
A MODAL LOGIC FORMALISM FOR EFFICIENT

KNOWLEDGE REPRESENTATION AND REASONING

Jens Happe

hl.Sc., Simon Fraser University, 1995

Dipl.Math, Techische Universitiit Clausthal, Germany, 1995

A THESIS SUBhlITTED I N PARTIAL FULFILLMENT

O F T H E REQUIREMENTS F O R T I I E D E G R E E O F

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Jens Happe 2005

SIMON FRASER UNIVERSITY

Spring 2005

All rights reserved. This work may not be

reproduced in whole or in part, by ph~t~ocopy

or other means, without the permission of the author,

exccpt for not-for-profit scholarly publication,

for which no further permission is required.

APPROVAL

Name: Jens Happe

Degree: Doctor of Philosophy

Title of thesis: A modal logic formalism for efficient knowledge representation

and reasoning

Examining Committee: Dr. Eugenia Ternovska

Chair

Dr. James Delgrande, Senior Supervisor

-- - -- - - --

Dr. David hiitchell, Supervisor

Dr. Veronica Dahl, Supervisor

Dr. Ray Jennings, SFU Examiner

Dr. Bruce Spencer, External Examiner,

University of New Brunswick, N.B.

hm+ 1 5 ; 2 O ~ S
- ,

Date Approved:

. .
11

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENCE

The author, whose copyright is declared on the title page of this work, has
granted to Simon Fraser University the right to lend this thesis, project o r
extended essay to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a request from the
library o f any other university, or other educational institution, on its own behalf
or for one o f its users.

The author has further granted permission to Simon Fraser University to keep o r
make a digital copy for use in its circulating collection.

The author has further agreed that permission for multiple copying o f this work
for scholarly purposes may be granted by either the author or the Dean o f
Graduate Studies.

I t is understood that copying or publication of this work for financial gain shall
not be allowed without the author's wrinen permission.

Permission for public performance, or limited permission for private scholarly
use, of any multimedia materials forming pan o f this work, may have been
granted by the author. This information may be found on the separately
catalogued multimedia material and in the signed Partial Copyright Licence.

The original Partial Copy igh t Licence attesting to these terms, and signed by this
author, may be found in the original bound copy o f this uork , retained in the
Simon Fraser University Archi \e .

W . A . C . Bennett Library
Simon Fraser University

Burnaby, BC, Canada

Abstract

Modal and modal-like logics have become the focus of rcriewed attentiorl in the field of

knowledge representation and automated reasoning. They provide a good middle-ground

between expressiveness and complexity, which makes them suitable candidates for repre-

sentation of ontologies on the Semantic Web. Expressive modal logics are well-known to

be decidable but intractable. This problem has been addressed mostly by optimizations to

improve the efficiency of reasoners on top of existing formalisms and algorithms, which have

largely been unchanged since the days of Kripke.

This work addresses the problem of intractability by providing an improved definition of

models. Rather than on a per-world basis as in Kripke models, truth assignments are

specified over set of worlds addressed by labels with variables. The set of worlds represented

by a label is the set of all its ground instances. This allows satisfying models to be stored in

a more compact form. We prove that our representation of models and formulas preserves

the satisfiability of formulas.

Our model-finding algorithm can be understood as an extension of nogood reasoning for

propmitiornal logic, whcrcits the nogoods are pararrietrized by labels, i.e. sets of worlds in

which they apply. Nogoods ensure termination of the algorithm. The search strategy is

general enough to accommodate tableau-style or DPLL-style branching. The algorithm is

specified in sufficient detail so as to make it readily implementable, although we do not

actually provide an implementation.

For simplicity, we describe our theory only on the modal logic K. An adaptation to multi-

modal logics, the description logic ACC, Quantified Boolean Formulas, and Propositional

Dynamic Logic is straightforward; we also outline how the approach extends to logics with

global axioms, such as reflexivity, transitivity, symmetry etc. We also outline the connection

with recent advances of tableau- arid DPLL-style n~ethods in first-order logic.

Acknowledgments

I would like to thank rny Senior Supervisor. James Dclgrande, for his support in my transi-

tion into the field of logic and reasoning and through the years of my Ph.D. program, and

for the space he provided for me to develop my abilities and ideas into original research.

Likewise, I express my gratitude to the members of my committee, who offered me much

advice on questions which were out of my line of research, and helped me cope with the new

intellectual and emotional challenges of doing independent work.

Due to the nature of him being my external examiner, I have only known Bruce Spencer

for a few weeks at this point. But even within this short time span, he has broadened my

horizon on my research field and shown me future directions and possibilities.

Of the many other researchers in the field I have been honoured to interact with, I wish

to mention Ian Horrocks who has given me much input on my work through the KR 2004

Doctoral Consortium, and Peter Patel-Schneider who, unwittingly, through his 1998 visit

a t Simon Eraser University has invoked in me the passion for efficient automated reasoning.

I would also like to acknowledge my lab colleagues, first and foremost Diana Cukierman

who I have had the plcasiire to share an office with for no st of ~ n y progranl, and who has

been my forerunner and role model in her own walk towards her Ph.D. degree and beyond.

I am deeply grateful to Jan Walls, Director of the SFU Centre for International Communica-

tion, for supporting nle financially and for nurturing my appetite for cross-cultural dialogue

and philosophical questions, well beyond the boundaries of formal languages and logics.

I cannot name all the students, staff, and faculty a t SFU who have encouraged, challenged,

or otherwise motivated me to carry on through my studies a t SEU. My experience has been

one of mutual giving and receiving, beyond the classroom, research lab, or other concrete

walls on this campus. But over all these, I thank my beloved wife, Qing Qian, for walking all

the highs arid lows with me, rejoicing and suffering throiigh tlie process its rnilcli as ~nyself.

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Figures viii

1 Introduction 1

2 Extensions of Propositional Logic 11

2.1 Formal Definition . 13

2.2 Classical Propositional Logic . 31

2.3 Complexity Results . 3G

3 The Modal Logic KNNF 41

3.1 Kripke Models . 42

3.2 Formal Definition of KNNF . 43

3.3 Characterizations of Satisfiability . 44

3.4 Strict Kripke Models . 46

3.5 Corrlplexit,y of Reasoning Tasks in K N ~ ~ . 48

4 Labelled Formulas 51

4.1 Introduction and Motivation . 51

4.2 Simple Labels . 57

. 4.3 The Logic of Labelled Formulas 60

. 4.4 Realizability arid Clashes 63
. 4.5 Equivalence between Kripke and Labelled Semantics 75

. 4.6 Complexity Resillts for Model Checking 88

. 4.7 The Complexity of Reasoning with Labelled Formulas 100

. 4.8 Non-strict Kripke Models and Labellings 114

5 Strong models for LBL 122

. 5.1 Introduction and Motivation 122

. 5.2 Complex Labels 128

. 5.3 Exception-Generated Instances 137

. 5.4 R.ea1izabilit.y Revisited 147

. 5.5 Weak and Strong Satisfiability 157

. 5.6 Talking about Utopia 162

. 5.7 From Weak to Strong Models and Back 16G

6 A Model-Finding Algorithm 183

. 6.1 Introduction and Motivation 183

. 6.2 More Normal Forms 188

. 6.3 Original Assertions 198

. 6.4 Branching 201

. 6.5 Nogoods 210

. 6.6 Standing Inconsistencies 226

. 6.7 Realizability Propagation 234

. 6.8 Failed Clauses and Nogood Merging 238

. 6.9 The Mdn Loop 241

. 6.10 Soundness and Correctness 246

. 6.11 Termination and Completeness 250

. 6.12 Remarks on Implementability 256

. 6.13 Refinements 259

7 Discussion and Conclusion 263

. 7.1 Contributions of this Work 263

7.2 Comparison with Existing Approaches and Techniques 266

. 7.3 Directions for Future Research 272

A Tableaux and Optimizations 276

. A.l General Definitions 277

. A.2 Tableau Calculi for KNNF 283
. A.3 Soundness and Completeness 286

. A.4 Tableaux and Kripke Models 292

Bibliography 300

Glossary of Notation 309

vii

List of Figures

3.1 A strict m.ode1. non-st~ict tree model. and cyclic model for i9 = {0 p. 0 q } . . 47

3.2 A strict model (left) and a DAG model (right) for @ = (0 p. 0 l p . 0 q) . . 48

4.1 The n x n x n cube of worlds in Example 4.1.1. 53

. 4.2 The full Kripke model and labellings for Exanlple 4.1.1. 54

. 4.3 A strict and a cyclic model for { p , 0 p, 0 0 p, Ok-' 0 p } 115

.... 4.4 A DAG model for (0 p l . 0 l p l . 0 0 p2. 0 0 l p 2 . nk-l 0 pk. nk-l 0 i p k) . 116

. 4.5 A "ladder graph" model for i9 in Example 4.8.5. 117

4.6 A cyclic model for i n Example 4.8.5. 118

4.7 A modelfori9 i n Example4.8.7. f o r k = 3 . 119

5.1 The sets of cubes satisfying y = 1 and falsifying y = 1. respectively 123

5.2 The label ... - (1 **.* 1 *. * * I) . expressed with simple labels 124

5.3 How Al(.) and A1(*) are formed from some set Aii. for a C 6 138

5.4 The logics CBC... CBC.. and CBC.. and how their models can be converted . 166

5.5 The label ... - (1 1 1) . expressed with simple labels 173

6.1 A Nassi-Sihneider~r~.ar~. flow Tll,(~gr(~rr). of the algorithm 242

. A.l A minimal model for i9 = { p . 0 (l p A q) . 0 0 (l p A l q)) 293

A.2 A strict model and the model generated by S for the set i9 in Example A.4.7 . 299

...
V l l l

Chapter 1

Introduction

Dicit ei Pilatus: "Quid est vevitas?" "What is truth?", Pilate asked Him..

The Bible, John 18:38

Overview Over the last 15 years, expressive but decidable logics have received renewed

attention. Though not researched as actively as first-order logic or classic,al propositional

logic, they do fill an important niche between these two extremes of an undecidable and a

vcry inexpressive logic. Propositional rriodal logics have played a don~inant role in this area

even well before their complexity had been studied and before algorithms had been devised.

They have been studied for their versatility and applicability in various areas of philoso-

phy such as knowledge, belief, introspection, temporal reasoning, causalities, conditional

reasoning, t,o ~nont,ion but a fcw.

Today, these logics also appeal also to an entirely different community, that of automated

reasoning. First, as mentioned, they are known to be strictly more expressive (and of

higher complexity class) than propositional logic, while still decidable. Secondly, model-

based semantics and reasoning algorithms based on analytic tableaux [60], available for

over forty years, have ~t~irnulated the dcvclopment of automated reasoners. Thirdly, the

intractability in reasoning with modal logics proved less of a hindrance in practice than

it might appear in theory. While all known algorithms have exponential worst-case time

complexity in terms of the problem size, the actual running time of good implementations

CHAPTER 1. IhrTR,OD UCTION 2

on practical problems today is quite satisfactory. Fourthly, modal logics1 can be used to

reason with entities, nod el led by worlds, and relaf;iorrships, ~nodellcd by relatio~is b ~ t , ween

worlds, which are the building blocks of ontologies. It is these ontologies which are now

providing the main motivation for research into even more efficient algorithms. Arguably

one of the first large-scale ontologies, established in 1993, was a knowledge base of medical

terms called GALEN [87]. The suitability of modal and description logics for representing

and reasoning with this k~iowledge base, as well as the efficiency of aiit,oniated reasoners in

answering typical and useful queries, have been convincingly demonstrated [47, 481. Since

then, the amount of data in whatever format could be conceived of as ontologies, suitable for

automated reasoning, has increased rapidly and continues to do so, thanks to the expansion

of the World Wide Web. 111 2001, t,he World Wide Wcb Corlsortiu~n ;tpprovt?d a stmdard

representation language for ontologies [50, 591, now called OWL (Web Ontology Language).

Under the popular but somewhat vaguely defined moniker "Semantic Web", large efforts

are now underway both in academic research and industry, to facilitate representation of

and reasoning with knowledge in the format of ontologies. One goal is to develop intelligent

agents which car1 access these ~ilt~ologies and perfor~n iiscful rcasorling tasks with tllein,

ontologies, just as humans access vast quantities of knowledge on the Web today, structured

for human consumption and reasoning.

While the demand for increasingly powerful reasoning technology for ontologies is obvi-

ous, research efforts have intriguingly shifted away from the basic logics into desirable but

specialized add-ons, such as reasoning with numerals, inverse modalities, and compositions

of relations [95, 43, 531. We see two plausible reasons for this: First, the rapid progress

that has been made 4-7 years ago in optinlizing reasoners may leave people feeling that

further progress is either unnecessary or impossible. Secondly, it is held that designing an

i~nproverneilt over existing reasoriers uot only requires a good idea for a gc~~era l rerrsoning

algorithm, but also a great number of optimization techniques on both the implementation

and hardware levels. There have been promising proposals for better algorithms and/or

techniques, such as [9, 37, 38, 36, 441, but to the best of our knowledge, they have not found

their way beyond prototypical implementation, be it into any of the leading reasoners or

'111 practice, descriptiou logics are nor~nally preferred here. Due to the close relatioilsllip betwttm inodal
and description logics, much of what we will say about rnodal logics also holds for description logics, and
we will refer to the latl.er in some of our discussions. We choose modal logics because their definihn is
so111ewlla.t sinlpler.

CHAPTER. 1. INTR,OD UCTIOh!

into an entirely novel reasoner.

A similar sentirner~t existed four ycars ago in the SAT (propositional ~at~isfiability) corn-

munity. However, since then it has witnessed spectacular and unanticipated progress in

efficiency on SAT solvers. Fairly simple ideas, cleverly implemented, have contributed to

significant improvements on the bound of problem sizes which can be handled by state-of-

the-art solvers [78, 96, 891. This demonstrated that improvement was possible, even without

rlurncrous years of developing and fir~e-tu~~ing large and sopl~isticated reasoners.

Could such a success be repeated in propositional modal logics? There is good reason to

believe so. First, they incorporate propositional reasoning. In fact, the logic of quantified

Boolean formulas (QBF), which is as expressive as the modal logic K but with much simpler

syntax, essentially consists of state~nei~ts over t11~ sets of variable assignments satisfying a

propositional formula. Some interesting progress has been made, and continues to be made,

on the efficiency of reasoners for QBF, and research efforts in this field have increased, while

it is commonly held that substantial further improvements are attainable. At the same

time, the leading modal and description logic reasoners have not proven too successful in

handling certain hard translations of QBF problems [7412, and wc, will explain this shortfly.

Moreover, the basic tableau-based calculus, used in three of the four most efficient provers

today, is essentially unchanged since 1963. Ingrained in the calculus, as we will argue, are

fundamental shortcomings which make reasoning inefficient3. Many of the optimizations in

today's provers take aim at overcoming these shortcomings; they are motivated chiefly by

practical considerations such as pruning of the search tree, search heuristics, model caching,

and others. They do not address the shortcomings themselves. We claim that a significant

improvement over the original calculus is possible, and we will propose one. Naturally, we

will have to specify how exactly we measure "improvement".

Alternatives to tableau-based approaches Tableau-based calculi, the way they are

currently used, perform reasoning by manipulating sets of formulas, each of which is bound

to one single world in a Kripke structure. In explicit or labelled tableau systems, this

2Conversely, QRF solvers have not been too successful at translations of "easy" K-problems either [IO],
which suggests, at the very least, t,hat today's algorithms in eit,her field are not sophisticated enough t,o see
beyond the encoding and recognize the underlying struct,urr of the probbm.

"TO be ent,irely fair, we acknowledge that Kripke's original proposal has bee11 refined over the years by
calculi swh as preiixed i.ableaux and 1.ableaux which use semant.ic branching. Ilowewr, 1 . 1 ~ shorkornings we
will point out afTect these calculi as well.

CHAPTER 1. INTRODUCTION 4

world is explicitly represented in the formula, usually by a label. In implicit or unlabelled

tableaux, the world is irnplied by thc current state of the tableau proof, and its location in

the structure is determined by the tableau rule applications which led to the current state.

(For the difference between the two systems, see [22, 391.) But in either case, the classical

calculus handles (more or less) one formula a t a time, and hence one world at a time. It

never reasons over sets of worlds simultaneously, although there is no compelling reason for

this restrictio~~. Aft,cr all, the 0-opcrator cxprcsses a state~nent over a set of worlds, i~a~ncly

the successors of the current world. We give two reasons why we consider reasoning one

world at a time a serious bottleneck:

1. Multiple 0-formulas in nodes give rise to branching in the Kripke structure. On prob-

lem classes of unbounded modal depth, a minimal Kripke model may be exponentially

larger than the original formula in the worst case, so we may need to reason over

exponentially many instances (worlds). We will encounter examples in Chapter 4.

2. Disjuilctio~is within 0-formulas l e d to b r a i ~ d ~ i i ~ g within the sec~rch, twe. Worsc still,

branching must be repeated in each of the successor worlds of the current world.

In combination with I., one can state problem classes of unbounded modal depth

with disjunctions giving rise to exponentially many branching points, devastatingly

degrading pcrforniance.

The effect of 2. has been well testified and, worse still, observed to occur in real-world

problems [54, 511, and this considered to be the more serious of these two bottlenecks.

(Of course, the two sources of complexity are inseparable; any approach addressing 1. and

reducing branching in the structure will also reduce the impact of 2.)

Another existing and reasonably efficient approach is to translate the problem into a prob-

lem in classical first-ordcr logic [go]. A11 efficiwt algoritl~m exists ill the opt,iinized fiinctioual

translation [81], and it is known that all resulting first-order problems belong to the two-

variable guarded fragment which is decidable and for which a number of complexity results

are known [40, 67, 82, 301. However, little research has been done on efficiently solving the

translated problems. Conventional wisdom suggests using existing "off-the-shelf" resolution-

based provers, since they already incorporate generations of research into efficiency improve-

ments; moreover, a variety of provers with different characteristics are available. The appeal

of resolution is that it incorporates reasoning with variables, which makes it possible to rea-

son over sets of worlds simultaneously, provided the first-order translation of the problem

CHAPTER 1. IhJTRODUCTION 5

represents O-formulas using variables (which the optimized functional translation does). On

the dowuside, the resollitioi~ 1r1c:tllod itself 1)rovides poor guidance for an efficient scarch.

Computing all resolvents of a set of formulas is usually prohibitively expensive; even if re-

dundancies (subsumptions) are filtered out, it is a difficult task to devise a search strategy

which is both complete and well-adapted to the specific structure of problems. In this regard,

first-order provers are not optimized for use with translations of modal formulas. Besides,

resolution is mostly used for proving theorems, or equivalently, for showing a problcrn 1111-

satisfiable. They are not as strong in finding models for satisfiable problems. Nonetheless,

there are some who defend the translation-based approach as superior to tableau meth-

ods. In one solver comparison on benchmark problems [74], the MSPASS system [57] which

t,ranslates modal logic problems into FOL and solves t han using the SPASS t,hmrein prover,

has been reported to scale better than the competing tableau-based provers as the problem

size increases, while lagging behind in terms of absolute running time.

Apart from resolution, new first-order calculi have been devised and refined to the point of

being conlpetitive to resolution, and implementations have become available. Two interest-

ing calculi here are the rnrodel evolution calculus [5] a i d the disconnection tableau calculus

[12, 63, 651. At the end of this work, we will briefly discuss them and see how they are

related to our approach and why we consider them promising for solving translations of

modal problems.

Back to the original modal logic problems, there has been some research and a prototypical

implementation [8] on an adaptation of the free-variable tableau calculus [9] from the like-

named calculus in first-order logic [23]. This idea elaborates on the use of labels in tableaux.

The free-variable tableau calculus reasons with formulas preceded by labels which reflect

the original modalities: each O-operator corresponds to a constant, and each O-operator to

a variable in the label. This capturcs thc universality of the O-operator: the variables in a

label can be instantiated by constants, thus referring to any particular world over which the

O-formula is scoped. Depending on the particular modal logic, different rules are in place

to translate modalities into labels. Furthermore, the calculus defines how branching over

labels with variables must be performed in order to preserve soundness and completeness.

Free-variable tableau systems could be seen as spccific instances of the very general labelled

deductive systems [26].

To our knowledge, this work has not been continued recently. Many issues have not been

satisfactorily answered. First, the free-variable calcullis has chiefly been proposed as a

CHAPTER 1. IhTTRODUCTION 6

method for proving unsatisfiability, although it has been shown how the calculus can be

exterlded to a dccision procedure. But no cllaractcrization of ~nodels, or how to obtain one

from a tableau for a satisfiable set of formulas, has been provided. Furthermore, there are

no formal results on the reasoning complexity of this calculus or on problem classes which

can be handled more efficiently. And finally, while the prototypical implementation has

the favourable features of being lean and modular, it has not been optimized for handling

large-scale problems. At its core it relies on a Prolog erlgirle for branching, backtracking

and search heuristics, which unacceptably restricts the degrees of freedom for optimizing4.

Goal of this work Our work originated from an enhancement of simplification and sub-

sumption detection methods [69, 70, 451. However, the approach has since developed into a

formalism quite similar to mentioned free-variable tableaux, so it should be duly considered

a continuation of that research. However, our treatment will be markedly different: Rather

than stating it as a calculus in normal modal logics, we present it in the setting of a novel

logic which we name CBC, for "logic of labelled formulas". The formulas of CBC are made

of propositional atoms, propositional connectives, a i d labcls wliich may occur not only in

the prefix, but throughout the formula; they take the place of modalities. Instead of vari-

ables, we have a single anonymous variable or wildcard *. Labels with variables represent

sets of ground labels instantiating them. As an important notational extension of labels

with variables, we later introduce labels with exceptions, which allows us to express the

set difference of two or more sets represented by labels. The use of labels with exceptions

reflects common real-world reasoning scenarios, where a formula can be satisfied in a large

set of instances (worlds) using some default assignment, but in some (sets of) ezceptional

instances a different assignment must be found. For instance, the statement "Birds fly or

have short wings" cannot be instantiated universally over the sets of all instances which

satisfy "is-a-bird". But for all but a few exceptional instances, a default assignment "flies"

succeeds without inconsistencies, and only for a few subsets of instances (such as penguins,

emus etc.) an alternate assignment "has-short-wings" must be chosen.

Unlike in most other approaches, our emphasis is less on proving theorems rather than

findin,g corrcise m,odels for satisfiable formulas, and doing so efficiently. Wc will specify

a model-based semantics for CBC and show how LBL-models correspond to conventional

"Resides, we found the published implementfation [8] to be incorrect for problems of a certain irregular
structure.

CHAPTER 1. IILrTROD UCTION

Kripke models5. Conciseness is an important issue: While the satisfiability of a formula cp

in the inodal logic K can be decided in polynomial space, a Kripke n~odel for p may take

exponential space to store it. So lest we impose a serious handicap regarding the size of

problems which our algorithm can solve, we must be concerned about representing models as

efficiency as possible. We will motivate why CBC-models are typically smaller than Kripke

models, and provide a large and interesting class of problems for which they are provably

sillaller.

Abandoning the use of tableaux for model finding, we will instead specify an algorithm

based on nogood reasoning, similar to the well-known dynamic backtracking algorithm [31]

for constraint satisfaction problems. Our algorithm provides a decision procedure, and we

will prove it sound and complete, so it can be used for theore111 proving (via ilnsatisfiability

checking) as well as model finding. We do not provide an implementation, but the algo-

rithms in this work are clearly and precisely worked out; implementing them should be a

straightforward though perhaps cumbersome task.

Our goal is not to provide a general mechanism for handling as many logics as possible, as

done in [9], or even to offer a general framework for nlarly and diverse logics such as [26]. Our

presentation is restricted to the most general normal logic K. The main reason is that the

algorithm requires many novel ideas as it is, and restriction to K helps keep the amount of

detail manageable. However, it is not our intention to devise a highly specialized algorithm

for K only; this logic in itself is very weak and does not offer the additional features so

desirable for practical reasoning with real-world ontologies. Instead, we intend our logic

CBC and model finding algorithm as a starting point for developing similar ideas for more

powerful logics. Some of these ideas will go well beyond those presented in this thesis, and

we will characterize them as future work. The ideas we do use for K will be presented so as

t,o be re-usable for other logics. Our approach is modular, ill that we distinguish bctwcxn

the reasoning stages of translation, model finding, and consistency checking. We claim that

these stages naturally result from the structure of modal formulas and the interplay between

the propositional and modal operators. Each stage falls into a clearly defined complexity

class. In this sense, this work makes a modest contribution to the theory of modal logics,

by helpiug to understand how diffcrcnt, cor~struct,~ within nlodal formulas are sources of

different degrees of hardness.

51f we Iike to be conservative, we could think of these models mcrcly as wpresentatzons of Kripke models,
instcad of clairili~ig an cntircly ilovcl way to specify tllc scirlantics of ir~odal logics.

CHAPTER 1. INTRODUCTION 8

Structure of this thesis As we have described, this work can be viewed as a sophisticated

txeatrneiit of labelled tableaux. Alt,ernatively, we could translate it irito first,-order logic and

consider it a refinement of first-order reasoning. Either approach would have the advantage

of offering a reasonably solid, established theoretical foundation upon which we can build

our results.

However, we found that stating the work in terms of the tableau method would be too

rcst,rictive. The algorit l~~n coiild be stated it1 a tableau framework, but it llas litkle in

common with Kripke's, or Smullyan's, original idea. Besides manipulating formulas from

one tableau node to another, we would need to carry a lot of extra information with us.

Moreover, our search strategy of branching and dependency-directed backtracking does not

correspond tro t,liat of trhe c1assic:al tableau calculus.

Sta,ting our approach in first-order logic, on the other hand, never was our intention. We

consider first-order logic as too general a framework for our problems, whose translations

would cover only a small fragment [67]. So while our work may well be fully specifiable in

FOL, it would not likely become any easier. Besides, the class of first-order problems our

algorithtn can solve would not be as well-dcfined as the class of problems in K.

Using a novel logic LBL offers the advantage of clearly displaying the anatomy of a K-

problem and our method of solving it.

The disadvantage of this approach is its considerable overhead. We need to define syntax

and semantics, present a translation from K to LBL and prove it satisfiability-preserving,

and characterize properties of models in LBL. Much of this is routine work, neither very

deep nor groundbreaking; hence the ~onsidera~ble size of this work. While existing concepts

in the field can be adapted to meet many of our needs, they are not close enough to let

us simply cite them; instead we must prove that the adapted concepts serve their desired

purpose, so its to warrant corrcctncss of our research.

A point in case is Chapter 2, a reflection on propositional reasoning. Our overall approach

requires that all formulas be in negation normal form (NNF). While conversion to NNF is

convenient and standard practice, formal treatments of the NNF are sparse in the literature

on propositional logic. Consequently, we will expend great efforts developing terminology

and results for the restriction of propositional logics to tlegation nor~nal form. As such,

these results are novel to the best of our knowledge, but they do not provide groundbreaking

insights over and beyond their well-known counterparts in unrestricted propositional logics.

Only a small section of this chapter actually deals with classical propositional logic. For the

CHAPTER 1. IhrTRODUCTION 9

major part, we will be concerned with general statements and theorems for propositional

logics, that is, for any logic in NNF which defines A, V, T, and I in their usual meanings; to

these belong the basic normal modal logics as well as our new logic CBC. These results will

free us from rediscovering the same facts about the propositional part in each individual

logic later, and thus reduce redundancy in this work considerably. Arguably the main

contributions of the chapter are the notion of propositional covers, on which the semantic

structures for CBC are based, and an inlportant principle we refer to as monotonicitg. We

also introduce a number of useful proof tools like induction on the structure of formulas,

and homomorphisms.

Chapter 3 covers all aspects of the modal logic KNNF (K restricted to NNF) needed for

thc purposes of this work. It gives an account of the scrnantics of KNNF in t,ernls of

Kripke structures. We will derive an interesting correspondence between Kripke models

and propositional covers, which will foreshadow a similar correspondence in Chapter 4. A

byproduct is the class of strict models which characterizes models arising from the classical

tableau calculus without optimizations.

In Chapter 4, we introdilce labels and labelled fornlulas for the first time. We offer a

semantics for formulas which is little more than a concise version of the semantics of K. Based

on the analogies between the two, we describe a translation function between KNNF and

CBC which preserves satisfiability. We will then demonstrate that the worst-case complexity

of reasoning is the same as in K , but also that a large and interesting problem class admits

polynomial-size models in CBC but not K . In turn, we will see that the worst-case complexity

of model checking increases relative to the size of an CBC-model, but not (significantly)

relative to the size of the Kripke model represented by it.

As we will find, the logic CBC as defined in Chapter 4 is still to weak to accommodate

our goal of reasoning cfficicr~tly over sets of instances; for instance, it does not provide for

default assignments with exceptions. In Chapter 5, we will progressively develop the still

familiar-looking semantics of CBC into a novel, workable form which actually utilizes the

expressivity offered by labels with wildcards. While the language of CBC remains largely

unchanged, we first introduce labels with exceptions, allowing for even more concise models,

and t l w ~ undergo a sigrlificant paradig111 shift from reasoning "one modality at a tirnc" (or

one label element at a time) to reasoning "from defaults to exceptions", considering labels

as a whole. Each of these two steps is motivated carefully, showing at each step how the

emphasis changes. Of course, we will demonstrate that the satisfiability of formulas remains

CHAPTER 1.

invariant to all these changes in semantics. We will argue that the worst-case complexity

results of Chapter 4 remain uric.lnanged, but, that the improvement,^ in Cllttpter 5 l e d to

average-case improvements in practice.

Our efforts culminate in Chapter 6 in a detailed description of a model-finding algorithm, its

reasoning strategy, and a proof of its soundness and completeness. Mostly for convenience

we introduce a normal form in which to represent formulas, analogous to the clause normal

form (CNF) corrirnorlly found in propositional reasoning. Tliis labelled clouse r romal forn~

is a byproduct which may well be of interest beyond its use for the algorithm.

We conclude this work with some considerations about implementability, an outline of im-

portant future work to be done, and a summary of our contributions, in Chapter 7.

The tableau calculus has already been mentioned a nurrlber of times. We pay due tribute

to this important technique and introduce it. This serves two additional goals: demonstrat-

ing how the formulas in the tableau nodes naturally correspond to propositional covers, and

showing how strict Kripke models arise from the classical tableau calculus without optimiza-

tions. We draw upon results up to Chapter 3 only, and our findings, though interesting, are

not needed for the rest of this work, so we attach them as Appendix A.

The reader may not be all that interested in reading sequentially through this entire work

with all its theorems and propositions. For this reason, each of the three main chapters

4, 5, and 6 begins with a section on the problems we address in that chapter, motivating

the results on some examples, and introducing key concepts we will define and use from

that chapter onwards. One may wish to study these sections first to get a general overview,

and then focus on individual sections of interest. To facilitate this, the (substantial) in-

terdependency of results among sections is clearly and extensively marked, by referencing

results from earlier sections and chapters by number, wherever they are used. A list of all

algorithms by narne and number is provided; finally, a list of all non-standard rlotation used,

with explanation and reference to the page on which they were first defined, can be found

in a glossary at the end of this thesis.

Chapter 2

Extensions of Propositional Logic

It is dzficult to say what truth is, but sone t ines so easy to recognize a

falsehood.

Albert Einstein

In establishing our results, we will make use of a variety of well-known as well as novel

logical frameworks. These frameworks have many properties in common; notably, they are

logics with a well-defined semantics, based on some notion of Tarski-style structures and

m,odelsl; moreover, they are all closed under the propositional operators A and V, which

are always defined as expected: for instance, a model for cp A .J, is a rnodcl for both cp and

4 and vice versa, independent of the internal structure of cp, $ J , or of the model. Another

coininon feature, quite distinguished from usual treatments of propositional or modal logics

(but common for publications in automated reasoning) is that the negation operator 1 is

restricted to occurences in front of propositional variables only. This amounts to formulas

being in the so-called negation normal form (NNF). It does not restrict expressivity though,

as long as the logic obeys the duality principle: that is, each operator o(., . . . , .) has a

dual operator G(., . . . , .) so that 1 o (cp*,. . . , cp,) = o(icpl,. . . , 19,). We refer to any logic

satisfying the above properties as a propositional logic (in NNF), as opposed to the familiar

classiccd pro~~ositiorral logic which is just one special instance of a ~)rol)osit,ional logic, albeit

a very important one.

Section 2.1, which takes up most of this chapter, is devoted to characterizing common

features of propositional logics in NNF, and generalizing well-known results of classical

'See Ihe remarks on terminology further below in this section.

CHAPTER 2. EXTELNSIONS OF PR.OPOSITIONAL LOGIC 12

propositional logic to any such logic. These results will be applied to individual logics in

later chapters, t,l~us saving 11s the tedious work of est,ablishir~g tllcrn over and over again.

Admittedly, this makes for a very nonstandard introduction into well-known logics such as

K, but we feel that the benefits of our systematic approach outweigh the inconvenience of

an unfamiliar perspective. Someone entirely new to the field may wish to consult standard

treatments [15, 561 first.

Let 11s introduce a few general notio~ls at the outsct. Tl~ronghout this work, we deal with

propositions. Propositions are considered atomic, and they are represented by variables from

a given set P which is not a priori bounded; but only a finite subset of P is used in any

particular problem instance. A logic L is built upon a language L(L) of well-formed for-

mulas (or L-fomulas, if wc wish to c~rq)l~asize the logic: used), and tlie seniantics according

to which formulas are evaluated. L(L) consists of propositional variables from P, proposi-

tional constants (T and I), logical connectives (such as A,v,-), auxiliary symbols such as

parentheses, and other synlbols for use in logics introduced in Chapter 4. The semantics of

a logic is based on Tarski-style semantic structures, also known as interpretations-bjects

whose structure depends on tlie specific logic. St,ructures specify the way ill wl~icli t n ~ t h

values are assigned to the propositional variables, usually depending on their context within

the structure. The only truth values allowed are true and false (always written in slanted

font); there is no third value such as undefined. A variable should never be assigned to both

true and false in one and the same context, although this is not enforced by the definition of

some of the logics-for good reasons, as we will see. In these logics, we distinguish between

consistent and inconsistent structures; the former are also called m,odels. We need not and

will not always state complete truth assignments for all variables in all contexts, but implied

in such partial assignm,ents is that any unassigned variable may be assigned arbitrarily to

truc or false. Any t,wo variables from P are considered distinct, and their truth assig~~ments

are a priori independent of one another.

Besides structures, the semantics of a logic is based on a relation k on (consistent) structures

and formulas. Whenever M cp, we say that cp is satisfied by M, or that M is a m,odel

for cp. If the logic allows for inconsistent structures, we will not admit these as models,

but we still desirc some 11otio11 of "sat~isfiability". Thcrcfore, we use a different relational

operator b for structures in general. Hence M k cp iff h/i is consistent and M b cp. We

thus separate the concept of "structures satisfying a formula" (the b relation) from that of

consistency, a major tenet we hold in this work.

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 13

At this point, we must address a common source of confusion. In the eyes of many logicians,

tho t,crm "model" is reserved to striicturcs which satisfy a given specific formula. Our own

use of the term "model", however, follows common practice in the field of modal logics, where

a model is any object which satisfies the given structural and consistency requirements.

without a particular formula in mind. If we mean "model" in the former sense, we will

always speak of a "model for cp" or a "model satisfying cp" etc.

For rcmons which will become evident tliroiighout the work, we woiild also like to refer to

objects satisfying the structural requirements, but not necessarily the consistency require-

ments, of the logic; we will simply call them "semantic structures". We define a relational

operator b on structures and L-formulas, and whenever M b cp, we will say that M verifies

cp; the + rclation is derived as the re~trict~ion of the rclation to nlodcls.

The + relation is the most vital part of each logic. Standard reasoning tasks in any given

logic can be expressed in terms of + as follows:

niod(:l c:hccking, that is, verifying whether a given pair (M, cp) is an clerr~er~t of the

satisfiability relation /=,

satisfiability checking, that is, verifying that +-'({cp)) # 8,

model finding, that is, finding an element of +-'({cp)).

Other tasks, such as proving unsatisfiability (+-'(cp) = 8) or validity (c(/=-' (cp)) = 0), can

be derived fronl the above (provided t l ~ c t,asks are decidable, which will be the case for all

logics considered in this work), so we will keep the above three tasks a t the centre of our

attention.

2.1 Formal Definition

Definition 2.1.1 A propositional logic L (in negation normal form) is defined by a language

L(L) which is the sm,allest language containing a given, fixed set A of atoms including the

propositional constants T and I: and closed under the b i n a q propositional connectives A

an,d V ; and b?y a sernantir. relu,tion kg on Q !/%wn, fked set of se7~1,antl;c structures o n the one

hand, and formulas or sets of formulas on the other hand, obeying the following principles

(where 01, 02, P I , P2, cp are L-formulas, @ a set of formulas, and M a structure:

CHAPTER 2. EXTENSIOlYS O F PR.OPOSITIONAL LOGIC

M kg T for all M

Furthernore, the logic L characterizes some or all semantic structures as consistent, or

models. If M kg cp (or M kg a) for a semantic structure M , we say that M verifies

cp (or a) ; i f additionally M is consistent, we write M kg cp (M kg a) and say that M

satisfies cp (or a) . Wlrmeuer a ~rhodel exists for a given forrrrula cp (or set a) , cp (or a) is

said t o be kg-satisfiable (or usually just satisfiable, with kg clear from the context). W e

call two sets of formulas a1 and a2 equivalent (a1 -g @2), if they are satisfied by exactly

the same semantic structures.

For the rest of this section, L is understood to be a "generic" propositional logic with kg
as its semantic relation. The absence of a negation operator in the definition is intentional:

while a negation operator will exist in all incarnations of propositional logics we consider, it

will form part of a propositional atom, together with the propositional variable it precedes;

no other occurrence of 1 anywhere else is allowed. We also point out that different logics

differ on the sets of atoms they define, which is why we do not include them in the generic

definition (apart from T and I which are always present).

Definition 2.1.1 entails an obvious but useful property:

Proposition 2.1.2 If M kg a , then M kg a' for any a' G a.

One easily verifies that the corljunction and disjunc:tion operat,ors are associative, just as

in plain propositional logic. This allows us to omit parentheses, effectively turning A and

V into connectives of any finite arity. We write a term with n conjuncts al, . . . , a,, also

called an a- fornv la , as a = a , A . . . A a, or a = ai or also a = A { a i : i = 1 , . . . ,n) .

Likewise, we write a disjunction with m disjuncts PI , . . . , P,,,, also called a P-formula, as

P = P l V...V,Om or ,O= Vjm=l,Oj or also ,O=V{,Oj: j = 1 , . . . , m}.

Proposition 2.1.3 With notation as introduced above! we have:

CHAPTER 2. EXTENSIOlW OF PR.OPOSITJOllrAL LOGIC

M kg AZiai iff M kg ai for all i = 1, . . . , n.

M kg VE1 ,Bj iff M kg ,Bj for at least one j = 1, . . . , rn.

M kg { i n 28 M kg AY'iai
(Hence { a I , . . . ,an) --g A{al,. . . , an) .)

Proof: The first two statements follow by applying Definition 2.1.1 (n - 1) and (m - 1)

times, respectively. For the third statement, we observe that the last line in Definition 2.1.1

and the first statement of this proposition feature identical conditions. 0

We see that sets and conjunctions of the same formulas are equivalent. Many definitions

and results in this work can be sensibly expressed in terms of formulas as well as sets of

formulas, but we will often save space and efforts by stating them in only one form. In those

cases, it is understood that a result holds for a formula cp whenever it holds for the set {cp),

and that a result holds for a sct @ whenever it holds for the co1i.jlmctio11 A@.

Corollary 2.1.4 If a = ALl ai is a conjunction of conjunctions ai = r \ y ~ ~ a i j , th,en

= A{ai,j : j = 1,. . . , n i , i = 1,. . . , n). If P = Vy=l ,Bj is a disjllnction of disjunctions
-9

,B. - ~ y ! ~ ,B+, then ,B =g V{,Bj,i : i = 1, . . . ,m j , j = I , . . . , m) . J -

Hence a nested conjunction can be converted into one single conjunction, and a nested

disjunction into one single disjunction. This simplification is known as flattening.

Definition 2.1.5 A formula cp i s a propositional subformula of cp' if eith,er cp = cp' or cp' is

of th,e form a1 A. . .A an or pl v . . . V p,, so th,at recursively, cp is a propositional subfonnula

of some ai or Pj.

A formula can have a multiple number of occurrences of the same subformula. We usually

consider different occurrences as distinct, except in a set context: {cp, cp) = {cp). But we

will comment on this whenever it is crucial. In this chapter we will consider atoms as truly

atomic, in that they do not have propositiorlal subfornlulas, Although in rl~ost logics to bc:

introduced later atoms will be built from constructs which themselves have propositional

subformulas, the recursive propositional evaluation or transformation of a formula stops at

the level of atoms, as it is ignorant of their internal make-up.

Since L(L) is a minimal closure of the set of at.oms A under propositional concatenation,

any L-formula is a concatenation of finitely many at,oms. So long as every atom in A is

CHAPTER 2. EXTENSIONS O F PROPOSITIONAL LOGIC 16

finite, every formula is also finite in length. This allows us to perform induction proofs

on the propositional st,ruct~irc o f a formula, which we will use extensivc:ly. We state the

principle formally as follows: Let Q(.) be a property defined on formulas in the logic L. We

say that Q is preserved under propositional concatenation, if whenever Q(yl) and Q(y2) are

true, then so is Q(yl o pa) for o = A, V.

Theorem 2.1.6 (Structural induction on y) If Q is a property on L which is preserved

under propositional concatenation, and Q(a) holds for all atoms i n L, then Q(y) holds for

every formula y i n L.

Proof: Every formula contains only finitely many propositional subformulas. Take any

L-formula y. Assume that Q(y) does not hold. Let cp' be a propositional subformula of y

so that Q(cpf) does not hold, but Q(yU) holds for all subformulas cp" of 9'. Now y' cannot

be atomic, as Q holds for all atoms. Hence cp' = y1 o cp2 for some subformulas cpl, cp2.

However, the way we defined y', we have both Q(yl) and Q(cp2). Since is closed under

propositional concatenation, we also have Q(cpl o p2), contradicting the assumption that Q

does not hold for y'. 0

Note that the induction principle is indifferent to the semantics of A and V. Moreover,

t,he co~inot~atiori of Q is entirely cliffererit from that of kg. Wc use Q ;IS a rneta-logical

operator to state and prove properties on L, not satisfiability properties of formulas. In

all proofs using structural induction, the property represented by Q-that is, the induction

hypothesis-will aIways be clearly stated.

Let us consider a prominent example of a property-r here rather, a metaproperty-

preserved under propositional concatenation:

Definition 2.1.7 Assume that some partial order 5 is defined on the semantic structures

of L. A property Q (M) defined on semantic structures (and possibly other parameters) is

monotone wrt 5 , if wlt,errever Q (M) is true and M 5 M', then Q (M f) i s also true.

The semantic relation kg can be viewed as a property on semantic structures, parametrized

by an L-formula; it is not the only, but by far the most important property for wish we

desire to prove monotonicity, and we will exert great efforts in defining a modal-like logic

whose k relation is indeed monotone (see Chapter 5). But here we can state at least one

thing about the monotonicity o f . kg cp (which in turn is a property on L-formulas):

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 17

Theorem 2.1.8 monotonic it^ of the k, relation on L is preserved under propositional

co~~cntenatio~r.

Proof Assume M 5 MI, and M kg a1 A . . . a , . Then M kg ai for all i = 1,. . . , n.

Now if . kg ai is monotone for all ai, we can conclude that MI kg cyi for all i. = 1, . . . , n,,

and hence MI kg a1 A . . . A a,. We have thus shown that kg a1 A . . . A a, is morlot,or~e.

A similar argument shows that monotonicity is also preserved under disjunction.

Corollary 2.1.9 If kg a is monotone for all atoms in L, then it is monotone (for all

fo7m~~la.s i n L).

Proof This follows directly by structural induction according to Theorem 2.1.6, whereas

the induction step is provided by Theorem 2.1.8. 0

The contrapositive of Theorem 2.1.9 provides a criterion for kg to not be monotone: there

must be some atom a so that . kg a is not monotone. We will encounter logics where this is

so. Indeed, the standard versions of b, in classical propositional and modal logics are not

monotone.

Definition 2.1.10 Given an operator d (-) : A H No (where No is the set of nonnegative

integers), we define a depth function d(.) : C(L) - f i by setting d(T) = 0 , d (l) = 0 , and

d(cp1 0.. . 0 cp,) = max{d(cpi) : 1: = 1,. . . ,n,) for o = A, V.

Note that d(.) is well-defined, since every formula is a propositional concatenation of atoms.

Moreover, every formula has a finite depth. We also observe:

Proposition 2.1.11 If L is a propositional logic with a depth function, then so is any

restriction of L to formulas of m,aximum depth k , for any k E No. The atoms i n this

restricted logic are exactly the a t o m i n L of depth at m,ost k .

Proof Observe that the depth of any propositional concatenation of formulas is no larger

than the maximum depth of any of its components. and that T and I are included in any

restriction by virtue of having depth 0. The semantic relation kg is simply inherited. 0

The depth of a set @ of formulas is defined in the obvious way: d(@) = max{d(cp) : cp E a).
The depth function will play a vital role in defining the language of many of our logics.

Atoms of depth k + 1 will be constructed recursively from formulas of depth at most k.

In accordance with these definitions, it makes sense to refine the principle of structural

induction:

CHAPTER 2. EXTELSSlONS OF PROPOSITIONAL LOGIC

Theorem 2.1.12 (Induction over the formula depth)

Let Q (-) be a pn)perh/ on L-fom,ulas. If Q (a) i s t r m for a11 atoms of drpth 0, Q is prc:sen~ed

under propositional concatenation, and from Q (p) being valid for all formulas p of depth at

most k we can infer Q (a) for any atom of depth k + 1, then Q (p) is valid for all formulas

P E L .

Proof: We reduce this principle to the "ordinary" induction principle on the integer d (p)

and induction on the propositional structure of a formula.

First, let us prove Q (p) whenever d (p) = 0. According to Proposition 2.1.11, the set of

formulas with d (p) = 0 forms a sublogic of L whose atoms a are exactly the L-atoms of

depth 0. For these we already know that Q (a) holds. Furthermore. Q(.) is preserved under

propositional concatenation. Hence, by Theorem 2.1.6, Q holds for all formulas of depth 0.

Now assume that Q (p) holds for all formulas of depth at most k. In particular, it holds for

all atoms of depth at most k, but following from the induction hypothesis, Q holds for atoms

of depth k + 1. Now we apply Theorem 2.1.6 a second time to the sublogic of formulas of

depth a t most k + 1, concluding that Q holds on all these formulas. By induction on k we

get the desired result. 0

Proposition 2.1.13 For any propositional logic, we have the following substitution prop-

erties:

1. If ai E~ a: for all i = I , . . . , ri, then ai =g r\L1 a:.

2. If f l j -g P; for all j = 1,. . . , m, then Vgl Pj E~ V z l P;.

3. For any sets of formulas @, @,, Q2, if @1 =g Q2, then @ U @ I E~ @ U @2.

Proof: These are all direct consequences of Definition 2.1.1 and Proposition 2.1.3. 0

These properties allow us to carry out substitutions anjwhere within the nested structure

of a formula or set of formulas. Later on, when more operators are introduced to obtain

particular logics, we will state appropriate substitution properties as well. We will apply

the above rules co~nbi~led with flattening in order to convcrt a fonnnla into a wcll-known

normal form:

Definition 2.1.14 A fo~mula i n And/or norn~al fonn is recursively defined as:

1. Atoms are in And /or normal fonn.

CHAPTER 2. EXTENSlONS OF PR.OPOS1TIONAL LOGIC 19

2. A disjunction in And/or normal form is a formula of the form cp = Vy!, P j , where

m 2 2, an,d each pj is either an atom or a cor~.jurictior~ in And/or norrnal form.

3. A conjunction in And/or normal form is a formula of the f o m , cp = & ai: where

n 2 2, and each cui is either an atom or a disjunction i n A n d / o r normal form.

4 . The smallest set of atoms, disjunctions and conjunctions constructed according to these

rules constitutes the formulas in A n d / o r normal form.

Note that without the restrictions m. 2 2 and n >_ 2, this definition would be uninteresting.

For, inst,e;td of flattening a nested corijunction a1 A (a2 A as) iuto a i , we could simply

insert a unary disjunction operator between the two levels of nesting, obtaining crl A V(a2 A

as) . But unary disjunctions or conjunctions only conlplicate formulas and are undesirable,

at least when efficiency is an issue. Only on the outermost level of nesting will a unary

operator prove useful. For example, ai can be treated as if it were a disjunction

Vr\$l a i , thus avoiding the need for lengthy case distinctions in the proof of our next

corollary. So we remark that any formula in And/or normal form can be written as Vjm.l Pj
as well as AZl cri with the restrictions as in lines 2. and 3. above, except that (on the

outermost level) m and n can be equal to 1, respectively.

Corollary 2.1.15 For any set of formulas a , an equivalent set of atoms and disjunctions

i7~ A n d / o r 7~orrr~al form no larger th,an a can he fou71.d i71. O(Ia1) steps, where is the

number of atoms i n a.

Proof: In the following conversion, we use flattening and other equivalence-preserving

operations, making tacit use of Propositions 2.1.3 and 2.1 .I3 which show that the conversion

preserves equivalence.

Algorithm 2.1.16 Conversion to A n d / o r normal form

Write a set = {cpl,. . . , cp,) as a single fomula cp = cpl A . . . A cp,.

Transform cp into A n d / o r normal form as follows:

- If cp is an atom, leave i t unchanged.

- If cp = q, n 2 2 , convert each conjunct ai recursively into A n d / o r normal

form, obtaining a: = ~ 2 2 ~ cri,k. Finally, flatten the nested conjunction a; A . . . A

a; into one conjunction c r l ~ A . . . A a,,+, .

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 20

- If cp = VC1 &, rn 2 2, convert each disjunct pj recursively into A n d / o r normal
h'.

form, obtaining Di = VILl DjYl. Finally, flatten the nested disjunction Pi V. . .VP;
into one disjunction P1,l V . . . V PmrhL.

0 If cpi A . . . A cpk, has been thus determined as the A n d / o r normal form of cp, write it

as a set {pi , . . . , cpk,).

The recursive construction terminates within the given time complexity, since the formulas

converted in each recursive step are strict subformulas of the formula in the previous step

and thus subformulas of (formulas in) the original set cP; furthermore, each subformula is

converted only once. The only operation performed in each step is flattening, so formulas

may only get shorter d11~ to omitted parentheses. It is c;tsy to vcrify tlmt the coriverted

formulas are indeed in And/or normal form. (Note that the arity of conjunctions and

disjunctions never decreases through flattening, as multiple occurrences of subformulas are

preserved as such. It is slightly less trivial to show that all formulas and propositional

subformulas in the final set satisfy the arity restrictions m 2 2 and n 2 2 of Definition

2.1.14.) 0

We will now present a few general results on transformations between two logics, particularly

those which will allow us to derive satisfiability results for a new logic from those for a known

logic.

Definition 2.1.17 Let L1 and L2 be two propositional logics. A n L1 - L2 homomorphism

is a transformation T : C(LI) I+ C(L2), satisfying:

T(T) = T, and ~ (1) = 1 .

It follows straightforwardly from the definition that homomorphisms map non-atoms to

non-atoms. If the converse is also true, i.e. T maps all L1-atoms to La-atoms, we say that T

preserves atoms. We extend the definition of 7- to sets of formulas in the usual way, namely

T(@) = {~(cp) : cp E a). We also mention without proof that any mapping T' from atoms

of L1 to formulas of L2 can be uniquely extended to a homomorphism, the homomorphism

induced by I-'.

C H A P l E R 2. EXTENSIONS OF PROPOSITIONAL LOGIC 21

Proposition 2.1.18 Let b1 and b2 be the semantic relations of two propositional logics

L1 and L2. Let further T be an L1 - L 2 h~om~om.orpl~~ism and M1, M 2 .sem.antic stmctur~es.

Then the following properties are preserved under propositional concatenation:

Proof: For the sake of illust,ration, we show that Property (1) is prcscrved lirider co~iju~ic-

tion. Assume that M 1 b1 c q + M2 b2 ~ (0 1) and M i b1 a2 + M2 b2 ~ (0 2) . Then we

show the same property for a1 A a2 by performing these transformations:

For a disjunction, the proof is analogous. For Property (2) , simply use the above transfor-

mation, with + replaced by +. Property (3) is Properties (I) and (2) combined. 0

Corollary 2.1.19 Under the conditions of Proposition 2.1.18:

If M l b1 a + M 2 b2 ~ (a) for any atom a , then M 1 b1 cp + M a b2 ~ (c p) for an arbitrary

L1-formula cp and M 1 b1 + M 2 b2 T (@) for an3 set of Ll-formulas.

If M 2 b2 ~ (a) + M 1 b1 a for an,y atom a , th,en M 2 b2 ~ (c p) + M 1 b1 cp for a71 arbitr(iq

L1-formula cp and M 2 b2 T (@) + M 1 b1 for any set of Ll-formulas.

Proof: This follows from Proposition 2.1.18 by applying structural induction on cp. 0

We have thus shown how satisfiability in a homomorphic image can be derived from sat-

isfiability in the preimage. A similar proposition can be stated regarding the depth of a

formula:

Proposition 2.1.20 Let L 1 ,L2 be two logics with depth functions d l ,d2, respectively, and T

an L 1 - La homomorphism. If d l (a) = d2(T(a)) for all L 1 -atoms a , then dl (c p) = d 2 (~ (c p))

for an arbitray L1-formula cp.

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 22

We say that a homomorphism satisfying the property in Proposition 2.1.20 is depth-presen~ing.

Notice that the dept,h of T and I is preserved in any homomorpllism, since these at,onls arc

mapped to themselves.

Proof: We just need to show that the property dl (p) = da(r(p)) is preserved under

propositional concatenation, then the result follows by structural induction on cp. The key

observation is that homomorphisms preserve the maximum function used in computing the

depth of a uest,ed formula: Assume that dl(cpi) = d2(r(vi)) for i = 1,. . . , n, and consider

cp = cp1 o . . . o cpn, where o = A, V. Then

d l (~ l o - . - o ~ n) = m a x { d l (~ l) , . - - , d l (~ r ,))

= max{d2(~(~1)) , - . d 2 (r (~ n)))

= d2(7((~1) 0 . - . 0 ~ (p n))

= d2(7(91 0 - . 0 'Pn)),

which establishes the proof. 0

The fundamental task of model finding is to process a set of formulas in order to find a

satisfying model, or to show that no such model exists. Since a theorem prover is unaware

of the semantics of a logic, an algorithm must operate on the syntactic structure of the

formula, and the steps of the algorithm must reflect the intended semantics (that is, the

algorithm must prove sound and complete). We must use some construct to bridge the

chasm between the syntax of a formula and the semantic notion of satisfiability. Hintikka

sets or saturated sets [23, 391 are a commonly used construct for propositional as well as

modal logics. We find it more convenient, however, to use a different construct which we

call a cover. Speaking on a semantical level, covers are sets of formulas witnessing that a

formula cp is verified : If M kg cp' for all formulas cp' in the cover, then M kg cp. This

is certainly true for (9); indeed, we will consider this set a covcr for cp. Likewise, if all

elements in a cover are atoms and we know that M kg a for every atom in it, then we know

M kg cp. Thus the existence of such an atomic cover settles the propositional reasoning

part in our logic L. Covers must reflect the semantic asymmetry between conjunctions and

disjunctions: Any set {&} should serve as a cover for a disjunction Dl V . . . V om, for if

M kg pj, then M kg P1 v . . . v ,&. Conversely, a cover for a1 A . . . A an should include

{a l , . . . , a,) (or some of their respective formuIas), for onIy if M kg a, for a11 i = 1,. . . , n,

then M kg a, A . . . A an. One consequence of this asymmetry is that not all subformulas

of a formula cp contribute to a cover of cp. For example, cp = a V (b A l c) has a cover {a),

CHAPTER 2. EXTE~~~SIOLYS OF PROPOSITIONAL LOGIC 23

which does not mention (b A l c) or any of its subformulas at all. This highlights a common

phenomenon in propositional logics: Sn~all subforrnulas of a formula can make it t,rivially

satisfiable (or unsatisfiable), and an algorithm which can detect trivial subformulas will

run faster than an algorithm which processes the entire formula. This is one reason why

heuristics play an important role in Automated Theorem Proving. Having thus discussed

the semantic connotations of covers, we now turn to their pure syntactic definition:

Definition 2.1.21 A set of propositional formulas is called a cover of a formula rp, if

a = {(cp, or recursively:

Case 1: cp = a1 A . . . A a,, then is the union of covers !Dl to an of a1 through a,,

respectively.

Case 2: cp = Dl V . . . V Dm, then i s a cover of sonr,e Dj, j = 1, . . . , m.

A set !P i s a cover of a finite set of formulas a, i f i t is the union of covers for each formula

i n a.
A cover 9 of i s minind, i f has 710 covler \II1 SO that @I C \II.

I f a1 and 9 2 are covers, then we say that Q2 is finer than (written !Dl 5 Q2) if Q2 is a

cover of !Dl itself. A cover is atomic iff all i ts elements are atoms.

Example 2.1.22 The set = { c p , cp V $1) has two atornic covers, natnely { c p) and { c p , +).

The latter is not minimal.

Let us observe a trivial consequence of this definition:

Corollary 2.1.23 A n y cover of cp consists of propositional subformulas of cp. Any formula

cp has exactly one cover which contains cp itself, namely the set { c p) .

Proof: For the first part, note that in the entirety of Definition 2.1.21 only subformulas

of the original formula cp are mentioned in its recursive applications, and the cover is con-

structed simply by collecting some of these. The second part follows from the first: By

Definition 2.1.21, { c p) is a cover of cp. All other covers of cp are constructed by finding (and

taking the union of) c.ovcrs of propcr subfortnnlas of cp; all of these wvcrs contaiti only

subformulas of these proper subformulas, so none can mention cp itself. 0

CHAPTER 2. EXTENSIOiW OF PROPOSITIONAL LOGIC: 24

Proposition 2.1.24 T h e "is cover of" relation i s a partial order o n finite sets o f f o r n u l a s

of L. Lilceu~ise, the "is finwr th,ann rc:lation i s (I partial order on the set of d l corrers of any

given formula.

Proof: Since {cp) is a cover of cp, it is also a cover of itself, which shows reflexivity.

Next we show that a cover of a cover of cp is a cover of cp, by structural induction on cp:

The only cover of an atomic formula is the formula itself, which, applied twice, establishes

the base case. Let us now assume the hypothesis is valid for any subformula of cp, and let

9 be a cover of cp. We wish to show that any cover of 9 is a cover of cp. If 9 = {cp), this is

certainly true. Alternatively, if cp is a disjunction, then 9 is a cover of one of its disjuncts

&. By the induction hypothesis. any cover of 9 is a cover of & and hence of cp. If cp is a

conjunction, then Q is the union of covers Qi for each conjunct ai . Again by the induction

hypothesis, any cover of is itself a cover for ai. It follows that any cover of 9 (which by

definition is a union of covers of its elements and hence a union of covers of 9 i) is a union

of covers for the ail and trhus a cover of cp. This concludes the induction step.

Finally, let 9 be a cover of a finite set a, which by Definition 2.1.21 is a union of covers

Qi of its elements pi. By what we have just shown, any cover of 9Zri is a cover of pi. By

the same argument we used above for conjunctions, a cover of 9 is a union of covers of the

9i, which is a union of covers of the cpi or in other words, a cover of @. This shows the

transitivity of t,hc relation.

Showing antisymmetry is even harder. Assuming that Ql and Q2 are covers of one another,

we wish to show that 91 = 9 2 . We use induction on the (finite) cardinality min(l9, 1, 1921).

The base case is the trivial case in which one of these sets is empty. In order to be a cover of

an empty set,, the other sct niust also be empty. We prove the inductjive case by showi~~g that

and 9 2 have a common element cp, and that - {cp) and 9 2 - {cp) are still covers of one

another. By the induction hypothesis, these remainders must be equal, which establishes

the theorem. Let us pick a formula cp whose length in both sets is maximal. Without loss of

generality, suppose that cp E Ql. Now every element of 91 is contained in a cover of some

cp' E Q2. However, Corollary 2.1.23 says that each such elenlent is a subformula of cp'. Since

there is no formula in 9 2 longer than cp, (of which cp could be a proper subformula), the only

possible choice for cp' is cp' = cp. Furthermore, all the covers of the other elements in 9 2 do

not contain cp as a subformula. Finally, Corollary 2.1.23 also states that the only cover of cp

containing cp is {cp). Applied to our situation, it means that all other elements of arise

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 25

from covers of other formulas in 9 2 . To summarize, we have shown that 91 - {cp) is a cover

of 9 2 - { y) . By repeating this argn~ncnt with t,lle roles of 91 and 9 2 exchanged (aftar all.

we have shown that cp is also in Q2), we show that 9 2 - {cp) is a cover of - {cp). This

concludes the induction proof.

For the second part of the theorem, note that the "is finer than" relation is sinlply a

restriction of the "is cover of" relation to the set of all covers of a particular formula, and

thus itsclf a partial order. 0

We remark that the set of covers of a formula cp is never empty, since it always contains {cp)

which is also its coarsest cover.

For simplicity, the remaining results of this section are stated for sets of formulas @ only,

but they hold for formlilas cp just as they do for the singleton scts {cp).

Definition 2.1.25 A refinement of a set of formulas is a set of the form - {a1 A

, . . A a,) U {al, . . . ,an), where a1 A . . . A a, E a, or - {PI V . . . V P,,,) U {Pj) for some

j = I , . . . , m,, where Dl V . . . V pm E a.

Proposition 2.1.26 If 9 is a cover of a, then any refinement of 9 is a finer cover of a.

Proof: We only need to show that a refinement 9' of 9 is a cover of 9, i.e. a union of

covers of the elements of @. By transitivity, this refinement is also a cover of a.
Considering the first case in Definition 2.1.25, Case 1. of Definition 2.1.21 states that any

cover 91 of {a l , . . . , a n) is a cover of {a1 A . . . A a n) . In particular 9 1 = {a1,. . . , a,),

being a cover of itself, is such a cover. As to the second case of Definition 2.1.25, Case 2. of

Defir~itiorl 2.1.21 states that any covcr 9 2 of sorrle bj is a cover of {Dl V . . . v Pm). Again,

we choose 9 2 = {@). Each of the remaining elements cp in 9 is included in 9' according to

Definition 2.1.25, so we can simply choose {cp) as a cover for cp. In summary, every element

of 9 has a cover in 9', and every element of 9' is used in a cover of one of those elements,

so 9' is indeed a cover of 9 .

Proposition 2.1.27 A cover is maximally fine iff it is atomic.

Proof: The only cover of a set of atoms is the set itself. Therefore, no cover can be strictly

finer than a set of atoms. For the converse, suppose a cover 9 contains a nonatomic formula

cp which must be either a disjunction or a conjunction. Then a refinement of 9 according to

Definition 2.1.25 can be found, and Proposition 2.1.26 shows that is not maximally fine.

0

CHAPTER 2. EXTENSIONS O F PROPOSITIONAL LOGIC

Proposition 2.1.28 Every set of formulas h,as an atomic cover

Proof: Note that any formula cp has only finitely many sets of subformulas. Hence, any

strictly descending <-chain of covers for cp must terminate in a maximally fine cover, which

by Proposition 2.1.27 is atomic. But then the union of such covers for each cp E is also

atomic, and it is a cover of @. 0

Let us prove a converse of Proposition 2.1.26, establishing that the refinements of a cover

@ are the immediate 5-successors of a :

Proposition 2.1.29 Every cover of a set @ other than @ itself is a cover of a refinement

of a.

Proof: Let k be a cover of a, i.e. a union of covers of the formulas in a . If k # a , then at

least one formula cp E must have a cover other than { y } in k. By Definition 2.1.21, this

cover must be a union of covers of {a l , . . . , a,) (if cp = a1 A .. . a,), or a cover of some pj
(if cp = ,Bl v . . . v ,Bm). Therefore, k is a union of covers of formulas in (and hence a cover

of) - {cp) U {al, . . . , a,&) or - {cp} U { , B j } , respectively. But these sets are refinements

of according to Definition 2.1.25. 0

By virtue of this proposition, we have shown that the +relation is discrete. The theory of

finite ordered sets gives us this important converse:

Corollary 2.1.30 Every cover of a finite set other th,an itself is a refinement of some

cover of a .

Moreover, we have:

Corollary 2.1.31 Every cover of a finite set @ is obtained through a finite chain of suc-

cessive refinements of a.

So far we have stated that any cover can be obtained through a chain of refinements in

a given fixed order. Considering the freedom we have in choosing a formula from @ for

refining our cover, the question arises whether any order of refinements arrives at the same

set of atomic covers for a , a propcrty called con,fluen,ce. Quite surprisingly, the answer is

negative. Let us explore what can go wrong:

Example 2.1.32 The set = {p V q, (p V q) A r) has a refinement {p, (p V q) A r } , and two

successive refinements of the second formula yield an atomic cover {p, q, r) . However, if we

CHAPTER 2. EXTENSIONS OF PH.OPOSITIONAL LO GIG 27

refine using the second formula first, we get {p V q , r) , and no refinement of this set can

produce the atornic cover {p , q, r) . Observe that this atornic cover is not rninirnd.

The trouble was that the formula p V q was refined twice in the first case; in each instance,

we can choose a different cover, something we could not do in the second case, as p V q was

evaluated only once. We take this into consideration in our next proposition:

Proposition 2.1.33 Any cover 9 o f @ = U . . .U@, is the union of covers o f a l , . . . , a,.
Conversely, if 91, . . . ,9, are covers of al, . . . , a,, respectively, then U . . . U 9, contains

a cover of a1 U.- .U@,.

Proof: By Definition 2.1.21, !P is the union of covers 9p of the elements cp E a. By the

sarrle definition, the sets U{!Pv : cp E ai) are covers of the ai, i = 1,. . . , n , respcctivcly,

and their union is !P. For the converse, each !Pi contains covers for all cp E a i . Define !Pp

as the cover for cp in ai,, where io = min{i = 1,. . . , n : cp E ail. Then U{!Pv : cp E a) is

evidently a cover of a, and it is wholly contained in !Vl U . . . U an. 0

Proposition 2.1.34 Let be a set of formulas, and a1,. . . ,a,, 01,. . . ,Om formulas.

1. Every cover of {a1 , . . . ,a,) is a cover of {a1 A . . . A an).

2. Every cover of {a1 A . . . A a,) other than a1 A . . . A a, itself is a cover of {a1, . . . , a,).

3. Every cover of {&), j = 1,. . . , m,, is a cover of {Dl V . . . v Pm).

4. E v e v cover of U {,Bl v . . . v Om) other th,an ,Bl v . . . v ,Bm itself is a cover of {&)

for some j = 1,. . . , m .

5. Every cover of U {a1,. . . , a,) is a cover of u {a1 A . . . A a,).

6. Every cover of U {a1 A . . . A a,) not containing a1 A . . . A a, contains a cover of

U {QI, . - - , a n) ,

7. E v e v cover of u {Dj) is a cover of u {Dl v . . . V Dm).

8. Every cover of U {,Bl v . . . v Dm) not containing ,Bl v . . . v Pm contains a cover of

U { , B j) for some j = 1, . . . , m.

9. The minimal covers of U {a1, . . . , a,) are exactly the minimal covers of U {a1 A

. . . A a,} which do not contain a1 A . . . A a,.

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 28

10. The minimal covers of @ U {&), j = 1, . . . , m, are exactly the minimal covers of

(9 U {Dl V . . . V Dm) urhich do rrot contain V . . . V Dm.

11. If ai E Q, for all i = 1, . . . , n, then elrerzj cover. of (9 is u colrer of (9 U {al A . . . A an};

hence all minimal covers of @ U { a l A . . . A u,) are covers of @.

12. I f @ E @ f o r s o m e j = 1, ..., n ~ , thenevery coverof@ i s a c o v e r o f @ ~ { p ~ ~ ... ~0,);
hence all minimal covers of (9 U {Dl v . . . v Dm) are covers of (9.

Proof Parts (1) through (4) follow immediately from Definition 2.1.21. From these, we

get parts (5) through (8) by applying Proposition 2.1.33. In (9)) let Q be a minimal cover

of (9 U { a l , . . . , an) . By (5) , Q is a cover of @ U {al . . . A a,,,). Furthermore, Q contains

covers for a1,. . . , a,, whose union already is a cover for a1 A . . . A a,, so if Q contained

a1 A . . . A a,, it would not be minimal. Now suppose that (9 U {a l A . . . A u,) has a cover

Q1 which is a strict subset of Q. Then by (6) , Q1 contains a cover Q2-still a strict subset

of Q-which is a cover of U { a l , . . . , a,). This is a contradiction to the minimality of Q.

Therefore Q is minimal among the covers of (9 U { a l A . . . A a,,) as well. Conversely, let Q'

be any minimal cover of U {al A . . . A a,) which does not contain a1 A . . . A a,. Then by

(6) a subset Q1 of Q' is a cover of U {a l , . . . , a,). Now take any subset q2 which is also

a cover of U {al,. . . ,a,). Now (5) states that Q2 is a cover of U { a l .. . A a,). But

since Q' was minimal, we must have Q2 = Q1 = Q', which shows that q' is a minimal cover

of U {al , . . . , a,). This completes the proof of (9). For (10) the proof is analogous. The

first half of (11) is a special caw of (5): Not,e that (9 U { a l , . . . , a,) = @. For the second

half, since (9 C Q, U {al A . . . A a,), any cover Q of (9 U {al A . . . A a,) has a cover Q' of (9 as

a subset. Since Q' itself is a cover of U {al A .. . A a,), Q can only be minimal if Q = Q'.

In other words, the minimal covers are all found among the covers of a. This shows (l l) ,

and (12) follows by the same argument. 0

Corollary 2.1.35 Using the same notation us in Proposition 21.34, the minimal atomic

co~ters of U { a l , . . . , a,) are exactly the minimul utomic covers of @ U {al A . . . A a,), a d

the minimal atomic covers of U {Pj), j = 1, . . . , m, are exactly the minimal atomic covers

0f(9u{D1 V . . . v , B m) .

Proof: This follows from parts (9) and (10) of Proposition 2.1.34. Note that atomic covers

do not contain any a - and ,&formulas, which makes the extra conditions in parts (9) and

(10) redundant. 0

CHAPTER 2. EXTENSlOlW OF PROPOSITIONAL LOGIC 29

This corollary proves the confluence property for finding the minimal atomic covers of a set

a : No matter wl~idi a - or /3-forrnula we siugle out horn in order to obtain a refir~cr~ierit

of a , all chains of refinements eventually result in the same set of minimal atomic covers.

The next two results demonstrate how the 5-relation is preserved under homomorphisms

in either direction:

Theorem 2.1.36 Let T be an L 1 - L 2 homomorphism. cp an L1 -formula, and a, 9 sets of

L 1 -formulas.

1. If 9 2,s a cover for cp (or a) , th,en T(Q) W a cover for ~ (p) (or T(@)).

2. If T preserves atoms and 9 is an atomic cover for cp (or a), then ~ (9) is an atomic

cover. for ~ (c p) (or T(@)).

Proof: We use structural induction over cp. For the coarsest cover {cp), we see that

~ ({ c p)) = { ~ (c p)) is a cover of ~ (c p) . (This settles the proof if cp is an atom, as {cp) is its

only cover.) Now we show that the Theorem is preserved under disjunctions: A set 9 is

a cover of cp = ,Bl V . . . V ,Bm, iff it is a cover of one of its disjuncts ,Bj. By the induction

hypothesis, ~ (9) is a cover of T(,Bj). But since T(P) = r(,B1) V . . . V T(@,). ~ (9) is also

a cover of ~(cp) . Finally, the theorem is preserved under conjunctions: Let 9 be a cover

of cp = a1 A . . . A a,, i.e. the union of covers ai of its cor~juncts a i , = 1 , . . . , n. By the

induction hypothesis, each ~ (9 ~) is a cover of ~ (0 ~) . But since ~ (c p) = ~ (0 1) A . . . A r(an),

~ (9) = ~ (9 ~) U . . . U T(@,) is a cover of ~(cp) . The proof follows by structural induction.

For sets a, the proof is analogous to the induction step for conjunctions.

Part 2 of the proof follows mainly from part 1; additionally, if all elements in 9 are atoms,

then so are all elements in T(@), since T preserves atoms. Therefore, ~ (9) is an atomic

cover whenever 9 is. 0

We also get a "converse" of Theorem 2.1.36. Note that T need not map atoms to atoms:

Theorem 2.1.37 Let T be an L 1 - L2 homomorphism and a a set of Ll-formulas. Then

every (atomic) cover 9' of T(@) is the T-image of some (atomic) cover 9 of a.

Proof: For 9' = T (a), the coarsest cover of T(@), the set 9 = is the desired cover of

a . Next we show the theorem in case 9' is any refinement of T(@): Assume 9' has been

obtained by replacing some conjunctive formula a; A . . . A a;, in T(@) with {a;, . . . , a:,), and

let cpl, . . . , cpm be the T-preimages of a; A .. . A a; which are elements of a. (Remember that

CHAPTER 2. EXTENSIONS OF PR.OPOSITIONAL LOGIC 30

several preimages may be mapped to the same formula.) None of the cpj can be atomic,

since T maps ato~ris to at,oms oilly. Nor can they be disjui~tions or cor~.junctions of different,

arities, since T as a homomorphism maps disjunctions to disjunctions, and conjunctions

to conjunctions of the same arity. So each % must be of the form crj,] A . . . A crj,,, and

furthermore we have ~ (a j , ~ A . . . A aj,n) = ~ (a ~ , ~) A .. . A 7(ajln) = a; A .. . A a;, giving us

the identities cr: = r(aj , i) , 1: = 1, . . . , n.2. Thus for each pre-image pj of cu; A . . . A cu; the

set {aj , l , . . . , aj,n) provides a refirlement of {cpj). If we thir~k of all other elerr~ents in @ as

covers for themselves, the set 9 = @ - { p l , . . . , y,) U Ujm=l{aj,l,. . . , q,,) is really a union

of covers of the elements in @ and hence a cover of a.
If 9' has been obtained by replacing a disjunction, the argument is similar. Now we apply

Corollary 2.1.31 which guarantees that arly cover 9' of T(@) is obt,air~ed t,lirough a finite

chain of refinements Qk, starting from Qb = T(@). For each step k, we can apply our result

above: Assuming we have found a cover Qk of @ so that ~ (9 ~) = 9k, the refinement 9 k + l

has a preimage 9k+l which is a cover of Qk (and hence a cover of @ by transitivity), so that

~ (9 ~ + ~) = 9 k + l . We continue until 9 k = 9'. Finally, if the final cover 9' consists only of

atoms, tlmi so does its preirrlage, since non-aton~s are always napped to non-at,oms.

We are now ready to substantiate our earlier intuitive discussion and establish the rela-

tionship between the syntactical notion of covers and the semantical notion of verifying

structures and satisfiability:

Theorem 2.1.38 A set offormulas @ is vertfied by M zff it has an atomic cover 9 so th-at

M kg 9.

Proof: To show tthe "only if ' part, corisider the set of all covers of @ which are vcrificd by

M . Since M kg @, this set is nonempty. Now take a maximally fine cover 9 in this set,

and assume this cover is nonatomic. First, suppose there exists a conjunction a1 A . . . A an

in @ (which must be verified by M) . Then M also verifies each of the ai . By replacing

the conjui~ct io~~ with t.he set of all a i , we obtairi a refinement wl~ich is also vcrificd by

M, a contradiction to the maximality assumption. Now suppose Q contains a disjunction

' ~ o t e that homomorphisms as we defined them preserve lhe syntactzc slructure of a formula. As such,
thc CY,,, ntust corrcspo~td to thr cr: in the given ordcr, and CVCII if s o n ~ c of t l ~ c a: arc idrntical. none of thc
multiple occurrences can be omitted. It is possible to define a weaker form of homon~orphisms which would
allow for cornrnutativily as well as basic. sinrplification of formulas according l o id~rnpotenc~ pic,.; we could
show that this tl~eorem still l~olcls. However, such extensious are uot nmdtvl aud would 1111duly co~l~plicate
lhe issue.

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 31

Dl v . . . v Pnl (which again must be verified by M) . By the definition of kg, M must satisfy

at least one of thc disjiincts ,Bj. R,eplacing ,B1 V . . . V ,Bm with t,his pj yields a refinement, of

a verified by M, contradicting the maximality assumption. Therefore, we must conclude

that Q is atomic.

To prove the "if" part, we use structural induction over the formulas in a . If consists

entirely of atoms, then itself is the only cover of a, so we know that M kg a. Now

we show that the statement is preserved undcr corljunctions. So let cp = a1 A . . . A a,,

and @ be an atomic cover of p verified by M . Then by Definition 2.1.21, a must be the

union of covers . . . , @, for a1 , . . . , a,, respectively. From our assumption M kg a we

conclude M kg ai by Corollary 2.1.2, and the induction hypothesis gives us M kg a i , for

i = 1,. . . , n. But this provcs M kg cp. Secondly, if cp = PI V . . . V P,, tllen 0 is a cover for

one of the ,Bj. By the induction hypothesis, we get M kg pj for this disjunct, and hence

M kg cp. We have shown that the statement is also preserved under disjunctions, and the

principle of structural induction completes the proof. 0

By virtue of this theorem, we can show any formula cp satisfiable by providing a model for

an atomic covcr of cp. Thus the problem M kg cp (M kg cp) is reduced t,o thc problem

M kg @ (M kg @), where a is a set of atoms. We have thus encapsulated propositional

reasoning in our logic L, so in any incarnation of propositional logic we encounter later,

we can focus on the characteristic features of their elementary building blocks, namely the

atoms.

2.2 Classical Propositional Logic

For a simple first application of our theory, let us consider classical propositional logic itself.

This is not just an academic exercise but will provide us with important basic results to be

used later. As we mentioned in the introduction to this chapter, we start out with a set

P of propositional variables which we also call positive literals. Variables p E P may be

negated, thus forming negative literals l p . Together with the two propositional constants T

and I, the positive and negative literals, form the set A of propositional atoms. (There are

no atoms other than these.) As discussed informally above, a structure must specify how

atoms are mapped to truth values. We provide the following definition:

Definition 2.2.1 A valuation is a set V 2 P

CHAPTER 2. EXTENSlONS OF PROPOSITIONAL LOGIC 32

In the literature, valuations are commonly defined as total functions v : P I+ {true, false}.

Tlie equivalence between the two defiriitioris is obvious and illustrates our int~iit~ioii in defin-

ing V: Any variable p E V is assigned true (in r ~) , and any variable p E P - V is assigned

false. (We see that a variable can never be assigned both true and false at the same time,

so all valuations are consistent.)

Definition 2.2.2 Given a set of propositions P , the logic PLNNF (restriction of proposi-

tional logic to formulas in negation normal form) is exactly the smallest propositional logic

containing all propositional atoms, with valuations serving as models, and the semantic

relation bp extending kg by defining it on positive and negative literals as follows:

Definition 2.2.2 provides an easy way of deciding whether V satisfies a given set 9,4 of

atoms: Every positive literal p E Q A rnust be includcd in V, and for every negative literal

-.p E QA, p must not be included. If contains 1 , then no valuation satisfies it. More

precisely, we define:

Definition 2.2.3 A vabation V is consistent with a set Q A of propositiond ~ L ~ O T T L S (or,

Q A is V-consistent), i f I @ Q A and !PA n P C V & { p E P : l p @ Q A) . A set Q A is called

consistent whenever such a valuation V exists.

Applying Definitions 2.1.1 and 2.2.2, we easily conclude that the consistent valuations are

exactly the satisfying valuations for a set of atoms:

Corollary 2.2.4 V is consistent with a set of atoms Q A iff V bp QA. Hence, a set 9~ is

consistent i f f it is satisfiable.

Lemma 2.2.5 A valuation V which is consistent with sets al , . . . , a, of propositional

atoms is also consistent with lJr=l cPi.
Proof: If I @ cPi for any i = 1,. . . , n, then I is also not in the union of these sets. Likewise,

if the subset relationship in Definition2.2.3 holds for all sets, it also holds for their union.

I3

CHAPTER 2. EXTENSIONS OF P'R.OPOSITIONAL LOGIC 33

Recalling Theorem 2.1.38, we can decide whether a set of formulas @ is satisfied by a given

valuation V (wllich is the reasoning task of model ch,eckin,g), simply by finding an at.on~ic

cover satisfied by V. Combining this with Corollary 2.2.4 above, we get:

Propos i t ion 2.2.6 Given a set of P L N N F - f o r m ~ l a s and a valuation V , we have V kp
ifl has a V-conwistent atomic cover.

Proof: According to Theorem 2.1.38, V kp cp if and only if V kp 9 for some atomic cover

9 of cp, which, as shown in Corollary 2.2.4, is the case exactly if V is consistent with 9 . 0

Let us now tnrn to the re;lsoning task of satisfiability checkir~g, i.e. showing that a P L N N F -

formula cp has a valuation which satisfies it. Again, Theorem 2.1.38 allows us to reduce this

task to satisfiability checking for sets of atoms, which has a very nice characterization:

Defin i t ion 2.2.7 A (propositional) clash i n a set S of propositional formulas is an occur-

rence of I , or of two complementary literals p, yp , in S .

Propos i t ion 2.2.8 A set of atoms is satisfiable iff it is clash-free. Hence, a set @ of

PLNNF-fOrmulas is satisfiable iff it has a clash-free cover of propositional atoms.

Proof: For the first part of the proposition, take a set of atoms. Suppose contains

I, then no valuation is consistent with it. Now suppose that contains a clash of the form

p, l p . Then QA fl P { y E P : l p @ @ A) , so no valuation satisfying the inclusion relation

in Definition 2.2.3 can be found. To summarize, if QA contains a clash, then no valuation is

consistent with it, and by Corollary 2.2.4 no valuation satisfies it. For the converse, suppose

is clash-free. Then n P C { p € P : l p @ @A), and any set V of propositions "in

bctween" these two sets sa.t,isfies Defir~it~ior~ 2.2.3 and t h s , by Corollary 2.2.4, provides a

satisfying valuation. (We are free to include or not include into V any p E P which is not

mentioned in at all.)

For the second part, Theorem 2.1.38 stated that any model for is a model for some atomic

cover 9 and vice versa. So is satisfiable iff it has some satisfiable atomic cover 9. By the

first part of this corollary, this is the case iff 9 is clash-free. 0

Corol lary 2.2.9 A consistent set of atoms has at most IPI + 1 elements.

Proof: For each variable p E P, may contain p or l p but not both, or else it would not

be clash-free. Likewise, @ may not contain false, but it may contain T, for a total of at

most IPl + 1 elements. 0

CHAPTER 2. EXTENSlONS OF PROPOSlTIONAL LOGIC 34

We will now use the results of this section to develop a characterization of satisfiability in

PLNNF which uses sernantic structiires different from vallittions and more similar to atomic.

covers. First, we discovered that it was not necessary to specify a total valuation, but we

only need to assign truth values to those variables which actually occur in an atomic cover.

