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Abstract 

Traditional statistical analysis of network data is often employed to  determine traf- 

fic distribution, to summarize user's behavior patterns, or to  predict future network 

traffic. Mining of network data may be used to discover hidden user groups, to detect 

payment fraud, or to identify network abnormalities. In our research we combine 

traditional traffic analysis with data mining technique. We analyze three months of 

continuous network log data from a deployed public safety trunked radio network. Af- 

ter data cleaning and traffic extraction, we identify clusters of talk groups by applying 

Autoclass tool and K-means algorithm on user's behavior patterns represented by the 

hourly number of calls. We propose a traffic prediction model by applying the clas- 

sical SARIMA models on the clusters of users. The predicted network traffic agrees 

with the collected traffic data and the proposed cluster-based prediction approach 

performs well compared to  the prediction based on the aggregate traffic. 
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Chapter 1 

Introduction 

Analysis of traffic from operational wireless networks provides useful information 

about the network and users' behavior patterns. This information enables network 

operators to better understand the behavior of network users, to  better use network 

resources, and, ultimately, to provide better quality of services. 

Traffic prediction is important in assessing future network capacity requirements 

and in planning network development. Traditional prediction of network traffic usually 

considers aggregate traffic from individual network users. It also assumes a constant 

number of network users. This approach cannot easily adapt to a dynamic network 

environment where the number of users varies. An alternate approach that focuses 

on individual users is impractical in predicting the aggregate network traffic because 

of the high computational cost in cases where the network consists of thousands of 

users. Employing clustering technique for predicting aggregate network traffic bridges 

the apparent gap between these two approaches. 

Data clustering may be used to identify and define customer groups in various 

business environments based on their purchasing patterns. In the telecommunica- 

tion industry, clustering techniques may be used to  identify traffic patterns, detect 

fraudulent activities, and discover users' mobility patterns. Network users are usually 

classified into user groups according to geographical location, organizational structure, 

payment plan, or behavior pattern. Patterns of users' behavior reflect the nature of 
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user activities and, as such, are inherently consistent and predictable. However, em- 

ploying users' behavior patterns to classify user groups and to predict network traffic 

is non-trivial. 

In this thesis, we analyze traffic data collected from a deployed network. We use 

hourly number of calls to represent individual user's calling behavior. We then predict 

network traffic based on the aggregate traffic and based on the identified clusters of 

users. Experimental results show that the cluster-based prediction produces results 

comparable to the traditional prediction of network traffic. The user cluster based 

traffic prediction approach may also address the computational cost and the dynamic 

number of users problems. An advantage of cluster-based prediction is that it may 

be used for predictions in networks with variable number of users. This approach 

provides a balance between a micro and a macro view of a network. 

This thesis includes additional five chapters. 

Chapter 2 begins with a brief introduction to the network and the t,raffic data that 

we analyzed. It is followed by the description of data preprocessing, data extraction 

and the results. 

In Chapter 3, various statistical analysis routines have been applied to the traffic 

data on three levels: network, agency, and talk group levels. The analysis results 

include plots and basic statistical measures (maximum, minimum, mean value, and 

variance). 

In Chapter 4, we discuss the general clustering techniques and principles. We 

apply the AutoClass clustering tool and K-means algorithm to classify talk groups 

into clusters based on their calling activities. We also compare the the clustering 

results of AutoClass and K-means. 

In Chapter 5, we present the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) time series prediction model. We discuss the model selection method and 

present the prediction results of the network traffic. We conclude with a comparison of 

the prediction results of cluster-based models and models based on aggregate traffic. 

We conclude the thesis with Chapter 6. A short summary of experiences that we 

gained is given and the future work is addressed. 

Appendics include additional database tables, SQL scripts, R scripts, and snippets 
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of Autoclass model and report files. Experimental results of conditional dependency 

analysis of the traffic data using Bayesian network are also presented. 



Chapter 2 

Data preparation 

The traffic data  analyzed in this thesis were obtained from E-Comm [I]. In this Chap- 

ter, we first introduce the architecture of the E-Comm network and the underlying 

technology. We also examine the database schema and describe the procedure for 

data cleaning and the traffic data extraction. 

2.1 E-Comm network 

2.1.1 E-Comm network structure overview 

EComm is the regional emergency communications center for Southwest British 

Columbia, Canada. It provides emergency dispatch/communication services for a 

number of police and fire departments in t,he Greater Vancouver Regional District 

(GVRD), the Sunshine Coast Regional District, and the Whistler/Pemberton area. 

E-Comm serves sixteen agencies such as Royal Canadian Mounted Police (RCMP), 

fire and rescue, local police departments, ambulance, and industrial customers such 

as BC Translink [2]. Each agency has a number of affiliated t,alk groups and the entire 

network serves 617 talk groups. Figure 2.1 presents a rough geographical coverage of 

the E-Comm network. 

Before the establishment of EComm, ambulance, fire, and police agencies could 

not communicate with each ot,her effectively because they used separate radio systems. 
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The deployment of the E-Comm network in 1999 provided an integrated shared com- 

munications infrastructure to various emergence service agencies. It enables the cross 

communication between various agencies and municipalities. 

The EComm network employs Enhanced Digital Access Communications System 

(EDACS), developed by MIA-COM [3] (formerly Comnet-Ericsson) in 1988. EDACS 

system is a group-oriented communication system that allows groups of users to com- 

municate with each other regardless of their physical locations. The main advantages 

of this approach are improved coordinat,ion, efficient exchange of information, and 

efficient resource usage. 

The E-Comm network consists of 11 cells. Each cell covers one or more munici- 

palities, such as Vancouver, Richmond, and Burnaby. Identical radio frequencies are 

transmitted within one cell using multiple repeaters. This is known as simulcast. The 

basic talking unit in the trunked radio network is a talk group: a group of individ- 

ual users working and communicating with each other to accomplish certain tasks. 

Although the E-Comm network is capable of both voice and data transmissions, we 

analyze only voice traffic because it accounts for more than 99% of the network traffic. 

2.1.2 E-Comm network terminology 

We explain briefly the following network terms: 

System/Cell: A trunked radio network is divided into smaller areas in order to 

reuse the radio frequencies and to increase the network capacities. One system 

represents one service area and a cell is the synonymous of a system. One system 

could serve one or more municipalities, based on the frequencies availability and 

geographical connection. A unique system id is associated with each system. 

Within a system/cell, the radio signal is transmitted using the same range of 

frequencies. 

Channel: A channel is a small range of radio frequencies or a time slot. Various 

numbers of channels are assigned in each system based on the traffic throughput 
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Figure 2.1: E-Comm network coverage in the Greater Vancouver Regional District. 

and the system needs. Two types of radio channel are used in EDACS: control 

and traffic channels. There is one control channel in each cell, while the remain- 

ing channels are used as traffic channels. The control channel is used to send 

protocol messages between radios and the base station equipment for controlling 

the operation of the system. Traffic channels are used to transmit the voice or 

data messages between radios or between radios and the base stations. 

Group Call: Group call is the typical call made in a trunked radio system. A group 

is a set of users who need to communicate regularly in order to accomplish 

certain tasks. For example, within a single city-wide system, the North and 

South fire services may each have one talk group, while the police may be 

subdivided into several talk groups. A user only needs to press the push-to-talk 

(PTT) button on the radio device to initiate a group call. All users belonging to 
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the same talk group will hear the communications in the group call irrespective 

of their physical locations. Most EDACS network operators have observed that 

more than 85% of calls are group calls [4]. 

Simulcast: In the E-Comm network, simulcast is used in a single cell. Within a cell, 

identical radio frequencies are transmitted simultaneously between two or more 

base station sites in order to improve signal strength and increase coverage. 

Multi-System Call: It represents a single group call involving more than one 

system/cell. A user may initiate a group call without knowing the physical 

location of the group members. When all members of the talk group reside 

within one system, the group call is a single-system call occupying only one 

traffic channel in the system. However, when group members are distributed 

over multiple systems, the group call becomes a multi-system call that occupies 

one traffic channel in each system. Hence, the major difference between a multi- 

system call and a single-system call is that the first occupies additional channels 

and consumes more system resources. In the collected traffic data, more than 

55 % of group calls are multi-system calls. 

Network traffic Data 

The traffic data received from EComm contains event log tables recording the activ- 

ities occurred in the network. They are aggregated from the distributed database of 

the network management systems. 

2.2.1 Database setup 

Analyzed data records span from 2003-03-01 00:00:00 to 2003-05-31 23:59:59 contin- 

uously. The database size is -- 6G bytes, with 44,786,489 records for the 92 days of 

data. It consists of 92 event log tables, each containing one data's events generated 

in the network, such as the call establishment, call drop, and emergency call events. 

Its sheer volume was one of the main difficulties in our data analysis. For efficiency, 
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we converted the data from the MS Access format to plain text files and imported 

the records into the MySQL [5] database server under Linux platform. 

2.2.2 Event log database schema 

The complete twenty-six data fields in the event log table are: 

1. Event-UTC-At: the timestamp of the event (granularity is 3 ms). 

2. Duration$ms: the duration of the event in ms (granularity is 10 ms). 

3. Network-Id: the identification of the network (constant in t,he database). 

4. Nodeld: the identification of the net,work node (not populated) 

5. Systemld: the identification of the system/cell involved in the event, ranging 

from 1 to 11. 

6. Channel-Id: the identification of the channel involved in the event. 

7. Slotld: this field is not populated in the database. 

8. Caller: also known as LID (Logic ID). It is the caller's id, ranging from 1 to 

16!000. The first 2,000 LIDs are assigned to either talk groups or individual 

users. The remaining LIDs are assigned to talk groups only. 

9. Callee: the callee's id in the event, having the same value range as Caller. 

10. Call-Type: the type of the call, such as group call, emergency call, and individual 

call. 

11. CallState: the state of the call event, such as assign channel, drop, and queue. 

12. Call-Direction: the direction of the call (meaning unknown). 

13. Voice-Call: a flag indicat,ing a voice call. 

14. DigitalLCall: a flag indicating a digital call. 
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15. Interconnect-Call: a flag indicating a call interconnecting the EDACS and the 

Public Switched Telephone Network (PSTN). 

16. Multi-System-Call: a flag indicating a multi-system call. It is only set in the 

event of call drop. 

17. Confirmed-Call: a flag of the call. A call is a confirmed call when every member 

of a talk group has to confirm the call before the conversation begins. 

18. Msg-Trunked-Call: a flag of the call (meaning unknown). 

19. Preempt-Call: a flag of the call. A preempt-call has higher queue priority. 

20. Primary-Call: a flag of the call (meaning unknown). 

21. Queue-Depth: the depth of the current system queue at the event moment. It 

may be used to investigate the block rate of the system. 

22. Queue-Pri: the priority number of the call in queue. 

23. MCP (Multi-Channel-Partition): the partition number of channels (not popu- 

lated). 

24. Caller-Bill: set to 1 if the call is billable to the caller (not used in the current 

system). 

25. Callee-Bill: set to 1 if the is billable to the callee (not used in the current 

system). 

26. Reason-Code: the error reason code number, providing additional information 

if any error occurs during the call. 

