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ABSTRACT 

Fault detection, isolation and accommodation(FD1A) have always been an important 

aspect of control system design. Various design techniques such as hardware redun- 

dancy, analytical redundancy and expert systems have been used to enhance system 

performance. Recently, artificial neural networks(ANN) have been highlighted for 

their potential ability in feature(fau1t) recognition. Due to their learning capabilities 

and their inherent parallel structures, ANN are a promising method for fault-tolerant 

control system design. In this thesis, an approach based on neural networks and math- 

ematical models for detecting and diagnosing instrument failures in nuclear reactors 

is presented. The reactor's mathematical model is that of H.B. Robinson's nuclear 

plant located in North Carolina, which produces 2200mw(th) at full power. Multi- 

layer neural networks are used at the first level for identification of plant parameters 

and at the second level for distinguishing parameter variations from possible faults, 

and as a pattern recognizer in the third level for the detection of faulty instruments. 

The design approach was able to simultaneously classify single and multiple anomalies 

such as sensors and actuators under plant parameter uncertainties. Simulation results 

presented reveal the promise of artificial neural networks for improving the operating 

characteristics of nuclear power plants. 
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CHAPTER 1 

INTRODUCTION 

Many advanced process plants and machines are extremely complex, and always de- 

pend on automatic control for satisfactory operation. In order to achieve and maintain 

system stability and assure satisfactory and safe operation, there is increasing demand 

for dynamic systems to continue acceptable operation following failures. Therefore, 

failures detection, identification, and accommodation (FDIA) has always been an im- 

portant aspect of fault tolerant control system design. In a nuclear power plant, for 

example, tens of alarms can occur in a few second after a fault. Locating the fault 

might be of utmost importance due to safety, political and other reasons. 

1.1 Literature Review 

A failure can be described as a variety of malfunctions in the actual plant dynamics 

that affects the capability of the system to perform its specified mission. When a 
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failure occurs, it must be detected as early as possible. The detection task is the 

process of indicating the presence of a failure. After a failure is detected, the faulty 

component must be isolated from the system. The identification task then estimates 

the magnitude of the failure. In addition, we can define failure diagnosis as the 

task of isolating and identifying the failures. After diagnosing, the failure should be 

accommodated by system reconfiguration. 

Traditionally, physical or hardware redundancy is used to accomplish fault-tolerance 

in dynamic systems. In order to provide protection against malfunctions in control 

systems, one of the easiest alternatives is to install redundant hardware which per- 

form the same task. Majority vote ruling scheme is then used to detect and isolate 

failures. The main drawbacks encountered in implementing hardware redundancy are 

increased cost and maintenance. Furthermore, such a system requires the additional 

space to accommodate instruments. 

Although physical redundancy are capable of protecting against control system 

instrument failures (sensors and actuators), it does not generally address failures of 

plant components. Due to the availability of reliable and powerful computers, analyt- 

ical redundancy has been developed which has the advantage of requiring fewer addi- 

tional components. The principal idea of analytical redundancy is that the system's 

mathematical model, along with the input and output measurements can be used to 

generate quantities termed residuals. If the system model is perfectly consistent, the 

residuals will be near zero under normal operating conditions, otherwise the residuals 

will diverge at the presence of an anomaly. Analytical redundancy techniques have 

been discussed in survey papers by Willsky[52], Isermann[22], Basseville[3], Frank[lO] , 

Merri11[34] and Stengel[46]. 
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A variety of FDIA techniques using analytical redundancy can be found in litera- 

ture. Beard[4] and Jones[23] used a detection filter for fault detection. The detection 

filter was designed so that the magnitude and the direction of its error vector in the 

output space would provide information regarding the possibility of sensor failures, as 

well as the faulty sensor, respectively. Mehra and Peshon[33] proposed an innovation 

based test using a single Kalman filter. Their approach indicates the presence of a 

faulty sensor only, it can not isolate the faulty sensor. Deckert et a1.[8] presented 

the parity space approach which was implemented for sensor failure detection aboard 

the F-8 Digital Fly By Wire (DFBW) aircraft. Clark[6,7] presented the dedicated 

observer scheme (DOS) where Luenberger observers were dedicated to individual sen- 

sors. Since the introduction of DOS, other approaches based on it have been proposed 

(Frank[lO] , Saif and Villaseca[44,45]). 

In general, most plant models used for dynamic system design are uncertain. Even 

if an exact model is available, it may be so complicated that it must be approximated 

by a simple, but uncertain, design model. For example, non-linear models may be 

linearized for small deviations from an operating condition. Furthermore, physical 

parameters of the plant and its environment may be uncertain. 

In an uncertain model system, the effect of modelling errors obscures the effect of 

faults generating a source of false alarms. Hence, robust FDIA techniques should be 

explored[lO] . 

Various effective techniques to FDIA using analytical redundancy which are in- 

sensitive to modelling errors have been developed. Frank and Keller[ll] used two 

dedicated observers to distinguish parameter variations and instrument malfunctions. 

However, this approach is restricted to single input single output (SISO) systems. 
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Watanabe and Himmelblau[SO] applied the extended Kalman filter to identify process 

parameters indicative of process faults caused by the deterioration of components. 

The major difficulty with FDIA based on the earlier techniques is that the approach 

involves a massive computational load for estimation; furthermore, multiple failures 

are unable to be detected and recognized simultaneously. 

Another alternative to FDIA under uncertainties in the system's model is based 

on the theory of unknown input observer (UIO). Unknown input observers are a class 

of estimators designed to provide an accurate estimation of the system's state in 

the face of unknown exogenous plant disturbances in the system's dynamical model. 

The theory of UIO was first examined by Basile and Marro[2]. Later, Kurek[31] 

gave necessary and sufficient conditions for the existence of UIO. The design of UIO 

generally requires geometric approaches or a solution of complicated matrix equations. 

Recently, Guan and Saif[12,13,43] provided a very straight forward, but yet elegant 

approach to the design of UIOs which was used to detect and identify the faults of a 

VTOL Helicopter in the vertical plane. 

The major drawback in the context of robust FDIA using UIO is that the existence 

condition for the UIO must be satisfied. If an UIO does not exist, it is impossible to 

detect and identify the instrument failures. 

In recent years, use of knowledge-based expert systems in fault-tolerant control 

system design has increased significantly. By relying upon device models and device 

interconnections, a knowledge-based expert system can locate a disturbance origin 

(e.g., a device malfunction) by searching for a casual path along with the disturbance 

propagates its effects. Various FDIA techniques via artificial intelligence have been 
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developed. For example, Palovitch and Kramer[30] have proposed a fault diagnos- 

tic expert system for chemical plants based on cause-and-effect models. Kim and 

Modarres[26] used a Goal Tree-Success Tree (GTST) model to represent a deep and 

hierarchical human cognitive knowledge. Handelman and Stengel[l4] have included 

quantitative and qualitative reasonings in their rule-based failure diagnostic system. 

Later Huang and Stengel[21] employed structural and behavior descriptions to es- 

tablish discrepancy, detection and causal interaction in diagnosing the flight control 

system of a CH47 tandem-rotor helicopter. 

FDIA using knowledge-based expert systems have some drawbacks associated with 

them. They lack plant generality and they tend to fail under novel circumstances[38]. 

The rule-based knowledge bases are also difficult to understand as they lack higher- 

level representation and organization of plant knowledge. As a result, they involve 

substantial effort in development which can be quite time-consuming. Furthermore, 

they are not able to learn and improve system performance dynamically. 

Artificial neural networks have gained enormous popularity in the last few years. 

They have been applied to a variety of domains including control, monitoring and 

diagnostics. Trained networks offer considerable promise as fast and robust compu- 

tational models that implicitly take into account the nonlinear behavior of a system 

and can be used in a predictive manner for model-based fault-tolerant control. Re- 

cently, artificial neural networks have been used to represent knowledge about failures 

and do the pattern recognition tasks. First, a variety of fault situation are used to 

train the neural net. After the network has learned them, it can do the proper fault 

detection and diagnosis. Hoskin and Himmelblau[20] developed an artificial neural 

network based diagnostic system for a chemical process consisted of a series of three 
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continous-stirred tank reactors. Wat anabe et a1. [51] used an artificial neural network 

approach to estimate the degree of failures in a chemical reactor. Venkatasubrama- 

nian and Chan[49] presented a binary-input network to diagnose faults of a fluidized 

catalytic cracking process. Later Naidu et a1.[35] studied a sensor failure detection 

system based on a multilayer perceptron network and backpropagation learning al- 

gorit hm. Recently, Upadhaya et a1. [9,47,48] utilized a backpropogation network to 

develop "models" of signals from both a commercial power plant and the EBR-11. 

Most of the aforementioned works are applied to very slow chemical process and 

the faults are detected only when the system is in steady state. In this thesis, an 

artificial neural network based FDIA technique for dynamical systems is presented. 

The approach is based on the fact that the model of the dynamical system under plant 

parameter uncertainties and instrument failures can be used to teach neural networks 

for parameter identification, and fault detection and diagnosis. 

1.2 Thesis Overview 

This thesis is divided into six chapters and one appendix. Chapter Two, entitled 

"FDIA overview and background," addresses the general ideas of a fault-tolerant 

control system. Chapter Three, entitled "Artificial neural networks," addresses the 

unifying principle, mechanisms and structures of neural networks. In chapter Four 

the neural networks based scheme for parameter identification and fault detection and 

diagnosis are presented. In chapter Five simulation studies are performed on the model 

of a pressurized water reactor (PWR). Finally, chapter Six, entitled "Summary and 

conclusions," investigates the effectiveness of the proposed artificial neural network 
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based FDI technique in enhancing simulated fault tolerance. Some of the advantages 

resulting from the use of ANN based FDI techniques are reviewed, as well as the 

limitations. In a final word, suggestions for future research work are presented. The 

appendix provides additional details not found in the main text. 