This gives rise to the notion of partial valuations [16]. However, we generalize even further:

Since it is possible for atomic covers to contain clashes, we allow our semantic structures to

contain clashes as well, and wc can definc a rncarlirlgful rclation b evcn for thcsc. (Semantic

structures with clashes do not satisfy every formula, as one might suppose.) In order to get

an equivalent logic to PLNNF, we will consider exactly the clash-free structures as models

for a formula.

The advantage of considering b instead of k is t,llat b is nionotone wrt the C relation on

sets of atoms. Under certain assumptions, this idea can be generalized to more complex

logics, such as the logic of labelled formulas we will consider later in this work. As we will

see, the monotonicity property will pay dividends, enabling us to specify an efficient model

finding algorithm and prove it sound and conlplete.

Theorem 2.2.10 The logic PLNNF is equivalent to the following logic, defined on the

same language of propositional formulas in NNF, whose semantic structures are sets qA of

propositional atoms, whose models are clash-free sets of atoms, with the relation bpp defined

as an extension of kg as follows:

anrd qA kpp p i f l qA is clash-free and qA bpp p.

Proof: We need to show that every kp-satisfiable set of PLNNF-foIYnulas is kpp-satisfiable

and vice versa. First we recall Tlleorcrn 2.1.38, saying that M kg iff has an atomic cover

9 so that M kg 9. This theorem applies to both our logics, since they are propositional

logics. Hence we can restrict ourselves to the case where is a set of propositional atoms,

in which case a semantic structure satisfies iff it is clash-free and verifies all its atoms.

First, suppose that has a satisfying valuation V according to Definition 2.2.2. We define

= V u { l p : p E P - V). Since every propositional atom occurs only once in qA (and

I does not), this set must be clash-free. Now consider any positive literal p E a . We have

V k, p iff p E V iff p E qA iff bpp p. Similarly for any negative literal l p E a , we have

v k p l P iff p $! V iff l p E Q A iff Q A kpp l p . Finally, valuations on the one hand and sets

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 35

@A on the other hand always verify T and never verify I, so we have shown that V F p a

iff QA b, a for all atoms.

Conversely, suppose that @A Fpp a . Since QA is clash-free, it does not contain I . Take

any valuation which is consistent with !PA according to Definition 2.2.3. (Such a valuation

can be found, since fl P & {p E P : i p $! !PA) holds thanks to the fact that p and i p

never occur simultaneously in qA.) Rom the set inclusion in Definition 2.2.3 we infer that

p E QA iruplics p E V, and i p E QA implies p $! V; since this l d d s for all propositions p in

a, we infer that @A kpp implies V kp a . 0

Let us make explicit the connection between sets QA verifying and atomic covers of a:

Proposition 2.2.11 W e have QA bpp i f QA contains all the literals occurring i n some

atomic cover of which does not contain I .

Proof: As in the last proof, we use the fact that qA bpp iff qA bpp Q for some atomic

cover Q of a. If Q contains I, this can never be the case; and for a I-free set 9, QA bpp Q

iff qA contains all the literals in q. 0

Now use the subset relation as the partial order on setriatitic structnres. With rcgard to this

order, we can prove that bpp is monotone, as suggested above:

Theorem 2.2.12 The relation bpp is monotone wrt the subset relation on semantic

structures (sets of atoms).

Proof: Let qA C *a, and QA bpp a for some propositional atom. This is always true

(regardless of the semantic structure) if a = T , arid always false if a = I. For any literal,

we have !PA bpp I iff I E !PA, which implies I E and hence 92 bpp I. We have thus

shown that . bpp a is monotone for all atoms; Theorem 2.1.8 showed that monotonicity

is preserved under propositional c.oncatenation, and the principle of strwtural induction

(Theorem 2.1.6) entails the monotonicity of bpp in general. 0

Thanks to monotonicity, the lattice formed by all semantic structures (i.e. sets of proposi-

tional atoms) corresponds to the lattice of sets of PLNNF-fo~mulas verified by the respective

structures. The top and bottom elements are the complete structure (containing all atoms)

and the empty structure, respectively; the top element verifies all formulas (except those all

of whose atomic covers contain I), whereas the bottom element verifies only a few tautolo-

gies (e.g. disjunctions containing T) . A particularly useful application is this: Consider a set

= {pl, . . . , pn) (or similarly for a conjunction p l A . . . A p,). If Q1 b, cpl , . . . , Q, b,, 9,

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 36

have been found, then 9 = UZ, 9i bm 7,. This principle is comn~only called model merg-

in,g. Moreover, it denm~strates the ez tens ib i l i t y of stnict,ures: whenever arlot,her forrmila

pn+l is added to at a later time, 9 can be extended simply by adding a set of atoms

and 9 U Un+] covers the new set formulas.

Of course there is no guarantee that the extension of a m,odel is still clash-free and hence a

model. However, it is much easier to test whether a set of propositional atoms is clash-free

t,han to find a new rnodcl "from scratch". If the extmsion turns out to be dab-free, we

have found a model with little effort. Moreover, even if the extension is not clash-free, there

may be ways to repair the clash. For instance, beginning with this extension, one might

perform a local search on structures verifying all formulas, by removing atoms participating

in a clash a r~d replacing them so as t,o find a structure which is clash-free. I11 our logic of

labelled formulas, the model-finding algorithm we will propose in Chapter 6 is based on the

same principle: iterating over a model for a subset of a, we will add elements to the model

so as to cover more formulas in iP, and then deterministically repair all ensuing clashes, so

as to find a model for a larger subset, until all formulas in are satisfied.

A similar approach underlies the connection calculus [ll]: Our atoniic covers correspond

to paths which "satisff a formula; paths can have clashes (here called connections), and if

they do, they do not qualify as models, so a procedure for removing clashes (or enumerating

all possible paths in order to find a clash-free path) must be given.

2.3 Complexity Results

At the end of this chapter, we would like to state some complexity results for the various

reasoning tasks in PLNNF. Most of these results are well-known (see e.g. [83] for an

overview), but we would like to show that essentially the same complexities are attained

using our definitions of satisfiability and models.

Before we start, we need to be clear about how we measure the complexity. Given a

set iP of formulas, we could measure the complexity of reasoning with iP in terms of the

number of formulas in iP. But this measure is biased: for, why should a conjunction ni

be measured differently than a set {ai : i = 1,. . . , n) , when these two are equivalent?

Instead, we can measure the number of propositional atoms in iP, counting multiplicities.

The number of propositional subformulas iP is an equivalent measure, as it is bounded by

twice the number of atoms. The only disadvantage is that atoms themselves may need more

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC: 37

than constant space and time to be stored and reasoned with. This is especially true in

logics we will discuss later, where proposit,ional atorns arc themselves rnade 111) of formulas.

The total number of characters over some alphabet needed to store would be the fairest

measure, and it would be te closest to actual machine storage and processing requirements.

But this is not always practical either: we should not really be concerned, for instance,

about the number of characters needed to store the name of a propositional variable. And

when we state results on general propositional logics, we really do not know anything about

the size of the atoms we might reason with. For the purposes in this section, we decide upon

the second choice: define as the number of atoms in a.
The complexity of elementary set operations also depends on how the sets are implemented.

For example, the set membership problem c : m be solved in linear, logaritbniic or (alrnost)

constant time, depending if, and how, the elements of the set are ordered. We should not

be concerned about such optimization issues (although these play a vital role in actual

implementations). Instead we declare:

Set membership tests for atoms are considered elementary.

Computing the union or intersection of n sets S1, . . . , Sn takes Cy=l ISi 1 elementary

steps, allowing one step for "reading" each element in each of the Si.

A subset test S1 S2 takes ISl 1 steps, since it can be expressed as ISl 1 membership

tests.

Verifying whether a given set of atoms constitutes an atomic cover for a formula is certainly

an interesting question:

Proposition 2.3.1 For any propositional logic, given a set of formulas and a set of atoms

a, i t takes O(Ia1) set membersh,ip tests to vekfy whether a contains an atomic cover for a .

Proof: Let us state the following, easy-to-prove properties (compare with Definition 2.1.21):

Q contains a cover for an atom a iff a E Q .

XP contains a cover for a1 A . . . A an iff XP contains a cover for all ail i = 1,. . . , n.

a contains a cover for plV. . .V& iff a contains a cover for at least one pi, j = 1, . . . , m.

@ contains a cover for a , iff a contains a cover for all p E a .

CHAPTER 2. EXTENSIONS OF PROPOSITIONAL LOGIC 38

Beginning with the atoms, we can thus decide "bottom up" for any subformula cp of any

formula in whether Q contains a cover of cp. Each siibforinlila needs to bc evaliiated at,

most once, and we incur exactly one membership test for each atom in @. In total, no more

than I@l set membership tests are required. 0

In this work, we will never have to verify whether a set of atoms is exactly a cover of a given

formula. Thus, the following proposition, though intriguing, is only of academic interest.

We rr~crit,ior~ it here witliont proof:

Proposition 2.3.2 For any propositional logic, given a set @ of formulas and a set of atoms

a: verifying whether a is an atomic cover for @ is strongly NP-complete.

Surprisingly, finding an atomic cover for a given formula is very easy:

Proposition 2.3.3 For any propositional logic, given a set @ of formulas, it takes O(I@I)

steps to find a71, atomic copier for @.

Proof: To obtain an atomic cover of a conjunction, we must take the union of covers of its

conjuncts. For a cover of a disjunction, we must choose a disjunct and take its respective

cover. It does not matter which disjunct we choose: any of them will give rise to an atomic

cover. Finally, for an atom, we must include the atom itself into our cover. Hence, we can

traverse each formula in @ in topdown fashion, stepping into a.11 cor~jur~cts of a. cori.jlmction,

and into the chosen disjunct in each disjunction, gathering the atomic subformulas along

the way, which results in an atomic cover for @. Since we visit each subforinula at most

once, the entire procedure takes O(1@1) steps. 0

If @ is in clause normal form, finding a cover is particularly easy: Just pick a disjunct from

each of the formulas in @. This cover is strongly reminiscent of the initial literal assignment

in the Disconnection Calculus [12, 651, where it is known as a path.

This result seems to contradict the well-known NP-completeness property for satisfiability

checking in propositional logic. However, we must remember that Corollary 2.2.8 warrants

only the existence of a clash-free cover as a necessary and sufficient criterion for the sat-

isfiability of a PLNNF-fOrmula @. Therefore, the following result comes as no surprise at

all:

Proposition 2.3.4 Let be a set of PLNNF-fOrm~las . Finding whether @ has a clash-free

atomic cover is an NP-complete problem.

CHAPTER 2. EXTENSIONS O F PR.OPOSITIONA L LOGIC 39

Proof: To show that the problem is in NP, we propose a nondeterministic "guess" 9 .

All covers of only contain atoms whidi actually occur in a, so we call easily rcstrict 9

to be of size O(@). It is easy to verify that Q is clash-free: We just need to check that

p and ~p do not both occur in 9, and that I is absent from Q. This involves at most

O(min(lPI,Iql)) membership tests. Furthermore, we showed in Proposition 2.3.1 that 9

can be verified in linear time to contain an atomic cover for p. In fact, the algorithm we

sketched in Proposition 2.3.1 returns such an at,omic cover. Being a subset of thc clash-free

set k, it is also clash-free and hence provides a solution to the problem. Therefore, we

proved in linear time, based on our initial guess, that @ has a clash-free atomic cover. (Note

that this cover need not be identical to our guess k.) So our problem is indeed in NP.

On the other hand, Proposition 2.2.8 says that a clash-free aatornic cover cxists iff p is

satisfiable. Hence, the satisfiability problem in propositional logic (which is well-known to

be NP-complete) can be polynomially reduced to the problem of finding a clash-free atomic

cover, simply by converting a propositional formula into NNF. So our problem must be

NP- hard. 0

Finally, let us recall our result from Propo~it~ion 2.2.6 regardiiig model dlecking. Of course

it would be hugely inefficient to perform model checking by using this proposition naively.

We would not want to find alLatomic covers for a given set and check each of them against

our valuation V, as there may be exponentially many different covers. The conventional

method of evaluating the formulas in a bottom-up fashion is much faster. Moreover, we can

modify this method so as to construct an atomic cover, using V to guide us in the search.

Notice that we invariantly assign a cover to all subformulas satisfied by V and that V is

consistent with each such cover:

0 For any atom a in any formula in @, assign a cover Q = { a) if V kp a; otherwise,

assign no cover.

For a conjunction a = a1 A .. . A a, where V kp mi for all 1: = 1,. . . , n,, a V-consistent

cover ki can be found for each ai. Assign the cover UE1 Qi to a. (By Lemma 2.2.5,

this cover is V-consistent.) If V kp ai for all i = 1, . . . , n, assign no cover.

0 For any disjunction p = pl V . . . V ,& where V kp pj for some j = 1, . . . ,m, a V-

consistent cover Qj can be found. Assign this covcr to P. To d l other d i s j l l~~ct io~~s

assign no cover.

CHAPTER 2. EXTENSIONS OF PR.OPOSIT1ONAL LOGIC 40

V must satisfy every cp E a , so each cp must have a V-consistent cover 9,. By Lemma

2.2.5, QJ = U{Q, : cp E a) is a V-consistent atomic cover as dcsired.

0 Corollary 2.2.9 states that I Q I 5 IPJ + 1 for any consistent atomic cover. Therefore,

each union operation can be performed in O(IP1) steps. Since each subformula is

evaluated only oncc, rorlstruct,ir~g a V-consistent atomic covcr for Q, takcs O(IP1 x IaI)
steps, where 1Q,1 is the number of atoms in @, counting multiplicities.

Chapter 3

The Modal Logic KNNF

At th,e same time, God i s supposed to he noncontingent, ~:mmnten:nl, infinite,

nontemporal and unconditional. All we h o w : perceive, or experience of the

things i n this world is contingent, material, fiwite, temporal, conditioned.

But God is everything . . . , yet he is incomparable. . . . A t the same time

he's supposed to be superior to the cosmos. Superior implies comparison,

doesn't i t? I 'm too dumb to be an ontologist. ... But I do believe i n the

existence of God or some power I can't know.

William Wharton, "Tidings"

The modal logic K has been defined in a variety of ways. While there is agreement on

the language C(K), the semantics are introduced depending on one's particular viewpoint.

Sorneor~e ir~t~erested in twtioruatic thtwrics would specify axiorns a r~d rules for deriviug all the

tautologies of K from these axioms. A classical treatment of a variety of axiomatizations

can be found [15]. We however, following our interest in satisfying models, use models to

define the semantics of K . Standard works here are [60] and [56]. We deviate from these

standards in one important respect: We consider only formulas in negation normal form; the

logic thus restricted shall be denoted KNNF. Thanks to the duality of the modal operators,

this does not compromise expressivity: every K-formula can be converted (in linear time)

to an equivalent formula in KNNF.

CHAPTER 3. THE MODAL LOGIC KNNF

3.1 Kripke Models

Before we define KNNF fornlally, let 11s look at the semantic structures thcnlselves. As in

the previous section, we assume a set P of propositional variables given. Our definition

follows [60] :

Definition 3.1.1 A Kripke frame is n tuple (W, R), where W is (I finfit(<, non,en~pty set of

worlds (or nodes), and R is a binary relation on W, called accessibility relation. A valuation

on W is a mapping V : P H 2 W . We call the tuple (W, R, V) a Kripke model or Kripke

structure.

As the definition suggests, we make no distinction between structures and models: there

are no inconsistent Kripke structures. Since a Kripke frame can be viewed as a graph, we

may use standard terminology from graph theory. In particular, a path from a node wo to

a node w is a sequence of directed R-edges connecting wo with w. (7uo is connected to itself

via the ~111pty path.) Wc say that a Kripke frame (W, R) is rooted in wo, if every world

u~ E W is connected to wo via a directed path. We will informally talk of worlds w at depth

k in a model, by which we mean that k is the minimal length of any path from wo to w.

A Kripke frame is a tree, if it is rooted in some world wo, and every world has exactly one

R-predecessor, except wo which has 110 prcdcccssor. (Equivale~lt~ly, we can say that every

world *w E W is connected to wo via a unique path.) A Kripke model is a tree model, if its

Kripke frame is a tree.

We define in the usual fashion the kth power of R, k E No, by RO = id, R' = R, and

Rk+l = R o R ~ ; furthermore, we define the transitive closure R+ = UEl R~ and the

reflexive-transitive closlire R* = U g o nk. For any set TY, any rclation R on W, and

w E W, we denote the set of R-successors of w as R(w) = {w' : w R w').

For complexity analysis, we will define two measures for the size of a Kripke model (W, R, V).

We set # K = I WI, the number of worlds in K. By IKl we denote the total size needed

to store K , assurlling that each world in W and cach variable in P is of clcnlentary size

1. An alternate and commonly seen characterization of the valuation V is a mapping

P x W H {true, false). Similarly as in PLNNF, these two characterizations are equivalent,

and ours can be understood as "in every world contained in V(p), p is assigned true, and

false everywhere else". Another useful view of the valuation function is how it defines a

propositional valuation in each world w E W:

CHAPTER 3. THE MODAL LOGIC K N N F 43

Definition 3.1.2 Given a Kripke structure (W, R, V) and a world w E W , we define the

propositional ~~aluat ion V, = { p E P : w E V(p)).

3.2 Formal Definition of KNNF

Definition 3.2.1 The modal logic K N N F is exactly the smallest propositional logic w n -

taining as atoms the propositional atoms of Definition 2.2.2, as well as any formulas of the

f o m r = 0 r o (commonly called r-formulas or 0-formulas) and v = 0 vo (v-formulas or

0-formulas)', where r o and v0 are K N N F - formulas.

A model of K N N F consists of a Kripke model K = (W, R, V) and one of its worlds zo.

The .sem,antic relation kk is a7e eztension of kp (see Definition 2.2.2), &finzed 071, cl,toms as

follows (a is a propositional atom and ro, vo are KNNF- fomulas) :

K, kk a i f f Vw kp a -

K, w kk 0 vo iff for all wl E R(w), K, wl kk vo.

K, w kk 0 no iff there e.xist.9 w1 E R(w) such th,at K, w1 no.

Fin,dly, we define a dcpth fiinction d(.) on K N N F czs: d(a) = 0 for wry pmpo.sitii.onal atom,,

d(v) = d(vo) + 1 for v = 0 VO, and d(r) = d(rO) + 1 for r = 0 TO, extended recursively to

propositional concatenations as in Definition 2.1.10.

In co11.junction with Definition 3.1.2 we get the "classical" characterization for kk on literals:

Corollary 3.2.2 In the notation of Definition 3.2.1, we have for any p E P:

We write cp ~k $ iff cp and $ are satisfied by the same models. The following substitution

properties hold:

Proposition 3.2.3 If cp =k $! then 0 cp =I, 0 $ and 0 cp ~k 0 $.

'v- and T-formulas are collectively referred to ns modal atoms by many authors, for the snmr reason we
consider them as atoms, namely that they are atomic with regard to propositional reason,ing.

CHAPTER 3. THE h4ODAL LOGIC: K N N F 44

Proof: These are a direct consequence of Definition 3.2.1. 0

Two Kripke structures K1 = (Wl, R1, h) and K2 = (W2, R2, V2) are ksorrt.orphic (writtcn

K1 E K2), iff there exists a bijection p : Wl H W2 SO that R2 and V2 are obtained from R1

and Vl by replacing each world w with p(w).

Corollary 3.2.4 If K1 and K2 are isomorphic under the bijection p and w2 = p(wl), then

K, W1 bk cp iff K2, W2 bk cp for all KNNF-f07771uh~ cp.

Proof: Informally stated, none of the conditions in the definition of bk changes upon

renaming the worlds in K. A formal proof, using induction on the structure of cp, is left to

the reader. 0

Definition 3.2.5 Let K = (W, R, V) and K' = (W', R', V') be a Kripke structure, so that

W' C_ W, R' C R, and V1(p) = V(p) n W' for every p E P. Then we say that K' is a

submodel (or substructure) of K. I n particular, the submodel where R' = R n (W' x W'),

is ccilled the subrnodel induced by IV', cmd u~rit ten as Klwl. F ~ r r t h m o r e , ule kderltlfy the

substructure induced by a world w E W (and all its successors) as K, = KIR*(,,,).

A well-known result is the following:

Proposition 3.2.6 Let h- = (W, R, V) be a Kripke structure and uig E W. Then K, wg bk
(P if and only i f Kwo, w0 bk (f'.

In other words, any Kripke model for cp has a rooted submodel which also satisfies cp.

According to this result, if a set is satisfiable, not only can we always find a satisfying

rooted Kripke model, but even one whose root world WQ satisfies a. This greatly alleviates

our search for satisfying Kripke frames.

3.3 Characterizations of Sat isfiability

Having considered some of the particular notions of Kripke semantics, we now recall that

we introduced K N N F as a propositional logic. This allows us to apply Theorem 2.1.38 to

get this important result:

Theorem 3.3.1 Let a Kripke structure K = (W, R,V), a world WQ E W, and a set of

KNNF-formulas be given. Then K, wo bk i f l a has an atomic cover 8 = \ZrA W

CHAPTER 3. THE MODAL LOGIC: KNNF 45

whose elements are categorized into the sets Q A , Q N : and Q p of propositional atoms, v-

forrrmlm, a71d .rr-f07mn,vlns of k , .respecti~~rly, so that

(1) Vwo is consistent with !PA!

(2) for every .rr E k p there ez'ists (L world w E R(wo) so that K,, w kk TO,

(3) and for every v E k N and every world w E R(wo), K,, w kk uo.

Proof: We first apply Proposition 2.1.38, stating that K, wo is a model for Q, iff it is a

model for some atomic cover 9. The atoms in k here fall into the three distinct categories

propositional atoms, v-formulas, and .rr-formulas; it is equivalent with K , wo Fk k to say

that

0 K , wo Fk a for every a E Q A ,

0 and K, uro Fk r for every .rr E Qp,

and K, wo kk u for every u E k N .

We show the equivalence of each of these three statements with the corresponding statement

(1) through (3) above.

For the first statement, consider any propositional atom a. According to Definition 3.2.1,

K, wo kk a iff V,, kp a; therefore, K, wo kk a for every a E k A is equivalent to saying

that V,, kp kA, which in turn is equivalent to Statement (1) by Corollary 2.2.4.

For the second statement, Definition 3.2.1 states that K, wo kk .rr iff there exists a world

w E R(wo) so that K , w Fk {ro). Using Proposition 3.2.6, we can equivalently write

K,, w kk {.rro}, as stated in (2). The third statement is analogously shown equivalent with

(3). 0

We can use this theorem to give a recursive definition for the satisfiability of KNNF-formulas

which does not depend on a particular Kripke model:

Corollary 3.3.2 A set Q, of KNNF-formulas is satisfiable iff Q, has an atomic cover k =

kAWkNkJkP, whose elements are categorized into the sets 9,4, k N , and k p ofpropositional

atoms, v-formulas, and .rr-formulas of k , respectively, so that Q A is clash-free and for every

r E kp, the set {ro) U {uO : v E k N } is satisfiable.

CHAPTER 3. THE MODAL LOGIC K N N ~ 46

Proof: The set is satisfiable iff there exists a Kripke model K so that K, wo kk a , which

holds according to Tlieorerri 2.1.38 iff Q, has an atomic cover of the form above, satisfying

statements (1) through (3). From (1) and Corollary 2.2.8 we obtain the assertion that +A

is clash-free, and from (2) and (3) we infer that for every .rr E \ I r p , K has a world ui E R(wo)

so that K,, w satisfies all elements of {.rro) U {vo : v E QN), which witnesses that this set

is satisfiable. Conversely, suppose that the conditions of this Corollary hold. Then for each

.rr E ap, the set {.rro) u {vo : v E aN), prcsiimed satisfiable, must have a Kripke model K(.rr)

with root w(.rr). Now introduce a new world wo distinct from the worlds in all the K(.rr),

and define a valuation V,,, consistent with \IrA (which can be done, since QA is clash-free).

Furthermore, define (wo, ui(.rr)) E R for all roots w(.rr), and let W, R and V be the union of

all worlds, accessibility relation pairs, and valuations created. Then it is easy to show that

K = (W, R, V) satisfies the conditions of Theorem 2.1.38, which witnesses the satisfiability

of and completes this direction of the proof. 0

3.4 Strict Kripke Models

The constructive second half of the proof of Corollary 3.3.2 gives rise to a certain type of

model for KNNF-formulas, namely one in which all submodels are distinct and pairwise

disjoint. We define it formally like this (notice the similarity with Theorem 3.3.1):

Definition 3.4.1 A Kripke model K = (W, R, V) with root wo is a strict model for a

K N N F - f o ~ u l a cp (or set a) (written K , wo kc cp, K, wo kc a) , if (W, R) is a tree and cp

(or a) has an atomic cover a = aA H +N +p, whose elements are categorized into the sets

!PA, \IrN, and \ Irp of proposition,al atoms, u-fomn,ula.s, an,d .rr-fom,ulas of \Ir, respectively, so

that

1. V,, is consistent with a A ,

2. for each .rr E ap there exists a distinct w E R(wo) so that K,, w kc TO,

3. and for every u E QN and every world ui E R(wo), K w , w kc uo.

Let us reemphasize the two distinguishing features of strict models: first, they are tree

models; secondly, each .rr-subformula corresponds to a distinct R-successor of the respective

world where this formula holds. Thanks to Theorem 3.3.1, every strict model for a set @ is

CHAPTER 3. THE MODAL LOGIC K N N F

Figure 3.1: A strict model (left), nun-strict tree m.odel (middle), and cyclic model (righi)
for Q, = {O p, 0 q).

indeed a model for Q,. Conversely, we can state what is somewhat stronger than the usual

tree model property commonly stated for K:

Theorem 3.4.2 Every satisfiable KNNF- formu la (or set of formulas) has a strict model.

ProoE Let Q, be a satisfiable set of formulm. This means that the colditmioils of Corollary

3.3.2 hold. We prove our statement by induction on the depth d(Q,), using a slight alteration

of the second half of Corollary 3.3.2. If Q, does not contain any modal subformulas, then

it has a model with a Kripke frame of the form ({wO}, 0). Such a model is trivially strict.

Now assume the statement shown for formulas of depth at most k, and let d(Q,) = k + 1.

Corollary 3.3.2 says that for each .rr E Sip the set {.rro} U {vo : v E 9N} is satisfiable. By the

induction hypothesis, this set (which is of depth at most d) must have a strict model. Now

ensure (by renaming or similar means) that the sets of worlds in all the submodels arising

from the different .rr E kp are pairwise disjoint, and construct K as before. (Remember

that uio was also chosen distinct from any existing worlds.) Then K is easily shown to be a

tree model, and it satisfies the modified criteria in Definition 3.4.1. Thus we have found a

strict model for Q,, which finishes the induction step. 0

As Theorem 3.4.2 shows, strict models are a "safe fall-back in model finding: they always

exist, as long as the set is satisfiable. From the fact that each .rr-formula (in 9 p) needs

to correspond to only one d is t i~~ct snccessor world w E R(wo), and any successor worlds

beyond these are redundant, we implicitly get an upper bound for the smallest Kripke model

for Q,. But there may exist smaller non-strict models:

Example 3.4.3 The sct Q, = {0 p, 0 q } has a strict ~nodcl with root world wo and two

successor worlds wl, w2, where p and q are assigned true in worlds u ~ l and w2, respectively

(see Figure 3.1). However, there is no need to keep the successors wl and ui2 separate; a

CHAPTER 3. THE MODAL LOGIC KNNF

Figure 3.2: A st7-icl: m.odel (left) and u DAG moclel (~ i ! ~ l ~ . i) for = (0 p, 0 l p , 0 0 q) .

model with one successor world in which both p and q are assigned true also satisfies cp;

note that it is still a tree model for cp. We can reduce the model even filrt,llcr to a oncworld

frame where u i g is accessible to itself, with p and q assigned true in uio. This is no longer a

tree model.

Example 3.4.4 The set = {0 p, 0 i p , 0 0 q) has a strict model as shown in Figure

3.2. We see that the two worlds at depth 2 have identical variable assignments, so they can

be replaced by one world. This model is no longer a tree nlodel, although it does not have

any cycles. We will call it a DAG model. See Section 4.8 for further discussion.

We see that non-strict models, if they exist, can be much smaller than strict models. For

this reason an algorithm which is capable of producing non-strict models should be preferred

to one which only produces strict models. Some methods for finding non-strict and non-tree

models as in Figure 3.2 are discussed in Appendix A.2.

3.5 Complexity of Reasoning Tasks in KNNF

The complexity of reasoning in K is well understood. Our subset KNNF, as we have shown,

is no less expressive than full K , so the same results as shown in the literature [61] are true

here, and we quote them without giving any proof. In fact, they will follow independently

from similar theorems for labelled formulas we will state in the next chapter. For a definition

of the complexity class PSPACE, see 1921 or refer to Section 4.7.

CHAPTER 3. THE MODAL LOGIC: K N N ~ 49

Theorem 3.5.1 Given a set @ of KNNF-formulas, the problem of deciding whether @ is

vnsatisfiahle i s PSPACE-complete.

Note that, in the case of PSPACE t<he complexity of deciding satisfiability and ~msatisfiability

are the same. Therefore, we have the standard properties:

The space requirement for deciding whether <P has a model is polynomial.

There are algorithms for satisfiability, requiring at most exponential running time, but

no known algorithms with less-than exponential worst-case running time complexity.

The polynomial space result only holds if we do not care about an actual model to be

returned. If we do, thcn [GI] also shows:

Proposition 3.5.2 Tj~me are fam;ilies of sets @ of size O(n) for which minimal Krl2,ke

models are of size 0 (2 n) .

We will present a large class of such sets later in Proposition 4.7.9. The fact that Kripke

models can be exponentially larger than the original problem size is the driving factor of

this work. In between the polynomial space requirement for showing satisfiability at the

disadvantage of not obtaining a model, and the exponential space requirement for full-size

Kripke models, our desire is to specify models in a more efficient way, so as to reduce their

size in as many problem instances as possible, without losing any of the information needed

to construct the model.

It turns out that the exponential bound is also a worst-case upper bound:

Theorem 3.5.3 # K < 2b7 where b is the number of 0-operators in @.

Let us conclude this brief section with a result on model checking. Since we will use it later,

we provide a proof as well:

Theorem 3.5.4 Given a set of KNNF-formulas @ and a Kripke model K , deciding whether

K, u10 kk @ takes O(IK1 x I @ I) steps.

Proof: We describe a simple systematic procedure as follows: For k = 0 , d (@) in

ascending order, determine and store whether K, w kk cp for every subformula cp in of

depth I;, and every world U J in K. We claim the following property (which immediately

CHAPTER 3. THE A4ODAL LOGIC KNNF 50

implies the theorem): The procedure takes O(lKl x 191) time per formula cp. (Notice that

we did not claim t,hat t,he procedure t,akes O(lcp1) tirw tro decidc K, w +I, cp for m e world

w, which is not true.)

The property obviously holds if cp is a propositional atom: In case cp = T, I, it is evident

whether K, w cp or not; for cp = p (cp = ~ p) , K, w +I, cp iff UT E V(p) (w $2 V(p)), which

can be decided in one step per world w. The property is preserved under propositional

concatenation: If cp = cpl o cp2 (0 = A, v), we evaluate K, w +I, cp1 and maybe K, w +I, cp2

(which takes O((cpll) and 0(lcp21) steps, respectively), and computing K, w +I, cp1 o 9 2 is

one Boolean operation on these results, for a total of O(lcp1) steps. Finally, we show that

the validity of this property for formulas of depth at most k implies its validity for all atoms

of depth k + 1. Let YO and 0 TO be t,hese atoms. We have alrcady evaluated and stored

K, w' YO, K, w' TO for a11 worlds W' in k. Therefore, evaluating K, w +I, O YO and

K, ui 0 TO involves looking up these Boolean values for all successors w' of uj, and

taking their conjunction or disjunction, respectively. We easily see that summarized over

all worlds w in K , the number of lookups for each formula is at most equal to the number

of arcs in the accessibility relation R. So we add O(l Kl) operations to the O(I KI x Ivol) (or

O(I K I x 1 ~ ~ 1)) operations guaranteed by the induction hypothesis, for a total of O(I K I x lvl)

(or O(IK1 x 1 ~ 1)) steps. By the principle of induction over the formula depth in Theorem

2.1.12, the property holds for every KNNF-formula, which shows the theorem. 0

Chapter 4

Labelled Formulas

Writings do not fully encompass words,

and words do not jd ly encompass mean- s$%;, ,'j-&&&
zng. Thw bezng so, can the zdcas of the

P K p J g & , & g $5JJj+
I , t \ \ Sages not be illustrated? The Master says:

yu g/\ - ;i $&LA%,& The Sages creuted labels z n order to f.ully

22 # PA 2% 118 {a, express meaning. They deszgned diagrams

g, so US to exhaustwely categorize what zs

i~fi@j~~~$l~, true and what is false, tied them together

$$-$gjLy,gj$T', with explanations to fully express their

words, and dwcussed all their variations

i n order to obtain the utrnost advurltage

from them. Through proclaiming them as

with drums and dances, their spirit will be

completely revealed.
Konficius, "The Great Appendix" (to the Y i Jing), I, Ch. XII

4.1 Introduction and Motivation

As we have seen, a Kripke structure consists of three types of objects: possible worlds,

pairs (wl, ~ 1 1 ~) of an accessibility relation, and pairs (p , 71)) of a valuation function. We make

the assumption that every world and every pair are explicitly repre~ent~ed by some object1.

'Of course, Kripke structures in which R and 1.' are specifid in some clnsrd form rat,hcr than h,v cnu-
merating all their pairs are imaginable, but we are not aware of any approach which uses such structures for

CHAPTER 4. LABELLED FORMULAS 52

This often entails a large amount of redundancy, as we will now highlight. The following

exainple may not lend itself i~at~urally to modal reasoning, biit it will serve in illustrating

our concepts well, and we will encounter variations throughout the next two chapters:

Example 4.1.1 Consider a set of cubes, arranged according to a tuple (x, y, z) of coordi-

r~ates, x, y, z = 1,. . . , n. We can pict,ure these as part of a larger n x n x n-cube, as in

Figure 4.1. We would like to reason about properties on these cubes, such as "has coordi-

nate x = 2", "is located at a corner", "is hidden from view" etc. Therefore, we would like

to model them as a set of individuals or possible worlds, in each of which any of the above

properties can be true or false. One possible way to accomplish this is shown in Figure 4.2:

Beginning with a root world, we create three additional layers of worlds, the third of which

represents the set of actual cubes. In each layer we add another dimension, thus creating

successively a row of n worlds, a plane of n x n worlds, and finally a cube of n x n x n

worlds. The root world and the worlds in the first two layers do not actually have a physical

i~~t~erpretation, but this tlmv+layer approach helps structure the problcm.

One set @ of formulas which has this arrangement of worlds as a Kripke model is the

following:

We treat the predicates z = 1 , . . . , z = n as propositions and assume that variable assign-

ments for each of x,y,z are mutually exclusive. (This means, at most one of x = 1,. . . , x = n

can be true in any given world; same for y and z.) This effect can be easily achieved by

introducing more formulas ("mutex clauses"), but we will omit those to keep things sim-

ple. Mutual exclusivity forces each 0-formula to be satisfied in a distinct accessible world.

These formulas not only span the model shown in Figure 4.1; they also specify x-, y- and

z-coordimtes for each cube, as annotated in thc figure.

It is convenient-and common practice in the literature, see e.g. [22]-to use labels for

addressing the worlds in a Kripke structure. Labels are strings of constants; they are

reasoning, excepl perhaps the freevariable lableaux [9]. But in these, a ~riodel is only implicitly contained
in h e structure 01 a tableau node, and we cannol easily extract inlormation oul or il.

CHAPTER 4. LABELLED FORMULAS

Figure 4.1: The n x n, x n, cube of worlds in Example 4.1 .l.

intended to capture the accessibility relation in the following way: The root world ulo

is assigned the empty string E (or 1, as is commonly seen in the literature, perhaps to

accommodate for more than one root world), and if a world is labelled y, then the successors

of the worlds are labelled y l , 72, In our exarnple, the coordinates of our cubes lend

themselves naturally as constants for use in labels, and we assign labels to worlds in the

other layers as well: The worlds on the first layer, being immediate successors of the root

world, receive labels 1 through n, the worlds on the second layer labels 11 through nn, and

our "real" cubes labels 11 1 through n,nm.

So how do we iinderstand the senlantics of fornliilas in this setting? A v-for11111la specifies

that vo is true in all successors of a world, and a T-formula that some successor exists in

which TO is true. Thinking of worlds as instances, we can think of modalities as specifications

over all or one successor instance. In this way, chains of modalities specify a set, or subspace

if you will, of instances in which a given formula is true. For example, 0 0 0 (x = 1) states

that some instance (here: 1) exists, and z = 1 is satisfied in all worlds labelled 1 % ~ ~ .

Likewise, 0 0 0 (y = 1) says that every instance c, has a successor (here: c,l) whose

successors c,lcZ satisfy y = 1, and so forth.

CHAPTER 4. LABELLED FORMULAS

n l l

Fignre 4.2: TIN. fir11 Kripkc ~iiodel aiid labellings for Exan~ple 4.1.1.

l n l

CHAPTER 4. LABELLED FORMULAS 55

Now consider the variable assignments in the worlds. We observe that each cube (world on

the third layer of the model) satisfies a, different co~nbiriatioti of propo~it~ions x = c,, y = %,

z = c,. But this does not mean that there are no redundancies: For instance, all worlds

labelled 1 % ~ ~ satisfy x = 1. Rather than specifying n2 variable assignments, we could just

specify one. To facilitate this, we will extend the notion of labels by introducing variables

in place of constants. For the most part, it turns out that we do not actually need to n,ame

the variables; one atloriyrnous variable (or u~ildcard) * will do, understanding that, different

occurrences of * can be instantiated differently. So the same variable assignments as above

can be written as an assertion 1** (x = 1). For the time being, let us forget about the need

to specify negative assignments such as ~ (x = 1) on all the other worlds; then we can state

the sct M of d l wriable ilssigr~rrients as follows:

These are only 3n assertions speciking 3n3 variable assignments in the n3 cubes. If we

generalize this three-dimensional problem to k dimensions, then kn assertions would suf-

fice for specifying knk variable assignments in nk worlds, a reduction from exponential to

polynomial size in k.

How about the set W and relation R? As we said before, R is implicit in the structure

of labels. And now we claim that even the set of labels W has become implicit in the

assertions! Let us look at (4.2) carefully: We immediately see that all constants 1 through

n occur in each of the three positions. And since the other two positions contain *, we can

read an assertion such as 1** (x = 1) as: "For whatever instances %, c, of the two * we

can firid in M , a cube labelled 1 % ~ ~ exists (and x = 1 is true in that world)." Now we can

find instantiations of cy and c, such as cy = 2, c, = n from other assertions, in this case

2 (y = 2) and **n (z = n). Together the three assertions witness that a world with label

12n exists. Observe that exactly this label 12n is the unifier, or common instance, of the

labels I**, *2*, and **n,. So we will declare that W is the set of all groun,d labels which

can be constructed as unifiers of labels in all the assertions. We call any such ground label

realized. Some examples for labels which are not realized in this example are 1111 (because

no assertion has a label with 4 positions) and l l (n + 1) (because the constant n + 1 does not

exist). Realizability and related issues are described at length in Section 4.4. To summarize,

CHAPTER 4. LABELLED FORMULAS 56

a set of assertions is all we need to specify a Kripke model implicitly, and as we have seen,

these set,s of assertions can be vasttly more cornpiict than explicit Kripke models.

We must point out that the use of assertions may give rise to inconsistencies. If for instance

we added an assertion 1** -(z = I) , then z = 1 would have to be both t rue and false in

any instance of 1*1, which is impossible. An occurrence of two contradictory assertions is

called a clash. Only clash-free sets M will be acceptable as models, so we must be sure to

avoid iritroducirig clashes.

Finally, let us compare the original set of formulas (4.1) with our newly found set of asser-

tions (4.2). We observe that these are almost identical, except that the former uses modal

operators and the latter labels. The 0-operator obviously corresponds to *, and each O-

operateor to each of the n constants we used i11 that respective position. What this shows

is that we could have found a model for simply by replacing its modal operators with

constants and wildcards! Now in general this does not result in a set of assertions, for

assertions may not contain propositional operators. But even in the general case, it makes

sense to convert formulas by replacing all modal operators with constants and wildcards,

anywhere in the r~est~ed structure of each formula. Then we only have to deal with labels, not

modalities, and model finding simply becomes an algorithm to branch on the propositional

structure of labelled formulas, with the goal of eliminating all propositional connectives and

arriving at a set of assertions. In one final step, we must then check whether this set is

clash-free.

To round up this introduction, let us briefly highlight the conceptual changes in the approach

we are undertaking:

0 The logic CBC does retain a lot of similarity with K. It is a propositional logic, so all

results from Chapter 2 are applicable. Furthermore, the semantics of modal operators

and labels are so similar that we can find a homomorphism between the two logics

(see Definition 2.1.17) and show that it preserves satisfiability. See Section 4.5.

0 The 0-operatoor and the const,anits in a labcl have different co~~notations. A for~nrlla

0 TO says that TO is true in some successor, whereas c F states that F is true in one

specific successor. This is different, and we will point this out in several places.

0 On the other hand, the use of labels in both formulas and semantic structures gives us

a correspondence between assertions in the structure and labels in the formula: they

correspond whenever they use the same constants.

CHAPTER 4. LABELLED FORMULAS 57

We ought to ensure that our logic of labelled formulas does not leave the reasoning

class PSPACE. We will dcmonstratc this in Section 4.7.

Model checking, on the other hand, does not retain its complexity class it occupied

in K, where it was polynomial; here it becomes co-NP complete in the size of the

model. 0 1 ~ obvious reason is the additional require~llerit to ellsure clash-frmness,

which itself is a c@NP complete problem, as we will see. However, we will prove that

model checking only becomes more expensive when our models are more compact

than Kripke models, and that we can always resort to checking the Kripke model

represented by our assertions, without significant overhead in the size of this Kripke

model. All dctails can be foulid in Sectior~ 4.6.

To retain soundness, we must replace 0-modalities by distinct constants. We will see

that this forces us to find a strict Kripke model. Usually the gain in compactness

through our representation more than outweighs the loss in compactness through

reduplication of worlds in a. tree model versus a. non-tree model. But we will expend

Section 4.8 studying examples where this is not true, and suggesting some remedies.

4.2 Simple Labels

Let D be a fixed, countably infinite domain of constants, and * a symbol not contained in

D, the so-called wildcard.

Definition 4.2.1 A simple label of length n 2 0 i s an rr.-tuple of symbols from D U I*),
written a = cl ..-c,. For any k = 1 , . . . ,n, the element ck i s called the k t h position of

a , and the label cl - - ck i s the k-prefix (or simply: a prefix) of a. The concatena.tion

of two labels a = c1.e c, and a' = 4 c& i s defined and denoted i n the usual way:

aa' = cl - c,< . dm. The orr,l?y label of len,yth 0 is th,e empty label. dmoted E . W e

identify labels of length 1 with their one element, e.g. a = c. Furthermore, we define the

undefined label 8; i t has n o length assigned to it. A label is called ground if it does not have

* in any of i ts positions. The prefix closure pref(C) of a set C of labels i s simply the set of

all prefixes of labels i n C, and C i s closed under prefixing, if C = pref(C).

We will establish the convention of using a, a', etc. for arbitrary simple labels, y, q', etc.

for ground labels, x, x, for elements which may be constants or *, and c, c, for constants

CHAPTER 4. LABELLED FORMULAS

from D only. If we deviate from this, we will mention it.

Definition 4.2.2 Two labels a = xl . . xn and a' = xi - 0 x k unify if m = n and for every

k = 1 , . . . , n, if xk E D and z; E D, then z k = x;. (That is, wherever a and a' both have

constants i n the same position k , these two constants are the same.) If a and a' unify, their

 no st general lmificr (mgu) (a, a') i s the luhel xy . . . xg, wlrere x i = x; whcnwoer xk = *, and

x i = xk for all other k . (If a and a' do not unify, we define (a, a') = 0.) If (a, a') = a',

then we say that a' is an instance of a , written a L a'. If additionally a # a'. we also write

a C a', saying that a' is a strict instance of a .

It is easy to see that taking the mgu is a commutative and associative operation (as we

would expect), so it is consistent to define the mgu of n labels 01, . . . ,a, as (a l , . . . , a n) =

((...(al, an), . . .) ,an). (Occasionally, we also write mgu({al, . . . ,a,)) to avoid confusion.)

The usual lattice-theoretic properties regarding unifiers and the instance relation may be

readily verified by the reader, justifying the choice of terms just defined:

Proposition 4.2.3 The instance relation E is a partial order on the set of all labels, that

is, it is reflexive, antisymmetric, and transitive. Two labels a and a' unify exactly if they

have a common instance; every such instance is also an instance of (a, a').

To motivate the above definitions, we associate a label with a set of ground instances from

a given ur~iverse I'. Sudi a universc cannot be chosen arbitrarily: Correspondi~lg to the

worlds of a Kripke tree, we must expect any predecessor (read: prefix) of a ground instance

in I', as well as the root, which is E , to belong to I'.

Definition 4.2.4 Let I' c D* be u set of gmu71.d labels which conrtair~~s E c~n,d is closed

under prefixing. To any given label a, we assign the set G(a,I') of all labels i n I' which are

ground instances of a. We call it the domain of a wrt I'. For the undefined label 8, we set

G(0, I') = 0, the empty set.

The reader may understand a (non-ground) label a as a placeholder for any of its instantia-

tions in G(a, I'). Any statement involving a is intended to hold for all ground instances of a .

While we can always choose I' = D* as the universe, we will see an important application

in Section 4.4 with a more restricted universe.

The domain of a label has the properties we expect from it:

CHAPTER 4. LABELLED FORMULAS

Proposition 4.2.5 For any two labels a , a' and any universe r as above, we have:

(2) ~f u C_ a', then G(d , r) & G(u, r) .

Proof: The first part follows from the fact that any ground instance of (a, a') is a ground

instance of both a and a' and vice versa. This is trivially true for labels which do not unify,

in which case the set of conlrnon ground instarlces is empty. For the second part, suppose

a C a'. Since C is transitive, any ground instance of a' is also a ground instance of a , which

establishes the subset relationship. 0

Definition 4.2.6 Given a set of labels C and a constant or wildcard z , we define C(,) = {a :

xu E C or *a E C}. For an arbitrary label a = XI . - 0 x,, we define C(,) = (...(C(,,)) . . .)(,,).
Conversely, for a constant or wildcard x, we define xC = {xu : a E C}.

The following technical lemma lists some properties of this definition with respect to d e

mains; we will build upon this result later:

Lemma 4.2.7 For any label a , constant c and universe r as before, we have:

(3) If c E r , then G(c*T, r) = &(a, r(,)); G(c*T, r) = 0 otherwise.

Proof: For part (I) , consider Definition 4.2.4. The empty label is required to be in r ; now

take any nonempty label in r of the form ca. Then a E I?(,), and r(,) contains no labels

beyond these. Also r is closed under prefixes, so we have c E I?, and the union operator

correctly c:ollects all nonempty labels of I?.

For parts (2) and (3), take x = * or x = c. For any ground label c'y E r , we get c' E I' and

y E r(,l) from part (1). Furthermore, xu C d y iff x C c' and u C y. The second and fourth

of these conditions together are equivalent to y E G(a, r (r)) . Now if x = *, then * c' is

always true, and d ranges over all elements of r , which proves part (2). If z = c, then c C c'

is true iff c = c'. So all ground instances are of the form cy where y E G(a, r(,)), provided

c E r . Otherwise there are no ground instances. Part (3) is thus shown. 0

To conclude this section, we introduce a principle of induction over labels. Just as the

induction principles of previous chapters, it will be frequently used in upcoming proofs:

CHAPTER 4. LABELLED FORMULAS 60

Lemma 4.2.8 (Induction on simple labels) Let Q be a propertg on the set of simple labels

over a gioen domain D. If Q (E) i s t n ~ e an,d Q (o) irnrplics

0 either Q (* o) and Q (c a) for every c E D

0 or Q (o *) and Q (o c) for every c E D

for every simple label a , then Q is true for all simple labels over D.

Proof: This principle reduces easily to induction over the integer Ic , where Ic is the length

of the label. The only label of length 0 is E , and if Q holds for all labels of length k, then

all labels of length k + 1 are of the form o* and o c (alternatively, *o and c a) , c E D, where

o is some label of length k. 0

4.3 The Logic of Labelled Formulas

Let D be a domain as in the previous section.

Definition 4.3.1 The logic CBC of labelled formulas is the smallest propositional logic

containing as its atoms the propositional atoms, plus formulas of the form c F and * F ,

where F is a labrlled forrr~,ula and c E D.

The depth function d (-) is defined as: d (a) = 0 for any propositional atom, d(c F) =

d(* F) = d (F) + 1, and d(.) is extended to propositional concatenations i n the usual way

(see Definition 2.1.10).

Let o = cl . . . ck. Then u ~ r *write the forrr~ula cl (. . . (ck F)) simp1:y as (cl . . . ck) F or o F ~ .

A n assertion is a labelled formula of the form a a , where o is a label and a is a propositional

atom. The semantic structures of CBC are sets of assertions.

For a set of CBC-formulas S , we denote by # S the cardinality (number of formulas, not

counting subformulas) i n S , and bg IS1 the absolute sire of S . For ang constant c, we further

define S(,) = {o F : co F E S or *o F E S) , an,d for (L ground label y = cl - . ck, W P set

S(-,) = ((S (, l)) . . .) (c k) . Furthermore, for any label o , we write o S = {oo' F : o' F E S) .

The set pre f (S) of prefixes i n S zs defined as pref(S) = pref({o : o F E S)) . Of any label

a E pref(S) we say that o is a label in S (or that o occurs or exists in S).

The semantic relation b1 is defined on sets of assertions A l and labelled formulas F . It

extends kg (see Definition 2.1.1) by:

CHAPTER 4. LABELLED FORMULAS

M b1 1 iff E 1 E M , for all literals 1.

M b, c F iff c E pref(M) and M(,) bl F .

M kl * F iff M(,) kl F for all constants c E pref(M).

W e read M bl F as usual: "M verifies F . The bl relation is extended to sets S of formulas

i n the usual way.

We have not yet characterized which sets of assertions we regard as consistent; we will

elaborate on this in the next section.

Assertions form the "building blocks" of semantic strlictures in CBC. The iritent of an

assertion a p (or a i p) is to say that p is assigned true (or false) in all the ground labels

which are represented by a , that is, y E G(a, I'). In addition to this, the set I' itself arises

from the labels a in the assertions of M , which capture certain "existence requirements".

For instance, an assertion y a with a ground label implies that y E I'. For non-ground labels,

the situatiori is Inorc complicated; we will make it precise in the next section, once we have

the appropriate terminology.

One might think that if M verifies a formula F , then any larger set of assertions A4' > M

should also verify F, which would be the monotonicity property we discussed in Chapter

2. However, this is not true. For example, while the set {q p) verifies F = * p, the set

{cl p, cz l p) does not. This is onc of the main reasons why we will dcfine a stmn,g semantic

relation in Chapter 5 which will prove to be monotone wrt 2. For b L , a somewhat weaker

property does hold:

Proposition 4.3.2 For any set M of assertion,^ and any assertion a a E M, a # I, we

have M bL a o., i.e. A4 verifies an,y of its elements.

Proof: We prove this prol>osition by induc.t.ion over the label a . For a = E , it follows dircctly

from Definition 4.3.1 (provided a is a literal; for a = T, it is vacuously true). Assume this

proposition holds for a label a (and any set M containing it). First, consider any assertion

of the form ca a, where c is a constant. Then c E pref(A4) and a a is in M(,); the induction

hypothesis implies M(,) b1 a a. Hence M bl CAT a is true according to Definition 4.3.1. Now

consider assertions of the form form *a a. Then a u E M(,) for any constant c, particularly

for all constants which occur in M . Therefore, M bL *a a according to Definition 4.3.1. We

have thus shown the induction step for all labels of the form *a and ca, c E D, and the

proof follows by induction on a . 0

CHAPTER 4. LABELLED FORMULAS

An immediate consequence of the Proposition 4.3.2 is this idempotence property:

Corollary 4.3.3 For any set h.f of assertions none of which are of the form a I: we have

M Fl M .

We see why it is desirable to avoid assertions containing the atom I. By contrast, they will

be of use in the strong models of Chapter 5.

Wc dcrive the relation g1 from b1 m usual, getting the following subst i tut io~~ propert,ies for

labelled formulas:

Proposition 4.3.4 If F G, th,en c F rl c G for an.y c E D , u71.d * F * G.

Proof: These are a direct consequence of Definition 4.3.1. 0

A useful nonrecursive definition of S(7) is easily shown equivalent to that in Definition 4.3.1:

Proposition 4.3.5 For any set S of formulas and any ground label y , we have

We conclude this section with another principle of structural induction.

Lernrna 4.3.6 (Structural induction on labelled formulas) Let Q be a property defined on

CBC-formulas, closed under propositional concatenation, and Q(a) true for all propositional

atoms a . If one of the following holds for all CBC-formulas F :

(1) Q(F) implies Q(* F) and Q(c F) for all c E D,

(2) Q (F) implies Q(a F) for any label a,

then Q(F) is true for all CBC-formulas F

Proof: This principle reduces to that of induction over the formula depth according to

Lemma 2.1.12. We were given that Q(a) is true for all atoms of depth 0 and preserved

under concatenation. All atoms of depth k > 0 are of the form * F, c F for some c E D,

where F is of depth A: - 1, or (in the second case) they are of the form a F, where a is some

label of length k' > 0 and F is of depth k - kt. If Q(F) is valid for all formulas of depth at

most k - 1, then any of the implications (I) , (2) can be used to show Q(F1) for any atom

F' of depth k + 1. By the principle of induction over the formula depth, we conclude that

Q (F) is valid for all CBL-formulas. 0

CHAPTER 4. LABELLED FORMULAS

4.4 Realizability and Clashes

Tlie existe~ice of a set of assertions M with M bl S cannot be it sufficient, criterior~ for

calling the set S satisfiable. For even a set with complementary literals such as S = {p, i p)

has sets of assertions which verify it. In fact, we just showed in Corollary 4.3.3 that S bl S,

since S consists of assertions not including I. The answer in this case is obvious: We should

disqualify S as a model since it is not clash-free (in the propositional sense). But when do

assert,ions with riorlernpty labels c:onst,itutte a clash? To sc:t,tlo this question, we 11md to

introduce some more theory, centred around the following definition:

Definition 4.4.1 Given a set S of labelled formulas, the set I(S) of ground labels realized

in S (or rgls in S for slrort) is th,e srrrallest set obcyilrg the fo1lo~ul.n.g n:cursioe defininition,~:

2. If y E I(S) and c is a constant so that a c E pref(S) for some a E y , then yc E I (S) .

For a given label a , the set I(a, S) of realized ground instances (rgis) of a in S is the set

G(a, I(S)) according to Definition 4.2.4. A label a is called realizable in S if I(a, S) is

nonerr8pt:y.

The following properties follow immediately from this definition, ensuring that I(S) is indeed

a universe with the properties as required in Definition 4.2.4:

Proposition 4.4.2 Any p r e f i of a realized label is realized, and any pre f i of a realizable

label is realizable. The empty label E is realizable i n any set. A ground label is realizuble iff

it is realized. If a' is realizable i n S and a & a', then a is realizable i n S.

The next proposition is a non-recursive version of the definition:

Proposition 4.4.3 A ground label y = cl - - - ck is realized in S iff for e v e v i = 1 , . . . , Ic

there exists a label ai-lq i n S so that a,-1 C cl . . . q- 1.

Example 4.4.4 For any ground label y = cl . ck and any atom a , the set S = (y a)

has y and all its prefixes cl . . . ci, 0 5 1: 5 Ic, as its realized labels. For the set S = {F =

c*c* . . . p, G = *c*c. . . q } , assuming these two labels are both of length Ic, exactly the labels

of the form ccc . . . c (up to length k) are realized. This can be shown using Proposition 4.4.3,

CHAPTER 4. LABELLED FORMULAS 64

where the labels of F and G alternately justify the odd- and even-numbered positions of

ccc . . . c. Conseqnently, t,hc labels of bot,h F arid G are realizable. We make tlie observation

that testing realizability may involve the same assertion multiple times.

Proposition 4.4.5 Let 01,. . . ,an be labels i n S so that their mgu a = (01,. . . , a,) exists.

Then we have:

(2) If a i s realizable in S, th,en 01,. . . ,an (&re a11 realizable in S .

(3) If a is ground, then a is a realized ground label i n S .

Proofi Part (1) is just the n-ary version of Corollary 4.2.5, part (1). In (2), if a is realizable,

then a has an rgi y in 5'; by (I) , y is also an rgi of every ai, i = 1,. . . , n, which witnesses

that these labels are realizable. For (3), let us write a = cl . . . ck. We claim that a is realized

according to Proposition 4.4.3. To prove this, consider any position cj in a , j = 1,. . . , I ; ;

cj must match the j th position in some of the unifying labels ai; furthermore, the prefix

cl - - cj-1 instantiates the (j - 1)-prefix of ai (since a as a whole instantktes a;). Since this

is true for every j = 1, . . . , k, Proposition 4.4.3 shows that a is realized in S. 0

Example 4.4.6 Let S consist of four assertions wit,h labels a1 = cl**, a 2 = *Q*, and the

ground labels clclcl and c2c2c2. In this example, a1 and a 2 are both realizable in S , but

their unifier clc2* is not. This shows that the converse of (2) above is not true.

Part (3) of Proposit,ion 4.4.5 states t,liat realized ground labcls may arise as groui~d rngus

of labels in S ; while this outlines the general idea, not every realized ground label can be

explained in this simple manner. For instance, the two labels in S = {cl *cl p, *c2c2 q) do not

unify. Yet there exist realized ground labels in S: to be precise, I (S) = { E , cl, clc2, clc2c2).

This can be shown e.g. using Proposition 4.4.3. Equipped with more tools, we will provide

a necessary and sufficient criterion for finding realized ground labels in Proposition 5.4.8 in

the next chapter.

The next lemma provides us with further characterizations of realizability, namely in terms

of subscripted sets (see Definition 4.3.1). These will prove very useful in a number of

upcoming correctness proofs.

CHAPTER 4. LABELLED FORMULAS 65

Lemma 4.4.7 Let S be a set of fomulas, a, a' labels, and y a ground label. In the following,

c, c' are un,derstood to be con.stant.s from D. Wc have:

(1) cy E I (S) iff c exists in S and y E I(S,). In particular, c E I (S) iff c exists in S .

(3) I (S) = { E } U U{cI (S(,)) : c exists i n S } .

(4) I(*u, S) = U{c'I (a, S(?)) : C' ezists i n S } .

(5) I(ca, S) = cI(a, S(,)) if c exists i n S ; I(ca, S) = 0 otherwise.

(6) If c exists i n S , then a is realizable i n S(,) iff ca is realizable i n S ; if th,is i s the case,

then *a is also realizable i n S .

(7) If a has a realized ground instance y i n S , then a' is realizable i n S(y) i f l yo' is

realizable i n S ; i f this is the case, then ad is also realizable i n S.

Proof: To show (1) , we use Proposition 4.4.3, reasoning as follows on y = cl . - - ck:

.1 . . .Ck E (I (S)) (c)

iff ccl . . . ck E I (S)

iff c exists in S , and some a,-lei ex. in S, a,-1 C ccl . . . s-1 (i = 1, - . . , k)

(Prop. 4.4.3)

iff c ex. in S , and *ai-lci or c l ~ l - ~ c + ex. in S , E q . . .Q-1 (i = 1,. . . , k)

iff c ex. in S , a n d ~ l - ~ ~ ex. in S(,), Ccl...ci-1 (i = 1 ,..., k)

iff c ex. in S , and cl . ck E I(S(,)) (Prop. 4.4.3)

The special case y = E follows because E is always an rgl.

To get (2) , note that I (S) is a set of ground labels, so (I (S)) , is the set of ground labels y

so that cy E I (S) . Thc proof follows from (1). In particular, if c does not exist in S , then

I (S) does not contain a label of the form cy, so (I (S)) , is empty.

For (3) , we first use Lemma 4.2.7, part (I) , and then apply (1) and (2) above:

CHAPTER 4. LABELLED FORMULAS 66

For (4) and (5), we use the definition I (a , S) = G(a, I (S) , Lemma 4.2.7, parts (2) and (3),

and (1) and (2) above:

According to Lemma 4.2.7, part (3), I(w, S) = G(co, I (S)) is empty iff c @ I(S), that is, c

does not exist in S. Otherwise we have:

For (6), just re-write "a is realizable in S(,)" as "I(a , S(,)) is nonempty", then the precondi-

tion and LHS of (6) are sufficient for the set I(*o, S) in (4) to be nonempty, and necessary

and sufficient for the set I(CAT, S) in (5) to be nonempty; again, this is just the definition for

*a and ca, respectively, to be realizable.

Finally, (7) is an iterative version of (6). To get more practice with our definitions, we

provide a detailed induction proof for the first part, the "iff" statement. For a = y = E , the

statement is trivial. For our induction hypothesis, we assume it holds for a. First consider a

label ca. The prwondition of (7) says that ca has an rgi, which implies that c vxists in S (see

(1)). In (5), we read that all elements of I (w , S) are of the form cy, where y is an rgi of a

in S(,). Hence, we can apply the induction hypothesis to S(,) which says that a' is realizable

in S(,) iff yo' is realizable in S(,); by (6) this is equivalent to cya' being realizable in S.

This completes the first case. Now take a label *a. Again, I(*a, S) is assumed nonempty;

by (4), this Inearls that at least one constpant c exists in S so that I (a , S(,)) is none~npty.

Moreover, every rgi of *a is of the form cy, where c exists in S and y E I(o, S(,)). With

any cy thus chosen, we proceed with proving the induction step as in the first case. The

induction proof is hereby complete. For the second "if' case, we use the fact that yo' is

realizable, and that it is an instance of 00'; by Proposition 4.4.2, aa' is also realizable in S .

0

For a formula a F to have a realizable label a in a set of assertions Ai intuitively means

that it "materializes" somewhere in M. that is, the formula F gets evaluated on some

nonempty set of ground labels, namely the realized ground instances of o. So M k1 a F

sl~ould ncccssarily entail M bl y F for any realized ground ii~st~ar~cc y of a . (WP will give a

necessary and sufficient condition for M k1 o F later in Proposition 4.4.21.) Conversely, if

F is unsatisfiable and o is realizable, then o F should also be unsatisfiable. Spinning this

CHAPTER 4. LABELLED FORMULAS 67

thought further, if two formulas F, G are not simultaneously satisfiable and their labels a

arid a' share a realized ground illstarice, tlien {a F, a' G} should be uiisat,isfiable. These

considerations give rise to our refined notion of a clash:

Definition 4.4.8 A clash in a set of labelled formulas is an occurrence of an assertion

0.1 where a is realizable, or of a pair of assertions a' p, a" l p , where (a', a") exists and is

realizable. The label (T, or the unifier (a', u")~ is called the clash witness.

A clash-free set of assertions ~~er i fy ing a fornula F (or set of forrr~~ulas S) is called a rnodel

of F (or S). A s usual, we write M k1 F (M k1 F) and call F (or S) satisfiable3.

We observe that this definition indeed extends our previous definition of a propositional

clash, and our next result is the equivalent of Proposition 2.2.8:

Corollary 4.4.9 For any set M of propositional atoms (i.e. assertions with empty labels),

Definitions 4.4.8 and 2.2.7 coincide; furthermore, A l is satisfiable i# it is clash-free.

ProoE The first part follows from the fact that E is always realizable, so the "wherev-

requirements in Definition 4.4.8 are vacuously true. Now if M contains I , this assertion

is a clash; but by Definition 2.1.1, I is not verified by any set of assertions, nor is the

set M . Secondly, assume M contains two complementary literals p, l p . It follows from

Definition 4.3.1 that any set M' verifyirig M must contairi every proposit,ional atom in M .

In particular, M' must contain p and l p and hence does not qualify as a model. Finally, in

case M does not contain any clash, it cannot contain E I; but then Corollary 4.3.3 applies,

stating that M verifies itself, and since M is clash-free, it is a model (of itself). 0

Proposition 4.4.10 If S i s clash-free, then so is S(,) for any constant c occurring in S.

More genemlly, if S is clash-free and y is a redized ymund label i n S, then S(r) i s (.lush,-free.

Proof: By Lemma 4.4.7, part (I), c is realized iff it occurs in S, so the first part is a

special case of the second. We prove this second part by the contrapositive. Assume S(?)

contains two complementary assertions a' p and a" l p with clash witness a = (a', a"), and

a is realizable. Then S must contain two assertions abut p and o$a" l p , and both a; and

a$ have y as a cornrnon inst,anc.e. This shows that these two labcls have an nlgu (call it

go), and a0 too is instantiated by y; furthermore (uba', a$u") = aoa. Now we apply part

3 ~ e e our remarks on terminology at the beginning of Chapter 2.

CHAPTER 4. LABELLED FORMULAS 68

(7) of Lemma 4.4.7: Since y is an rgi of a0 and the clash witness a is realizable in S(,),

aoa is realizable and hewe wituesses a clash in S. For a clash of the form a I, the proof is

analogous. 0

Corollary 4.4.11 If M b1 S and c exists in S , then M(,) b1 S(,). If M is a model for S

an,d c exists i n S , then M(,) is a model for S(,).

Proof Assume as proposed that A 1 b1 S . The set S(,) consists of all formulas F , F' so

that * F E S or c F' E S. whereas S has at least one formula of the latter form. Since

Ad bl c F', c also exists in M and M(,) b1 F'. But if c exists in M , the fact that M b1 * F
implies M(,) bl F for all F of the former type. Hence M(,) b1 S(,). The second statement

follows from the first, whereas Proposition 4.4.10 shows that M(,) is clash-free and hence a

model. 0

To prepare for the rnain theorem of tthis st?ction, we need a s~ r~a l l technical lcmn~a, ~notivated

as follows: Normally we can safely say that M bl F implies cM b1 c F, since c exists in

chl and (cM)c = M. If however F = T and M is the empty set, then cM is likewise empty

and c does not exist in cM, so cM = 8 does not verify cT. To avoid this pathological case,

we wish to guarantee that a nonempty model M can always be found for any satisfiable

formula:

Lemma 4.4.12 A set of assertions A f verifies a set S of formdas iff M U { E T) does.

Proof The extra element E T is "neutral" in that it cannot form part of a clash, nor does it

verify any literal or other formula, nor does it introduce a new realized ground label into M.

This result can be formally established through a simple induction proof over the structure

of F , whicl~ we leave to the reader.

Corollary 4.4.13 Every satisfiable set of formulas has a nonempty model.

Proposition 4.4.14 Let S be a set of propositional atoms and M a set of assertions. Then

z f lSC M u { E T) . MblS '

Proof: The "if" part follows from Proposition 4.3.2: If A i is a superset of S (except perhaps

for E T) , it verifies all elements of S , and E T is verified by any set of assertions. For the

converse, notice that E I @ S, otherwise S would not he verified by any set M. Any positive

or negative literal in S must he included in A4 according to Definition 4.3.1. Finally, we

CHAPTER 4. LABELLED FORMULAS 69

included E T on the right-hand side M U { E T } , which shows the subset relationship and

co~liplet~es the proof. 0

We are now ready to state a result similar to that of Theorem 3.3.1 for modal formulas:

Theorem 4.4.15 Given a set S of CBC-fonnulas and a set of assertions M not containing

E I , we h8am M b1 S iff S has an aton~ic cover T = TA M TN (where TA ar~d TN a m the

atoms in T with empty and nonempty labels, respectively), so that

(2) every c occum~ng in TN also occurs in M ,

(3) and for every c' occurring in M , we have M(,o bl (TN)(,,)

ProoE As before, we apply Proposition 2.1.38; stated in CBC, it says that a set of assertions

verifies S iff it verifies some atomic cover T of S. We split this cover into the two sets TA

and T N , whereas TA contains all atoms with empty labels, i.e. the propositional atoms. In

Proposition 4.4.14, we showed that M b1 TA iff TA G M U { e T) , which is (1) . We now

have to show that M k1 TN is equivalent to statements (2) and (3) :

Suppose that M b1 a F for every a F E T N . Consider any c occurring in some atom ca' F in

T N . Since M b1 ca' F, Definition 4.3.1 stipulates that c occur in hi, which shows statement

(2) . Now take any c' which occurs in M , regardless whether or not it also occurs in T N .

Note that (TN)(,r) consists of all formulas a' F such that xu' F E T N , where x can be either

c' or *. Since M k1 xu' F , Definition 4.3.1 (for either choice of x) entails that k1 a' F .

(In case x = *, we recall that c' was supposed to exist in hi.) We have shown that every

formula a' F in (T N) (,,) is verified by M (~) , proving statement (3) .

For the converse direction, assume that statements (2) and (3) hold. For formulas in TN of

the form ca F, statement (2) guarantees that c exists in M , and we get as a special case of

(3) that M(,) b1 (TN)(,) , and specifically A[(,) b1 a F , since a F E (TN)(,) . By Definition

4.3.1, this shows M b1 ca F . For formulas in T N of the form *a F, we have a F E (TN)(,!)

for any c'. Since M(,I) k1 (T N) (8) for any such c' which occurs in M , we get in particular

M(,,) b1 a F. By Defirlition 4.3.1 we vbt,ai~i M b1 *a F , wliich romplctes thc: proof that M

verifies all elements in T N .

Just as Theorem 3.3.1 had a Corollary 3.3.2 characterizing satisfiability in K N N F , Theorem

4.4.15 has such a corollary:

CHAPTER 4. LABELLED FORMULAS 70

Corollary 4.4.16 A set S of CBC-formulas is satisfiable iff it has an atomic cover T =

TA H TN (where TA and TN are defined as above) so th,at TA i s closir-free and for eoery c

occurring in TN , (TN) (,) is satisfiable.

Proof: Just like Corollary 3.3.2, in our proof of the "if" part we provide a recipe for

constriicting a clash-free set of itssertio~ls Ail obeying thc conditio~~s of Theorem 4.4.15 for

the given atomic cover, which witnesses M kl S. So consider any constant c occurring

in TN. Since the set (T N) (~) is presumed satisfiable, it has a nonempty model A f (c) in

accordance with Corollary 4.4.13. Now construct cM(c) (by prepending c to the labels of

all assertions in M(c)), and take M = TA U U, cM(c), where the union is taken over all c

occurring in TN.

Let us first prove that M is clash-free: Note that TA and all Ail(c) were presumed clash-free

within themselves; evidently, so are the cM(c). Any two assertions from two different sets

cM(c), c1M(c') begin with different constants, and the assertions of TA have the empty label.

Thus, 110 two labcls fro111 different sets unify, so a (clash cannot possibly occur in M. In

particular, E I cannot be an assertion in M.

Now we will verify statements (1) to (3) of Theorem 4.4.15. Statement (1) is true since TA C

M. For statement (2), we remark that Ai was constructed so that the constants c occurring

in TN are exactly the constants occurring in M . (We ensured that M(c) was nonempty, so

c does indeed occur in M.) Furthermore, for each such c, Af(,) = (cM(c))(,) = M(c), as 110

other assertions in Ail begin with c or *. And M(,) is known to satisfy (TN)(,), which shows

statement (3). By Theorem 4.4.15, we conclude that M bl S, so A f is shown to be a model

for S.

For the "only if" part,, take a model M for S. M is clash-free and hence docs not cont,ain

E I. Theorem 4.4.15 provides us with an atomic cover T = TA U TN for which statements

(1) through (3) hold. Statement (1) says that all the propositional atoms of TN (except

perhaps E T) are contained in M . Since M is clash-free, so is TA. (The extra atom E T

never forms part of a clash.) Now take any c occurring in TN. Because of (2), c also occurs

in M , and by (3), we lmvc! M(,) bl (TN)(,). Sii~ce M is clash-frm, so is M(,), thanks to

Proposition 4.4.10. Hence we have found a model for (TN) (c), proving this set satisfiable as

claimed. 0

We remark that this construction does not make use of the expressive power of labels with

wildcards; all the labels constructed in the proof are ground. Our approach in Chapter 5 will

CHAPTER 4. LABELLED FOR'MULAS 7 1

be quite different, allowing us to utilize them much more productively. In preparation for

that, and for other sections, we will uow take the "olie label position at a tinlev charact,cri-

zation of M b1 a F from Definition 4.3.1 (which only provides for M /xl * F and M k1 c F)

and transform it into a "closed-form" characterization. We continue on our earlier intuition

that M /xl a F should somehow entail M /xl y F, i.e. M (r) / x l F, for any realized ground

instance y of a in M . But how do we characterize which ground labels should be realized in

M ? In other words, how do we test whether the existerm requiretnents etlcapsulatd in an,y

of the constants of a are met by the realized ground labels of M ? This will be the intent of

the following notion which is similar to that of realizability:

Definition 4.4.17 A label a is constant-wise realizable (cwr) i n a set S of labelled formulas

i f for any prejk of a of th,e form a'c and any ground instance y of a', wh,enever y is realized

i n S , then yc is also realized in S .

Example 4.4.18 Take the second set of Example 4.4.4: S = {c*c* . . . p, *c*c.. . q } . Every

label a cotisisti~lg of * and c, in any order, is coi~stant-wise realizable in S ; this is because

the only realized ground instance y of a' in any prefix a' consists only of c's, and then yc is

also realizable.

In Example 4.4.6, the label clc2* is constant-wise realizable, although, as we have seen, it

is not realizable. One can show that M /xl C ~ Q * F for any formula F. We will see that this

is true for any label which is constant-wise realizable but not realizable.

We state a few corollaries of Definition 4.4.17, the proof of which is easy and left to the

reader:

Corollary 4.4.19 If a is constant-wise realizable i n S : then so is any prejk of a. If a occurs

in S , then a is constnnt-uise realizable 1.71 S . Ground labels are cvr~stnnt-uiise realizable iff

th,ey are realized, uhereas *k is constant-wise reulizuble for any k in any S . If two labels

01, a2 unify, then (al, az) is constant-wise realizable iff a1 and a2 are both constant-wise

realizable.

As we have done for realizability, we study the behaviour of our new definition with respect

to subscripted sets:

Proposition 4.4.20 A label c'a is constant-wise realizable i n S iff c' exists i n S and a is

constant-wise realizable i n S (8) . A label *a is constant-wise realizable i n S i f l a is constant-

wise realizable i n S y) for all c' which exist i n S .

CHAPTER 4. LABELLED FORMULAS 72

Proof: To prove this, it helps to restate Definition 4.4.17 slightly more formally: A label o

is constant-wise realizable in S. if:

For every prefix of the form o'c and every y E I (of, S) , yc E I (S) . (4.3)

Consider first the label c'o. We will prove the first equivaler~ce as follows: First, we observe

that the first instance of (4.3), namely a' = E, c' = c, is equivalent to "c' exists in S'" . We

then use the established fact that d exists in S to show the equivalence of the remaining

instances of (4.3) with the statement "o is cwr in S(?)".

So take the smallest prefix ending in a constant, namely a'c = EC'. Then (4.3) reads: "If E

(the only ground instance of E) is realized in S (which is always true), then c' is realized in

S", or equivalently: c' exists in S, as desired.

Now consider the remaining instances of (4.3) which read:

For all prefixes of the form c'a'c and all c'y E I(do1 , S), c'yc E I (S) . (4.4)

Since d is known to exist in S, we can apply Lemma 4.4.7, parts (3) and (5) , and replace

I(c1o', S) by dI(ol , S(,,)), and c'yc E I (S) by dyc E ctI(S(?)). We can further simplify (4.4)

to:

For all prefixes (of d o) of the form da'c and y E I(o' , S(+), yc E I(S(,t)). (4.5)

Finally, c'o'c is a prefix of c'o, iff o'c is a prefix of a. Now our statement reads:

For all prefixes (of a) of the form a'c and y E I(a ' , S(,,)), yc E I (S(,,)). (4.6)

which matches (4.3) once again,'so it is equivalent to "o is cwr in S(?)", as claimed.

For the second part of the proposition, consider a label *o. Any prefix partaking of (4.3) is

of the form *ate. According to Lemma 4.4.7, part (4), the elements of I(*af , S) are exactly

the ground labels of the form dy, where c' exists in S and y E I(ol, S(?)). Likewise, we

have dyc E I(*a1c, S) iff yc E I(a1c, S(,t)). So we restate (4.3) as:

For every prefix of o of the form o'c, every d existing in S , and every y E

I(ol, S(c')), we have yc E I (S(,t)). (4.7)

This agairi mat,ches (4.3), quantified over all c' existing in S . We conclude that *a is cwr in

S iff o is cwr in S(?) for all d which exist in S , which is what we had to show. 0

We use Proposition 4.4.20 to get our closed-form characterization of A1 bL o F:

CHAPTER 4. LABELLED FORMULAS 73

Theorem 4.4.21 Given a set M of assertions and a formula a F , we have M b1 a F iff

o is constan,t-wise realizable i n M and M(,) bl F for every realized ground j.n~tar~,ce y o f o

i n A4.

Proof: We show this theorem by induction on a . Note that E is always cwr and it is its

own (sole) rgi, so the statement reduces to "A1 b1 F iff M(,) b1 F", which is trivially true.

Now assume the theorem holds for a label a (and for any set M). Our goal is to show it for

CAT and *a.

By definition, M b1 cu F iff (a) c exists in M , and (b) M(,) b1 a F. By the induction

hypothesis, (b) is true iff (b l) a is cwr in M(,) and (b2) M(q) b1 F for every y E I (a , A[(,)).

By Proposition 4.4.20, (a) and (b l) combined are equivalent to "ca is cwr in M". In

(b2), note that y E I(a, M(,)) iff cy E I(ca, M) (by Lemma 4.4.7, part (5)); equivalently,

M(,) b1 F for every rgi q of ca in Ai. These two facts match exactly the right-hand side

of the theorem for the label co.

As to the second case, M b1 *a F iff (c) M(,) b1 a F for all c which exist in M . We apply

the induction hypothesis to (c) , rewriting it as (c l) a is cwr in M(,), and (c2) M(,) bl
F for every y E I (a, M(,)). Since (cl) holds for all c existing in M, Proposition 4.4.20

proves it equivalent to "*a is cwr in A[". Stat,ernent (c2) in turrl is quantified over all

cy E U{cI(a, M(,)) : c exists in M) ; but the latter set is just I(*a, S) , according to Lemma

4.4.7, part (4). So (c2) is equivalent to L'Ai(,) k1 F for every rgi cy of * o in A i " . Again we

match the right-hand side of the theorem, which completes the induction proof on a. 0

Corollary 4.4.22 Given a. set S of CBC-formulas and M b1 S? i f y is a realized ground

label i n S, then y is also a realized ground label i n M.

Proof: The label y = E is an rgl in any set, so there is nothing to show. Write any non-

empty label y = cl - . ck, and that the label cl . e . c--1 is an rgl in M , i = 1, . . . k.

Since y is an rgl in S , Proposition 4.4.3 asserts that some label of the form ai-lci exists in

S so that cl . --ci-1 instantiates ai-1. a i - 1 ~ in turn must be a prefix in the label a of some

formula a F. Now Theorem 4.4.21 stipulates that a be cwr in M; its prefix ai-lei matches

the form given in Definition 4.4.17, and c l . . -ci-l is an rgi of ai-1 in M (which was our

induction hypothesis), so cl . . c, is an rgl in M. The proof now follows by induction on i .

0

We see that the set of realized ground labels of any model for S must include at least

the realized ground labels of S , but it is entirely possible (and sometimes necessary) to

CHAPTER 4. LABELLED FORMULAS 74

introduce more realized ground labels. A simple example is S = {cl p V c . ~ q) whose only

realized ground labcl is E. But every rnodel must have cl or ca as an addit,ional rcalized

ground label.

Let us now reconsider our earlier intuitions about the ground labels and variable assignments

represented by a set of assertions. Equipped with the terminology of this section, we can

specify clearly what a set M of assertions entails. First, M entails the existence of a label

y iff y is a realized ground label in M. Secondly, it entails that a variable p is assigned true

(false) in a label y, iff there exists an assertion a p (a l p) so that y is a realized ground

instance of a in M. We now see why M must be clash-free in order to specify a consistent

variable assignment. Moreover, we will see in the next section that a model M gives rise

to a Kripke model K (M) whose worlds arv exactly the labels entailed by M and so that,

the variable assignments entailed by M match variable assignments in K(hf) . This shows

that these intuitively motivated definitions are consistent with our theory and with that of

KNNF. Another proof of "consistency" with our theory is that the entailed facts about M

can themselves be expressed as assertions, and that these assertions are indeed entailed by

M:

Corollary 4.4.23 For any set A4 of assertions and any ground label y , M entails the

existence of y iff M b1 y T . Furthermore, for any p E P, M entails that p is assigned true

(false) i n y iff M kl y p (M k1 y ip).

Proof: Theorem 4.4.21 states that M b1 y a iff y is cwr in M (whereas Corollary 4.4.19

says that " c w ~ ~ ~ and "rgl" coincide for ground labels), and M(,) bI a (here we have already

applied the fact that a is realized, and it is t,he o d y rgi of itself). I3y Definition 4.3.1, thc

second fact is always true for a = T, whereas for a = p and a = l p it is true iff p E A[(,)

(l p E 11f(,)). In Proposition 4.3.5 we have characterized the elements of M(,) and found

a E M(,) iff a a E M for some a E a.

Wc su~nrnarize our findings: M b1 y T iff y is an rgl in M , and M b1 y a (where a = p

or a = l p) iff y is an rgl in A 1 and there exists an assertion a a E M so that a L u. But

these are exactly the stated entailments that y exist, and that p be assigned true (false) in

y, respectively. 0

Another important consequence of Corollary 4.4.22 is the following:

Corollary 4.4.24 If a set S of CBC-formulas contains a clash, it is unsatisfiable.

CHAPTER 4. LABELLED FORMULAS 75

Proof: Let a I E S or a lp , aN i p E S be the clash, and y be the clash witness, i.e. an rgi of

a or of both a' and a". Suppose there cxisted a clash-free model so that hi S. Since

y is realized in S, it must also be realized in M . Then Proposition 4.4.10 (iterated over the

elements of y) applies, implying that M(,) is clash-free. However, Theorem 4.4.21 asserts

that M(,) b1 I (which contradicts Definition 2.1.1), or that M(,) bl p and M(,) k1 l p . By

Definition 4.3.1, M(7) must contain both p and l p , but then it is not clash-free, contradicting

our finding above. 0

This corollary justifies a shortcut similar to those used in tableau proofs: Assume our

method of finding a model for a given set S consists of transforming S into equivalent but

successively "simpler" sets. If along the process we find a set St which contains a clash, we

know that St and hence S is unsatisfiable, without the need to transform Sf furthor irlto

a set of assertions. Now what if we can transform S all the way into an equivalent set of

assertions, without encountering a clash? Then the following converse to Corollary 4.4.24

asserts that S is satisfiable:

Corollary 4.4.25 A clash-free set M of assertions is a model for itself.

