A is-adjacent-to (B U C), then by definition, 

d A n d ( B u C )  # 4 and AO n (OUC)"  = 4. 

Because B U C contains some boundary of B or C, d ( B  LJ C)  G d B  U d C  

Similarly, ( B  U C)" _> BO U CO,  we have, 

d A n ( d B u d C ) _ > d A n d ( B u C ) # 4 ,  

(dA n dB) u (dA n dC) # 4. 

A O n ( B O u C O )  G A " n ( B u C ) O  = 4 ,  
(A0 n BO) u (A0 n CO) = 4. 

There are three possible cases to be considered for equation (4.1) to hold: 

case 1: ( d A n  dB # 4) and ( d A n  dC # 4). 

combining with equation (4.2), we have 

(A isadjacent-to B) A (A is-adjacent-to C). 

case 2: ( d A n  dB # 4) and (dA n dC = 4). 

In combination with equation (4.2), we have 

(A isadjacent-to B) A (A is-disjoint from C). 

case 3: (dA n dB = 4) and (dA n dC # 4). 

In combination with equation (4.2), we have 

(A isadjacent-to C) A (A is-disjointfrom B). 

2: + The proof in the other direction is similar. 

Hence Formula 14 holds. 
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Formula 15 A isadjacent-to (B - C) +== (A isadjacent-to B) A 

(A is-disjointfrom C) 

Proof: If A is-adjacent-to B and A is-disjoint-from C, then by definition, 

d A n d B # 4 a n d A 0 n B 0 = d .  

Furthermore, A n C = 4, i.e. d A n  dC = 4 and A0 n C0 = 4. 

H e n c e d A n d C  = 4 d A n d ( B - C )  = d A n d B  

AO n (B - C ) O  2 (A" n B O )  - (A0 nCO) = 4. 
Therefore A is adjacent to (B - C). 

Hence Formula 15 holds. 

Figure 4.9 shows an example in which A is not disjoint from C but is adjacent to  

(B - C). Therefore the converse of Formula 15, A is-adjacent-to (B - C) & (A  
is-adjacent-to B) A ( A  is-disjoint-from C), does not hold. 

Figure 4.9: A counter-example to  the converse of Formula 14 

These equivalences, necessary conditions and sufficient conditions can be repre- 

sented as optimization rules. The query processor can test the condition and replace 

a complex forms by their simplified equivalence. 

In summary, we have derived and proved some interesting formulas for compound 

spatial relations from their component relations. Table 4.1 is a summary of the 

result where c, 2,  @ and ( 1  are abbreviations for is-inside-of, contains, overlaps, 

is-disjoint-from and is-adjacent-to respectively. 
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Table 4.1: Complex spatial relation derivation. 

These formula are useful for spatial query optimization. The application of these 

conditions in query optimization can be rule-based. All equivalences can be applied 

directly in query compilation. Equivalent component conditions can be substituted 

for compound relations. When left side of an equivalence formula is matched, it 

is replaced by the right side of the equation. Necessary conditions and sufficient 

conditions can be utilized at execution time to reduce geometric computations. Using 

these conditions, we can significantly reduce the cost of geometric query evaluation. 

4.3 Chapter Summary 

The compilation and algebraic simplification of spatial rules and queries has been 

studied in this chapter. Important differences between spatial rule and relation rule 

compilations are (i) parameter specifier checking and derivation, (ii) utilization of 

geometric properties for simplification, and (iii) derivation of complex spatial rela- 

tionships from simple ones without geometric computations. The compilation process 

provides a simplified spatial query expression consisting only of primitive spatial pred- 

icates and relations. 



Chapter 5 

Spatial Query Execution in a 

DOOSDB 

In this chapter, we present a dynamic connection graph for spatial query access plan 

generation. A heuristic branch-and-bound algorithm will be used for access plan 

search. Set-oriented query evaluation techniques for efficient spatial query execution 

will also be presented. 

5.1 Dynamic Connect ion Graph Transformat ion 

for Spatial Access Plan Generation 

5.1.1 Introduction 

It is necessary to perform a systematic study of access plan generation for deductive 

spatial databases. In this chapter, a dynamic connection graph transformation ap- 

proach is proposed for optimization of compiled spatial queries. Here is an outline 

of the approach. For each compiled query, a connection graph is constructed which 

represents the possible data flow among EDB and spatial predicates in the compiled 
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query. A spatial predicate is unavailable for optimization if it does not have enough 

available inputs. Similarly, its output is unavailable for further operations if it has 

not been computed even if all inputs have been obtained. The connection graph is 

modified dynamically as the situation changes and more spatial predicates can par- 

ticipate in the optimization process. The connection graph transformation provides 

a dynamic picture of spatial query optimization. Suboptimal query access plans can 

be selected from among the set of candidate plans generated based on the analysis of 

connection graphs. 

5.1.2 Dynamic connection graph and access plan 

enumeration 

A connection graph represents a set of candidate query execution sequences. For 

each given query, the connection graph consists of a set of nodes and a set of edges. 

Each node corresponds to a predicate in the query. When two predicates share a 

parameter, an edge is added between these two nodes. Since a spatial predicate 

is usually implemented by a spatial routine with fixed parameter modes (such as 

i n p u t  or o u t p u t ) ,  a spatial predicate is ready for computation only if all of its i n p u t  

mode parameters have been instantiated. This constraint is reflected in the dynamic 

connection graph. 

An essential difference between dynamic connection graphs from connection graphs 

used in relational query optimization is that the graph nodes of dynamic graphs may 

have different statuses. There are three possible statuses for a node in the connection 

graph: unavailable, input-available and output-ready. A node is unavailable (de- 

noted by a triangle ) if the predicate contains some uninstantiated input parameters; 

it is input-available (denoted by a square)  if all of the i n p u t  parameters are instan- 

tiated and the predicate is ready for evaluation; and it is output-ready (denoted 

by a circle) if the spatial operation has been performed and the output is ready to be 

used for other operations. Obviously, the status of a node may change as the analysis 

proceeds. The status of an EDB relation node is always output-ready. 
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Definition 5.1 A connection graph G = (V, E) consists of a set of vertices V and a 

set of edges E. 

1. V represents a set of nodes, one for each EDB relation or GDB predicate in the 

compiled query expression. Each node is in one of the three possible statuses: 

unavailable (A), input-available (El), and output-ready (O), and the status may 

change dynamically. Each occurrence of a predicate in the compiled query 

should be treated as a distinct node (with a distinct label). 

2. E represents a set of edges, each connecting two nodes where corresponding 

predicates share parameters (attributes). That is, 

E = {(v;, vj, A) I v;, vj E V, A is a set of attribute names in both v; and vj ). 
0 

During the query analysis process, a set of candidate graphs (dynamic connection 

subgraphs) are maintained. Each candidate graph represents a set of operations that 

are valid at the current stage (thus none of the unavailable nodes is included). After 

the execution of a spatial operator, an unavailable node may become input-available 

and be included into a new candidate graph for the analysis of the next step. Thus 

analysis continues until all the components in the graph have been analyzed, and 

a suboptimal plan generated. By applying heuristics and statistics obtained during 

the execution of geometric procedures, the enumeration process prunes unpromis- 

ing access plans and selects ~romising ones. The following assumptions are made 

throughout our discussion. 

Assumption 1 The input to the optimizer is a set of compiled query expressions. 

That is, function symbols are resolved into functional predicates during the recti- 

fication process [63]. For example, "geo-union(X, Y) > 100" is converted to 

"geo-union(X, Y, Z), Z > 100". A compiled query is in a conjunctive normal form 

consisting of EDB predicates, GDB predicates and their transitive closures. 
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Assumption 2 The only cost considered in the analysis is the computational cost. 

The cost of query processing should consist of computational and I/O cost. Since 

110 cost is in general proportional to the computational cost, this assumption is 

adopted to simplify our discussion. When necessary, I/O cost can be easily taken 

into consideration since the 1/0 cost model has been studied extensively in relational 

systems. 

Assumption 3 Relational and spatial data statistics are available, and the cost es- 

timate of spatial operators reflects the complexity of the corresponding spatial algo- 

rithms. 

Assumption 4 Transitive closures will be handled by deductive techniques. The 

approximated cost estimation is available. 

Example 5.1 Let us consider the query: find a cedar forest whose area exceeds 

10 km2: 

? - f orest(X), area(X, A), A > 10, type(X, cedar), 

where forest and type are data relations and area is a spatial operator. Of many 

possible query execution plans, one could be: (1) performing selection on type, (2) 

joining forest and type, and then (3) computing area. It is a reasonable plan since 

selection provides a strong constraint, and the retrieval of the EDB relation forest is 

less expensive than the computation of the spatial function area. 

Similar observations lead to the following heuristics in query plan selection: 

1. Only valid operations (excluding uninstantiated predicates) should be consid- 

ered at any time, 

2. Perform selection first (i.e. push in constants as soon as possible), 

3. Computationally less demanding routines should be performed earlier to extract 

additional constraints that may reduce the cost of later computations, 
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4. The computation of geometric operations should be delayed since they are in 

general more costly than relational ones, 

5 .  The computation order among several instantiated geometric routines, should 

be determined by their cost estimates. 

The core of the query plan generation algorithm is an enumeration process which 

transforms a connection graph into a tree of candidate access plans. Each candidate 

plan consists of a valid operation sequence and its corresponding data flow. An edge 

links each operator with its input data. The graph retrieval process is done using a 

branch-and-bound algorithm with heuristic search. The estimated cost is based on 

the cost of each estimated operation and the size of the input set and is accumulated 

along the retrieval path. Edges in the candidate graph are ordered using heuristics. 

Here is an outline of the algorithm. Let us first show an example of access plan 

generation. 

Example 5.2 Let us examine the query, "jlnd one's land pieces (and their areas) 

that are suitable for planting both crops and tea trees": 

? - crop-land(X, Owner), tea-land(Y, Owner), geo-intersection(X, Y, Z), area(Z, A ) .  

Notice that crop-land(X, Owner) and tea-land(Y, Owner) are EDB relations, 

that geo-intersection(X, Y, Z) is a spatial predicate which takes two input objects X 

and Y and returns their intersection in 2, and that area(2 ,  A) is a spatial predicate 

which computes the area A of the region denoted by the input parameter Z. Obvi- 

ously, the value of Z must depend on the output of geo-intersection(X, Y, Z) in the 

query. 

Let c-land, t-land and geo-int refer to crop-land, tea-land, and geo-intersection 

respectively. The connection graph is shown in Figure 5.1 (a). The candidate sub- 

graph which contains available operations is in Figure 5.1 (a) with currently unavail- 

able operations in the dashed box. Node area is excluded from the candidate graph 

because it is currently unavailable. 
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The first step of the enumeration algorithm has two choices: (i) c-land M t-land, or 

(ii) eval(geoint). There are a total of 10 possible graph change sequences (candidate 

plans). Figure 5.1 presents two of the plans which correspond to the sequences {(a), 

(b), (4, (g)) and { (4, (dl, (el, ( f ) ,  (g)) respectively. 

cland t-land 

eo-int 

ct-geo 

(c) 

- 
eo-int eo-int 0 

Figure 5.1: Candidate graphs in the enumeration of two access plans. 

The first plan PI starts with c-land M t-land. Thus c-land and t-land are merged 

into ct-land, and edges (c-land, geo-int, X )  and (t-land, geo-int, Y) are consolidated 

into one edge (ct-land,geo.int, {X, Y)) as shown in Figure 5.1 (b). The only option 

next is to evaluate geo-int which takes inputs X and Y from ct-land and merges the 

two nodes into one ct-geo. Since geo-int's output is available to area as input, area 

is added to the candidate graph for plan generation, as shown in Figure 5.1 (c). At 

this stage, only one choice is available, that is, to evaluate area. The final result is 

illustrated in Figure 5.1 (g). 
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The second plan P2 starts by evaluating geo-int, which takes input from c-land 

and t-land and changes the status of geo-int into available, and that of area into 

input-available as shown in Figure 5.1 (d). There are then four possible choices: (i) 

c-land W t-land, (ii) t-land W geo-int, (iii) c-land W geo-int, and (iv) eval(area). 

Assume that eval(area) is performed first with input geo-int as shown in Figure 5.1 

(e). Nodes geo-int and area are merged into geo-int-area, and the graph becomes 

a typical three-way join whose analysis with respect to relational query optimization 

has been done [139]. The resulting access plan tree is shown in Figure 5.2 in which a 

node with double circles represents an operation. 

Figure 5.2: An access plan tree. 

Algorithm 5.1 Selection of a suboptimal query access plan for a compiled deductive 

spatial query using an enumeration approach. 

Input. A compiled deductive spatial query and data statistics. 

Output.  A suboptimal access plan for the compiled query. 
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Method. 

1. Preprocessing : (i) parse the query, (ii) create a connection graph which 

represents the data flow, (iii) initialize the current candidate graph, (iv) set the 

upper-bound cost C,;, to maxint, and (v) order the edges of the candidate 

graph by the heuristics discussed before. 

2. Enumeration : Generate the access plans and select one. 

Procedure enumeration(g;, G;, C;, Pi) 

/* The current candidate graph g; is a subgraph of the current connection graph 

G;, C; is the current accumulated estimated evaluation cost, Pi is the path from 

the root of the access plan tree respectively. */ 

begin 

if g; only contains a single available node /* All nodes merged into one */  

then if C; < C,;, 

then {C,;, := C;; 

update the suboptimal path to the current path Pi; ) 

else /* the current candidate graph has operation candidate. */ 
for each candidate operation o do 

{ 

C, := estimated cost of operation o on input data; 

c;' := c; + c,; 
if C;' > C,;, 

then return; /* The path is pruned since it is unpromising. */ 
else 

{ 

append operation o to path Pi to form P,! 



CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB 

update the current g; and G; to the new gi and G: 

/*The detail of the graph update is presented in the note. */ 
e n u m e r a t i ~ n ( ~ ; ,  G:,  C;', Pi); 

1 
1 

end 

Note: The graph updates are performed for two legitimate operations as described 

below: 

[I] Join two available nodes. 