2.2.3 Topic of interest 

Two open questions, emanating from the discussions with E-Comm staff and the 

analysis of database, are of particular interest to our analysis: the precise measurement 

of network usage per agency and the traffic forecast based on user's behavior patterns. 
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A. Precise measurement of network usage 

The current billing policy for agencies in the E-Comm network is based on the 

geographic coverage arid the approximate calling traffic volurne of each agency. Traffic 

volume factors are further broken down into the number of radios, radio t,raffic! arid 

user population. Shared radio infrastructure costs are allocated based on the coverage 

area, number of radios, radio traffic, and population. 

PresentJy, there is no precise measuring method for t,he t,raffic generated by each 

individual user/talk group. The current database is an event log database, recording 

every activity that occurred in the network, such as the call establishment, call drop, 

and emergency calls. One group call may be recorded twice in the event log, as it 

generates both call assignment and call drop events. One single multi-system call 

involving several systems generates multiple entries in the database. Based solely 

on the raw t.raffic logs, the calculation of network resources used by one agency is 

inaccurate. Therefore, the t,raffic generated by agencies is not calculated directly 

from the event database. It is, instead, based on an assumed mean value of call 

duration, the coverage of cells by the agency, the number of radios possessed by the 

agency, and the number of records corresponding to the agency. It is unable to identify 

the number of calls made by each agency, the average/maximum number of systems 

involved in calls for each agency, and the network usage for each talk group. A sample 

of the data is shown in Section 2.4. 

B. Traffic forecast based on user's behavior patterns 

Users' behavior patterns in the trunked radio networks are different from the tradi- 

tional telephone networks. Group calls involve more than two users, while traditional 

telephone calls connect only two persons. Furthermore, since the E-Comm network 

mainly serves emergency communications, the uncertainty of emergencies implies dif- 

ferent behavior patterns of network users from users of ordinary telephone network. 

In addition, different agencies may have different behavior patterns. For example, 

the ambulance service may have different peak hours from the RCMP, while the fire 

de~art~ment often dispatch group of firefighters tto the accident sites together with the 

police groups. 
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Understanding user's behavior could help improve user satisfaction and be ben- 

eficial for the network optimization and the planning for network expansion. For 

example, if a police department plans to increase its manpower by increasing the pa- 

trol groups and using more radios. A reasonable assumption is that the new groups 

have similar behavior patterns to the existing users. New patrol groups may be clas- 

sified into certain existing user groups based on their behavior patterns. Considering 

the number of new members in the user groups, we may forecast the net,work t,raffic 

based on the existing user's behavior patterns, thus to make better assessment on the 

network capacity. 

2.3 Data preprocessing 

The main difficulty in analyzing the network log data is the sheer volume of data. 

Data preprocessing is the fundamental and mandatory step for data analysis. It is 

used to clean the database and filter the outliers and redundant records. The current 

database includes: surplus data fields wit,h useless entries, obscure data records, and 

inconsistent data fields. The goals of the data preprocessing step are to remove useless 

information and to remove the outliers. They are accomplished by acquiring the 

necessary domain knowledge from the system documentation and via interviews with 

the E-Comm staff. The preprocessing procedure is composed of database shrinking 

and cleaning. 

2.3.1 Database shrinking 

Not all data fields are useful to our analysis. Certain fields are not populated in 

the database (Nodeld and Slot-Id fields), while others have identical value or are 

unrelated to our research (Network-Id, Caller-Bill, and Callee-Bill). We are only in- 

terested in fields t,hat could capture the user's behavior and network t,raffic. Thus, the 

step is to remove these unpopulated, identical, or unrelated fields from the database, 

such as the Digital-Call, Interconnect-Call, Confirmed-Call, Primary-Call, Caller-Bill, 

Callee-Bill, and Reason-Code fields. 
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From the twenty-six original fields in the database, nine fields are of particular 

interest to our analysis: 1) Event-UTC-At, 2) Duration$ms, 3) System-Id, 4) Chan- 

nel ld,  5) Caller, 6) Callee, '7) Call-Type, 8) Call-State, and 9) Multi-System-Call. 

2.3.2 Database cleaning 

After reducing the database dimension to nine, we removed redundant records, such as 

records having call-type = 100 or records with duration = 0. Records with callstate 

= 1, which implies the call drop event, are redundant because each call drop event 

already has a corresponding call assignment event in the database. (Note that the 

reverse is not true.) Records with channel-id = 0 should also be removed as well 

because the channel id 0 represents the control channel whose traffic we have not 

considered. We keep the the records with call-type = 0, 1, 2, or 10, representing 

group call, individual call, emergency call, and start-emergency-call, respectively. The 

complete call-type table is given in Appendix A. 

The result of data preprocessing step is a smaller and cleaner database. The 

number of records in each data table of original and cleaned databases are compared in 

Table 2.1. Approximately 55% records have been removed from the original database 

after preprocessing. Furthermore, due to the effect of the dimension reduction, the 

total size of the database has been reduced to only 19% of the original size. 

2.4 Data extraction 

The extract,ion of the network traffic may solve the first open question of imprecise 

traffic measurement, as described in Section 2.2.3. A sample of the cleaned database 

table is shown in Table 2.2. If a call is a multi-system call involving several systems, 

several records (one for each involved system) are created to represent this call in the 

original event log database. For example, based on the caller, callee, and duration 

information, records 1 and 6 represent one group call from caller 13905 to callee 401, 

involving systems 1 and 7 and lasting 1350 ms. Records 29, 31, 37, and 38 represent 

a group call from caller 13233 to callee 249, involving systems 2, 1, 7, and 6. Thus, the 
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network operator cannot count the number of group calls made by a certain talk group 

or agency merely based on the original multiple entries. Furthermore, it is impossible 

to find the rlurnber of multi-system calls and the average nurnbcr of systems in a 

multi-system call. 

We explore the relationships of fields among similar records and find that, within 

a certain range, multiple records with identical caller id and callee id and similar call 

duration fields might represent one single group call in the database. Caused by the 

transmission latency and glitch in the distributed database system, the call duration 

is sometimes inconsistent. For example, records 1 (1340 ms) and 6 (1350 ms) in Table 

2.2, have 10 ms difference in call duration field although they represent one single 

group call. Experimental results indicate that 50 ms difference in call duration is an 

acceptable choice when combining the multiple records (compared to 20 ms, 30 ms, 

or 100 ms). 

The algorithm for extracting and combining the traffic data from the cleaned 

database is shown in Figure 2.2. It is implemented by Perl. A sample of the results 

of the traffic extraction from Table 2.2 is shown in Table 2.3. Record 1 in Table 2.3 

is the combination of records 1 and 6 in Table 2.2, while record 7 corresponds to the 

combination of records 29, 31, 37, and 38 in Table 2.2. 

2.5 Summary 

In this Chapter, we provided a short presentation of the trunked radio systems and 

infrastructure of the E-Comm network. The importance of the data preprocessing 

have been illustrated using data shown in Table 2.1. We described the traffic data 

schema, data preprocessing, and traffic extraction. The dat>a extraction process was 

used to extract traffic data by combining multiple entries of one group call into a 

single record. The result of data preprocessing, together with data extraction, is a 

clean and neat database with - 81 % fewer records. A comparison of the number 

of records in original, cleaned, and extracted database is shown in Figure 2.3. The 

generated traffic data was used for further data analysis, clustering, and prediction. 
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Figure 2.3: Comparison of number of records in original, cleaned, and extracted 
databases. 



Chapter 3 

Data analysis 

Statistical analysis on the extracted traffic trace usually includes finding maximum, 

minimum, mean value, measure of variation, data plots, and histograms. Data net- 

work traffic may be measured in terms of the number of packets, number of connec- 

tions, or number of bytes transmitted. Similarly, the traffic of voice networks may be 

measured by the number of calls and the call duration. We use the hourly number 

of calls to  analyze the E-Conim network traffic on three levels: aggregate network, 

agency, and talk group level. 

3.1 Analysis on Network level 

On the network level, the traffic is the aggregation of all users' traffic. The analysis of 

network-level traffic provides overview of the network usage. The aggregate traffic of 

the entire network, in terms of hourly and daily number of calls, is shown in Figure 3.1. 

The upper and lower dotted lines indicate the maximum and the minimum number 

of calls, respectively. The middle dashed line is the mean value. 

Figure 3.1 demonstrates the inherent cyclic patterns of the network traffic. We 

check the periodic patterns by applying the Fast Fourier Transform (FFT) on the 

network data to find t,he highest frequency in the hourly and the daily number of 

calls. The FFT reveals the high frequency components at  24 for the hourly number of 

calls and a t  7 for the daily number of calls, as shown in Figure 3.2. We conclude that 
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the network traffic exhibits daily (24 hours) and weekly (168 hours) cycles in terms of 

number of calls. Similar daily and weekly cyclic traffic patterns of various networks 

have been observed in the literature [6], [7], [8]. 

Time (hour) 

Time (day) 

Figure 3.1: Statistical analysis of hourly (top) and daily (bottom) number of calls. 
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Frequency (hour) 

7 14 

Frequency (day) 

Figure 3.2: Fast Fourier Transform (FFT) analysis on hourly (top) and daily (bot- 
tom) number of calls. The high frequency components at 24 (top) and 7 (bottom) 
indicate that the network traffic exhibits daily (24 hours) and weekly (168 hours) 
cycles, respectively. 
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3.2 Analysis on agency level 

Network users belong to various agencies such as RCMP, police, ambulance, and fire 

department. The study of agency behavior may help network operators identify the 

aggregate traffic patterns in the organizational usage of network resources. Agency 

names are eliminated to protect their privacy. Instead, we use agency id to identify 

the agency structure for talk groups. 

The agency id in the E-Comm network ranges from 0 to 15. The agency id 0 

represents unknown or corrupted agency group information of users. The network 

usage statistic data of each agency is summarized in Table 3.1. The rows are sorted 

in ascending order by the number of calls made by each agency. 92% of calls are made 

by three agencies with id 10, 2, 5, while the remaining 13 agencies account for only 

8% of the calls. The average call duration ranges from 2.3 to 5.9 seconds. We also 

observed that more than 55% of calls in the network are multi-system calls. Beside 

the hourly number of calls, call duration is another major factor affecting the network 

resource usage. In order to measure how long and how many channels have been 

occupied by a call in the network! we define the net,work resource usage for a call as: 

Network resource = Call duration * Number of systems. 

Three different aspect,s of agency traffic are shown in Figure 3.3. We use different 

symbol in the figure to represent different agency. The tlop plot is the daily number 

of calls for each agency. The middle plot is the daily average call duration of each 

agency. The bottom plot represents the average number of systems involved in the 

calls of each agency. The daily average call duration is relatively constant for agencies, 

while the daily number of calls shows large variations among agencies. 