CHAPTER 2 

FDIA OVERVIEW AND 

BACKGROUND 

2.1 FDIA Problem Characteristics 

The important requirements for reliable automated fault detection and diagnosis in 

modern technological installations are increasing rapidly as the systems become more 

complex and they need to operate with minimum malfunctioning or breakdown time. 

For example, in a chemical industrial plant, product quality is maintained by assuring 

that process variables fluctuate within permissible ranges. If operating conditions go 

outside these ranges, the product quality is not acceptable, or more critically some 

catastrophic event might result. The early detection of plant's failure could prevent 

system malfunction or serious damage, which could also lead to disaster. Conse- 

quently, failure detection, identification and reconfiguration plays a very important 
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role in the system design of complex plants such as space vehicles, aircrafts, sub- 

marines and nuclear power plants, where safety is always the highest priority. The 

following overview addresses the various steps that are required for tackling FDIA 

problem. 

FDIA Schemes 

The schemes used in fault detection, identification and accommodation are usually 

divided into two general categories: 

2.2.1 Mat hematical Model-Free Approaches 

No mathematical model of the process is necessarily needed in these approaches for 

fault detection and diagnosis. Physical redundancy and limit checking are the typical 

examples of using these methods. However, these approaches require extra expenses 

and additional space. 

Recently, knowledge-based (expert systems) technology has been applied in these 

methods. An expert system has been defined as a computing system which embodies 

organised knowledge concerning some specific area of human expertise, sufficient to 

perform as a skillful and cost effective consultant. This knowledge-based model-free 

technique acquires the knowledge from experts directly, usually in the form of (if- 

then) production rules. This type of approach utilizes empirical associations between 

evidence and conclusions, but does not depend on a "deep" (functional) understanding 

of the domain itself. This has been referred to as the "shallow" knowledge approach. 
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This approach is typical in medical diagnosis programs, where underlying disease 

mechanisms are unknown or difficult to describe (for example, MYCIN is based on 

this approach). For many reasons, the shallow approach is not ideal for complex plant 

modelling in the form of expert systems. For example, the knowledge needed to solve 

a plant upset condition is broad and ill-defined. The required knowledge may include 

the plant layout, physical and chemical properties of the fluids, design specifications, 

knowledge of past and current operating conditions, and interpretation of process 

measurements. 

In general, mathematical model-free approaches are unable to indicate incipent 

failures, and identify the magnitude of the failures. 

2.2.2 Mathematical Model-Based Approaches 

There are a variety of fault detection and diagnosis methods using a mathematical 

model of the process. Basically, model based failure detection methods rely on the 

determination of changes occuring in the system due to the presence of a failure, in 

comparison to the normal condition of the system. As a result, the concept of ana- 

lytical redundancy is widely applied in these methods. The estimation techniques of 

Kalman filtering and the Luenburger observer are usually utilized to generate redun- 

dant information. In its simplest form the detection logic would consists of comparison 

of a sensor measurement with its estimated value for fault detection. This is in con- 

trast to hardware redundancy, where similar parallel measurements from each sensor 

are compared. 
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2.3 Model-Based FDIA Procedures 

Based on the mathematical model, the schematic conceptual architecture of the FDIA 

is illustrated in Figure 2.1. There are three neccesary procedures required to achieve 

the task of FDIA: 

2.3.1 Generat ion of Redundancy Relations 

Generally, redundant information regarding the plant is generated by estimation 

schemes. Failures of components may take the form of abrupt additive in measurement 

bias. These changes are determined by comparing the estimated variables obtained 

from the model of the normal process with the measurements of the actual plant dy- 

namics. The difference between these two values are called residuals. If the actual 

and modelled measurements generally agree, the residuals will be zero or approximate 

to zero; otherwise, it will be non-zero, and this would indicate the presence of a fault. 

2.3.2 Decision Making 

After the residuals are generated, they then proceed to a fault decision process with 

the goal of detecting and diagnosing the anomalies due to the existence of abnormal 

behavior. This fault decision process is divided into the following three tasks: 

1. Fault detection, i.e., the indication of the occurence of a failure. 

2. Fault isolation, i.e., the localisation of components that have failed. 
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3. Fault identijcation, i.e., the determination of the magnitude and/or the shape 

of the fault. 

2.3.3 System Reconfiguration 

After fault decision process, the system must at tempt to accommodate the failure(s) 

and to retain stability and performance characteristics. Failure accommodation could 

include hardware tasks (e.g., activating back-up systems) and software actions (e.g., 

adjusting the feedback control gains). However, failure accommodation is not dealt 

with in this thesis. 

Classification of Failures 

A failure can be described as a variety of malfunction in the actual plant dynamics 

that affects the capabilty of system to perform its specified mission. In general, these 

malfunctions can be caused by the following three sources: 

1. Insturement failures: 

These failures usually occur in the sensors and actuators of the plant. Due 

to their existence, there are discrepancies between the actual and measured 

values of the system's input or output variables. For instance, in aerospace 

applications the failure of control actuators may manifest themselves as shifts 

in the parameters of control gain matrix. Failures of sensors may take the form 

of abrupt changes in the parameters of the output matrix, or development of 

additive biases in the measurement. 
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2. Disturbances: 

Disturbances involve the unmeasurable noise contamination on inputs and/or 

outputs of the plant. These noises are usually random functions originating in 

the environment, such as a wind gust acting on an aircraft. 

3. Plant parameter uncertainties: 

The uncertainties usually arise from modelling errors, inexact knowledge of the 

plant parameters, and parameter variation due to component aging, etc. Most 

plant models used for system design are uncertain. Even if an exact model is 

available, it may be so complicated that it must be approximated by a simpler, 

but uncertain, design model. For example, non-linear models may be linearized 

for small deviations from an operating condition. However, outside of this range 

the nonlinearities of the plant produce signals which are not modelled accurately. 

If not accounted for, such uncertainties and nonlinearities may be interpreted 

as faults by the fault detection logic. 

2.5 Dedicated Observer Schemes 

There are a number of different analytical redundancy approaches for FDIA that have 

been proposed in the literature. The basic idea of this approach is to reconstruct the 

outputs of the system from the measurements, with the utilization of observers or 

Kalman filters using estimation error. Among various estimator schemes, the dedi- 

cated observer scheme (DOS) proposed by Clark[6,7] is one of the most well known 

approach for FDIA system. 

In the DOS, each sensor is dedicated to one observer or measurement estimator. 
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It is assumed that the system is observable from each measured variable of the pro- 

cess. Each dedicated observer estimates the state variables based on the individual 

measurements and the corresponding input vector u. Under no-fault condition, the 

estimated state variables should converge to the actual state variables after a short 

transient period. If, for example, a fault occurs in one of the sensors, then the esti- 

mate of the related measured variable driven by the corresponding dedicated observer 

will be erroneous which can be identified by the threshold logic. The structure of 

dedicated observer scheme is illustrated in Figure 2.2. 

The major drawback of the DOS approach is the demand for multiple observers 

and the correspondingly large computational burden. 

2.6 Unknown Input Observer Scheme 

A variety of robust FDIA techniques using Unknown Input Observer (UIO) scheme 

have also been developed in the literature. This technique basically relies on the theory 

of state estimation for linear systems subject to exogenous unknown inputs and the 

unknown input observer theory. An unknown input observer is a class of estimators 

capable of estimating the state of a linear system with unknown inputs. Among 

various UIO schemes, the design algorithm proposed by Saif and Guan[12,13,43] is 

believed to be computationally simpler and more direct. Their technique provided 

a very straight forward, but yet elegant approach to the design of UIOs. In the 

following, a brief overview of the FDI technique developed by Saif and Guan is given. 

In the proposed scheme, only a single UIO is required for the purpose of failure 

detection and identification . The architecture of the unknown input observer scheme 
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is illustrated in Figure 2.3. Consider a linear time-invariant system with both instru- 

ment failures and plant uncertainties. This system can be represented in the following 

state space formulation 

where x E 8" is the state vector, u E SRm is the input vector, v E %P is the unmea- 

surable input disturbance which can be considered as actuator failure, and y f 8Q is 

the measurable output vector, and f E ?I? is the unmeasurable additive disturbance 

which can be considered as sensor faults. The system is transformed into a completely 

known system with instrument faults, and some additive unknown input disturbances. 

Then the system has the following state space representation: 

where 
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where AA and AB are the plant uncertainty vectors. D'V* is the additional part 

of the system that accounts for uncertainties. This additional part is obtained by 

lumping all uncertain part of the system matrices together and treating them as 

additional unknown input to the system. The model of the system with both actuator 

and sensor failures is then augmented into a higher dimensional model as follows: 

where Af is a rxr matrix and ( is an unknown input vector. At this point the obtained 

model is suitable for employment of the UIO. Once the estimate of the augmented 

state is obtained, the sensor failures can be identified immediately by checking the 

components of the estimated vector f .  Any non-zero component of this vector would 

indicate the presence of a fault in the corresponding sensor. Moreover, the non-zero 

value gives the estimate of the fault magnitude. Hence, faulty sensors can be detected, 

as well, the shape of the fault can also be identified. Since both P and f̂  are available 

through estimation, the only unknown element is the unknown input vector v. By 

solving the equation of (2.3) for v in terms of x and u, the faulty actuator can be 

easily detected from the non-zero component in v. 

The major shortcoming of this FDIA approach is that the existence condition for 

the UIO must be satisfied. The existence condition requires the number of unknown 

inputs be less than or equal to the number of outputs. For systems with large amounts 

of structural uncertainty and not enough available output measurements, it would be 

impossible to satisfy the existence condition for the UIO, and in such situations the 
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proposed approach will fail. If an UIO does not exist, it is impossible to detect and 

identify the instrument failures. 

2.7 Analytical Knowledge-Based Met hods 

Recently, knowledge-based methods (expert systems) combined with the existing ana- 

lytical and algorithmical FDIA methods have opened a new dimension of possible fault 

diagnosis for complex processes with incomplete process knowledge. Whilst the al- 

gorithmic approaches implement quantitative analytical models, the knowledge-based 

method utilizes qualitative models based on the available knowledge of the system. 

