
A DEDUCTIVE AND OBJECT-ORIENTED APPROACH

FOR SPATIAL DATABASES

Wei Lu

B.Sc., Zhejiang University, China, 1982

M.Sc., Zhejiang University, China, 1985

M.Sc., Cornell University, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in the School

of
Computing Science

@ Wei Lu 1993
SIMON FRASER UNIVERSITY

August 1993

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

T i t le of thesis:

Wei Lu

Doctor of Philosophy

A Deductive and Object-Oriented Approach for Spatial
Databases

Examining Committee: Dr. Woshun Luk
Chair

Dr. Jiawei H m , Se@or Supervisor

Date Approved:

Dr. Tom I<. Poiker, Supervisor

Dr. Tom Calvert, Supervisor

Dr. Rayrngnd Ng, &erna,l Emminer

p~ -

Dr. Peter Tria.ntafi'llou, S.F.U. Exa,miner

PARTIAL COPYRIGHT LICENSE

i hereby grant t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my thes i s , p r o j e c t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r

s i n g l e copies on l y f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r u n i v e r s i t y , o r o the r educat ional i n s t i t u t i o n , on

i t s own beha l f o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l gain s h a l l no t be al lowed

w i thou t my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

Author:

(s ignature)

I,. 1 9 9 3 .
(da tu)

Abstract

With the rapid development of deductive and object-oriented database technology, it

is promising to explore the application of deductive and object-oriented techniques

in the development of spatial databases. This thesis investigates the design and im-

plementation of deductive and object-oriented spatial databases (DOOSDB). Several

important issues on such spatial databases are studied, including modeling complex

spatial objects, spatial data manipulation functionality, a spatial deductive query

language, and extensibility of the system. This thesis contributes to the studies on

spatial query optimization and processing in DOOSDB in the following aspects: (1)

a method for compilation of deduction spatial rules and expressions is proposed with

simplification of compiled queries using relational and geo-relational algebra. (2)

an algorithm for spatial query plan generation and selection using a dynamic con-

nection graph analysis; (3) techniques for set-oriented optimization and processing

of computationally-intensive spatial operators and methods; and (4) a spatial join

indexing technique using information associated with frequently used spatial join op-

erations.

This thesis presents an integrated view of a deductive and object-oriented spatial

database system and provides an effective mechanism for spatial data handling and

efficient algorithms for spatial query processing.

Acknowledgements

I would like to thank my senior supervisor, professor Jiawei Han, for directing my

research and for many inspiring discussions. I am also grateful to my supervisor,

professor Tom Poiker, for his direction in GIs and for many interesting discussions.

Thanks also go to my supervisor, professor Tom Calvert, for his help and discussions

about my research.

I also thank professor Beng Chin Ooi of the National University of Singapore and

professor Peter Triantafillou for their comments and suggestions that helped improve

this thesis.

I would like to thank my fellow students Tong Lu, Ling Liu and Jinshi Xia for

their friendship and help. My gratitude goes also to my friends, Goodwin Wang,

Karla Cemen, Kay Smedley, Jack Snowden, Dan Fass and Rick Frisent for their

underst anding and help.

I would like to thank Kersti Jaager for her heartwarming talks and a lot of help.

Thanks go especially to Patrice Belleville for his extremely careful proofreading

and many constructive suggestions.

Last but not least, I want to thank my family for their love, encouragement and

support.

Contents

Abstract

Acknowledgements

1 Introduction

1.1 Motivations .

1.2 Problem Specification .

1.3 System Structure and the Query Interface

1.4 Spatial Query Optimization .

1.4.1 Deductive query compilation and algebraic simplification . . .

1.4.2 Access plan generation and evaluation for deductive and object-

oriented spatial queries .

1.5 Information- Associated Spatial Join Index

1.6 Thesis Organization . , . .

2 Related Work

2.1 New Generation of Data Models and Database Systems

. 2.1.1 Extended relational database systems 10

. 2.1.2 Deductive and object-oriented database systems 11

. 2.2 Query Optimization Techniques 13

. 2.2.1 Query optimization in relational databases 13

2.2.2 Query optimization in extensible object-oriented database systems 14

. 2.2.3 Query languages 15

. 2.3 Spatial Databases 16

2.3.1 Spatial data modeling, manipulation functionality, query lan-
. guages 16

. 2.3.2 Spatial system examples 18

. 2.3.3 Spatial query optimization 18

. 2.3.3.1 Spatial index 19

3 A DOOS Database System 21

3.1 Architecture of a Deductive and Object-Oriented Spatial Database . . 21

. 3.2 Spatial Components and Languages 26

. 3.2.1 Spatial data representation 27

. 3.2.2 Spatial operations and procedure definitions 29

. 3.2.3 Rule definitions 32

. 3.2.4 Query interfaces 33

. 3.3 Chapter Summary 36

4 DOOD Spatial Query Compilation 37

4.1 Compilation of Spatial Rules . 38

. 4.2 Spatial Query Simplification 43

4.2.1 Spatial properties. equivalences and translation rules

. 4.2.2 Derivation of compound relationships

. 4.2.2.1 Disjointness (is-disjoint from)

. 4.2.2.2 Overlapping (overlaps)

. 4.2.2.3 Inside (isinside-of)

. 4.2.2.4 Containment (contains)

. 4.2.2.5 Adjacency (i s~d j acen t -to)

4.3 Chapter Summary .

5 Spatial Query Execution in a DOOSDB

5.1 Dynamic Connection Graph Transformation for Spatial Access Plan

Generation .

. 5.1.1 Introduction

5.1.2 Dynamic connection graph and access plan enumeration . . .

5.1.3 Cost estimation and selection of access plans

5.1.4 Analysis .

Set-Oriented Spatial Computation and Optimization

5.2.1 Precomputation and memorization of spatial information . . .

5.2.2 I/O control, buffer management, and pipelined processing . .

. 5.2.3 Set-oriented spatial method computation

5.2.4 Approximate or alternative operations with reduced complexity

5.2.5 Rule-based and spatial semantics-based optimization 80

5.3 Chapter Summary . 83

6 Information-Associated Spatial Join Index 84

6.1 Introduction . 84

6.2 Distance-Associated Join Indices for Distance Range Search 87

6.2.1 Basic distance-associated join index 88

6.2.1.1 Definition and construction 88

6.2.1.2 Retrieval of spatial objects 90

6.2.2 Ring-structured distance-associated join index 94

6.2.3 Hierarchical distance-associated join index 96

6.2.3.1 Hierarchical D JI retrieval 100

6.2.3.2 Hierarchical structure for shortest distance on a network102

6.2.4 Distance-associated spatial join index for nonzero-sized spatial

objects . 105

6.3 Spatial-Information-Associated Join Index with the Orientation Com-

ponent . 107

6.3.1 Basic spatial-information-associated join index 109

6.3.2 Zone-st ructured spatial-information-associated join index . . . 110

6.3.3 Hierarchical spatial-information-associated join index 114

6.4 Analysis and Simulation Results . 117

6.4.1 Analytical model . 118

6.4.1.1 Storage requirement 118

...
Vll l

. 6.4.1.2 Processing cost 119

. 6.4.2 Simulation results 121

. 6.4.3 Analysis of the simulation results 124

. 6.5 Chapter Summary and Discussions 126

7 Conclusion 129

. 7.1 Summary 129

. 7.2 Discussion 131

. 7.2.1 Knowledge discovery in large spatial databases 131

. 7.2.2 Spatiotemporal databases 134

A BNF of the Query Language DOOSQL 136

Bibliography 139

List of Tables

. 3.1 Spatial relation predicates 31

. 3.2 Spatial functions 31

. 4.1 Complex spatial relation derivation 57

. 6.1 Parameters for performance analysis 118

List of Figures

. 3.1 The general system architecture of a DOOS database 23

3.2 A spatial object hierarchy . 25

. 3.3 A map which shows ranches, parcels and polluted areas 35

. 4.1 A counter-example to the converse of Formula 2 48

. 4.2 A counter-example to the converse of Formula 3 49

. 4.3 A counter-example to the converse of Formula 5 50

. 4.4 A counter-example to the converse of Formula 6 50

. 4.5 A counter-example to the converse of Formula 7 51

. 4.6 A counter-example to the converse of Formula 11 53

. 4.7 A counter-example to the converse of Formula 12 54

. 4.8 A counter-example to the converse of Formula 13 54

4.9 A counter-example to the converse of Formula 14 56

5.1 Candidate graphs in the enumeration of two access plans 63

5.2 An access plan tree . 64

. 5.3 Simulation results for three access plan generation methods 70

5.4 Derivation of maximum land pieces suitable for planting crops 74

6.1 Indices for three spatial objects . 90

6.2 Processing a spatial range query using the basic DJI 92

6.3 An example of a ring-structured DJI 95

6.4 A sample hierarchy for a HDJI . 98

6.5 A simple two-level DJI and the index graph 102

6.6 Search for the shortest distance between two spatial objects 105

6.7 An example of zone-structured SJI . 112

6.8 A two level hierarchical SJI for a set of objects 116

6.9 Cost curves . 122

6.10 Cost curves of spatial~information~associated 123

6.11 Comparison with other structures . 124

xii

Chapter 1

Introduction

Motivations

A spatial database stores and manipulates data about objects relating to their loca-

tions and spatial extensions. Many database applications, such as geographic infor-

mation systems, engineering databases, medical databases, need to store and access

large volumes of spatially referenced data [19, 31, 141, 112, 114, 1381. A spatial

database stores large volumes of spatially referenced data which usually have com-

plex structures and require sophisticated data manipulation routines, data modeling

tools, compilation, query processing, and indexing methods. Therefore, design and

implementation of spatial databases is an important and challenging issue in database

research.

A spatial database stores both spatial and non-spatial data (components) of spa-

tial objects. Spatial database operations, such as union of two polygons, are in general

more costly to process than traditional database operations. Spatial data represen-

tation in the database may directly affect the efficiency of query execution. Spatial

indices are multi-dimensional and there may be many possible variations for different

purposes, such as point location, spatial range search, etc. Spatial indices are usually

more difficult to construct and to maintain than those used in relational databases

C H A P T E R 1. INTRODUCTION

because they may be multidimensional. Since relational and many geo-relational op-

erations are set-oriented, whereas spatial methods usually compute features for one

spatial object at a time (i.e. tuple-oriented), impedance mismatch problems must

be solved to achieve reasonable performance. These problems are difficult to handle

elegantly and efficiently using the traditional relational database technology [75].

Starting in mid-1980s, deductive database and object-oriented database have been

two influential directions in database research [131]. A deductive database system

integrates logic programming with relational database technology and constructs a

high-level, deductive query interface supported by rules; whereas an object-oriented

database system integrates object-oriented programming with database technology

and provides us with powerful tools for semantic data modeling, construction of class

hierarchy and property inheritance, method manipulation, etc. Furthermore, an in-

tegration of the two paradigms leads to a deductive and object-oriented database

(DOOD), which has also become a focus in recent research [76, 771. This trend will

undoubtedly influence the development of spatial database systems.

Interestingly, the challenging research issues on spatial data handling demonstrate

a high demand for deductive and object-oriented database technologies and their

integration in spatial databases. First, many spatial relationships can be expressed

concisely and conveniently as logical rules and/or integrity constraints, on which pow-

erful spatial reasoning mechanisms can be developed. A declarative query interface

constructed based on deductive database methodology will allow users to define rules

and pose queries at a much higher level than primitive representations of spatial

objects, release users' burden of understanding and programming low-level primi-

tive spatial data structures and lead to a desirable high-level programming interface

[20, 23, 24, 37, 101, 107, 1101. Second, the complexity of spatial data modeling and

complex spatial object management can be coped with object-oriented database tech-

nology [46, 71, 741. Many spatial primitives are computationally intensive and are

difficult to be defined by pure deduction rules. However, they can be naturally to be

defined as methods by spatial functions or procedures implementing geometric algo-

rithms and be associated with classes and class hierarchies. Therefore, a promising

C H A P T E R 1. INTRODUCTION

direction in spatial data modeling is an integration of object-oriented and deductive

(including extended-relational) methodologies, which leads to a deductive and object-

oriented spatial database.

Problem Specification

The construction, utilization and maintenance of spatial databases, such as a geo-

graphical information system (GIs), include the following major tasks.

1. Data collection - A GIs system involves the capturing, transferring, validating

and editing of spatial data in order to acquire and load error-free digital data

into the GIs [40].

2. Database system design - A GIs system should support complex spatial data

modeling, handling and management.

3. Query processing - The task of query processing and data analysis in a GIs is

tremendous. Because of the huge volume of spatial data, the efficiency issue

becomes more crucial in such a system.

4. Result presentation - The retrieved data will usually be presented to end users

in a graphical format. A graphic user interface (GUI) provides an intuitive

medium between human and computers 1991.

This study concentrates on the second and the third steps in spatial database sys-

tem design. In this thesis, a deductive and object-oriented spatial database (DOOSDB)

is designed, which provides us with complex spatial data modeling functionality, a

declarative query interface, spatial data handling functionality, and efficient query pro-

cessing mechanisms. The DOOSDB spatial data model enhances a spatial database

system with deductive and object-oriented features, such as complex objects, class

hierarchies, property inheritance, data encapsulation and rules. A dual syntax, either

C H A P T E R 1. INTRODUCTION

Prolog-like or SQL-like, is adopted in the specification of spatial rules/relationships

and queries. Issues on spatial query optimization and processing in DOOSDB are

investigated and spatial query optimization techniques are developed. The study

presents an integrated view of a deductive and object-oriented spatial database, and

a set-oriented query processing mechanism in such a database system. Next, we

present an overview of this study: the DOOS database design, a spakial query lan-

guage, spatial query optimization and spatial join indices.

1.3 System Structure and the Query Interface

In the DOOSDB, the relational model is extended with deductive and object-oriented

features. A spatial database contains spatial data, nonspatial data, deduction rules

and geometric procedures. It consists of three components: (i) GDB (which stores

geometric facts extracted from an image database by preprocessing), (ii) EDB (an

extensional database [139], i.e. a traditional relational database) and (iii) IDB (an

intensional database [139], which consists of derived virtual relations defined by de-

duction rules and geometric procedures). The system is organized into three levels:

(i) a primitive level, which contains the data about primitive geo-objects extracted

from raw image data by image preprocessing techniques, such as edge-detection, line

formation; (ii) a procedural level, which consists of a set of primitives defined in a

procedural language in cooperation with logical and relational operators similar to

the geo-relational algebra proposed in [53, 541, and (iii) a deductive level, which pro-

vides users with new geo-objects and the relationships among geo-objects and other

EDBIIDB objects defined by a set of deduction rules.

In such a system, spatial and nonspatial data are effectively modeled. The inter-

action between a spatial database and a traditional relational database is supported

uniformly in our design. Query optimization is the key for a high-performance spatial

database. The system is constructed such that optimization can be performed at

different levels to achieve maximal efficiency.

CHAPTER 1. INTRODUCTION

An extended-relational and object-oriented framework is adopted for modeling

complex objects with class hierarchies, set-valued and list-valued attributes, etc.

[61, 113, 1211. Essential spatial data types and spatial data handling operators are

provided by the system. Objects are organized in class hierarchies with each class

inheriting properties and operations from its super-classes.

An extended SQL-like language, DOOSQL is designed for handling spatial data.

It supports (i) complex data modeling, (ii) geometric operations, (iii) spatial rule

definitions, and (iv) extension of data types and their associated operations. This

spatial database language provides an effective way to model and manipulate spatial

data and extensibility for spatial database applications. The detailed design of the

system, the data model and the query language will be discussed in Chapter 3.

Spatial Query Optimization

To ensure efficient evaluation of a high-level query language in large spatial databases,

set-oriented query optimization must be explored in DOOSDB. Our study focuses on

the performance improvements of spatial query evaluation in the following aspects.

1.4.1 Deductive query compilation and algebraic

simplification

A compilation approach is developed to decompose rules and queries into primitives

containing no IDB components [92].

Compilation also performs parameter specification (denoting parameter types and

instantiation requirements referred as modes) consistency checking of rule definition

and parameter specifier derivation for IDB predicate parameters.

Algebraic simplification is then performed on the compiled rule expressions based

C H A P T E R 1 . INTRODUCTION

on relational algebra, geometric algebra and equivalence rules. Some implicit spa-

tial relationships can be derived based on the existing spatial data and geometric

properties without spatial object retrieval or geometric computation.

Spatial rule/query compilation transforms a high-level spatial query into a query

consisting of only relational primitives, spatial primitives and method calls. Compiled

queries may also have some transitive closure operations on those predicates/primitives.

A detailed study of spatial query compilation is presented in Chapter 4.

1.4.2 Access plan generation and evaluation for deductive

and ob ject-oriented spatial queries

The second step in query optimization is the generation and selection of query ac-

cess plans for compiled spatial queries. A dynamic connection graph transformation

approach is proposed for optimizing compiled spatial query expressions consisting of

EDB primitives, spatial primitives, and built-in functions [93]. A dynamic connec-

tion graph of a compiled spatial query represents the possible legitimate data flow

among the EDB predicates and spatial predicates with the instantiation constraints.

A heuristic algorithm is developed for access plan enumeration and selection. A

connection graph transformation provides a dynamic picture for spatial query opti-

mization. Suboptimal query access plans can be selected from among the candidate

plans generated based on the analysis of the connection graphs.

It is important to optimize the processing of relational and geo-relational op-

erat ions together with comput ationally-intensive spatial met hods. Since relational

and precomputed geo-relational operations are set-oriented, whereas spatial meth-

ods usually compute features for one spatial object at a time (i.e. tuple-oriented),

impedance mismatch problems must be solved in order to achieve reasonable perfor-

mance. Set-oriented spatial operation techniques, such as preprocessing and the reuse

of preprocessed or intermediate computations, are developed. Examples are used to

demonstrate the potential improvements that set-oriented techniques can bring to

C H A P T E R 1. INTRODUCTION

spatial operations. Detailed study will be presented in the second part of Chapter 5.

Informat ion- Associated Spatial Join Index

Spatial indexing is a multi-dimensional task and therefore is more challenging than

that for relational databases. Spatial join relationships are especially computationally

intensive. A flexible spatial-information-associated join index is developed in Chapter

6 to facilitate dynamic spatial range queries [94]. The idea is to associate some spatial

information, e.g. distance measurement (distance-associated join index), with each

join index record in order to reduce geometric computations at query processing time.

By organizing index records into B+-trees, spatial range queries as well as other

distance-related queries can be processed efficiently. Based on this basic distance-

associated join index structure, two structured distance join indices, ring-structured

and hierarchical, are proposed to enhance search performance in more sophisticated

geometric environments. Other spatial information can also be associated with the

join index to improve spatial join operations. Experiment a1 results demonstrate that

the precomputation of spatial join indices and their storage may substantially improve

the performance of query processing.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 contains a review of previous related

work on new data models, new database systems, database query languages, query

optimization techniques and spatial indexing methods. Chapter 3 presents the design

philosophy, system structure and functionality of a DOOSDB system. A declara-

tive spatial query language DOOSQL is developed. Spatial query examples are also

presented to illustrate the flexibility and expressiveness of the language. Chapters

4 and 5 address the optimization issues and techniques for spatial databases based

on the set-oriented query processing philosophy. Chapter 4 presents an algebraic

CHAPTER 1. INTRODUCTION

optimization approach, namely compilation and simplification of spatial rules and

queries. Chapter 5 describes access plan generation and evaluation for compiled spa-

tial queries. A dynamic connection graph technique is developed for generating sub-

optimal access plans. Set-oriented optimization techniques for ob ject-oriented spatial

operations are also presented with illustrative examples. An information-associated

join indexing technique for efficient implementation of spatial join operations is de-

veloped in Chapter 6. Index construction and retrieval algorithms, variations of the

join indices for different applications, complexity analysis and performance studies,

etc. are presented. Chapter 7 summarizes this research and discusses future research

issues, including knowledge discovery in large spatial databases and the construction

of intelligent spatial databases.

Chapter 2

Related Work

In this chapter, we briefly survey previous work related to the development of deduc-

tive and object-oriented database systems, including discussions on new data models,

new generation database systems, query optimization techniques and spatial database

systems.

2.1 New Generation of Data Models and Database

Systems

New database applications have become increasingly important in database research

[56, 127, 134, 1491. Traditional database systems are inadequate for many new

database applications, such as spatial applications where complex data relationships

and structures must be handled [30, 751. There are many approaches to the develop-

ment of new database systems [18, 1331, such as extending existing database systems,

e.g. relational databases with new data types and their associated manipulation func-

tionality, etc. Three new data modeling approaches are surveyed here: (i) an extended

relational approach, (ii) an object-oriented approach, and (iii) a deductive approach.

These approaches lead to new database systems which support complex objects,

CHAPTER 2. RELATED WORK

knowledge management, class inheritance, integrity constraints, time traversal and

transitive closures. These features are indispensable components of any effective spa-

tial database.

2.1.1 Extended relational database systems

Relational database techniques and query languages are well developed 132, 1391.

It is natural to take advantage of existing systems and extend them to serve new

applications. Research in this area is exemplified by the following systems.

Starburst, developed at the IBM Almaden Research Center, is an extended re-

lational database system that provides set-oriented operations and a declarative

language [56]. User-defined data types and complex objects are supported with

rule-based optimization.

The DASDBS project at ETH, Zurich supports complex objects by nested rela-

tional schema, set-orientation in spatial data retrieval, communication between

different interfaces and multi-transaction management [127]. Due to its ex-

tensibility, application-oriented front ends and externally defined types can be

implemented. Generic access methods for image objects are also provided.

POSTGRES is an extension to INGRES for supporting new application databases

[134]. The database management system is extended with object management

and knowledge management capabilities. User-defined types, functions and ac-

tive semantics, such as triggers, are supported. Path expressions, nested queries,

transitive closure, inheritance, and time travel are also provided. The rule sys-

tem and the storage management system are used for query optimization.

The EXODUS project at the University of Wisconsin is an extensible system

that facilitates the fast development of high performance, application-specific

databases [20]. Because of the variety of applications, no single data model can

meet all of the requirements of the new application domains simultaneously.

CHAPTER 2. RELATED WORK

Hence, a reasonable compromise is for the system developers to provide a pow-

erful set of basic building blocks that can be configured, in an extensible way and

with minimal efforts, to meet the needs of different applications [20,47, 89, 1271.

EXODUS consists of a set of tools for constructing user friendly front ends, such

as a type manager and a rule-based query optimizer.

2.1.2 Deductive and object-oriented database systems

Object-oriented database systems integrate object-oriented programming with data-

base systems to support the new functionality required by applications and to improve

database programming productivity. The object-oriented data model supports rich

data semantics, class hierarchies, methods, property inheritance, extensibility and

persistence. [67, 81, 791. There are many object-oriented database systems that have

been developed as research projects or commercial products, such as Gemstone [97],

Ontos [6], Orion [12], Iris [142], Objectstore [I061 and 0 2 [lo]. Some of these systems

are reviewed next.

Gemstone, from Servio Logic, uses a general purpose database programming

language, OPAL, as its data definition language (DDL) and data manipulation

language (DML). OPAL supports navigational access as well as associative re-

trieval. Indexing and clustering on objects are also supported for performance

tuning.

Ontos, a commercial product of Ontologic, is an object manager that uses C++

as its host language. Persistence is supported through a library of system classes.

A generic type is provided to facilitate the translation of memory objects and

disk objects.

0 Iris at Hewlett-Packard Laboratoryrepresents attribute values, relationships and

the behavior of objects based on an object and a function model. A rule-based

query translator compiles Iris functional expressions into execution trees. The

execution trees are optimized using rule-based transformation routines.

CHAPTER 2. RELATED WORK

The 0 2 project built at Altair is an object-oriented database system supporting

complex objects, object identity, encapsulation, typing inheritance, overriding

and extensibility [lo]. A user interface generation tool is provided and a pro-

gramming environment is also supported.

The Orion project at MCC defines a complex object hierarchy as a nested

relation. Object-oriented queries can be transformed into corresponding SQL-

like relational queries. Objects with simple structures and predicates can be

processed more efficiently.

Object Store, a commercial product by Object Design Inc., supports persistency

and a C++ programming environment. New functionality, such as collaborative

concurrent control and versioning, is provided for database design. Objectstore

focuses on object mapping, caching and clustering techniques for efficient query

processing.

A declarative query interface allows the user to pose queries at a much higher level

than the primitive level [20, 23, 24, 37, 101, 107, 1101, thus releasing the user from the

burden of understanding and programming low-level spatial data structures. This is

the philosophy of deductive databases [139].

The LDL system is a logic-based database system [28] which supports advanced

data and knowledge representation, set operations and recursion using a declarative

logic-based language. Some other deductive databases include CORAL at the Univer-

sity of Wisconsin, GlueNail at Stanford University and EKV-1 at ECRC [116]. Some

deductive database languages include COL which manipulates complex objects and

CRL which works on nested relations [3, 1481. The magic sets, counting and transitive

closure algorithms are used to resolve recursion [4, 11, 15, 57, 60, 1241. F-Logic and

HiLog are recently proposed in the study of high-order logics and integration of de-

ductive and object-oriented databases [77, 261. Theses high-order logics can represent

features of object-oriented languages, such as inheritance, so that a language with a

high-order syntax can be mapped to its first-order semantics.

CHAPTER 2. RELATED W O R K

The integration of deductive and object-oriented database systems becomes an

active area in new database design [82]. Research has been done to extend deductive

databases with object identity and inheritance [149]. Inference rules and deductive

query interfaces are integrated into object-oriented programming systems [145]. Beeri

proposed formal models for object-oriented databases [14]. Declarative query lan-

guages are presented with SQL extensions, the full calculus and deduction. Functions

can be viewed as restricted relations. Abiteboul proposed a deductive and object-

oriented database language with a logic-based core language supporting types, objects

and extensibility [2]. Grumbach proposed the integration of functions with rewrite

rules in Datalog [49]. Deductive and object-oriented databases present a promising

direction in new database design.

2.2 Query Optimization Techniques

One of the objectives of query optimization is to minimize the response time for a

given query language and mix of query types in a given system environment [72, 1331.

Different techniques have been developed for relational systems [85, 88, 129, 1361.

Strategies for spatial query optimization have been proposed recently 17, 641.

2.2.1 Query optimization in relational databases

Early topics studied on relational query optimization include equivalence of relational

expressions[l39], access path selection [I291 and query decomposition techniques [144].

Query decomposition is a strategy used for query processing in INGRES [144]. A

multi-variable query is decomposed into a sequence of one-variable queries. The exe-

cution sequence is determined by estimating the cost using statistics and heuristics.

Access plan generation is a process that generates execution plans for a given query

so that the plan with the least computational cost may be selected for efficient query

execution [68, 1291. A major efficiency concern is join order selection. Even for a

CHAPTER 2. RELATED WORK

medium size query, e.g. 10-20 conjunctive predicates, the search space is enormous.