3.3 Analysis on talk group level 

The basic talking unit in the E-Comm network is a talk group. This is the finest 

unit for our analysis. Traffic analysis on the agency level is too coarse to capture the 

behavior of small talking units in the network. Even though each talk group belongs 



Agency 
id 

20 
15 
8 
7 
14 
0 
13 
6 
11 
4 
1 
3 
21 
10 
2 
5 

Sum 

Number 
of 

calls (%) 
0.00% 
0.00% 
0.00% 
0.03% 
0.06% 
0.11% 
0.15% 
0.45% 
0.67% 
0.95% 
1.05% 
1.35% 
3.26% 
10.97% 
29.16% 
51.72% 
100% 

Number 
of 

calls 
22 
37 
129 

2,963 
5,523 
10,037 
13,590 
39,363 
58,622 
82,482 
91,417 
117,289 
282,907 
950,725 

2,527,096 
4,481,384 
8,663,586 

Number of 
mult i-syst em 

calls 

Average 
duration 
(4 
2,329 
2,239 
4,230 
4,080 
3,279 
3,278 
5,986 
3,871 
3,861 
3,175 
3,857 
4,024 
3,480 
3,438 
3,853 
3,838 
3,772 

4gency network usage. Table 3.1: 

Number of 
multi-system 

calls (%) 
0.00% 
21.62% 
98.44% 
20.45% 
4.49% 
63.44% 
0.00% 
3.62% 
3.78% 
14.38% 
14.84% 
33.68% 
63.90% 
76.02% 
36.28% 
71.27% 
58.76% 
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Figure 3.3: Traffic analysis by agencies (Top: the daily number of calls for each agency. 
Middle: the daily average call duration of each agency. Bottom: the average number 
of systems involved in the calls of each agency. 
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to a certain agency, the organizational structure does not necessarily imply similar 

usage patterns. Talk groups belonging to different agencies may have similar behavior, 

while talk groups within the same agency may have dif•’ererlt behavior patterns. 

A sample of talk groups' behavior patterns is shown in Table 3.2. The behavior 

patterns include average resources, average duration, and average number of systems 

involved in group calls. The talk groups are sorted in descending order of the total 

number of calls during the 92 days. The average call duration exhibits a relatively 

constant pattern with mean value of 3,621.50 ms and standard variance of 397 ms. To 

the contrary, the average number of systems involved in calls is quite different. For 

example, the members of talk group 1809 are usually distributed across more than 4 

systems, while the members of talk group 785 often reside in one system when making 

calls. Accordingly, the number of systems engaged in a call greatly affects the network 

resource usage. 

3.4 Summary 

The preliminary st.atistica1 analysis of traffic dat,a at  different levels shows the diversity 

and complexity of network user's (talk group's) behavior. User's behavior exhibits 

patterns that may be used to categorize talk groups. We are particularly interested 

in building clusters of talk groups based on their behavior patterns. This topic is 

addressed in Chapter 4. 
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Chapter 4 

Data clustering 

Data mining employs a variety of data analysis tools to discover hidden patterns and 

relationships in data sets. Clustering analysis, with its various objectives, groups or 

segments a collection of objects into subsets or clusters so that objects within one 

cluster are more "close" to each other than objects in distinct clusters. It attempts 

to find natural groups of components (or data) based on certain similarities. It is 

one of the powerful tools in data mining, with applications in a variety of fields 

including consumer data analysis, DNA classification, image processing, and vector 

quantization. 

In this Chapter, we first describe the data used for the clustering analysis. We 

then introduce the Autoclass [9] tool and K-means [lo] algorithm. The results of 

clustering and the comparison are also presented. 

4.1 Data representing user's behavior 

An object can be described by a set of measurements or by its relations to other 

objects. Customers' purchasing behavior may be characterized by shopping lists with 

the type and quantity of the commodities bought. Network users' behavior may be 

measured as the time of calls, the average length of the call, or the number of calls 

made in a certain period of time. Telecommunication companies often use call inter- 

arrival time and call holding time to calculate the blocking rate and to determine the 
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network usage. In the E-Comm network, the call inter-arrival time are exponentially 

distributed, while the call holding time fits a lognormal distribution [ l l ] .  

The number of users' call is of particular interest to our analysis. A commonly used 

metric in the telecommunication industry is the hourly number of calls. It may be 

regarded as the footprint of a user's calling behavior. Units less than an hour (minute) 

is large enough to capture the calling activity since a call usually lasts 3-5 seconds 

in the EComm network. However, the one minute recording unit may impose large 

computational cost because of the huge number of data points (92 * 24 * 60 = 132,480). 

Units larger than an hour (day) are too coarse to capture user's behavior patterns 

and will reduce the number of data points to merely 92 in our analysis. 

The talk group is the basic talking unit in the EComm network. Hence, we use 

a talk group's hourly number of calls to capture a user's behavior. The collected 92 

days of traffic data (2,208 hours) imply that each talk group's calling behavior may 

be portrayed by the 2,208 ordered hourly numbers of calls. Samples of the hourly 

number of calls for talk groups 1 and 2 over 168-hour are shown in Figure 4.1, while 

talk group 20 and 263's calling behavior are shown in Figure 4.2. Table 4.1 shows a 

small sample of the user's calling behavior. The first column shows the talk group 

id. The remaining columns are the hourly number of calls starting from 2003-03-01 

00:00:00 (hour 1) and ending a t  2003-05-31 23:59:59 (hour 2208). One row corresponds 

to one talk group's calling behavior over the 2,208 hours. This will be used in our 

clustering analysis. 

For simplicity and based on prior experience with clustering tools, we selected 

AutoClass [12] tool and K-means [lo] algorithms to classify the calling patterns of 

talk groups. 

AutoClass tool 

A general approach to clustering is to view it as a density estimation problem. We 

assume that in addition to the observed variables for each data point, there is a hidden, 

unobserved variable indicating the "cluster membership" (cluster label). Hence, the 

data are assumed to be generated from a mixture model and that the labels (cluster 
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Talk group I 

Time (hour) 

Talk group 2 

0 24 48 72 96 120 144 168 

Time (hour) 

Figure 4.1: Calling patterns for talk groups 1 (top) and 2 (bottom) over the 168-hour 
period. 
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Figure 4.2: Calling patterns for talk groups 20 (top) and 263 (bottom) over the 168- 
hour period. 
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Talk 
group id 
0 
1089 
28 
... 
113 
162 
230 
... 

Hour 
1 

26 
6 
1 
... 
3 
0 
3 
... 

Hour 
2 
25 
29 
0 
... 
0 
0 
0 
... 

Hour 
3 

24 
0 
2 
... 
0 
0 
3 
... 

Hour 
4 
20 
10 
32 
... 
5 

232 
77 
... 

Hour 
2206 

30 
22 
13 
... 
3 

193 
203 
... 

Hour 
2207 

24 
23 
36 
... 
0 

176 
270 
... 

Hour 
2208 

26 
0 
8 1 
... 
0 

256 
187 
... 

Table 4.1: Sample of hourly number of calls for various talk groups. 

identification) are hidden. In general, a mixture model M has K clusters Ci, i = 

1, ..., K ,  assigning a probability to a data point x as: 

where Wi is the mixture weight. Some clustering algorithms assume that the number 

of clusters K is known a priori. 

AutoClass [12] is an unsupervised classificat.ion tool based on thc classical finitme 

mixture model [13]. According to Cheeseman, [9] 

"The goal of Bayesian unsupervised classification is to find the most 

probable set of class descriptions given the data and prior expectations." 

In the past, AutoClass was applied to classify distinct user groups in Telus Mobility 

Cellular Digital Packet Data (CDPD) network [8]. 

AutoClass was developed by Bayesian Learning Group at NASA Ames Research 

Center [14]. We use AutoClass C version 3.3.4. The key features of AutoClass include: 

determining the optimal number of classes automatically 

handling both discrete and continuous values 

handling missing values 
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"soft" probabilistic cluster membership instead of "hard" cluster membership. 

AutoClass begins by creating a random classification and then manipulates it 

into a high probability classification through local changes. It repeats the process 

until it converges to a local maximum. It then starts over again and continues until 

a maximum number of specified tries. Each effort is called a t7-y. The computed 

probability is intended to cover the entire parameter space around this maximum, 

rather than just the peak. Each new try begins with a certain number of clusters 

and may conclude with a smaller number of clusters. In general, AutoClass begins 

the process with a certain number of clusters that previous tries have indicated to be 

promising. 

The input data for AutoClass are stored in two files: data file (.db2) and header 

file (.hd2). The data file are in vector format. The 2,208 number of calls for each talk 

group are extracted from database and stored in matrix structure. Each row stands 

for one talk group and each column is one of the 2,208 hourly number of calls, except 

that the first column is the identification number of a talk group. In the header file, 

we specify the data type, name, relative observation error for each column. Part of 

the header file is shown in Figure 4.2. 

AutoClass uses a model file (.model) to describe the possible distribution model for 

each attribute of the data. Four types of models are currently supported in AutoClass: 

single~multinomial: models discrete attributes as multinomial distribution with 

missing values. It can handle symbolic or integer attributes that are condition- 

ally independent of other attributes given the class label. Missing values will be 

represented by one of these existing values. 

single-normal-cn: models real valued attributes as normal distribution without 

missing values. The model parameters are mean and variance. 

single-normal-cm: models real valued attributes as normal distribution with 

missing values. The model can be applied to real scalar attributes using a 

log-transform of the attributes. 
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#Leo Chen, 2003-Oct-22 
#the header file for E-Comm data user data clustering 
num-db2-format-defs 2 
#required 
number-of-attributes 2209 

# optional - default values are specified 
# unknown-token '?' 
separator-char ' ' 
# comment-char '#' 

0 discrete nominal "talkgroup" range 1754 
1 real scalar "NC[l]" zero-point 0.0 rel-error 0.001 
2 real scalar "NC[2Iv zero-point 0.0 rel-error 0.001 
3 real scalar "NC[3In zero-point 0.0 rel-error 0.001 

... ... 
2205 real scalar "NC[2205]" zero-point 0.0 rel-error 0.001 
2206 real scalar "NC[2206In zero-point 0.0 rel-error 0.001 
2207 real scalar "NC[2207lV zero-point 0.0 rel-error 0.001 
2208 real scalar "NC[2208]" zero-point 0.0 rel-error 0.001 

Figure 4.3: Sample of the Autoclass header file. 
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0 multi-normal-cn: a covariant normal model without missing values. This model 

applies to a set of real valued attributes, each with a constant measurement 

error and without missing values, which are conditionally independent of other 

attributes given the cluster label. 

The model file used is given in Appendix B. A search parameters file (.sparam) 

is also used to adjust the search behavior of AutoClass. The most frequently used 

parameters are start-j-list, fixed-j, and max-n-tries. 

0 start-jlist: AutoClass will start the search with the certain number of clusters 

in the list. 

0 fixed-j: AutoClass will always search for the fixed-j number of clusters, if spec- 

ified. 

0 maxn-tries: AutoClass stops search when it reaches the maximum number of 

the tries. 

The detailed description of the remaining searching and reporting parameters may be 

found in the AutoClass manual [9], [15]. 

AutoClass used -20 hours in searching for the best clustering of the 617 talk 

groups in the E-Comm data. The search results include three important values for 

the clustering: 

0 attribute influence values: presents the relative influence or significance of the 

attributes. 