The combination of both strategies is believed to be able to evaluate all available 

information and knowledge of the system for fault detection and diagnosis. 

The general architecture of a model- and knowledge-based FDIA system is shown 

in Figure 2.3. This FDIA design contains an on-line expert system which combines the 

analytical model-based technique with the knowledge-based technique using heuristic 

reasoning. The overall FDIA system consists of the following architectural elements: 

1. The data base, i.e., information about the present known or deduced facts 

(states) of the process. 

2. The knowledge base, i.e., a description of the objects in the knowledge domain 

and casual and heuristic relationships in the domain. The process knowledge is 

usually represented by rules and/or frames. 

3. The inference engine, i.e., the specification of the steps to be taken when ap- 

plying knowledge to  the present state. Generally, a data-driven search (forward 
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chaining) or a goal-driven search (backward chaining) are used to perform the 

reasoning tasks. 

4. The explanation component, i.e., this component provides the user with useful 

information on why and how the conclusions were obtained. 

In this analytical knowledge-based approach, the on-line expert system perform its 

FDIA tasks by evaluating the analytical and heuristic knowledge of the dynamic plant. 

These tasks are accomplished in the inference engine which combines quantitative 

reasoning (algorithmic operations based on analytical redundancy) with qualitative 

(heuristic) reasoning in a single problem solver. The inference engine executes a form 

of search common to: 

The analytical knowledge in terms of the mathematical model (structure and 

parameter). 

Heuristic knowledge of fault propagation, fault statistics, and process opera- 

tional and environmental condition, etc. 

The actual data (input, output, operating condition, etc.) 

A shortcoming of this approach is that the development of the analytical and 

heuristic knowledge base can be very difficult, expensive and time-consuming. Fur- 

thermore, the accurancy of fault detection and diagnosis depends on how rich and 

precise the knowledge base is. 
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CHAPTER 3 

ARTIFICIAL NEURAL 

NETWORKS 

An artificial neural network (ANN) is a technology which has been inspired by studies 

of brain and nervous system. A neural network is a collection of simple neuron-like 

processing elements that process information by their dynamic behavior to external 

sources. In this chapter, the principles, mechanisms, and architectures of artificial 

neural network are described. 
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3.1 Neuron Models 

3.1.1 Biological Neuron 

Axon 

I 

Figure 3.1 : Biological Neuron 

A biological neuron shown in Figure 3.1 basically consists of four parts: a cell body, 

dendrites, axons and synapses. The input signals are transmitted through the input 

fibers called dendrites. The cell body, which is called soma, processes the signals from 

the dendrite to produce an output pulse that carries to an output fiber named the 

axon. The axon connects to the dendrite of other neurons at the synapse. Moreover, 

the synapse is a specialization of the neuron's membrane which allows the output 

pulse from the axon to induce a voltage over the receiving dendrite's cell membrane. 

3.1.2 Artificial Neuron 

In artificial neural networks, artificial neurons (nodes) are very simple processing ele- 

ments motivated by the neural structure observed in real biological organisms. We can 
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Figure 3.2: Artificial Neuron 

describe them as a simple operator performing a mapping from a multidimensional 

input obtained from other processing nodes or external stimuli to a single dimensional 

output which is sent to other nodes through weighted connections. Due to the in- 

herently parallel architecture of the neural network, the computations of many nodes 

can be accomplished simultaneously. 

A typical artificial neuron is illustrated in Figure 3.2. The input stage of neurons 

can be described as the connections that forward to the neuron from other neurons in 

the network. Each connection has an associated weight with it, which represents the 

strength of the connection. Each neuron is also associated with an activation value a, 

a number corresponding to its state. Each neuron is also connected to a bias which 

provides a threshold for the activation of the neuron. The activation was simply a 

linear weighted sum of the inputs, plus a bias 

where variable x; is the incoming input and variable w; is the weight or the connection 

strength; and 0 is the bias of the neuron. The measurements in the input xi and the 
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weights in the connection strength w; are dimensionless real numbers. The activation 

values are unbounded real-valued and dimensionless. 

The output stage of the neuron consist of a function, called activation function or 

output function, f (a). The output function utilized, is a threshold function for which 

no output is produced unless the neuron's activation reachs a certain threshold value. 

This threshold quality creates the basis for discriminator functions, which separate 

the feature space Rm into different decision regions (m is the dimensional space of 

the input patterns). There are three most commonly used discriminator functions: 

binary step, linear ramp and sigmoid function, as shown in Figure 3.3. 

In this work, a sigmoid logistic function is chosen to calculate the activation of 

neuron. This activation function is given by 

where f (a) is the neuron's activation, and a is its input. The form of this function 

is illustrated in Figure 3.3. 

The main reason for selecting eqn 3.2 is that it has been successfully implemented 

in many pattern recognition problems. Furthermore, since it is differentiable and non- 

decreasing it can be used with the backpropagation algorithms to train the multilayer 

networks . 
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3.2 Overview 

3.2.1 Type of Neural Networks 

The neural networks study began after McCulloch and Pitts[32] introduced the ab- 

stract neuron model for performing a simple task in 1943. The major neural networks 

are listed in Table 3.1. In 1950, F. Rosenblatt[39] presented the perceptron models, 

which ignited a great amount of research interest in neurocomputing. The percep- 

tron is a single layer feedforward network for pattern classifiers. The inputs were 

transferred to the neural layer with randomly weighted connections. The neural net- 

work performed successfully with application of the Hebb learning rule. The major 

limitation, pointed out by Minsky and Papert, is that the perceptron cannot classify 

complex nonlinear categories. Multilayer perceptrons were then developed by Rosen- 

blatt in the 1960's to overcome many of the limitations of single-layer perceptrons, 

but were generally not utilized in the past, due to the fact that effective training 

algorithms were not available. 

Another major category in neural networks is associative memory. J. Anderson 

developed "Brain-State-in-Box-Model" with his linear associator and Hebb learning 

rule[l]. The network consists of a layer with feedback and one postprocessing output 

layer. Because of the positive feedback architecture and the learning rule, the output 

is the best-matched pattern from the stored memory for a given input. 

In 1982, Hopfield[18] proposed the Hopfield network, which is basically single lay- 

ered with feedback. The condition for the synapse weighting is very restricted (being 

symmetric and having no self-feedback terms), while that for the neuron transfer 
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Name Years Introduction Primary Applications 
Perceptron 1957 Typed-character recognit ion, 

Simple pattern classifier 
Brain-State-in-a-Box 1977 Associative memory 
(Linear Associator) 
Hopfield Network 1982 Image processing, Assoc. memory, 

Problem solver 
Multi-layer with 1974-1985 Wide ranges: Speech synthesizer 
Back-propagation Pattern recognition 
Boltzmann Machine 1985 Pattern recognition for radar, sonar 
Bidirectional 1986 Associative memory 
Associative Memorv 

Table 3.1: Major neural network models 

function is very relax (only monotonically increasing and bounded). Using an energy 

or Lyapunov type function, Hopfield proved that the network always moves toward 

a low energy level and hence is stable. The network has been applied to associative 

memory and many engineering optimization problems. 

The multilayer feedforward neural networks are vitalized by the back propagation 

learning rule. The usefulness of the multilayer neural networks was recognized in the 

past, but the decision of synapse weightings was the main problem. The multilayer 

neural network can be used for various applications including data encoding/decoding, 

data compression, signal processing, pattern classification, and robotic controls. 

A Boltzmann machine has a similar network architecture to the Hopfield network, 

but differs in stochastic update and learning properties. The stochastic update in 

retrieving and learning processes is based on the simulated annealing technique using 

the Boltzmann probability function. By decreasing the temperature of the probability 

function from a high value, the network always finds the global minimum in the energy 
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surface. 

~ d e  bidirectional associative memory (BAM) is a generalized Hopfield model to 

heteroassociate network[29]. BAM has two fully connected central layers and in- 

put/output buffer layers. The synapses and neurons in the central two layers are 

bidirectional. For a given input, the BAM layers oscillate until a stable state is 

reached. The final stable output is the closest association stored in BAM. 

3.2.2 Type of Learning Algorithms 

Learning is the process of adapting the synapse weightings in response to external 

stimuli. Various types of learning algorithms are listed in Table 3.2. The learning 

rules were developed with the network architectures as shown in Figure 3.4 . The first 

learning rule, named Hebb learning rule, which shows that the neural network can 

learn for a certain function, was presented in 1957[15]. The rule requires that if an 

input and output are activated at  the same time, the weighting between the input and 

output is increased. T. Kohonen presented competitive learning, where each neuron 

completes with others at a given input and the winner adapts to get more strength[28]. 

This type of learning, called unsupervised learning, does not need reference data. On 

the other hand, desired outputs can be given in the supervised learning approach. 

The simple delta rule is applied to adjust the synapse weightings, using the error 

between the desired output and actual network output. Many derivatives from the 

simple delta rule are used to efficient learning results. The famous application of 

supervised learning is backpropagation for a multilayer network. The root-mean- 

square error at the output layer propagates backward through the network and is 
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Model Basic Equation Comments 
Hebb's Rule Awij=cr a; . aj Unsupervised, 

Hopfield networks 
Competitive Learning Aw;j=a ai - ( a j  - w;j) Unsupervised, 

Associative memory 
Delta Rule Awij=cu a; . Ej Supervised, 

Back-propagation 
Boltzmann Machine Boltzmann Probability Supervised, 

function with simulated Boltzmann Machine 
annealing 

Table 3.2: Basic learning algorithms 

used to update the synapse weighting between layers. The process continues until the 

input layer is reached. The delta rule or its derivatives are used for determine the 

synapse weighting modifications. Due to an extremely long learning time, only one 

or two hidden layers are often used. The counterpropagation network[l6], which can 

be applied only to three-layer networks, combines the competitive learning and delta 

rule. Thus, the counter-propagation network selects the nearest stored pattern due 

to the competitive operation inside the hidden layer. 