Heuristics, statistical information, and dynamic programming are used in access plan

generation and selection. The optimizer of System R generates access paths by re-

stricting the solution space to binary processing trees and by using dynamic program-

ming for the search [129]. Krishnamurthy, Boral and Zaniolo proposed optimization

of nonrecursive queries in deductive databases that has a quadratic complexity [85].

An acyclic recursive query optimization approach has also been proposed [86]. Nested

block SQL-like query optimization and global query optimization are studied in [78].

For complex queries in large databases, randomized optimization has been pro-

posed to improve an initial solution until a local optimum is obtained. Typical exam-

ples of such an approach include simulated annealing [69] and iterative improvement

[136]. Lanzeloott and Valduriez extended randomized and generic search strategies

for query optimizers 144, 881.

Parametric optimization generates several execution plans, each of which is opti-

mal for a subset of possible values of run-time system parameters, such as buffer size

[70]. Based on two phase randomized optimization algorithms, sideway information

passing is used to increase efficiency for new plan generation at the parametric vicin-

ity. Thus, multiple suboptimal access plans can be generated according to different

parameters without significant time increase.

2.2.2 Query optimization in extensible object-oriented

database systems

Extensibility is a desired feature for new application databases. However, query op-

timization in an extended system is a challenging task [9, 67, 81, 1261. For examples,

information about new operators in object-oriented database systems may not be

available. Two general approaches are used: a graph-based approach for algebraic

simplification and a transformation rule-based approach for application-dependent

optimization. Object clustering is important for object retrieval in such systems.

CHAPTER 2. RELATED WORK

Greafe and DeWitt [47] proposed transformation rules and implementation rules

for reconstructing a query tree and for replacing query language operators with exe-

cutable methods. An expected cost factor is associated with each rule. The estimated

cost is the current cost times an estimated cost factor. At each step of the search,

the rule with the least estimated cost is selected. Rule-based optimization is used in

many new database systems [13, 56, 1421.

Optimization in Orion is based on a query graph [80]. An access plan is generated

by ordering the nodes of the query graph. Its two-file approach for retrieval of parts

of a complex object is more flexible and efficient than a single file.

Straube and Ozsu proposed a two stage optimization in object-oriented databases

[135]. During the first stage, the logical expression is simplified by rewriting rules.

During the second stage, each logic operation is mapped to a set of physical data

manipulation operations. Access plan selection is based on estimated execution cost.

Efficient clustering is important for efficient object retrieval. Cheng and Hurson

proposed an effective clustering schema for complex objects in object-oriented systems

[27]. Chan, Ooi and Lu proposed extensible buffer management of indexes [22]. Object

clustering is also a major optimization concern in DASDBS and Objectstore 1127,

1061.

2.2.3 Query languages

Research on query languages for supporting new applications takes several approaches,

including (i) extending a traditional database query language, such as SQL, with new

data representation and manipulation functions, (ii) developing logic-based languages,

(iii) developing functional languages.

Extended relations with 11NF nested relational normal form to represent complex

objects in new applications [120]. A nested relational algebra and an SQL-like nested

query language SQL/NF are also proposed [122].

CHAPTER 2. RELATED W O R K

Pistor and Traunmuellet suggested a database language for sets, lists and tables

[113]. The language is based on non-first-normal-form (NF2) . An extended N F 2

algebra is provided. An SQL-like query interface provides a liberal syntax for handling

the new data types.

Logic-based Data Language (LDL), designed and implemented at MCC, is a de-

ductive database manipulation language which supports advanced data and knowledge

representation, set operations and recursion [28].

Han and Li proposed a deductive-ER model and its query language DERDL [61].

The language supports complex objects, such as tuple-valued, list-valued attributes

and recursive definitions. Rule definitions use a Prolog-like syntax. The query lan-

guage has a dual syntax, namely either SQL-like or Prolog-like. It combines the

declarative style of relational languages with the expressive power of Prolog.

Spatial Databases

A spatial database system requires effective data and knowledge representation, a

high-level query language and efficient spatial data manipulation functions [34, 92,

101, 108, 1251. Spatial query languages should provide essential spatial data types

and commonly used spatial manipulation operators in addition to relational database

functionality. We review briefly recent work on the spatial data representation and

new database query languages.

2.3.1 Spatial data modeling, manipulation functionality,

query languages

Research on spatial data representation has been performed in the fields of computer

graphics, geographic information systems, etc. [5, 39, 83, 96, 1041. Spatial object

representation includes the topology, geometry and thematic of spatial objects.

CHAPTER 2. RELATED W O R K

Poiker and Christman established an effective data structure, Triangulated Irreg-

ular Networks (TIN), for terrain modeling [114]. The data structure interpolates a

terrain surface from a set of point data samples from the surface by an effective tri-

angulation algorithm. Other data structures for thematic maps are proposed in [19].

Other frameworks have been presented in the GIs area for a unified representation

of geographical phenomena [40, 1121. These studies describe the requirements for

geographical information systems and multilevel abstraction of spatial data and its

relationships, such as conceptual representation, high-level functional representation,

detail implementation format, etc.

In the area of computer graphics, data structures such as winged edge and bound-

ary representation are developed for solid geometric modeling and image synthesis

[39, 103, 1041. Bezier patches and B-spline surfaces are used for modeling smooth

surfaces, and fractal techniques are applied for terrain simulations [17].

Giiting proposed a geo-relational algebra language (Gral) which extends relational

algebra by integrating geometric data types and operations [53]. Most commonly used

topological relations, geometric object generation functions and geometric measure-

ment functions are included in Gral. Geo-relational algebra is aimed at providing the

functionality needed to handle spatial data.

Egenhofer summarized the functionality requirements for a spatial system [34],

which include abstract data types with corresponding operations, display mechanism

for visualization, pointing devices for extended dialog, legends for maps, windowing

operations, etc. Spatial data operations involve procedural and complex computa-

tions. Interactive query mechanisms and SQL-like extensions for spatial query lan-

guages have been explored [23, 1211.

Efficient geometric routines are crucial to an operational spatial database system.

Many spatial algorithms have been developed in the field of computational geometry,

such as Voronoi diagrams for spatial location [25, 33, 111, 115, 1371. An extended

spatial system extracts spatial data from satellite image data. Image enhancing and

object extraction techniques are used for image processing [146, 45, 1111.

CHAPTER 2. RELATED W O R K

2.3.2 Spatial system examples

ARCIINFO at ESRI is a commercial geographic information system [102]. It em-

ploys a combination of traditional geographic data handling techniques and relational

database techniques to handle geographic data. A relational DBMS is used to handle

non-spatial information. Spatial data is processed by the specialized procedures.

The PROBE project at the GTE Lab and the IBM Almaden Research Center

is a system gearing for spatial applications [110]. Z-ordering is used for linearizing

two-dimensional bitmap objects by a curve passing through a full plane. Z-ordering

indexes are effective for accessing image objects, and for performing operations on

them, such as spatial join.

System Gral extends a relational system for spatial applications with geometric

algebra which provides geometric types and their manipulation functions [54]. An

algebraic language is used for querying. Queries are translated into their equivalent

procedure sequences. Rule-based query optimization is systematically developed [13].

Oosterom and van de Bos presented an object-oriented approach for the design

of GIs [141], which explores data abstraction, extensibility and software reuse for

the implementation of new application systems. Luk and Choi proposed a generic

object-oriented spatial database which can be extended into domain-specific database

systems by building additional software layers on top of it [29].

It is essential to model complex spatial objects and relationships among them with

a spatial query language. There are some extensions of SQL for spatial applications

such as PSQL [123], and GEOQL [108], which extend SQL with spatial data types

and manipulation functionality.

2.3.3 Spatial query optimization

Spatial query optimization is a difficult task due to the complex spatial data type and

sophisticated spatial manipulation functions. Rule- based optimizations and strategies

CHAPTER 2. RELATED W O R K

have been applied in some spatial database systems [13, 1341. We review some query

optimization examples in spatial databases.

Ooi proposed extended decornposition techniques for spatial query optimization in

[log]. His thesis proposed a global optimization strategy for an extension of SQL which

requires additional indexing structures to materialize the additional relationships.

Optimization in Gral is based on optimization rules[l3, 1271. Geo-relation alge-

bra is translated into a geo-relational database operation sequence. A query can be

specified as a sequence of operations and each operation is defined by its collection of

rules together with the selected control strategy. Aref and Samet presented a set of

strategies for spatial query optimization [7] which can also be specified in the form of

optimization rules.

Optimization in PROBE utilizes Z-ordering to reduce a two-dimensional problem

to a one-dimensional problem [log]. The transformed problem can be dealt with

traditional techniques. This technique is effective for image objects.

To assess spatial relationships among generated objects, one technique is to derive

these relationships based on the known relationships among the component objects.

Egenhofer proposed a matrix method for spatial reasoning [35]. If A and B satisfy

one relationship, and B and C satisfy another, some possible relationships between

A and C can be inferred from the existing relationships without spatial computation.

Data in DASDBS is stored linearly with an index associated with each complex

record. Spatial data is clustered with its geometric neighbors [127, 1431. An access

manager is designed for managing spatial accesses. The clustering of spatial objects

improves spatial query processing efficiency.

2.3.3.1 Spatial index

Spatial databases have been widely used in geographical applications, engineering ap-

plications, and many others. Spatial indexing mechanisms are essential for processing

queries involving spatial search. R-trees [55], R+-trees [130], Quad-trees [125], K-D-B

CHAPTER 2. RELATED WORK

trees [118], and Grid files [105], among others, have been popular as indexing struc-

tures for spatial object retrieval [48, 50, 65, 110, 132, 1281. There are also structures

that can be used for multidimensional attribute indexing [66, 911. An index for large

extended objects was proposed in [52].

Some research has been done for rectangular range searches, such as the range tree

[16]. Circular range search has been approximated by rectangular range search [115].

In order to retrieve objects in a distance range, a rectangle circumscribing this range

is searched. The search result needs to be further tested for the original range. K-D

trees and range trees are used for rectangular range search.

Join indices were first developed by Valduriez to enhance the performance of join

operations in relational databases [140]. Join indices reduce the number of I/O oper-

ations needed and thus improve the performance of join operations. As an extension

to join indices for spatial database applications, Rotem proposed a spatial join index

structure which converts geometric computations of certain spatial relationships into

simple spatial join index files [119]. Join indices store spatial object identifier pairs

for those objects having these spatial relationships. Queries involving spatial joins

can be processed by retrieving spatial join indices rather than performing geometric

algorithms. Furthermore, queries related to fixed distances can be processed by con-

structing spatial join indices based on e-overlap, where E is a fixed distance defined

by the database designer.

This chapter presented a brief review of new database designs, query optimization

with emphasis on query languages and spatial databases. Many successful database

systems combine various techniques to provide effective data modeling and manipu-

lation power for new applications.

Chapter 3

A DOOS Database System

Based on previous studies, we present an overview of the proposed DOOS database

system in this chapter. A user friendly interface for spatial data modeling and ma-

nipulation is also provided.

3.1 Architecture of a Deductive and Object-

Oriented Spatial Database

An object-oriented system provides rich semantic modeling power and extensibility

which are essential for a spatial database system. Databases using the logic program-

ming paradigm can be a natural evolution from relational databases [43, 84, 90, 981.

The logic approach to databases ha.s a number of a,dvantage, such as it has a sound

underlying theory and the language in first-order logic proof theory is richer than its

counterpart in relational theory. The combination of object-oriented and deductive

methodologies can provide the strengths of both approaches and achieve a deduc-

tive and high performance system. With deductive techniques developed, such as

transitive closure algorithms, recursive queries can be computed efficiently.

A Deductive and Object-Oriented Spatial (DOOS) data model was proposed in our

CHAPTER 3. A DOOS DATABASE SYSTEM

study [92], which models complex spatial objects and supports a high-level deductive

query interface. A DOOSDB system is aimed at spatial applications, such as GIs. The

system adopts successful features from both object-oriented programming and logic

programming, and develop a set of techniques to alleviate the impedance mismatch

problem in integrating the relational technology with spatial application methods.

In our design, a DOOSDB contains spatial data, nonspatial data, deduction rules

and computationally-intensive methods. It consists of three major components: (i)

GDB, which stores spatial facts extracted from an image database by preprocessing,

(ii) EDB, an extensional database [139], which stores nonspatial data in a relational

form, and (iii) IDB, an intensional database [139], which consists of virtual relations

defined by deduction rules and spatial computational routines referred to as methods.

The DOOSDB system supports a spatial database with a high-level query inter-

face. The syntax of the interface may be either an SQL-like query language or a

Prolog-like query language. High-level primitives are defined by deduction rules or

computational routines. For efficient processing, deduction rules are precompiled,

system supported spatial function are optimized, and the general control structures

of the methods are analyzed and stored as well. Extensibility is supported. Moreover,

the system analyzes and collects the database statistics and other met a-knowledge in

order to assist in query optimization. Figure 3.1 outlines the general architecture for

query processing and optimization in the DOOS database.

Our design of spatial object storage structures adopts the SAND (Spatial And

Nonspatial Data) architecture developed by Aref and Samet [7] (also in [107]), in which

spatial information and corresponding nonspatial information are stored separately

and linked together via forward and backward links.

Suppose a collection of objects, 0, is referred to by the pair (R, S) where R is

a relation that stores nonspatial attribute instances of 0, and S is a spatial data

structure that stores the spatial attribute instances of 0. Notice that spatial and

nonspatial components should be kept synchronized through all operations. For ex-

ample, given a pair (R, S), op, (e.g. selection) or op, (e.g. windowing) should return

CHAPTER 3. A DOOS DATABASE SYSTEM

the pair (R1, S1) instead of just R1 or S1. That is, relational-based and spatial-based

operators will be extended in the following way:

Query Compilation

lgebraic Simplification

I I Compiled Query

Rule Base) (Rel. DB) (Geo. DB)

1

Figure 3.1: The general system architecture of a DOOS database

m

Note that equation (3.1) indicates that a relational-based operator xop,((R, S)) is

performed by first extracting nonspatial data using the relational operator opT(R) and

Access Plan

Generation & Selection
a

Metdndex Info

EDB
Access Plan

Metahdex Info

GDB & Methods

QUERY

EXECUTION

a I
I /
v

Methods

t

CHAPTER 3. A DOOS DATABASE SYSTEM

then extracting the corresponding spatial portion by speztract (opr(R), S). Similarly,

we have a spatial-based operator x,,,((R, S)) defined in equation (3.2).

Using the SAND architecture, a set of interesting query processing strategies has

been developed for spatial query processing [7]. For instance, consider the optimiza-

tion of the implementation of a spatial join, such as is-adjacent-to, contains, where a

spatial join combines related entities from two spatial entity sets into a single entity

set. The sequence of relational-based and spatial-based operations can be reordered

to facilitate the merge of joined objects. A join can be performed based on the in-

tersection of pointers (tupleids or spatialids). Relational operators can be pushed

into dbeXtTact, and spatial operators can be pushed into ~p,,~,,,~ to reduce the size or

number of objects to be worked on. Some intermediate results can be pipelined with

subsequent operations to save the creation of temporary relations or the correspond-

ing data structures. Under certain circumstances, subsequent operations can work

directly on some temporary intermediate structures instead of creating new copies

of the data. Projections can be performed as early as possible, especially when the

target list contains only nonspatial at tributes or only spatial attributes. When two

spatial or relational operations refer to the same spatial or relational attribute, only

one ~p,,~,,,~ or dbeXtract need be performed. These optimization techniques have been

discussed in [7] and will be applied by our optimizer when possible.

Apart from being organized according to other class hierarchies and property in-

heritance rules common in object-oriented database systems, spatial objects are also

organized into hierarchies in the DOOSDB system. The primitive spatial types are

POINT, LINE and POLYGON. A (super-)class can be constructed by combining sev-

eral existing classes, such as GEO whose subclasses are the combinations of POINT,

LINE and POLYGON. By constructing the object hierarchy, properties and methods

defined for a class can be inherited by its subclasses. For example, geo-intersection

is defined on two object instances of type GEO, hence it is applicable to any objects

that belong to subclasses of GEO, e.g. intersecting a region (typed POLYGON) and

a highway (typed L I N E). Hierarchies are also used in spatial rule compilation to

check predicate parameter type consistency and derive rule parameter types.

CHAPTER 3. A DOOS DATABASE SYSTEM

Conceptually, a DOOS database contains a collection of persistent spatial and

nonspatial objects which belong to classes (and which are in turn organized into

class hierarchies) in a database schema. The root of the class hierarchy is a special

class "Object" which contains the common methods for all kinds of objects, such as

"create-class", etc. Each class is associated with a set of attributes and/or methods

which are defined by deduction rules, computational routines, property inheritance

rules, class composition (aggregation) hierarchies, class associations, or concrete val-

ues. An example of the schema outline of a DOOS database is presented in Figure 3.2,

in which the class hierarchy/association information is defined as follows.

object -

parking-lot

...............
no-lots

...............
region

- , department person

center
student

...

I -. , course course
I

I .a
I

course.

employee

grad-student under-student

, ij course

1
' course hourslwk

-a lab -------'
- - _ - - - . office

...............

- - - _ _ _ _ - - - is-a relationship -
is-a-part-of relationship - - - - - - - w

association relationship - - - - - - - -

dept-map A' classroom
location

.............

Figure 3.2: A spatial object hierarchy

CHAPTER 3. A DOOS DATABASE SYSTEM

1. is-a relationship (class/subclass hierarchy) is defined by a solid arrow in which

the class at the arrow tail is a superclass of the class pointed by the arrow head.

For instance, class employee is a superclass of class faculty.

2. is-a-part-of relationship (class composition hierarchy) is defined by a dashed

arrow in which the attribute at the arrow tail is a description of the "component"

class pointed by the arrow head. For example, class department is a component

(attribute) of class university.

3. class association relationship is defined by a dashed line where two classes refer

to each other. For example, the attribute course in the class department is

associated with the attribute department in the class course.

In summary, a deductive and object-oriented spatial system provides a uniform

high-level interface to users. It supports data semantic modeling and spatial func-

tionality.

3.2 Spatial Components and Languages

A high-level spatial database query language should provide spatial object modeling

functions, rule definition capability for expressing complex spatial relationships and a

declarative query interface. We now propose a deductive and object-oriented spatial

query language DOOSQL to facilitate high-level spatial queries. This language ex-

tends DERDL [61] and SQL/NF [I221 with spatial data modeling and manipulating

functions. It has the following features, (i) a nested relational framework for repre-

senting complex objects which supports tree-structured schema, set attributes and

list-valued attributes, (ii) an object organization into a class hierarchy with inheri-

tance, (iii) a rule definition language that uses in a Prolog-like syntax, (iv) a query

interface with dual syntaxes, i.e. SQL-like or Prolog-like.

CHAPTER 3. A DOOS DATABASE SYSTEM

3.2.1 Spatial data representat ion

Our nested relational framework is based on the non-first-normal-form relation(l1 NF)

proposed in [120]. A nested relation R is of the form R = (R1, . . ., R;, . . ., R,), where

attribute R; can be either an atomic attribute or a nested relation. A nested relation

is in a partition normal form(PNF) if all atomic attributes at the external level are a

key of the relation and if all of its sub-relations are in PNF [120]. A nested relation

in partition normal form has the nice property that the nestinglunnesting operations

are reversible. We will assume that all relations are in PNF. A nonrecursive relation

can be represented as a schema tree.

A nested relational framework can accommodate list-valued attributes and set-

valued attributes. A set-valued attribute is defined by the keyword setof while a list-

valued attribute is described by the keyword sequenceof. A tuple-valued attribute

can be referred to at either the attribute level or the component level. Sets and lists

may optionally have a name.

The followings are some meta-symbols for defining the query language in extended

Backus Normal Form (BNF).

::= defines non-terminal symbol

() denotes a non-terminal symbol

[] denotes an optional component of the language that may appear at
most once.

{) for an optional component of the language that may appear any
number of times.

(schema) ::= schema (schema-body)

(schema-body) ::= (n a m e) ((a t t r i d e f) {, (a t t r i d e f)))

(attri-de f) ..- . (a tom-at t r ide f) I setof (subschema)

I sequenceof (subschema)

(subschema) ::= (type) I (schema-body)

(atom-attri-de f) ::= (n a m e) : (type)

CHAPTER 3. A DOOS DATABASE SYSTEM

In addition to the basic attribute types in the traditional relation, namely REL4L,

BOOLEAN, INT and STRING, a set of essential spatial types are supported in the

extended schema. Here is a part of syntax for object definition.

Example 3.1 Spatial primitive definitions.

Typical primitive spatial data types/objects provided by the DOOS database sys-

tem are POINT, LINE and POLYGON.

1. POINT represent a point, i.e. a pair of real numbers in two dimensional space:

schema POINT(x: REAL, y: REAL)

For example, the center of an object can be represented by the point (2, 3).

2. LINE is used to describe a line consisting of a number of line segments and a

line is represented by a sequence of points:

schema LINE(points: sequenceof POINT)

The key word sequenceof indicates that points is a list-valued attribute. For

example, an instance of a line can be represented by ((2, 3), (6, 10)).

3. POLYGON is used to describe a simple polygon by listing its contiguous ver-

tices:

schema POLYGON(points: sequenceof POINT)

A polygon data object is assumed with the last point on the list connected to

the first one on the list. An instance of a POLYGON is ((0, 3), (3, 3), (3, 0)).

These primitive spatial data types can be used to build more complex spatial

objects. A sample object schema definition is presented in Example 3.2.

CHAPTER 3. A DOOS DATABASE SYSTEM

Example 3.2 A complex spatial object region is defined as follows.

schema region(name : STRING,

population : INT ,

geo : POLYGON,

setof highways(name : STRING,

route : L I N E)

setof districts(name : STRING,

area : POLYGON)

1

Notice that in this definition, highways and districts are two set-valued attributes.

3.2.2 Spatial operations and procedure definitions

Relational operations, such as selection, are extended to manipulate these newly added

primitive spatial data types. Equality is extended for new primitive spatial structures

as follows.

1. Structure and value equality of two non-atomic attributes indicates that

both have the same structure and that corresponding components have the

same values. For example, the equality of two points pl and pa is defined as,

2. Semantic equality refers to the semantic equivalence of two representations

for the same spatial object; these may not be necessarily structure or value

equivalent. Here are some examples.

a) LINE equality

Given two undirected lines 11 (pll, . . . , pl;, . . . , pl,) and 12(p21, . . . , p2j, . . . p2m),

CHAPTER 3. A DOOS DATABASE SYSTEM

b) POLYGON equality

Given regions r l (pll, . . . , pln) and r2(p21, . . . , ~ 2 m) ,

A spatial database system should provide basic manipulation operations on geo-

metric objects that include (i) logic operators, which describe the relationship among

geometric objects, for example is-inside-of(X, Y) which returns TRUE if X is inside

of Y, (ii) geometric transformation operators, which take geo-objects as parameters

and create new geometric objects, for example, geo-union(X, Y) which computes the

union of X and Y , (iii) feature evaluation functions, which evaluate properties of the

geometric objects, for example, distance(X, Y) which calculates the distance between

the two points X and Y, and (iv) aggregation functions, which calculate aggregation

value of a set of data, for example, sum computes the sum of a set of numbers. Some

typical geometric operators and their parameter specifiers are listed in Tables 3.1 and

3.2. The names of the predicates and functions are self-explanatory. A function can

be converted to the equivalent predicate [63] . In the following discussion, a spatial
-,

function, geo- f unc, will be referred to as geo- f unc(X) or its corresponding predicate
-+

form geo-func(z,Y), where X is the input vector and Y is an output parameter

that will contain the function value. Similarly, spatial predicates are in an infix for-

mat in an SQL-like query (to simulate natural language) and are in a prefix format

in a Prolog-like query (to be consistent with Prolog). Commonly used aggregation

functions include sum, minimum, maximum, average and count.

User-defined or application-specific procedural methods, such as the maximum

throughput of a highway network, are very important in an extensible spatial database

system for new applications since it needs to be adaptable to different customers.

An important distinction between a procedural primitive and a relational one lies

in the specification of the application modes of the parameters in a procedure and

CHAPTER 3. A DOOS DATABASE SYSTEM

I Parameter t v ~ e s I Predicate I Parameter t v ~ e s I
I " I , I u 1 I

1 GEO I overlaps I GEO

isinside-of POLYGON
POLYGON contains

Table 3.1 : Spatial relation predicates.

area(POLYG0N)
boundary(P0LYGON)
distance(POINT, POINT)
geo-union(POLYGON, POLYGON)
geointersection(POLYGON, POLYGON)
geo-difference(POLYGON, POLYGON)

Function (parameter types)

length(L1NE)
REAL
LINE
REAL
POLYGON
POLYGON
POLYGON

Function type

REAL

Table 3.2: Spatial functions.

the attributes in a relation. Every attribute in a relation can be instantiated and

inquired at will. However, a parameter in a procedure is often restricted to some

specific accessing mode(s), i.e. either instantiation only, denoted as in mode; inquiry

only, denoted as out mode; or both, denoted as any mode. For example, a geometric

procedure geo-union(X, Y, Z) returns the union of two polygons X and Y in 2. X

and Y should be instantiated (with the mode in) and Z could be either instantiated

or inquired (with the mode any). Otherwise, if X and Z were instantiated but Y

were inquired, an infinite number of Y's could be derived since X and Y may partially

overlap. Notice that the mode of a parameter of a finite relation is always any.

Our system supports the extension to new data types and new operations. The

declaration of a spatial procedure includes: a procedure name, procedure parameters,

and their parameter specifiers. The syntax of procedure declarations is presented

below and examples of procedure declarations will follow.

CHAPTER 3. A DOOS DATABASE SYSTEM

(procedure) ::= procedure (name) ((para-de f) {, (para-de f)))

(para-de f) ::= (Name) : (para-spec)

(para-spec) ::= (type) (mode)

Example 3.3 Procedures boundary and gMaxUnion are defined as follows.

procedure boundary(X: POLYGON in, Y: LINE out)

procedure gMaxUnion(X: setof GEO in, Y: setof GEO out)

When a new procedure is defined, the system will register the procedure name and

its parameter names with their specifiers. A user-defined procedure is treated in the

same way as one defined by the system. For instance, boundary could be a system

defined procedure, which takes a polygon and returns its boundary. A user-defined

procedure, such as gMaxUnion, will be imported in the system by directly linking

compiled code blocks with the system or by interpreting them.

These operators inject a lot of vital power to the relational system for inquiring

on and manipulating spatial information.

3.2.3 Rule definitions

Many spatial relationships, such as containment, within, connected-to, etc., are de-

fined recursively. It is necessary to use recursive rule compilation techniques in a

DOOS database. The syntax of the rule definition in DOOS is similar to that in

Prolog. Examples of spatial rule definitions will be presented.

(rule) ::= (predicate) :- (predicate) {, (predicate)).

(predicate) ::= (name)((Name){, (Name)))

CHAPTER 3. A DOOS DATABASE SYSTEM

Example 3.4 Definitions of IDB predicates.