0 cross-reference by case number: lists the primary class probability for each da- 

tum, ordered by the case number. 

0 cross-reference by class number: for each class, lists each datum in the class, 

ordered by case number. 

The content of one clustering report is given in Appendix B. The ten best results 

of talk group clustering are summarized in Table 4.2. The number of talk groups in 
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Number  
of t r ies  

653 
930 
940 
323 
542 
1084 
677 
918 
528 
385 

Probability 

exp(-6548529.230) 
exp(-6592578.320) 
exp(-6619633.090) 
exp(-6622783.940) 
exp(-6626274.570) 
exp(-6637269.320) 
exp(-6657627.910) 
exp(-6658596.390) 
exp(-6660040.920) 
exp(-6671271.570) 

Table 4.2: AutoClass results: 10 best clusters. 

Number  
of clusters 

24 
18 
21 
2 4 
17 
24 
18 
19 
18 
12 

Cluster  ID Size 

[3] 66 
[61 23 
191 20 

[I21 19 
[I51 18 
1181 13 
WI 9 
PI 3 

Cluster  ID Size 
[I] 144 

[41 31  
PI 22 

[ lo ]  20 
[I31 18 
1161 17 
~ 9 1  12 

PI 4 

Table 4.3: AutoClass results: cluster sizes. 

Cluster  ID Size 

PI 67 
PI 25 
I81 21 
[Ill 19 
[I41 18 
1171 15 
POI 10 

PI 3 

each cluster (cluster size) is also shown in the Table 4.3. Hourly number of calls for 

talk groups in clusters 5, 17, and 22 are shown in Figure 4.4. Talk groups in different 

clusters exhibit distinct calling behavior patterns. 

4.3 K-means algorithm 

K-means algorithm is one of the most commonly used data clustering algorithms. It 

partitions a set of objects into K clusters so that the resulting intra-cluster similarity 

is high while the inter-cluster similarity is low. The number of clusters K and the 
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Cluster ID: 5 (size=25) 
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Figure 4.4: Number of calls for three Autoclass clusters with IDS 5 (top), 17 (middle), 
and 22 (bottom). 
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object similarity function are two input parameters to the K-means algorithm. Cluster 

similarity is measured by the average distance from cluster objects to the mean value 

of the objects in a cluster, which can be viewed as the cluster's center of gravity. The 

algorithm is well-known for its simplicity and efficiency. It is relatively efficient and 

stable. The use of various similarity or distance functions makes it flexible. It has 

numerous variations and it is applicable in areas such as physics, biology, geographical 

information system, and cosmology. However, its main drawback is its sensitivity to 

the initial seeds of clusters and outliers, which may distort the distribution of data. 

In addition, user sometimes may not know a priori the desired number of clusters K ,  

which is the most important input parameter to the algorithm. 

The distance between two points is taken as a common metric to assess the simi- 

larity among the components of a population. The most popular distance measure is 

the Euclidean Distance. The Euclidean distance of two data points x = (xl ,  2 2 ,  ..., xn) 

and Y = (~1,327 ..., yn) is: 

We use a variation of K-means, PAM (Partitioning Around Medoids) [ lo]  and our 

own implementation of K-means to cluster the talk group data. The PAM algorithm 

searches for K representative objects or medoids among the observations of the data 

set. It finds K representative objects that minimize the sum of the dissimilarities of 

the observations to their closet medoids. 

We also implemented the classical K-means algorithm using the Per1 programming 

language [16]. The program first seeks K random seeds as cluster centroids in the 

data set. Based on the Euclidean distance of the object from the seeds, each object is 

assigned to a cluster. The centroid's position is recalculated every time an object is 

added to the cluster. This process continues until all the objects are grouped into the 

final specified number of clusters. Objects change their cluster memberships after the 

recalculation of the centroids and the re-assignment. Clusters become stable when 

no object is re-assigned. Different clustering result,s are obtained depending on the 

raridorn seeds. However, clustering results for different runs with the same number K 
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are relatively stable when K is not large, i.e., the clusters converge and different runs 

result in almost identical cluster partitions. 

Without knowing the actual cluster label for each talk group, we are unable to 

measure the clustering quality using objective measurement factor, such as the F- 

measure 1171. We use the inter-cluster and the intra-cluster distances to assess the 

overall clustering quality. The inter-cluster distance is defined as the Euclidean dis- 

tance between two cluster centroids, which reflects the dissimilarity between clusters. 

The intra-cluster distance is the average distance of objects from their cluster cen- 

troids, expressing the coherent similarity of data in the same cluster. A large inter- 

cluster distance and a small intra-cluster distance indicate better clusters. The overall 

clust,ering qualit,y indicator is defined as the difference between the minimum inter- 

cluster distance and the maximum intra-cluster distance. The greater the indicator, 

the better the overall clustering quality. Another measure for the clustering quality 

is silhouette coefficient [lo], which is rather independent on the number of clusters, 

K .  Experience shows that the silhouette coefficient between 0.7 and 1.0 indicates 

clustering with excellent separation between clusters. 

The cluster size, distance measurement, overall quality, and silhouette coefficient 

of K-means clustering results for clusters with various number of K are shown in Table 

4.4. Based on the overall quality and the silhouette coefficient, the best clustering 

result is obtained for K = 3 (in the top three rows). Figure 4.5 shows one week 

of traffic for each talk groups in the three clusters. The maximum, minimum, and 

average number of calls for each cluster are also shown. The plots demonstrate the 

distinct calling behavior of each cluster. 

4.4 Comparison of AutoClass and K-means 

To compare the clustering results of AutoClass and K-means, we enforce the number 

of clusters in AutoClass by specifying the parameter f i x ed j  to 3 in the search param- 

eter file. The calling behavior properties for talk groups in the AutoClass clusters 

and in K-means clusters are compared in Table 4.5. The three clusters identified 

by K-means are more reasonable than the clusters produced by AutoClass. With 
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Cluster 1 (17 talk groups) 

0 24 48 72 96 120 144 168 

Time (hour) 

Cluster 2 (31 talk groups) 
I 

Time (hour) 

Cluster 3 (569 talk groups) 

Time (hour) 

Figure 4.5: K-means result: number of calls in three clusters. 
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Table 4.5: Comparison of talk group calling properties (AC: AutoClass, K: K-means, nc: 
number of calls). 

Alg. 

K-means clustering, the first cluster has 17 talk groups, representing the busiest dis- 

patch groups whose main tasks are coordinating and scheduling other talk groups 

for certain tasks. The second cluster contains 31 talk groups with medium network 

usage. The last, cluster ident,ifies a group of least frequent network users who made on 

average no more than 16 calls per hour. These interpretations of clusters have been 

confirmed by domain experts. On the contrary, it is difficult to provide reasonable 

explanations for group behavior for the three clusters identified by AutoClass. Thus, 

we use the three clusters identified by K-means in the prediction of network traffic. 

4.5 Summary 

Clu. 
size 

Clustering analysis of the talk groups' calling behavior reveals hidden structure of 

talk groups by grouping the talk groups with similar calling behavior rather than by 

their organizational structure. 

We used AutoClass tool and applied K-means algorithm to identify clusters of 

talk groups based on their calling behavior. Talk groups' behavior patterns are then 

categorized and extracted from the clusters. The optimal number of clusters is diffi- 

cult to determine. By comparing the overall quality measurement and the silhouette 

coefficient measure, we found that three is the best number of clusters for K-means 

algorithm. Based on the domain knowledge, the three clusters identified by K-means 

Min. Max. Avg. 
nc nc n c 

Total Total 
nc nc (%) 
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are more reasonable than clusters produced by Autoclass. Other clustering algo- 

rithms, such as hierarchical [18] and density based [19] clustering may also be used to 

cluster the user data. 



Chapter 5 

Data prediction 

In this Chapter, we describe the time series data analysis and the Auto-Regressive 

Integrated Moving Average (ARIMA) models. We describe how to identify, esti- 

mate, and forecast network traffic using the ARIMA model. We also present the 

cluster-based prediction models and compare the prediction results with the results 

of traditional prediction based on aggregate traffic. 

5.1 Time series data analysis 

Performance evaluation techniques are important in the design of networks, services, 

and applications. Of particular interest are techniques employed to predict the QoS 

related network performance. Modeling and predicting network traffic are essential 

steps in performance evaluation. It helps network planners understand the underlying 

network traffic process and to predict future traffic. Analysis of commercial network 

traffic is difficult because the commercial network traffic traces are not easily available. 

Furthermore, there are privacy and business issues to consider. 

The Erlang-C model [20], currently used by the E-Comm staff, was developed 

based on individual user's calling behavior in wired networks. It considers no-group 

call behavior in t,runked radio systems. Network traffic may also be considered as 

a series of observations of a random process, and, hence, the classical time-series 

prediction ARIMA models can be used for traffic prediction. 
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We employ the Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model [21], a special case of ARIMA, to predict the EComm network traffic. SARIMA 

models have been applied to modeling and predicting traffic from both large scale 

networks (NSFNET [22]) and from small scale sub-networks [23]. The fitted model 

is only an approximation of the data and the quality of the model depends on the 

complexity of the phenomenon being modeled and the understanding of data. 

ARIMA model 

The ARIMA model, developed by Box and Jenkins in 1976 [21], provides a systematic 

approach to the analysis of time series data. It  is a general model for forecasting a 

time series that can be stationarized by transformations such as differencing and log 

transformation. Lags of the differenced series appearing in the forecasting equation 

are called auto-regressive terms. Lags of the forecast errors are called moving average 

terms. A t,ime series that needs to be differenced to be made stationary is said to be 

an integrated version of a stationary series. Random-walk and random-trend models, 

autoregressive models, and exponential smoothing models (exponential weighted mov- 

ing averages) are special cases of the ARIMA models [24]. ARIMA model is popular 

because of its power and flexibility. 

5.2.1 Aut oregressive (AR) models 

Regression model is a widely applied multivariate model used to predict the target 

data based on observations and to analyze the relationship between observations and 

predictions. Autoregressive model is conceptually similar to the regression model. In- 

stead of the multi-variative observed data, the previous observations of the univariate 

target data are used as the effective factors of the target dat,a. The regression model 

assumes the future value of the target variable to be determined by other related 

observed data, while the autoregressive model assumes the future value of the target 

variable to be determined by the previous value of the same variable. An AR model 

closely resembles the traditional regression model. 
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An AR(p) model Xt can be written as 

Xt = 41Xt-1 + 42Xt-2 + ... + 4pXt-p + Zt, 

where Zt denotes a random process with zero mean and variance a2.  
Using the backward shift operator B,  where BXt = XtPl,  the AR(p) 
model may be written as 

4 ( W t  = Zt, 

where 4(B)  = (1 - d l B  - ... - 4,Bp) is a polynomial in B of order p. 

Figure 5.1 : Definition of the autoregressive (AR) model. 

A time series Xt is said to be a moving-average process of order q if 

Xt = Zt + 01Zt-1 + ... + 0,Zt-,, 

where Zt -- W N ( 0 ,  a2) denotes a random process with zero mean and 
constant variance a2 and 01, ..., 0, are constants. 