(i) merge the vertices and edge(s) involved in operation o into a new node repre- 

senting the output relation of o; and (ii) link corresponding edges to the new vertex 

and merge edges sharing the same vertices. 

[2] Evaluate an input-available node. 

( i )  update the node status to available, (ii) modify the status of the nodes taking 

input from it if necessary, and (iii) include the new input-available nodes and the 

appropriate edges into the updated candidate graph. 

Theorem 5.1 The dynamic connection graph transformation method generates sub- 

optimal access plans. 

Proof Sketch : The proof is based on the following observations. 

Observation 1 The candidate graph presents all possible choices at any given time 

and therefore represents all possible access plans. 

Observation 2 A spatial procedure is evaluated only after all of its input parameters 

instantiated. Join operations are only ~erformed on two output-ready nodes. 
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Observation 3 The generated access plans correspond to spanning trees of the con- 

nection graph. Every time an edge is selected, two nodes are merged. The process 

terminates when all nodes have been merged into one. There are no loops formed by 

the selected edges, because all edges adjacent to merged vertices are connected to this 

new vertex and edges joining the same vertices are merged. The resulting set satisfies 

all predicate conditions. 

Observation 4 The generation of access plans is aborted only if the partial cost has 

exceeded the upper-bound cost. 

5.1.3 Cost estimation and selection of access plans 

Cost estimation is crucial in the control of the generation of access plans and in the 

selection of generated access plans. Cost estimation and access path selection have 

been studied extensively in relational database systems. Some considerations specific 

to spatial data processing should be integrated into spatial query optimization. 

First, the cost of processing a spatial routine can be estimated based on the history 

of the processing and the size of the input parameters. For example, the cost of 

processing geo-intersection(X, Y) grows proportionally to the number of sides of each 

input polygon. The estimated cost could be formulated as p x number-of-sides(X) 

x number-of-sides(Y), where p is a coefficient obtained from experiments. More 

precisely, a cost estimation table can be built based on the execution history and 

different characteristics of input parameters and spatial computation. 

Second, special characteristics should be taken into consideration in the cost es- 

timation. One nice property of many spatial predicates is that their output pa- 

rameters are functionally dependent on their input parameters. For example, in 

geo-intersection(X, Y, Z) ,  at most one spatial object Z can be generated by taking a 

pair of spatial objects X and Y as inputs. 
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Example 5.3 We examine the cost evaluation process to observe the difference be- 

tween the traditional three-way join optimization and the connection graph transfor- 

mation approach. 

Let I A I be the number of tuples in relation A, and n a e ~  be the number of distinct 

values of attribute a in relation A. Assume that I c-land I = I t-land ( = 1000, that 

I ct-land I= 3000, and that nx,=,Aa,d = n y ~ t A a ~ d  = 100. 

Plan PI starts with c-land WJ t-land, and the derived 3000 tuples of ct-land form 

the input of geo-int. The evaluation of geo-int may generate fewer tuples, say 300, 

for further computation. Spatial operators which take two input parameters from two 

relations must pairwisely combine the two, i.e. compute the cross product of the two 

input sets. Plan P2 starts by evaluating geo-int. Since there are only 100 distinct 

values in X and Y from c-land and t-land respectively, the execution input size is 

their Cartesian product, 100 x 100, i.e. 10000 tuples. Assuming the same rate for 

tuples satisfying geo-int and area as that for geo-int in plan PI, 1000 tuples are fed 

into area and resulting geo-int-area with 100 tuples. geo-int-area then participates 

in three-way join with c-land and t-land. 

Cost estimation leads to a sharp contrast between these two plans. The total cost 

of PI is the sum of the cost of joining two relations with 1000 tuples, the cost of 

performing 3000 spatial operation geo-int and the cost of computing area 300 times. 

On the other hand, the cost of plan P2 is the total cost of performing 10000 geometric 

operation geo-int, 1000 evaluation of operator area and of computing the three-way 

join of one relation with 100 tuples and two 1000-tuple relations. Experiments have 

shown that geometric operations are usually very expensive compared to relational 

operations. Obviously, the dominant component of the cost of the second plan is the 

11000 geometric operations, which is likely to be much more expensive than the total 

cost of plan PI. In this case, after comparing this partial cost of the plan P2 with 

the upper-bound cost provided by plan PI, the generation of all access plans starting 

with the evaluation of geo-int is terminated. Hence, it is important to use heuristics, 

such as delaying geometric operations in the selection of the processing order. 
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5.1.4 Analysis 

It is well known that the number of possible plans is enormous in the case of a large 

graph. The efficiency of access plan generation depends on effective tree pruning. 

The branch-and-bound algorithm helps in pruning plans whose partial path cost ex- 

ceeds the current upper-bound. With good heuristics, potentially low cost plans are 

generated at an early stage so that effective pruning can be achieved. 

Simulation experiments have been performed to evaluate 3 different methods. A 

reasonable parameter for the cost estimation is the number of edges in the connec- 

tion graph of a query, since each edge represents a possible join operation. The cost 

is simulated using the accumulated path length in the access plan generation. The 

simulation was performed on a SUN14 SPARC/14.28MHz-workstation with 7 MIPS 

under the SunOS. The simulation program was written in Sun C compiler without 

optimization. The simulation results are presented in Figure 5.3 in which there are 

three curves naive, branch-bound and heuristic corresponding to three algorithms: 

general search, branch-and-bound, and heuristic branch-and-bound. Each curve illus- 

trates the cost of access plan generation and selection as a function of the edges in 

the graph. 

Curve naive shows that the general search algorithm soon becomes too expensive 

to utilize. Using the branch-and-bound algorithm, the search for a partial path whose 

cost exceeds the upper-bound value terminates, thus improving the performance of the 

algorithm as shown by the curve branch-bound. The heuristics algorithm promotes 

the early generation of low cost access plans and prunes less promising paths at an 

early stage, thus improving the computation effectively as shown in curve heuristic. 

Moreover, the maintenance of candidate graphs which contain only currently valid 

actions significantly improves computation efficiency. 

In summary, the dynamic connection graph approach captures data flow con- 

straints in spatial queries and facilitates effective access plan generation for them. 
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Figure 5.3: Simulation results for three access plan generation methods. 

5.2 Set-Oriented Spatial Computation and 

Optimization 

A major challenge in DOOS query processing is the impedance mismatch between 

tuple-oriented spatial computations and set-oriented relational computations. Spatial 

computations are usually performed by taking one particular vector of input parame- 

ters and performing costly spatial computation by accessing the corresponding spatial 

data structures. Such tuple-oriented spatial computation may lead to repetitive ac- 

cesses of the same spatial objects and repetitive computations of the same or similar 

spatial primitives. Obviously, set-oriented evaluation should be promoted in spatial 

computation to minimize redundancy in disk accesses and spatial computations. The 

optimization techniques for set-oriented spatial computations are classified into the 

following groups according to the nature of optimizations: 

1. precomputation and memorization of spatial information, 

2. I/O control, buffer management, and pipelined processing, 
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3. set-oriented spatial method computation, 

4. approximate or alternative operations with reduced complexity, and 

5. rule-based and spatial semantics-based optimization. 

5.2.1 Precomputat ion and memorization of spatial 

informat ion 

This set of techniques can be chosen by the statistics and other meta-information in 

the system. It is used for frequently invoked geo-predicates and functions. 

Technique 1 Materialization of properties of spatial objects and spatial predicates. 

The primitive spatial data, such as lines, points, polygons, etc. stored in the GDB 

are information at the primitive level, which are often several levels lower than the 

object-level information [I]. Spatial reasoning and query answering are often related 

to the information at the object-level. Although the nonspatial object-level informa- 

tion, such as the semantic meaning of a polygon, are often stored in the EDB and 

linked to the corresponding spatial data via pointers in the SAND architecture [7 ] ,  

some object-level properties, such as the area of a primitive spatial object denoted 

by area(Sp-obj,TotalArea), are often defined by spatial algorithms (methods) or 

rules. If such object-level information is used frequently, instead of performing spa- 

tial computation at the query processing time, it is wise to perform precomputation 

and materialize (i.e. store) them as a spatial (EDB) relation. Such a materialized 

relation should be updated accordingly if the corresponding spatial data is modified. 

Similarly, for other frequently-used, relatively stable, and computationally intensive 

spatial predicates, materialization can also be performed by precomputation. 

The materialized spatial predicates are treated as existing spatial relations. In- 

dexing structures can be constructed on materialized relations to facilitate efficient 

access. Incremental updates can be performed on the materialized relations when 
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appropriate. With materialization, dynamic computation of such spatial predicates 

is transformed to simple data retrieval of materialized relations. 

Technique 2 Precomputation of spatial join relationships and construction of spatial 

join indices. 

Similarly to the materialization of the spatial predicates relevant to individual 

spatial objects, precomputations can be performed on spatial relationships between 

two or more spatial objects. For example, adjacent(Ol, 02) is a spatial relationship 

between two spatial objects. 

The major difficulty for "materialization" of such spatial relationship is the po- 

tential huge size of the generated relation. Such a problem can be reduced by an 

information-associated spatial join index [94], which stores the join indices of the 

spatial relationship which meet certain conditions together with some frequently in- 

quired information. For example, a distance-associated join index file in the format 

of (Ol.oid, 02.0id, distance(Ol, 0 2 ) )  can be constructed to register the distance rela- 

tionship between two spatial objects O1 and 0 2 .  To reduce the size of join indices, a 

hierarchically organized spatial join index file can be constructed to register the spa- 

tial join index relationship for spatial objects belonging to the same hierarchical level 

and located within the same local region (see the detailed discussion in Chapter 6). 

Spatial relationships between remotely connected objects can be computed based on 

the existing spatial relationships by accumulation, transitivity or other computation 

methods specified by rules or methods [94]. 

Technique 3 Memorization of partially computed results. 

In the evaluation of spatial queries, repetitive and redundant computations of spa- 

tial components or subcomponents may occur within one query or one group of similar 

queries, e.g. in the derivation of composite spatial objects, or in comparison with a set 

of similar spatial queries, etc. A dynamic tabular technique described below can be 

explored to eliminate such redundant spatial computation. A small table is associated 
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with each spatial predicate or method to memorize the previously computed results. 

When a method is invoked, its input parameters are checked against the table to see 

whether such a set of parameters was computed before. If the corresponding entry is 

found in the table, the previously computed result is returned. Otherwise, the method 

is invoked, and the table is updated with the insertion of the newly computed results. 

Notice that a set of parameters may sometimes generate uninteresting results, such as 

value-out-of-bounds, domain-out-of-interest, not-computable, etc. Such precomputed 

information should also be registered in the table to avoid repeating such uninteresting 

computation as well. The technique is illustrated in the following example. 

Example 5.4 Let land-type(0, T) be an EDB relation in which 0 is a spatial ob- 

ject and T is the land type of the object, and adjacent and geo-union be two 

spatial predicates. Figure 5.4(a) shows the land pieces. Suppose that a method 

geo-max-union(T, 0) is a spatial procedure which finds the maximum size of land 

pieces suitable for planting crop type T and returns the result in 0, and there are 

three types of crops, tl ,  t2  and ts. 

Given a type t and a set of land objects, the major steps involved in finding the 

maximum continuous land pieces suitable for planting a type t crop are as follows. 

begin 

for each object o in land do 

if land-type(o, t )  then 0 := 0 U {o); 

while there exist uncomputed object pairs (ol,02) in 0 do 

if adjacent(ol, 0 2 )  then 0 := 0 - { o l , ~ ~ )  U {geo-union(ol,02)). 

end 

For the land pieces shown in Figure 5.4(a), three types, tl, t2 and ts with suitable 

land pieces are inquired, which should return {a, b, c, d, e),  {a, b, c, d, e, f ,  g) and 

{a, b, c, f ,  g) respectively. We assume that the name of the union of two land pieces 
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Figure 5.4: Derivation of maximum land pieces suitable for planting crops 

is obtained by concatenation of the names of the pieces. Let us consider only the 

geo-union operation. Without using the tabular method, the execution sequences are 

as follows. 

tl : a U b, a b u  c, d U e, abcU de 
t2 : a U b, ab U c, d U e, abc U de, f U g, abcde U fg,  and 

t 3 : a u b ,  a b ~ c ,  f Ug, abcu f g  

A total of 14 geo-union's are executed. By replacing repetitive spatial compu- 

tations with simple table lookups, the computation will involve only 7 geo-union's 

shown with underlines. Figure 5.4(b)-(d) shows the maximum size of land pieces 

suitable for planting different kinds of crops. Since the spatial union is more costly 

than a simple table lookup, the saving of intermediate computation results and the 

transformation of tuple-oriented spatial computations into set-oriented data retrieval 

may significantly reduce the cost of query processing. 

5.2.2 110 control, buffer management, and pipelined 

processing 

This set of techniques are commonly used in operating systems and database systems. 

However, it is more crucial in spatial databases. Many techniques developed in these 

areas can be applied to spatial query processing. 

Technique 4 Set-oriented retrieval of spatial objects. 
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Retrieval of spatial objects and their associated spatial data structures takes a 

major portion of the spatial query processing cost. Repetitive accesses of the same 

set of spatial objects may happen when computing a spatial join, executing the same 

method within a loop, or using the same set of spatial objects in a nested loop within 

one method execution. Repetitive spatial data accesses may substantially degrade the 

system performance. 

Set-oriented secondary-storage access and intelligent buffer management can be 

explored in a way similar to that used for the optimization of join operations in 

relational database systems. Take spatial join as an example. When a spatial join is 

performed on two sets of input spatial objects, the two sets should be fetched in a 

set-oriented manner and the fetched spatial objects should remain in main memory 

in case they need to be accessed by future join operations. Several interesting spatial 

join techniques have been developed by Aref and Samet [7], such as intersection of 

spatial-ids or tuple-ids, pushing spatial operators into speXtTact or pushing database 

operators into dbeXtTact, etc. These techniques should be explored here to improve the 

performance of spatial joins. If the data volume is too large to fit in the main memory, 

a reasonable ordering of data access, such as putting the smaller set of spatial objects 

in the inner loop of a nested loop join will reduce 1 / 0  access in the spatial join. This 

is similar to the optimization of nested loop join in relational query processing. 