Proof This is not subsumed by Corollary 4.3.3 where we could not handle assertions of the

form a I. For these, Theorern 4.4.21 comes to our rescue. Since M is clash-free, a c:a1111ot

have an rgi, so the requirement A[(,, b1 I is vacuously true for all rgi y. The requirement

that a be cwr in M is met, since a is a label in M (Corollary 4.4.19). To all other labels

a a E M we can apply Proposition 4.3.2 to show M b1 a a. In summary, we get M b1 M ,

and since M is clash-free, M k1 M . 0

4.5 Equivalence between Kripke and Labelled Semantics

We are now going to establish the relationship between the conventional Kripke semantics

of KNNF and the sc:rnantic:s of LBL. Syntactically, KNNF-fornmlas cp are convert,od iuto

labelled formulas simply by replacing with * and 0 with constants. (We call the result a

labelling of cp.) However, this approach presents us with a number of obstacles to reasoning

with these formulas in a useful and efficient manner.

First, since we did not specify what constants to substitute for 0-operators, our way of

labelling is highly nondeterministic, which makes it hard to describe as a function on

CHAPTER 4. LABELLED FORMULAS 76

L (K N N F) . We overcome this obstacle by using a trick: the inverse of a labelling is a

well-defined fiinct,ion on C(CBC) .
Next, not every labelling preserves satisfiability. The simplest example for this is the set

@ = (0 p, 0 lp) . If we replace all 0 with the constant c, we get S = {cp, c l p) , which

cannot have a model since it is not clash-free. This impossibility is explained by the fact

that any Kripke model for @ must have (at least) two distinct wo-successors, one of which

satisfies p and the other l p ; only if we rcplace the trwo 0-operators by two dist,inct constants

will the resulting labelled formula admit a model.

We will discover that choosing distinct constants for distinct 0-operators always preserves

satisfiability. (We will call such labellings strict, in analogy to strict Kripke models.)

However, this strategy may result in unreasonably large models. For example, the set

(0 y, 0 (y VQ)} can be satisfied by a model with just one zoo-successor in which p is assigned

true (compare Example 3.4.3). However, if we label the two 0-operators with different con-

stants cl , c2, we forfeit the chance to satisfy both formulas with the same assertion c p, since

both cl and q must occur in a satisfying model. We will discuss this problem at length in

Section 4.8.

Definition 4.5.1 The function n : L(L l3L) L (K N N F) is defined as

0 n (a) = a for any propositional atom,

K(F1 O ... O F ,) = K (F 1) O...OK(Fn,) for O = A,V,

K.(C F) = 0 n (F) for any c C D.

W e say that the LBL-formula F is a labelling of the KNNF-formula cp if cp = n (F) . F is

a strict labelling of cp i f the restriction of n to su,bfomr~ulas of F is one-to-one and for any

two subformulas cl Fl , cl F2 of F with the same constant c l , we have Fl = F2. Lubellings

and strict labellings are defined analogously for sets of formulas.

The advantage of K, being one-to-one on subformulas of F is that identical 0-subformulas

are assigned the same label. This is already an optimization, and, as we will see, a safe one,

in that the labelling of a satisfiable formula remains satisfiable.

We immediately see that K is a homomorphism which preserves atoms. Some more inter-

esting properties of n are stated in the next two propositions:

CHAPTER 4. LABELLED FORWULAS

Proposition 4.5.2 K is depthr-presertling.

Proof: We rcstate this proposition as:

d (F) = d(rc(F)) for all F E L(LBL).

Note that this is a property stated on LBL-formulas (not KNNF-for~liulns). We prove it

by induction over the depth of F , according to Theorem 2.1.12. It is obviously true for

all propositional atoms, i.e. all atoms of depth 0, since ~ (a) = a. Assume it is true for all

formulas of depth at most k. Now the LBL-atoms of depth k + 1 are exactly of the form * F

and c F, c E D, where F is an LBL-formula and d(F) = k. By the induction hypothesis,

d(rc(F)) is also k, and K(* F) = q r;(F) aud r;(c F) = 0 r;(F) are both of dcpth k + 1. We

obtain the proof by induction on the depth of F . 0

Proposition 4.5.3 r; is onto. In fact, every KNNF-formula has a strict labelling.

Proof: We prove the stronger version of this proposition directly. Define some one-to-one

characteristic function x : L(KNNF) H D on the formulas of KNNF. (Such a function exists,

since L(KNNF) is countable, so the countable set D can accommodate all-distinct values of

x.) We now define an "inverse" r;' on KNNF. For propositional atoms, we set ~ ' (a) = a;

furthermore, we set r;'(cplocp2) = r;'(cpl)or;'(cp2) for o = A, V, and ~ ' (0 vo) = * rcf(vo). Finally,

and most interestingly, we set ~ ' (0 .rro) = x(.rro) r;'(.rro). The function r;' is clearly well-

defined, and all values of K' are LBL-formulas; furthermore, we easily see that K(K!(~)) = cp

for any KNNF-formula cp, which not only shows that r; is onto; also, r;, restricted to range(r;'),

is a bijection. We conclude two things: first, range(r;') contains a labelling F = r;'(q) for

every formula cp in KNNF, and secondly, r; is one-to-one on range(r;'), so it is certainly

one-to-one on all subformulas of F . Finally, take any two formulas cl Fl = ~ ' (0 .rrl),

cl F2 = ~ ' (0 r2) . Then according to our definition of K', x(.rr1) = cl = x(7r2), and since x
was one-to-one, .rrl and .rr2 must be the same; hence Fl = F2. This shows that any labelling

r;'(cp) is strict. 0

The characteristic function x we used in the proof is just an enumeration of all KNNF-

formulas. Such enumerations are also known as Godelizations [9]. In fact, we could simply

choose D = L(KNNF), were it not for the fact that labels with such constants would be

cumbersome to write out.

Having thus stated how to translate fomulas, we now turn our attention to mrodels. Given

a model M for a labelled formula, how do we obtain a Kripke model for the corresponding

CHAPTER 4. LABELLED FORMULAS 78

KNNF-formula? The idea is simple: Use the ground labels defined by M to "name" the

worlds of IY, arid the proposit~ional atoms inside the assertions to define the valiiation.

More precisely, this is how we translate a set M of assertions-syntactically, for now-into

a Kripke structure:

Algorithm 4.5.4 convert-to-kripke-model

Parameters:

M: a clash-free set of assertions

Returns:

K (M) = (W, R, V) a Kripke model with root world E

begin

set W := {E}

set R := 0
foreach p E P do

if p occurrs as an unlabelled (positive) atom

set V(p) = VO(P) = { E }

else

set V(p) = Vo(p) = 0
end if

done

foreach c occurring in M do

set (Wc, Rc, V,) := convert-to-kripke-rnodel(M(,))

set W := W U {ca : a E W,)

set R := R U {(E,c)} u {(ca,cnf) : (a ,a f) E Rc}

foreach p E P do

set V(p) := V(p) U {m : a E V,(p)}

done

done

return (W, R, V)

We easily see that Algorithm 4.5.4 constructs a well-formed Kripke structure whose worlds

W are ground labels from D*. The much harder part, which we now set out to accomplish,

is to show that AP and K(M) are models for corresponding satisfiable formulas in LBL and

K N N ~ , respectively.

CHAPTER 4. LABELLED FORMULAS 79

Proposition 4.5.5 For any set M of assertions and any c occurrin,g in A4, we have

K(M(c) 1 K(M)(c).

Proof: We notice that c is the root world of h'(M+.)) after prefixing all its world labels

with c. As stated in Definition 3.2.5, K(M)(,) consists of the subset W' of worlds in W

which are successors of c, with R and V accordingly restricted. But these are exactly the

worlds from K(M(,)), introduced into W by prefixing all their labels with the constant c.

Hcnce, the bijection p : Wc I-+ W' with p(co) = a establishes tht: isomorphism. A formal

proof that K(M(,)) and K(M)(,) are isomorphic wrt p is left to the reader. 0

Our original idea is reflected in the next proposition. Recall the definitions of realized

ground labels and realized ground instances in Definition 4.4.1:

Proposition 4.5.6 Let M be a set of assertions. An alternate characterization of K(M)

is K(M) = (W', R', V'), where

R' = {(a, ac) : ac E W'},

Vr(p) = U{I(a, M) : a p E M}.

Proof: Given any model M, let (W, R, V) be the Kripke model obtained by Algorithm 4.5.4

(with W,, Rc and Vc as defined therein), and (W', R', V') the Kripke model as characterized

above. We will prove these two models identical using induction on the depth of M. If M

is of depth 0, then all assertions are propositional atoms; furthermore, W' = I (M) = {E),

and R' is the empty relation, which corresponds exactly to the initial settings of W and R

in Algorithm 4.5.4. (Since no constant occurs in M, these are the 'final" settings of W and

R.) Furthermore, for any p E P, V(p) and Vr(p) both cont,iti~~ E exactly if E p E M, and

they both contain no other label. (Note that I(&, M) = G(E, {E)) = {E).)

Now assume the proposition shown for any model of depth less than Ic, and let M be of

depth Ic. To re-state the definition of W, we have W = {&)uUc in {ca : a E Iv.). As part

of the induction hypothesis we have Wc = I(M(,)), so we can write W = {E) UU{cI(M(,)) :

c exists in M), which is equal to I (M) = W', by Lemma 4.4.7, part (3).

To show that R = R', we prove that any label in W of the form a c is the successor of

label a, that a E W, and that there are no other related pairs in R: First, as we have just

shown, every non-empty label in W is of the form da', a' E W ~ , and d exists in M. If

CHAPTER 4. LABELLED FORMULAS 80

a' = & (and hence c' = c), then the required pair (E, C) has been explicitly introduced into

R. Otherwise, o is of the form do", and o' = o"c is in Wet. Since lVcr = I(M(&)) and

the set of rgl is closed under prefixing, a" is also in W?, and by the induction hypothesis

(a", aUc) E Re,. According to the construction in Algorithm 4.5.4, a = c'a" E W, and

(a, ac) E R. Conversely, every pair introduced into R is of the form (e, c') or (do, c'a')

where c' exists in R. The first case matches the definition of R' directly, whereas in the

second case the induc:tion l~ypotl~esis (on h[{,t)) states that a' is of the forrri a c and a c E W,

which also matches the definition of R'. which concludes the induction step.

To show that V(p) = V1(p) for all p, we re-state V(p) in closed form as V(p) = Vo(p) U

Uc in M{~Vc(p)), where Vo(p) is the initial valuation in Algorithm 4.5.4. We also re-state

Vf(p) by taking the union over d l labels, split into three categories:

(The extra "UCex, in M" operator has been introduced as "syntactic sugar"; the condition

"c in M" is already implied by c o p E M.) Now observe that the first term is equivalent to

Vo(p), whereas the other terms can be rewritten using Lemma 4.4.7, parts(4) and (5):

Since all sets are finite and c is not a bound variable, we can reverse the order of the 'U'
operators in the second term. Furthermore, all labels in the second and third term are

preceded by c, so we can pull it out of the set union:

Now the inner terms are identical, and the two criteria *o p E M and c a p E M comprise

exactly the elements of M which contribute an assertion a p to M(,):

On comparing the inner union with our original definition of V1(p), we discover that it

describes the valuation of K(M(,)) which is V, by the induction hypothesis. So we can

write:

CHAPTER 4. LABELLED FORMULAS 81

which is identical to our re-written definition of V (p) . This concludes the induction step,

arid the proof follows by illduction on d(M). 0

Corollary 4.5.7 For any set of assertions A[, K (M) is a tree.

Proof: First, we know that = I (M) is closed under prefixes. Secondly, we showed that

each rgi in M of length k > 0 becomes an R-successor of its own k - 1-prefix, and there are

no other R-pairs. Rorn this it is easy to irifcr that (W, R) is ' a tree. 0

Now we will show that K(Al) delivers on what we defined it for, that is whenever A l is a

model for a labelling of @, then K(M) is a model for the original formula @. Let us consider

the base c,ase first:

Proposition 4.5.8 Let M = F = @ be a clash-free set of propositional atoms. Then

K (M) l=k @ -

Proof: Obviously @ is its own atomic cover. The model K (A{) is of the form ({&), 0, P n @) .

As a special case of Theorem 3.3.1, K(M) kk @ iff V, is consistent with @. But this is the

case, since I $ @, and whenever p E @, then p E V,, and in all other cases (including all

cases where l p E a), p $ V,. (Cornpare Defir~ition 3.1.2.) 0

And now we prove the general case:

Theorem 4.5.9 Let @ be a set of KNNF-formulas , S a labelling of @, and M a clash-free

set of assertions. If M M l S, then K (M) i s a Kripke tree model for @.

Proof: Although this theorem is originally a statement on sets of KNNF-formulas and their

labellings, we recall that @ = K(S) and that K is onto, so we can consider it a statement on

sets of CBC-formulas instead, whence it reads:

(From Corollary 4.5.7 we already know that K (M) is a tree.) Now (4.8) matches Property

(I) in Proposition 2.1.18. Since K is a homomorphism, we infer that (4.8) is preserved

under propositional concatenation. Thus understood, we prove it using the already familiar

principle of induction over the depth of F (which is also the depth of p, since K is depth-

preserving).

In Proposition 4.5.8 we have already shown the theorem for sets of atoms of depth 0.

Assuming the theorem is true for all formulas of depth at most I; (and any clash-free set of

CHAPTER 4. LABELLED FORAHJLAS 82

assertions M), we wish to show it for atoms of depth k + 1. As before, we distinguish the

two cases * F and c F , c E D, where F is of depth k.

By definition we have M b1 c F iff c is a label in M and M(,) kl F . Then by the

construction in Algorithm 4.5.4, the world E has a direct successor c in K (M). Proposition

4.5.5 showed that K(M)(,) r K(M(,)). Now since M is clash-free, so is M(,) according to

Proposition 4.4.10, and by the induction hypothesis (which was to hold for any clash-free

set of asscrtions), M(,) b1 F implies K(M(,)), E bk K(F). Thanks to Corollary 3.2.4 we get.

K(M)(,), c X(F) (c is the isomorphic image of the root world of K(M(,))), and further

by Proposition 3.2.6, K (M) , c bk K(F). This establishes world c as a witness showing

K(M) , E kk 0 K(F) = K(C F) .

As to t,he secorid case, we have M k1 * F iff M(,) b1 F for all constants c occurring in

M. In K(M), these c are exactly the worlds created as successors of E . We apply the same

steps as in the first case, arriving at K(M), c kk K(F) for d l successors c of E. This proves

K(M) , E kk 0 K(F) = K (* F) . The theorem now follows by induction on d(F) . 0

Now we would like to derive a similar result for the converse. Suppose we are given a set of

KNNF-formulas and a labelling S of a , and we know a Kripke model K so t,hat K, wo kk
for some (root) world wo of K . How can we "convert" K into a model for S ? Before we

formally state and prove the theorem, let us discuss the task at hand and the main idea for

solving it. The challenge we face is that a Kripke model does not specify how the successors

of TUO are to be labelled. Instead, the labelling of worlds is largely dependent on the labelling

S , and we must somehow find a mapping from labels of S to worlds in K . Note that K

may have redundant worlds; these may not need to correspond to any label in S (as they do

not correspond to any formula in either). Likewise, S may have labels which do not need

to be mapped to worlds, such as labels occurring in disjuncts which are never evaluated.

Furtkmnorc, an accessible world may at,test the truth of more t,han orle n-forrnula, but,

different n-formulas receive different labels in a strict labelling. So the mapping may not be

one-to-one.

Our proof idea is that K witnesses the satisfiability of an atomic cover Q of a, and we can

construct a corresponding cover T for S. Now every formula of the form c F in T, c E D, is

the labelling of a n-forni~ila 0 no in Q, and this c~ist~ential formula must "n~at~crialize" in

some accessible world w in K ; furthermore, the submodel K, must satisfy no (as well as the

YO for any YO E Q). So we "map" the constant c to the world w and proceed recursively

through the submodel Kw. In doing this for all c existing in T , we find the ground labels

CHAPTER 4. LABELLED FORMULAS 83

from which we construct our model M. The assertions to be stated in M are obtained from

the propositional at,oms in t,he atonlic covers as we encounter them.

Theorem 4.5.10 Let @ be a set of KNNF-formulas, 8 a strict labelling of @, and K =

(W, R, V) a Kripke model (not necessarily a tree) for @. Then a model M exists for S .

Proof: Our proof will be constructive; as we motivated above, we will also construct a

partial mapping f : D* I-+ W. Our proof will be by induction over k = d(@), the induction

hypothesis stating that we can find a model M and mapping f for any formula of depth

less than I c .

We choose wo E W so that K, wo kk @. Theorem 3.3.1 warrants the existence of an atomic

cover of @ of the form 9 = aA 9 p kJ !ON, so that K and ulo provide models for these

conq~onents specified furthcr b~low. Since S is a labelling of a, we have @ = K(S).

Thanks to Theorem 2.1.36 and the fact that K is a homomorphism which preserves atoms,

S also has an atomic cover T such that 9 = K(T). We write T = TA WTN, where TA and TN

conlprise the propositional atoms and the formulas with nonempty labels, respectively. We

also distinguish T, C TN, the set of formulas whose labels begin with *. It is not hard to

see that K maps TA to 9.4 (in far:t we havc TA = QA, as atoms are nlapped too themselves),

T, to QN, and TN - T, to 9p .

The first property in Theorem 3.3.1 states that V,, is consistent with QA. By Corollaries

2.2.4 and 2.2.8, this is only possible if QA = TA is consistent, i.e. clash-free. Furthermore,

thanks to Corollary 4.3.3, TA bl TA, which shows T4 TA. We define M = TA and

f (4 = Wo-

Now TN consists of formulas with nonempty labels. If d(S) = 0, then TN must be empty, so

T = TA, and we just showed that M = TA is clash-free and provides a model for itself. (This

is the base case of the induction proof.) Otherwise, reconsider the other two conditions in

Theorern 3.3.1:

For every T E 9 p there exists a world w E R(wo) rio that K,, w kk TO, (4.9)

and for every u E QN and every world U J E R(wo), Kw, U J kk uo. (4.10)

Any of these TO and uo are of depth less than Ic; so is any set containing these formulas.

This will later allow us to apply the induction hypothesis.

Now take any constant c occurring in TN. Since F is a strict labelling, there is exactly one

formula in TN of the form ca' F' (the definition of strictness included that any two formulas

CHAPTER 4. LABELLED FORMULAS 84

preceded by the same constant are identical, and TN as a set does not contain duplicates); its

image is K(W' F1) = 0 K(O' F1) E \Ilp. SO condition (4.9) applies, which rnexns that wo has

an R-successor w in K so that K,, w kk &(a' F'); secondly, for every *a" F" E T,, we have

&(*at1 FI1) = &(at1 FI1) E @N, SO by means of condition (4.10) we get K, , u~ kk &(a1' F").

Now consider the set T(c) = {a' F1) U {a" F" : *af' F" E T,) containing all the formulas

just mentioned. As seen above, the submodel K, is a Kripke model for K,(T(c)). Since each

label in T contributes at nlost one (shortened) label to T(c), T(c) is still a strict labelling

of &(T(c)). Therefore, the induction hypothesis grants that we can find a model for T(c)

which we augment using Lemma 4.4.12, if necessary, to a non.empty model M(c). (This

augmentation does not introduce new rgis into M(c).) We further obtain a mapping f,.

Now sct M = M U cM(c) (recall that cM(c) is a shorthand for {ca a : a a E M(c))), and

f (q) = fc(y) for all y E Dom f,, and repeat this for all c occurring in T N ~ . In order

to prove that A f is a model, we first demonstrate A f b1 S, or equivalently: M meets the

preconditions of Theorem 4.4.15:

TA C M U { E T) because TA is part of A f .

Every c occurring in TN also occurs in M: M(c) was chosen nonempty, so c occurs in

cM(c) which is part of M.

For every c' occurring in M, we have M(d) bl (TN)(d): We did not introduce any

constants other than the c occurring in TN, and we did not make use of * in M at

all, so M(,) = M(c) . Furthermore, the only assertions in TN which begin with c or *
are those in T,, plus the formula cat F1; from this we see that (TN)(c) = T(c). But

M(c) b, T(c), as we stated before.

Secondly, M is clash-free: For TA we have already stated this, and for any of the M(c),

clash-freeness is warranted by the induction hypothesis. But then each constituent cM(c)

is clash-free in itself as well. These constituents are distinguished from one another and

from TA, in that their labels have nonempty labels beginning with a distinct constant. Thus

there can be no two unifying labels anywhere across all the assertions in M, so M must be

clash-free. 0

41f no constants exist in T N , as is the caqe in any labelling of Q, = (0 I), for instance, this part is vacuous.
In particular, all assertions in PI will have empty labels, whitii corresponds to a Kripke model for with
only oiie world to,,.

CHAPTER 4. LABELLED FORMULAS 85

We remark that a strict labelling was required only in order to ensure distinctness of labels

across different constitiicnts in M, which we needed in order to gnararitee clash-freeness. If

S is a non-strict labelling and we can show that M as constructed above is clash-free, then

M is still a model for S (but possibly smaller than any model for a strict labelling). Once

again we observe a potential for more compact models by choosing non-strict labellings, at

the risk of losing satisfiability for this labelling.

We surnnlarize the previous two t,lleorerrls in one filndamerital equisatisfiabi1it.y result:

Theorem 4.5.11 Let r9 be a set of KNNF-formulas and S a strict labelling of r9. Then r9

is satisfiable iff S is satisfiable.

Apart from this, Thmrern 4.5.10 also gives rise to an upper bound for the size of a niodcl

M. Let us state a number of properties of the mapping f :

Proposition 4.5.12 The funrtion f defined in the proof of Theore7rr. 4.5.10 is uiell-defined:

and we have Dorn f = I (M) and Range f E R*(wo). Furthermore, if y = e l - . . ck: k >_ 0,

then the sequence f (E), f (c]), . . . , f (cl . . . ck) describes a path from wo to f (y) in K.

Proof: We show that these properties hold initially and that they are preserved in the

induction step, so we can make them part of the same induction proof as in Theorem 4.5.10.

First, we have f (E) = ui". For a formula of depth 0, M has E as its only rgi, and w0 E ~ " (w o) .

For the last statement, the only existing label E defines the empty path from loo to wo in K.

All other values of f are introduced through one of the f,, that is, each non-empty label

y E Dorn f begins with a constant c occurring in T. By the induction hypothesis, f, is well-

defined and satisfies the following properties: Dorn f, = I(M(c)) and Range f C R*(w). (w

is the successor of wo which was found to correspond to c.) Furthermore, if y' = cz - . . ck,

k 1 1, then f,(c2), . . . , fc(c2 . . . ck) describes a path from w to fC(yt).

Let cy be any nonempty ground label. If c does not occur in M (so cy is not realized in

M) , then c does not occur in T either. (Each M(c) was chosen nonempty, so c occurs in

cM(c) which is a subset of M.) But all arguments we added to f were elements dy' , where

C' occurs in T, so we are certain that cy $? Dom f . If c does occur in M but y $? I(M(c)) (so

cy is still not realized in M) , then y @ Dorn f, and hence cy $? Dom f . Finally, if c occurs

in 44 and y E I(M(c)), then cy E I (M) but also y E Dorn f, and hence cy E Dorn f . Since

each constant occurs only once in T, the argument cy is added to f only once during the

construction of f , so f is well-defined. Since all values of f, are direct or indirect successors

CHAPTER 4. LABELLED FORMULAS 86

of w and w is a successor of wo, all values of f are successors of wo as claimed. For the

last st,at,emcnt, we have f (c l) = fc , (E) = w which is a successor of wo, and the desired pat,h

from wo to f (y) is obtained by extending the path from UI to f (c a . . ck) provided by the

induction hypothesis, with the initial arc from wo to w. 0

Corollary 4.5.13 If K = (W, R, V) is a strict Kripke model for Q, and S a strict labelling

of S, then a model M for S can be constructed so that the function f in the proof of Theorem

4.5.10 is one-to-one.

ProoE We prove this by slightly modifying the proof of Theorem 4.5.10. As before, let

wo be the root of h-. We recall Definition 3.4.1 which says that whenever K is strict, Q,

11a.s an atomic cover @ = @ A W \kN td \kp as above:, but each .rr E \kp corresponds to a

distinct successor w of wo so that Kw is a strict Kripke model for .rro and for each u E Q N

every K, is a strict model for uo. We determine the atomic cover T for S as before. Now

for each c occurring in T , we take the (unique) formula cat F' in which c occurs, and let

0 .rrg = K(W' F'). Since K is one-to-one, all the .rrg are distinct. Since K is strict, we find

distinct successors wC of wo so that K, w" b, ~ 6 ; of course we also have K, wC b, u0 for

every 0 uo E Q N . Just as in the proof of Theorem 4.5.10 we apply the induction hypothesis

to the set T (c) = {a' F ') U {a" F" : *at' F" E T *) and the model KWc which, as we have just

seen, is a strict model for K(T(c)) . This gives 11s a model M (c) for T (c) and a one-to-one

function fc. As before, we define f (cy) = f c (y) for all y E Dom fc and for all c occurring in

TN .
Let us now prove that f is one-to-one. First we observe that f (c) = wC # wC' = f (d) for

any two distinct c, c' E Dom f . Now we recall that every strict model is a tree. These two

facts will be sufficient to show that any two distinct labels are mapped to distinct worlds.

First, if we have an cnlpty label E and a noner~~pty label cy, then by Proposition 4.5.12 there

exists a path from wo to f (cy) via f (c) = wC; in particular, this path is nonempty. Since

trees do not have cycles, it cannot end in wo, so f (c y) # wo. Now consider two labels cy

and cy' with identical initial constant and y # y'. Then f (cy) = f c (y) # fC (y t) = f (cy'),

where the inner inequality holds because fc is one-to-one. Finally, consider two labels cy

and c'y' with distinct initial constants. By Proposition 4.5.12 there exist two paths from

UIO to f (c y) and f (dy ') via wC = f (c) and wc' = f (c'), respectively. Since these two worlds

are distinct, the two paths are not equal, and the fact that K is a tree model implies that

f (cy) and f (d y ') are distinct. This finishes the proof. 0

CHAPTER 4. LABELLED FORMULAS 87

Corollary 4.5.14 Let K = (W, R, V) be a strict Kripke model for a set @ of KNNF-

f o m l l n Then any strict lnbelli.n,g S of ?f hhns n m.odel M so that II(Af)l < lWl an8d ~ ihose

overall size is O((IP1 + 1) x d(@) x IWI). Here P is to be understood as the (finite) set of

propositional variables used in @.

Proof: The first claim follows directly from Proposition 4.5.13 and the facts that Dom f =

I (M) , Range f W, and that IDom f J = [Range f l for any one-to-one function. For the

second claim, recall that all assertions introduced into A4 arise from consistent sets TA of

propositional atoms. Any such set mentions each propositional variable and T at most

once, and this does not change when TA is augmented by E T. So for each label in I(A/l), at

most IPJ + 1 assertions are introduced. In the course of constructing h i the labels of each

assertion are prefixed, but only to a maximum length equal to the depth of @, bounding

the length of each assertion. 0

This result guarantees that S always has a model with no more ground labels than the

number of worlds in a minimal strict Kripke model for @. But do the other factors ([PI + 1)

and d(@) result in an "absolute" size of M which could be much larger than K? This

depends somewhat on the exact representation of K. If we assume that the worlds of W are

represented by labcls similar to t h s e i11 M (so their average size is @(d(@))), and that. V is

not sparse (that is, IV(p)l = O(IW1) for any variable p E P) , then the size of K itself is of

order @(I PI x d(@) x I WI), and A i is not significantly larger. In the worst case, the factors

d(@) and 1 PI can never exceed the length of the original formula, so I M I is polynomial in

IS1 + IWI; but in practice d(@) and lPl are logarithmic in ISI, whereas IWI is of size @(IS/)

and can be exponentially larger than IS[. Hence I WI must be considered the dominant

factor in the size of IMJ. To summarize, we can say that lMl is bounded by the size of K ,

albeit not quite by a constant factor in some extreme cases. On the other hand, we have

not utilized the expressive power of labels with wildcards yet. (The model h i above has

only ground labels.) In the next two sections, we will show how they can be used to obtain

lower bounds for Ihil which are much smaller than the size of K .

Corollary 4.5.15 An,y lower boun,d on the size of models for a (strict or non-strict) labelling

of @ is a lower boun,d on the size of strict Kripke models for @.

Proof: For strict labellings, this is Corollary 4.5.14. For a non-strict labelling S of @,

we only sacrifice the guarantee that S has a model, but for any model it does have, the

argument in Corollary 4.5.14 is still valid. 0

CHAPTER 4. LABELLED FORMULAS

4.6 Complexity Results for Model Checking

In Section 2.3, we measrired the complexity of some reasoning tasks in terms of rnernbcrship

checks. As we take these considerations further by studying our various types of atoms, we

find that simple membership checks are no longer sufficient. Let us begin with the simple

task of deciding whether a set M of assertions entails the existence of a ground label y. As

we know, this is equivalent to showing that y is a realized ground label in M. Now the "rgl

check" is not elementary, but it is eaqily expressed in k rms of instance ch,ecks which in turn

are string matches; if k is the length of a label, then this operation can be performed in

O(k) steps.

Proposition 4.6.1 Given a set S of labelled fomulas and a ground label y = cl - - - ck, it

involves O((S1) elementary steps to verify whether y is realized i n S.

Proof: According to Proposition 4.4.3, we must verify for every i = 1, . . . , k that some

label in S has a prefix of the form a i - l ~ , so that a*-1 C cl . . . ci-1. We can perfonn these

checks in a smart way, so that each element of S needs to be checked only once, as shown

in the algorithm given below. 0

Algorithm 4.6.2 is-realized

Parameters:

y = cl - 0 . ck: a ground label

S: a set of forrniila~

Returns: true, if y is realized, false otherwise

begin

set fo.undl := fake, . . . , foundk = false.

foreach formula a F in S do

Find the maximal j-prefix a' of a , j 5 k, so that a' C cl - - . cj

foreach i from 1 to j do

if the i th position of a' is a constant (i.e. ci)

set foundi := true

end if

done

done

CHAPTER 4. LABELLED FORVULAS

if foundi = true for all i = 1, . . . , k

return true

else return false

end if end

Next, how hard is it to decide whether A i entails a variable assignment of p to true or false

in an instance y? We know that M does so iff y is a realized ground instance of some

label a in M , so that a p E M or a 1 p E M , respectively. This condition is no harder to

verify than the previous one; beyond verifying that y is realizable, we have only one more

instance check, namely a 5 y. In fact, we can integrate it into the above algorithm without

incurring any extra instance check: At the point where we find the maximal j-prefix in the

label of a a E M , if we find that a = p (a = i p) and j = la1 = 171, we have obtained

an assertiou c~ltailing that p is assigned true (false) in y. Tllcn we only necd to continue

verifying whether y is realized or not. We summarize these considerations as:

Corollary 4.6.3 Given a set of assertions M and an assertion y a with a ground label,

checking whether M bl y a takes O(IM I) instance checks.

Not surprisingly, finding whether a label a is realizable in a set S is also an important

reasoning task. We obviously do not want to construct all realized ground labels of S and

check whether any of them instantiates a , as S may have exponentially many realized ground

labels. The surprise is that realizability is a hard problem even for simple-looking labels:

Proposition 4.6.4 Given a positive integer k, consider the problem of deciding whether

the label *k is realizable in a set S of O(k) labelled formulas of size O(k). This problem is

NP-hard i n the worst case.

Proof: This proposition has an analogue in the theory of satisfiability in description logics,

namely a theorem that unsatisfiability in the description logic ACE is NP-hard [20]. This

theorem in turn can be proved by a polynomial-size reduction to the NP-complete problem

1-in-S-S AT [27]. To keep our treatment self-contained-we have not introduced description

logics-we adapt the same reduction idea to the setting of LBC.
Given a set of propositions P = {pl,. . . , pn) and a set of clauses C1,. . . , C,, each of which

contains at most three of the pj as (positive) literals, the 1-in-3-SAT problem asks whether

there is a variable assignment V so that exactly one variable per clause is assigned true.

CHAPTER 4. LABELLED FORMULAS 90

For example, if P = { ~ 1 , ~ 2 , ~ 3 , ~ 4 } , Ci = { P I , P ~) , C2 = {m,p3}, C3 = {p3,p4), then the

assignment V(pn) = V(p4) = true, V(p1) = V(py) = false provides a solution, as docs t,he

assignment V(p2) = V(p4) = false, V(pl) = V(p3) = true.

We now encode this problem into a variable-free formula in LBL. We need n constants

from D, written for simplicity of notation as integers 1 through n. Let I; = 2m, and

S = (0101 T , . . . , Onan T}, where O~ corresponds to pj in the following way:

C j p j E Ci
~j = X l j . . . Xmj, where xi,j =

* otherwise.

It is easy to see that this translation makes the problem at most polynomially larger. All

labels are doubled; we will see later why. In the example above, S contains the following

assertions:

We can see that *2m indeed has realized ground instances in S, namely y = 424424 and y =

133133. Note how t,he cor~star~ts in these ground irlstar~ces correspond to the propo~it~ions

set true in the variable assignments above. This is also the idea of the equivalence proof.

Claim: I(*2m, S) is nonempty iff the problem instance has a satisfying assignment.

Assume that a variable assignment V for 1-in-3-SAT exists. Pick C = {aj : V(pj) = true}.

We claim that y = mgu({uj : V(pj) = true}) exists and is ground. (Proposition 4.4.5 then

implies that yy is an rgi of *2m.) To prove our claim, not,e that the it11 of the m posit,ions

in all the uj (the ith column in the above matrix, if you like) corresponds to the clause Ci.

As required, exactly one of the variables in Ci is set to true, i.e. exactly one of those u j

which have xi,i = cj is chosen into the set C. So among the labels in C, exactly one label

has a constant in the ith position. Since this is true for all 1: = 1, . . . , m,, the unifier of all

u j in C exists (there can be no two different constants a t any position) and is ground (each

position is instantiated by exactly one constant found at that position).

Let us now show the converse. Suppose yy' = zl . - zmzm+l . is an rgi of *2m. Define

C = {aj : j occurs in some position of yy'). We claim that y = mgu(C) and that y = y'.

CHAPTER 4. LABELLED FORMULAS 91

To show this, take any j occurring in some position z,,+i. According to Proposition 4.4.3,

S rr~ust have a label with c:onstfant j at, its (m + 1:)th position. Since only aj conteains the

constant j a t all, the label in question can only be (an (m + i)-prefix of) a ja j . Also by

Proposition 4.4.3, the (m+i-1)-prefix of yyl instantiates that of a ja j . In particular, we must

have aj _C y. Also, since aj evidently has constant j in its i-th position, the corresponding

position in y, namely ri, must also be j. Since this holds for any 1: = 1,. . . , m, we get y = yl.

Thirdly, we showed that y is a conlmon illstance of all aj where j occurs in y, i.e. of all

u j E C. Hence the mgu exists, and y instantiates it. But now observe that in any position

i = 1, . . . , m, the label aZi has a constant in this position; therefore the mgu must have the

same constant, i.e. it is ground.

To obtairl the satisfying valuation for 1-in-3-SAT, we simply assign V(pj) = trrlc wlwnevcr

aj E C, and V(pj) = false otherwise. By following the first part of the proof in the reverse

direction, we show that exactly one variable per clause (which corresponds to the one label

per i with a constant in its i th position) is set to true, as required. 0

A number of reasoning tasks involve checking realizability, which determines their respective

complexity:

Proposition 4.6.5 Given a set S of labelled formulas and a label a: deciding whether a is

realizable in S (2.e. I (u , S) is nonempty) is NP-complete.

Proof In Proposition 4.6.4 we showed NP-hardness for a subproblem of the given problem.

To show that the general problem is in NP, we take any problem instance and guess a ground

label nondeterministically. As we showed in Proposition 4.6.1, it takes linear time to verify

that y is indeed an rgi of a. 0

Corollary 4.6.6 Given a set Af of assertions, deciding whether M has a clash is NP-

complete.

Proof Proving that a I constitutes a clash in M involves a check whether a is realizable,

so this problem is at least as hard as realizability. To show that it is NP-easy, note that if

M has 2 n elements, then there can be at most n2 pairings of the form a p, u1 l p . In each

of these pairs, we need to check, whether (a ,a l) exists and is realizable in M; computing

an mgu takes O(max(lal, lull) steps, and checking realizability is NP-complete. Since all

these O (n 7 realizability checks are independent of each other, the entire problem too is

NP-complete. 0

CHAPTER 4. LABELLED FOR,MULAS 92

Theorem 4.6.7 Given a formula F and a set M of assertions, deciding whether M b1 F

i s co NP-hard.

Proof Let F = rk I. According to Theorem 4.4.21, A4 bI I iff *k is cwr (which is always

the case, as we already know), and M(?) b1 1 (which is never the case) for every rgi y of *k

in M. So the only way to nmke it true is by ensl~ring *k has no rgi in M. In other words.

M /k l 1 iff *k is realizable, a problem we already showed NP-hard in Proposition 4.6.4.

The other direction is more interesting. As usual, whenever M /k l F we must be able to guess

a "witness" of polynomial size and then prove in polynomial time, given this information,

that M /k l F. Let us specify what we mean by "witness":

Definition 4.6.8 Given a set of assertions A i : a counterinstance against M b1 F (or

simply: against F , i f M is understood from the context) is a nonempty set M- of assertions

with ground labels, where:

(I) For every assertion y T E M-, y is not a realized ground label i n A i ;

(2) For e v e q assertion y 1 E M- (where 1 is a literal), either y is not a realized ground

label i n M , or for any assertion of the form a 1 E M , y is not a realized ground

instance of o;

(3) If F = a is atomic but a # I , then M- contains E a;

(4) If F = Fl A F2: then AP- is a counterinstance against at least one of Fl and F2.

(5) If F = Fl V F2, then M- i s a counterinstance against both of Fl and F2.

(6) If F = c F' , then either c exists in M- but not in M , or (M-)(,) is a counterinstance

against M(,) b1 F'.

(7) If F = * F', then some c exists i n M so that (MP)(,) is a counterinstance against

q c) t=l F'-

W e call a counterinstance lean, if each occurrence of a propositional atom, a i n F corresponds

to at most one assertion y a or y T i n M- and e v e q assertion i n M- is thus accounted

for. This is to say, there is a one-to-one, right-total (but not necessarily left-total) relation

from occurrences of propositional atoms in F to elements of A i - .

CHAPTER 4. LABELLED FORMULAS 93

Example 4.6.9 We have M = {l*p, *1 l q } kL l (1 qV2p). A lean counterinstance against

M is M - = (1 1 q , 12 p}. We obtain it by "rcading off" one assertion f ion~ each of the

alternatives in F, so that each assertion is not entailed by M. The first assertion is not

entailed since q must be assigned false in instance 11; the second assertion is not entailed

because 12 is not realized in M.

Intuitively, M- specifies instances (or worlds of K(M)) which must be realized, given the

requirements stated in F, the labels used in Af, and the variable assignments which must

hold in these instances; conditions (1) and (2) state that these stipulated instances either

do not exist in M, or the variablc assigr~mei~ts in these instances are not e~it~ailed by Ail. No

matter how we branch on disjunctions in F , we find counterinstances within M - for each

alternative. Although counterinstances look somewhat akin to models, they should really

not be considered as such; in particular they may contain clashes. The leanness condition

guarantees that M- is only by a factor of at most d(F) larger than F, i.e. polynomial in F.

We now show that tlie existence of a (lean) counterinstancc! is ~haract~eristic for M k1 F.

Lemma 4.6.10 Let hi! and F be as above, and M - any counterinstance against F , then

any superset of M- which satisfies conditions (1) and (2) above is also a counterinstance

agoin,.st F.

Proof Condition (3) is certainly true for any superset of F, and conditions (4) through

(7) are "robust" with respect to supersets. These facts can be easily shown by induction on

the structure of F . 0

Lemma 4.6.11 Given M and F, i f F has a counterinstance, then M k1 F.

Proof We prove this indirectly. Assume M b1 F. If F = I , then M k1 F for any M, so

the assumption is contradictory from the start. If F = a # I, then because of condition

(3) above, M - must contain E a. However, E is ground and realized in any set, so condition

(1) (in case a = T) and thc first alt(er11ativc of coildition (2) are violated. If a # T , then M

must also contain E a because Ail b1 (I, and E as an rgi of itself violates the second alternative

of condition (2). Now suppose this lemma has been shown for any subformula of F (and

any set of assertions M). We study the different cases:

F = Fl A F2. Then according to our assumption, M b1 Fl and M bI F2. By virtue of

condition (4), M- is a counterinstance against at least one of these, and the induction

hypothesis yields the contradictory statement hl Fl Fi for i = 1 or i = 2.

CHAPTER 4. LABELLED FORMULAS 94

0 F = Fl v F2. Then according to our assumption, M b1 Fl or M b1 F2. But condition

(5) states t.lmt M - is a coilnt,erinst,ance against both Fl and F2, m d the i~itfilction

hypothesis implies M k1 Fl and A4 k1 F2, which contradicts the assumption.

0 F = c F'. Then c must exist in M (so the first alternative in condition (6) cannot

be met), and M(,) b1 F'. But the second alternative in condition (6) warrants the

existence of a counterinstance against M(,) b1 F', which by the induction hypothesis

leads to the contradictory result A4 k1 F'.

0 F = * F'. 111 co~idition (7), it is claimed t8hat some c exists in M so that (MP)(,)

is a counterinstance against M(,) bl F'; together with the induction hypothesis we

infer M(,) k1 F'. This is a contradiction, for if Af b1 * F' and c exists in AI, then

M(c) kl F'.

The proof of the lemma follows by induction on the formula F. 0

Lemma 4.6.12 If M k1 F , then there exists a lean counterinstance against F

Proof: First, if F = u is atomic, then we must find a counterinstance with at most (in fact:

exactly) one atom. Since A l k1 T for every M , we cannot have a = T; for any other atomic

formula we simply set 11f- = { E a) , so (3) is clearly satisfied and M- is lean. In case a = I,

neither condition (1) nor (2) needs to be verified in MI. For literals, we must establish

condition (2); we do so by showing its second half. Notice that the only literal which has E

as an rgi is E itself. But E a # M , for otherwise we would have A4 b1 F , contradicting our

assumption.

As usual, we suppose the proposition holds for any subfornlula of F and show that it also

holds for F. First, if F = Fl A F2, then M does not verify one of Fl and F2; using the

inductior~ hypotl~esis, we get a, lean ~ount~crinstance Af- for this conjunct,, which is silfficient

to show (4). Being a counterinstance, M- satisfies conditions (1) and (2) with respect to one

of the conjuncts; but since M and M - both remain unchanged, both conditions hold true

for F. To demonstrate that M - rernains lean, we retain the correspondence between atoms

in the one conjunct and assertions in M- as they were, and leave the atoms in the other

conjunct unrelated to assertions in M-. Clearly no more than one assertion corresponds to

any propositional atom in F .

Secondly, consider F = Fl V F2. If hf k, F, then neither Fl nor F2 are verified by M , so

by the induction hypothesis they both have counterinstances M[and h.1; respectively. We

CHAPTER 4. LABELLED FORMULAS 95

now take M- = M, U MF. Conditions (1) and (2) hold for every assertion in both M[and

Mg , SO they siirely hold in M r U MF. (M re~r~a i l~s 1111cha11ged.) Since M- is also a siipc?rset

of each of these, Lemma 4.6.10 applies, showing that M- is a counterinstance against both

Fl and Fz. This establishes condition (5) for F . Finally, we derive the leanness of Af- from

that of M; and M z by relating the atoms in the subformula Fl to the assertions from M;,

and the atoms in F2 corresponding to assertions from M g - M; to those assertions. Atoms

in F2 corresponding to assertions from MF n M r rernain unrelated in order to gi~arantee

that the relation remains one-to-one.

Thirdly, let F = c F'. Then M k1 F either because c does not exist in M , or because

M(c) I4 F'. In the first case, M- = {cT) is a counterinstance. (Condition (1) is satisfied as
c is not an rgl in M, and (6) is satisficd because c does exist in M-.) This count,crinsttance

is obviously lean-simply relate any of the atoms in F' to c T. In the second case, the

induction hypothesis warrants a lean counterinstance MI- against M(,) b1 F'. We claim

that M- = cM'- is a counterinstance: It is obvious that (M-)(,) = M I - , so 111- satisfies

condition (6). Conditions (1) and (2) follow from their counterparts for MI-, because a

label cy frorn M- is realized in M iff the corros~)onding label y in MI- is realized in M(,),

and cy is an rgi of some cu or *a in M iff y is an rgi of a in M(,) (see Lemma4.4.7, parts

(3)-(5); we assumed that c exists in M) . Finally we derive the leanness of M- from that of

MI- by relating each atom in F' to assertion cy a whenever it is related to assertion y a in

MI-. (Note that the atoms of F and F' are identical.)

Finally take F = * F'. Then some constant c must exist in M so that A{(,) kl F'. The

induction hypothesis provides us with a lean counterinstance MI- against M(,) b1 F', and

we construct M- = cM'-. In the same way as we did in the previous case, we show that

M- satisfies conditions (7), (I), and (2), and that M- is lean.

We have completed our discussion of all cases; thus we obtai11 the proof by induction on the

formula F . Note that all sets we have claimed to be counterinstances are nonempty. 0

Lemma 4.6.13 For any set S of n assertions with ground labels of maximal depth d: S(7)

is empty for all but at most n d + 1 qromd labels y.

Proof: The set S(7) is empty, unless at least one of the assertions in S has a label of

which y is a prefix. There are at most d distinct nonempty prefixes per label in S, plus the

ubiquitous E. 0

CHAPTER 4. LABELLED FORMULAS 96

Theorem 4.6.14 Given a fomula F and a set M of assertions, deciding whether M bl F

i s T:TL coNP and I~,encc coNP-con1.1)lete.

Proof: We have provided a property characteristic for M kl F , namely the existence of

a nonempty, lean (i.e. polynomial in the size of F) counterinstance. To prove M k1 F , we

nol~doter~lliuistically guess a hypothetical lwll coilllterinstamx M-. Now we ~lulst be able

to verify our claim in polynomial time. First we notice that for each subformula of F, only

one of conditions (3) through (7) must be checked, and only once. Condition (3) involves

a simple membership check, whereas (4) and (5) are simple recursive checks. Condition

(6) involves checking whether c exists in M , which is also a membership check, and then

(if necessary) computing M(,) and (Me)(,). In condition (7), we may have to test several

candidates for c. However, empty sets (M-)(,) do not qualify as counterinstances, so we

recurse only when (M-)(,) is nonempty, or equivalently c exists in M-. Over the course

of the entire verification, each step can be regarded as a check whether some nonempty

M- is a count.erinsta~lce against A[(,) b1 F' for sonle silbformula F'. Lenlnla 4.6.13 st,at,es
(7)

that there are at most I M- I d + 1 distinct nonempty sets (Aif-)(,) (wlog d can be chosen

as the depth of Af), and there are at most IF1 subformulas of F. So as long as we do

not unnecessarily repeat identical steps, the total number of steps is polynonlial, and each

step requires only polynomial effort in terms of [MI. Finally, conditions (1) and (2) involve

c:llecking whether a ground label is realized, as wcll as instance checks; the fornlcr involvcs

O(lAl1) instance checks (see Proposition 4.6.1), each of which can be performed in O(d)

time. I11 total, verifying whether Af- is a counterinstance requires polynomial time in M

and F. (Remember that IAf- 1 = O(lF1) since M- is lean.) 0

Corollary 4.6.15 Model checking in LBL is coNP-complete.

Proof To verify M k1 F , we first need to prove M k1 F (which we have shown in Theorem

4.6.14 to be coNP-complete) and thcn show tphat M is clash-free (whit11 by tllc converse of

Corollary 4.6.6 is also coNP-complete). These two steps are independent. 0

The coNP-result for model checking sounds discouraging and may lead one to prematurely

discard the idea of doing model checking in LBC; after all, model checking in KNNF is only

polyrlomiitl in th,e size of the Kril,ke model. However, wc already mcntioncd that labcllecl

models may be a lot more concise than equivalent Kripke models (a fact we will substantiate

and characterize more formally in the next section). In terms of this much smaller size, it

CHAPTER 4. LABELLED FORMULAS 97

should come as no surprise that model checking is harder in the worst case. We do want to

ensure, of course, that model cl~ecking in CUC is not harder in (~hsolute terns than model

checking in KNNF; this is easily confirmed:

Proposition 4.6.16 Given an CBC-formula F and a set of assertions M , checking M b1
F according to Definition 4.3.1 involves at most one recursive check M(,) b1 F' for each

combination of y E I (M) and subformula F' of F , treating multiple occurrences of sub-

formulas as distinct, and no such checks for any non-realizable y or any non-subformula

F' .

Proof: This is shown by induction simultaneously over y and the formula structure of

F . Thi~ik of Definition 4.3.1 as a recursive procedure which is called with M and F as

its parameters and returns true or false. With the one-time initial call A f b1 F serving

as the base case, we assert for our induction hypothesis that the recursive call Af(,) b1 F'

is executed only once for any given (occurrence of) F' and any y , and that y must be an

rgl in M and F' a subformula of F. Let us go through the cases in Definition 4.3.1. If

F' is a literal, then the recursion ends, and the procedure returns true or false. If F' is a

propositional formula, a number of recursive calls will be performed, a t the end of which we

have one recursive call for each atom in an atomic cover for F', with M(,) and the respective

atom as parameters; each of these atoms is a distinct subformula of F'. (The number of

intermediate calls does not exceed the number of intermediate propositional subformulas of

F'.) Next, let F' = c F". If c does not exist in A..i(,), then we immediately return false.

Otherwise, we recursively verify AI(,,) b1 F". The induction hypothesis assured that y is

an rgi of M ; by Lemma 4.4.7, part (7), c exists (i.e. is realizable) in M(,) iff yc is realizable

in M . (Remember that "realizable" and "realized" coincide for ground labels.) Thus we are

guaranteed that M(,,) b1 F" is called only when yc is an rgl. Finally, let F' = * F". Then

the recursive call M(,,) b1 F" is made once for each distinct c existing in M(,). The same

argument as before asserts that yc is an rgl of M . This completes the case distinction, and

the proof follows by induction on y and F. 0

This proof demonstrates an application of Definition 4.3.1 which is smart in one sense: every

subformula F' of F is evaluated at most once in each realized ground label y of A l , and the

result of M(,) bl F' is cached for later use. But the evaluation is naive in another sense:

Suppose F is a conjunction, one conjunct of which is *k p. If M also contains *k p, we know

immediately that A f b1 *IC p. Definition 4.3.1 however forces us to evaluate M(,) bl p over

CHAPTER 4. LABELLED FORMULAS 98

every realized ground instance of *" of which there may be exponentially many. For this

reason, the evaliiation is not very efficient. But instead of t,ryir~g to find more efficient ways

to evaluate A4 bl F now, we defer this issue to the next chapter, where a more powerful

semantic relation b, is used to decide formulas like A l b, *k p in one step.

Corollary 4.6.17 Given u,n CBL-fomm,ula F and u, set of assertions Af, let W be tire set of

worlds i n K (M) , the Kripke model obtained from M by Algorithm 4. 5.45. Clash-freeness of

M can be decided i n 0 (l ~ i 1 ~ 1 Wl) steps, and M b1 F can be decided i n O((IMl + IFI)I W()

steps.

Proof: We recall from Proposition 4.5.6 that W is equal to I (M) . Moreover, the number

of subformulas in F is bounded by the size of F . Therefore, the statement about M b1 F

follows immediately from Proposition 4.6.16. (We allow /MI x ITVI steps for computing M(yc)

from M(y) for each y E W, which is reasonable since M(?) can never be larger than M.) For

the second part, consider any two assertions from AI. If any of them contains a I, check

whether a is realizable. If they contain complementary assertions a1 p and 0 2 yp, compute

(a l , a2), and if it exists, check whether this mgu is realizable. To check realizability of a, it

suffices to test every rgl from I (M) and see whether it instantiates a. This yields the above

worst-case estimate. Needlcss to say, this inet,hod of firding an rgi is very crude and could

be improved by using efficient storage and lookup methods for candidate rgl in I(A4).

Let us discuss this complexity result and its implications for model checking in practice. A

typical context would be the following: We are given a set @ of KNNF-formulas. A theorem

prover converts @ into a set of CBC-formulas S , finds a model M for S, and returns it.

How can we check that M is illdeed a model? There are two possible sc-enarios: Either we

check A4 on the same machine which returned the result, and the labelling S is still stored

or otherwise known to us; or we do not know the labelling S.

In the first scenario, we can choose whether to check M k1 S directly, or rather compute

K(M) and t,llen check K (M) k k @. In t,he next section we will see that K (M) inay be

exponentially larger than M , so the second route may not always be available to us, given a

limited amount of storage space. But suppose we can represent K(M) . As we have seen in

Theorem 3.5.4, checking K (M) kk @ takes O(I@1 x I K (M) 1) steps; on the other band, the

W e formally required that M be already clmh-fme i n order to run the algorithm. Houre~rer, here we are
only interested in the set of ,worlds U', and th,e algorithm, can still be run if M contains clashes5 if u ~ e skip
tire coinput(~tioi~ of tiukuut%on fui~ctjons.

CHAPTER 4. LABELLED FORMULAS 99

complexity of checking M kL S as stated in Corollary 4.6.17 is comparable up to a factor

/ A l l 2 . Allowing a polyrlorrlial factor in I A l l for processing the tnodel while dlecking it seetns

reasonable. Also, if M is not larger than K(Al), then checking M is not significantly more

expensive than checking the Kripke model represented by Af. But is our assumption " M

is not larger than K(M)'? reasonable? The fact of the matter is that M can be arbitrarily

inflated by adding assertions such as a a with an unrealizable label a. These assertions can

be crafted so as to tnake it non-obvious wl~etl~er any particular assertion has a realizable

label or not. However, once we have fully determined I (M) , we can easily find all assertions

whose labels are not realizable and delete them. Determining I (M) takes no greater effort

than determining K(M) along the alternate route, and we will certainly have to go linearly

through all assertions in M while doing this, so another linear scan through A4 i11 order

to delete redundant assertions is not very costly. In our practical context above this will

hardly be necessary anyway, for our model M arises as the answer of a theorem prover to the

question whether S (or @) is satisfiable. We already showed in Corollary 4.5.14 that every

strict labelling of @ has a model M not essentially larger than the smallest strict Kripke

tnodcl for (9. To require of our provcr to return a tnotlel within thesest i l l generous-size

bounds is not unreasonable. Since K (M) itself is strict, we are then guaranteed that A4 is

no larger than K(M).

Now what if we only know @ and M but not the labelling S? Of course we can still compute

K(M) and check K(M) (9. Notice however that this may give rise to false positives: We

will see in Section 4.8 that some sets (9 have non-strict models K which are smaller than

any models arising from any labelling of iP. In other words, no labelling of @ has a model

M so that K = K(M). Yet it is easy to find some model MI so that K = K(M'). While

K is indeed a Kripke model for @, a given candidate Aft may not actually be a model for

any labelling of (9. Adrr~itt~edly we may not care much about, this in ~)rxt ice, if all we are

interested in is information on some satisfying model for @. But there remains the problem

that K(M) might be prohibitively large and not computable in practice.

So can we reconstruct S and check M S in a reasonable amount of time, provided we

know M and @? The answer depends on how we measure the complexity. Expressed in

tertns of (9 and M, the problem becomes C;-complete. We will not present a fornlal proof

here, for lack of relevance to the rest of this work. But intuitively, this is true because upon

"guessing" a labelling S of (9 (which has a polynomial-size representation in I@l: specify a

constant c E D for each O-operator occurring in a), we are left with the coNP-complete

CHAPTER 4. LABELLED FORMULAS 100

problem of checking M kL S. But one can also show that satisfiability of QBFz (see next

section for a dcfinit,ion) can be translated polynon~ially into the above problcrn.

In terms of cP, Af and W, where W is the set of worlds of K(A4), reconstructing S and

checking M kL S can be done in O(l@ll A l l 1 W I) steps. Again we omit a proof for lack of

relevance to our work. The bound crucially depends on the labelling information contained

in M. Recall that the constants assigned to each 0-operator denote R-arcs in K(M). If M

is given, the labelling of all arcs is known; in order t,o label a. 0-operator in a subformula

0 TO, we just need to find a successor in which TO holds; if the arc to this successor is

labelled c, then c can be used to label this particular 0-operator.

4.7 The Complexity of Reasoning with Labelled Formulas

Arguably the most common characterization of problems in the class PSPACE is by trans-

latirig them irit,o quantified Boolean fornlulas (QBF). This is IIO different with the modal

logic K ; several satisfiability-preserving translation met hods have been proposed [6 1, 901,

and translations of random QBF have been used as hard benchmark problems for automated

reasoners in K[72, 741.

Complexity results about reasoning with labelled formulas can be aptly stated in terms of

QBF as well. To facilitate this, we must introduce a satisfiability-preserving translation

method from QBF into LBL. We could simply translate a given QBF into K (the resulting

formula from using any of the methods proposed in [61,90] is in NNF), and then quote The-

orem 4.5.11 to translate the KNNF-formula into an equisatisfiable CBL-formula. Instead,

a direct tran~lat~ion suits our purposes bctt,er.

We remark that such a translation is not only of academic interest. Given an efficient

method for translating QBF-formulas into labelled formulas, the model-finding algorithm

we are presenting in this work will provide an alternative for solving QBF problems, an area

of active current research [32, 62, 101.

Definition 4.7.1 The class QBFk of QBF-formulas in standard form is defined as the set

of all f0rm~u1a.s of th,c form

where cp(pl,. . . ,pn) is a PLNNF-f0rm2Lh i n the variables pl, . . . ,pn, n E N, and Qj = 3pj

o r Q j = Vpj , whereas Q1 = 3pl , and the sequence of quantifiers alternates between 3 and

CHAPTER 4. LABELLED FORMULAS 101

V exactly k - 1 tim,es. The class Q B F is simply the union of all QBFk, i.e. the set of

(dl Qucmtified Boolec~n, Forrr~,ulns with nw restriction on gunntzjiep. nltewration. A C)BF i s

decided valid or not valid, as follows:

Let c p j (~ l , - . . , p j) = Q j + l . - - Q T L ~ (~ l 7 . . . , p n) . (Thus, ~ n (p 1 , . . - , ~ n) = V (P I , - - . ,pn); PO()

is consistent with cpo as given in (4 . l l) , and %(PI, . . . , pj) = Qj+lcpj+l(pl,. . . , ~ j + ~) for all

i = 0, . . . , n - 1 .) Then a valuation on pl, . . . ?)j satisfies cpj(pl,. . . , pj) iff it also satisfies

Then cpo() is valid if the empty valuation satisfies it.

The complexity c1n.s.s C i i s defined as th,e class of ull pmblems wh,icl~, cxn he trunsluted ~:n,

polynomial time into a validity problem i n QBFk. W e define PSPACE = U g l CE. A

problem is called Ci-hard i f any formula cpo in QBFk can be translated in polynomial time

into an instance of the given problem, so that cpo is valid i f f the corresponding problem

instance has a solution. A problem is called Ci-complete i f it is i n Cg and Ci-complete.

PSPACE-completeness and PSPACE-hardness are defined analogously.

A more intuitive way of describing the validity of a QBF is by picturing the quantifiers Qj

as first-order quantifiers ovcr the trut,h values of pj. Thus, Vpj cp says that cp mnst be valid

for both truth values of pj, and 3pj cp expresses that cp is valid for some truth value of pj.

If all quantifiers are existential, then the QBF is valid iff there is some truth assignment

for pl, . . . p,, so that cp is satisfied, which is to say cp is satisfiable. This shows that validity

in Q B F l is equivalent to the SAT problem, which means Q B F l PLNNF and hence

Cy = NP.

Example 4.7.2 The formula

is in QBF3, as t,llere are two alternations of quantifiers (3 t,o V a r~d again to 3). This

formula is valid, as we can informally see: Any valuation in which pl and p4 are assigned

true satisfies pl A (p:! V pg V p4), no matter how p2 and pg are assigned.

It is easy to show that the dual of a QBF takes a form similar to a QBF:

CHAPTER 4. LABELLED FORMULAS 102

where Qj = 3p.j if Qj = Vpj and vice versa, and ip is the propositional dual of p. It is easy

to show that Po is valid iff cpo is invalid. Tlilis, a QBF and itrs dual are complcineiitary. We

denote the class of complements of QBFk by QBFk; the associated complexity classes are

commonly denoted lli. It is easy to show that II: and Ci are contained in both 11[+1 and

For detailed treatments on QBF and the polynomial hierarchy, we refer to [92].

We now demonstrate that the satisfiability problem in LBL is PSPACEhard, by construct-

ing a translation from QBF into LBL. For every variable pj, j = 1,. . . , n, we dmignate

three constants from D which we label c y) , c y) , and Note that the (j) is clear from

the context and the position in a given label, so we will henceforth omit it and simply write

C T , C L , and c.

Definition 4.7.3 Given a QBF po = Q1 . . . Q, p(pl , . . . , p,) as before, we define the stan-

dard translation of cpo into LBL as X(cpo) = {GI, . . . , Gn, Go), where

It is easy to see that this translation is polynomial. Before we prove it satisfialAlit,y-

preserving, though, let us state a few useful facts on sets of labelled formulas. Recall

the shortcut notation a S for {aa' F : a' F E S) .

Lemma 4.7.4 Given three n o n m ~ p t y sets S , S' nrrd S" of labelled forrn,ulns, kw fo7nrulus

F' and F", and distinct constants c, d , c" E D:

(1) {F' V F") U S is satisfiable iff { F ') U S or { F ") U S is satisfiable.

(2) { F) U S is satisfiable ifl { c F) U * S is satisfiable.

(3) S U S' and S U S" are both satisfiable iff * S U d S' U cl' St' is satisfiable.

Proof: This proof will be constructive, in that we derive models for the right-hand side

from models of the left-hand side of (2) and (3).

A model of a set of formulas satisfies all its elements. Hence, if M kL {F' V F") U S , then

M satisfies all formulas in S , and it satisfies F' or F". Consequently, M satisfies one of

{ F ') U S and { F ") U S. The converse of (1) follows just by the same argument in reverse.

CHAPTER 4. LABELLED FORMULAS 103

Now let M be a model for the set {c F) U * S on the right-hand side of (2). Since c exists

in this set, Corollary 4.4.11 can be applied, showing that M(,) satisfies ({c F) U * S)(,). But

the latter is exactly the set (F) U S on the left-hand side. Conversely, given a model M'
A

for S , we create M by prefuring each assertion in M' with either c or *, whereas at least

one assertion is prefixed with c, to ensure c is the one and only constant which exists in
A A

M . We clearly have M(,) = MI, and M ̂ satisfies c F (because M^(,) k F), as well as any
A A

forr~lula * Fo E * S (because A[(,) k1 Fo and c is the only c:onstant existing in M). This

is a model for {e F} U * S. Note that if M is clash-free, then A[(,) is also clash-free (by

Proposition 4.4.10), and if M' is clash-free, then so is M ̂ (which is easy to see because two

labels in M ̂ unify iff their counterparts in A' unify.

To show (3), let M be a model for T = * S U d S' U d' S". NOW both C' and dl exist in T , so

we can apply Corollary 4.4.11 twice, showing that m(,,) k1 T(,,) and =(,,,) ,bl T(d,). But

T(d) and T(d,) are exactly the sets S U S' and S U S" on the left-hand side. To show the

converse, take two non-empty models hi' for S U S' and M" for S U S", and let A4 be the

set of the following assertions:

*a a for any a a which occurs in both MI and MN,

da a for any a a which occurs only in MI,

d'a a for any a a which occurs only in Mu,

d T and/or d' T , if d or dl does not precede any assertion taken so far.

Let us first observe that c' and c" exist in A i and that = 44' and Af(d,) = MI1, except

perhaps for an additional, irrelevant E T. These models verify all formulas in Sf and SN,

respectively, and they both verify all formulas in S. No other constant exists in M , so we

have shown that M verifies (all formillas in) * S , d Sf, and c" S". Next we observc! that

whenever xu is realizable in M (where x is one of d,d'.*), a is realizable in one of M' or MI'.

To see this, consider Lemma 4.4.7, parts (4) and (5) , which say that I (da , M) = d I (a , MI),

I(c"a, M) = cUI(a, Mu), and I(*a, M) = crI(a, MI) U cnI(a, M"); so in order for I(xa, M)

to be nonempty, either I (a , MI) or I (a , M") must be nonempty. We use this result to show

that M is clash-free. Suppose M contains some label c'a I so that c'a is realizable in M ,

then we would have a I E M' and a is realizable in A4', contradicting the fact that A4' as

a model is clash-free. If the clash is c"a I, we get the same contradiction in M", whereas

if it is of the form *a I, then a I is in both M' and hi" and a is realizable in at least

CHAPTER 4. LABELLED FORMULAS 104

one of them, whic,h also results in a contradiction. Now suppose the clash is of the form

xlul p, 2 2 0 2 i p . If X I = x2 = cl, then ol p and 0 2 i p come from the s m e set MI, and since

the mgu (x l a l , x2a2) is supposedly realizable in M, (al, 02) is realizable in MI. This is a

contradiction since MI is clash-free. The same contradiction arises in Aft' if XI = x2 = c".

Otherwise at least one of xl and xa must be *, say X I . But then 01 p occurs in both MI

and MI1 and would clash with a 2 i p in a t least one of them, which again is a contradiction.

Therefore, A4 must be clash-frw, and we hiwe proved the corlwrse of (3). 0

In Definition 4.7.1 we defined the validity of a QBF recursively; likewise, most of our results

around satisfiability so far are of a recursive nature. By contrast, Definition 4.7.3 introduces

a closed-form translation of po into LBL. A matching recursive definition, more suitable

for our equivalence proofs, is readily given. We extcnd A(.) by defining A(% (pl , . . . , pi)) =
(i) (i) {G!$, . . . , Gn , Go), where

Proposition 4.7.5 Given a propositional valuation V on pl, . . .pi , j 5 n, define li = pi if

V(pi) = true, an,d li = -pi if V(pi) = false, for all i 5 j. Then cpj(pl,. . . is valid m d e r

V iff X(cpj(p1,. . . ,pi)) U {P-j li : i < j) is satisfiable.

Proof: We prove this recursively, beginning with j = n. In this case, X(pn(pl,. . . , pn)) =

{pn(pl, . . . , pn)), and the set in question is {pn(pl, . . . , p,), 11, . . . , ln). It is satisfiable, by

Corollary 2.2.8, iff it has a clash-free cover of propositional atoms. Now it is not hard to

see that any such cover contains all the literals 11, . . . , ln and is clash-free if and only if it

contains no other literals. In other words, 11, . . . , 1, (and possibly T) already contain a cover

for pn(pl , . . . , pn), which is just another way of stating that pn(pl, . . . ,pn) is satisfied under

the valuation V (see Proposition 2.2.6). This establishes the base case.

Now suppose this proposition shown for j + 1, and let V be a given valuation on pl , . . .pi.

We write VT and VL for the two extensions of V to pl, . . .pi+l, with VT(pi+i) = true and

V L (~ ~ + ~) = false respectively. We need to distinguish two cases, depending on whether

Qj+l is universal or existential. First assume cpj(pl,. . . ,p j) = 3pj+1 (pl, . . . , pj+l).

According to Definition 4.7.1, %(PI, . . . , pi) is valid under V iff pi+] (pl , . . . , p,+l) is valid

under one of VT or VL. By the hypothesis, this is the case iff (pl, . . . , U

CHAPTER 4. LABELLED FORMULAS 105

{*n-j-1 1 . , . . i 5 j + 1) is satisfiable, where lj+i is either pj+l (under VT) or -fi+l (under

Vl). We write this set oiit in full, according to (4.12):

i-j-2 (cT"-' Pi A c ~ * " - ~ -pi) wllcnever Qi = Vpi, i > j + 2

*i-j-2 c (*n-a pi V *n-i -pi) whenever Qi = 3pi, l: > j + 2

*n-j-1
P(PI . - , ~ n)

*n-j-1 1. i s j

*n-j-1 pj+l V *n-j-l lPj+l .

(We obtained this system by applying statement (1) of Lemma 4.7.4: Thinking of the last

line as a disjunction F' V F" and of the remaining lines as S, the system is satisfiable iff

{F') U S or {F") u S is satisfiable.) Now let us write out X (p j (ply . . . , pj)) U {P-j li : 1: 5 j)
via (4.12) and compare:

For clarity G ~ J , has been written out separately in the last line. We observe that each

line in (4.13) is identical to the corresponding line in (4.14), with an extra * prefixed in all

but the last line, and c prefixed in the last line of (4.14). Thus system (4.13) matches the

pattern S U {F) and system (4.14) the pattern {c F U * S). As shown in Lemma 4.7.4, part

(2)) t,hese two sets are equisatisfisble.

Now consider the case where Qj+l is universal. Definition 4.7.1 states that %(pi, . . . , pj) is

valid under V iff pj+l (pl, . . . , pj+l) is valid under both VT and Vl. Using the hypothesis,

this is true iff X(cpj+l(pl,. . . , ~ j + ~)) U {P-j-' li : i 5 j + 1) is satisfiable in both cases

lj+l = pj+l and lj+l = -pj+l. Again we write this out in full, pointing out that we have

CHAPTER 4. LABELLED FORMULAS

two sets this t i m ~ n e each for lj+l = pj+l and lj+l = ~ p ~ + ~ :

And this is the set X(cpj(pl,. . . ,p j)) U {P-j l i : i 5 j) :

This time is a conjunction of two formulas; we have written it out in the last two

lines. As before, we observe the analogy bctwcxn these two systems: With c' = c ~ , c" = cl,

F' = { *n-j-lpj+l), F" = {*n-j-l,pj+l), and S being all but the last line in system

4.15, statement (3) of Lemma 4.7.4 applies, showing that system 4.16 is satisfiable iff (both

instantiations of) system 4.15 is satisfiable.

We have thus derived the proposition for j from the assumption that it is valid for j + 1.

Since it is valid for n, it follows for all j = 0 , . . . , n i t5 claimed. 0

Corollary 4.7.6 A QBF cpo = Q1 . . . Qn cp(pl,. . . ,pn) is valid iff X(cpo) is satisfiable.

Proof: This is just Proposition 4.7.5, written out for j = 0. 0

Corollary 4.7.7 Satisfiability in LOL is PSPA CE-hard.

Proof: In X we have a polynomial-size translation function mapping QBF into the sat-

isfiability problem for labelled formulas, and Corollary 4.7.6 shows that this translation

preserves solutions. 0

CHAPTER 4. LABELLED FORMULAS 108

former instance, and to false in the latter.) Therefore, any Kripke model must have Q(2n-m)

distinct worlds6. Since even in QBF2 the rmnbcr of universal quantifiers is unbolirlded,

Kripke models are definitely not a space-efficient way to witness a valid QBF. One might

hold this to be an artifact of our two-stage translation. However, the common methods

[61, 901 for translating QBF problenls directly into satisfiability problems for K are very

similar in nature, and the resulting formulas in K give rise to exponential-size models. (This

is why translations of QBF formulas are used as benchmark problems for modal logics [74]-

they tend to be hard7.)

For labelled formulas we have a similar but slightly diminished negative result, in that the

problem class is chosen outside QBF2:

Proposition 4.7.10 There is a family of valid formulas in QBFz of size O (n) whose trans-

lations via X have only models of size 0(2n) .

Proof: Take the fa.mily of formulas:

where p(pl, . . . , pn, ql, . . . , qn), written in set form, is:

The ++ operator is used for convenience; each formula above can be replaced by a set of

up t,o four disjunctions with up to the* 1itera.l~ each. Using * better conveys the setup:

Variable qi is true iff an even number of variables out of pl, . . . , pn is false. Since suitable

assignments for the qi can be found for any variable assignment to pl, . . . , p , , this QBF is

valid. However, we will show that these assignments cannot be expressed concisely as a

model in CBC. The main idea. of the proof is tha.t qn is assigned true whenever an even

'111 f x l , a model with ecuctly 2n-m worlds call bc found if wc allow worlds lo bc accessible to tl~cnisclvcs.

 h his is also the reason why a Llieorenl prover should implement optirriizalion techniques which allow it
lo find non-slricl Kripke modcls, as il may lhcri be able Lo "break" lhc cxponerilial-space harrier in some
problcm instances.

CHAPTER 4. LABELLED FORMULAS 109

number of pi is true. That means, in any two valuations which differ in only one of the

variable assigrirner~ts tro the pi, q, has opposite truth assignments. This rnakes it impossible

to use * in any of the label positions corresponding to the pi, but we have to use ground

labels for each of the 2, different combinations of variable assignments to the p - i .

By Proposition 4.7.9, X(cp,) has 2, ground instances of length 271, namely xl . - . x,c . . . c,

where each xi takes one of the constants c~ or c l . Assuming we have a model M for

X(cp,), let us explore its properties. As we know, all rgl of A(%) must also be real-

ized in M . Furthermore, M must satisfy all formulas in X(p,), particularly the formula

*2n cp(pl, . . . , p,, ql, . . . , 9,). We apply Theorem 4.4.21 to conclude that for every rgi y of

2n we must have M(y) EZ ~ (~ l , - . . , ~ n , q l , . . . , q n) ; since ~ (~ l , - . - , ~ n , q l , . - . , q , ') is prop

sitional, this is the case iff M(y) provides a (partial) propositiorial truth assigiin~cnt satis-

fying this formula. Finally, X(p,) contains formulas *i-1~T*2n-i Pi and *i-1~I*2n-' -'Pi ,
for i = 1,. . . n. Again by Theorem 4.4.21, we conclude that M(y) contains E pi iff the i th

position of y is CT, and E -'pi iff this position is e l .

Now look at the setup of cp(pl,. . . , p,, ql, . . . , 9,); to determine its truth value, all variables

pl, . . . , p,, ql, . . . , q,, must be assigned. Hence, every proposit,ional variable rnust bc inen-

tioned in some assertion in We focus particularly on q,. Consider a fixed y, wlog so

that contains the assertion E q,. This assertion must correspond to an original asser-

tion in A d of the form a q, with a C y. Assume a has * in some position i 5 n. Hence a has

another ground instance y' which differs from y only in position i , where one of them has

the constant c~ and the other c l . Now since q, was assumed to be true in M(,), an even

number of pi must be false in M(y). From the correspondence we have found above between

the first n positions of y and the assignments to the p,, we conclude that an even number

out of the first n positions in y is e l . Since y' differs only in one position, it has an odd

rluinbcr of c l in its first n positions. By the samc arguinc?nt i11 reverse, an odd nn~nber of pi

is assigned false in SO q, must be false also. Thus M must contain another assertion

a' lq,, and y' is an instance of both a and a'. But this means that A! is not clash-free,

contradicting the fact that M is a model. Hence we must drop our assumption that a has

* in any of its first n positions.

This argurncnt applies to any of the 2, different ground instances y. Each of these must

give rise to a distinct a q, or a l q , , so M must contain 0(2,) assertions mentioning q,

alone. 0

CHAPTER 4. LABELLED FORMULAS 110

As for proving a positive result, finding a large class of formulas which do offer a polynomial-

size model, we face one difficulty: So far, we have only been concerned about the existence of

a model, regardless of its size. Now we would like to make a statement like "If has a model

at all, then it has a polynomial-size model." We will not be able to prove something like:

"If has a model, then this model has to be at most this large." As we know, models can

be arbitrarily large. For translations of QBF, however, we can exploit the regular problem

structure in order to find "s~nall" models which are guararitwxl to exist (if the formula is

satisfiable a t all). Let us revisit Proposition 4.7.5:

Proposition 4.7.11 Given a propositional valuation V on pl , . . .p j , j 5 n,, define li from

pi for all i 5 j , as in Proposition 4.7.5. If e (p l , . . . ,p j) is valid under V , then there exists

a model for X(pj(pl,. . . ,pj)) U { P - j li : i < j) containing exactly the following types of

assertions:

5 1 . - 0 xi - j -1~ pi and/or X I . . xi-j-lc where Qi = 3pi7 i 2 j + 1: and

XI . . . xi-j-I is a label made up of constants and * which is realizable in X(cpj(pl , . . . ,Pj))7

P - j li for any i < j.

Note that there are a t most 2n assertions of the first and third kind combined; but of the

second kind there may be exponentially many in any given model.

Proof: Look at the relevant parts of the proof of Proposition 4.7.5. In the case j = n,

we seek a model for the set S = {p,(pl,. . . ,pn), 11,. . . ,I,). Theorem 4.4.15, applied to a

formula with empty labels only, grants that for any such model M , M U { E T) contains an

atomic cover TA for S , and of course it must be clash-free. But as we stated in Proposition

4.7.5, any cover for S must contain 11, . . . ,1,. We easily see that {T, 11, . . . ,1,) is already a

maximal clash-free set of atoms, and since a model was guaranteed to exist, {E 1 1, . . . , E 1,)

must be a model.

Now look at the proof of the recursive step from j + 1 to j. In the existential case, our

hypothesis states that syst,cm (4.13))which we found to bc of the forrn S U {F)-has a

model Ai' consisting of assertions of the form

CHAPTER 4. LABELLED FORMULAS 111

. X I . . . xi-j-2c *n-a pi and/or X I . . . xi- j-2~ *n-i ,pi, where Qi = 3pi, i 2 j + 2, and

2 1 . . - xi-j-1 is realizable in (pl, . . . , P ~ + ~)) ,

P-j-' li for any i 5 j ,

In accordance with the proof of Lemma 4.7.4, part (2). we define a model for system

(4.14)-which was known to be of the form * S U {c F): Prefix the last assertion in the

above enumeration with c, and prefix all other assertions with *. As shown in the proof of

Lemma 4.7.4, this is a model for system (4.14), and we check easily that also contains

exactly the types of assertions proposed.

Now consider the universal case. By the hypothesis, the two sets in system (4.15)-which

were found to be of the form S U St and S U S", respectively- have respective models M t

a i d MI1, coiisisting of:

P-j-l li for any i 5 j ,

plus *n-j-l pj+l in A l l , and P-j-l l p j+ l in MI1. Now the proof of Lemma 4.7.4 part (3)

provides us with a model M of system (4.16) which has the following properties:

Since P-j-' p j + ~ and *n-j-l -pj+l are unique to their respective models, M contains
cT*r~-j-l pj+1 and cl P-jP1 lPj+ 1 ;

therefore, CT and c l already exist in M , and we need not add CT T or c l T;

For every universal Qi, the two assertions *i-j-2~T*n-i pi and *i-j-2 cI P-' l p i are

identical in M t and MIt, so the corresponding assertions in M are * ' -~ - 'CT*~-~ pi and
*i-j-1 c ~ * ~ - ' ,pi.

For the existential Qi the various labels XI -xi-j-2 in MI and MI1 may differ, so

the corresponding assertions may be prefixed by any of CT, c l , or *, yielding the

CHAPTER 4. LABELLED FORMULAS 112

assertions included in M. However, X I - . - xi-j-2 is realizable in X(cpj+1 (pl, . . . , P ~ + ~))

xcording to the hypothesis; now the rgis of X(pj(pl,. . . ,pj)) are exactly those of

X(cpj+l(pl,. . . ,pj+l)), with CT and c l prepended. This guarantees that the extended

labels X Q X ~ . - -xi-j-2 are always realizable, no matter whether XQ is *, CT, or c l .

To summarize, the model M cont,ains only the types of asscrt,ions st,ated in t,hc ~)roposition,

which completes the proof of the recursive case. 0

Corollary 4.7.12 Given a valid QBF po = Q1 . . . QqL cp(pl,. . . ,pqL), the translation X(cpo)

h,as a m,odel M ~ontaining emctly the following types of assertions:

i-1 CT~-' Pi and *i-l~I*n-i -pi, where Qi = Vpi, i = 1, . . . , n,

Proof: Again this is just Proposition 4.7.11, written out for j = 0. 0

A few observations on these models are in order. First, all labels in M are realizable in X(cp).

In fact, we easily see that I (M) = I(X(cp)). In other words, A4 does not have amny realized

ground label other than those "prescribed" by the problem. Secondly, for the universal

quantifiers Qi, M defines only the two assertions *i-l cTP-' pi and 2-l cIP-' l p i , as

required by X(cp). The only "slack" in A 1 is in how the zl - . xi-1 in all the existential Qi

are defined, aad how many of these la,bels are needed to specify M completely. These labels

are also the only part of M which may be exponentially larger than cp. (As a matter of

fact, exactly this happened in our example in Proposition 4.7.10.) We already know from

Proposition 4.7.9 that X(cp) has 2n-m realized ground labels of length n, where n - m is the

number of universal quantifications in c p ~ . The size of a model can be bounded in a similar

way:

Corollary 4.7.13 If c p ~ is a valid QBF with n - m universal and m existential quantifica-

tions, then X(cp) has a model with at most m,2n-m + 2(n - m,) assertions.

Proof: Consider a, fixed i so that Qi is existential. (If no such index exists, we can skip this

first part.) In the proof of Proposition 4.7.11, consider the maximal number of assertions

mentioning pi in a model of cpj(pl,. . . ,pj) over all valuations on pl, . . . ,pj. As long as j 1 i,
only one n ~ ~ t i o n mentions pi, rmrnely *n-j li. For eadl step j < i of Proposition 4.7.11

CHAPTER 4. LABELLED FORMULAS 113

where Q j is existential, the number of assertions does not increase, whereas for universal Q3

it doubles at worst, as two rnodels are combined into one. In total 2n-n' assertions rrlerition

pi, and there are m indices i so that Qi is existential, for a total of at most m2n-m assertions.

Each universal Q, contributes exactly 2 assertions as we see from Corollary 4.7.12, which

contributes another 2(n - m) assertions. 0

We are now ready to address our original quest for classes of formulas with polynomial-size

~nodels:

Proposition 4.7.14 If cp is a valid formula in QBF2 with m existential and n-m universal

quantifiers, then X(cp) has a model of size 0(n2) .

Proof: Consider the possible labels in Corollary 4.7.12. In QBF2 the existential quantifiers

are all located at the beginning of the formula, so the only constant occurring in the first m

positions of any label is c. Therefore, the labels zl - - . xi-lc preceding the assertions which

mention any existentially quantified variable p, have only one rgi, namely the label ci. In

fact, any * in these positions . - . xi-1 can be replaced by c, thus obtaining an equivalent

model for X(cp). In this model there exists only one assertion mentioning each of pl, . . . , pm.

For the universally quantified pi, we have two assertions each, for a total of O(n) assertions,

each with a labcl of length n. 0

To summarize, we have demonstrated that the class of translations of QBF2 gives rise

to polynomial-size models for all satisfiable formulas, whereas in the comparable class of

translations of QBF2 into K only worst-case exponential-size models exist. We have thus

shown how for a large and interesting class of problems, reasoning with translations into

LBL is more powerful than reasonirlg with translations ir~t~o K. (For QBF3 and highcr,

as well as for the duals QBF2 and higher, we demonstrated that there are no general

polynomial bounds for translations into LBL.)