Another type of learning that falls between unsupervised learning and supervised 

learning is reinforcement learning[27]. In this learning, an external observer gives a 

response as to whether the network output is good or not. The learning rule of a 

Boltzmann machine[l7] is based on the stochastic process, which constructs repre- 

sentations of the reference patterns with the simulated annealing technique. Due to 

the cooling process, the retrieving and learning time of the Boltzmann machine is 

extremely long. 
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Figure 3.4: Several neural networks 
(a) Single-layer network 
(b) Single-layer network with feedback 
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Multilayer Feedforward Neural Networks 

In this thesis, multilayer feedforward neural-networks with the backpropagation learn- 

ing algorithm are selected for the design of FDI system. This is due to their capa- 

bilities of generating arbitrarily complex decision regions and separating the meshed 

classes. Moreover, they also have been successfully used in a number of domains such 

as speech synthesis and recognition, visual pattern recognition and fault pattern clas- 

sification. As a result, the architecture and design of the multilayer feedforward neural 

networks, and the backpropagation algorithm will be emphasized in the remainder of 

this chapter. 

3.3.1 Network Topology 

The general architecture of the multilayer feed-forward neural networks is depicted 

in Figure 3.5. Neurons are distributed in three layers: input, hidden and output. 

Each node is fully connected to the preceding layers. The neurons are interconnected 

through unidirectional feed-forward communication links. Each link has a weight 

associated with it. Weights can be positive or negative real values indicating an 

excitatory or inhibitory effect on a node. Furthermore, each hidden and output node 

is also connected to a bias which gives a threshold for the activation of the neuron. The 

bias provides a threshold for the neuron and is essential in order to classify network 

input patterns into various subspaces. 

In the input layer, each node obtains signals from an external stimulus and its 

value is fed into the hidden layer. Each node in the hidden layer uses the activation 

function to compute its output and sends the output to a subsequent layer. 
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XI 2 x 3  N 

Figure 3.5: Multilayer Feed-forward Neural-nets 

The hidden and output nodes carry out two calculations, first a weighted sum of the 

inputs is taken and then the output is calculated using a sigmoid function. In this 

case, the outputs of the hidden nodes are calculated from the following formula 

where N and L denote the number of the input and hidden neurons, respectively, xi is 

the inputs of the network, zj the outputs of the hidden layer, w;j the weights between 
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the input and hidden layer, B j  the internal biases in the hidden nodes and f is the 

activation function. The outputs of the network are calculated from the formula 

where M denotes the number of output neurons, W j k  is the weights between the hidden 

and output layer and Bk is the internal biases in the output layer. 

Use of a hidden layer allows the function calculated by the network to not be 

restricted to simply calculating some linear combination of the network inputs. Since 

there is no feedback between layers, this architecture has the effect of providing a 

nonlinear mapping between the input nodes and output nodes. This mapping is 

completely determined as long as the weights are fixed. 

3.4 The Backpropagat ion Learning Algorithm - 

Basically, artificial neural networks learn patterns of activation. The network of Fig- 

ure 3.5 learns by adjusting the weights associated with the connections between the 

nodes of the network in accordance with a learning rule. In addition, learning is also 

capable of allowing all the nodes to accomplish the desired state of activation for a 

given pattern of inputs. The backpropagation algorithm (BP) used in the present 

work is the most investigated supervised learning algorithm. This algorithm has been 

implemented in a large number of applications: speech recognition, handwriting clas- 

sification, prediction and so on. For more detailed information about the BP learning 

algorithm, please refer to Appendix B. 
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NEURAL BASED FDI 

CONTROL SYSTEMS 

Fault detection techniques using mathematical models of the process rely on the de- 

termination of discrepancies occurring in the process due to the presence of a failure, 

compared to the normal operating condition of the system. In a nuclear power system, 

control actuator failures may greatly degrade the performance of the system. Sensor 

failures may cause abrupt parameter changes in the output matrix, or discrepancies 

in measurement. In this work, the actual measured values of the output variables are 

compared to the values of variables obtained from the fault-free plant model. The 

difference between these variables are called residuals. These residuals are analyzed 

in the feature extraction to compute new residuals that remove redundant fault pat- 

terns. The new residuals are then sent to the input nodes of the failure detection 

and diagnosis neural network for the classification of various failures. A pressurized 

water reactor (PWR) of H. B. Robinson's nuclear plant is used as a case study for the 
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development of the neural based FDI (NFDI) system. A computer program, written 

in Matlab[53], was developed to simulate the dynamics of the PWR-typed nuclear 

power plant. The program is capable of simulating the plant performance under dif- 

ferent parameter variations and fault conditions, and generating necessary data to 

train and test the designed neural networks. The software package used to simulate 

the neural networks is "Parallel Distributed Processing" (PDP) by Rumelhart and 

McClelland[40]. The weights of the network are adjusted using the famous back- 

propagation algorithm. All data are normalized between 0 and 1 since the neurons of 

this version of back-propagation used are only able to output value in this range. The 

network stops training when the mean square error of the whole training set reachs a 

desired minimun. The plant dynamics and the neural networks simulations are both 

carried out in Sun SPARCstation IPX. 

The design of the NFDI system can be divided into three parts: parameter iden- 

tification, threshold logic generation, and failure detection and diagnostics . Figure 

4.1 illustrates the block diagram of the NFDI scheme. 

The PWR Plant Model 

The dynamics of the nuclear power plant is presented in this section without any at- 

tempt to get into the detail and physics of the process. A good review of the neutronic 

process is given in[24]. In [25] the mathematical model of the H.B. Robinson plant 

was derived and validated by comparison between the theoretical and experimental 

results. Furthermore, a set of linear coupled differential equations described the H.B. 

Robinson PWR system are also given in Appendix A.1. 
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For analysis and design of a control system, the equations describing the dynamics 

of the PWR are placed into state space formulation. In the following state space rep- 

resentation some simplifying assumptions are made [25,41]. These are (1) the original 

six groups of delayed neutron decay constants are used to obtain a single delayed 

neutron group based on the weighted harmonic means of the original six delayed neu- 

tron group; (2) by assuming that the pressurizer is large enough to accommodate the 

steam generator disturbances, its dynamic is neglected in the model formulation; and 

(3) since the control rods are mainly used for power level adjustment, is is assumed 

that no power level change occurs so that the term containing S f T o d  is dropped. Thus 

the model of the PWR plant can be simplified to a single input system. The resulting 

state space formulation is thus of the form 

where x E ?Rn, u E ?Rm, and y E F are the state, input, and output vectors, re- 

spectively. Also A, B, and C are matrices of appropriate dimension. For the H.B. 

Robinson PWR the state and control are given by 

x = [SP SC STf ST,, ST,, 6Tp ST, SP, 

and 

u = SW,, 

where 
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Deviation of reactor power (SP) 

Deviation of precursor concentration (SC) 

Deviation of fuel temperature (STf) 

Deviation of coolant temperature in l t h  node (ST,,) 

Deviation of coolant temperature in 2th node (ST,,) 

Deviation of temperature of primary coolant node (ST,) 

Deviation of tube metal temperature (ST,) 

Deviation of steam pressure (SP,) 

Deviation of reactor upper plenum temperature (ST',) 

Deviation of hot leg temperature (STHL) 

Deviation of primary coolant temperature inlet plenum (STI,) 

Deviation of temperature of primary coolant outlet plenum (STop) 

x13 Deviation of cold leg temperature (STcL) 

x14 Deviation of reactor lower plenum temperature (STL,) 

u Deviation of steam flow rate to turbine (SW,,) 

The system distribution matrix A and control vectors B are given in Appendix A.2. 

In this thesis, it is assumed that not all the fourteen state variables are available 

for measurement, and the output vector is given by 

where Is represents an 8x8 identity matrix. As a result, eight output measurements 

are assumed to be available in the study. 
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4.2 Parameter Identification 

The linearized mathematical model of PWR is used to accomplish the system design 

of FDIA. However, in deriving this PWR mathematical model, there are various pa- 

rameters whose values are approximately determined either through empirical formula 

or by using curve-fitting techniques. The values of the parameters such as the mod- 

erator temperature coefficient of reactivity and Doppler fuel temperature coefficient 

vary with time during the reactor operation[36]. In the PWR plant, the moderator 

temperature coefficient of reactivity (a,) is one of the most important parameters. 

Therefore, sensitivity to this parameter variation is considered for the FDIA system 

design. 

When parameter variation occurs, the system must detect, identify and take cor- 

rective measures to deal with plant parameter perturbation effects. Figure 4.1 shows 

the proposed structure for parameter identification. The actual plant dynamics to be 

identified are defined by the following equations, 

where A,, B, C are constants and precisely known, and AA is an unknown matrix 

that represents system uncertainties . The important source of parameter variations 

is assumed to be uncertain perturbation which occur in one or more elements a;j of 

A. In particular, it can be defined as AA=Aajj. In this thesis, Aa14 and Aa15 are 

taken into consideration where both elements are affected by the variation of a,, the 

moderator temperature coefficient of reactivity. 
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The task of parameter identification can be accomplished in three stages: residual 

generation, plant parameter identification and parameter variation compensation. 

4.2.1 Residual Generation 

Here the difference between the actual output and the output received from the nom- 

inal process model is obtained. These residuals can be formulated as: 

where 

Here subscript n denotes values obtained from the nominal plant. They contains 

information concerned with the quantitative effects due to parameter variations. Ide- 

ally, under no variation condition, the actual output will match the modelled output 

giving a zero residual. However, if the residual is non-zero, parameter variation will 

be detected. These residuals are then passed through a neural network parameter 

identifier for the identification of the perturbated parameter. 

