A THESIS SUBMITTED IN PARTIAL FULFIILMENT OF

 THE REQUI REMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHYin the Department
of

Mathematics and Statistics
(C) R.T. Samaratunga, 1989

SIMON FRASER UNIVERSITY

April 1989

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

APPROVAL

Name:
Ranasinghage Tilakasiri Samaratunga

Degree: Doctor of Philosophy
Title of Thesis: A study of subspaces of bounded sequences, sequential completeness, and methods of almost convergence.

Chairman: A.H. Lachlan

J.J. Sember
Senior Supervisor

A.R. Freedman
D. Sharma
C. Kim

Bitly E. Rhoades External Examiner Professor Indiana University Bloomington, Indiana

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. 1 further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay A STUDY OF SUBSPACES OF BOUNDED SEQUENCES, SEQUENTIAL COMPLETENESS AND METHODS OF ALMOST CONVERGENCE

Author:
(signature)

RANASINGHAGE I SAMARATUNGA

(name)
April io, 1989
(date)

ABSTRACT

The two main purposes of this thesis are:
(i) To investigate the sequential completeness of ℓ_{1} with respect to weak topologies generated by subspaces of m whose β-dual is ℓ_{1};
(ii) To introduce a class of sumability methods that contains the method of almost convergence and to study its properties.

Chapter 1 is of an introductory nature. In Chapter 2 we obtain a characterization of those subspaces of m whose β-dual is ℓ_{1}, and then obtain several external characterizations of those subspaces of m that generate sequentially complete weak topologies on ℓ_{1}. In Chapter 3 we introduce a new class of sumability methods that contains the method of almost convergence, and then study the properties of the subspaces of m generated by these methods. In Chapter 4, by establishing the sequential completeness of ${ }^{\ell_{1}}$ under suitable weak topologies, we obtain consistency theorems for the summability methods introduced in Chapter 3.

ACKNOWIEDGEMENT

I would like to thank Dr. J.J. Sember for his kindly and patient supervision during the preparation of this thesis. I would also like to thank the Department of Mathematics and Statistics, Simon Fraser University, for giving me financial assistance during the length of my graduate studies. Finally, many thanks to Sylvia Holmes: for the excellent typing.
Approval (ii)
Abstract (iii)
Acknowledgement (iv)
Table of Contents (v)
Chapter l. Preliminaries 1
§l. Introduction 1
§2. Sequence spaces 3
§3. Topologies on sequence spaces 5
§4. Topological properties of K -spaces 9
§5. Infinite matrices 14
Chapter 2. Sequential completeness 16
§1. Introduction 16
§2. Definitions and basic results 17
§3. Weak topologies on ℓ_{1} 19
Chapter 3. T-Almost convergence 32
§1. Introduction 32
§2. Definitions and basic results 33
§3. A characterization of T-almost sequences 37
§4. Some examples 42
§5. Duality between ℓ_{1} and Taco 45
Chapter 4. Consistency theorems for T-Almost convergence 66
§1. Introduction 66
§2. Notations and basic results 67
§3. Main results 69
Bibliography 102

CHAPTER 1

PRELIMINARIES

§1. Introduction.

Using the notion of Banach limits, Lorentz [13] introduced the concept of almost convergence and developed a significant theory. Further studies related to almost convergence have since been carried out in [11], [16], [19] and [4]. Replacing the Banach limits by T-Banach limits (3.2 Definition 3), we define a new class of summability methods, which we call the T-almost convergence methods. A main purpose of this thesis is to study properties leading to the establishment of a bounded consistency theorem for these methods.

The bounded consistency theorem is one of the most important results of summability theory. The first proof of this famous theorem, requiring seven pages of calculations, was given by Brudno [7]. The result was merely stated by Mazur and Orlicz in [15], though a special case was given by Banach [2, p. 95]. The challenge of constructing a shorter proof was met by Petersen [17] by giving a streamlined version of Brudno's proof. Observing the basic relationship between this theorem and the sequential completeness of ℓ_{1} under appropriate weak topologies, Bennett and Kalton [5] constructed a functional analytic proof. The same observation led them to extend the theorem to the space of almost convergence sequences [4].