This completes our discussion of theoretical upper bounds for the size of models. Although

the strong ~nodels we definc in the next t:liapt,er arc more expressive than the weak mod-

els discussed here, they will not provide an improvement on these general upper bounds.

Instead, they will serve our goal of developing a powerful algorithm for finding models effi-

ciently. But as it turns out, their greater expressivity will often result in smaller models i n

practice. We will even exhibit families of problems whose models are reduced in size from

exponential to polynomial.

CHAPTER 4. LABELLED FORMULAS

4.8 Non-strict Kripke Models and Labellings

In our discussior~ so far, we have cornpitred the conciseness of ~nodels in CBC to that of

strict Kripke models only. In particular, Corollary 4.5.14 gives an upper bound for the size

of models M for strict labellings of in terms of the size of strict Kripke models for a. This

restriction is not fair though; as we have already pointed out, it unduly limits the potential

for reducing the size of a satisfying model. We already discussed this in Section 3.3. On

the other hand, we sholild not lin~it ourselves to strict labellin,gs either, which would restrict

the potential of finding small models. However, as we have already noted, it may be hard

to guarantee whether a non-strict labelling preserves the satisfiability of the problem.

Apart from that issue, we will find that models for non-strict labellings do not correspond

a5 niccly to non-strict Kripke modcls; f~rt~hermore, we will rmt be able to give a poly~~ornial

upper bound for the model of any labelling of a , in terms of a minimal-size non-strict

Kripke model for a. But as we will see, the counterexamples are quite contrived, so there

is reason to believe that this worst-case behaviour is rather theoretical, and that models for

CBC-formulas are not worse (but on the contrary, more concise) than their Kripke model

counterparts in practice. The examples will provide a deep understanding of the difference

between labels and modal operators.

It is helpful to categorize non-strict Kripke models as follows:

Cyclic models: models which have cycles such as loops or backward arcs. See Example

4.8.1 and Figure 4.3.

DAG models: acyclic models in which multiple paths exist from wo to some world w. See

Example 4.8.4 and Figure 4.4.

Non-strict trees: tree models which do not match Definition 3.4.1. See Example 4.8.7 and

Figure 4.7.

Example 4.8.1 The set = {p, 0 p, 0 0 p, . . . , o"-' 0 p) (see Figure 4.3) has a cyclic

model K = ({w"), R, V), where wo R uio and V(p) = {wo). The size of K is O(l) , whereas

the smallest acyclic model has Ic + 1 worlds.

Our labelling algorithm does not allow us to assign the same label to formulas a t diffcrcnt

modal depth. In Example 4.8.1, a labelling using a minimal number of constants is S =

CHAPTER 4. LABELLED FORMULAS

Figure 4.3: A strict (toy) and a cyclic model (bottom) jor {p, 0 p, 0 0 p, . . . , 0"' 0 1 4 -

{p, c p, *c p, . . . , *k-lc p}, and it is easy to show that S is not only a rnodel for itself, but

also that it is mininlal. So any model for any labelling is of size 0(k2).

As we can see, the size of a minimal cyclic model for a set may be smaller than that of a

minimal acyclic model for a. However, the size reduction is at most linear--or quadratic, if

we ax:count for a linear amount of spxc to store world labels- in k = d(@). Here is how a

cyclic rnodel K = (W, R, V) can be translated into an acyclic model K' = (W', R', V') with

(k + 1) I W I worlds:

W1={(w, i) : w E W , i = O ,..., k}.

Proposition 4.8.2 If j = d(@) and K, w bk a , then K', (ur, i) kk for i = 0,. . . , k - j.

Proof This is easily shown using induction over d(@). Whenever in the course of evaluating

K, UY bk vo or K, w kk 0 no we evaluate K, ui' bk vo, no (where w R w'), respectively, we

can analogously evaluate K', (ur', i + l) bk vo, no in order to determine whether K', (w, i) bk
vo, 0 no; since d(vo) and d(no) are at most j - 1, we are guaranteed that d + 1 5 k - (. j - I) ,

which allows us to apply the proposition as an induction hypothesis. Full details of the proof

are left to the reader. 0

From this construction we immediately obtain what we have claimed above:

Corollary 4.8.3 If has a cyclic model K , then has an acyclic model of size 0 ((d (~)) ~ x

IKl).

CHAPTER 4. LABELLED FORMULAS

Figure 4.4: A DAG m,odel for (0 p1,O 1p1,O 0 pz, 0 0 1p2 , . . . , Ok-' 0 Pk Ok-' 0 lPk 1 -

So the space overhead for obtaining an acyclic model is low-order polynomial in d(@),

whereas d(@) is typically-but not ~iecessarily-logarithmic in I@[. If we could obtain small

models for labellings of @ from any acyclic model for a, these models would still be reason-

ably small compared to cyclic models for @.
DAG models, on the other hand, offer the potential for a substantial space reduction:

Example 4.8.4 Consider = (0 pl, 0 l p l , q 0 pz, 0 0 7 ~ 2 , . . . , Ok-' 0 pk, Ok-' 0 lpk) .

A DAG model for @ consisting of 2k + 1 worlds is given in Figure 4.4. A minimal tree model

for has 2k worlds at modal level 6, for a total of 2"+' - 1 worlds.

If we construct a labelling S from by rcplaciug each 0 with a distinct const,ant, thcn S

provides a model for itself, as we can easily see. Thus S has a model with 2k assertions.

Notice that is just a translation of the QBF Vpl . - -Vpk T. So the result about S can

also be obtained from Tllcorem 4.7.11. It is also worth pointing out that S is a strict

labelling. Thus, by using * in the model, even a strict labelling gives rise to a model which

is comparable to the size of the smallest DAG model for @.

Unfortunately, this promising demonstration of the expressivity of CBC does not generalize.

So far we did not mention that labels are slightly more rigid than the modal operators: While

0 cp says that cp is true in some successor of trhe current world w, the formula c F states

that F is true in the successor of the current label y which is labelled yc. Here we do not

have the flexibility to switch roles between the constants c. This fact has one very useful

consequence, namely that e.g. c (F A G) and c F A c G are equivalent, whereas 0 (c p A $)
-

'Notre though that a polynomially srnaller model may translate into an exponentially sn~aller time com-
plexity for finding a niodel. Assume all the p ln lhe forn~ula Q of Exan~ple 4.8.1 were replaced by p V q . Then
WP may havc 2k+1 conhinations of variablr assignnlcnts in K', but only 2 variablc assipmcnts in K. For
this reason it is a useful endeavour to find an equivalent of cyclic models for labellings. We will sketch a few
ideas in Chapter 7.

CHAPTER 4. LABELLED FORMULAS

I
'P, q 'P, q

'P! 'q

P, 'q P, 'q

Figure 4.5: A "ladder graph" model for @ i n Exarr~ple 4.8.5.

and 0 cp A 0 t+b are not. (The latter corresponds more closely to the labelling c F A c' G.)

But this convenience comes at a steep price: We can construct families of KNNF-formulas

which have polynomial-size DAG models, but any labelling (whether strict or not) has only

exponential-size models. The construction is somewhat intricate, but it reveals how the

rigidity of labcls stands in the way of finding sinall models:

Example 4.8.5 Cor~sider the set

where @i = {a i 0 p, 0' 0 i p , ai (q + q (p ++ q)), (i q + 0 (p ++ iq))) . (The expressions

involving + and ++ can be replaced by suitable expressions in NNF.) We can describe this

set of formulas as follows: In the root world, q must be true. Furthermore, each world w

has one successor in which p is true, and one in which p is false. In the successor world

where p is true, q has thc same t ru t l~ valuc as in w, whereas in the other successor q has the

opposite truth value. We can easily show that has a DAG model with 4k - 1 worlds as

shown in Figure 4.5. We notice that worlds are distinguished by the truth values on p and q,

which allows for only 4 distinct combinations. Furthermore, the truth values of a successor

of w depend only on the truth value (of q) in w and no other world in its ancestry. Hence,

from the third level onwards we can re-use successors, which prohibits further combinatorial

explosion. (In fact, we can construct a cyclic model with only 4 worlds, as shown in Figure

4.6, where the root world can be chosen among the two left-hand nodes in the graph.)

A translation of this example into labelled form is straightforward, so we do not write it out.

The only 0-operators of @ occur in ni 0 p, mi 0 l p . A replacement of these two 0 by the

CHAPTER 4. LABELLED FORMULAS

Figure 4.6: A cyclic model for @ in Example 4.8.5.

same constant would result in a clash, so we must label them with t,wo different constant,^

c~ and c l respectively. (The same constants can be reused for different i ; no clash can arise

from that.) Thus obtaining a labelling S of @, we see that S spans 2' realized ground labels

of length i . But this in itself does not prove that any model of S must be exponential in

size. Instead, we consider the truth values of q in the different instances:

Claim 4.8.6 For any model A4 of S and any ground label cl - - - c i , we have A4(,,...,) k, q

i f f an even number of constants in e l - . ci is e l .

Proof: As usual, this is proved by induction on i . For i = 0, M k1 q is evidenced by the

fact that q is an atom in S. Assurne the claim is valid for some i < k. (Wc will only discuss

the case M(,,...,) kl q, i.e. an even number of constants in cl . - ci is e l . The opposite case

is analogous.) From the induction hypothesis, as well as the labellings of the formulas in

Qi, we get the following requirements:

From these we infer that both c~ and c l must exist in M(, ,..., ,), and A!(,,..., ,,) and

Af(,,...,,,) must contain p and l p , respectively. While the last formula is verified (vac-

uously) by q being true in M(,, ...,), the sccond-last formula, ent,ails A4(,l...,i) k, * (p ++ q).

Hence, p ++ q is necessarily verified in both M(,,...,,,) and h/I(,l...ci,,). In the former, p is

already true, so we get AT(,, ...,,,) k1 q. (Note that the subscript cl. - GCT still contains an

even number of el.) In the latter, p is false, which entails M(,,...,,,) k1 i q . (This subscript

contains an odd number of cl.) In either case, the induction hypothesis has been verified

for all successors of length i + 1, so the proof follows by induction on i . 0

From here the argument follows that of Proposition 4.7.10: Suppose a q or a l q are assertions

in M . If a contains *, then it has at least one instantiation with an odd number of c l and

one with an even number of e l , so it either produces a clash, or M does not verify S. Hence

CHAPTER 4. LABELLED FORMULAS

Figure 4.7: A model JUT i n Example 4.8.7. JOT k = 3.

any model M for S must specify the truth assignments for q using ground labels only, which

results in ~ (2 ~) assertions, making Af exponentially larger than the Kripke model of Figure

4.8.5.

What if we restrict our choice of non-strict Kripke models to the third kind, namely tree

models? It turns out that even then it is impossible to give a polynomial bound for models

of labellings:

Example 4.8.7 Using the propositional variables pl , . . . , pk and q , we construct a set

containing the following formulas:

gi-10 gk-i
Pi i = 1, ..., k

gi-1 0 g k - i IP i i = 1, ..., k

gi-1 0 gk-i
(p j es pi) i = 2 ,.,.) k , j = l , ..., i - 1

mi-1 0 gk--i
(p j es Y P ~) i = 2 >..., k) j = l ,..., 2-1

((P I A . . . A pk) 4)

This set has k2 + k+ 1 formulas. The first two lines "span7' a Kripke tree K with 2i nodes at

depth i 5 k, similar to the strict model for Example 4.8.4, except that the truth assignments

to all the variables pi refer to the worlds act depth k. Notice that pi is uniformly assigned

true or false in all successors of the same world at depth i; in our discussion below, we say

that this world establishes the truth value of pi in all its successors at depth k. For k = 3

CHAPTER 4. LABELLED FORMULAS 120

the tree is shown in Figure 4.7. To preserve space, we have written pi or -.pi into the worlds

at depth 1: which establish the value of pi, rather t,hm ir~to all its successors at depth k.

The fifth line can be satisfied by assigning q to true in exactly the one node where all the

pi are true. It turns out that the formulas in lines 3 and 4 are also satisfied by this model,

which we can see as follows: Every node at depth i - 1 has one successor which establishes

pi and one which establishes -.pi. Therefore, for any variable assignment pj, j < i already

established in its ancestor nodes, there is always one successor in which pj and pi are a s s i g ~ d

the same truth value, as well as one in which p j and pi are assigned opposite truth values.

(It seems plausible that a theorem prover with optimizations would find this Kripke model.)

We do not have the same flexibility in choosing successors in CBC. In fact, we cannot replace

any two 0-operat,ors in the 2i forrnulas on the same level i by o m and the same constant. To

illustrate this, let us say we assigned the same constant in the formulas containing pj ++ pi

and pl 4+ lp i :

If j = I , the contradiction is obvious, so assume j # 1. The variables p j and pl themselves

are also found in two labellings of formulas in the first two lines, say:

Observe that the three labels *j-'cj P-j, *'-'c~*~-' , and *i-lc*n-i uni&; in any of its

realized ground instances, both p j and pl must be true. Moreover, pi must have the same

truth assignment as pj and opposite truth assignment from pl, which is impossible. For any

other pair of formulas, a sirr~ilar contradiction can be obtained. Thus a labclling S of GJ

using a minimal number of constants is:

*i-1 T*k4 % Pi i = 1, ..., k

*z-1 l*k-i
ci, 7Pi i = 1) ..., k

*i-1 T k-i cj * (pj * pi) i = 2 ,..., k , j = l , ..., i - 1

*i-I &,k-i
1 b j * l ~ i) 1:=2 ,..., k , j = l , ..., i - 1

* " ~ l A - . . A pk * 9)

CHAPTER 4. LABELLED FORMULAS 121

Let us first calculate the number of realized ground instances of *k. We see that exactly 2i
T I constants are introduced at each lcvel 2, namely q, , q, , . . . , cL1, cf-,. The grouid labels of

length k are arbitrary combinations of constants at each level, which results in 2 x 4 x . . . x

2k = 2kk! different realized ground instances.

Models may not necessarily be that large, as the placeholder * may be used in some instances.

(In fact, as a combinatorial curiosity, the truth assignments for pl, . . . , pk can be specified

by a total of 3k - 1 assertions, which is still polyiminial in 2k, t,he iiurnber of worlds in K.)

But we can give a superpolynomial lower bound for the number of assertions mentioning q:

Let y be one of the realized ground instances above, then q is true in M(,) exactly when

all pi are true. We can easily see from the formulas above that not all pi can be true if

any of the constants in y is cf. Conversely, in all labels consisting only of c: (where j may

vary), pl is assigned true, and all other variables are either directly assigned true (in case

j = 0), or they have the same truth value as one of the variables before, i.e. true also. So

the assertions a q in M must cover exactly all realized ground instances y consisting only of

constants c:. (There are exactly k! of these.) If a contained *, then * would be instantiated

by any cf as well, thus including ground i~istaiires in which q is not verified and leading to

M either containing a clash or not verifying S. Hence, all these a must be ground, so M

must include 9(k!) assertions which mention q alone.

Let us summarize our observations. Since k! is not polynomially bounded by 2k-though

growing much less than exponentially-we have provided a family of satisfiable formulas

any of whose labellings, if satisfiable, has only superpolynomially larger models than the

smallest tree models for each original formula. In our example, the tree model K is of size

2k which is not polynomial in the size of to begin with; but one can always "make it"

polynomial by "padding" @ with 2k "dummy" formulas which do not affect the model.

These last two examples do appear rather contrived. They both feature an exponential

number of realized ground instances, and truth assignments were based on some notion of

parity in the labels themselves; this prohibits the applicability of *. (This holds unchanged

even for the strong models we will introduce in the next chapter.) In more "typical" cases

one should expect that * will be of greater use.

Chapter

Strong models for LBL

El camino es largo y desconocido en parte; The road is long and partly hidden; we

conocemos nuestras limitaciones. Hare- know our own limitations. W e will create

mos el hombre del s igh XXI: nosotros the man of the 21st century: ourselves.

mismos. Nos forjaremos en la accio'n, W e will forge ourselves into a new shape,

cotidiana, creando u n hombre nuevo con through our everyday action, creating a

m a nueva te'cnica. new man using a new technique.
Ernesto (Cht?) Guevara, "El hombre nuevo"

5.1 Introduction and Motivation

Let us follow up on Example 4.1.1, where we have not yet specified the worlds in which, say.

y = 1 is false. Of course, these are the worlds with labels czcyc,, where % # 1. (The mutex

constraints forced us to assign y = 1 to false on these; we will not be concerned about

why, but rather about how these value assignments can be represented.) The assertions

2 -(y = 1)) . . . , *n* ~ (y = 1) accurately capt,ure these worlds. But this rq)resent,atnion is

still fairly redundant, especially when n is large. If we did this for all propositions in the

example, then we would need 3n2 assertions in total, counting those with positive literals

(*l* y = 1 etc.) as well.

This example reflects a very common situation in reasoning. (For another example, recall

the birds example from the ir~t,rotluc.tion chapter.) In the vast majority of instances, a

proposition has one default truth value assigned to it, such as "y = 1 is false", or "birds

CHAPTER 5. STRONG MODELS FOR CBC

not y=l

Y = l

Figure 5.1: The sets of cubes satisfying y = 1 and falsifying y = 1, respectively.

fly", and in a comparatively small number of instances, this truth assignment would lead to

a clash (because we know that penguins cannot fly, for instance), so we must assign opposite

truth values in these instances.

We will see that bbotli the cnt,ire space of irlstarices (e.g. those satisfying bird) arid the

sets of exceptional instances (e.g. those satisfying penguin, emu etc.) usually form a block

structure. By this we mean that the instances can be represented in closed form by just one

label with wildcards. Many of our results in the previous chapter rely on the block structure

afforded by simple labels with wildcards. For example, a label z l . . . z k can be viewed as

the concatrenation of its positiorls 21,. . . , xk; the set of grouild irlst,ances represerlted by

X I - - . xk is the Cartesian product of the sets represented by the xi--either some {q), or D.

The set diflerence of all default instances minus their exceptions (e.g. flying-bird), however,

does not have a block structure--usually, it cannot be represented by one label alone. In

the example above, we reestablish a block striicture by "slicing up" the set of i~lst~arlces

satisfying i (y = 1) into n - 1 blocks(p1anes): each block is represented by a label with

two *, namely *$*, q, = 2, . . . , n. But this approach is not generalizable, as we will see

in our next example. Instead, we desire to redefine our logic, allowing us to represent set

CXAPTEl3 5 . Sl'f(.ONG MODELS FOH CGC

Exceptions

Labels c l c2 c3

CHAPTER 5 . STRONG MODELS FOR. CBC 125

Example 5.1.1 In addition to the formulas in Example 4.1.1, we will introduce another

formula specifying a predicate h to characterize the set of all elementary cubes which are

invisible in Figure 5.1. In Figure 5.2, our n x n x n cube has been rotated to reveal these

hidden cubes. It is easy to see that a cube is hidden unless any of its coordinates is equal

to 1, so we write it out as

The same formula in negation normal form reads:

The formula Fl is easily satisfied by adding three assertions 1** -h, *1* -h, **I -h to the

set M; for whenever z # 1, y # 1, and z # 1, the conjunction is true, and we specified -h on

all other instances. To satisfy F2, we need to assign h to true in all ground instances where

none of the positions are equal to 1. These instances form the lightly shaded (n - 1) x (n -

1) x (n - 1)-subcube shown in Figure 5.2. This subcube does not contain a subspace (plane

or row) of the entire cube; so without the use of exceptions, wildcards cannot be used in

any assertions. Instead we must use (n - 1)3 assertions 7 h, where 7 ranges over all ground

instances of *** which do not contain the constant 1. If generalized to d dimensions, this

number would be exponential in d, the depth of h4. Using exceptions however, we can easily

write out the variable assignments as one assertion, namely A = (*** - {I**, *I*, **I)) h,

and include A in A4 as well.

Now how do we efficiently check that Fl and F2 are satisfied? One way is to adapt the bl
and kr relations of Chapter 4 to labels with exceptions. We will do this, but chiefly in order

t,o transfer some results into this chapter, not to facilitate p r a c t i d reasoning. Rccall t,hat

at least a na'ive implementation of bl, such as we used in the proof of Proposition 4.6.16,

forces us t o reason individually over each ground instance (this remains unchanged with

or without exceptions), which is unacceptable. Instead, one merit of our notion of labels

with exceptions is that they lend themselves to a novel way of reasoning "universally" over

labels. Let us illustrate how A4 verifies F2 above:

Ignoring for a moment that A specifies exceptions, let us Lipretend" that A = *** h. Then

the first disjunct in F2 is universally verified on the label *** preceding F2, which is sufficient

for showing that { A) verifies F2. NOW we must account for the exceptions specified in A,

CHAPTER 5. STRONG MODELS FOR CBC 126

that is, we must show that (h V (x = 1) V (y = 1) V (z = 1)) of F2 is also verified over the

institrlces I**, *I *, and **I. For this, we can cite the assertion I** (x = 1) which also exists

in M , so the second disjunct is verified on this instance. Likewise, the third and fourth

disjunct are verified on the instances *I* and **I, respectively. We have thus accounted for

all exceptions in A, which shows that M verifies F2. We will generalize this procedure into

a definition of a new semantic relation, written b,.

In our description, we. glossed over one inconspicuous but very in~portant detail: How can

we be certain that the assertions verifying F2 on the various instances of *** can simply

be "thrown together" into M, so that M still verifies F2? To do so requires the property

we have introduced in Chapter 2 as monotonic it^, namely that any superset of a set of

assertions verifying F still verifies F. This was trot true for the relation b1 in Chapter 4,

but we will prove it for b,, which constitutes a fundamental result of this chapter.

In order to rightfully call M a model, we also have to show that M is clash-free, which

becomes slightly more involved on labels with exceptions. Let us demonstrate the principle

on A and one of the other assertions in M, 1** -11.. The literals in these two assertions are

conq~lenrent,ary, and the tnai~i label in A, ***, unifies with I**, (and their tngu is realizable,

of course). So at first glance there appears to be a clash. But now observe that the mgu

1** is an exception in A, so the assertion does not "hold" on this instance. Given this, the

two assertions do not form an actual clash.

Now how do we handle cases where variable assignments have "exceptions to exceptions"?

Example 5.1.2 Consider a predicate e stating that an even number of faces of an elemen-

tary cube are visible. This predicate is true in all cubes except those on the three front faces

(with at least one coordinate equal to I) , but among these, it is again true in all cubes on

the three front edges (with two coordinates equal to l), except the cube 111. We need no

recursive constructs to handle these. The predicate e can be stated using a set of assertions:

(*** - {I**, *I*, **l}) e

(l l* - {Ill}) e

(l* l - {Ill}) e

(*I1 - {Ill}) e

How large, or how redundant, can this set of assertions get? If we generalized this example

to an analogous problem in d dimensions, we would be disappointed to find that a minimal

CHAPTER 5. STRONG MODELS FOR. LBL 127

set of assertions would specify 0(2d) labels. We infer that a set specifying deeply nested

recursions of exceptions is expensivc t,o represent. But we maintain that PSPACEproblems

of such a structure are intrinsically hard1, so we do not expect our own formalism to represent

these too efficiently either. One known example is the class of parity problems which we

have already encountered in the previous chapter. In fact, the example above is an instance

of the parity problem.

Bcfore we begin our formal treatment, let us introduce some rnore terrninology which will

be used, and give an overview of the structure of this chapter:

Complex labels are only used in assertions, not in labelled formulas in general. There-

fore, the language of CBC remains almost unchanged (see Section 5.2). However, the

relation b1 needs to be redefined for sets of assertions with complex labels. To dis-

tinguish our different flavours of logics, we subscript the "old" logic LBC of chapter 4

as CBLw (for "weak), and the logic admitting complex labels in semantic structures,

but with an adapted version of the old relation b1 as CBC, (for "cornplex"). The

necessary extensions to the definitions of labels, instances, and most general unifiers

are presented in Section 5.2. Finally, the logic defined by semantic structures with

complex labels and the new "monolithic" relation b, will be denoted as LBL, (for

L L ~ t r ~ n g ").

In a complex label a - C, we can reasonably expect that the exceptions in C are

instances of a; we do not formally require this, but we will single out such labels

as normalized and formally show that assertions are adequately represented using

nornlalized labels alone.

Section 5.3 in this chapter is devoted to precisely describing recursion on exceptions

and explaining how it works. Two notions from the previous chapter, constant-wise

realizability and satisfiability itself, will be redefined using recursion on exceptions, in

Sections 5.4 and 5.5 respectively. Section 5.5 also contains the new definitions for bl
and b,, respectively. In Section 5.6, we will make a necessary adjustment on how

to treat assertions with falsities so they can be used in verifying formulas such as

0 I. Finally, in Section 5.7 we establish theorems regarding the equisatisfiability of

'At least they are hard for any reasoning algorithm which can be polynomially simulated by resolution.

CHAPTER 5. STRONG MODELS FOR CBC 128

formulas between the three logics CDC,, CDC,, and CDC,, and provide algorithms

for converting modcls of one logic into nlodcls of another.

5.2 Complex Labels

As motivated above, we require a few extensions of earlier definitions and notions. Our first

task is to establish a distinction between existential and conditional constants:

Definition 5.2.1 Given a domain D of constants, a simple label is a string a over the

alphabet {c , [c] : c E D) U {*). W e call [c] a conditional and c an existential constant. A

label is ground i f it consists only of existential constants. Given a simple label a, we let

[a] denote the simple label obtained by replacing all constant positions c with conditional

constants [c].

Let us illustrate the intended meaning of conditional versus existential constants: As we

know, the assertion c p states that c exists (or: is realized) and p is true in this instance

c. By contrast, the assertion [c] p only states that i f c is realized, then p must be true in

this instance c. Thus the distinction between conditional and existential constants is only

relevant when we discuss realizability issues. Up to Section 5.4 we can think of [c] and c

as identical. In particular, they behave the same regarding instantiation: [c] instantiates c

and vice versa, and both instantiate *. As to the mgu (al, az), we introduce the following

convention: in any position where both a1 and 02 have the same constant c, if at least one

is existential, then that position in (al, aa) is c, otherwise [c].

The next two definitions are extensions of the C relation which will allow us to compare

two labels of different length:

Definition 5.2.2 For two simple labels a, a', we write a L p a' i f a is instantiated by a

prefi of a'. Conversely, we write a a' i f a prefix of a is instantiated by a'.

Definition 5.2.3 Given two labels a1 and a a = a!py so that (al,oL) exists, we define

La1,m~J = La2, (TI] = (a 1 , a ~) and [al,aal = [a2, all = (a l , a ~) a ~ as the lower and upper

m,gv of fa1 and 02, respecti?icly.

In other words, [al, az] is the longest and most general label a so that a1 I,C a and a 2 ,C a ,

and [al, a.21 is the shortest and most general label a so that a.2 C p a and a1 [I p a. Although

CHAPTER 5. STRONG MODELS FOR CDL 129

it is true that [al, az] = [al, an] = (01, an) whenever ol and a 2 are of the same length,

these notiom are 11ot an extet~siot~ of (., a) : If a1 and a2 are of different lt:ngth, (a l , 02) docs

not exist, and we wish to keep it that way. The old and the new notions of mgus will be

used in different contexts: Lower and upper mgus will often be used when a1 is a simple

label and a 2 is an exception of a complex label, or vice versa. The more restrictive unifier

(-, .) will be generalized to complex labels and used to determine if a label is realizable.

Definition 5.2.4 A complex label, or label with exceptions, is of the form a - C, where

C is a set of labels called exceptions; a i s called the main label. W e usually denote complex

labels by the letter A: and elements of C by the letter <. The length IXI of a label is defined

as the length of its main label.

A complex label is called trivial i f E E C, and normalized if a < for every < E C.

We motivate the intension of complex labels by introducing domains as in Definition 4.2.4:

Definition 5.2.5 Given a simple label a' and a complex label X = a - C, we say that a'

instantiates a prefix of X (A a'), if a p_C a' but < E p a' for any < E C. I n case a and a'

are of the same length, we also write X L a' and call a' an instance of A. Finally, we define

X Lp a', i f some prefix of a' is an instance of A.

Let r be a set of ground labels which contains E and is closed under prefiing. W e define

the domain of X wrt I?, 6(X, I?), and the prefix domain of X wrt I?, Gp(X, I?), as follows:

The E p in < E p a' is intentional: Exceptions shorter than the main label a are important

in order to express exceptions to the realirability of a (see Section 5.4), but in terms of

instantiation, they are to be treated as if they were of the same length as a (with the

remaining positions filled up with *). Therefore, o' does not instantiate X when some

exception < is instantiated by a p r e b of a'. As a special case, labels with E as an exception

do not have any instance, as we will show below. This is why we call such labels trivial:

they are vacuous and can be ignored.

From Definition 5.2.5 follow a number of facts analogous to those in Lemma 4.2.7:

CHAPTER 5. STRONG MODELS FOR. CBC 130

Lemma 5.2.6 Let a be a simple label, C a set of exceptions to a , X a complex label, c a

rx)n.stnnt, n71d r n set o j g7.ound labels cis i71 Definition 5.2.5.

(1) Gp(A, I') is closed under prefixing, and G(A, I') is the set of all ground labels in Gp(X, I')
of length IXI.

(2) I ~ E E C, then G (a - C, r) = Gp(u - C, r) = 0.

(a - C c , c) if E $Z C and c E r
(4) ~ C I T - C, r) = G([c](T - C, r) =

otherwise.

Proof: Part (1) can be easily derived from Definition 5.2.5: Consider y E Gp(X, r) and a

prefix y' of y. Since r is closed under prefixing, we can be sure that y' E T. Now since

a y, we certainly have a y'. Furthermore, no prefix of y (including y' and all its

prefixes) inst,anthtes any of the exceptions in A, which shows y' E Gp(A, I?). The second

statement in (1) is obvious.

To show (2), notice that E Cp y for any label y, so if E is an exception in C, no ground label

can be an instance of a - C.

If E $2 C, then all exceptions are of length at least 1; we keep this in mind when we transform

(for x = C or x = *):

The last step is justified by considering the types of exceptions XI<: First, exactly when x' is

neither c' nor *, X' g d is true, so these exceptions can be disregarded. On the other hand,

the exceptions a'< E C where z' = c or x' = * are exactly the exceptions so that < E C(~J) .

Now if x = *, then * C c' is always true, so we have:

CHAPTER 5. STRONG MODELS FOR CBC

which shows (3).

Finally, if z = c then s C c' iff c = c', so all labels in G (c a - C, r) rrlust begin with c. If

c 6 r, then no other label in r can begin with c, since r is closed under prefixing; hence

G(cu - C , l?) = 0. Otherwise we write:

This shows (4). 0

In (2) we showed that trivial labels are redundant. Likewise, non-normalized labels specify

retiundancies: their exceptpions have ir~st~ax~ces which are not even instarlces of the main

label. We would like to eliminate these redundancies and ensure that labels are normalized.

We accomplish this through the following procedure, which takes a label X = a - C and

returns its normalization I JX(I = a - IIClla:

Algorithm 5.2.7 Normalization of a label

Parameters:

a: the main label

C: the set of exceptions to normalize

Returns:

IIClla: the normalization of C

begin

foreach exception (do

if 5 la1 and La, (1 exists

set (:= La,(]

else

delete (

end if

done

return C

For instance, the normalization of the label clc2 - {clcl, *} is clc2 - {ci}. Of course, we

must give justice to the name of our algorithm:

CHAPTER 5. STRONG MODELS FOR. LBL 132

Proposition 5.2.8 The normalization of a complex label i s normalized. Noma l i za t i on

does n,ot ch,arr,ge a label which i s already normalized. Furthenr~,ore, Gp(X, r) = Gp(llXll, r) for

any domain I' as in Definition 5.2.5.

Proof: Following Definition 5.2.3, we noted that a La, <J and < La, [J . Since all

exceptions remaining in llXll are of the form La, [J, the first of these instance relations shows

that llXll is normalized. Conversely, if X is normalized, then we already have a [and

trivially [pL [. There obviously cannot be any longer or more general label for which this

holds, so we conclude [= La, [J. Furthermore, a [implies that [is no longer than a ,

which prevents it from deletion. Altogether every exception in C remains unchanged, hence

C = IICllo.

Finally, let us prove the set equality !&(A, r) = Gp(IIXll, r) . All ground instances of either

set must instantiate the main label: a pE y, and they are excluded iff they instantiate an

exception in C and IICllo, rcspcctivcly. SO we will show t,hat out of Gp(a, r) , C and llCllo

exclude the same set of ground instances. So assume that a y and [Cp y for some [E C.

First, this implies that ! < I 5 lyl 5 101, so any exception [which is strictly longer than a

does not exclude any ground instances. Secondly, let y' be the prefix of y of length 1[1. Then

o y' and [C y', so from the remark following Definition 5.2.3, we infer that La, [J exists

and La, [J C y', which further implies La, [J Lp y. It necessarily follows that all [deleted by

the algorithm (because La, <J does not exist) do not have any ground instances; and for those

[not deleted, all ground instances of < are instances of La, [J , the exception replacing them.

Therefore, all ground instances in C are ground instances in IICllo. Conversely, consider any

ground instance y in IIC l l o . Then La, [J Ep y and I < I 5 la1 for some [E C. Now the second

instance relation mentioned at the beginning of this proof can be sharpened to [C La, [J,

and using transitivity, we conclude [Lp y. Hence, y is also a ground instance in C. This

concludes the proof that Gp(X, I') = Gp(1 1 X 11, I') . 0

From now on, we will implicitly assume that all complex labels are normalized and trivial

labels are removed from any set of labels as thcy occur. (Some of the propertics we will

define must be explicitly verified to be unaffected by--or invariant wrt-normalization and

removing trivial labels. We will not fail to do so.)

Definition 5.2.9 The most general unifier (mgu) of two labels XI = a1 - El, X2 = a:! - C2,

so that (a l , a2) exists, i s defined and denoted by (XI, X2) = (al ,a2) - llCl U C211(al,az). If

additionally G((X1, X2), D*) i s nonempty, we say that XI and X2 unify.

CHAPTER 5. STRONG MODELS FOR. LBL 133

Notice that even if (al, a2) exists, the mgu (A1, XP) may be vacuous, i.e. G((X1, Xg), D*) = 0.
Consider X1 = * - { c) and X2 = c, then (A1, X2) = (*, c) - { c) = c - { c) which, though

normalized, has no ground instances.

As expected, the mgu of two labels represents the intersection of their domains:

Proposition 5.2.10 For any two labels X1 = a1 - C1, X2 = a 2 - C2 and any r as i n

Definition 5.2.5, we have G((X1, X2) , I?) = G(X1, r) n G(X2, r).

Proof: The common ground instances y of both X1 and X2 satisfy a1 E y, 0 2 L y,

< Z p y for any < E C1, and < Zr, -y for any < E C2. This can be written equivalently as:

(al , c2) L y, and < gp y for any < E C1 U C2, which says exactly that y is a ground instance

of (a l , 02) - C1 U C2). Now (A1, X2) is obtained by rlorrnalizi~~g tlhis label; as we showcd in

Proposition 5.2.8, normalization leaves the set of ground instances unchanged, whence the

theorem follows. 0

Complex labels are designed for use in the assertions constituting the semantic structures,

and we are now ready to modify the definition of assertions accordingly. We also extend

the ~ lo t~ io t~ of sub~cript~ed sets, whicll not, only includes thc familiar M(,) and Af,,), but also

M(,) and M(,), for arbitrary simple labels a :

Definition 5.2.11 An assertion (with a complex label) is a formula of the form X a , where

X is a complex label and a is a propositional atom. A constant c exists (or occurs) i n a

set of assertions M, if M contains an assertion with a nontrivial label of the form ca - C

(where c is an existential constant).

For a set M of ussertions without tnwial labrls and a m m t a n t or wildcard x , we dejinw

M(,) as the set {(a - C(,)) a : (xu - C) a E M or (*a - C) a E A ~ , E $! C(,)). For

a = X I . . xk and an arbitrary set M of assertions, we define M(,) as M without trivial

1abe1s7 and M(U) = (((M(E) (X I) ' . -1 (x k) '

Notice that M(,) is formally, but not practically, distinct from M , as labels with trivial

labels contain no information.

Subscripting is affected by exceptions, in that they can make an assertion disappear from

M(,). For instance, consider the set M = {(*I - (2)) a) . (That is, C = (21.) Upon

subscripting by the constant 1, we get A4(1) = (1 a) . But upon subscripting by 2, we have

C(2) = {E), so the assertion (1 - {E)) a has a trivial label and must be omitted, which

yields M(2) = 0. This is in line with the intended reading of the original assertion which

CHAPTER 5. STRONG MODELS FOR cac 134

says: "In all instances but 2, the constant 1 exists and a is t rue in it." We will examine the

generalization to M(,) below in Proposition 5.2.15.

A simple observation states that subscripting is invariant under normalization:

Proposition 5.2.12 Let M' be the set obtained from M by normalizing all its labels ac-

cording to Algorithm 5.2.7. Then for any sinqde label a, the set M' i s identical to the set (4
obtained by normalizing all labels in ill(,,).

ProoE It is easy to see that the general result follows iteratively from the special case

where we have a set M without trivial labels, and u = z is a one-element label. According

to Definition 5.2.11, M(,) collects labels (u - C(,)) a so that (d o - C) a E M , whereas

x' = x or x' = *, and E @ C(,). These labels get normalized to (a - JIG(,) 11,) a. On the

other hand, if the label in M gets normalized first, it becomes (x'u - IICllxtu) a, and upon

subscripting, the corresponding label in Aftx) is (u- (IICl\,to)(,)) a. We remark that E @ C(,)

iff E $! (IICllXtu)(,), which follows from the equivalent observation that neither x nor * are

exceptions in C iff they are not exceptions in IIC1lr~u. (These two one-element exceptions

could not have been erased in the normalization of C, because the main label xu must be of

length at least 1 itself, and both x and * unify with xu. The only change which may occur

is when x' = x = c and * is an exception in C; this exception would be instantiated to c,

which is still equal to x.) It is now clear that corrcspondi~ig assertions are collect,ed into

M(,) and Mi,). It only remains to be shown that IIC(,)) I , = (IICllrtn)(,). Thus consider any

exception xu(in C. A corresponding label J is found in C(,) iff x" = x or x" = *. Let us

compare the criteria for retaining and modifying J and x"J upon normalizing C and C(,),

respectively :

0 IJl < 1 0 1 ; this is the case iff xu< 5 Ix'ul.

0 La, IJ exists; which is iff Lx'o, z1'<J exists, as both z' and z" are instantiated by z.

0 The normalized exception becomes la, < J ; compare this with [x'u, x"<] = (x', x") la, J J .

Upon subscripting by z, this latter exception gets shortened to La, JJ , which completes the

proof of IIC(x) IIU = I I ~ I I x ~ u) (x) . 0

As a consequence, normalized labels remain normalized after subscripting:

Proposition 5.2.13 If all labels of M are normalized, then so are all labels of ill(,,).

Proof Let M' be the normalization of M as in Proposition 5.2.12; then MtV) is established

as the nor~nalization of A[(,). By Proposition 5.2.8, if M is ~~or~nal ized, t l ~ e r ~ M = MI. But

then also M(,) = M b) , SO M(,) is invariant under normalization, which means that it is

normalized. L3

Subscripting M by * or by any other label a involving wildcards seems to give rise to novel

sets M(,)+ifferent from any sets M(r) we can produce with ground labels -(. But as it

turns out, there are no novc:l sets at all:

Proposition 5.2.14 Any simple label a has a ground instance y so that M(,) = M(r).

Proof: We find the ground label y simply by replacing all occurrences of * in a with

a constant c E D which does not occur anywhere in Al. We do the proof for a = *; it

generalizes to arbitrary labels in an obvious way. First, since c is new to M , no assertion

(ccr - C) a exists in M , so all "candidates" in M are of the form (*a - C) a. Secondly, we

have C(,) = C(,), since no exception in M contains c either. This shows that M(,) and M(,)

in Definition 5.2.11 are identical. 0

As the proof demonstrates, M(,) can be viewed as the set of assertions which have to hold

in a "generic" instance of *, or in an instance that may be introduced into M a t a later

t h e . (Note that the same is true for the exceptions of a label: only tl~c: "generic" exccp

tions beginning with * are carried over into M(,), with the initial * omitted. "Specialized"

exceptions beginning with constants c have no influence on M(,). Instead, these exceptions

will require special consideration by taking M(,). (We touched upon this issue in Example

5.1.1; we will address it in generality in the next section.)

Many of our previous inforrnal remarks on subscripted sets are slnnmarixed in the following

important closed-form characterization of M(,) (see the end of this section for an illustrative

example) :

Proposition 5.2.15 For wry set M of assertio71,s utith,out trivial lahels and arry sirn,plc label

a , M(,) is the set of assertions (a" - C") a for which all of the following are true:

(1) M contains an assertion of the form (a'a" - C) a.

CHAPTER 5. STRONG MODELS FOR. CBC

(4) C" = C(,) = {J" : J'J" E C, I' a}.

Proof: For M(,) all these are trivially true, with a = a' = E, C" = C, and It = E. Notice

that co~iditio~i (3) is trivially true, since M is devoid of assertions with trivial labels.

Now assuming the proposition valid for a , we will prove it for ax. By Definition 5.2.11,

MtX) is the set of assertions (a" - CYX)) a so that E $ C&), and (xo" - C") a E or

(*att - C") a E M(,). By applying the induction hypothesis, we reason:

0 M has an assertion (a'xa" - C) a or (ot*a" - C) a, and a' 5 a. We substitute 6 in

place of a'z or at*, and write the assertion as (60" - C) a, and 6 C ax. (Note that

all such a'x and a'* are the only labels in A l which are instantiated by ax, and no

other assertions in M can give rise to any other assertion (a" - EL)) a in M(,,). So

we have established conditions (1) and (2).

Using Definition 4.2.6, we transform:

q x) = (q u) 1 (x)
= {Jt' : xJlt E C(,) or *Jtt E C (,) }
= {J" : <'xJtt E C or J'*Jf1 E C) <' E a }

= {<I' : Zi t" E C, Zi 5 ax).

This sllows coiiditiorl (4).

0 J gp a for any t, E C. This is the case iff t, I& a x for all exceptions J of length

at most la1 in C. We need to show this ((ox) also for all exceptions (E C of

length la1 + 1 = 1~x1. But we stipulated that E $ C'&); by (4), this is equivalent to

c g a x for all exceptions E C, which is exactly what we needed to show. (The Iength -
requirement ((1 = lax1 is implicit in the 5 relation.) This establishes condition (3).

We have thus shown that the proposition holds for M(,,), provided it does for M(,); the

principIe of induction on simple Iabels entails t l ~ c proof. 0

Remark 5.2.16 In the settin,g. of Proposition 5.2.15, w e sa:y that the assertion (ata"- C) a

contributes an assertion, namely (a" - C") u, to M(,). By joining conditions (2) and (3)

together, we see that an assertion X a contributes to M(,) exactly i f X pp5 a.

Example 5.2.17 The characterization of Proposition 5.2.15 is best understood from the

point of the original set A4 and its assertions contributing into M(,). Consider the set

M = {(** - { * l)) p, *1 l p , (*** - {**2)) q, **2 l q , (** - (1 1)) r , 11 l r) and a = *1:

CHAPTER 5 . STRONG MODELS FOR. CBC

0 Since 11 a in (2), 11 l r does not contribute to M(,).

0 Since *1 IT a, *I l p contributes the assertion E i p to Ill(,). (We have a" = E.)

Since ** C a, **2 l p cont,ribut,es the assertion 2 i q to M(,). (We have a" = 2.)

Although ** & a, (** - {*l)) p does not contribute to M(,), because its label has an

exception *1 C p a, violating (3) .

By contrast, 11 gp a, so (** - (11)) r contributes the assertion E r to M(,).

0 Likewise, **2 gp a, because a is shorter than **2. Howcvcr, this exception is of the

form <I<" SO that <' = ** C a , so the assertion contributed by (*** - {**2)) q is

(* - (2)) q, with an exception 2 according to (4).

To summarize, the subscripted set is M(,) = {E l p , (* - (2)) q, 2 l q , E r) . See next section

for some more examples.

5.3 Exception-Generated Instances

In this section, we explore the "geometry" of labels with exceptions and how they lend

themselves to reasoning "monolithically". By considering generic operators and properties

defined on formulas and sets of assertions, we will establish general principles in regard

to subscripting and itlstat~tiatit~g, as wcll as the itnportatlt property of monotoni<:it. The

results of this section will be applied throughout the remainder of this chapter.

Proposition 5.2.15, a closed-form characterization of subscripted sets, already steers us away

from the position-wise characterizations of Chapter 4 (e.g. for the bI relation). We observe

that subscripting is a monotone operation, at least in one sense:

Corollary 5.3.1 For any two sets of assertions M , MI, if M C MI, then M(,) C M{r, for

anyj simple label a.

This is because M(,) is generated "element-wise": Whether an assertion M contributes an

assertion into M(,) does not depend on any other assertions which exist in M , or which

may later be added to Al. But is subscripting also monotone with respect to a, that is, if

a C a', does M(,,) include all assertions in M(,)? For sets of assertions with simple labels,

the answer is yes:

CHAPTER 5. STRONG MODELS FOR. CBC

6
main label p E 6

5

main label p E a
\

some exception Lp 5
hf(,)

4 \
,'

Ad(*)

1

\

Figure 5.3: How M(,) antd Ad(*) are jormed jrom some set A l , for 0 C 6.

Proposition 5.3.2 I j h l is a set of assertions with simple labels (that is, with empty sets

of exceptions i n every assertion), and a L 6 , then M(,) C M(*).

Proof: The conditions in Proposition 5.2.15 for a" a to be an assertion in M(,) reduce to:

M contains an assertion of the form a'a" a.

(It is obvious that C" is empty, i.e. all labels in M(,) are simple.) From a' C a and a E 6

we also get a' E 5 by t,ransitivit,y, so a" a is also an assertion in Ad(*). This proves t,he

proposition. 0

In sets of assertions with exceptions, however, the monotonicity property is lost. Let us

consider a moderately intricate example:

Example 5.3.3 For M = {*l p, *2 l p , l * q, 2* l q , (** - {*I)) r , (** - {I*)) s), we have:

None of these four sets is c:omparable with any other.

CHAPTEH. 5. STRONG MODELS FOR. CBC 139

Now consider the general case, a set M of assertions and two labels a E 5. The assertions

in A4 are categorized as shown in t,l~e Venn diagrani of Figure 5.3; recall also the cl~aracter-

ization of M(,) provided in Proposition 5.2.15. We analyze which categories of assertions in

M contribute to M(,) and which to M(B):

If the main label a'a" does not have a instantiating its prefix a' (Areas 4-6), it does

not contribute to M(,). (Condition (2) in Proposition 5.2.15 is violated.)

0 If a' L a but a.11 exception E E C is iiistantiated by a prefix of a (Area l) , the assert,ion

does not contribute to M(,) either. (Condition (3) in Proposition 5.2.15 is violated.)

0 In all other cases (Areas 2, 3), the assertion contributes to M(,).

0 Presuming that all labels are normalized and that a L 6, we get the set inclusions

shown in Figure 5.3 with regard to the above three types of assertions, and the corre-

sponding types of assertions according to 5.

The assertions whicl~ contradict our assumption M(,) M(e) are those found in Area 2.

Their main label (or rather, a prefix of it) is instantiated by both a and 6, and some

assertion has an exception instantiated by a prefix of 5 which is not general enough to be

instantiated by a prefix of a.

Finally, the same assertion may contribute different exceptions into the corresponding as-

sertion in M(,) and M(5), respectively. To see the difference, consider Condition (4) in

Proposition 5.2.15. The exceptions E'' included in C" stem from those exceptions t'tN in C

whose prefix t' is instantiated by a. Since there may be exceptions where t' is instantiated

by 5 but not a, the corresponding assertion in M(5) may have exceptions not found in the

a~sertion in M(,). In Example 5.3.3, we find this exemplified by the assertion (** - {I*)) s:

it contributes the assertion * s (without exceptions) into M(,), and the (vacuous) assertion

(* - {*)) s into A i (l) .

In either case, these violations of the monotonicity property stem from exceptions occurring

in the labels in M . Therefore, the nature of exceptions deserves a thorough study which we

will provide in the rernaintler of this saction. We introduce tht: following terminology:

Definition 5.3.4 Given a set M of assertions and a simple label a, the set of exception-

generated instances (egi) of a in M is defined recursively as the smallest set for which the

following is true:

CHAPTER 5. STRONG MODELS FOR, cac

a is an exception-generated instance of a in M .

If a' is an exception-generated instance of o in M , and is an exception occurring

in some assertion i n M , truncated to the length of a2, then [of, (1 is an exception-

generated instance of o i n M .

This recursive definition gives rise to another induction principle, that of induction over the

exception-generated instances of a label a :

Corollary 5.3.5 Given a property Q (o f) definwd on a label o a~rd its e3:ccptio~~-generated

instances in M , i f Q (a) is true, and for all exception-generated instances a', Q (a f) implies

Q ([a', [I) for all exceptions [occurring in M , truncated to length 1 0 1 , so that [a', (1 exists,

then Q (a f) is true for all exception-generated instances a'.

Due to the nature of mgus we obtain the following easy conclusions:

Corollary 5.3.6 With a and M as above:

(1) Every exception-generated instance o f a i n M can be written as the iterated upper mgu

[a, t l , . . . , tnl, where ti, i = 1, . . . , n, are exceptions i n M , truncated to the length o f a ,

and n 2 0. Conversely, every existing such unifier is an exception-generated instance.

(2) I f a l and a2 are exception-generated instances o f a i n M : then so is (al , a 2) , provided

this mgu exists.

(3) Every instance a' o f a has a uniquelg defined least general exception-generated instance

6 so that 6 C a'; that is, for all exception-generated instances 6 with 6 [I a' , we have

6 6.

(4) For a' and its unique exception-generated instance 6 i n (3), M(6) M(,t)

Proof: Part (1) is just an iterative version of the recursive Definition 5.3.4. For (2) , write

(T I = [a, t l , . . . , &,,l and an = [a, . . , tn+,,1 according to (1) . Then we can easily show

that (a l , 0 2) = [a , € 1 , . . . , &+,I, so the mgu itself is also an egi, as it matches (1) . In (3) ,

a' instantiates at least one egi of a, namely a itself. Now find all egis 6 instantiated by a',

and take their mgu 6 (which exists since all 5 have a common instance); we claim this to

"ha2 is, eilher J i s a n exception of lenglh al most 1 0 1 , or it i s the length.-lo) pw$x of a longer exception.

CHAPTER 5. STRONG MODELS FOR. LDL 141

be the sought least general egi. First, being the mgu of egis of a, u is also an egi of a by

(2). Secondly, since all 6 are instantiated by a', so is u. Finally, every egi instantiated by

a' is instantiated by their mgu 6, which shows that u is the least general egi.

To prove (4)) we will show that every assertion in M(6) according to Proposition 5.2.15 is

also in M(,I). Let (6" - C(&)) a E M(&) be such an assertion, and (3'6" - C) a a corresponding

assertion in M which contributed it. Then 6' C iT E d , and I gp iT for any (E C. If C

co~lt~airled an exception so that < LIP a', then [a', <l would exist and be an egi of a'. We

cannot have [a', (1 C u as this would imply (Lp 6, contradicting our assumption. But then

6 cannot be the least general egi, which contradicts our choice of 6 in (3). Therefore, < g p a'

for all exceptions (E C. Finally, C(&) is the set of all I" stemming from some exception

<'(" E C so that (' 6 , but then also (' E a', wllich shows t,hat <" E C(,t). Coliverst~ly,

assume there existed an exception (I' in C(,t) but not C(&). This exception must derive from

an exception (I<" in C so that a' L <' but 6 <I. Then once again we would have found an

egi [a', <'I = (' which is not instantiated by 6, contradicting our choice in (3). Hence C(,t)

and C(&) must be identical, and we have verified in accordance with Proposition 5.2.15 that

(6'6" - C) a contributes t,lie same assertion (6" - C(&)) a to A'f(,t) as it docs t,o A[(&). 0

Part (4) is actually quite remarkable: it gives us a "local" monotonicity property in the

hierarchy of instances of a . Let us illustrate this on our Example 5.3.3. For instance, we

have M (4 = {-p,r, s) which, as claimed, is a superset of hf(,,), as ** is the only and

hence least general exception-generated instance of ** instantiated by *2. In the same way,

M(33) = {r, S) > M(,,); notice that the constant 3 does not occur anywhere in M , so this

example also illustrates (the proof of) Proposition 5.2.14 which says that M(33) and M(,,)

are identical.

Proposition 5.3.7 If a'a" is an exception-generated instance of aha: i n A i and la'l =

lab1 = k, then a' is an exception-generated instance of ah i n M, and a" is an exception-

generated instance of (T[i n M(,t).

ProoE Write this egi as a'a" = [a ~ a ~ , <:<:,. . . ,<A(;, . . . , JL1, according to Corollary

5.3.6, part (1). If m = n = 0, then dd' = crbo:, and the proposition is trivially true

(even when M(,;) is empty!). So let us assume that o'a" is generated using at least one

exception. Wlog we sort the exceptions so that <{<Y, . . . , are all of length greater than

k, and . . , <:, are of length at most k. Furthermore, we split the first nt exceptions

so that = k, <; # E for i 5 m, and we declare J: = E for i > m. It follows that

CHAPTER 5. STR.ONG MODELS FOR LDL 142

a' = Tab, ti,. . . , (hence a' is an egi of ah in M) , and a" = Tab', <;,. . . , <:I. Furthermore,

since ti,$' C p u'u" for all thc cxcept,ions, we obtaiu ti C a' for i = 1, . . . , m. This shows that

(y , . . . , all exist as exceptions in A4(,,). We conclude that a" is an egi of a: in AI(,,), as

claimed. [7

The converse is not true, for a good reason: Consider a set M containing **- (11) as its only

label, and let cr' = 1, cr" = *. Obviously cr'a" is not an exception-generated instance of ** in

M. However, 1 is an exception-generat,cd inst,ance of * i11 M , arid * is trivially an exccption-

generated instance of itself in M(l). The deeper reason behind this is that the exception-

generated instances of a label do not constitute a block structure in the sense described in

the introductory section: not every combination of 1 and * in the above example results in

an exception-generatted instance. Accordingly, tthe set of except,ion-ge~lerated ir~st,ances of

abag is not necessarily the Cartesian product of the sets of exception-generated instances

of ah and a:.

Next, we will state our fundamental principle of reasoning over the hierarchy of exception-

generated instances of a given label a in a given set of assertions M. Consider a generic

property Q(a, M) sat,isfying the following rcciirsion:

Q(o, M) iff Q(E, M(,)) and for all exceptions < in M , truncated to the length of

a, [a, does not exist, or [a, I1 = a, or &([a, I], M). (5.2)

We say that Q(a, .) is monotone (wrt 2) if whenever h/l 2 MI, Q(a, Ai) implies Q(a, 111').

(See Definition 2.1.7.) We understand this to be universally qualified over all labels a, unless

explicitly stated otherwise.

First of all, let us ensure that the evaluation of Q(a, M) is terminating:

Proposition 5.3.8 If Q(E, M) is finitely decidable for every set M of assertionsj then so

is Q(a, MI) for any simple label a and any set A i l .

Proof: If a is ground, it is its only instance (modulo an irrelevant distinction between

existential and conditional constants). Furthermore, any exception I is truncated to the

length of a , so if the upper mgu [rr, El exists at all, it is equal to a, and no recursive

evaluations ensue according to (5.2). If a does contain wildcards and none of them are

instantiated in any (truncated) exception so that [a, I1 exists, then this unifier is again

equal to a , and no recursive evaluation is performed. Hence all recursive evaluations of

Q([a, (1, M) occur on strict instances [a, t1 of a, so the evaluation must terminate.

CHAPTER 5. STRONG MODELS FOR cac 143

Theorem 5.3.9 Statements (1) through (3) below are equivalent; so are (4) and (5). If

Q(a, .) is ~rr.on,oto~~c, all statem.en,t.s (1) th.rough (5) b (h ~ i are equiualen,t:

(1) Q(a, M) is true accordin,g to (5.2).

(3) Q(E, M(@)) for every exception,-generated in,stance C? of a .

(5) Q(E, AT(?)) for every ground instance y of a .

Proof Clearly (1) is a special case of (2). To prove (2) from (I) , we use induction over the

egis of a according to Corollary 5.3.5: Q(a, M) is given, and given any labe1 a', Q (d , A[)

implies Q([al, <I , M) for all exceptions < in AT, truncated to the length of a', so that [a', <1
exists, according to (5.2). Then the said induction principle shows (2).

Statement (2) implies (3) by (5.2). The converse is obt,aincd by induction over the hierarchy

of egis of a , this time in the converse direction: We begin with the case where 6 has no

egis (of a) as strict instances. For these, no recursive evaluation is performed in (5.2), and

Q(6, M) follows immediately. For all other 6, assume (as the induction hypothesis) Q(6, M)

for all egis 6 (of a) which are strict instances of 6; these include all [u, <1 in (5.2), and since

Q(E, M(&)) was given, we concludc Q(&, A[).

Statement (5) is a weakening of (4). For the converse, we use Proposition 5.2.14: Given an

arbitrary instance a', we can find a ground instance y of a' so that AT(,t) = M(+; hence

Q(E, M(,t)) = Q(E, M(?)) must always be true.

Statement (3) is just a weakening of (4). For the converse, assume that Q(a, .) is monotone.

Take an arbitrary instance a', and find the least general egi of a instantiated by siyntm', as

in part (3) of Corollary 5.3.6; call this label 6. Part (4) therein shows that A[(@) C Al(,t).

Since Q(E, a) is n~onotone, Q(E, M(,)) implies Q(E, M(,t)), which is thus shown for every

instance a' of a. 0

It is worth rnontioni~lg t h t the proof requircd only Q(E, -) t,o be monoto~~e, not Q(a, .) in

general. But there is really no difference: monotonicity for Q(a, .) will follow from that of

Q(E, a) by Proposition 5.3.13.

Another desired property of Q(a, M) is that it be possible to evaluate it "partially": if we

split a label into olrr2 and know that Q(rr2, M(,t)) holds for all exception-generated instances

CHAPTER 5. STRONG MODELS FOR CBC 144

a' of 01, then we would want to derive Q(ala2, M). If Q(a, a) is monotone, this is indeed

possible:

Theorem 5.3.10 If Q(a, a) is monotone, then Q(ala2, M) is true iff Q(a2, M(,t)) is true

for all exception-generated instances a' of a1 in M .

Proof: Assume Q(alaa, M) is true. Then by Theorem 5.3.9, Statement (4), Q (E, M(,t,tt))

is true for all instances a' of a] and all instances a" of 02. Using Theorem 5.3.9 again, we

obtain that &(a2, M(,I)) is true for all instances a' of 01; a fortiori, it is true for all a' which

are egis of al. Conversely, if Q(a2, M(c)) holds for all egis ii of a1 and a' is an arbitrary

instance of 01, then find the least general egi u instantiated by a'. According to Corollary

5.3.6, part (4), we have M(d) C M(,t), and since Q(a, -) was assumed monotone, the known

fact Q(a2, M(*)) implies Q(a2, M(,t)); we thus showed Q(a2, M(,I)) for any instance a' of

01. The remainder of the proof is the converse of the first few steps. 0

Neither direction of Theorem 5.3.10 can be upheld when Q(a, .) is not monotone, as the

following two examples will demonstrate:

Example 5.3.11 Let M = {(** - (11)) p, (** - {*2)) q, 12 I). The label 12 is not an

exception-generated instance of **, as the only exception-generated instances other than **
itself are 11 and *2. (These two exception-generated instances do not unify.) However, the

label 2 is an exception-generated instance of * in M(,). Now let Q(a, M) be the property

that I does not exist in M(,). I t is easy to see that Q(a, M) satisfies (5.2) but is not

monotone: for if Q(E, M) is true for some M , upon adding an extra assertion E I to M we

no longer have Q(E, M U {E I)) . Now take a1 = * and 0 2 = 2. Indeed we havc. Q(*2, M) ,

as hi!(,2) = {p) does not contain I. But 1 is an egi of * in M, and Q(2, M(])) does not hold

(since M(l) contains 2 I) , violating one direction of Theorem 5.3.10.

Example 5.3.12 Take A4 = {(**- (1, *2)) p, 12 I). The labcl 12 is an except,ion-gcncrat,ed

instance of l * (as it is obtained through unifying with the exception *2). With the property

Q(a, M) as in the previous example, Q(l*, M) is not satisfied. But M(l) = (2 I) does not

have any exceptions, so the only exception-generated instance of * is * itself. Now M(l,) is

empty, so it does not contain I , which makes Q(*, M(l)) true, violating the other direction

of Theorenl 5.3.10.

It is not reasonable to restrict Q(a, M) so as to make Theorenl 5.3.10 always true. The

property Q(a, M): i'M(,) does not contain I " , used in the examples, seems reasonably

CHAPTER 5. STRONG MODELS FOR CBC 145

interestingso much so that we will spend part of Section 5.6 studying it. Nonetheless.

Theorems 5.3.9 and 5.3.10 are very powcrful results. For this reason, it is desirable to prove3

monotonicity of a property whenever we can. Fortunately, this is easier than one might

think:

Proposi t ion 5.3.13 If Q(E, .) is m,onotone, then so is Q(o, .) for any sim,ple label a

Proof Consider two sets M C MI and an arbitrary simple label o ; we wish to show that

Q(o, M) implies Q(o, MI). As in the previous proof, we rely heavily on Theorem 5.3.9 and

Corollary 5.3.6. Thus Q(o, M) is true iff Q(E, Af(*)) is true for all egis 5 of o in M . Now

consider an arbitrary egi o1 of o i n MI, and find the least general egi in M instantiated by

of ; call it 6. (If o1 itself is an egi in M , then o1 = u.) Now part (4) of Corollary 5.3.6 gives

us M(*) M(,I), but since M MI, we also have M(,I) A<,,) (Cor. 5.3.1) and hence

M(+) 2 Mi,,); since we know that Q(E, A l (*)) is true, we further get Q(E, M',,)) because of

monotonicity; since this holds for all egis of of o in MI, we have shown (again by Theorem

5.3.9) that Q(o, MI) is true. 0

Two other important results shall be established in this section. Upon analyzing at the

recursion (5.2) which defines Q(o, M), we find that Q(a, M) is expensive to verify in prac-

tice, especially if o contains many wildcards and M contains many exceptions which may

unify with o. The recursive nature of the definition further increases the potential for com-

binatorial cxplosion. Evcn in the most "econo~nical" form of Tl~eorern 5.3.9, part (3), we

need to check Q(E, M(6)) for every exception-generated instance 6 of o , and these exception-

generated instances are mgus taken over subsets of exceptions in M , as we saw in Corollary

5.3.6, part (I) . So can we reduce work in verifying Q(o, M)? It usually turns out that many

of the recursive computations are redundant. Suppose that a small subset MI of M already

satisfies Q(o, MI) (which er~tails Q(e, M;,))) and that M cont,ai~~s an exc:cll,tioii-generatted

instance o1 which does not instantiate any exception-generated instance of o in MI (except

a itself). In the likely event that M has many exceptions beyond those in MI, this will be

the case very often. If Q(o, .) is monotone (which we assume here), we see immediately that

Q(a, M) is true. Verifying it by (5.2), however, would require us to check Q(E, M(*)) for

every exception-generated instance 6 of a in M. But for & = o1 above, part (4) of Corollary

5.3.6 shows that Afi,) M;,,). Thus M;,), which has already been used as a witness for

Q(E, M(,)), is also a subset of M(,I) and serves as a witness for Q(E, M(,,)). In short, the

same fact Q (E , M k)) is used-and possibly derived a t great cost-over and over again.

CHAPTER 5. STRONG MODELS FOR LBL 146

Toward reducing the amount of redundant work, we propose a new recursion for Q(a, M)

which will allow us t,o usr: snlallcr set,s nP as "wit,~~esses" for Q(E, Mi): 4

Theorem 5.3.14 If Q(E, M) is monotone? then Q(a, M) , defined by (5.2), is equivalent to
-
Q(a, M) , defined by:

-
Q(a, M) zff t h e n e x i t s a set M' G M so that Q(E, M;,)) and for all exceptions

J i n MI, truncated to th,e length of a: [a, J1 does not exist, or [a, J1 = a , or
-
Q([a ,< l?M)- (5.3)

Proof: It is clear that Q(a, M) implies g(a, M) , as we can always choose M' = M, which

reduces (5.3) to (5.2). Now let us show the converse: Given a label a, suppose that G(a, h i)

is true, established using some subset MI. We would like to show that Q(a, M) is also true,

which we will do by est,ablishing Q(E, M(,r)) for all egis a' of a in M (St,at,cment (3) of

Theorem 5.3.9). We do this inductively, assuming that Q([a, J l , A l) and Q([a, J l , M) are

equivalent for all exceptions J in M' truncated to the length of a , whenever [a, J l exists

and is not equal to a. This entails that Q(E, M(,r)) holds for all instances a' of [a, J1. (The

base case is included in this, which is when no such exceptions J exist.)

So let a' be an arbitrary cgi of a in M (but not, necessarily in MI). If a' inst,alltiatcs [a, Jl

for some exception J in MI, then Q(E, AP(,r)) holds by the induction hypothesis, as detailed

above. Otherwise, a itself is the only egi of a in A i ' which is instantiated by a'. We infer

(Corollary 5.3.6, part (4)) that Mi,) Mi,,), and further Mb,) G M(,I) by Corollary 5.3.1

(A P is a subsc:t of M) . The fact Q(E, Al;,,) was give11 in (5.3), and by rr~moto~lic:it,y wc:

conclude Q(e, M(,,)). Since a' was an arbitrary egi of a in A[, Q(a, M) follows as usual by

Theorem 5.3.9. The entire proof follows by the induction principle. 0

Note that the "otherwise7' case in the last paragraph describes exactly the scenario we

outlined as a motivation for the recursion (5.3). The redundancy we observed there has

btr:n identified as such in the proof and eliminated t,llrougll use of (5.3) in licu of (5.2).

The second and last result is about the invariance of Q(a, M) with regard to normalization

of labels and elimination of trivial labels:

CHAPTER 5. STRONG MODELS FOR CBL 147

Proof Statement 4 in Theorem 5.3.9 says that Q(a, M) iff Q(E, M(,t)) for all instances

a' of a. The proof now simply follows from the invariaucc of subscripting (by a') wrt

normalization and elimination of trivial labels.

In practice, it is too tedious to evaluate Q(a, M) using Statement 4. If instead we evaluate

it by the usual (5.3) or (5.2), it makes a difference when M is normalized (although the

result, of course, is the same): A non-normalized set, or a set with trivial labels, may have

more exception-generated instances than a normalized set. (The trivial label may specify,

beside E , any other label as exceptions.) These additional exception-generated instances

may introduce redundancies in the evaluation. So we see that it is not only convenient but

beneficial to work with normalized labels.

5.4 Realizability Revisited

In this section we will reconsider issues of realizability and constant-wise realizability in sets

of assertions with complex labels. Starting with generalizations of theorems in Section 4.4,

we apply the general properties studied in Section 5.3 to derive important novel results.

Definition 5.4.1 Given u sct M of r~ssert io~~. .~, tire set I (M) of ground lab& realized in

M (rgls in A f) is the smallest set obeying the following recursive definition:

2. If y E I (M) and M contains some assertion of the form (am'- C) a such that a C y,

i n which c E D is an existential constant, and < gp y for all < E C , then yc E I (M) .

For a given label A, the set I(X, M) of realized ground instances (rgis) of X in M is the

set G(X, I (M)) according to Definition 5.2.5, and X is called realizable in M if I(X, M) i s

nonempty.

We can re-state the condition in 2. as: "There exists a label X in M such that X & y, and

the main label of X contains c as an existential constant in its (171 + 1)st position." Largely

in analogy to Corollary 4.4.2 we immediately obtain these facts:

Proposition 5.4.2 Any prefi3: of a realized label is realized, and any pre& of a realizable

label is realizable. The empty label E is realizable i n any set. A ground label is realizable i f

i t is realized. If a simple label a' is realizable in M and a E p a', then a is realizable i n M .

CHAPTER 5. STRONG MODELS FOR LDL 148

Furthermore, a non-recursive version of the definition just like Proposition 4.4.3 is useful:

Corollary 5.4.3 A ground label y = cl - ck is realized in M iff for every 1: = 1,. . . , k there

exists an assertion (u ~ - ~ ~ u : - ~ - a in M so that a;-1 C cl . . . ci-1 and J g, c l . . . ci-1

for all < E

Let us illustrate this interpretation and the role exceptions play in it:

Example 5.4.4 Let M = { (l* - (11)) q, (*1 - (11)) l q , (*2 - (1)) r, (** - (13)) p, *[4] s).

We claim that I (M) = {e , 1,111: First, the label 1 is witnessed by the first assertion,

whose main label begins with this constant; none of its exceptions instantiates a prefix

of E. Likewise, the label 11 is witnessed by the second assertion because *1 11. (The

realizability of 11 is not negated by the fact that 11 is an exception in that assertion, which

merely indicates that q need not be assigned fdse in this instance 11.) By contrast, 12 is not

a realized ground inst,ance, since thc exception < = 1 in tlic third assertion is i~istantiated

by the first position 1, which disqualifies the third assertion as a witness. We see how

this interpretation is different from that of the second assertion. If an exception is shorter

than the main label, all instances it represents are exempted from any ezistence requirement

stated in the remaining positions of the main label (through existential constants). This

third asserttion translates to: "All labels c have a successor label c2, but 1 may not ." (Again

we stress the "may not" : Exceptions never prohibit labels from existing. If M contained

another assertion such as 12 i r , then 12 would be realized by virtue of that assertion.)

Next, 13 is not a realized ground instance because the constant 3 never occurs in a main

label in M. Just being stated as an exception does not render a label realized. (There is

no practical use for stating an exception with constants never used in a main label in M ;

we just stated this example for illustration.) Finally, 14 is not a realized ground instance

because [4] is only a conditional constant.

In our example we pointed out that realized ground instances do not get "disqualified" as

new assertions with exceptions are added to M . We took this fact for granted in Chapter

4, but here it is worth noting:

Corollary 5.4.5 If M MI, then I(A1) c I(M1) and I(X, M) C I(X, All) for any label A.

Hence the properties of being a realized ground instance, and of being a realized ground label

of A, are monotone.

Proof: All assertions in M witnessing (in the sense of Corollary 5.4.3) that a ground label

y is realized in M remain in MI, so y is realized in MI. For rgls, the proof is analogous.

We also wish to ensure that normalization and removal of trivial labels do not affect the

realized ground instances of a set. To move toward this goal, we suggest an alternative to

Definition 5.4.1:

Corollary 5.4.6 Given a set M of assertions, define Ik (M) and r k (M) ? k E No, recur-

sively as follows:

for each assertion X a in M whose main label has an existential constant c in its

(k + 1)s t position, include into Ik+,(M) the set {yc : y E Ik (M) n Gp(X, rk (M))) .

Then I (M) = rd(M) (111).

Proof This definition and Definition 5.4.1 are more similar than they appear. Let I(Ai) be

as in Definition 5.4.1; then we claim that Ik (M) is exactly the set of rgls in I (M) of length

k. We will prove this by induction over k. For k = 0, the statement is trivial: E , the only

label of length 0, is always realized. Now assume the statement shown for k. We introduced

r k (M) in order to have a set closed under prefixes, which we use to define Gp(X, r k (M)) , the

set of all rgls y so that X y (see Definition 5.2.5). Hence Ik (M) nGp(X, r k (M)) identifies

all such y of length k. Since we assumed the (k + 1)st position in the main label of X to be

c, we can write X = am1 - C. This corresponds to Definition 5.4.1, whereas la1 = Iyl = k.

Given this, X y is equivalent to a C y, 5 gp y for any 5 E C. But this is exactly the

condition given in Definition 5.4.1 for including yc in I(Af). We have thus shown that the

labels included into Ik+, (M) are exactly the labels in I(Ai) of length (k + 1). By induction

on k, we conclude that this is true for all k. Finally we observe that no rgl can be of length

greater than d (M) because c, the (k + 1)st and last position in any of the yc above must

occur in the (k + 1)st position of some rnair~ label in A[. Note that the rnitxir~lal lcr~gt~h of

any main label in M is equal to d(M). Therefore, r d (n f) (M) indeed includes all rgls in M

and must be identical with I (h f) . 0

CHAPTER 5. STRONG MODELS FOR. CBC 1 50

Proposition 5.4.7 If MI is obtained from a set of assertions M by removing all assertions

with tri.vial 1at)els and rrorm.ali.zir~~g all other lat)els, th,en I(M) = I(M1) and I (X 1 , M) =

I(X1, All) for any label XI.

Proof: Look at the construction in Corollary 5.4.6. If X a is an assertion with a trivial label,

trhen by part (2) of Lemma 5.2.6, Gp(X, r) is enlptty for any I?, so this assertion docs not,

give rise to including any ground instances in Ik+1 (M), for any k. Furthermore, Proposition

5.2.8 states that Gp(X, I?) remains unchanged when X is normalized, and the main label of

an assertion is unaffected by normalization. The proof of I (M) = I(M1) follows from this

formally by induction over k: Assuming that Ik(M) = Ik(M1) and r k (M) = rk(M1), we

conclude that corresponding labels X a, IIXl/ a in M , MI satisfy Corollary 5.4.6, and we get

Gp(X,rk(W) = Gp(llXll,rk(M)) = Gp(llXII, rk(M1)), which shows Ik+ l (W = Ik+l(M1) and

Fk+1 (M) = rk+l(M1). 0

A very important test we will have to perform frequently is whether a given label o is

realizable in a given set, M of assertions. I11 Section 4.6, we showed tellat this problem is

NP-complete for assertions with simple labels, a result which holds unchanged if we allow

complex labels. But we did not state a constructive algorithm. Trying all ground labels of

a one by one and testing if it is realized is unacceptably tedious. But we already have all

the tools at hand in order to specify a more efficient way:

Proposition 5.4.8 A label X is realizable i f l there exist some n assertions of the form

(a i a ~ - Xi) a i n M, i = 1 , . . . , n, so that y = [al , . . . ,a,] exists and is ground, X L y , and

< gp y for any exception J E C; of length less than In;/, for i = 1,. . . , n,.

Proof: If X is realizable, then it has some rgi which we write as y = cl - - . ck. Corollary

5.4.3 warrants the existence of-not necessarily all distinct-assertions -Xipl) a ,

i = 1,. . . , k, so that L cl . . . ci-1 and J gp cl . . . ci-1 for any J E In particular,

a;-lq gp y for all 2 = 1, . . . , k, which shows that the upper lngu a = [cl , olca, . . . , ak-l~kl
exists and a Lp y. Now let us show that a = y: Since a k - l ~ k is of length k, ~?k-~ck Lp y

requires that a be of length at least (and hence exactly) k. Furthermore, each of the k

positions in a corresponds to a constant in one of the unifying labels, so the unifier must

be ground. This shows o = y. F~rt~hennore, J gp cl . . . q-1 i~nplies J gp y, in case t,lle

exception is of length less than i. With ai = aici, i = I , . . . , n, this shows one direction of

the proposition.

CHAPTER 5. STRONG MODELS FOR CBC 151

We prove the converse direction by finding suitable assertions to apply Corollary 5.4.3 in

reverse. Wc arc given that y = [a l , . . . , a,l is ground; again write y = cl . . ck. Now we

must have ai E p y for every i = 1, . . . , n, and each position j = 1 , . . . , Ic must be equal

to q in at least one of the ail whereas obviously j 5 /ail. We take aj-l to be the prefix

of ai of length j - 1, and write ai = 5j-lcja~-l . We easily verify that @j-l L cl . . . cj-1

and (gp cl . . . cj-1 for any exception in Ci (for (iZp el . . . cj-1 would imply (Lp y while

1 (1 < Iuil, contradicting our ;twirnpt,ion). Since this holds for j = 1, . . . , Ic, Corollary 5.4.3

can be applied, showing that y is realized. Thus instantiated by an rgi. X is shown realizable.

0

The labels (uia: - Ci) a are called realizability witnesses of A. In practice, one would rea-

sonably compute [al , . . . , u,l iteratively; in each step i we r~lust find a suitable realizability

witness in M with prefix ail so that the unifier [al, . . . , ail has instances in common with

A, while not instantiating any exception in XI , . . . , Xi. Once all positions in [al,. . . , ail are

constants, we are done. Conversely, if no assertion can be found for constructing the next

[a1,. . . , (~ ~ 1 , we must backtrack to some 1:' < 1: and try another air, from a different assertion

in M.

The next lemma, analogous to the first 5 parts of Lemma 4.4.7, provides the foundation for

a closed-form characterization of the /=[relation. It also prepares the way for defining the

/=, relation:

Lemma 5.4.9 Let M be a set of assertions and a a simple label, C a set of simple labels

(exceptions), c, c' constants from D, and y, yl, 7 2 ground labels. Then:

(1) c E I(A4) i . c exists in, M .

(2) yiya E I (M) iff yi E I(A4) and 7 2 E I(hf(y,)). In particular, yc E I (M) iffy E I (M)

and c exists in M(y).

(3) If c exists in M , then (I(AI))(,) = I(M(,)).

(4) I (M) = { E) U U{cI(M(,)) : c exists in M)

(5) I (*a - C, M) = U{clI(a - C(,I), : d exists in M) .

I - C , M) c exists in M
(6) I (ca - C, M) = I([c]u - C, M) =

otherwise.

Proof Parts of the proof follow the same pattern as that of Lemma 4.4.7, but there are

some iinportant differences.

As for Part (I) , Corollary 5.4.3 for a one-element label y = c reads: c E I (M) iff there exists

an assertion (cab - Co) a E M so that (E 5 E and) E E for all E E Co. In other words,

there exists an assertion in M with a nontrivial label, whose main label begins with c. This

is exactly the condition for c existing in M, stated in Definition 5.2.11.

For (2), we write yl = cl . . . ck, and y2 = ckl+l . . . ck. Corollary 5.4.3 provides char;u:terist,ic

conditions for 7 1 7 2 being realizable in M, which we split up into several parts:

For all i = 1, . . . , kl , there exists a witness (a ip l cia;-l -) a E M so that

1. ui-1 5 C l ...Q-l

2. (g p ~ 1 . . ' ~ - 1 for all (E Ci-1,

and for i = kl + 1, . . . , k, there ex. a witness (u E - ~ ~ T ~ ~ c ~ u ; - ~ - n E M

so that

3. 5 cl" 'ckl = y l

4. ckl+l .G-1

5. (g p cl - - ckl = 71 for all (E of length at most kl

6. (1 g cl - - ckl = 71 or (-2 gp ckl+l . . . Q-1 for all ot,her El(2 E

Now we can apply Corollary 5.4.3 backwards to 1. and 2., which becomes yl E I (M). Also,

by Proposittion 5.2.15, the sccond witncss together with 3. and 5. are quivalcnt to

and 6. is equivalent to

We apply Corollary 5.4.3 backwards a second time: on 7. and 4., to get the equivalent

statement 7 2 E I(Af(yl)). The particular case y2 = c follows by applying part (1).

Part (3) can be obtained directly from parts (1) and (2):

C l . . Ck E (I(Af>) (,)

iff ccl . . . ck E I (Af)

iff c E I (M) and cl . . . ck E I (M(,)) (2)

i f f c ex. in M a n d q . . - c k E I(M(,)). (1)

CHAPTER 5. STRONG MODELS FOR Ct3C 153

As to (4), Proposition 5.4.2 provides the result that I (M) contains E and is closed under

prcfixing. Hericc Lernn~a 4.2.7 applies, and then we use (2) and (3), just as in part (3) of

Lemma 4.4.7:

For (5) and (6), knowing that E @ C, we can apply Lemnla 5.2.6, parts (3) and (4). Using

(I) and (3) above, the proof is entirely analogous to that of Lemma 4.4.7, parts (4) and (5),

respectively. 0

Finally we need to extend the definition of constant-wise realiza.ble labels. Our first attempt

is to state the equivalent of Definition 4.4.17, except that M contains complex labels, of

course:

Definition 5.4.10 Given a set A4 of assertions and a simple label a', denote by PC(at, hf)

the property that for any realized ground instance y of a' i n M the label yc is also realized

i n hi . A simple label a is constant-wise realizable (cwr) in a set M of assertions: i f f o r any

prefix o f o of the form a'c with an existential constant c the property PC(at, M) is satisfied.

Both the property PC(a1, h i) and the property of being constant-wise realizable in M are

invariant wrt normalization of labels and removing trivial labels in M. This is because

these properties are defined using the properties of being a realized ground label and being

a realized groiil~d i~istance, both of which were shown illvariant in Proposit,ion 5.4.7.

Next, we have a familiar-looking result:

Proposition 5.4.11 If a is a simple label, c a constant, and M a set of assertions, then:

(I) c'a is constant-wise realizable i n M iffc' exists i n M and o is constant-wise realizable

i n M(cf) .

(2) [ct]a is constant-wise renlizc~ble in A4 ifl c' does not e:cist i n M or a is constant-wise

realizable in A[(,, .

(3) *a is constant-wise realizable in M iff a is constant-wise realizable i n M(,I) for all d

which exist i n M .

CHAPTER 5. STRONG MODELS FOR. CBC 154

Proof: The proof of (1) and (3) can be copied verbatim from Proposition 4.4.20. (Just

replace the references to Lanmia 4.4.7 with thc corresponding results of Lcrnrria 5.4.9.)

We only need to show part (2) about conditional constants, which we will do using the new

terminology introduced in this section. So [c'la is cwr in A i iff PC(&, Ai) holds for all prefixes

kc of [d]a with an existential constant c. Since [c'] is not existential, it does not qualify as

such a prefix, so all candidate prefixes are of the form [ct]a'c. We write out Pc([ct]a', M)

explicitly:

For all d y E I([ct]a', M) , cJyc E I (M) . (5.4)

Let us apply part (6) of Proposition 5.4.9. If d does not exist in M , then I([ct]a', M) = 0,
so (5.4) is vacuously true for all prefixes, and hence [d]a is cwr in M. Otherwise we wish

to show that Pc([c']a', M) and PC(at, M(,t)) are equivalent for all prefixes a'c of a. Observe

that I([d]a1, M) = c'I(a', M(,t)), so c'y E I([ct]a', 211) iff y E I(a1, M(d)). Furthermore, the

ground label dyc must be found in the subset c1(I(M))(,t) of I (M) (as shown in Lemma

5.4.9, part (4)), and since c' exists in M , (I(M))(d) is equal to I(M(d)) (by Lemma 5.4.9,

part (3)). To summarize, we rewrite (5.4) equivalently as:

For all y E I(a1, ilI(,t)), yc E I(ilf(d)). (5.5)

But this is just PC(at, M(,t)) written out, so we showed that PC([d]at, M) iff PC(at, M(&)) for

all prefixes a'c of a as claimed, which proves (2). prefkes a'c of a. This shows that a is

cwr in M(,t). 0

The various facts statcd in Corollary 4.4.19 still hold, exccpt that a labcl which exists in

M may not necessarily be constant-wise realizable: Take M' = {(*c2 - {cl)) p, cl T) . The

label cl is realized in MI, but clc2 is not, so *c2 is not constant-wise realizable.