4.2.2 Plant Parameter Identification 

A neural network identifier is used for parameter identification purposes. It is called 

Parameter identification neural networks (PINN) or PI networks. Figure 4.2 illustrates 

the specific configuration of the network employed for parameter identification. The 

network consists of four layers. It has five input nodes corresponding to time, reactor 
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T 6 C  6T, 

Figure 4.2: PI Networks 

power, precursor concentration, fuel temperature and steam pressure residuals. Two 

hidden layers with twenty nodes, and one output node corresponding to the parameter 

variation of the moderator temperature coefficient of reactivity are utilized in the 

neural networks. All four aforementioned output residuals are used to train the neural 

networks to identify system parameter. The reason for using only these four output 

measurements is that they show the greatest sensitivity to uncertainty and variation 

a,. A range of variations of the parameter are simulated to generate the training 

data. This parameter is assumed to vary within f 2% of its nominal value. 

The training data were generated under nine different fault-free situations for the 
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process in the transient as well as steady state. The time interval for identification 

was set to be 30 seconds and the sampling interval for measurement is 0.1 second. 

As a result, the training data contains 2700 measurement patterns corresponding 

to the four measurable process variables which were introduced to the network for 

identification. An example of the training sets is given in Table 4.1, which shows the 

unnormalized training pattern used at  t=10 & 10.1 seconds. 

In the table, the values of the four measurable variables and time are used as the 

input teaching data. Each output pattern corresponds to the magnitude of parameter 

variation. All measurements are scaled to a continuous range from 0 to 1. The 

scaling makes the classification easier to learn, because the original measurement 

data contains both small and large values. 

For example, the residuals of deviation of normalized precursor concentration is 

about 17790.11 and the residuals of the deviation of reactor power is -10.8360. With- 

out the scaling, the fluctuations in large measurement values would dominate the 

operation of neural networks. The weight of the network is adjusted using the back- 

propagation algorithms. It stops training when the mean square error is smaller than 

0.003. The initial weight values are small random numbers in the interval of [-0.1,0.1] 

and the training coefficients of the backpropagation algorithm are selected so that 

the learning rate is = 0.95 and the momentum term cr = 0.1. Other values of the 

coefficients have also been simulated and these are selected because they yield fast 

learning. 

A number of neural networks of various sizes were also trained for parameter iden- 

tification. The goal was to find a small network that could be trained to a minimum 

error. A 80 hidden unit(HU) network was selected to start the training. The training 
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Input data Outvut data 
Node 1 Node 2 'Node 3 Node 4 Node 5 ;ode 1 
Time 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.1 
10.1 
10.1 
10.1 
10.1 
10.1 
10.1 
10.1 
10.1 

Table 4.1: Measurement patterns used for training PI Networks 

was then reduced to 6 hidden unit network. The smallest network that achieved a E, 

of 0.03 was one with 20 hidden nodes. As expected, when the number of hidden units 

was lowered it became harder for the network to learn. 

Table 4.2 gives a summary of the number of hidden units, the lowest E, achieved, 

and the number of learning iteration for each network. All of the training runs used 

the same learning rate and the same momentum aforementioned. 

When a hidden layer is used, recognition rate depend on the number of hidden 
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Sf. of HU Lowest E # of learning iteration 

Table 4.2: Results of training runs for PI Networks 

units present. As a rule of thumb, the geater the number of units, the better the 

recognition. This is due to a better distribution of "knowledge." Using too many 

hidden units, however, may increase the complexity of the error surface such that 

training patterns can not be seperated. Thus, it was concluded that the number of 

the hidden units must be large enough to form a decision region that is as complex as 

is required by the given problem, and small enough so that the generalization ability 

remain good. 

4.2.3 Parameter Variation Compensation 

After the parameter is identified, its effect on AA has to be assessed. Furthermore, 

since in this case the actual system and the nominal modal could differ by [AAIx, 

this effect need to be compensated for in the model. This can be accomplished by 

adding a compensatory term AA to the nominal plant model A, so that the actual 

system matchs with the fault-free model. Hence, the compensated plant model has 

the following st ate variable equation: 

x = A,X + BU + [AAIX (4.10) 
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where A denote values obtained from the compensated fault-free plant model. After 

parameter accommadation, the actual system outputs and the new model outputs are 

used to generate residuals to be fed into the failure classifier. 

4.3 Threshold Logic Generation 

The simple way to detect a failure is to compare the residual magnitudes to a threshold 

value. However, in an uncertain system the residuals are affected by both failures 

and parameter variations. The thresholds used must be insensitive to the system 

uncertainties and sensitive to possible faults. Selecting low threshold increases the 

numbers of false alarms; using large threshold decreases the effect of fault detection. 

After parameter compensation, the error of the plant's measurable outputs be- 

tween the actual-system and the compensated model will be approximately zero under 

fault-free condition. These differences can be used as threshold values to minimize 

false alarms and missed detections for various parameter variation situations. 

In order to have better detection logic for monitoring both the time of occurence 

and location of the fault, a neural network can be used to generate threshold values 

under various parameter variations. Figure 4.3 shows the architecture of the neural 

network for threshold logic generation. It is called Threshold logic generation neural 

networks (TLGNN) or TLG networks. The network is constructed by four layers. 

The input layers contains 2, the hidden layer 20, and the output layer 8 nodes. Time 

and the variation of parameter cx, obtained from the output of the PI networks are 

fed into the input nodes. The output nodes generate eight different threshold values 

corresponding to each of the output residuals. Similar to parameter identification, the 
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T Aac 

Figure 4.3: TLG Networks 

nine different aforementioned variations are used to generate the teaching patterns for 

the neural networks. 

The training data is taken at a steady state as well as transient situation. The 

simulation was also carried out for 30 seconds using a sampling interval of 0.1 second. 

2700 measurement patterns were generate to train the neural networks. Table 4.3 

indicates the unnormalized measurement patterns used to train the network at t=10 

& 10.1 seconds. These data were normalized between 0 and 1 before training. Each 

input pattern corresponds to time and the magnitude of parameter variations. 
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Inpu t  data Ou tpu t  da ta  
n l  n2 n l  n2 n3 n4 n5 n6 n7 n8 

Time ACZ, 6P 6C 6Tf &I 6Tc2 ~ T P  ST, bps 
10.0 2% -0.2070 141.4653 0.0105 0.0028 0.0025 0.0039 0.0010 -0.0381 

Table 4.3: Unnormalized measurement data used for training TLG Networks 

# of HU Lowest E # of learning iteration 
100 0.0740 54567 
60 0.0654 67987 
20 0.0589 55456 
10 0.1042 56685 
4 0.9371 54500 

Table 4.4: Results of training runs for TLG Networks 
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A various number of hidden units were also explored to find the network architec- 

ture that gives the least error during training. Different numbers of learning iterations 

were also investigated. A learning rate 7 and a momentum term coefficient cr of 0.9 

and 0.6, respectively, were chosen for this study. Table 4.4 shows how the performance 

of the network under a various numbers of hidden units. 

With the aid of neural networks, the thresholds are set such that the detection 

scheme is able to distinguish between parameter variation and faults, therefore en- 

hancing the accuracy of the fault detection process. 

4.4 Failure Detection and Diagnostics 

In the most of the FDI techniques, the estimator's innovation process is monitored 

for jumps which could indicate the presence of a fault. Once a fault is detected, 

it proceeds to a decision making process for fault identification and isolation. In 

this thesis, the failure detection and diagnostic system consists of three major parts: 

residual generation, feature extraction and failure isolation and identification neural 

networks. The block diagram of this system is illustrated in Figure 4.1. 

4.4.1 Residual Generation 

The outputs obtained from the compensated fault-free model are substracted from 

the actual outputs to form a residual as: 
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If the compensated and actual measurements generally agree, the residual Ay(t) will 

be approximately zero. If a fault is present, this term will diverge and yield a large 

residual magnitude. The magnitudes of residual is then compared with threshold 

value obtained from the TLG networks for failure detection. 

4.4.2 Feature Extraction 

The feature extraction in the detection and diagnostic system is used to filter out 

redundant failure information and generate a simple decision space for fault diagnosis. 

There are eight sensors and one actuator in the PWR system. When single or multiple 

faults occur in any of the seven sensors (i.e. SP, SC, STf, STcl, STc2, STp and ST,), the 

fault magnitude of these seven sensors can be easily determined by the magnitudes of 

the residuals of each output variable. By close inspection of eqn. (A.9) in Appendix 

A, it becomes clear that the actuator failure would immediately affect the steam 

pressure P,. Also, simulation study revealed that the actuator failure would not have 

an immediate impact on the remaining state variables of the system. However, due 

to feedback all of the sensor faults would affect the steam pressure. Thus, the effect 

of the residual of the sensor measuring SP, contains not only its own fault magnitude, 

but also the failure signatures of the actuator and the other remaining sensors. These 

extra failure signatures of SP, obtained from the other sensors can be filtered out by 

substracting an redundant term from each sensor. The redundant term is defined as 

the product of the influent constant (I',,,,,,) and the fault magnitude (Asensor) of the 

sensor. The influent constants of each sensor are obtained from a simulation program 

that models the behavior of the plant under single fault condition. In the simulation, 

seven single sensor failures are simulated seperately with a fault magnitude of 1, in 



CHAPTER 4. NEURAL BASED FDI CONTROL SYSTEMS 5 2 

order to investigate their impact on sensor SP,. 

