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ABSTRACT

The dynamical theory of neutron diffraction is studied for perfect crystals and crystals
with strain gradients. In the case of parallel-sided slab crystals, it is customary to
distinguish the Bragg case where the beam enters and exits on the same side of the slab and
the Laue case where the beam enters on one side and exits on the other. The symmetric
Bragg case has the angle of incidence equal to the angle of diffraction with respect to the
surface, that is the scattering vector is perpendicular to the surface. In the symmetric Laue
case the scattering vector is parallel to the surface. In extreme cases either the incoming or
exiting beam is close to being parallel to the surface. Schrédinger's equation for the perfect
slab crystal with a periodic potential is solved by two methods which can give similar
results. In the first method, which is known as the eikonal approach, a quartic dispersion
relation is obtained and solved for all possible internal wave vectors. A given incident
plane wave generates four pairs of internal waves. Each pair is coupled together by the

periodic potential. Four waves, in addition to the incident wave, appear outside the crystal
as a result of the interaction with the crystal slab. All the unknown internal and external
amplitudes are found from the boundary conditions. In non-extreme cases, two pairs of
internal waves suffice to describe the propagation of neutrons in the crystal. In the second
approach, commonly referred to as the Takagi-Taupin method, one assumes that the wave
amplitudes are position dependent solutions of coupled differential equations. We have
measured the dependence of the diffracted beam intensity as a function of thickness of Si
wafers and found good agreement with the theory. The theory has applications in the

design of elements for neutron optics, particularly monochromating and analyzing crystals.

In the extreme cases, all four pairs of internal waves are considered. It is shown that
three pairs are sufficient to describe adequately the propagation of neutrons inside the

crystal in almost all cases. The treatment of perfect crystals given here is unique in the

iii



fullness of the approach and its direct application to a simple and actual experimental

geometry.

For practical design considerations it is necessary to introduce elastic strain gradients to
improve the efficiency of elements for neutron optics. In the case of homogeneously bent

crystals, the solutions of the dynamical problem have been expressed by others in terms of

iv

confluent hypergeometric functions. Mathematical obscurities have been eliminated here by -

expressing the confluent hypergeometric functions in terms of Chebyshev polynomials.
The results are in a form suitable for numerical computation of the variation of intensity of
neutron scattering with crystal thickness and amplitude of the strain gradient. In the
experiments the crystals are bent by loading along two lines at each of two parallel edges.
The resulting strain gradients are more complicated than expected. In addition in most of
our experiments we have exceeded the limits in which the simple bending theory can be
applied. In this situation the displacement field is given by two nonlinear fourth order
differential equations. The elasticity theory of bending and the dynamical theory of

diffraction can be computationally combined to interpret the experimental results.
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CHAPTER 1
INTRODUCTION

1.1 History

Since the advent of nuclear reactors, the neutron has been extensively used to study
condensed matter in general and crystals structures in particular. Thermalized neutrons
from reactors have wavelengths comparable to atomic spacings in crystals. Neutron
diffraction from crystals supplements x-ray diffraction, particularly in distinguishing
among elements on the basis of nuclear cross-sections, which vary strongly from element
to element. For example the neutron is strongly scattered by hydrogen. The mass of the
neutron is well suited to the study of inelastic scattering, for example from phonons in
solids. Because the neutron has a magnetic moment, but no charge, it makes an ideal probe

of the magnetic induction on the atomic scale. '

The theory of neutron diffraction, like that of x-ray diffraction is well developed in
the kinematic and dynarnic limits. In the kinematic limit small volumes of matter diffract
intensity from beam to beam. In the dynamical theory one adds the amplitudes of the
waves scattered from atoms. Dynamical theory is applied to small regions of mosaic
crystals to determine the diffracted beam intensities used in the kinematic theory where the
lack of correlation from region to region leads to the addition of intensities. Dynamical
theory must be used to treat the whole problem of diffraction in crystals with a high degree
of correlation over extended volumes. In the study of most crystals it is sufficient to
employ kinematic theory, but with the development of commercially available dislocation
free silicon wafers (up io 20 cm in diameter and 0.5 -1 mm in thickness) it becomes
important to be able to use dynamical theory for large highly correlated crystals. These Si
wafers are an order of magnitude too thick for their optimum employment as neutron

monochromating crystals. By introducing elastic strain gradients into them it is possible to



increase their ability to reflect neutron beams by an order of magnitude. The main purpose
of this study is to increase our understanding of the propagation of neutrons in such
crystals. To accomplish this we start with the dynamic theory of perfect crystals. The next
step is to calculate diffraction from crystals with uniform elastic strain gradients. Thé final
step is to determine the actual elastic strains in deformed crystals and to apply the dynamical
theory with uniform strain gradients to each small region of the crystal with spatially
varying strain gradients. The elasticity theory of bent crystals is more complicated than one
would gather from most texts on the subject. Rather than one fourth order linear
differential equation one is faced with a pair of coupled non linear fourth order differential

equations.

The dynamical theory of diffraction is highly developed for the x-ray case, beginning
with the historic work of C. G. Darwin, P. P. EWaid and M. V. Laue. The dynamical
theory of x-rays is summarized in the books of Zachariasen [1] and James [2] and more
‘recentAaspects are included in [3]. Since the first observation of Pendellb'sung fringe
structure in a neutron diffraction experiment, using perfect single crystals of silicon, by C.
G. Shull in 1968 [4], interest in the application of the dynamical theory to the neutron case
has grown substantially. Excellent reviews exist for the neutron case, such as those of
Sears [5] and by Rauch and Petrascheck [6]. The dynamical theory of neutron diffraction
is closely related to the corresponding theory for x-ray diffraction. The main difference is
that, for neutrons, the coherent wave is weakly absorbed in most materials, whereas, for x-
rays, it is very strongly absorbed. This is particularly true for the case of Si crystals.
Dynamical theory provides a theoretical frame work for a number of phenomena which are

absent in the kinematical theory.

1.2 General review of the dynamical theory for a perfect crystal slab

Consider an incoming plane wave of wave vector E)o impinging on a slab of perfect



crystal of thickness t, as shown as in Fig. 1.1. The neutron interaction potential outside the
slab is zero. We restrict the problem to the assumption that the external incident wave is

oriented very close to satisfying the exact Bragg condition, (?O + 6)2 = kg, for only one

particular reciprocal lattice vector (say C’). We write the incoming wave vector as
Ky =kox® +koz2=-kosiny &+ kycosy 2 (1.1)

where  is the angle with respect to the surface normal which is along the z direction. The
atomic planes make an angle o with respect to the surface normal. The incoming beam

makes an angle 6 with respect to the atomic planes. From Fig. 1.1, it follows that

y=0-a. (1.2)

1G

The exact Bragg angle is B =sin” Ty The misset angle is A6 =6 — 6g. The reciprocal

Vlattice vector can be written as

C?=Gxﬁ+ G, 2 =G{cosa & - sina Z2) (1.3)

In the symmetric Laue diffraction configuration Gis parallel to the surface, that is
Gz =0 and the diffracted beam will exit on the lower surface of the crystal slab. In the
symmetric Bragg diffraction configuration Gis pérpendicular to the surface, that is Gx =
0, and the diffracted beam will exit on the upper surface of the crystal slab.

Four waves, in addition to the incident wave, appear outside the crystal as a result of
the interaction with the crystal slab. Some of these waves are present at the upper surface
while the other waves are present at the lower surface of the crystal. As we consider only

the elastic scattering, one end of each wave vector lies at the origin A and the other end



incident beam

A |

G vector

Ky diffracted beam

i -
transmitted k, ﬁ)
beam

Ql

Figure 1.1:- Asymmetric Laue-transmission geometry showing the incident plane
wave of wave vector ?o , which is Bragg diffracted into the plane wave of

wave vector E’e 4R » hominally called E)G, by the combined action of the

atomic planes with normal wave vector G and the surface with normal wave
vector N. The internal wave vector fo , generally not exactly parallel to the
incident wave vector ?obecause of refraction at the surface, is coupled to the
internal diffracted wave Qby the periodic potential of wave vector G of the

. . . . .
atomic planes. The wave vector kg is incident upon the atomic planes at an

angle called 8 which is equal to the Bragg angle 6 if 6 = sin” 1%—5 0.
0



should lie on the 'p‘en'meter of the circle with radius ko (magnitude of the /incoming wave
vecfor) and its origin at A in k-space. Furthermore, the end positions are determined by the
reciprocal latﬁcc vector and the surface normal because momentum is transferred to the
lattice perpendicular to the planes and perpendicular to the surface. These wave vectors are

shown in Fig. 1.2. The above mentioned waves are referred to as

. = . .
— the transmitted wave, kg; (same as incoming beam)

—the Bragg diffracted wave, k_G);

. . . . -
— the mirror reflection of the incoming wave, kp, ;

— the mirror reflection of the Bragg diffracted wave, E)Gm-
According to the law of conservation of energy
2 12 _ 2 _ 2
kS =k = kg = kg (1.4)

0 m

where kg = 1?0 . k_)o and so on.

From Fig. 1.2, :we can write
kmx = kox = - ko sin (6-0) (1.5a)
vkmz = - koz = - ko cos (6—0) (1.5b)
One can calculate the components of k_é using the following equation.

kG = (kox +Gy)? + (koz+Gz+ AKp? = k2 + k2

2, (1.6)

where AK, is the momentum imparted to the crystal at the surfaces. By solving the eq.

(1.6), we will get



Crystal surface
T7777 777777777 A7 7777l e .

Figure 1.2:- Representation of wave vectors, associated with the external waves

present at the upper and lower surfaces of the crystal, in k-space.



AKz = - (koz +Gz) tVkiz — (Gx + 2koxGx) (17 -

and then

kox = kgmx = (kox + Gx) (1.82)
Kgz= (Koz+Gz+AKz) = Vkoz - (Gx + 2koxGx) (1.8b)
komz = -\lkozz - (Gx2 + 2koxGx) (1.8¢)

(Note:- For the Bragg geometry the signs of kgz and kgmz will interchange.)

In some cases, as shown as in Fig. 1.3, kgz and kgmz become purely imaginary,
i.e. when the diffracted beam is almost parallel to the crystal surface, for some directions of
incident wave (very close to the exact Bragg condition), the Bragg diffracted wave and the
mirror reflection of the Bragg diffracted wave become evanescent. The condition for this

situation is
(kox + Gx) > ko (1.9)

Under this condition, both of these evanescent waves are propagated along the
surface of the crystal. The amplitudes of the waves, which are propagated along the lower
and upper surfaces of the 'crystal, are damped in the (-ve) and (+ve) z direction respectively

in order that the amplitude = 0 at +o0. The calculations are shown in chapter 3.

The amplitudes of the specified external waves are found by matching the waves
internal and external to the slab. The external wave vectors select among the many
possible internal wave vectors. In particular the components parallel to the surface of the

internal wave vectors must match the components parallel to the surface of the external



Crystal surface
rrr il

Figure 1.3:- Situation explaining the formation of evanescent surface diffracted

waves



wave vectors. Tﬁc possible internal wave vectors are determined by solving Schrédinger’s
eqﬁation for the neutron, which contains the periodic neutron-nuclear interaction potential
inside the crystal. This determines the relations between the components of the internal
wave vectors and the other known quantities such as magnitude of the incident wave vector

and the fourier components of the periodic interaction potential. These are called the

dispersion relations. A given kox of the incoming wave will select four internal waves

:‘ , (},3 , R"S and f(l,) all with ?(B’C’D =kgx and four coherently generated Bragg
diffracted waves Ker, Ko, Ky and Kg all with Kgxo P =kox + Gx. As Ky =

fo +G, the dispersion relations determine the four values of K that go with both Kgx

and Kgx. We now justify these remarks in more detail.

~ The time independent Schrédinger equation for a neutron inside a crystal is

2 .
h
- 3= V2¥([T) + VO¥ (@) = E, ¥(@), (1.10)

where V (?) is the interaction potential of the neutron inside the crystal, and Eg is the

incident neutron kinetic energy,
Eo =5=k 2
m K0~ - (1.11)

The total energy of the neutron inside the crystal is Eq. For the perfect crystal V (?)

is periodic. If we define a reduced potential with the dimensions of k02,

v@) =%?V(?), (1.12)

we can write eq. (1.10) as



T S
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V¥ v ¥ + k3P =0. (1.13)

The reduced periodic neutron-nuclear interaction potential for a rigid array of nuclei can be

written as :
v@)=4n 212 b 8 - R,
where the position vector of the ith nucleus is denoted by R, and bl is the scattering length

of that nucleus, or can be expanded in a Fourier series

— ‘—)?
v()= ZVG—> el G-

-y

G

By Fourier analyzing the above expression we will get

v->=V1 J.v(r) 'lardr beS(r R) 'lar&

G cell
_ Am AGR, _ PN
= Vog 1 1 VceuFG"’ (1.14)

—_ —)
where F 5= 21: elG Rl is the unit cell structure factor and Ve is the volume of a

unit cell.

Using the assumption that the incident wave vector kg is oriented very close to the

exact Bragg condition for the particular reciprocal lattice vector@, only the Fourier
components of the potential associated with 6’, normal to the reflecting planes, become

important. Thus, we write

o = :
v(?)=v0+vé—>e1G Tiy 5elGT (1.15)



where v is the average potential inside the crystal with respect to the potential outside the

cry‘stal which is zero, i.e. the potential which corresponds to zero reciprocal lattice vector.

Note that for the silicon crystals | v(220) | =421 v(111) I = vq e ", where W is the Debye-
Waller temperature factor. Furthermore, for a non absorbing, centrosymmetric crystal v g

=vg- The typical values of vo and Vg for silicon crystals are given in appendix 1. As

the periodic potential couples the incident wave with the diffracted wave, the neutron wave

function can be expanded in Bloch functions

-

. —
Y7 = X P A& G)- T
6) G

Under the same assumption as above, only two amplitudes W and ‘¥, will be large.

Thus we anticipate the solutions of eq. (1.13) to be of the form

. . - . -
¥E) = ToeKoT + ¥, JK a’, | (1.16)
where

K,=K +G (1.17)

By substituting this wave function into the Schrédinger equation (1.13) together with
(1.15) and comparing the coefficients of the fourier components on both sides, we get a
pair of linear algebraic equations:

kG -vo-K3) ¥o - v 2 ¥G =0, (1.18a)

~vp ¥o + (k§-vo-Kd ¥g = 0. (1.18b)
For a non trivial solution of egs. (1.18) to exist, the determinant of the coefficients of ‘¥,

and ¥ must vanish, i.e.

k& —Vo—K§) (kg -vo-Kd) =vapv o . O (119)

11



ThlS is known as a "dispersion relation". (Note that from here onwards we will drop the

G»andv —.)

vector sign appearing in v
The neutron wave function must be continuous at the boundary and so the
components parallel to the surface of the internal and external wave vectors must match.

Therefore we can write the following relations for the parallel sided slab:

K2 = koz +K& (1.20a)
and

K& = (kox + Gx)?2 + Koz +Gp)? (1.20b)

We see that the dispersion relation {eq. (1.19)} becomes quartic in K by substituting the
egs. (1.20). One can now see that, a given incident plane wave @, exp ( E)o .?) generates
four internal waves having wave vectors f{;\, é; , K’§ and ﬂ) with ?{B’C’D =
kox- These four waves in turn generate, and are coherently coupled to, four Bragg
diffracted internal waves having wave vectors %A Ko %C and fG with KGA -B.CD

=kox + Gx. Consequently the total wave inside the crystal consists of coherent

superposition of eight plane waves, i.e.

¥ () =¥hexp (B T) + ¥Bexp (R D)
+‘I‘gexp(?oc-_r_))+‘]5’oDexp(ﬂ)-_r_))+
‘I”é exp(%A T) + ‘I‘g exp(%B-_r-))
+¥Sexp (RS T)+ ¥ exp (BY 7). (1.21)

To the extent that vgv.g << Kg and vgv.g << KC,2 (i.e. vgv.g = 0), the quartic

relation describes two intersecting spheres, one centered at the origin O and the other at G,

both of radius \/ kg — Vo . These spheres are the asymptotic forms of the dispersion

surface. We treat the case where the incident wave vector, the reciprocal lattice vector and

12



the surface nomial all lie in the same plane which cuts the spheres into two circles. The

eqliation of the asymptotic circles is given by
k5 —vo-KQ) kG -vo-K =0
The solutions selected by the boundary conditions are found by intersecting the dispersion

surface with a line which is normal to the crystal surface at the value of kgx. This line

intersects the asymptotic circles at four points with coordinates

Koz = Vkoz ~ Vo » (1.22a)
Kog =- VK& — Vo » (1.22b)

*C
Koz = =Gz +Vkez — vo - A (1.22¢)

and

*D
Koz = ~Gz- Vkoz — vo-A ; (1.22d)

where A = G + 2 kox Gy, koz = Ko €0s (8 — &), kox =— Ko sin (8 — &), G, =— G sin o,
and Gy = G cos o The first two roots are for the circle of (kg ~Vo-— Kg) =0 and the last
two roots are for the circle of (kg -Vo-— K(_%) = (0. By knowing these roots, we can rewrite

the dispersion relation in the form

*A | *B *C *D
Koz~ Koz ) Koz —Koz ) Koz Koz ) Koz -Koz ) =vgv.g (1.23)
ith ABCD . .
with Ky =kox. The solutions of the above eq. (1.23) give the exact values of
Koz- The term vgv g leads to a splitting of the two circles into an outside curve (o -

branch) and an inside curve (B - branch) as shown in Fig. 1.4.

13
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Crystal surface

Load line

Figure 1.4:- This diagram shows the splitting of o and B branches from the two

asymptotic circles (broken line). The load line is determined by the value
of k. The tie points A and B are associated with the asymptotic circle at

‘center O. The other two tie points C and D are associated with the asymptotic
circle at center G. The radius of both circles is equal to \koZ - vo.
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The boundai'y conditions for the parallel-sided slab then lead to the values for the
corresponding eight internal wave amplitudes and four unknown external wave amplitudes
in terms of the known incident wave amplitude ®,. The boundary conditions at the crystal
surfaces are

— the continuity of the waves,

— the continuity of the gradients of the waves normal to the surface.

If quartic equations were sufficiently transparent, one would just write down the
expressions for the eight waves and let it go at that. These things are handled readily by
computers using complex arithmetic. To obtain useful analytic expressions some
approximations are called for. These approximations, corresponding to different
situations, are explained later in this chapter. This approach of solving the parallel-sided

slab problem is known as the "eikonal approach”.

There is an alternative mathematical approach to solve the parallel-sided slﬁb problem.

In this approach, we again solve the Schridinger's equation (1.13), but now the -

amplitudes ‘I‘o(? ) and ‘I‘G(?) of the waves inside the crystal are allowed to depend upon
position. Under the assumption that the incident wave vec':torTc_)o is oriented very close to

the exact Bragg condition for a particular reciprocal lattice vector, we again anticipate the
solution inside the crystal of the form
D 2 D
¥@) = = ¥, @) Ko ¥, oKeT | (1.24)

where again K = K, + G.

. R . => .
In particular, we will choose the internal wave vector K to satisfy the exact Bragg

condition for one particular scattering wave vector G and to have magnitude



Rl =K=VK v, (1.25)

Note that the external Bragg angle 0y is given by

sinBg = 2(;1(0 : (1.26a)

whereas the internal Bragg angle 83 is given by

sin 6} = % (1.26b)

We set up an oblique coordinate system choosing unit vectors §oalong K)o and IS\G
along Q as shown in Fig. 1.5. The relations between the oblique coordinate system
(So-Sg) and the rectangular axes chosen to be parallel (x) and perpendicular (z) to the
surface of the slab (see Fig.1.5) are: ‘

So = —{z sin (8} + @) - x cos (83 + o) } (1.27a)
sin 26g :
and
sg=———{z sin (83 - @) + x cos (83 - ) }. (1.27b)
sin 263 .

By substituting eq. (1.24) into eq. (1.13), Schrédinger's equation becomes
B wd 2 2wl 2 vl 2
(V2+ kD) (W eSe™ L, eKSa™ ) _wov, KT _ g v KSaT

P R
— WovoeKSeT Ly v KT -0 (1.28)

We know that
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. N N A )
V2 olKSsT - (IKSeT {VZ W, +2i7 ¥ KS- K2 ¥ o} (1.29a)

and

2w iKS~T  iKS.T [o2 - A 2
V2 eKSaT = ¢iKSq {V W, +2i7 ¥;KSg- K ‘PG} . (1.29b)

Requiring that the coefficients of each wave vanish separately in eq. (1.28) together with

(1.29), yields a pair of coupled differential equations:

A
V2 + 2KV %05~ K2-K3+vo) ¥, - v _g¥G=0 (1.30a)
R |
V2¥ . + 2KV ¥ Sg- K2-k3+vo) ¥ — v 5 ¥o=0, (1.30b)
2 1 { 02 9 . 92 }
Where V< = + -2 cos29 (1.31a);
sin26f, | 9s2  9s B 9sg0s, |
A d -
V.S,= oo . (1.31b)
and
?.8,= 2. 131
6= Jsg (1.31c)

The magnitude of the internal wave vector has been chosen so that the third terms
vanish in egs. (1.30). Finding a general solution of egs. (1.30) is very difficult. One

| could solve the above coupled differential equations together with boundary conditions

(see page 15) by computer with great difficulty. But we know from the eikonal

method that the internal wave function can be written as a superposition of plane waves

for the parallel-sided slab problem. With this in mind we can try a plane wave type

~ solutions for internal wave amplitudes in the incident and the diffracted directions, i.e.



> (a2 + b D)(so 8o+ 6 Sq)
.“Po(r)=Coela 0 YO SG G

A A : A A
where (a a + b b) represents a vector in k-space and (s, So+ Sg Sg) is the position
A A ’
vectorT. We choose the unit vectors a andg are perpendicular to Sgand S, .
Therefore, the (4,b) space represents the reciprocal space to the (sq,5g) real space.