Let rel-inside(X : GEO, Y : POLYGON) be a precomputed relation represent-

ing the fact that X is inside of Y. The IDB predicate within(X, Y) is defined below.

inside(X, Y) :- is-inside-o f (X, Y).

inside(X, Y) :- rel-inside(X, Y).

within(X, Y) :- inside(X, Y).

within(X, Y) :- inside(X, Z), wi-thin(Z, Y).

Here the new predicate within is defined by a relation rel-inside, a geometric

predicate is-insidea f and their transitive closure. An application-oriented predicate

can also be defined. If an object class pollution-map(X : POLYGON) is defined in

the database, a predicate pollutedqarcel-in(X, Y) indicating that X is polluted land

parcel and is inside of Y can be defined as below.

polluted(X) :- pollution-map(Y), overlaps(X, Y).

polluted-parcel-in(X, Y) :- parcel(X), polluted(X), wit hin(X, Y).

The parameter specifier of the IDB parameters is derived from those that define

them by a rule compilation process which will be illustrated in the next chapter.

3.2.4 Query interfaces

The dual interface of DOOSQL is similar to that of the Deductive-ER query language

[61]. A query can be posed using an SQL-like syntax or a Prolog-like equivalent form.

The SQL-like query syntax is as follows.

CHAPTER 3. A DOOS DATABASE SYSTEM

(s ~ k l ~ e r ~) ::= select (result) {, (result))
from (name) {, (name))

where (pred-expression)

(result) ::= (attribute) I (func-name) ((attribute) {, (attribute)))

(pred-expression) ::= (pred-term) { (logic-lin k) (pred-term))

(logic-link) ::= and 1 or

(pred-term) ::= [not] (predicate) I
[not] ((math-expression) (comp) (math-expression)) I
[not] ((geo-obj) (geoqredicate) (geo-obj))

Example 3.5 A spatial query in an SQL-like language.

We examine the database illustrated in Figure 3.3, which consists of the following

objects: districts, ranches, parcels and pollution maps, which are defined as follows.

schema parcel(name : S T R I N G , region : POLYGON) ,

district(name : S T R I N G , region : POLYGON) ,

ranch(name : STRING,polluted : BOOLEAN, region : POLYGON) .

Suppose that the query is to "jind the total area of unpolluted ranches which are

adjacent to polluted parcels in district A". In combination with the power of deduction

and an easy-to-read SQL-styled language, this query can be posed effectively. The

predicate is-adjacent-to is commonly used, therefore it is assumed to be supported by

the system. An IDB predicate polluted-parcel-in(X Y) is defined in Example 3.4.

The query in SQL-like format is:

select sum(area(ranch.region))

from ranch, parcel, district

where district.name = 'A'

and ranch.polluted = FALSE

and polluted-parcel-in(parcel.region, district.region)

and ranch.region is-adjacent-to parcel.region

CHAPTER 3. A DOOS DATABASE SYSTEM

district A

....................
: C\1

parcel 12 & : z
: a, 52

.................... 0 i g
g ; a parcel 13 a :

Figure 3.3: A map which shows ranches, parcels and polluted areas

As a result of the execution of this query, the areas of ranch3, ranch4 and ranch5

are returned.

It can be a good option sometimes to adopt the Prolog-like syntax in the pre-

sentation of a query. The extended BNF of a query using the Prolog-like syntax is

presented as follows.

(logic-query) ::= ? - (predicate) {, (predicate)).

(predicate) ::= (name)((parameter), (parameter))

(parameter) ::= (constant) I (Variable)

A deductive and object-oriented spatial language has been outlined, data struc-

tures have been developed and data manipulation functions have been proposed. The

compilation of a spatial query transforms a query in either SQL-syntax or Prolog-

syntax into a uniform compiled equivalence. The language structures involving defi-

nition and data retrieval are specified by their BNF in Appendix A.

CHAPTER 3. A DOOS DATABASE SYSTEM

Chapter Summary

An integration of the deductive and object-oriented paradigms in the design of spatial

databases has been proposed in this chapter. The spatial database provides a declar-

ative query interface which can be compiled and decomposed using well-developed

compilation approaches. Such a design and implementation philosophy of spatial

databases combines the advantages of both logic and procedural methods, thus treat-

ing a user-friendly environment and achieving both processing efficiency and expres-

siveness. The system is geared to spatial*applications and therefore it can be more

effectively and efficiently for spatial queries. The system supports both built-in geo-

metric data types with standard spatial operators and user-defined data types with

associated spatial methods. The former can be processed efficiently while the later

is indispensable for flexibility. An extended SQL spatial query language has been

designed to support spatial data types, their manipulation functions, rule definitions,

and extensibility.

Chapter 4

DOOD Spatial Query Compilation

A high-level deductive query interface has been implemented efficiently using the com-

pilation approach [139]. The compilation process can be divided into three phases: (i)

query independent IDB rule compilation, (ii) system independent optimization, which

includes the compilation of a deductive spatial database and algebraic simplification,

and (iii) the system dependent optimization of spatial queries. The first phase com-

piles the IDB predicates defined in the IDB into operations on the EDB, the GDB

and their transitive closures. Simplification and optimization can be performed on

the compiled results. The second phase is invoked when a query is submitted to the

system; it compiles and simplifies a specific spatial query using information about

query instantiation. The third step is the continuation of the second phase which

analyzes and optimizes a specific spatial query based on information about the query

instantiation, inquiry, compiled geo-primi tives, and statistical information about the

EDB and the GDB. The result is an optimized query processing plan which is then

submitted to the query processor. We examine system independent optimization,

namely the first phase and the second phase, in this chapter and leave the discussion

of the third phase to the next chapter.

Compilation of the IDB is a process which transforms rules into a form containing

only relational and spatial primitives and method calls. Compilation of the IDB

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

has been studied extensively in deductive database research. Detailed compilation

and optimization techniques can be found in previous studies on deductive databases

[43, 59, 62, 73, 100, 1391.

Many spatial relationships, such as containment, inside and connected-to, are de-

fined recursively. Thus it is necessary to apply recursive rule compilation techniques

in DOOS databases. Fortunately, most recursive relationships in spatial data appli-

cations are in relatively simple forms, such as transitive closures or linear recursions,

whose implementations have been studied extensively in deductive databases. We

will study deduction rules and their transformation techniques in spatial database

systems.

In a DOOS database system, deduction rules can be compiled into expressions con-

sisting of primitive predicates and operations before queries are posed to the system.

The compilation of a deduction rule transforms the rule definition into a sequence of

primitive relational operations, spatial operations and method calls (if some primitives

are defined by methods) on spatial and/or nonspatial data. The rule compilation may

be performed independently of queries, and the compiled program can be optimized

and stored for later query processing.

Compilation of Spatial Rules

When a query is submitted to the system, its deductive predicates should first be

resolved against the compiled rules. The results should then be further simplified and

analyzed according to simplification rules.

As mentioned in Chapter 3, the instantiation constraints (modes) of procedure

parameters distinguish spatial procedural predicates from data relations and therefore

affect the processing of spatial queries.

During query processing, each input parameter, denoted by in should be instan-

tiated before the method is called. A parameter in a method can be instantiated

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

by query constants, GDBIEDB accessing, or from information computed using other

procedures or query predicates. If a procedure contains some uninstantiated param-

eters, the query processor should determine whether the data can be fetched from

GDBIEDB or computed by other procedures. The invocation of such a procedure

will have to be delayed until all of its input parameters have been instantiated.

Since attributes in a relation and procedure parameters are typed, the compila-

tion of an IDB should perform the type consistency checks. This validation process

often results in eliminating contradicting rules. A compiled program usually has a

simpler set of types, thus reducing the cost of query processing. Type checking is

performed by checking the consistency of the types of the corresponding variables in

the procedures/predicates. This checking process tosses away the conflicting portions

of parameter specifiers in the compiled formula and results in a compiled formula

which is associated with a set of consistent parameter specifiers. This set can then be

used in further compilation and query processing. We now examine the type checking

operation in details.

Although an EDB attribute is defined to be of a specific type in its schema def-

inition, its mode definition is omitted, since it always has a mode of any (either

inquired or instantiated). On the other hand, a parameter (attribute variable) of an

IDB predicate is defined to be of a specific type and mode using its IDB predicate

definition. Since an IDB predicate may be defined by more than one rule, different

rules may specify different types and modes for a specific parameter. One task of the

compilation is to merge these parameter specifiers appropriately.

The power set of geo-primitives, P O I N T , L I N E and POLYGON, provides all

of the types available for geo-objects. There exists a partial order among all possible

geometric data types; this order can be defined by the type hierarchy. A spatial data

hierarchy can be specified in a DOOS database, such as { POINT, LINE, POLYGON}

c GEO, which indicates that a POINT type is a subtype of type GEO, denoted as "

POINT 4 GEO". Notice that typel 4 type2 if typel is subsumed by (or is a special

case of) type2, i.e. typel is compatible with and more restrictive than type2. The

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

type of an IDB predicate parameter can be derived by taking the most restricted of

the compatible types given to the parameters in the rules defining the predicate. If

the variables with the same name in different predicates which define an IDB have

conflicting types, an error will be reported and the compilation of the rule fails.

Example 4.1 Derivation of types and modes for the variables in a co~npiled rule.

Let the types and the modes of the attributes in the primitive relations road and

city, and the variables in the geometric procedure geo-intersection be defined as

1. road()<: LINE any),

2. city(Y: POLYGON any) , and

3. geo-intersection(X: GEO in, Y: GEO in, Z: GEO out) ,

Suppose that a rule road-thru-city is defined as follows.

road-thru-city (X, Y, Z) :- road(X), city (Y), geointersection(X, Y, Z).

Resolution is performed between the rule and the definition as follows: (1) the most

specific type of the type hierarchy that is consistent with both the rule and the definition

is resolved as the resulting type of the rule and (2) the most general mode which is

consistent with both is resolved as the resulting mode.

In this example, the resulting type of the variable X in the head of the rule,

road-thru-city, should be of type L I N E because the type of X in road is L I N E and

in geo-intersection is GEO. Similarly, the type of Y is POLYGON and that of Z is

L I N E . The resulting mode for X in road-thru-city is any because X is any in road

and is in in geo-intersection. Similarly, the resulting mode for Y is any and that for

Z is ou t . 0

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Example 4.2 Compilation of a deductive rule. We examine the type checking in the

compilation process of a predicate,

availableriversidespace(X, Y), which returns TRUE if and only if X is a piece

of available space adjacent to river Y. The definition uses another IDB predicate

adjacent(X, Y) which returns TRUE if and only if a geo-object X is a neighbor of

another geo-object Y, or if X and Y share a common boundary. Suppose that schema

relations, the headers of the procedures, and IDB rules are defined as follows.

schema neighbor(X: POLYGON, Y: POLYGON), river(X: LINE),

unusedspace(X: POLYGON).

p rocedure boundary(X: POLYGON in , Y: LINE o u t), geoisintersected(X:

GEO in, Y: GEO in).

adjacent(X, Y) :- boundary(X, Z), boundary(Y, W), geo-is-intersected(W, 2).

avai lableriverside-space(X, Y) :- unusedspace(X), river(Y), adjacent(Y, X) .

Type checking is performed during the compilation of the IDB predicates; it often

results in eliminating some incompatible rules. For example, the compilation process

of available-river-sidespace (X, Y) detects that the first definition of adjacent should

be excluded from the compiled rules because the type of a river(Y) is LINE, which

does not match the type POLYGON of the variable Y in the EDB predicate neighbor.

In the compilation result, both the types and the modes of variables of adjacent

are more restrictive than the originally declared, because of the restrictions on those

of the variables in their defining rules. The type and mode of adjacent is either (X:

POLYGON any , Y: POLYGON any) or (X: POLYGON in, Y: LINE ou t) .

adjacent(X, Y) = neighbor(X, Y) U

(boundary(X, Z), boundary(Y, W), geo-is-intersected(W, 2)) .

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Similarly, the mode and type of availableriversidespace should be (X: POLY-

GON in , Y: LINE in).

availableriversidespace(X, Y) = unusedspace(X), river(Y),

boundary(X, Z), boundary(Y, W), geo-is-intersected(W, 2).

During compilation, the IDB predicates are transformed into forms which consist

of only EDB predicates and spatial methods and are easy to analyze further when a

query is submitted to the system.

Example 4.3 The compilation of IDB rules for the spatial database of Example 3.4.

Recall that from Example 3.4 we have the following definitions and IDB rules:

schema pollution_map(P: POLYGON), relinside(X: GEO, Y:POLYGON),

parcel()(: POLYGON).

poEluted(X) :- pollution-map(Y), intersect(X, Y).

polluted-parcel-in(X Y) :- parcel(X), polluted(X), wit hin(X, Y).

inside(X, Y) :- is-inside-o f (X, Y).

inside(X, Y) :- rel-inside(X, Y).

within(X, Y) :- inside(X, Y).

within(X, Y) :- inside(X, Z), within(Z, Y).

The rule polluted(X) indicates that X is polluted if X intersects with any pollu-

t ionmap Y. The rule polluted-parcel-in-region (X, Y) indicates that X is a polluted

parcel within region Y. The rule inside(X, Y) indicates that X is inside of Y based on

either relation rel-inside(X, Y) or the geometric predicate is-inside-of (X, Y). The

rule within (X, Y) indicates that X is within area Y if X is inside Y or if X is inside

Z which is, in turn, within Y.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

The compilation results are in the following compiled IDB predicates:

polluted-parcel-in(X Y) = parcel(X), pollutionmap(Z),

geo-is-intersected(2, X) , within(X, Y).

within(X, Y) = inside+(X, Y).

inside(X, Y) = rel-inside(X, Y) U is-inside-o f (X, Y).

Notice that in the compiled form, the predicate polluted-parcel-in(X, Y) is still

represented using an intermediate predicate within(X, Y). This should be viewed

as a concise notation. It does not imply that the computation of the predicate

polluted-parcelin(X, Y) cannot start before the completion of the computation of

the intermediate predicate within(X, Y). Similar arguments hold for the predicate

within(X, Y) which is represented by an intermediate predicate is-inside-o f (X, Y).

Furthermore, the predicate within(X, Y) is represented using the transitive closure

notation, inside+(X, Y), since it is defined by a set of recursive rules.

Most spatial database application programs can be written using deduction rules,

procedural definitions or their combinations. By compiling IDB rules into simpler

forms and performing the type checking at compilation time, most application pro-

grams can be processed efficiently. Although recursive query processing poses new

challenges to efficient evaluation, most recursive rules can be compiled into simple

forms, such as transitive closures or asynchronous chain recursions which can be eval-

uated efficiently [62]. The compilation and efficient processing of recursive queries

have been studied extensively in deductive database research, such as [59, 1391; it will

not be addressed here.

4.2 Spatial Query Simplification

Simplification of algebraic expressions has been studied extensively [I391 and most of

the existing results can be applied to spatial query optimization. Furthermore, spatial

C H A P T E R 4. DOOD SPATIAL QUERY COMPILATION

properties and spatial equivalence rules can be used to perform algebraic simplifica-

tions which transform a compiled rule (obtained by rule compilation) or a compiled

query expression (obtained by resolving query predicates with the compiled rules) into

simpler expressions which can be evaluated more efficiently. In addition to relational

algebra used for simplification of relational expressions, spatial query simplification

uses geometric algebra and other spatial properties [54].

4.2.1 Spatial properties, equivalences and translation rules

Spatial properties can be used to simplify spatial expressions or to compute a virtual

spatial relation using a set of existing or precomputed spatial relations.

Definition 4.1 A predicate p(A, B) is symmetric if p(A, B) = p(B, A). A predicate

P(A, B) is transitive if p(A, B) and P(B, C) imply p(A, C). A predicate pl(A, B) is a

converse of another predicate P ~ (A , B) if P ~ (A , B) = p2(B, A). A predicate pl(A, B)

is a complement of another predicate p2(A, B) if pl(A, B) = -7p2(A, B).

Example 4.4 The symmetric, transitive, complement and converse properties of

some common relations can be illustrated using the following logic rules.

1. "symmetry" : is-adjacent_to(A, B) :- is-adjacent_to(B, A).

2. "converse": is-inside-of (A, B) :- contains(B, A).

3. "transitivity": is-inside-o f (A, B) :- is-inside-o f (A, T), is-inside-o f (T, B).

4. "complement": is-disjoint-from(A, B) :- ~over laps(A, B).

Some spatial properties can be expressed by algebraic equivalence expressions.

The computational cost is reduced if the transformed expression can be evaluated

using fewer or less costly spatial operations than the original one. For example, using

a set equivalence rule shown below,

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

a spatial computation that involves three spatial function calls,

geo-union(geo-intersection(A, B), geo-intersection(A, C)),

can be transformed into one that requires only two spatial function calls,

geo-intersection(A, geo-union(B, C)).

Similarly to the specification of query optimization rules in extensible spatial

database systems 1131, integrity constraints and conditional simplification rules can be

specified explicitly by spatial database experts to facilitate the simplification process.

For example, since the total area of two non-overlapping regions can be computed by

a simple summation of the areas of the two regions, the rule can be specified as a

spatial transformation rule as shown below.

ifA n B = q5 then area(A U B) = area(A) + area(B).

Another important simplification technique in spatial query processing is to derive

a complex spatial relationship from known spatial information without geometric

computations.

The spatial functions which generate new spatial objects, such as geo-union, are

often costly to compute. However, using precomputed component information and

precomputed spatial relationships among these components, dynamic computation of

spatial functions sometimes can be avoided, thus the cost of such computations can

be reduced. Precomputation of certain spatial relationships can be performed on a

relatively stable domain if these relationships are primitive and frequently used. It

is unrealistic to precompute and store all geometric predicates, or to register spatial

relationships among all of possible generated objects. For example, one cannot store

all possible objects constructed by geo-union. Nevertheless, it is desirable to derive

spatial relationships for generated objects from the precomputed spatial relationships

of their primitive components. The following are some possible ways to derive such

relationships.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

1. [Equivalence condition] A compound relation can be determined from its com-

ponent relations. For example, from A is disjoint from B and A is disjoint from

C, it is derived that A is disjoint from (B U C).

2. [Necessity condition] If the component conditions do not hold, the compound

condition will not hold. For example, the necessity condition for A overlaps with

(B n C), is that A overlaps with B and A overlaps with C .

3. [Sufficiency condition] If the component relations hold, the compound condition

will hold. For example, a sufficient condition for A is-disjoint-from (B n C) is

that A is-disjoint-from B or A is-disjoint-from C.

Equivalence conditions can be used in spatial query compilation [7, 13, 21, 72, 921.

Compound relations can be replaced by their equivalent component relations. Neces-

sary conditions can be used to derive a predicate to be FALSE from that its necessary

condition is false. Sufficient conditions can be used to derive a predicate to be TRUE

from that its sufficient condition holds. The geometric operation is performed only

if the compound condition cannot be determined by the component conditions. The

derivation of compound relationship is discussed in the next subsection.

4.2.2 Derivation of compound relationships

Let us examine a set of frequently used topological relations, i.e. contains, is-inside-of,

is-adjacent-to, overlaps, is-disjoint-from in combination with three geometric set op-

erators geo-union, geo-intersection and geo-diference denoted by U, n and - re-

spectively. Notice that is-inside-of and contains are converse predicate relations,

is-disjoint-from, overlaps and is-adjacent-to are symmetric predicates, contains and

is-inside-of are both transitive relations and is-disjoint-from and overlaps are com-

plement ary relations.

The following symbols are used in the following discussion. The symbol

connects two equivalence expressions. As some compound relations cannot be exactly

C H A P T E R 4. DOOD SPATIAL QUERY COMPILATION

determined from their components, let + denote suficiency, and necessity.

We adopt the set notation proposed in [35], where aA , A" and A-' are mutually

exclusive and stand for the points of the boundary, the interior and the exterior

of A respectively. The letter A stands for A" U ad. Symbol I9 is used to refer to

an arbitrary binary relationship. Assume that point sets A, B, C and (B I9 C) are

non-empty.

Now, we prove some equivalence relationships, necessity conditions and sufficiency

conditions. Examples will be given when the equivalent condition does not hold.

4.2.2.1 Disjointness (is-disjoint-from)

Definition 4.2 A is-disjoint-from B ::= A n B = $

Formula 1 A is-disjointfrom (B U C) (A is-disjointfrom B) A

(A is-disjoint f rom C)

Proof:

1. += If A is-disjointfrom B and A is-disjointfrom C, by definition,

(A n B) = $, a n d (AnC) =$.

Hence (A n B) u (A n C) = $ U $ = $,

and so An (B u C) = 4.

Therefore A is-disjointfrom (B U C).

2. ==+ The proof in the other direction is similar.

Thus Formula 1 holds.

Formula 2 A is-disjointfrom (B n C) += (A is-disjointfrom B) V

(A is-disjointfrom C)

C H A P T E R 4. DOOD SPATIAL QUERY COMPILATION

Proof: We consider the following two cases.

case 1: if A is-disjoint from B, by definition, A n B = 4

By associativity, we have A n (B n C) = (A n B) n C = 4 f l C = 4.

Therefore A is-disjointfrom (B C7 C).

case 2: By symmetry, if A is-disjoint-from C, then A is-disjoint-from (B n C).

Hence Formula 2 holds.

Figure 4.1 shows an example where A is disjoint from (B n C) while A overlaps with

both B and C. Therefore the converse of Formula 2, A is-disjoint-from (B n C) &

(A is-disjoint-from B) V (A is-disjoint-from C), does not hold.

Figure 4.1: A counter-example to the converse of Formula 2

Formula 3 A is-disjointfrom (B - C) + (A is-disjointfrom B) V (C contains A)

Proof: We consider the following two cases.

case 1: if A is-disjoint from B, by definition, A n B = 4.

Because (B - C) C B and A n (B - C) = 4, A is-disjointfrom (B - C).

case 2: if C contains A, C > A, (23 - C) C (B - A)

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Because A is-disjointfrom (B - A), A is-disjointfrom (B - C).

Hence Formula 3 is justified.

Figure 4.2 shows a case where A overlaps (B - C) while A overlaps with B and C

does not contain A. Therefore the converse of Formula 3, A is-disjoint-f ronz (B - C)

+ (A is-disjoint-from B) V (C contains A), does not hold.

Figure 4.2: A counter-example to the converse of Formula 3

4.2.2.2 Overlapping (overlaps)

Definition 4.3 A overlaps B ::= An B # 4

Formula 4 A overlaps (B U C) (A overlaps B) V (A overlaps C)

Proof: This is the contrapositive of Formula 1.

Formula 5 A overlaps (B n C) ==+ (A overlaps B) A (A overlaps C)

Proof: This is the contrapositive of Formula 2.

Figure 4.3 shows an example where A overlaps with both B and C whereas A does

not overlaps with (B n C). Therefore the converse of Formula 5 , A overlaps (B n
C) -+= (A overlaps B) A (A overlaps C), does not hold.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Figure 4.3: A counter-example to the converse of Formula 5

Formula 6 A overlaps (B - C) & (A overlaps B) A 1 (C contains A)

Proof: This is the contrapositive of Formula 3.

Figure 4.4 shows an example where A does not overlap with (B - C) while A

overlaps with B and C does not contain A. Therefore the converse of Formula 6, A

overlaps (B - C) += (A overlaps B) A 1 (C contains A), does not hold.

Figure 4.4: A Formula 6

4.2.2.3 Inside (isinside-of)

Definition 4.4 A is-inside-of B ::= A C_ B

Formula 7 A isinside-of (B U C) + (A isinside-of B) V (A isinside-of C)

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Proof: We consider the following two cases.

case 1: If A isinside-of B, by definition, A G B G (B U C).

Therefore A isinside-of (B U C).

case 2: if A isinside-of C, then by definition A c C (B U C).

Hence Formula 7 is true.

Figure 4.5 shows an example where A is inside (B U C) whereas A is not in-

side of either B or C. Therefore the converse of Formula 7, A is-inside-of (B U

C) =j (A is-inside-o f B) V (A is-inside-o f C) , does not hold.

Figure 4.5: A counter-example to the converse of Formula 7

Formula 8 A isinside-of (B n C) u (A isinside-of B) A (A isinside-of C)

Proof:

1. + If A isinside-of B and A isinside-of C, then A 2 B and A G C.

If a E A, then a E B and a E C.

Since this holds for all a E A, it follows that a E (B n C) therefore A C (B n C).

A isinside-of (B n C) follows.

2. & Analogously, the formula can be proven in other direction.

Hence Formula 8 holds.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Formula 9 A isinside-of (B - C) (A isinside-of B) A (A is-disjointfrom C)

Proof:

1. * If A is-inside-of (B - C), then by definition

A c (B n C-l) B , and therefore A isinside-of B.

Similarly, A c (B n C-l) C C-' and thus, A is-disjointfrom C.

2: - If A is-inside-of B and A is-disjoint-from C , by definition,

A G B and A n C = 4,

i.e. (A c C-l), and so A C (B n C-l) follows.

Therefore A is-inside-of (B - C), and Formula 9 holds.

4.2.2.4 Containment (contains)

Definition 4.5 A contains B ::= A _> B

Formula 10 A contains (B U C) u (A contains B) A (A contains C)

Proof:

1. + If A contains (B U C), then by definition A _> (B U C).

Hence A _> B and A _> C, and therefore A contains B and A contains C.

2. + The proof for the other direction is similar.

Hence Formula 10 holds.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Formula 11 A contains (B n C) (A overlaps B) A (A overlaps C)

Proof: If A contains (B n C), by definition, A _> (B n C).

If (B n C) # 4 (assumption), A n (B n C) # 4.

Therefore (A n B) # 4 and (A n C) # 4, and Formula 11 holds.

Figure 4.6 shows that A overlaps with both B and C but A does not contain (B

n C). Therefore the converse of Formula 11, A contains (B n C) +== (A overlaps

B) A (A overlaps C), does not hold.

Figure 4.6: A counter-example to the converse of Formula 11

Formula 12 A contains (B n C) (A contains B) V (A contains C)

Proof: If A contains B, then by definition A _> B.

Because B _> (B n C), it follows that A > (B n C).

Similarly, if A 2 C, then A 2 (B n C), and Formula 12 holds.

Figure 4.7 shows that A contains (B n C) but does not contain either B or C.

Therefore the converse of Formula 12, A contains (B n C) ==+ (A contains B) V

(A contains C), does not hold.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Figure 4.7: A counter-example to the converse of Formula 12

Formula 13 A contains (B - C) + A contains B

Proof: If A contains B, then by definition, A 2 B.

Because B 2 (B - C), it follows that A 2 (B - C).

Therefore A contains (B - C) and Formula 13 holds.

Figure 4.8 shows an example where A contains (B - C) while A does not contain

B. Therefore the converse of Formula 13, A contains (B - C) ===+ A contains B ,

does not hold.

Figure 4.8: A counter-example to the converse of Formula 13

4.2.2.5 Adjacency (is-adjacent-to)

Definition 4.6 A is-adjacent-to B ::= (d A n dB # 4) A (A" f l B0 = 4).