The relationship between the bounded consistency theorem and the sequential completeness of ℓ_{1} leads us to study the dual structure
of ℓ_{1} with some subspaces of m. In doing so we are able to. characterize the class of subspaces of m whose β-dual is ℓ_{1}. As a consequence of this characterization, we also answer some open questions raised in [24].

§2. Sequence spaces.

The primary aim of this and the remaining sections is to collect together the basic definitions and results of sequence space theory and summability theory, of which we shall make frequent use in the rest of the thesis. A detailed study of these materials can be found in [10] and [24].

We denote by ω the set of all real sequences. The set ω, under the usual operations of pointwise addition and scalar multiplication, becomes a vector space over \mathbb{R}. Any subspace E of ω is called a sequence space. An arbitrary member $\left(x_{n}\right)$ of ω is sometimes denoted by x only. For x in ω, we write $|x|$ to mean $\left(\left|x_{n}\right|\right)$. The pointwise multiplication of two sequences x and y is denoted by $x \cdot y$; i.e., $x . y=\left(x_{n} y_{n}\right)$. The matrix multiplication of two sequences is. denoted by $x y$; i.e., $x y=\sum_{n=1}^{\infty} x_{n} y_{n}$. We also adopt the following notation: $e, e^{k} \in \omega$ are given by $e=(1,1, \ldots \ldots)$
$e^{k}=(0, \ldots, 0,1,0, \ldots)$ with the one in the k th position;
φ is the linear span of $\left\{e^{k} \mid k \in \mathbb{N}\right\}$;
$m=\left\{x \in \omega\left|\|x\|_{\infty}=\sup _{n}\right| x_{n} \mid<\infty\right\} ;$
$c=\left\{x \in \omega \mid \lim _{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right.$ exists $\} ;$
$c_{0}=\left\{x \in c \mid \lim _{n} x_{n}=0\right\} ;$
$a c=\left\{x \in \omega \mid \underset{p}{\lim }\left(x_{n+1}+x_{n+2}+\ldots+x_{n+p}\right) / p\right.$ exists uniformly in $\left.n\right\}$

$$
\begin{aligned}
a c_{0} & =\left\{x \in a c \mid \lim _{\mathrm{p}}\left(x_{n+1}+x_{n+2}+\ldots+x_{n+p}\right) / p=0 \text { uniformly in } n\right\} . \\
\ell_{1} & =\left\{x \in \omega\left|\|x\|_{1}=\sum_{n=1}^{\infty}\right| x_{n} \mid<\infty\right\}
\end{aligned}
$$

We consider only sequence spaces containing φ. For $\mathbf{x} \in \omega$, we write

$$
P_{n} x=\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots\right)
$$

For any subset M of \mathbb{N}, we denote the characteristic function of M by X_{M}; i.e.,

$$
\left(X_{M}\right)_{k}= \begin{cases}1 & \text { if } k \in M \\ 0 & \text { if } k \in N \quad M\end{cases}
$$

DEFINTTION 1, A sequence space E is called monotone if $X_{M} \cdot x \in E$ for every $x \in E$ and every $M \subseteq N$.

For a subset S of $\omega,\langle S\rangle$ denotes the linear span of S, If E and F are two subspaces of ω, then $E \notin$ denotes the direct sum of E and F.

§3. Topologies on sequence spaces.

DEFINITION 1. A sequence space E with a locally convex topology τ is called a K-space provided that the linear functionals

$$
x \rightarrow x_{n}(n=1,2, \ldots)
$$

are continuous on E. If, in addition, (E, τ) is complete and metrizable, then (E, τ) is called an FK-space.

DEFINITION 2. A K-space (E, τ) is called an AD-space if φ is dense in E.

DEFINITION 3. A K-space (E, τ) is called an AK-space if ($P_{n} x$) converges to \mathbf{x} for every $\mathrm{x} \in \mathrm{E}$.