Note that, since (sq,Sg) is an oblique coordinate system in real space, the (a,b) is an

oblique coordinate system as well in the reciprocal space. Furthermore we know that
A A A : .
a-Sqy= b S = sin 205. The above expression for the ‘I‘o(? ) can be rewritten as

\Po(?) = CO Ci sin 29;3 (aso + bSG) . (132&)

From eqgs. (1.30a), (1.31a) and (1.31b), the amplitude of the internal wave function in

the diffracted direction can be written in the form:

= isin 26§ (aso + bsg) 32b
\PG(r)=CGeS ZQB(SQ bS(_,). (13

Here Cy and Cg are constants and are related to each other. The relation between Cg
and Cg can be found by using either eq. (1.30a) or eq. (1.30b). By substituting egs.
(1.32) into egs. (1.30) combining with egs. (1.31), we will get

{ (a2 + b2 _2 cos26} ab) + 2Ka sin 205} ¥, + v s ¥G=0  (1.33a)

{ (2 + b2 _ 2 cos20} ab) + 2Kb sin 203} ¥g + v ¥, =0  (1.33b)

Again, for a non trivial solution of egs. (1.33) to exist, the determinant of the

coefficients of ‘I‘o and WG must vanish, i.e.

18
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{ (a2 + b2 _ 2 cos20} ab) + 2Ka sin 203 }

{ (a2 + b2 _2cos20} ab) + 2Kb sin 205} = v v g (1.34)

Eq. (1.34) is somewhat similar to the dispersion relation (1.19). To the extent that

vgv.g = 0 the above eq. (1.34) reduces to
{ (a2 + b2 _ 2 cos26} ab) + 2Ka sin 26} }
{ (a% + b2 _ 2 cos26} ab) + 2Kb sin 265} = 0 (1.35)

which describes the asymptotic form. This asymptotic form describes the two
intersecting circles (both passing through the origin) in (a,b) space as shown in Fig.
(1.6). The load line, which describes the relation between a and b, can be obtained by
matching the exponential component of the wave function (internal and external)

parallel to the crystal surface, i.e.

K sin (8g — &) + sin 265 [a so + b 5g], = — ko sin (6 — ), (1.36)

where sin 263 [a 5o + b sgl, =—a cos (65 + @) + b cos (65 — o). (1.37)

We see that by substituting the linear relation between a and b (eq. 1.36) into eq.
(1.34), the latter becomes quartic either in a or in b. The constants C,, and Cg,
corresponding to four sets of a's and b's, can be calculated using both boundary
conditions (see page 15). Now we have four internal piane waves in the incident
direction and four internal plane waves in the diffracted direction corresponding to the

four sets of a and b. With the following transformations,
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*
GB—a

>
(@]

.P(x,z) =(p>80)

Yz

Figure 1.5:- Relation between the oblique coordinate system and rectangular coordinate

system

Figure 1.6:- The circles decribing the asymptotic form (eq. 1.35) in (a,b) space
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Ky = —Ksin(el’;—(x)—acos (6g+x)+b cos(Og—0) (1.38a)
K, = K cos (85— @) + a sin (8 + @) + b sin (85— o) (1.38b)

{(Kx,K2) are components of the internal wave vector in the eikonal approach. }, we
could recover all the eight internal waves which we got in the eikonal approach. Thus
we would get nothing new. However, the advantage of this method in certain
geometries and also in treating the strain problem (under some assumptions suitable for
these situations) are briefly discussed later in this chapter. I will call this second

approach the "spatially dependent amplitude method" in rest of my thesis.

1.3 The scope of this thesis

When treating the strain gradient problem we will look for approximate solutions of
Schrédinger's equation. The approximations in the eikonal method and in the spatially
dependent amplitude method are conceptually different. We will show for the unstrained
crystal slab that they lead to almost the same results in most cases. In order to understand
some of the differences, we will study some extreme cases in which either the incoming or
outgoing beam is very close to paralleling the surface. When we treat the elastic strain
gradient problem we will do it using the spatially dependent amplitude method. But we
will already have some understanding of the effects that cannot be obtained from this
method in the unstrained crystal. The approximate treatment using the spatially dependént
amplitude method is commonly referred to as the T-T method in the ﬁtemnne in recognition

of the contributions of Takagi and Taupin.

To discuss what comes into the T-T method applied to crystals with strain gradients it
is first necessary to discuss the T-T method applied to the unstrained crystal. After this we

will return to outline what is involved in the study of diffraction from crystals with strain
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gradients and also to discuss the strain itself and how it is determined using elasticity

theories for single crystals in the form of thin plates.

1.3.1 Approximations in the eikonal approach

In the eikonal approach, only four internal waves out of eight internal waves become
important in most cases except extreme asymmetric cases. In other words the amplitudes
of the other four internal waves are negligible. In the literature, researchers in this field use
different approximations in order to reduce the eight wave problem into a four wave
problem. Sometimes these approximations confuse the reader. Therefore we will state the

approximations very clearly.

For example we will consider the non extreme asymmetric Laue geometry and will
‘ state all the approximations. The dispersion surfaces, which determine the internal wave
vectors, for this particular case are shown in Fig. 1.4 (page 14). The tie points A and C are
closer to one end (P) of the incident wave vector. The four internal waves with wave
VeCtors ?{;\, I?GA, ?OC and K_)GC, corresponding to these two tie points (A and C) are
. important here. Note that the two z components Ko'l; and KOCZ are close to each other and

to the value of ko, (z component of the incident wave vector). Therefore these two z

components have to be calculated more accurately using the dispersion relation (1.23). We

can rewrite the dispersion relation (1.23) in the form

(Koz—Koz') Koz -Koz ) = T - (1.39)
(KOZ - KOZ ) (KOZ - KOZ )

We can approximate the above equation (1.39) to

m

*A *C vaoVv
(Koz—Koz ) Koz—Koz ) = G G =¢ (1.40)

* *B * *D
Ko - Koz ) Koy — Koz )
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in this particular case. This has been done by replacing Koz by K(";ft and ngc in the right
hand side of the equation (1.39) which is small. Note that the asymptotic roots K:;? and
K(’ff correspond to the asymptotic circle with ccntér at O while the other two roots K;zc
and Kgf correspond to the asymptotic circle which center is at G. Thus, the right hand
side of the eq. (1.40) will take the simplest form. The quantity € is an energy in reduced
units of (inverse length)z. It sets the length scale for pendelldsung effects in dynamical

theory, as will be seen in chapter 2. By solving the above quadratic equation (1.40), we

can calculate accurate values for Ko"; and KOCz . Since the tie points B and D are far away

from point P, we can use the asymptotic values K:;? and Kgf for KOBz and Kog.

By using the two boundary conditions mentioned earlier, one could calculate all eight
internal wave amplitudes and four unknown external wave amplitudes. This can be done
numerically very easily, but we see that the amplitudes of the four internal waves
corresponding to the tie points B and D are negligible. We take them to be zérc.
Furthermore, the amplitudes of two external waves (mirror reflection of the incoming wave
and of Bragg diffracted wave) are negligible in this case. For simplicity we take them to be
zero as well. Now we have only four internal waves and three external waves including
the incoming wave. By using the boundary condition, continuity of internal and external
waves at the crystal surfaces, we can find analytical expressions for the amplitudes of the
four internal waves and of the two unknown external waves in terms of the known
incoming wave amplitude ®@,. Since we have omitted four internal waves and two external
waves, it is unnecessary to invoke the second boundary condition, continuity of the
gradients of the waves normal to surface. Similar approximations are applicable to the non
extreme asymmetric Bragg geometry. Calculations in these cases are made and analytical

expressions are given in chapter 2.
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1.3.2 The T-T method

In these noﬂ extreme cases, we can reduce the spatially dependent amplitudevmethod
to the T-T method. Here, we take advantage of the fact that the amplitudes of the wave
function (eq. 1.24) inside the crystal are slowly i/arying (much slower than that of the

carrier wave), so that terms involving VZ‘I’O which are numerically small compared to
Ké\o .?‘I’o, are neglected. This assumption has an effect similar to the omission of four
internal waves in the eikonal approach. Now using the oblique coordinates, one obtains a
simple form to the coupled differential equations (1.30a & b):

.., 0¥,
21K3$ =vs¥;s (1.41a)

and

9%
ZIKW = VG \PO (1.41b)

which combine to give a second order partial differential equation for iI’G:

2 aZlIIG
4K m +VG V-G\PG =0. (1.41¢)

We can solve the equations (1.41) together with the boundary condition, continuity of
waves at the crystal surfaces, and determine the amplitudes of the internal and external
waves. By rearranging the complete internal wave function, we will get four plane

waves which seem similar to those obtained in the eikonal approach. But the results
obtained by these two methods are not quite same because the approximations are different.

These remarks are justified in more detail in chapter 2.

The T-T method has a unique advantage. For certain geometries, the solutions of the

equations (1.41) are straight forward. For a "3 - function" incident beam (narrow slit



geometry), the selutions are in the form of Bessel functions [7]. This spatially dependent
arhplitude method with the above mentioned assumption was first developed by Takagi [8]
and Taupin [9] to study the effects of strain in the dynamical diffraction of x-rays and more
recently utilized by Wemer [10] to calculate the effects of gravitational and magnetic fields

on the diffraction of neutrons.

We have calculated the integrated diffracted beam intensity (at the exit surface) as a
function of crystal thickness for non extreme asymmetric Laue cases. In order to verify
these results, experiments were performed in the symmetric and non extreme asymmetric
Laue geometry. In these experiments, we have measured the dependence of the diffracted
beam intensity as a function of thickness of Si wafers successively etched to thinner and

thinner dimensions. The comparison of theory and experiments are given in chapter 2.

1.3.3 The extreme cases
| The above described four wave theory (conventional theory) starts to fail in extreme
asymmetric cases. These extreme cases can be divided inte four categories. They are

1. incident beam almost parallel to the crystal surface (Laue geometry)

2. Bragg diffracted beam almost parallel to the crystal surface (Laue geometry)

3. Bragg diffracted beam almost parallel to the crystal surface (Bragg geometry)

4. incident beam almost parallel to the crystal surface (Bragg geometry).

Theoretically, these cases are obtained by rotating the incident beam and the reciprocal
lattice vector with respect to the crystal surface. In experiments, one can obtain these cases
by cutting the crystal surface at different angles with respect to the reciprocal lattice vector
and by choosing the proper incident beam where the incident beam is oriented very close to

satisfying the exact Bragg condition for that particular reciprocal lattice vector.

25
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In the extréme asymmetric cases, more than four waves become important. We
corisider the case where the incident beam is almost parallel to the crystal surface as an
example. The dispersion surface which gives the internal wave vectors are shown in Fig.
1.7 for this particular case. As we see from the Fig. 1.7, the tie points A, B and C are
close to each other and to point P. Therefore, six waves corresponding to these tie points

A, B and C are important in this case. The three z components ( KOI; , KOBZ and Kocz) can

be determined accurately using the dispersion relation in the form

Koz— Koz ) Koz - Kop ) Koz~ Koy ) = —Ge .
(Koz - Koz )

We can approximate the above equation to

(Koz—Koz') Koz - Koz ) Koz - Kog ) = —moC

* *D .
(Kox - Koz )

which is a cubic equation with coefficients as shown:

3 2 *A *B *C *A _ *B *B _*C *C %A
Koz~ Koz Koz + Koz +Koz) + Koz Koz Koz + Koz Koz + Koz Koz )

*A __*%B __*C \{e\’
~Koz Koz Koz — *CG L =0 (1.42)
(Koz” = Koz )

Since the tie point D is far away from point P (see Fig. 1.7), we have used the asymptotic
value KO*ZD for Ko]; .

Furthermore the amplitude of the mirror reflection of the incident wave becomes
significant. In this case we see that at least six internal waves and four external waves,
including the incident wave, are important (i.e. the amplitudes of these waves have

significant values.). The amplitudes of the internal wave associated with the tie point D and
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Figure 1.7:- This diagram shows the dispersion surfaces in the extreme asymmetric case
where the incident beam is almost parallel to the crystal surface (Laue

geometry). The tie points A, B and C are closer to point P and the tie point D
is far away from point P.
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of the mirror reflection of the Bragg diffracted wave are negligible in this case. For
simplicity we assﬁme them to be zero. To calculate the amplitudes of the important internal
and external waves, we have to use both boundary conditions mentioned earlier. Using
these boundary conditions and ratio of amplitudes (from egs. (1.18)), we will get a number
of equations which is more than the number of unknowns. One will find easily that two of
these equations become approximately equivalent to two other equations. Therefore,
among the equivalent equations, one of each pair can be omitted in calculating the unknown
internal and external wave amplitudes. Now, we have a number of equations which is
equal to the number of unknowns. The detailed calculations are shown in chapter 3. The |
discrepancies among the results obtained using the four wave conventional theory and the
above described modified theory in extreme cases, are discussed in the same chapter. In
addition, the other three extreme cases with detailed calculations are also described. Note
that in all of these four extreme cases, only three tie points are close to the point P. Sowe
have to calculate at most three values z components of the internal wave vectors more
accurately. Therefore we need not solve the quartic equation except in the extreme extreme

case of both incoming and out going wave vectors being close to parallel to the surface.

In the spatially dependent amplitude method, terms like V2‘Po and V2‘I-’G cannot be
neglected in these extreme céses. So we have to solve the coupled differential equations
(1.30) together with boundary conditions. First we have to calculate four sets of values for
a and b from the er. (1.34), (1.36) and (1.37). Only three sets of a and b which are close
to zero, are important in the extreme cases. One could proceed and solve the problem in the

same way as we did in the eikonal approach. However, here we have two variables a and

b instead of the one variable K in the eikonal approach. Furthermore, the asymptotic
values of a and b are not trivial. But, the asymptotic value of K, (Ko*z) is known.
Therefore the eikonal approach becomes easier than the spatially dependent amplitude

method in solving the extreme cases of parallel-sided slab geometries.
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1.3.4 Elastically deformed crystals

We have treéted the elastically deformed crystal problem in the case of a uniform
strain gradient in the plane of diffraction using the T-T method. The effects of the elastic
strain gradient is to modify the coupled differential equations for the amplitudes of the
waves along the incident and diffracted directions by including a phase factor that depends
upon the component of the displacements along thé scattering vector. That is egs. (1.41)
become '

) iG v
| 211(.38_02 =vge ¥, (1.43a)

and

.., 0¥ -G T
255 = V6 © Yo (1.43b)

where E)(?) is the displacement of a giveh lattice site from its unstrained position. The
solutions of the above coupled differential equations have béen expressed in terms of
confluent hypergeometric functions by Chukhovskii and Petrashen [11] in the case of
uniform strain gradient. The complications of this treatment have been such that little use
has been made of their approach by workers in this field. We have eliminated the
mathematical obscurity by expressing the confluent hypergeometric function in terms of
Chebyshev polynomials. The results are in a form suitable for numerical computation of
the variation of intensity of neutron scattering with crystal thickness and amplitude of the

strain gradient.

The theory is worked out for uniform strain gradients, that is for displacements ﬁ)(?)
containing terms up to the second order in the distance from the origin taken from the
middle of the Borrmann triangle. The Borrmmann triangle is formed by an incoming wave, a

diffracted wave and the crystal surface. As long as the strain gradient is constant over the



Borrmann trian gl¢ standard treatment using the T-T method is applicable. The solutions for
uniform strain gradients will apply point by point along the crystal as long as the sfrain
gradients vary very slowly on the scale of the Borrmann trian gle. For example the theory
would apply in the far field of a single dislocation even though it would be quite suspect if

the dislocation was in the middle of the Borrmann triangle.

1.3.5 Elastic strain gradients

The bending of a thin crystal is described in terms of the displacements of its mid-
surface from its equilibrium position. In our model the crystal is cubic and the coordinate
axes, which are parallel to the edges of the crystal, are parallel to the cubic edges. Fora
crystal lying in the Xy plane and bent cylindrically about x- axis by some externally applied
forces, the displacement in the z direction of the mid-surface would be

2
w(x,y,0) = % .

.

Away from the mid-surface the displacement in the z direction is given by

2 Cyy 2
w(x,y,z)=%§- +Fi% R >

where C;5 and Cy are the elastic constants in an appropriate coordinate system, to be

explained later. The displacement in the y direction is given by

v(X,y,z) =- %Z .

If the scattering vector is in the xz plane, then only the strain in the z direction will influence
the neutron diffraction through the term G . Thus there would be no effect on the
diffracted intensity of a crystal bent cylindrically about the x-axis if the scattering vector
G was exactly along the x-axis. For a scattering vector in the xz plane the factor,
2
0 D-ewf 2 O )
exp(- G )= exp{-l o R s

enters the T-T equation and determines the deviation from the behaviour of the unstrained



crystal.

The actual shapes of the bent crystals are not this simple. The crystal wafer does
not bend to form a perfect cylindrical shape. There is curvature along the x-axis that comes
about because of the finite length in the x direction. The deviations are noticeable opﬁcally
near the free edges (x = £ a) of a crystal that is benf by applying boundary conditions at y =
1 b to a crystal plate of length 2a and width 2b. The free edges at x =+ a do not follow a
cylindrical bend. (Even if one were to use cylindrical mold to force the cylindrical bend,
there would still be some deviations because of the elastic stress resisting the mold, but the
effects would be reduced.) Because of these effects one will see a change in the diffracted
intensity even when the scattering vector lies in the x direction, not because there is any
thing wrong with the T-T method, but because there will be a real strain gradient
component along the x-axis, particularly if the crystal is bent as described above using the
edge couples. Thus the strains will be determined by the displacement of the mid-surface

in the form

X2 2 X
woey0) = IR R * Ry

where Ry, Ry and Ryy are the radii of curvature of the mid-surface in planes parallel to the
Xz, yz and xy planes respectively. These radii of curvature can be found either from the
elasticity theory with boundary conditions or from experiment by measuring w(x,y,% )s
where t is the thickness of the crystal. In the above expression for the displacement of the
mid-surface there would be some constant and linear terms which won't really matter in
calculating the intensity of the diffracted beam. The displacements associated with a given

w(x,y,0) are

w2 _ Y2 ve Y _ X2

and
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The displacement that will effect the diffracted intensity when the scattering vector lies

along the x directionisu = —g— — .

The calculation of the strain gradients in elastically deformed crystals is treated in the
first approximation by the conventional elasticity theory of thin crystal plates in which the

basic differential equation is in the form:

Hw . 2(Cip+ 2 Cqq) H*w a4w
ox4 Cn ax28y2 oyt

where the xyz coordinate system of the bending is parallel to the cubic axes of the crystal.
If the coordinate system is not parallel to-the cubic axes one must carry out some matrix
transformations of the tensof quantities. In deriving the above differential equation the
influence of strain in the z direction has been neglected because it has only little
consequence in the elasticity theory. The strain gradients in the z direction are the main
effect in diffraction. The boundary conditions of the free edges give rise to two differential

equations:
Pw  Cip %w =0
Cit oy ~
Bw (C12 + 4 Cqq) 3w
w3 Cu oxdy?

Solutions are attempted by Ritz methods with polynomial expansion. The results are given

in chapter 4.

Conventional elasticity theory becomes suspect when the displacements move the
mid-surface of the plate outside the boundaries of the undistorted plate. For bending this

corresponds to a radius of curvature
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2
R ==

t
where 2b is the width and t is the thickness of the plate. For our cut silicon wafers 2b =
0.06 mand t =0.3t0 0.5 mm. These give radii of curvature of 1.8 to 3 meters. This is in
the middle of the range of our experiments, which go down to curvatures as sharp as 0.5

meters, which generally breaks the crystal, and are usually as sharp as 1 meter.

The question of what replaces the conventional elasticity theory when the
displacements become too large is ignored in most texts. What is happening on large bends
is that the material develops what can be called hoop stress because of the curvature. This
is missing from the simple. differential equation. What is needed is to take into account the
stress fields as well as the strains. This yields two coupled differential equations as shown

by Rostovtsev in 1940 (see the book by Lekhnitskii [12]):

PE , on yay DE_ L PE_ (PwP Pw Pw
1557 2T % 5202 T Mg T \0xdy) T a2 9y2

Hw Hw Hw
Diugd * 2@+ 5557+ Dugpr =

9%F 92w 5 02F  Pw . 02F 92w
dy2  0x2 oxdy  dxdy = gx2  oy2

(see appendix 9 for more details including nomenclature.) There are no known non trivial

solutions to these equations. They can be treated by Ritz methods or by relaxation methods

without unduly complicating the computations. These applications of elasticity theory lie

just outside the scope of this thesis. The next stage in our work would encompass this.

" The scope of the thesis is to show how to apply the T-T equations to a bent crystal

when the local curvatures, Ry, Ry and ny, are known theoretically or experimentally.

We will show how to do this in Chapter 4.



34
CHAPTER 2
CONVENTIONAL DYNAMICAL THEORY OF DIFFRACTION

2.1 The eikonal approach

Here we give detailed calculations of internal wave Vectors (important ones only) and
of corresponding internal wave amplitudes in the case of symmetric and non extreme
asymmetric Laue and Bragg geometries. We distinguish now between the Laue case (Fig.
2.1a) and the Bragg case (Fig. 2.1b). There are some differences in solving‘ the parallel-
sided slab problem between Laue and Bragg cases. We will state the differences wherever

they occur.

As mentioned in the previous chapter, we rewrite the approximate form of the

dispersion relation (eq. 1.40) for the non extreme asymmetric Laue geometry as:

b % b b
K& - (Koi*+Kox) Koz + Kop Koy — =0, 2.1)

x Vva-Gx

where €= 2.2)

As mentioned before, € is an energy in reduced units that sets the length scale for
diffraction phenomena. In usual diffraction experiments, € is essentially a constant for a

given reflection (see appendix 1 for typical values). From eqs. 1.22

% %
Koz ~Koz) =2 ‘jkozz— Vo =2 \/kg cos?(8-a1) - v

~2 \/ké cosZ(GB—oc) - Vo

and

(Ko _KOD) 2\/koz“ Vo — A
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Figure 2.1:- Sketch of (a) the Laue case (b) the Bragg case.
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=2 \/k%cosz(e—a) -Vo — G2cos?a + 2koGsin(6—-a)cosa

=32 \/ k%cosz(GB—a) -Vo— G*cos“a. + 2koGsin(9B—a)cosa .