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Formula 14 A isadjacent-to (B U C)

((A isadjacent-to B) A (A is-adjacent-to C)) V

((A isadjacent-to B) A (A is-disjointfrom C))V

((A isadjacent-to C) A (A is-disjointfrom B))

Proof: 1. ==+ If A is-adjacent-to (B U C), then by definition,

d A n d (B u C) # 4 and AO n (OUC)" = 4.

Because B U C contains some boundary of B or C, d (B LJ C) G d B U d C

Similarly, (B U C)" _> BO U CO, we have,

d A n (d B u d C) _ > d A n d (B u C) # 4 ,

(dA n dB) u (dA n dC) # 4.

A O n (B O u C O) G A " n (B u C) O = 4 ,
(A0 n BO) u (A0 n CO) = 4.

There are three possible cases to be considered for equation (4.1) to hold:

case 1: (d A n dB # 4) and (d A n dC # 4).

combining with equation (4.2), we have

(A isadjacent-to B) A (A is-adjacent-to C).

case 2: (d A n dB # 4) and (dA n dC = 4).

In combination with equation (4.2), we have

(A isadjacent-to B) A (A is-disjoint from C).

case 3: (dA n dB = 4) and (dA n dC # 4).

In combination with equation (4.2), we have

(A isadjacent-to C) A (A is-disjointfrom B).

2: + The proof in the other direction is similar.

Hence Formula 14 holds.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Formula 15 A isadjacent-to (B - C) +== (A isadjacent-to B) A

(A is-disjointfrom C)

Proof: If A is-adjacent-to B and A is-disjoint-from C, then by definition,

d A n d B # 4 a n d A 0 n B 0 = d .

Furthermore, A n C = 4, i.e. d A n dC = 4 and A0 n C0 = 4.

H e n c e d A n d C = 4 d A n d (B - C) = d A n d B

AO n (B - C) O 2 (A" n B O) - (A0 nCO) = 4.
Therefore A is adjacent to (B - C).

Hence Formula 15 holds.

Figure 4.9 shows an example in which A is not disjoint from C but is adjacent to

(B - C). Therefore the converse of Formula 15, A is-adjacent-to (B - C) & (A
is-adjacent-to B) A (A is-disjoint-from C), does not hold.

Figure 4.9: A counter-example to the converse of Formula 14

These equivalences, necessary conditions and sufficient conditions can be repre-

sented as optimization rules. The query processor can test the condition and replace

a complex forms by their simplified equivalence.

In summary, we have derived and proved some interesting formulas for compound

spatial relations from their component relations. Table 4.1 is a summary of the

result where c, 2, @ and (1 are abbreviations for is-inside-of, contains, overlaps,

is-disjoint-from and is-adjacent-to respectively.

CHAPTER 4. DOOD SPATIAL QUERY COMPILATION

Table 4.1: Complex spatial relation derivation.

These formula are useful for spatial query optimization. The application of these

conditions in query optimization can be rule-based. All equivalences can be applied

directly in query compilation. Equivalent component conditions can be substituted

for compound relations. When left side of an equivalence formula is matched, it

is replaced by the right side of the equation. Necessary conditions and sufficient

conditions can be utilized at execution time to reduce geometric computations. Using

these conditions, we can significantly reduce the cost of geometric query evaluation.

4.3 Chapter Summary

The compilation and algebraic simplification of spatial rules and queries has been

studied in this chapter. Important differences between spatial rule and relation rule

compilations are (i) parameter specifier checking and derivation, (ii) utilization of

geometric properties for simplification, and (iii) derivation of complex spatial rela-

tionships from simple ones without geometric computations. The compilation process

provides a simplified spatial query expression consisting only of primitive spatial pred-

icates and relations.

Chapter 5

Spatial Query Execution in a

DOOSDB

In this chapter, we present a dynamic connection graph for spatial query access plan

generation. A heuristic branch-and-bound algorithm will be used for access plan

search. Set-oriented query evaluation techniques for efficient spatial query execution

will also be presented.

5.1 Dynamic Connect ion Graph Transformat ion

for Spatial Access Plan Generation

5.1.1 Introduction

It is necessary to perform a systematic study of access plan generation for deductive

spatial databases. In this chapter, a dynamic connection graph transformation ap-

proach is proposed for optimization of compiled spatial queries. Here is an outline

of the approach. For each compiled query, a connection graph is constructed which

represents the possible data flow among EDB and spatial predicates in the compiled

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

query. A spatial predicate is unavailable for optimization if it does not have enough

available inputs. Similarly, its output is unavailable for further operations if it has

not been computed even if all inputs have been obtained. The connection graph is

modified dynamically as the situation changes and more spatial predicates can par-

ticipate in the optimization process. The connection graph transformation provides

a dynamic picture of spatial query optimization. Suboptimal query access plans can

be selected from among the set of candidate plans generated based on the analysis of

connection graphs.

5.1.2 Dynamic connection graph and access plan

enumeration

A connection graph represents a set of candidate query execution sequences. For

each given query, the connection graph consists of a set of nodes and a set of edges.

Each node corresponds to a predicate in the query. When two predicates share a

parameter, an edge is added between these two nodes. Since a spatial predicate

is usually implemented by a spatial routine with fixed parameter modes (such as

i n p u t or o u t p u t) , a spatial predicate is ready for computation only if all of its i n p u t

mode parameters have been instantiated. This constraint is reflected in the dynamic

connection graph.

An essential difference between dynamic connection graphs from connection graphs

used in relational query optimization is that the graph nodes of dynamic graphs may

have different statuses. There are three possible statuses for a node in the connection

graph: unavailable, input-available and output-ready. A node is unavailable (de-

noted by a triangle) if the predicate contains some uninstantiated input parameters;

it is input-available (denoted by a square) if all of the i n p u t parameters are instan-

tiated and the predicate is ready for evaluation; and it is output-ready (denoted

by a circle) if the spatial operation has been performed and the output is ready to be

used for other operations. Obviously, the status of a node may change as the analysis

proceeds. The status of an EDB relation node is always output-ready.

C H A P T E R 5. SPATIAL QUERY E X E C U T I O N I N A DOOSDB

Definition 5.1 A connection graph G = (V, E) consists of a set of vertices V and a

set of edges E.

1. V represents a set of nodes, one for each EDB relation or GDB predicate in the

compiled query expression. Each node is in one of the three possible statuses:

unavailable (A), input-available (El), and output-ready (O), and the status may

change dynamically. Each occurrence of a predicate in the compiled query

should be treated as a distinct node (with a distinct label).

2. E represents a set of edges, each connecting two nodes where corresponding

predicates share parameters (attributes). That is,

E = {(v;, vj, A) I v;, vj E V, A is a set of attribute names in both v; and vj).
0

During the query analysis process, a set of candidate graphs (dynamic connection

subgraphs) are maintained. Each candidate graph represents a set of operations that

are valid at the current stage (thus none of the unavailable nodes is included). After

the execution of a spatial operator, an unavailable node may become input-available

and be included into a new candidate graph for the analysis of the next step. Thus

analysis continues until all the components in the graph have been analyzed, and

a suboptimal plan generated. By applying heuristics and statistics obtained during

the execution of geometric procedures, the enumeration process prunes unpromis-

ing access plans and selects ~romising ones. The following assumptions are made

throughout our discussion.

Assumption 1 The input to the optimizer is a set of compiled query expressions.

That is, function symbols are resolved into functional predicates during the recti-

fication process [63]. For example, "geo-union(X, Y) > 100" is converted to

"geo-union(X, Y, Z), Z > 100". A compiled query is in a conjunctive normal form

consisting of EDB predicates, GDB predicates and their transitive closures.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Assumption 2 The only cost considered in the analysis is the computational cost.

The cost of query processing should consist of computational and I/O cost. Since

110 cost is in general proportional to the computational cost, this assumption is

adopted to simplify our discussion. When necessary, I/O cost can be easily taken

into consideration since the 1/0 cost model has been studied extensively in relational

systems.

Assumption 3 Relational and spatial data statistics are available, and the cost es-

timate of spatial operators reflects the complexity of the corresponding spatial algo-

rithms.

Assumption 4 Transitive closures will be handled by deductive techniques. The

approximated cost estimation is available.

Example 5.1 Let us consider the query: find a cedar forest whose area exceeds

10 km2:

? - f orest(X), area(X, A), A > 10, type(X, cedar),

where forest and type are data relations and area is a spatial operator. Of many

possible query execution plans, one could be: (1) performing selection on type, (2)

joining forest and type, and then (3) computing area. It is a reasonable plan since

selection provides a strong constraint, and the retrieval of the EDB relation forest is

less expensive than the computation of the spatial function area.

Similar observations lead to the following heuristics in query plan selection:

1. Only valid operations (excluding uninstantiated predicates) should be consid-

ered at any time,

2. Perform selection first (i.e. push in constants as soon as possible),

3. Computationally less demanding routines should be performed earlier to extract

additional constraints that may reduce the cost of later computations,

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

4. The computation of geometric operations should be delayed since they are in

general more costly than relational ones,

5 . The computation order among several instantiated geometric routines, should

be determined by their cost estimates.

The core of the query plan generation algorithm is an enumeration process which

transforms a connection graph into a tree of candidate access plans. Each candidate

plan consists of a valid operation sequence and its corresponding data flow. An edge

links each operator with its input data. The graph retrieval process is done using a

branch-and-bound algorithm with heuristic search. The estimated cost is based on

the cost of each estimated operation and the size of the input set and is accumulated

along the retrieval path. Edges in the candidate graph are ordered using heuristics.

Here is an outline of the algorithm. Let us first show an example of access plan

generation.

Example 5.2 Let us examine the query, "jlnd one's land pieces (and their areas)

that are suitable for planting both crops and tea trees":

? - crop-land(X, Owner), tea-land(Y, Owner), geo-intersection(X, Y, Z), area(Z, A) .

Notice that crop-land(X, Owner) and tea-land(Y, Owner) are EDB relations,

that geo-intersection(X, Y, Z) is a spatial predicate which takes two input objects X

and Y and returns their intersection in 2, and that area(2 , A) is a spatial predicate

which computes the area A of the region denoted by the input parameter Z. Obvi-

ously, the value of Z must depend on the output of geo-intersection(X, Y, Z) in the

query.

Let c-land, t-land and geo-int refer to crop-land, tea-land, and geo-intersection

respectively. The connection graph is shown in Figure 5.1 (a). The candidate sub-

graph which contains available operations is in Figure 5.1 (a) with currently unavail-

able operations in the dashed box. Node area is excluded from the candidate graph

because it is currently unavailable.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

The first step of the enumeration algorithm has two choices: (i) c-land M t-land, or

(ii) eval(geoint). There are a total of 10 possible graph change sequences (candidate

plans). Figure 5.1 presents two of the plans which correspond to the sequences {(a),

(b), (4, (g)) and { (4, (dl, (el, (f) , (g)) respectively.

cland t-land

eo-int

ct-geo

(c)

-
eo-int eo-int 0

Figure 5.1: Candidate graphs in the enumeration of two access plans.

The first plan PI starts with c-land M t-land. Thus c-land and t-land are merged

into ct-land, and edges (c-land, geo-int, X) and (t-land, geo-int, Y) are consolidated

into one edge (ct-land,geo.int, {X, Y)) as shown in Figure 5.1 (b). The only option

next is to evaluate geo-int which takes inputs X and Y from ct-land and merges the

two nodes into one ct-geo. Since geo-int's output is available to area as input, area

is added to the candidate graph for plan generation, as shown in Figure 5.1 (c). At

this stage, only one choice is available, that is, to evaluate area. The final result is

illustrated in Figure 5.1 (g).

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

The second plan P2 starts by evaluating geo-int, which takes input from c-land

and t-land and changes the status of geo-int into available, and that of area into

input-available as shown in Figure 5.1 (d). There are then four possible choices: (i)

c-land W t-land, (ii) t-land W geo-int, (iii) c-land W geo-int, and (iv) eval(area).

Assume that eval(area) is performed first with input geo-int as shown in Figure 5.1

(e). Nodes geo-int and area are merged into geo-int-area, and the graph becomes

a typical three-way join whose analysis with respect to relational query optimization

has been done [139]. The resulting access plan tree is shown in Figure 5.2 in which a

node with double circles represents an operation.

Figure 5.2: An access plan tree.

Algorithm 5.1 Selection of a suboptimal query access plan for a compiled deductive

spatial query using an enumeration approach.

Input. A compiled deductive spatial query and data statistics.

Output. A suboptimal access plan for the compiled query.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Method.

1. Preprocessing : (i) parse the query, (ii) create a connection graph which

represents the data flow, (iii) initialize the current candidate graph, (iv) set the

upper-bound cost C,;, to maxint, and (v) order the edges of the candidate

graph by the heuristics discussed before.

2. Enumeration : Generate the access plans and select one.

Procedure enumeration(g;, G;, C;, Pi)

/* The current candidate graph g; is a subgraph of the current connection graph

G;, C; is the current accumulated estimated evaluation cost, Pi is the path from

the root of the access plan tree respectively. */

begin

if g; only contains a single available node /* All nodes merged into one */

then if C; < C,;,

then {C,;, := C;;

update the suboptimal path to the current path Pi;)

else /* the current candidate graph has operation candidate. */
for each candidate operation o do

{

C, := estimated cost of operation o on input data;

c;' := c; + c,;
if C;' > C,;,

then return; /* The path is pruned since it is unpromising. */
else

{

append operation o to path Pi to form P,!

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

update the current g; and G; to the new gi and G:

/*The detail of the graph update is presented in the note. */
e n u m e r a t i ~ n (~ ; , G:, C;', Pi);

1
1

end

Note: The graph updates are performed for two legitimate operations as described

below:

[I] Join two available nodes.

(i) merge the vertices and edge(s) involved in operation o into a new node repre-

senting the output relation of o; and (ii) link corresponding edges to the new vertex

and merge edges sharing the same vertices.

[2] Evaluate an input-available node.

(i) update the node status to available, (ii) modify the status of the nodes taking

input from it if necessary, and (iii) include the new input-available nodes and the

appropriate edges into the updated candidate graph.

Theorem 5.1 The dynamic connection graph transformation method generates sub-

optimal access plans.

Proof Sketch : The proof is based on the following observations.

Observation 1 The candidate graph presents all possible choices at any given time

and therefore represents all possible access plans.

Observation 2 A spatial procedure is evaluated only after all of its input parameters

instantiated. Join operations are only ~erformed on two output-ready nodes.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Observation 3 The generated access plans correspond to spanning trees of the con-

nection graph. Every time an edge is selected, two nodes are merged. The process

terminates when all nodes have been merged into one. There are no loops formed by

the selected edges, because all edges adjacent to merged vertices are connected to this

new vertex and edges joining the same vertices are merged. The resulting set satisfies

all predicate conditions.

Observation 4 The generation of access plans is aborted only if the partial cost has

exceeded the upper-bound cost.

5.1.3 Cost estimation and selection of access plans

Cost estimation is crucial in the control of the generation of access plans and in the

selection of generated access plans. Cost estimation and access path selection have

been studied extensively in relational database systems. Some considerations specific

to spatial data processing should be integrated into spatial query optimization.

First, the cost of processing a spatial routine can be estimated based on the history

of the processing and the size of the input parameters. For example, the cost of

processing geo-intersection(X, Y) grows proportionally to the number of sides of each

input polygon. The estimated cost could be formulated as p x number-of-sides(X)

x number-of-sides(Y), where p is a coefficient obtained from experiments. More

precisely, a cost estimation table can be built based on the execution history and

different characteristics of input parameters and spatial computation.

Second, special characteristics should be taken into consideration in the cost es-

timation. One nice property of many spatial predicates is that their output pa-

rameters are functionally dependent on their input parameters. For example, in

geo-intersection(X, Y, Z) , at most one spatial object Z can be generated by taking a

pair of spatial objects X and Y as inputs.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Example 5.3 We examine the cost evaluation process to observe the difference be-

tween the traditional three-way join optimization and the connection graph transfor-

mation approach.

Let I A I be the number of tuples in relation A, and n a e ~ be the number of distinct

values of attribute a in relation A. Assume that I c-land I = I t-land (= 1000, that

I ct-land I= 3000, and that nx,=,Aa,d = n y ~ t A a ~ d = 100.

Plan PI starts with c-land WJ t-land, and the derived 3000 tuples of ct-land form

the input of geo-int. The evaluation of geo-int may generate fewer tuples, say 300,

for further computation. Spatial operators which take two input parameters from two

relations must pairwisely combine the two, i.e. compute the cross product of the two

input sets. Plan P2 starts by evaluating geo-int. Since there are only 100 distinct

values in X and Y from c-land and t-land respectively, the execution input size is

their Cartesian product, 100 x 100, i.e. 10000 tuples. Assuming the same rate for

tuples satisfying geo-int and area as that for geo-int in plan PI, 1000 tuples are fed

into area and resulting geo-int-area with 100 tuples. geo-int-area then participates

in three-way join with c-land and t-land.

Cost estimation leads to a sharp contrast between these two plans. The total cost

of PI is the sum of the cost of joining two relations with 1000 tuples, the cost of

performing 3000 spatial operation geo-int and the cost of computing area 300 times.

On the other hand, the cost of plan P2 is the total cost of performing 10000 geometric

operation geo-int, 1000 evaluation of operator area and of computing the three-way

join of one relation with 100 tuples and two 1000-tuple relations. Experiments have

shown that geometric operations are usually very expensive compared to relational

operations. Obviously, the dominant component of the cost of the second plan is the

11000 geometric operations, which is likely to be much more expensive than the total

cost of plan PI. In this case, after comparing this partial cost of the plan P2 with

the upper-bound cost provided by plan PI, the generation of all access plans starting

with the evaluation of geo-int is terminated. Hence, it is important to use heuristics,

such as delaying geometric operations in the selection of the processing order.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

5.1.4 Analysis

It is well known that the number of possible plans is enormous in the case of a large

graph. The efficiency of access plan generation depends on effective tree pruning.

The branch-and-bound algorithm helps in pruning plans whose partial path cost ex-

ceeds the current upper-bound. With good heuristics, potentially low cost plans are

generated at an early stage so that effective pruning can be achieved.

Simulation experiments have been performed to evaluate 3 different methods. A

reasonable parameter for the cost estimation is the number of edges in the connec-

tion graph of a query, since each edge represents a possible join operation. The cost

is simulated using the accumulated path length in the access plan generation. The

simulation was performed on a SUN14 SPARC/14.28MHz-workstation with 7 MIPS

under the SunOS. The simulation program was written in Sun C compiler without

optimization. The simulation results are presented in Figure 5.3 in which there are

three curves naive, branch-bound and heuristic corresponding to three algorithms:

general search, branch-and-bound, and heuristic branch-and-bound. Each curve illus-

trates the cost of access plan generation and selection as a function of the edges in

the graph.

Curve naive shows that the general search algorithm soon becomes too expensive

to utilize. Using the branch-and-bound algorithm, the search for a partial path whose

cost exceeds the upper-bound value terminates, thus improving the performance of the

algorithm as shown by the curve branch-bound. The heuristics algorithm promotes

the early generation of low cost access plans and prunes less promising paths at an

early stage, thus improving the computation effectively as shown in curve heuristic.

Moreover, the maintenance of candidate graphs which contain only currently valid

actions significantly improves computation efficiency.

In summary, the dynamic connection graph approach captures data flow con-

straints in spatial queries and facilitates effective access plan generation for them.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Lwu 1 nai/

1400

1200 : branch-bound
1000

600 heuristic

400
C'

200

0
6 8 10 12 14 16 18 20

No. of edges

Figure 5.3: Simulation results for three access plan generation methods.

5.2 Set-Oriented Spatial Computation and

Optimization

A major challenge in DOOS query processing is the impedance mismatch between

tuple-oriented spatial computations and set-oriented relational computations. Spatial

computations are usually performed by taking one particular vector of input parame-

ters and performing costly spatial computation by accessing the corresponding spatial

data structures. Such tuple-oriented spatial computation may lead to repetitive ac-

cesses of the same spatial objects and repetitive computations of the same or similar

spatial primitives. Obviously, set-oriented evaluation should be promoted in spatial

computation to minimize redundancy in disk accesses and spatial computations. The

optimization techniques for set-oriented spatial computations are classified into the

following groups according to the nature of optimizations:

1. precomputation and memorization of spatial information,

2. I/O control, buffer management, and pipelined processing,

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

3. set-oriented spatial method computation,

4. approximate or alternative operations with reduced complexity, and

5. rule-based and spatial semantics-based optimization.

5.2.1 Precomputat ion and memorization of spatial

informat ion

This set of techniques can be chosen by the statistics and other meta-information in

the system. It is used for frequently invoked geo-predicates and functions.

Technique 1 Materialization of properties of spatial objects and spatial predicates.

The primitive spatial data, such as lines, points, polygons, etc. stored in the GDB

are information at the primitive level, which are often several levels lower than the

object-level information [I]. Spatial reasoning and query answering are often related

to the information at the object-level. Although the nonspatial object-level informa-

tion, such as the semantic meaning of a polygon, are often stored in the EDB and

linked to the corresponding spatial data via pointers in the SAND architecture [7] ,

some object-level properties, such as the area of a primitive spatial object denoted

by area(Sp-obj,TotalArea), are often defined by spatial algorithms (methods) or

rules. If such object-level information is used frequently, instead of performing spa-

tial computation at the query processing time, it is wise to perform precomputation

and materialize (i.e. store) them as a spatial (EDB) relation. Such a materialized

relation should be updated accordingly if the corresponding spatial data is modified.

Similarly, for other frequently-used, relatively stable, and computationally intensive

spatial predicates, materialization can also be performed by precomputation.

The materialized spatial predicates are treated as existing spatial relations. In-

dexing structures can be constructed on materialized relations to facilitate efficient

access. Incremental updates can be performed on the materialized relations when

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

appropriate. With materialization, dynamic computation of such spatial predicates

is transformed to simple data retrieval of materialized relations.

Technique 2 Precomputation of spatial join relationships and construction of spatial

join indices.

Similarly to the materialization of the spatial predicates relevant to individual

spatial objects, precomputations can be performed on spatial relationships between

two or more spatial objects. For example, adjacent(Ol, 02) is a spatial relationship

between two spatial objects.

The major difficulty for "materialization" of such spatial relationship is the po-

tential huge size of the generated relation. Such a problem can be reduced by an

information-associated spatial join index [94], which stores the join indices of the

spatial relationship which meet certain conditions together with some frequently in-

quired information. For example, a distance-associated join index file in the format

of (Ol.oid, 02.0id, distance(Ol, 0 2)) can be constructed to register the distance rela-

tionship between two spatial objects O1 and 0 2 . To reduce the size of join indices, a

hierarchically organized spatial join index file can be constructed to register the spa-

tial join index relationship for spatial objects belonging to the same hierarchical level

and located within the same local region (see the detailed discussion in Chapter 6).

Spatial relationships between remotely connected objects can be computed based on

the existing spatial relationships by accumulation, transitivity or other computation

methods specified by rules or methods [94].

Technique 3 Memorization of partially computed results.

In the evaluation of spatial queries, repetitive and redundant computations of spa-

tial components or subcomponents may occur within one query or one group of similar

queries, e.g. in the derivation of composite spatial objects, or in comparison with a set

of similar spatial queries, etc. A dynamic tabular technique described below can be

explored to eliminate such redundant spatial computation. A small table is associated

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

with each spatial predicate or method to memorize the previously computed results.

When a method is invoked, its input parameters are checked against the table to see

whether such a set of parameters was computed before. If the corresponding entry is

found in the table, the previously computed result is returned. Otherwise, the method

is invoked, and the table is updated with the insertion of the newly computed results.

Notice that a set of parameters may sometimes generate uninteresting results, such as

value-out-of-bounds, domain-out-of-interest, not-computable, etc. Such precomputed

information should also be registered in the table to avoid repeating such uninteresting

computation as well. The technique is illustrated in the following example.

Example 5.4 Let land-type(0, T) be an EDB relation in which 0 is a spatial ob-

ject and T is the land type of the object, and adjacent and geo-union be two

spatial predicates. Figure 5.4(a) shows the land pieces. Suppose that a method

geo-max-union(T, 0) is a spatial procedure which finds the maximum size of land

pieces suitable for planting crop type T and returns the result in 0, and there are

three types of crops, tl , t2 and ts.

Given a type t and a set of land objects, the major steps involved in finding the

maximum continuous land pieces suitable for planting a type t crop are as follows.

begin

for each object o in land do

if land-type(o, t) then 0 := 0 U {o);

while there exist uncomputed object pairs (ol,02) in 0 do

if adjacent(ol, 0 2) then 0 := 0 - { o l , ~ ~) U {geo-union(ol,02)).

end

For the land pieces shown in Figure 5.4(a), three types, tl, t2 and ts with suitable

land pieces are inquired, which should return {a, b, c, d, e), {a, b, c, d, e, f , g) and

{a, b, c, f , g) respectively. We assume that the name of the union of two land pieces

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Figure 5.4: Derivation of maximum land pieces suitable for planting crops

is obtained by concatenation of the names of the pieces. Let us consider only the

geo-union operation. Without using the tabular method, the execution sequences are

as follows.

tl : a U b, a b u c, d U e, abcU de
t2 : a U b, ab U c, d U e, abc U de, f U g, abcde U fg, and

t 3 : a u b , a b ~ c , f Ug, abcu f g

A total of 14 geo-union's are executed. By replacing repetitive spatial compu-

tations with simple table lookups, the computation will involve only 7 geo-union's

shown with underlines. Figure 5.4(b)-(d) shows the maximum size of land pieces

suitable for planting different kinds of crops. Since the spatial union is more costly

than a simple table lookup, the saving of intermediate computation results and the

transformation of tuple-oriented spatial computations into set-oriented data retrieval

may significantly reduce the cost of query processing.

5.2.2 110 control, buffer management, and pipelined

processing

This set of techniques are commonly used in operating systems and database systems.

However, it is more crucial in spatial databases. Many techniques developed in these

areas can be applied to spatial query processing.

Technique 4 Set-oriented retrieval of spatial objects.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Retrieval of spatial objects and their associated spatial data structures takes a

major portion of the spatial query processing cost. Repetitive accesses of the same

set of spatial objects may happen when computing a spatial join, executing the same

method within a loop, or using the same set of spatial objects in a nested loop within

one method execution. Repetitive spatial data accesses may substantially degrade the

system performance.

Set-oriented secondary-storage access and intelligent buffer management can be

explored in a way similar to that used for the optimization of join operations in

relational database systems. Take spatial join as an example. When a spatial join is

performed on two sets of input spatial objects, the two sets should be fetched in a

set-oriented manner and the fetched spatial objects should remain in main memory

in case they need to be accessed by future join operations. Several interesting spatial

join techniques have been developed by Aref and Samet [7], such as intersection of

spatial-ids or tuple-ids, pushing spatial operators into speXtTact or pushing database

operators into dbeXtTact, etc. These techniques should be explored here to improve the

performance of spatial joins. If the data volume is too large to fit in the main memory,

a reasonable ordering of data access, such as putting the smaller set of spatial objects

in the inner loop of a nested loop join will reduce 1 / 0 access in the spatial join. This

is similar to the optimization of nested loop join in relational query processing.