An FK-space has a topology generated by annincreasing sequence of seminorms. If E, F are two $F K$-spaces with $E \subseteq F$, then the FK-topology of E is finer than the $F K$-topology of F restricted to E. In particular, the topology of an FK-space is unique.

The topological dual of a K-space (E, τ) is usually denoted by E^{\prime}. For some important K-spaces, E^{\prime} cannot be represented as a sequence space. To deal with this situation Köthe and Toeplitz [12] introduced the α-dual and β-dual of sequence spaces.

DEFINITION 4. Let E be a sequence space and define
(i) $E^{\alpha}=\left\{x \in \omega\left|\sum_{n=1}^{\infty}\right| x_{n} y_{n} \mid<\infty\right.$ for every $\left.y \in E\right\}$, and
(ii) $E^{\beta}=\left\{x \in \omega \mid \sum_{n=1}^{\infty} x_{n} y_{n}\right.$ converges for every $\left.y \leq E\right\}$.

Then E^{α} and E^{β} are called the α - and β-dual of E, respectively. There is a natural way of defining K-space topologies by considering dual pairs of sequence spaces. For a given sequence space E, let F denote a subspace of E^{β} with $\varphi \subseteq F$. Then E and F form a dual system under the bilinear functional $\langle x, y\rangle$, where

$$
\langle x, y\rangle=\sum_{n=1}^{\infty} x_{n} y_{n}, x \in E, y \in F .
$$

Any K-space topology on E is said to be compatible with the dual system $\langle E, F\rangle$ if $E^{\prime}=F$. The weak topology $\sigma(E, F)$ is the smallest compatible topology on E. For each $\sigma(F, E)$-bounded subset K of F, define the seminorm p_{K} on E by

$$
\mathrm{p}_{\mathrm{K}}(\mathrm{x})=\sup _{\mathrm{y} \in \mathrm{~K}}|\langle\mathrm{x}, \mathrm{y}\rangle|
$$

If F is a family of $\sigma(F, E)$ bounded subsets of F, then the topology on E generated by the collection of seminorms $\left\{p_{K} \mid K \in F\right\}$ is called the topology of uniform convergence on members of F. The topology of uniform convergence on convex $\sigma(F, E)$-compact subsets of F is called the Mackey topology and denoted by $\tau(E, F)$. The Mackey topology is the largest compatible topology on E. The topology of uniform convergence on $\sigma(F, E)$-bounded subsets of F is called the strong topology and denoted by $\beta(E, F)$.

The following important results concerning dual systems can be found in [23].

PROPOSITION 1. Let $\langle E, F\rangle$ be a dual pair of sequence spaces. If A is a convex subset of E, then the $\sigma(E, F)$-closure of A coincides with the $\tau(E, F)$-closure of A.

PROPOSITION 2. Let $\langle E, F\rangle$ be a dual pair of sequence spaces and let τ be a compatible topology on E. Suppose $\left(x^{n}\right)$ is a τ-Cauchy sequence in E. If $\left(x^{n}\right)$ is $\sigma(E, F)$-convergent to x in E, then (x^{n}) is τ-convergent to x in E.

If $\langle E, F\rangle$ is a dual pair of sequence spaces, then
Proposition 1 implies that $(E, \tau(E, F))$ is an $A D$-space. The following result concerning dual pairs is known as the Grothendieck criterion.

THEOREM 1. Let $\langle E, F\rangle$ be a dual pair, and let F be a family of $\sigma(F, E)$ bounded subsets of F. Suppose the topology τ (on E) of uniform convergence on members of F is compatible with the dual pair $\langle E, F\rangle$. Then (E, τ) is complete if every linear functional on F, which is $\sigma(F, E)$-continuous on members of F, belongs to E.

A comprehensive study of dual systems including the proof of Theorem 1 is contained in [23].

A topological space X is called separable if X has a countable dense subset.

PROPOSITION 3. Every AD-space is separable.