Apart from this minor difference, a more fundamental weakness is that constant-wise real-

izability is not a monotone property. For instance, let M consist of only the first formula in

the above set MI. The label *c2 is trivially constant-wise realizable in M , for no instance

of * is realized. But as we have seen, *c2 is not constant-wise realizable in the larger set

MI. Hence we launch a second attempt towards a more rigid definition of constant-wise

realizable labels. The key to making this work is that we admit arbitrary ground instances

y of a', not just realized ground instances:

Definition 5.4.12 Given a set 211 of assertions and a simple label a', denote by QC(at, 211)

the property that for any ground instance y of a' the label yc i s realized i n M U {y T) . A

CHAPTER 5 . STRONG MODELS FOR CBC 155

simple label a is strongly constant-wise realizable (scwr) i n a set M of assertions, i f for any

prefi.7; of a of the form a'c with a71, c:~istential constant c the property QC(a1, M) i s satisfied.

Both the property Q,(al, M) and the property of being strongly constant-wise realizable in

M are invariant wrt normalization of labels and removing trivial labels in M. The argument

is the same as for PC(a1, M) and constant-wisc realizable labels: the properties are defined

using the property of being realized, which is also invariant. Next, it is easy to see that

QC(a1, .), and with it the property of being strongly constant-wise realizable, are monotone:

Proposition 5.4.13 G i ~ ~ e n tuio sets M and M' of ns.sertions, M C_ MI, i f Q,(al, M) is

true, then so is QC(a1, Ad'). Furthermore, if a is strongly constant-wise realizable in M,

then it is strongly constant-wise realizable in M' also.

Proof: If yc is realized in M U { y T), then it is also realized in the larger set M' U { y T)

(Corollary 5.4.5). The proof follows immediately from this. 0

We state some expected, easy-to-verify properties similar to Corollary 4.4.19:

Proposition 5.4.14 If a is strongly constant-wise realizable i n M, then so is any prejix of

a . Ground labels are strongly constant-wise realizable iff they are realized, whereas any label

containing only * and conditional labels is strongly constant-wise realizable. A constant c is

strongly constant-wise realizable i n M iff it exists in Ad as an existential constant.

Proposition 5.4.15 If a1 and a 2 are both strongly constant-wise realizable i n M , then so

are Lal, a2J and [a1, 021, provided these unifiers exist.

Proof: Every prefix of [al, 0 2 1 of the form arc inst,antiates a prefix al'c in one of a1 and

02, Since yc is realized in Ad U { y T) for all ground instances y of a" and these instances

include all ground instances of a', we have shown that [al, a21 is scwr in M. The same

holds for Lal, a2 J because it is a prefix of [al, a21.

Let us now show that QC(a1, M) is an instance of the property studied intensively in the

previous scction:

Proposition 5.4.16 For any constant c E D, the property Q,.(al, M) satisfies (5.2).

Proof: Similarly as in Theorem 5.3.14, we let Gc(a1, M) be the property defined from

Q,(E, M) using (5.2), and show that Q,(a1, M) and QC(a1, M) are equivalent. First, we

CHAPTER 5. STRONG MODELS FOR. LBL 156

observe that QJE, M) is the property that c is realized in M , which is monotone. By Propo-

s i t h 5.3.13, so is Gc(a', M) . Then St,atement (5) of Theorern 5.3.9 shows t(11at Gc(a', M)

is true iff Q,(E, M(7)) is true for all ground instances y of a'. If we can show the same for

&,(a', M) , then the proposition follows.

According to Definition 5.4.12, Q,(al, M) holds iff yc E I (M U {y T}) for every ground

instance y of a'. By Lemma 5.4.9, part (2)) this is equivalent to y being realized in M U {y T)

(which is trivially true, as y T witnesses it,), and c existing in (MU {y T}) (?) = M(7) U {E T}.

By part (I) of said Lemma 5.4.9, c exists in a set iff it is realizable in it, so upon applying

Definition 5.4.12 again, we equivalently get Q,(E, M(?)). Exactly this was to be shown, for

all instances y of a'. 0

Tliis i~nportant result makes available to us all the result,^ of the previous secttion and opens

up a whole host of properties, among which we will only mention a few. The first one

qualifies witnesses of strongly constant-wise realizable labels. The assertion 11 a witnesses

that *I is constant-wise realizable in M = (11 a) , for 1 is the only constant occurring in

the first position. As long as the realizability of c l is shown for every constant c existing in

M , PI(*, M) is slrown, and *1 is proven constant-wisc realizable. By contrastf, 11 a docs not,

serve as a witness for *1 being strongly constant-wise realizable in M. (In fact, *1 is not

strongly constant-wise realizable in M.) Instead, a label witnessing QI (*, M) must have a

prefix which is instantiated by *. More generally, any * in a' must be matched by a * in

the witness:

Proposition 5.4.17 If the label a is strongly constant-wise realizable in ill, then for any

prefi of a of the f o n a'c, c exists in M(,t), and there exists an assertion (aocul - C) a in

M so thc~t aocol - C & a'.

Proof If a is scwr, then any prefix a'c of a satisfies Q,(af, M) . Now the first condition in

(5.2) states that Q,(E, M(,I)) is true, so c must exist in (some assertion A in) M(,,) U { E T).

The assertions in M(,t) can be characterized as usual using Proposition 5.2.15, and t11e

assertion in M which contributes A to A4(,t) (according to Remark 5.2.16) must be of the

form (aocal - C) a , with (aocal - C) & a', which is what we claimed. 0

Also, we can finally do justice to our term strongly constant-wise realizable:

Proposition 5.4.18 If a is strongly constant-wise realizable in M , th,en a is constant-wise

realizable in M .

CHAPTER 5. STRONG MODELS FOR cac 157

Proof We only need to show that Q,(al, M) implies P,(al, M) ; the theorem follows directly

from this. So assume that QC(a1, M) holds, and let y be an arbitrary rgi of a' ill M. By

Statement (5) of Theorem 5.3.9, y as a ground instance of a' satisfies Q,(E, hi(?)), that is,

c exists in M(,). Since y as an rgi of a' is realized in Ai, part (2) of Lemma 5.4.9 implies

that yc is realized, which shows Property P,(al, M). 0

5.5 Weak and Strong Satisfiability

Having developed the necessary prerequisites, we are now ready to re-state the k1 relation

to fit the extensions in our logic CBC,. . We remind the reader that all labels used in

(set,s of) CBC-fornlulas rnust be simple (with existential or conditional constmlts but no

exceptions), whereas assertions may be preceded by complex labels of any kind.

Definition 5.5.1 The logic LBL, is defined on the language of labelled formulas, using

sets of assertion,^ (u~ith complex labels) as sem.an,tic structures, an.d defin.ing the semantic

relation M k1 S on sets of assertions h i and sets of labelled formulas S as an extension of

kg (see Definition 2.1.1) by:

k11 iff (E - C) 1 E M and E @' C, for any literal 1

Ad k1 [c] F iff c does not occur in M or M(,) k1 F.

Ad k1 c F iff c occurs in M an,d M(,) k1 F.

Ad k1 * F iff for all con,stants c uhich occur in Ad, M(,) k1 F .

A clash i n a set of assertions Ad is an occurrence of an assertion A I where A is realizable,

or of a pair of assertions A' p, A" i p , where (A', A") exists and is realizable in Ad. The label

A, or the unifier (A', A"), is called the clash witness.

If Ad k , S , we say that M (weakly) verifies S . If additionally M is clash-free, we say that

M (weakly) satisfies S , or i s (I (weak) model of S , u~ritten Ad k1 S . If S has a m,odel, it is

(weakly) satisfiable3.

Among many possible generalizations of results from Chapter 4, a closed-form characteri-

zat,ion analogous to Theorern 4.4.21 will be of prominent importance for the work to follow:

"See our renmrks on ternc.in,oloyy at th,e hegin,rnin.g of Chapter 2.

CHAPTER 5. STRONG MODELS FOR CBC 158

Theorem 5.5.2 Given a set M of assertions and a formula o F , M bl o F i f f o is constant-

wise penliznhle i71 M and M(,) b1 F for every realized grnu,id i n s t (~ ~ i , ~ e y of a in. M.

Proof: The proof is almost identical to that of Theorem 4.4.21; for the needed preliminaries
we call upon Proposition 5.4.11 and Lemma 5.4.9. In addition to *o' and cn', we need to

consider the extra case o = [c]ol in the induction step: If c does not exist in M , then M bl
[c] F holds trivially; but according to Proposition 5.4.11, [c]al is also cwr, and "M(,) b1 F

for every rgi y" is vacuously true, as [c] d has no rgi. If c exists in M , this case is identical

to the case a = ca'. 0

Corollary 5.5.3 The properties M b1 S and M k1 S are invariant wrt normalization of

labels and removal of trivial labels.

Proof: A full proof uses structural induction on F. We will only sketch the important

steps: For the base case, note that M b1 1 requires (E - C) 1 to be in M ; this assertion was

explicitly required to be non-trivial, and upon normalization it will simply become E 1 E MI.

This shows that MI b1 1. Assuming the invariance shown for F , we use Theorem 5.5.2 and

the induction hypothesis (on M(,) b1 F) to show it for a F; for, a being cwr is invariant,

and y being an rgi of a is also an invariant, wrt normalization and removing trivial labels.

0

Furthermore, we will make use of this analogue of Proposition 4.4.10:

Proposition 5.5.4 If M is clash-free and y is a realized ground label in M , then M(?) is

clash-free.

We obtain a proof either in analogy to Proposition 4.4.10, or from the following generaliza-

tion:

Proposition 5.5.5 A set M of as.sertion,s contains (L clash iff it bras a renlized grofund 1&l

y so that M(,) contains E I or two complementary assertions E p, E l p .

Proof: Assume that an rgl y exists so that E p and E -.p are assertions in M(?). They must

have been contributed by two assertions X p, A' l p E M so that X & y and A' & y, as we

easily see from Remark 5.2.16. This shows that X and A' have a common (realized ground)

instances, so their mgu exists and has y as an rgi, which witnesses a clash in M . The

argument can be reversed, in which case the existence of X p and X'p, and of a common rgi

CHAPTER 5 . STRONG MODELS FOR. LBL 159

y of X and A', is warranted by the clash. Therefore, X p and A' p both contribute assertions

to M(y), r~arnely E p arid E i p . The casc where the clash is of the form X I is easier and left,

to the reader. 0

We already observed in the previous chapter that the b1 relation is not monotone: Provided

* is used in the labels of a formula a F, we can extend an existing set verifying a F by

introducing new realizable labels and assertions which falsify a F . In essence, this is the

same problem we encountered on constant,-wise realizable labels in the previous section. A
partial answer, as we might expect, is to replace "constant-wise realizable" by "strongly

constant-wise realizable" in the closed-form characterization; however, this alone is not

sufficient.

In addition to this, recall the shortcornings of thc b1 relation we outliried in the introd~iction

to this chapter, namely that the na'ive evaluation of A4 bl a F forces us to evaluate M(,) b,
F for every realized ground instance y of a. We suggested that we may overcome these

shortcomings by a semantic relation which is evaluated "monolithically": Establish that

M(,) verifies F , and recursively check whether M also verifies < F for all exceptions

er~countercd. The tirne 11as now corne to make this more precise, giving rise to our new logic

LBL,:

Definition 5.5.6 The logic LBL, is defined on the language of labelled fonnulas, using sets

of assertions (uiith co7rl.ple.l: labels) 0,s semantic structures, an,d defining the stmng sen~imt,ic

relation b, on sets of assertions and formulas us an extension of kg in the following way:

M b, 1 i f l (e - C) 1 E M and e @ C , for any literal 1.

0 For a label a without existential constants, M bs a F in M(,) bs F , and for all

 exception,^ < occurring i n the labels of M ! truncated to len,gth at most 1 0 1 , either [a, 51
does not exist, or [a,<] = a, or M b, [a, €1 F.

0 For a label a with existential constants, M b, a F i f l a is strongly constant-wise

recilizable i n M and M b, [a] F .

(Strongly) satisfying sets (models), the k, relation: and (strongly) satisfiable fonnulas are

defined just like their weak counterparts i n Definition 5.5.1.

Thanks to the second condition in this definition, the property M b, a F (for a label a

without existential constants) satisfies (5.2) in Section 5.3. Therefore, we will also write it

as QF(a, M). Naturally, our concern is to establish this property as monotone:

CHAPTER 5. STRONG MODELS FOR. CDC 160

Proposition 5.5.7 If M b, a F , then MI b, a F for any set of assertions MI > M.

Proof: This proposition is an excellent candidate for structural induction according to

Lemma 4.3.6. We have already shown it for propositional atoms (Proposition 2.2.12), and

we know it to be preserved under propositional concatenation (Theorem 2.1.8). Next, if

a is a nonempty label without existential constants and Q F (~ , .) is monotone, then by

Proposition 5.3.13, QF(a, .) is monotone for any a without existential constants. Finally, if

a does have existential constants, then M b, a F requires that a he scwr in M, but since

this property itself is monotone, a is also scwr in MI, and we obtain MI b, a F as before.

The proof now follows by structural induction on F . 0

Once again, we can dra,w upon a host of results from Section 5.3. Our first corollary is

based on part (5) of Theorem 5.3.9 plus Definition 5.5.6, and it yields a "strong" equivalent

of Theorem 5.5.2:

Corollary 5.5.8 Given a set M of assertions and a formula a F , M b, a F iff a is strongly

constant-wise realizable i n A f and A l (y) b, F for every ground instance y of a.

From this we get our usual invariance wrt normalization and removing trivial labels:

Corollary 5.5.9 The properties M b, S and M b, S are invariant wrt normalization of

labels and removal of trivial labels.

Proof: This is analogous to the proof of Corollary 5.5.3, except that here we use the

property of being scwr, which is invariant wrt normalization and removing trivial labels, to

prove the induction step (invariance under labelling). 0

We now understand in what way b, is more rigid than bl: Even if Al(?) verifies p, say, for

any realized ground instance y of a , this does not show M(+ b, p for an arbitrary ground

instance y. Hence M bl S does not always entail M b, S. On the other hand. b, entails

bl; this is similar to the result that strongly constant-wise realizable labels are constant-wise

realizable, shown in the previous sect,iox~:

Theorem 5.5.10 If M b, F , then M bI F . Hence strong models for F are weak models.

Proof: The property expressed in the first part matches the first property of Proposition

2.1.18. (The two logics here use the same language; they are distinguished only by the

semantic relations b, and bl, respectively. The homomorphism is the identical mapping

CHAPTER 5. STRONG MODELS FOR CDC 161

F H F.) Hence our theorem is preserved under propositional concatenation. Since Defi-

~ ~ i t i o r ~ s 5.5.1 arid 5.5.6 agree on propositimal atoms, the tliwrein holds for these. We will

now show it preserved under labelling.

Assume the theorem shown for some formula F (over all sets of assertions). Consider a fked

but arbitrary set M and a simple label a so that M b, a F . By Theorem 5.3.9, Statement

(5), we infer that M(7) b, F, and by the induction hypothesis, M(7) bl F for all instances

y of a . This is true partic.ularly for all y which are rgis of a. F~irtlierrnore, a is scwr and

hence cwr, by Corollary 5.4.18. We apply Theorem 5.5.2 to conclude that M bl a F .

The first part of our theorem now follows by structural induction according to Lemma 4.3.6.

The second part follows from the fact that both strong and weak models are defined using

t,hc same version of clash-freeness. 0

This theorem will serve as part of our proof, to be completed in Section 5.7, that CBC,-
satisfiability as defined in Chapter 4, weak satisfiability as in Definition 5.5.1, and strong

satisfiability as in Definition 5.5.6 are equivalent. Before we do this, however, we need to

spend the next section addressing a shortcoming in our definition.

We end this section wit,h t,wo more useful results. First, we rccall the alternate rhararteri-

zation of Theorem 5.3.14 which, as we have seen, helps eliminate much redundancy. Let us

restate it the present context of checking M b, a F:

Corollary 5.5.11 For any formula of the form a F where a does not contain existential

constants, M b, a F ifl there exists a set M' G M so that M[o) b, F , and for all exceptions

I in M', truncated to the length of a , [a, (1 does not exist, or [a, I 1 = a , or M b, [a, F.

Secondly, we present an easy way to construct a set of assertions M for a labelled formula

o F . To ensure that all instances of a are covered, we can simply use the same label o in

the as~ert~ior~s in M:

Proposition 5.5.12 If M is nonempty and M b, F , then a M b, a F , and a M b, [a'] F

for t w m ~ i71dan.ce a' of a. More specifical~y, { a a } b, a a , o.7rd { a a) b, [a'] a for every

instance a' of a .

Proof: Take an arbitrary instance a' of a. Then (DM)(,,) = M b, F . Furthermore, all

exceptions J which may exist in M become exceptions a J in a M , and truncated to the

length of a , these exceptions are all equal to a , so no recursive evaluations in Definition

5.5.6 ensue, which shows that o M b, [of] F .

CHAPTER 5. STRONG MODELS FOR. CBC 162

In case a' = a, we will show that a is scwr in OM. (This looks obvious, but it is not

quite that trivial.) Together with the above, this proves that O M b, a F. So take any

set M' = {(aao - a x) a) consisting of just one assertion from OM, and let Sigmac be any

prefix of a ending in an existential constant. We easily see that c exists in M[&) (which is

Qc(&, M[*))), and that all exceptions in MI, truncated to the length of 6, are equal to 6.

Hence no recursive evaluations ensue, and Q46 , MI) is established according to Proposition

5.4.16. Since 5 c is an arbitrary prefix of a, we knave shown that a is scwr in AI', and hence

in O M by monotonicity.

The second half of the proposition represents the special case F = a and M = { E a).

This can be applied in combination with the previous Corollary 5.5.11. If we have several

formulas of the form a F or a a in a larger set S , we can make a M or {a a) the subset M'

of a larger set of assignments verifying S ; then M' verifies a F or a a according to Corollary

5.5.11. In this fashion, a set of assertions for S can be pieced together by sets verifying its

individual formulas. Note that this is not guaranteed to produce an overall model for S , as

the union of all the M' may not be clash-free. But it may provide a good starting point, a

set which may be tturned into a model for S through clash repairs.

5.6 Talking about Utopia

In the previous sect,ion, we succcxdcd in defining a ~no~iotone semantic relation. Recall that

monotonicity establishes a relationship between the lattice of all sets M of assertions and

the lattice of sets of formulas verified by A I (see Section 2.2). However, as Definition 5.5.6

stands, some formulas are not verified by any set M. Consider the formula F = * I. In

analogy to the formula I which is satisfied by any Kripke model in which the root node

wo has no successor, this formula ought to be satisfied by any model M in which * is not

realizable (i.e. where no constant exists in M). Indeed, any such model satisfies Definition

5.5.1, showing that M F l F. However, we easily see that no set M exists so that Af F, F,

or even M b, F: Definition 5.5.6 requires that M(,) k, I which is impossible, as I is

not verified by any set. This discrepancy is unacceptable, as we want the logics CBC, and

CBC, to define the same set of satisfiable formulas. Moreover, for reasons which will become

evident later, we desire for every set S to have a set of assertions M so that M k, S. (If S

is unsatisfiable, any such set M must have a clash, of course.)

We remedy the situation by a slight modification on the role of the propositional constant

CHAPTER 5. STRONG MODELS FOR CBC 163

I in assertions. We declare that a set M containing I verifies every CBC-formula; we aptly

call s i ~ h a set utopian4. Hence a utopia11 set M can be used as a trivial wit,rless for M b, S

whenever S has no "proper" set of assertions verifying it. Note that I constitutes a clash

with witness E in M , so a utopian set can never be a model5.

Since any superset of a utopian set also contains I, the monotonicity of b, is not affected

by this change in definition. However, we will need to adjust some other definitions in order

to accorrlrnodate the properties of iit,opian sets. First, in the same way as cvory forrnula is

verified by a utopian set M , we consider all ground labels realized, and all labels realizable,

in M. Upon subscripting a utopian set M , we would like M(,) to "inherit" the property

of being utopian, but to be the same as before in all other aspects. Therefore, we extend

Definition 5.2.11 to utopian sets as follows:

Definition 5.6.1 For any set M of assertions and any constant or wildcard x, let M g be

the subscripted set according to Definition 5.2.11. I f M is utopian, we set M(,) = {I}uM$~,

oth,enr~ise M(,) = h4$f. h4(,) is defined iteratively frr,rn M(,) in the t ~ s t ~ u l tnoy.

Utopian sets can arise as a result of subscripting non-utopian sets:

Proposition 5.6.2 If MY'? i the subscripted set of Definition 5.2.11, then a closed form

for M(,) in Definition 5.6.1 is:

{ E I } u M$y if X I E h f and X Cp o
" (a) =

A$? otherwise.

Proof: Consider the shortest a' for which some X I exists in M such that X E a'. Then

Mold contairls E I , and accordirig to our new definition, the set M(,r,t,) is iltopia.11 for any
(ar)

label o'o" extending o'. If no such label a' exists, then M(,) and M$?) are clearly identical.

0

4 ~ e could also re-declare the role of the empty model in such a way t,hat fl does not verify any formula.
For instance, we could require for AI b,? T that E T E M. Then the above relat,ionship would have the
following nice property: for every set of formulas S we can find minimal sets of assertions which verify all
formulas in S , as well as maximal sets of assertions which verify no formulas in S. However, the aesthetic
value alone does not seem t o justify the efforts in changing our definition yet again.

%re could save ourselves this non-standard definition and just declare that every inconsistent set trivially
vcrifics evcry formula, following an ex fnlso quodlibet philosophy. IIowrver, tcsting for inconsistency (clashes)
is computationally expensive. Admitt.ing only a, minimal number of utopia11 sets necessary proves t o be much
more elegant for our purposes. Most importantly, we can immediately decide whether a set is utopian, without
Lhe need for realizability t,ests and the like.

CHAPTER 5. STRONG MODELS FOR cac 164

The label a' in the proof marks the transition from a proper set into a utopian set. The

same transition needs to be takcxi into account a9 we ;uljlist the definition of realizcd ground

labels in M:

Definition 5.6.3 Given a set M of assertions, I (M) is defined as the smallest set satisJying

the recursive definitions in Defin,ition 5.4.1, plus:

3. If y E I(ll1) and I E M(r), then yc E I (M) for all c E D

The elements of I (M) are called realized ground labels (rgls); as before, a label is realizable

i f at least one realized ground label instantiates it. A realized ground label is non-trivial i f

it is a realized ground label according to Definition 5.4.1 proper (that is, without using 3. to

justify any of its positions), and trivial otherwise.

Corollary 5.6.4 If y E I (M) and I E M(r), then every ground label y' which has y as a

prefix is realized. More generally, i f M contains X I , then all ground labels y' which have a

prefi:~: y E I(X, M) are realized.

Proof: If I E M(r), then for every ground label y' extending y, M(,,) is also utopian, so if

y' is realized, then so is y'c for any c E D, as stated in Definition 5.6.3. The label y itself

was presumed realized, so by way of induction we conclude that any label extending y is

also realized. For the second part, observe that X I E A 1 implies I E Ai(?) for all ground

instances y of A; given this, the statement follows from the first part of the proof. 0

We observe that the entry point of this "lapse" into triviality is the shortest ground label

yo so that A1(,) cont,aiiis I, and we can say:

Corollary 5.6.5 Every trivial realized ground label y of M has a smallest prefix yo so that

I E this p r e h yo is a nontrivial realized ground label.

Hence a necessary precondition for a trivial realized ground label to occur is that some

assertion X I exist in M so that yo is a (nontrivial) realized ground instance of A. This

means that M cannot be clash-free. By the contrapositive, whenever M is clash-free, it has

no trivial realized ground labels; therefore, our transition from Definition 5.4.1 to Definition

5.6.3 leaves I (M) unchanged. However, even for clash-free sets M , Definition 5.6.3 impacts

our notion of strongly constant-wise realizable labels. While the definitions of constant-

wise realizable and strongly constant-wise realizable labels (Definitions 5.4.10 and 5.4.12)

CHAPTER 5. STRONG MODELS FOR. CBC 165

themselves do not change, their applicability changes with our extended notion of realized

ground labels:

Example 5.6.6 In the model M = {* I), every label of the form *a is strongly constant-

wise realizable. For instance, *c' is shown strongly constant-wise realizable as follows: Given

any constant c, (M U {c TI)(,) is utopian, and since c is realizable in M U {c T) , so is cc' by

Definition 5.6.3. This proves that *c' is strongly constant-wise realizable.

The result in Example 5.6.6 looks bizarre at first glance. But as a matter of fact, the labels

*a have been "weakly" constant-wise realizable all along, since * has no realized ground

instances. Thus the new definition of realized labels brings the property of being strongly

const,ant,-wise realizable closer to that, of being constant-wise realizable (yct t,herc. still exist,

constant-wise realizable labels which are not strongly constant-wise realizable). We can

state the following general facts:

Proposition 5.6.7 Every label which is constant-wise realizable (strongly constant-wise re-

alizable) i n the old sense (allowing only nontrivial realized ground labels i n the definition)

is also constant-wise realizable (strongly constant-wise realizable) i n the new sense (allow-

ing any realized ground label). Any strongly constant-wise realizable label is constant-wise

realizable.

Proof: We prove this by analyzing the properties PC(a1, M) and QC(a1, M) in Definitions

5.4.10 and 5.4.12, respectively: QC(a1, M) holds iff yc is realized in M U {y T) for every

instance y of a'. But whenever yc is nontrivially realized, it certainly is realized in the new,

more general sense. For P,(a1, M), we need to distinguish between the two types of rgis y: If

y is nontrivially realized, then yc is realized, as we assumed that PC(a1, A&) holds in the old

sense. Now if y is trivially rcalizod, then by Corollary 5.6.4 any extensiorl yc is also trivially

realized. Having thus shown that yc E I (M) for all types of realizable labels y, we have

verified PC(a1, M) (in its new sense). For the third statement which originally was Corollary

5.4.18, we add a twist to its original proof: Using the same y, finding that Q,(E, M(y)) is

true allows us to conclude that either c exists in M(y) (as in the original proof) or that A4(y)

is utopian. But in the latter case, Corollary 5.6.4 shows that yc is trivially realized. We

derive property P,(al, M) and conclude as in the original proof of Corollary 5.4.18. 0

As the last task of this section, we now modify the relation b, in Definition 5.5.6. That is,

we formally define what we discussed at the beginning:

CHAPTER 5. STRONG MODELS FOR. LBL

conversion
weak+strong

.s (M)
Theorem 5.7.8

bb t = ~ I 5 7 t=l I% t=s semantic relations

simple labels complex labels complex labels Labels ill assertions

LBLW LBL, LBLs Logic

Figure 5.4: The logics LBL,, LBL,, and LBL,, and how their models can he converted.

Definition 5.6.8 If M is utopian, then M b, F for all LBL-formulas F . For all other

sets of assertions, M b, F i f M meets the conditions stated i n Dejin.ition 5.5.6.

Theorem 5.6.9 If M is a clash-free set of assertions and M b, F , then M bl F. In other

words, all strong models for F are weak models for F .

Proof A clash-free set cannot contain I, so M bs F is determined according to Definition

5.5.6. We prove the theorem using the same structural induction proof as in Theorem

5.5.10. In proving the theorem preserved under labelling, we encounter a difficulty though:

a may have instances y so that M(7) is utopian, preventing us from applying the induction

hypothesis. But, recalling that we are only interested in realized instances y, and aided by

Proposition 5.5.4, we find that M(7) remains clash-free for any such rgi y. So the induction

hypothesis does apply, and the rest of the proof follows as in Theorem 5.5.10. 0

5.7 From Weak to Strong Models and Back

Let us recall our progress so far. In Chapter 4 we provided a logic LBL, whose models

are clash-free sets of assertions with simple labels and whose semantic relation is b l . In

Section 5.2 we extended the definition of models, allowing for complex labels in assertions.

CHAPTER 5. STRONG MODELS FOR. CBC 167

In Section 5.5 we adjusted the bl relation to accommodate these complex labels, which

result,ed in the logic CBC,. (We also extended t,he language of CBC, slight,ly, to allow

conditional constants which we will need in the next chapter.) However, we found that

LBL, is laden with problems preventing efficient model checking. So we proposed a new

relation b, which is better suited for handling labels with exceptions in model checking,

resulting in CBC,. We will now study how the three logics relate to one another, claiming

that cxact,ly the same forinlilas are satisfial>le in each of them6. This is an important result,

since it ties into the results of Chapter 4: ultimately, satisfiability of a KNNF-formula can

be decided by giving a decision procedure for CBL,. Just as in Chapter 4, our proofs are

constructive: we will show how a model for a formula F in one logic can be converted to

a iuodcl ill another. We surninarize all results ill Figlirc 5.4. Since the bl relation rcinains

unchanged on models whose labels are simple and do not contain conditional constants, all

CBC,-models (left-hand side of Figure 5.4) are CBC,-models (middle). Furthermore, we

showed in Theorem 5.6.9 that CBC,-models (right-hand side) are also CBC,-models. We

are yet to specify the other two conversions marked by solid arrows in Figure 5.4; they are

11011-trivial i11 that ;tssertions must, bc added to the origiilal model or replac4 with equivalent,

assertions. We term these conversions saturation and expansion, respectively. To illustrate

how they work, we will motivate each of them on an example before we describe the details.

The assertions in a weak model Af define the set of ground instances which are realized in it,

and they provide variable assignments on subsets of these, sufficient for showing a formula

satisfied. In the case of a labelled formula a F where a contains *, weak satisfiability entails

that F must be verified in all realized ground instances y of a. By contrast, a strong model

must contain assertions whose main label is a or some other label instantiated by o; these

assertions express universal statements over a scope a t least as large as a, needed to verif;y

F. Such liniversal stat,cnlent,s may be absent from weak models. In the process of sat,uration.

we will introduce additional "dummy" assertions-I preceded by any number of *-into

the model; obviously, any label a instantiates some *i of the same length, which provides

a universal assertion matching the universal statement expressed by a F. Furthermore, the

atom I ensures that F is trivially verified . This is true for any LBL-formula a F. To ensure

that these extra assertpions do not introdnce a clash, wc must ciisnre t,hat none of their labels

has any realized ground instances; we achieve this by specifying all existing labels in A4 as

6, I l o be precise. a formula is equally satisfiable in each logic where it is dcfincd. In C B C , , we do not have
fornlulas wllosc labcls i~lvolvc conditioilal coi~stants.

CHAPTER 5. STRONG MODELS FOR. LBL 168

exceptions to the new labels *'. We call the resulting model s (M) saturated, because every

ground label y is either realized in M , or the set A[(?) is utopian. Consequently, wwhenever

F is true in all realized ground instances of a in M (that is, M kl a F , in s (M) this F

becomes universally t rue in all ground instances of a (which establishes s (A i) Fs a 8').

Thus we have generated a strong model from a weak one.

Example 5.7.1 The model M = (1 p, 21 q) is a weak model for F = *(p V *q). To obtain

s (M) , we add the assertions A1 = (* - {1,2}) I, A2 = (** - (21)) I , and A3 = *** I . Let

us ascertain that s(M) k , F: First, we must have (s(M))(,) k, pV*q. Since A1 contributes

the assertion I into (s(M))(,), this is trivially true. In fact, {A1)(,) k, p V *q, so when

recursively checking exceptions, we only need to consider all exceptions in Al. So next we

S~IOW (s(M)) k, p V *q. This is witricssed by the assertion p contributed by the original

set M, which verifies the first disjunct p. Secondly, we show (s (M)) (~) k, p V *q, claiming

that (s (M)) (~) k, *q. So we construct (s(M)) (2t) = {I, * I) . Again this set trivially verifies

anything, so (s (M)) (~) k, *q is established. The only exception in (s (M)) (~) is the label 1.

Now (S (M)) (~ ~) = {q, *I} verifies q, so (S (M)) (~) k, *q and hence s (M) ks F have been

verified. We leave it to the reader to check that none of the three labels * - {1,2), ** - {21),

*** is realizable, showing that S(M) is clash-free and hence a model for F.

Definition 5.7.2 Given a set M of assertions with simple labels, with d(M) denoting the

depth of M as usual, define the saturation of M as

s (M) = M u {(*' - C i) I : i = I , . . . , d(M) + I) , -
X i

where Ci = {ac: a c ex. in M, 101 = 1: - 1,c E D).

Notice that i ranges up to d(M) + 1 so as to introduce a label *d(M)" I, which guarantees

that (s(M))(?) is utopian for any ground label y of length greater than d(M). For all other

i from 1 to d(M), the set Ci collects all prefkes of labels in M which end in a constant at

position i. Our first observation on our new definition is:

Proposition 5.7.3 A gro~~71,d label y E D* i s 7rontri~rinlly realized i7~ M iff it is nmntrt~rially

realized in s(M).

Proof: The "only if" part is obvious, as s (M) > it1 and being nontrivially realized is a

monotone property. We show the "if" part via the contrapositive: If y is not nontrivially

CHAPTER 5. STRONG MODELS FOR CBC 169

realized in M , then it must have some prefix y'c so that no corresponding a c exists in M

with a C y'. But this is also t,rue for s (M) , sirm all ncw assertions in s(A4) have niairl

labels of the form *i without constants. Therefore, y is not nontrivially realized in s(M).

0

Proposition 5.7.4 The Xi introduced into s (M) h,avc nw n,on,trioiul reulized ground in-

stances in s(M). Furthermore, M is clash-free zff s (M) is clash-free.

Proof: Assume to the contrary that some Xi has a nontrivial rgi. Since 1: 2 1, this rgi

cannot be E , so we can write it as yc. The coilstant c (w11ic:h is in the ith position) must be

witnessed by some label a c with a 5 y. For lack of constants in the main labels of s (M) -M,

this label a c must exist in M . Since a c is of length i, it is included in Xi. In other words,

yc instantiates an exception of Xi, so it cannot be an instance of Xi, contradicting our

assumption.

The "if" part of the second proposition is trivial, since every subset of a clash-free set is

clash-free. As to the "only if" part, suppose s(Af) contains a clash which does not exist

in M. Since all labels introduced are of the form Xi I , the clash must be of this form

also, with Xi being realizable in s (M) . Because of the first part of this proposition, Xi does

not have any nont,rivial rgi, so it ha3 some trivial rgi. Then according to the rer~iark after

Corollary 5.6.5, s (M) must contain another assertion X I so that X has a nontrivial rgi. By

Proposition 5.7.3 above, this rgi is also a nontrivial rgi in M. Again none of the new labels

in s(Ai) have nontrivial rgis, so X I must have already existed in M . This shows that M

has a clash, which completes the proof. 0

Proposition 5.7.5 For any y $! I(Af)! (S (A I)) (~) is utopian.

Proof: If y is riot realized, then (just as in the proof of Proposition 5.7.3) y 11as a prefix y'c

so that a y' for any a c which may occur in M . Let Ic be the length of y'c, and consider

the labels ad in Ck. We either have c # c' or a g y', as we just stated. In either case,

ad g y'c, that is, y'c does not instantiate any exception in Ch, and hence XI, C y'c. From

Corollary 5.6.4 and its proof we obtain that (.S(M))(~~,) is utopian and that the same holds

for any ground label extending y'c, so (S (M)) (~) in particular is utopian. 0

Upon combining this result and Proposition 5.7.3, we see that every nontrivial realized

ground label in M is a nontrivial realized ground label in s (M) and all other ground labels

CHAPTER 5. STRONG MODELS FOR 131: 170

are trivial realized ground labels in s(M). We have thus covered every ground label in D*.

Let 11s now study the implications on constant-wise realizability:

Proposition 5.7.6 A simple label 3 is constant-wise realizable in M iff it is strongly

constant-wise realizable in s (M) .

Proof: This property follows easily provided Pc(o, Af) and Qc(a, s(Af)) are shown equiva-

lent for all prefixes oc of F; we prove this equivalence for any ac.

As to the "if" part, Proposition 5.6.7 shows that Qc(a, s (M)) implies Pc(a, s(M)) . To prove

Pc(a, M), take y E I(a, A4). First, note that y is also an rgi of a in thc biggar set s(M).

Then because of Pc(a, s (M)) we get yc E I (s (M)) . Assume yc is a trivial rgl, then Corollary

5.6.5 entails the existence of a prefix y' which is a nontrivial rgl and instantiates a clash

witness in s(M). Propositions 5.7.3 and 5.7.4 further show that y' is a nontrivial rgl in M

and cannot instantiate any label in s (M) - M . Therefore, the clash-f the form a' I with

a' y1*xists in M, and by Corollary 5.6.4, all extensions of y', including yc, are realized

in M. Secondly, if yc is a nontrivial rgl, then Proposition 5.7.3 shows directly that yc is a

(nontrivial) rgl in A4 also. In either case we have verified yc E I(Af). Since this is true for

all rgis y, we derive PJo, M).

For the converse, suppose Pc(a, M) , arid take any instance y of a. First, if y is an rgi

of a in M, then yc is also realized in M thanks to Pc(a, M), and since being an rgl is

a monotone property, yc is an rgl in s (M) U {y T). Secondly, if y is not an rgi of a in

M, then by Proposition 5.7.5 (s(M))(,) is utopian, and so is (s(M) U {y T))(,). Since y

is nontrivially realized in s (M) U {y T) , Condition 3. of Definition 5.6.3 applies, showing

that yc E I(s(Ai) u {y T)). Wc have tlius shown this for all ground instmcts y of a, arid

Qc(a, s(A4)) follows.

As a final preparatory result, we state that saturation and subscripting by some realized

ground label are interchangeable:

Lemma 5.7.7 For any realized ground label y in M, we have s(M(,)) = (S(M))(~) .

Proof: Set d = d(M), I; = 171, as well as

(where we have already used the fact that d(M(T)) = d - I; , and C!, will be specified later),

CHAPTER 5. STRONG MODELS FOR LBL

and

To justify the latter, obvious-looking equality, we must ascertain that E. I does not "acci-

dentally" get introduced into (s(M))(,). First, if E. I $? M(,), then y and all its prefixes

y' are nontrivial rgls. By Proposition 5.7.4 we can infer that X i g y' and further X i y.

Now Proposition 5.6.2 shows that (s(M))(,) does not contain E I. On the other hand, if

E. I E M(,) already, we need not care whether it is also contributed into (s(M))(,) by one

of the assertions X j I, j 5 Ic.

On cornparing s(Al(,)) and (s(M))(,) and settir~g j = i + Ic, we see that we ordy ueed to

check (Cj)(,) = C:. Observe that the labels in Cj are exactly the labels of length j occurring

in Af which end in a constant, and upon subscripting by y, their length gets reduced to

j - I; (and the final constant never gets chopped off, since j - I; 2 1). Likewise, the labels

in C: are of length 1: and end in a constant. Furthermore, we have:

a c E C: iff a c ex. in M(,)

iff some aoac ex. in M , a0 C y

iff some aoac ex. in Cj, ao E y

iff a c ~ (Cj)(,).

This shows that indeed (Cj)(,) = C: for all i = 1, . . . , d - Ic + 1, j = i + Ic; which completes

the proof of s(M(,)) = (s(M))(,). 0

And finally, here is our eq~isat~isfiabilit~y result:

Theorem 5.7.8 For any clash,-free set of assertions M , M b1 F ifl s (M) b, F

Proof By Proposition 5.7.4, M is clash-free iff s (M) is. We will now show that M b1 F iff

s (M) b, F, given clash-freeness. First, note that M cannot be utopian (nor can s(Ad)), so

M b1 F is never true because of the trivial condition stated in Definition 5.6.8. Furthermore,

clash-freeness implies that all rgls of M are nontrivial. We prove the theorem by induction

on the structure of F , only doing the induction step for labellings and leaving propositional

concatenation and the base case (propositional atoms) to the reader.

So assume the theorem shown for a given formula F and any model M , and consider a F,

where for now a does not have any existential constants. Then we have:

CHAPTER 5. STRONG MODELS FOR. LBL

s(M) bs U F

iff (s(M))(,) b, F for all ground instances y of a (Thm. 5.3.9, Statement 5)

iff (s(M))(,) bs F for all y E I(o, s(M)) (trivial when y is not realized,

as (s(Af))(,) is utopian, Proposition 5.7.5)

iff s(M(,)) bs F for all y E I (u , M) (Lemma5.7.6, Prop. 5.7.3)

iff M(,) b1 F for all y E I(a, M) (induction hypothesis)

iff A4 b1 u F (Theorem 5.5.2: a is cwr, since it has no cxist,c.ntial constants).

For labels a with existential constants, we reason as follows:

ks a F

iff a is scwr in s(M), and s(M) bs [a] F

iff a is cwr in Af (Prop. 5.7.6), and M(,) b1 F for d l y E I (a , M) (first part,)

iff M b1 a F (Theorem 5.5.2).

The proof follows by i~lduction on the structure of F. 0

This theorem makes a remarkable contribution to our theory. Not only did we convert a weak

model M into a strong model s(Ai) for exactly the same set of formulas; but we did so with

only moderate size increase, namely O(d) extra formulas, each of which specifies O(#M)

exceptions in its label. This shows that minimal-size strong models are not significantly

larger than minimal-size weak models. Another remarkable fact is that s(M) satisfies all

formulas which M satisfies. In practice however, the strong model we constructed in this

fashion is of rather poor quality: s(M) is deprived of most of the extensibility typical for

strong models: normally, if we add another formula F to S, a strong model for S can be

extmded into a strong model for S U {F) through additional assertions verifying F; only

sometimes do clashes occur, and usually they can be repaired locally. But in s(M), an

additional assertion which introduces a new realized ground label to s(M) always leads to

a clash. We can obtain even smaller strong models for a speczfic set of CBC-formulas s7
which are nonetheless superior in terms of extensibility, in a different way:

Example 5.7.9 Given a set S = {* (pvq), * (l p v l q) , 1 T , 2 T) and a model M = (1 p, 2 q),

we can extend this model to M' = (1 p, 2 q, (* - (2)) p, (* - (2)) l q , 2 l p) ; we easily see

7 0 f course, we will eventually be able to generatre modcls direct,ly from S , onw we have developed our
algorithm. The ability to create a slrong model from a weak model is moslly of theoretical interest.

CHAPTER 5. STRONG MODELS FOR. LBL

3 Exception 1 1 1

Labels 1 1 c3

@ Labels 1 c t *

@ @ Labels c l "

Figure 5.5: The label *** - (1 11). expressed with simple labels.

that MI is clash-free and MI b, S. If we now add a formula 3 T or even 4 p to S, we can

get a strong model simply by adding the same formulas to MI as well. In the case of a new

formula 5 i p , we can do the same; however, we will then have to repair the ensuing clash

by adding 5 as another exception to (* - (2)) p and (* - (2)) i q , and including another

assertion 5 q in order to verify * (p V q). These repairs go beyond simple extensions of MI,

but they are local to assertions involving the instance 5.

The reason why we can construct strong models with less overhead is that they are tailored

to satisfy one particular set of formulas. By contrast, the model s(M) is designed to satisfy

all formulas weakly satisfied by M. In doing so, extensibility is sacrificed.

Now for the second task: providing an algorithm for converting an LBL,-model into an

LBL,-model. How can the same set of realized ground instances expressed by labels with

exceptions be expressed using sirnple labels only?

Example 5.7.10 Consider a cubes model M as in Example 4.1.1, in which all ground labels

of length 3 with constants 1 through n, are realized, thanks to some assertions in M with

labels i**, *i*, ** i , i = 1, . . . , n. Suppose further that M contains an assertion X p with the

CHAPTER 5. STRONG MODELS FOR LBL 174

label X = *** - {I l l) , representing the entire n x n x n cube minus the elementary cube

at position (1,1, l), as illustrated in Figure 5.5. Using sirnple labels, we cannot express this

set difference. Instead, we "slice up" the entire block into subspaces (planes, rows, or single

cubes) whose set union represents the same set as that represented by A. For instance, the

set of assertions w(M) = {2** a , . . . , n** a , 12* a , . . . , ln* a, 112 a , . . . , l l n a) adequately

replaces X a, and it contains only simple labels. We can regard w(M) as an expansion of

the model M.

In the general case, we also need to eliminate conditional constants [c] from all labels a;

this can be accomplished by unifying these labels with all other labels in M which have a

matching existential constant c in the same position.

In our algorithm, we do both steps (dividing up a complex label into blocks, and eliminating

conditional constants) simultaneously, and in increaqing order of positions: With d = d(M),

we define Mo = wo(M) = M , Afi = wi(. . . (wl(M)) = W;(M;-~), i = 1,. . . ,d, and w(M) =

Md, where cach wi(.) "works" on the it11 position of all labels in M,-l. Wc presuri~e that M

is clash-free and devoid of assertions with trivial labels and that all labels are normalized.

We assume the following invariant, to be proved inductively later: If (a - C) a is an assertion

in Mi, then all exceptions in C are of length at least i + 1, and their first i positions are

all identical to those of a. Furthermore, none of the first i positions in a are conditional

constants. Finally, Mi is clash-free. Note that the illvariant holds for i = 0, since M contains

no trivial labels. The algorithm computes wi(Mi-i) for a model MiPl satisfying the above

invariant (for i - 1). We will use the following notational conventions: Any simple label

(main label or exception) processed by the algorithm is written in the form aoxal, where

x denotes the it11 position of the cntire label; the algoritllrn does not t,oucli any labels of

length less than i.

Algorithm 5.7.11 Elimination of exceptions and conditional constants

Parameters:

Ail: the current model

Returns:

uli(M1): a one-step conversion of MI

CHAPTER 5. STRONG MODELS FOR CBC 175

1. For each assertion (uo*ul - C) a 6 M' so that C contains at least one label with a

(cor~,dition,al or ezi.sten,tiul) constunt in, its i th position:

Replace this assertion by a0 T , an,d introduce n,ew c~ssertions

where u(,c ranges over all labels of this form which exist as prefies of main labels in

MI, so that (ao, ah) exists (ao, U(,)CC(,,~) is the usual shorthand notation.

2. For each assertion (uo[c]ul - C) a E M':

Replace this assertion by a0 T 7 and introduce new assertions

where u(,c ranges over all labels of this form which exist as prefies of main labels in

M' so that (uo,ab) exists (c is existential but otherwise the same constant as in the

label we replace).

3. For every assertion (aoxal - C) a E MI:

If C contains a label uox, replace the entire assertion by aox T*.

It is easy to see that all assertions in Mi remain normalized. Furthermore, thanks to Step

2, all conditional constants in the ith position get replaced by existential constants. All

replaced assertions in Steps 1, 2, and 3 have simple labels, whereas in each new assertion

A in Steps 1 and 2, the first i positions in all exceptions are identical to those in its main

label. Finally, an assertion remains unchanged:

if the ith position in its main label is *, and the ith position in all exceptions (if any)

is also *,

if the i th position in its main label is c. Since the label of A is normalized, the i th

position in each exception (all of which are of length at least i , as our invariant states!)

must instantiate c, that is, be equal to c.

' T h e lahel of this assertion can be trun.rnted even m,ore: an,y trailin,.q t and ronditionnl con.stnn,ts can.
also be deleted. An assertion a T with existential constants can be shortened or even deleted, so long as a
re7rr.ain.s constarrt-wise rculiruble (for instance when cr ezists sornewh.ere e k e i n hf'). In our ezarnples of this
section,, we will point out ililrich labels (1.m redimdan,t and can he om,itted, but we will refiain from establish,in,g
a general result i n order to keep things simple.

CHAPTER 5. STRONG MODELS FOR. CBC 176

In either case, the ith position in all exceptions is identical to that in the main label of A.

This is also true for all positions less than i, since the invariant was assnmed to hold for

i - 1. Finally, any assertion whose label has an exception of length a t most i (which a t this

point is necessarily identical to a prefix of the main label) gets truncated to an assertion

with a simple label through Step 3. This shows that the invariant is preserved in Mi.

Now notice that the invariant for 1: = d states that all exceptions are of length at least d + 1.

Since the algorithn does not increase the lengt,h of any trlait~ label or except,ion and all

labels in Md are normalized, no such exceptions can exist, which shows that w(M) = Aid

has only simple labels. Furthermore, in all positions 1 through d, all conditional constants

have been eliminated, so w(M) is indeed a well-formed set of assertions in CBC,.
Before we proceed, let 11s illustrat,e the algorithm on Example 5.7.10: We are givcm the

model M containing the simple labels i**,*i*, **i, i = 1, . . . , n, and the sole assertion with

a complex label, (*** - {I 11)) p. Here is how the algorithm will proceed:

For 1: = 1, Step 1 applies and (*** - { l l l)) p get,s replaced by E T (whic:l~ is redm~dant),

(I** - { l l l)) p , and cl**p, for cl = 2 , . . . ,n.

For i = 2, Step 1 applies again to the new assertion (I** - { I l l)) p which then gets

replaced by 1 T (redundant), (1 1 * - {I 11)) p, and 1c2* p, for Q = 2, . . . , n,.

For i = 3, Step 1 applies once more to the new assertion (l l * - { I l l)) p, which gets

replaced by 11 T (again redundant). (1 11 - (1 11)) p, and 1 lcs p, for q = 2, . . . , n.

Now Step 3 applies to the assertion (11 1 - (1 11)) p. truncaking it to 11 1 T.

We see that all assertions combined constitute exactly the set w(M) we suggested in

Example 5.7.10. Apart from a few assertions we found redundant, they represent the

various shaded blocks in Figure 5.5. Unlike the other new assertioiis which specify

that p holds in these blocks, 111 T merely states that cube 111 exists.

We will now show that weak satisfiability is preserved throughout the algorithm, that is:

for all i = 1 , . . . , d, if M satisfies the above invariant, then Mi-l b1 F iff Mi b1 F. We

will obtain this through a sequence of propositions. Note that some of these propositions

will specifically refer to the sets Mi-l, Mi, etc. in the sequence from M to w(M), whereas

others will refer to "some" set of assertions M' satisfying the invariant for wi(.), just as in

CHAPTER 5. STRONG MODELS FOR CBC 177

the algorithm. We will need to use the latter, more general sets in some of the recursive

proofs to come.

Proposition 5.7.12 For assertions with empty labels, we have E a E Mi-1 i f f E a E Mi,

except perhaps for an extra E T i n M1. Hence Mi-1 b1 a iff Mi b1 a for any propositional

atom a.

Proof: Assertions with label E are not affected by any step of the algorithm, since i is

always greater than 0; neither does their presence give rise to any new assertions in M in

Steps 1 and 2, as E is never of the form aoc. Nor do new assertions with empty labels ever

get produced by the algorithm, except perhaps for E T , which might be produced in Steps

1 or 2 for i = 1. The second part is true because the presence of an extra E T in Mi does

not affect the bl relation, as we showed in Lemma 4.4.12. 0

Proposition 5.7.13 Mi-1 b1 F @ Mi bl F , viewed as a property of F , is preserved under

propositional concatenation.

Proof: Like many times before, we call upon Theorem 2.1.18 showing this. 0

Proposition 5.7.14 If (ao, oh)col - (ao, a,$)cC(,,,)) L y for the label i n the assertions

introduced i n Steps 1. and 2. and for a ground label y: then y also instantiates the original

label oo*ol - C or ao[c]al - C.

Proof: The label y must be of the form yly2 so that (aol ah)c C yl and ol C 72 . Sirm

oo* C (ao, oh)c, we see that y instantiates the main label of oo*ol - C. Now because of

the invariant, all exceptions in C have a0 as a prefix. Furthermore, yl does not instantiate

any prefixes of exceptions of the form aocf, d # c (since its ith position is c), and for

any ooxE E C so that, aox 71, we have E E C(,,,), l~er~ce Ep 72, wl~ich shows that

ooxJ gp y. To summarize, no exception in C instantiates a prefix of y, so we have proved

that ao*al - C 5 y. For oo[c]ol - C E y, the proof is analogous. 0

Proposition 5.7.15 A constant c exists i n M' iff it exists in wi(Mf)

Proof: Consider first the case i = 1. Then Steps 1 and 2 do not apply to any of the

assertions in M' whose main label begins with an existential constant, whereas Step 3, if

it applies, preserves the constant x = c in the first position. Conversely, any existential

CHAPTER 5. STRONG MODELS FOR. CBC 178

constant in the new assertions in wi(M1), introduced through Steps 1 and 2, must have

existed before (in some other assert,ion) in MI.

For i > 1, the constant c is the first position in the prefix a 0 of aoxal. Upon truncating any

label through Steps 1, 2, or 3, a 0 is always preserved, and with it the constant c. Conversely,

any existential constant in a new assertion in wi(M1) is introduced through unification of

two labels a 0 and ah in MI, one of which has this existential constant in its first position;

so the constant must already have existed in MI.

The next result is rather technical, but key to our proof. It states that applying the algorithm

and subscripting are "orthogonal" :

Proposition 5.7.16 For a7hy set M' satisf?j%ng the imrariunt for i - 1, and uny f m h ~ t ~ n t

c' E D which exists in MI, (wi(M1))(8) and W ~ - ~ (M { ~)) are zdentzcal, except perhaps for an

extra E T in (wi(Af1))(,~).

Proof: We presumed that M' is a model, so neither M' nor Mid) for any c' existing in hi'

can be utopian, which excludes trivial cases. Let us consider i = 1 first, in which case we

must show (wl (M1))(d) = wo(MicI)) = Micl) :

We consider each of Steps 1, 2, and 3 separately. Note that a0 = ah = E. In Step 1 the

assertion (*al - C) a gets replaced by the trivial E T plus (cal - cC(,)) a for all c existing

in hi', which irlcl~ides c'. Upon subscripting by c', only msertions whose main labels begin

with c' may contribute to Mic,) and (u~~(M'))(, t) , respectively. If c' itself is an exception

in C, then it is also an exception in clC(d), and neither the original assertion (*al - C) a

nor any of the replacement assertions contribute to MI8) and (wl (MI))(,[), respectively.

Otherwise, they both contribute the same assertion (al - C(8)) a into either set.

In Step 2 the reasoning is analogous, except only when c = c' (and c' @ C as before) will

([c]al - C) a and its replacements E T and (cal - cC(,)) a contribute the (same) assertion

(a1 - C(d)) a to hi{,) and (UJ~(M'))(,I) , respectively.

Finally, the label in Step 3 is of the form (xul - C) a, and x is an exception in C. If x is

neither c' nor *, (xul - C) a does not. cont,ribut,e t.o Mi,,); nor does t,he replacement. assertion

x T. But if x = c' or x = *, c' instantiates an exception in C, so again the label does not

contribute to Mi,,). On the other hand, the replacement assertion x T in url (Af') contributes

the assertion E T to (wl (M1))(d).

Now consider 7: > 1. Observe that in all three steps both the original assertion (aozol - C) a,

and its replacement begin with ao, as do all exceptions in C, in accordance with our invariant.

And the positions in a 0 do not play an active part in determining whether any of the

steps should be applied. Noitlrer x w h o r l rontrihutm anything to Mid) and (w ~ (M ')) (~) ,

respectively, unless a o begins with d or *. For the rest of the proof, assume this to be the

case. Then x is found in the i th position in (aoxal - C) a iff it is found in the (i - 1)st

position in the corresponding assertion in Mi,,). The same is true for a constant in the

ith position of a label in C (the criterion for applying Step I) , so each step applies in the

same way to corresponding assertions in M' and Mid). Subscriptping only climirmtes the

first position from a 0 and from all exceptions in C, which is clearly interchangeable with

the replacement (or truncation, if you will) of assertions in Steps 1, 2, and 3.

For the new assertions A = ((ao, aA)cal - (ao, a~)cC(,,,)) a introduced in Steps 1 and 2,

notice t,hat A cont,ribut,es an a~sert~ion A? t,o (wi(M1))(,t) iff (u O , u ~) begins with d or *,
that is, both a o and ah begin with d or *. But then the assertion A' in which the label abc

occurred contributes an assertion A& to Mid) (and c is found in the (i - 1)st position in the

label of A'). So the assertion A,! in (w ~ (M ')) (~) also arises as an additional assertion from

Step 1 or 2, applied to Mi?) while computing T L I ~ - ~ (M ~ ~)) . (Here A> provides the unifying

label in Micl).) This completes the ~ m f that these two sets are equal. 0

Corollary 5.7.17 For any con,.stant c E D wlrich e.xi.sts in A!, (w(M)) (,) and w(M(,)) are

identical, except perhaps for an extra E T in (w(M))(,).

Proof: This is just Proposit,ion 5.7.16, it,crlttad over i = 1, . . . , d. 0

Proposition 5.7.18 For any set M' satisfying the invar-iant for wi(.), MI and wi(M1) have

the same set of realized gmmd labels.

Proof: The empty label E is realized in all sets. For a nonempty ground label cy, we use

induction on i. Assuming the proposition shown for i - 1, we reason as follows:

cy E I(wi(M1))

iff c exists in (uri(M1)), and y E I((wi(M1))(,)) (Lemma 5.4.9, parts (2),(3))

iff c exists in MI, and y E I((wi-1 (Mi,)))(,)) (Prop. 5.7.15, Prop. 5.7.16)

iff c exists in MI, and y E I(Mi,,) (i > 1: Ind. Hyp.; i = 1: wo(M(,)) = M(,))

iff q E I (M 1) (Lcmma5.4.9,parts(2),(3)).

The extra assertion E T which may be found in (wi(Abl))(,) but not wi-1 (Mi,)) does not

affect the set of their rgl. The proof follows by induction on i. 0

CHAPTER 5. STRONG MODELS FOR LBL

Corollary 5.7.19 If Mi-i is clash-free, so is Mi.

Proof: Assume Mi contains a clash. Clashes are characterized by the existence of an rgl y

in Mi-which by Proposition 5.7.18 is also an rgl in Mi-1-0 that Mi contains XI I or two

complementary assertions X1 p, X2 i p so that X1 L y (and X2 L y). Other than assertions

cont,aining T which do riot part,ic:ipat,c in clashes and assertioiis takcri over unchanged from

Mi-i, the only new assertions in Mi are those introduced in Steps 1. and 2. For these,

Proposition 5.7.14 warrants the existence of some label(s) X i y (and X i C y) so that

X i I (or X i p and X i i p) are assertions in Mi-i. But since y is realized, these assertions

constitute a clash in Mi-1 as well. 0

Proposition 5.7.20 If M b1 F e w(M) bl F for all clash-free sets M of assertions

(viewed as a property on formulas) holds for a formula F , then it also holds for * F , c F ,

and [c] F , c E D.

Proof: For existential constants, we reason as follows (over an arbitrary model M):

M b , c F

iff c exists in M and M(,) b1 F

iff c exists in w(M), and w(M(,)) b1 F (Prop. 5.7.15 iterated, Ind. Hyp.)

iff c exists i11 w(M), arid (w(M))(,) bl F (Cor. 5.7.17)

iff w(M) b, c F .

Again the extra assertion E T which may be found in (ui(M))(,) but not w(M(,)) does not

affect tho equivalence of w(M(,) bl F and (w(M))(,) bl F .

For x = [c] and x = *, we reason analogously, except for [c] we have nothing to show if c

does not exist in M and w(M), and for * we reason over all constants which exist in M ,

which are exactly the constants existing in w(M). 0

Theorem 5.7.21 For any CBC-formula F , the set Af is an CBC,-model for F iff w(M)

is an CBC,,-model for F .

Proof: This follows by induction on the depth of F from shown facts: the equivalence

M b1 F e w(M) b, F holds for propositional atoms (Proposition 5.7.12, iterated over

i = 1,. . . , d), it is preserved under propositional concatenation (Proposition 5.7.13, iterated

over i = 1 , . . . , d), and it follows for all atoms of depth k + 1 provided it holds for all

fornmlas of depth up t,o Ic (Proposit~ion 5.7.20). Finally, we showed t l ~ a t clash-frcei~ess of

Mi is preserved as an invariant, and since M is clash-free, so is w(M). 0

Needless to say, the model w(A4) may expand greatly compared to M. After all, assertions

cannot be represented as concisely using only simple labels as with complex labels. We

illustrate this on the model we found for Example 5.1.1:

Example 5.7.22 Consider the assertion (*** - {I**, *I*, **l)) h in the model hf for Ex-

ample 5.1.1. Recall that all ground labels of length up to 3 with constants 1 through n are

realized through labels i**, *i*, **i, existing in M for all i = 1, . . . , n. We also said that

(n - 1)bse r t ions y h with ground labels y are needed to represent all instances in which

h is true. Our algorithm indeed produces all these assertions:

For 7: = 1, Step 1. applies, and (*** - {I**, *I*, **l)) h gets replaced by E T (which is

redundant) and assertions (I** - {I**, l l* , l* l)) h and (cl** - {ell*, cl*l)) h added,

for c1 = 2,. . . , n.

For i = 2, Step 1. applies again to the new assertions

1 T and cl T (redundant), and assertions (1 l* - {ll*, 11

(cll* - {ell*, c l l l)) h, (clc2* - (~ 1 ~ ~ 1)) h added, for cl

which then get replaced by

1)) h, (lc2* - {lc2*, 1~21)) h,

,c2 = 2 ,..., n.

0 For i = 3. Step 1. applies a third time to any of the new assertions which get replaced

by clc2 T (cl, c2 = 1, . . . , n; all redundant) and eight kinds of new asscrtiorls added;

the first seven of these are of the form (clc2c3 - {clc2cj)) h, where cl = 1 or c2 = 1 or

c3 = 1, and the last is of the form ~ 1 ~ 2 ~ 3 h, for CI, c2, c3 = 2 , . . . , n.

Now Step 3. applies to all new assertions where cl = 1 or c2 = 1 or c3 = 1, truncating

these to clcpcj T.

To conclude this section, let us reflect on Figure 5.4. We accomplished the task of converting

an LBLw-model into an LBL,-model. We also provided an algorithm for converting an

LBL,-model (which includes all LBL,-models) into an ,DLw-model. We are left with one

missing link-the dotted arrow in Figure 5.4. Can a procedure similar to that of s(.) be

constructed, converting an LBL,-model M into an LBL,-model? One could, of course,

convert M to an LBL,,-model w(M) and then produce a strong model s (u ~ (M)) from it.

CHAPTER 5. STRONG MODELS FOR CDC 182

But as we have seen, the conversion to w(M) hugely increases the size of the model, so

s(w(M)), though formally an LBL,-rnodcl, will hardly bc satisfactory.

Instead we suggest an adaptation of the algorithm for computing s (M) to handle labels with

exceptions. The basic idea is to introduce extra assertions (5 - C) I, but here 5 does not

only range over the universal labels *i but also over all exceptions in the assertions of M , so

as to render (S (M)) (~) utopian whenever y is not a realized ground label. The "exceptions

to the except,ions" in C rnmt be suit,ably dcfined so that no realized ground label in M

will instantiate any of the [- C. For lack of relevance to the rest of this work, we will not

develop this idea further. We do point out that this conversion will result in a similarly

moderate size increase as in the conversion s(.).

Chapter 6

A Model-Finding Algorithm

That's not magic-it 's logic.

J. K. Rowling, "Hamy Potter and the Philosopher's Stone "

6.1 Introduction and Motivation

Equipped with the syntax and strong model semantics of LBL, we are now ready to give an

algorithm which finds strong models for a given set S of formulas whenever S is satisfiable,

or rejects S whenever it is unsatisfiable. Keeping in mind that models themselves are sets of

formulas of a special type (namely, they do not contain the propositional connectives A and

V) , we could view rliodel finding as a transformation of S which elirnir~ates all propositional

connectives. As we will see shortly, labels distribute over conjunctions, so conjunctions

occurring outside any disjunctions are easily eliminated from an LBL-formula. This is a

novelty which is not true for the modalities in K. The problematic issue is how to eliminate

disjunctions. The obvious answer, just as in propositional logic, is to perform a tree search

over all c~mbinat~ior~s of dis.jiincts, cornrriorlly referred to as bmnchiny. This could be dor~e

in various ways: breadth-first, branch-and-bound, depth-first, etc. Notwithstanding other

approaches being feasible, we will advocate a "branch-and-repair" approach, which is depth-

first in that it keeps only one partial solution at a time, thus aiming for optimal use of

memory rcsourws; but it does not share the backtracking behaviour of an ordir~ary dcpth-

first search: a failed branch in a search tree is usually not completely undone; only the parts

of the branch which contributed to the failure are repaired, and the rest left untouched.

CHAPTER 6. A MODELFINDING ALGORITHM 184

We could successfully state an algorithm which handles arbitrary CBC-formulas. But a less

clut,tered description can be givm if formulas are preprocessed into a nornlal form we call

labelled clause normal form (LCNF), in analogy to the clause normal form frequently used

for stating the propositional satisfiability problem. In Section 6.2, we will define the LCNF

and how to convert a formula into it.

To illustrate how the search algorithm works, let us reconsider Example 5.1.1:

Example 6.1.1 We are given a set S of formulas containing:

the formulas listed in (4.2) and (5.1) which define the 1:-, y-, and z-coordinates:

1** (x = 1) *1* (y = 1)

... ...
n** (x = n) *n* (y = n)

(*** - {I**)) 1 (x = 1) (*** - {*I*)) = 1)

... . . .

(*** - {n**)) ~ (x = n) (*** - {*n*)) ~ (y = n)

the formulas Fl and F2 from Example 5.1.1:

FI = *** (i h V (~ (x = 1) A ~ (y = 1) A -(z = 1)))

F 2 = *** h V (x = 1) V (y = 1) v (z = 1) . ()

The first kind of formulas are already assertions. We have shown that assertions satisfy

themselves, and we will also show that they can safely be added into any model which does

not itlrea,dy contain them, so we will simply iilc:lude them in the model M we are going

to construct. But we must branch on the disjunctions in Fl and F2. We see that these

disjunctions are within the scope of the label ***; to be most efficient, we will try to branch

simultaneously on as many instances as possible. Let us begin with F2, which we will try to

satisfy universally by adding *** h to M. This succeeds (M remains clash-free), so we do

the same with Fl, adding *** ~ I L to M . As a result, we have a clash with witness ***, so we

undo this choice and try the other disjunct, a conjunction. As claimed, we can distribute

the label *** over it, adding the assertions *** ~ (x = I) , *** ~ (y = I), and *** ~ (z = 1) to

M. Now M contains three clashes with the existing assertions 1** (x = I) , *1* (y = I) , and

CHAPTER 6. A AIODEL-FINDING ALGORITHM 185

**1 (z = l) , respectively. Notice that each clash witness is a strict instance of the branch

label ***, so we necd not undo the entire branch. I~ist~ead, we add the clash witnesses as

exceptions to the branch label, which gives us (*** - {I**, *I*, **I)) ~ (x = 1); same for

y = 1 and z = 1. (These new assertions are subsumed by existing assertions and can be

deleted.)

Now we have unsuccessfully tried all disjuncts in formula Fl, so we need to backtrack to

our first branching point i11 F2--but only over thc three clash witnesses, not the label ***.
To keep things simple, let us only pursue the instance 1** further: We first introduce this

instance as an exception to *** h. Now we branch again on F2, choosing the second disjunct

and adding 1** (x = 1) to M . (In fact, this assertion is already in M.) The clash is hereby

re~rmved, but we need to go back to Fl arid satisfy it over the instance I**. Now branchiilg

on the first disjunct and introducing 1** l h no longer leads to a clash, so we do this and are

done for this instance. On repeating this in a similar way for the other two instances *1*

and **I, we arrive a t a satisfying model M containing the following additional assertions:

This is exactly the model we suggested in Example 5.1.1.

The search can be considerably shortened if we employ techniques like Boolean constraint

propagation. For instance, we coiild nark the disjunct -(x = 1) A l (y = 1) A l (z = 1) in

Fl with the instances I**, *I*, **I, in which it is not satisfiable because complementary

assertions already exist in M. Then we can immediately derive 1** ~h etc., for -.h is the

only other disjunct available. We can propagate these new assertions further into F2 where

we find a complementary literal in the disjunct h and mark it with these instances. Now

when we first branch on F2, we would select h only over the unmarked part of ***, that is

(***-{I**, *I*, **I)) h. We thus avoid the occurrence of clashes altogether. In Section 6.13,

we will outline how Boolean constraint propagation can be incorporated into our general

algorithm.

In our example, we observed how some branches wcre partially undone, whereas others were

undone and later revisited on subinstances. If we are not careful, the algorithm may get

caught in a nonterminating loop, undoing and redoing the same branch(es) without making

any progress towards a satisfying model or towards exhausting the search space. To avoid

this, we will have to use additional data structures to guide the search and keep track of its

state:

CHAPTER 6. A MODELFINDING ALGORITHM 186

We consider each disjunct in each formula a potential branch; to each branch, we

assign a, positive integer, its hrarrch inden:. We do not need t,o brai~ch in ascending

order of indices to ensure termination; but whenever a clash occurs or a formula runs

out of disjuncts to branch on, we must undo the branch with maximal index among all

branches participating in the clash or causing the failed formula. We describe branches

in detail in Section 6.4.

Whenever we have exhausted a part of the search space without any solution, we block

it by rules called nogoods. These rules list all branch assignments defining that part of

the search space. At any time during the search, we ensure that no nogood is violated,

so the algorit,llm always works in a part of t l ~ c search space wc: have not visited before.

We describe nogoods in Section 6.5.

As we have demonstrated in the example, the search is chiefly driven by the need to

repair occurrences of complementary assertions and formulas in which no branch can

be selected. We call these standin,g inconsistencies and failed clauses, respectively.

Whenever they occur on a realizable label, they must be repaired, or else the current

set of assertions cannot be extended into a model. In Section 6.6, we will classify all

types of inconsistencies, and in Section 6.8 we will discuss how to repair failed clauses.

Nogood calculi, also known as dependency-directed backtracking, are a well-established family

of techniques in Constraint Satisfaction Problems [19, 311. They include techniques such as

backjumping [28] and dynamic backtracking [31]; and they have been successfully adapted

to propositional logic [24], where they are also referred to as conflict-driven clause learning

[89, 771. All nogood calculi can be viewed as resolution calculi [68, 61.

In adapting a nogood calculus to CBC, we are faced with additional challenges arising from

the use of labels, as we will illustrate on the next example:

Example 6.1.2 Find a model for the set S containing the following clauses:

The variable f is to represent an unsatisfiable formula. It could also represent a whole set of

formulas which imply 1 f , so the fact that the second disjunct in C2 and C3 is unsatisfiable

may not be obvious. We assign branch indices to the disjuncts as follows:

CHAPTER 6. A MODEL-FINDING ALGORITHM

C1 Branch 1: p Branch 2: q

C2 Branch 3: cl l p Branch 4: f

C3 Branch 5: ca l q Branch 6: f

The algorithm proceeds in the following way:

1. (C1, Branch 1 on *:) Add * p to M .

2. (Cz, Branch 3 on E:) Add cl l p to M.

Now M contains a clash with witness cl. Notice that the main label of the second

formula is E, not cl.

3. (Undo Branch 3 on E:) Remove cl i p from A4

Add a nogood cl: 1, E: 3 + E I, expressing that Branches 1 and 3 cannot be cllosen

simultaneously on the labels cl and E, respectively, in any model.

4. (C2, Branch 4 on e:) Add E f to M

This results in a clash with C4 on the witness E.

5. (Undo Branch 4 on E:) Rcmove E f from M.

We introduce a nogood E: 4 -+ E I. Now C2 fails on all disjuncts, and we propagate the

two nogoods witnessing the failure into a common nogood, not including the branches

3 and 4 on C2 itself. So the propagated nogood becomes cl: 1 + E I.

6. (Undo Branch 1 on cl:) Add cl as an exception to * p.

Nogoods may not remain violated, so we must undo Branch 1. If the nogood mentioned

more than one branch, we would undo the branch with maximal index, and if it

mentioned no branches a t all, we would have shown S unsatisfiable.

7. (Cl , Branch 2 on cl :) Add cl q to M

8. (Redo Brandl 3 011 E :) Add cl l p t,o M.

Note that this does not violate the nogood cl: 1, E: 3 + E I (which continues to exist!),

because Branch 1 no longer includes the instance q.

9. (C3, Branch 5 on E:) Add c:! l q to M.

CHAPTER 6. A MODEL-FINDING ALGORITHM

The algorithm returns the set M = {(* - { c l)) p, cl l p , cl q, c:! i q , 1 f) as a model for S.

In Step 3, it was crucial to restrict the nogood premise to cl: 1. If we liad carelessly written

*: 1, then in Step 7 we would have to extend Branch 2 to *, which would lead to a clash after

branching on C3, similar to Steps 3-5, and we would erroneously determine S unsatisfiable.

This is just one of the caveats we must pay attention to when designing the algorithm.

6.2 More Normal Forms

Early on in Definition 2.1.14, we presented the A n d / o r normal form for propositional

formulas, in which no conjunctions are nested inside other conjunctions and no disjunctions

inside disjunctions, and all conjunctions or disjunctions are of arity at least 2.

While this is achievable in purely propositional concatenations of subformulas, we usually

cannot flatten conjunctions into conjunctions or disjunctions into disjunctions, when the

inner conjunctions or disjunctions are preceded by modal operators: Only 0 distributes over

disjunctions, and over conjunctions. Thus the K-formula 0 (PA q) A 0 r is not equivalent

to 0 p A 0 q A 0 r , but it is permissible to flatten O (p A q) A r to p A q A r .

For CBC, perhaps surprisingly, the rules are different:

Proposition 6.2.1 For any simple label a and any conjunction a1 A . . . A a,, we have

a (a1 A . . . A a,) a a1 A . . . A (T a,? where = is -1 or =,.

Proof: Let M be a set of assertions. According to Corollary 5.5.8, M k , a (a 1 A . . . A a,) iff

a is scwr and M(r) k , a1 A . . .Aa, for all ground instances y of a . Now we distribute k, over

the conjunction to obtain M(r) k , a, for all i = 1,. . . , n. This holds for all ground instances

of a , so we can apply Corollary 5.5.8 backwards to get M k , a ai for all i = 1,. . . , n, which

is equivalent to M k, a a1 A . . . A a a,.

The proof for the kl case is similar, using Theorem 5.5.2 instead of Corollary 5.5.8, and

reasoning ovcr all rgis of a in M instcad of all ground instances. 0

One easily verifies that this result is invalid for disjunctions. For instance, * (p V q) ("One

of p or q holds in every instance of *") is not equivalent to *p V *q ("The same p or q holds

in all instances of *"). A (weak) countermodel is {cl p, c2 q}: it satisfies the former formula

but not the latter.

Proposition 6.2.1 allows us to define what we call the expanded A n d / o r normal form (E N F

for short), because labels in conjunctions get expanded into all the conjuncts:
. .

C H A P T E R 6. A MODEL-FINDING ALGORITHM 189

Definition 6.2.2 The set of LBL-formulas i n expanded And/or normal form (ENF) is

the smallest set of fom~~ulns in th,e fol lowin,g .r.ecu.r.si~~e f o m ~

a0 (PI v . . . v Pm), where each Pj, j = 1, . . . , m, is a conjunction of formulas

of the form aj,iaj,i, i = 1, . . . , n,j , i n which each aj,i is

0 a p.r.opositiona1 atom or

0 a disjunction of at least two terms, and aj,iaj,i is i n ENF.

We convert a formula F into a formula enf(F) as follows:

Algorithm 6.2.3 Conversion to expanded A n d / o r normal form

Parameters:

F: an LBL-formula in And/or NF

Returns:

a formula enf(F) in ENF

enf(a (Dl V . . . V Dm)) = o (enf(Pl) V . . . V enf(p,)),

enf(o (a1 A . . . A a,)) = /\{a a: : a: is a conjunct in enf(ai), i = 1,. . . , n),

enf(a a) = a a, for any propositional atom a.

Beyond propagating the conversion into inner formulas, the rule for conjunctions performs

two additional steps: moving the label a inside the conjunctions, and flattening conjunctions

to the greatest extent possible. Take F = a1 (a2 (p A q) A r) , for instance. According to

our dcfinit,ion, enf(02 (p A q)) = 0 2 p A 0 2 q. The flattening step ensures that enf(F) =

ala2 p A ala2 q A a1 r , not a1 (a2 p A a 2 q) A a1 r which would not be in ENF.

Let us verify that the result of this algorithm is indeed in ENF:

Proposition 6.2.4 For any LBL-fonr~ula F , the result cnf(F) of applying Algorithm 6.2.3

is a conjunction of one or more formulas in ENF, and F - enf(F), for - in {E~, -,).

Proof: Both statements are easily shown using structural induction on F . The only

irlteresting part is to show that equivalence is prescrvcd lirlder coiljunction of formulas: in

this case, we assume by the induction hypothesis that ai - enf(ai) for all i = 1, . . . , n.

Hence, a1 A . . . A am = enf(al) A . . . r\enf(a,). The equivalence is preserved under flattening

of this conjunction (Corollary 2.1.4), so we get a a1 A . . . A a,,, r a /\{a: a: is a conjunct in

CHAPTER 6. A MODEL-FINDING ALGORITHM 190

enf(ai), i = 1, . . . , n), and finally Proposition 6.2.1 shows that a can be distributed over all

conjuncts, resulting in the equivalent t,errn A{a a: : a: is a conjunct in enf(ai), i = 1, . . . , n),

which is enf(a (a1 A . . . A a,)). Further details of this proof are left to the reader. 0

Corollary 6.2.5 For any set S of LBL-formulas, a set Sf of LBL-formulas i n ENF can

be found so that S = Sf, for = i n { - 1 , G,).

Proof: By Propositiori 2.1.15, S can first be convert,ed int,o an equivalent set 3 of atoms

(propositional atoms or formulas of the form a F, a # E) and at least binary disjunctions in

And/or NF. Write the latter as E F. Now let Sf be the set of conjuncts in enf(a F) , for all

a F E S. Proposition 6.2.4 shows that Sf is a set of formulas in ENF, and that equivalence

is preserved in computing enf(o F) . And equivalence is also preserved in flattening the

conjunctions enf(a F) into Sf. 0

By converting S from And/or NF into ENF, we have eliminated all labels preceding con-

junctions, and possibly flattened conjunctions in S further. Notice that d(S) does not change

under this procedure. The size of S may increase due to the duplication of labels, but only

marginally: any givcn subformula may be augmented by sorilc or all of the labels preceding

the cascade of formulas in which it is a subformula; the concatenation of these labels is of

length no greater than d(S). Hence S may increase by a factor O(d(S)) in the worst case.

The next conversion step does not preserve equivalence, but it does preserve satisfiability.

The idea for this conversion is taken from a normal form for S5-formulas [14, 561'. It

resembles the wcll-known polynomial-size conversion algorithm for propositional fornlulas

into CNF which also preserves satisfiability but not equivalence. What we call labelled CNF

is much like the ENF in Definition 6.2.2, except without recursion:

Definition 6.2.6 A set of L B L -formulas is i n labelled clause (or conjunctive) normal form

(LCNF), if its fomvlas , called clauses, are of the form a o (01 V . . .VP,), and each Pj, cc~lled

a term, is a conjunction of labelled atoms of the form aj,i aj,i, i = 1, . . . , nj, j = 1,. . . , m.

Note that unlike in propositional CNF, aj,i may not always be a literal: we cannot avoid

the use of T and I in an LCNF, as these constants are used to make statements on the

'The term "modal conjunctive normal form" (MCNF) used in 1.561 is a misnomer, for only t,hc positions
of the modal operators are normalized; no st,eps are taken to flatten the formula propositionally. The axioms
of S5 are needed for this equivalence-preservir~g transformation which does not generalize to other normal
modal logics. To the best of our knowledge, a Inore general, sutisfinhility-pre.~en~in,g transformation has never
been proposed before.

CHAPTER 6. A MODEL-FINDING ALGORITHM 191

existence and nonexistence of labels. We could get rid of the inner conjunctions, to obtain

a fortn even closer to propositional CNF. However, we cannot. elimina,t,e thc inner label crj,i

or distribute the outer 00, since labels do not distribute over disjunctions. And eliminating

the inner conjunctions would introduce extra variables while not providing significant gains,

so we content ourselves with the LCNF as defined2.

To convert a formula from ENF into LCNF, all we need is to introduce new propositional

variables and replace the inner c:or~jnnct,s uj,i aj,i suitably. Here is how:

Algorithm 6.2.7 Conversion to labelled clause normal form

Parameters:

S: a set of formulas in ENF

Returns:

lcnf(S): a set of formulas in LCNF

while there exists a forrnula a 0 F E S which is riot in LCNF do

Choose a conjunct uj,iaj,i from the terms ,8j in F so that aj,i is not an atom.

Choose some pj,i E P which is not used in S.

In F, replace aj,i by pjj.

set S := S U { ~ ~ [~ j , i] (lpj,i V cyj,i))

done

return S

We remarked in Definition 6.2.6 t,llat any ~wn-atom aj,i in an ENF-formula rnust be a

disjunction of at least two terms. It is understood that these terms are flattened into the

above disjunction ip3,z V a3,i. We easily see that the number of nested non-atomic conjuncts

uJ,ia3,, strictly decreases upon applying this procedure, so the algorithm terminates, and

according to the termination criterion in the while loop, the returned set is in LCNF. We

only need to show that sat,isfiabilit,y is prmerved in each iteratior1 of the while loop. The

two directions of the proof are markedly different, so we state them separately. We will use

the same identifiers as in the algorithm above, and denote by S' the set obtained from S in

one iteration of the while loop. In the first direction, given a set of assertions M for S', we

2 ~ f we had used labels with proper variables instead of the anonymous *, then labels would distribut,e over
disjuncLions as well as conjunctions, and we could obLain a "proper" CNF. In fact, the optimized hlcLional
tjranslation [81] ac,con~plishrs cxartly that,. Howcvcr, if we did this, the cntirc problcm would collapsc into a
notatio~lal variant of a first-order problem; this was not our goal, as we already stated in the introduction.

CHAPTER 6. A MODEL-FINDIING ALGORITHM 192

eliminate all occurrences of pj,i in a way that the resulting set satisfies S. We will establish

a few general results first:

Proposition 6.2.8 Given a set of assertions M and propositional variable p, we denote

by MIp the set obtained from M by replacing all occurrences X1 p and A:! i p with X1 T and

X2 T , respectively, arrd adding (A1, X2) I for awy pair of such occurrences i n wlrich XI and

X2 unify. Then for any simple label a we have:

(2) If a label a' is strongly constant-wise realizable in M(,-,): then it is strongly constant-

wise realizable in (M lp) (,-,).

(3) I f F is an LBL-formula not mentioning p, then M(,) b, F implies (MIp)(,-,) bs F.

(4) If MIp contains a clash, then so does M.

Proof: It suffices to show part (1) for a one-element label a = x; the general proof follows

iteratively. Assume first that M does not contain a clash with witness e. Then neither

M nor MIp are utopian. It is clear that each original assertion X a in M contributes an

assertion A' a into M(,) exactly when the corresponding assertion X a' in M I p (where a' = T

in case a = p or a = i p , and a' = a otherwise) contributes A' a' into (Mlp)(s); the same

assertion A' a' is found in (M(,))lp.

Secondly, any of the additional assertions (A1, Xz) I in MI, contributes an assertion A' I

into (Mlp)(,z) iff (A1, X2) & x, which holds iff both X1 pL x and X2 ,g x. Exactly when this

is the case, these two assertions contribute two assertions X i p and Xk i p into M(,), and one

casily verifies that (Xi, A;) exists and is eq~ial to A'. Therefore, exactly the11 the assertion

A' I is also found in (M(,))lp.