Technique 5 Creation or destruction of temporary data structures: repetitive us. 

pipelined processing. 

If some intermediate spatial or relational data is to be retrieved repetitively in 

the computation, temporary access structures, such as indexing structures, can be 

created to reduce the access cost. On the other hand, if some intermediate spatial 

data will never be used again, modification can be performed directly on the spatial 

data dynamically generated (note that such modification destroys the intermediate 

spatial data or indexing structure) in the sequential or pipelined processing [7 ] .  
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5.2.3 Set-oriented spatial method computation 

This set of techniques are developed for minimizing the effect of impedance mismatch 

and reducing redundant geometric computation. 

Technique 6 Loop and block optimization within method execution. 

Similarly to loop and block optimizations in optimized compiler construction, op- 

timized processing can be further explored within the method execution. Data flow 

analysis can be performed on a reasonably well-structured method to identify the ex- 

pensive or repetitively computed part (such as looping or block structures), especially 

for the costly spatial computations. Shared computation of common subexpressions, 

group fetching and set-oriented computation, saving of intermediate results, etc., are 

useful techniques to optimize the execution of a single method. Many code optimiza- 

tion techniques developed in compiler construction can be applied to the optimization 

of spatial method computations. 

Example 5.5 Common subexpressions within a nested loop can be moved outside 

of the loop to save repetitive computations of spatial subroutines in the method 

computation. Suppose that the method contains the following block of code, 

for i := 1 to m do 

for j := 1 to n do 
totallzrea[i, j] := geo-area(polygonl [i]) + geo-area(polygon;![j]); 

Suppose area(polygonl[i]) and area(polygon2[j]) are costly spatial computations. 

By data flow analysis, the code block can be transformed into the following code 

block, 

for i := 1 to m do 

tmpl[i] := geo-area(polygonl [i]). 
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for j := 1 to n do 

tmp2[j] := geo-area(polygonz[j]). 

for i := 1 to m do 

for j := 1 to n do 

totallzrea[i, j] := tmpl[i] + tmp2[j]; 

Obviously, the unoptimized code involves 2 x m x n costly spatial computations; 

whereas the optimized code involves only m + n spatial computations. 0 

Technique 7 Set-oriented execution of spatial operators and methods. 

In a nested loop computation or recursive query evaluation, a spatial method/operator 

is often executed iteratively. Calls to the same method using similar parameters may 

indicate the potential of repetitive execution. Smart execution ordering and the sav- 

ing of partially computed results are important heuristics in the optimization of such 

queries. 

Example 5.6 In the computation of the areas for a set of pairwise adjacent spatial 

objects, one may use the following query expression: 

adjacent(X, Y), Totallzrea = area(geo-union(X, Y)). 

Suppose that two adjacent objects do not overlap (which may be indicated by a 

deduction rule). The expression can be simplified as follows. 

adjacent(X, Y), Totallzrea = area(X) + area(Y). 

Furthermore, the above expression can be processed by taking advantage of set- 

oriented evaluation. For a given set of spatial objects, the computation can be per- 

formed by fixing each spatial object X, computing its area area(X),  then checking 
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against every other spatial object Y to see whether it is adjacent to X (which can 

be done efficiently using an R-tree or another spatial indexing structures), computing 

area(Y) only if Y is adjacent to X, and finally returning the sum. Also, for each 

computed Y, an entry of (Y, area(Y)) can be inserted into a temporary table. By 

such optimization, a region which is not in the answer set will not be computed; fur- 

thermore, the area of each ( X  or Y) region in the answer set needs be computed only 

once. 0 

5.2.4 Approximate or alternative operations with reduced 

complexity 

Using alternative operations is based on the following ideas, (i) use simplified compu- 

tation where high precision is not required, and (ii) perform refinement only on the 

area which may possibly satisfies the query. 

Technique 8 Simplified, alternative spatial operations. 

Spatial routines carrying the same name (overloaded) with different input or out- 

put requirements (i.e. different parameter specifications) may be processed by different 

implementations with dramatically different processing complexity. For example, for 

the same (overloaded) spatial predicate geo-intersection, testing whet her two spatial 

objects (such as two regions) intersect is much less expensive than computing their 

intersection. An expert user will use the less costly operator is-geo-intersected in the 

query rather than geo-intersection. However, a smart query optimizer should not rely 

on the user's expertise but should select the less costly operator automatically by query 

requirement analysis (such as the examination of the inquired variables). As another 

example, if a query is interested in nonspatial/spatial features only, the computation 

of spatial/nonspatial operations can be avoided. Query analysis, which involves pa- 

rameter specification analysis and query requirement analysis, can be performed to 

identify the necessary operations and reduce more expensive spatial operations to less 

expensive ones to save processing cost while still serving the user's interest. 
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Example 5.7 Let a spatial query be to print the names of the major highways which 

pass through the city of Vancouver. Suppose that a relation region(Region-Name, 

Region-Geo) is stored in the EDR with Region-Geo pointing to the corresponding 

region in the GDB, and the predicate majorhighway is defined by a deductive predi- 

cate major-highway(Highway_Name, Highway-Geo). The query can be formulated 

in the logic syntax as follows. 

? - major-highway(?H_Name, H), region(vancouver, R) ,  

geo-intersection(H, R,  Hsegments) .  

Note that "?" in front of H-Name indicates that only H-Name is inquired in the 

query. Based on the above analysis, one processing plan proceeds as follows: 

1. Perform selection in the EDB relation region using the region name "vancouver", 

and retrieve its geo-region R by following the corresponding geo-pointer; 

2. Find each road, H in the road-map which is a major-highway based on the 

compiled deduction rule. 

3. Check whether each selected major highway H intersects the geo-region R. If 

it is, print the name of H. 

Notice that in this computation, no full geo-intersection(H, R, Hsegments)  is 

performed, instead, only a less costly operation is-geo-intersected(H, R) is performed. 

Furthermore, no temporary map for the major highway H which are intersected with 

Vancouver is created in the computation since the user is only interested in the name 

rather than the spatial entity of H. Obviously, other processing plans, such as first 

finding the roads in the region of "vancouver" and then checking whether it is a major 

highway, etc., are also possible. The one which takes the best advantages of the 

characteristics of the query should be the most efficient one for query evaluation. 
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Technique 9 Approximate computation based on a multi-resolution spatial data model. 

Another promising direction in the optimization of spatial computations is to 

perform approximate computation based on a multi-resolution spatial data model. A 

multi-resolution spatial data model can be constructed based on different granularity 

of resolution in the spatial database [117]. For example, a relatively low (coarse) 

resolution can be constructed to approximate the original high-resolution database, 

which results in a less precise but much smaller sized spatial database. Computation 

can be performed first on such a smaller spatial database to locate the interesting 

regions and derive approximate results. Refined computations are performed in the 

high resolution database, only when necessary, on those interesting regions. 

A recent study on efficient computation of spatial joins by Giinther [51] proposes 

a generalization tree technique to speed up spatial join computation, which can be 

viewed as another interesting example of implementation of spatial operations by a 

multi-level or hierarchical approach: A higher-level (bigger) region is first examined 

to filter out those regions which cannot participate in the spatial join. Only those 

which have not been filtered out will be examined in a refined (lower-level) region. 

5.2.5 Rule-based and spatial semant ics-based optimization 

Rule- based optimization is commonly used in extensible databases. In spatial database 

system, optimization rules can provide optimizer with information about user-defined 

spatial operators. Rule- based constraint check may eliminate impossible solutions. 

Technique 10 Static constraint/rule enforcement in  deductive query compilation. 

The techniques for static enforcement of constraints and rules in deductive query 

compilation are presented in Chapter 4. Such constraint enforcement will restrict 

the compiled query expression to a reduced set with appropriate types, modes, and 

spatial operations associated to a simplified compiled expression. 
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Technique 11 Rule/heuristic-based query plan generation. 

Because of the large search space in the generation and selection of suboptimal 

query evaluation plans, it is beneficial to specify query optimization rules and heuris- 

tics by experts and use them in rule-based query plan generation. Query optimization 

using expert query transformation/optimization rules has been studied in extensible 

database systems [41, 471. GEO-Kernel [I431 and Gral [54] are two spatial database 

systems based on extensible architectures which use rules to describe query transfor- 

mation and to choose among different implementations of primitive database opera- 

tions and application-dependent operations. Giiting [13] studied many-sorted algebra 

supporting extensibility for spatial applications and proposed a translation-rule-based 

query optimization method for Gral. 

Technique 12 Dynamic constraint enforcement in method and query evaluation. 

A spatial algorithm or a spatial operator may pose constraints on the characteris- 

tics of the spatial objects to be generated. For example, a geo-union algorithm may 

pose constraints on the number of polygon edges generated. A spatial operator, such 

as area, may have the following mathematical property: 

area(geo-union(A, B ) )  5 area(A)  + area (B) .  

A userlexpert may pose constraints explicitly as part of the query. These constraints 

can be enforced in the processing by pushing the constraints as deeply as possible to 

filter out the objects which cannot satisfy such constraints at the earliest stage. 

Similar to query optimization in extensible spatial database systems [54], rules and 

integrity constraints can be used in the optimization of method and query evaluation. 

For example, using the constraint, nort h-o f ( X ,  Y ) ,  nort h-o f (Y, X )  $, one can 

filter out the pairs of objects that cannot satisfy the constraint at the method or query 

computation time. Integrity checking can also be performed by precomputation using 

constraint networks [36]. The application of other kinds of integrity constraints can 

also be explored in the method or query evaluation. 
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Technique 13 Optimization in the computation of aggregate functions based on the 

semantics of aggregation. 

Spatial aggregate functions are popular in spatial queries. Many spatial aggre- 

gates, such as the shortest traversal distance, the maximum-sized region, etc., require 

the extraction of the maximum or minimum values from all the possible spatial com- 

binations, which could be very costly in computation. However, the nature of the 

problem may indicate that it is often unnecessary to compute all of the possible spa- 

tial combinations. Heuristics and monotonicity properties can be applied to prune 

the search space in computation. Further, saving intermediate results will facilitate 

such optimization. 

Example 5.8 Let the query be to find the shortest driving distance between two 

spatial points (such as two buildings) pl and p2. Since the shortest distance is a 

monotonic function, the monotonic behavior of spatial operators can be explored 

in the computation. For example, saving the currently derived minimum driving 

distance and its associated path for a set of frequently referenced pairs of spatial 

points (such as the major road intersections) will be useful at pruning any path with 

longer driving distance than the current minimum one. Also, the driving direction 

information may also help guide the search. Furthermore, all the paths computed so 

far with accumulated distance greater than the currently computed minimum distance 

between pl and p2 can be dropped automatically in further computation. 

In summary, set-oriented spatial computation techniques can be used to improve 

spatial query processing. The application of some of the techniques can be rule-based. 

Another techniques can to be integrated into the optimizer. The implement ation 

aspect of the technique will be studied in future research. 
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5.3 Chapter Summary 

We have studied deductive spatial query optimization and developed a dynamic con- 

nection graph transformation approach for query plan generation and selection. A 

candidate graph has been proposed to dynamically maintain currently available op- 

eration alternatives; it models the data flow constraints among data relations and 

spatial predicates. A systematic transformation from the connection graph to access 

plans has been presented. Data statistics and empirical cost estimates of spatial op- 

erators are used in cost estimation. Heuristics are applied for preliminary ordering of 

different execution options. Thus, the enumeration algorithm generates potentially 

promising access plans first, thereby providing a tight upper-bound for pruning less 

promising plans at an early stage. Our preliminary experiments indicate that such 

an optimization mechanism effectively generates a suboptimal access plan for a given 

deductive spatial query. 

The dynamic connection graph transformation and optimization techniques are 

not limited to spatial database applications. They can be applied to other kinds of 

database systems which integrate data relations with complex data types and proce- 

dural methods. 

In addition to the enumeration approach, other approaches, such as random- 

ized search, generic search, etc. have been developed in relational query optimization 

[88, 1361. These approaches, in principle, should be applicable to spatial query opti- 

mization as well. It is an interesting research issue to apply statistical approaches t o  

spatial query optimization. The techniques listed above represent a set of interesting 

techniques for set-oriented processing and optimization of spatial queries integrated 

with spatial computational methods and deduction rules. Many other query opti- 

mization techniques can be further studied and developed in this direction. 



Chapter 6 

Information- Associated Spatial 

Join Index 

6.1 Introduction 

Spatial range search can be specified using a viewing window. A commonly used 

window may be a rectangle, a circle or an annulus. Circular range search is particularly 

useful in daily life, environment sciences and aviation. For example, a hazard situation 

at a place may affect the region within a specified distance. 

Spatial join indexing proposed by Rotem [I191 is a promising approach for answer- 

ing queries involving intersection, containment, etc. However, many spatial queries 

are related to spatial ranges. The proposed mechanism explored only E-overlap, which 

is a fixed distance mapping. It is difficult to construct a large number of spatial join 

index files corresponding to different query distance values. Moreover, it is impos- 

sible for a database designer to anticipate and enumerate all kinds of query ranges. 

Therefore, simple spatial join indices may not be effective for queries involving various 

distances or distance ranges among objects. For example, when a query is to find all 

spatial objects whose distance from a given spatial object ranges between 10 and 20 
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kilometers, the 6-overlap approach encounters difficulties since its indexing structure 

cannot express this kind of distance range constraints. 

In this chapter, a general and flexible indexing structure, the spatial-information- 

associated join index, is proposed and investigated. The idea behind the new join 

indexing structure is to associate with each join index record some piece(s) of in- 

formation (referred to as information attribute(s)), which registers some important 

information related to this pair of spatial objects. By precomputing this information 

at the spatial join index construction time, the computational cost of spatial data 

retrieval can be reduced substantially. Two important and frequently inquired spatial 

measurements, distance and orientation, are taken into consideration. By associating 

one or both measurements, the spatial-information-associated join indexing structure 

provides an efficient way to answer spatial queries, especially, spatial range queries. 