Figure 5.2: Definition of the moving average (MA) model. 

5.2.2 Moving average (MA) models 

A moving average model describes a time series whose elements are sums of a series 

of random shock values. The process that generates a moving average model has no 

memory of past values. For example, a time series of an MA(1) process might be 

generated by a variable with measurement error or a process where the impact of 

a shock takes one period to fade away. In an MA(2) process, the shock takes two 

periods to completely fade away. 
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An ARIMA(p, d, q) model Xt can be written as 

where q5(B) and O(B) are polynomials in B of finite order p and q, 
respectively. The backward shift operator B is defined as BiXt = XtPi. 
A SARIMA (p, d, q) x (P, D,  Q)s  model exhibits seasonal pattern and 
can be represented as: 

where q5(B) and 8(B) represent the AR and MA parts, and q5(Bs) and 
8(BS) represent the seasonal AR and seasonal MA parts, respectively. 
B is the back-shift operator BiXt = XtPi. 

Figure 5.3: Definition of the AR.IMA/SARIMA model. 

5.2.3 SARIMA ( p , d , q )  x ( P , D , Q ) s  models 

The ARIMA model includes both autoregressive and moving average parameters and 

explicitly iricludes in the forrnulatiori of t,he model differericing, which is used to sta- 

tionarize the series. The three types of parameters in the model are: the autoregressive 

order (p),  the number of differencing passes (d), and the moving average order (q). 

Box and Jenkins denote it as ARIMA (p, d ,  q) [21]. For example, a model ARIMA (0, 

1, 2) means that it contains 0 (zero) autoregressive (p) order, 2 moving average (q) 

parameters, and the model fits the series after being differenced once (1). A SARIMA 

model is a ARIMA model plus seasonal fluctuation. It  comprises normal orders (p, 

d ,  q) and seasonal orders (P, D, Q), and the seasonal period S. A general SARIMA 

model is denoted as SARIMA (p, d, q) x (P, D,  Q)s.  
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5.2.4 SARIMA model selection 

The general ARIMA model building process has three major steps: 

model identification 

model estimation 

model ~erificat~ion. 

Model identification is used to decide the orders of t,he model, i.e., to determine the 

value of orders p, d, q,  seasonal orders P, D, Q, and the seasonal period S.  The 4(x) 

and 6(x) coefficients are computed in the model estimation phase, using minimum 

linear square error method or maximum likelihood estimation methods. Models are 

verified by diagnostic checking on the null hypothesis of the residual or by various 

tests, such as Box-Ljung and Box-Pierce tests [21], [24], [25]. 

The major tools used in the model identification phase include plots of the time 

series, correlograms of autocorrelation function (ACF), and partial autocorrelation 

function (PACF). Model identification is often difficult and in less typical cases re- 

quires not only experience but also a good deal of experimentation with models with 

various orders and parameters. The relation of the ACF with the MA(q) model, and 

the relation of the PACF with the AR(p) model, are shown in Figure 5.4. 

We use three measurements to find the best models and check the validity of the 

model parameters. A smaller value of the measurement indicates a better selection of 

model. 

Akaike's Information Criterion (AIC) 

AIC = -2ln(max.likelihood) + 2p 

Akaike's Information Criterion Corrected (AICc) 

AICc = AIC + 2(p + l ) (p  + 2)/(N - p - 2) 

Bayesian Information Criterion (BIC)  

B I C  = -2ln(max.likelihood) + p + plnN 
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I Let {Y,} be the MA(q) model, so the ACF p(k) 

I The PACF of a stationary time series is defined as 

where Pg{Y2,...,Yk}Y denotes the projection of the random variable 
Y onto the closed linear subspace spanned by the random variable 
{Y27. . . ,  Yk}. 

Theorem 1231 
For an AR(p), q5kk = 0 for k > p. 

Figure 5.4: Auto-correlation function and Partial auto-correlation function. 
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nmse 
0.173 
0.379 
0.174 
0.175 

0.5253 
0.411 
0.546 
0.537 
0.404 

AIC 
20558.7 
22744.6 
23129.8 
23145.1 
25292.1 
25332.6 
25345.9 
25360.5 
25361.2 

BIC 
20590.3 
22826.8 
23161.9 
23170.8 
25382.1 
25371.2 
25429.4 
25392.6 
25399.7 

Table 5.1: Summary of SARIMA models fitting measurement. 

We test a series of SARIMA models selected based on the time series plot, ACF, 

and PACF. The measurement results for several SARIMA models are shown in Ta- 

ble 5.1. The rows are sorted in ascending order of the value of the measurement BIC. 

Based on the same amount of training data 1,680, the model (2,0,1) x (O,1, has 

the smallest BIC value. Thus, it may be the most suitable model for the data we 

tested. 

Null hypothesis test was used to check a model's goodness-of-fit. They verify the 

randomness of the time series and may be applied to the residual of the model. If 

the ideritified/estimated model fits the training data well, the residual obtained by 

subtracting the fitted dat,a from the original observation. should be a true random 

series. Usual null hypothesis test includes time plot analysis and ACF checks. In 

addition, two types of goodness-of-fit test, Box-Ljung and Box-Pierce tests may be 

used to check the null hypothesis of the model. 

Figures 5.5 and 5.6 show the time plot of the residual series and their ACF function, 

for two SARIMA models (3 ,0 , l )  x ( O , 1 ,  and (1,1,O) x ( O , 1 ,  respectively. 

Also shown are the P-value 1261 of the Box-Ljung test for these two models. P-value 

of the test represents the probability that the sample could have been drawn from 

the population(s) being tested given the assumption that the null hypothesis is true. 

Thus, a higher P-value implies that the model being tested are more likely to pass the 

null hypothesis test. Based on the plot and P-value, the model (3,0,1) x ( O , 1 ,  
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passed the null hypothesis test, while the model (1,1,O) x ( O , 1 ,  failed. 

5.3 Prediction based on aggregate traffic 

The correlograms of the autocorrelation function and the partial autocorrelation func- 

tion of the E-Comm data are shown in Figures 5.7 and 5.8, respectively. By differ- 

encing the sample data with 24 hours lag, we estimate from the ACF shown in Figure 

5.7 that the MA order could be up to 9. Based on the PACF shown in Figure 5.8, 

we estimate that the order of AR part is 2 because of the apparent cut-off at lag 2. 

Hence, the ARIMA models (2, 0, 1) and (2, 0, 9) are selected as model candidates. 

The order (0, 1, 1) are commonly used for seasonal part (P, Dl Q). It is selected 

because the cyclical seasonal pattern itself is usually a random-walk process and may 

be modeled as an MA (1) process after one time differencing. Thus, we use the order 

of (0, 1, 1) for seasonal pattern. 

A useful metric called normalized mean square error (nmse) is used to measure the 

prediction quality by comparing the deviation of the predicted data and the observed 

data. The nmse of the forecast is equal to the normalized sum of the variance of the 

forecast divided by the squared bias of the forecast. It is defined as 

where ai is the observed data, bi is the prediction, and Si is the mean value of ai. 

Smaller values of nmse indicate better model performance. 

An open source statistical tools R [27], [28], [29] was used to identify, estimate, and 

verify the SARIMA model and to forecast the traffic. The E-Comm network traffic 

possesses both daily and weekly patterns. Hence, both 24-hour and 168-hour (one 

week) intervals are selected as seasonal period parameters. Hence, in addition to the 

(2,0,9) x (O,1, and (2,0,1) x (O,1, models, two models (2,0,9) x (0,1, 

and (2,0,1) x ( O , 1 ,  are also used to predict the network traffic. The four models 

and corresponding parameters fitted for the E-Comm network traffic are shown in 

Table 5.2. The model performance is tested with four groups of data (A, B, C, and 
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Standardized Residuals 

Time 

p values for Ljung-Box statistic 

Figure 5.5: Residual analysis: diagnostic test for model (3,0,1) x ( O , l ,  
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Standardized Residuals 

Time 

ACF of Residuals 

p values for Ljung-Box statistic 

Figure 5.6: Residual analysis: diagnostic test for model ( 1 , 1 , O )  x ( O , l ,  
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Figure 5.7: Number of calls: sample auto-correlation function (ACF). 
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Figure 5.8: Number of calls: sample Partial auto-correlation function (PACF). 
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No. 
A 1 
A2 
A3 
A4 
B 1  
B2 
B3 
B3 
C1 
C2 
C3 
C4 
D l  
D2 
D3 
D4 

Trained (m) 
1512 
1512 
1512 
1512 
1680 
1680 
1680 
1680 
1920 
1920 
1920 
1920 
2016 
2016 
2016 
2016 

Predicted (n) 
672 
672 
672 
672 
168 
168 
168 
168 

nmse 
0.3790 
0.3803 
0.1742 
0.1732 
0.3790 
0.4079 
0.1736 
0.1745 
0.3164 
0.1941 
0.1002 
0.0969 
0.3384 
0.3433 
0.1282 
0.1178 

Table 5.2: Aggregate-traffic-based prediction results. 

D). We forecast the future n traffic data based 011 m past traffic data samples. In 

Table 5.2, p , d , q  represent the order of the AR. difference, and MA model for the 

original data points, respectively. The P, D, Q represent the order of AR, difference, 

and MA model for the seasonal pattern, respectively. S is the seasonal period for the 

models. 

Four SARIMA models with four groups of training data  are shown in Table 5.2. 

The models differ in the order of moving average and the seasonal period. 

Model 1: (2 ,0,9)  x (0,1,1)24 (rows A l l  B1, C1, and D l )  is the model with 

24-hour seasonal period and moving average of order 9. The model performance 

does not depend on the number of training data, with nmse ranging from 0.3164 

to 0.3790. 

Model 2: (2 ,0,1)  x (0,1,1)24 (rows A2, B2, C2, and D2) is the model with 

24-hour seasonal period and moving average of order 1. It exhibits similar 
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prediction effectiveness as Model 1. It  performs bett'er in row C2 than model 1 

in row C1. 

Model 3: (2,0,9) x (O,1, (TOWS A3, B3, C3, and D3) is the model with 

a 168-hour period weekly cycle. It differs from Model 1 only in the seasonal 

period, but provides much better prediction results than Model 1. 

Model 4: (2 ,0,1)  x ( O , 1 ,  1)16S (rows A4, B4, C4, and D4), differs from Model 2 

in the seasonal period. It  performs better than Model 2. 