Technique 5 Creation or destruction of temporary data structures: repetitive us.

pipelined processing.

If some intermediate spatial or relational data is to be retrieved repetitively in

the computation, temporary access structures, such as indexing structures, can be

created to reduce the access cost. On the other hand, if some intermediate spatial

data will never be used again, modification can be performed directly on the spatial

data dynamically generated (note that such modification destroys the intermediate

spatial data or indexing structure) in the sequential or pipelined processing [7] .

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

5.2.3 Set-oriented spatial method computation

This set of techniques are developed for minimizing the effect of impedance mismatch

and reducing redundant geometric computation.

Technique 6 Loop and block optimization within method execution.

Similarly to loop and block optimizations in optimized compiler construction, op-

timized processing can be further explored within the method execution. Data flow

analysis can be performed on a reasonably well-structured method to identify the ex-

pensive or repetitively computed part (such as looping or block structures), especially

for the costly spatial computations. Shared computation of common subexpressions,

group fetching and set-oriented computation, saving of intermediate results, etc., are

useful techniques to optimize the execution of a single method. Many code optimiza-

tion techniques developed in compiler construction can be applied to the optimization

of spatial method computations.

Example 5.5 Common subexpressions within a nested loop can be moved outside

of the loop to save repetitive computations of spatial subroutines in the method

computation. Suppose that the method contains the following block of code,

for i := 1 to m do

for j := 1 to n do
totallzrea[i, j] := geo-area(polygonl [i]) + geo-area(polygon;![j]);

Suppose area(polygonl[i]) and area(polygon2[j]) are costly spatial computations.

By data flow analysis, the code block can be transformed into the following code

block,

for i := 1 to m do

tmpl[i] := geo-area(polygonl [i]).

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

for j := 1 to n do

tmp2[j] := geo-area(polygonz[j]).

for i := 1 to m do

for j := 1 to n do

totallzrea[i, j] := tmpl[i] + tmp2[j];

Obviously, the unoptimized code involves 2 x m x n costly spatial computations;

whereas the optimized code involves only m + n spatial computations. 0

Technique 7 Set-oriented execution of spatial operators and methods.

In a nested loop computation or recursive query evaluation, a spatial method/operator

is often executed iteratively. Calls to the same method using similar parameters may

indicate the potential of repetitive execution. Smart execution ordering and the sav-

ing of partially computed results are important heuristics in the optimization of such

queries.

Example 5.6 In the computation of the areas for a set of pairwise adjacent spatial

objects, one may use the following query expression:

adjacent(X, Y), Totallzrea = area(geo-union(X, Y)).

Suppose that two adjacent objects do not overlap (which may be indicated by a

deduction rule). The expression can be simplified as follows.

adjacent(X, Y), Totallzrea = area(X) + area(Y).

Furthermore, the above expression can be processed by taking advantage of set-

oriented evaluation. For a given set of spatial objects, the computation can be per-

formed by fixing each spatial object X, computing its area area(X), then checking

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

against every other spatial object Y to see whether it is adjacent to X (which can

be done efficiently using an R-tree or another spatial indexing structures), computing

area(Y) only if Y is adjacent to X, and finally returning the sum. Also, for each

computed Y, an entry of (Y, area(Y)) can be inserted into a temporary table. By

such optimization, a region which is not in the answer set will not be computed; fur-

thermore, the area of each (X or Y) region in the answer set needs be computed only

once. 0

5.2.4 Approximate or alternative operations with reduced

complexity

Using alternative operations is based on the following ideas, (i) use simplified compu-

tation where high precision is not required, and (ii) perform refinement only on the

area which may possibly satisfies the query.

Technique 8 Simplified, alternative spatial operations.

Spatial routines carrying the same name (overloaded) with different input or out-

put requirements (i.e. different parameter specifications) may be processed by different

implementations with dramatically different processing complexity. For example, for

the same (overloaded) spatial predicate geo-intersection, testing whet her two spatial

objects (such as two regions) intersect is much less expensive than computing their

intersection. An expert user will use the less costly operator is-geo-intersected in the

query rather than geo-intersection. However, a smart query optimizer should not rely

on the user's expertise but should select the less costly operator automatically by query

requirement analysis (such as the examination of the inquired variables). As another

example, if a query is interested in nonspatial/spatial features only, the computation

of spatial/nonspatial operations can be avoided. Query analysis, which involves pa-

rameter specification analysis and query requirement analysis, can be performed to

identify the necessary operations and reduce more expensive spatial operations to less

expensive ones to save processing cost while still serving the user's interest.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Example 5.7 Let a spatial query be to print the names of the major highways which

pass through the city of Vancouver. Suppose that a relation region(Region-Name,

Region-Geo) is stored in the EDR with Region-Geo pointing to the corresponding

region in the GDB, and the predicate majorhighway is defined by a deductive predi-

cate major-highway(Highway_Name, Highway-Geo). The query can be formulated

in the logic syntax as follows.

? - major-highway(?H_Name, H), region(vancouver, R) ,

geo-intersection(H, R, Hsegments) .

Note that "?" in front of H-Name indicates that only H-Name is inquired in the

query. Based on the above analysis, one processing plan proceeds as follows:

1. Perform selection in the EDB relation region using the region name "vancouver",

and retrieve its geo-region R by following the corresponding geo-pointer;

2. Find each road, H in the road-map which is a major-highway based on the

compiled deduction rule.

3. Check whether each selected major highway H intersects the geo-region R. If

it is, print the name of H.

Notice that in this computation, no full geo-intersection(H, R, Hsegments) is

performed, instead, only a less costly operation is-geo-intersected(H, R) is performed.

Furthermore, no temporary map for the major highway H which are intersected with

Vancouver is created in the computation since the user is only interested in the name

rather than the spatial entity of H. Obviously, other processing plans, such as first

finding the roads in the region of "vancouver" and then checking whether it is a major

highway, etc., are also possible. The one which takes the best advantages of the

characteristics of the query should be the most efficient one for query evaluation.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Technique 9 Approximate computation based on a multi-resolution spatial data model.

Another promising direction in the optimization of spatial computations is to

perform approximate computation based on a multi-resolution spatial data model. A

multi-resolution spatial data model can be constructed based on different granularity

of resolution in the spatial database [117]. For example, a relatively low (coarse)

resolution can be constructed to approximate the original high-resolution database,

which results in a less precise but much smaller sized spatial database. Computation

can be performed first on such a smaller spatial database to locate the interesting

regions and derive approximate results. Refined computations are performed in the

high resolution database, only when necessary, on those interesting regions.

A recent study on efficient computation of spatial joins by Giinther [51] proposes

a generalization tree technique to speed up spatial join computation, which can be

viewed as another interesting example of implementation of spatial operations by a

multi-level or hierarchical approach: A higher-level (bigger) region is first examined

to filter out those regions which cannot participate in the spatial join. Only those

which have not been filtered out will be examined in a refined (lower-level) region.

5.2.5 Rule-based and spatial semant ics-based optimization

Rule- based optimization is commonly used in extensible databases. In spatial database

system, optimization rules can provide optimizer with information about user-defined

spatial operators. Rule- based constraint check may eliminate impossible solutions.

Technique 10 Static constraint/rule enforcement in deductive query compilation.

The techniques for static enforcement of constraints and rules in deductive query

compilation are presented in Chapter 4. Such constraint enforcement will restrict

the compiled query expression to a reduced set with appropriate types, modes, and

spatial operations associated to a simplified compiled expression.

C H A P T E R 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Technique 11 Rule/heuristic-based query plan generation.

Because of the large search space in the generation and selection of suboptimal

query evaluation plans, it is beneficial to specify query optimization rules and heuris-

tics by experts and use them in rule-based query plan generation. Query optimization

using expert query transformation/optimization rules has been studied in extensible

database systems [41, 471. GEO-Kernel [I431 and Gral [54] are two spatial database

systems based on extensible architectures which use rules to describe query transfor-

mation and to choose among different implementations of primitive database opera-

tions and application-dependent operations. Giiting [13] studied many-sorted algebra

supporting extensibility for spatial applications and proposed a translation-rule-based

query optimization method for Gral.

Technique 12 Dynamic constraint enforcement in method and query evaluation.

A spatial algorithm or a spatial operator may pose constraints on the characteris-

tics of the spatial objects to be generated. For example, a geo-union algorithm may

pose constraints on the number of polygon edges generated. A spatial operator, such

as area, may have the following mathematical property:

area(geo-union(A, B)) 5 area(A) + area (B) .

A userlexpert may pose constraints explicitly as part of the query. These constraints

can be enforced in the processing by pushing the constraints as deeply as possible to

filter out the objects which cannot satisfy such constraints at the earliest stage.

Similar to query optimization in extensible spatial database systems [54], rules and

integrity constraints can be used in the optimization of method and query evaluation.

For example, using the constraint, nort h-o f (X , Y) , nort h-o f (Y, X) $, one can

filter out the pairs of objects that cannot satisfy the constraint at the method or query

computation time. Integrity checking can also be performed by precomputation using

constraint networks [36]. The application of other kinds of integrity constraints can

also be explored in the method or query evaluation.

CHAPTER 5. SPATIAL QUERY EXECUTION IN A DOOSDB

Technique 13 Optimization in the computation of aggregate functions based on the

semantics of aggregation.

Spatial aggregate functions are popular in spatial queries. Many spatial aggre-

gates, such as the shortest traversal distance, the maximum-sized region, etc., require

the extraction of the maximum or minimum values from all the possible spatial com-

binations, which could be very costly in computation. However, the nature of the

problem may indicate that it is often unnecessary to compute all of the possible spa-

tial combinations. Heuristics and monotonicity properties can be applied to prune

the search space in computation. Further, saving intermediate results will facilitate

such optimization.

Example 5.8 Let the query be to find the shortest driving distance between two

spatial points (such as two buildings) pl and p2. Since the shortest distance is a

monotonic function, the monotonic behavior of spatial operators can be explored

in the computation. For example, saving the currently derived minimum driving

distance and its associated path for a set of frequently referenced pairs of spatial

points (such as the major road intersections) will be useful at pruning any path with

longer driving distance than the current minimum one. Also, the driving direction

information may also help guide the search. Furthermore, all the paths computed so

far with accumulated distance greater than the currently computed minimum distance

between pl and p2 can be dropped automatically in further computation.

In summary, set-oriented spatial computation techniques can be used to improve

spatial query processing. The application of some of the techniques can be rule-based.

Another techniques can to be integrated into the optimizer. The implement ation

aspect of the technique will be studied in future research.

C H A P T E R 5. SPATIAL QUERY EXECUTION IN A DOOSDB

5.3 Chapter Summary

We have studied deductive spatial query optimization and developed a dynamic con-

nection graph transformation approach for query plan generation and selection. A

candidate graph has been proposed to dynamically maintain currently available op-

eration alternatives; it models the data flow constraints among data relations and

spatial predicates. A systematic transformation from the connection graph to access

plans has been presented. Data statistics and empirical cost estimates of spatial op-

erators are used in cost estimation. Heuristics are applied for preliminary ordering of

different execution options. Thus, the enumeration algorithm generates potentially

promising access plans first, thereby providing a tight upper-bound for pruning less

promising plans at an early stage. Our preliminary experiments indicate that such

an optimization mechanism effectively generates a suboptimal access plan for a given

deductive spatial query.

The dynamic connection graph transformation and optimization techniques are

not limited to spatial database applications. They can be applied to other kinds of

database systems which integrate data relations with complex data types and proce-

dural methods.

In addition to the enumeration approach, other approaches, such as random-

ized search, generic search, etc. have been developed in relational query optimization

[88, 1361. These approaches, in principle, should be applicable to spatial query opti-

mization as well. It is an interesting research issue to apply statistical approaches t o

spatial query optimization. The techniques listed above represent a set of interesting

techniques for set-oriented processing and optimization of spatial queries integrated

with spatial computational methods and deduction rules. Many other query opti-

mization techniques can be further studied and developed in this direction.

Chapter 6

Information- Associated Spatial

Join Index

6.1 Introduction

Spatial range search can be specified using a viewing window. A commonly used

window may be a rectangle, a circle or an annulus. Circular range search is particularly

useful in daily life, environment sciences and aviation. For example, a hazard situation

at a place may affect the region within a specified distance.

Spatial join indexing proposed by Rotem [I191 is a promising approach for answer-

ing queries involving intersection, containment, etc. However, many spatial queries

are related to spatial ranges. The proposed mechanism explored only E-overlap, which

is a fixed distance mapping. It is difficult to construct a large number of spatial join

index files corresponding to different query distance values. Moreover, it is impos-

sible for a database designer to anticipate and enumerate all kinds of query ranges.

Therefore, simple spatial join indices may not be effective for queries involving various

distances or distance ranges among objects. For example, when a query is to find all

spatial objects whose distance from a given spatial object ranges between 10 and 20

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX

kilometers, the 6-overlap approach encounters difficulties since its indexing structure

cannot express this kind of distance range constraints.

In this chapter, a general and flexible indexing structure, the spatial-information-

associated join index, is proposed and investigated. The idea behind the new join

indexing structure is to associate with each join index record some piece(s) of in-

formation (referred to as information attribute(s)), which registers some important

information related to this pair of spatial objects. By precomputing this information

at the spatial join index construction time, the computational cost of spatial data

retrieval can be reduced substantially. Two important and frequently inquired spatial

measurements, distance and orientation, are taken into consideration. By associating

one or both measurements, the spatial-information-associated join indexing structure

provides an efficient way to answer spatial queries, especially, spatial range queries.

A distance-associated join index structure will be the first focus of our inves-

tigation. It is a 3-tuple structure which contains two related object identifiers and

the distance between them. The distance between two spatial objects could be the

geometric distance between their reference points, the shortest highway distance be-

tween them, their Manhattan distance, e t ~ . depending on the application. In general,

this distance information is quite costly to compute. Obviously, the precomputation

and registration of this distance information at index construction time may sub-

stantially reduce the computational cost at query processing time. By organizing

the distance-associated join index records into B+-trees, many complicated distance-

related queries, such as distance-range queries and nearest neighbor queries, can be

answered efficiently.

Based on a basic distance-associated join index structure, two structured distance-

associated join indices, ring-structured and hierarchical, are proposed to enhance

search performance in sophisticated geometric environments. Ring-structured distance-

associated join indices partition the join index file into several index files based on

certain distance ranges. A query related to a given spatial range only needs to ac-

cess those ring index structures which overlap with the inquired range. Hierarchical

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 86

distance-associated join indices resemble multiple-scaled maps, where smaller objects

such as houses and buildings are associated with nearby objects such as highway inter-

sections or major buildings. This method reduces the overall join index file size, and

it can be used for hierarchically organized spatial environments. An important appli-

cation of the hierarchical distance-associated join index is the search for the shortest

distance between two spatial objects. Finding the shortest path can be accomplished

by a sequence of join operations.

By adding an orientation attribute, the distance-associated join indexing structure

can be further extended for efficient processing of queries relevant to distance and/or

orientation. Such a spatial-information-associated join index structure is a 4-

tuple structure containing both distance and orientation information. Thus, the basic

distance-associated join index is extended to a basic spatial-information-associated

join index. Two dimensional indexing structures can be constructed based on the

preference of either distance or orientation. Moreover, a zone-structured join index

can be constructed from the ring-structured distance-associated join index with an-

gular subdivision. Such zone-structured join indices partition the join index file into

zones based on the distance and orientation ranges. Thus, objects located in the same

"zone" are clustered in the join index file. Similarly, a hierarchical distance-associated

join index can be enhanced with directional information to form a hierarchical spatial-

information-associated join index. In general, a spatial-informat ion-associated join in-

dex structure stores the precomputed distance and orientation information. It reduces

or avoids geometric computation at query processing time and thus substantially im-

proves the performance of spatial query processing. This is the motivation for the

construction of spatial-information-associated join indices.

CHAPTER 6. INFORMATION- ASS0 CIATED SPATIAL JOIN INDEX 8 7

6.2 Distance- Associated Join Indices for Distance

Range Search

Spatial joins are common in databases which store images, pictures, maps and draw-

ings. Such joins are costly to compute, hence the use of spatial join indices can be

valuable, provided that they can be created and maintained efficiently. Since many

spatial joins are performed among spatial objects within certain distance ranges, and

since many other distance-related joins can be considered as special cases of spatial

range joins, our design pays special attention to spatial range queries, which inquires

about certain spatial objects in relation to other spatial objects within a certain dis-

tance range.

As an example of range queries, consider a region map database in which schools,

galleries and regional parks, are marked as points or small regions. The following

kinds of spatial range queries are often made.

1. Given a location, find regional parks that are beyond 30 miles but within 60

miles of this location.

2. Find every gallery-school pair whose distance is less than 1 mile.

The distance-related predicate of these queries can be abstracted into the following

form,

Dm;, < distance(A, B) < Dm,,,

where Dm;, and Dm,, are variables.

Notice that distance(A, B) 5 Dm,, can be a special case in which Dm;, = 0.

To facilitate spatial joins in complex environments, three kinds of distance-associated

spatial join indices are proposed and studied in the following three subsections: basic,

ring-structured and hierarchical.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 88

6.2.1 Basic distance-associated join index

Basic distance-associated join indices (basic DJI, or BDJI) are an indexing mechanism

which associates with two spatial objects (i.e. their identifiers) a piece of distance

information. It optimizes distance-related queries by computing the distance between

every pair of static spatial objects at index construction time rather than at query

processing time. Therefore, the information about the distance between any two

spatial objects is available in the spatial join index at query processing time.

6.2.1.1 Definition and construction

Definition 6.1 Given two spatial relations R1 and R2, the basic distance-associated

join index records are generated by associating with each pair of objects o; E R1

and 02 E R2 the distance between them.

BDJI = { (~ ; , o j , d ; ,~) I o; E R1 A oj E R2 A d;,j = distance(o;,oj)),

where distance(o;, oj) is a function which takes two object identifiers o; and oj and

returns the distance between these two objects.

Notice that distance(o;, oj) is usually defined according to the specific application.

For example, the distance between two buildings can be defined as the distance from

the center of one building to the center of the other, the shortest distance between

them, or their Manhattan distance (the shortest street distance), etc. The compu-

tation of distance may involve I/O and complex geometric computations and is thus

a relatively expensive process. The distance attribute in the join index record can

be used to directly answer queries about the distance between two spatial objects, or

answer spatial range queries by comparing it against the distance constraints provided

in the queries.

The basic distance-associated join indices are constructed as follows. Join indices

are sorted first by the first attribute, so that queries related to a specified object can

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX

be answered efficiently. B+-tree is built on the primary index. Records with the

same first attribute value are then sorted according to their distance attributes. To

speed up search for range queries, a secondary index is created based on the values

of the distance attribute. We now present the algorithms used for creation, retrieval,

and maintenance of basic DJIs.

Algorithm 6.1 Creation of a basic distance-associated join index.

Input. Spatial object relations R1 and R2.

Output. Construction of a basic DJI.

Method.

1. For each pair of spatial objects 0; and oj, where o; E R1 and oj E R2, compute

their distance and generate an index record (o;, oj, d; j) .

2. Sort the DJI records by their first attribute and construct the primary index for

the DJI.

3. Sort every subset of index records with identical first attributes, sort the records

according to the distance attribute and construct a secondary index.

To simplify our analysis, it is assumed that R1 and Rz contain the same objects,

that is, the DJI's thus constructed will reflect the spatial distance relationship within

a unique set of spatial objects. It is straightforward to generalize the results to DJI's

between two distinct sets of spatial objects.

Theorem 6.1 The time complexity for the construction of the basic distance-associated

join index of a database with N spatial objects is 0 (N 2 log N) .

Proof: Pairing up N objects and computing the distance between each pair, the first

step takes 0 (N 2) . The time complexity of the second step, sorting N 2 records, is

0 (N 2 log N 2) , i.e. 0 (N 2 log N) . The size of the secondary index for each object is

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 90

N - 1 and it takes O(N log N) to sort the records. There are N groups of such indices

so the third step takes 0 (N 2 log N) . Therefore, the overall computational complexity

is 0 (N 2 log N).

To illustrate the algorithm, the indices for three simple spatial objects are shown in

Figure 6.1. Indices are first sorted by the first attribute, i.e. ol,02 and 03. Records with

the same first attribute value are then sorted by their distance value. For example,

for the same first attribute ol, the second attribute 03 is before 0 2 because 03 is closer

to 01 than 02.

Figure 6.1: Indices for three spatial objects.

6.2.1.2 Retrieval of spatial objects

Suppose that a basic DJI file is constructed on N spatial objects. We now present a

retrieval algorithm for the spatial range query: Find all objects whose distance from

object o; is between Dm;, and D,,,.

Algorithm 6.2 Data retrieval for a typical spatial range query.

Input. (i) an object identifier o;, (ii) the query distance range (Dm;,, Dm,,].

Output. Every object in the database whose distance from o; is within the range.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 91

Method.

1. Search for object o; using the primary index,

2. Search along the secondary index until the distance value reaches Dm;,, and

3. Read the leaf index records until the distance value becomes greater than Dm,,.

0

Theorem 6.2 The computational complexity ofthe algorithm for retrieving a database

with N objects using distance-associated join index is O(1og N + k).

Proof: Since the time complexity for the retrieval of an object in a database of N

objects using B-trees is O(1og N), each of the first and second steps takes O(1og N)

I/O time. The I/O cost in the third step, k, is proportional to the number of tuples

satisfying the query divided by the number of index records stored in one data page.

Therefore, the time complexity for retrieval is O(1og N). 0

This index structure also facilitates the processing of other similar kinds of queries.

For example,

1. the search for the spatial object which is closest to a given one, which takes

O(1og N) time; and

2. the search for all pairs of spatial objects satisfying a given distance constraint,

which takes O(N log N + k) time.

Example 6.1 Range search using basic DJI.

Given object 02, find all of the objects whose distance from 02 is between 300

and 450. Figure 6.2 shows a portion of the B+-tree. The search proceeds as follows.

Search for 02 using the primary index, which selects record R1. Search for 300 using

the secondary index, which obtains record r l . Following the linked list at the leaf-level,

C H A P T E R 6. INFORMATION- ASSOCIATED SPATIAL JOIN INDEX 92

the search reaches record r2 which is beyond D,,,. Thus, the retrieval terminates

with one resulting object ol returned. The search path is indicated using the dark

arrows. 0

Figure 6.2: Processing a spatial range query using the basic DJI.

Not only can the basic DJI be created and used efficiently for data retrieval as

shown above, but they are also easy to maintain. The following algorithm handles

the insertion of spatial objects. It is easy to extend this algorithm to handle deletions

and updates.

Algorithm 6.3 Updating the basic DJI after the insertion of a spatial object

Input. Object o; to be inserted

Output. An updated basic DJI after o; is inserted into the database.

Method.

1. For each spatial object oj in the database, construct the basic DJI record

(o;, oj , d; j) and the record (oj, 0; , dj,;) ;

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 93

2. Cluster the index records whose first attribute is o; and sort them according to

the distance values;

3. Construct a B+-tree on this set of records and insert it into the existing B+-tree

(for DJI's) as a branch;

4. Insert each record (o j , o;, djTi) into the existing B+-tree (for D JI's).

Theorem 6.3 The time complexity of the insertion algorithm used in an insertion of

a database with N objects is O(N log N) .

Proof: Ignoring the cost of object distance computation as discussed previously, the

first step takes O(N) time to construct N basic DJI records. The second step takes

O(N log N) time to sort them. The third step takes O(1og N) to find the right place

to insert the new set of index records. Finally, the fourth step requires O (N log N)

time to insert N records. Therefore, computational complexity of the algorithm is

O(N log N) . 0

Similarly, the deletion of a spatial object from the database will also take O(N log N)

time. Since the basic DJI provides a reasonable cost for index maintenance, it is ex-

pected to be an interesting candidate to replace the runtime geometric computation of

distances between sets of objects. However, since distance-associated join indices pro-

vide association among all pairs of spatial objects, the total number of index records

to be maintained in the basic DJI file will be the square of the number of spatial

objects in the database. As the number of objects in the database increases, the size

of the basic DJI file will increase quadratically. It will thus be impractical to construct

and store such a huge index file for relatively large spatial database.

Fortunately, many range searches in practical applications are confined to the

vicinity of a spatial object. It is natural to specify a cutting radius (or scope value)

for most spatial objects. For example, a fire station 60 miles away should be ruled

out as a candidate to use in an emergency. In this case, 60 miles may be set as its

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 94

cutting radius. Two objects are related if and only if the distance between them is

within their specified cutting radii.

6.2.2 Ring-structured distance-associated join index

Following the same philosophy of reducing the size of distance-associated join index

files, a ring-structured distance-associated join index (ring-structured DJI or RDJI)

can be constructed. The ring structure partitions one DJI file into several files based

on different distance ranges. For example, the objects with a distance within 100

meters are partitioned into one ring, those with a distance between 100 to 500 meters

are partitioned into the second ring, etc. For a query over a specified spatial range,

the search can be confined only to those ring-structured DJI files which overlap the

specified range.

Different standards can be used as the criteria in the partition or creation of ring-

structured DJI's, such as equal-distance, equal-area, progressively increasing distance

range, etc.

Definition 6.2 Given a set of n distance radii, each rk specified by rk = R(k), where

R(k) is a function which decides the radii for ring k, a set of the ring-structured

distance-associated join indices is a set of join index files, each of which is con-

structed corresponding to the rings specified by the radii, that is,

where k = 1, ..., n.

The index construction algorithm is similar to Algorithm-6.1. Figure 6.3 (a) shows a

set of concentric rings centered at 01 with equal-distance radii: rk: = 10 x k, k = 1,2,3.

Figure 6.3 (b) illustrates portions of ring-structured DJI files. For example, if a spatial

range query inquires about spatial objects whose distance from each other between

10 and 20, only the file rdji2 is searched.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 95

L rdjil

02 1 04 1 6 --------- I":" I

(4 (b)

Figure 6.3: An example of a ring-structured DJI.

We now present a spatial range query retrieval algorithm using the ring-structured

DJI.

Algorithm 6.4 Data retrieval for a spatial range query using the ring-structured

index structure.

Input. (i) an object identifier o;, (ii) the query distance range (D,;,, Dm,,].

Output. Every spatial object whose distance from oi is within the specified range.

Method.

1. Select the ring files which overlap with the query range. A ring index file should

be searched if (i) its lower or upper distance bound lies between Dm;, and D,,,,

or (ii) Dm;, or Dm,, is within its lower and upper distance bounds.

2. For each selected ring index file,

[I] Search for the inquired object identifier using the primary index;

[2] If the ring's range is completely covered by the query range, collect all

objects in the index files related to the object identifier.

[3] If the ring's range is partially covered by the specified query range, search

in the secondary index to find and collect the portion which lies within the

specified query range.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 96

The time complexity for processing a spatial range query using the ring-structured

DJI structure should be the same as that using the basic DJI. However, because the

ring structure partitions the basic DJI file into several smaller files, given a speci-

fied distance range, the files to be searched can be determined before accessing the

database. Therefore, it is expected that the ring structure may improve the perfor-

mance of query processing when compared with the basic DJI.