A distance-associated join index structure will be the first focus of our inves- 

tigation. It is a 3-tuple structure which contains two related object identifiers and 

the distance between them. The distance between two spatial objects could be the 

geometric distance between their reference points, the shortest highway distance be- 

tween them, their Manhattan distance, e t ~ .  depending on the application. In general, 

this distance information is quite costly to compute. Obviously, the precomputation 

and registration of this distance information at index construction time may sub- 

stantially reduce the computational cost at query processing time. By organizing 

the distance-associated join index records into B+-trees, many complicated distance- 

related queries, such as distance-range queries and nearest neighbor queries, can be 

answered efficiently. 

Based on a basic distance-associated join index structure, two structured distance- 

associated join indices, ring-structured and hierarchical, are proposed to enhance 

search performance in sophisticated geometric environments. Ring-structured distance- 

associated join indices partition the join index file into several index files based on 

certain distance ranges. A query related to a given spatial range only needs to ac- 

cess those ring index structures which overlap with the inquired range. Hierarchical 
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distance-associated join indices resemble multiple-scaled maps, where smaller objects 

such as houses and buildings are associated with nearby objects such as highway inter- 

sections or major buildings. This method reduces the overall join index file size, and 

it can be used for hierarchically organized spatial environments. An important appli- 

cation of the hierarchical distance-associated join index is the search for the shortest 

distance between two spatial objects. Finding the shortest path can be accomplished 

by a sequence of join operations. 

By adding an orientation attribute, the distance-associated join indexing structure 

can be further extended for efficient processing of queries relevant to distance and/or 

orientation. Such a spatial-information-associated join index structure is a 4- 

tuple structure containing both distance and orientation information. Thus, the basic 

distance-associated join index is extended to a basic spatial-information-associated 

join index. Two dimensional indexing structures can be constructed based on the 

preference of either distance or orientation. Moreover, a zone-structured join index 

can be constructed from the ring-structured distance-associated join index with an- 

gular subdivision. Such zone-structured join indices partition the join index file into 

zones based on the distance and orientation ranges. Thus, objects located in the same 

"zone" are clustered in the join index file. Similarly, a hierarchical distance-associated 

join index can be enhanced with directional information to form a hierarchical spatial- 

information-associated join index. In general, a spatial-informat ion-associated join in- 

dex structure stores the precomputed distance and orientation information. It reduces 

or avoids geometric computation at query processing time and thus substantially im- 

proves the performance of spatial query processing. This is the motivation for the 

construction of spatial-information-associated join indices. 



CHAPTER 6. INFORMATION- ASS0 CIATED SPATIAL JOIN INDEX 8 7 

6.2 Distance- Associated Join Indices for Distance 

Range Search 

Spatial joins are common in databases which store images, pictures, maps and draw- 

ings. Such joins are costly to  compute, hence the use of spatial join indices can be 

valuable, provided that they can be created and maintained efficiently. Since many 

spatial joins are performed among spatial objects within certain distance ranges, and 

since many other distance-related joins can be considered as special cases of spatial 

range joins, our design pays special attention to spatial range queries, which inquires 

about certain spatial objects in relation to other spatial objects within a certain dis- 

tance range. 

As an example of range queries, consider a region map database in which schools, 

galleries and regional parks, are marked as points or small regions. The following 

kinds of spatial range queries are often made. 

1. Given a location, find regional parks that are beyond 30 miles but within 60 

miles of this location. 

2. Find every gallery-school pair whose distance is less than 1 mile. 

The distance-related predicate of these queries can be abstracted into the following 

form, 

Dm;, < distance(A, B) < Dm,,, 

where Dm;, and Dm,, are variables. 

Notice that distance(A, B) 5 Dm,, can be a special case in which Dm;, = 0. 

To facilitate spatial joins in complex environments, three kinds of distance-associated 

spatial join indices are proposed and studied in the following three subsections: basic, 

ring-structured and hierarchical. 
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6.2.1 Basic distance-associated join index 

Basic distance-associated join indices (basic DJI, or BDJI)  are an indexing mechanism 

which associates with two spatial objects (i.e. their identifiers) a piece of distance 

information. It optimizes distance-related queries by computing the distance between 

every pair of static spatial objects at index construction time rather than at query 

processing time. Therefore, the information about the distance between any two 

spatial objects is available in the spatial join index at query processing time. 

6.2.1.1 Definition and construction 

Definition 6.1 Given two spatial relations R1 and R2, the basic distance-associated 

join index records are generated by associating with each pair of objects o; E R1 

and 02 E R2 the distance between them. 

BDJI  = { (~ ; , o j , d ; ,~ )  I o; E R1 A oj E R2 A d;,j = distance(o;,oj)), 

where distance(o;, oj) is a function which takes two object identifiers o; and oj and 

returns the distance between these two objects. 

Notice that distance(o;, oj) is usually defined according to the specific application. 

For example, the distance between two buildings can be defined as the distance from 

the center of one building to the center of the other, the shortest distance between 

them, or their Manhattan distance (the shortest street distance), etc. The compu- 

tation of distance may involve I/O and complex geometric computations and is thus 

a relatively expensive process. The distance attribute in the join index record can 

be used to directly answer queries about the distance between two spatial objects, or 

answer spatial range queries by comparing it against the distance constraints provided 

in the queries. 

The basic distance-associated join indices are constructed as follows. Join indices 

are sorted first by the first attribute, so that queries related to a specified object can 
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be answered efficiently. B+-tree is built on the primary index. Records with the 

same first attribute value are then sorted according to their distance attributes. To 

speed up search for range queries, a secondary index is created based on the values 

of the distance attribute. We now present the algorithms used for creation, retrieval, 

and maintenance of basic DJIs. 

Algorithm 6.1 Creation of a basic distance-associated join index. 

Input. Spatial object relations R1 and R2. 

Output. Construction of a basic DJI. 

Method. 

1. For each pair of spatial objects 0; and oj, where o; E R1 and oj E R2,  compute 

their distance and generate an index record (o;, oj, d; j ) .  

2. Sort the DJI records by their first attribute and construct the primary index for 

the DJI. 

3. Sort every subset of index records with identical first attributes, sort the records 

according to the distance attribute and construct a secondary index. 

To simplify our analysis, it is assumed that R1 and Rz contain the same objects, 

that is, the DJI's thus constructed will reflect the spatial distance relationship within 

a unique set of spatial objects. It is straightforward to generalize the results to DJI's 

between two distinct sets of spatial objects. 

Theorem 6.1 The time complexity for the construction of the basic distance-associated 

join index of a database with N  spatial objects is 0 ( N 2  log N ) .  

Proof: Pairing up N  objects and computing the distance between each pair, the first 

step takes 0 ( N 2 ) .  The time complexity of the second step, sorting N 2  records, is 

0 ( N 2  log N 2 ) ,  i.e. 0 ( N 2  log N ) .  The size of the secondary index for each object is 
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N - 1 and it takes O(N  log N )  to sort the records. There are N groups of such indices 

so the third step takes 0 ( N 2  log N) .  Therefore, the overall computational complexity 

is 0 ( N 2  log N). 

To illustrate the algorithm, the indices for three simple spatial objects are shown in 

Figure 6.1. Indices are first sorted by the first attribute, i.e. ol,02 and 03. Records with 

the same first attribute value are then sorted by their distance value. For example, 

for the same first attribute ol, the second attribute 03 is before 0 2  because 03 is closer 

to 01 than 02. 

Figure 6.1: Indices for three spatial objects. 

6.2.1.2 Retrieval of spatial objects 

Suppose that a basic DJI file is constructed on N spatial objects. We now present a 

retrieval algorithm for the spatial range query: Find all objects whose distance from 

object o; is between Dm;, and D,,,. 

Algorithm 6.2 Data retrieval for a typical spatial range query. 

Input. (i) an object identifier o;, (ii) the query distance range (Dm;,, Dm,,]. 

Output. Every object in the database whose distance from o; is within the range. 
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Method. 

1. Search for object o; using the primary index, 

2. Search along the secondary index until the distance value reaches Dm;,, and 

3. Read the leaf index records until the distance value becomes greater than Dm,,. 

0 

Theorem 6.2 The computational complexity ofthe algorithm for retrieving a database 

with N objects using distance-associated join index is O(1og N + k). 

Proof: Since the time complexity for the retrieval of an object in a database of N 

objects using B-trees is O(1og N), each of the first and second steps takes O(1og N )  

I/O time. The I/O cost in the third step, k, is proportional to the number of tuples 

satisfying the query divided by the number of index records stored in one data page. 

Therefore, the time complexity for retrieval is O(1og N). 0 

This index structure also facilitates the processing of other similar kinds of queries. 

For example, 

1. the search for the spatial object which is closest to a given one, which takes 

O(1og N )  time; and 

2. the search for all pairs of spatial objects satisfying a given distance constraint, 

which takes O(N  log N + k) time. 

Example 6.1 Range search using basic DJI. 

Given object 02, find all of the objects whose distance from 02 is between 300 

and 450. Figure 6.2 shows a portion of the B+-tree. The search proceeds as follows. 

Search for 02 using the primary index, which selects record R1. Search for 300 using 

the secondary index, which obtains record r l .  Following the linked list at the leaf-level, 
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the search reaches record r2 which is beyond D,,,. Thus, the retrieval terminates 

with one resulting object ol returned. The search path is indicated using the dark 

arrows. 0 

Figure 6.2: Processing a spatial range query using the basic DJI. 

Not only can the basic DJI be created and used efficiently for data retrieval as 

shown above, but they are also easy to maintain. The following algorithm handles 

the insertion of spatial objects. It is easy to extend this algorithm to handle deletions 

and updates. 

Algorithm 6.3 Updating the basic DJI after the insertion of a spatial object 

Input. Object o; to be inserted 

Output. An updated basic DJI after o; is inserted into the database. 

Method. 

1. For each spatial object oj in the database, construct the basic DJI record 

(o;, oj , d; j) and the record (oj, 0; , dj,;) ; 
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2. Cluster the index records whose first attribute is o; and sort them according to 

the distance values; 

3. Construct a B+-tree on this set of records and insert it into the existing B+-tree 

(for DJI's) as a branch; 

4. Insert each record (o j  , o;, djTi) into the existing B+-tree (for D JI's). 

Theorem 6.3 The time complexity of the insertion algorithm used in  an insertion of 

a database with N objects is O(N log N )  . 

Proof: Ignoring the cost of object distance computation as discussed previously, the 

first step takes O(N) time to construct N basic DJI records. The second step takes 

O(N log N )  time to sort them. The third step takes O(1og N )  to find the right place 

to insert the new set of index records. Finally, the fourth step requires O ( N  log N )  

time to insert N records. Therefore, computational complexity of the algorithm is 

O( N  log N) .  0 

Similarly, the deletion of a spatial object from the database will also take O(N log N)  

time. Since the basic DJI provides a reasonable cost for index maintenance, it is ex- 

pected to be an interesting candidate to replace the runtime geometric computation of 

distances between sets of objects. However, since distance-associated join indices pro- 

vide association among all pairs of spatial objects, the total number of index records 

to be maintained in the basic DJI file will be the square of the number of spatial 

objects in the database. As the number of objects in the database increases, the size 

of the basic DJI file will increase quadratically. It will thus be impractical to construct 

and store such a huge index file for relatively large spatial database. 

Fortunately, many range searches in practical applications are confined to the 

vicinity of a spatial object. It is natural to specify a cutting radius (or scope value) 

for most spatial objects. For example, a fire station 60 miles away should be ruled 

out as a candidate to use in an emergency. In this case, 60 miles may be set as its 
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cutting radius. Two objects are related if and only if the distance between them is 

within their specified cutting radii. 

6.2.2 Ring-structured distance-associated join index 

Following the same philosophy of reducing the size of distance-associated join index 

files, a ring-structured distance-associated join index (ring-structured DJI or RDJI) 

can be constructed. The ring structure partitions one DJI file into several files based 

on different distance ranges. For example, the objects with a distance within 100 

meters are partitioned into one ring, those with a distance between 100 to 500 meters 

are partitioned into the second ring, etc. For a query over a specified spatial range, 

the search can be confined only to those ring-structured DJI files which overlap the 

specified range. 

Different standards can be used as the criteria in the partition or creation of ring- 

structured DJI's, such as equal-distance, equal-area, progressively increasing distance 

range, etc. 

Definition 6.2 Given a set of n distance radii, each rk specified by rk = R(k), where 

R(k) is a function which decides the radii for ring k, a set of the ring-structured 

distance-associated join indices is a set of join index files, each of which is con- 

structed corresponding to  the rings specified by the radii, that is, 

where k = 1, ..., n. 

The index construction algorithm is similar to Algorithm-6.1. Figure 6.3 (a) shows a 

set of concentric rings centered at 01 with equal-distance radii: rk: = 10 x k, k = 1,2,3. 

Figure 6.3 (b) illustrates portions of ring-structured DJI files. For example, if a spatial 

range query inquires about spatial objects whose distance from each other between 

10 and 20, only the file rdji2 is searched. 
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L rdjil 

02 1 04 1 6 --------- I":" I 

(4 (b) 

Figure 6.3: An example of a ring-structured DJI. 

We now present a spatial range query retrieval algorithm using the ring-structured 

DJI. 

Algorithm 6.4 Data retrieval for a spatial range query using the ring-structured 

index structure. 

Input. (i) an object identifier o;, (ii) the query distance range (D,;,, Dm,,]. 

Output. Every spatial object whose distance from oi is within the specified range. 

Method. 

1. Select the ring files which overlap with the query range. A ring index file should 

be searched if (i) its lower or upper distance bound lies between Dm;, and D,,,, 

or (ii) Dm;, or Dm,, is within its lower and upper distance bounds. 

2. For each selected ring index file, 

[I] Search for the inquired object identifier using the primary index; 

[2] If the ring's range is completely covered by the query range, collect all 

objects in the index files related to the object identifier. 

[3] If the ring's range is partially covered by the specified query range, search 

in the secondary index to find and collect the portion which lies within the 

specified query range. 
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The time complexity for processing a spatial range query using the ring-structured 

DJI structure should be the same as that using the basic DJI. However, because the 

ring structure partitions the basic DJI file into several smaller files, given a speci- 

fied distance range, the files to be searched can be determined before accessing the 

database. Therefore, it is expected that the ring structure may improve the perfor- 

mance of query processing when compared with the basic DJI. 