Similarly, for the non extreme asymmetric Bragg geometry, the approximate

dispersion relation will be in the following form,
K& - Ko +KoP) Koz + Koz Kop® + £=0. (2.3)

In these Bragg cases, all the approximations that we have stated for the non extreme
asymmetric Laue geometry (pages 22 & 23) are valid. The only difference is that the tie
points A and D (closer to the point P) become important in the Bragg cases compared to the

tie points A and C which are important in the non extreme asymmetric Laue geometry.

Note that in all cases KOA;(B g kox. The solutions for Ky, of egs. (2.1) and (2.'3)_
combined with the boundary condition Kox =kox {(Kox, Koz) determine the internal
wave vector}, are described by two hyperbolae as shown as in Fig. 2.2a (Laue case) and
2.2b (Bragg case). The allowed values of K, (solutions of eq. 2.1) in the case of the non

extreme asymmetric Laue geometry are given by

*A
K +K —K +4e
KA =m0 3 oz \/( oz (2.42)
2
and
*C\2
K +K Koz A_K +4 &
KOCZ=( of +Xoz) \/( 0z’) : (2.4b)

2

Similarly, the solutions of eq. (2.3) give the z component of the internal wave vectors in

the case of Bragg geometry. The solutions are



*
A Ko +Ko) Ko7 —KOD)2 4¢

KA = - (2.52)
and
L3N]
KX _
KL= (K°z +Kog) _Y 2°z) (2.5b)

Note that Kéb‘z and ng are always real for the values of (kox, koz) (Where E-)ois very close
to satisfying the exact Bragg condition) in the Laue géometry (see Fig. 2.2a). In the case
of Bragg reflection, Kéb‘zand KODz are complex in a certain range of values of (kqx, koz)
(see Fig. 2.2b), i.e. the surface normal does not intersect either of the two dispersion
surfaces. This region is known as the total-reflection region. We know that, for an

incident plane wave, two waves in the incident direction and the other two waves in the

diffracted direction have considerable amplitudes. Note that, ¥4, ‘I’g, ‘I’c‘? and ‘Pg have

considerable value in the case of Laue geometry while wa, ‘POD , ‘I’é‘ and ‘I’GD are important

in the Bragg cases. By knowing these wave arﬁplitudes, we can calculate the amplitudes of -

the transmitted and Bragg diffracted waves outside the crystal. Note that the amplitudes of
mirror reflections of the incoming wave and of Bragg diffracted wave are negligible in

these non extreme asymmetric Laue and Bragg cases.

In the Laue geometry, we will get the following relations between the external

incident wave amplitude @ and the internal wave amplitudes (‘I“g, ‘Pg, ‘I’c‘? and ng) by

applying the boundary condition, continuity of waves across the entrance surface of the

crystal

¥4+ S =, (2.62)
and

va+¥§=0. (2.6b)
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The first relation (2.6a) makes the total internal incident wave match the external incident
plane wave while the second relation makes the total diffracted wave vanish at the entrance

surface of the crystal.

By applying the same boundary condition at the exit surface (lower surface of the
crystal in the case of Laue geometry), we will get the relations for the amplitudes of

transmitted and Bragg diffracted waves in terms of internal wave amplitudes. They are

. s A . C
@, e Kozt = A iKozt , wC e iKozt (2.72)
and
Koot A i A ..~ C
Dgeikozt —wh Kozt @l Kazt (2.7b)
where ®; and ® are the amplitudes of transmitted and diffracted waves respectively;

AC AC
Kgz =Koz +Gz.

In the Bragg geometry, the diffracted beam emerges from the crystal at the upper
surface (see Fig. 2.1b). Therefore the total internal wave in the diffracted direction must
vanish at the lower surface of the crystal. By applying the boundary condition, continuity

of waves across the crystal surfaces, we will get the following relations:

A
Yo +‘POD =D, (2.82)
¥4 +92 =@y (2.8b)
A KAt @D K2t ikgzt

s A .- D ‘
pAe Kozt , wDe iKazt _ g, (2.8d)



Note that the first two relations (2.8a & b) correspond to the upper surface while the last
two relations (2.8c & d) correspond to the lowe;' surface of the crystal. In order to
calculate the internal wave amplitudes, we need only egs. (2.6a & b) in the case of Laue
geometry and egs. (2.8a & d) in the Bragg case. We also need the ratio of the fnternal

amplitudes which can be found from eq. (1.18&), i.e.

¥o _ b = *G (2.92)
Y& (13 -vo -K&Y)  {kok-vo - Ky
and -
¥ \A
ch; " e G_ KT (2.9b)
or
\Yg 1G (2.9¢)

D ~ 2. "
¥e  (k&-vo - K&}

By solving the egs. (2.6a), (2.6b), (2.9a) and (2.9b), we will get all the internal wave

amplitudes in the case of Laue geometry. They are

2 2
{kgz‘ Vo — KoAz } {kozz“ Vo — Kocz

wh= )
2 2 o: (2.10a)
vV.g {Kcl}z - ng }
2 A2 2 P
‘I’S- {kgz— vo — Koz } {kgz— vo — Kc?z o (2.10b)
-~ 2 2 (o8 .
V.G {Kcl)\z - ng
2
WA _ (k- vo — Ko o 2.100)
- 2 2 o .10c
(K& -K&7
and
2 A2
C {koz— vo — Ko7z
Yo=- @, (2.10d)

2 2
(K&, -KS7)

40



Similarly, we will get the following expressions for the internal wave amplitudes by

solving the egs: (2.8a), (2.8d), (2.9a) and (2.9¢) in the case of Bragg geometry: -

2 A2 2 D2 .
¥4 o K Odrve KD,
. | -
V.G ({kozz— Vo — Ké)zz} eiKgzt _ {kz— vo - K& ciKgz t)
(2.11a)
(62— vo K& (k&= vo - KDY A
\IIGD____ z— YO 0z (o4 0 oz cDoelKGzt
. _— —
vV.g ({kozz— Vo — Kcl,)zz} elKGZ t_ {kozz__ Vo - KOAZz} elKGz t)
(2.11b)
(k- vo - K& D
\Pé = Z [0) 0z (Do elKGZt
. D . A
({kozz— vo ~ K& Kozt _ (k Z,- v, - K&} eiKoz t)
(2.11¢)
2 ‘ K A2 A
Tg:.. {kOZ" Vo —Roz (Do elKGZt.
D Y
({kgz— Vo — Kcl,)zz} ezt _ {kozz" vo - KoAzz} ciKaz t)
(2.11)

Now we know all the internal wave vectors and corresponding internal wave aﬁ1p1itudes.
By knowing these, one could calculate the diffracted wave amplitude (Pg) from eq. (2.7b)
in the Laue case (at the lower surface of the crystal) and from eq. (2.8b) in the Bragg case
(at the upper surface of the crystal) in order to verify the theory experimentally. Details are
given later in this chapter. Before calculéting the external unknown wave amplitudes
(transmitted and Bragg diffracted), we will see the detailed calculations of solutions to the
parallel-sided slab problem in the non extreme asymmetric cases using the Takagi-Taupin

approach.
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2.2 The T-T approach
As we meﬁﬁoned in chapter 1, we have to solve egs. (1.41) together with the
boﬁndary conditions, in order to calculate the internal wave function in the non extreme

asymmetric Laue and Bragg geometries.

Solutions of eq. (1.41c) are of the form

(S e g)
¥s=Cge!\ 2K So T 3KqSG/. (2.12)
From eq. (1.41b), we get
. ¢ AV-G VG
\Po=-%0e1( 2K So T 3Kq 9} (2.13)

There should be two sblutions for q in the case of a parallel-sided slab problem. This
becomes evident in the process of matching the boundary conditions which also determine
the coefficient CG (For a general boundary there can be an infinite number of solutions
for q). For incoming wave vector E)owhich makes an angle (0 — o) with respect to the
surface normal, the continuity of the internal and the external wave functions at the entrance

surface requires

. SOA . .
¥, (x, z=0) e KX S0 -X = @ ¢ TkoxX (2.14a)
and

e hA
¥, (x, 2=0) KX S X = 0 (2.14b)

in the case of non extreme asymmetric Laue geometry. By matching the x component of

the phase factor in eq. (2.14a) together with eqgs. (1.27), we get



qQv.g —cos (63 + Q) .\ vg  cos (6p — a)
2K sin 263 2Kq * in203

—Ksin (85 — o) = kg sin (6 — ),

ie. {qcos (0 +0) — -(1-1-cos 03 — )}

~ 2Ksin 205 n .
= ——vé——{ko sin (6 -a) —Ksin (6g — )}  (2.152)

(Note that here we assume vg =V.g.) Eq. (2.15a) is quadratic in q and gives the two

solutions of g (say q, and q,) in the case of a parallel-sided slab problem. They are:

cos (6{; - Q)
o4 2 4 2.15b
h=P Vp cos (65 + @) ( )

and

Op — o)
= o a2 408 (OB , 2.15¢
9=7P A\ﬁ) cos (6; + o) ( )

o K2sin 20% [kq sin (0 — o
where p= Liheld { o Ié ) _ sin Gl - o). (2.15d)
vgcos (6g + o)

We also get the following relations by matching the coefficients of exponential components

on both sides of egs. (2.14):
(CG)ql + (CG)q2 =0 (2.162)

Coy Cogy
T oq 9 O

(2.16b)

From these two relations {egs. (2.16a) & (b)}, we obtain (CG)q ) and (CG)(12 in terms of

q;, 4, and @, i.e.



- .
- Ca)q; = ~(Calgy = g —ay) Do (2.17)

We see that the spectrum of separation constants q is discrete, (q;, q,) in this case,

involving only two amplitudes (Cg)q ) and (CG)q2 . Thus, we can write the internal wave

functions in the incident and the diffracted directions as,

(Cc,)ql ( q 1V G

a o Vg
\Po(r) elKSo. T = { SO + "'"'—2Kq1 SG)

1

(CG) V- -G Vg A
q ( -7 So * _2Kq2 SG) } elKSo. T (2.183.)
2

and

4V-c
¥ (r)elKSG T o {cs g, © e x50 + 2Kq )

4Vv-6
+ (Co)g e’ 2K So * 2K SG)} iKSe. ¥ (2.18b)

KSy T iKSg.T ‘
The total internal wave function ¥(r) (= Po@) 20T + W(r) 196 T ) consists of the
superposition of four plane waves which can be obtained by combining the amplitude
modulations with the carrier wave vector. The z component of the wave vector can be

written as

qQv.g sin (9; + o) . Vg sin (9; - )

K, = Kcos (63 — o) + 3R 7Rq

(2.19)

sin 204 sin 203

If one compares eq. (2.19) with q, and q, with egs. (2.4a & b) there appears to be little in

common. But numerically they are very close. To show this analytically involves
considerable expansion of square roots and lots of algebra, after which the differences
appear in the higher order terms which are many orders of magnitude smaller. Thus

numerically one can show that the z component of the internal wave vectors and

44



corresponding wave amplitudes, which are calculated using both eikonal and T-T
approach, are vefy nearly equal in the non extreme asymmetric Laue cases. The x
component of the internal wave vectors in both approaches are equal to kg, of course.
The different approximations in both methods create the very small differences in the z

component of the internal wave vectors and in the corresponding wave amplitudes.

Similarly, one could calculate the total internal wave function in the case of Bragg

geometry.

2.3 Calculation of diffracted beam ihtensity

We have measured the diffracted beam intensity experimentally as a function of
thickness of the crystal. Details are given later in this chapter. Since we have performed
the experiments in the Laue geometry mostly, we will calculate the diffracted beam intensity
at the lower surface of the crystal in that geometry. We know that the diffracted wave
amplitude is given by eq. (2.7b), i.e. ’

. o A . C
@q = e Kozt (pheKazt wle Kazt ), (2.20)

Inserting the wave function of the diffracted wave into the quantum mechanical prescription

for calculating the intensity,
Ig="¥® . ¥@)"

one finds

Iq=Pq <D§

or A xr C * xr A | * . C
= {PheXazt wGe Kozt } (wh e~ Kozt w§ e~ Kazt} (221)
Since ‘PGA and ‘Pg are real and‘PGA=—‘Pg, eq. (2.21) reduces to

Ig=Pa%+ WS+ 2 WA WE cos (KA,- K&, t
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2 (K&- K&

2
_ 16 £2 Ko ©F o2 V(KA KoL) +4e g
v% ((Koz -Kog VP +4¢} 2

(2.22)
This expression is derived in appendix 2. It gives the intensity in terms of the intersections
K;ZA’B’C’D of the unperturbed spheres, the magnitude of the perturbations vg, ,and €
which depends upon these variables through eq. (2.2). In an experiment there will be a
range of incoming neutron wave vectors. The quantity ( K;? - K;ZC ) will vary rapidly
over that range, but the quantities K;?, g and v will be constant or sufficiently constant

to be treated as such. The dependence of the incoming flux (Dcz, (determined by the

experimental arrangement) upon the incoming wave vectors will set the limits of integration

in calculating the integrated intensity.

Turning to experimental verification of dynamical theory, we consider the effects of
wavelength spread of the incoming neutrons and its» angular spread. Generally researchers
in this field calculate the effects on diffracted beam intensity profiles due to the angular
spread only, assuming that the incident beam has constant energy. The intensity profiles of
the diffracted beams are broadened by a convolution of A6 (angular spread) and AK

(magnitude of wave vector spread) whose effects are convoluted. The single variable

- ngc ) which is a function of A8 and AK (see appendix 3) better describes the
diffraction profiles. In the limits of AG — 0 (or AK — 0), the variable is linear in AK (or

AB). Let us examine eq. (2.22) further.

From eq. (2.22), we see that the intensity of the diffracted beam is a function of

( Ko - Koz < ) Koz and e for a pan:lcular thickness of the crystal. We know that Koz

and € are slowly varying variables of wavelength spread and angular spread of neutron
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source while ( K;ﬁ‘ - ngc ) is a rapidly varying variable. The diffracted beam intensity
profile is shown in Fig. 2.3 as a function of Kgf‘ and ( Kgf‘ - K;ZC ). Note that, here we
asSume € as a constant. From Fig. 2.3, we see that the diffracted beam intensity is a
rapidly varying function of ( K;f‘ - ngc ) and a slowly varying function of K;f‘ The
intensity profile of the diffracted beam is mainly determined by a single variable ( Kg? -
Kgg ). If we neglect the variation in Kgf‘ and in € due to the neutron source wavelength

spread and its angular spread, eq. (2.22) will represent a curve which is a rapidly

oscillating function of variable ( K’okf‘ - K;ZC ), having a Lorentzian envelope given by

16 £2 Ko A% 02
E3 xETal
v5 {(Koa —Kox ) + 4 ¢}

. These results are illustrated in Fig. 2.4. The peak

of the above Lorentzian envelope occurs when K;ﬁ‘ = ngc This can be represented by a
set of lines ( Kgf‘— K:ZC = () in (A8, AK) space depending upon the value of o (see Fig.

2.5a). Furthermore, the peak value of the Lorentzian envelope is given by

*A2 12
DPealr int ity — 48KOZ (Do (D D2
Peak intensity = 5 (2.23)
V-G

The Lorentzian envelope falls to half of its maximum when ( K;f‘ - ngc )2 =4¢. This

corresponds to a full width at half maximum of

E E E E
(KEA_KEE) — (KA _KIE)g =4ve 2.24)

This also can be represented by a set of lines in (A8, AK) space for various values of o
(see Fig. 2.5b). These parameters are very useful in designing high reflectivity

monochromators.

2.4 Calculation of integrated intensity of the diffracted beam

In general, the incident plane wave has a finite wavelength spread and angular
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divergence. So one can represent the incident beam profile by a set of contours in k-space

((kx, k) plane) dcpending upon the experimental situations. Therefore, one has to take the

wavelength spread and the angular spread of the incoming beam into account in calculating

the integrated intensity. The integrated intensity of the diffracted beam can be defined as
I=J 14 dkox dkoz . (2.25)

As we mentioned earlier, the diffracted beam intensity is a rapidly varying function of

( Koz ) and a slowly varying function of Koz One can evaluate the above double

integration (eq. 2.25) by the change of variable method, i.e.

I= -f -f I4( kox-koz) dkox dkoz

—Ihduc Kol , KoP) T (KSR -KoS KSR ) d( RGP - Kol ) d(Kol), (2.26a)

* A cos (GB + a)

where the Jacobian J ( Ko~ Ko< , (2.26b)

2 sin Oy cos
(for details see appendix 4).
Substituting the diffracted beam intensity I4 {from eq. (2.22)} into eq. (2.26a) we will get,

I=.[.[ 16 2Ko q>§ sinz{V(K:?—K:§)2+48t}
V—2G{(KOZ—KOZ )2 +4 ¢} g
cos (65 + a) A *?__ €y d( Ko ). (2.27)

2 sin 6 cos

We see from Fig. 2.3 that the intensity of the diffracted beam decreases rapidly with

increasing or decreasing value of (K;{“ - Kgg) from zero. A small spread in wavelength

and in angle of the incoming beam gives a range of values for the variable (K;f‘ - Kgg) in



| which the intensity of the diffracted beam has a significant value. For simplicity, we

assume that the incident beam profile is constant over this region. Furthermore the

intensity of the diffracted beam is a slowly varying function of K;? over a wide range (see
Fig. 2.3). Therefore one has to take the incident beam profile dependence on Kgﬁ‘ into
account in the integrated intensity calculation. The variation of the incident beam profile
with the variable (Kgib‘ - KO*ZC) can be neglected within the range in which the intensity of
thé diffracted beam has a significant value. Furthermore, we have neglected also the
variation of € due to the wavelength spread and the angular spread of the incoming
neutrons. With the above assumptions, the double integral {eq. (2.27)} can be split into
two single integrals, i.e.

16 82 cos (6g + ) J‘ K *A2

* *
I= 3 - : 0z (Dg (KozA)d(KozAL
v.c 2sinBgcosa

* |
d Koh-KoP) .+ (2.28)

The second integral is a function of thickness of the crystal (t). The first integral, which is
independent of crystal thickness, is determined by the incident beam profile. For a
particular experimental set up, one could assume that the value of the first integral is

constant (say C). Then we can rewrite eq. (2.28) as

*A FC \2
K -K + 4 ¢
sin2 {\/( 0z 2oz ) 1}
E3 E]
{(Koz -Kox )2 + 4 ¢}

2 co
I=168 C cos (6g + Q) J'

v_ZG "2 sin 63 cos o

-co

K K
d (Ko?‘ Koé:)-

Our ultimate aim is to calculate the integrated intensity as a function of thickness of the

crystal for several scattering vectors making various angles with respect to the surface of
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the crystal. By defining new dimensionless variables

2
- +4¢
\[ KOZ ) and T =\/(_°,- t , the above equation can be further
2\/€
reduced to
2
= 16 82C cos (Bg +a) 1 5 J‘ sin 2 (VT) av.

v 2sinBgcosa 2\/_ 1+ V\/V —1

One can rearrange this equation in the following form

( v_%sin 8y cos « _, J- sin 2 (VT) sin2 (VT) o 2.29)

4 €3%cos (B + ) C [+ VAL

The right hand side of eq. (2.29) depends only on T (= \/; t ), the normalized crystal

thickness. Now we define I, as the normalized integrated intensity '

I, = { v_%sin 0g cos o }I . (2.30)

4 e3/%cos (0 + @) C

The curve of normalized integrated intensity versus normalized thickness is a universal
curve as shown as in Fig. 2.6. The period of thickness oscillation is 3.102 in normalized
units. From this curve, one can calculate the integrated intensity as a function of thickness
of the crystal for all possible cases of Laue-transmission geometries by multiplying with the
scaling factors (corresponding to the integrated intensity as well as the thickness of the
crystal). The scaling factors differ from case to case. The period of thickness oscillation is
3.102¢712 {e” ~1/2 i5 the characteristic length given by eq. (2.2)} . These results are
verified experimentally and details are given later in this chapter. One has to notice that we

have neglected the variation in € due to the angular spread and the wavelength spread of the
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incoming neutrons throughout the integrated intensity calculation. If the portion of incident
beam hitting the sample changes during the‘process of rotating the crystal sample in order
to examine the different Laue transmission geometries, one would have a different value of

the constant C for different reflections.