The comparisons of rows A1 with A2, B1 with B2, and D l  with D2, indicate that 

Model 1 leads to better prediction results than Model 2. However, the prediction C1 is 

worse than C2. Furthermore, for all four groups of training data, Models 3 and 4 with 

168-hour period always lead to better prediction results than Models 1 and 2 with 24- 

hour period. The 24-hour period models assume that the traffic is relatively constant 

for a weekday, while the 168-hour period models take into account traffic variations 

between between weekdays. To predict traffic on a Wednesday based on Tuesday's 

data not as accurate as predicting Wednesday's traffic based on the data of previous 

Wednesdays. However, the computational cost of identifying and forecasting 168-hour 

period models is much larger that for the 24-hour period models. Often, 168-hour 

models require over 100 times the CPU needed for 24-hour models. A comparison 

of the prediction results of the 24-hour model and the 168-hour model in predicting 

one future week of traffic based on the 1,680 past hours is shown in Figure 5.9. It 

is consistent with the nmse value. The 168-hour period model performs better than 

the 24-hour period model. The continuous curve shows the observation data. Symbol 

"0" indicate the predicted traffic based on the 168-hour season model. Symbol "*" 
denotes the prediction of the 24-hour season model. Based on the nmse values, the 

prediction of the 168-hour based model fits better the observations than the prediction 

based on the 24-hour model. 
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50 100 

Time (hour) 

Figure 5.9: Predicting 168 hours of traffic data based on the 1,680 past data. 

5.4 Cluster-based prediction approach 

A key assumption of the prediction based on the aggregate traffic described in Sec- 

tion 5.3 is the constant number of network users and constant behavior patterns. 

However, this assumption does not hold in case of network expansions. Hence, it is 

difficult t>o use traditional models to forecast traffic of such networks. We propose 

here a cluster-based approach to predict t,he network traffic by aggregating traffic 

predicted for individual clusters. 

Network users are classified into clusters according to the similarity of their be- 

havior. It is impractical to predict each individual user's traffic and then aggregate 

the predicted data. With user clusters, this task reduces to predicting and then ag- 

gregating several clusters of users' traffic. For each clusters produced by K-means 

in Section 4.3, we predict network traffic using SARIMA models (2,0,1) x ( O , 1 ,  

and (2,0,1) x (O,1, l)lss. Results of the cluster-based prediction are compared to the 

prediction based on aggregate traffic in Table 5.3. 

In Table 5.3, rows marked A represent the prediction based on aggregate user 
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Table 5.3: Summary o f  t he  results o f  cluster-based prediction. 

Cluster 
1 

nmse 
1.1954 

( ~ , d , q )  (P,D,Q) 
(2,0,1) ( 0 1 )  

S m n 
24 1680 48 
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traffic (without clustering of users) using the model shown in rows A2, B2, C2, and 

D2 in Table 5.2. Rows 1, 2, and 3 represent traffic prediction for user clusters 1, 2, and 

3, respectively. Row * is the weighted aggregate prediction of network traffic based 

on the prediction for three user clusters. Row 0 stands for the optimized weighted 

aggregate prediction. Note that the nmse > 1.0 for clusters 1 and 2 implies that the 

prediction results are worse than prediction based on the mean value of past data. A 

better prediction shown in row 0 is obtained if the mean value prediction is adopted 

for clusters 1 and 2. We named it the optimized cluster-based prediction. Even with 

un-optimized clustered based prediction (row *), the prediction results are not worse 

than results of prediction based on aggregate traffic (rows A). 

The advantage of the cluster-based prediction is that we could predict traffic in 

a network with variable number of users as long as the new user groups could be 

classified into the existing user clusters. The computational cost of forecasting the 

network traffic is reduced to the number of clusters times the prediction cost for one 

cluster. 

5.5 Additional prediction results 

Additional prediction results are presented in Tables 5.4 - 5.7. The experimental 

results show that 57% of the cluster-based prediction models perform better than the 

prediction models based on aggregate traffic when the seasonal period is 168 hours. 

Furthermore, 7 out of 8 optimized models give better prediction results when the 

model seasonal period is 24 hours. 

5.5.1 Comparison of predictions with the (2 ,0 ,1 )  x (0, 1, 

model 

The results of cluster-based prediction and the prediction based on aggregat.e traffic 

are compared in Tables 5.4 and 5.5. In the tables, pdq, PDQ, and S are SARIMA 

model orders, seasonal orders, and season period, respectively. m is the number of 

model training data and n is the number of predicted data. Tables 5.4 and 5.5 also 
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show the nmse for prediction of each cluster, nmse for prediction based on aggregate 

user traffic, nmse for cluster-based prediction, and nmse for optimized cluster-based 

prediction, if any. Note that we use the same optimization method as used in Table 5.3: 

we use the mean value of training data m to replace the "bad" cluster predictions when 

nmse > 1.0. Rows marked "()" indicate that the cluster-based predictions perform 

better than the predictions based on aggregate traffic (8 out of 56). Rows marked "[I" 
show that the optimized cluster-based prediction performs better than the prediction 

based on aggregate traffic (7 out of 56). 7 out of 8 optimized predictions perform 

better than the aggregate-traffic-based predictions, which proves the effectiveness of 

the proposed optimization method. 

5.5.2 Comparison of predictions with the (2,0,1) x (O,l, 

model 

The results of cluster-based prediction and the prediction based on aggregat,e traffic 

using SARIMA model (2,0,1) x ( O , 1 ,  are compared in Tables 5.6 and 5.7. In 

the tables, pdq, PDQ, and S are SARIMA model orders, seasonal orders, and season 

period, respectively. m is the number of model training data and n is the number of 

data predicted. Tables 5.6 and 5.7 also show the nmse for prediction of each cluster, 

nmse for predi~t~ion based on aggregat,e user traffic, nmse for cluster-based prediction, 

and nmse for optimized cluster-based prediction, if any. Note that we also applied 

the same optimization method as used in Table 5.3, which replaces "bad" prediction 

results (nmse > 1.0) with the mean value of training data m. None of the optimized 

cluster-based predictions performs better than the predictions based on aggregate user 

traffic. However, more t.han 57% cluster-based predictions perform better than the 

predictions based on aggregate traffic, which are shown in rows marked "0". 

5.6 Summary 

In this Chapter, we described the analysis of time series data, emphasizing the 

SARIMA models. The SARIMA rnodel was used to fit the aggregate network traffic 



nmse nmse nmse 
cluster1 cluster2 cluster3 
0.3237 0.5481 0.3084 

nmse 
aggregate 

0.2546 
0.3431 
0.3708 
0.3559 
0.3904 
0.3905 
0.3806 
0.1203 
0.1661 
0.3206 
0.3673 
0.3422 
0.3122 
0.3016 
0.221 

0.2894 
0.3255 
0.3103 
0.3081 
0.334 

0.4105 
0.08545 
0.09983 
0.2409 
0.3387 
0.3703 
0.3469 
0.3378 

nmse 
clusters 
( 0.2416 ) 
( 0.3324 ) 
( 0.3605 ) 
( 0.3456 ) 
( 0.381 ) 
( 0.3831 ) 
( 0.3748 ) 
( 0.1187 ) 

0.167 
0.3419 
0.3933 
0.3633 
0.3223 
0.3046 
0.2535 
0.2986 
0.3321 
0.3151 
0.3107 
0.3352 
0.4117 
0.09052 

0.103 
0.2449 
0.3429 
0.3738 
0.3504 
0.3414 

Table 5.4: Comparison of predictions with (2,0,1) x (O,1, model: part 1. 

nmse 
optimized 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n /a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n /a 

0.2993 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n /a 



n
m

se
 

n
m

se
 

n
m

se
 

cl
u

st
er

1
 

cl
u

st
er

2
 

cl
u

st
er

3
 

2.
41

3 
1.

57
9 

0.
29

61
 

n
m

se
 

a
g
g
re

g
a
te

 
0.

59
75

 
1.

13
1 

0.
88

46
 

0.
61

 1
2 

0.
46

37
 

0.
39

66
 

0.
38

63
 

0.
32

57
 

0.
38

03
 

0.
42

09
 

0.
42

36
 

0.
42

64
 

0.
40

93
 

0.
38

96
 

0.
53

72
 

0.
62

56
 

0.
59

68
 

0.
47

07
 

0.
41

28
 

0.
40

41
 

0.
40

79
 

0.
19

42
 

0.
32

27
 

0.
37

61
 

0.
35

13
 

0.
37

97
 

0.
39

64
 

0.
39

27
 

n
m

se
 

cl
u

st
er

s 
0.

57
94

 
1.

12
5 

0.
88

6 
0.

61
38

 
0.

46
72

 
0.

39
97

 
0.

38
77

 
0.

33
63

 
0.

39
17

 
0.

43
28

 
0.

43
26

 
0.

43
34

 
0.

41
39

 
0.

39
43

 
0.

54
86

 
0.

62
98

 
0.

59
68

 
0.

47
1 

0.
41

39
 

0.
40

57
 

0.
40

93
 

0.
20

50
 

0.
32

89
 

0.
38

21
 

0.
35

73
 

0.
38

48
 

0.
40

05
 

0.
39

57
 

T
ab

le
 5

.5
: 

C
om

pa
ris

on
 o

f 
pr

ed
ic

tio
ns

 w
it

h
 (

2
,0

,1
) 

x 
(O

,1
, 

m
od

el
: 

pa
rt

 2
. 



CHAPTER 5. DATA PREDICTION 

lm I m m m m m m m m m m m m m m m m m m m m m m m m m m m  w w w w w w w w w w w w w w w w w w w w w w w w w w w  
d d d d d d d d d d d d d d d d d d d d d d d d d d d  

nnnnnnnnn 
n n n n 0  d rU P7 e U, W  b 03 
W b ~ O d d d d d d d d d ~ o d N ~ ~ m w b  



T
a

b
le

 5
.7

: 

n
m

se
 

n
m

se
 

n
m

se
 

cl
u

st
er

1 
cl

u
st

er
2 

cl
u

st
er

3
 

0.
98

96
 

0.
51

87
 

0.
17

94
 

n
m

se
 

ag
gr

eg
at

e 
0.

13
57

 
0.

15
37

 
0.

15
52

 
0.

15
15

 
0.

15
12

 
0.

15
31

 
0.

17
94

 
0.

18
02

 
0.

18
59

 
0.

21
06

 
0.

20
78

 
0.

19
10

 
0.

17
42

 
0.

15
27

 
0.

15
97

 
0.

16
33

 
0.

17
39

 
0.

18
08

 
0.

13
21

 
0.

11
49

 
0.

10
68

 
0.

10
94

 
0.

12
36

 
0.

16
27

 
0.

17
45

 
0.

18
09

 
0.

16
45

 

n
m

se
 

cl
u

st
er

s 
( 

0.
12

26
 )

 
( 

0.
14

91
 )

 
( 

0.
15

27
 )

 
( 

0.
14

98
 )

 
( 

0.
14

95
 )

 
( 

0.
15

12
 )

 
( 

0.
17

72
 )

 
( 

0.
17

84
 )

 
( 

0.
18

49
 )

 
0.

21
96

 
0.

20
94

 
( 

0.
19

09
 
) 

( 
0.

17
29

 )
 

( 
0.

15
1 

) 
( 

0.
15

60
 )

 
( 

0.
15

89
 )

 
( 

0.
17

16
 )

 
( 

0.
17

80
 )

 
( 

0.
12

98
 )

 
0.

11
68

 
0.

10
86

 
0.

11
00

 
0.

12
38

 
0.

16
30

 
0.

17
50

 
( 

0.
18

05
 )

 
0.