Influent Sensors 
Constant S P  SC STj STcl bTc2 STp a,& 

I's,n,,,(t) 0.0072 135.83 3.2e-2 2.4e-2 0.2489 5.5e-3 -0.0137 
rsensor(t + 1) 0.0218 413.2 9.7e-2 0.7337 0.7572 1.7e-2 -0.0387 
rsensor (t + 2) 0.0364 689.67 0.1620 1.2246 1.2639 2.8e-2 -0.0565 

Table 4.5: The influent constants used for feature extraction 

Table 4.5 tabulates the influent constants obtained from the simulation corre- 

sponding to each sensor. The formulation of the feature extractor is defined as follows: 

where AP, denotes the new residuals after feature extractions, A() is the residual 

of each sensor and I'o denotes the influent constant of each sensor. When the detec- 

tion logic declares the existence of any faulty sensor, the feature extractor implements 

eqn 4.13 immediately to eliminate the redundant terms obtained from the seven afore- 

mentioned sensors. As a result, the new residual of the SP, contains only the failure 

signatures of its own sensor and the actuator. After the presence of a fault, three 

sampling data of SP, residual (i.e. aPS(t l ) ,  ~ P , ( t 2 )  and h jS ( t l ) )  are used for fault 

diagnosis purpose. This is because the three samplings data of AP, contain sufficient 

failure information for the diagnosis of the actuator. After feature extraction, the new 

residuals are then passed to the next stage, the fault classifier which is implemented 

in the form of a neural network. 
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4.4.3 Failure Isolation and Identification 

A neural network classifier is implemented for failure detection and diagnosis tasks. 

It is named Fault isolation and identification neural networks (FIINN) or FII net- 

works. Figure 4.4 illustrates the network architecture used for the fault detection and 

diagnosis. The neural network is comprised of four layers. The input layer has three 

input nodes correponding to the output residuals of P, at times tk,  tk+l, and tk+2, 

obtained with the aid of a delay line, each delays the signal by one sampling period. 

Any instance of fault of the consecutive residuals of SP, (i.e. aFS(tk) ,  A R ( Q + ~ )  and 

~ F , ( t k + ~ ) )  are fed to the network. In addition, the network also consists of two hid- 

den layers with a total of 10 nodes, and two output nodes associated with the failure 

condition of both the SP, sensor and the actuator. 

The neural network fault classifier was trained using a set of fault data patterns ob- 

tained from a numerical simulation of the dynamics of the PWR plant. The data gen- 

erated by simulation covered the specific fault range under consideration (i.e. [0,100]) 

for actuator and [0,2] for the SP, sensor. Fifty five measurement patterns were used to 

accomplish the task of fault classification. Table 4.6 indicates part of the unnormal- 

ized measurement patterns utilized to train the network. In the table, three sampling 

data of SP, are used as the input teaching pattern. Each output pattern contains the 

fault magnitude of actuator and sensor SP,. All data are normalized between 0 and 

1 before training. 

Various architecture of neural networks with different numbers of hidden units 

were studied to find a network that provide the smallest error during training. In FII 

network, the learning rate T,I and momentum term coefficient ct are 0.9 and 0.1 respec 



CHAPTER 4. NEURAL BASED FDI CONTROL SYSTEMS 

Figure 4.4: FII Networks 

-tively. They are selected because they provide quick learning. A various number 

of learning iterations were also investigated. Table 4.7 lists the performance of the 

network under a various number of hidden units, different E, and learning iterations. 

The simulation included the effects of all eight sensor faults and a single actuator 

fault. The network is not only able to classify single and multiple faults, but also 

capable of estimating the magnitude of the faults simultaneously. The fact that the 

networks can provide fault magnitude is important since this information can be used 

for accommodation of the faulty instrument. 
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Input data Output data 
Node 1 Node 2 Node 3 Node 1 Node 2 
SPs(tk) SPs(tk-I) 6Ps(tk-2) Actuator 6P, 
-0.0544 -0.1628 -0.2954 25.0000 0 

Table 4.6: Measurement patterns used for training FII Networks 

# of HU Lowest E # of learning iteration 
40 0.0140 55734 
20 0.0094 60342 
10 0.0036 52394 
8 0.0325 59143 
4 0.0904 55249 

Table 4.7: Results of training runs for FII Networks 



CHAPTER 5 

The NFDI-PWR SYSTEM 

PERFORMANCE 

This chapter presents simulated accounts of PWR failure detection and diagnosis 

performed by the neural based FDI (NFDI) system. The reactor is that of the H. B. 

Robinson nuclear power plant located in North Carolina which produces 2200 MW(th) 

at full power. The dynamics of the nuclear power plant derived by Kerlin[24,25] 

is described in appendix A. Furthermore, the moderator temperature coefficient of 

reactivity is taken into account for the PWR plant parameter variation since it varies 

greatly with time during the reactor operation. 
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The static projective suboptimal controller, designed by Saif[41,42], is used for 

the control of the PWR system. The projective controller, a class of output feedback 

controllers, is sought to place the poles at the desired locations, and at the same time 

approximately minimize the cost functional subject to (5.11) 

where E represents the expectation operator, Q and R are weighting matrices of ap- 

propriate dimension. 

The first step in designing a projective controller involves the design of an optimal 

state feedback LQR that would place the eigenspectrum of the system at desired 

locations. The resulting closed-loop eigenstructure under a state feedback law will 

then be used as a reference structure. This reference structure is used to arrive at 

an oblique projection, and consequently at a projective controller that retains an 

invariant subspace of the reference eigenspace. 

The output control law of the PWR system is given by 

with the projective controller gain, K O ,  shown below. 

The PWR system under closed loop control was simulated on a digital computer 

using a sampling interval of T=0.1 sec. The simulation was carried out for t=30 

seconds. The selected test case is an initial impulse disturbance of 6TL,(0)=2"F. It 
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Failure number Failure title 
1 Single actuator failure - 

under nominal conditions 
2 Single sensor failure 

with a parameter variation of -1.5% 
3 Multiple sensor failure with single actuator failure 

with a parameter variation of 1% 
4 All sensor and actuator failure 

with a ~arameter  variation of 2% 

Table 5.1: Failure Scenario titles 

should be pointed out that the failure accommodation is successfully accomplished 

after three sampling periods (the time it takes to detect faulty instruments). To 

demonstrate the feasibility of the NFDI design, four seperate tests will be conducted 

in the simulation. These failure scenarios are summarized in Table 5.1. 
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5.1 Failure No.1: Single Actuator Failure 

The first failure scenario involves only actuator failure. In addition, the PWR system 

is operated under nominal conditions. Therefore, there is no parameter a, variation 

(i.e. Aa14=Aa15=0). At t=15 sec, the actuator abruptly increases with a magnitude 

of 100 (i.e. 10% of the nominal value). This test is intended to indicate that an 

actuator failure could be detected and identified. 

The simulation results are shown in Figure 5.1-4. Figure 5.1 shows that PINN is 

able to identify the parameter correctly. Since, there is no parameter variation, the 

values of the elements remain the same (i.e., AI4=Al5=13700). Figure 5.2 shows the 

actual thresholds and TLGNN predicted thresholds used for fault detection. Table 

5.2 indicates the actual and the desired fault size of the actuator and the sensors 

estimated by FIINN. The network is able to detect and recognize actuator malfunction 

immediately with only a 3.531% error. Figure 5.3 illustrates the residuals generated 

from the actual plant and the compensated fault-free model. At t=15 sec, the actuator 

fault produces an obvious impact on the residuals of the temperature sensor of primary 

coolant and tube met a1 as well as the steam pressure sensor. The effect of the actuator 

fault on the system outputs is also shown in Figure 5.4. 



CHAPTER 5. THE NFDI-P W R  SYSTEM PERFORMANCE 

Case 1 
Fault simulated Identified fault size Actual fault size 
Actuator SW,, 96.4693 100 

Sensor 6 P  -0.0026 0 
6 C  0.0000 0 

6 Tf 0.0012 0 
6Tc1 0.0000 0 
6Tc2 0.0000 0 
ST' -0.0000 0 
ST, -0.0020 0 
bps 0.0370 0 

Parameter variation 0% 0% 

Table 5.2: Simulation results of FII Networks for Failure No.1 

5 10 15 20 25 30 
Time (sec) 

Figure 5.1: Parameter Identification of Failure No. 1 
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Figure 5.2: The threshold values used for Failure No.1 
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Figure 5.3: The system output residuals of Failure No.1 
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Figure 5.4: The system output responses of Failure No.1 
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5.2 Failure No.2: Single Sensor Failure 

In this failure scenario, it is assumed that a malfunction occurs due to the failure of 

steam pressure (6P,) sensor. Furthermore, the moderate temperature coefficient of 

reactivity is also assumed to have a perturbation of -1.5% of its nominal value (i.e. 

A ~ ~ ~ = A a ~ ~ = - 2 0 5 , 5 ) .  The sensor fault is assumed to be a step function occurring at 

t=25 sec with fault size of 0.55. This is to show that the NFDI scheme is capable of 

detecting and identifying single sensor failures under plant parameter uncertainty. 

Figure 5.5 indicates the simulation result of the parameter identification. As 

shown, it takes about 0.2 sec for PINN to identify the system parameter. The detec- 

tion logic used for fault detection is shown in Figure 5.6. TLGNN is able to provide 

much better threshold values under this parameter variation condition. Table 5.3 

shows the simulation results of FIINN. It can be observed that FIINN is able to de- 

tect and classify the steam pressure sensor failure with an accuracy of 97.22%. The 

output residuals generated for fault recognition are also shown in Figure 5.7. Figure 

5.8 shows the effect of the single sensor fault on the measurable outputs of the PWR 

plant. 
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Case 2 
Fault simulated Identified fault size Actual fault size 
Actuator SW,, 0.0000 0 

Sensor SP 0.0031 0 
6C 0.0000 0 
STf 0.0030 0 
6Tc1 -0.0002 0 
a 2  -0.0001 0 
ST, -0.0001 0 
ST, -0.0001 0 
SPs 0.5653 0.55 

Parameter variation -1.5% -1.5% 

Table 5.3: Simulation results of FII Networks for Failure No.2 

0 5 10 15 20 25 30 
Time (sec) 

Figure 5.5: Parameter Identification of Failure No.2 
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Figure 5.6: The thresholds values used for Failure No.2 
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Figure 5.7: The system output residuals of Failure No.2 
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Figure 5.8: The system output responses of Failure No.2 
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5.3 Failure No.3: Multiple Sensor with Single Ac- 

t uator Failure 

This failure scenario is a combination of four sensor failures and an actuator failure 

with a parameter a, variation of 1% from its nominal value (i.e. A ~ ~ ~ = A a ~ ~ = 1 3 7 ) .  