The ring structure has obvious advantages over the basic DJI when the spatial 

range of the query is covered by one or a small number of rings. If the full range 

of a ring is completely within the specified query range, there is no need to compare 

the distance values since every object in the ring whose first object identifier matches 

the specified object identifier satisfies the query. When the spatial range in a query 

involves many rings, it requires the search of the primary index of each involved 

ring. Searching many rings may add overhead to memory and buffer management. 

Therefore, we need to partition the distance-associated join indices wisely in the 

construction of ring-structured DJI files. For example, one may choose the radius 

for the innermost ring to be 100 meters for the queries on neighborhood, and the 

second ring to be from 100 to 1000 meters for those relevant to shopping, schooling, 

bus-stops, etc. By doing so, frequent inquiries are likely to use only one or a small 

number of rings. 

6.2.3 Hierarchical distance-associat ed join index 

Since both basic DJI and ring-structured DJI store all of the spatial object pairs of 

a spatial data relation, the size of the total index file(s) is proportional to the size of 

the cross-product of the spatial relation with itself (notice that only the keys rather 

than full tuples are stored). For a reasonably large spatial data relation, it is often 

impractical and unnecessary to consider all pairs of spatial objects. For example, it is 

rarely useful to relate school buildings in one city to houses in another suburban city. 

Hierarchical views are commonly used in solving spatial problems in a complex 

world. When scheduling a flight from one continent to another, most small cities 
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are ignored in the planning. When driving a car to work, most individual hocses 

are omitted in the calculation. Based on a similar point of view and assumption, 

spatial objects can be partitioned and classified correspondingly to fit into maps with 

different scales. 

Analogously to multi-scale maps, a hierarchical distance-associated join index (hi- 

erarchical DJI or HDJI )  can be constructed to  organize spatial objects into different 

levels. Within one city block, it could be useful to construct distance-associated 

join indices to represent distances between individual houses and street intersections. 

With a larger scale, only highway intersections or major buildings in the city will be 

represented in the join indices. Queries about the distance between your house and 

your friend's in another suburban city can still be answered by referring to more than 

one hierarchical join index file. 

Suppose that a spatial data relation consists of 1 interrelated object sets R1, R2, 

. . . , Rl, with different scale scope values S1, S2, . . . , Sl respectively, where the scope 

value of S; is an order of magnitude larger than that of S;-l. For example, the distance 

between two houses is on the order of 10 meters whereas the distance between highway 

intersections is at an order of 1000 meters. An object in R; is at a higher level than 

one in R j  when i > j. Each object at level i has one parent object at level i+ l ,  and 

this parent object should also be included in the join indices for class C;. That is, 

object classes are constructed as follows: 

Definition 6.3 Given R1, . . . , Rr, Crl, C I ~ , .  . . , Clnl is a partition of RI and 

Cil, Ci2,. . . ,Gin, is a partition of R; U R;+l where i = 1 , .  . . , I  - 1. 

A set of hierarchical distance-associated join indices are constructed on the 

object classes. The join index on Ck is constructed based on the following formula, 

where k = 1,. . . , n and m = 1,. . . , n k .  

Figure 6.4 shows a simple example of a hierarchical tree. 
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{Vancouver, Burnaby} 

BC) {Burnaby, D 

Figure 6.4: A sample hierarchy for a HDJI 

The following theorem shows that hierarchical D J I  reduces the space complexity 

for the distance-associated join index, where the degree for a nonleaf-node is the 

number of direct child-nodes, and the ratio between the maximum degree and the 

minimum degree of the hierarchy is assumed to be bounded by a constant. 

Theorem 6.4 The space complexity Sind of the hierarchical distance-associated join 

indices of a database with N objects is 

where the minimum and the maximum number of children of non-leaf nodes are k and 

Ii respectively, where c denotes rf l ,  and 1 + 1 is the number of levels in the hierarchy. 

Proof: Consider the tree T whose edges at a given level denote the spatial objects, 

whose internal nodes vl, . . . , v, represent related object sets, and whose m leaves are 

at level I .  The number of index records corresponding to an internal node v; equals 

the number of pairs of objects that belong to the object set stored at v;. 
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Since avg deg(vi) = (2N - m)/n,  it follows that N/n I avg deg(vi) I (2N)/n, and 

we get maxdeg(v;) < 2cN/n and mindeg(v;) > N/(cn). Therefore, we see that 

Sind  = F (deFi') 

On the other hand, 

Because 

we have 
N 2 ( K  - 1) 2c2N2(k - 1) 
2c2 (K" 1) - N I S i n d  I kl - 1 

When 1 = 1 the complexity is 0 ( N 2 ) .  Consider another instance where the HDJI 

is stored as a complete k-ary tree, then k = I< and 1 = logk N .  Thus we get 

2N2(k - 1) 
S i n d  I N - 1  

and therefore Sind E O(kN). 
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6.2.3.1 Hierarchical DJI retrieval 

Suppose that a range query is to find all objects within a certain distance range 

(Dmin, Dmax] from a given object 0;. In most cases, solving a range query using the 

hierarchical DJI involves searching the hierarchical DJI's by climbing up and stepping 

down the hierarchy. Thus, a search can be partitioned into two phases: the ascending 

phase and the descending phase. First, find the class level I such that o; is in Rl. 

Then, collect the objects whose distance from o; is between Dmin and Dm,, by joining 

the partitioned index files whose objects are located within the range. Suppose the 

current scope is s l .  If sl < Dm,,, climb up the hierarchy by joining the upper level 

spatial join index file. In the ascending phase, an object whose distance from o; is less 

than Dm;, minus the lower level scope value will not be included in the intermediate 

relation T for later descending, because its descendants, distance to o; will always 

be less than D,;,. However, it should be included in the temporary relation Temp 

for further ascent since further ascending may generate satisfiable answers. In the 

descending phase, an object whose distance from o; is less than Dm;, minus lower 

level scope value or greater than Dm,, will not be collected in T since its descendants 

cannot satisfy the query. At the end, only the objects whose distance from o; lies 

between Dm;, and Dm,, will be included in the result relation. Notice that a newly 

generated index with a shorter distance will replace the index of the same object 

pair with a longer path distance. In other words, the object distance stored in every 

intermediate or final relation is the shortest path distance. 

Algorithm 6.5 Processing of a range query using the hierarchical D JI. 

Input. (i) a spatial object o;, and (ii) the spatial range: Dm;, and Dm,,. 

Output. All spatial objects oj such that Dm;, < distance(oi,oj) 5 Dm,,. 

Method. 

1. [Initialization] (assuming So = 0). 

Find level such that 0; E RI,,,~; 
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level; := level; 

2. [Ascending phase] 

while Sleve~ < Dmax do { 

3. [Descending phase] 

while level > level; do { 

4. return oj where {oj I (o;, oj, d i j )  E T A dij > Dm;,) 

A detailed query execution process is presented in the following example. 

Example 6.2 A range query on the hierarchical index. 

Figure 6.5 shows a two-level hierarchical distance-associated join index (HDJI) 

where S1 = 1000 and S2 = 10 for a simple object setting. Given an inquired object 

022, find all objects whose distance from 0 2 2  is between 200 and 450. 

1. First, search for object 0 2 2  in the hierarchical DJI. 

2. By hierarchical ascent, T = {(022,01,403)). 

3. By hierarchical descent, T = {(022,01,403), (022,011,406), (022,012,408)). 
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Notice that at the first iteration in the ascending phase, (022, 02,3) is included in 

the temporary relation Temp but not in the result relation T because the sum of 3 

and 0 is less than the lower bound 200. However, it is used for the computation of the 

shortest distance to object ol. The records related to 03 are not generated because its 

accumulated distance to 022 has exceeded the upper bound of the range. Therefore, 

the answer to the query is 01, 011, 012. 

(b) level 2 index 

022 
(a) A set of objects 

01 1 012 1 5 
I - - - 1 - -  

---I--- J - -  

011 , 012 1 4 

012 ' o l l  ' 4 ---I--- J - -  

012 1 01 1 5 

(c) level 1 index 

Figure 6.5: A simple two-level DJI and the index graph. 

6.2.3.2 Hierarchical structure for shortest distance on a network 

Interestingly, hierarchical DJI allows the shortest distance between two spatial objects 

be found efficiently, such as finding the shortest distance from a person's house to 

his/her friend's house. This can be realized by a simple modification of the data 

retrieval process presented in Algorithm-6.5. Notice that in this case the hierarchical 



C H A P T E R  6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 103 

index structure H D J I k  = {(o;, oj, d; j)) indicates that for each pair of objects o; and 

oj, there exists a path between o; and oj, and d;,j is the distance of the shortest path 

between o; and oj. 

The idea used for the shortest distance algorithm is as follows. Starting from 

the leaf level of the hierarchy, find the two inquired objects. If the two objects, o; 

and oj are directly related, the stored distance is returned and the search terminates. 

Otherwise, climb up the hierarchy in both directions. That is, starting at set Ti and 

Tj which contain objects o; and oj respectively, climb up the hierarchy by joining the 

hierarchical D J I  file at one level higher than the current level and check whether the 

paths from the two sets reach a common node. At each level, newly generated records 

are stored in DT; and DTj , respectively. The paths which reach a common node form 

a complete path from o; to oj. For every pair of objects in the index construction and 

retrieval processes, only the one with the shortest path distance is kept. 

Algorithm 6.6 Search for the shortest distance between two given spatial objects. 

Input. (i) two spatial objects with identifiers o; and oj. 

Output. The shortest distance between the two spatial objects in the spatial database. 

Method. 

1. Find o; and oj in the join index files using the primary indices. 

then return ( dilk ) 

else {Tj := {(oil oh, dj,k) I (oj, Ok, dj,k) E H D J I I } ;  

level; := 1; 

repeat 

level := level + 1; 
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Example 6.3 Shortest distance by hierarchical DJI. 

Let the query be "find the shortest distance between 011 and 0 2 2  in Figure 6.6". The 

search proceeds as follows. At level one, Ti = ((011, 012,6), (011,013,8), (011,01, 9)), 

and Tj = { ( 0 2 ~ ~  02,7), (022, 021,8), ( 0 2 2 ,  023~9) ) . Clearly, the search should climb up 

the hierarchy. At level two, DTi = ((011~02,107))~ Ti = { (011,012~6)~ (011,013,8), 

(oll,ol,9), (oll,o2,107)). Since DTj = {(022,01,107)) and Tj = { (022,02,7), (022,021,8), 

( o ~ ~ ,  023,9), ( o ~ ~ ,  ol, 107)), the shortest distance between o; and oj is found, which is 

107 + 7 = 114. 0 

Notice that the above algorithm and the example find only the shortest distance 

between two spatial objects, but not the shortest path since the path information, 

which covers a sequence of intermediate nodes, is not maintained in the spatial join 

indices. Many applications need to find the shortest traversal path among a set 

of spatial objects. Such queries can be solved by modifying of the spatial join index 

record slightly. To find the shortest paths, an extra attribute path should be associated 

with the join index, which registers the shortest path between two spatial objects 

represented as a sequence of intermediate objects. That is, the join index record 

should be 

H D J I  = {(oi,oj,di,j,pi,j)), 

where pi j is the sequence of objects which form the shortest path from object o; to 

object oj. During join operations of hierarchical join indices, the two paths should be 

concatenated to  form the shortest path between the spatial objects at different levels 
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level 2 index 
level 1 index 

Figure 6.6: Search for the shortest distance between two spatial objects. 

of hierarchy. Except for the data related to this path information, the remainder of 

the algorithm is the same as Algorithm-6.6. 

6.2.4 Distance-associat ed spatial join index for nonzero-sized 

spatial objects 

Although the previous discussions treat spatial objects as abstract points in their 

distance computation, distance-associated spatial join indices apply equally well to 

nonzero-sized spatial objects. For the basic DJI and the ring-structured DJI, the dis- 

tances between two spatial objects (points/lines/polygons) can be defined according 

to particular applications, e.g. the shortest distance from a point to a line or the 

distance between the centers of two polygons. The algorithms developed for the basic 

DJI and ring-structured DJI can be applied directly to these cases. 

It may not be so straightforward to apply the hierarchal DJI algorithm to con- 

struct and manipulate the hierarchically organized spatial join indexing structures 

for nonzero-sized spatial objects. A spatial hierarchy can be organized based on the 
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semantic structures of spatial data, such as administration hierarchy, or physical data 

structure, such as R-trees. For the hierarchical DJI, an additional spatial bounding 

information needs to be associated with each object. 

At the leaf level, each nonzero-sized object o; has a minimum bounding rectangle 

(MBR), denoted by o;.minx, o;.miny, o;.maxx, o;.maxy referring to the minimum-x, 

minimum-y, maximumx and maximumy of its bounding rectangle. The MBR of 

a higher level object can in turn be constructed by finding the minimum bounding 

rectangle for those of all its child-nodes. 

Given an inquired object o;, the retrieval algorithm can be modified as follows. 

Notice that the MBR of a parent (ancestor) node covers that of the inquire object. 

In the ascending phase, the criterion for stopping ascending a hierarchy at  a parent 

node or, is modified as follows, 

Similarly, in the descending phase, the condition for discard node oj which cannot 

possibly satisfy the query consists of the following two parts. 

1. Maximum distance is less than Dm;, 

Let AX and AY be maximum(o;.maxx, oj.maxx) - minimum(o;.minx, oj.minx) 

and maximum(o;.maxy, oj.maxy) - minimum(o;.miny, oj.miny) respectively. 

The condition can be expressed as follows, 

2. The minimum distance between the bounding rectangles is greater than D,,,. 

Let x;j, xi;, y;j, yj; be defined as follows. 
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The second cutting criterion can be specified by the following Boolean expression 

Substituting these algorithm control conditions into Algorithm 5 ,  we have the 

hierarchical DJI retrieval algorithm for nonzero-sized objects. 