2.5 Experimental methods

011 thermal neutrons/

The experiments were carried out using neutrons (2-5x1
cm?/sec source flux, depending upon how much the proton beam effectiveness is decreased
in the isotope production facility) from the TNF (Thermal Neutron Facility) at TRIUMF.
The experimental set up described below is shown in Fig. 2.7. The cross-section of the
thermal neutron beam from the D, O moderator is rectangular with dimensions 5 cm x 20
cm. The beam is monochromated by 90° scattering from the (422) reflection from stacks
of silicon wafers (7.5 cm diameter) which have been specially treated to produce high
reﬂectivity. This monochromator set up produces neutrons of wavelength = 1.57 A°. A
cadmium slit of width ~ 6mm x 20mm was placed just in front of the sample, 5 m from the
monochromating crystals. The sample crystal was placed on a special sample holder which
was mounted on the spectrometer table. The special sample holder allows one to scan the
crystal from one end to the other using a stepping motor. With this system, one can rotate
the crystal on the table in order to study the asymmetric Laue and Bragg geometries as well
as the symmetric cases. This sample holder is also specially designed for bending the
crystal in a unique manner. Further details are given in chapter 4. The diffracted beam is
detected by a set of 3He detectors (25 mm diameter by 150 mm) which are placed at a
distance of 1 m from the sample. The detector collects neutrons over a range of 1.75°.
Actually, there are four detectors side by side in our experimental set up. All of the
diffracted neutrons hit one detector while the other three detectors count the background.
These detectors are coupled to a Tennelec electronic counting system. All experimental data
are collected using an IMS computer which also controls the experiment vié stepping

motors.
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Figure 2.7:- A schematic diagram of the neutron diffraction apparatus.
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A wedge shaped sample was prepared from a dislocation free silicon crystal, the

surface of which was nearly parallel to the (400) direction (004 cut crystal). The Si crystal
was slowly lowered into a bath of planer etch (75% HNO3, 18% Acetic acid and 7% HF)

at a speed of (/7 )"/hr- The bath was stirred every half an hour during the etching. After
the first etch, the thickness of the crystal was measured at different positions along the
translational axis. The thickness of the crystal at the thicker end was 710 pm and at the
thinner end was 480 um. After neutron studies, the thickness of the crystal was further
decreased by successive etchings. The uniform etch was repeated until the thin edge was
no longer there. The variation of thickness was approximately the same along the
translational axis of the crystal after each etching. The etching is not completely uniform,
so that there are variations of 5 m at most in thickness across the length (2cm) of the slit.
After each etching the tapered crystal was scanned from one end to the other by moving it
over the Cd slit (6mm width) placed just below the sample mount. The spectrometer was

set to study the (400) reflection (symmetric Laue case) from the Si crystal. | _

In another set of experiments a (111) cut silicon crystal was used. The crystal was
etched as for the above (004) cut crystal except that the edges of the crystal were masked to
prevent etching. This made the etched wafer easier to handle and mount. Only the etched
region was scanned by the slit. Using this sample, the symmetric Laue reflection (422) and
asymmetric reflections (111), (311) and (400) were studied. In the second set of

experiments, the crystal was etched only once.

2.6 Results and Discussion

The experimental curve showing the integrated intensity as a function of thickness for
the (400) symmetric Laue reflection is shown in Fig. 2.8. First we have measured a
rocking curve for each partiéular thickness of the crystal and the integrated intensity was
calculated by integrating the intensity over the rocking curve. The neutron flux in our |

system is low, so that the measurement of each rocking curve took about an hour. The
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Figure 2.8:- Integrated intensity measured experimentally as a function of thickness of the

crystal for (400) symmetric Laue reflection. The solid line is the fitted curve
using all experimental points (using the curve fitting program, MINUIT).
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crystal was translated in 3mmn’steps across the 6mm wide slit and rocking curve
measurements were made at each position. Similar measurements were made after each

etching.

From the universal curve of thickness oscillation, we can obtain a theoretical curve
(without any correction for the experimental situation) of integrated intensity as a function
of thickness of the crystal by knowing the scaling factors for the crystal thickness f(6p, o)

and the integrated intensity g(8g, &). These scaling factors are given by

L

Ve

4 2 cos (85 + a) C
g(6p, 00) = ——— Opta) C (2.31b)
v.gsin g cos o

f(0g, &) = (2.31a)

and

The values of the scaling factors are calculated for the silicon (400) symmetric Laue
reflection for neutrons with a wavelength of 1.57 A°. The important parameter involved in
the calculation of scaling factors is the crystal structure factor per ﬁnit cell Fpy. It is related
to the scattering amplitudes of the atoms contributing to the (hkl) reflection and to the
Debye Waller temperature factor for the particular reflection. For the (400) silicon
reflection, Fypp=8 be ™™ with b (= 4.1534x10"5m) being the coherent-nucleaf scattering
amplitude per atom. The other parameter involved in the calculation of the scaling factor of
the integrated intensity is C. For the calculation of C, we make the following assumption

for the incoming beam profile. The incident beam profile is described by

Do Koy =1 for IAKI < 1% of Kgy

=0 otherwise.
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where Kg? = (Kg?)M + AK and (K;?)M is the value of K;? at the exact Bragg condition
forkog=4x 1010’m'1 (A = 1.57 A°). With this assumption the value of C is equal to
6.942x1029(m'3) for the (400) symmetric Laue reflection. The calculated values of the
scaling factors are 2.66x1072(m) and 3.457x10'3(m™2) for the crystal thickness and for the

integrated intensity using the above parameters.'

Next we will consider the corrections for the experimental situation. During the
experiment we have placed a 6 mm wide Cd slit across the incoming beam. So one has to
consider the effects of the slit in the intensity calculation. However, there won't be any
correction in the total integrated intensity by introducing the slit across the incident beam.

Now we will justify this statement.

We consider the geometry as shown in Fig. 2.9. Let W, (=2a) be the width of the
slit AB. The incoming neutrons impinge on the entrance surface of the crystal along a strip
A'B' of width W; { = 2a/cos (6-—_0;) = 2a/cos (Bg-a)} due to the presence of the slit AB.
The origin is chosen to be at the center of A'B'. By introducing the slit AB across the
incident beam, we will get non-zero wave fields in the segment CF at the lower surface of

the crystal. The width of the segment CF (W) is related to the width of the strip AB' (Wj)

and the thickness of the crystal by

W=Wi+t{tan(6;-a)+tan(6;+a)} (2.32)

As we see from Fig. 2.9, any point in the region DE receives the same neutron flux as it
would if the slit were infinitely wide, i.e. the points in the region DE covers a complete
inverse Borrmann triangle. At the same time, the points in the regions CD and EF receive
only a p"an.of the plane wave intensity. Therefore the wave field is constant on the segment

DE and is found as the solution of the ordinary dynamic problem (Planeb wave type

approximation). The width of the segment DE (W) is given by
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Figure 2.9:- This diagram shows the cross-sectional area of incident and of diffracted

beams at the entrance and the exit surface of the crystal. A slit (AB) of width
W, (=2a) is introduced across the incident beam. The origin is chosen at the

center of A'B'.
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Wg=W; — t{tan(6f—o)+tan(6+0a))} (2.33)

The intensity distribution in the regions CD and EF can be calculated by integrating
the point source type solutions over a part of the Borrmann triangle with the appropriate
relative phases to satisfy the boundary conditions of an incident plane wave [13]. This
calculation is extensive and difficult. Furthermore, the width of the regions CD and EF are
small compared to DE in our experimental set up {slit width (6 mm) and the crystal
thickness (0 — 700 um)}. In the first approximation, one can assume that the integrated
intensity linearly decreases in the regions CD and EF from the plane wave type solution to
zero as shown as in Fig. 2.10. Here the plane wave type solution is normalized to 1. The

total integrated intensity is given by the area of trapezoid CD'E'F’ which is equal to Wj

(constant for a particular slit width and a particular reflection).

The other correction for the experimental situation is due to the variation in thickness
across the width of the slit. The average variation is about 10 um. This correction can be
made by averaging the integrated int‘ensity over the variation in thickness across the slit.
The experimental results are compared with the theoretical results and shown in Fig. 2.11.
The normalization factor for the theoretical curve was calculated by equating the area under
the experimental and theoretical curves. The experimental results agree rather well with the

dynamical theory prediction.

The asymmetric reflection results are tabulated in Table 2.1. The period of

oscillations calculated experimentally agree very well with the theoretical predictions.

In the extreme asymmetric cases, the conventional dynamical theory starts to fail.

The detailed calculation in these cases are given in the next chapter.
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Table 2.1:- Comparison of experimental and theoretical results.

Reflection o (deg.) Period of oscillation (Lm)
(111) cut wafers Theory Experiment
(42 )(symmetric 0 | 73.6 72.2 +0.3
Laue case)
(311)(asymmetric 10.025 1206 119.5 + 0.5
Laue case)
At ") 19.471 123.6 124.8 + 0.6
@0 ¢ M 35.264 58.3 572 %03
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CHAPTER 3
EXTENDED THEORY OF DIFFRACTION

3.1 Introduction
The conventional dynamical theory of neutron diffraction, which works very well in
both symmetric and non extreme asymmetric Laue and Bragg cases, is not valid in extreme
asymmetric cases of Laue and Bragg geometries. In the conventional theory, the
dispersion surface is approximated to‘ hyperboloids and the asymptotes of the dispersion
surfaces are straight lines. In general, the dispersion surface is described by an equation of
the fourth order. This fourth order equation can be reduced to a second order equation in
symmetric and non extreme asymmetric Laue and Bragg cases, because the distance
between the Laue point and only two of the four tie points is small. Therefore, only the
wave field corresponding to these two tie points have considerable amplitudes and only
they have to be known accurately. Note that the wave field corresponding to each tie point
consists of two waves, one in the incident direction and the other in the diffracted direction.
‘However, in the extreme asymmetric cases, the distance between the Laue point and at least
three tie points is small and three wave fields associated with these three tie points become
important. In addition, there are four waves appearing out side the crystal (besides the
incident wave) instead of two in the symmetric and non extreme asymmetric cases. They
are the transmitted wave, the Bragg diffracted wave and the mirror reflections of the

incident and of the diffracted wave (specular reflected wave and specular diffracted wave).

There are four possible extreme asymmetric cases, depending on which beam
(incident or diffracted beam) makes a small angle with the crystal surface and whether the
geometry is Laue or Bragg. These extreme asymmetric cases of x-ray diffraction were
studied extensively using some approximations by different groups. Kishino and Kohra

[14], Brimmer et. al. [15, 16] and Zeilinger and Beatty [17] treated an extreme asymmetric



Bragg case in which the angle between the incidént beam and the crystal surface is small.
Kishino [18] and Benynska [19] investigated the Bragg case with a small angle bétween
the crystal surface and their diffracted beam. The diffraction patterns in extremely
asymmetric Laue cases were studied in the papers by Kishino et. al. [20], Benynska

[19,21] and Hirtwig [22,23].

In this chapter, four extreme asymmetric cases of neutron diffraction are investigated.
In these cases, at most three tie points are close to the Laue point. One tie point is always
far away from the Laue point. Therefore one can use the asymptotic value for the wave
vector corresponding to this tie point. In addition, the amplitudes of the internal wave field
associated with this tie point are extremely small. With this assumption, we can reduce the
fourth order equation of dispersion to a cubic equation. The solution of a cubic equation is
straight forward. The solutions of this cubic equation will give accurate values of the wave
vectors associated with the three tie points. Furthermore, either the specular reflected wave
or the specular diffracted wave will have a considerable amplitude in the extreme
asymmetric cases depending on which beam, either the incident beam or the diffracted
beam makes, a small angle with the crystal surface. The unknown internal and external
wave amplitudes can be calculated by applying the boundary conditions at the upper and
lower surfaces of the crystal. The results are discussed in this chapter in great detail for all

extreme asymmetric cases. The results are also compared with the conventional theory.

3.2 Theoretical formulation

We consider the diffraction geometry schematically shown in Fig. 3.1, for the Laue
case. Diffraction takes place from the léttice planes (hkl) making an angle o with the
inward crystal normal. In this particular case, the angle between the incident beam and the

crystal surface is small (comparable to the critical angle of specular reflection Oc). Note

that, theoretically one can obtain the other extreme asymmetric cases by chahging the value
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Figure 3.1: A schematic representation of the extreme asymmetric Laue case in which the
angle between the incident beam and the crystal surface is small. (Do(k_o)),
O (k_o)), (Dd(k_G)), CDm(k;) and (Dmd(l?cm) are the incident, transmitted,

Bragg diffracted, specular reflected and specular diffracted wave amplitudes
(wave vectors) respectively. The thickness of the crystal is t.



of o.. The dispersion surface corresponding to this extreme asymmetric Laue case is

shown in Fig. 1.7\(see chapter 1). The fourth order dispersion relation
*A *B *C %D
Koz —Koz ) Koz —Koz ) Koz—Koz ) Koz —Koz ) = Vgv_g (3.1

can be approximated to the cubic equation of the form

(Koz Koz ) Koz ~Koz ) Koz~ Koz ) = —godes—, (3.2)
Kot -~ Koz )

where K;;‘ , K;f , K;E and Ko*? are given by eqs. (1.22). Here, the tie points A, B and
C are closer to the Laue point and the tie point D is far away from the Laue Point. Note that
the values of K;;‘ , Ko*;3 and K;S are nearly equal to each other. The right hand side of
the eq. (3.2) was obtained by replacing Ko by K;ZC (in the term (Kgz — Kg? ) of eq.
(3.1)) rather than Kg? or K;? because (K;g - Ko*? ) will yield the simplest form. The

solutions of the eq. (3.2) K:Z'B’C together with K ABC

ox = kox determine the internal wave

vectors corresponding to the tie points A, B and C. The fourth internal wave vector

corresponding to the tie point D can be approximated by the asymptotic values, i.e. (Kcl,)z=

*D D
Koz » Kox= koy)-

The total wave inside the crystal consists of the coherent superposition of eight plane
waves and is given by eq. (1.21). Waves in the vacuum (outside the crystal) are

represented as

- > .o o e
¥, (T) =0 e K0T 4 o etkmT 4 @ elkomT (33,
and
LoD LoD
¥, (7)) =@ elkoT 4 @ elka T (3.3b)
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at the upper and lower surfaces of the crystal. The wave vectors of the vacuum waves
(transmitted, Bragg diffracted, specular reflected and specular diffracted waves) are

calculated in chapter 1 and are given by egs. (1.5) and (1.8).

3.3 Boundary conditions

Waves in the vacuum and in the crystal must satisfy the following two boundary
conditions»at the boundaries of the crystal. The boundary conditions are continuity of the
waves and continuity of the gradients of the waves normal to the surface. By applying

these boundary conditions at the upper surface of the crystal, one obtains

O +0 = X ¥) (3.42)
j=A,B,C,D
O 4= ¥ . (3.4b)
j=A.B,C,D
koz®Po * Ky Py = X Koz‘PoJ (3.4¢)
j=A,B,C,D
and
Komz Prmd = T Kg, ¥, - (3.4d)
j=A,B,C,D

At the lower surface of the crystal, one obtains

@ Kozt = 3 wle iKdy ¢ , (3.52)
j=A,B, c D




~ and

o o)
oelkozt = 3 wjelKozt (3.5b)
j=A,B,C,D
. L
k@ ckozt = T K] w Kozt (3.5¢)
j=A,B,C,D
. L
k,, ®ekozt = 3 KJwjekezt, (3.50)
j=A,B,C,D

- = =
Here K=K +G .
In addition we know the ratio of internal wave amplitudes from eq. (1.18a), i.e.

"PJO V.

—-=- 5
‘PJG (kozz—vo e Kon)

(3.6)

wherej = A,B,C,D
From egs. (3.4), (3.5) and (3.6), it iS possible to calculate the amplitudes of all the

waves present inside and outside the crystal. For the geometry as shown in Fig. 3.1, we

can neglect the amplitudes (‘I’g and ‘I‘g ) of the internal wave field associated with the tie

point D and the amplitude of the specular diffracted wave @, 4. For simplicity we will take

them to be zero. In this particular geometry, the z component of the incident wave vector

(koz) is small. In addition, the difference between the z component of the internal wave
ABC . . . . . . .

VECtors Koz (corresponding to the internal waves in the incident direction) and ko is

comparable to the value of k. However, the values of KC?Z’B’C

are approximately equal to
kg7 (z component of the Bragg diffracted wave vector) and to kg7l . Under these
conditions, the egs. (3.4d) and (3.5d) become equivalent (approximately) to the egs. (3.4b)

and (3.5b) respectively. Using the equations (3.4a, b, ¢), (3.5a, b, ¢) and (3.6), one can
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calculate the internal and the external wave amplitudes. (note:- In applying the boundary
conditions at the ufper surface of the crystal, some internal wave fields corresponding to
different tie points can be excluded depending on the experimental situation. For example
if the width of the incident beam is narrow and the thickness of the crystal is large enough,
the incident wave will not interfere with the waves diffracted at the lower surface of the
crystal. Under these conditions, one can exclude the internal wave fields corresponding to
the tie points B and D in applying the boundary conditions at the upper surface of the
crystal.) We also cvalculate the intensity of the various waves present outside the crystal in
the four extreme asymmetric cases. We extract the different regions from the dispersion

surface and corresponding intensity profiles are analyzed. In order to visualize the problem

geometrically, we keep the energy of the incident beam constant (k, is constant). We study
the intensity profile only as a function of incident angle. If we é.lso vary the value of kg,
we will get a series of dispersion surfaces. This will make the pro.blem more difficult.
Furthermore, we cannot find a single variable (some function of ko and 6-a) which better
describes the in'tensit}; profiles, as we found in the conventional theory of diffraction.

Here, most of the results are obtained using numerical calculations.

3.4 The extreme cases

3.4.1 Extreme asymmetric Laue case where the angle between the incident
beam and the _crystal surface is small
In this extreme asymmetric case, there are two possible situations. They are
illustrated in Fig. 3.2(a) and (b). In the first situation, we distinguish two different angular

ranges of diffraction. In the region 1, the surface normal n, intersects the dispersion

surface in four real points. The tie points C; and D, lie on the a-branch while the other
two tie points A, and B, lie on the B-branch. The tie point D, is not shown in Fig. 3.2(a)

because it is far away from the Laue point L. In the region 2, only two tie points C, and



73

D lie in the real k-space (both lie on the a-branch), i.e. the internal wave vectors

correspondmg to the tie points A and B are complex. This is the range for total external

reflection. The border of these two regions lies at (GB + A0 — o) = 90 — 6, where 6 is

the critical angle of the total external reflection. The approximate condition for the criticality

can be written as (see Fig. 3.3)

ie. Koz 2 ko + Koz~ Vo
koz < Vo
k2 cos? (8, + 48 - ) < vg (3.7)

This condition was obtained by using the asymptotic forms of the dispersion surfaces only.

From eq. (3.7) we will get,

(3.8)
(o)

'v°)+a-—6B

(48)%; app cos'l(k—

Where (AG) is the approximate misset angle corresponding to the border of the critical

app
region. The accurate value of the misset angle corresponding to the border of the critical

region { (AG) } can be calculated from the fact that the wave vectors corresponding to

acc
the tie points A and B (on the B-branch) change from the real value to complex, i.e. the

surface normal becomes tangent to the B-branch of the dispersion surface. The value of

48)C;

acc can be calculated mathernaﬁcally from eq. 3.2 using the condition that all the roots |
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Figure 3.2: Dispersion surfaces in the extreme asymmetric Laue case in which the incident
beam makes a small angle on the crystal surface.
(a) Two distinctly different angular ranges of diffraction are observed.
(b) Four different angular ranges of diffraction are observed.

The tie point D is far away from the Laue point L and not shown in this
diagram.
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Figure 3.3: Representation of total external reflection explaining the approximate (using the
asymptotic circles) and the accurate (using the B-branch of the dispersion

surface) conditions.
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of that cubic equation (eq. 3.2) have to be real and at least two are equal. (AG)C:pp ,
. iy )
(A(-))C;jCC and the difference between these two values {(AG)Ci“pp - (AG)CaCC} are plotted

against (GB — o) in Fig. 3.4.

In the second situation {Fig. 3.2(b)}, we distinguish four different angular regions of
diffraction. In the region 1, we excite four real tie points in a same way as in the region 1
of the first situation. In the region 2, we excite only two real tie points (botﬁ lie on the -
branch). If we decrease the angle of incidence, we are in a situation such that the surface
normal n3 again cut the dispersion surface in four real points (region 3). These four tie
points are now arranged on the o-branch of the dispersion surface. We excite only two

real tie points in the region 4.

In Fig. 3.2(b), the incident beam corresponding to the exact Bragg condition would
have to be inside the crystal, i.e. 0 — > 90°. However, the incident bear%ls which
produce the four different angular ranges of diffraction {see Fig. 3.2(b)} have finite misset
angles and can be outside the crystal surface, making small angles with the crystal surface.
It is clear that these two situations {Fig. 3.2(a) & (b)} are well separated by a condition in
which the surface normal becomes tangent to the a-branch of the dispersion surface at the
| inflection point of that branch. For a particular value of G, this condition is determined by
the values of kg and a, i.e. if we fixed the orientation of the reflecting planes with respect
to the inward surface normal (cr), the condition will occur at a particular value of kg (klo“) or
if we fixed kg, the condition will occur at a particular value of o (0(.111). Note that this
condition occurs only when 65 —a. > 90°. We will get either the first or the second
situation dcpending upon the value of kg (o) which is slightly greater than or less than ho“
(k) for the fixed values of & (ko) and G.

In this particular extreme asymmetric case, the amplitude of the specular reflected



0.6

CL
ol
0.4 - * (88)5cc
® {(86)5c~ (40)gpp)+10°
0.2
0.0 1
® ® ®
[ ] ® ® . .
[ ]
-0.2 1 bt
®
-04 T T T ' T
89.5 89.6 89.7 89.8 89.9 . 90.0
' Og—oa(deg.)

Figure 3.4: Misset angle corresponding to the border of the critical region calculated
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], the accurate condition

cL 4 .
acc}(xlO ) for different

using the approximate condition [ (A)

[ (46)%] and the difference {(Ae)":pp

values of (6 - ). Here we keep the external Bragg angle By corresponding

to the (220) Si reflection a constant and rotate the reflecting planes with
respect to the inward crystal surface normal (allowing the value of o to

change). This corresponds to recutting the crystal, but that is an experimental

difficulty that we overlook here where we are free to change the value of o
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wave has a considerable value. As we mentioned earlier, one can neglect the amplitudes of
the internal wave ﬁeld associated with the tie point D and the amplitude of the specular |
diffracted wave in this case. With these assumptions, we have caiculated the intensity of
the Bragg diffracted wave (at the lower surface of the crystal) and of the specular reflected
wave (at the upper surface of the crystal) numerically using the egs. (3.2), (3.4a, b and c¢),
(3.5a, b and c) and (3.6) as a function of misset angle in both situations. The results
obtained for the first situation are shown in Fig. 3.5(a) and (b). Figures 3.5(c) and (d)
show the results of the second situation. The numerical calculations are made for the (220)
Si reflection. The wavelength of the incoming neutrons is 1.57A°. In the first situation,
the Bragg reflecting atomic planes maké an angle o with the inward surface normal which
satisfies (GB - o) =89.90°. In the second situation, (GB - &) =90.10°. The width of the
region 2 in the second situation is too small to show in Fig. 3.5(c) and (d). The intensity
of the Bragg diffracted wave at the lower surface of the crystal is compared with the results
obtained from the conventional &eannent. From Fig. 3.5(a) and (c), it is obvious that the
diffraction occurs even at an angle comparable to the critical angle of total external
reflection, although it is weak in intensity. Here specular reflection occurs simultaneously
and its intensity increases rapidly as the incident angle approaches the condition for the total

external reflection.