Proof. Let E be an $A D$-space. We claim that $D=\left\{x=\left(x_{k}\right) \in \varphi \mid x_{k} \leqslant Q\right.$ for every $k \in \mathbb{N}\}$ is a countable dense subset of E. For each finite subset M of \mathbb{N}, let $D_{M}=\left\{x \in D \mid x_{k}=0\right.$ for $\left.k \notin M\right\}$. Then D_{M} is
countable and, moreover, $D=U\left\{D_{M} \mid M\right.$ is a finite subset of $\left.\mathbb{N}\right\}$. Since the collection of finite subsets of \mathbb{N} is countable, D is also countable. Now let $x \in E$, and let p be a continuous seminorm on E. Let $\varepsilon>0$. Since E is $A D$, there exists $Y \in \varphi$ such that $\mathrm{p}(\mathrm{x}-\mathrm{y})<\frac{\varepsilon}{2}$. Since $\mathrm{y} \in \varphi$, there exists $\mathrm{m} \leqslant \mathrm{N}$ such that $y=\sum_{k=1}^{m} y_{k} e^{k}$. For each $k(\leq m)$, let $\left(. y_{k n}\right)_{n=1}^{\infty}$ be a sequence in Q such that $\lim _{\mathrm{n}} \mathrm{y}_{\mathrm{kn}}=\mathrm{y}_{\mathrm{k}}$ in \mathbb{R}. Since E is a topological vector space, $\lim _{n} y_{k n} e^{k}=y_{k} e^{k}$ in E and hence $\lim _{n} \sum_{k=1}^{m} y_{k n} e^{k}=\sum_{k=1}^{m} y_{k} e^{k}=y \quad$ in $\quad E . \quad$ Thus there exists $n_{0} \subseteq N^{N}$ such that $p\left(\sum_{k=1}^{m} Y_{k n_{o}} e^{k}-y\right)<\varepsilon / 2$. Therefore,

$$
p\left(\sum_{k=1}^{m} y_{k n_{0}} e^{k}-x\right) \leq p\left(\sum_{k=1}^{m} Y_{k n_{0}} e^{k}-y\right)+p(y-x)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

Since $\sum_{k=1}^{m} y_{k n_{0}} e^{k} \in D$, it follows that D is a dense subset of E.
§4. Topological properties of K -spaces.

The following fundamental result characterizes compact subsets of a K-space. The proof is given in [9, p. 1010].

THEOREM 1. Let (E, τ) be a K-space. Then M is a relatively compact (respectively, compact) subset of E if and only if M is a relatively sequentially compact (respectively, sequentially compact) subset of E .

THEOREM 2. Let τ_{1}, τ_{2} be two K-space topologies on a sequence space E. Then the following statements are equivalent:
(i) E has the same convergent sequences with respect to τ_{1} and τ_{2};
(ii) E has the same Cauchy sequences with respect to τ_{1} and τ_{2};
(iii) E has the same rull sequences (sequences converging to 0) with respect to τ_{1} and τ_{2};
(iv) E has the same compact sets with respect to ${ }^{{ }^{1}} 1$ and τ_{2}.

The proof of $($ (i) \Leftrightarrow (ii) \Leftrightarrow (iii) $)$ is given in [22, p. 343].
Applying Theorem 1, one can easily show that ((i) \Rightarrow (iv) \Rightarrow (iii)).

We denote by m_{o} the linear span of all sequences taking only the values zero and one. It is easy to check that m_{0} is dense in ($m,\| \|_{\infty}$). Now we state the well-known Schur's lemma. The proof of this lemma is given in $[23$, p. 4].

THEOREM 3. A sequence $\left(x^{n}\right)$ in ℓ_{1} is $\sigma\left(\ell_{1}, m_{0}\right)$-convergent if and only if $\left(x^{n}\right)$ is ℓ_{1}-norm convergent.

The following theorem, characterizing relatively compact subsets of ℓ_{1}, is stated in [5, p. 563] without proof. We give an elementary proof.

THEOREM 4. An ℓ_{1}-norm bounded subset K of ℓ_{1} is relatively compact if and only if $\lim _{n} \sup _{x \in \mathbb{K}} \sum_{i=n}^{\infty}\left|x_{i}\right|=0$.