Next, if M is utopian, then so is MIp, and subscripting introduces an extra E I into both

(MIp)(,) and M(,), which remains in (M(,))I,. Finally, if M contains a clash of the form

~ p , E i p , then only MIp is utopian, and (MIp)(,) may contain the extra E I which is not in

(A!(,)) l p , the only case where these two sets are not identical.

Part (2) is easy because the labels of M(,) are all present in (MIp)(,-,). This is sufficient for

applying the monotonicity principle to the property of being scwr, even though the subset

relation does not strictly hold.

CHAPTER 6. A MODEL-FINDING ALGORITHM 193

For part (3), it suffices to consider the special case a = E. (In the general case, define

M' = M(,). Then Milp = (M(,))lp is a siibset of (All ,)(,) according to (1). If we l~avc

shown that M' k, F implies Milp ks F, then (Allp)(,) k, F follows by monotonic-ity.) The

case where M k, F because Af is utopian is trivial. (As we said, MIp is also utopian.)

So we will assume I f! M. Now suppose for the base case that M k, a, where a is an

atom; a cannot be I , and since MIp k, T is always true, the case a = T is trivial. If a is

a literal, then E a n~iist be in M. This assertion is found unchanged in MIp, ii111ess a = p

or a = l p ; but a was explicitly assumed not to mention p. Therefore, MIp ks a. Next,

assuming part (3) shown for F, suppose that M ks o F . Then o is scwr in M, and by (2)

it is also scwr in MI,. Furthermore, M(,I) k, F for all instances o' of o, and the induction

hypot,hesis, applied to M(,t) and F, irnplics that (Mlp)(,t) ks F , showing that, MIp k, a F .

We leave it as an exercise to the reader to show this property preserved under propositional

concatenation; from here the proof follows by structural induction.

As for part (4), the only type of clash in MIp not involving labels already in M is when one

of the new assertions (A, A') I has a realizable witness (A, A'). However, A pJ,i and A' lpj,i

were a.ssert,ions in M, and sincc (A, A') exists and is realizable, these two a~scrt~ions form a

clash in M. 0

Proposition 6.2.9 Let M be a model for Sf. Then is a model for S.

Proof: We prove this "bottom-up1'-from the term level to the entire set S. We point out

that pj,i is a new variable which does not occur in S , so for any subformula of S satisfied

by some M(,), Proposition 6.2.8 shows that it is also satisfied by (Mlpj,i)(o).

For any instance oo' of oooj,i SO that M(,,t) k, Pj,il we have (Mlpj,i)(oo~) ks aj,i.

Since oo [ojqi] (1pj,i V aj,j) is a formula in S', M(,,t) must satisfy the disjunction lpj,i V '

aj,i for any instance oo' of oooj,i. If M(,,t) satisfies (some disjunct in) q , i , then so

does (M (,,I) (since nj,i is a subformula of S) , and we are done. Otherwise M(,,t)

must satisfy lpj,i, but according to our assumption, M(,,t) also satisfies pj,i. This

means, two assertions A pj,i and A' lpj,i must exist in M , and oo' instantiates both A

and A'. Hence these two labels unify, and (A, A') C oo'. But in this case, (A, A') I has

been included in It follows that (MIPj,z)(oot) is utopian and satisfies anything,

irlcludi~~g q , i .

CHAPTER 6. A M ODEL-FINDING ALGORITHM 194

A label aa' instantiates aoaj,i iff a o L a and aj,i C a'. Hence this result follows from

Statement 1 by qiiantifying ova. all instances a' of aj,i, citing part (4) of T1ic:on:rn 5.3.9,

and noting that uj,i being scwr in M(,) implies that aj,i is also scwr in (Mlp,,,)(,)),

by part (2) or Proposition 6.2.8.

3. Let F = Dl v . . . v & V . . . v Dm be the forrilula changed illto F' = PI V . . . V Pi v . . . V Dm
by replacing the conjunct aj,i aj,i in ,Bj with uj,i pj,i. Then for any instance a of ao, if

'I(,) bs ''7 then (Mlpj,i) (0) bs F .

If M(,) satisfies any disjunct ,Ojt other than ,Oi, this disjunct is a subformula in S,

and Proposition 6.2.8 shows (MIPj,i)(o) bs fly. Otherwise, Af(,) must satisfy the

remaining disjunct ,Oi, along with all its conjuncts aj,? aj,it in Pi, i' = 1, . . . , nj. For

2" # i, the aj,it aj,it are subformulas in S , so (Mlpj,i)(a) bs uj,it aj,it. When i' = i , we

have M(,) bs aj,i pj,i, and by Statement 2, (Mlpj,i)(u) bs aj,i aj,i. This proves that

(Mlpi,i)(a) bs ,Oj, which in turn proves our statement.

4. M b, S' implies MIpj,, bs S.

For any formula in S other than a o F, this is evident. And for the formula F' modified

by the algorithm, M b, a 0 F' entails M(,) bs F' for any instance a of ao; Statement

3 shows that (Mlpj,..)(,) bs F. Since this is true for every instance a, and since 00

being scwr is inherited into MIPj,i (as before), we derive MIpjvi bs uo F as claimed.

5. If M is clash-free, then so is M

This is just the contrapositive of Proposition 6.2.8, part (4).

0

Let us now show that satisfiability is also preserved in the converse direction. Assume that

S has a set of assertions M satisfying it. Wlog, we can assume that M does not contain pj,i.

(If it does, it can be eliminated by replacing M with the set M' as in Proposition 6.2.9.) We

seek to obtairi a set M which satisfies Sf . All we ueed is to find suitable assertions laying

out the truth assignments for the extra variable pj ,~:

Proposition 6.2.10 Given a mrodel M for S , classify th,e exception-generated instances a

of a o into two sets C +, C- , as follows:

If M(,, b, pj, then a E Cf , otherwise a E C-.

CHAPTER 6. A AIODEL-FINDING ALGORITHM

Now construct M^ by adding the following assertions to M :

(u u ~ , ~ - {(E C- : a C (1) pj,i for every a E C+;

(u [u ~ , ~] - {(E C+ : a E I)) -yj,i for every a E C-.

Then M^ is a model for S f

The asymmetry, turning tlie constants in aj,i int,o conditional constants for "iiegative" as-

sertions only, is intentional: If a E C+, then M(,) satisfies aj,i q , i as part of ,!$, which

entails that aj,i must be existential; for a E C-, it need not.

Proof: We make the following observations:

If A1 is clash-free, then so is M^.

This follows from the way we carefully separate the labels so that any pair involving

a "positive" and a "negative" assertion have disjoint scopes: The atoms introduced

into M ̂ only mention pj+, a variable proposed to be absent from M. Therefore, the

only possible sources of "new" clashes in M involve two assertions (~ ' a j , ~ - C,) pj,i

and (u - [u~ ,~] - C t) ipj,i. If t,lleir two labels are t,o unify, the niaiii labels mist have

an mgu, which exists iff (a+, a-) exists; this mgu, the main label of the clash witness,

is of the form (a+, a-)ajYi. But a+ and a- are both egis of ao, and from Corollary

5.3.6, part (2), we know that (a+, a -) itself is an egi of ao, so it must also have been

classified into either C+ or C-. If (a+, a-) E C+, then it is also an exception in C;

(since a- L (a+, a-)), so (a+, a-)ajYi is not actually an instance of a - [~ j , ~] - c:, and

the two (complex) labels above do not unif;y. Likewise, if (a+, a -) E C-, it must be

an exception in C;, and again the two conlplex labels do not unify. We conclude that

no two new labels in M ̂ form a clash, which completes the proof.

A

For any exception-generated instance a of 00, if Af(,) b, pj, then M(,) b, pi

From M(,) b, ,!3j we know that M(,) b, aj,it c u j , i t for all i f # i. By monotonicity.

the larger set M;,) also satisfies aj,i~ cuj,it. Now since M(,) b, 6, we classified a into

C+, so contains a label of the form (u u ~ , ~ - C) pj,i, and C contains only proper
A

instances of a. Therefore, this label contributes the assertion aj,; pi.; into M(,), and
A

using Proposition 5.5.12, we conclude that M^(,) b, aj , pj,i. Therefore, A l (,) satisfies

p(i since we have shown that it satisfies all its conjuncts.

CHAPTER 6. A h4ODEL-FINDING ALGORITHM 196

If M b, a0 F , then M^ b, a0 F' (where F' is F with pj replaced by p:, as before).

Let a be any egi of GO. If M(,) b, pj, then M̂ (,) b, p; as we just showed, and hence
A

M(,) b, F'. Otherwise, M(,) must satisfy some other disjunct Pjr, j' # j; but this
A

disjunct also occurs in F', and z(,) is a superset of M(,), so M(,) b, p3r, and once
A

again M(,) b, F'. We have shown this for every egi of 00, SO part (3) of Theorem

5.3.9 implies MI ,ks 00 F'.
A

For every exception-generated instance oo' of aoaj,i, we have M(,,r) b, (1pj,i V aj,i).

We make use of Proposition 5.3.7 which says: If oo' is an egi of oooj,i in M , then a

is an egi of a 0 in M , and a' is an egi of aj,i in M(,). We distinguish two cases: If a is
A

classifid into C-, then a new assertion (u [u ~ , ~] - CT) ipj,i has been introduced iut,o M;
A

upon subscripting, it contributes [oj,i] lpj,i to A4(,). Upon subscripting even further,
A A

we see that 1pj.i E M(,,r) (as o' instantiates ojti); this shows that M(,,r) b, lpj,i.

If instead o has been classified into C+, this is because M(,) b, pj. But then M(,)

satisfies all corijuricts in pj, i11 particular oj,iaj,i. By our familiar part (3) of Theorern
A

5.3.9, M(,,o b, aj,i because a' is an egi of aj,i in M(,). Finally, AP(,,t) b, aj,i also

holds because of monotonicity. In either case we conclude that f i (m , r) satisfies the

disjunction lpj,i V aj,i as claimed.

The label o o is scwr in M , and since beirig scwr is a rnonot,onc: propertmy, a 0 is scwr in

h? as well. The label ~ ~ [o j , ~] has no existential constants beyond those in 00, so it is

also scwr in G. And we just showed that ,ks (l p j , V for every egi ad of

this label, which altogether proves our claim.

To summarize, we showed that fi satisfies the modified formula a0 F' as well as the new

formula in Sf. And being a superset of M, it also satisfies any unchanged formula from S.

So we showed MI b, S'. Furthermore, since M is clash-free, so is 2, which finishes the

proof that M^ is a model for S'. 0

A few remarks on this conversion are in order:

0 In analogy to Theorem 5.3.14, it would suffice to classify into C+, C- only the

exception-generated instances of a suitable submodel M' of M which contribute to

the satisfiability of a0 F. This reduces the number of exception-generated instances

for which new labels are introduced into MI.

CHAPTER 6. A MODEL-FINDING ALGORITHM 197

0 Furthermore, it is not necessary to introduce a new assertion for a label a in C+ if it

has a11 inl~netiiat~e predecessor i? in the hierarchy of all cx~cpt~ion-generated insta~ices

of a0 which is also classified in C+; likewise for C-. Similarly, any exception (in C r

(C t) can be omitted, if it instantiates another exception (' E CL (c:). This too will

reduce the number and size of new assertions in G.

0 Even despite these efficiency measures, we cannot prevent the size of M from growing

exponentially in the worst case, especially considering that Proposition 6.2.10 covers

only one step of the algorithm. In Example 5.1.2, we encountered a variable e r e p

resenting a parity check on some of the other propositional variables; we saw that

representing the truth assignments to e takes an exponential number of assertions;

specifying all other variable assignments takes only O(d) assertions. Now imagine a

formula *d(Fo V F,), where Fo and F, arc true iff e is false and true, respectivcly,

but do not mention e. This formula is true in all instances of * d , so the model need

only specify the O(d) assertions for the original variables. But upon converting to

LCNF, we must represent e (and possibly other auxiliary variables) in the model as

well, which results in an exponential increase in the model size.

So why would we consider conversion to LCNF, given this potentially devastating

increase in model size? First, we derive support from the analogous situation in

propositional ~at~isfiability: Argilably, the overwl~elmiug ~najorit~y of SAT algorithms

are specified only for problems in CNF, because it is easier to do so-despite the well-

known fact that introducing new propositional variabIes may lead to an exponential

increase in the time complexity of the algorithm, at least if those variables are poorly

handled. Secondly, if it really takes an exponential number of assertions to express

the t,rut,h assignrncnt for a subfonnula aj,i. then a mot1c:l-finding algorithm would

spend an exponential amount of time satisfying this subformula over all instances of

*k anyway, whether we explicitly represent them or not. So the exponential increase

in model size would only occur in problems which are difficult to start with. Finally,

the main purpose of assuming that all formulas are converted to LCNF is that we can

present our model finding algorithm with much greater clarity. Whether to represent

the pj,i explicitly or through pointers to the formula aj,i is an issue we leave open as

an implementation decision.

We summarize our results on the LCNF by iterating them over the course of the algorithm:

CHAPTER 6. A MODEL-FINDING A LGORITHht

Theorem 6.2.11 A set S of formulas is satisfiable zflcnf(S) is satisfiable.

6.3 Original Assertions

Thanks to the results of the previous section, we are now in a position to convert any CBC-

formula (and hence any KNNF-formula) or set thereof, into a set S of formulas in LCNF.

Let us reflect on the anatomy of these formulas and how we can proceed in finding a (strong)

model for them.

Each formula C (or clause, as we called it) is composed of a simple label a0 (which we will

call the outer label of C) , and a disjunction of one or more terms &, j = 1,. . . , m. Each term

in tarn is a c~njunct~ion of labelled atoms aj,i aj,i, i = 1, . . . , nj. (The aj,i are the i ~ ~ n e r labels

of C.) In case there is only one. disjunct (rn = I) , the clause simply becomes a conjunction of

labelled atoms; we can flatten it into a set of assertions, namely { U ~ U ~ , ~ al,i : i = 1, . . . , nl) ,

according to Proposition 6.2.1. (In fact, the algorithm for conversion into ENF has already

taken care of this, and all clauses with one disjunct have been merged with the assertions.)

We refer to the assertions existing in S after this preprocessing step as original assertions;

they must be satisfied by every model for S; thus they constitute the deterministic part of

S.

The easiest way of satisfying an original assertion a a is to include a a in the model M :

Proposition 5.5.12 states that any model co~lt~airling a a strongly satisfies a a. However, we

must show that this is a "safe" approach. In other words, there must not exist a model

M without a a, for which a a would introduce a clash. We set out by proving an auxiliary

result containing two cases: a simple one, verifying the assertions in S as described, and

a second, more involved one intended for use with the terms aj,i aj,i in the disjuncts. In

essence, we would like to ensure that M(,I) sa.tisfies a disjunct pj in one of the clauses. This

is easily accomplished by adding the assertions (u ' u ~ , ~ - C) aj,i, i = 1, . . . , nj , to M. (We

will later see what we need the exceptions in the set C for, but suffice it for now that they

are all of length at most la'l.) Again we need a condition which gua.rantees that no clash is

introduced and our model is preserved.

Lemma 6.3.1 Let M be a model for a set of formulas S and X = a - C a complex label so

that a i s strongly constant-wise realizable in M and M(,) k, a. Then M U {A a) is also a

model for S .

CHAPTER 6. A MODEL-FINDING ALGORITHM 199

Now let X = a l a .2 - C be a complex label so that all exceptions i n C are of maximum length

lal 1, al is .smr in M , and for a11 in,stances a of a1 - C, M(,) b, a 2 a. Then A1 U {A a) is

also a model for S .

Proof: Notice that the first statement is a special case of the second, with a:! = E. However,

we will prove at least part of the first statement sepnrat,cly, and use it to prove the second.

Since any extension of M satisfies S due to monotonicity, the only interesting fact to prove

is that the extension is clash-free. First, we ensure that no additional rgls are introduced

through the new assertion X a , otherwise a non-realizable potential clash witness in M could

become realizable. Secondly, we verify that the assertion X a itself cannot participate in a

clash, unless M already contains a clash.

Consider the simple case first. Assume that M U {(a - C) a) does contain "new" rgls. and

choose one, yc, of minimal length. Hence y E I (M) , and a must have a prefix of the form

d c with a' C y, and < g, y for any < E C. (If the witness a r c existed in M instead, yc

would be realized in M , contmdicting our assumptiol~.) But a is scwr and heme cwr ill M;

accordingly, for any rgi y of a' we have yc E I (M) , which contradicts our assumption. We

conclude that all rgls in M U {(a - C) a) are rgls in M.

In the second case, suppose M U {(ala2 - C) a) contains a "new" rgl of length at most

\all. This leads to a contradiction exactly as in the first case, using the fact that a1 is scwr.

Now assume there exist "new" rgls of the form ~ 1 7 2 ~ . As before, we pick one of ~ninin~al

length, so 7172 E I (M) . We apply part (2) of Lemma 5.4.9 three times, which gives us

rl E I (M) , y a E I(M(,,)), and y%c E I ((M U ((ma2 - C) a))(,,)), but 7 2 ~ @ I(M(,,)). This

is only possible when {(a1a2 - C) a),, is nonen~pty, so yl must instantiate a1 - C. With

this information, we comput,e I ((M U {(ala2 - C) a)) (,,)) = M(,,) U {a2 a). (Recall that. no

exception in C is longer than a1 .) Furthermore, our prerequisites imply A[(,,) k, a 2 a , which

entails that a 2 is scwr in Ai(,,) and Af(,,,,) k, a. Now we can apply the first case a second

time, which shows that hi(,,) and hi(,,) U {a2 a) have the same set of rgls, contradicting

what we found above, namely y2c E I(M(,,) u {(az a)) and y2c $! I(M(,,)).

Now assunle the new assertion X a fonl~s part of a clash. We consider the complex case

directly, which includes the simple case. Since the clash witness is realizable, X too must

be realizable (in A 1 U { A a); but from the first case, we see that this is the same as X

being realizable in Af) . Let 7172 be the clash witness; in particular, yl instantiates a1 - C.

Therefore, M(,,) b, 0 2 a , and since a 2 C 7 2 , we conclude M(,,,,) b, a. In case a = I,

CHAPTER 6. A MODEL-FINDING ALGORITHM 200

M(y,yz) obviously contains a clash. In case a = I is a literal, M(y,yz) must contain I, and there

rmst be another assertion A' E Ad so that (A, A') exists. The clash witness yl yz irlstantiates

both X and A', so A' icontributes the literal Tinto A4(,ly2). Together with the already existing

I, this too forms a clash in Ai(,,y2). Now ylyz is realizable, so Proposition 5.5.4 entails that

M contains a clash, which contradicts the fact that M is a model. Therefore, our assumption

that M U X a contain a clash must be dropped, which completes the proof. 0

Corollary 6.3.2 Let S be a set of formulas including the assertion a a. If the set M is a

strong model for S , then so is M U {a a) .

Proof: The fact that A4 satisfies a a implies that a is scwr in A4, and M(,) b, a. So we

can apply Lemma 6.3.1 (with X = a), showing that along with M the set M U {a a) too is

a model for S. 0

Another, much less conspicuous type of original assertions is implicit within the main labels

of the clauses: in any set M verifying a clause a0 F , the label a0 must be strongly constant-

wise realizable. The implicit original assertion which expresses this is a, T :

Proposition 6.3.3 Let S be a set of formulas including the clause a0 F. If the set M is a

stmng model for S , theen so i s M U {ao T) .

ProoE Since A4 k, a0 F, a0 is scwr in M , and M(,,) b, T is trivially true. So Lemma

6.3.1 shows that with A4 the set M U {a T) is a model for S. 0

We could tlortnally do wit,liout t,hese extra assert,ions. Later on, when we branch on the

clause a0 F, we will introduce some assertions of the form aoaj$ aj,i, which will witness that

a0 is strongly constant-wise realizable in M . However, there is an important conceptual

distinction: while the assertions aoaj,i aj,+ can be undone if the branch fails to produce a

model, the fact that a0 is strongly constant-wise realizable cannot be undone--just like the

original assertions, it is a property of the problem, not of one particular branch".

"We have no1 invesi iga1,erl Ihis furthel , bui, iilcl~lding 00 T may offer a signiGcan(, prnrl.ical advantage as
well: upon branching, we can replace Lhe existenlial constanls in 00 by conditional constants, thus introducing
assertions of the form [crolo,,, a,.,. This reduces the number of occurrences of existential constants in M ,
which in t,lirn reduces the number of realizability checks for labels.

CHAPTER 6. A MODEL-FINDING ALGORITHM

6.4 Branching

Having t,hus scttlcd the unary clalises, the "proper" clauscs const i t~t~c the much grcater

challenge in model finding. Just as in SAT, our suggested approach is brmchi7~g: For

each clause C, we successively try out each term in C in a suitable order, until a term

gives rise to a satisfying model, or until there are no more terms left in C, in which case

we must backtrack to an earlier branch in the search tree. This simplistic description

captures the general principle. Howwcr, the fact, t,hd c1aiisc:s are scoped over labels results

in complications not encountered in SAT:

0 We obviously do not wish to branch on every ground instance of a 0 separately. (Other-

wise our algorithm would not be much different from conventional calculi; besides, we

would not obtain a strong model.) Instead, we will branch universally over a", picking

some term bj and adding the assertions aoaj,i a,j,i, 1: = 1,. . . , n,j, to our current set of

assertions M . This conforms with our definition of strong satisfiability: M b, a0 F

entails M(,,) b, F, or Af(,,) b, ,Dj for some j = 1, . . . , m; this is evidently satisfied

through the above assertions aoaj,i aj,i. In fact, if we branch in this fashion on any

one term per clause in S and collect all assertions into M , then in the end M strongly

verifies S. Of course, M will likely not be clash-free; it is the occurrence of clashes

during the construction of &I which will cause us to repair branches.

0 As demonstrated in the introductory section, we assign a unique positive integer called

brandt index to each term in each clause. Branch indices can be assigned at once at

the beginning of the search, or dynamically to each term branched upon in the course

of the algorithm, but once assigned, they must remain fixed. We introduce the notion

A: b to refer to a branch with index b over the label A. Branch indices define an order

on the terms in S; they will be used to avoid repetition and ensure completeness of

the search, and they allow us to perform dependency-directed backtracking. More on

this in the next section.

If we were to branch only "globally" over the outer labels ao of each clause, we would

not obtain a sound algorithm. We already observed this in Example 6.1.2 at the

beginning of this chapter: Upon picking either branch *: 1 or *: 2, we obtain assertions

* p and * q, respectively; neither can be extended to a satisfying model. While oo is

a good initial label to branch over, we will undo branches only on the instance(s) J

CHAPTER 6. A MODEL-FINDING ALGORITHM 202

of a 0 which lead(s) to inconsistencies. These instances become exception,^ to the label

a 0 in the origi~ial branch 00: bl . We can thcn try another branch on C over c, for

instance <: b2, and so on.

For reasons which will become evident later, we insist that branch labels never become

vacuous, that is: all exceptions must strictly instantiate the main label. Therefore, if

a branch leads to an inconsistency over the entire label 00, the entire label is erased

from the branch. But note that we never erase the branch itself or unassign its branch

index.

Some time after a branch has been undone, we may reinstate all or part of that branch.

We have seen this in Example 6.1.2 in Step 7. In the general case, let < be an exception

on some branch b, and we wish to reinstate b on an instance a of <. Since we have no

notion of "exceptions to exceptions", we will simply make a a new label on 6. Hence

a branch can range over a set of complex labels4.

Branching often introduces new labels into the set M , namely the labels aoaj,i. As aj,i

may have new existential constants, one side effect of branching is that new instances

may become realized. This forces us to actively manage "near-clashesn-assertions

with I or complementary literals-in M; if a constant is introduced, making their

witness realizable, they will form a clash which must then be repaired.

It will prove useful to bundle all original assertions in S , including those arising from

the main labels of clauses according to Proposition 6.3.3, into one branch wit?h index 0.

This branch cannot be undone. If this branch contains a clash, then S is unsatisfiable.

Motivated by these considerations, we specify the data structure related to a branch in the

algorithm:

Definition 6.4.1 A branch is a tuple (6, C, /3, A): con,sistin,g of:

a positive integer b, the branch index

4To avoid inultiple labels on a branch, we could declare a new branch o: b' on Lhe same term. However,
it would then be harder to ensure that a finite total number of branch idices is introduced. Ry contrast,
if each occurreuce of a term in S corresponds to only one branch index, their number is necessarily finite.
Moreover, we will later define additional information stored with a branch, which is best shared among all
labels Lrar~cl~ing ou the same term.

CHAPTER 6. A MODEL-FINDING ALGORITHM

0 a clause C = C(b) = a0 F and a term /3 = P(b) in C

0 a set A = A(b) of complex labels, also called the scope of the branch. Each complex

label a - C E A must satisfy a0 C a and a c (for each exception (E C .

For ease of writing, we will consider a branch (b , C, P , A) and its index b synonymous,

denoting either by the integer b. We will say that we branch on a clause C , if we pick a

branch b so that C = C(b). Henccforth the letter B shall denote the set of all branches

at the current stage of the algorithm. In our upcoming code sections, we will assume that

B is implemented as an array (A (~ I)) ~ ~ ~ , and that C(b) and P(b) are given and fixed over

the course of the algorithm. We observe that B implicitly specifies the set M0(B) of all

assertions (aa, - C) ai, for each conjunct ai a; in the term ,8(b), a - C E A(b), and b E B.

Since all original assertions in S were grouped into branch 0, Mo(B) includes all assertions

relevant to the problem; indeed, when the algorithm terminates on a satisfiable problem,

the assertions in Mo(B) will "almost" form a model for S :

Proposition 6.4.2 For any branch (b , C, P , A) in B and all instances a' of any a - C E A,

(Mo (B)) (d) ks P-
Proof: Writing ,l3 ;ts ai a; as ~lsual, and taking any brancli label X = a - C E A, lct

M' C Mo(B) be the set of assertions (aai - C) ui contributed by the branch b over label A.

We stipulated that a - C a', so a' instantiates no exception in C, and upon subscripting

M' becomes ML, = {a; a, : i = 1, . . . , n). We see that ML, contains, and hence satisfies,

every conjunct in 0, which shows ML, ks ,l3 and further (M0(B))(,~) k, ,l3 by monotonicity.

0

As outlined above, we initially branch over the outer label a0 of clause C. Later on, we

may have to undo a branch over some instance E of ao; if E is realizable, we must eventually

branch over it again, using some other term in C. We now claim that these operations of

branching over ao, undoing a branch, and branching again over instances, actually have much

in common: in a sense, they shift labels between branches in C and a set of "unbranched"

labels. We can even consider this set a branch in its own right. Consider the following:

Proposition 6.4.3 The clause C = a0 (Dl V . . . V P m) and its extension a0 (I V P 1 V . . . V P m)

are equivalent. Furthermore, if a set M contains the assertion a0 I , then A4 k, C.

Proof: We have M k, C iff M(,) k, PI V . . . V Dm for all instances a of ao. If M(,)

is utopian, then it satisfies anything, with or without an additional term I. Otherwise

CHAPTER 6. A h4ODEL-FINDING ALGORITHM 204

M(,) ks I , SO M(,) satisfies I v Dl v . . . v D,, iff it satisfies one of the "proper" disjuncts

Dj, that is, iff it satisfies Dl v . . . v Dm. Since this is true for all institrices a, we conclude

that M b, C iff M b, a0 (I V Dl v . . . V Dm). To show the second part, we use Corollary

5.5.1 1, choosing Ad' = {a0 I). Then Af& is utopian, so it satisfies 01 V . . . V P,,; the label

in M' contains no exception for which to verify anything recursively, so we have shown that

M bs C. 0

Because of this result, we can think of C ;tq it (:lause with m + 1 branches; we assign to the

(m+ 1)st term I the defuult brunch, written U(C). If no term in C has been branched upon

(yet), we can consider it as branched on U (C) over ao. In fact, if we add a0 I to M , then

M verifies C as shown. Likewise, we can think of undoing a branch b over < as transferring

the label I from b to the default branch U(C). Again, if we add I I t.o M, tllcn M verifies

the instance < (Dl v . . . V Dm) of C. These considerations motivate the following:

Definition 6.4.4 For e a d ~ clause C , tnP d?fine U(C), the default branch or u~ibra~diec-l

labels, of C. The set A(U(C)) must satisfy the same requirements as for a normal brunch

in Definition 6.4.1. All sets U(C) are assigned the branch index m. We define M(B) =

M,,(B) U {A I : X E U(C), C E S).

In an implementation, we need not represent the default branches explicitly; but for the

purpose of describing our algorithm, we will think of unbranched labels X as "branched on

I by default". This view is reflected in the set M(B) in which we included the assertion

X I . This is not a mere formality. If X = a - C is not realizable, we need not choose a

"real" branch on C = a0 F over this label; but then we must include X I in the model M ,

so as to ensure that M(,) b, F , which in turn is needed as part of showing M b, a F.

In the same way, if a0 is not realizable at all, we can satisfy the entire clause C without

branching, by i11c:luding a0 I in M. If we let a0 E U(C) for evcry clause C in S (which

is in fact the initial state of the algorithm), then M(B) b, S. For a few sets like S =

{* (p v q), * (i p v q)? * (p v l q) , * (1pV lq)) , M(B) = {* I) is indeed a model for S. Usually

however, we can expect at least some of the a0 to be realizable, so this default set M (B)

contains a clash. And repairing clashes due to a realizable X E U(C) is tantamount to

branching on A; conceptually, this is not much different from repairing a clash arising from

complementary literals, say.

Branching, or redoing a branch, can be regarded as just the opposite move: removing a

label from the default branch U(C) , and adding it to another branch b on the clause. Here,

CHAPTER 6. A A4ODEL-FINDING ALGORITHM 205

assigning branch index m to all default branches is consistent with our idea of undoing

maximal brandies first. 111 esscncc wc say: "If it is possible t,o b r a r d ~ , prefer branching t,o

undoing any other branch."

Our first piece of code for the model-finding algorithm performs branching as described.

At this point, let us introduce some conventions we will adhere to throughout the code

sections: B is considered an array over the branch indices whose elements B[h] are the sets

A(b) of brancl~ labels, B[O] is the default branch, and M(B), the sot of itssertions in all

branches including the default branches, is specified implicitly-we will not include code

for computing it. The vectors (C(b))bEB and P(b)bEB are considered given and fixed. The

sets B, S and U(C) , as well as the set of nogoods are considered global in scope, they

may bc freely xressed by any of t.hc procedures. Unlike B, tllc original set S is considered

read-only-we do not add clauses, not even original assertions, to S.

Algorithm 6.4.5 simple- branching

Parameters:

b: the branch

A: the label branched upon

begin

remove X from IJ(C(b))

add X to B[b]

end

As we will see shortly, branching involves more than the two steps of this algorithm: we

need to ensure that the branching step does not "intrude" into blocked, previously exhausted

parts of the search space. We will reserve the remaining steps of the branching algorithm

to Section 6.9, by which t h e we will have worked out t.hose concepts more precisely.

The following definition will allow us to distinguish a set of branches obtained from the

current set B by branching on unbranched labels alone, without undoing or repairing any

branches in B:

Definition 6.4.6 A set B' of branches is called an extension of B: zf zt is obtained from B

by a finite number of applications of simple-branching.

CHAPTER 6. A h?lODEL-FINDING ALGORITHM

Corollary 6.4.7 If B' is an extension of B, then Mo(B) C Mo(B1).

Proof: This is a straightforward conclusion from the definition of Mo(B) above: The set

Mo(B) includes all assertions introduced by branching on any label on any branch in B. All

these branches and labels are also found in B', so Mo(B) must be a subset of Mo(B1). 0

Thanks to this result, any monotone property is preserved under extensions:

Corollary 6.4.8 Any extension B' of B inherits the following properties, i f satisfied for B:

Mo(B) b, F for any formula F ,

X is realizable in Mo(B), for any label A,

a is strongly constant-wise realizable in Mo(B), for any simple label a ,

it.lo(B) contains a clash.

Using these facts, we now show that branching can only introduce, never remove, realized

ground instances:

Proposition 6.4.9 For any extension B' of B, Every realized ground instance y in AP(B)

is an realized ground instance in itl(B1).

Proof: If all realizability witnesses for y are (prefixes of) labels in Mo (B) , then they are

also in the larger set M(B). The only int>eresting case are the wittnesses which are prefixes

of some X in a default branch U(C). But observe that any extension of B is obtained by

branching alone, and if branching removes X from U(C), it introduces the same label X

into some "real" branch on C. Branching may introduce additional exceptions into A, but

these are added back into U(C). This shows that all witnesses for y are preserved through

branching. 0

We also specify a procedure for undoing a branch:

Algorithm 6.4.10 undo-branch

Parameters:

b: the index of the branch to be undone

a: the label on which branch b is to be undone

i f b = O

CHAPTER 6. A MODEL-FINDING ALGORITHM

exit (unsatisfiable)

else

foreach label a' - C E A(b) do

if a L a'

remove a' - C from A(b)

else if (a, a') exists and E (a, a') for any [E C

foreach exception < E C do

if (a, a') 5 E
rernovc E frorn C

end if

done

add (a, a') to C

end if

done

if (b is not a default branch)

add a to U(C(b))

end if

end if

This procedure will be called in various places in the algorithm where inconsistencies have

occurred. It may even be called on instances of a default branch to be selected for branching.

Notpice t.11at it includes one of t l ~ e two t,errl~irlrtt,ioil criteria, which is the only idace w h r e the

model-finding algorithm may terminate abnormally: if the procedure is called with branch

index 0, the algorithm exits and returns unsatisfiable, since branch 0 cannot be undone.

For the sake of greater efficiency, the procedure also performs a few simplifications:

0 Any labels on b which instantiate a are conlpletely exempted, so they get erased.

0 In any other label a' - C on b, the instances it has in common with a are exempted.

By adding (a, a') to C instead of a, the procedure ensures that the exceptions in C

remain strict instances of a', which also entails that all branch labels are normalized.

Any existing exceptions on such a label which instantiate the new exception (a, a')

are redundant and get erased.

C H A P T E R 6. A M ODEL-FINDING ALGORITHM 208

Unless undo-branch has been called on the default branch itself, a is added back to

it5.

Let us summarize these observations:

Proposition 6.4.11 After a call to undo-t)riu~ch on b and a retanrs, we Iraae X g a' for

any label X E A(b) and any instance a' of a.

Proposition 6.4.12 Let B' be a set of branches obtained from B by either of the following

operations:

(1) deleting labels X from some A(b) on B ,

(2) adding ezceptio71.s to some label X E A(b) 071 B,

(3) calling undo-brmch.

Let filrth,er a be a simple label. If a i71.stantdates a label on some hpnnclr b on B' , i t also

instantiates a label on branch b on B.

Proof: Let X = a' - C' E A(b) in B' satisfy X C a as stated. Operation (1) leaves all

labels unchanged in B', so the same X exists on the same branch in B. Operation (2)

adds exceptions to labels, so X may correspond to a label A' = a' - C" in A(b) on B so

that C" 2 C'. Since X E a implies < g a for any < E C', this is particularly true for all

< E C", which shows A' C a. Operation (3) just consists of a series of deletions of labels and

additions of exceptions, so the proof follows from that for operations (1) and (2) . 0

We mentioned above that branching may introduce new constants, which in turn may lead

to new realized ground instances in M (B) . To manage the realizability of labels over the

course of the algorithm, we define the following:

Definition 6.4.13 Let B be a set of branches. A label X is level-&realizable i n M (B) , i f

it is realizable in M (B f) , where B' is the subset of all branches i n B with index less than

or equal to b. Henceforth, whenever we speak of realized ground labels, realizable labels, or

level-b-realizable labels, this implies M (B) as the set of reference, where B is either explicitly

specified or the current set of brundres.

5To be niore efficient. rr shortld not bc d d r d back to U (C (b)) if it is allcadv rornplt+4y 011 thc dcfault
branch: that is, if there esists u' - C' E Ci (CV(b)) so that cr' C u but (<,u) does not exist for any < E C'.

CHAPTER 6. A h4ODEL-FINDING ALGORITHhf 209

A level-0-realizable label is always realizable, no matter what the current set of branches B

is, bccause its redizability witnesses are all taken fro111 the original assert.ioils on brailch 0,

which is always included in B. We formally declare a procedure for testing whether a label

X is level-b-realizable:

Algorithm 6.4.14 is-realizable

Parameters:

A: a complex label

b: a branch index

Returns:

A: a set of branches and labels (see below), if X is level-brealizable;

false: otherwise.

We will not provide any code for this procedure, since an implementation is straightfor-

ward: one possible way is to determine the subset M' of assertions in M(B) contributed by

branches with index at most b, and then searching for a set of realizability witnesses for X

in M' according to Proposition 5.4.8. The set A is constructed as follows: for each witness

(assertion) (gin: - Ci) n (in the notation of Proposition 5.4.8), find a branch bi and label

a' - Ci which contributed this assertion into MI, and include (a' - Xi): bi into A.

Let us elaborate further on the choice of witnesses (aiai - Xi) a. In Proposition 5.4.8, it

is the label a; which contributes some existential constants towards a ground instantiation

y. When viewed from the branch bi over the label (a' - Xi), which introduced it, the same

assertion is of the form (a'a" - C;) a. Now notice that it is only the existential constants

in a", but not those in a', which really get introduced through branch bi. The branch

label a' must have already existed before we braidled over it, aud it is t,hrough some other

branch that its constants have been introduced-possibly branch 0, which introduced the

labels of all original assertions, as well as all outer clause labels ao. (Notice that a' = E

for b = 0.) From this discussion we infer that ai and a" must have a position (with an

existential constant) in common; this entails that must be strictly longer than a'. If this

is not the case, the assertion (ap : - Xi) n is unsuitable as a witness and should be replaced

by other witnesses (which must exist, as we argued) introducing the same constants.

Since is-realizable returns false if no witnesses can be found, it can be used in an if statement

to simply test whether X is level-brealizable or not. The parameter b can be omitted, in

CHAPTER 6. A MODEL-FINDING ALGORITHM

which case the procedure searches for witnesses in all of M(B) ; it thus tests whether X is

realizable. Finally, we recall that ground labels are realized iff they are realizable, so the

procedure can also be used to find the witnesses of a realized ground instance.

Before we move on to the next section, let us write out a number of conventions for our

algorithm: B is considered an array over the branch indices whose elements are sets of branch

labels, B[O] is the default branch, and M(B) , the set of assertions in all branches including

the default brandies, is specified implicitly-we will not include code for computing it. The

vectors (C(b))bEB and P(b)bEB are considered given and fixed. The sets B, S and U(C), as

well as the set of nogoods are considered global in scope, they may be freely accessed by

any of the procedures. We do consider S read-only, and we also restrict nogoods from being

modified or deleted; we may only add new nogoods.

6.5 Nogoods

Nogood reasoning, in the form of dynamic backtmcking, has been heralded as a powerful

strategy in Constraint Satisfaction Problems [31]. Although it is not efficiently applicable

to SAT in its pure form [24], adaptations to SAT have been conceived and demonstrated to

improve the search efficiency drastically. On problems in K, a somewhat weaker but much

simpler technique called backjumping [28] has led to similarly spectacular improvements

[47l.
The basic idea of nogood reasoning is that parts of the search space which are known

to contain no satisfiable assignments should be blocked from future access in the search.

Nogoods store the information about the particular choice of branches which define the

"forbidden" parts of the search space. As the search proceeds without finding satisfying

models, progressively more and/or larger chunks of the search space will be blocked, until

eventually the entire search space becomes inaccessible, in which case we have shown the

problem unsatisfiable. Nogoods can aid a reasoning algorithm in several ways:

to ensure termination. If the search space is finite and discrete, and if we can show

that each nogood blocks a nonvanishing part of hitherto accessible search space, the

search must terminate after a finite number of nogoods have been introduced.

to ensure soundness. If we the blocked parts of the search space provably do not

contain any solution, then once the entire search space is blocked and the algorithm

CHAPTER 6. A MODEL-FINDING ALGORITHM

returns unsatisfiable, we can be sure that no model exists.

0 to ensure completeness. If we can show that a so-called empty nogoo@-a nogood

which blocks the entire search space-can be derived from any unsatisfiable formula.

this empty nogood will block the entire search space and lead the algorithm to return

unsatisfiaMe.

It follows that a sound, complete, and terminating algorithm could be given based on nogood

reasoning alone. In fact, reasoning with nogoods is a derivation of resolution [77, 68, 61,

as we will discuss in Section 7.2. However, we will use nogoods only as a tool to ensure

termination and completeness of our model finding algorithm.

As in the previous section on branches, we will informally discuss what information should

be associated with a nogood:

Similarly as in the propositional case, nogoods shonld be ~haract~erised by a depmderrcy

set: the set of assertions branched upon, which led to unsatisfiability. In order to avoid

redundancies, we do not duplicate the assertions themselves but refer to the branches

which contributed them, via their branch index.

We must pinpoint as precisely as possible the instances (labels) of each participating

branch which caused the inconsistency. Let us refresh our memory of Example 6.1.2:

When we picked Branch 1 on the clause * (p V q) and Branch 3 on cl (i p V f) , we

discovered that * p and cl l p form a cIas11. While Branch 1 was scoped over * at that

time, only the instance cl actually contributed to the clash. So in the dependency set,

rather than including the Branch b = 1 over *, we only include it over the instance cl.

Now does this requirement for precisely specifying the cause of a nogood extend to

ex~ept~ions as well? Suppose a branch b2 over * introduced t,wo assertions * p and * q,

and a clash with another assertion 1 l p , resulting from an earlier branch bl , has led us

to revise the branch label to * - (1). If we encounter a clash with an existing assertion

* i q later on, the clash witness, strictly speaking, is * - (1). (We assume that this

witness is realizable.) However, we argue that, had the scope of branch b2 been *, the

clash witmss would extend to the entire label *. The except,ion 1 ha5 not,hing to do

with the inconsistency. We wilI see that in establishing the dependency sets of nogoods,

'unlike in SAT, empty nogoods in LDL are not unique. See our discussion below.

CHAPTER 6. A MODEL-FINDING ALGORlTHM 212

it is always safe to disregard exceptions in the current scope of the branches, so we

will use only sitnplc labels in dependmry sets. In fact,, st,oring ex~cpt~ions in nogoods

would lead to inefficiencies: If the earlier branch bl is undone, we would rediscover the

same clash and introduce the same nogood as before, but on the instance 1. Therefore,

Nogoods are a static piece of information. They do not change as the algorithm

branches on new instances or repairs instances. Even if we completely undo one of

the branch labels participating in a nogood, the nogood remains valid, so it will serve

in blocking the algorithm from re-establishing this branch. However, nogoods may

becorne redundant or useless, arid since they accumulate during the course of the

algorithm, we may need to actively manage them in practice. We will briefly talk

about this in Section 6.12. In the algorithm we present here, however, nogoods are

restricted from being modified or deleted; we may only add new nogoods.

Our definition of nogoods takes these considerations into account, as well as others which

we will leave for later discussion:

Definition 6.5.1 A nogood-like expression is an expression of the form A --, R, where A
is a finite set of premises of the f o m . ai: bi and (2 i s a finite sat of conc:lusioris a a. The

labels Pi are the participating branch labels, and the labels a are the witnesses. (W e refer

to both kinds collectively as "nogood labels'; their syntax extends that of simple labels and

will be more precisely characterized later.) If all conclusions in R are of the fonn a I , the

expression A --, R is called a nogood; i f additionally A = 0, we speak of an empty nogood.

We use NG to denote nogoods.

For most of this and upcoming sections, we will only consider nogoods; but nogood-like

expressions will prove useful in stating nogood propagation rules, and in the final section

of this chapter we will outline how they can be used to implement, an extension of Boolean

Constraint Propagation. For now, we can make the simplifying assumption that a nogood

is of the form ol : bl , . . . , on: bn --, o I . In the informal example earlier this section, the

nogood arising from the clash between branches bl and b2 is 1: bl, 1: b2 --, 1 I , whereas the

nogood resulting from the second clash is *t: ba, *t: b3, --) *t I . The *t obey the generalized

syntax for labels in nogoods and will be explained further below.

Many of the operations on nogoods depend on a linear order between the nogood premises.

The ascending order of branch indices nlostly provides for this; however, we will demonstrate

that the branch indices bi need not all be distinct, in which case we need to be more precise.

CHAPTER 6. A h4ODEL-FINDING ALGORITHM 213

Definition 6.5.2 Assume a linear order 5 on the domain D of constants for labels given.

We definx a total order 5 071, simple labels as the le.~:icographic order ohtninwd from th.e order

5 on their positions, defining * 5 c for all c E D. We extend this to a total order 5 on

branch premises by: a l : bl 5 02: b2 iff bl < b2, or bl = b2 and 01 5 02.

For instar~ce, *2: b 5 l*: b, but *1: b 5 *2: b. It is easy to verify that 5 defines a total

order on simple labels, and hence on branch premises. We also point out the useful fact that

a a' implies a 5 a'. Without loss of generality, we will henceforth assume that the nogood

premises are sorted in ascending order. (In our algorithm, we will make provisions for that.)

Premises with branch index 0 need not be mentioned in any nogood, since assertions from

this branch are always present and cannot be undone anyway.

The maximal premise on: b, on the nogood is special in two ways: b, is the (first) branch to

be undone, namely, on (some instance of) a , , in order to repair the inconsistency represented

by this nogood. Furthermore, whenever we try to re-branch on b, over some instance of a,

we will first check whether this is sarlct,ioned t?y the rlogood (which requires t(hat another

branch bi has been undone since the nogood way introduced). To mark the special role of

this premise we add a reference to NG onto the branch b,, and we call NG a term nogood

of b, (or of the term o(b,)). Referencing term nogoods from branches is merely a matter of

convenience, so we can easily look up all nogoods in which b, is the maximal participating

branch, to test whctlier branching on b, is sanctioned. For crnpty nogoods, we do not have

any participating branch index, so we declare b, = 0. (Empty nogoods do not become term

nogoods, however.)

During our algorithm, we will encounter two types of basic nogoods and two types of prop-

agated nogoods which are derived from others:

Basic nogoods are created in response to clashes introduced by branching. The two

types of basic nogoods correspond to the two types of clashes-l and complementary

literals; the former contaiils one riogood premise, while thc latter lisiially has two. We

will cover the two basic types of nogoods in Section 6.6.

One type of propagated nogoods arises from failed clauses. These are clauses C = a o F

in which we have tried branching on every one of its terms, and in some instances of

a0 none of the branches produces a clash-free set of assertions. At this point, term

nogoods exist for every term in C. In the SAT equivalent, this is where backtracking

C H A P T E R 6. A A4ODEL-FINDING ALGORITHM 214

occurs. In Section 6.8 we will define a procedure called nogood merging, which combines

the participating tctr~ii nogoods hito a new nogood and uses it t,o 111ido other branches,

so that the failed clause can be branched upon again.

The fact that different term nogoods may have different witnesses requires us to copy

all conclusions as well. This is why we defined nogoods with multiple witnesses, and

they only arise through nogood merging. For instance, if two nogoods with respective

witnesses l * and 2* are merged, the resulting nogood is violated only when both l*

and 2* are realizable, and we cannot express this fact by one nogood witness alone.

Nonetheless, nogoods with multiple witnesses are awkward in practice, so they should

be avoided whenever possible.

0 Another type of propagated nogoods has to do with nogood witnesses. First, we will

need nogoods to block branches which might make a witness o of another nogood

realizable; in other situations, we may wish to derive a nogood with fewer or shorter

witnesses. In Section 6.7, we will demonstrate how branches and labels witnessing the

realizability of a can be merged into an existing nogood in order to accomplish this.

We call this realizubility proporgation.

Example 6.5.3 In this example, we will demonstrate how nogood merging can lead to multi-

ple occurrences of the same branch index i n a nogood. Consider the following set of clauses:

S = {* (p V s) , 1 i p V q, 2 i p V r , i q V i r) . Let TLS ussign bran,ch indices bitl , biTa to the

first and second term in the i th formula, i = 1, . . . ,4. Assume we branch on blYl first,

obtaining the assertion * p. Then in the second and third formula, branching on 1 i p and

2 i p leads to clashes; the corresponding nogoods obtained are NGl = 1 bl,], 1 b2,1 + I and

NG2 = 2 blTl , 1 b3,1 + I. Furthermore, we must branch on q and r , which causes the fourth

clause to fuil. SkZppin:y some intermediate steps, we derive the nogood NG3 = b2,2, b3,2 + I.

Now the third clause fails, since both terms have a nogood associated with them: NG2 and

NG3. W e merge them into NG4 = 2 bl t l , bzT2 + I. Now i n turn the second clause fails,

causing us to merge the two term nogoods NG1 and NG4 into NG5 = 1 b1,1,2 blYl + I.

Since we have defined a total order on branch indices as well as branch labels, undoing

branches in response to such a nogood is deterministic. This is important: we do not know

a t this point whether undoing 1 bl,1 or 2 bl t l would lead to a solution. In the above example,

either one does; but in the presence of other clauses, one of the assertivris 1 p or 2 p niay be

CHAPTER 6. A AIODEL-FINDING ALGORITHM 215

mandatory for a solution. Given the natural order of integer branch labels, we would undo

2 blVl first; if this does not lead to a sohitkm, we would (obtain a nogood 1 bltl -, I ,) undo

branch 1 blVl. and at that point be free to branch on 2 bl,i without incurring any nogood

violation. Specifying a well-defined order for undoing nogood premises will form an essential

part of our termination proof7.

Let us now motivate the already mentioned important refinement on the syntax of nogood

labels:

Example 6.5.4 Consider a clause C = * p V * q. Suppose at some point during the search

we bmnched on * i p (with index b l) and on * i q (with index b2), occurring elsewhere in

S . This would result i n the clause C failing on its outer label E (not *!). Consequently, we

would introduce a nogood * bl , * b2 -+ E I . W e read this nogood as: "Branching o n bl on

any instance of * and branching o n b2 on any instance of * leads to failure."

Example 6.5.5 Now consider thpe slightly different clause C = * (p ~ q) , and assume that we

bmnched on the same terms * ~p (index b l) and * ~q (index b2). Then the clause * (p V q)

also fails o n its outer label, which is * here. The corresponding nogood has the intended

reading: "Whenever we branch on bl and b2 on the same instance of *, this leads to failure

on that same instance." This reading is markedly diflerent, not just because the * must be

fourad i n the noyood witness7 but also hecause th,ere is a dependen,cy b e k m n the * in the

branches and the witness; this reflects the different role wildcards play in the outer versus

the inner labels of a clause.

What makes matters worse is that such nogoods will be propagated through nogood merging

or realizability propagation. The implicit dependency between the * would quickly get lost,

resulting in unsoundness. Therefore, here (and only here) will we abandon the anonymity

of the wildcards and turn them into "proper" variables8, by indexing the * with positive

integers. To illustrate this, the nogood in example 6.5.5 might now read: * I : bl , * I : bz --+

-- -

 he co~nplications described here, due to multiple occurrences of branches with the same index, are also
known to those in the QBF reasoning community who work on resolution. whcthcr as a proof ~nelhod or
as an engine for clause learl~ing. 111 QRF, nrultiple occurrerlces of the samc branch (there: propositional
variable) in nogoods (or:resolvents), and in fact the need to store some form of "labels" (there: a context of
previous variable assignments) with a branch, can be avoided by a method called Q-resolut~on. For details,
sw [13, 621. We 1)elievr it possible to tlerivr an rquivale~~t of ($-resolution for CBC; I~owever, as in QBF, this
will put a restriction on the order in which we can perform branching, which may be undesirable.

"1n a similar way, t,hc frccvariablr calculus [i', 91 dist,inguishrs bctwwn ~ ~ n w ~ r s c ~ l variables (corresponding
to our *), and j m variables (such as: we need here).

CHAPTER 6. A MODEL-FINDING ALGORITHM

I. With each new nogood introduced which requires indexing of wildcards, we will use

a "fresh" index, that is, an index greater than the rnaxirnal index which has been =signed

before. We only introduce at most one new index per nogood; if there is more than one

position in a label which needs to be indexed, it will be understood that occurrences of

the same *t in different positions can be instantiated by different constants. However,

occurrences of the same *t in the same position in different nogood labels must henceforth

be instantiat,ed uniformly, either by the same constarlts or by a new * t ~ , t' > t. In the

example, if we branch on bl over the instance 1, the nogood will block application of branch

b2 over the same instance 1 only, but we could still branch on b2 over another instance 2,

or even on * - (1). The number of positions to be indexed depends on the structure of the

nogood and the depcndericies between branches it expresses, as demonstrated in Examples

6.5.4 and 6.5.5. We will work out clear rules for all types of nogoods in the sections to

come. Nogood indices are relevant only when propagating nogoods and checking for nogood

violations. In undoing a branch and creating exceptions to branch labels, the indices are

irrelevant and will be omitted. Finally, we add to Definition 6.5.2 and to our definition of the

ingu of two labels: Let t , t' be po~it~ive int,egers, and c E D . Then * 5 *t 5 c, and *t 5 * t ~ iff

t _< t'; furthermore, assuming t _< t', we have (* t ~ , *t) = (*t, * t ~) = *tt, (*, *t) = (*t, *) = *t,

and (c, *t) = (*t, c) = c. The C relation extends accordinglyg.

Definition 6.5.6 Consider a nogood NG = A + R. A nogood subst,itutior~ is n fundion, p

which simultaneously instantiates the labels ai E Delta by aip and the a E R by ap , whereas:

each *t (occurring i n the same position i n any of the nogood labels) is instantiated

u.rriformly by th,e same element c: [c] (c E D) , *, or *tt, t' > t ,

each * is instantiated by an arbitrary such element,

each conditional constant [c], c E D , is instantiated uniformly by [c] or c,

each existential constant is instantiated by itself.

A nogood substitutio~~. p is nwrc gcncral t h ~ n p' i f u p C up' (md uip C uipl for (111 i =

1, ..., n.

%t.reLching our Lerrninology, we will talk ol an "instar~tiaLion" o l * t by *, alt,hough stricbly speaking, *
does not il~stantiate * t .

CHAPTER 6. A MODEL-FINDIhTG ALGORITHM 217

We introduce a few types of nogood substitution which we deem elementary and use fre-

qiiently in upcorning nogood rules. I11 our disclission l>elow, ai can stand in for any of the

nogood labels, including any of the witnesses a :

the substitution induced by uniform instantiation: Consider a label a: (usually but

not necessarily an inst,ar~ce of ai). Then wc? dcfine by p(ai H a:) the n~ost general

substitution p so that a: C aip. Such a substitution only exists if ai and a: unify, and

we easily see that p(ai H a:) instantiates labels as follows: Replace ai by (ai, a;), and

in each position of ai where *t has been instantiated by an element x from (ai, a:),

replace * t uniformly by z in all a i r , it # i . Here z can be an existential or conditional

constant or an indexed or unindexed *.

In the same manner, we define p(ail H a:, , . . . , a. ,, H a!) = p(uil H a . p(uin H (n

a:,), the substitution induced by successive uniform instantiation of ai l , . . . , ai, with

a:,, . . . ,aln, respectively. Note that even if all uii instantiate ail, j = 1,. . . ,n . this

substitution may not cxist. For instance, two *t in t , l ~ same positions in ail and

ai, may be instantiated to different constants cl, ca in a:, and a:,. Upon the first

instantiation ail I+ ail, the *t is uniformly instantiated by cl, so now ai,p(ail H a:,)

no longer unifies with a:,, which has c.r in the position in question. Therefore, p(a;, H

ail , ai2 a;,) does not exist.

We mention two important properties of successive instantiations without proof:

- p(ui H a:, a: H a:) = p(ai H a:), provided the instantiations exist.

- If i # j , then p(ai H a:, aj H 0;) = p(uj H a;, ui H a:), modulo indexing of *t.

As a special case of successive uniform instantiation, we define the substitution induced

by re-indexing p(* H *t, a:), where a: is a prefix of a;, and t is a fresh index. In this

substitution, all occurrences of * and * t ~ in 4, as well as all corresponding occurrences

of the same * t ~ in the other labels ail, it # i, are replaced by *t.

Finally, we have the index-elimin,ating substitution p(*), which replaces all occurrences

of indexed *b with *. This is useful for obtaining "ordinary" labels from nogood labels.

(In order t,o keep things simple, we will iisually ornit this substitiition. It is implicitly

used, for instance, when a branch in undone over a label which originates from a

nogood and thus may have indexed *.)

CHAPTER 6. A MODEL-FINDING ALGORITHM 218

Definition 6.5.7 Consider a nogood-like expression NG = A -+ R with 01: bl, . . . ,a,,: b,

as premises an,d a being one of the witnesses in 0. Assume further that X i = a: - Ci E A (b i) ,
i = 1, . . . , n, are labels on the current set of branches B, and let a' be a simple label. A

nogood-violating substitution (ngvs) is a substitution p(a a', 01 H a;, . . . , a, H a;,) so

that Xi E aip for all i = 1, . . . , n. The most general nogood-violating substitution is that

where a1 = a. If such a substitution exists for all witnesses 0 i n R, B is said to violate

(or nlat,<:h, i n case NG is not a nogood) NG with m,ost genwml nogood-violating substitution

p = p(al H a:, . . . , a n H a;); the aip are the violating instances of bi, i = 1, . . . ,n;

and app(*) the witness of the violation. Additionally, i f for every witness a i n R there

exists a realized ground instance y of a i n M(B) so that p(a H y, a1 H a:, . . . , a, H a;)

is a nogood-violating su.hstiktion., we sa,y that B realizably violates NG. If the bmnch-es

witnessing the realized ground instance y all have indices no larger than b, we say that B

level-b-realizably violates NG.

It may sound confusing, but evcu if B violat,es a nogood NG and the witness aip of the

violation is realizable, NG may not be realizably violated:

Example 6.5.8 Consider a nogood NG = al: b -+ a I with a1 = *L and a = *L*, and

suppose that an assertion 11 T exists on branch 0, 11 constituting the only realized ground

instance of * t * . Then picking branch b over the label * - (1) violates NG with witness

**, but not realizably so: The substitution p = P (* ~ H *) results in a l p = * instantiating

* - (1); hence p is a nogood-violating substitution. However, any substitution p' which

maps a to the only available rrgl 11 entails alpt = 1, which does not instantiate * - (1). We

see how the exceptions in thc branch labels Xi can cause the substitution to not violate

the same nogood NG, even though it is less general than p. If we had branched over *
instead, NG would be realizably violated.

Despite this, it still suffices to characterize a realizable nogood violation by the most general

ngvs p and a ground instance y of each nogood witness up, since the substitution p(a H

I y, a1 H al, . . . , a, H a;) required by Definition 6.5.7 is simply the substitution p(a H y)p.

Hence, we can simultaneously find the most general ngvs for a nogood, as well a s the

witnesses y for its realizable violation.

We will formally declare t,wo procedures inlplenle~lthg Dcfiuition 6.5.7, for use in later

sections of the algorithm. One procedure is used for "ordinary" nogood violations, the

CHAPTER 6. A MODEL-FINDING ALGORITHM 219

other for level-brealizable nogood violations. We will not provide pseudocode for actually

compiiting the nogood-violating substitmt,ions and witnesses, which is fairly st,raiglitfforward.

Algorithm 6.5.9 nogood-violated

Parameters:

NG = A -+ 0: the nogood to be tested

Returns:
p: a most general nogood-violating substitution, if one exists

false otherwise

Algorithm 6.5.10 realizably-violated

Parameters:

NG = A -+ 0: the nogood to be tested

b: a branch index

Returns:
a tuple (p, (y,, A,)), if NG is level-brealizably violated

p is the most general nogood-violating substitution

y, is an rgi of a

A, is a set of level-brealizability witnesses of a

(for each a in f t)

false otherwise

Siniilarly as in is-realizable, the paramct,cr b may be oinitt,d, in which case the procedure

checks whether NG is realizably violated, with no restriction on the branch index; either

procedure can be used inside an if statement to simply test whether a nogood is (level-b

)realizably violated. In parts of our algorithm later on, we will often perform a combination

of tests on the same nogood; since testing for nogood violations is a fairly expensive proce-

dure, an optimized implementation should perform these tests simultaneously to the greatest

extent possible, reusing partial results from earlier tests. In our algorithm description, we

prefer simplicity instead: we will simply call the above procedures anew, each time we need

to test for a nogood violation.

CHAPTER 6. A MODEL-FINDING ALGORITHM

A realizable nogood violation should indicate the presence of some inconsistency in B, so

i~i~less we renlove the cause of the nogood violation by undoing braiiches, B caririot be

extended to a satishing set of branches. Let us state this formally as a paradigm which we

must prove for all types of simple or propagated nogoods we will define. We will include

the more general nogood-like expressions as well:

Paradigm 6.5.11 Let a nogood-like expression NG = A + R and current set of branches

B be given. Then for the most general nogood-violating substitution p, one of the conclusions

a a in R satisfies:

(1) For all prejixes of a p of the form dc, c exists i n (Ai(B))(&)

(2) If a = I : (M (B)) (,,) contains a clash.

(3) If a is a literal: (M(B))(,,) contains E a.

Defying appearances, we do not claim a p to be strongly constant-wise realizable in M(B).

Condition (1) given in the paradigm mentions Qc(&, (M(B))(&) alright (see Definition 5.4.12))

but this only forms the "first step" of testing whether a p is strongly constant-wise realizable;

if some of the branch labels X i have exceptions, the nogood does not and cannot guarantee

that every strict exception-generated instance of a p is also strongly constant-wise realizable.

We do infer though that condition (1) is a monotone property. Since any extension B' of a

set of branches B contains all branch labels on B, and since all the conditions given above

are monotone properties, we conclude (compare Corollary 6.4.8):

Corollary 6.5.12 Assuming Paradigm 6.5.11, i f B violates a nogood al: bl, . . . , a,,: b, -+

a I with nogood-violating substitution p, then so does any set of branches B' &ending B.

As we mentioned, violated nogood do not necessarily pose a problem, but realizably violated

nogoods always do. We now see why this is so. We can live with a clash in (M(B))(,p), as

long as u p is not realizable. But:

Corollary 6.5.13 If B realizably violates a nogood with nogood-violating substitution p,

then M(B) contains a clash, and so does M(B1) for any set of branches B' extending B.

ProoE According to Paradigm 6.5.11, (M(B))(,,) contains a clash for one of the witnesses

a in R. Furthermore, y = up is ground and realized in M (B) , for all witnesses a, including

C H A P T E R 6. A MODEL-FINDING A L G O R I T H M 221

the one above. So the converse of Proposition 5.5.4 shows that M(B) itself contains a clash.

Tlie same follows for M(B1), because a p contimics t,o bc an rgi in M(B1), according to

Proposition 6.4.9. 0

A slightly modified version of Corollary 6.5.13 takes into account the branch level at which

a witness becomes realizable:

Corollary 6.5.14 If B level-b-realizably violates a nogood, where b i s greater than o r equal

t o the m a x i m u m participating branch index b,, then for any set of branches B' identical with

B o n all branches with index u p t o b: M(B1) contains a clash.

Proof: Let p be a nogood-violating substitution and a the nogood witness of Corollary

6.5.13, so that the witness a p is an rgl witnessed by branches wit,h index up to b alone.

Likewise, the branches bi all have branch indices at most b. Therefore, the realizable nogood

violation persists on any set B' which is identical with B on all branches up to b, and the

first part of Corollary 6.5.13 shows that hf(B1) contains a clash. 0

These results clarify in what way a realizable nogood violation in a set of branches is re-

lated to other forms of clashes we encountered so far, namely: clashes in h&(B) caused by

assertions contributed from branches, and clashes in M(B) - Mo(B) caused by realizable

unbranched labels. By contrast, clashes due to nogood violations are not caused by the n e

good. Corollaries 6.5.13 and 6.5.14 only state that whenever a nogood is realizably violated,

M (B) must have a clash; this clash can be of one or the other type. Of clashes in Mo(B),

we know from Corollary 6.4.8 that these clashes persist in all extensions of B, whereas

clashes due to unbranched labels are typically removed by branching over that label. If a

nogood is violated, however, Corollaries 6.5.13 and 6.5.14 state that even if the actual clash

in M(B) is due to an unbranched label A, no extension of B will be clash-free, so we need

riot wast,e cfforts trying to branch ovcr A. In this scnse, a nogood blocks the search space

represented by all extensions of B. (The purpose of nogoods, after all, is to "remember"

previously found inconsistencies which are not obvious, so we need not search the blocked

space unsuccessfully again.)

We will now encounter our first rule for propagating a nogood, for use in upcoming sections.

We write these rules schematically, in a similar style to tableau rules (see the Appendix),

or to other rule-based systems in the literature. In the top part of a rule, we write out all

nogoods and nogood-like expressions which must currently exist; at the bottom, we list the

nogood-like expression(s) we can derive. Additionally, a rule may have side conditions: for

CHAPTER 6. A M ODEL-FINDING ALGORITHM 222

instance, the term P(b) of a branch may be required to satisfy certain properties in order to

include branch b in a nogood. We must forrnally vcrify each rule by showing that whcr~cver

all nogood-like expressions at the top satisfy Paradigm 6.5.11 (and the side conditions hold),

then the expressions at the bottom also satisfy Paradigm 6.5.11. Once this is established,

we know that it is correct to add any of the bottom nogoods whenever all the top nogoods

are already present. Note that this does not mean that whenever the nogoods at the top

arc violated, so is (are) the nogood(s) at the bottom. We will need to verify this separately,

using further side conditions, for the nogood propagations we will discuss in Sections 6.7

and 6.8.

Proposition 6.5.15 W e have the following instantiation rule for n,ogood-like expressions:

where ai is one of the participating bnmch labels in NG.

Proof: Let B any set of branches with labels Xj = a: - Cj E A(bj), j = 1,. . . , n,, so that
I1 p = p(al H u l , . . . , a: H a:,.. . , a, H a:) is the most general nogood-violating substitution

for NG' = NGp(ai H a:). We transform the composite substitution p(ai H ai)p using the

results we stated informally for successive uniform instantiations:

Since Xi a:p = aip(ai H the substitution p(ai H is the most general nogood-

violating substitution for NG with the same witness ap(ai H ai)p. We apply Paradigm

6.5.11 to NG and obtain all its properties for NG' as well. 0

It is not practical to store instantiations of nogoods separately, since they are so easily

derivable from the original nogood. This proposition is merely a conceptual aid which will

make it easier for us to verify Paradigm 6.5.11 for more complicated nogood propagation

rules.

Note that the instantiation rule does not sanction a nogood instantiation of the form

NGp(a H a') for any of the nogood witnesses. This substitution may introduce existential

CHAPTER 6. A h4ODEL-FINDING ALGORITHM 223

constants, and we cannot guarantee in general that the nogood premises alone cause these

constants to L L ~ ~ i ~ t 7 ' in any branch, so we cannot prove coriditiori (1) in Paradigm 6.5.11. In

section 6.7, we will show how we can integrate "witnesses" for constants into a nogood.

Having said enough about nogood violations, we will now turn towards a method for re-

pairing nogoods. Our procedure is intended for use with a nogood which is known to be

violated:

Algorithm 6.5.16 repair-nogood-violation

Parameters:

NG = al: b l , . . . ,a,: b, + R: the nogood

if redizably-violated (NG, b,)

set p := nogood-violated(NG)

undo-branch (b,, a,p)

else

undo-redizabili ty (NG)

end if

When repairing nogood violations, we remain faithful to our strategy of undoing largest

branches (wrt 5) first: If all nogood witnesses are level-b,-realizable, the if part is exe-

cuted, and we undo the largest branch b, on its violating instance. If some nogood witness

is not level-b,,-realizable, we will see that NG can be made non-realizably violated (and hence

"har~nless") by undoi~ig branches with index greater than b, which contributed to its real-

izability, which again corresponds to our strategy above. The procedure undo-redizability

accomplishes this; it is used in several places, and we will describe it in Section 6.7.

For now, let us just consider the if part, and let us also assume that NG is not an empty

nogood. We will make a number of remarks, showing that the nogood repair delivers on

our expectations we addressed i~lformally earlier this section: it pi~ipoi~its, in some scnse,

the "minimal" instance on which to undo branch b, so that NG is no longer violated; and

henceforth NG blocks the algorithm from re-branching on b, over that instance.

0 Let p be a nogood substitution on NG. If there exists a branch bi so that Xi aip for

every Xi E A(bi), then p is not nogood-violating.

This is exactly the definition of a ngvs, stated in the contrapositive.

CHAPTER 6. A MODEL-FINDING ALGORITHM 224

After undo-branch is executed on branch bi over aip, p is no longer nogood-violating,

nor is any less general subst,it,iit,ion p'.

This follows from the previous remark and from Proposition 6.4.11, which warrants

that Xi sip' for every Xi E A(bi). (Notice that aipl instantiates sip.)

It is possible t,hat scveral labels on bi "cause" nogood violations, arid the instances

aip for the corresponding most general ngvs may even be disjoint. In this case, un-

doing branch bi on ai will not make the entire nogood non-violated. We have shown,

however, that the substitution p(ar I+ a:, . . . ,a, I+ a;) obtained for the specific tu-

ple X1, . . . , A, will no longer be a nogood-violating substitution. If we repeatedly call

rcpair-nogood-violation for all (finitely many) cornbinations of branch labels X1, . . . , A,

which violate NG, then eventually NG will no longer be violated.

A similar result for the undo-realizability procedure in the else part will be shown in

Section 6.7; in this case, NG will turn out to be no longer realizably violated.

For a given most general ngvs p, unless some bi is undone on aip, the nogood remains

violated. (This is to say: undoing bi on a strict ir~st,ance of aip is rlot sufficient,.)

This again follows directly from the definition of ngvs: undoing bi on a strict instance

of aip cannot "undo" the fact that Xi C aip, so p continues to be a ngvs.

By the same argument, we see that after we have undone b, on a,p appropriately, the

nogood blocks us from re-branching on b, over a,p or any other label of which a,p is

an instance, as long as the other branches bl, . . . , b,-l are left untouched. Only if we

undo some of these branches may we re-establish b, over a,p.

Let us formalize this for the maximal branch b,, of which, according to our definition, NG

is a term nogood:

Definition 6.5.17 Let NG be a t e rn nogood on a,: b, which is violated in the set B'

obtained by adding A: b, to B, with most general nogood-violating substitution p. Then we

say th,at NG blocks (brandring on) bn over a label X on an instanm a,p, with most general

nogood-violating substitution p. (We do not mention a,p if it is identical with the main

label of X.) If NG is realizably violated in B', we say that NG blocks bn realizably over X

(on UP).

CHAPTER 6. A MODEL-FINDING ALGORITHM 225

In this sense, by introducing the (term) nogood (on b,), we have reduced the unblocked

search space, the set of labals ovar whicl~ b, car1 be branched. The blocked search space

may only be unblocked when some branch lower than bn (wrt 5) is undone; but this will

entail a term nogood reducing the search space for that lower branch. We will develop this

idea into a completeness proof in Section 6.11. We make an intentional distinction between

term nogoods blocking bn over X entirely-these prevent branching entirely- and term

r~ogood blocking bn only on the insta~~co o,p, in w11ir:h case wc are still allowed to branch

on b,, provided we add on as an extra exception to A.

We provide a declaration for a procedure which implements Definition 6.5.17-again without

giving actual code. Note that the branch b,, is implicit in the nogood NG. As usual, the

secorid procedure (for a term nogood blocking b, realizably) can be snp1)lied with an optional

parameter b for the branch level.

Algorithm 6.5.18 blocks

Parameters:

NG: the term nogood to be tested

lambda: a branch label

Returns:

false if NG does not block its branch on X

the most general ngvs p, otherwise

Algorithm 6.5.19 hlocks-rmlizatdy

Parameters:

NG: the term nogood to be tested

lamhda: a branch label

b: a branch level

Returns:

false if NG does not block its branch level-b-realizably on X

the most general ngvs p, otherwise

One may object to our approach of "pinpointing" the minimal instance which causes the

nogood violation, raising the following concern: b, may have had strict instances of o,p

on which NG is not violated, as we mentioned earlier; these instances could have been left

CHAPTER 6. A M ODEL-FINDING ALGORITHM

branched upon. For an efficient implementation, we would indeed desire to retain these

branch labels. But arc. we in danger of "overlooking" a possible solution if we undo thern?

It turns out that the soundness of the algorithm is not jeopardized, because the nogood

does not block re-branching on b, over these strict instances.

We now return to the one type of nogood violation which cannot be undone at all:

Corollary 6.5.20 Every set of branches B violates an em,pty nogood.

Proof: Definition 6.5.7 is trivially satisfied; the substitution p in this case is the identical

mapping. 0

In case of an ernpty nogood, re~)air-~~c)gc)od-~ioli~tio~~ will be called with branch index b, = 0.

If the nogood witness is always realizable, an empty nogood is level-0-realizable, in which

case undo-branch will be called on branch 0, leading to abnormal termination. Corollaries

6.5.20 and 6.5.13 show that this situation correctly characterizes an unsatisfiable set S.

We have thus almost completed the soundness proof for our algorithm; we will finish the

argument in Section 6.10. Notice that empty nogoods may well arise from running the

algorithm on a satisfiable set S , but in that case we can always undo the realizability of the

witness a, so the nogood violation remains benign.

Remark 6.5.21 Nogood repairs-or any other operation involving only undoing and delet-

ing of branches-cannot cause any nogood violations which did not exist before. To see this,

consider a set B' obtained from B by undoing and deleting branches, and assum,e that p

violates a nogood NG ~ui th prem,ises a i : bi, i = 1 , . . . , n in B'. So the hranch,es bi i n B' have

labels Xi so that Xi a ip. Proposition 6.4.12 shows that corresponding labels X i on the bi in

B can be found, so that X i a ip. This shows that p is a nogood-violating substitution i n B

as well; therefore, NG has been violated i n B.

This last property guarantees that repair operations for nogoods do not interfere with one

another. Once a nogood is repaired, it remains non-violated, until we perform another

branching step. This will ensure that our branch repair operations terminate finitely.

6.6 Standing Inconsistencies

In the sections so far, we have encountered various types of inconsistencies which warrant

introduction of nogoods and/or branch repair. In order to treat them formally and consis-

tently, we will classify and discuss them, using a number of parameters as follows:

CHAPTER 6. A MODEL-FINDING ALGORITHM

a complex label A, the witness of the inconsistency,

0 a dependency set A (the branches and labels which caused the inconsistency)

the branch b in A with the highest index.

These are the types of inconsistencies which occur:

0 An assertion (ole - C) I introduced by a branch b over the label ol - C, where o I

is a corljurlct in the term @(!I). Here we have A = {(a1 - C): b} and X = ala - C.

0 An occurrence of conlplen~entary assertions X l p and X2 i p introduced by branches bl

and b2 over labels X i and A;, respectively (possibly even the same branch on the same

label), so that X1 and X2 unify. Here we have X = (XI, X2), A = {Xi: bl, A;: b2}, and

b = max{bl, b2}.

Any unbranched label X in the default branch U(C) of a clause C. In the special case

when C has not been branched on at all, we have X = ao. In terms of M(B) , we

could classify unbranched labels among the first type of inconsistency, where not some

branch b but the default branch U(C) introduced X I into M(B) . (See our discussion

in Section 6.4.) However, unbranched labels are significantly distinct from the other

sources of inconsistencies, in that they are "repaired" by branching, whereas the other

inconsistencies are repaired by undoing a branch. We declare that the dependency set

A of an unbranched label is empty and b = m.

A violated nogood NG, or more precisely: NGp, where p is the most general nogood-

violating substitution. Then X is any of the nogood witnesses a p which satisfies

condition (2) in Paradigm 6.5.1 1, A is the set of nogood premises of NGp, and b = b,

is the maximal branch participating in NG. We already discussed nogood violations

and how to repair them.

We will refer to the first and second type above as .stu~~,dl.n!j inconsistencies. All four t,ypes

of inconsistencies have in common that they only require repair when their witness is or

becomes realizable in Al(B); in that case, we will lazily speak of a realizable inconsistency.

Let us ascertain that standing inconsistencies and unbranched labels are indeed the only

inconsistencies on B which may introduce a clash:

C H A P T E R 6. A AIODEL-FINDING ALGORITHAI 228

Proposition 6.6.1 If B contains no realizable standing inconsistencg, then Mo(B) is clash-

free. If additionally B contains r w rraliznhle vnhr(rrrr:hed label, then, M (B) is clnsh-free.

Proof: We will show that each type of clash which may occur in Mo(B) corresponds to

a standing inconsistency, and that X correctly identifies the clash witness. Since the clash

wit,ness is realizable in Mo(B) by dcfinition, it is also realizable in M(B) , which shows the

proposition via the contrapositive. We do the same for clashes which occur in M(B) .

Recall that all assertions on AIo(B) are of the form (ala - C) a , arising from some "real"

branch b (including branch 0) over label a - C. Any clash of the form (ala - C) I has

been correctly identified above by its witness X = crla - C. In clashes consisting of two

complementary assertions X l p and X2 l p on Mo(B) where X1 and X2 unify. X l p and X2 l p

arise from two (possibly identical) branches bl and b2. Again we have correctly identified

X = (XI, X2) as the clash witness.

For all clashes in M (B) arising from assertions in Mo(B) (whose witness may not be realiz-

able in Mo(B) but in M(B)) , we argue analogously as above. Other t,har~ these, clashes in

M(B) can only be introduced through assertions X I with a realizable unbranched label A.

This label X has been correctly characterized as the witness in the third type of inconsistency

above. Our discussion has thus covered all sources of clashes in M(B) and characterized

them as standing inconsistencies and unbranched labels. 0

Nogood violations are absent from the list in Propo~it~ion 6.6.1. For thcse, we alrcady argued

in the previous section that they do not introduce but merely indicate a clash.

We will now show how to repair clashes from standing inconsistencies. As one might guess,

we accomplish this by undoing some branch from the depencency set A, or by undoing

witnesses for the r~itlizabilit~y of A. Now since we have already covered these strategies

extensively in the last section, we will not perform the repairs directly. Instead, we will

derive an appropriate nogood from A and X which will initially be violated by the current

set B, so that the correct type of action will be implicitly triggered to not only repair the

nogood violation, but also the inconsistency.

For standing inconsistencies, and only for these, we introduce nogoods as soon as the in-

consistencies occur, even if their witness is not realizable. The reason is that a standing

inconsistency may give rise to a clash at some later point, when other branches introduce

constants making the witness X realizable. We would need to store and monitor a separate

list of standing inconsistencies, periodically checking for realizable witnesses. By contrast,

CHAPTER 6. A MODEL-FINDIA'G ALGORITHM

introducing nogoods for standing inconsistencies causes no harm and only little bookkeeping

arid the list. of nogoods is a l rcdy activcly n~onitored with regards to witncsscs

becoming realizable.

The following assertion introduction rule characterizes not only the first type of inconsis-

tency, but allows us to infer a nogood-like expression from any assertion on B:

whereas a a is a conjunct on f l (b) , and (TO is the main label of the clause C(b).

We easily show this rule correct:

Proposition 6.6.2 The nogood-like expression N G in the bottom part of the assertion in-

troduction rule satisfies Paradigm 6.5.11.

Proof: Assume N G is violated; that is, branch b has a label a; - C and let p = p(ao I+ a;)

be the most general nogood-violating substitution. Since a; is an instance of ao, we have

a0p = a',, and aoap = aia. Furthermore, the requirement a; - C C aop = a', ensures that

a; - C is not a vacuous label. Now according to the side corlditiorl of the rule, b introduces

the assertion (a i a - C) a into M(B). The fact that aia is a main label in M(B) shows

the condition (1) of Paradigm 6.5.11; furthermore, we get E a E (Af(B))(,;,), which shows

condition (3) in case a is a literal, and yields a clash in case a = I , showing condition (2).

0

Corollary 6.6.3 Ifa = I , the above nogood N G i s violated by branch b o n a; - C, iff there

i s a standing inconsistency with A = {a; - C): b) , so that all exceptions in C are strict

instances ofa;, and witness X = aia - C. Furthermore, NG' i s realizably violated iff all the

above holds and X is realizable.

Proof: One direction of the proof follows directly from Proposition 6.6.2. For the other

direction, observe that the cordition a: - C C_ aop is warrarltcd by our requireinei~t that

a: - C not be vacuous. For the second part, a realizable nogood violation always entails the

existence of an rgi of the nogood witness. Conversely, let y be an rgi of A. Because of this,

10 One may argue that stranding inc~nsist~encies are nogoods in and of themselves. (Simply ignore the
exceptions in t,he wit,ness X and in the labels of l,he dependency set..) Taking this point. of view, we c:oi~ld
simply store the incor~sist,encies alongside with the nogoods or, as we will suggest in Sect,ion 6.12, infer them
in~plicit.ly from the assertions on the branches.

CHAPTER 6. A MODEL-FINDING ALGORITHM 230

p(uo H a:) and p(aoa H y) are "compatible" substitutions, so p(uoa H y, a0 H a:) exists

a rd rnaps a 0 to an instance of a; - C, riarr~ely a prcfix of y. 0

This corollary proves that NG may rightfully take the place of the standing inconsistency.

Whenever a standing inconsistency of type 1 exists, the nogood introduced according to the

above rule is violated as long as the inconsistency exists, and realizably violated as long as

it constitutes a clash. Conversely, when the nogood is repaired, we are guaranteed that the

inconsiste~~cy no longer exists.

To cover the second type of inconsistency, consider the following complementary assertion

rule, in the special case where the two witnesses are identical:

Note that the indexing substitution p(* H * t , [al, a:!]) ensures that all wildcards in both

a1 and u2, as well as in the corresponding positions in a, receive the same index. We easily

show this rule correct as well:

Proposition 6.6.4 If the nogood-like expressions NGl, NG2 in the top part of the comple-

mentary assertion rule satisfy Paradigm 6.5.11, then so does the nogood NG at the bottom.

Proof: Let a; - C1 and a$ - C:! be the labels on bl and b:! which violate NG, and p =

p(al H a;, 0 2 H 0;) the most general ngvs. Thanks to indexing the *, a nogood-violating

substitution p of NG must instantiate corresponding *t in a1 and a:! by the same elements.

Therefore, we have alp(al H a;) = ulp(ul H a;, a:! H a;); likewise for us. This shows that

p is also the most general ngvs for NGl and NG2, so the precondition of Paradigm 6.5.11

is met for NG, NG1 and NG2, with the same witness up. Therefore, condition (1) is shown

for NG because it holds for NG1 and NG2. Now condition (3) for NG1 and NG2 shows that

M(B)(,p) contains both ~p and ~ l p , which constitutes a clash, thus showing condition (2)

for NG. This establishes that Paradigm 6.5.11 is valid. 0

Note that in the case of two complementary assertions resulting from the same branch over

the same label, the two premises in the dependency set are identical; it is correct to merge

them into one premise.

From the special case, we derive the general complementary assertion rule, which reads as

follows:

(101, at] bl , la, a 2 J b2 + (a, a') L)P(* * t , rai, a 2 1)
1

CHAPTER 6. A MODEL-FINDING ALGORITHhl 23 1

Proposition 6.6.5 If the nogood-like expressions NG1, NG2 in the top part of the general

complementnry assertion n ~ l e sntisfy Pnmdigm. 6.5.11, then so does th,e n.ogood NG (it the

bottom.