6.3 Spatial-Information-Associated Join Index 

with the Orientation Component 

Some spatial queries require information that are relevant to the relative orientation of 

spatial objects. For example, one may need to find the schools in  a district, located to 

the east of John's house. Many other spatial queries, although they may not be directly 

indicating orientation values, may use the orientation information to reduce the search 

space. For example, to drive from your house to your friend's, it is important to have 

the direction information available. Therefore, in many applications, it is beneficial to 

construct orientation-associated join indices. Similarly to the case of distance- 

associated join indices, an index record should be in the form of (o;, oj , angle;,j) where 

angle is the angle formed between the vector from o; to oj and a reference axis, such 

as the X-axis. 

An orientation-associated join index can be constructed as follows. The range 

of the angular space for an orientation-associated join index, (usually 0" to 360•‹), 

is divided into several zones defined by angle values. Index records are first sorted 

by the first attribute with a primary B+-tree structure. Objects with the same first 

attribute are then sorted by the angle attribute. A radix index can be used for fast 
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retrieval so that the secondary indexing retrieval time can be constant. The total 

retrieval time complexity for a database with N spatial objects is O(1og N). 

In general, these two frequently used pieces of information, distance and orienta- 

tion, can be combined to form a relatively general spatial-information-associated 

join index . Many spatial queries are relevant to both of them, such as finding all 

the restaurants within 1000 meters of the conference center and located to the east of 

it. In such cases, the query is associated with two spatial predicates of the form 

where Dm;,, Dm,,, A,;, and A,,, are specified in the query. 

Clearly, a general spatial-information-associated join index facilitates the process- 

ing of such spatial range queries. With information pertaining to both distance and 

orientation dimensions, a user can specify any two-dimensional range. Furthermore, 

since such a structure maintains both pieces of information, it facilitates the processing 

of spatial range queries relevant to distance only, orientation only, or their combina- 

tion. The shortest distance or the shortest path problem addressed above can be 

solved more efficiently with the help of the available spatial orientation information. 

The information-associated join index is a general indexing data structure. Its 

scope of use is application-related and could be best suited for the situations where (i) 

a given geometric information is frequently inquired about, (ii) the spatial information 

is computationally expensive, and (iii) the solution is simple. For example, if the 

areas of intersection of objects in two thematic maps are frequently inquired about, 

an area-associated join index may be built. Only when two regions are overlapping 

and an index record need to  be stored in the index, such a structure may facilitate 

finding the intersection of a pair of specified objects and its area. Clearly, a general 

spatial-information-associated join index can facilitate the processing of many spatial 

queries. 
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6.3.1 Basic spatial-information-associated join index 

As an extension to the basic distance-associated join index, a basic spatial-information- 

associated join index (basic SJ I  or B S J I )  can be defined as follows. 

Definition 6.4 Given two spatial object relations R1 and R2, the basic spatial- 

information-associated join index records are generated by coupling object iden- 

tifier pairs in  R1 and R2 respectively with the information about the distance between 

them and their orientation. 

where the angle(o;, o j )  is the angle that the vector o; -t oj forms with respect to the 

X-axis in the range between 0" and 360". 

According to this definition, it is obvious that distance(oj,  0;) = distance(o;, o j ) ,  

and that angle(oj,o;) = (angle(o; ,oj)  + 180 ) mod 360. 

The distance and angular attributes in the join index record can be used to di- 

rectly answer queries about distance between two spatial objects, their orientation, 

the predicates containing these constraints or their combinations. They can also be 

used to answer spatial range queries by satisfying the distance and/or orientation 

constraints provided in the queries. 

Two pieces of spatial information lead to the organization of the spatial indexing 

structures in two dimensions. Multi-key indexing structures, such as grid files [105], 

can be applied in the construction of spatial-information-associated join indices. Here 

we present a two-level structure for the construction of such join indices. 

In order to  efficiently process distance- and/or orientation- related queries, index 

records should be clustered. One may select a preferable attribute as the primary 

clustering attribute. Based on the operational frequency, different indexing prior- 

ities may be established. A distance preference index structure sorts the distance 
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attribute before sorting the orientation attribute, whereas an orientation preference 

index structure sorts the orientation attribute first and then the distance attribute. 

Taking a distance preference indexing structure as an example, the basic SJI struc- 

ture can be constructed as follows. First, the indexing records are sorted by the first 

object identifier attribute (primary index). A B+-tree is constructed on the primary 

index. Second, each subset of records with a given first attribute value is then sorted 

by the preferable attribute, which is the distance attribute in this case. Another level 

of index is created on the value of this attribute. Finally, each subset of the records 

with a given object identifier and a given distance attribute can be further sorted 

according to the orient ation. The detailed construction and retrieval algorithms for 

the basic SJI are similar to those for the basic DJI. 

Similarly to the case of basic distance-associated join index, the size of the basic 

SJI file increases quadratically when the number of objects in the database increases. 

It will be impractical to construct and store such a huge index file for a relatively large 

size of spatial database. In the following subsection, an extension to ring-structured 

DJI based on orientation subdivision, called a zone-structured spatial-information- 

associated join index, is designed for improved performance. 

6.3.2 Zone-struct ured spatial-information-associated join 

index 

The motivation behind the construction of a "zonen-like structure is to take into 

consideration the combination of distance and orientation information in the index 

clustering. Many queries need to consider spatial objects within a zone which often 

crosses the boundaries of both a refined distance and a refined angle. The zone 

structure partitions a spatial-information-associated join index file into groups based 

on different distance and orientation ranges. Objects which are close to  each other in 

space are clustered in the index file. For example, the objects whose distance from 

a given object o; is smaller than 100 meters are stored in one ring, those whose with 
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the distance from o; lies between 100 and 500 meters are stored in the second ring, 

etc. Each ring is further subdivided according to angle ranges. The rings close to 

the center may be divided into fewer zones than the ones which are farther from the 

center. For a query with a specified spatial range, the search can be confined to  only 

those zones in the SJI file which overlap the inquired ranges. 

Different standards can be used as the criteria in the partition or creation of 

zone-structured SJI's, such as equal-distance-and-equal-angle divisions, equal-area di- 

visions, progressively increasing distance range, e t ~ .  Let the area set which specifies 

the zone z;,j be Z(i ,  j ) .  The key to the zone division is that it must be easy to deter- 

mine whether it overlaps with an inquired range. For instance, consider an example 

with equal-distance (a given A r )  and equal-angle (a given Aa )  division, 

Z ( i , j )  = {(d,a)  1 A r  x ( i - 1 )  < d 5 A r  x i A A a  x ( j  -1) < a  5 A a  x j), 

for i = 1, . . . , n and j = 1, . . . , 360" t Aa.  

Definition 6.5 Given a set ofzones, z;,j specified by Z(i, j), a set of zone-structured 
spatial-information-associated join indices can be constructed which corresponds 

to the zones specified by Z(i,  j), i.e. 

Figure 6.7(a) shows a set of concentric rings centered at 01 with equal-distance 

radii: r l  = 10, r2 = 20, r3 = 30 and A a  = 45'. Figure 6.7(b) illustrates a portion of 

the corresponding zone-structured SJI file. In this example, if a spatial query requires 

information about spatial objects whose distance from ol ranges between 10 and 30, 

and whose orientation relative to 01 ranges between 0" and 45', only zone ZSJ12,1 is 

searched. 

A zone-structured SJI is constructed as follows. First, all index records in a given 

zone are clustered with an index pointer pointing to the beginning of the indices of 

the zone. Inside the zone, the indices may be sorted first by the distance and then 
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Figure 6.7: An example of zone-structured SJI. 

by orientation. The size of the zone influences the efficiency of data retrieval. One 

index page can be used to hold the indices in each zone. Because of the regularity of 

the zone subdivision, given a distance range and/or an orientation range, the related 

zone(s) can be easily determined. There are four cases to consider for a selected zone 

with respect to a given query: a zone can be (i) covered completely by the query 

range, (ii) covered only by the query distance range, (iii) covered only by the query 

orientation range, and (iv) overlapping partially with distance and orientation ranges. 

Different retrieval methods can be applied to each case for efficient query retrieval. 

We present the data retrieval algorithm for a range query using a zone-structured 

index, based on the above four cases. 

Algorithm 6.7 Range query search using the zone-structured join index structure. 

Input. (i) an object identifier o;; (ii) the lower and upper bounds of the distance 

range, Dm;, and D,,,, and (iii) the lower and upper bounds of the orientation 

range, A,;, and A,,,. 

Output. All spatial objects within the ranges. 
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Method. 

1. Search for the object in the primary B+-tree. 

2. Select the zones overlapping with the query range and collect data as follows: 

Case 1 (covered fully by the query range): collect all objects in the index 

of the given zone; 

Case 2 (covered only by the distance range): read the index records in 

the zone, check the angle values and collect objects satisfying the orienta- 

tion condition; 

Case 3 (covered only by the orientation range): read the index records 

in the zone, check the distance values and collect objects satisfying the 

distance condition; and 

Case 4 (overlapping partially with distance and orientation ranges): 

read the index records in the zone and check both distance and angle at- 

tributes and collect objects satisfying the specified conditions. 

The computational complexity of solving a spatial range query using the zone 

SJI structure should be the same as that using the basic SJI. However, the zone 

structure partitions the basic S JI file into several zones, and the zones to be searched 

are determined before accessing the database if the distance and/or orientation range 

values are provided in the query. Therefore, it is expected that the zone structure 

improves the performance of query processing compared to the basic SJI. 

An obvious advantage of the zone-structured SJI over the basic SJI is that it is 

not biased towards either the distance parameter or the orientation parameter. Zone- 

structured indices are also effective for distance-related range queries, orientation- 

related range queries and their combination. Moreover, if the query is to find all pairs 

within a certain range which fully covers the range of the zone, all objects in the zone 

are returned as part of the answer. 
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6.3.3 Hierarchical spat ial-information-associated join 

index 

As an logical enhancement following from the above discussion, a hierarchical distance- 

associated join indices can be augmented with an orientation measurement, which 

leads to a hierarchical spatial-information-associated join index (hierarchical SJI or 

HSJI )  structure. The construction of hierarchical spatial-information-associated join 

index is similar to that of a hierarchical DJI. Distance scopes S1, . . . , Sr and object 

classes C1, . . . , Cl are defined in the same way as those in hierarchical DJI. 

Definition 6.6 Suppose that a set of hierarchical spatial-information-associated 

join indices has been constructed on the object classes {C1, . . . , C l )  with digerent 

scale scope values S1, S2, . . . , S,, respectively. The join index on object class Ck is 

constructed based on the following formula: 

Given the orientation information stored in the index records, the new angle re- 

sulting from the join of (o;,  oj ,  d;;, a ; , j )  and (oil ok, dj,k, aj,k) is derived by trigonometry 

as follows: 
d;,i x sin(a;,j)  + djYk x sin(aj,k) 

a+ = arctan 
d;,i x ~ o s ( a i , ~ )  + dj,k x cos(aj,k) 

In contrast to the distance which increases as the path extends, the angular value 

may not increase monotonically as the path extends. Therefore, it is unreasonable 

to prune intermediate records which are out of the inquired zone with respect to 

the orientation constraints at each level of the hierarchy. A simple solution is to 

conduct the search without considering the orientation constraints and to verify the 

orientation for the records in the final result. A more efficient solution is to ignore the 

directional constraints at low levels based on the assumption that the highest level of 

the hierarchy in a query dominates the direction. Under this assumption, all objects 

satisfying the distance condition are calculated at the lower levels. At the top level, 
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the orientation constraints are verified to eliminate the objects whose orientation is 

out of the inquired range. In general, an angular buffering value Al can be specified 

at each hierarchy level 1 for certain applications to allow angular deviation from the 

orientation range. Records beyond the range will be removed from the candidate path 

set. The higher the level, the more restrained the angular buffer should be set for 

efficient search. 

The retrieval algorithm is similar to that for the hierarchical DJI with additional 

operations for computing new angles and removing index records with conflicting 

orientations. The first step is to obtain the inquired object using the B+-tree. In 

the two phase hierarchy traversal, records satisfying the query conditions are stored 

in set T. Some temporary records are stored in set Temp for further ascent. At all 

lower levels, the orientation conditions are omitted. Only at the top level accessed by 

the query will the orientation condition be checked to eliminate those records which 

do not satisfy the constraints. At the end, the records in T are checked against the 

orientation condition. We present an example to illustrate the retrieval process. 

Example 6.4 Retrieval using hierarchical SJI 

Given the object 01 in Figure 6.8, "find all objects whose distance from 01 ranges 

between 300 and 600 and whose orientation with respect to 01 ranges between 20" and 

100"". The search sequence is as follows. 

1. First, search for object 022 using the hierarchical SJI. 

2. At the first step of the hierarchy ascent, the orientation constraints are not 

applied. Let T be an empty set because related object distances are all less than 

the lower distance bound. Let Temp contain {(022,021,4,130), (022,02,3,65)}. 

3. At the second step of the hierarchy ascent (the highest level involved in this 

query), o3 is eliminated by the orientation condition and set T is ( ( 0 2 2 ,  01,503,62)}. 

4. By the hierarchy descent, we get T = {(022,01,403,62), (022,012,408,61), 

(022,011,406,63) 1. 



C H A P T E R  6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 116 

The final object set returned is {ol,oll, 012) .  

02z (a) A set of objects 031 
(c) level 2 index 

(b) level 1 index 

Figure 6.8: A two level hierarchical SJI for a set of objects 

Additional information, such as the coordinates of specified objects may further 

speed up the search for the shortest distance between two objects, ol and 0 2  on a road 

network. With the coordinate information, the orientation from one object to the 

other can be obtained. This orientation information can then be used to eliminate 

paths which do not follow the direction from objl to obj2. Thus it can significantly re- 

duce the size of the intermediate sets Ti and Tj and speed up the processing. Generally 

speaking, the search space is reduced using orientation constraints. 
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6.4 Analysis and Simulation Results 

In this section, we study the performance of the proposed spatial-information-associated 

join indices in a relatively large spatial database environment. The simulation results 

are presented, the results for three types of distance-associated join indices are an- 

alyzed, and the performance for different types of queries with respect to different 

spatial join indices are compared. The following notations are adopted in our analy- 

1. NDJI: for the case when no distance-associated join indices are used. That is, 

only regular join indexing structures are used and the distance information is 

computed at query processing time using geometric operators; 

2. BDJI: for basic distance-associated join index; 

3. RDJI: for ring-structured distance-associated join index; 

4. HDJI: for hierarchical distance-associated join index; 

5 .  BSJI: for basic spatial-information-associated join index, and 

6. ZSJI for zone-structured spatial-information-associated join index. 

7. HSJI for hierarchical spatial-information-associated join index. 

6.4.1 Analytical model 

An analytical model has been constructed to compare the performance of different 

schemes. The parameters illustrated in Table 6.1 are used in our analysis. 