The ring structure has obvious advantages over the basic DJI when the spatial

range of the query is covered by one or a small number of rings. If the full range

of a ring is completely within the specified query range, there is no need to compare

the distance values since every object in the ring whose first object identifier matches

the specified object identifier satisfies the query. When the spatial range in a query

involves many rings, it requires the search of the primary index of each involved

ring. Searching many rings may add overhead to memory and buffer management.

Therefore, we need to partition the distance-associated join indices wisely in the

construction of ring-structured DJI files. For example, one may choose the radius

for the innermost ring to be 100 meters for the queries on neighborhood, and the

second ring to be from 100 to 1000 meters for those relevant to shopping, schooling,

bus-stops, etc. By doing so, frequent inquiries are likely to use only one or a small

number of rings.

6.2.3 Hierarchical distance-associat ed join index

Since both basic DJI and ring-structured DJI store all of the spatial object pairs of

a spatial data relation, the size of the total index file(s) is proportional to the size of

the cross-product of the spatial relation with itself (notice that only the keys rather

than full tuples are stored). For a reasonably large spatial data relation, it is often

impractical and unnecessary to consider all pairs of spatial objects. For example, it is

rarely useful to relate school buildings in one city to houses in another suburban city.

Hierarchical views are commonly used in solving spatial problems in a complex

world. When scheduling a flight from one continent to another, most small cities

C H A P T E R 6. INFORMATION- A S S 0 CIATED SPATIAL JOIN INDEX

are ignored in the planning. When driving a car to work, most individual hocses

are omitted in the calculation. Based on a similar point of view and assumption,

spatial objects can be partitioned and classified correspondingly to fit into maps with

different scales.

Analogously to multi-scale maps, a hierarchical distance-associated join index (hi-

erarchical DJI or HDJI) can be constructed to organize spatial objects into different

levels. Within one city block, it could be useful to construct distance-associated

join indices to represent distances between individual houses and street intersections.

With a larger scale, only highway intersections or major buildings in the city will be

represented in the join indices. Queries about the distance between your house and

your friend's in another suburban city can still be answered by referring to more than

one hierarchical join index file.

Suppose that a spatial data relation consists of 1 interrelated object sets R1, R2,

. . . , Rl, with different scale scope values S1, S2, . . . , Sl respectively, where the scope

value of S; is an order of magnitude larger than that of S;-l. For example, the distance

between two houses is on the order of 10 meters whereas the distance between highway

intersections is at an order of 1000 meters. An object in R; is at a higher level than

one in R j when i > j. Each object at level i has one parent object at level i+ l , and

this parent object should also be included in the join indices for class C;. That is,

object classes are constructed as follows:

Definition 6.3 Given R1, . . . , Rr, Crl, C I ~ , . . . , Clnl is a partition of RI and

Cil, Ci2,. . . ,Gin, is a partition of R; U R;+l where i = 1 , . . . , I - 1.

A set of hierarchical distance-associated join indices are constructed on the

object classes. The join index on Ck is constructed based on the following formula,

where k = 1,. . . , n and m = 1,. . . , n k .

Figure 6.4 shows a simple example of a hierarchical tree.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 98

{Vancouver, Burnaby}

BC) {Burnaby, D

Figure 6.4: A sample hierarchy for a HDJI

The following theorem shows that hierarchical D J I reduces the space complexity

for the distance-associated join index, where the degree for a nonleaf-node is the

number of direct child-nodes, and the ratio between the maximum degree and the

minimum degree of the hierarchy is assumed to be bounded by a constant.

Theorem 6.4 The space complexity Sind of the hierarchical distance-associated join

indices of a database with N objects is

where the minimum and the maximum number of children of non-leaf nodes are k and

Ii respectively, where c denotes rf l , and 1 + 1 is the number of levels in the hierarchy.

Proof: Consider the tree T whose edges at a given level denote the spatial objects,

whose internal nodes vl, . . . , v, represent related object sets, and whose m leaves are

at level I . The number of index records corresponding to an internal node v; equals

the number of pairs of objects that belong to the object set stored at v;.

CHAPTER 6. INFORMATION- ASS0 CIATED SPATIAL JOIN INDEX 99

Since avg deg(vi) = (2N - m)/n, it follows that N/n I avg deg(vi) I (2N)/n, and

we get maxdeg(v;) < 2cN/n and mindeg(v;) > N/(cn). Therefore, we see that

Sind = F (deFi')

On the other hand,

Because

we have
N 2 (K - 1) 2c2N2(k - 1)
2c2 (K" 1) - N I S i n d I kl - 1

When 1 = 1 the complexity is 0 (N 2) . Consider another instance where the HDJI

is stored as a complete k-ary tree, then k = I< and 1 = logk N . Thus we get

2N2(k - 1)
S i n d I N - 1

and therefore Sind E O(kN).

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 100

6.2.3.1 Hierarchical DJI retrieval

Suppose that a range query is to find all objects within a certain distance range

(Dmin, Dmax] from a given object 0;. In most cases, solving a range query using the

hierarchical DJI involves searching the hierarchical DJI's by climbing up and stepping

down the hierarchy. Thus, a search can be partitioned into two phases: the ascending

phase and the descending phase. First, find the class level I such that o; is in Rl.

Then, collect the objects whose distance from o; is between Dmin and Dm,, by joining

the partitioned index files whose objects are located within the range. Suppose the

current scope is s l . If sl < Dm,,, climb up the hierarchy by joining the upper level

spatial join index file. In the ascending phase, an object whose distance from o; is less

than Dm;, minus the lower level scope value will not be included in the intermediate

relation T for later descending, because its descendants, distance to o; will always

be less than D,;,. However, it should be included in the temporary relation Temp

for further ascent since further ascending may generate satisfiable answers. In the

descending phase, an object whose distance from o; is less than Dm;, minus lower

level scope value or greater than Dm,, will not be collected in T since its descendants

cannot satisfy the query. At the end, only the objects whose distance from o; lies

between Dm;, and Dm,, will be included in the result relation. Notice that a newly

generated index with a shorter distance will replace the index of the same object

pair with a longer path distance. In other words, the object distance stored in every

intermediate or final relation is the shortest path distance.

Algorithm 6.5 Processing of a range query using the hierarchical D JI.

Input. (i) a spatial object o;, and (ii) the spatial range: Dm;, and Dm,,.

Output. All spatial objects oj such that Dm;, < distance(oi,oj) 5 Dm,,.

Method.

1. [Initialization] (assuming So = 0).

Find level such that 0; E RI,,,~;

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 101

level; := level;

2. [Ascending phase]

while Sleve~ < Dmax do {

3. [Descending phase]

while level > level; do {

4. return oj where {oj I (o;, oj, d i j) E T A dij > Dm;,)

A detailed query execution process is presented in the following example.

Example 6.2 A range query on the hierarchical index.

Figure 6.5 shows a two-level hierarchical distance-associated join index (HDJI)

where S1 = 1000 and S2 = 10 for a simple object setting. Given an inquired object

022, find all objects whose distance from 0 2 2 is between 200 and 450.

1. First, search for object 0 2 2 in the hierarchical DJI.

2. By hierarchical ascent, T = {(022,01,403)).

3. By hierarchical descent, T = {(022,01,403), (022,011,406), (022,012,408)).

CXAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 102

Notice that at the first iteration in the ascending phase, (022, 02,3) is included in

the temporary relation Temp but not in the result relation T because the sum of 3

and 0 is less than the lower bound 200. However, it is used for the computation of the

shortest distance to object ol. The records related to 03 are not generated because its

accumulated distance to 022 has exceeded the upper bound of the range. Therefore,

the answer to the query is 01, 011, 012.

(b) level 2 index

022
(a) A set of objects

01 1 012 1 5
I - - - 1 - -

---I--- J - -

011 , 012 1 4

012 ' o l l ' 4 ---I--- J - -

012 1 01 1 5

(c) level 1 index

Figure 6.5: A simple two-level DJI and the index graph.

6.2.3.2 Hierarchical structure for shortest distance on a network

Interestingly, hierarchical DJI allows the shortest distance between two spatial objects

be found efficiently, such as finding the shortest distance from a person's house to

his/her friend's house. This can be realized by a simple modification of the data

retrieval process presented in Algorithm-6.5. Notice that in this case the hierarchical

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 103

index structure H D J I k = {(o;, oj, d; j)) indicates that for each pair of objects o; and

oj, there exists a path between o; and oj, and d;,j is the distance of the shortest path

between o; and oj.

The idea used for the shortest distance algorithm is as follows. Starting from

the leaf level of the hierarchy, find the two inquired objects. If the two objects, o;

and oj are directly related, the stored distance is returned and the search terminates.

Otherwise, climb up the hierarchy in both directions. That is, starting at set Ti and

Tj which contain objects o; and oj respectively, climb up the hierarchy by joining the

hierarchical D J I file at one level higher than the current level and check whether the

paths from the two sets reach a common node. At each level, newly generated records

are stored in DT; and DTj , respectively. The paths which reach a common node form

a complete path from o; to oj. For every pair of objects in the index construction and

retrieval processes, only the one with the shortest path distance is kept.

Algorithm 6.6 Search for the shortest distance between two given spatial objects.

Input. (i) two spatial objects with identifiers o; and oj.

Output. The shortest distance between the two spatial objects in the spatial database.

Method.

1. Find o; and oj in the join index files using the primary indices.

then return (dilk)

else {Tj := {(oil oh, dj,k) I (oj, Ok, dj,k) E H D J I I } ;

level; := 1;

repeat

level := level + 1;

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 104

Example 6.3 Shortest distance by hierarchical DJI.

Let the query be "find the shortest distance between 011 and 0 2 2 in Figure 6.6". The

search proceeds as follows. At level one, Ti = ((011, 012,6), (011,013,8), (011,01, 9)),

and Tj = { (0 2 ~ ~ 02,7), (022, 021,8), (0 2 2 , 023~9)) . Clearly, the search should climb up

the hierarchy. At level two, DTi = ((011~02,107))~ Ti = { (011,012~6)~ (011,013,8),

(oll,ol,9), (oll,o2,107)). Since DTj = {(022,01,107)) and Tj = { (022,02,7), (022,021,8),

(o ~ ~ , 023,9), (o ~ ~ , ol, 107)), the shortest distance between o; and oj is found, which is

107 + 7 = 114. 0

Notice that the above algorithm and the example find only the shortest distance

between two spatial objects, but not the shortest path since the path information,

which covers a sequence of intermediate nodes, is not maintained in the spatial join

indices. Many applications need to find the shortest traversal path among a set

of spatial objects. Such queries can be solved by modifying of the spatial join index

record slightly. To find the shortest paths, an extra attribute path should be associated

with the join index, which registers the shortest path between two spatial objects

represented as a sequence of intermediate objects. That is, the join index record

should be

H D J I = {(oi,oj,di,j,pi,j)),

where pi j is the sequence of objects which form the shortest path from object o; to

object oj. During join operations of hierarchical join indices, the two paths should be

concatenated to form the shortest path between the spatial objects at different levels

CHAPTER 6. INFORMATION- ASS0 CIATED SPATIAL JOIN INDEX 105

level 2 index
level 1 index

Figure 6.6: Search for the shortest distance between two spatial objects.

of hierarchy. Except for the data related to this path information, the remainder of

the algorithm is the same as Algorithm-6.6.

6.2.4 Distance-associat ed spatial join index for nonzero-sized

spatial objects

Although the previous discussions treat spatial objects as abstract points in their

distance computation, distance-associated spatial join indices apply equally well to

nonzero-sized spatial objects. For the basic DJI and the ring-structured DJI, the dis-

tances between two spatial objects (points/lines/polygons) can be defined according

to particular applications, e.g. the shortest distance from a point to a line or the

distance between the centers of two polygons. The algorithms developed for the basic

DJI and ring-structured DJI can be applied directly to these cases.

It may not be so straightforward to apply the hierarchal DJI algorithm to con-

struct and manipulate the hierarchically organized spatial join indexing structures

for nonzero-sized spatial objects. A spatial hierarchy can be organized based on the

CHAPTER 6. INFORMATION- ASS0 CIATED SPATIAL JOIN INDEX 106

semantic structures of spatial data, such as administration hierarchy, or physical data

structure, such as R-trees. For the hierarchical DJI, an additional spatial bounding

information needs to be associated with each object.

At the leaf level, each nonzero-sized object o; has a minimum bounding rectangle

(MBR), denoted by o;.minx, o;.miny, o;.maxx, o;.maxy referring to the minimum-x,

minimum-y, maximumx and maximumy of its bounding rectangle. The MBR of

a higher level object can in turn be constructed by finding the minimum bounding

rectangle for those of all its child-nodes.

Given an inquired object o;, the retrieval algorithm can be modified as follows.

Notice that the MBR of a parent (ancestor) node covers that of the inquire object.

In the ascending phase, the criterion for stopping ascending a hierarchy at a parent

node or, is modified as follows,

Similarly, in the descending phase, the condition for discard node oj which cannot

possibly satisfy the query consists of the following two parts.

1. Maximum distance is less than Dm;,

Let AX and AY be maximum(o;.maxx, oj.maxx) - minimum(o;.minx, oj.minx)

and maximum(o;.maxy, oj.maxy) - minimum(o;.miny, oj.miny) respectively.

The condition can be expressed as follows,

2. The minimum distance between the bounding rectangles is greater than D,,,.

Let x;j, xi;, y;j, yj; be defined as follows.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 107

The second cutting criterion can be specified by the following Boolean expression

Substituting these algorithm control conditions into Algorithm 5 , we have the

hierarchical DJI retrieval algorithm for nonzero-sized objects.

6.3 Spatial-Information-Associated Join Index

with the Orientation Component

Some spatial queries require information that are relevant to the relative orientation of

spatial objects. For example, one may need to find the schools in a district, located to

the east of John's house. Many other spatial queries, although they may not be directly

indicating orientation values, may use the orientation information to reduce the search

space. For example, to drive from your house to your friend's, it is important to have

the direction information available. Therefore, in many applications, it is beneficial to

construct orientation-associated join indices. Similarly to the case of distance-

associated join indices, an index record should be in the form of (o;, oj , angle;,j) where

angle is the angle formed between the vector from o; to oj and a reference axis, such

as the X-axis.

An orientation-associated join index can be constructed as follows. The range

of the angular space for an orientation-associated join index, (usually 0" to 360•‹),

is divided into several zones defined by angle values. Index records are first sorted

by the first attribute with a primary B+-tree structure. Objects with the same first

attribute are then sorted by the angle attribute. A radix index can be used for fast

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 108

retrieval so that the secondary indexing retrieval time can be constant. The total

retrieval time complexity for a database with N spatial objects is O(1og N).

In general, these two frequently used pieces of information, distance and orienta-

tion, can be combined to form a relatively general spatial-information-associated

join index . Many spatial queries are relevant to both of them, such as finding all

the restaurants within 1000 meters of the conference center and located to the east of

it. In such cases, the query is associated with two spatial predicates of the form

where Dm;,, Dm,,, A,;, and A,,, are specified in the query.

Clearly, a general spatial-information-associated join index facilitates the process-

ing of such spatial range queries. With information pertaining to both distance and

orientation dimensions, a user can specify any two-dimensional range. Furthermore,

since such a structure maintains both pieces of information, it facilitates the processing

of spatial range queries relevant to distance only, orientation only, or their combina-

tion. The shortest distance or the shortest path problem addressed above can be

solved more efficiently with the help of the available spatial orientation information.

The information-associated join index is a general indexing data structure. Its

scope of use is application-related and could be best suited for the situations where (i)

a given geometric information is frequently inquired about, (ii) the spatial information

is computationally expensive, and (iii) the solution is simple. For example, if the

areas of intersection of objects in two thematic maps are frequently inquired about,

an area-associated join index may be built. Only when two regions are overlapping

and an index record need to be stored in the index, such a structure may facilitate

finding the intersection of a pair of specified objects and its area. Clearly, a general

spatial-information-associated join index can facilitate the processing of many spatial

queries.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 109

6.3.1 Basic spatial-information-associated join index

As an extension to the basic distance-associated join index, a basic spatial-information-

associated join index (basic SJ I or B S J I) can be defined as follows.

Definition 6.4 Given two spatial object relations R1 and R2, the basic spatial-

information-associated join index records are generated by coupling object iden-

tifier pairs in R1 and R2 respectively with the information about the distance between

them and their orientation.

where the angle(o;, o j) is the angle that the vector o; -t oj forms with respect to the

X-axis in the range between 0" and 360".

According to this definition, it is obvious that distance(oj, 0;) = distance(o;, o j) ,

and that angle(oj,o;) = (angle(o; ,oj) + 180) mod 360.

The distance and angular attributes in the join index record can be used to di-

rectly answer queries about distance between two spatial objects, their orientation,

the predicates containing these constraints or their combinations. They can also be

used to answer spatial range queries by satisfying the distance and/or orientation

constraints provided in the queries.

Two pieces of spatial information lead to the organization of the spatial indexing

structures in two dimensions. Multi-key indexing structures, such as grid files [105],

can be applied in the construction of spatial-information-associated join indices. Here

we present a two-level structure for the construction of such join indices.

In order to efficiently process distance- and/or orientation- related queries, index

records should be clustered. One may select a preferable attribute as the primary

clustering attribute. Based on the operational frequency, different indexing prior-

ities may be established. A distance preference index structure sorts the distance

C'HAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 110

attribute before sorting the orientation attribute, whereas an orientation preference

index structure sorts the orientation attribute first and then the distance attribute.

Taking a distance preference indexing structure as an example, the basic SJI struc-

ture can be constructed as follows. First, the indexing records are sorted by the first

object identifier attribute (primary index). A B+-tree is constructed on the primary

index. Second, each subset of records with a given first attribute value is then sorted

by the preferable attribute, which is the distance attribute in this case. Another level

of index is created on the value of this attribute. Finally, each subset of the records

with a given object identifier and a given distance attribute can be further sorted

according to the orient ation. The detailed construction and retrieval algorithms for

the basic SJI are similar to those for the basic DJI.

Similarly to the case of basic distance-associated join index, the size of the basic

SJI file increases quadratically when the number of objects in the database increases.

It will be impractical to construct and store such a huge index file for a relatively large

size of spatial database. In the following subsection, an extension to ring-structured

DJI based on orientation subdivision, called a zone-structured spatial-information-

associated join index, is designed for improved performance.

6.3.2 Zone-struct ured spatial-information-associated join

index

The motivation behind the construction of a "zonen-like structure is to take into

consideration the combination of distance and orientation information in the index

clustering. Many queries need to consider spatial objects within a zone which often

crosses the boundaries of both a refined distance and a refined angle. The zone

structure partitions a spatial-information-associated join index file into groups based

on different distance and orientation ranges. Objects which are close to each other in

space are clustered in the index file. For example, the objects whose distance from

a given object o; is smaller than 100 meters are stored in one ring, those whose with

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 111

the distance from o; lies between 100 and 500 meters are stored in the second ring,

etc. Each ring is further subdivided according to angle ranges. The rings close to

the center may be divided into fewer zones than the ones which are farther from the

center. For a query with a specified spatial range, the search can be confined to only

those zones in the SJI file which overlap the inquired ranges.

Different standards can be used as the criteria in the partition or creation of

zone-structured SJI's, such as equal-distance-and-equal-angle divisions, equal-area di-

visions, progressively increasing distance range, e t ~ . Let the area set which specifies

the zone z;,j be Z(i , j) . The key to the zone division is that it must be easy to deter-

mine whether it overlaps with an inquired range. For instance, consider an example

with equal-distance (a given A r) and equal-angle (a given Aa) division,

Z (i , j) = {(d,a) 1 A r x (i - 1) < d 5 A r x i A A a x (j -1) < a 5 A a x j),

for i = 1, . . . , n and j = 1, . . . , 360" t Aa.

Definition 6.5 Given a set ofzones, z;,j specified by Z(i, j), a set of zone-structured
spatial-information-associated join indices can be constructed which corresponds

to the zones specified by Z(i, j), i.e.

Figure 6.7(a) shows a set of concentric rings centered at 01 with equal-distance

radii: r l = 10, r2 = 20, r3 = 30 and A a = 45'. Figure 6.7(b) illustrates a portion of

the corresponding zone-structured SJI file. In this example, if a spatial query requires

information about spatial objects whose distance from ol ranges between 10 and 30,

and whose orientation relative to 01 ranges between 0" and 45', only zone ZSJ12,1 is

searched.

A zone-structured SJI is constructed as follows. First, all index records in a given

zone are clustered with an index pointer pointing to the beginning of the indices of

the zone. Inside the zone, the indices may be sorted first by the distance and then

CVMTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 112

Figure 6.7: An example of zone-structured SJI.

by orientation. The size of the zone influences the efficiency of data retrieval. One

index page can be used to hold the indices in each zone. Because of the regularity of

the zone subdivision, given a distance range and/or an orientation range, the related

zone(s) can be easily determined. There are four cases to consider for a selected zone

with respect to a given query: a zone can be (i) covered completely by the query

range, (ii) covered only by the query distance range, (iii) covered only by the query

orientation range, and (iv) overlapping partially with distance and orientation ranges.

Different retrieval methods can be applied to each case for efficient query retrieval.

We present the data retrieval algorithm for a range query using a zone-structured

index, based on the above four cases.

Algorithm 6.7 Range query search using the zone-structured join index structure.

Input. (i) an object identifier o;; (ii) the lower and upper bounds of the distance

range, Dm;, and D,,,, and (iii) the lower and upper bounds of the orientation

range, A,;, and A,,,.

Output. All spatial objects within the ranges.

CHAPTER 6. INFORMATION- ASSOCIATED SPATIAL JOIN INDEX 113

Method.

1. Search for the object in the primary B+-tree.

2. Select the zones overlapping with the query range and collect data as follows:

Case 1 (covered fully by the query range): collect all objects in the index

of the given zone;

Case 2 (covered only by the distance range): read the index records in

the zone, check the angle values and collect objects satisfying the orienta-

tion condition;

Case 3 (covered only by the orientation range): read the index records

in the zone, check the distance values and collect objects satisfying the

distance condition; and

Case 4 (overlapping partially with distance and orientation ranges):

read the index records in the zone and check both distance and angle at-

tributes and collect objects satisfying the specified conditions.

The computational complexity of solving a spatial range query using the zone

SJI structure should be the same as that using the basic SJI. However, the zone

structure partitions the basic S JI file into several zones, and the zones to be searched

are determined before accessing the database if the distance and/or orientation range

values are provided in the query. Therefore, it is expected that the zone structure

improves the performance of query processing compared to the basic SJI.

An obvious advantage of the zone-structured SJI over the basic SJI is that it is

not biased towards either the distance parameter or the orientation parameter. Zone-

structured indices are also effective for distance-related range queries, orientation-

related range queries and their combination. Moreover, if the query is to find all pairs

within a certain range which fully covers the range of the zone, all objects in the zone

are returned as part of the answer.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 114

6.3.3 Hierarchical spat ial-information-associated join

index

As an logical enhancement following from the above discussion, a hierarchical distance-

associated join indices can be augmented with an orientation measurement, which

leads to a hierarchical spatial-information-associated join index (hierarchical SJI or

HSJI) structure. The construction of hierarchical spatial-information-associated join

index is similar to that of a hierarchical DJI. Distance scopes S1, . . . , Sr and object

classes C1, . . . , Cl are defined in the same way as those in hierarchical DJI.

Definition 6.6 Suppose that a set of hierarchical spatial-information-associated

join indices has been constructed on the object classes {C1, . . . , C l) with digerent

scale scope values S1, S2, . . . , S,, respectively. The join index on object class Ck is

constructed based on the following formula:

Given the orientation information stored in the index records, the new angle re-

sulting from the join of (o;, oj , d;;, a ; , j) and (oil ok, dj,k, aj,k) is derived by trigonometry

as follows:
d;,i x sin(a;,j) + djYk x sin(aj,k)

a+ = arctan
d;,i x ~ o s (a i , ~) + dj,k x cos(aj,k)

In contrast to the distance which increases as the path extends, the angular value

may not increase monotonically as the path extends. Therefore, it is unreasonable

to prune intermediate records which are out of the inquired zone with respect to

the orientation constraints at each level of the hierarchy. A simple solution is to

conduct the search without considering the orientation constraints and to verify the

orientation for the records in the final result. A more efficient solution is to ignore the

directional constraints at low levels based on the assumption that the highest level of

the hierarchy in a query dominates the direction. Under this assumption, all objects

satisfying the distance condition are calculated at the lower levels. At the top level,

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 115

the orientation constraints are verified to eliminate the objects whose orientation is

out of the inquired range. In general, an angular buffering value Al can be specified

at each hierarchy level 1 for certain applications to allow angular deviation from the

orientation range. Records beyond the range will be removed from the candidate path

set. The higher the level, the more restrained the angular buffer should be set for

efficient search.

The retrieval algorithm is similar to that for the hierarchical DJI with additional

operations for computing new angles and removing index records with conflicting

orientations. The first step is to obtain the inquired object using the B+-tree. In

the two phase hierarchy traversal, records satisfying the query conditions are stored

in set T. Some temporary records are stored in set Temp for further ascent. At all

lower levels, the orientation conditions are omitted. Only at the top level accessed by

the query will the orientation condition be checked to eliminate those records which

do not satisfy the constraints. At the end, the records in T are checked against the

orientation condition. We present an example to illustrate the retrieval process.

Example 6.4 Retrieval using hierarchical SJI

Given the object 01 in Figure 6.8, "find all objects whose distance from 01 ranges

between 300 and 600 and whose orientation with respect to 01 ranges between 20" and

100"". The search sequence is as follows.

1. First, search for object 022 using the hierarchical SJI.

2. At the first step of the hierarchy ascent, the orientation constraints are not

applied. Let T be an empty set because related object distances are all less than

the lower distance bound. Let Temp contain {(022,021,4,130), (022,02,3,65)}.

3. At the second step of the hierarchy ascent (the highest level involved in this

query), o3 is eliminated by the orientation condition and set T is ((0 2 2 , 01,503,62)}.

4. By the hierarchy descent, we get T = {(022,01,403,62), (022,012,408,61),

(022,011,406,63) 1.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 116

The final object set returned is {ol,oll, 012) .