Proof: Apply the nogood instantiation rule from Proposition 6.5.15, using the substitution

p(al H [al, all) , to NG1. (This substitution i~istantiates t l ~ : co~istants in (a, a') into corre-

sponding positions where a1 has *.) The resulting nogood is NG; = NGlp(a1 H 101, a l l) =

[al, all bl -t (a, a') p. We do the same for NG2 with p(a2 H La, a21), obtaining NG;.

Now NG is obtained from NG; and NG; by applying the special case of the complementary

assertion rule, which establishes Paradigm 6.5.11 for NG. 0

Corollary 6.6.6 Let bl and b2 be two branches on clauses with main labels a 0 and ah, and

a p , a' l p two conjuncts on /3(bl) and /3(b2), and assume that bl and b2 currently branch over

oi - C1 and ah - C2, respectively. Then the nogood NG = Loo, ohall: bl, [ah, aoo]: b2 -'

(aoa,a&/) I is violated by the above branches ifl there is a standing inconsistency with

A = {a; -El): bl, ah -C2): b2) (whereas the exceptions are strict instances of their respective

main labels) and witness X = (A1, X2), whereas X l p, X2 i p are the assertions introduced by

bl and b2, respectively. Furthermore, NG is realizably violated ifl all the above holds and X

is realizable.

Proof: The proof is messy but essentially similar to that of Corollary 6.6.3; we will only

sketch it here. First, we use the assertion introduction rule for each of the two assertions

introduced by bl and b2, respectively, to introduce nogood-like expressioi~s NG1 and NG2

on a 0 and ah, respectively. Then Corollary 6.6.3 shows that these expressions are matched

(violated) by bl on a; - C1 and b2 on ah - C2, respectively. Using the complementary

assertion rule, the expressions can be joined into a nogood, which is of the form given in

NG above. Paradigm 6.5.11 holds for NG, as evidenced by Proposition 6.6.5. So if NG is

violatcd with most general ngvs p, then (M (B)) ((,,,,,;,,),,) contains a clash, which witncsstts

a standing inconsistency in M(B). The converse and the case of a realizable violation are

dealt with similarly as in Corollary 6.6.3. 0

Corollaries 6.6.3 and 6.6.6 show how the two types of standing inconsistencies can be repre-

sented by nogoods. Wc showed in either case that the presence of the inconsistency due to

some branch labels is equivalent to a nogood violation by these branch labels, and that the

presence of a clash is equivalent to a realizable nogood violation. We have thus reduced the

CHAPTER 6. A MODEL-FINDING ALGORITHM 232

task of repairing inconsistencies to the task of repairing nogoods. We used the main labels

ao, ah so as to introduce nogoods as gerieral in scope as possible.

Our algorithm for repairing an inconsistency covers both kinds of standing inconsistencies. It

assumes that the nogood premises and witness have already been computed (we will provide

the code shortly). It only introduces the appropriate nogood and repairs it7 provided it is

realizably violated.

Algorithm 6.6.7 repair-standing-inconsistency

Parameters:

a : the witness of the inconsistency

A = {a: bl , . . . , a,: b,): the premises of the inconsistency

begin

sort A by ascending branch index bl < . . . < b,
set p := p(* ++ * t , [al , . . . , a,l)

set NG = alp: bl, . . . , a,p: b, --, a p I
Add NG as a nogood

if realizably-violated (NG)

repair-nogood-violation(NG)

end if

end

The next procedure, repair-branch, is called after each branching step. We can observe

that repair-standing-inconsistency is called on all types of standing inconsistencies, with the

correct parameters for a nogood representing the inconsistency:

Algorithm 6.6.8 repair-branch

Parameters:

bl: the index of the branch introduced

X1 = (al - El) the new branch label

begin

foreach nogood NG do

if is-realizably-violated(NG)

CHAPTER 6. A MODEL-FINDING ALGORITHM

repair-~iogood- violation (NG)

end if

done

set a 0 := thc: ~nain label of C (b l)

foreach conjunct a a in P(bl) do

i f a = I

repair-standing-inconsistency(ooa, {ao : bl))
else if a = I (some literal)

foreach assertion (a2a1 - C2) b in M (B) do

if (a l a - El, a2a1 - C2) exists

set b2 := the branch which introduced the assertion

set ah := the main label of C(bz)

u:p"ir.-stxiding-i~ir:o~isistt:x~c:,y((al a, a2a1),

{Lao, 4P1J: b l , la;, aoa]: b2))

end if

done

end if

done

end

Since only finitely many new assertions were introduced through branching, and since there

are only finitely 11lany conlbi~~a~tio~ls of assertions wl~ich can fonn standing inconsistencies,

all standing inconsistencies can be removed in finitely many steps.

The procedure also incorporates the mentioned "nogood monitor". All existing nogoods,

of which there can be only finitely many at any given time, are systematically checked for

realizable violations, and all violations repaired. We will show in thc next section that

repair-nogood-violation takes only finitely many steps for each1'. We see that repair-branch

repairs all types of clashes and nogood violations, so we conclude:

Proposition 6.6.9 The procedure rcpir-branch retvnts c~fter fin.itely many steps. When, it

returns, the current branch contains no clashes other than unbranched labels.

"In a real implementation, we may wish to invoke the nogood mo~lilor only sporadically, or use a good
tiltcring algoritlnrl so wc do not wastc time cllc~kiug uogoods whose witucss cannot llavc bwonle realizable,
using suitable criteria.

CHAPTER 6. A AIODEL-FINDING ALGORITHM 234

Hence the algorithm is ready to proceed to the next step, which is branching on another

realizable unbranched label. Or if none romains, the entire algorithm is done. (See Section

6.9.)

6.7 Realizability Propagation

As part of the procedure for repairing a nogood violati011 with maximal branch iudex b,

we encountered the case where the witness a of the nogood violation is realizable but not

level-b-realizable. In this case, undoing branch b would violate our principle of undoing

branches with maximal index first. So we suggested to proceed by undoing branches which

contribute realizability witnesses, until up is no longer realizable. But we would also like to

uphold another established principle: whenever we undo a branch, we put a nogood in its

place, which prohibits us from re-branching on the same label or any of its instances. So

we somehow need to combine the violated nogood with the realizability witness, which will

result in another nogood corresponding to the branch to undo. We call this step realizability

propagation.

A different application for realizability propagation will arise from the next section where

we merge nogoods due to failed clauses. In lieu of a full explanation, we present an example

here: Suppose we have a nogood with witness * which we know to be realizable; can we

shorten it into a nogood with witness E?

We motivate our approach by the following:

Proposition 6.7.1 We have th,e following constant elimination rule:

Proof: By Paradigm 6.5.11, (uc)p satisfies condition (1) in AI(B), and (M(B))((,+,)

contains a clash. We obviously have (uc)p = (up)c, and since this label satisfies condition

(I) , so does its prefix up; furthermore, c exists in (M(B))(,p) (Proposition 5.4.17), and

as we said, (M(B))(&,) contains a clash for all instances u of up; then so does (M(B))(e)

(Proposition 5.5.4). We have thus established Paradigm 6.5.11 for the bottom nogood.

which establishes the validity of this rule. 0

In this fashion, we can remove all trailing existential constants from any nogood witness.

But this trick clearly does not work for nogood witnesses of the form a* or a[c] . As we should

CHAPTER 6. A AIODEL-FINDING ALGORITHAI 235

expect, these positions must be instantiated by existential constants in order to witness a

clash. Of course we alrcady know tliat t h y arc: aftcr all, thc! nogood is realizably violated.

So we just need to find a suitable realizability witness.

The algorithm given below can propagate realizability into our nogood by instantiating any

* or conditional constants in the nogood witness; they do not have to be in the trailing

position. Its usage will depend on what exactly we would like to do: If our purpose is

to shorten the nogood witness, we probably warit to shorten the nogood witness frorn the

end. But if we are to make the witness non-realizable in M (B) , it does not matter which

position we instantiate: instead, we would like to be faithful to our strategy and propagate

a realizability witness arising from a branch with maximal index. No matter which one

wc decide t,o pick, the rcalizability witness will be of the form a'a" - C, a prcfix of sonie

assertion (a'a"~"' - C) a arising from some branch b on the label a' - C. As in the rule

above, our original nogood is written as: NG = A + 0 , a I. It is safe to assume that

a'a" is no longer than a (any positions beyond that would not instantiate anything in a).

Furthermore, as explained at the end of Section 6.4, we can assume that la'l < 101, and that

sornc position in a will be instantiated by some constant, frorn a". Givcn these parameters,

the realizability propagation rule is as follows:

We used Lo, a'] instead of a' in order to pinpoint the instance of the realizability witness

which actually contributes to the propagation. Note that we need not bother with possible

exceptions to a', since we have chosen this label with the knowledge that a ground instance

exists.

The witness o'o" may instantiate more than one position in a with constants. Usually the

nogood premises will also be instantiated. Therefore, if we repeatedly propagate witnesses

into a nogood, this nogood will quickly become too specialized and much less useful. Realiz-

ability propagation sliould be used with caution and only where necessary for guaranteeing

completeness of the search. Whenever we have a choice between realizability witnesses to

propagate, it is usually better to use witnesses with few constants. The "cleanest" witnesses

are of the form *kc-they instantiate only the one position they need to, in order to shorten

the nogood witness.

CHAPTER 6. A M ODEL-FINDING ALGORITHM 236

Proposition 6.7.2 The propagated nogood NG' satisfies Paradigm 6.5.11, provided NG

does.

Proof: We argue using the following nogood:

NG1 = NGp(a H [a,a'al'l)

= [al, a'a''1 : bl, . . . , [a,, ala"l : bn, La, a'J : b + [a, a'al'l I.

- -
Let b,,.. . ,b,,bbeaset ofbrancheson B withlabelsXj = aj-Cj, j = 1, . . . ,nandX = 6-C,

violating NG1. Then B, by virtue of bl, . . . , h,, also violates NG, and the nogood-violating

substitutiorl p for NG1 is a concatenation of a nogood-violating substitutiorl po for NGo and

the substitution p(al H 6). Since the instantiations 6, instantiate [aj, a'al'l, so do the ajpo-

By 6.5.11, we conclude that apo is scwr. Since [aj, ala"lp always instantiates apo, we can

conclude that (M(B))(&) contains a clash for every instance of [aj, a'al'lp. However, apo

may not instantiate [a, a1a''l, so it does not by itself show that [n j , dal ' lp is scwr. Instead,

we observe that [a, a1a''lp is a concatenation of [a, a'a"lpo with a substitution replacing

the first 10'1 positions of a with 6, an instance of La', a. But if we change the order of

concatenation and do this substitution first, we obtain [a, a1a''lp = [a, 6a1'lpo = [upo, 6a1'l.

Now we see that both (~po (thanks to 6.5.11 and (50'' (because (5 exists as a branch label in

M(B)) are scwr in M(B). Therefore, [a, a'aNlp is scwr in M(B), and Paradigm 6.5.11 is

verified for the nogood NG1. From this, the paradigm also follows for the nogood NG' with

shortened witness, because of Proposition 6.7.1. 0

The corresponding algorithm is very simple:

Algorithm 6.7.3 propagate-realizability

Parameters:

NG = al: bl, ..., a,: bn + R , a I : the nogood

. the label to be propagated

b: the branch which introduced the label

return a nogood

NG' = [al, a'al'l : bl, . . . , [a,, ala"l : bn, La, alJ : b + R, [a, a1a''l I.
obtained by deleting any number

of trailing existential constants from [(T, (T'(T''].

CHAPTER 6. A MODEL-FINDING ALGORITHM 237

The next procedure, undc+realizability, has already been mentioned. It is used for undoing

all b r a ~ l d ~ c s which co~~t~ribnte realizability witmsses for a nogood violation. Since li~ldoing

branches must always be accompanied by introducing appropriate nogoods, the original

nogood is given as a parameter, and realizability-propagated nogoods are derived from it:

Algorithm 6.7.4 undc+realizability

Parameters:

NG : a nogood

while (p , y, A) = realizably-violated(NG, B) is not false do

select (do" - C): b E A so that b is maximal

set dop := a minimal prefix of o'a" which ends in a witnessing constant

set NG' : = ~>rov~agate-redizahilit;,y (NG, atop, b)

undebranch (b, La, a'])

done

It is most efficient if the is-realizable function returns sets of witnesses whose maximal

branch index b is as small as possible. This witness may be part of several other sets of

realizability witnesses with higher index b'; if branch b has already been undone (it must be

undone anyway), all these sets are simultaneously invalidated, which minimizes the number

of realizability propagations needed. Similarly, the choice of a "shortest witnessing prefix"

in the algorithm above ensures that the propagated nogood remains as general as possible,

while still invalidating the set A.

In order to repair the propagated nogood, we call undo-branch instead of repair-nogood-

violation. We already know the nogood to be level-brealizably violated, as b was the maxi-

mal index among the realizability witnesses), so repair-nogood-violation would go into the

if part, where it would call undo-hra11c:h with t l ~ c same parameters as we do here. In par-

ticular, the nogood violation is properly undone. We also point out that undo-realizability

may have been called from inside repair-nogood-violation, so avoiding calling it again keeps

our procedure recursion-free, a favourable feature.

When a propagated nogood is introduced, it is initially violated because the original nogood

NG is realizably violated. This means that the original nogood NG is violated because of

the labels on bl, . . . , b,, and the additional branch b is scoped over a label a' so that the

unifier [a, a'at'l exists; but the witness of NG' is the same label, possibly shortened, which

shows that NG' is also violated.

CHAPTER 6. A M ODEL-FINDING ALGORITHhl 238

Now in response to the violation of NG', the branch b is undone on the label [a, a'] over

which it is scopcd in NG', so the propagated nogood is iio longcr violated. In this way, none

of the new nogoods created in undo-realizability is violated when the procedure terminates.

Furthermore, branch b on label a' no longer functions as a witness for the realizability of NG,

because it now has La, a'] as an exception. In this way, every witness for the realizability

of the violation of NG is "deactivated". Since finitely many branches allow us to state only

finit,cly many set,s of witnesses, and since t,hc proc:ed~ircs do not introduce new branches, we

conclude:

Corollary 6.7.5 Tlrc. while loop i71 111ld0-realizat)ilit,y tem~,in,ates after finitely many re-

alizability propagations. When the loop terminates, the original nogood NG is no longer

realizably violated.

6.8 Failed Clauses and Nogood Merging

The ability to merge several nogoods into a new nogood is not only an essential technique

to ensure completeness of nogood reasoning; but we also need it in order to handle failed

clauses correctly. When term nogoods on every branch b in a clause C prevent us from

branching over a realizable label a, it is the premises on all term nogoods combined which

prevent us from branching on any of the b over a. Therefore, we should merge all the

premises, minus those mentioning any of the branches b themselves, into a new nogood; in

response to this nogood, we can undo one of its premises, which will make one of the term

nogoods on the branches in C ineffective: it no longer blocks the branch from being chosen.

In the propositional case, nogood merging is easy: take the dependency set Aj of the term

nogood on each branch bj, except for bj itself, and take the union of these dependency

scts for all bj on C. In CBC, howcver, we encounter the difficulty that different nogoods

may have different witnesses. If we merge two nogoods with witnesses *1 and *2. say, then

does the violation of the merged nogood entail a clash in (M(B)) , l or in (M(B)) ,2? Since

we cannot tell from the merged nogood itself, we must keep both options. This is why

nogoods may have a set of witnesses. So in the above example, the nogood conclusions are

R = {*I, *2). If the nogood is viola,ted arid both *1 and *2 are rea.lizable, then the nogood

is realiza,bly violated, and a clash will always occur.

In the previous section, we have learned a technique for instantia.ting and shortening nogood

witnesses. We could apply it when the sets of witnesses get too large. If two witnesses

CHAPTER 6. A MODEL-FINDING ALGORITHM 239

become identical due to instantiations, they can be written as one witness; we can thus

redncc the nurnber of witnesses.

One might wonder why we do not always preprocess all term nogoods and only merge them

when their witness is E? In doing so, we would forfeit the advantage of reasoning jointly over

sets of instances by using nogoods with wildcards. The more unnecessary instantiations we

create, the more nogoods and calls of undo-branch we will incur; in fact, we may well end

111) reasoning over ground labcls again. So we rnust strive to do as little preprocessing as

absolutely necessary. In our algorithm, we refrain from realizability propagation for this

purpose.

Before we formally state the algorithm, let us briefly outline the steps:

1. Only nogoods which prohibit branching on clause C participate in nogood merging.

But these are exactly the term nogoods. In other words, for each branch bj on term

/3j there exists a term nogood NGj which prohibits branching on bj over a. We write

these nogoods as Aj , crj : bj --+ Oj, j = 1, . . . , m..

2. To be true to our nogood paradigm, we must pinpoint the scope of nogoods as precisely

as possible. So we apply the nogood substitution pj = p(aj I-+ a) to NGj, where a is

the mgu of all branch labels.

3. If any aj among the nogood witnesses is not level-bj-realizable, then we should undo

realizability witnesses for NGj rather than merge the nogoods; for if aj is no longer

realizable, we can branch on bj over a in the regular way; this will violate NGj, but

riot realizably.

4. Now simply and take the union of all Aj as the premises, and the union of all nogood

conclusions, plus the main label a 0 of C, as the conclusion of the merged nogood.

Steps 1-3 above could be seen as preprocessing steps for each nogood. In fact, they are best

performed as part of the satisfy-unbranched-label procedure. The nogood instantiations in

Step 2 must be computed in order to find whether the term nogoods are violated in the

first place; if some bj does not realizably violate any term nogood on 0, we can simply

branch on it. If bj does violate some term nogood NGj, we would verify if it is level+

realizably violated. If not, we will still eventually perform branching on a . Only when we

have found term nogoods for all m terms whose witnesses are level-b,,,,-realizable do we

start the nogood merging procedure, which thus covers only steps 4 and 5 above:

CHAPTER 6. A M ODEL-FINDING ALGORITHhl

Algorithm 6.8.1 merge-nogood

Parameters:

C: the clause, with main label 00

NGj = Aj, uj: bj + Rj, j = 1, . . . , m the nogood instantiations

begin

set a := (01, . . . , a,)
set pj = p(aj H a) , j = 1,. . . , m

set p' = p(* H * t)

set NGo = (Aiplp', . . . , Ampmp' + 01, - - - , am, ~ O P ' J-

add NGo as a new nogood

repair-nogood-violation (NGo)

end

Proposition 6.8.2 Pamdigrn 6.5.11 Irolds for NGo, provided it 11wld.s for all nogoods NGj.

Proof: Consider a set B which violates NGo, and take 5 = La, aoJ, which is a label on

which the clause C fails. Note that a p E 00, so 5 is a prefix of a . If 5 E U (C) , then 5

is scwr in M(B) and (Af(B))(*) is utopian; t,hen this is trivially true for any longer label

including a , so Condition (1) of Paradigm 6.5.11 is satisfied for a and (M(B))(,) contains

a clash, showing Paradigm 6.5.11. Otherwise, 5 must instantiate a branch label in one of

the bj. But then the nogood NGj is violated; let p be the nogood-violating substitution

obtained from the branch labels of bjtl, . . . , bj,,, and bj participating in the nogood. Since

NGj satisfies Paradigm 6.5.11, (M(B))(&) contains a clash for all instances & of ajp; biit

this includes all instances of (a l , . . . , a,)p. Finally, (aj)p is scwr, and this argument can

be repeated for all j = 1, . . . , m, which shows that (a , , . . . , a,)p is also scwr. We have thus

verified Paradigm 6.5.11 for the nogood NGo. 0

Since all premises of NGo are branched upon when NGo is introduced, we also obtain:

Corollary 6.8.3 At the time nogood NGo is introduced, it is realitably violated.

Accordingly, the procedure repair-nogood-violation will undo the branch with maximum

index among the nogood premises on NGo, after which one original nogood NGj will no

longer be violated, which will allow us to branch on bj again. If all Aj are empty, however,

we have obtained an empty nogood, in which case there is no branch we can undo. Unless

this empty nogood is not realizably violated, we have found the problem unsatisfiable.

CHAPTER 6. A MODEL-FINDING ALGORITHM

6.9 The Main Loop

We are now ready to specify ttllc main routine of the algorithn for finding a ~rlodcl for a

given set S of clauses in LCNF:

Algorithm 6.9.1 model-finder

Parameters:

S: a set of clauses

Returns:

B: a set of branches representing a satisfying model, or unsatisfiable

begin

branching (0 , ~)

foreach clause C = a0 F do

set IJ(C) := a0

done

while (some IJ(C) contains a label X

and is-malizable(X)) do

set satisfy-unbranched-label (C, a)

done

return B

end

The first four lines are there to initialize branch 0 and the default branches IJ(C). The while

loop, with the function satisfy-unbranched-label inside, is the "engine" of the algorithm; it

iterates as long as IJ.(C) contains realizable unbranched labels which need to be branched

upon (indicat,ing that M (B) contair~s a clash whicl~ ueeds rcpair). As we alrcady disciissed

in the previous section, we should do one of three things with an unbranched label A, in

descending priority:

1. If there exist,s a branch bj 011 whir11 110 tern^ nogood realizably blocks brardling on X

(entirely), then branch on bj over A. This could be viewed as undoing an instance of

a default branch with index oo.

2. If every branch bj is realizably but not level-bj-realizably blocked by some term no-

goods, undo realizability witnesses until the violation is no longer realizable, then

CHAPTER 6. A MODEL-FINDING ALGORITHM 242
- - -

model-finder

t)rimt.l~iug (on branch 0)

while some clause contains a realizable unbranched label do

satisfy-un branched-label

Some hranch does not
level-b,,-realizably

I

branching I merge-n ogo o d

repair- branch

foreach nogood violation do I

rrlerge terrr~ nogoods

repair-nogood-violation

I~lcorisistency witness

repair-nogood-violation

-- -- --

repair-nogood- violation

witness level-&

undo-branch undo-realizability

undo-realizability

while witness is realizable do

propaga te-reahability

I I undo- branch

Figure 6.1: A N ~ . ~ s ~ - S I I , ~ L C ~ ~ C T I I I ~ (~ , T ~ , [79] jlo111 (~ U L ~ I - U T ~ L of t11w (dgoritlt,~rt,. For C O T I ~ S ~ T L C S S , ~ r ~ o s t
procedures are shrown inside the main procedure and indicated by the procedure name typeset
i n slanted. Some minmr procedures have been omitted for clarity.

CHAPTER 6. A MODEL-FlNDIXG ALGORITHhf 243

branch on bj over X as in 1. Notice that all branches undone have indices greater than

b m a .

3. Otherwise the clause C fails; merge the term nogoods into a new nogood. This nogood

will be violated, and repairing it entails undoing some branch with index less than or

equal to b,,, the maximum branch index on C.

We see that this prioritization matches our strategy of undoing branches with maximal

index first. Note that we need not adhere to any such strategy for picking a branch, e.g.

in ascending order. We are free to pick any branch that is not blocked by a term nogood,

possibly according to some suitable heuristic. Here is the code for the above steps:

Algorithm 6.9.2 satisfjr-unhrar~cl~c?d-label

Parameters:

C = 00 (PI V . . . V om): a clause

X = o - C: an unbranched label from U(C)

begin

set bj := the branch index of oj in C, for j = 1,. . . ,7n

set b ,,,,, := n1ax{bj : j = 1,. . . ,7n)

foreach j = 1,. . . , m do

if (there ex. a term tiogood NG on bj

s.th. p = blocks-realizably (NG, A, bj) is not false

and up = o

set NGj := NGp

else

branching (bj ,X)

return

end if

done

merge-nogood (C, (NGj)(j,l ,,..,)

end

Steps 1 and 2 of our informal description are covered by the else part, where we call

branching, then the procedure returns prematurely. Undoing of realizability witnesses,

CHAPTER 6. A MODEL-FINDING ALGOR.ITHM 244

which is the additional part in Step 2 versus Step 1, is performed inside the branching

function below. Otherwise we perform Step 3, which just c:onsists of calling mwgeuogood

in the last line. The preprocessing steps for each term nogood, mentioned in the previous

section, have already been performed in the if part, while iterating over the branches on C.

Finally, here is the branching function:

Algorithm 6.9.3 branching

Parameters:

b: the branch

X = a - C: the label branched upon

begin

simple-branching (b,X)

foreach term nogood NG do

if p = blocks-realizably (NG, A, bj) is not false

and a p = a

undo-realizabili ty (NG)

end IF

if p = blocks (NG, A) is not false

add a p as an exception to X

add sigmap to U(C(b))

end if

done

add X to B[b]

repair- branch (b, A)

end

Let us discuss the various direct and side effects of branching, and how these get repaired

through branching and repair-branch:

branching is called only when it is not level-brealizably blocked by a term nogood,

which ensures that branching will succeed at least on the main label a of A.

However, some term nogoods may still realizably (but not level-b-realizably) block

branching on X entirely, which is not acceptable. We resolve this by undoing some

CHAPTER 6. A MODEL-FINDING ALGORITHM 235

realizability witnesses. (Since we have already branched on b, undo-realizability can

handle this case just like an ordinary rlogood violation.) Tl~ese term nogoods are

identified by the call to blocks-realizably.

Branching on b over A may still be blocked (even level-brealizably so) on strict in-

sta,n,ces of A. To reduce the need for branch repairs, we "111ldo" t,he~n im~nediately

by introducing them as new exceptions into A, and writing them back to U (C) . As

a result, no more term nogoods realizably block the chosen branch b. These term

nogoods are identified by the call to blocks.

0 Other nogoods NG which are not term nogoods of b may be violated by branching

on b over A. But the way of repairing these violations is not to prohibit branching

on b, but to undo the branch in the maximal nogood premise on b', which is distinct

from the currently chosen branch. The "nogood monitor" in repair-branch provides

for repairs of all such nogood violations.

0 Previously harmless, non-realizable nogood violations may become realizable due to

new labels introduced by b. In this case, b forms one of the realizability witnesses.

Depending on whether b is larger or smaller than the maximal branch index in the

dependency set of the nogood, some branch with index larger than b or b itself may

be u n d o n e b u t the latter occurs only after a new realizability-propagated nogood

blocks b from being chosen again. These nogood violations are also recognized by the

"nogood monitor" in repair-branch.

0 Standing inconsistencies introduced by the branch will also be repaired by the function

repair-branch, as we have already seen.

Proposition 6.9.4 : T11,e pr.oceQ~~r.(< satis&-rmt>ra~~cl~ed-litbel tcrm,in,atcs fin.itely.

Proof: We have already seen that the procedures merge-nogood and repair-branch termi-

nate finitely. Each is called only once from within satisfy-unbranched-label and branching,

respect,ively, and apart from thcsc, t,hc proccdure satisfy-r~~~brar~c:l~ed-lal>c!l may call m~do-

redizability up to m times, each of which also terminates finitely. 0

Proposition 6.9.5 : After satisfy-unbranched-label terminates, B does not contain any

standing inconsistencies or realz'aably violate any nogoods.

CHAPTER 6. A h4ODEL-FINDING ALGORITHiVl

Proof: With one exception, standing inconsistencies and nogood violations are intro-

duced as arcsiilt of branching over a ncw label. But the: hrw~cl~ing procediire always calls

repair-branch. We just discussed the types of standing inconsistencies and realizable nogood

violations which may arise due to branching, and showed that they are either averted by

introducing extra exceptions to A, or repaired through repair-branch. Outside the branching

procedure, the only other source of realizable nogood violations is inside mergenogood, but

we showcd that merged ~~ogoods arc rcpaired imrnediatcly therein. immediately afterwards.

0

6.10 Soundness and Correctness

If the main while loop condition in Algorithm 6.9.1 no longer applies, the set M(B) is re-

turned as a model for S. However, repair-nogood-violation may encounter an empty nogood

which cannot be repaired, in which case the model finder exits and returns unsatisfiable.

These are the two ways in which the algorithm may terminate. We will now show that when-

ever it terminates, the answer is correct. That is, if the algorithm returns a set B, then

M(B) is indeed a model for S, and if it returns unsatisfiable, then S is indeed unsatisfiable.

The latter is referred to as soundness.

Our first goal is to show that M(B) verifies every clause in S at all times. (This may sound

slirprising, but wc renlirld the readcr that M(B) usually contains clwlles, e.g. due to the

presence of realizable unbranched labels.) We prove this for any arbitrary fixed clause C, by

successively showing a number of invariants which are preserved through each iteration of

the while loop. But in order to do this, we need to somehow trace the order in which labels

have been branched on, unbranched on, and branched on again. For this purpose, we define

a counter k, initialize it to 0, let ao be the outer label of C, and increment k. During the

algorithm, new main labels on branches in C come into existence in the following contexts:

on U(C), in undo-branch;

on U(C), in branching

on bo, in merge-nogood.

We index each new main label as ak and increment k. Note that newly introduced labels

C H A P l E R 6. A MODEL-FINDING ALGORITHM 237

do not have exceptions, but they may acquire some later. If another simple labelI2 ap

idantical to the new label a l rcdy cxist,s on the branch, re-index it as ak. It is evident that

only finitely many main labels exist in the branches on a clause at any given time.

Proposition 6.10.1 For any clause C = 00 F , the following invariants hold before and

after each itemtion, of tlre while loop (understan,d "hmnch on C " as i7~cluding the d c f ~ ~ l t

branch U(C)):

(1) ao is the main label of a branch on C.

(2) Every exception 6 to a branch label on C with main label up instantiates a label

X = arc - C of another branch on C so that k > k'.

(3) M(B) b, a F for every label a - C on every branch i n C.

ProoE The first irlvariat~t holds init,ially, as a" E lJ(C). If at some point the algorithn

branches on clause C, it takes the entire label a" and makes it the main label of some branch

on a term in C, so the invariant remains. In a call of undo-brmch, it is possible that the

branch gets completely undone over ao on some "real" branch as well, but in that case ao

returns to the default branch U(C), and the cycle repeats.

The second invariant holds initially because no branch on C has any exceptions. Now we

systematically consider all possible "attacks" on the invariant due to changes in main labels

and exceptions anywhere in the algorithm:

0 If main labels merely get swapped between U(C) and a "real" branch, for instance in

branching, their index does not change.

0 If simple labels get reintroduced and hence re-indexed as explained above, their index

only increases. So if < instant,iat,es apt, it cor~t,inues to inst,ant,iitt,c t,llc> rc-indexcd labal

ak, and k > k" > kt, so the invariant holds unchanged.

 his also works if u k t is the main label of a complex label on the same branch, in which case we can
rclrrovc all cxccptio~rs from up alrd re-indcx it as: a k . This would constitute a viablc but unduc ~noditicrrtiou
of our algorithm we will refrain from undertaking at this point in our discussion.

CHAPTER 6. A h4ODEL-FINDING ALGORITHM 248

Calling undo-branch on a "real" branch b over some label a may introduce new ex-

ceptions (ak/, a) on a bra~tcl~ label ap - C. But in~rnediat~ely afterwards, a will be

introduced into U(C) as a new main label ak, and (ak/, a) instantiates a k , whereas

k > kt, and the invariant holds for these new exceptions as well.

111 wdo-hranch, the entire label a k r - C may get undone because a L a k t . But in that

case, J too instantiates a by transitivity of G, and a s before, a is assigned a brand-new

index k > k" > kt, which shows that the invariant is defended.

In undo-branch, a new exception (ak!, a) may result in J no longer being an instance

of A. But this can only happen because (ak/, a) L J. Again by transitivity, we show

that J instantiates the new label ak.

New exceptions are also introduced in branching. But since immediately afterwards

the same labels are int,roduced into U(C) where they gct, indexed a k , t h y too srttkfy

the invariant.

For the third invariant, consider a label a - C on some branch in C. As an induction

hypothesis, we assurlle the invariant shown for all labels a = apt, k" > kt. Notice that ttlle

newest main label a k cannot have any exceptions, which would violate (2). By Theorem

5.3.9, part (4), the induction hypothesis implies (M(B))(,t) b, F for all instances a' of

sku. Now let a = akt, and take an arbitrary instance a' of a. If a' instantiates an exception

[E C, then because of (2) it also instantiates some main label apt, k" > kt. By the induction

hypothesis, (A!(B))(,t) b, F. Otherwise we distinguish two cases: first, if a - C E U(C),

then M(B) contains (a- C) I . With it!' = {(a-C) I), it& is utopian and trivially verifies

F. Secondly, if a - C is a label of a "regular" branch b on C, then Proposition 6.4.2 shows

that (Mo(B)),t b, /3(b), whence we get (Mo(B)),t b, F. In either case, we call upon the

monotonicity principle to conclude (M(B))(,t) bs F. We have shown this for all instances

a' of a, so Theorem 5.3.9, part (4) in reverse entails that M(B) b, [a] F. Finally, a was

required to be the main label of some branch label, so it is a prefix of some main label in

M(B) , which guarantees it to be scwr in M(B). This shows M(B) b, a F for a = ap. The

same follows for any branch label a - C by induction on kt.

The fourth irivariant, follows directly from the first and third: Tllr otitcr label a 0 of C occurs

as the main label on some branch on C, and the third invariant shows M(B) b, a o F as

desired. 0

CHAPTER 6. A MODEL-FINDING ALGORITHM

Since Proposition 6.10.1 holds for every clause in S , we get:

Corollary 6.10.2 Before and after every iteration of the while loop in model-findert wh

invariantly have M(B) b, S for the current set of branches B.

This is rather intriguing: We can invariably erisure that M (B) vcrifies S! We accomplished

this by "bridging the gaps": for every unbranched label a in every clause, we introduced

a I into M(B) , forcing the respective clause to be verified over this instance, until we get

around to finding a proper branch for a. Usually these a are realizable, which constitutes a

clash; this is why the while loop iterates and branches on realizable unbranched labels. In

fact, their non-existence is characteristic for clash-freeness of M(B):

Corollary 6.10.3 If the algorithm terminates and returns a set B, then M (B) k, S .

Proof After each iteration of the while loop, we have M(B) b, S according to Corollary

6.10.2. Another invariant at that point, shown in Proposition 6.9.5, is that B contains

no realizable standing inconsistencies. Finally, the condition for normal termination of

the while loop is that B not contain realizable unbranched labels. But as we found in

Proposition 6.6.1, in the absence of realizable standing inconsistencies and unbranched labels

the set AP(B) is clash-free. So when the while loop terminates and returns B, then M(B)

is a model for S. 0

Conversely, abnormal termination in undo-branch is characteristic for unsatisfiability, as we

will now show in analogy to Corollary 6.5.20:

Proposition 6.10.4 If an empty nogood exists and its witness is level-0-realizable, then S

is unsatisfiable.

Proof We apply Corollary 6.5.14 with b = 0, since the maximum branch index in an

empty nogood is 0. Thus every set B' which agrees with the current set B on branch 0

contains a clash. But all sets of branches agree on branch 0, so none of them can be a model.

0

Corollary 6.10.5 If the algorithm returns unsatisfiable, then S is unsatisfiable.

Proof The algorithm exits iff unde branch(see Algorithm 6.4.10) is called with parameter

b = 0. In the calling function repair-nogood-violation-the only function which can call

CHAPTER 6. A AIIODEL-FINDING ALGORITHM 250

sl undo-branch with parameter b = 0-we see that this can happen only if b = 0 is the

rrlaxirnal branch in the nogood NG violated (which rneans, NG is the empt,y nogood) and

the nogood witness is level-0-realizable. And repair-nogood-violation was called in response

to the new nogood NG on B. So Proposition 6.10.4 applies, showing that S is unsatisfiable.

0

Corollary 6.10.5 shows that the algorithm is sound. Let us now verify that it always termi-

nates.

6.11 Termination and Completeness

In the previoils section, we showed how our two tcrmiuation criteria indicate the ~at~isfiability

and unsatisfiability of S , 'respectively. Now we need to address an important question.

We have committed ourselves to deriving models of the form Ai(B), where B is a set of

branches. But the models of a satisfiable set S need not all be of this form. Can we be

certain that at least one set B exists so that M(B) is a model for S?

Theorem 6.11.1 If a set S of formulas i n LCNF has a strong model M 3 then there exists

a set of branches B so that M (B) is also a strong model for S.

Proof: Since M is a model, it cannot be utopian, so it must satisfy all clauses in S. We

now proceed clause by clause, iteratively building the set B, and with it the model Ai(B),

using the following indirect technique:

Guided by the existing model M, continue to choose suitable branches and add their

assertions to M , without introducing clashes, until we arrive at a set B of branches

and a set of assertions M(B) U M. Being a superset of AI, this set also satisfies S.

Since M(B) U M is clash-free, so is the subset Af(B). Corollary 6.10.2 shows that

Ai(B) satisfies S , provided B has been constructed in accordance with the invariants

of Proposition 6.10.1; once we have verified this, M(B) +, S follows.

So we will first construct the set B from the model AI, then prove the invariants for Af (B),

and finally show that no clashes were introduced. For the first task, we employ a proof

technique resembling that of Proposition 6.2.10. Let C = oo (PI V . . . V P,,) be any clause

in S, and b l , . . . , b, the corresponding branch indices. Since M b, C, a0 must be scwr in

CHAPTER 6. A A4ODEL-FINDING ALGORITHM 251

M; we remember this fact for later. Furthermore, using part (3) of Theorem 5.3.9, we have

M(6) bs PI V . . . V P, for all egi 6 of a 0 in M. We wish to use these 6 as brarich labels in

some bj so that AI(&) b, ,Oj. However, a complication arises in that we cannot guarantee all

egi in ~f to be strongly constant-wise realizable, so we may not freely use them as main
3

labels in branches. (We presented one such case in Example 5.4.4, where an egi 13 featured

a constant which was never used as a main label. We said that there is no practical use for

sets of this forrn, but they could not easily be excluded from our theory.) But. we car1 easily

fix this problem, by reverting to [&I (which is always scwr) whenever 6 is not scwr.

So for each j = 1, . . . , m, we classify each egi 6 (or [el, if the former is not scwr) into the

set C: if M(6) b, &, and into C i otherwise. It follows that every egi is classified into at

least one of the Notice t,hat whenever Al(&) is utopian, it trivially satisfics all dis ju~~rts ,

and 6 cannot be realizable in M . Now we define labels for the branches bj as follows: for

each egi & in q, add the label 6 - {[E C? : 6 C [) to A(bj). Repeat this for all terms

in all clauses, and let B be the set of branches thus obtained. We claim that hf U Al(B)

is clash-free and B obeys the invariants of Proposition 6.10.1 and Definition 6.4.1, just as

a set of branches returned by the algorithm would do. Let 11s cor~sider these first, for any

clause C in S:

a All exceptions on the branch labels are strict instances of the respective main label.

This follows 1,ctcausa IKJ l&el can be in Cj+ and C? at the same tirne. Therefore, 11one

of the exceptions [E C? above can be identical to 6.

a a 0 is the main label of a branch on some term in F .

The label a 0 is an egi of itself, and it is scwr, so just like any other egi, it exists in

some q, where it functions as the main label of some branch label on ,Oj.

Every exception to a branch label up on C instantiates a label X = a k - C of another

branch on C, so that k > kt. Here we are free to choose any suitable indexing scheme

for the labels on B, so long as we can prove this invariant. We decide to index any given

label a witth the number k of constants (existential or contlitional) in it,. Therefore,

the condition k > kt holds if a label fYk can be found which strictly instantiates a#.

All exceptions [on every branch are egi of the outer label a 0 of C, the clause to which

the branch belongs, and we know that every egi satisfies M(t) bs ,Ojl for some disjunct

& I , which gives us [E c;. Since [stnctly instantiates its main label o k t , as we said

CHAPTER 6. A MODEL-FINDING ALG0RITHh.I 252

above, we can choose a k = up , and ak: has been introduced as a main label to the

brandl on pi,.

For any label a - C on the branch over term pi, we have (M(B))(,) b, pi.

This was Proposition 6.4.2, and it is a property on branches, independent of the

method by which they are produced. (We did require though that all exceptions in C

are strict instances of a , which we showed.)

M(B) k, a F for every label a - C on every branch in C.

We carefully chose only scwr labels a as branch labels. Furthermore, we showed

(M(B))(,) ks F for all egi.

This is just a special case of the previous, namely a = 00, which we know to be the

main label on some branch label in bj.

We conclude that M(B) b, S as required. Now we need to ensure that none of the

assertions added to M introduces a clash. So consider the set M' at any stage during the

construction, where a branch label b - C on pi, leads us to successively add each of the

assertions (6ajYi - C) aj,i to A[', i = 1, . . . , nj. We know that all exceptions in C are egis

of a0 and hence of the same length as b. (Note that all exceptions in the labels of A[' were

chosen to be egi in M; hence all egis in M' are also egis in M, and there is no ambiguity.)

We also know that b is scwr in M and hence in the larger set A i l . Now consider an instance

a of b so that M(,) k, /7j, and find the least general egi a' instantiating it. If M(,,) k, 4,
then by Corollary 5.3.6, part (4). M(,) also verifies pi, which contradicts our assumption. So

M(,I) Fs pi, and a' is found in C? and must instantiate some exception in C; so does a. We

have shown that every instance a of b - C verifies pi; this further entails M(,) k, aj,i aj?i,

and hence Mi,) k, aj,i aj,i by monotonicity.

Now all pr~requisit~es for the complex version of Lenlrna 6.3.1 are est,ablishcd, sl~owing that

M' U (6 0 ~ ~ ~ - C) aj,i Fs S. We repeat the same argument over all conjuncts aj,i aj,i, then

over all branch labels, all branches on C, and finally over all clauses C in S.

We have thus shown that the final result M U M(B) is a model for S. (We only need

clash-freeness here.) Being a subset of M U M(B) , M (B) is also clash-free. We also showed

M(B) k, S, so we conclude M(B) /=, S. 0

CHAPTER 6. A M ODEL-FINDING ALGORITHM 253

Similarly as in Proposition 6.2.10, it usually suffices to introduce much fewer labels and ex-

ceptions t,o each brarich than the tl~eore~il states. Beymid the cases ~ne~it io~ied on Proposition

6.2.10, we may additionally have exception-generated instances 6 which are not realizable.

Instead of adding these as main labels to all branches on C (as done here, since & E ~f for

all j) , we can just add them to the default branch U(C), thus introducing 6 I into M(B).

Theorem 6.11.1 shows that every satisfiable set of formulas S has a strong model generated

by a set of branclles. This guarantees that our search space, narnely the set of all sets

of branches, is nonempty, so if we perform an exhaustive search, we must find a model.

Termination of our search, on the other hand, is warranted by our strategy of branching

and blocking. To prove it formally, we consider the current search state as the current set B

of brances, including the nogoods stored on the branches of B as term nogoods. We introduce

a strict partial order on search states, which we call constminedness. If we can show that

each step (iteration of the main while loop) leads to an increase in constrainedness, while

infinitely increasing chains are impossible, then the algorithm must terminate.

Definition 6.11.2 For a search state B7 we define the following sets:

A+(B): the set of all a: b13 so that a instantiates a bmnch label X E A(b),

A-(B): the set of all a: b so that a term nogood on b realirably blocks branching on

A(B) = A+(B) U A-(B).

Due to our nogood invariants, a: b can only be temporarily in both A+(B) and A-(B): If

a: b is blocked by a term nogood, we may not branch on it, or we must immediately undo

branching on this instance (of a "larger" branch label), and if a new nogood is introduced

and realizably violated, we always undo branch b on a, which is exactly the instance on

which the nogood, becoming a term nogood of b, will block branching over a.

Definition 6.11.3 W e define a strict order + between search states B and B', determined

by the sm,allest a: b (wrt the branch order 5) for which one of the following is true:

a: b E A(B) but a: b @ A(B1): then B B'

l3 W e allow only labels a made from * and label constants used i n the formulas of S , to ensure that 4+(B),
A- (R) , and A (B) are finite.

CHAPTER 6. A M ODEL-FINDING ALGORITHM

a: b E A (B f) but a: b @ A(B): then B' 4 B

a: . b E A+(B) and a: b E A- (B'): then B' 4 B

a: b E A+(Bf) and a: b E A-(B): then B + B'

Let us analyze how different operations and procedures in the algorithm affect the con-

strainedness of B. As a convention for our discussion, we assume that B' is the set of

branches obtained from B after the respective operation.

Branching increases constrainedness, since A+(B1) contains some a: b which has not

been in A+(B) or A-(B) before.

Introducing a nogood increases constrainedness, since this nogood becomes a term

nogood on some branch b blocking a label a. Nogoods are always violated at the

time they are introduced, that means b was branched upon, over the same instance

a. Hence a: b was in A+(B). This also shows that b could not have been blocked

over the same instance a by some other nogood before, so the combination of undoing

the branch and introducing the nogood amounts to moving a: b over from A+(B) to

A-(B'), which indeed increases constrainedness.

Undoing a branch by itself decreases constrainedness. But other than in response

to a newly introduced nogoods, undoing of branches occurs only in the branching

procedure, where we undo strict instances of a label on which we have just branched.

We showed previously that a C l implies a: b <: b, so over the scope of the entire

branching procedure, branching on a outweighs undoing branches on J.

Within repair-branch, the algorithm checks for existing nogoods which may become

realizably violated as a result of branching on a: b. These cannot be term nogoods of

b, as term nogood violations have already been taken care of in branching, resulting

in undoing b over instances of a. We need to distinguish several other <:astses:

- If a: b instantiates one of the term nogood premises, it cannot be the maximal

nogood premise. So the branch undone must be some a': b' with a: b 5 a': b',

and the decrease in constrainedness is still outweighed by the increase due to

branching on a: b.

CHAPTER 6. A MODEL-FINDING ALGORITHM 255

- If a: b serves as one of the realizability witnesses for the realizable nogood viola-

tion and a : b 5 a': b' for the maxirnal r~ogood premise, then IIO tnatt,er how the

nogood violation is repaired, only branches of higher order than a: b get undone,

which is outweighed by the increase due to branching.

- If a : b itself is undone as one of the realizability witnesses (which may occur when

it is of higher order than a': b'), then a realizability-propagated nogood has been

introduced; therefore, a : h gets removed from A-(B) but also added to A+(B1),

which results in an increase in constrainedness.

In merge-nogood, no label gets branched upon, but a new nogood NGo gets introduced.

As part of repairing NGo, some other branch, say a': h', gets undone and becomes a

blockirlg instance, that is, a': b' is moved from A+(B) t,o Ap(B'). As a rcsult, one

of the original nogoods NGj will no longer be violated; more precisely, some instance

a: bj of the maximal nogood premise aj : bi will be removed from A-(B). If we

had a : bj 5 a': b' for all branches a': b' undone in repairing NGo, then aj : bjal: b',

so NGj was not level-bJ-realizably violated and could be repaired, contradicting the

assumption made by calling merge-nogoods. Therefore, we must have a': b' 5 a : bj

for at least one a': b' moved from A+(B) to A-(B'), the effect of which outweighs all

other changes, so B' is more constrained than B.

By considering all operations (branching, nogood repair, and nogood merging) performed

in the course of the algorithm, we found that no matter what operations are performed in

one iteration of the main while loop, the new search state is more constrained than the

previous. We already proved in Proposition 6.9.4 that each iteration terminates finitely.

Now we observe that the total nurnbcr of simple labels is finite, and hence the nurnber of

branch labels a : b is finite, and there are only finitely many arrangements of these in the

sets A+(B) and A-(B). This shows that infinite +-chains are impossible. We conclude:

Theorem 6.11.4 After a finite n,urnher of iteration,^ of the while loop, reaches [I, search

state B of maximal constrainedness, at which point the algorithm must terminate.

We still need to clarify that the algorithm terminates in one of the expected ways-by

returning ~msatisfiahle or by returr~ir~g a rnodel:

CHAPTER 6. A MODELFINDING ALGORITHM 256

Theorem 6.11.5 Let B be a maximally constrained set of branches. Then no clause has a

realizable unbmnchd labcl (and M (B) is clash-bee), or brmch 0 corrtains an em,pty nmpod

with level-0-realizable witness.

Proof: Suppose B is maximally constrained. If no clause has a realizable unbranched

label in B (the termination criterion of the ~nain while loop), then Corollary 6.10.3 shows

that M(B) is a model for S. So suppose we still have some realizable unbranched label

X = a - C in some clause C, upon which we enter the procedure satisfy-unbranched-label.

If we could still pick one of the branches b on C over A, thus adding a: b to AS(B), then

B would not be maximally constrained. Similarly, if branching on either branch violates a

term nogood on some branch b but not level-b-realizably so, then we could undo all branches

witnessing the realizability of the nogood violation, and subsequently branch on b, which

also increases the constrainedness of B, again contradicting our assumption. So C must fail

on A, and all participating term nogoods have level-b,,-realizable witnesses. Therefore,

we can merge these nogoods into a propagated nogood which, as we have shown, is also

realizably violated. If this nogood did not exist before, then introducing it would increase

the constrainedness of B, which is a contradiction to our maximality assumption. So the

nogood must have existed before, which now contradicts Proposition 6.9.5 saying that after

the previous while loop iteration, B did not realizably violate a nogood. The only escape is

that the ~~revious itcra.tion produted a, nogood violation which undulmmch could not repair;

as we showed, this is the case only for the empty nogood with level-0-realizable witness; but

this condition terminates the algorithm from inside undo-branch, returning unsatisfiable.

0

We put our results of t,llis and the preceding section t,ogether ir~t~o one final tl~eorem, st,ating

the soundness, completeness, and finite termination of our decision procedure:

Theorem 6.11.6 The algorithm model-finder terminates finitely for eve? finite set S of

fom~,ulas, cowectly deciding the satisfic~hility of S. If S is satisfiable, the c~lyorith~wr. mtur71,s

a set B so that M(B) is a model for S .

6.12 Remarks on Implementability

As we see, the specification of our model-finding algorithm has grown fairly complex, com-

pared to classical tableau or DPLL-style algorithms for K. This should not pass entirely

CHAPTER 6. A M ODEL-FINDIXG ALGORITHM 257

uncriticized. Anecdotal evidence suggests that automated reasoners are very difficult to im-

pleme~~t correctly, even whe~i givcri a detailed sound and complete algorithm specification.

Many reasoners which have been tested on small problems and entered into competitions

in good faith were discovered to be unsound upon running them on difficult problems.

This may be due in part to memory leaks or other platform-related problems, rather than

the implementation itself. But more often than that, unforeseen situations arise, such as

the preseIice of a trivial formula I V I which the implementation may r~ot recognize as

unsatisfiable, thus returning an incorrect answer. Another common error source is the im-

plementation of branching and backtracking. Saving a copy of the complete state of the

reasoner before branching and returning to it when the branch fails is memory-inefficient,

so t,llis is usually not done. But then one nlust ~nldo all steps perforrncd during branching.

Here careless implementations may erroneously retain some data found inside the branch,

referenced by pointers which were not reset. Given that we propose a much more sophisti-

cated algorithm to start with and that it will likely be difficult to implement, can we justify

such an undertaking?

To address this concern, we cla.irn that the co~uparison with classical algorithnis is too

simplistic. Yes, our algorithm is more complex than a classical tableau algorithm without

optimizations. But if implemented, it can be expected to outperform such simple reasoners

easily. Instead, we should compare our approach to highly optimized reasoners such as

those existing in the field [48, 84, 43]14. Accounting for all optimizations, their algorithmic

specifications are of considerable size too [47]; yet this did not stop their authors from

implementing them. The comparison is justified because our algorithm already incorporates

many of these optimizations: namely, dependency-directed backtracking and caching of

unsatisfiable formulas as nogoods. Secondly, our approach makes some other optimizations

redundant or less int,eresting. Wc will discuss t,his in our comparison in Sect,ion 7.2. Finally,

some other optimizations are easily added with little extra overhead (see next section, where

we will demonstrate this for Boolean Constraint Propagation). So we can say with confidence

that our algorithmic specification gives rise to an already optimized reasoner.

One remarkable feature is that our algorithm has absolutely no recursive function caIls (see

the chart in Figurc 6.1). This is desirable, because it need not allocate a lot of space on

the program stack nor handle large dynamically allocated data structures to be thrown

'"we do admit that this is not entirely fair either, since all these reasoners handle a much larger variety
of logics a i~d co~lstructs.

CHAPTER 6. A MODEL-FINDING ALGORITHM

away when undoing branches. This not only saves time but also makes the algorithm's

performance less rcliant on the platform's Iriemory ~iianage~~ierit arid garbage collection

strategies at the least, and reduces the potential for said memory leaks and unsoundness at

best.

On the downside, our algorithm will accumulate a whole host of nogoods during its search,

which we expect to be the main implementation bottleneck. Nogood caches tend to increase

lirlearly with the rlirlrii~lg time of the algorith~n [31]. St,artirg from a certain problem size or

complexity, it will be imperative to manage and delete nogoods without losing completeness.

The first measure to be taken is to get rid of redundant nogoods. Among these we classify:

nogoods of the form al: bl, 0 2 : b2 -+ a I which just describe a clash between two

literals p and l p in branches bl and b2. These can be read off the branches directly.

subsumed nogoods. For instance, if al: bl , . . . , a,: b, -+ a I exists, any nogood which

specifies more brandies on tlic same labels, or the same branches on i11stant:es of these

labels, is subsumed and can be deleted.

nogoods which refer to a part of the search tree which has been exhausted. They will

riever be referred to again.

When this does not keep the nogood cache from overflowing, more sophisticated techniques

may be required to delete nogoods while retaining completeness. An adaptation of dynamic

backtracking [31] may be very desirable here.

Finally, we briefly reflect on one major source of complexity in the algorithm specification,

namely the need to verify level-b-realizability in its various forms. In non-deontic modal

logics such as K, we cannot assume that a world has a successor, but as a result of branching

on a disjunct with a 0-operator (or a constant in LBL), one may come into existence at any

time, which makes previously harmless nogood violations realizable. This problcnl is wcll-

known to frustrate many reasoning algorithms [25, 91, particularly those using free variables

or translations to FOL. In the latter, a dead-end predicate is used to capture this case [82],

but this introduces disjunctions in the scope of each 0-operator, which makes it expensive

to handle. Our algorithm does not clutter the set formulas with additional terms. Instead,

we provide a dedicated procedure for testing realizability, which gives us control over when

and how often to call it.

On the upside, many interesting problems, even in K, can be stated without this source

of complexity. For instance, all common translation methods for QBF problems into K

CHAPTER 6. A MODEL-FINDING ALGORITHM 259

produce formulas with no 0-operators inside disjunctions. In these problems, we know at

thc outset which i n s t a ~ ~ c s arc realized. Wlde rcalizabilit,y cl~ecks will still be NP-co~nplet~e,

we could now cache the results of these checks reliably, so we will not have to redo them

each time a new branch is introduced. An algorithm which can handle problems of this

restricted subclass will be much easier to implement1" while remaining useful for a large

class of interesting problems.

6.13 Refinements

Among the many possible ways of improving the algorithm, we would like to point out

a few we dean most, irnportmt. They are all concerned with rnaxiruizing t,he arllour~t of

deterministic reasoning before and between branching steps.

Consider the set S = {** (p V q), c* -.p, *c ~ q) . We easily see that S is unsatisfiable, but

can we prove this deterministically, without tedious branching, branch repairs, and nogood

propagation? We can, if we perform the following preprocessing steps:

For each original fornlula in S , create term nogoods in all branches whose terms feature

conjuncts complementary with original assertions. In our example above, branch bl

(on the disjunct p) would be marked with a term nogood c*: bl + c* I , and branch

b2 (on q) would be marked with *c: b2 + *c I .

Thus having propagated all original assertions into the branches, search for labels on

which a clause fails. This is the case in our example, as the labels c* and *c unify into

cc (which is obviously realizable). Now propagatre the tcrru nogoods into + cc I , an

empty nogood with level-0-realizable witness, showing that S is unsatisfiable.

The general case is as follows: If a l is an atom on branch b in clause C(b) with outer label

ao, and an original assertion (a' - C) i exists in S , then derive a term nogood Lao, a'] b +

(000, a') 1.
--- ~ ~

'%n in~plementatiori for a suitable translation of QBF has be11 developed by the author, c:or~sisting of
1,400 lines of LISP code. This is a rcaso11a1)le sizr, ad a versioii for full K sliould be within reiw:l~. At
the time of writing, the existing version has not been sufficiently tested to convincingly warrant correctness,
and no systematic evaluations have been performed yet. Contact the author for information on further
dcvclopniei~t .

CHAPTER 6. A h4ODEL-FINDING ALGORITHM 260

The prospect of deterministically finding inconsistencies usually justifies the cost associated

with propagating assertions into brai~chos and searching for failed clauses. Even "near-

failures7'-mpty nogoods with non-realizable witness-impose strong restrictions on poten-

tial models for a problem,since they prohibit some instances from ever becoming realized,

and significantly restrict the search space in which models may exist.

In the realm of propositional satisfiability, the benefits of maximizing deterministic reason-

ing are well-t,estified16. Particularly in problems wit,ll short average clause ler~gth (eg. less

than 3 terms), which is typical for real-world problems, it has been observed that determin-

istic reasoning tends to account for the majority of processing time [77]. This is certainly

not because deterministic reasoning is slow, but rather because it has such a far-reaching

effect. In propositional problcrns, deterministic reasoning is pcrfornlcd (mostJy) by means

of Boolean constmint propagation (BCP), also known as unit propagation17.

In obtaining a suitable version of BCP for CDC, term nogoods play an integral role, as

we have just seen: Some term nogoods can be derived from branches and complementary

original assertions. Similarly, term nogoods can be derived from assertions introduced in a

branching stcp. Note that in this cast, the branch index and branch label rnust be i11c:ludcd

in the dependency set of the term nogood.

Next, failed clauses should be actively searched for, rather than chancing upon them while

branching on an unbranched label. But we can go even further: If but one term in a clause

C can be branched upon over a label--or equivalently, if all but one branch are blocked by

term nogoods whose labels unify-we can infer the remaining branch deterministically over

the mgu of these labels. We can express this by the following nogood-like forced branch

rule:

a1: bl, ..., a,: b, -+a : b,

which expresses a propagation of branch assignments: If we have branched on bl, . . . , b,

161n the class of QBF, however, classes of problems are known where full RCP creates an exponential
number of =sertions, compared to the original size of the problern, whereas the problerns can be shown
(un)salisfiable in a polynomial ainou111 of lime by means of L)PLL and like procedures 1881. NoneLheless,
even in QRF, RCP is more frequently beneficial than il is harmful, and an obvious way to avoid geltiug
trapped in such extreme cases is to limit the number of BCP steps per branching step.

17we should foruially keep a tlistirictioii hctwccn BCP a i d otlicr optililixalion tcduliqucs [17, 661, such as
tautology elhination and detection of inconsistencies. But we argue that these are appropriately discussed
together, as the same mechanisms can be used in CBC to handle any of these. And we skip the Pure Literal
rule entirely, as we see ~ i o t ri~ucli use for it.

CHAPTER 6. A h4ODEL-FINDING ALGORITHhf 261

over ol , . . . , on, respectively, then we are forced to choose branch b on the label o (because

bl, . . . , b, cause all other b r a ~ ~ c l ~ e s in C to be blocked). This ~st~ablishes all assortio~~s in ,f3(b)

deterministically; these assertions in turn can be propagated into term nogoods for other

branches, and so on. Forced branch rules with an empty premise play a special role, since

they cannot be undone: indeed, we have "learned" a new "original" assertion.

Forced branch rules behave like nogoods in many aspects: they themselves can be propagated

into other forced branch rules or nogoods, and in fact they may incorporate nogoods, namely

when the term P(b) contains a conjunct oi I. This similarity to nogoods suggests that forced

branch rules and BCP can be easily integrated into our algorithm.

Finally, we will briefly discuss the potential for a technique often used in tableau-based rea-

soners for K, called sem,un,tic branchin.y 147, 52]18. Consider a disjunction pl V . . . V p,. In a

classical tableau algorithm, branching would be performed successively on yl, . . . , y,, until

one choice leads to a satisfying assignment. Using semantic branching, in turn, we would

branch on some pi and then on -pi. One advantage of semantic branching is that it splits

the search space into two disjoint spaces, whereas in syntactic branching, parts of the search

space (e.g. when two variables pi and pj are true) occur in scvcral branches, lcading to re-

dundant search. Another advantage is that all disjunctions containing pi are simultaneously

satisfied and can be ignored for the rest of the first branch, whereas all disjunctions con-

taining -pi are satisfied and can be ignored in the second branch. A disadvantage surfaces

when instead of pi, we have a more complex (eg. modal) formula pi, whose negation may

not exist in the original problem; in fact, pi may introduce new 0-operators, and hence

new accessible worlds. In some classes of problems, semantic branching has been shown

inferior to syntactic branching, while in the majority of cases the converse is believed to be

true.

In CBC, we nmd to kmp in nlintl that problems usually cannot be converted into CNF,

but only into the more general LCNF, where each term is a conjunction of labelled atoms.

Keeping this in mind, semantic branching could be performed in one of two ways:

Branch on a propositional variable y over a substantially general label, such as some

*Ic, or even over all *Ic, k = 0, . . . , d(S), where d(S) is the depth of the problem. Branch

on ~p over all instances where branching over p leads to a clash. This approach is

"lt is an ongoing debate whether such a reasoning algorithm can be rightfully classified as a tableau
algorithm, or rather a DPLL-type algorithm.

CHAPTER 6. A MODELFINDING ALGORITHM 262

very much in the spirit of the DPLL procedure. As a disadvantage, branching over p

by itself may not lead to any of the clauses in the problem being satisfied, because it

may always occur in a conjunction with other atoms in all branch terms.

Branch (simultaneously) on (all conjuncts in) a term ,Bj over a substantially general

label. (In our standard algorithm, we only branch over the outer label o o of the

clause in which ,Bj occurs.) Consider all clauses of the problem satisfied, in which

the same term ,Bj occurs (and whose outer label instantiates the branch label). This

can be done quite elegantly, if we define as the branch index of each term ,B in the

problem a Godelization of ,B. Then identical terms are given identical branch indices.

.This approach is not much different from the standard approach if the terms in the

problem are mostly distinct. Furthermore, in response to a clash, it is not likely

efficient to introduce the negation of ,Bj which is another disjunction, read: clause, in

itself. Therefore, this approach only offers only the benefit of sin~ultaneously satisfying

multiple clauses, but it is not truly semantic branching.

If all terms in S consist of only one (labelled) atom, then both approaches coincide, and

also, many of the cited disadvantages do not apply, making this the most promising class of

problems for semantic branching. Problems of this class include, for instance, translations

of QBF proble~ns into CBC.
A general note of caution on semantic branching in CBC is that the search space is not as

clearly divided into two disjoint parts. For instance, branching on u p and then on o ~ p is

unsound, unless a is ground. Therefore, any algorithm which branches over more than just

ground labels must address the problem of correctly responding to clashes, including finding

suitable labels of for which of ~p may be safely inferred.

Chapter 7

Discussion and Conclusion

Now we see but a poor mficction as through u mirror; but then we shall see

face to face. Now I h o w in parts; but then I shall h o w fully, as I have

also been known.

The Bible, 1 Corinthians l 3 : l 2

7.1 Contributions of this Work

In this work we described a new logic 13613 which can be used for representing formulas

of the modal logic K. We introduced a model-based semantics, as well as a translation

scheme for converting KNNF-formulas into 131713, and showed that this translation preserves

satisfiability.

We provided a careful analysis of the strengths and limitations of our approach. While

there are classes of formulas for which minimal 13613-models are larger than minimal Kripke

models, the ability to specify variable assignments over sets of ground instances typically

results in a more efficient representation of models. The notion of labels with exceptions,

allowing us to specify default variable assignments with exceptional instances, results in even

more concise models. We motivated why a decrease in model size will lead to a decrease

in running time for reasoning tasks as well. We supported our claims by describing a large

class of problems-translations of QBF2-for which polynomial-size 13613-models but no

polynomial-size Kripke models exist,. Advances in reducing the model size are interesting in

the real world where automated reasoners have space constraints: they enlarge the class of

CHAPTER 7. DISCUSSION AND CONCLUSION 264

satisfiable problems for which a reasoner can return a model, instead of just reporting that

the formula is satisfiable.

Finally, we presented a model-finding algorithm for sets of CBC-formulas. This algorithm

constitutes a sound and complete decision procedure for LBL, and thus for K. The a lge

rithm utilizes the representational power of labels with variables and exceptions, trying to

verify universally scoped variables by universal variable assignments wherever possible, and

iteratively repairing contradictions which may occur, by creating exceptional instances. One

favourable characteristic of the algorithm is that it accommodates the addition of formulas

to the knowledge base: a previously found model can be extended and repaired locally, so

as to satisfy the additional formulas as well. The algorithm can be furnished with a variety

of search strategies and heuristics.

An implementation has not been provided, and experimental evidence is ultimately needed

to support our claims of having found an efficient formalism. However, we motivated why

our algorithm is well-suited for solving hard translations of QBF-problems [61], such as

those used in the 1999 and 2000 modal logic theorem prover comparisons [72, 741. These

problems are hard for tableau-based provers, because minimal Kripke rilodels for thein. if

they exist, are exponential in the modal depth of the problem. By contrast, CBC-models

for these formulas need not be exponential.

We must point out that these benchmark problenls did not arise from real-world applications,

and an algorithm's efficiency on hard theoretical problems may be a poor measure of its

performance on real-world problems; these are often of lower complexity in theory but hard

in practice because of their much larger size. Given the clear and present need for reasoners

suitable for solving real-world problems, the ability to perform well on these is much more

important. But we did not fail to motivate why our algorithm is expected to solve real-world

problems efficiently as well. This is because it has the ability, frequeiitly needed in practice,

to specify default assignments and revise them on exceptional instances, possibly recursively

The research led to a few interesting byproducts which we will mention briefly:

We gained some insight into the structure of CBC-formulas (which reflect the structure

of K-formulas) and how the interplay of labels and propositional connectives leads to

various degrees of complexity:

- K-formulas can be converted into negation normal form in linear time and with-

out size increase. This is a well-known fact.

CHAPTER 7. DISCUSSION AND CONCLUSION 265

- The modal operators in a. KNNF-formula can be converted to constants and wild-

cards over a domain D. This constitutes a "reificatkm of possibilities" : instead of

saying that a formula is true in some world, we now fix a specific world in which

it is true. Assigning a fixed label to this possible world does not compromise

satisfiability, as long as distinct 0-operators are assigned distinct constants; but

it may lead to an increase in the size of ground models.

- A set of labelled formulas can be converted into our so-called expanded And/or

normal form. This reflects the fact that labels distribute over conjunctions. This

may increase the size of each formula by a worst-case factor d(F) , the formula

depth, because its labels may be duplicated; the conversion can be performed in

linear time in the size of the new formula. Note that this factor d(F) is usually

small compared to the size of the problem.

- We see t h t reasoiliilg with labelled formulas consisting purely of labels and

conjunctions does not pose any difficulties-after conversion to ENF they form

a set of assertions which verifies itself.

- Next, we are faced with the problem of eliminating disjunctions preceded by

labels. This is the hard part; we see that the PSPACEcompleteness of reasoning

in K arises solely from this task. Our observation in the introduction is confirmed

by the theory: disjunctions scoped over necessities (read: non-groui~d labels) are

the main bottleneck for automated reasoning in K.

- The occurrence of labels (with existential constants) inside disjunctions does not

increase the theoretical complexity of eliminating disjunctions, but it poses addi-

tional inlplenlentation challenges, as the set of rgl changes dynamically through-

out the search.

- The result of elinkating all disjunctiorls is a set of assertions verifying the CBC-

formula. We must check (or ensure by our algorithm) that this set is clash-free in

order for it to qualify as a model. This task is still intractable, but much easier

than the previous, namely co-NP complete.

We presented a normal form for CBC-formulas which we named labelled clause nor-

mal form, in analogy to the propositional clause normal form. To the best of our

knowledge, no such normal form has been proposed for K or any similar logic before.

The LCNF is useful as a specification format, because it eases the task of specifying

CHAPTER 7. DISCUSSION AND CONCL USION 266

a reasoning algorithm, while its adverse effects on model size and running time are

tolerable.

We identified a class of Kripke models we termed strict models, arising from the

classical tableau algorithm without optin~izations; they are equivalent to ground weak

CBC-models.

Our approach is readily adaptable to logics equivalent to K , such as QBF. Multi-modal

logics such as K,, and its description logic twin ACC (without ternlinological reasoning)

can be handled by a straightforward extension: Instead of one domain D of constants, we

introduce m sorts of constants with domains Dj, j = 1,. . . , m. Universal statements over

the entire domain can be made using a sorted wildcard * j . For an early draft of our approach

in the language of K,, see [46].

Probably the greatest hindrance to the applicability of our approach is that most real-world

knowledge bases are modelled using additional constructs, such as global axioms, number

restrictions, transitive and inverse modalities. Our formalism in its current form does not

handle these. However, we claim that the ideas presented in this work are not restricted to

K ; in Section 7.3 below, we will outline how they might be adapted to handle the above

extensions.

7.2 Comparison with Existing Approaches and Techniques

In the field of modal logic reasoning, approaches based on translation into FOL and us-

ing resolutio~i co~lt,iriue to be activcly pursued and improved [58]'. R.esolution is a rather

powerful reasoning technique [77]; for instaace, the reasoning algorithms underlying all the

powerful SAT solvers in existence today can be viewed as derivations of propositional res-

olution. Although we have not formally shown it, we conjecture this to be true for (a

first-order logic version of) our algorithm as well. A proof would follow along the lines of its

proposit,iord logic equivalent,: all iiogoods iritroduced during the algorithm and propagated

in order to derive the empty nogood correspond to first-order formulas which could just as

well be generated by resolution. However, we already mentioned the main shortcoming of

'we mention in passing that "direct" resolution calculi lor nlodal logics wilhout lranslatio~l inlo FOL are
possible and have been proposed [7G, I] but received less attention.

CHAPTER 7. DlSCUSSlON AND CONCL CrSION

resolution: it provides poor guidance on how to find a solution or compute meaningful no-

goods. Correspondingly, systemat,ically propagating all nogoods in all possible ways would

quickly lead to combiilatorial explosion. An exacerbating factor is that our problems are

only translated into LCNF; through conversion into CNF, which is common practice in FOL

reasoning, the problem size will further increase, and their structure further obscured.

Recently, two promising alternatives to the resolution method in first-order logic have been

proposed: the Model Evolution calculus [2, 51, and the discorlnectio~~ tableau calculus [12,

64, 651. The latter is based on tableaux, as its name suggests, while the former implements

DPLL-style reasoning. Both calculi have been implemented [4, 63, 651, and their running

times on some classes of problems are reported to be comparable to those of resolution-based

provers [94, 931. Remarkably, both approaches resemble ours in that cla.uses are satisfied by

default literal assignments, and ensuing clashes repaired by introducing exceptions. (Note

that exceptions are not explicitly represented as such; instead, wllenever two LLassertions"

have common instances, the most specific one applies.) However, we have tested the reported

algorithms on translations of labelled formulas into FOL, and found that they do not reach

the reasoning power of our algorithm: Whenever one of these algorithw can find a tmth

assignment using defaults with exceptions, so can ours; conversely, our algorithm could find

a concise representation for some instances where the other two algorithms would resort to

an enumeration of all ground instances as exceptions. We conjecture that our algorithm

achieves greater conciseness because it is more powerful in handling exceptions. Of course,

the final verdict on runtime efficiency must be deferred until an implementation of our own

algorithm becomes available. We are not aware of any efforts to develop a modal logic

version of the Disconnection Tableau calculus or the Model Evolution calculus.

The ultimate standard our algorithm must measure up to is set by the highly optimized,

industrial-strength tableau and DPLL-style algoritlm~s for modal and description logics. We

will collectively refer to them as "ground algorithms", since from our point of view, they

reason over ground instances (worlds). Let us briefly go over some of the optimization tech-

niques which made them so successful, and find out which of them are matched by equivalent

or superior features of our algorithm, and which ones we may reap additional benefits from.

Our selection is rnostly based on the relative utility of the t,ecl~niqlie in conventional a p

proaches. For instance, heuristics have been reported to contribute little efficiency gain, so

we will omit them here. For more detailed treatments on all these techniques see [47, 52, 511.

CHAPTER 7. DISCUSS1 ON AND CONCL USION

Intelligent backtracking We discussed dependency-directed backtracking and backjump

ing in Section 6.5. W11e.n reasoning on ground ir~star~ces, dependency-directed back-

tracking becomes much simpler: there are no branch labels and nogood witnesses

to remember, only branch indices. Backjumping is even simpler but weaker: When

returning to a branch with index b, then all branches with index greater than b are

completely discarded. This is done because the intermediate branches are considered

not worth keeping, or because the cost of bookkeeping involved in repairing an earlier

branch and resuming with a higher branch index outweighs the advantage of keeping

information from intermediate branch points. Indeed, while implementing backjump

ing results in considerable efficiency gain over unoptimized implementations [52], an

implementation of dynamic backtracking in the DLP prover has only resulted in a

speedup by another factor of 2 over backjumping in experiments [8612. Of course, our

algorithm already incorporates dependency-directed backtracking in the form of no-

good reasoning [19], on which it relies for completeness. So we should reap the same or

perhaps even more advantages, since one branch point in our algorithm (over a label

with wildcards) ruay correspond to several branch points in a "ground" algorithn.

Caching This technique is well-known to prune the search tree, but in fact it does so by

reducing the size of models for forn~ulas. For each world ui visited during the algorithm,

the set a of suLfortnulas which need to be satisfied in this world is stored in a cache,

possibly along with a, partial model for these formulas, if one has been found. If the

same set @ is encountered on another world u!, the partial model with root w can be

reused as a partial model with root w'. Likewise, if @ has been shown unsatisfiable in

ui, then it is also unsatisfiable in ui'. This saves us from repeating previous reasoning

steps. Sorne itnplemer~tatiolls disthguish an S-cache and a U-cache for satisfiable and

unsatisfiable sets of formulas, respectively [35]. Furthermore, the criterion of identical

matches for in cache hits can be weakened to subsumption [45]. Caching can also

be used to implement loop checking in modal logics with global axioms [45]. When

viewed from.the perspective of Kripke structures, satisfiability caching is a special case

2 ~ l ~ e picture appears differeut ill QBF: depeudency-directed barktrackillg with learning has resulted iu
considerat)le gain over backjumping ill many problem i~~stances [61, 331, but not in all [34]. Note that,
strictly speaking, backjumping is a special case of dependency-directed backtracking where all nogoods from
intermediate branches are discarded. IIowcvcr, we oftcn use the tcrm dcpendcnq-diwcted backlracbng in
the sense that at least some learning, i.e caching and re-use of intermediate nogoods, takes place.

CHAPTER 7. DISCUSSION AND CONCLUSION 269

of node merging, a technique we will describe in the Appendix. The important lesson

we will learn there is that, even with cachiug, the number of instances (worlds) visited

by a "ground" algorithm is at least as large as the number of worlds in a minimal

Kripke model for a problem.

Arguably the greatest hindrance to the effectiveness of caching is the occurrence of

mutually incompatible sets of formulas. We cited the Ladner trarislatiorl of QBF for-

mulas [61] several times, mentioning that minimal Kripke models for these problems

are exponentially larger than their modal depth. According to what we said above,

caching cannot change this fact. More so, it is ineffective, because any two worlds fea-

ture mutually incompatible variable assignments. A "ground" algorithm necessarily

t,akes an exponential amount of time traversiug all in~t~ances. Indeed, the poor per-

formance of all three major provers on problems of this class displays this behaviour

[42, 49, 851.

The set of nogoods in our algorithm can be regarded as a generalized U-cache. But

again, thanks to our nogoods, we attain the same or better conciseness than a "ground"

algorithm with caching. This is because nogoods are more flexible than the per-world

sets of formulas in a conventional U-cache: they pinpoint the source of the inconsis-

tency3, and since they can be specified over labels with wildcardss, they can capture

ir~consist,er~cies of variable assignments across different and perhaps even disjoint sets

of instances (worlds). On the other hand, most of the cache hits in "ground" algo-

rithms occur when @ is a set of subformulas in the scope of 0-modalities, where the

two worlds w and ul' are merely instances of these same modalities. In Example 3.4.4

we needed to construct a world satisfying the variable q, as necessitated by the original

forrnula 0 0 q. Having done this ouce (and cached the model for q), we can reuse this

world for each subsequent instance of the 0 0 modality, as shown in Figure 3.2. In

LBL, the assertion *c q offers the same concise representation without caching. Note

also that mutually incompatible variable assignments are no longer a hindrance to con-

cise models per se: even the slightly modified example {q* p, c2* l p , *c q} offers the

same concise representation of q over all instances as before. We studied this in more

generality in Section 4.7; see Propositions 4.7.9 and 4.8.2 in particular. To summarize,

3 At least the DLP prover [86] tries to trace the source of a clash in an unsatisfinble world, a d caches
only the subset of formr~las participating in the clash. But even so, these L'nogoo&" are tied to formulas
over one specific world (ground label).

CHAPTER 7. DISCUSSION AND CONCL W O N 270

much of the need for reusing partial models is eliminated by the concise representation

of models already xhieved. While some form of S-cache is ixnaginable-we could store

combinations of branches verifying certain subsets of clauses, for instance-we wonder

whether our algorithm would benefit much from it.

Model Merging This is another technique for improving the efficiency of reasoning by

reducing the size of models. When a set of formulas (0 cp, 0 $1 is encountered, a

model can be obtained by merging two compatible models for p and .JI, effectively

creating a model for 0 (cp A $). (See Example 3.4.3 and Figure 3.1, where cp = p

and .JI = q.) This is another instance of our more general node merging technique we

describe in the Appendix. In the setting of LBL, model merging corresponds to noxi-

strict labelling of 0-modalities in order to reduce the number of constants in labels.

We discussed in Section 4.8 why this optimization technique is beneficial, and that

great care must be taken to preserve soundness. An implementation of this approach

may follow along the lines of [47], adapted to labels with wildcards.

BCP a n d Simplification We already explained how BCP can be quite naturally inte-

grated into our algorithm, and it promises to improve efficiency considerably. Sim-

plification is a generalization of Boolean constraint propagation: If a set of formulas

t:ontains a disjunct,ion cp V T/j and a. formula cp, the11 we need not branch on 9 V .JI;
rather, this disjuilction is redundant and can be deleted, in accordance with the law of

absorption in natural deduction. Modus ponens is another instance of simplification:

If -cp V T/j and cp are given, we can replace the first formula by .JI, thus removing a

disjunction which might otherwise lead to branching. A detailed treatment of simplifi-

cation has been given in [69]. While most implementations apply a few simplification

rules, we know of only one reasoner which performs simplification extensively [44].

Simplification can be performed as a single preprocessing step on the initial set of

formulas, or also on all new formulas encountered during the search. It has also been

shown that simplification can improve the efficiency of caching [35, 451.

The idea of reasoning with labelled formulas was originally born out of the desire to

enhance the effect of simplification. Consider the two formulas (-cp V .JI) and 0 cp.

Inside the modal operators, we could apply modus ponens to obtain T/J just as above,

which would save us a branching step in one instance. However, the universal scope

in the first formula prevents us from performing the simplification: we cannot express

CHAPTER 7. DISCUSSION AND CONCLUSION

the fact that i c p V .JI must be branched on over all but one of the accessible worlds.

Upon t,ranslating the problem into CBC, we can utilize labels with exceptions and

preprocess these formulas into (* - (1)) (-.IF V G), 1 F, 1 G4. We only need to extend

the syntax of CBC slightly, in that labels with exceptions must be allowed in formulas

as well as assertions. Adjustments to the definition of b, can be easily made.

We consider simplification a very useful step in the initial translation stage of our

algorithm. It can alleviate the negative effects of strict labellings (or pre-empt the use

of node merging). For instance, the two formulas 0 p and 0 (p V $7) can be simplified

into one formula 0 cp, so in the translation to CBC only one constant instead of two will

be introduced. Once we have converted the CBC-formula into LCNF, we do not really

introduce new formulas and thus have no further need for simplification beyond what

can be attained by BCP alone. Lastly, simplification will be a very useful technique

for cont,rolling the size of the nogood cache, as it identifies subsunled nogoods which

can be erased.

Absorption This technique seems unrelated at first glance. It originates from Description

Logic reasoning. Real-world knowledge bases t,end to have a large nunlber of so-called

concept inclusion axioms, which are just a special case of disjunctions over a large set

of formulas. As we said, these types of formulas constitute a major bottleneck for

tableau-based provers. The technique of absorption addresses their said devastating

effect on performance [54]. It specifies a, method of integrating these axioms into the

definition of concepts, so they will no longer be bratlched upon in individual inst,ances,

unless that respective concept is specifically mentioned.

Our approach is not related to absorption, but it offers an alternative technique for

dealing with disjunctions over large sets of instances. We branch on them universally,

which produces little overhead and will lead to clashes only in instances which mention

literals complementary to those in disjunctions; those clashes are then repaired locally

by branching (on other terms). The fact that absorption so successfully alleviates

this bottleneck of reasoning on real-world problems is one of the reasons why we have

confidence that our own algorithm will perform well on those problems too.

41f F and G are atoms, the same effect can be gotten by BCP alone.

CHAPTER 7. DISCUSSION AND CONCLUSlON

7.3 Directions for Future Research

As we said, the ultimate cor~firrnatiorl of the usefulness of our algorithnl must come from its

performance in practical applications. Therefore, our most immediate goal is to develop and

test a prototypical implementation and run it on existing theoretical hard benchmarks and

real-world problems. Once this has shown fruitful, we ought to study branching strategies,

heuristics, and other optimization methods we mentioned, which may improve efficiency

in the context of labelled formulas. However, one would be hard-pressed to justify the

development of yet another full-fledged, general-purpose reasoning system for description

logics. Instead, we envision that our ideas be integrated into existing systems, which already

embody years of research and development into heuristics, machine-level optimizations,

additional logical and algebraic constructs, and user interfaces.

The new formalisnl and model-finding algorithm give rise to a number of interesting ques-

tions and possible areas of further research, which we will briefly discuss:

We mentiorled the relationship bct,ween K and QBF, aud hence bet,weerl CBC and

QBF, in various'places throughout this work. Reasoning with QBF itself constitutes

a very active research area, which includes work on efficiency techniques [32, 621, as

well as an annual QBF solver evaluation[lO]. In Section 4.7, we studied a translation

method from Q B F into CBC, which we could use in order to solve QBF using our

algorithm. We do not expect this to be a very efficient nlet,hod per se. However, the

structure of translated QBF is much more regular than that of translated K-formulas:

we know from the outset which ground instances are realized. All the complications

due to realizability checks, introduction of new constants in labels, and nogoods with

multiple witnesses, do not occur in QBF problems. Therefore, we can streamline

our algorithm code and eliminate or simplify many of the procedures. A number of

further optimizations are possible due to the fact that a world may have at most two

successors; but we cannot go into details here. One novel feature our research may

contribute, which so far has been considered difficult [34], is that branching need no

longer follow the order of propositioual variables prescribed by the problem. On the

other hand, there are a number of specialized techniques for QBF we would have to

compete with. So without experimental evidence, we cannot tell for certain whether

an adaptation of our approach will prove competitive in this field.