16
54

 

C
om

pa
ris

on
 o

f 
p
re

d
ic

tio
n
s 

w
it

h
 (

2
,0

,1
) x

 (
O

,l
, 

m
o

d
e

l: 
p

a
rt

 2
 

0
 

n
m

se
 

op
ti

m
iz

ed
 

E 'n
 

n/
a 

2 
n/

a 
'a
 

n/
a 

9
 



CHAPTER 5. DATA PREDICTION 65 

data and the traffic of user clusters. We compared the prediction based on aggre- 

gate traffic with cluster-based prediction. Based on our tests, we noted that 57% of 

the cluster-based prediction performed better than the aggregat,e t,rafic prediction 

with SARIMA model (2 ,0 ,1)  x (O,1, With SARIMA model (2 ,0 ,1)  x (O,1, 

cluster-based prediction performs better than prediction based on aggregate traffic in 

8 out of 56 tests and 7 optimized cluster-based predictions gave better results too. 

The advantage of clu~t~er-based traffic prediction is the flexibility of predicting variable 

number of users and the reduction of the computational cost. 



Chapter 6 

Conclusion 

In this thesis, we proposed a new prediction approach by combining clustering tech- 

niques with traditional time series prediction modeling. The new approach has been 

tested to predict the network traffic from an operational trunked radio system. We an- 

alyzed the network traffic data arid extracted useful data from the E-Comm network. 

We explored the effectiveness and usefulness of clustering techniques by applying 

Autoclass tool and K-means algorithm to classify network talk groups into various 

clusters based on the users' behavior patterns. To solve the computational cost prob- 

lem of "bottom-up" approach and the inflexibleness problem of "top-down" approach, 

we proposed a cluster-based traffic prediction method. We applied the cluster-based 

SARIMA models and aggregate-traffic-based models to predict the network traffic. 

The cluster-based prediction method produced comparable prediction results as the 

prediction based on aggregate network traffic. In our t,ests with the 168-hour SARIMA 

model, the cluster-based prediction performs better than the aggregate-traffic-based 

prediction. With the 24-hour SARIMA model, cluster-based predictions (8 out of 

56 tests) and optimized cluster-based prediction (7 out of 56 tests) perform better 

the aggregate-traffic-based predicbions. Furt,hermore, the cluster-based prediction a p  

proach is applicable to networks with variable number of users where the prediction 

based on aggregate-traffic-based could not be applied. Utilizing the network user 

clusters indicates a possible prediction approach for operational networks. Our ap- 

proach may also enable network operators to predict network traffic and may provide 
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guidance for future network expansion. Another contribution of this research project 

is the illustration how data mining techniques may be used to help solve practical 

real-world problems. 

We developed database processing and analysis skills while dealing with the 6 

Gbyte database. By applying unsupervised classification method on the traffic data, 

we learned that it is rarely possible to produce useful results without having the 

domain knowledge. The discovery of important clusters is a process of finding classes, 

interpreting the results, transforming and/or augmenting the data, and repeating the 

cycle. The cluster-based prediction model illustrates the application of clustering 

techniques to traditional network traffic analysis. 

6.1 Related and future work 

Prior analysis of traffic from a metropolitan-area wireless network and a local-area 

wireless network indicated the recurring daily user behavior and mobility patterns [6], 

171. Analysis of billing records from a CDPD mobile wireless network also revealed 

daily and weekly cyclic patterns [8]. The analysis of traffic from a trunked radio net- 

work traffic showed that the call holding time distribution is approximately lognormal, 

while the call inter-arrival time is close to an exponential distribution [ l l ] .  Channel 

utilization and the multi-system call behavior of trunked radio network have been 

also simulated using OPNET [30] and a customized simulation tool (WarnSim) [31]. 

We also experimented with a Bayesian network based approach to explore the 

causal and conditional relationships among the different characteristics of user behav- 

ior, such as call duration, number of systems in a call, caller id, and callee id. We 

used B-course 1321, 1331 and Tetrad 1341, 1351 and constructed Bayesian network from 

the user calling behavior data. Analysis results are presented in Appendix C. 

Since we orily have three months of traffic data, we were able to extract only 

the daily and weekly patterns of the user calling behavior. A larger volume of data 

may enable identifying the monthly behavior patterns. Traffic models could also be 

compared using simulation tools. This would help verify the prediction results. 



Appendix A 

Data table, SQL, and R scripts 

A.1 Call-Type table 

Call-type 

Group call 

Individual call 

Emergency call 

System call 

Morse code 

Test 

Paging 

Scramble 

Group set 

System log 

Start emergency 

Cancel emergency 

N/A 



APPENDIX A.  DATA TABLE, SQL, AND R SCRIPTS 

A.2 SQL scripts for statistical output 

Script to compute the average resource consumption for each talk group, in descending 

order of the number of calls during the 92 days. 

SELECT callee, agency, sum(n-calls) AS sn, 

TRUNCATE( SUM( n-calls * avgRes ) / SUM( n-calls 1, 2 ) AS aR, 

TRUNCATE( SUM( n-calls * avgDur ) / SUM( n-calls 1, 2 ) AS aD, 

TRUNCATE( SUM( avgSys * n-calls ) / SUM( n-calls ) , 2 ) AS aSys 

INTO OUTFILE '/tmp/dump/tg.res.stat3 FROM tgStat 

GROUP BY callee ORDER BY sn desc; 

A.3 R scripts for prediction test and result sum- 

mary 

A.3.1 R script for prediction test 

pred.test.24~-function(data, p=2, d=O, q=l, P=O, D=l, Q=l, 

start=240, end=1920, step=240, p.start=24, p.end=168, p.step=24, prefix) 

C 
result<-list () ; 

counter<-0 ; 

for (m in seq(start, end, step)) 

C 
mm<-as . integer (m) ; 
worked<-0; 

for (n in seq(p. start, p. end, p. step)) 

C 
f.name<-paste(prefix, "predl',mm,n,"(",p,d,q,P,D,Q,")-24",sep="-"); 

cat (counter, " : checking file" , f .name) ; 

if (file.exists(paste("./pred.test.24/", f.name, sep=""))) C 
cat ( "  . . . . . . tested already\nM) ; 
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worked<-I; 

if (file.info(paste("./pred.test.24/", f.name, sep=""))$size !=  0) ( 

load(paste(" . /pred. test. 24/" ,f .name, sep="")) ; 
x.arima<-result$arima; 

x.a.t<-result$m.t; 

break; 

3 
3 

1 
if (worked == 0) ( 

cat ("building model based on", mm, "data! \ntt) ; 

counter<-counter+l; 

cat (counter, " :predictt' ,n, "based on" ,mm, "data !\nu) ; 

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-24",sep="-"); 

if (file . exists (paste (I1. /pred. test. 24/11, f .name, sep=" " )  ) ) ( 

cat ("tested already\nl') ; 

next ; 

1 
x.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n)); 

x.nmse<-nmse(x.pred$pred[l:n] , data[(mm+l): (mm+n)l); 

cat("nmse=",x.nmse, "for ( "  ,p ,d,q,P,D,Q,")-24\n1I) ;  

result. predc-x. pred$pred [I : nl ; 

result<-list(par=c(p,d,q,P,D,Q,24,mm,n), arima=x.arima, 
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pred.test.l68<-function(data, p=2, d=O, q=l, P=O, D=l, Q=1, 

start=840, end=1680, step=l68, p. start=24, p. end=l68, p. step=24, prefix) 

x 
result<-list 0 ; 

counter<-0; 

for (m in seq(start, end, step)) 

x 
mm<-as.integer(m); 

worked<-0; 

for (n in seq(p.start, p.end, p.step)) 

x 
f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="-"); 

cat (counter, " :checking file" , f .name) ; 
if (file. exists(paste(" . /pred. test. 168/", f .name, sep="" 1)) x 
cat(" . . . . . . tested already\nM) ; 
worked<-I; 

if (file. info (paste (I1. /pred. test. l68/", f .name, sep='") )$size ! = 0) ( 

load(paste(" . /pred. test. 168/" ,f .name ,sep='"I)) ; 

x.arima<-result$arima; 

x.a.t<-result$m.t; 

rm(resu1t) ; 

break ; 

1 
1 
1 
if (worked == 0) ( 

cat ("building model based on" , mm, "data! \nu') ; 
x. a. t<-system. t ime (x. arima<-arima(data[l :mm , order=c (p ,d,q) , 

seasonal=list(order=c(P,D,Q), period=168))); 

1 
for (n in seq(p.start, p.end, p.step)) 
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{ 

counter<-counter+l; 

cat (counter, " :predictN ,n, "based on" ,mm, "data ! \n") ; 

f.name<-paste(prefix, "pred",mm,n,"(",p,d,q,P,D,Q,")-168",sep="-"1; 

if (file . exists (paste ("  . /pred. test. 168/", f .name, sep=" "1 ) ) { 

cat ("tested already\ntt) ; 

next ; 

> 
x.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n)); 

x .nmse<-nmse (x .pred$pred [l :n] , data[(mm+l) : (mm+n) ] ) ; 

cat ("nmse=" ,x .nmse, "for ("  ,p,d,q,P,D,Q, It)-168\nU) ; 

result.pred<-x.pred$pred[l:n]; 

result<-list(par=c(p,d,q,P,D,Q,l68,mm,n), arima=x.arima, 

pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t); 

save(resu1t , f ile=paste(" . /pred. test. l68/I1, f .name, sep=" ") ; 

> 
for (n in 2:3*168) 

counter<-counter+l; 

cat(~ounter,~~:predict",n,"based on",mm, "data !\n"); 

f .name<-paste(prefix, "predM,mm,n,"(",p,d,q,P,D,Q, "1-168",sep="-"1; 

if (file. exists(paste(" . /pred. test. l68/", f .name, sep=" "1 ) )  { 

cat ("tested already\nU) ; 

next ; 

1 
x.p.t<-system.time(x.pred<-predict(x.arima, n.ahead=n)); 

x. nmse<-nmse (x. ~red$pred [I : n] , data [ (mm+l) : (mm+n)] ) ; 

cat("nmse=",x.nmse,"for (",p,d,q,P,D,Q,")-168\nU); 

result.pred<-x.pred$pred[l:n]; 

result<-list (par=c (p ,d,q,P,D,Q, l68,mm,n), arima=x. arima, 

pred=result.pred, nmse=x.nmse, m.t=x.a.t, p.t=x.p.t); 

save(result, file=paste("./pred.test.168/", f.name, sep="")); 

> 
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A.3.2 R script used to summarize prediction results 

pred. summary<-f unct ion(path, cluster=O) (: 

options (digits=B) ; 

path. lent-nchar (path) ; 

output<-f ile (paste ("output/", path, " . summary" , sep="" 1, open="wt") ; 

files<-list.files(path, full.names=TRUE); 

cat(file=output, "no" , "(p,d,q)x(P ,D,Q)-s", "m" , llnlt , 
"nmse" , I'm. time", "p. time\nM , sep="\tM) ; 
for (i in l:length(files)) 

C 

cat ("loading", files [i] , "\n" , sep=I1.. "1; 

load(f iles [i] ) ; 

f.par<-result$par; 

f.arima<-result$arima; 

f.m.t<-result$m.t; 

f.p.t<-result$p.t; 

f.nmse<-result$nmse; 

rm(resu1t) ; 

if (cluster) C 
cat (f ile=output , substr(f iles [il , path. len+2, path. len+3) , 
sep=" ") ; 