We also calculated the value of the deviation from the Bragg law (angle between the
position of maximum of the diffracted intensity and the geometrical exact Bragg position
for the incident beam) and the full width at half maximum (FWHM) of the envelope of the
diffraction pattern using numerical calculations. For the extreme asymmetric Bragg cases,
Rustichelli [24] has derived expressions for the deviation from the Bragg law and for the
width of the Darwin plateau of the diffraction patterns which are more precise than the
conventional expressions. One could modify these expressions for the extreme asymmetric

Laue cases. In deriving these expressions, the asymptotic forms of the dispersion surface
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Figure 3.5: Intensities of the Bragg diffracted wave at the exit surface {(a) and (c)} and of

the specular reflected wave at the entrance surface {(b) and (d)} of the crystal
as a function of misset angle (A) for the situations illustrated in Fig. 3.2(a) -
[(GB —a)=89.9"] and (b)[(eB — o) =90.1°] respectively. In both situations A
=1.57A° and t = 0.5um. The dotted line shows the intensity of the Bragg
diffracted wave estimated using the conventional theory.



and the incidence circle are actual circles and not straight lines as in the conventional theory.

The expressions for the deviation from the Bragg law ABC and for the FWHM of the

0 acce

envelope of the diffraction pattern A6 ™~ are

1 (3.92)

and

AQ. 4SC _ N 2vg 1)

w 2 - ’

ko sin 20y Y
2
- 1 - _4/1 v 2
VYI ko sin 29 k2 sin 205 11 ) "

(3.9b)

where ¥;=cos (8 —a) and v, =cos (85 + o) (see appendix 5).

These results are compared with the conventional theory predictions, according to

which, the deviation from the Bragg law (Aeic) and FWHM of the Lorentzian envelope

(AG\S ) are given by the following formulas:

80S= 0 (12 (3.108)
kg sin 26 Y
and
AQC = —2—1@—— L) (3.10b)

W ko sin 28g Y .

When 7y, — 0 (incident angle (0 — o)) = 90°), conventional expressions give Aeic —> -0
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and Aev‘é — oo, Rustichelli's modified expressions give Aeiacc —— k—%- and
. \/ ¥ .
AG‘;‘CC — 0 asy, = 0. We see that the conventional expressions start to fail as y;

approaches to zero. Results obtained from these three approaches are graphically shown in
Figs. 3.6(A) and (B). The numerical values caiculated using the present theory (extended
theory) agree with Rustichelli's curves representing the deviation from the Bragg law and

the FWHM of the envelope of the diffraction pattern.

3.4.2 Extreme asymmetric Laue case where the angle between the Bragg
diffracted beam and the crystal surfdce is small

In this extreme asymmetric Laue case, it is possible to distinguish three different
angular ranges of diffraction (see Fig. 3.7). In the range 1, the surface normal n, intersects
the dispersion surface in four real points; C, and B, lie on the a—branch, A, and D, lie on
the B-branch. Here the tie point B is far away from the Laue point L and it is not shown
in Fig. 3.7. In the range 2, only two tie points A, and B, (both on the o—branch) lie in the
real k-space. In the range 3, the tie points A3 and B, lie in the real k-space. In addition,
kgz and kgmz (z components of the wave vectors of the Bragg diffracted and of the
specular diffracted waves) are purely imaginary in this region, i.e. the phenomenon of total

internal reflection of the diffracted wave occurs.

The approximate misset angle corresponding to the border of the regions 1 and 2
[(AG)EPP] can be calculated from the following condition: '

K;C =K;D=-G;, (seeFig3.3)

ie. k2~ Vo —(G% +2kox Gy) =0
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exact Bragg condition).

(a) according to the extended theory (@) (b) according to Rustichelli's
formulation (c) according to the conventional theory.
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Here we eliminate the solution with (+) sign by physical considerations. The approximate

<
&olo

misset angle is given by

(A40)5PP =B, +a -0y, (3.11a)
where B, = sin" { 25in 05 cos - 4 [1 - ;—g}. (3.11b)
0

The accurate value of misset angle corresponding to this border (Ae)gCC can be calculated

using the fact that the surface normal becomes tangent to the B—branch of the dispersion
surface. Since only the tie points C, A and D are close to the Laue point in this case, one

could reduce the fourth order dispersion relation to the cubic equation of the form

*A *C *D VGV.-
Koz =Koz ) Koz~ Koz ) Koz -Koz ) = *AG - *B _°
Koz™ ~ Koz )
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o—branch

Figure 3.7: Dispersion surface in the extreme asymmetric Laue case in which the Bragg
diffracted beam makes a small angle with the crystal surface. The surface
normals ny, ny and nj lie in the diffraction regions 1, 2 and 3 respectively.
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(approximate condition) and using the B-branch of the dispersion surface
(accurate condition).



Mathematically the solutions of the above cubic equation are real and at least two have to be

equal at the misset angle of value (AO)ECC. '

The border of the regions 2 and 3 can be calculated from the condition that the Bragg
diffracted and the specular diffracted waves become evanescent (kg; and kgmz become
- imaginary quantities). This situation can be expressed mathematically as
(kox +Gx) 2ky, (seeFig. 1.3)
i.e. Geosoa — kgsin(@-a) 2k,

AO <P, +0 -8y, (3.12)

where 6 =05 + A8 and B, = sin"! (2 sin 8 cos a — 1).

Therefore, the misset angle corresponding to the border of the regions 2 and 3 (AB)gyan 18

given by
(A8)gyqy = By + -0y (3.13)
(A®)gyqn » (A8)G°" and (AB)5™ are plotted against (8 + a) in Fig. 3.9.

The amplitudes of the specular reflected wave and of the internal wave field
associated with the tie point B are negligible in this extreme asymmetric Laue case. We will
take them to be zero. However, the amplitude of the specular diffracted wave becomes
large. In this extreme case, the egs. (3.4¢) and (3.5¢) become equivalent (approximately)

to the egs. (3.4a) and (3.5a) respectively (Same kind of argument given for the case 1 is

valid. The only difference is that the value of kg is small instead of ko in the case 1.

.C.D

A .
Therefore, one can assume that the values of K are approximately equal to kq5.).
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Using the equations (3.4a, b, d), (3.5a, b, d) and (3.6), we have calculated all the
unknown internal and external wave amplitudes. Note that the cubic equation which gives
the z components of the important internal wave vectors associated with the tie points C, A

and D (closer to the Laue point L) is of the form

(Koz-Koz ) Koz —Koz ) Koz =Koz ) = —r Sy (3.14)

in this extreme case. The intensities of the Bragg diffracted wave (at the lower surface of
the crystal) and of the speculai diffracted wave (at the upper surface of the crystal) are
shown in Fig. 3.10(a) and (b) as a function of misset angle. The calculations were made
for the (220) Si reflection where the atomic planes make an angle ¢ with the inward surface
normal such that (GB + o) = 89.75°. In the region 3, the diffracted waves outside the

- crystal are propagated along the crystal surfaces Because the normal component of the wave

vectors are purely imaginary. Therefore the wave function of the Bragg diffracted wave at
the exit surface of the crystal is of the form CDdel (ikgz)t ¢l kox X (= Qe kozt ¢lkox

). Note that, the amplitude of this wave is equal to CDGde_ kozt . Therefore, the

intensities of the diffracted waves outside the crystal are exponentially attenuated in this

region as expected.

3.4.3 Extreme asymmetric Bragg case where the angle between the Bragg
diffracted bedm and the crystal surface is small
The dispersion surface corresponding to this extreme case is shown in Fig. 3.11. In
Fig. 3.11, we distinguish five possible different angular ranges of diffractipn. The surface

normals are denoted by ny, ny, n3, n4 and n5 in these five different regions. In the region

1, the surface normal n; intersects the dispersion surface in four real points; C, and B, lie

on the a-branch, A, and D, lie on the B-branch (note that the tie point B, is far away from
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the Laue point L and it is not shown in Fig. 3.11). In the region 2, the surface no;mal ny
intersects the dispersion surface only at two real points C, and B,(both lie on the a--
branch). Again in the region 3, the surface normal nj intersects the dispersion surface in

four real points, but all four tie points lie on the a-branch of the dispersion surface. In the

region 4, the surface normal n4 intersects the dispersion surface only at two real points A

and B,. In the region 5, the tie points A5 and B only lie in the real k-space, but the normal

components of the wave vectors of the Bragg diffracted wave and of the specular diffracted
wave become imaginary. Therefore the phenomenon of total internal reflection for the

diffracted wave occurs. -

Misset angles corresponding to the borders of the different diffraction regions are
calculated and are shown in Fig. 3.12(a) and (b) as a function of (GB + o). Misset angles
corresponding to the borders of regions 1 and 2 and of regions 2 and 3 are-calculated
accurately using the fact‘ that the surface normals become tangent to B-branch and a-branch
of the dispefsion surface respectively. These misset é.nglcs are denoted by A8P and AG*.
Note that there are no approximate values for A8P and AB* using asymptotic circles. In
the region 2, the intcrnal.wavc vectors corresponding to the tie points A and D are complex.

The width of this region is also known as width of the Darwin plateau. The misset angle
associated with the border of the regions 3 and 4 [ (A6) 300 ] is also calculated using the

condition that the surface normal again becomes tangent to ¢-branch of the dispersion

surface. The approximate value of this misset angle [(AB) &pp] can be calculated using the

asymptotic circles and is given by

(Ae)('gtpp=[31+oc—6B

where B, = sin”!{ 2 sin 65 cos o— 1 - -2 }

K%
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respectively.
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The misset angle corresponding to the border of the regions 4 and 5 [(A8),,,,

] is given by

eq. (3.13).

As we see from Fig. 3.11, the tie points C; A and D are closer to the Laue point L
and the internal wave fields corresponding to these tie points have to be taken into account.
The amplitudes of the fourth internal wave field associated with the tie point B which is far
away from the Laue point L, are extremely small and therefore this wave field may be
neglected. Furthermore the amplitude of the specular reflected can also be neglected in this
extreme case. Under these conditions, the egs. (3.4c) and (3.5¢) obtained from the
boundary conditions, become equivalent (approximately) to egs. (3.4a) and (3.5a) as for
the case 2. Note that the internal wave vectors associated with the tie points C, A and D
can be calculated from eq. (3.14). We have calculated the intensity of the diffracted waves
present at the upper and lower surfaces of the crystal using the boundary conditions and the
ratio of internal wave amplitudes. The results which covers all five different angular ranges
of diffraction are shown in Fig. 3.13(a) and (b). The intensity of the Bragg diffracted
wave at the entrance surface of the crystal is compared with the results obtained from the
conventional treatment. The calculations were made for the (220) Si reflection in which the
atomic planes make an angle o with the inward surface normal, satisfies the condition (OB
+ o) =90.25°. The intensity of the diffracted waves outside the crystal are eXponentially

attenuated in the region 5 where the total internal reflection for the diffracted wave occurs.

The difference between the case 2 (section 3.4.2) and the case 3 (section 3.4.3) is the
number of possible different angular ranges of diffraction. In the case 2, there are only
three possible angular ranges of diffraction while there are five in the case 3. These two
cases are well separated by a situation where the surface normal cuts the o-branch of the
dispersion surface at four real points and three (which are closer to the Laue point L) out of

four tie points have to coincide each other, i.e. the surface normal has to be tangent to the
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o-branch of the dispersion surface at the inflection point of that branch. This situation can

be éxpressed mathematically by the condition that the solutions of the cubic equation (eq.
3.14) are real and also equal to each other. This situation occurs at a particular value of o

(k) for fixed ko and G or at a particular value of ko (k§®) for fixed values of o and G.
If we fixed the value of kg and G, we will get the extreme asymmetric cases like either case
2 or case 3 depending upon the value of o which is slightly less than or greater than oz.Il:B.

Similarly, we will get the extreme asymmetric cases like either case 2 or case 3 depending

upon the value of kg which is slightly greater than or less than klo“B for fixed values of o

and G.

3.4.4 Extreme asymmetric Bragg case in which the incident beam makes a
small angle with the crystal surface

In this extreme case, there al;e two possible situations as shown as in Fig. 3.14(a) and
(b). In the first situation (Fig. 3.14(a)), we have distinguished four different regions of
diffraction. In the region 1, the surface normal n; éuts the dispersion surface in four real
tie points (A and D lie on the B-branch while C and B lie on the a-branch) and therefore
four wave fields associated with these tie points are excited inside the crystal. The surface
normal ny cuts the dispersion surface in only two real tie points (both lie on the a-branch)
in the region 2. This is also known as Darwin plateau region. In the region 3; we have
again four real tie points, but now they are arranged on the o-branch of the dispersion
surface. Again we have only two real tie points in the region 4. This region is known as

the critical region.

The misset angles associated with the borders of the regions 1 and 2 ( A@P ) and the
regions 2 and 3 ( A% ) are calculated using the fact that the surface normals become
tangent to B-branch and a-branch of the dispersion surface respectively. The width of the

Darwin plateau (width of the region 2) is given by .
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Figure 3.14: Dispersion surfaces in the extreme asymmetric Bragg case in which the
incident neutrons at grazing angles on the crystal surface.
(a) Four distinctly different angular ranges of diffraction are observed.

(b) Only two different regions of diffraction are observed.
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(A84), = ABR _Ag%. (3.15)

The border of the regions 3 and 4 gives the condition for the total external reflection. The

B
misset angle corresponding to this condition [(A8)S¢¢] can be calculated from the fact that
the surface normal becomes tangent again to the o-branch of the dispersion surface. The

B
approximate value [(Ae)gpp] can be obtained using the asymptotic circles and is given by

o

V
[(Ae)gp?,] = —cos( K) +o -0y, (3.16)

In order to calculate the misset angles corresponding to the borders of the different
angular ranges of diffraction, we have to know the equation of the dispersion surface. In
this extreme case, the tie points A, B and AD are close to the Laue point L and the tie point C
is far a\;/ay. Therefore one could reduce the fourth order equation of the dispersion surface

to a cubic equation of the form

*A *B *D VAV,
(KOZ - Koz ) (KOZ - Koz ) (KOZ - Koz ) = *DG G *C (317)
Koz~ - Koz)

ABD
=k

with Kox ox *

The misset angles corresponding to the borders of the different diffraction regions and
width of the Darwin plateau are shown in Fig. 3.15(a) and (b) as a function of (OB-OL).
In the second situation (Fig. 3.14(b)), we observed only two different regions of
diffraction. In the region 1, we excite four real tie points in a same way as in the region 1
of the first situation. If we decrease the angle of incidence, the surface normal (n,) enters
into a region (region 2) where only two real tie points are excited. A further reduction of

incident angle will never result in a situation such as the region 3 in Fig. 3.14(a) where four



real tie points are excited and all four tie points lie on the a-branch of the dispersion

surface.

This second situation occurs at shorter wavelengths (at larger values of k) as
compared to the first situation if we keep the orientation of the reflecting lattice planes with
respect to the inward surface normal (o) unchanged. If we fixed the values of kg and G,
this case can be obtained at larger values of o compared to the first situation. These two
cases are well separated by a condition in which the surface normal becomes tangent to the
o-branch of the dispersion surface at the inflection point. This condition occurs at a
particular value of kg (kg') for fixed values of G and a,, or at a particular value of o (0(.11?)
for fixed ko and G. We will get either the first or the second situation depending upon the
value of kg, (o) which is slightly less than or greater than kg (01,1}3') for the fixed values of o
(ko) and G.

In this extreme case, the tie points D, A and B are close to the Laue point and the
internal wave fields corresponding to these tie points have been taken into account in
applying the boundary conditions. The amplitudes of the fourth internal wave fields
associated with the tie point C (far away from the Laue point L) and the amplitude of the
specular diffracted wave are extremely small. For simplicity, we take them to be zero.
Under these conditions, the egs. (3.4d) and (3.5d) become approximately equivalent to the
egs. (3.4b) and (3.5b) (same as the case 1). The internal wave vectors associated with the
tie points A, B and D are given by the solutions of the cubic equation (3.17). We have
calculated the intensity of the Bragg diffracted wave and of the specular reflected wave in
both situations {illustrated in Fig. 3.14(a) and (b)} as a function of misset angle which
covers all different angular ranges of diffraction. The results are shown in Fig. 3.16(a),
(b), (c) and (d). For the first situation, the calculations were made for the (200) Si

reflection of neutrons of wavelength 1.57 A°. Here the reflecting planes makes an angle o
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with the inward surface normal, which satisfies GB- o =—89.9°. In the second situation,

we made the calculations for the same reflecting planes, but now 85-ot = —89.99°. The

intensity of the Bragg diffracted wave at the entrance surface of the crystal is compared
with the results obtained from the conventional theory. From Fig. 3.16(a) and (c), it is
obvious that the process of diffraction occurs at an angle comparable to the critical angle of
’ tofal external reflection, but it is weak in intensity. The intensity of the specular reflected
beam increases rapidly as the incident angle approaches to the condition for the total

external reflection.

In this extreme case, the angular position of the Bragg peak (the position of maximum
of the diffracted intensity) is strongly shifted from the geometrical exact Bragg position for
the incident beam. The shift calculated using the conventional dynamical theory of
diffraction is given by eq. (3.10a). This theory also predicts the width of the Darwin
plateau {width of the region 2 in Fig. 3.14(a)} to be

2V cos (6, + o)
A8y, = —F—E—A]- B : (3.18)
kg sin ZGB cos (GB - )

This expression was obtained using the fact that the internal wave vectors corresponding to
the two important tie points were complex in the Darwin plateau region. Note that, the
negative sign was introduced inside the square root sign in the expression (3.18) because
(Bg+ o) is greater than 90° in the Bragg geometry. This expression is similar to the FWHM
of the Lorentzian envelope in the Laue case except for the negative sign. In deriving the
conventional expressions, we approximated the asymptotic forms of the dispersion surface
by straight lines. These results break down for grazing angles of incidence. Rustichelli[24]
has derived more accurate expressions for the deviation from the Bragg law and for the width

of the Darwin plateau from purely geometrical considerations using circles as the asymptotes
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for the dispersiori surface. The expression are given by egs. (3.9a) and (3.9b). (Note: In
these expressions \ 1 — 'ylz must be replaced by -\ 1 — 'y% because sin (65— oc)‘is
negative in these extreme Bragg cases). The results obtained from the extended theory,
Rustichelli's formulation and the conventional theory are compared in Fig. 3.17(A) and
(B). Note that the deviation from the Bragg law was determined from the center of the
Darwin plateau. Excellent agreement was found between the extended theory and

Rustichelli's formulation.

3.5 Spatially Dependent Amplitude Approach

The conventional form of dynamical theory in the eikonal approach is not applicable
in extreme asymmetric cases of neutron diffraction. Similarly, the reduced form of
spatially dependent amplitude method (Takagi-Taupin approach) is also not applicable in
extreme asymmetric cases. In this form, the second order derivatives are neglected and we
kept only the first order derivatives which almost corresponds to the approximation of thé
form of dispersion surface in the conventional eikonal approach. However, one can solve
the extreme asymmetric problem using the spatially dependent amplitude method. Here,
the load line will intersect the dispersion surface in (a,b) space in four real points and at
least three of them are closer to the origin. Therefore, the wave fields corresponding to
these three points have considerable amplitudes and have to be taken into account in
applying the boundary conditions. This approach is more or less same as the extended
theory of eikonal approach discussed in this chapter. However, the coordinate system of
the reciprocal space (a,b) is oblique which makes it difficult to visualize the problem
geometrically. In addition, we have two variables (a and b) in the spatially dependent
amplitude method instead of one variable (Kq2) in the eikonal approach. Furthermore, the
asymptotic values of a and b are not trivial. Because of these reasons, the spatially
dependent amplitude approach becomes difficult in solving the extreme asymmetric

problems.
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, CHAPTER 4
‘DYNAMICAL THEORY OF DIFFRACTION FOR BENT CRYSTALS

4.1 Introduction

In the last three decades, diffraction phenomena in deformed crystals have been
studied .both theoretically and experimentally. The dynamical theory of x-ray diffraction
from a bent crystal was first developed by Penning and Polder (1961)[25] and Kato
(1964)[26]. They used the eikonal approximation and explained some experimental
results. However, because of the strong restrictions associated with the conditions for the
applicability of the eikonal approximation, this theory does not give the correct description
of X-ray diffraction in strongly distorted crystal regions, nor near the edges of the

Borrmann triangle.

A second approach. of dynamicat theory éf diffraction for a distorted crystal was
developed by Takagi (1962, 1969)[8] and Taupin [9]. This theory was developéd purely
based on wave-optical phenomena. So far, the Takagi-Taupin type equations have been
solved exactly only for the case of a crystal with a uniform strain gradient [11 and
references therein]. The analytical solutions of these equations are expressed in terms of
confluent hypergeometric functions. The mathematical treatment of these functions is very
complicated. However, the physical analysis of this solution is absolutely necessary to
give an adequate explanation for the diffraction phenomenon in a homogeneously bent
crystal. The wave field, which was obtained using the asymptotic forms of the confluent
hypergeometric function, tends to results of kinematical theory as the strain gradient
increases, and tends to the solution of the eikonal theory with decreasing strain gradient.
Therefore, this approach can be used to explain the diffraction phenomenon from a crystal

with a wide range of distortion.
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We have modiﬁed the theory of x-ray diffraction from a homogeneously bent crystal
basod on the Takagi-Taupin equations to treat the neutron case. The details are given in this
chapter. The complication of the mathematical treatment of confluent hypergeometric
functions have been such that little use has been made in this approach by workers in this
field. We have eliminated the mathematical obscurity by expressing the confluent
hypergeometric function in terms of Chebyshev polynomials. This makes it possible to
study the neutron diffraction phenomena from a homogeneously bent crystal numerically.
We have chosen the type of homogeneous bending which was elaborated by Penning and
Polder [25] as an example. Here we study the diffraction pattern (rocking curves) for
different amplitudes of the strain gradient, integrated intensity as a function of curvature of
bending, and dynamical thickness oscillations of integrated intensity in the Laue diffraction

geometry. The results, computed numerically, are discussed in this chapter.