02z (a) A set of objects 031
(c) level 2 index

(b) level 1 index

Figure 6.8: A two level hierarchical SJI for a set of objects

Additional information, such as the coordinates of specified objects may further

speed up the search for the shortest distance between two objects, ol and 0 2 on a road

network. With the coordinate information, the orientation from one object to the

other can be obtained. This orientation information can then be used to eliminate

paths which do not follow the direction from objl to obj2. Thus it can significantly re-

duce the size of the intermediate sets Ti and Tj and speed up the processing. Generally

speaking, the search space is reduced using orientation constraints.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 117

6.4 Analysis and Simulation Results

In this section, we study the performance of the proposed spatial-information-associated

join indices in a relatively large spatial database environment. The simulation results

are presented, the results for three types of distance-associated join indices are an-

alyzed, and the performance for different types of queries with respect to different

spatial join indices are compared. The following notations are adopted in our analy-

1. NDJI: for the case when no distance-associated join indices are used. That is,

only regular join indexing structures are used and the distance information is

computed at query processing time using geometric operators;

2. BDJI: for basic distance-associated join index;

3. RDJI: for ring-structured distance-associated join index;

4. HDJI: for hierarchical distance-associated join index;

5 . BSJI: for basic spatial-information-associated join index, and

6. ZSJI for zone-structured spatial-information-associated join index.

7. HSJI for hierarchical spatial-information-associated join index.

6.4.1 Analytical model

An analytical model has been constructed to compare the performance of different

schemes. The parameters illustrated in Table 6.1 are used in our analysis.

6.4.1.1 Storage requirement

We analyze the storage requirements for query processing using distance-associated

join indices.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 118

Table 6.1: Parameters for performance analysis.

N
Ni
Nb
N,
N b f
C;,
Cdist
C,,,,

1. NDJI: It requires no space for the join index.

number of objects
average number of indices per page
maximum B-tree branches at any node
average number of geo-objects per page
number of buffer pages
cost for one I/O operation
cost for computing distance
cost for one comparison operation

2. BDJI: Let S be the scope distance for the distance-associated join index method

and D be the a maximum object density over the area. Given an object o;, the

number of objects within the specified scope distance from o; is the density

multiplied by the area of the scope region, i.e. D x .rr x S2. There are N objects

in the database. Therefore, the basic DJI file size in pages is as follows.

D x . r r x S 2 x ~

N;

When S is small, the size of the index file grows linearly with respect to the

number of objects in the file.

3. RDJI: Given n rings, each file corresponding to an individual ring is l l n t h of the

basic DJI in average. The ring-structured DJI thus requires the same amount

of space as that of basic DJI.

4. HDJI: As shown in Theorem 6.4, the space complexity Sind of the hierarchical

distance-associated join indices of a database with N objects is

where the minimum and the maximum number of children of non-leaf nodes are

k and I< respectively, where c denotes [$I, and I + 1 is the number of levels in

the hierarchy.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 119

Storage for spatial-information-associated join indices and that for distance-

associated join indices are of the same order of magnitude.

6.4.1.2 Processing cost

Range queries will be chosen as an example for our analysis of processing cost. The

curves of the cost for processing all-pairs queries will be presented later. The total

processing cost is the sum of I/O operations and CPU costs.

1. NDJI: Two objects should be in the memory at the same time in order to

compute the distance between them. When the number of buffer pages is smaller

than the number of data pages, the total number of I / 07s is greater than the

number of data pages. In fact, let the number of pages of geometric objects Np be

NIN,, and consider what happen when the most-recently-used page replacement

strategy is used. The number of pages involved is then

For example, with N, = 100 and Nbf = 10, the total number of I/O operations

is 550. The CPU cost for computing distances between all pair objects and for

checking if the distances lie in the query range is

2. BDJI: With the distance-associated join index where related objects are paired

up, query processing never needs to read the same page into the buffers twice

in the case of a single spatial join operation. Retrieval requires logNb N I/O

operations to search the primary index and the same amount to search the

secondary index. The sequential reading cost is the number of output records,

Ic divided by N;.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 120

3. RDJI: If the query involves N, rings, the ring method takes N, x logNb N I/O

operations to search primary index and logNb 110 operations to search the

secondary index on average. Generally speaking, the ring-structured DJI takes

more 110 than the basic DJI when N, is large. The CPU cost for a range query

on the ring-structured DJI is 2 x log(#-) x C,,,, which is usually smaller than

that required with the basic DJI.

4. HDJI: logNb N 110 operations are needed to search the leaf level primary index.

The maximum number of join iterations is twice the number of hierarchy levels,

denoted by I , which usually is a small integer. Because object associations are

established only at consecutive levels, we can assume that the number of records

in set T is bounded by a constant c,. Hence, each join iteration takes c, xlogNb N

I/O operations. Thus, the overall I/O cost is (2co x I + 1) logNb N. The cost for

comparisons is therefore ((2 ~ x 1 + 1) logNb N) x C,,,,.

Overall, by using distance-associated join indices, object retrieval for spatial range

queries takes time logarithmic in the number of objects in the setting. The following

are some comparisons for different types of spatial-information-associated join indices.

1. BSJI: The basic SJI takes logNb N 110 operations for finding the inquired object

using the primary index. For queries on the preferable attribute, logNb N 110

operations are required to search the starting position of the attribute satisfy-

ing the condition. If the query is on both attributes, a check is needed for each

resulting record to verify the second condition. If the query is on the nonprefer-

able attribute, a scan for all records related to the inquired object is needed, i.e.

the cost is N/Ni.

2. ZSJI: In order to find the inquired object, a cost of logNb N 110 operations are

required. Generally speaking, further accessing cost is proportional to the in-

quired area A. Assuming that the maximum object density is D, the number
A x D of objects searched is approximately ;- pages. Testing for the overlap can be

done using a simple mathematical comparison. If the zone is completely covered

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 121

by the inquired area, no checking is required. If the zone is completely contained

in the inquired area over one of the dimensions, checking is only needed on the

other attribute. If the zone is partially overlapped with the inquired zone in both

dimensions, checking for both attributes is necessary. Overall, the zone struc-

tured SJI allows queries related to distance and/or orientation to be processed

efficiently.

3. HSJI: Similar to the cost analysis of HDJI, the I/O cost for HSJI retrieval is

(2co x I + 1) logNb N. The cost for comparisons is ((2co x I + 1) logNb N) x C,,,,.

The hierarchical SJI contains more orientation information than the hierarchical

DJI. The retrieval cost of hierarchical SJI is essentially the same as that for hierarchical

D JI.

6.4.2 Simulation results

The simulation was performed on a SUN14 SPARC/14.28MHz-workstation with 7

MIPS under the SunOS. The simulation program was written in Sun C compiler

without optimization. A set of randomly generated points was used for simulation.

The simulation was performed for two types of queries: (i) range queries, and (ii)

queries for all pairs of objects with a specified distance constraint. In Figure 6.9(a),

the curves represent the processing cost for different methods as the query range

increases, given a fixed number (4000) of randomly generated objects. In Figure

6.9(b), the curves illustrate the relationship between the processing cost and the

number of objects in the spatial database. A three-level hierarchy was built for the

simulation, with the scope values specified as S1 = 25000, S2 = 2500 and S3 = 250,

respectively. Some other simulation parameter values are as follows:

1. Ring radii r k = k x 2000, k = 1 ,. . . , 6;

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 122

time (milliseconds) time (milliseconds)

t8

,' *.
,' ,..,

BDJI , ,." . ,..-"
.+. ,' ,. , .

.*'/ RDJI ,':/- , , ,' .so .'..,'
a' ..

HDJI
_ _ _ _ _ _ . _ . _ _ . . . - - - -

I I

0 I000 2000 3000 4000 5000 MOO 7000 8000 0 500 I000 1500 2000 2500 3000

range No. of keys

(a) cost curves for spatial range (b) cost curves for all pair queries

Figure 6.9: Cost curves

The curves show the effectiveness of the distance-associated join indexing mecha-

nism for reducing query processing cost in spatial queries.

In Figure 6.10, the simulation curves shows how zone-structured SJI improves

efficiency for queries on distance and/or orientation. The simulation was based on

the distance-preference structure. The horizontal axis is the inquired area and the

vertical axis is the time to process the queries. Distance and orientation constraints

were randomly generated. There were three groups of queries, (i) with constraints

on both information attributes, (ii) with constraints on the preferable attribute (dis-

tance), and (iii) with constraints on the nonpreferable attribute (orientation). In the

figure, ZSJI stands for zone-structured SJI, and BSJIb, BSJI,, BSJIu, and BSJIa

represent queries on basic S J I with constraints on both at tributes, with constraints

on the preferable at tribute, with constraints on nonpreferable attribute without aux-

iliary index, with constraints on the nonpreferable attribute with an auxiliary index

respectively.

C H A P T E R 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 123

time (milliseconds)
7 1 I

time (milliseconds) time (milliseconds)

o IOW 2000 3mm 4wo 5000 6wo 7000 o 1000 2000 OM 4000 5000 ma 7000 0 IOM 2000 3000 4000 5 m 6000 7mm

area area area
a) cost curves for queries b) cost curves for queries c) cost curves for queries

with both constraints with preferable attribute with unselected attribute

Figure 6.10: Cost curves of spatial-information-associated.

From the curves in Figure 6.10, it is obvious that the zone-structured SJI performs

reasonably well in all cases whereas the performance of the basic SJI depends on the

constraints specified in the query.

For the same set of objects, a performance comparison was conducted for K-

D trees, range- trees and distance-associated join indices for a circular range search.

Given a distance range, a circumscribing box was formed to perform a rectangular

search. Figure 6.11 shows the comparison curves.

6.4.3 Analysis of the simulation results

As shown by the simulation results, the distance-associated join index improves the

range query performance significantly. The three types of distance-associated join

indices have advantages in different situations.

The basic DJI is simple and results reasonably good performance when the

database is small. However, when the size of the data relation grows, the per-

formance of the basic DJI deteriorates.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 124

time (milliseconds)

10 100 loo0

range in logarithmic scale

Figure 6.11: Comparison with other structures

The ring-structured DJI decomposes one basic DJI file into several ring index

files. For queries relevant to one particular ring, the ring structure reduces the

search space and therefore enhances performance. For range queries, the ring-

structured DJI reduces the search cost when the range is confined to a small

number of rings. When the range expands, that is when it covers many ring

structures to be referenced, the ring-structured DJI performs slightly worse than

the basic DJI structure. For all pair queries (queries to find all pairs of spatial

objects satisfying a distance constraint), the ring structure performs slightly

better than the basic DJI because fewer comparison operations are required.

Since the hierarchical indexing structure substantially reduces the number of

index records which must be directly associated in the database, it substan-

tially reduces the storage space and hence the access cost in a relatively large

database. Although spatial objects need to refer to their higher level spatial ob-

jects for some spatial queries, the cost of accessing several higher level reference

points only increases the access cost linearly. Since such an organization may

substantially reduce the storage and access cost, the hierarchical DJI offers the

best performance in most cases.

CHAKWR 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 125

The curves presented in Figure 6.10 show the performance difference between the

basic SJI and the zone-structured SJI. Figure 6.10(a) indicates the query processing

time for queries with constraints on both distance and direction. The zone structure

accesses only the zones overlapping with the inquired range; whereas the basic struc-

ture selects all records satisfying the distance constraint and then eliminates those

that fail the orientation test. Therefore, the zone-structured index is more efficient

than the basic one. Figure 6.10(b) indicates the query processing time for queries

with constraints on one preferable information attribute, such as distance in our ex-

periment. The ZSJI still performs reasonably well. The basic structure is a little more

efficient than the zone-structure because zone mapping takes time, because partially

overlapped zones may contain records which are out of the inquired range. Figure

6.10(c) contains the curves with the sharpest contract, where queries are only on the

nonpreferable attribute. There is no obvious negative effect on the performance of the

zone-structured SJI. When the query constraints are on the nonpreferable attribute,

the basic structure performs poorly. Without auxiliary index, all records related to

the inquired object have to be read and checked to see whether they satisfy the con-

ditions; curve BSJI, shows the result. With an auxiliary index, only the records

satisfying the condition are accessed. However, since these records are scattered all

over the index file, retrieval cost is still quite high as shown by the curve labeled

BSJI,. Hence, overall, the zone-structured SJI performs much better than the basic

structure.

In comparison with K-D-trees and range trees, distance-associated join indices

performs better than both methods. For N objects, retrieval using a K-D tree struc-

ture takes ~(f i) , retrieval using range-trees takes 0 (logZ N), while retrieval using

distance-associated join indices takes only O(1og N). As the search range increases,

range trees perform better than a K-D-tree because of its range structure.

CHAPTER 6. INFORMATION-ASSOCIATED SPATIAL JOIN INDEX 126

Chapter Summary and Discussions

In this chapter, a general and flexible spatial indexing structure, the spatial-information-

associated join index, has been developed. Two important pieces of spatial informa-

tion between pairs of spatial objects, distance and orientation, are precomputed at

join index construction time and stored for efficient query processing. Information-

associated join index structures include but are not limited to distance and/or orien-

tation information. For example, if intersection of regions are frequently required, the

associated information may be the intersection. Since costly geometric computations

of spatial relationships are performed before query processing time, queries using this

spatial information can be processed fairly efficiently according to our analysis.

To facilitate the step-by-step analysis for different applications, different distance-

associated join index structures have been investigated and compared. Three distance-

associated join index structures have been proposed for the optimization of spatial

range queries and other spatial queries. By associating distance information with

the join index, part of the cost involved in processing the query can be reduced or

eliminated by performing these computations at index construction time.

Each kind of spatial-information-associated structure has its own application do-

main. The basic DJI is concise and efficient in simple and small environment. The

ring-structured DJI performs well when the query references only a small spatial range

in a moderate size database. By adjusting the ring radii, a reduction of the size of the

file to be processed and an improvement of the I/O cost can be achieved. The hier-

archical DJI performs best among the three in a complex and large spatial database.

For a city map database, the hierarchical DJI can help finding the shortest path be-

tween objects at a reasonable processing cost. All three join index mechanisms are

simple, flexible, and easy to create and maintain. Our primitive simulat ion-based

performance study demonstrates the high promises of this approach.

As an extension to the distance-associated join index, a spatial-information-

associated join index has been proposed which utilize both the distance and orien-

tation information of related object pairs to facilitate spatial query processing. The

zone-structured SJI partitions the join records into nonoverlapping zones each of which

is specified by mathematical boundaries so that overlapping tests with the inquired

range are simple. The zone-structured SJI accesses only indices in the zones which

overlap with the inquired zone, and is not biased to either spatial attribute. The

experimental results show that this mechanism is efficient.

Not only spatial join information such as distance and orientation, but also other

pieces of information, such as driving speed, can be associated with the record when

necessary. For example, in the query "find a driving route which reaches B from A in

the shortest time", the driving speed could be a useful asset. The spatial-information-

associated join index illustrates the effectiveness of associating important information

with join indices. The information-associated join index can be used to precompute

and store any piece of computationally intensive information (not necessarily spatial

information) related to two objects to facilitate the efficient implementation of join

operations related to such piece of information.

However, this idea should not be pushed to an extreme. First, it is important to

clarify the role of spatial join indices in spatial databases. As it has been demonstrated

in [140], the role of join indices in relational database systems is not to replace the

common relational indexing structures, such as B+-trees, but to provide additional

indexing support to speed up certain relational operations, such as joins. In this

respect, the role of spatial join indices in spatial databases is analogous to that of

join indices in relational databases. The goal of information-associated spatial join

indexing structure is not to replace the commonly used spatial indexing structures

but to speed up certain spatial join operations. It is not our intention to substitute

the traditional spatial indexillg structures by join indices. However, our study shows

that it may provide good support for certain spatial operations, which could be used

relatively frequently in spatial database applications. Also, in a situation where the

locations of objects change from time to time, it is expensive to recompute these

CHAPTER 6. INFORMATION-ASS0 CIATED SPATIAL JOIN INDEX 128

indices and to keep all associations consistent and up-to-date. Finally, there are many

geometric operations which may involve combinations of different objects. Since there

are a large number of possible combinations, it is unrealistic to explore and store

all such combinations. For example, the geometric constructor union may involve

different combinations and create new geometric objects. It is practical to determine

all such combinations and to precompute and store them as join indices before query

processing.

This chapter proposed an information-associated spatial join indexing structure for

spatial query optimization. The complexity analysis and preliminary simulation-based

performance study have demonstrated the good performance of this interesting data

structure. Further studies, development and experiments should be performed on the

implementation of spatial-information-associated join indices and on their application

to spatial query optimization in large spatial databases.

Chapter 7

Conclusion

We summarize our research work in this chapter. Discussion on future directions in

a general intelligent spatial database follows the summary of the research.

7.1 Summary

In this thesis, a deductive and object-oriented paradigm for spatial database design has

been studied. A deductive and object-oriented spatial database system (DOOSDB)

provides an effective modeling facility for spatial data. Object hierarchies are used to

provide property inheritance and type consistency checking. Spatial relationships can

be defined using high-level deduction rules. Spatial queries can be posed using either

an SQL-like syntax or a Prolog-like syntax. The query interface with dual syntaxes

provides users with both first-order query power and ad-hoc query user friendliness.

In this system, spatial and nonspatial data can be treated uniformly in a query. The

system can be extended using user-defined object classes, rules and methods.

To achieve processing efficiency for high-level queries in a large spatial database,

optimization is essential. We investigated set-oriented query processing and opti-

mization in deductive and object-oriented spatial (DOOS) databases and proposed

CHAPTER 7. CONCL USION

an integrated paradigm and a set of useful techniques for DOOS query optimization.

The integrated paradigm of spatial query optimization in DOOS databases pro-

vides us with the following advantages:

1. It promotes a structured design and an integrated, high-level view of spatial

databases, which leads to high-level query interfaces, uniform handling of com-

plex spatial object structures using object-oriented storage management, and

flexibility in the specification and use of spatial computation routines (meth-

ods) toget her with deduction rules.

2. It facilitates the exploration of various aspects of query optimization to achieve

high efficiency, including the compilation of deductive queries, the simplification

of query expressions by relational and spatial optimization rules, the access plan

generation by analysis of the query processing costs of different candidate plans,

and set-oriented processing and optimization of spatial computation routines

(methods).

3. Set-oriented spatial method computation overcomes the weakness present in

tuple-oriented spatial computations, reduces redundant spatial computation and

provides an interesting solution to the impedance mismatch problem.

4. The spatial-information-associated join index, has been developed for spatial

join operations. Important pieces of spatial information involving spatial object

pairs, such as distance and orientation, are precomputed when the spatial join

index is constructed, and stored for efficient query processing. Since costly

geometric computations of spatial relationships are performed before the query

is processed, queries that require such spatial information can be processed fairly

efficiently according to our analysis.

The proposed approach for spatial query processing supports a high-level user

interface and promotes compilation-based, set-oriented, efficient query processing in

deductive and object-oriented spatial databases. Implementation of such a DOOS

system is in progress.

CHAPTER 7. CONCL USION

Discussion

An intelligent spatial system should not only perform data retrieval but also be able

to discover interesting knowledge from spatial data, to perform spatial deduction and

to help decision making [38, 58, 951. We will discuss one of the interesting research

directions in this area, i.e. learning in a large spatial database.

Another very important aspect of spatial databases is its temporal factor. His-

torical database information is often used in GIs and engineering database systems

[87, 8, 1471. Problems and research directions in this area will also be addressed.

7.2.1 Knowledge discovery in large spatial databases

Spatial reasoning using data and knowledge stored in large spatial databases is a

crucial task in the development of geographical information systems, medical imaging

systems and robotics systems. Because of the huge amount (usually tera-bytes) of

spatial data obtained from satellites, video cameras, medical equipment, etc., it is

costly and often unrealistic for users to examine the spatial data in detail to extract

interesting knowledge or general patterns from spatial databases.

Knowledge discovery in spatial databases is the extraction of interesting spatial

patterns and features, of general relationships between spatial and nonspatial data

and of other general data characteristics not explicitly stored in the database. This

discovery may play an important role in understanding spatial data, capturing intrin-

sic relationships between spatial and nonspatial data, presenting data regularity in a

concise manner and reorganizing spatial databases to accommodate data semantics

and achieve high performance.

In a preliminary study [95], the attribute-oriented induction technique [58] was ex-

tended to knowledge discovery in spatial databases. Two kinds of concept hierarchies,

thematic concept hierarchies and spatial hierarchies, were constructed for the learning

process. Induction was performed by traversing these hierarchies and summarizing

CHAPTER 7. CONCLUSION

general relationships between spatial and nonspatial attributes at a high concept level.

Two algorithms were developed based on the priority set for performing generalization

on the nonspatial concept hierarchy or the spatial hierarchy.

Nonspatial-data-dominated generalization first generalizes non-spatial attributes

to a specified high level and then performs spatial consolidation, which consists of the

following steps:

1. Collect related data;

2. Perform attribute-oriented induction on the collected nonspatial data by (i)

concept-hierarchy-ascending, (ii) attribute-removal, (iii) merge of identical tu-

ples until either the number of tuples is within the generalization threshold or

every attribute has been generalized to the desired concept level; and

3. Perform spatial generalization, i.e. merge neighboring areas with the same high-

level attribute using the relationship i s -adjacentdo .

Spatial-data-dominated generalization first climbs up the spatial hierarchy and for

each resulting spatial object , generalizes non-spatial-at tributes, in the following major

steps:

1. Collect task-relevant data,

2. Generalize the spatial database by clustering spatial object according to their

regions and merging them until the desired concept level is reached or until the

number of generalized spatial objects is smaller than a threshold, and

3. For each region, perform generalization on non-spatial objects until a minimal

concept set subsumes all of the concepts in the subregions.

This method can discover interesting relationships between spatial and nonspatial

data and can be applied to the analysis of correlations between different spatial fea-

tures based on different thematic maps. Our preliminary study shows that knowledge

CHAPTER 7. CONCLUSION

discovery can be performed efficiently in spatial databases by extending the techniques

used for knowledge discovery in relational databases.

Beside the two primitive generalization techniques, i.e. nonspatial-data-dominated

generalization and spatial-data-dominated generalization, presented in [95], more so-

phisticated algorithms are required for complex spatial environments, which may re-

quire extension of these techniques in many ways. We discuss several possible exten-

sions of the algorithms discussed above.

1. Interleaved generalization between spatial and nonspatial data.

The nonspatial-attribute-oriented algorithm generalizes nonspatial data before

generalizing spatial data, whereas the spatial-attribute-oriented algorithm pro-

ceeds in reverse order. In some cases, one may wish to interleave generalization

between spatial and nonspatial data to achieve satisfactory results with reason-

able performance. A spatial-data-dominated algorithm could be costly to evalu-

ate. It is often preferable to perform non-spatial (relational) generalizations to a

certain level and then perform a high-level spatial merge/join or approximation.

Further generalization may depend on the number of distinct spatial objects or

appropriate concept levels. The concrete algorithm integrating the above two

algorithms to achieve interleaved generalization can be developed.

2. Generalization on multiple thematic maps.

The generalization algorithms in [95] involve only one thematic map. In some

applications, a learning task may require generalization on more than one the-

matic map. Similar spatial generalization techniques, such as spatial merge and

approximation, can be applied on the overlay of the two maps to find the regions

in each class. Generalization may also derive relationships between nonspatial

attributes. For example, a correlation between temperature and precipitation

can be discovered by learning.

3. Learning in a dynamic/temporal spatial database.

CHAPTER 7. CONCL USION

One application of learning in spatial databases is to analyze satellite data, in

which temporal factors play an important role. The learning process may be

performed on a sequence of data maps. Differentiation of spatial features at

different times may enable the system to detect geographical events, such as a

quake on the Moon, based on images from the Moon.

4. Probability in learning.

Impure data occurs in spatial and real life applications, e.g. 80% of the trees in

a given region are pine trees, while 20% of trees in that forest may be of different

types. Probabilistic learning and fuzzy logic are useful tools for applications in

spatial knowledge discovery.

Learning in spatial databases is a challenging and promising research area in spa-

tial databases. As an emerging topic for integration of spatial databases and machine

learning technologies, knowledge discovery in spatial databases will have applications

in spatial knowledge discovery, spatial reasoning, spatial query optimization, the con-

struction of multiple resolution spatial data models, etc. More investigations should

be performed in this direction, especially regarding its integration with statistical

methods, the development of customized spatial generalization operators, as well as,

additional studies should be done on knowledge discovery in spatial databases under

different assumptions.

7.2.2 Spat iot emporal databases

Spatiotemporal data captures the movement and changes of objects over time in

a dynamic database system. Medical image record analysis, physical experiment

analysis, urban development monitoring and other geographic problems involve both

spatial and temporal data. Historic spatial databases are also important for decision

making. A spatiotemporal database can be constructed by adding temporality to

spatial databases [8] or by merging spatial data types with temporal components in

a historical database.

CHAPTER 7. CONCLUSION

Some major issues related to temporal databases include data representation mod-

els, huge amount of data, temporal integrity constraints, granularity, different versions

of objects and spatiotemporal indexing mechanism. We discuss some of the problems.

Nested relations have been proposed for modeling temporal databases [42, 1201.

Nested relations used for modeling spatial data in DOOSDB can be extended for mod-

eling spatiotemporal data. Langran proposed a framework for temporal geographic

information [87]. Two data structures recommended for storing spatiotemporal data

are "base maps with overlays" and "space-time composition". The former uses an

initial data map and records the change of the map over the time, whereas the later

essentially decomposes also the image database into subsections so that each compo-

nent can be expressed in terms of a time-property list.

Spatiotemporal indexing and object clustering add a new dimension to those in

spatial databases and therefore represent a more challenging task. An extension of

spatial index R-tree for spatiotemporal purposes has been presented using [147], in

which an RT-tree incorporates temporary information in spatial objects and index

nodes. It represents an elegant merge of multiple R-trees with different time stamps,

thus saving storage space and improving performance.

The challenge of spatiotemporal databases comes from the combination of the

large volumes of data in temporal database with the difficulty of optimizing geometric

functions in spatial databases and with the spatiotemporal index. A lot of research

work still needs to be performed in this direction.

In summary, spatiotemporal databases and knowledge discovery in spatial databases

are important research topics in spatial database research. These two topics will be

the focusing point of our future research.

Appendix A

BNF of the Query Language

DOOSQL

The following meta-symbols are used for language definition:

::= defines non-terminal symbol

() for non-terminal symbol

[] for an optional component of language which may appear at most

once.

{) for an optional component of language which may appear any number

of times .

DOOSQL ::= (de f in i t ions) I (queries)

(de f in i t ions) ::= (schema) I (procedure) I (ru le)

(schema) ::= schema (schema-body)

(schema-body) ::= (n a m e) ((at tr i -def) {, (a t t r i d e f)))

APPENDIX A. BNF OF THE QUERY LANGUAGE DOOSQL

(attri-de f) ::= (atom-attr ide f) I setof (subschema)

I sequenceof (subschema)

(subschema) ::= (type) 1 (schma-body)

(atom-attri-def) ::= (name) : (type)

(procedure) ::= procedure (name) ((parade f) {, (para-de f)))

(para-de f) ::= (N a m e) : (type) (mode)

(rule) ::= (~red ica te) : - (predicate){, (predicate)).

(predicate) ::= (name) ((Name){ , (Name)))

(queries) ::= (sql-query) I (logic-query)

(sql-query) ::= select (resul t) {, (resul t))

from (n a m e) {, (n a m e))
where (predicate-expression)

(resul t) ::= (attribute) 1 (func-name) ((attribute) {, (attribute) })

(logic-query) ::= ? - (predicate) {, (predicate)).