1 else (: 

cat (f ile=output , i , sep=" "1 ; 

1 
cat (f ile=output , "\t ("  , f .par C11, " , " , f .par El , " , I' , f .par 131 , 
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cat(I1f inished" , files [il , "in" , sep=". .It); 

1 
flush (output) ; 

close (output) ; 

for (i in l:length(f iles)) ( 

cat ("working on", files Cil , "\n") ; 
f ile<-paste (dir , "/" , files [i] , sep="") ; 
cluster<-length(grep("kc3", files [i] ) ) ; 

pdq<-substr (f iles [i] , nchar(f iles [ill - 10, nchar (f iles [ill -8) ; 
season<-substr(f iles[i] , 11, regexpr("-", files [ill [I] -1) ; 
med<-type [length(grep(I1med" , files [il ))+I] ; 

cat ("pdq: " , pdq, "season: " , season, "med: " , med, "\nl1) ; 

if (cluster) ( 

input<-scan(file, what=list('character', 'character', 'integer', 

'integer', 'numeric', 'numeric', 'numeric'), skip=l); 

1 else C 
input<-scan(file, what=list('integer', 'character', 'integer', 

'integer', 'numeric', 'numeric', 'numeric'), skip=l); 

1 
for (i in l:length(input~C111)) ( 
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if (cluster) ( 

cat(file=output, "INSERT INTO prediction (cluster, type, pdq, 

season, m, n, 

nmse , m-time , p-t ime) VALUES ( "  , 
paste(substr(inp~t CC11 I Cil , 2, 2), med, pdq, season, 

input [ ~311 Cil , input C C4ll Cil , input C C5ll Cil , input C Cell Cil , 
input C C7l I Cil , sep=lt , ") , ") ; \n" , sep=" ") ; 

1 else ( 
cat(file=output, "INSERT INTO prediction (pdq, season, m, n, 

nmse, m-time, p-time) VALUES (I1, paste(pdq, season, 

input C C311 [i] , input C C411 Cil , input C [511 Cil , input [ [el I Cil , 
input [[7]] [i] , sep=", ") , ") ;\nu, sep=" ") ; 

> 
> 
> 

flush (output) ; 

close (output) ; 

> 
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AutoClass files 

B.l AutoClass model file 

The first column of the data file is talk group id. It should be ignored in finding the cluters. 

The remaining columns use single-normal-cn model. 

#Leo Chen, 2003-Sep-15 

#the model file for E-Comm data user clustering 

model-index 0 2 

ignore 0 

single-normal-cn default 

;; single-normalxm 

;; single~multinomial 

B.2 AutoClass influence factor report 

#DATA-CLSF-HEADER 

#Autoclass CLASSIFICATION for the 617 cases in 

#/e-comm/clustering/tg.h/2208/tg2208.db2 

#/e-comm/clustering/tg.h/2208/tg2208.hd2 
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#with log-A<X/H> (approximate marginal likelihood) = -6548529.227 

#from classification results file 

#/e-comm/clustering/tg.h/2208/tg2208.results-bin 

#and using models 

#/e-comm/clustering/tg.h/2208/tg2208.model - index = 0 

#DATA-SEARCH-SUMMARY 

#SEARCH SUMMARY 1110 tries over 19 hours 17 minutes 49 seconds 

#SUMMARY OF 10 BEST RESULTS 

#PROBABILITY exp(-6548529.230) N-CLASSES 24 FOUND ON TRY 653 *SAVED* -1 

#PROBABILITY exp(-6592578.320) N-CLASSES 18 FOUND ON TRY 930 *SAVED* -2 

#PROBABILITY exp(-6619633.090) N-CLASSES 21 FOUND ON TRY 940 

#PROBABILITY exp(-6622783.940) N-CLASSES 24 FOUND ON TRY 323 

#PROBABILITY exp(-6626274.570) N-CLASSES 17 FOUND ON TRY 542 

#PROBABILITY exp(-6637269.320) N-CLASSES 24 FOUND ON TRY 1084 

#PROBABILITY exp(-6657627.910) N-CLASSES 18 FOUND ON TRY 677 

#PROBABILITY exp(-6658596.390) N-CLASSES 19 FOUND ON TRY 918 

#PROBABILITY exp(-6660040.920) N-CLASSES 18 FOUND ON TRY 528 

#PROBABILITY exp(-6671271.570) N-CLASSES 12 FOUND ON TRY 385 

DATA-POP-CLASSES 

#CLASSIFICATION HAS 24 POPULATED CLASSES 

(max global influence value = 10.988) 

#Class Log of class Relative 

#num strength class strength 

00 -8.23e+03 0.00e+00 

01 -2.16e+04 0.00e+00 

02 -7.69e+03 0.00e+00 

03 -7.54e+03 0.00e+00 

04 -7.54e+03 0.00e+00 

05 -1.48e+04 0.00e+00 

06 -6.95e+03 I. 00e+00 

Class 

weight 

144 

67 

66 

31 

25 

23 

22 

Normalized 

class weight 

0.233 

0.109 

0.107 

0.050 

0.041 

0.037 

0.036 
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DATA-CLASS-DIVS 

#CLASS DIVERGENCES 

#Class (class cross entropy) 

#num (w.r.t. global class) 

00 1.1 le+04 

0 1 5.58e+03 

0 2 l.l7e+04 

03 l.l9e+04 

04 l.l9e+04 

05 5.03e+03 

06 1.25e+04 

07 2.87e+03 

08 1.22e+04 

0 9 8.31e+03 

Class 

weight 

144 

67 

66 

3 1 

25 

23 

22 

2 1 

20 

20 

Normalized 

class weight 

0.233 

0.109 

0.107 

0.050 

0.041 

0.037 

0.036 

0.034 

0.032 

0.032 
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DATA-NORM-INF-VALS 

#ORDERED LIST OF NORMALIZED ATTRIBUTE INFLUENCE 

VALUES SUMMED OVER ALL CLASSES 

# num description I-*k 

4335 Log NCC811 1.000 

2490 Log NCC19261 0.999 

2986 Log NCC14301 0.998 

4039 Log NC C3771 0.998 

3732 Log NC C6841 0.998 

3832 Log NC C5841 0.996 

3184 Log NCC12321 0.996 

3831 Log NCC5851 0.995 

4043 Log NC C3731 0.992 

3927 Log NCC4891 0.992 

2487 Log NC C19291 0.992 

4209 Log NC C2071 0.991 

2506 Log NCC19101 0.991 

3804 Log NCC6121 0.990 
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2485 Log NCC19311 

3829 Log NCC5871 

3948 Log NC 14681 

3588 Log NCC8281 

3013 Log NC C14031 

3158 Log NCC12581 

2700 Log NC C17161 

3949 Log NC C4671 

2699 Log NC 117171 

B.3 AutoClass class membership report 

# CROSS REFERENCE CLASS => CASE NUMBER MEMBERSHIP 

#DATA-CLSF-HEADER 

# AutoClass CLASSIFICATION for the 617 cases in 

# /e-comm/clustering/tg.h/2208/tg2208.db2 

# /e-comm/clustering/tg.h/2208/tg2208.hd2 

# with log-A<X/H> (approximate marginal likelihood) = -6548529.227 

# from classification results file 

# /e-comm/clustering/tg.h/2208/tg2208.results-bin 

# and using models 

# /e-comm/clustering/tg.h/2208/tg2208.model - index = 0 

DATA-CLASS 0 

# CLASS = 0 

#Case talkgroup NC [Ol NCClI NCC21 NCC3l NC 141 NC 151 NCC6I NC 171 

NCC81 NCC91 NCClOl NCClll (Cls Prob) 

008 1099.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

009 1100.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

015 1129.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

016 112.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 
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DATA-CLASS I 

# CLASS = I 

#Case talkgroup NC [Ol NC [I] NCC21 NCC31 NC [41 NC [5] NC [61 NC [7] 

NCC81 NCC9I NCC101 NCC111 (Cls Prob) 

001 0.hour.m 26 25 24 24 24 25 25 26 26 25 25 23 1.000 

003 1089.hour.n~ 6 29 0 0 0 8 0 0 2 80 0 0 1.000 

098 1429.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

102 144l.hour.n~ 41 9 13 8 15 44 88 9 26 25 21 25 1.000 

109 1474.hour.n~ 31 13 34 35 10 19 30 8 17 7 4 14 1.000 

DATA-CLASS 2 

# CLASS = 2 

#Case talkgroup NC[O] NC[l] NC[2] NC[3] NC[41 NC[5] NC[6] NC[7] 

NCC81 NC[91 NCClOl NC[11] (Cls Prob) 

033 12118.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

039 12252.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

066 12858.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

069 12872.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

080 13405.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

087 13905.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

094 13931.hour.n~ 0 0 0 0 0 0 0 0 0 0 0 0 1.000 

. . .  . . .  

DATA-CLASS 3 

# CLASS = 3 

#Case talkgroup N 
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DATA-CLASS 4  

# CLASS = 4  

#Case talkgroup NCCOI N C C l l  NCC21 NCC31 NCC41 NCC51 NCC6I NCC71 

NCC81 NCC9I N C C l O l  NCC111 (Cls Prob) 

006 1097 .hour .n~  0  0  0  0  0  0  0  0  0  0  0  0  1.000 

022 1145 .hour .n~  0  0  0  0  0  0  0  0  0  0  0  0  1.000 

023 1146 .hour .n~  0  0  0  0  0  0  0  0  0  0  0  0  1.000 

058 1 2 6 . h o u r . n ~  0  0  0  0  0  0  0  0  0  0  0  0  1.000 

074 13186.hour .n~ 0  0  0  0  0  0  0  0  0  0  0  0  1.000 

DATA-CLASS 5  

# CLASS = 5  

#Case talkgroup NCCOI NCC11 NCC21 NCC3l NCC41 NCC51 NCC6I NCC71 

NCC81 NCC91 N C C l O l  NCC111 (Cls Prob) 

005 1 0 9 l . h o u r . n ~  0  0  0  0  4  0  0  0  0  0  0  0  1.000 

020 1 1 3 . h o u r . n ~  3  0  0  0  0  0  0  0  0  0  0  0  1.000 

108 1 4 6 . h o u r . n ~  0  0  0  0  0  0  0  0  0  0  0  0  1.000 

232 1 6 3 . h o u r . n ~  0  0  0  0  0  0  0  0  0  0  0  0  1.000 



Appendix C 

Bayesian network analysis 

C. 1 B-Course analysis 

Conditional dependency analysis results from B-Course are shown in Figures C.l and C.2. 

C.2 Tetrad analysis 

Bayesian network analysis results from Tetrad are shown in Figures C.3 and C.4. 
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Figure C.  1: B-Coursc a.i~alysis: resull, 1. 
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Figure C.2: B-Course analysis: result 2. 
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Figure C.3: Tetrad analysis: result 1. 
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Figure C.4: Tetrad analysis: result 2. 
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