Elasticity theory adds more complications if theory is to be compared with
experiments. The diffraction theory has been well established only in the case of a uniform
strain gradient. In most experimental arrangements which were intended to produce
uniform strain gradients, the strain gradient varies with the position. Yet, most of the
researchers in this field have assumed the simplest form of displacement field which
corresponds to the uniform strain gradiént. The appropriate displacement field
corresponding to the experimental arrangement can be found only by using elasticity
theory. We have considered the bending of crystals by loading along two lines at each of
two edges as an example. By using the conventional bending theory of thin crystal plates,
we have found that higher order (> second order) terms of the coordinates of the position
are necessary in order to specify the appropriate displacement field. These results indicate
that the local radii of curvature vary position to position and even change sign. Either they
can be calculated from the mid-surface displacements or can be measured experimentally.

In diffraction thoory, when we calculate the intensity of the diffracted beam at an arbitrary
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point, only the stfa_in field in the inverse Borrmann triangle associated with ﬁat point
maﬁers. The far strain fields won't come into the problem. The width of Borrmann
triangles are very small compared to the length and width of crystal plates which we used in
our experiments. Therefore one can assume that the strain gradient in any Borrmann
triangle is uniform and they are determined by local radii of curvature. Now one can apply
the solutions of diffraction theory as developed for the case of a uniform strain gradient to
calculate the intensity of the diffracted beam at any point on the exit surface of the crystal.

These remarks are discussed in detail in this chapter.

In most of our experiments we have exceeded the limits in which the conventional
theory of bending can be applied, that is the displacements of the mid-surface become
greater than the thickness of the crystal. In-plane forces (as a result of large curvature),
which are neglected in the conventional bending theory, now have to be taken into account.
This result in a pair of coupled non linear fourth order differential equations. There are no

known non trivial solutions of these differential equations.

4.2 Solution to a uniform strain gradient problem using Takagi-Taupin
equations
In the perfect crystal, the reduced neutron -nuclear interaction potential can be written
as

. = . - D
N 16).r -1G.T

viT)=Vv_+V e - +vVv € 4.1

(T)=vo+vo e (4.1)

o =, .
Here we assume that the incident wave vector kg is oriented very close to the exact Bragg

condition for a particular reciprocal lattice vector G. Therefore, the Fourier components of

the potential corresponding to the other reciprocal lattice vectors are neglected.
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() be the displacement of the atom at T’ in a slightly distorted crystal and T,

be the position vector of the atom before the distortion which is now displaced toT during

distortion. Thus the relation between T and T is given by
T =Tot T(R) (4.2)

Note that, W(T") is a continuous function. If the distortion is slight (i.e. as long as the
atoms within a single unit cell can be regarded as being uniformly displaced), the value of

v(T) in the distorted crystal can be mapped to the value of the reduced potential in the
perfect crystal at the corresponding position Tp, i.e.

g =D
V(P) =V, + Vo ela{_) (ro) e iG.(7 w(TE)}
PP 2 = =25, e S
—v v € 1G.U(Ty) e1G.r v elG w(Ty) e iG.T 4.3)

In these equations, G is the reciprocal lattice vector for the undistorted crystal. In this
approximation, the changes in Fourier coefficients and Gon bending are neglected. The
spatial frequency of the potential is modulated due to strain gradients. The effect of this
variation in the potential on the internal wave function will be modeled using a single spatial
frequency with amplitude modulation. Therefore, the wave function in a distorted crystal

can be expressed by a sum of modulated waves

Y = Z lP@(‘F)eia_()" +G)HI

G



Under the same assumption as mentioned above, we anticipate the wave function to be of

the forrn

¥E) = Po(T) KT 4 Yo (T) KT | (4.4)

where

R -R,+3.

With the assumption that the amplitudes Wo(T) and W(T) are slowly varying functions of
position, the terms V2‘I’o( T) and V2‘I’G( T) are small compared with terms proportional to
‘I’o(?) and ‘I’G(?) or their first derivatives and can be neglected. By substituting the -
reduced periodic potential given by eq. (4.3) and the above form of the wave function {eq.
(4.4)} into the Schridinger equation for the neutron {eq. (1.13)} and using the oblique

coordinate system described in chapter 1, we will get the following coupled differential

equations:
| d¥p iG.w '
2iK =v.€ V¥ 4.5a
95, -G G (4.53)
.. d¥g ~-iGgT
21 KW = vg € \PO , (4.5b)

where K is the magnitude of the internal wave vector I?o and has the value \/ k% - Vo.

These above equations (4.5a) and (4.5b) are the Takagi-Taupin type equations for a

distorted crystal. These expressions are the same as the egs. (1.41a & b) if W(F) =0.

In the general case of a crystal with a uniform strain gradient, the function G isof

the form

G¥ =2{As3+2Bsysg+Cs% )} +Dsy+Esg+F, (4.6)
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Where A, B, C, f), E and F are constants. Note that the coordinate axes and G are in the
same plane. (Note: The strain gradient is given by gi—gin the one dimensional case, where
u is the displacement at an arbitrary point x. If%is constant then u is of the form ax2 +
bx + ¢, where a, b and ¢ are éonstants. This caﬁ be extended to the two dimensional case,
i.e. the displacement field can be expressed in terms of a second order polynomial .) The
constant term in the above expression represents the displacement of all atoms as a whole.
The linear terms represent the change in lattice constant and would only lead to

renomalization of the value of the Bragg angle.

By the substitutions:

2Cs2G+EsG+I%}
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Yo =.{Po(so,SG) el{ (4.7a)
and
¥g = Fs(50,50) e-1{2 Asg+Dso+ 3 } , (4.75)
the above coupled partial differential equations (4.5a) and (4.5b) reduce to
Z'Kei{2C8%+EsG+%}aq’o_ iﬁ).ﬁ’(p —i{2As%+Dso+§;}
1 : E = Vvg € G €
¥ - iG® -i{2As2 +2CsL + Ds,+ Esg+F } &
2iKw== e'® e 0 G o+ Esg N7
So V.G G
a\hpo iG’E’ =,
2iK = va.e Y 4.8a
s, -G G (4.8a)
and similarly
¥ ~iGT &

2iKg 2= vg © %, (4.8b)



where G = 4B sysg. (4.8¢)

By differentiating eq. (4.8a) with respect to sg,

l

9%, iGHg .0 == iGH 0%
2iKgge = Ve ¢ Toigg @D+ vg el
¥, icF V.G ~iGH g
= ig=@.0) 2iky Vg © 7K © For

Fge ~ e C D 3, * 4z Yo =0 (4.92)
S_imilarIy we will also get

02 ¥, 3 o 3% VgV o

Gt img G0 52+ 2xz %6 =0, (4.9b)

According to the Riemann method [27], the solutions of the differential equation
(4.9b) with the known boundary conditions along the crystal surface RQ (see Fig. 4.1),

will take the following form,

~ ~ aRG ) ~
YY) =Y¥5 (Q + f{-&; -41iB sg RG}‘PG(r) dsg
QR
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Figure 4.1: Representation of the Borrmann triangle PRQ which determines the waves at
an observation point P on the lower surface of the crystal. The points Q and R

A A
lie on the upper surface; QP and RP are parallel to the directions of S; and S

respectively.



where R(s0,56) is the Riemann function which is given by the homogeneous conjugate

equation, i.e.
3%R P vgY
G . G -G _
m— 41Ba_(SGRG) + e RG =0. (4.11a)

Furthermore, R should satisfy the following necessary conditions as well:

Rgl =1 (4.11b)

0=Sop

and

- 4iBSG (SO—SO )
Rl sgusgy = ¢ 0P 7%0p (@110)

(see appendix 6 for more detail) Here P is an observation point inside or on the lower
surface and the points Q and R lie on the upper surface as shown in Fig. 4.1. In the pure
Laue case the points Q and R are the end points of the inverse Borrmann triangle
corresponding to the observation point P. Sinzilarly one could write an expression for the

amplitude of the internal wave in the transmitted direction.

In order to solve the problem one has to find the Riemann function R 5. This function

was first obtained by Chukhovskii and Petrashen [11] in the case of a homogeneously bent

crystal and is given by

. ig?2 .
Ry = exp [ - 4iBsg(Sop—so)] * 1F1] — 75 s — 4iB(sop-so)(sgp—sa)],  (4.12a)

VgY-G
4K

where o2= (4.12b)

and ;F; is the confluent hypergeometric function (see again appendix 6 for more detail).
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In the expression' (4.12a), (sop, st) determines the observation point while (sq, Sg)

defines the source point.

By substituting eqgs. (4.7) into eq. (4.10), we get

. F o 2 F
—i(2As2 + Dspp + = i (2As2 + Ds,, + =
wo@ - & (A% Dsop 2){[‘Pc<r>e( ° T e 2)]Q+

R(P

)
F
| R _ i(2As2+Ds +—)
(%—41BSG RG)‘I‘G(r)e ° °° 2 dso+
QP)

R(P)
=y
V_GelG.u —i(ZCS%;+ESG+%)
RG T‘PO(T) € ‘ | dSG .
QP)
37

Note that 3& is replaced by —&g-el— N7 using eq. (4.8b) in the third term of the
SG 2iK 0

above expression. Note that the integral path (QR) in the above expression is along the

upper surface of the crystal where we know a great deal about the amplitudes of the

internal wave function. Substituting eqgs. (4.12) into the above expression with an

allowance for the boundary conditions on the upper surface QR, we obtain the general

solution of the amplitude of the internal wave function in the diffracted direction.

In the case of the non extreme asymmetric Laue transmission geometry, the

boundary conditions at the upper surface (z=0) yield

@, eikox X g (7) elK,ox X + ¥ (T) e! (Kox + Gx) x ,
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i.e.‘ \Po(?) - (Do el (kOX - KOX) X ’ lPG( -r-)) =0.

Next, the above expression (with the boundary conditions at the upper surface) is reduced

to
—1{2As§, + Ds +Ii
YoP)= e ( op - TTOP 2)
R
.2
V_G elG’u —i(ZCS2G+ESG+I%)
RG——Zi'K——‘PO(r)e dsg
Q

R

i(kox — Kox) X

Va®oe (kox = Kox) e—i{ Dsop + Esg + F}
- 21K

Q

i 2 2
i [4Bs0sG + 2Csg + 2As op]} dsg, (4.13)

{RG e

where we have used eq. (4.8c). By substituting RG from eq. (4.12a) into eq. (4.13) we

get
R
i(kox — Kox) x = _ Bp2
_ (V6P - l{tpc—(G-u)p-T
Q
11=1[1+4B,1 iBp2] dsg  (4.14a)

where ) p2 =4 (Sop—SO) (SGP"SG), (4. 14b)
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@@)p= 2 {A 3, + 2B sgpsgp+ CsGp) +Dsp+ Esgp+F  (4.140)
and

G =2B(sop + 50 )(Sgp —5g) + 2C(sEp—s8) +E(sgp—sg)  (4.14d)

Here we have used the Kummer transformation for the confluent hypergeometric function

_iBp2
- ¢-1Bp

1F1[—4B, -iBp?] 1F1[1+4B’1 iBp2].

Similarly one find an expression for the amplitude of the internal wave in the
transmitted direction. We now have the solutions for the amplitudes of the internal waves
at any point P in terms of integrals of known functions. The limits of integration are
determined by the inverse Borrmann triangle associated with the observation point.

- Therefore only the strain field in the Borrmann triangle matters in calculating the amplitudes
of the internal waves. The strain fields outside the Borrmann triangle won't affect the

amplitudes of the internal waves. Further progress requires numerical methods.

4.3 Calculation of the diffracted beam intensity

In this section, as a particular case of the above, we consider bending as elaborated
by Penning and Polder (1961) [25]. The geometry of the bending is shown in Fig. 4.2.
The origin of the usual coordinate system for diffraction theory lies at the upper
surface of the crystal, while in elasticity theory the origin is generally chosen to be at the
middle of the slab. The components of the displacement vector (u',v',w’) parallel to the
x', y' and z' axes are given by [25]
12 12 12)

,_ovxz oy (y“=vx'“+vz
u=- R ; V—R y W =-— "R (4'15)
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incident beam

Figure 4.2: The geometry of the crystal experiencing homogeneous bending which was
elaborated by Penning and Polder [25]. As drawn, both R and « are positive.
O is the origin of the coordinate system for diffraction theory and O' is the
origin of the coordinate system for the elasticity theory. Out of the plane of the

paper the isotropic media bends with the opposite curvature producing a saddle
shape (see Fig. 4.3).



respectively, whérc R is the radius of curvature and v is Poisson's ratio. Note that the local
radii of curvature of the mid-surface in planes parallel to yz and xz, R and — R/V, aie
constant and independent of position. These results are obtained for a prismatic beam
which is bent in one of its principal planes by two equal and opposite couples [28]. In
deriving these displacement components, they ignore the fact that the crystal is a crystal and
treat the crystalline media as an isotropic medium with Poisson's ratio v. We need the
components of the displacement vector (u,v,w) parallel to the x, y and z axes of the
coordinate system with origin at O in order to calculate the coefficients A, B, C, D, E and

F. These components are given by

Note that the relatlons between the two coordinate systems are x'=x, y'=y and
z'= { zZ - —} where t is the thickness of the crystal. The mid-surface displacement

calculated using the above equation (4.16) is saddle shaped as shown in Fig 4.3.

We consider the reflection corresponding to the lattice planes whose scattering vector
is in the xz plane at y = 0, where the bending takes place as the result of an enforced bend

in the yz plane. The reciprocal lattice vector G associated with these reflecting planes make

an angle o with the crystal surface. Then,

G =Gcoso u—Gsino w

ki 13 v ev{a -3} ]

=-Gcos O =———s—— + G sin o R (4.17)
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Mid-surface displacemem(m)

Figure 4.3: The mid-surface displacement of a homogeneously bent crystal elaborated by

Penning and Polder ; v =

-
S O S

e
S

1
-3- ; R =10m.
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By comparing thc eq. (4.17) with the eq. (4.6), the coefficients A, B, C, D, E and F can be

determined. They are given by the following relations (see appendix 7):

A_132 @p) _ vGsin(20p -

=Z£g . = TR (4.18a)
B=4L&%§SE(8.?) - _Yosie (4.18b) -
C=%aa_s22_ (8.? )y = Y G sin4(2R6§ + o) (4.18¢)
G
D = constant term of :52—0 G ): — G2t :;n 6; (4.18d)
E = constant term of :ag—c G ): = G; iin 9; (4.18¢e)
F = constant term of (G. T ) = Y G8t 2Rsin < (4.18)

In order to calculate the internal wave amplitudes, one should know how to handle
the confluent hypergeometric function. The mathematical treatment of this function is very
complicated. However, one can expand the confluent hypergeometric function in an

ascending series of Chebyshev polynomials [28], i.e.

<1, (4.19a)

Z
w

[o)
1Fia, ¢; 2) = HZ_ () T (%) 0<

where T, (x = %) =T,(2x— 1) =cos {ncos ! 2x—1)} (4.19b)

is the shifted Chebyshev polynomials of the first kind and w is the preselected scale factor
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Z.
such that Oswg 1.

The coefficients of the above expansion C, (W) satisfy the following recurrence formula.

2C,(W)  (m+1) {4(n+c)(n+2)

P ) o —(n+3—a)}Cn+1(w) +

(n+1)(n+3—a) o
(n+2)(n+a) “n+3

{1 AntD+3—o)l oy, W) (4.20)

(m+a)(n+w) | “n+2

where €y =1 and €, =2 forn > 0.

The coefficients Cn(w)'s can be found by using the above recursion formula {eq. (4.20)}

in the backward direction, together with the following normalization relation

o0

2 DR, w) = 1. 4.21)
n=0

This means if we work with (n+1) terms, we take Cp42 =0, Cp43 =0and Cp41=C

(constant) and calculate C, using the above recursion relation {eq. (4.20)} and finally

o0

scale the coefficients dividing by 2 (-nHn C, (W),
n=0

Now we can calculate the diffracted wave amplitude (the approximate value depends
on the value of n) numerically using the expansion of confluent hypergeometric function in
terms of Chebyshev polynomials. The diffraction profiles are calculated as a function of
misset angle for different values of curvature with v = % The calculations are made for the
(400) Sireflection {(111) cut crystal} in which the crystal surface is parallel to (422).
Because of the Pendellésung fringes in the Laue geometry, the diffraction profiles depend
strongly on the thickness of the crystal. However, we fixed the crystal thickness ( 75 1m)

to study the dependence of the diffraction profile on the curvature of the bending. The

results are shown in Fig 4.4. The rocking curves retain the box-like shape characteristics,
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Bent crystal rocking curves for (a) R=100m (b) R=10m (c) R=2m. The
calculations are made for the (400) Si reflection in which the crystal surface is
parallel to (422); v = %; t=75um. The incident beam is assumed to have

only one energy but a range of angles. In an actual experiment the fine
structures would be averaged over.
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i.e. FWHM increases with increasing curvature. In addition, the peak intensity drops at

greater deformations.

In Fig. 4.5, the intensity integrated over angle for constant kg is displayed as a |
function of curvature. The integrated intensity was calculated from rocking curves,
example of which are shown in Fig. 4.4. It is necessary to note that the range of angles
contributing to the intensity changes §vith curvature. In this calculation we have fixed the
crystal thickness. The kink in Fig. 4.5 is not so noticeable at some other values of crystal
thickness. This can be explained using the fact that the period of thickness oscillation
contracts with increasing curvature of the bending. To show this we calculéte the
integrated intensity as a function of thickness of the crystal for different values of curvature
and display the results in Fig. 4.6. It is evident that the period of the oscillations depends
on curvature and the value of the integrated intensity increases with increasing curvature.
The integrated intensity for the unbeﬁt crystal (R = o0) oscillates about a constant value.
For the bent crystal, the integrated intensi‘ty. oscillates about a value that linearly increases
with thickness. Note that the rate of increase is larger for larger values of curvature. This
suggest that the integrated intensity of a bent crystal consists of oscillating and non
oscillating components. From Fig. 4.6, it can be seen that at fixed thickness, the kink in
intensity versus curvature appears because of the shift in period with curvature. The
experiments on the effect of bending on pendelldsung oscillations are qualitatively like the

calculated behaviour.

4.4 Conventional bending theory of thin crystal plates

The above diffraction theory was constructed for a deformed crystal in which a
displacement field is expressed only in terms of a second order polynomial of coordinates
of the position. This fits well to the Penning and Polder case, but in general the curvatures

change with positions. In order to compare theory with experiment, one has to know the
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Figure 4.6: Integrated intensity as a function of thickness of the crystal for different values
of radius of curvature.
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displacement fields corresponding to the type of bending created during the experiment.
This can be obtained by applying the conventional elasticity theory with boundary‘
conditions suitable for the experimental situation. In most situations, the displacement field
cannot be expressed accurately in terms of a second order polynomial of coordinates, i.e.

higher order polynomials are necessary to specify the displacement field adequately.

We now consider the following type of bending as an example. The method of
bending is to apply forces which determine the positions and slopes of the surfaces at two
opposite edges, leaving two edges free. For this purpose we used four aluminium rods in
pairs to create couples near each of the two edges. This bending device is illustrated in Fig.
4.7a. Under these conditions, the boundary conditions in the xyz coordinate system (see

Fig. 4.7b) are given by

w=0aty==*b . (4.22a)

%‘S’-,V-=$m at y=tb, (4.22b)

where w is the z component of the mid-surface displacement vector and m is the slope of
the mid-surface at the fixed edges. Note that 2a, 2b and t are the dimensions of the crystal

plate.

In conventional elasticity theory we use the calculus of variations to produce
differential equations from the elastic energy. For simplicity, we choose Si crystals (cubic
crystal) as our model to calculate this energy. The coordinate axes are parallel to the cubic
edges which are also parallel to the edges of the crystal. Taking the elastic symmetry into

account, one can write the elastic energy per unit volume as
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Figure 4.7: (a) Scheme of the bending system.
(b) The coordinate system of the bent crystal.



1
U= fcn'{e,%,ﬁ Cy2y+ eZZZ} + Cpp {eyy €2z T €2z €xx t €xx Cyy }
1
+ 5Cyy {e+ ezzx+‘ ey ) (4.23)

where Cy1, Cy7 and Cyy are the elastic stiffness constants of a cubic crystal; €jj,i =X, y, z
and j = x, y, z, are the strain components.
In applying the elasticity theory for a thin crystal plate, we make the following
assumptions.
— the deflection of the mid-surface is small compared to thickness of the crystal and
the slope of the deflected surface is much smaller than unity.
— straight sections, which in the undeformed state of the crystal are normal to mid-
surface, remain straight and normal to the bent mid-surface during the bending, i.e.
Cyz and e, are negligible.
— the deflection of the crystal is mainly associated with bending strains and the normal
‘strain e,, may be negiected.
—normal stress in the cross sections parallel to mid-surface is small compared to
the stresses in the transverse cross sections.
—no mid-surface straining or so called in-plane straining, stretching or contracting
occurs as a result of bending.
With these assumptions, the above expression for the energy per unit volume is reduced to

(intermediate steps are omitted)
1 Nw\2 | 2w2 Nw 32w 2w )2
U= '2-C11 Zz{('a—xz—) + (—a';f-) }+ Cyp 22 {'a—xz— -a—yz—} +2 Cyy 22 {m} (4.24)

Then, the total potential energy is given by
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a b

E=J[!