In particular, the precursor concentration sensor, the temperature sensor of primary 

coolant node in steam generator, the tube metal temperature sensor and the steam 

pressure sensor are faulty. The fault size of the faulty sensors are 4500, 0.08, 0.05 and 

0.75, respectively. The magnitude of the actuator fault is 50 (i.e. 5% of the nominal 

value). All the failures are assumed to occur at t=10 sec. The purpose of this test is 

to illustrate the proposed approach is able to distinguish actuator failure from sensor 

failures as well as detect and identify them simultaneously. 

The system parameter is identified accurately with the support of PINN as shown 

in Figure 5.9. Figure 5.10 shows the detection logic used for fault isolation and 

identification obtained from TLGNN. Table 5.4 shows the simulation results obtained 

from FIINN. At t=10 sec, FIINN can correctly isolate and identify the four sensor 

and the actuator failures. The output residuals shown in Figure 5.11 and the output 

trajectories shown in Figure 5.12 can be used to illustrate the behavior of the PWR 

system in the presence of the faulty instruments. 
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Case 3 
Fault simulated Identified fault size Actual fault size 
Actuator SW,, 49.15 50 

Sensor SP 0 0 
6C 4620.60 4500 
STf 0 0 
STc1 0 0 
STc2 0 0 
ST' 0.0814 0.08 
ST, 0.0510 0.05 
Sf', 0.7612 0.75 

Parameter variation 1% 1% 

Table 5.4: simulation results of FII Networks for Failure No.3 

Figure 5.9: Parameter Identification of Failure No.3 
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Figure 5.10: The threshold values used for Failure No.3 



CHAPTER 5. T H E  NFDI-P WR S Y S T E M  PERFORMANCE 

0 10 20 30 
Time (sec) 

( c )  IT77 
- P 

0 10 20 3 0 
Time (sec) 

0 10 20 30 
Time (sec) 

0 10 20 30 
Time (sec) 

0 10 20 30 
Time (sec) 

(4 

.*TC :yj 
-0.4 
-0.5 
-0.6 

0 10 20 30 
Time (sec) 

0 10 20 30 
Time (sec) 

(h) 

-10 
-20 - -! 15 0 m 

10 20 30 
Time (sec) 

Figure 5.11: The system output residuals of Failure No.3 
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Figure 5.12: The system output responses of Failure No.3 
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5.4 Failure No.4: All Sensor and Actuator Failure 

This failure scenario is similar to Failure No.3, except that in this case, all instruments 

are faulty. In addition, parameter a, has a variation of 2% from its nominal value 

which is considered (i .e. Aa14=Aa15=274). In other words, the malfunctions occur 

due to the failures of the actuator, the reactor power sensor, the precursor concen- 

tration sensor, the fuel temperature sensor, the two coolant temperature sensors, the 

temperature sensor of primary coolant, the tube metal temperature sensor and the 

steam pressure sensor. All the actuator and sensors have failed at t=20 seconds. The 

fault size of the faulty instruments are tabulated in Table 5.5. However, in practice, 

this may not be the case, it is intended to demonstrate the capability of the detection 

and diagnostic system. 

Figure 5.13 shows the convergence, with respect to time, of the system estimated 

parameter. It can be seen from this figure that the estimate appear to converge, 

it takes only 0.2 second for PINN to identify the parameter. After the parameter is 

correctly identified, TLGNN generate the detection logic for each sensor corresponding 

to the parameter deviation. Figure 5.14 illustrates the actual and TLGNN predicted 

threshold values. It is obvious that TLGNN is capable of estimating the threshold 

values accurately. Table 5.5 shows the result obtained from FIINN. By comparing the 

actual and desired fault size of the instruments, FIINN demonstrates its capability 

of classifying the corresponding failures accurately. Figure 5.15 shows the residuals 

generated for fault detection and diagnosis. At t=20 sec, the residuals of each sensor 

diverge greatly due to the presence of the failures. Figure 5.16 shows the output 

responses of the PWR system. 
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Case 4 
Fault simulated Identified fault size Actual fault size 
Actuator SW,, 74.26 75 

Sensor SP 
SC 
STj 
STCl 
STc2 
ST, 
ST, 
SPS 

Parameter variation 

Table 5.5: Simulation results of FII Networks for Failure No.4 
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Figure 5.13: Parameter Identification of Failure No.4 
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Figure 5.14: The threshold values used for Failure No.4 
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Figure 5.15: The system output residuals of Failure No.4 
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Figure 5.16: The system output responses of Failure No.4 
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5.5 Summary of Results 

An on-line application of neural networks for parameter identification, and fault detec- 

tion and diagnosis of the PWR-type nuclear power plant was developed and simulated 

with four different failure scenarios. The NFDI system is capable of identifying the 

variation of the parameter accurately. Furthermore, the networks are also able to 

diagnose precisely single and multiple failures. The magnitude of the faults can also 

be determined correctly. The networks can also detect and diagnose failures occurred 

at different time. Although failure accommodation was not dealt with here, it can 

be performed after three sampling periods (the time it takes to detect faulty instru- 

ments). Satisfactory results show a promising future for the application of artificial 

neural networks for fault-tolerant control system design of the P WR-typed nuclear 

power plant. 



CHAPTER 6 

SUMMARY AND 

CONCLUSIONS 

This final chapter provides a summary of the thesis and outlines the major conclusions 

to be drawn. 

6.1 Summary 

Chapter I motivated the need for fault detection, identification and isolation. A 

literature review of some traditional and existing methods was briefly described in this 

chapter. An neural network based design techniques were identified as a promising 

methodology for FDI. 

Chapter I1 addressed the general ideas of a fault-tolerant control systems. An 

overview of the neccessary procedures that needed to be taken in accomplishing FDI 
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were presented, and an dedicated observer scheme and analytical knowledge based 

method was outlined. 

Chapter I11 introduced artificial neural networks. A brief discussion on the neu- 

ral network properties was presented. The architecture of multilayer feedforward 

neural networks was highlighted. The popular backpropagation algorithms was also 

described. 

Chapter IV described the development of a neural network based FDI system. 

It showed how the neural network and mathematical model based design techniques 

could be used to achieve FDI. The structure of the networks for parameter identifi- 

cation(P1) , threshold logic generation(TLG) and fault detect ion and diagnosis(FI1) 

were presented. 

Chapter V provided simulated accounts of failure detection, identification and 

isolation performed by t h e  neural based FDI system of the pressurized water reac- 

tor(P WR) . Details of the simulation were summarized, and t he simulation results 

illustrated that the design approach was able to simultaneously classify single and 

multiple faults under plant parameter uncertainties. 

6.2 Conclusions 

In this thesis, an approach based on neural networks and mathematical models for 

detecting and diagnosing instrument failures was presented. Multilayer neural net- 

works were used at  the first level for parameter identification, at the second level 

for threshold logic generation, and as a pattern recognizer in the third level for fault 
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detection and diagnosis. Although simulations were used to generate data that were 

used in training the network to discriminate, it is also possible to collect data about 

parameter variations, instrument faults and related measurements from the historical 

databases in the plant and use the historical information to train the network. 

This research study makes contributions to the design of a FDI system via neural 

networks. These accomplishments are itemized below. 

A fundamental problem involving parameter perturbation model-errors for lin- 

earlized dynamical sysems has been formulated and a model-error compensator 

design for the that problem has been described. Neural networks are imple- 

mented for identifying the variation of the moderator temperature coefficient of 

reactivity. The design scheme can quickly detect, identify and compensate for 

the effects of a broad range of uncertain perturbations in plant parameters. The 

performance capabilities and structural features of the parameter identification 

scheme have been illustrated by simulation results. 

0 Thresholds are usually used to distinguish between a system uncertainty and an 

instrument fault. Selecting the threshold too low raises the rate of false alarms; 

selecting it too large decreases the effect of fault detection. A neural network 

is used to generate threshold values for each sensor under various parameter 

uncertainties. 

0 The feature extractor in the fault detection and diagosis scheme is used to 

filter out redundant failure information and generate a simple decision space. It 

reduce the training data required for fault classification. 

0 Neural networks are utilized as a pattern recognizer for actuator and sensor fault 
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classification. The network is capable of diagnosing correctly in the presence of 

single and multiple fault operations of actuators and sensors. 

Multilayer feedforward networks are selected since they can classify the training 

data well. The patterns that are not in the training data are also classified correctly 

indicating the robustness and fault tolerance capabilities of neural networks in di- 

agnostic applications. An increase in the learning rate 77 or the momentum term 

coefficient a leads to a higher recall error at convergence. The training cannot be 

speeded up significantly by changing the learning parameters but using hyperbolic 

tangent as the nonlinearity in the hidden layer changes the situation dramatically. 

When a hidden layer is present, recognition rates depend on the number of hidden 

units present. As a rule of thumb, the greater the number of hidden units, the better 

the recognition. Using too many hidden units, however, may increase the complexity 

of error surface such that the training pattern cannot be separated. Therefore, the 

number of the hidden units must be large enough to form a decision region that is as 

complex as is required by the given problem. Several kinds of two-hidden-layer net- 

works were examined. Although these network required twice the learning iterations 

as one-hidden-layer network, the performance was better than that of an one-hidden- 

layer network since the network is capable of discrminating more complex regions. 

In order to draw the effectiveness of the proposed approach, the pressurized water 

reactor (PWR) of the H. B. Robinson's nuclear plant was used as a test process. 

Simulation results presented revealed that the design approach was able to detect and 

diagnose a variety of fault combinations under plant parameter uncertainties. With 

the aid of the simulations, the proposed NFDI scheme has the following advantage 

over some of the other existing approaches: 
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1. The NFDI scheme is capable of detecting the perturbated plant parameter and 

accurately identifying the magnitude of the variation. In addition, it is also able 

to compensate the parameter very quickly. 

2. The neural based FDI technique can detect and isolate the instrument failures 

simultaneously as well as identify the size of failures correctly. 