6.4.1.1 Storage requirement 

We analyze the storage requirements for query processing using distance-associated 

join indices. 
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Table 6.1: Parameters for performance analysis. 

N 
Ni 
Nb 
N, 
N b f  
C;, 
Cdist 
C,,,, 

1. NDJI: It requires no space for the join index. 

number of objects 
average number of indices per page 
maximum B-tree branches at any node 
average number of geo-objects per page 
number of buffer pages 
cost for one I/O operation 
cost for computing distance 
cost for one comparison operation 

2. BDJI: Let S be the scope distance for the distance-associated join index method 

and D be the a maximum object density over the area. Given an object o;, the 

number of objects within the specified scope distance from o; is the density 

multiplied by the area of the scope region, i.e. D x .rr x S2. There are N objects 

in the database. Therefore, the basic DJI file size in pages is as follows. 

D x . r r x S 2 x ~  

N; 

When S is small, the size of the index file grows linearly with respect to the 

number of objects in the file. 

3. RDJI: Given n rings, each file corresponding to an individual ring is l l n t h  of the 

basic DJI in average. The ring-structured DJI thus requires the same amount 

of space as that of basic DJI. 

4. HDJI: As shown in Theorem 6.4, the space complexity Sind of the hierarchical 

distance-associated join indices of a database with N objects is 

where the minimum and the maximum number of children of non-leaf nodes are 

k and I< respectively, where c denotes [$I, and I + 1 is the number of levels in 

the hierarchy. 
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Storage for spatial-information-associated join indices and that for distance- 

associated join indices are of the same order of magnitude. 

6.4.1.2 Processing cost 

Range queries will be chosen as an example for our analysis of processing cost. The 

curves of the cost for processing all-pairs queries will be presented later. The total 

processing cost is the sum of I/O operations and CPU costs. 

1. NDJI: Two objects should be in the memory at the same time in order to 

compute the distance between them. When the number of buffer pages is smaller 

than the number of data pages, the total number of I / 07s  is greater than the 

number of data pages. In fact, let the number of pages of geometric objects Np be 

NIN,, and consider what happen when the most-recently-used page replacement 

strategy is used. The number of pages involved is then 

For example, with N, = 100 and Nbf = 10, the total number of I/O operations 

is 550. The CPU cost for computing distances between all pair objects and for 

checking if the distances lie in the query range is 

2. BDJI: With the distance-associated join index where related objects are paired 

up, query processing never needs to read the same page into the buffers twice 

in the case of a single spatial join operation. Retrieval requires logNb N I/O 

operations to search the primary index and the same amount to search the 

secondary index. The sequential reading cost is the number of output records, 

Ic divided by N;. 
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3. RDJI: If the query involves N, rings, the ring method takes N, x logNb N I/O 

operations to search primary index and logNb 110 operations to search the 

secondary index on average. Generally speaking, the ring-structured DJI takes 

more 110 than the basic DJI when N, is large. The CPU cost for a range query 

on the ring-structured DJI is 2 x log(#-) x C,,,, which is usually smaller than 

that required with the basic DJI. 

4. HDJI: logNb N 110 operations are needed to search the leaf level primary index. 

The maximum number of join iterations is twice the number of hierarchy levels, 

denoted by I ,  which usually is a small integer. Because object associations are 

established only at  consecutive levels, we can assume that the number of records 

in set T is bounded by a constant c,. Hence, each join iteration takes c, xlogNb N 

I/O operations. Thus, the overall I/O cost is (2co x I + 1) logNb N.  The cost for 

comparisons is therefore ( ( 2 ~  x 1 + 1) logNb N) x C,,,,. 

Overall, by using distance-associated join indices, object retrieval for spatial range 

queries takes time logarithmic in the number of objects in the setting. The following 

are some comparisons for different types of spatial-information-associated join indices. 

1. BSJI: The basic SJI takes logNb N 110 operations for finding the inquired object 

using the primary index. For queries on the preferable attribute, logNb N 110 

operations are required to search the starting position of the attribute satisfy- 

ing the condition. If the query is on both attributes, a check is needed for each 

resulting record to verify the second condition. If the query is on the nonprefer- 

able attribute, a scan for all records related to the inquired object is needed, i.e. 

the cost is N/Ni. 

2. ZSJI: In order to find the inquired object, a cost of logNb N 110 operations are 

required. Generally speaking, further accessing cost is proportional to the in- 

quired area A. Assuming that the maximum object density is D, the number 
A x D  of objects searched is approximately ;- pages. Testing for the overlap can be 

done using a simple mathematical comparison. If the zone is completely covered 
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by the inquired area, no checking is required. If the zone is completely contained 

in the inquired area over one of the dimensions, checking is only needed on the 

other attribute. If the zone is partially overlapped with the inquired zone in both 

dimensions, checking for both attributes is necessary. Overall, the zone struc- 

tured SJI allows queries related to distance and/or orientation to be processed 

efficiently. 

3. HSJI: Similar to the cost analysis of HDJI, the I/O cost for HSJI retrieval is 

(2co x I + 1) logNb N. The cost for comparisons is ((2co x I + 1) logNb N) x C,,,,. 

The hierarchical SJI contains more orientation information than the hierarchical 

DJI. The retrieval cost of hierarchical SJI is essentially the same as that for hierarchical 

D JI. 

6.4.2 Simulation results 

The simulation was performed on a SUN14 SPARC/14.28MHz-workstation with 7 

MIPS under the SunOS. The simulation program was written in Sun C compiler 

without optimization. A set of randomly generated points was used for simulation. 

The simulation was performed for two types of queries: (i) range queries, and (ii) 

queries for all pairs of objects with a specified distance constraint. In Figure 6.9(a), 

the curves represent the processing cost for different methods as the query range 

increases, given a fixed number (4000) of randomly generated objects. In Figure 

6.9(b), the curves illustrate the relationship between the processing cost and the 

number of objects in the spatial database. A three-level hierarchy was built for the 

simulation, with the scope values specified as S1 = 25000, S2 = 2500 and S3 = 250, 

respectively. Some other simulation parameter values are as follows: 

1. Ring radii r k  = k x 2000, k = 1 ,. . . , 6; 
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Figure 6.9: Cost curves 

The curves show the effectiveness of the distance-associated join indexing mecha- 

nism for reducing query processing cost in spatial queries. 

In Figure 6.10, the simulation curves shows how zone-structured SJI improves 

efficiency for queries on distance and/or orientation. The simulation was based on 

the distance-preference structure. The horizontal axis is the inquired area and the 

vertical axis is the time to process the queries. Distance and orientation constraints 

were randomly generated. There were three groups of queries, (i) with constraints 

on both information attributes, (ii) with constraints on the preferable attribute (dis- 

tance), and (iii) with constraints on the nonpreferable attribute (orientation). In the 

figure, ZSJI stands for zone-structured SJI, and BSJIb, BSJI,, BSJIu, and BSJIa 

represent queries on basic S J I  with constraints on both at tributes, with constraints 

on the preferable at tribute, with constraints on nonpreferable attribute without aux- 

iliary index, with constraints on the nonpreferable attribute with an auxiliary index 

respectively. 
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Figure 6.10: Cost curves of spatial-information-associated. 

From the curves in Figure 6.10, it is obvious that the zone-structured SJI performs 

reasonably well in all cases whereas the performance of the basic SJI depends on the 

constraints specified in the query. 

For the same set of objects, a performance comparison was conducted for K- 

D trees, range- trees and distance-associated join indices for a circular range search. 

Given a distance range, a circumscribing box was formed to perform a rectangular 

search. Figure 6.11 shows the comparison curves. 

6.4.3 Analysis of the simulation results 

As shown by the simulation results, the distance-associated join index improves the 

range query performance significantly. The three types of distance-associated join 

indices have advantages in different situations. 

The basic DJI is simple and results reasonably good performance when the 

database is small. However, when the size of the data relation grows, the per- 

formance of the basic DJI deteriorates. 
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Figure 6.11: Comparison with other structures 

The ring-structured DJI decomposes one basic DJI file into several ring index 

files. For queries relevant to one particular ring, the ring structure reduces the 

search space and therefore enhances performance. For range queries, the ring- 

structured DJI reduces the search cost when the range is confined to  a small 

number of rings. When the range expands, that is when it covers many ring 

structures to be referenced, the ring-structured DJI performs slightly worse than 

the basic DJI structure. For all pair queries (queries to find all pairs of spatial 

objects satisfying a distance constraint), the ring structure performs slightly 

better than the basic DJI because fewer comparison operations are required. 

Since the hierarchical indexing structure substantially reduces the number of 

index records which must be directly associated in the database, it substan- 

tially reduces the storage space and hence the access cost in a relatively large 

database. Although spatial objects need to refer to their higher level spatial ob- 

jects for some spatial queries, the cost of accessing several higher level reference 

points only increases the access cost linearly. Since such an organization may 

substantially reduce the storage and access cost, the hierarchical DJI offers the 

best performance in most cases. 
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The curves presented in Figure 6.10 show the performance difference between the 

basic SJI and the zone-structured SJI. Figure 6.10(a) indicates the query processing 

time for queries with constraints on both distance and direction. The zone structure 

accesses only the zones overlapping with the inquired range; whereas the basic struc- 

ture selects all records satisfying the distance constraint and then eliminates those 

that fail the orientation test. Therefore, the zone-structured index is more efficient 

than the basic one. Figure 6.10(b) indicates the query processing time for queries 

with constraints on one preferable information attribute, such as distance in our ex- 

periment. The ZSJI still performs reasonably well. The basic structure is a little more 

efficient than the zone-structure because zone mapping takes time, because partially 

overlapped zones may contain records which are out of the inquired range. Figure 

6.10(c) contains the curves with the sharpest contract, where queries are only on the 

nonpreferable attribute. There is no obvious negative effect on the performance of the 

zone-structured SJI. When the query constraints are on the nonpreferable attribute, 

the basic structure performs poorly. Without auxiliary index, all records related to 

the inquired object have to be read and checked to see whether they satisfy the con- 

ditions; curve BSJI,  shows the result. With an auxiliary index, only the records 

satisfying the condition are accessed. However, since these records are scattered all 

over the index file, retrieval cost is still quite high as shown by the curve labeled 

BSJI,. Hence, overall, the zone-structured SJI performs much better than the basic 

structure. 

In comparison with K-D-trees and range trees, distance-associated join indices 

performs better than both methods. For N objects, retrieval using a K-D tree struc- 

ture takes ~( f i ) ,  retrieval using range-trees takes 0 (logZ N), while retrieval using 

distance-associated join indices takes only O(1og N). As the search range increases, 

range trees perform better than a K-D-tree because of its range structure. 



CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 126 

Chapter Summary and Discussions 

In this chapter, a general and flexible spatial indexing structure, the spatial-information- 

associated join index, has been developed. Two important pieces of spatial informa- 

tion between pairs of spatial objects, distance and orientation, are precomputed at 

join index construction time and stored for efficient query processing. Information- 

associated join index structures include but are not limited to distance and/or orien- 

tation information. For example, if intersection of regions are frequently required, the 

associated information may be the intersection. Since costly geometric computations 

of spatial relationships are performed before query processing time, queries using this 

spatial information can be processed fairly efficiently according to our analysis. 

To facilitate the step-by-step analysis for different applications, different distance- 

associated join index structures have been investigated and compared. Three distance- 

associated join index structures have been proposed for the optimization of spatial 

range queries and other spatial queries. By associating distance information with 

the join index, part of the cost involved in processing the query can be reduced or 

eliminated by performing these computations at index construction time. 

Each kind of spatial-information-associated structure has its own application do- 

main. The basic DJI is concise and efficient in simple and small environment. The 

ring-structured DJI performs well when the query references only a small spatial range 

in a moderate size database. By adjusting the ring radii, a reduction of the size of the 

file to be processed and an improvement of the I/O cost can be achieved. The hier- 

archical DJI performs best among the three in a complex and large spatial database. 

For a city map database, the hierarchical DJI can help finding the shortest path be- 

tween objects at a reasonable processing cost. All three join index mechanisms are 

simple, flexible, and easy to create and maintain. Our primitive simulat ion-based 

performance study demonstrates the high promises of this approach. 



As an extension to the distance-associated join index, a spatial-information- 

associated join index has been proposed which utilize both the distance and orien- 

tation information of related object pairs to facilitate spatial query processing. The 

zone-structured SJI partitions the join records into nonoverlapping zones each of which 

is specified by mathematical boundaries so that overlapping tests with the inquired 

range are simple. The zone-structured SJI accesses only indices in the zones which 

overlap with the inquired zone, and is not biased to either spatial attribute. The 

experimental results show that this mechanism is efficient. 

Not only spatial join information such as distance and orientation, but also other 

pieces of information, such as driving speed, can be associated with the record when 

necessary. For example, in the query "find a driving route which reaches B from A in 

the shortest time", the driving speed could be a useful asset. The spatial-information- 

associated join index illustrates the effectiveness of associating important information 

with join indices. The information-associated join index can be used to precompute 

and store any piece of computationally intensive information (not necessarily spatial 

information) related to two objects to facilitate the efficient implementation of join 

operations related to such piece of information. 