-a -

L
2.
- fU dx dy dz

-t

2
Suppose now that an arbitrary incremental displacement occurs, termed a virtual
displacement, i.e. w — w + dw. For a stable equilibrium, the total potential energy has to

be a minimum, i.e. E(w + 8w) — E(w) = 0 or 8E =0. The principle of minimum potential

energy thus leads to the following equations:

dP*w | 2(Cig+2Caq) 0w dtw

ST o 52757 * 5 =0 (4.252)
2 2
Ow Cp oW o g x=#a (4.25b)

3 Cu oyt

3w + (C12+ 4 Cq4) a3w_

3 Co %0y =0 at x=*a (4.25¢)

(For details see appendix 8.). The first equation is the basic differential equation of a thin
crystal plate theory. The second and the third equations are the boundary conditions at the
free edges.

Determination of w(x,y) relies updn the integration of eq. (4.25a) with the constants
of integration dependent upon the boundary conditions at the free edges {egs. (4.25b & ¢)}
and the fixed edges [eqs. (4.22a & b)]. There are no exact solutions for w(x,y). But one
can try a polynomial form of solutions for w(x,y). This will give an approximate solution

of w(x,y). We try a solution of the polynomial form

wxy) =5z { (b2 - y2) + (y2 - b2 (Ao + A1 x2 + A2 xh)}  (426)
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Note that the boundary conditions at the fixed edges are already built in the above solution.
Because of symmeiry in our bending system, there are no odd order terms of coordinates in
the above solution. By substituting the above solution of w into the egs. (4.25), and then
equating the constant terms on both sides, we can calculate the constants Ag, A1 and Aj.
The mid-surface displacement, calculated using the above expression {eq. (4.26)} of

- w(x,y), is shown in Fig. 4.8a.

In the case of the isotropic thick beam considered above, the curvature of mid-surface

due to the opposite bending was constant (= 'I\%)' In our type of bending, we see from Fig.

4.8a that a similar kind of opposite bending occurs, but it is much less and is concentrated
only close to the free edges of the crystal. If we drop the term Ay x4 in the above solution
of w, the solutions will give the opposite sign to A and look more like the thick beam
case. The crystals that we have used in our experiments are quité good mirrors. On
bending, the reflection from the light sources can be used to see how uniform is the
displacement along the x-axis. In the experiments, the bending was obtained by tightening
five screws on each side of the crystal. The natural tendency of the crystal not to bend
uniformly was partially compensated by the experimenters. The tendency of this bending
not to be perfectly cylindrical is qualitatively explained by the higher order polynomial

solutions using the conventional elasticity theory, as for example eq. (4.26).

In the above described bending theory, we have neglected the strain in the z direction.
To explain the increase in intensity on bending, the strain field in the z direction has to be
taken into account in diffraction theory. We include the strain field in the z direction to the

first order as &(x,y)z. The displacement in the z direction becomes

2 ,
wix,y,z) = w(xy,0) + E(xy) 5 . 4.27)
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Again by mininﬁz;ing the total energy (similar to that shown in appendix 8) we get

Cip [B2w(x,y,0) , 92w(x.y,0)|
E(x,y) = Cu{ %) o] (4.28)
and |
84\: 2{C11C12+ 2 C11C44 C12} a;;VZ + 3“’ =0 (4.29a)
ox Cll _ C12 ox y y4
02w Cp ) 92w _ _
32 + {m} 2 - 0 at x==%a (4.29b)

93w {C11C12+4C11C44—C12} oPw =0 at x=%a. (429)

3 2
ox Cll _ C]_2 axay

In deriving the above expressions we have neglected the higher order terms (z* and z%)
which are small compared to z2 term. The differential equations (4.29), which determine
w(x,y,O), are similar to.eqS. (4.25) except the coefficients are slightly different, as C11 =3
C12. Again we try a polynomial solution for w(x,y,0) in the form given by eq. (4.26) and
thereby the coefficients Ay, A1 and A are calculated. The mid-sut;face displacement
w(x,y,0), calculated using these coefficients, is shown in Fig. 4.8b. The mid-surface
displacements, calculated with and without strain in the z direction, show little difference.
The strain field in the z direction which is important in the diffraction theory, can be
calculated from eq. (4.28) with w(x,y,0) found from either eqgs. (4.29) or (4.25), or from
experimental measurements of w(x,y,t/5). Of course, it is no more work to use the more

accurate form, that is eq. (4.29).

In some experimental situations, the axes of the coordinate system are not parallel to
the cubic edges. The elastic stiffness constants which enter into equations depend on the

direction of the axes of the coordinate system. If the direction of the axes is changed, then
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Figure 4.8: The mid-surface displacement of a bent crystal in our experimental set up

(a) without the strain in the z direction and (b) with the strain E(x,y)z in the z
direction.
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the elastic constants must be recalculated. One can determine the elastic constants '
corresponding to the new coordinate system in terms of known elastic constants associated
with the simple coordinate system, that we have mentioned above, by finding a proper
transformation. This transformation tensor can be found using the expressions of the
elastic potential and the equations of the generalized Hooke's law with the elastic symmetry
[30]. The different sets of elastic constants are necessary to study the different types of Si

crystals {(111) and (100) cut wafers}.

4.5 Application of uniform strain gradient solutions to the experimental
situation
The bending created in our experimental arrangements can be modeled by
conventional bending theory as explained in section 4.4. The mid-surface displacement

contains higher order terms (> second order). The local radii of curvature of the mid-

surface, Rx, Ry and Rxy,which are given by

1 _9?wixyo) 1 _92w(x,y,0) 1 92w(x,y,0) |
R~ o Ry~ oy Ry~ oxy (4.30)

vary position to position.

Calculating the intensity of the diffracted beam at an arbitrary point involves only the
strains in the inverse Borrmann triangle associated with that observation point. The
thickness of crystals that we used in our experiments is small compared to other
dimensions, so the width of the Borrmann triangle is small as well. Therefore we can
assume that the strain gradient in the Borrmann triangle is uniform. This uniform strain
gradient is determined by the local radii of curvature at the center of the Borrmann triangle.

The value of uniform strain gradient varies slowly from one Borrmann triangle to other.



The details are given below.

Let (xo,¥o,0) be the center position of the Borrmann triangle. Using Taylor

expansion, we write the mid-surface displacement at any point (Xo+X,yo+Y,0) as

+ [ ow r e 2w, x2
\Ey_)"o,YO V1 (8x2

)
WXo+X,0+7,0) = W(Xo,Yo,0) + (3:/—))( ,
070

o’Yo

. 1 (a2w y2 + (a2w Xy
2 ay2 o'Yo X0Y jx0:¥0 ’

where higher order terms (>second order) are neglected. From eq. (4.27) with eq. (4.28),

the displacement in the z direction becomes

w(xo+X,YQ+Y,Z) = W(XO’YO’O) + (%‘1 X+ (%‘1 y + (gzaw Xy
X KowYo Y XosYo X0Y Koo
+ l (Q%.“.’. {xz + Ql_l_zZ}.*. L (.a_zly_ {yz + 91_1..22}_ (4.313)
2 \9x2 k0,50 Cr2 2 \9y2 xoYo Ci2

The coefficients of the second order terms, which are important in diffraction theory, are

determined by the local radii of curvature {eq. (4.30)} at (X,¥0,0). The displacements in

the x and y directions are given by

ot yory ) =~z 5= -(3F) | 2= (@21 .
(0} 220 ? 3; 3; o,yo ax2 o,yo
(92w
~ |oxo0 yz (4.31b)
( Xoy o'Yo
V(Xo+X,YotY,Z) =—Z %ﬁ= - (%E z- (_2_)_2_% vz
. y y oYo ay oYo
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2
_ (%%’ Xz, (4.31¢)

0'Yo

where again we have neglected higher order terms. Now we know the displacement
components (u,v,w) associated with any point in the Borrmann triangle. Since these
displacements have been expressed only in terms of a second order polynomial they
represent a uniform strain gradient which varies from one Borrmann triangle to other. We
can use the solutions for uniform strain gradients and the intensity of the diffracted beam

can be calculated at any point.

4.6 Bending theory of crystal plates with large deflections

In most of our experiments we have exceeded the limits in which the above described
conventional bending theory can be applied, that is the deflections exceed the thickness of
the crystal. Under this situation, the bending system is subjected to forces acting in the
mid-surface (in-plane forces). The problem of plate bending with in-plane forces is
considerably more complicated than the above simple bending theory. The deflection and
the stress function are determined by a system of two nonlinear equations. In the case of
bending which we used in our experiments, the following two non linear fourth order
differential equations together with boundary conditions will determine the displacement

field (see appendix 9 for details including nomenclature):

*F HF HME _ (9w 32w 32w
nig * Ot gt aisE = () © 50 R 49w

Hw otw
" axZoy2 D57

ow
Dll &'Z' + 2(D12+2D4



702F 092w 02F 2w 02F 92w '
t(ay2 o2 oxdy ) oxady + ox2 ’ ayz) (4.32b)
2w 2w .
Dy, -a-x-2—+ D12W =0 atx=*a (4.32¢)
3w 3w
Dy +4Dy) goscy + Dy 53 = Oatx =12 (4.32d)

Note that the boundary conditions at the fixed edges are given by eqgs. (4.22). The exact
solutions is unknown for even a simple case of bending. Numerical methods can be
applied. However, the solutions of this difficult bending theory are absolutely necessary to
explain some of our experimental results. Solving these coupled fourth order differential
equations lie just outside the scope of this thesis. The next stage in our work would

encompass this.

135



136

CHAPTER 5
SUMMARY

The dynamical theory of neutron diffraction is studied for parallel-sided perfect
crystals using the eikonal approach and the spatially dependent amplitude approach. In the
eikonal approach a given incident plane wave.generates four pairs of internal waves. The
wave vectors of these waves are found by expressing the dispersion relation in terms of
four convenient parameters K:,';, K:;l;, K:,(z: and K:,lz) Boundary conditions at the
surfaces of the crystal determine all the unknown internal and external wave amplitudes.
The spatially dependent amplitude approach was.developed because of its utility in an
approximate form called the T-T method. The spatially dependent amplitude approach
yields the same results as the eikonal method but is less convenient because of the oblique

' coordinate system used in deriving the coupled differential equations. This is particularly

so for extreme cases where wave vectors are nearly parallel to surfaces.

In studying the non extreme cases some approximations are useful in both
approaches. In the eikonal approach, two pairs of internal waves suffice to describe the
propagation of neutrons in the crystal. In the T-T approach, the second derivatives of the
wave amplitudes are neglected in the coupled differential equations, using the fact that they
are slowly varying. These two approaches lead to almost the same results in most cases.
An analytical expression was obtained for the intensity of the diffracted beam in the Laue
geometry. Integrated intensity was calculated by taking the wavelength spread and the
angular spread of the incoming beam intQ account. By defining new dimensionless
variables, normalized thickness and normalized intensity, we have obtained a universal
curve representing intensity as a function of thickness from which one can calculate the
period of oscillation in all possible cases of Laue transmission geometries. The

experimentally measured diffracted beam intensity as a function of thickness of Si wafers



shows good agreément with the theory.

In the extreme cases, it has been shown that three pairs of internal waves are
sufficient to describe adequately the propagation of neutrons inside the crystal. The
dynamical diffraction theory for perfect crystals given in this thesis is unique in the fullness

of the approach and its direct application to a simple and actual experimental geometry.

Using the T-T method, the solutions of the dynamical problem in the case of
homogeneously bent crystals have been expressed previously in terms of confluent
hypergeometric functions . Mathematical obscurities have been eliminated here by
expressing the confluent hypergeometric functions in terms of Chebyshev polynomials.
Calculating the amplitudes of the internal waves at an arbitrary point involves only the
strain field in the inverse Borrmann triangle associated with the observation point. In our

: experiménts the crystals are bent almost to a cylindrical form. The deviations are
qualitatively explained by the solutions of the conventional elasticity theory. The results
show that the strain gradient varies from position to position. However, the strain gradient
can be treated as uniform in each Borrmann triangle for the Si wafers that we used in our
experiments. The local strain gradients are determined by the local radii of curvature at the
center point of the Borrmann triangles. The local radii of curvature, which vary from one
Borrmann triangle to other, either can be calculated from the mid-surface displacement
obtained using the conventional elasticity theory or measured experimentally. By knowing
the value of uniform strain gradient in the Borrmann triangle, we can calculate the internal

wave amplitudes at any point.

In some experiments we have exceeded the limits in which the conventional elasticity
theory can be applied. In this situation, two coupled non linear fourth order differential

equations determine the mid-surface displacement.
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APPENDICES

Typical values of some useful parameters for silicon crystals
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Parameter Symbol Typical value
Lattice constant a 5.4309 A°® at 25°C
Scattering length b 41534 x 1015 m ™

Fourier components of Vo 2.607 x 10'° m2
reduced periodic neutron-nuclear vg (odd reflections) 1.843 x 101 m2
interaction potential vg (even reflections) 2.607 x 101% m2
Elastic stiffness Ci 16.57 x 100 Nm™2
constants Ci, 6.39 x 1010 Nm™2

Cyus 7.956 x 1010 Nm

Properties of our monochromating system

The neutrons from the TNF facility is monochromated by 90° scattering from the (422)

reflection from stacks of silicon wafers.

Wavelength of incoming neutrons from the monochromator A = 1.57 A°

- Magnitude of the wavevector kg = 4.0 x 100m!

Index of refraction n = lI(<_o X% — Vo

Critical angle of the total external reflection =9.334 x 10~ >

Typical values of energy (€) and pendell§sung period for different reflections

VG V.G

E= 3 3 E Tl F3ow
Koz ~ Ko2) Koz - Ko2)

=1-0815x107%



where *Z‘A“— K(;‘ZB) =2 \[kgz— Vo =2 \/k% cos2(6-a) — Vo

and

=2 \/ké cosz(GB—a) -V

* * '
y ~Kop) =2V kg~ vo — A

=2 \/k%cosZ(e—a) - Vo — G?cos®a. + 2k, Gsin(6-a)cosa

=2 \/k‘g‘cosz(eB—a) - Vg — G%cos“a. + 2kOGsin(6B—a)cosa .

€ is an energy in reduced units that sets the length scale for diffraction phenomena. In usual

diffraction experiments, € is essentially a constant for a given reflection.

L3

Pendellésung period = ——.

Ve
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Bragg Angle between Energy In
Reflecting planesj angle the atomic planes | reduced | Pendellésung

[6g(deg.)]| and the surface. units period

normal [a (deg.)]| [e(m™?)] (Lm)

(400) (004cu) | 35.34 0.0 1.41 x 10° 87.7

(42) (111 cut) 45.11 0.0 1.77 x 10° 85.0
(311) (111 cut) 28.66 10.02 6.59 x 108 122.4
(111) (111 cut) 14.51 19.47 6.445 x 10% 12375

(400) (111 cut) 35.34 35.26 2.82 x 10° 59.1

This table is made for our experimental set up. Here we have included the Debye waller
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temperature factor (W) in our calculations. Debye waller factor is given by

6h2T  sin20 [ x]
W= . (0] + =
mAk®2 A2 ' () 4

where h - Planck's constant ; mp - mass of the vibrating atom ; k - Boltzmann's constant ;

@ .
© - Debye temperature of the crystal ; x = T T - absolute temperature ; @(x) is a function

X
of x defined by ®(x) = %d[—z—g—é— .
e -1

In neutron diffraction experiments

in20 2412412
_ o Sin“0  _ (he+ké4]4)
wW=K 2 —K{ 12 ]

= 0.00388251 x (h2+k2+12) *

* C. G. Shull, J. Appl. Cryst. 6, 257 (1973).
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Appendix 2
Mathematical details involved in the calculation of diffracted beam intensity

(eq. 2.22)

kozz— Vo= K*A 2

2 A2 A2 2
k2-vo —KAD kZ-vo KD = (KiAZ k&%) (K32%-k&D

xad %A 2 2
- kbt K2 (RGP RED + KRS K

- kit Ko‘z*z[(KofKoa _2 kAKE] +kAP kS

- KA KA [REA+ KIS -2 (KRS -) ] + (Kap Kog -©)

_ % - <
Note that Ké‘z+ KOCZ= KOQA‘ + and KozKoz 1&02‘ hog —¢ (Fromeq. 2.1)

% % %
2 Kop (Koz +Kof) + €2

i

X % X
'23Ko? (Ko?"'Kog)

The second term €2 i very small compared to the first term -2 € Koz (Koz + Ko $) and

can be neglected.

2 2
K& “-KG™ = (K&+ K& (KE-K&y)

* * 2
= (Ko? + Kog) \/(KOAZ"‘ Kocz) -4 KoAz Kocz
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*A+K;g)'\/?* —-Ko ) +4¢

From eq. (2.10a)

(kc%z" vo — Ko : 2) (koz - Kocz2)
(Koz - oz )

‘I’é = @

%
2eKoAKD + K3 o
= (o)

Kol + R3S\ Kb - KoS) +4e

-28K§Q

\j(K;‘ —Ko C2i4e

Do

* *0.2
Note- K&-KG=K&- KS= \& Koz — Kog) +4¢€

2 (KGz KGCZ) t
2

Id4‘I’

*A 2 A
1662 Kgf 2 03 2{\/(Ko ~Kor )2+48t}
-G{(Ko? Koz )2+4€} 2

(2.22)
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Appendix 3

Derivation of the variable (K34 — K*) as a_function of AK and Aq

* Vo
Koz = VkOZZ‘Vo =koz " 2Koz

Vo

= (kg+AK) cos (0g-a+A0) —
(ko*tAK) cos (9 ) 2(kg+AK) cos (85-0+A6)

where AK and A© are the aribitary values of the magnitude of the wave vector spread and

of the angular spread of the incoming neutron source.

Here we have replaced kg by (ko+AK) and (6-at) by (6g-0+AB).

Vo

= (ko*AK) {cos (Bp-0x) - sin (85-00 A6} - == cos (85-t)

Vo
2 kg cos (0g-a)

= kgcos (0p-a) +AK cos (Og-a)—- kosin (Op-o) AO —

*C 2
Koz =*Gz"‘\/koz— Vo — G)% -2 kox Gy

= -Gy "'\[k% - (kox + Gx)z‘ Vo
2 2 _ 2 : : 2
k§ — (kox + Gx)* = (kg +AK)“ — { — (ko +AK) sin (B5-0+A8) + 2 k, sin 85 cos o}
Note that, the value of G (=2 kg sin 0y ) is fixed.

~ (kg +AK)? — { Kk, sin (0g-t) — AK sin (8-at) ~ k,, cos (05-0)AB+ 2 k sin O cos o }2



~k2 + 2 ko AK ~{ kg sin (8+x) — AK sin (Bp-0) — kg, cos (B-0)A8 )2

~k2 +2 ko AK — k2 sin? (8g+0) + 2 ko AK sin (8p-0x) sin (Bp-+ax)
+ Zkg cos (Bg-a) sin (Bg+o) A6

=k2 cos® (Bg+ar) +2kZ cos (Bg-0r) sin (Bg+er) AD
+ 2k AK (1 + sin (85-) sin (Op+0)}

k 0p- in (Og+

A©
cos (Bg+a)

. AK {1 + sin (6g-@) sin (8g+a) }

T

cos (Bg+at)
. K - in (8 :
KO’;C ~ 2 kg sin O sin o + kg cos (Bg+0t) +—2 cos Bp-a0) sin (B +a) A9
cos (Bg+al)
. AK {1 + sin (85-a) sin (Og-+a)} Vo
cos (8g+a) 2 kg cos (8g+at)
’;A_ ’;C=_ ko sin 26 AD _ (cos 29B—1)AK_ Vo
' cos (Bg+at) cos (Bg+at) 2 kg cos (85-a)
Vo

2 kg cos (Bg+a)
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Calculation of Jacobian J ( KXA - KXC, K3A)

k 0 ok 0
I( *?_ *g,K*A d 0X k()z ox koz

0z) =S oFA o FC

o TUTFA T —W
AKog -Kop)  9Kop  Kop  IKop —KoD)

T = o - VRETS

*

dkog o oz Koz

KA _KoS) KA \/K* Az
(KAA_KES) =

7+ Gz—\/kc%z— vo = G¥ - 2 kox Gy
*
kozz—Vo—G)%‘zkox.Gx={ ?*Gz“(K "Koc)}2

2kox Ox =— (Kot ~K59)? - G2 +2 G, Ko —K59) + 2 Koh (Ko2A-K39)

-2G,Kof
dKox __ _ ¢ 09 +2 G5+ 2Koh =2 (Ko§+ Gy)
O R - KD

* *
2Gx — = 2 (Ko —Kog) -2 G,
Koz

*A
* *Q (K + G )
J (Ko?—Koz A) = GX V *A 2
Koz’ 7 + vo
_ ko cos (Bg+at) _ cos (Og+at)

2 ko sin Og sin o 2 sin B sin o
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Appendix S

Modification of Rustichelli's expressions for the deviation from the Bragg

law and FWHM of the envelope of the diffraction pattern for the extreme

asymmetric Laue case.

N >
crystal surface

asymptotic
circles

incidence circle

incident beam

which satisfies the /

exact Bragg condition

GB—-oc ‘—\

incident beam which gives

0 the maximum of the diffracted
intensity
a_lcc
. 90 +( eB o)
L
P Ae ace T acc
90 -0p—- — AB
90-6g B Q 9O+(9B+71 - o)
- o
Lo

Representation of the deviation from the exact Bragg condition
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In the conventional treatment, the incidence circle is approximated by the tangent to it

at the Laue point L.
c_LP
LP LLo LL,

sin o sin (90 + GB -a) cos (GB - )

LL, = kpcosfy - Kcos 9;
We know that kg sin 85 = Ksin 9;
L
Let 6y =05 + Afg

ko sin 0 =\/k02—v0 sin 9;

. v .
kg sin (9; —AGB) = (kO'z_jc(');) sin 9;

. * * . * v . nk
ko sin O — kg cos 85 Ay = ko sin g -—21?0 sin O

LL, = kgcos (9; -A8p) - Kcos 9;

% LAk v *
kocoseB+ kosmeB AGB—(kO_'z_kQ;) cosGB
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. s Vo % *
ko sin 6 W) tan 65 + kg cos Oy

Vo A
—0 - RN S
2 kg cos Oy 2 kg cos 6y

LP = L, sin o

Vo sin o

2 kg cos O cos (8 - )

Vo { cos (6 - &) —cos (65 + a) }
2 kg sin 29B cos (OB -)

Vo . cos (OB + ) }

2 kg sin 285 cos (6 - @)

Ae.c — VO {1 _ coS (eB + (X.) } *
I 2k sin 20, cos (8 - @)

This expression can be obtained also in the process of making (KO*ZA - KO*ZC) =0 with
AK =0. Note that Aef diverges as (g - o) — 90"
Rustichelli derived the more correct expression for the deviation from the Bragg law

(Aeiacc) with the assumption that the asymptotic forms of the dispersion surface and the

incidence cicle are actually circles.

i.e. Here we assume LQ is a arc of the incidence circle.