3. The proposed approach is able to detect and isolate both sensor and actuator 

failures. Furthermore, the networks are also able to diagnose precisely in single 

and multiple system fault scenarios. 

4. No observer is required in the proposed NFDI method; therefore, a heavy cal- 

culational load for estimation can be avoided. In contrast to other techniques, 

a dedicated observer scheme(DOS), for example, a number of Luenberger ob- 

servers were dedicated to each sensors. 

5. The NFDI approach has the capability of generating better threshold logic which 

is insensitive to the plant parameter uncertainties and sensitive to possible faults. 

As a result, the rate of false alarms can be greatly reduced, which effectively 

improve the performance of the fault detection. 

6. The neural network approach requires no explicit encoding of knowledge as in 

analytical knowledge-based approaches. Therefore, neural networks appear to 

be very attractive for applications in which knowledge extraction is difficult or in 

cases where the interrelationships between process parameters are too complex. 

Changes in the plant configuration necessitate retraining of the neural network, 

which is simpler than revising the complex knowledge base of an expert system. 
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The main conclusions to be drawn is that although a given FDIA problem may be 

approached in various ways, the proposed neural based FDI approach may prove more 

useful than conventional methods under certain circumstances. Satisfactory results 

show a promising future for the on-line application of artificial neural networks for 

fault-tolerant control systems. 

Towards the Future 

The purpose of this study was to understand how neural networks might be effectively 

used in parameter variation, and fault detection and diagnosis. The preceding accom- 

plishments represent some of the recent progress have been made in this direction. 

While this work has provided some insight into the neural based FDI system design, 

it has also raised a number of important questions. The answers to these questions 

will be left to future researchers. For now some of these questions are briefly itemized 

as follows: 

1. A number of areas where further research is needed is in back-propagation. 

Guidelines are needed for designing the architecture of a neural network based 

on characteristics of the process. In addition, more extensive guidelines are also 

required for setting training parameters to maximize the learning rate. 

2. Additional research is required to incorporate more failure modes and parameter 

variations. 

3. Fault accommodation was not considered in this study. It is desired to have 

system reconfiguration after the presence of a failure in a truly fault tolerant 
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control system. More work needs to be done in this area. 

4. Additional simulation studies are needed, using the failure data generated with 

the nonlinear simulation to completely verify the validity of the neural based 

FDI technique. 



APPENDIX A 

THE PWR DYNAMIC 

SYSTEMS 

A. l  The P WR Mathematical Modeling 

The dynamics of the nuclear power plant is presented in the following without any 

attempt to go into the detail and physics of the process. A good review of the neutronic 

process is given in[24]. In [25] the mathematical model of the H.B. Robinson's plant 

was derived and validated by comparison between the theoretical and experimental 

results. The following set of linear coupled differential equations describe the PWR 

system: 

Core 

The point kinetics model with six delayed neutron groups with reactivity feedback 
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was used to represent the reactor power as given by the following linearized equations: 

The following equations use a nodal approximation for fuel and coolant tempera- 

tures to develop the core heat transfer model: 

dSTcl, -- U A f 2 - (-),(STf; - ST,,,) - -(STcl, - ST,,) 
dt MCP 7- 

The Pressurizer Dynamics 

The model of the pressurizer was developed based on mass, energy, and volume 

balance, and is given as 
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Figure A.l:  PWR plant schematic 

The Stream Generator 

A simplified model that incorporates three regions-primary fluid, tube metal and 

secondary fluid-is used to represent the overall system. The equations that describe 

the steam generator subsystem are described as 
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Plenums and Pipings 

All the plenums and piping sections are modeled as well-mixed volumes described 

by 

The system distribution matrix A and control vector B are given as follows: 
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A.2 Plant Data 

General: 
Reactor type Slightly enriched uranium, light 

water moderated and cooled pressurized 
water reactor 

Number of reactors in plant 1 
Number of steam generators and type 3 vertical U-tube recirculation type 

steam generators 
Number of pressurizers 1 
Rated output per reactor 2200 MW (th), 739 MW (e) 
Net efficiency 33.6% 
Location Raleigh, North Carolina, USA 

Core Thermal and Hydraulic Characteristics: 
Total primary heat output 2200 MW (th) 
Nominal primary system pressure Po 2250 p.s.i. 
Total coolant flow rate 101.5e6 lb/hr 
Average coolant velocity 14.3 ft/sec. 
Total mass of coolant in primary loop MI 406050 lb 
Nominal coolant inlet temperature TC2 546.2 F 
Nominal coolant outlet temperature TC1 602.1 F 
Active heat transfer surface area Af 42460 f t2 
Average heat flux 171600 Btu(hr. f t2 F) 
Fuel to coolant heat transfer coefficient U 176 Btu/ (hr. f t2 F) 

Kinetic Characteristics: 
Doppler coefficient crf -1.3e-5 (Ak/k)F - - 
Moderator temperature coefficient a, -2.0e-4 (A k/ k ) ~  
Prompt neutron life time 1.6e-5 sec. 
Delayed neutron fraction P 0.0064 
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Delayed neutron constants : 
Mean life (sec) Decay constant (A; sec) Fraction 
80.4 0.0124 0.00021 

Steam Generator: 
Number of U-tubes 3260 
U-tube diameter 0.875 in. 
Average tube wall thickness 0.05 in 
Mass of U-tube metal M, 91800 lb 
Total heat transfer area A 44430 f t2  

Steam Condition at Full Load : 

Steam flow W,, 3.169e6 lb/hr 
Steam temperature Ts 516 F 
Steam pressure Ps 770 psig 

Primary Side Coolant: 
Reactor Coolant flow Wwl 33.93e6 lb/hr 
Reactor Coolant Water Volume V,, 928 f t 3  

Secondary Side Fluid: 
Feed water temperature TIFW 435 F 
Secondary side water volume VW2 1526 f t3 
Secondary side steam volume V,, 3203 f t 3  

Pressurizer Design Data : 

Water volume V, 780 f t 3  
Steam volume V, 520 f t3 
Electric heater capacity 1300 kw 



APPENDIX B 

THE BACKPROPAGATION 

LEARNING ALGORITHM 

B.l  The Generalized Delta Rule 

The backpropagation algorithm is a conceptually generalized version of the least- 

mean-squares algorithms. The former algorithm adopts a learning rule called the 

Generalized Delta Rule (GDR). GDR uses a gradient descent technique to minimize 

an objective function equal to the sum of the mean square error E between the desired 

and the actual network outputs. 

The error function can be written as: 

where P is the number of training patterns, Ep is the total squared error for the pth 
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pat tern: 

where Mis the number of nodes in the output layer, t p j  is defined as the desired value 

of the jth output element given the pth pattern, and Opj is the actual output of the 

same element. 

Given the pth pattern, the network uses the input vectors and produces the actual 

output; if there is no difference between those two there will be no learning otherwise 

the weights will be changed by 

where Ipi denotes the value of ith element of the input pattern p and wji are the 

connection weights. Let 

APwj; is the change to be made to the weight from ith to jth pattern p. 

Delta rule implements a gradient descent in Ep when units are linear. 

SEp SEP6Opj  -- - -- 
Swji SOpj Swj; (B.5) 

The first part of this rule describes how the error changes with the output of the jth 

unit and the second part describes how much change in wj; changes that output. In 

order to get correct generalization of the delta rule, we must set 
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Let us define 

this is consistent with the definition of Spj  used in the original delta rule for linear 

units since Opj = apj when the unit Uj is linear; where apj = C wijOpi. The equation 
i 

has the form 

To implement gradient descent in Ep we should make the weight changes according 

to 

To compute Spj  = -%, we apply the chain rule 

First part of this derivation reflects the change in error as a function of the output of 

the unit, the second reflects the change in the output as a function of changes in the 

input. The second factor can be computed by 

Therefore, the error signal Spj  in eqn B.4 is computed as follows: 

( [tpi - Op;] f : (op j )  if j E the output layer ,- " - 

d p j  = 

f ; (apj )  2 6pk'U'pkj if j E the hidden layer(s) 

where f; is the derivative of the sigrnoid function of the jth node. f '  depends on the 

activating function. For a sigmoid function 
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The learning procedure requires that the change in weight be proportional to 2. 
The constant of proportionality is the learning rate of this procedure. Large, constant 

learning rates, may lead to oscillation. In order to prevent this oscillation another 

term has been introduced and is called the momentum term. The new weight updating 

formula has the form 

where 7 is the learning rate, cu is the momentum term which determines the effect 

of past changes on the current direction of movement in weight space. This term 

provides a kind of momentum in weight space that effectively filters out high frequency 

variations of the error surface in the weight space. 

In summary, the major goal of the learning algorithm is for the activations on the 

output layer after proceeding in feedforward manner to match those in the training 

data target. The error signal concentrates on changing those weights most influent 

on the output error. This algorithm calculates an error for each node in the hidden 

and output layers using eqn B.12, and recursively updates the connection strengths of 

all layers using eqn B.14, beginning from the output layer and propagating backward 

until the input layer as shown in Figure B.1. 

B.2 The Backpropagation Network Algorithm 

The backpropagation network algorithm uses the Generalized Delta Rule for training. 

The algorithm can be summarized to the following steps: 
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Node j Node k 

Figure B. 1: Backpropagation of the error signal 

1. Initialize the weights wp;j and bias Bpj to all nodes using random numbers in 

the range [-1,1]. 

2. Present the input vector to the first layer of the network, and compute the 

output vector by using the following equation 

3. Compute the local error between the desired value and the actual value for each 

node at the output layer as 

4. Calculate the local error for each node in the hidden layers by using 

5. Compute all the weight adjustments as 

and the bias adjustments as 
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6. Update all the connection weights by adding the weight adjustments to the old 

weights as 

7. Update all the bias values by adding the bias adjustments to the previous bias 

values by using 

8. Repeat (step 2 through 7) until the error Ep is sufficiently small. 
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