However, this idea should not be pushed to an extreme. First, it is important to 

clarify the role of spatial join indices in spatial databases. As it has been demonstrated 

in [140], the role of join indices in relational database systems is not to replace the 

common relational indexing structures, such as B+-trees, but to provide additional 

indexing support to speed up certain relational operations, such as joins. In this 

respect, the role of spatial join indices in spatial databases is analogous to that of 

join indices in relational databases. The goal of information-associated spatial join 

indexing structure is not to replace the commonly used spatial indexing structures 

but to speed up certain spatial join operations. It is not our intention to substitute 

the traditional spatial indexillg structures by join indices. However, our study shows 

that it may provide good support for certain spatial operations, which could be used 

relatively frequently in spatial database applications. Also, in a situation where the 

locations of objects change from time to time, it is expensive to  recompute these 
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indices and to keep all associations consistent and up-to-date. Finally, there are many 

geometric operations which may involve combinations of different objects. Since there 

are a large number of possible combinations, it is unrealistic to explore and store 

all such combinations. For example, the geometric constructor union may involve 

different combinations and create new geometric objects. It is practical to determine 

all such combinations and to precompute and store them as join indices before query 

processing. 

This chapter proposed an information-associated spatial join indexing structure for 

spatial query optimization. The complexity analysis and preliminary simulation-based 

performance study have demonstrated the good performance of this interesting data 

structure. Further studies, development and experiments should be performed on the 

implementation of spatial-information-associated join indices and on their application 

to spatial query optimization in large spatial databases. 



Chapter 7 

Conclusion 

We summarize our research work in this chapter. Discussion on future directions in 

a general intelligent spatial database follows the summary of the research. 

7.1 Summary 

In this thesis, a deductive and object-oriented paradigm for spatial database design has 

been studied. A deductive and object-oriented spatial database system (DOOSDB) 

provides an effective modeling facility for spatial data. Object hierarchies are used to 

provide property inheritance and type consistency checking. Spatial relationships can 

be defined using high-level deduction rules. Spatial queries can be posed using either 

an SQL-like syntax or a Prolog-like syntax. The query interface with dual syntaxes 

provides users with both first-order query power and ad-hoc query user friendliness. 

In this system, spatial and nonspatial data can be treated uniformly in a query. The 

system can be extended using user-defined object classes, rules and methods. 

To achieve processing efficiency for high-level queries in a large spatial database, 

optimization is essential. We investigated set-oriented query processing and opti- 

mization in deductive and object-oriented spatial (DOOS) databases and proposed 
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an integrated paradigm and a set of useful techniques for DOOS query optimization. 

The integrated paradigm of spatial query optimization in DOOS databases pro- 

vides us with the following advantages: 

1. It promotes a structured design and an integrated, high-level view of spatial 

databases, which leads to high-level query interfaces, uniform handling of com- 

plex spatial object structures using object-oriented storage management, and 

flexibility in the specification and use of spatial computation routines (meth- 

ods) toget her with deduction rules. 

2. It facilitates the exploration of various aspects of query optimization to achieve 

high efficiency, including the compilation of deductive queries, the simplification 

of query expressions by relational and spatial optimization rules, the access plan 

generation by analysis of the query processing costs of different candidate plans, 

and set-oriented processing and optimization of spatial computation routines 

(methods). 

3. Set-oriented spatial method computation overcomes the weakness present in 

tuple-oriented spatial computations, reduces redundant spatial computation and 

provides an interesting solution to the impedance mismatch problem. 

4. The spatial-information-associated join index, has been developed for spatial 

join operations. Important pieces of spatial information involving spatial object 

pairs, such as distance and orientation, are precomputed when the spatial join 

index is constructed, and stored for efficient query processing. Since costly 

geometric computations of spatial relationships are performed before the query 

is processed, queries that require such spatial information can be processed fairly 

efficiently according to our analysis. 

The proposed approach for spatial query processing supports a high-level user 

interface and promotes compilation-based, set-oriented, efficient query processing in 

deductive and object-oriented spatial databases. Implementation of such a DOOS 

system is in progress. 
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Discussion 

An intelligent spatial system should not only perform data retrieval but also be able 

to discover interesting knowledge from spatial data, to perform spatial deduction and 

to help decision making [38, 58, 951. We will discuss one of the interesting research 

directions in this area, i.e. learning in a large spatial database. 

Another very important aspect of spatial databases is its temporal factor. His- 

torical database information is often used in GIs and engineering database systems 

[87, 8, 1471. Problems and research directions in this area will also be addressed. 

7.2.1 Knowledge discovery in large spatial databases 

Spatial reasoning using data and knowledge stored in large spatial databases is a 

crucial task in the development of geographical information systems, medical imaging 

systems and robotics systems. Because of the huge amount (usually tera-bytes) of 

spatial data obtained from satellites, video cameras, medical equipment, etc., it is 

costly and often unrealistic for users to examine the spatial data in detail to extract 

interesting knowledge or general patterns from spatial databases. 

Knowledge discovery in spatial databases is the extraction of interesting spatial 

patterns and features, of general relationships between spatial and nonspatial data 

and of other general data characteristics not explicitly stored in the database. This 

discovery may play an important role in understanding spatial data, capturing intrin- 

sic relationships between spatial and nonspatial data, presenting data regularity in a 

concise manner and reorganizing spatial databases to accommodate data semantics 

and achieve high performance. 

In a preliminary study [95], the attribute-oriented induction technique [58] was ex- 

tended to knowledge discovery in spatial databases. Two kinds of concept hierarchies, 

thematic concept hierarchies and spatial hierarchies, were constructed for the learning 

process. Induction was performed by traversing these hierarchies and summarizing 
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general relationships between spatial and nonspatial attributes at a high concept level. 

Two algorithms were developed based on the priority set for performing generalization 

on the nonspatial concept hierarchy or the spatial hierarchy. 

Nonspatial-data-dominated generalization first generalizes non-spatial attributes 

to a specified high level and then performs spatial consolidation, which consists of the 

following steps: 

1. Collect related data; 

2. Perform attribute-oriented induction on the collected nonspatial data by (i) 

concept-hierarchy-ascending, (ii) attribute-removal, (iii) merge of identical tu- 

ples until either the number of tuples is within the generalization threshold or 

every attribute has been generalized to the desired concept level; and 

3. Perform spatial generalization, i.e. merge neighboring areas with the same high- 

level attribute using the relationship i s -adjacentdo .  

Spatial-data-dominated generalization first climbs up the spatial hierarchy and for 

each resulting spatial object , generalizes non-spatial-at tributes, in the following major 

steps: 

1. Collect task-relevant data, 

2. Generalize the spatial database by clustering spatial object according to their 

regions and merging them until the desired concept level is reached or until the 

number of generalized spatial objects is smaller than a threshold, and 

3. For each region, perform generalization on non-spatial objects until a minimal 

concept set subsumes all of the concepts in the subregions. 

This method can discover interesting relationships between spatial and nonspatial 

data and can be applied to the analysis of correlations between different spatial fea- 

tures based on different thematic maps. Our preliminary study shows that knowledge 



CHAPTER 7. CONCLUSION 

discovery can be performed efficiently in spatial databases by extending the techniques 

used for knowledge discovery in relational databases. 

Beside the two primitive generalization techniques, i.e. nonspatial-data-dominated 

generalization and spatial-data-dominated generalization, presented in [95], more so- 

phisticated algorithms are required for complex spatial environments, which may re- 

quire extension of these techniques in many ways. We discuss several possible exten- 

sions of the algorithms discussed above. 

1. Interleaved generalization between spatial and nonspatial data. 

The nonspatial-attribute-oriented algorithm generalizes nonspatial data before 

generalizing spatial data, whereas the spatial-attribute-oriented algorithm pro- 

ceeds in reverse order. In some cases, one may wish to interleave generalization 

between spatial and nonspatial data to achieve satisfactory results with reason- 

able performance. A spatial-data-dominated algorithm could be costly to evalu- 

ate. It is often preferable to perform non-spatial (relational) generalizations to a 

certain level and then perform a high-level spatial merge/join or approximation. 

Further generalization may depend on the number of distinct spatial objects or 

appropriate concept levels. The concrete algorithm integrating the above two 

algorithms to achieve interleaved generalization can be developed. 

2. Generalization on multiple thematic maps. 

The generalization algorithms in [95] involve only one thematic map. In some 

applications, a learning task may require generalization on more than one the- 

matic map. Similar spatial generalization techniques, such as spatial merge and 

approximation, can be applied on the overlay of the two maps to find the regions 

in each class. Generalization may also derive relationships between nonspatial 

attributes. For example, a correlation between temperature and precipitation 

can be discovered by learning. 

3. Learning in a dynamic/temporal spatial database. 
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One application of learning in spatial databases is to analyze satellite data, in 

which temporal factors play an important role. The learning process may be 

performed on a sequence of data maps. Differentiation of spatial features at 

different times may enable the system to detect geographical events, such as a 

quake on the Moon, based on images from the Moon. 

4. Probability in learning. 

Impure data occurs in spatial and real life applications, e.g. 80% of the trees in 

a given region are pine trees, while 20% of trees in that forest may be of different 

types. Probabilistic learning and fuzzy logic are useful tools for applications in 

spatial knowledge discovery. 

Learning in spatial databases is a challenging and promising research area in spa- 

tial databases. As an emerging topic for integration of spatial databases and machine 

learning technologies, knowledge discovery in spatial databases will have applications 

in spatial knowledge discovery, spatial reasoning, spatial query optimization, the con- 

struction of multiple resolution spatial data models, etc. More investigations should 

be performed in this direction, especially regarding its integration with statistical 

methods, the development of customized spatial generalization operators, as well as, 

additional studies should be done on knowledge discovery in spatial databases under 

different assumptions. 

7.2.2 Spat iot emporal databases 

Spatiotemporal data captures the movement and changes of objects over time in 

a dynamic database system. Medical image record analysis, physical experiment 

analysis, urban development monitoring and other geographic problems involve both 

spatial and temporal data. Historic spatial databases are also important for decision 

making. A spatiotemporal database can be constructed by adding temporality to 

spatial databases [8] or by merging spatial data types with temporal components in 

a historical database. 
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Some major issues related to temporal databases include data representation mod- 

els, huge amount of data, temporal integrity constraints, granularity, different versions 

of objects and spatiotemporal indexing mechanism. We discuss some of the problems. 

Nested relations have been proposed for modeling temporal databases [42, 1201. 

Nested relations used for modeling spatial data in DOOSDB can be extended for mod- 

eling spatiotemporal data. Langran proposed a framework for temporal geographic 

information [87]. Two data structures recommended for storing spatiotemporal data 

are "base maps with overlays" and "space-time composition". The former uses an 

initial data map and records the change of the map over the time, whereas the later 

essentially decomposes also the image database into subsections so that each compo- 

nent can be expressed in terms of a time-property list. 

Spatiotemporal indexing and object clustering add a new dimension to those in 

spatial databases and therefore represent a more challenging task. An extension of 

spatial index R-tree for spatiotemporal purposes has been presented using [147], in 

which an RT-tree incorporates temporary information in spatial objects and index 

nodes. It represents an elegant merge of multiple R-trees with different time stamps, 

thus saving storage space and improving performance. 

The challenge of spatiotemporal databases comes from the combination of the 

large volumes of data in temporal database with the difficulty of optimizing geometric 

functions in spatial databases and with the spatiotemporal index. A lot of research 

work still needs to be performed in this direction. 

In summary, spatiotemporal databases and knowledge discovery in spatial databases 

are important research topics in spatial database research. These two topics will be 

the focusing point of our future research. 



Appendix A 

BNF of the Query Language 

DOOSQL 

The following meta-symbols are used for language definition: 

::= defines non-terminal symbol 

( ) for non-terminal symbol 

[ ] for an optional component of language which may appear at most 

once. 

{ ) for an optional component of language which may appear any number 

of times . 

DOOSQL ::= (de f in i t ions)  I (queries) 

(de f in i t ions)  ::= (schema) I (procedure) I ( ru le )  

(schema) ::= schema (schema-body) 

(schema-body) ::= ( n a m e )  ( (at tr i -def)  {, ( a t t r i d e  f )  ) ) 



APPENDIX A. BNF OF THE QUERY LANGUAGE DOOSQL 

(attri-de f) ::= (atom-attr ide f )  I setof (subschema) 

I sequenceof (subschema) 

(subschema) ::= ( type)  1 (schma-body) 

(atom-attri-def) ::= (name)  : ( type)  

(procedure) ::= procedure (name)  ( (parade  f )  {, (para-de f) ) ) 

(para-de f )  ::= ( N a m e )  : ( type)  (mode) 

(rule ) ::= (~red ica te  ) : - (predicate ){, (predicate )). 

(predicate ) ::= (name ) ( (Name ){ , (Name ) )  ) 

(queries) ::= (sql-query) I (logic-query) 

(sql-query) ::= select (resul t)  {, (resul t)  ) 

from ( n a m e )  {, ( n a m e )  ) 
where (predicate-expression) 

(resul t)  ::= (attribute) 1 ( func-name)  ( (attribute) {, (attribute) } ) 

(logic-query) ::= ? - (predicate) {, (predicate) ). 

(predicate) ::= ( n a m e )  ( (parameter) {, (paremeter) ) ) 

(parameter) ::= (constant) I (Variable) 

(predicate-expression) ::= (pred-term) { (logic-link) (pred-term) ) 

( l o g i d i n k )  ::= and 1 or 

(pred-term) ::= [not] (predicate) 

( [not] ( (math-expression) (comp) (math-expression) ) 
( [not] (geo-obj) (geo-predicate) (geo-obj) 
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(geo-predicate) ::= is-inside I is-adjacentdo ( geo-intersect I . .  

( f  unc-name) ::= (geo- f unc)  ( (geo-val-f unc)  I (aggreg- f unc)  

(geo-val-func) ::= area ( length I distance 1 

(geo- f unc)  ::= geo-union I geo-intersection I . . . 

(aggreg-func) ::= m a x i m u m  1 m i n i m u m  I count I s u m  I average 

(geo-obj) ::= (attribute) I geo-func ( (geo-obj) {, (geo-obj) ) ) 

( type)  ::= [ (group) ] (atom-type) 

(atom-type) ::= I N T  1 R E A L  I S T R I N G  I B O O L E A N  I 
P O I N T  I L I N E  I P O L Y G O N  ( G E O  

(group) ::= setof I sequenceof 

(mode) ::= in I out I all 

(name)  ::= (char-numstr ing)  

(Variable) ::= ( N a m e ) { .  (name)  ) 

( N a m e )  ::= (Char-num-string) 

(attribute) ::= (name)  {. (name)  ) 
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