AB3CC_

1

eaCC

)

LQ (chord) =2 kg sin (
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LLo _
ABACC sin o
sin (90 + [65 + 2 -al)
Ae acc
Vo _ 2 kg sin ( )
A ACC sin o
2 kg cos 65 cos (6 + _§_ )
AQAcC
v 2k ()
- eiacc sin o
2 ko cos 8 {cos (8 — @) —sin (85 ~ @) —5—}
AO acc , ABACC Vo sin o
sin (8 — o) — cos (B - ) 2 =
( ( ) ( ( 2 ) 4 kg cos 65

1 5 Vg sin (85—01)
_m{ cos(fp-0) = V cos“(6p—a) - 2 im0, [cos(6g—c)—cos(85+a)] }
2
Yli‘\/yl N1-72 Yl(l——)
AQ2CC k0 sin 29 Y1

1 r——z'l_yl

where Y, = cos (OB - o) and Y, = oS (GB + )



This final expression is obtained by eliminating one of the two solutions by physical

v
considerations. Note Aeiacc = - /é as v, —0.

Full width at half maximum of the Lorentzian envelope:-

In the conventional treatment, the incidence circle and the asymptotic form of the

dispersion surface is approximated by straight lines. From the analytical expression of the

~ Lorentzian envelope, the intensity falls to half of its maximum when (Ko*zA - KO*ZC) == 2\/?
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CD

N —

BB LD LD

sin20;  sin [90 - (8 + &)]  cos (8 + O)

ED =2 = e

ko \jcos (OB - Q) cos (OB + Q)

vg cos (0, + @)
LD = G B 1

ko \jcos (8g —a) cos (8 + ) sin 20p
' Vg cos (OB + )
 kosin20;  cos (8 - @)
Aeé _ 2 vg cos (8 + o) ¢
w kZ sin 205 cos (8 - )

_ 2
This expression can be obtained also from the condition (KO*ZA - KO*ZC) = 4 g with

AK =0.

o 98P
Aew = 3P - AB

For AB<< ko, it is also valid to a good approximation that

acc (A6
Aew = —m- . AB
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 .pacc  0(A8FC)
A% = B(Llp')— / a(Aeic )

A6y TP
LP = = Mo {1-2}
2 ko sin 265 Y1
oA6dH)
CP) " ko

27 LP 5
Y1“\/Y1 - ——71\/1—71
AeiaCC_

\/ 1- 712
A(A65°) 7

P =ko\/712 B 2_1_49_71\/1_71

A8 &

A6 S
- m—— 1——«/1_
VYI kZ sin 205 71 ¢ 1 it

A 2CC _ N 2 vg ALY

w
2 Vo 12
- —_—————— 1 = =N/1-
V Y1 koz <in 29B Y1 ( Y1)‘\/ le

k& sin 20 \ 7

Note that AG;CC —0asy] — 0.
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Appendix 6

Solution to a partial differential equation using the Riemann's method.

Consider a partial differential equation of the form

2
L+ a3 + b T + clxy) U = Fxy)

We now introduce the differential operator which is adjoint to the above differential
equation

PV 9 )
MV = &-a-y- —_ &.(aV) — yy'(bv) + CV

Y
A
| S gME XeYo)

Let V(x,y,Xo0,¥o) be any function satisfying the following conditions.

MV =0
y
[V]iey, = CXP on a(xo,y) dy
X
[V] = exp | b(x,yo) dx

Y=Yo Xo
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Then, Riemann formula gives

Utko¥o) = S [UVIy+ S[UV] - © + fgf V Flx.y) dx dy

Where @ = fR{ [ %(U?TV VEiTU) -bUV]‘dx
o}

_ [ > (UB%_ Virg) -aUV} dy) }

Compare the above differential equation with the one that we intend to solve [eq. (4.90)]

. 9>, 2D %% o w
i.e. aSOaSG+ lyo( )-5— +0% ¥Yg =0

N VAV .
_ GG
vyhere o2 = -ZTEZ—

A

- .
X=S0, Y= Sg, ax,y) =0, b(x,y) = irg-o-(aﬁ) =4iBsg, c(x,y) = o2,

U =% (s0,56) » F(x,y)=0

Crystal
surface
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The adjoint operator will be of the form

2
MRc;:ﬂ—a R6_ 412 (sgRn) +02 R
$098G 9sg G G

If R; is satisfying the following three conditions, '

82RG 9 )
m—- 41BFG(SGRG) + O RG=0

5G
R-]. . =exp [o.dsg =¢e° =1 *
G so=Sop SGp
T | 4iBsgp(So—Sop)
Rl Se=Sap exp Scj" 4iBsg .dso = e Gp'So~Sop *
P

One can write from the Riemann formula that

. 1.~ 1.~
¥ @) =51 ¥ Rglg + 5[ ¥eRglg— @ +0

Q
- 1. 1,m 1(~ OR o
s @ =5[%Relg + 7[TRelg + JE(‘PG-;;%— Rg -sf)dsg
R
Q
1 = aRG a\"I"G ) ~
_J‘{E(WGE-—-RG -sg' - 41BSGRG\PG dSo
R
Q

1 - a 1, a 1 9 T 0Fs|
=7[¥6Relq + 5[ ¥ Rolp + J{EFG(RG ¥e)-Rg ?S'GQ} dsg
R



Q

1 3 v .9 Ra_ . b
R

1,4 15 lrg » 1R
=5[¥6Rglg + 7 [T Relr -5 [ ¥aRel, +

R R

¥,
{‘PG -5—'— 41BSGR lPG }dso jRG %SEG'dSG
Q Q
R R
% oR : - ¥
=[¥Y% R_G]Q + J( -KS—_ 41BSGRG)‘I‘G dsg + JRG -&-GG—dsG
Q Q
Note that [Rglq = [Rg] So=Sop —
R R
% % dR : - ERY
‘FG (p)= [‘I‘G ]Q + ,[( -KOG'—- 41BSGR0) ‘PG dsg + _I‘RG ﬁG'dSG *
Q Q

Solution of the homogeneous conjugate equation:-

-4'1B(sop—

Making use of the substitution RG = §G € So)SG , the above conjugate equation

will reduce to

2’ R . aR ~
a-s-o-gk-s%— 4iB (sop—so);;l;Gg+ 62Rg=0
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The solution of this differential equation is a confluent hypergeometric function, i.e.

~ ic2 . .
Rs = 1F1l ~ 75 15 - 4iB(sgp—so)(sap—sa)]

. io? :
Rg = exp [ - 4iBsg(Sop=50)] * 1F1[ - 7 1s — 4iB(Sop=50)(sap-5c)]

Further more the solution R; satisfies the necessary conditions.

- %
Rl gmsop = !

4iBsan(So—Son) &
R =¢ Gp'>0—>0p
Re] SG=Sap
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Appendix 7

Calculation of the coefficients A.B.C.D.Eand F
G®=2{As2+2Bs,sg+Cs%} +Dsy+Esg+F

It follows that,

102 @
A —Z—E(-G)u )

9sg
B =%a—an Gw)
10
C=ZasG @
D = constant term of [52—0 (@) ]
E = constant term of 3% (G% )]
F = constant term of (G.T@)

The relations between the rectangular coordinte system and the oblique coordinate system

(see Fig. 1. ) are

x=-sosin(6;—oc)+sc,sin(6;+a)
Z= socos(es-—a)+sc;cos(6;+oc)

%:a;-%+aai T——sm(GB a)T+cos(GB oc)a—

d O0x 9 ,0Z 0 _ . % d * d
FG"'QE T+a— EZ—Sln(GB+(X)a;+COS(eB+(X)EZ

2 2 | 32 . 2
aso = sin2 (8p — ) 53)(7+ cos2 (8p — o) =5 2sin ©p — o) cos (g — @) ;;i—;;
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a2 . N 2 ¥ 92 ok * 92
gc%-=51n2(93+a)§;-2-+cos (eB+oc)-a72-+2sm (8 + ) cos (8 + ) 357

2 . . 02 : 92 ) 32
Sa s = sin (Gg — o) sin (9; + Q) 8_x7+ cos (6; — Q) cos (eg + ) 32 + sin 2am

In the case of a homogeneously bent crystal elaborated by Penning and Polder,

2 t)2
- VX +V{Z—5

t
8.?=—Gcosaix—{—z—-_—-2-—}— R

] +Gsino

Note that here we are considering the bending of XZ plane aty = 0.

- 2@® _ -vGsina R2CH _VvGsina
o R ’ 2 - R ¢
2 - =
aa(f;zﬁ)) _ -V GRcos o ; Constanttermof[ga;(G -ﬁ))} _ v Gzclgs ot ;
% - g .
Constant term of[%(G .ﬁ’)] _ \ G2 I:m ot
Lf 2@ ~v G sin o . v G sin o
A= 4_{ sm? 0 ~0)—x—+ cosZ (6g — o) —_—
+2 sin (Bg — &) cos (B3 — O0) AASLLE Glgos & }
. *
_ vGsin(28g - a) N
- iR

—vGsina

B = %{—sih(eg-a) sin 0F + ) -
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‘ v G sin o . v G cos o
+ cos(es—a)cos(6;+a) —Fx — *+ sin2a ——-R—}

_ v G sin o *
- 4 R

1¢ . * -vGsina £ v G sin o

= 1—{ sin2 B + ) — g ——+ cos? (8 + o) —x——
-vG o
+ 2 sin B + ) cos (Bp + @) —}
. *
N v G sin (20g + @) %*
- 4 R
vGecosat * -vGsinat
= —sin (6; - Q) —3g——+Cos 6g — ) R
. *
_ v Gtsinfg %*
- 2R
t -vGsinat
E = sin (8 + a)ﬁ%&+ cos (B + o)
] %
__thsmGB . %
- 2R
v G t2sin o *

F = constant term of (8? ) = 8R



Appendix 8 _
Derivation of the basic differential equation of thin crystal plate theory and
the boundary conditions using the variational method.

t
a b 2 | 32 32
. n L 2 (4 =
Total potential energy =E -5[ ) -tJ‘ [ 7 C11 {Z (aXZ) + 22 (ayZ)}
2

2w 02w 32w 2
+C122 {82 82}+2C4422{xy} ]dXdde

where 2a, 2b and t are the dimensions of the crystal plate.

b
1 t3 92w\2 82w

a b a
£ 2w 92w +3 [ 92w

b
e 0 2

i

+C12 T??_a -g %2 ayZJde dy + 2C44 12 J J &Ty} dx dy

2w \2
Consider the change due to a virtual dlsplacement dw in the term (aa ‘;’)

a b

11 1E - e

0 atw Pew) U Totw 3w
_ W w oW w
- i 295 S axdy g 2[ax2 gl ]—dy

-4 X=-a

a b
03w J(dw)
- -[ [[ 253 ox dxdy
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° 2w 3w)]? o
_ 92w O(dw ~ 33w
- 12 [ax2 % ]xﬁay 12

i . . (92w\2
Similarly one can write the change in (a—yz-) :

. .
2w 9(dw)
.[ 2 [ay2 ay ]y=_%x - J. 2

-a

2w

Con31der the change in the term —5- 2

a

02w
a2

a

03 ° ° a
[éy—‘;/- 8w]_dx+_’. ! a:V

=- -a

due to the virtual displacement dw

b
{ 02(w+dw) 92(w+dw)
! ox2 dy2

a b ) ) )
- | I{a_gv_a(8w)+aw
i

-a -

a

%2 dy2 dy?

02w 2w }
x2ayz | X

92(dw)

) } dx dy

Ow dx dy

a b
_ [ |2w 9w )] Bw e
= -é,[ l: 2 oy y=-(ll)x - _J [ax2ay ow ]y=-(11)x_, + -é,[ _J ""—ax2ay2 Ow dx dy

b a b b
92w 0(dw) 93w o*w
+ ) ! l:éy_z- - L:fiay —_i [_axay2 SW] dy + J. ] g _—ax2ay2 Ow dx dy

2
Consider the change in the term (g;a‘l)z

a

[ 157 - @3]

%k
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a b - a
d2w_  92(Sw) 2w 9(dw)
= _é[ _l 2 dxdy * oxody dxdy = j [3x3y ox ]y=-%x

a b
_ f ! 5 dw J(dw)

A oxdy2 OX dx dy
b y b
a
_ 92w ] |: 93w
_.2|: [Wx y8w y=rb L:—a - 2 J —ax2ay dw ] =_l;1x
-a
b
a a b %
3w 4w
-2 [a—xa;i' dw :lx=-(zliy +2 -{I -l axzayz . Owdx dy

By combining the changes in each term of the total potential energy expression, and then
equating the coefficients of dx, dy and dxdy to zero together with the boundary conditions

at the fixed edges {eq. (4.22)}, we will get the following expressions.

o*w 2(C12 + 2 C44) a4w N dw
ax4 Cn ox20y2  dy*

Pw. C12 2w

ax2 C11 ay2 =0 at x==xa

IBw . (Cyp + 4 C44) 93w

ox3 Ciu oxdy? =0 a x=*a

Note that, here the boundary conditions are w =0, dw =0 dgg— =0 aty=zxb.

The first expression was obtained by equating the coefficient of dxdy to zero. This is the

basic differential equation of thin crystal plate theory. The coefficient of dx goes to zero
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automatically. The second and the third equations are the boundary conditions at the free

edges which are obtained by equating the coefficient of dy to zero.
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Appendix 9 v
Derivation of fundamental differential equations and boundary conditions in

the case of bending of a thin crystal plate which is subjected to in-plane forces

(plate with large deflections)

In studying the combined action of the bending and in-plane forces, we assume that

the stress components are composed of two parts:
Ox = Ox+ Ox , 0'y=6'y + 0Oy , Txy-—-fxy + Ty, Txz= Tz, Tyz= Tyz

Here Gy, Gy and Txy are the values of the mean stress through the thickness arising from in-
plane forces only; ©Ox, Oy and Txy are the stresses associated with the pure bending.

Furthermore, we assume that the strain components are also expressed in two parts:

8x=éx+8)'( N 8y=8-y +8§1 ’ ny=?xy+ Y;(y‘

Calculation of stress components (O , Oy and Tyy), strain components (g ,

gy and Yxy) and corresponding moments and forces:-

In calculating these components we make following two assumptions for bending of thin
plates.
— straight sections, which in the undeformed state of the plate are normal to its mid-
surface, remain straight and normal to the bent mid-surface during the bending.
— normal stress Oz in cross sections parallel to the mid-surface is small compared

with the stress in the tranverse cross sections, i.e. Ox , Oy and Txy.
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It follows from the first assumption that

oW 0w,
-—Z';x—, V——Z-;y—,

. 0%w . 02w —_2 2w
SETIgE YT YT Ragy

where u, v are the displacements of any point in the direction of X and Y axes; w(x,y) is
the deflection of the mid-surface. We will consider a Si crystal plate (cubic crystal) in
which the coordinate axes are chosen parallel to the cubic edges. Under this condition, the

array of values of the elastic constants are given by the following matrix:

a)) 3130 0 00
31221725 0 00
gl = a2, ay 0 0 O
1= 0 0 0a, 0 O
0 0 0 0ag O

\0 00 0 0a,)/

Assuming that the equations of the generalized Hooke's law are correct for the plate, we
get
& =2)) Ox +2j Oy; & =2y Ox +2)) Oy; Yay =2y Try

By solving these equations for the stress components we obtain

, 2w 92w . 2w 92w
Ox ="Z{Bu 2t B2 _ayz}: Oy =_Z{B12 T2 T Bu _ay'z"}?
, 92w
Txy =~2ZB443;§)7,
where
a -a 1
Bj) =—5—l—s—, Bp=——iZr— Byy=— .

@f - ar3) @f-ar3) 34



The other stress components T;x and Tzy will be determined from the equilibrium

equations,

00x . OTxy , OTzx _ Oy 00y  OTzy _
ax+ay+az_0’ 'ax+3y+az_0'

Considering thatz=+ % » Tzx = Tzy = 0 on the external surfaces, we obtain

.1 t2 Bw Bw
Tzx =7( 2 _ —4—) {Bll aT.{. (B12 + 2B44) W} ,

.1 t2 Bw 3w
Tzy =-§-(z2 - 1—) {(B12 + 2B44) 'ax2—8y+ B11 ﬁ} .

When we cut this plate with certainrs_urfaces parallel to the initial mid-surface with
height equal to the plate thickness and with bases dx and dy, then stress components Cx ,
Oy, Txy Will be-?educcd to moments Mydx, Hyydx and Mxdy, Hyxdy, and Tx , Tyy will
be reduced to forces Nxdy, Nydx. Values of Mx, My are called the bending moments;

Hxy, Hyx, the twisting moments, and Ny, Ny, the transverse shear forces (all of them per

unit length in the mid-surface). Obviously,

2 2 12
My = Acizdz, M;,: _[o‘§zdz , H;(y=H3',x= .[T)'(yZdZ
-2 -t/2

t/2 /2
Ny = I)Lxgxdz , Ny= [tyydz
- ‘ -t/z

By substituting for Ox , Oy , Txy, Tzx and Tzy in the above integrals, we get
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' 02w 92w o 02w 92w) .
M?<=‘ {Du 52 " P12 _ayz}: My '”{Dlz T2+ P """ayz}’

, 02w
ny =—2D44m-;

\ SBw B3w ).
Nx = - {Dll 5-xT+ (D12 + 2D44) -———axayz},

\ : 93w 93w
Ny = - {(D12 *2D4) 535, * P ;';'yT}

3
where constants Dj; are related to Bjj by Djj= Bjj §—2 .

O

v
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Calculation of stress components (3x , Gy and Tyy ), strain components (&, &y

and Yxy ) and corresponding in-plane and tangential forces:-

Quantities €, €yand Yxy depend not only on displacements u and v, but also on

the deflection w. By expanding the general expression
2
8x='\/1 + 2 aa-i"‘l' (g—i-)

into a power series and retaining only the first power of the derivatives of u and v and the

+ ov\& + oW\~ 1
&)+ &) -
secondary powers of the derivatives of w, we obtain

Similarly we get

a2éx 02€ 0%y 2w 2w 92w
__y Ta_yx _ .
ayz xdy (Exay)z ox2  dy2 (1)
Stresses Gy, Gy and Tyy satisfy the equations of equilibrium:

3 OTxy oG
Xty "0 & ty =0

from which it follows that they are expressible in terms of a stress function F:
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Sxy Ty

SYx ///7!/'///}4 Tx+aa'_x['xdx
/
T, ‘/ f‘
x //1/1///// SYX+a?SxLde

- 9F . 9F . %
Gx—5§'2‘, Oy=53%2° ™= ~ 9xoy

Note that these stress components are again connected with the strain components by the

generalized Hooke's law:



Now we introduce the quantities T, Ty, Sxy, Syx as in-plane and tangential forces

per unit length which can be defined as

t2 ‘
Tx= ‘icxdz =t6x ,Ty= t&y, Syx= Sxy=tfxy.

In the absence of body forces, Tx, Ty and Syy satisfy the following eqﬁations of

equilibrium:
dT. aS aS dT
?X_x. + 7}%2 =0, -axLx + ?)—:L =0 .

Considering the curvature of the plate during deformation, the forces Tx, Ty and Sxy will

not lie in the xy plane. We obtain the components of these forces in the the z-direction:

[ w,,.S 2w .. 92wy .,
k = T 2Svygmy v Ty —ayz}axay,

Or per unit area,

s 92w 82w

Here we have used the above equations of equilibrium. This force is similar to the load per
unit area (q) in the usual bending problem. Therefore, this force should be added to the

load q in studying the combined action.

The figure on the next page show all the forces and moments in the combined action
of the bending and in-plane forces. From this figure, it is clear that the conditions of

equilibrium of the element have the form:
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Y
ONy . 9N _
W + Ty“ +Z = 0,
. oN, oN, 92w 92w 2w .
1.€. -Wx + v + TXa—xz— + 2Sxy$(Ty + Ty-87 =0 2)

Notice that the load per unit area q = 0 in our bending systém.

By substituting the components of stress (as a function of stress function F) together with

the generalized Hooke's law into eq. (1), we will get,

94F 04F 04F 92w 2w J2w %
e T Pt 550t tia = () a2 oy

Similarly we will get
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tw : tw H*w
Dyy 57 + 2D +2Dyy) ox2ayZ Dy e

% 22w, PF  Pw  PF 32w "
(ay2 ox2  “oxdy odxdy = ox2 ayZ)

from eq. (2). The solutions of these two coupled non-linear differential equations
determine the deflection w and the stress function F.
Boundary conditions:-

At the supported edges (y =% b) in our bending system,

=0, - *
w =0, &y ~F m

At the free edges (x =t a), My =0, where

1 v t/2
' _ ' 82F ! 82F 22
Mx-_ (cx +Gxzdz = M+ ) zdz = My Fy53 [TJ-UZ
-2
= My,
. 2w 92w %
.e. D D =
1. 1352 T C123¢2 0
Furthermore, Ny + §%¥5- =0 at the free edges, where
y
t/2 t/2
Hyx = vx + Tynzdz = H; F & = H
yx-—- (Tyx""tyybz z = yx+ —-mz z = ny,
. d3w BBw : %
1.e. (D12+4D44)-a-;a'—y§' + D11§x_ =0
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