(predicate) ::= (n a m e) ((parameter) {, (paremeter)))

(parameter) ::= (constant) I (Variable)

(predicate-expression) ::= (pred-term) { (logic-link) (pred-term))

(l o g i d i n k) ::= and 1 or

(pred-term) ::= [not] (predicate)

([not] ((math-expression) (comp) (math-expression))
([not] (geo-obj) (geo-predicate) (geo-obj)

APPENDIX A. BNF OF THE QUERY LANGUAGE DOOSQL

(geo-predicate) ::= is-inside I is-adjacentdo (geo-intersect I . .

(f unc-name) ::= (geo- f unc) ((geo-val-f unc) I (aggreg- f unc)

(geo-val-func) ::= area (length I distance 1

(geo- f unc) ::= geo-union I geo-intersection I . . .

(aggreg-func) ::= m a x i m u m 1 m i n i m u m I count I s u m I average

(geo-obj) ::= (attribute) I geo-func ((geo-obj) {, (geo-obj)))

(type) ::= [(group)] (atom-type)

(atom-type) ::= I N T 1 R E A L I S T R I N G I B O O L E A N I
P O I N T I L I N E I P O L Y G O N (G E O

(group) ::= setof I sequenceof

(mode) ::= in I out I all

(name) ::= (char-numstr ing)

(Variable) ::= (N a m e) { . (name))

(N a m e) ::= (Char-num-string)

(attribute) ::= (name) {. (name))

Bibliography

[I] A.I. Abdelmoty, M.H. Williams, and N.W. Paton. Deduction and deductive

databases for geographic data handling. In Advances in Spatial Databases (Proc.

3rd Symp. SSD793), pages 443-464, Singapore, June 1993.

[2] S. Abiteboul. Towards a deductive object oriented language. In Proc. 1st Int 'I

Conf. Deductive and Object-Oriented Databases (DOOD'89), pages 453-472,

Kyoto, Japan, December 1989.

131 S. Abiteboul and S. Grumbach. COL: A Logic-Based Language for Complex

Objects. ACM Press Frontier Series, Addison-Wesley, New York, 1990.

[4] R. Agrawal and H. Jagadish. Direct algorithms for computing the transitive

closure of database relations. In Proc. 13th Int'l Conf. Very Large Data Bases,

pages 255-266, Bright on, England, Sept . 1987.

[5] A. V. Aho, J. E. Hopcroft, and J . D. Ullman. Data Structures and Algorithms.

Addison- Wesley, 1983.

[6] T. Andrews and C. Harris. Combining language and database advances in an

object-oriented development environment. In Proc. 2nd Conf. Object-Oriented

Programming Systems, Languages and Applications, 1987.

[7] W. G. Aref and H. Samet. Optimization strategies for spatial query processing.

In Proc. 17th Int 'I Conf. Very Large Data Bases, pages 81-90, Barcelona, Spain,

Sept. 1991.

BIBLIOGRAPHY

[8] M. Armstrong. Temporality in spatial database. In Proc. GIS/LIS'88, pages

880-889, San Antonio, Dec. 1988.

[9] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.

The object oriented database systems manifesto. In Proc. 1st Int'l Conf. De-

ductive and Object-Oriented Databases (DOODJ89), pages 40-57, Kyoto, Japan,

Dec. 1989.

[lo] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-orient ed

Database System: The Story of 02. Morgan Kaufmann Publishers, 1992.

[ll] F. Bancilhon, D. Maier, Y. Sagiv, and J . D. Ullman. Magic sets and other

strange ways to implement logic programs. In Proc. 5th ACM Symp. Principles

of Database Systems, pages 1-15, Cambridge, MA, March 1986.

[12] J . Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and implemen-

tation of schema evolution in object-oriented databases. In Proc. 1987 ACM-

SIGMOD Int '1 Conf. Management of Data, pages 143-159, San Francisco, 1987.

[13] L. Becker and R. Giiting. Rule-based optimization and query processing in an

extensible geometric database system. ACM Trans. Database Systems, 17:247-

303, June 1992.

[14] C. Beeri. Formal models of object oriented databases. In Proc. 1st Int '1 Conf.

Deductive and Object-Oriented Databases (DOOD'89), pages 405-429, Kyoto,

Japan, Dec. 1989.

[15] C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. 6th ACM

Symp. Principles of Database Systems, pages 269-283, San Diego, March 1987.

[16] J . L. Bentley. Decomposable searching problems. Info. Proc. Lett., 8:244-251,

1979.

[17] W. Bohm. A survey of curve and surface methods in CAGD. Computer Aided

Geometry Design, 1:l-60, 1986.

BIBLIOGRAPHY

[18] 0 . P. Buneman and M. P. Atkinson. Inheritance and persistence in database

programming languages. In Proc. 1986 ACM-SIGMOD Int 'I Conf. Management

of Data, pages 4-15, Washington, DC, 1986.

[19] P.A. Burrough. Principles of geographical information system for land resources

assessment. Monographs on Soil and Resources Survey, 12, 1986.

[20] M. Carey, D. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J . Richardson,

and E. Shekita. The architecture of the EXODUS extensible DBMS. In Proc.

Int'l Workshop of Object-Oriented Database System, pages 52-64, Pacific Grove,

Sept. 1986.

[21] U. S. Chakravarthy, J . Grant, and J . Minker. Foundations of semantic query

optimization for deductive databases. In J . Minker, editor, Foundations of De-

ductive Databases and Logic Programming, pages 243-274. Morgan Kaufmann,

1988.

[22] C.Y. Chan, B. C. Ooi, and H. Lu. Extensible buffer management of indexes. In

Proc. 18th Very Large Data Base, pages 444-454, Vancouver, Aug. 1992.

[23] N. S. Chang and K. S. Fu. Picture query languages for pictorial database

systems. Computer, 25:23-33, 1981.

1241 S. K. Chang and S. H. Liu. Picture indexing and abstraction techniques for

picture databases. IEEE Trans. Pattern Analysis and Machine Intelligence,

6:475-483, 1984.

[25] B. Chazelle and L. J . Guibas. Visibility and intersection problems in plane ge-

ometry. In 1st ACM Symp. Computational Geometry, pages 135-146, Baltimore,

MD, June 1985.

[26] W. Chen, M. Kifer, and D.S. Warren. HiLog as a platform for a database

language (or why predicate calculus is not enough). In Proc. 2nd Int'l Workshop

Database Programming Languages, pages 315-329, Gleneden Beach, OR, June

1989.

BIBLIOGRAPHY

[27] J.-B. Cheng and A. R. Hurson. Effective clustering of complex objects in object-

oriented databases. In Proc. 1991 ACM-SIGMOD Int'l Conf. Management of

Data, pages 22-32, 1991.

[28] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo.

The LDL system prototype. IEEE Trans. Knowledge and Data Engineering,

2:76-90, March 1990.

[29] A. Choi and W. S. Luk. Using an object-oriented database system to construct

a spatial database kernel for GIs applications. Computer System Science and

Engineering, 7:100-121, April 1992.

[30] E. F. Codd. Extending the relational database model to capture more meaning.

ACM Trans. Database Systems, 4:397-434, 1979.

[31] W. J. Coffey. Geography, Towards a General Spatial System Approach. Methuen

and Co. Ltd, London and New York, 1981.

[32] C. J . Date. An Introduction to Database Systems, 5th edition. Addison-Wesley,

1990.

[33] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. In 1st

ACM Symp. Computational Geometry, pages 251-262, Baltimore, MD, June

1985.

[34] M. J. Egenhofer. Spatial Query Languages. UMI Research Press, Ann Arbor,

MI, 1989.

[35] M. J . Egenhofer. Reasoning about binary topological relations. In Advances in

Spatial Databases (Proc. 2nd Symp. SSD'91), pages 143-160, Zurich, Switzer-

land, Aug. 1991.

[36] M. J. Egenhofer and J. Sharma. Topological consistency. In Proc. 5th Int'l

Symp. Spatial Data Handling, pages 335-343, Charleston, S.C., Aug. 1992.

BIBLIOGRAPHY

[37] C. Faloutsos, T. Sellis, and N. Roussopoulos. Analysis of object-oriented spatial

access methods. In Proc. 1987 ACM-SIGMOD Int '1 Conf. Management of Data,

pages 426-439, San Francisco, 1987.

[38] D. Fisher and P. Langley. Approaches to conceptual clustering. In Proc. 9th

Int '1 Joint Conf. AI, pages 691-697, Los Angeles, Aug. 1985.

[39] J. D. Foley. Computer Graphics : Principles and Practice. Addison-Wesley,

1990.

[40] A. U. Frank. Requirements for database systems suitable to manage large spatial

databases. In Proc. 1st Int71 Symp. Spatial Data Handling, pages 38-59, Zurich,

Switzerland, 1984.

[41] J. Freytag. A rule-based view of query optimization. In Proc. 1987 ACM-

SIGMOD Int'l Conf. Management of Data, pages 173-180, San Francisco, May

1987.

[42] S. K. Gadia. A homogeneous relational model and query language for temporal

databases. ACM Trans. Database Systems, 13:418-448, Dec 1988.

[43] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: A deductive ap-

proach. ACM Comput. Surv., 16:153-185, 1984.

[44] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Lean-

ing. Addison-Wesley, 1989.

[45] R. Gonzalez and P. Wintz. Digital image processing. Addison-Wesley Pub. Co.,

1977.

[46] A. M. Goodman, R. M. Haralick, and L. Shapiro. Knowledge-based computer

vision - integrated programming language and data management system design.

Computer, 22:43-58, Dec. 1989.

BIBLIOGRAPHY

[47] G. Graefe and D. DeWitt. The EXODUS optimizer generator. In Proc. 1987

ACM-SIGMOD Int'l Conf. Management of Data, pages 160-172, San Francisco,

1987.

[48] D. Greene. An implementation and performance analysis of spatial data access

methods. In Proc. 5th Int '1 Conf. Data Engineering, pages 606-615, Los Angeles,

Feb. 1989.

[49] S. Grumbach. Integration of functions defined with rewriting rules in datalog.

In Proc. 1st Int'l Conf. Deductive and Object-Oriented Databases (DO0D789),

pages 349-368, Kyoto, Japan, December 1989.

[50] 0. Giinther. The design of Cell Tree: An object-oriented structure for geomet-

ric databases. In Proc. 5th Int'l Conf. Data Engineering, pages 598-605, Los

Angeles, Feb. 1989.

[51] 0 . Gunther. Efficient computation of spatial joins. In Proc. 9th Int '1 Conf. Data

Engineering, pages 50-60, Vienna, Austria, April 1993.

[52] 0 . Giinther and H. Noltemier. Spatial database indices for large extended ob-

jects. In Proc. 7th Int? Conf. Data Engineering, pages 520-526, Kobe, Japan,

1991.

[53] R. H. Giiting. Geo-Relational Algebra: A Model and Query Language fo r Geo-

metric Database Systems. Springer-Verlag, Venice, Italy, March 1988.

[54] R. H. Giiting. Gral: An extensible relational database system for geometric

applications. In Proc. 15th Int'l Conf. Very Large Data Bases, pages 33-44,

Amesterdam, Sweden, Aug. 1989.

[55] A. Guttman. R-Tree: A dynamic index structure for spatial searching. In Proc.

1984 ACM-SIGMOD Int'l Conf. Management of Data, pages 47-57, Boston,

June 1984.

BIBLIOGRAPHY

[56] L. A. Haas, W. Chang, G. M. Lohman, J . McPherson, P. F. Wilms, G. Lapis,

B. Lindsay, H. Pirahesh, M. J. Carey, and E. Shekita. Starburst Mid-Flight:

As the dust clears. IEEE Trans. Knowledge and Data Engineering, 2:143-160,

1990.

[57] R. W. Haddad and J . F. Naughton. Counting methods for cyclic relations. In

Proc. 7th ACM Symp. Principles of Database Systems, pages 333-340, Austin,

March 1988.

1581 J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An

attribute-oriented approach. In Proc. 18th Int'l Conf. Very Large Data Bases,

pages 547-559, Vacouver, Canada, Aug. 1992.

[59] J . Han and L. J. Henschen. Handling redundancy in the processing of recursive

database queries. In Proc. 1987 ACM-SIGMOD Int'l Conf. Management of

Data, pages 73-81, San Francisco, 1987.

[60] J. Han, L. J . Henschen, and N. Zhuang. Derivation of magic sets by compilation.

In Proc. 1989 Int'l Conf. Software Engineering and Knowledge Engineering,

pages 164-171, Chicago, June 1989.

[61] J. Han and Z. Li. Deductive-ER: A deductive entity-relationship data model

and its data language. Information and Software Technology, 34:192-104, 1992.

[62] J. Han and W. Lu. Asynchronous chain recursions. 1EEE Trans. Knowledge

and Data Engineering, 1:185-195, 1989.

1631 J. Han and Q. Wang. Evaluation of functional linear recursions: A compilation

approach. Information Systems, 16:463-469, 1991.

[64] M. Hardwick. Why ROSE is fast: Five optimizations in design and experimental

database system for CAD/CAM applications. In Proc. 1987 A CM-SIGMOD

I n t ' Conf. Management of Data, pages 292-298, San Francisco, 1987.

BIBLIOGRAPHY

(651 A. Henrich, H. Six, and P. Widmayer. The LSD tree: Spatial access to multi-

dimensional point and non-point objects. In Proc. 15th Int71 Conf. Very Large

Data Bases, pages 45-53, Amsterdam, Aug. 1989.

[66] A. Henrich, H.-W. Six, and P. Widmayer. The R-file: An efficient access struc-

ture for proximity queries. In Proc. 7th Int71 Conf. Data Engineering, pages

372-379, Los Angeles, 1990.

[67] A. R. Hurson, S. H. Pakzad, and J.-B. Cheng. Object-oriented database man-

agement systems: Evolution and performance issues. Computer, 37:48-60, Feb.

1993.

1681 T. Ibaraki and T. Kameda. On the optimal nested order for computing n-

relational joins. ACM Trans. Database Systems, 9:483-502, Sept. 1984.

[69] Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join

queries. In Proc. 1990 ACM-SIGMOD Int71 Conf. Management of Data, pages

312-321, Atlantic City, NJ, May 1990.

[70] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query op-

timization. In Proc. 18th Int? Conf. Very Large Data Bases, pages 103-114,

Vancouver Canada, Aug. 1992.

[71] H. V. Jagadish and L. O'Gorman. An object model for image recognition.

Computer, 22:33-42, Dec. 1989.

[72] M. Jarke and J . Koch. Query optimization in database systems. A CM Comput.

Surv., 16:lll-152, 1984.

1731 B. Jiang. A suitable algorithm for computing partial transitive closures. In

Proc. 6th Int '1 Conf. Data Engineering, pages 264-271, Los Angeles, Feb. 1990.

[74] R. Kasturi, R. Fernandez, M. L. Amlani, and W. Feng. Map data processing in

geographic information systems. Computer, 22: 10-21, Dec. 1989.

BIBLIOGRAPHY

[75] W. Kent. Limitations of record-based information models. ACM Trans.

Database Systems, 4:107-131, 1979.

[76] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented database. In Proc.

1992 ACM-SIGMOD Int71 Conf. Management of Data, pages 393-412, San

Diego, June 1992.

[77] M. Kifer and G. Lausen. F-Logic: A higher order language for reasoning about

objects, inheritance, and scheme. In Proc. 1989 ACM-SIGMOD Int'l Conf.

Management of Data, pages 134-146, Portland, OR, June 1989.

[78] W. Kim. On optimization of a SQL-like nested query. ACM Trans. Database

Systems, 7:443-469, Sept. 1982.

[79] W. Kim. Introduction to object-oriented databases. MIT Press, Cambridge, MA,

1990.

1801 W. Kim. Object-oriented databases: Definition and research directions. IEEE

Trans. Knowledge and Data Engineering, 2:327-341, 1990.

[81] W. Kim and F. H. Lochovsky. Object-Oriented Languages, Applications, and

Databases. Addison- Wesley, 1989.

[82] W. Kim, J.-M. Nicolas, and S. Nishio, editors. Deductive and Object-Oriented

Databases. North-Holland, 1990.

[83] D. Knuth. The Art of Computer Programming. Addison-Wesley Publishing

Company, 1973.

[84] R.A. Kowalski. Directions for logic programming. In Proc. 2nd Symp. Logic

Programming, pages 2-9, Boston, July 1985.

[85] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive

queries. In Proc. 12th Int'l Conf. Very Large Data Bases, pages 128-137, Kyoto,

Japan, Aug. 1986.

BIBLIOGRAPHY

[86] R. Krishnamurthy and C. Zaniolo. Safety and optimization of Horn clause

queries. In Workshop on Foundation of Deductive Databases and Logic Pro-

gramming, 1986.

[87] G. Langran. Time in Geographic Information Systems. Taylor and Francis,

1992.

[88] R. Lanzelotte and P. Valduriez. Extending the search strategy in a query

optimizer. In Proc. 17th Int'l Conf. Very Large Data Bases, pages 363-374,

Barcelona, Spain, Sept . 1991.

[89] B. Lindsay, J . McPherson, and H. Pirahesh. A data management extension

architecture. In Proc. 1987 ACM-SIGMOD Int'l Conf. Management of Data,

pages 220-226, San Francisco, 1987.

1901 J . W. Lloyd. Foundation of Logic Programming. Springer-Verlag, Berlin, 1984.

[91] D. Lomet and B. Salzberg. The hB-Tree: Guaranteed performance index

method with a robust multiattribute search. ACM Trans. Database Systems,

15:625-658, 1990.

[92] W. Lu and J. Han. Decomposition of spatial database queries by deduction and

compilation. In Proc. 4th Int'l Symp. Spatial Data Handling, pages 579-588,

Zurich, Switzerland, July 1990.

[93] W. Lu and J . Han. Deductive spatial query optimization by dynamic connection

graph transformation. In Proc. 5th In t7 Symp. Spatial Data Handling, pages

323-334, Charleston, SC, Aug. 1992.

[94] W. Lu and J . Han. Distance-associated join indices for spatial range search. In

Proc. 8th Int 'l Conf. Data Engineering, pages 284-292, Phoenix, AZ, Feb. 1992.

[95] W. Lu, J. Han, and B. C. Ooi. Knowledge discovery in large spatial databases.

In Proceedins of Fa r East Workshop on Geographic Information Systems, pages

279-288., Singapore, June 1993.

BIBLIOGRAPHY

[96] D. J. Maguire, M. Goodchild, and D. W. Rhind. Geographical Information

Systems: Principles and Applications. Lonman Scientific and Technical, 1991.

[97] D. Maier, J . Stein, A. Otis, and A. Purdy. Development of an object-oriented

DBMS. In Proc. 1st Conf. Object-Oriented Programming Systems, Languages

and Applications, pages 355-392, 1986.

[98] D. Maier and D. S. Warren. Computing With Logic. Benjamin-Cummings, 1987.

[99] D. Mandelkern. Special section on graphic user interfaces: The next generation.

Communications of ACM, 36:36-109, April 1993.

[loo] J. Minker. Foundations of Deductive Databases and Logic Programming. Morgan

Kaufmann, 1988.

[lol l L. Mohan and R. L. Kashyap. An object-oriented knowledge representation for

spatial information. IEEE Trans. Software Engineering, 14:675-681, May 1988.

[I021 S. Morehouse. ARC/INFO: A geo-relational model for spatial information. In

Proc. Digital Representations of Spatial Knowledge (AUTO-CART0 7), pages

388-397, Washington D.C., March 1985.

[103] M.E. Mortenson. Geometric Modeling. John Wiley and Sons Inc., 1985.

[I041 W. M. Newman and R. F. Sproull. Principles of Interactive Computer Graphics.

McGraw-Hill, 1979.

[I051 J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The Grid File: An adaptable,

symmetric multikey file structure. ACM Trans. Database Systems, 9%-71,

1984.

[I061 Object Design Obc. Objectstore Technical Overview. Object Design Inc.,

Burlington, MA, 1992.

[I071 B. Ooi, R. Sacks-Davis, and K. Mcdonell. Extending a DBMS for geographic

applications. In Proc. 5th Int'l Conf. Data Engineering, pages 590-597, Los

Angeles, Feb. 1989.

BIBLIOGRAPHY

[lo81 B.C. Ooi. Eficient Query Processing in A Geographic Information System.

Springer-Verlag, 1990.

[log] J. Orenstein. Strategies for optimizing the use of redundancy in spatial

databases. In Design and Implementation of Large Spatial Databases (Proc.

1st Int)l Symp. SSD '89), pages 115-133, Zurich, Switzerland, 1989.

[I101 J. A. Orenstein and F. A. Manola. PROBE spatial data modeling and query

processing in an image database application. IEEE Trans. Software Engineering,

14:611-629, May 1988.

[I l l] T . Pavlidis. Algorithms for Graphics and Image Processing. Computer Science

Press, Rockville, MD, 1982.

[I121 D. J. Peuquet. Representation of geographic space: Toward a conceptual syn-

thesis. Annals of the American Geographers, 78:375-394, 1988.

[I131 P. Pistor and R. Traunmuller. A database language for set, list and tables.

Information Systems, 11:323-336, 1986.

[114] T. K. Poiker and N. Chrisman. Cartographic data structures. The American

Cartographer, 2:55-69, 1975.

[I151 F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, 1985.

[116] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Coral - control, relations

and logic. In Proc. 18th Int? Conf. Very Large Data Bases, pages 547-559,

Vancouver, Canada, Aug. 1992.

[I171 R.L. Read, D.S. Fussell, and A. Silberschatz. A multi-resolution relational data

model. In Proc. 18th Int? Conf. Very Large Data Bases, pages 139-150, Van-

couver, Canada, Aug. 1992.

BIBLIOGRAPHY

[I181 J.T. Robinson. The K-D-B tree: A search structure for large multidimensional

dynamic indexes. In Proc. 1981 ACM-SIGMOD Int71 Conf. Management of

Data, pages 10-18, Ann Arbor, MI, April 1981.

[I191 Doron Rotem. Spatial join indices. In Proc. 7th Conf. Data Engineering, pages

500-509, Kobe, Japan, 1991.

[120] M. A. Roth. Extended algebra and calculus for nested databases. ACM Trans.

Database Systems, 13:389-417, 1988.

[I211 M. A. Roth and H. F. Korth. The design of 11NF relational databases into

nested normal form. In Proc. 1987 ACM-SIGMOD Int Conf. Management of

Data, pages 143-159, San Francisco, 1987.

[122] M. A. Roth, H. F. Korth, and D. S. Batory. SQL/NF: A query language for

71NF relational databases. Information Systems, 12:99-114, March 1987.

[I231 N. Roussopoulos, D. Leifker, and T. K. Sellis. An efficient pictorial database

system for PSQL. IEEE Trans. Software Engineering, 14:639-650, May 1988.

[I241 D. Sacca and C. Zaniolo. Magic counting methods. In Proc. 1987 ACM-

SIGMOD Int 'l Conf. Management of Data, pages 49-59, San Francisco, 1987.

[I251 H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

1990.

[I261 J . H. Saunders. A survey of object-oriented programming languages. In J.

Object-Oriented Programming, pages 5-10, MarlApr. 1989.

11271 H. J . Schek, H.-B. Paul, M. H. Scholl, and G. Weukum. The DASDBS project:

Objectives, experiments, and future prospects. IEEE Trans. Knowledge and

Data Engineering, 2:25-43, March 1990.

[I281 B. Seeger and H. Kriegel. Techniques for design and implementation of efficient

spatial access methods. In Proc. 13th Int? Conf. Very Large Data Bases, pages

360-371, Brighton, England, 1988.

BIBLIOGRAPHY

[129] P. Selinger, D. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path

selection in a relational database management system. In Proc. 1979 ACM-

SIGMOD Int'l Conf. Management of Data, pages 23-34, Boston, May 1979.

[I301 T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A dynamic index

for multi-dimensional objects. In Proc. 13th Int '1 Conf. Very Large Data Bases,

pages 3-11, Brighton, England, 1987.

[131] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achieve-

ments and opportunities. Comm. ACM, 34:94-109, 1991.

[I321 H. Six and P. Widmayer. Spatial searching in geometric databases. In Proc. 4th

Int 'l Conf. Data Engineering, pages 496-503, Los Angeles, Feb. 1988.

[I331 M. Stonebraker, editor. Readings in Database Systems. Morgan Kaufmann,

1988.

[134] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of the

POSTGRES. IEEE Trans. Knowledge and Data Engineering, 2:125-141, 1990.

[135] D. Straube and T. Ozsu. Execution plan generation for an object-oriented data

model. In Proc. 2nd Int71 Conf., 0000 ' 91 , pages 43-67, Munich, Gemany, Dec.

1991.

[I361 A. Swami and A. Gupta. Optimization for large join queries. In Proc. 1988

ACM-SIGMOD Int71 Conf. Management of Data, pages 8-27, Chicago, 1988.

[137] R. E. Tarjan. Data Structures and Network Algorithms. Philadephia Pa: Society

for Industrial and Applied Mathematics, 1983.

[I381 R. F. Tomlinson. Geographic Information Systems and Cartographic Modeling.

Prentice Hall, 1990.

[I391 J. D. Ullman. Principles of Database and Ir'nowledge-Base Systems, Vols. 1 l3

2. Computer Science Press, Rockville, MD, 1989.

BIBLIOGRAPHY

[I401 P. Valduriez. Join indices. A CM Trans. Database Systems, 12:218-246, June

1987.

[141] P. van Oosterom and J . van den Bos. An Object-Oriented Approach to the

Design of Geographic Information Systems. Springer-Verlag, Berlin, 1990.

[I421 K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris architecture and imple-

mentation. IEEE Trans. Knowledge and Data Engineering, 2:63-75, 1990.

[I431 A. Wolf. The DASDBS GEO-Kernel: Concepts, experiments, and the second

step. In Design and Implementation of Large Spatial Databases (Proc. 1st Int'l

Symp. SSDJ89), pages 67-88, Santa Barbara, July 1989.

[I441 E. Wong and K. Youssefi. Decomposition - a strategy for query processing.

ACM Trans. Database Sys., l:223-241, 1976.

[I451 L. Wong. Inference rules in object oriented programming systems. In Proc. 1st

In t? Conf. Deductive and Object-Oriented Databases (DOOD'89), pages 493-

510, Kyoto, Japan, December 1989.

[I461 J . Woodwark, editor. Geometric Reasoning. Clarendon Press, 1989.

[I471 X. Xu, J . Han, and W. Lu. RT-Tree: An improved R-Tree indexing structure

for temporal spatial databases. In Proc. 4th Int? Symp. Spatial Data Handling,

pages 1040-1049, Zurich, Switzerland, July 1990.

[I481 K. Yokota. Deductive approach for nested relations. In F. Fuchi and L. Kott, ed-

itors, Programming of Future Generation Computer II, pages 461-481. Elsevier

Science Pub., 1988.

[I491 C. Zaniolo. Object identity and inheritance in deductive databases - an evo-

lutionary approach. In Proc. 1st Int? Conf. Deductive and Object-Oriented

Databases (D00D789), pages 7-24, Kyoto, Japan, Dec. 1989.