CHAPTER 7. DISCUSSION AND CONCLUSION 273

Our algorithm is strongly related to local search techniques. Let us revisit our general

strat,egy of finding a model for a set S of formulas, as described in Section 6.4: Create

a "starter set" of branches, scoped globally over the clause labels, so that S is entirely

covered; then repair any clashes between the assertions in the branches, until no

more clashes occur. This is strongly reminiscent of the method of iterative repair,

a local search technique in Constraint Satisfaction Problems [75]. In fact, we may

argue that our algorithn really is a local search procedure, with (a. rather expensive

machinery of) constructs-nogoods and branch indices with a prescribed order for

undoing branches-to ensure its completeness. Now this high and laudable standard

becomes meaningless when faced with problems prohibitively large for a deterministic

solver5. If only we give it. up in favour of an incomplete search, we will have a large

variety of methods, techniques and heuristics for guiding the search at hand. easily

adaptable to the context of CBC. This field is much too wide to give an overview here.

After all, our research was motivated by finding models for satisfiable formulas; so we

would gladly trade the ability of proving a formula unsatisfiable for the considerable

additiom~al mileage a local search algorit,hm may afford us.

As for the ability to handle additional logical constructs, global axioms top the list

of most desirable constructs. Global axioms are formulas which hold in every ground

instance, and they comlstitut,e t8he t,ermiilological part (TBox) of a description logic

knowledge base. It is very easy to represent global axioms in CBC: we propose to

use the notation ** as a prefix in each axiom. This new type of placeholder can be

instantiated by any label of any length; it thus represents the infinite union of all

labels *k, k E No. Reasonin,g with these labels gives rise to new challenges, though.

It is well-known that finite Kripke t,rees are not an adequate representflation of models

for K with global axioms in general. We either need to abandon finiteness or allow

loops in models. In our formalism, sets of assertions cannot represent models with

loops, and reasoning with infinite models is certainly not a feasible option either; so

we must add new constructs in models as well, which we envision to be of the form

a I+ a': this expresses that all worlds matching label a are to be identified with worlds

in label d. The idea is essentially the same as that of loop checking in tableaux for

5r 7 I he phenomenon of astronomically large but provably finite running times is jokingly referred to as
Ctrl-C-complct,cness.

CHAPTER 7. DISCUSSION AND CONCL USION 274

modal logics with axioms [22, 39, 42, 4 5 l s e e also our earlier discussion of caching:

Whenever a world y is er~countered which must satisfy the same set of formulas as

another world y' we have seen before, these formulas can be satisfied by identifying

y with y'. In the spirit of this work, we would not content ourselves with the ground

case, but demand to perform loop checking over labels with variables and exceptions.

Devising a complete and finitely terminating algorithm is not only a non-trivial task;

it is interesting also from an algebraic point of view, since the I+ operator induces

an equivalence S on the set of strings over D U {*I, and proving the finiteness of

the partition defined by S (which is what we must do to ensure the finiteness of our

model) is equivalent to the well-known word problem.

Many other constructs, such as transitivity, reflexivit,~, symmetry, and to some extent

number restrictions as well, can also be handled using models involving the new o

operator. While this approach may have the appeal of working universally over a large

variety of modal logics, it may not be very efficient. As a point in case, consider a

number restriction sta,ting--or implying-that a world y can have a t most n successors.

If we have constructed a model in which y* has more than n rgi, then we can use H

constructs to identify some of these rgi with one another. But the difficulty lies in

doing this over labels implicitly defined by assertions with non-ground labels. Simply

put: How call we determine the most geiieral label over which a number restriction is

violated, and which of the possible pairings of (non-ground!)labels should we identify

via o H of , in order to fix it? Instead it may be easier to modify the algorithm for

labelling a formula, ensuring that no more than n constants are introduced in places

which can instantiate a number-restricted modality. Since this constitutes a non-strict

labelling, we are then faced with the nontrivial task of preserving soundness; we may

have to backtrack over several attempts a t labelling the modal operators, an additional

source of complexity.

Other alternatives to handle modal logics with transitivity, symmetry etc. may be

found in approaches based on first-order translations of these logics. See [82] for an

overview of techniques.

The formal properties of LBL itself may be an interesting object of further study. We

can show that LBL can be expressed within the description logic ALC(U) with role

union. Thinking of each constant c E D as a role, the formulas c F, [c] F and * F

CHAPTER 7. DISCUSSION AND CONCLUSION 275

can be expressed as 3c T A Vc F, Vc F, and VD F, respectively, whereas D represents

the ullioll of all roles represented by its const,ants. However, the well-formed CBC-

formulas form a substantially restricted subclass of this logic. On the other hand, CBC

contains formulas which cannot be equivalently expressed in K . One such instance is

the formula F = 12 p A *2 q. It entails 12 (p A q) . By contrast, the K-formula

0 0 p A 0 q does not entail 0 0 (p q) . In fact, there is no K-formula which would

have a set of Kripke models equivalent to the set of labelled models for F . It would

be interesting to explore whether the expressivity of CBC can be utilized to represent

an interesting type of knowledge for which K is too weak and ALC(U) too strong.

Finding a suitable axiomatization of this logic would be an asset here.

We compared our approach with recent first-order calculi and found many similarities.

Now we can obviously take the opposite route and ask whether CBC can be extended

to handle at least a subclass of FOL. In a way, this question is already answered

affirmatively, if we translate LBC into FOL. The real challenge, though, is to find

an extension to a "natural" subclass of FOL such as the two-variable guarded frag-

ment. We are confident that some interesting results can be obtained, so the research

presented here may well provide a contribution to the popular area of first-order logic.

Appendix A

Tableaux and Optimizations

Ever since the days of Kripke's original paper 1601, the tableau method as a proof tool for

modal logics has been accompanying the semantical construct of Kripke models. Apart

from being very intuitive and thus amenable to reasoning by hand, it has also proven very

successful in Automated Theorem Proving with modal and description logics. The three

arguably iilost widely used theorem provers in the field, FaCT [48]. DLP [84], and RACER

[41, 431, implement optimized variants of the tableau algorithm. This stands in sharp

contrasts to the related fields of propositional and first-order Logic. Tableau calculi for

these logics exist (see e.g. [91, 23, 12]), but in terms of practical efficiency, they have so far

been inferior to algorithms based on DPLL (for SAT) and resolution (for FOL in clausal

form).

Apart from their importance in the field, there are two other reasons why we introduce

the tableau calculus here. First, the terminology and proof techniques in Chapters 2 and

3 were developed with the tableau calculus in mind. We will demonstrate in this section

how our techniques can be used t,o prove some known results about t,ableaux. and corltrast

them with "classical" techniques. Secondly, we wish to compare the expressivity of Kripke

models with that of tableaux. We will derive two results which are novel to the best of

our knowledge: First, we will show that any Kripke model for a satisfiable formula can be

"derived" by a tableau of comparable size, provided we modify one of the rules slightly. This

modification subsumes a corrlrnordy and successfully used optimization t0echniques but has

an even more general scope. We will also show that the "standard" unoptimized tableau

calculus can derive any strict Kripke model, providing another justification for defining and

characterizing strict models. Conversely, any satisfiable complete node in a tableau gives

APPENDIX A. TA BLEA UX AND OPTIMIZATIONS 277

rise to a strict Kripke model of comparable size, and the same is true for the optimized

tableau calculus and general Kripke models. We will thus llave shown that tableaux are

equally concise to a class of Kripke models. So our results of Chapter 4 on comparing the

conciseness of CBC with that of Kripke semantics extend analogously to tableaux.

The tableau calculus originally s t e m from Gentzen's much older sequent calculus [29]: A
tableau for a formula l c p can be viewed as a Gentzen sequent for cp, written upside-down.

Branch closures in the t,ableau correspond to the initial tautologies in the Gentzeu sequent,

from which cp is derived by rules which are the inverse of tableau rules. It is not surprising

that the tableau calculus is generally considered a refutation method [23]: If the above

tableau for l c p closes, then cp is shown valid. However, with at least equal justification,

tableaux can be seen as a tool for checking satisfiability, aud even for fiudi~lg satisfying

models, the primary goal of this work. (The information found on a complete open node is

sufficient for constructing a model.) It is intriguing that both soundness and completeness

of tableau calculi are usually stated in the negative: "a formula is unsatisfiable iff it has

a closed tableau", but shown using the contrapositive: "a formula is satisfiable iff all its

tableaux are open". Yet except for these proofs, the literature on the aspect of inode1

finding using tableaux is rather sparse. We hope that this chapter will provide a useful

contribution to the field.

Our treatment of the tableau calculus is self-contained, but it differs from the "standard"

approach in many ways. For instance, we will develop a few general, logic-independent

results, before narrowing down on propositional logics and finally on KNNF. For a standard

treatment of tableaux on various normal modal logics including K, we refer the reader to

[56, 22, 391.

A. l General Definitions

Treatrnerlts of tableau calculi vary greatly not only in the logics covered, but also in the way

they are represented, which is a common source of confusion. We will focus our attention

on one specific style which best suits our needs, called prefied (or labelled) tableaux. Given

a logic L, they are specified over the following entities:

Definition A . l . l A prefixed formula is of the form ul cp, where u~ is some object (label),

and cp is an L-formula.

An r-expression is of the form w R w', where w and w' are both objects.

APPENDIX A. TABLEAUX AND OPTIMIZATIONS 278

These labels have a slightly different connotation from those used in CBC. They are not

part of the formula, but they rather specify a context in which the forrnula applies. The

r-expressions define a relation between labels. In K, we can think of them as worlds and

accessibility arcs in a (real or hypothetical) Kripke frame. But they could be used in a more

general sense. Labelled tableaux are an instance of the even more general labelled deduction

systems [26].

In keeping with our est,ablished pra<:t,ice, wc: use greek l<?t,t,ers for L-forrnulw and sets of

formulas, and roman letters for labelled formulas and sets of them. As usual, we use a

shorthand notation ul = {w p : p E a) for a set of formulas prefixed by the same label

w. Conversely, we write S(w) = {cp : w cp E S) for the set of all fornlulas whose label in S

is w.

Definition A.1.2 A tableau calculus for L provides a set of tableau rules and a closure

condition. Tableau rules are of the form

where R is the name of the rule, and P (the premise of R) and C1,. . . , Cn (the conclusions of

R) are sets of schemata of prefied formulas: that is, expressions containing metavariables

which can be instantiated by formulas and world labels, so as to give prefied formulas. Any

such i~~.stan.tiation must be un;iform across th,e rule: that i s , the same variables i n P a71.d

C1, . . . , Cn must be replaced by the same expressions. Set brackets are omitted for singleton

sets. Some rules will have side conditions; we will specify these informally. A rule R is

applicable to a set of prefied formulas S, i f (using notation from above) it has an instance

RD SO that Pa is a subset of S but none of the (Ci)a is. The sets obtained from S by

applying (this instance o f) rule R are S U (Cl)a, . . . , S u (Cn)a.

A tableau for a set of formulas is a tree whose nodes are sets of formulas and whose root

is the set wo a, whereas the successors of any non-leaf node S i n the tree are exactly the sets

obtained by applying a f i ed applicable rule to S . Usual terminology for trees applies. In

particular, a brmch to (or: o f) a node S is the unique directed path from the root to S as

its final node. A s usual, we speak of a tableau for {p) simply as a tableau for cp. A tableau

TI is an extension of a tableau T , i f TI is a supergraph of T and both tableaux share the

same root. (Obviously this relation is a partial order on tableaux.)

APPENDIX A. TABLEAUX AND OPTIMIZATIONS 279

A tableau node is closed i f i t satisfies the closure condition, and open otherwise. A tableau

1:s closed if (dl its l m f nodes w e closed. A tableau nude S 1:s complete or saturated lort a set

of tableau rules, if none of the rules are applicable to S; S is complete if it is complete wrt

all tableau rules. A branch i n a tableau is called complete if it has a complete final node,

and a tableau is complete i f all its leaf nodes are complete.

According to this definition, a tableau node accumulates all formulas which have been de-

rived anywhere along its branch. While in practice one would avoid duplicating all formulas

in each node and instead consider all formulas on the branch, this view helps simplify our de-

scription greatly. We would also like to point out that there are three conceptually different

graph-like structures: first, the labels and r-expressions on a single node define a relation,

which may or may not give rise to a tree. Secondly1 one single tableau constitutes a tree of

nodes. And finally, the set of all tableaux due to the nondeterminism in choosing formulas

and rules for each rule application constitutes a tree. This nondeterminism is relevant in

some mostly older tableau and Gentzen-type calculi such as [211 221 for K: If one tableau

fails to show a formula unsatisfiable, then alternate tableaux must be considered, until all

possible tableaux have been exhausted. One reason we use labelled tableaux is that rule

applications are "don't care" nondeter~uinistic 1731: thcir order does not matter in finding

a formula unsatisfiable'; for satisfiable formulas, one can show that one tableau produces

the same models modulo renaming of labels as another. This property is also called strong

proof conjluence [55]; of course, we will need to prove it. For this reason, we will define the

property of strong completeness below, along with other more common properties:

Definition A.1.3 A tableau calculus is sound (or correct) if whenever a tableau for a set

is closed tlren. is u.nsatisfiable. A calculus is coqdete i f every unsatisfiable set of

formulas has a closed tableau and strongly complete2 if every tableau for an unsatisfiable

set offormulas has a closed extension. A calculus is finitely terminating i j every tableau for

a finite set of formulas is finite.

'But the order of rule applications does mabler greatly for finding a proof or satisfying model eficienlly.

'The L'classical" definition of strong complet.eness reads: "Every fair derivation from an unsatisfiable set
of formulas is a refutation" [3]. In the language of tableaux, this means: Every complete tableau for an
~msatkfiablc set is closcd. This st,at,cmcnt is c a d y shown cquivalcnt tfo oar dcfinit$ion, just,ifq.ing the tcrm
L'strong completeness". The main advantage of strong completeness is expressed in Propositmion A.l.4: If a
tableau does not close, no alternate tableaux need to be considered; instead, the formula has been shown
satisfiable. A related property of tableaux called corr,jIuencc: holds for our calc~ilus, but we will not prove it,,
since we do not need it to demonstrate strong conlpleteness.

APPENDIX A. TABLEAUX AAJD OPTIMIZATIONS 280

Following the standard, we have defined soundness and completeness "in the negative".

But we prefer the contrapositive of these definitions; as we said in the irltroductiorl to this

chapter, we will use it to derive results related to satisfiable formulas and the existence of

models. Among these are the following:

Proposition A.1.4 In a strongly complete tableau calculus, i f has a tableau 7 with a

complete open branch, then @ is satisfiable.

Proof: Let S be the complete open final node on the said branch. Since no rule is applicable

to S, S will always be a lcaf 11ode in any exter~sion of 7. Therefore, no extension of 7 can

be closed. Since the calculus is strongly complete, cannot be unsatisfiable. 0

For the next few results, we assume that the calculus is finitely terminating.

Proposition A.1.5 In, (L fi7ritcdy terrr~.i.rratirrg tableau calculus, any tableau 'To for any set

of formulas has a finite complete extension 7.

Proof: We construct a sequence of tableau extensions ('&), starting with l o , as follows:

If every leaf node in is complete, we are done. Otherwise, we take a non-complete leaf

node S and apply an applicable rule to it; the sets thus obtained are appended to node S,

yielding a new tableau Z+, . Observe that Z+l is an extension of '7;. If the sequence (Z)
is infinite, then the graph union of all ?I is an infinite tableau for a, contradicting the fact

that the calcul~rs is finitely terminating. Hence, the sequence nu st end in some complete

tableau Z, according to our construction. 0

Corollary A.1.6 In a finitely terminating tableau calculus, any set of formulas has a com-

plete tablenu.

Proof: The structure lo with one node wo @ is a tableau for @ which can be extended to

a complete tableau, as shown in Proposition A.1.5. 0

A similar argument as in Proposition A.1.5 shows t,hat aftcr a finite number of rule appli-

cations along any branch a complete node must be reached.

Proposition A.1.7 If the calculus is sound and finitely terminatin,g, then any tableau To

for (L satisfiable set @ of fomulns cnn bc extended to a tableau, with a complete open node.

APPENDIX A. TABLEAUX AhTL) OPTIMIZATIONS 281

Proof: By Proposition A.1.5, lo can be extended to a complete tableau I. Since Q, is

satisfiable and the calculus is sonnd, I cannot be closed, so one of the b r a n c h (all of

which are complete) must be open.

In a calculus which is sound, strongly complete and finitely terminating, we observe that the

existence of a complete open node in some (extension of a) tableau for (9 is necessary (see

Proposition A.1.7) and sufficient (see Proposition A.1.4) for (9 to be satisfiable. That node

alone serves as a witriess for (9. So we can be oblivious about the tableau's tree structure

and think of the calculus as a (nondeterministic) expansion of the set wo (9. The tableau

rules thus act as saturation rules for this set. In upcoming theorems, we may refer to a

tableau node S as a node expansion of wo Q, (or of a). And we say that a set of formulas in

node S is fully r.qanded if no rule can be applied t,o any of these forrriu1a.-ilsually because

the conclusions of any such rule are already in S.

In order to characterize the property of finite termination, Konig's Lemma is a useful tool.

In the context of labelled tableaux (in which we recall that each rule application leads to a

finite number of successors), it states:

Lemma A.1.8 The tableau calculus is finitely terminating iff the node expansion along any

single branch in every tableau for every set of formulas terminates after a finite number of

eqansions.

Sadly, Propositions A.1.4 and A.1.7 cannot serve as a characterization of completeness and

soundness, which we are interested in. To get such characterizations, following the standard

pattern of soundness and completeness proofs, we need to show that tableau rules preserve

sa.tisfiability. Now notice that we have not yet defined when a tableau xiode is satisfiable.

This must obviously be specific to the logic and tableau rules under consideration. However,

we would expect certain properties from this notion of satisfiability, which we will discuss

now:

(1) The root wo (9 is satisfiable iff (9 is satisfiable.

It is reasonable to expect the notions of satisfiability in L and in our tableaux to coincide

in this way.

(2a) Every closed node is unsatisfiable.

APPENDIX A. TABLEAUX AhrD OPTILMIZATI ONS 282

This reflects the meaning of closed nodes as unsatisfiability witnesses. One ought not to

cxpcct the converse to be true. An open node can be found unsatisfiable in the course of

expanding the tableau and finding that all descendant nodes are closed. But we should have

this weaker property for nodes which cannot be further expanded:

(2b) Every coniplet,e open node is satisfiable.

Finally, we expect tableau expansions to be satisfiability-preserving. We split this require-

ment into two directions:

(3a) Every satisfiable non-leaf node has at least one satisfiable successor.

(3b) If a node has a satisfiable successor, then it is itself satisfiable.

Two alternate characterizations of (3a) and (3b) will prove useful later:

(3a') Every satisfiable non-leaf node has at least one satisfiable descendant.

(3b') If a node has a satisfiable descendant,, then it is itself satisfiable.

It is easy to see that (3a') is weaker than (3a), and (3b') is stronger than (3b), and that

(3a) and (3b) together are equivalent to (3a') and (3b'), either side stating that tableau

expansions preserve satisfiability. As it turns out, these properties equip us with everything

we need to prove soundness and completeness:

Proposition A.1.9 If the n,otion of satisfiability obeys properties (I) , (3a') an,d (Za), then,

the tableau calculus is soun,d.

Proof: We prove the contrapositive of soundness in Definition A.1.3. Assume that @ is

satisfiable, then so is wo @ accordirlg to (1). Suppose there existed a closcd tableau 7 for

wo @. Then all leaf nodes in 7 must be closed and by (2a) unsatisfiable. Now (3a) allows us

to find a chain of satisfiable descendants, beginning at the root of 7. Since any satisfiable

non-leaf node must have at least one satisfiable descendant, the chain can only end in a

leaf node which thus is shown satisfiable, contradicting our earlier finding that all leaves are

unsatisfiable. 0

A PPEND1.X A. TABLEA IIX AND OPTIMIZATIONS 283

Proposition A. 1.10 If the notion of satisfiability obeys properties (I) , (3b) and (2b), and

the mlculus is finitel?g temnin,atin,g, th,en it i s stron,gly complete.

Proof: As before, we prove the contrapositive of strong completeness in Definition A.1.3.

Assume all extensions of a given tableau for iP are open. Since the calculus is finitely

terminating, a finik: cornplcte exterlsiori can be found. Choose an open lcaf node S (whose

existence is warranted by our assumption). By Property (2b), S is satisfiable. Now follow

the chain of nodes from S backwards to the root wo iP. Property (3b) guarantees that each

predecessor node is satisfiable, so ultimately wo iP is satisfiable, which is equivalent to iP

being satisfiable. This shows strong completeness. 0

We remark that finite termination is not a requirement in some completeness proofs in the

literature. In our setting we can do away with it by generalizing property (2b) to arbitrary

sets S; on an infinite open branch, we then take the union of all nodes on the branch as

S. Then we must require that S is complete on any infinite branch; this requires some fair

order of evalu;tt,ion of rulcs, ensuririg o x h rule is applied is applied to any formula 011 which

it is applicable. Since our tableaux for KNNF turn out to be finitely terminating, we skip

these cumbersome details.

A.2 Tableau Calculi for KNNF

In this section we will introduce two prefixed tableau calculi for the modal logic KNNF.

Both are variants of the calculus in [22], which in the case of K coincides with the single-

step tableaux of [71, 73, 91. The main difference with any of these is that we regard labels

as atomic, whereas all cited approaches use strirlgs to represent labels; irlstead of through

r-expressions, the strings implicitly define a relation between themselves, very much like

ground labels in CBC. One of our calculi is sound, strongly complete and finitely terminat-

ing, whereas the other gives rise to more concise models while giving up soundness. Having

proved this, the results of the previous section show that existence of a complete open branch

in a tableau for iP is characteristic for iP being satisfiable. We will see that the formulas on

such a branch provide enough information to construct a Kripke model for 9.

Let us first state the closure condition:

Definition A.2.1 A tableau node S is closed if it has a label w so that S(w) contains a

clash.

APPENDIX A. TABLEA lLX A h 9 OPTIMlZATl ONS 284

In other words: S is closed iff w I E S or both w p E S and w -p E S for some TLI and

p. Now we present two rilles for dealing with proposit,ional operators. (In many traditional

treatments, several types of rules are needed, in addition to a double negation rule. Thanks

to considering formulas in NNF only, we only need one each.)

We have the following two rules for the modal operators:

The rule (T) has the following two side conditions: It is only applicable to a set S if there

exists no w' SO that the formulas in the conclusion are already in S . Secondly7 if applied,

we must choose a label w' which does not (yet) exist in S.

We distinguish two tableau calculi for KNNF: The standard calculus includes rules (a) , (P),

(v), and (n), whereas the calculus with n,ode mergin-g is derived from the standard calculus

by dropping the second side condition from the (n) rule. That is, we are free to choose w'

among all labels, including those already existing in S. It is easy to see that this leads to

an unsound calculus:

Example A.2.2 The set @ = {p, 0 l p) is satisfiable. The calculus with node merging lets

us apply the (T) rule to uio @ so as to obtain S = {wO p7 w0 0 l p , woRwo, wo l p) . This

node is closed, and since it is the only leaf node in the tableau, the entire tableau is closed.

As our first result, we would like to show that both calculi are finitely terminating. The proof

for this is quite analogous to the standard proof given in [22], Chapter 8, so we highlight the

important principles, referring the reader to the above source for details. The first crucial

element of the proof is the so-called subformula principle [91]; let us, state it recursively

first:

Proposition A.2.3 In, any of the tableau rules above, every formula cp occurrin,g in the

conclusion is a subformula of some formula cp' occurring i n the premise. I n particular, we

always have d(cp) 5 d(cpl).

APPENDIX A. TABLEALrX AND OPTIMIZATlONS 285

This can be easily verified on the definitions of the rules above. From this recursive form

the non-recursive version follows easily:

Corollary A.2.4 Every formula p in every node of any tableau for a set @ is a subformula

of some formula in Q,, and d(p) < d(Q,).

Since Q, has only O(1@1) different subformulas, any node S in a tableau can only have this

many formulas carrying the same world label w. Our second task is to show that the

number of different labels in a node is finite and bounded. One may think of using Konig's

Lemma in conjunction with the depth function. The problem is that r-expressions need

not define a tree on the labels in S-they do so only in the standard calculus. We rather

propose a method which works for both calculi. Our approach also differs fro111 that in [22]

to accommodate for the different way in which we label formulas. Rather than considering

the length of a label (which we have not defined), we consider the set Wk of labels preceding

a formula of depth at least k in a given tableau node S. We just observed that the depth

of any formula on a tableau node is no larger than d(@); now we will show that for each

such k = 0, . . . , d(@) the set TVk is lxmntled. I t is easy to sm that Wd(@) = {wO}, because

the only rule through which a label w can be introduced is the (n)-rule, and any new

formula introduced into ui through the (T)- or (v)-rule is of the form TO or uo, for which

d(ro) = d (0 no) - 1 < d(@), similar for vo. We can use the same idea recursively to show

that Wk for any depth k < d(@) is also bounded:

Lemma A.2.5 For a given node S in any tableau for @: and a given k = 1, . . . , d(@), the

inequulity I Wk-1 I < (b + 1) I Wk 1 holds, where b is the n,unr.ber of n-.sut?fonn,.c~lu.s i7~ @.

Proof: We obviously have Wk Wk- 1 , so the only interesting labels are those in Wk- - Wk;

we will show that there are no more than b x 1 Wkl of them.

Given a particular label w' E Wk-1, find the first node on the branch leading to S on which

w' precedes a formula of depth k - 1, and call it S'. If S' is the root wo @, then w' = u ~ ,

which is a label already occurring in Wk. Otherwise, the formula has just been introduced

through application of a tableau rule. If this was an (0)- or (p)-rule, then the premise is

a formula of depth at least k - 1 preceded by the same label w', occurring on the previous

node. But if its depth is exactly k - 1, we have a contradiction to our assumption that S'

is the first node on which w' precedes a formula of depth k - 1, and if the depth is at least

k, then we have w' E Wk which is uninteresting. Next, if the formula is of the form w' vo

APPENDLY A. TABLEAUX AND OPTIIVIZATIONS 286

introduced through the (v) - rule, then we must have two premises w R w' and w 0 vo in

St . Since d (0 vo) = k, we have w E Wk. Furthermore, w R w' rriilst have bwri i~itroduced

previously by application of a (T)-rule. Finally, if the formula is of the form w' TO introduced

through the (T)-rule, then we must have a premise w 0 TO in St , so w E Wk (and we also

introduced w R ul' into St) . In all cases, new labels w' E Wk-] are created by applying

the (n)-rule to a T-formula with a label w E Wk. By the subformula principle, every such

T-formula rriust be a subforrnula in a; fiirtliermore, after the (T)-rule has been applied once

to a formula w 0 no, it becomes unapplicable to the same world label w and formula 0 TO.

So the total number of (n)-rule applications producing labels in Wk-l is limited by b x I WkI,

where b is the number of n-formulas in Qt. 0

We remark that with a little rnorc effort in the proof, we can get a snlaller bound on the

"branching factor" b. For instance, our upcoming Proposition A.3.5 will show that the T-

formulas used in our proof above are part of an atomic cover for S, and we can infer that

their number is bounded by the maximal number of n-formulas occurring (as subformulas) in

(the formulas of) any atomic cover of Qt. But this refinement, though important in practice,

does riot irnprove on our theory.

By applying Lemma A.2.5 recursively until k = 0, we get an overall bound on the number

of labels occurring in any node S . Since the number of formulas preceded by any label is

also bounded, any extension along one branch of the tableau must reach a node at which

no more rule application is possible, which is a complete node. Using Proposition A.1.8, we

arrive at our conclusion that the calculus is finitely terminating:

Theorem A.2.6 An,y tableau for @ can be extended in afinite number of steps to a complete

tc~hleau.

A.3 Soundness and Completeness

Now we will work towards defining a Kripke model from a node in the tableau. To motivate

our approach, let us make a simple observation on nodes in the standard calculus:

Proposition A.3.1 For an,y tableau for a set wo @ in the standard calculus, and any node S

in the tableau, every label w' i n S occurs exactly once on the right-hand side of an expression

w R w' in S , with the exception of wo which does not occur on the right-hand side at all.

APPENDIX A. TABLEAUX AND OPTIMIZATIONS 287

Proof: Each r-expression w R w' arises from applying the (T) rule, which is also the

orily way of introducing a now labcl w'. Furthermore, once int,roduced, tho side condit.ion

stipulates that w' not be used again on the right-hand side in another application of the (T)

rule. 0

We define a graph G(S) = (W, R) as follows: Let W be the set of labels occurring in S,

and R the set of pairs (w, tu') occurring in the r-expressions 711 R W' in S. We can see that

G(S) is a Kripke frame, rooted in wo. (The latter follows from an easy induction argument:

Assuming that there exists a path from wo to w in G(S), and S is expanded to St by

applying a (T) rule, adding w R w', then there exists a path from wo to w1 (and to any

other label) in G(S1).) For the standard calculus, Proposition A.3.1 shows that G(S) is a

tme.

Definition A.3.2 Let S be an open node, an,d G(S) be the graph defined above. Define a

valuation function V by selecting

for each p E P. Tlren K(S) = (W, R, V) i s a Kripke rnodcl goneratcd by S.

A valuation satisfying (A.l) can always be found when S is open, because w p E S implies

w l p $ S. But usuaIly there is some slack in the way V is specified, so the definition of

K(S) is nondeterministic.

Proposition A.3.3 If S E St, then G(S) is a subgraph of G(S1), and for any K(S1) there

exists a corresponding K(S) which is a submodel of K(S1) (see Definition 3.2.5).

Proof With G(S) = (W, R) and G(S1) = (W', R'), we immediately see that W 2 W' and

R G R', so G(S) is a subgraph of G(S1). Now given the valuation V' on any model K(S1),

we define V(p) = V1(p) n W, which makes (W, R, V) a Kripke model. We only need to show

that this model is generatred by S , so we vcrify (A. l) . For K(S1), we 11avc:

Upon intersecting all sets with W, we get:

And since S St, we conclude:

This completes the proof that (W, R, V) is a Kripke model generated by S. 0

We will set: that, every Kripke 111odel ge~leratcd by a co~nplete open set in a tableau for

is indeed a model for a, and conversely, every Kripke model for is, in a sense, generated

by a complete open set in some tableau for a. Our main goal of this section is to prove

these two theorems, which entail the soundness and completeness of the standard tableau

calculus. The proof follows the familiar pattern of this work: We will initially establish some

rcsults which hold in an,y tableau calculus employing the propositional rules (a) and (P),
and then extend these results to the calculi we introduced above. Thus, let 7 be a tableau

(for any formula in a propositional logic) in a calculus with (at least) rules (a) and (P) and

the closure condition, Definition A.2.1.

Proposition A.3.4 Let S be a node i n 7, w a label i n S, and !P the set of fomulas

cp E S(w) so th,at cp is an atom, or one of th,e rules (a) an,d (P) is applicable to w c p . Th,en,

!P is a cover for a .

Proof: First, let us show that !P contains a cover for every formula cp E a. We show

this by induction on the structure of cp: If cp is an atom, then cp E !P, and we can simply

choose { c p } as a cover for itself. Secondly, we show that the claimed property is preserved

urldcr cor~junction. Let cp = a1 A . . . a, E a. If a1,. . . , a, are not all in (wllich nleans,

w a1, . . . , w a, are not all in S), then rule (a) is applicable to w cp , so cp is in !P, and again

{ c p } can be chosen as a cover for itself. Otherwise the induction hypothesis applies to all

a,, SO !P contains a cover for every ai. Therefore, !P also contains the union of these covers,

which is a cover of cp . Finally, we show that the property is preserved under disjunction.

Let cp = Dl v . . . v 0, E a . If none of the 0, are in a, then rule (0) is applicable to w cp , so

cp is in !P and can be chosen as its own cover. Otherwise, some Pi is in a, and by applying

the induction hypothesis to Pi, !P contains a cover for ,B,, which is also a cover for cp . By

structural induction, we have shown the property for all cp E a .

Now take the unior~ of all covers found in thc first half of the proof. We said that !P contai~ls

a cover for each cp E a, so it contains their union. Conversely, each element in !P was chosen

as a cover for itself, so the union of all covers contains !P. Put together, we have shown that

!P is the union of covers of all elements in and thus a cover of a. 0

Corollary A.3.5 Let S be a complete node i n 7, w a label i n S, and the set o f f o m u l a s

cp so that w cp E S. Then the atoms i n f o m an atomic cover for a.

Proof: Consider the cover Q found in Proposition A.3.4. It contains all the atoms in and

all the formulas to which a t,ableau ride is applicable. But siricc S is <:omplet,c, riom: of t,he

rules (a) and (p) is applicable to any of the formulas in S, so + contains only the atoms in

a, hence it is an atomic cover. 0

Proposition A.3.6 Let 7 be a co7r1,plete tablcau, w (L label i7t, S , @ (L ~ M set so that. w @ is

a subset of some node S in 7, and + any minimal cover for @. Then S has'a complete

successor node Sf which contains w Q .

Proof: We recall Corollary 2.1.31 which says that every cover for @ is obtained fro111 @

through a finite number of successive refinements. So we can show this proposition by

induction over the refinements. The base case + = @ is obvious, as Sf is a superset of S

and as such contains w a. 0

Next, let us define a notion of satisfiability for nodes:

Definition A.3.7 Let S be a node in a tableau for @. For a Kripke model K which has

K(S) as a submodel, we write K kk S i f K, w kk cp for every w cp E S. If such a model K

exists, we say that S is satisfiable, otherwise S is unsatisfiable.

Some of the desired properties of Section A.l are quite obvious:

Proposition A.3.8 (Propertg 1) For any Kripke model K so that K, wb +I, @, there exists

an equivalent model hrf containing wo so that K' +I, wo @. Conversely, for any such Kf,

we have Kf, wo kr, @. Hence, u j g @ is satisfiable iff @ is.

Proof: Convert K into simply by renaming the worlds so that the root u(, becomes

the label wo used in the tableau node. The conditions bk wo @ and wo +I, @ axe

equivalent because they are equivalent for each cp E @ according to Definition A.3.7. 0

Proposition A.3.9 (Property 2a) A closed node is unsatisfiable.

Proof: For a closed node S, K(S) was not defined. Therefore, no Kripke model can be

found in Definition A.3.7. 0

Proposition A.3.10 Any subset S of a satisfiable set Sf is satisfiable.

APPENDIX A. TABLEAUX AhrD OPTIMIZATlONS 290

ProoE A Kripke model I< witnessing the satisfiability of S' in Definition A.3.7 must have

K(S1) as a submodel. But Proposition A.3.3 shows that K(S1) in turn has K(S) as a

submodel. Furthermore, since S St , K , w kk cp for every w cp in the smaller set S. So

K obeys the requirements of Definition A.3.7 with respect to S too, which shows that S is

satisfiable. 0

Corollary A.3.11 (Property 3b) If S has a satisfiable successor, then S is satisfiable.

Proof: This follows from Proposition A.3.10 and the fact that S is strictly growing through

succcssive rule applications. 0

The two missing pieces, namely Properties (3a) and (2b), are the hardest and also the most

interesting parts of the soundness and completeness proofs, respectively. We put Property

(3a) in the following wording:

Proposition A.3.12 (Property 3a) If K kk S and a rule of the standard tableau calculus

i s applicable, then K kk S U Ci for one of the conclusions Ci of the rule.

Proof: We consider each rule separately. If (a) is applicable to a formula w a1 A. . .Actn E S,

thenK,w k k a l A . . . A a n . But thenK,w k k a i f o r e v e r y i = 1 ,..., n , s o K k k S U { u t a i :

i = 1,. . . , n } . For rule (P), applicable to ut ,B1 V . . . V Dm, E S, we show analogously that

K kk S implies K kk S U {w p j } for some j = 1,. . . , m. The modal rules are more

int,erest,ing: Suppose rule (v) is applicable t,o w YQ, w R w' E S . Then K, w kk v ~ .

Now we recall that K(S) is a submodel of K , so w R w' implies that w' is a successor of w

in K . Therefore K, w' kk vo which shows K kk S U {w' vo}, as required. Finally, if rule

(r) is applicable to w 0 TQ, then K , ui kk 0 r o , so ut must have a successor ut" in K so

that K, 7 ~ ' ' kk TO. The side condition of the (r)-rule requires us to introduce a new label

w', but w" may already be in use in S. To overcome this problem, we duplicate t,hc wibtrw

K,u and rename its root to w'. The result is a model K' in which ur' is a distinct successor

of w, and Kt , w' kk TO. This proves K' kk S U {w R w', w' ro}, and it is easy to see that

K (S U {w R w', w' ro}) is still a submodel of K'.

It remains to be shown that the new tableau node is open. Assume the node contained a

formula w I or two formulas w p, w l p . Since as shown K witnesses the satisfiability of the

new node, we would have K, w kk I, or K, w kk p and K , ut kk i p , which is impossible.

(Replace K by K' in case of the (r)-rule.) 0

APPENDIX A. TABLEAUX AND OPTMZATLONS

Theorem A.3.13 The standard calculus for KNNF is sound.

Proof: We showed properties (1) (Proposition A.3.8), (2a) (Corollary A.3.9) and (3a)

(Proposition A.3.12), and Proposition A. 1.9 implies soundness. 0

What can go wring in the calculus with node merging? If we re-use an already existing

world w' for the cor~sequent of a (T)-rule, wc: have 110 control over whc:thcr w' is really a

successor of w in K , or at least whether there exists a model K in which w' could be made

a successor of w by introducing an additional arc. In general this is impossible because the

calculus is unsound, as we have already seen.

We will now establish Property (2b) for both calculi. That is, we would like to show that

any complete open node is satisfiable. As before, we need a Kripke model to witness this.

It turns out that K(S) itself contains all the information we need:

Proposition A.3.14 (Property 2b) If S is a complete open node, then I i(S) Fk S . Hence,

S is satisfiable.

Proof: Since S is open, K(S) exists and is well-defined. In our proof we will make no

assumption about whether K(S) is rooted or not, or for that matter, what tableau it occurs

in, and for what set of formulas. We only stipulate that none of our tableau rules be

applicable to S, and that the maximal depth of all formulas in S is a finite integer ko. We

classify the fornlulas in S according to their depth:

Just as S itself, these sets split further along the labels of their elements into sets Sk(w),

for any w occurring in S. As an immediate consequence of Proposition A.3.10, we see that

Sk is complete. (And beiug a subset of S, Sk is also opeu.) Using indllction on k, we will

show that K (S) Fk Sk for all k , which proves the proposition.

So take any w occurring in S, and any k = 0,. . . , ko. Corollary A.3.5 showed that the atoms

in Sk(w) form an atomic cover for Sk(w). As usual, these atoms split into sets qA, qN, and

qp. We first observe that qA is clash-free, since SL(w) is open. So @A does not contain

I, nor does it contain both p and l p for the same p E P. If p E qA, then w p E S, so

w E V(p) by (A.l), and hence K(S), w Fk p. Likewise, if l p E qA, then w i p E S, so

UI f! V(p) by (A.l), and therefore K(S), w Fk l p . An occurrence of T is trivially satisfied,

so altogether we get K(S), w kk qA. If k = 0, then qN and Q p are empty. Since this

APPENDIX A. TABLEAUX AND OPTIMIZATIONS 292

result holds for all w, we have shown K(S) kk S o , establishing the base case. For k > 0,

assume K(S) kk Sk-l, so K(S), w' kk Sk-l,w~ for all w'. Now consider any 0 no E 9p.

Since S is complete, the (r)-rule must be unapplicable, so we must have two formulas of the

form w R w' and w' TO in S. Since d(r0) is at most k - 1, we find r o in Sk-l,,/. Since our

induction hypothesis stated that K(S) , w' Fk Sk-l,wl, and since w' must be a successor of ui

in K (S), we showed K(S) , w kk 0 TO. Thirdly, consider any 0 YO E !UN, and any successor

w' of w in K (S). The ac:cessibilit,y relation of K (S) cont,ains exactly the pairs c:orresponding

to the r-expressions in S , so w R w' E S. But then the (Y)-rule would be applicable to

w YO and w R w', unless w' YO E S, This in turn implies K(S), w' kk YO by the induction

hypothesis (as YO is of maximal depth k - I) , and since we showed this for any w-successor

w', we obtain K(S) , w kk uo. The conclnsion of our ir~ductior~ step, K(S) , w kk Sk(w)

for all w occurring in S , follows from Theorem 3.3.1. And by the principle of induction, we

conclude K(S) Fk Sk for any Ic. Now choose k = Ico, in which case Sk = S , which completes

the proof.

We wrap up the completeness result as follows:

Theorem A.3.15 Both calculi for KNNF, with or without node merging, are strongly com-

plete.

ProoE We showed properties (1) (Proposition A.3.8), (2b) (Corollary A.3.14) and (3b)

(Proposition A.3.11). Proposition A. 1.10 implies completeness. 0

A.4 Tableaux and Kripke Models

Let us re-evaluate Proposition A.3.14 in light of how we constructed K(S). We introduced

one world corresponding to each label in S, an accessibility relation corresponding to the

r-expressions w R w' E S, and a valuation according to the propositional literals in S. Then

we showed that this sufficient,ly describes a Kripke model for S ard t,hus for the original set,

a, provided S is complete. We can thus give an upper bound on the size of a Kripke model

in terms of complete tableau nodes:

Corollary A.4.1 If a tabletlv for Q, has (L r:on~plete opcn nwde S , then h a s (L Kripkr model

with at most IS1 worlds.

APPENDIX A. TABLEA lrX AND OPTIh1IZATIOI"TS

Figure A.l: A minimal model for cP = {p, 0 (T ~ A q) , 0 0 (l p A l q)) .

We have thus shown that Kripke models are at least as concise as tableaux. In practice,

K(S) would be srr~aller than S by a factor of up to I @ / , due to the presence of r~or~at~omic

formulas in S , and once again, the actual size of K(S) depends on details of how the

accessibility relation and valuation function are represented.

A bit more interestingly, we will now show that the converse is true: Given a Kripke model

for a set cP, we can construct a tableau (or, if you will, a node expansion) with no more

than # K labels. For we have:

Theorem A.4.2 Given any set cP of KNNF-formulas, if K = (W, R, V) is a Kripke model

for a , then has a com,plete open node e.qvarrsion S i n the M~CU/TLS with uode mcrgi~lg so

th,at K t E K(S) for some submodel K t of K and a suitable completion K(S).

Before we set out to prove this, we remark that this theorem does not follow from Proposition

A.3.12. In our proof, wc had to "expa~ld" K by duplicating existing submodels. which gives

us no control over the eventual size of h'. Nor does the result follow from soundness proofs

given elsewhere in the literature. (These proofs use a mapping from worlds in K to labels

on the tableau, and again it is not guaranteed that the mapping is one-to-one.) In fact, to

the best of our knowledge, this result is novel.

The idea of t,he proof soiir~ds easy: Drop from K the worlds aud arcs which are rlot rolevant,

in satisfying cP, and show that the remaining model is equivalent to K(S). However, it is

not obvious to decide which worlds and arcs are irrelevant. The following example shows

what can happen if K contains cycles:

Example A.4.3 Consider the set = {p, 0 (i p A q), 0 0 (l p A lq)) . At first glance,

we should expect that the root world need only have two successors, and any additional

successors must be redundant. Now consider the Kripke model given in Figure A.1. (In

APPENDIX A. TABLEAUX AND OPTIIVIZATIONS 294

fact, this model is minimal, as at least three worlds are needed to accommodate the three

~nutually inconsist~etit variable assig~inieiits.) Here wo has three successors i~icludirig itself,

and the world w2 is not needed to satisfy any of the two n-formulas in a. But w2 is still

needed in order to satisfy the inner n-formula 0 (i p A i q) which also gets evaluated on

wo. This happens because we must allow u~o to be "visited" again. In order to find all the

relevant parts of K , we will keep track of all atoms (including v- and n-formulas) which

have to be satisfied in each world, accu~nulat~irig atoms as we revisit worlds.

Proof: (of Theorem A.4.2) To reduce the overhead in notation, we will assume that the

labels used in the proposed node expansion S match the worlds in K , and show that a

suitable K(S) is equal to a submodel of K . In the general case, we would construct a

partial one-to-one mapping p from the worlds in K to labels in S ; its restriction to Dom(p)

then defines the equivalence relation between the submodel K' and K(S).

We will describe an algorithm for finding a complete open set S satisfying the requirements.

At any stage in the constr~ct~ion of S , we suppose that S(w) "nlagically" updates with

any update of S.) For any set 9, of atoms, we define 9 ,,,, 9 ,,,, and 9,,p as the set of

propositional atoms, v-formulas, and n-formulas in 9,) respectively. Let us state the overall

algorithm first, filling in details as we go:

Algorithm A.4.4 expand-node

Parameters:

a: a set of KNNF-fOrIIl~l&!

h': a Kripke model K = (W, R, V) so that K , wo kk
Returns:

a complete open node expansion S

begin

set S := wo

while there exists w cp E S to which some rule can be applied do

propexpand (S, w, K)

set 9, := atoms(S(w))

foreach 0 no in q,, do

pi-expand (S, w, K , no)

done

APPENDIX A. TABLEA lrX AhrD OPTIMIZATIONS

foreach vo in P,,, do

nu-expand (S, u ~ , vo)

done

done

return S

end

The three subroutines mentioned in this algorithm all update S based on some tableau

rule applications: Assuming that K, w kk S(w) (which will be one of our invariants stated

below), prop-expand(S, w, K) constructs a tableau rooted in S , using only (a)- and (p)-rule

applications on formillas labelled with w, until all brand~es are satmated wrt the (a)- and

(p)-rules. Then Proposition A.3.6 shows that every minimal atomic cover of S(,w) occurs

on some saturated node. (This node is currently a leaf node, as we have not applied any

other rules yet.) One of these minimal covers must be a subset of the cover 9 (for which

K, 711 kk P) warranted by Theorem 3.3.1. The node corresponding to this cover is taken to

bc the new S.

Again assuming that K, w kk 0 TO, pi-expand(S, ul, K . T ~) finds a UJ-successor ul' so that

K , ur' kk TO, and applies the (T)-rule if applicable, using w' as the new label. (That is, the

two expressions w R w' and uf TO are added to S.) Finally, nu-expand(S, w, vo) finds all

w' SO that UI R w' E S , and applies the (v)-rulc using w', provided it is applicable. That is,

w' YO is added to S. Notice that no information from K is needed for this.

In the algorithm, the while loop continues as long as S is not complete, and in each iteration

some rule is applied, a t least to the formula w cp. Since the tableau calculus itself terminates

after a finite number of rule applications, the algorithm itself must terminate. We will now

stmate and prove a few i~ivariarlts of the algorithm. Most of the proofs are induction-style,

that is, we show that the invariants hold in the initial set S , and that they are preserved as

S gets updated through either of the subroutines propexpand, pi-expand, and nu-expand:

1. Each w occurring in S also occurs in W, and for each w R w' E S , we also have

(w, w') E R.

The existence of wo in W was given; no other world, and no relation pair, occurs in the

initial set S. The only subroutine through which a new label UJ' and an r-expression

w R w' are introduced is pi-expand, where we explicitly stated that UJ' exists in W

and is an R-successor of w.

APPENDIX A. TABLEAlrX AhrD OPTIMIZATIONS

2. For each w cp E S , we have K , w kk cp.

Initially, all elements in S are of the form wo cp, cp E a. For these the statement is true

since K,WO kk a. In propexpand (which we treat as one monolithic step, although

it may consist of several rule applications) on label w, we chose the new node S so

that the cover (which the algorithm later identifies as q w) satisfies Theorem 3.3.1.

This guarantees that K , w kk cp for any cp E q w , and since Qw is now a cover for

S(w), K, w kk cp for any other formula in qw. Only formulas labelled w were added

to S. But Theorem 3.3.1 also shows that K , w' kk vg for all vo E Q,, and all

w-successors w'. By Property (I) , these w' include all labels w' on which the (Y)-rule

will ever be applied to w 0 vo in the entire course of deriving the node expansion,

which guarantees that the property is preserved through application of nu-expand.

Finally for the (T)-rule, K, w' kk TO was a prerequisite for choosing w' in pi-expand,

so t,here is tlotlling more to show.

3. There is no w such that w 1 E S.

This follows immediately from (2). If U J 1 E S, then K, w kc false, which is impossible.

4. The valuation V, restricted to the worlds occurring in S, satisfies the inclusion relation

(A.1).

In other words, we must show that whenever w p E S , then w E V(p), and wllenever

w ~p E S , then w # V(p). But this is straightforward since w p E S implies K, w kk p

by (2), which by definition of kk implies w E V(p). Similarly for ~ p .

5. S is open.

This follows from (3) and the fact that the inclusion relation (A.l) verified in (4)

prohibits any w p and w i p from both being in S for the same w.

At the end of the algorithm, we thus have a complete (by the termination condition on the

while loop) open (by (5)) node, all whose labels and relation pairs occur in Ii (by (I)) ,

and the val~iation V, restricted to the worlds occurring in S , satisfies (A.l) (by (4)). This

shows that the restriction of K to worlds and arcs in S is a suitable K(S) , as we needed to

show. 0

The important consequence of this theorem is that it gives us an upper bound on the size

of a complete node expansion in terms of the smallest Kripke model.

APPENDIX A. TABLEAUX AND OPTIMIZATIONS 297

Corollary A.4.5 Given a Kripke model for a set cP with n worlds, we can find a complete

open nwde e.q)an.sion of wo Q, which me.rr.tion,s at m,ost n di-ferent 1nhel.s.

Again the actual size of the complete open node depends on its representation. The addi-

tional clutter due to intermediate propositional subformulas created by propositional rule

applications in the course of tlie prop-expar~d subroutine coritributes a factor of at inost IcPl.
In fact, these intermediate formulas need not even be stored, so if we only store atoms, the

factor reduces to d(iP). (We may still need to store lc subformulas of ok p, for instance.)

Since the number of worlds in K is by far the dominating factor in the size of the model,

we can make a statement analogous to that in Section 4.5, namely that the minimal size of

a tableau for iP with node merging is essentially bounded by the size of a rr~ir~irr~al Kripke

model for iP.

While this expressive power of the calculus with node merging is remarkable and desirable,

there remains the problem of unsoundness (which is the likely reason why this calculus has

never been proposed elsewhere). We will talk about some known and possible remedies in the

next section. We would like a similar result for our safe (and sound) fallback, the standard

tableau calculus. It turns out that strict models provide the right level of expressivity to

compare with:

Theorem A.4.6 Given any set iP of KNNF -formulas, if K = (W, R, V) is a strict Kripke

model for iP, then iP has a complete open node expansion S i n the standard calculus so that

Kt K (S) for some submodel K t of K and a suitable completion K (S).

Proof: Apart from a slight clarification in the propexpand and pi-expand subroutines, to

be introduced later, we use the same algorithm as given in the proof of Theorem A.4.2 to

obtain the complete open node S. However, this proof hinges on a subtle but important

difference in how the @)-rule is applied. Remember that we must always use a world label

wt which does not already exist in S ; on the ot,her hand, we wish t,o g u a r a n t , ~ that every

world label introduced into S already exists in K. The-still valid-fact K , w kk S(w)

does not suffice to guarantee this; we need to derive a stronger invariant, namely that

K , ur kc S(W). We do this through a couple of preparatory steps:

1. After the while loop for a label w is finished, all formulas in w S(w) are fully expanded

in S.

APPENDIX A. TA BLEA U X AND OPTIMlZATIONS 298

After the propexpand subroutine is executed, all propositional formulas in S(w) are

fully expanded. Aftter all calls of pi-expand, all n-formulas are also expanded, and

for the remainder of the loop no more r-expressions will be introduced. Hence, after

nu-expand has been called on all v-formulas, these too are fully expanded. Notice that

neither pi-expand nor nu-expand introduce any new formulas of the form w p either,

so at the end of the loop, all formulas in S(w) are fully expanded.

2. The while loop is executed at most once for each w occuring in S, and each S(w)

gets updated at most twice: first when it gets introduced, and the second time when

propexpand is executed on it.

We already showed in Proposition A.3.1 that G(S) is a tree. Consider the root w = wo

first. S(wo) gets introduced right at the beginning of the program. Since loo cannot

occur on the right-hand side of an r-expression, no new formulas labelled wo can be

introduced into S by application of (v)- or (T)-rules. Moreover, as the while loop is

run on wo (early on in the algorithm), propexpand is executed on S(wo), with the

result of S(wo) being propositionally expanded too.

Now let w # wo, and assume the claimed invariant is true for all ancestors of w.

Since K(S) is a tree, w has only one predecessor; call it zil. While the while loop

is run on w (which by t,he induction l~ypothesis happens only oncc), one call of pi-

expand will introduce the label w into S, and the subsequent calls of nu-expand will

introduce further formulas labelled w. After this, pi-expand and nu-expand are never

called again on 12, so no new formulas labelled w will be introduced through (v)- or

(T)-rules. So S(w) must remain unchanged until the while loop is run on w itself,

as part of which S(w) gets propositionally expanded. Thereafter, since S(w) is fully

expanded, the while loop will not be called on w again; more generally, no more

formula can be introduced into S(w). By induction on the structure of K(S), the

claimed invariant is true for all w in S.

3. For every w occurring in S, we have Kw, w kc S(w).

We show that this invariantly holds both times S(w) gets updated according to (2).

Let us assume that K,, w kc S(w) at the beginning of the while loop. This is

certainly true for S(wo) = i9, since K, w kc i9 is a premise of this theorem. We

modify propexpand slightly, in that we pick an atomic cover @, in accordance with

APPENDIX A. TABLEAUX AhrD OPTIMIZATIONS

Figure A.2: A strict model (left) and Ihe model generated by S (right) for the set in
E:i:a.rrl.p 1 e A .4 . 7.

Definition 3.4.1, and select the new node S accordingly. Note that @,, is just as well

an atomic cover of the expanded S(w) after execution of prop-expand, so Definition

3.4.1 in reverse shows that K,, w kc S(w) holds unchanged. Continuing execution

of the while loop, we find that pi-expand and nu-expand produce new sets S(wf) of

the form {xo) U {vo : vo E @,,,) for each 0 TO E @u,,p. But these are exactly

the sets for which Definition 3.4.1 states K,I, w' kc S(w'); moreover, these w' can

be chosen distinct from each other (and distinct from any other world in S , since K

is a tree model). We thus modify pi-expand slightly, stating that w' is chosen a s the

distinct R-successor of w in K,, as guaranteed above. Since hitherto the label w' does

not occur in S , this is a valid application of the (x)-rule obeying the side conditions.

(We remark as an aside that all 0 TO E @w,p are distinct, and this implies easily

that the (T)-rule is indeed applicable to every 0 TO E q,,p. But this observation is

not essential. Contrast this with Example A.4.7 below.) Moreover, we have shown

K,,!, w' kc S(w') for all w' which got newly introduced for the duration of the while

loop, which proves this invariant.

This theorem now follows analogously to Theorem A.4.2. We upheld the invariant (1) of

Theorem A.4.2 that every label and every r-pair in S also occurs in K . Since every strict

model is a rnodel, invariants (4) and (5) of Theorern A.4.2 hold unchanged. Therefore, once

the algorithm terminates, S is a complete open node, and the restriction of K to worlds and

arcs in S is a suitable K(S), which was to be shown. 0

It may appear that the standard calculus and strict Kripke models have the same degree of

expressivity. However, this is not true:

Example A.4.7 Given the set = {O p, 0 T, 0 p), a minimal strict model consists

APPENDIX A. TABLEA ZrX AND OPTIMIZATIONS 300

of the root world with two successor worlds, both of which are in V(p). However, by

applying t11c (T)-rule to 0 T first, followed by the (v)-rule on p, we obtain the set

S = {wo p, wo 0 T , wo 0 p, wl T , wo R wl, wl p), in which wo has only one successor

world. (See Figure A.2.) Notice that by using the (v)-rule before the second (T)-rule, we

introduced a formula wl p which makes the (T)-rule inapplicable to wo 0 p. At this stage

S is complete, since all formulas are expanded.

This example shows that complete open nodes may have strictly fewer labels than any strict

models. So the standard calculus is more expressive than strict models, albeit only slightly.

Bibliography

[I] Carlos Areces, Hans de Nivelle, and Maarten de Rijke. Prefixed resolution: A resolution
method for modal and description logics. In Harald Ganzinger, editor, Autom,ated
Deduction-CADE-16 (Trento, Italy, 1999), number 1632 in LNAI, pages 187-201.
Springer-Verlag, 1999.

[2] Peter Baumgartner. FDPLL - A First-Order Davis-Putnam-Logeman-Loveland Pro-
cedure. In David McAllester, editor, Automated Deduction-CADE-17, number 1831
in LNAI, pages 200-219. Springer-Verlag, 2000.

[3] Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach. A confluent connection
calculus. In Harald Ganzinger, editor, Automated Deduction-CADE-16 (Trento, Italy,
19.9.9), nurnbcr 1632 in LNAI, pagcs 329-343. Springer-Verlag, 1999.

[4] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Darwin: A theorem prover
for the model evolution calculus. In Stephan Schulz, Geoff Sutcliffe, and Tanel
Tammet, editors, IJCAR Workshop on Empirically Successful First Order Reason-
ing (ESFOR (aka S4)), Electronic Notes in Theoretical Computer Science, 2004.
http: //www .mpi-sb. mpg. de/6aumgart/publications/darwin. pdf.

[5] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In F. Baader, edi-
tor, Proceedings of the 19th International Conference on Autom,ated Deduction? CADE-
19 (Miami? Florida, USA), number 2741 in LNAI, pages 350-364. Springer-Verlag,
2003.

[6] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and har-
nessing the potential of clause learning. Journal of Artificial Intelligence Research,
22:319-351, 2004.

[7] Bernhard Beckert and Rajeev God. Free variable tableaux for propositional modal
logics. In International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX 1997), number 1227 in LNAI, pages 91-106. Springer-
Verlag, 1997.

[8] Bernhard Beckert and Rajeev Go&. System description: leanK 2.0. In Automated
Deduction-- CA DE-15, nunlber 1421 in LNAI, pages 5 1-55. Springer-Verlag, 1998.

BIBLIOGRAPHY 302

[9] Bernhard Beckert and Rajeev Gor6. Free variable tableaux for propositional modal
logics. Studia Logica, 69:59-96, 2001.

[lo] Daniel Le Berre, Laurent Simon, and Armando Tacchella. Challenges in the QBF arena:
the SAT'O3 evaluation of QBF solvers, 2003. http: / / sa t l i ve . org/QBFEvaluation/
eval03. pdf.

[ll] Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braunschweig/Wiesbaden, Ger-
many, 1982.

[12] Jean-Paul Billon. The disconnection method. a confluent integration of unification in
the analytic framework. In Proceedings of the 5th International Workshop TABLEAUX
1996 (Temsini, Italy), number 1071 in LNAI, pages 110-126. Springer-Verlag, 1996.

[13] Hans Kleine Biining, Marek Karpinski, and Andreas Flogel. Resolution for quantified
Boolean formulas. Information and Computation, 117:12-18, 1995.

[14] R. Carnap. Modalities and quantification. Journal of Symbolic Logic, 11:33-64, 1946.

[15] Brian F. Chellas. Modal Logic-an Introduction. Cambridge University Press, 1980.

[l G] Marcello d'Agostino. Tableau methods for classical propositional logic. I11
M. d'Agostino, D. M. Gabbay, R. Hahnle, and J. Posegga, editors, Handbook of Tableau
Methods, pages 45-123. Kluwer Academic Publishers, Dordrecht/Boston/London, 1999.

[17] Martin Davis, George Logemann, and Donald Loveland. A machine program for t h e e
rem proving. Communications of the ACM, 5:394-397, 1962.

1181 Martin Davis and Hilary Putnarn. A computing procedure for quantification theory.
J o ~ ~ m a l of the ACM, 7:201-215, 1960.

[19] J. de Kleer. An assumption-based truth maintenance system. Artificial Intelligence,
28:127-162, 1986.

[20] Francesco M. Donini, Bernhard Hollunder, Mario Lenzerini, A. M. Spaccamela, Daniele
Nardi, and Werner Nutt,. The complexity of existential quar~tification in concept law
guages. Artificial Intelligence, 53:309-327, 1992.

[21] F. Fitch. Tree proofs in modal logics. Journal of Symbolic Logic, 31 : 152, 1966.

[22] Melvin C. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Pub-
lishing, Dordrecht, Holland, 1983.

[23] Melvin C. Fitsting. First-order Logic and Automated Theorem Proving. Springer-Verlag,
New York/Berlin/Heidelberg, 1996.

[24] Jon W. Freeman. Improvements to propositional satisfiability search algorithms. Ph. D.
thesis, University of Pennsylvania, Philadelphia, PA, USA, 1995.

BIBLIOGRAPHY 303

[25] Alan F'risch and Richard Scherl. A general framework for modal deduction. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings, 2nd Conference on Principles of
Knowledge Representation m d Reasonirrg, pagcs 196 207. Morgan-Kaufmann, 1991.

[26] Dov M. Gabbay. Labelled Deductive Systems, volume 33 of Oxford Logic Guides. Claren-
don Press, Oxford, 1996.

[27] M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., San Francisco, CA, 1979.

[28] J. Gaschnig. Performance measurement and analysis of certain search algorithms. Tech-
nical Report CMU-CS-79-124, Carnegie-Mellon University, 1979.

129) Gerhard Gentzen. Untersuchungen iiber das logische Schlieoen. Mathematische
Zeitschrift, 39: 176-210 and 405-431, 1935.

[30] Lilia Georgieva, Ulrich Hustadt, and Renate A. Schmidt. A new clausal class decidable
by hyperresolution. In Automated Deduction-CADE-18, number 2392 in LNAI, pages
260-274. Springer-Verlag, 2002.

[31] Matthew L. Ginsberg. Dynamic backtracking. Journal of AI Research, 1:25-46, 1993.

[32] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Backjumping for
quantified Boolean logic satisfiability. In Proceedings of the Seventeenth International
Joint Conferences on Artificial Intelligence (IJCAI7O1): Seattle, Washington, USA,
pages 275-281, 2001.

[33] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Learning for quan-
tified Boolean logic satisfiability. In Proceedings of the 18th Nternational Conferences
on Artificial Intelligence (AAAI 2002), Edmonton, Canada, pages 649454, 2002.

[34] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. QBF reasoning
on real world instances, 2004. h t t p : //m. s a t i s f i a b i l i t y . org/SAT04/programme/
94. pdf .

[35] Enrico Giunchiglia and Armando Tacchella. A subset-matching size-bounded cache
for satisfiability in modal logics. In Roy Dyckhoff, editor, Automated Reasoning with
Ar~algtic Tableaux an,d Related Methods: Int~77tatiort~al C O ~ ~ ~ ~ P ~ L C C (T A BLEA UX .WOO),
number 1847 in LNAI, pages 237-251. Springer-Verlag, 2000.

[36] Ernesto Giunchiglia and Armando Tacchella. *SAT: a system for the development
of modal decision procedures. In Automated Deduction-CADE-17, number 1831 in
LNAI, pages 291-296. Springer-Verlag, 2000.

[37] Fausto Giunchiglia and R ~ b c r t ~ o Sebastiani. Building decision proc:ediires for rnodal
logics from propositional decision procedures-the case study of modal k. In Automated
Deduction-CA DE- 13, number 1 104 in LNAI, pages 583-597. Springer-Verlag, 1996.

BIBLIOGRAPHY 304

(381 Fausto Giunchiglia and Roberto Sebastiani. Building decision procedures for modal log-
ics from propositional decision procedures - the case study of modal K(m,). Information
nn,d Cornputntiorr, l62(1/2) : 158-178, 2000.

[39] Rajeev Gor4. Tableau methods for modal and temporal logics. In M. d9Agostino, D. M.
Gabbay, R. Hahnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 297-
396. Kluwer Academic Publishers, Dordrecht/Boston/London, 1999.

[40] Erich Gridel. On the restraining power of guards. Symbolic Logic, 64:1719-1742, 1999.

1411 Volker Haarslev and Ralf Moller. RACE system description. In Proceedings of the
International Workshop on Description Logics (DL 1999), Linkoping, Sweden, pages
130-132, 1999.

[42] Volker Haarslev and Ralf Moller. Consistency testing: the RACE experience. In
Roy Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Ir1,ternatiorlml Confererr.ce(TABLEA UX 20011), nurr~ber 1847 in LNAI, pages 57-61.
Springer-Verlag, 2000.

[43] Volker Haarslev and Ralf Moller. RACER system description. In Proceedings of the
International Joint Conference on Automated Reasoning (IJCAR 2001), number 2083
in LNAI, pages 701-706. Springer-Verlag, 2001.

[44] Jens Happe. The MotiProf theorcrn prover. In Proceedin,gs of the I~~,tem,ntion.c~l Joirrt
Conference on Automated Reasoning (IJCAR 2001), number 2083 in LNAI, pages 459-
463. Springer-Verlag, 2001.

[45] Jens Happe. A subsumption-aided caching technique. In Issues in the Design and
Experimental Evaluation of Systems for Modal and Temporal Logics (IJCAR 2001
Workshop), Technical Report DII 14/01, pages 49-57. Dipartimento di Ingegneria
dell'Informazione, Unversitb degli Studi di Siena, Siena, Italy, 2001.

1461 Jens Happe. Efficient reasoning with labelled formula translations of K,. Technical
report, AAAI Press, to appear.

1471 Ian Horrocks. Optimising Tableaux Decision Procedures for Description Logics. Ph. D.
thesis, University of Manchester, 1997.

[48] Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the 6th International
Conference (K R 1998), pages 636-647. Morgan Kaufmann Publishers, 1998.

[49] Ian Horrocks. Benchmark analysis with FaCT. In Roy Dyckhoff, editor, Auto-
mated Reasoning with Analytic Tableaux and Related Methods, International Confer-
ence(TABLEA UX 2000), number 1847 in LNAI, pages 62-66. Springer-Verlag, 2000.

BIBLIOGRAPHY 305

[50] Ian Horrocks. DAML+OIL: a description logic for the semantic web. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 25(1):4-9, 2002.

(511 Ian Horrocks. Implementation and optimization techniques. In F'ranz Baader, Diego
Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,
The Description Logic Handbook: Theory, Implementation, and Applications, pages
306-346. Cambridge University Press, 2003.

[52] Ian Horrocks and Peter F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267-293, 1999.

[53] Ian Horrocks, Ute Sattler, and Stefan Tobies. Reasoning with individuals for the de-
scription logic S'HZQ. In David McAllester, editor, Automated Deduction-CADE-17,
number 1831 in LNAI, pages 482-496. Springer-Verlag, 2000.

[54] In11 Horrocks and St,efai~ Tobies. Rerrsoning with axioins: Theory and practice. I11 Pro-
ceedings of the 7th International Conference on Principles of Knowledge Representation
and Reasoning (K R 2000), pages 285-296, 2000.

[55] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systm~s. Journal of the ACM. 27(4):797--821, 1980.

[56] G.E. Hughes and M.J. Creswell. A n Introduction to Modal Logic. Methuen & Co.,
London, 1968.

[57] Ulrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by translation
and first-order resolution. In Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 2000), number 1847 in LNAI, pages 67-71. Springer-Verlag,
2000.

[58] Ulrich Hustadt and Renate A. Schmidt. A principle for incorporating axioms into the
first-order translation of modal formulae. In Automated Deduction-CADE-19, number
2741 in LNAI, pages 412-426. Springer-Verlag, 2003.

1591 Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks.
Ontologies and schema languages on the web. In Dieter Fensel, James Hendler, Henry
Lieberman, and Wolfgang Wahlster, editors, Spinning the Semantic Web: Bringing the
World Wide Web to its full potential, pages 95-140. MIT Press, 2003.

[GO] Saul A. Kripke. Sernantical analysis of rnodal logic I: Normal propositional calculi.
Zeitschrij? f i r mathematische Logik und Grundlagen der Mathematik, 9:67-96, 1963.

(611 Richard E. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal of Computing, 6(3):467-480, 1977.

[62] Reinhold Letz. Lemma and model caching in decision procedures for quantified
boolean formulas. In Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2002), number 2381 in LNAI, pages 160-175. Springer-Verlag, 2002.

BIBLIOGRAPHY 306

[63] Reinhold Letz and Gernot Stenz. DCTP: A disconnection calculus theorem prover.
In Proceedings of the International Joint Conference on Automated Reasoning (IJCAR
8001), mlmber 2083 in LNAI, pagcs 381-385. Springer-Vcrlag. 2001.

[64] Reinhold Letz and Gernot Stenz. Proof and model generation with disconnection
tableaux. In R. Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the Inter-
national Conference on Logic, Programming, and Automated Reasoning (LPAR 2001),
number 2250 in LNAI, pages 142-156. Springer-Verlag, 2001.

[65] Reinhold Letz and Gernot Stenz. Generalised handling of variables in disconnection
tableaux. In Automated Reasoning: Second International Joint Conference (IJCAR
2OO4), Cork, Ireland, number 3097 in LNAI, pages 289-306. Springer-Verlag, 2004.

[66] Donald W. Loveland. Automated Theorem Proving: a Logical Basis. North-Holland,
1968.

[67] Carsten Lutz, Ute Sattler, and Stefan Tobies. A suggestion of an mary description
logic. In Proceedings of the Intenzational Workshop o n Description Logics (DL 1999),
Linkoping, Sweden, pages 81-85, 1999.

[68] J o k P. Marques-Silva and Karem A. Sakallah. Conflict analysis in search algorithms
for propositional satisfiability. In Proceedings of the IEEE Conference on Tools with
Artificial Intelligence, pages 467-469, 1996.

[69] Fabio Massacci. Simplification with renaming: A general proof technique for tableau
and sequent based provers. Technical Report 424, Computer Laboratory, Univ. of
Cambridge, UK, 1997.

[70] Fabio Massacci. Sinlplification: A general constraint propagation technique for proposi-
tional and modal tableaux. In Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX 1998), number 1397 in LNAI, pages 217-231. Springer-Verlag,
1998.

[71] Fabio Masssxci. Strongly analytic tableaux for ~lormal modal logics. In Automated
Deduction-CADE-12, number 814 in LNAI, pages 723-737. Springer-Verlag, 1994.

[72] Fabio Masssacci. Design and results of the TABLEAUX-99 non-classical (modal) sys-
tems comparison. In Automated Reasoning with Analytic Tableaux and Related Methods
(T A BLEA UX 1 YW), nu111ber 16 17 in LNAI, Imges 14-18. Spriuger-Vcrlag, 1999.

[73] Fabio Masssacci. Single step tableaux for modal logics: Methodology, computations,
algorithms. Journal of Automated Reasoning, 24(3):319-364, 2000.

[74] Fabio Masssacci and F'rancesco M. Donini. Design and results of TANCS-2000
non-classical (modal) systems comparison. In Roy Dyckhoff, editor, International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2000), number 1847 in LNAI, pages 52-56. Springer-Verlag, 2000.

BIBLIOGRAPHY 307

[75] Steve Minton, M. D. Sohnston, A. B. Philips, and P. Laird. Solving large-scale con-
straint satisfaction and scheduling problems using a heuristic repair method. In Pro-
ceedings of the 8th. Nationml Conference on Artijicid Intelligence, pages 17-24, 1990.

[76] G. Mints. R.esolution calculi for modal logics. American Mathematical Society Trans-
lations, 143:l-14, 1989.

[77] David G. Mitchell. A SAT solver primer. In Yuri Gurevich, editor, The Logic In
Computer Science Column. Microsoft Research, to appear.

[78] M. Moskewicz, C. Madigan, Y. Zhao, and L. Zhang. Chaff: Engineering an efficient
SAT solver. In Proceedings of the 38th Design Automation Conference (DAC2001),
pages 530-535, 2001.

[79] Ike Nassi and Ben Shneiderman. Flowchart techniques for structured programming.
Sigplan Notices, 8(8), 1973.

[80] Hans-Jurgen Ohlbach. Semantics based translation methods for modal logics. Journal
of Logic and Computation, 1(5):691-746, 1991.

[81] Hans-Jurgen Ohlbach and Renate A. Schmidt. Functional translation and second-order
frame properties of modal logics. Journal of Logic and Computation, 7(5) :581-603,
1997.

[82] H.J. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay. Encoding two-valued non-
classical logics into clasical logic. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, volume 11, chapter 21, pages 1403-1486. Elsevier Science,
2001.

[83] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing
Company, 1994.

1841 Peter F. Patel-Schneider. DLP system description. In E. Franconi, G. de Giacomo,
R.M. MacGregor, W. Nutt, C.A. Welty, and F. Sebastiani, editors, Collected Papers
from the International Description Logics Workshop (DL 1998), pages 87-89, 1998.

[85] Peter F. Patel-Schneider. TANCS-2000 results for DLP. In Roy Dyckhoff, editor,
Automated Reasoning with An(~hjtic Tableav~z and Related Methods, I~~,temation,al Con,-
ference(TA BLEA UX 2000), number 1847 in LNAI, pages 67-71. Springer-Verlag, 2000.

[86] Peter F. Patel-Schneider. What's new in DLP. In Collected Papers from the Inter-
national Description Logics Workshop (DL 2000): Aachen, Germany, pages 227-235,
2000.

[X7] A.L. Rector, W. A. Nowlan, and A. J. Glowinski. Goals for concept rcprescihtion in
the GALEN project. In 17th annual Symposium on Computer application,^ i71. Medical
Care, Washington, USA, SCAMC 93, pages 414-418, 1993.

NOTATION 308

1881 Jussi Rintanen. Partial implicit unfolding in the davis-putnam procedure for quantified
Boolean formulae. In R. Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the
Internation,al Conference on Logic, Progranmirtg, and Automated Reasoning (LPAR
2001). number 2250 in LNAI, pagcs 362--376. Spri~~gcr-Verlag, 2001.

[89] Lawrence Ryan. Efficient algorithms for clause learning SAT solvers. M. Sc. thesis,
Simon Fraser University, 2004.

[90] Manfred Schmidt-SchauB and Gert Srnolka. Attributive concept description with com-
plcments. Artificial Intelligence, 48: 1-26, 1991.

[91] R. Smullyan. First-order Logic. Springer-Verlag, New York, 1968.

[92] L. J . Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1-22, 1976.

[93] Geoff Sutcliffe and Christian Suttner. The IJCAR ATP system competition (CASC-J2).
AI Communications, to appear.

[94] Geoff Sutcliffe, Christian Suttner, and Jeff Pelletier. The IJCAR ATP system compe-
tition (CASC-JC). Journal of Automated Reasoning, 28(3):307-320, 2002.

[95] Stefan Tobies. PSPACE reasoning for graded modal logics. Journal of Logic And
Computation, 11(1):85-106, 2001.

[96] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning
in a boolean satisfiability solver. In Proceedings of the International Conference on
Computer Aided Design (ICCAD 2001), Sun Jose, California, pages 279-285, 2001.

Glossary of Notation

Notation Description

the number of worlds in Kripke structure K
the absolute size of a Kripke structure K

the normalization of complex label X 131

normalization of C: ensures o p L < for all < E C 131

the number of atoms in 37

the number of formulas in S 60

the absolute size of the set of formulas S 60

the disjoint union of sets 44

isomorphism relation between two Kripke structures 44

equivalence of fornlulas in any prop. logic 14

equivalence of formulas in KNNF
equivalence of formulas in LBL

is less constrained than (of search states) 253

an order on nogood prerniscs (for uudoii~g branches) 212

is finer than (of prop. covers)

a general satisfiability relation

a general semantic relation on structures and formulas

strict satisfiability relation for modal logic K(in NNF)

semantic/satisfiability relations for any prop. logic

~at~isfiability relation for modal logic K(in NNF)

weak semantic/satisfiability relations for LBL (flavours
LBL, and LBL,)

satisfiability relation for propositional logic (in NNF)

alternative semantic relation for propositional logic (in
NNF), using sets of atoms as models

strong semantic/satisfiability relations for LBL,

NOTATION 310

Notation

CNF
cwr

Description

strong semantic/satisfiability relation for LBL,
the lower mgu of two simple labels, if it exists

the mgu of two simple labels, if it exists

the mgu of two complex labels, if it exists

the upper mgu of two simple labels, if it exists

the instance relation: a t a' iff a' instantiates a

the strict instance relation: a C a' iff a L a' and a # a'
instance relation: X a' iff a 5 a' but J g p a', all J E C

instance relation: X pL a' iff a a' but < gp a', all < E C

instance relation: a a' iff a' instantiates a prefix of a

instance relation: X Lp a' iff X L a" for some prefix a" of a'

instance relation: a Ep a' iff a prefix of a' instantiates a

an anonymous placeholder, represents an arbitrary constant

the inconsistent label (with no instances) 57

a tableau rule for conjunctions 284
a propositional atom 60
a conjunctive formula of the form a1 A .. . A a, 14

a set of branches, esp. those taken in the model finder algo- 203
r i th~n

a tableau rule for disjunctions 284
a branch index (nonneg. integer), also u. f. the branch itself 202
the term over which b branches 202
a disjunctive formula of the form pl v . . . V p, 14

a conditional constant in a label 128
an (existential) constant from a domain D, used in labels 57, 128
the clause of branch b 202

a mapping from LBC-formulas to constants, aka 77
Godelization

clause (or conjunctive) normal form 10

constant-wise realizable (of labels) 71, 153

Description

a domain of constants to be used in labels

a dependency set, esp. the premises of a nogood

the depth of a formula or set of formulas
the set of all strings over domain D

directed acyclic graph

The Davis-Putnam-Logemann-Loveland procedure [18, 171

the union of Deltat(B) and Delta-(B)

the a: b branched upon in a search state)

the a: b blocked in a search state)

the empty label (of length 0)

exception-generated instance (of a label)

expanded And/or normal form

First-order logic

a universe of ground labels, closed under prefixes

ground labels, consisting of (existential) constants only

the set of ground instances of X in F
the set of ground prefix instances of X in r
the set of ground instances of a in

a Kripke frame spanned by a set of prefixed formulas and
r-expressions S

the set of rgls of a set of assertions

the set of rgis of a complex label X

the set of rgls of a set of CBC-formulas

the set of rgis of a simple label a

a Kripke structure (or model) (W, R, V)

the smallest basic normal modal logic

a mapping from labels to modalities, u. f. defining labellings

the Kripke model generated by a set of assertions

the restriction of K to formulas in NNF

Description

a Kripke model generated by a set of prefixed formulas and
T-expressions S

the submodel of K induced by set W' of worlds
the submodel of K induced by world tu and its successors

identifier for a generic, usu. propositional logic

identifier for a generic, usu. propositional, logic

the complement of a literal

identifier for labels with exceptions

a propositional literal

standard notation for an assertion with complex label, a is a
prop. atom

the set of labels (or scope) associated with a branch

branch b applied over label X

the logic of labelled formulas, object of our study

the strong logic CBC: b, relation and complex labels in
assert ions

the weak logic CBL: bl relation and simple labels in asser-
tions

the extended logic LBL: bl relation and complex labels in
assertions

labelled clause normal form

The language of a logic (set of well-formed formulas)

the standard translation of a QBF-formula po into CBC

sets of assertions, u. f. semantic structures in CBC
a counterinstance against M bl F for some formula F
a semantic structure; sometimes u. f. a model

the assertions introduced by B, including default branches

the assertions introduced by the set of branches B
most general unifier, esp. of simple or complex labels

the set obtained from A i by iteratively subscripting the po-
sitions of a

bijection between worlds of two Kripke struct,iircs, defining
an isomorphism

Description

the subscripted set {(a - C(,)) a : (za - C) a E M or (*a -
C) E M I , & 6 C(X)
the subscripted set {(a - C(,)) a : E @ C(,), (z a - C) a E
M or (*a - C) a E M)

a tableau rule for formulas of the form 0 vo

the set of imnilegatk integers

generic name for a nogood

ilcgation imrmal form

a modal formula of the form vo

a set of conclusions of a nogood-like expression, esp. a nogood

Web Ontology Language

The set of propositional variables

a tableau rule for formulas of the form 0 .rro

propositional variables

a property: for any y E I (a l , M) , yc E I (M)

a set of formulas in any prop. logic, esp. in K

(~ (p , , . . . , p,) a propositional formula inside a QBF (its matrix)

PSPACE

formulas in any prop. logic, esp. in K

a modal formula of the form 0 .rro

the logic of propositional formulas in negation normal form

a complexity class, corresponding to QBFk
the set of all prefixes of labels occurring in S
the set of all prefixes of labels in C

propositional covers of a set of formulas, also: sets of atoms

a set of propositional atoms, also u. f. a semantic structure
in PLNNF

the propositional atoms, v-formulas, and 7r-formulas in an
atomic cover of a KNNF-formula

the complexity class of problems solvable in polynomial space

quantified Boolean formula

the class of OBF with k auantifier alterations

S
T

C
C

[a1
a

u, a', . . .
TA , TN

Description

the class of dual problems to QBFk
a property: for any a' C y, y E I (M U {y T))

a formal property on CBC-formulas

the quantifiers of a QBF: either 3 or V

a formal property on semantic structures

a formal property on formulas

a formal property on simple labels

a formal property on simple labels and sets of assertions

a generic tableau rule 278

an accessibility relation between worlds in a Kripke structure 42

a (nogood) substitution 216

realized ground instance 63, 147

realized ground label 63, 147, 164

the substitution by uniform instantiation of a, into a: 217

the substitution induced by re-indexing of wildcards 217

the index-eliminating substitution 217

the R-successors of a world W 42

identifier for sets of CBC-formulas or prefixed formulas

a (usu. atomic) prop. cover of a set of CBC-formulas S

a set of simple labels, esp. exceptions to a main label

a set of simple labels, particularly exceptions

a, with all constants replaced by conditional constants

a simple label, consisting of constants and *
simple labels, consisting of constants and *
the ur~labellcd and labelled fornlulas in an atomic cover of
an CBC-formula

standard notation for an assertion, a is a prop. atom

a nogood premise, see also A: b

the subscripted set {a F : ca F E S or *a F E S)

strongly constant-wise realizable (of labels)

standard notation for a labelled formula

the set obtained from S by iteratively subscripting the posi-
tions of y

NOTATION 315

Notation Description

the saturation of M (conversion from CBCw- to CBC,-model) 168
a complexity class, corresponding to QBFk 101

the set of labels obtained from C by iteratively subscripting 59
the positions of o

a complex label: main label o, exceptions C 129
the set of augmented formulas {ra' F : of F E S) 60

a shorthand for {p : ui p E S) 278

the subscripted set {a : xo E C or *o E C) 59

identifiers for a tableau 278

a mapping between two logics, esp. a homomorphism 20

the unbranched labels (or default branch) of a clause C 204

a propositional or modal valuation function 31, 42

a pr~posit~ional valuation function, dcfined by the valuat,ion 42
V on world w

the worlds in a Kripke structure 42

the expansion of M (conversion from CBC,- to CBC,,,-model) 174

a shorthand for {w p : p E @) 278

a prefixed formula on a tableau node 277

an r-expression on a tableau node 2 77

a simple label, used as an exception in another label 129
a position in a label, either a constant or * 57

the set of labels augmented by x: {xo : o E C) 59