Proof. (Necessity) Suppose a bounded subset K of ℓ_{1} is relatively compact. Assume that $\lim _{\mathrm{n}}^{\sup } \mathrm{x}_{\mathrm{K}} \sum_{i=n}^{\infty}\left|\mathrm{x}_{\mathrm{i}}\right| \neq 0$. Then there exists an $\varepsilon>0$, a strictly increasing sequence $\left(n_{m}\right)$ of positive integers and a sequence $\left(x^{m}\right)$ in K such that
(1) $\sum_{i=n_{m}}^{\infty}\left|x_{i}^{m}\right|>\varepsilon$.

Since K is relatively sequentially compact, there exists a subsequence $\left(x^{m}\right)^{m}$ of $\left(x^{m}\right)$ such that $\left(x^{m_{k}}\right)$ converges in ℓ_{1}. Let $\lim _{x^{m} k}^{k}=x$. Since $x \in \ell_{1}$, there exists $p \in \mathbb{N}$ such that
(2) $\sum_{i=p}^{\infty}\left|x_{i}\right|<\varepsilon / 2$.

Since $\left(x^{m_{k}}\right)$ converges to x in ℓ_{1} there exists $k_{0}(>p) \in \mathbb{N}$ such that
(3) $\sum_{i=1}^{\infty}\left|x_{i}^{m}-x_{i}\right|<\varepsilon / 2$ for $k \geq k_{o}$.

Now, for $k \geq k_{o}$,

$$
\begin{aligned}
\sum_{i=n_{m_{k}}}^{\infty}\left|x_{i}^{m}\right| & \leq \sum_{i=p}^{\infty}\left|x_{i}^{m}\right| \quad\left(\text { since } p<k_{o} \leq k \leq n_{m_{k}}\right) \\
& \leq \sum_{i=p}^{\infty}\left|x_{i}{ }^{m}-x_{k}\right|+\sum_{i=p}^{\infty}\left|x_{k}\right| \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon \quad \text { by (2) and (3). }
\end{aligned}
$$

 (Sufficiency) Suppose K is a bounded subset of ℓ_{1} such that $\lim _{n} \sup _{x \in K} \sum_{i=n}^{\infty}\left|x_{i}\right|=0$. Let $\left(x^{n}\right)$ be a sequence in K. Since n $\quad x \in K \quad i=n$
$\left(x^{n}\right)$ is pointwise bounded, there exists a subsequence $\left(x^{n}\right)$ of $\left(x^{n}\right)$ such that $\left(x^{n k}\right)$ converges pointwise to a member x of ω. Since $\left(x^{n}\right)$ is ℓ_{1}-norm bounded, $x \in \ell_{1}$. To show that $\left(x^{n}\right)$ converges to x in $\left(\ell_{1},\| \|_{1}\right)$, let $\varepsilon>0$. Choose $p \in \mathbb{N}$ such that, for $k \in \mathbb{N}$,
(4) $\sum_{i=p}^{\infty}\left|x_{i}{ }^{n}\right|<\varepsilon / 3$ and $\sum_{i=p}^{\infty}\left|x_{i}\right|<\varepsilon / 3$.

Also we can choose $k_{o} \in \mathbb{I N}$ such that
(5) $\sum_{i=1}^{\mathrm{p}-1}\left|\mathrm{x}_{\mathrm{i}}^{\mathrm{n}_{\mathrm{k}}}-\mathrm{x}_{\mathrm{i}}\right|<\varepsilon / 3$ for $\mathrm{k} \geq \mathrm{k}_{\mathrm{O}}$.

Now, for $k \geq k_{o}$,

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}^{n} n_{k}-x_{i}\right| & \leq \sum_{i=1}^{p-1}\left|x_{i}^{n}-x_{i}\right|+\sum_{i=p}^{\infty}\left|x_{i}^{n}\right|+\sum_{i=p}^{\infty}\left|x_{i}\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon \text { by (4) and (5) . }
\end{aligned}
$$

For a given FK-space E, the sets S_{E} and W_{E} are defined by:

$$
\begin{aligned}
& S_{E}=\left\{x \in E \mid x=\sum_{k=1}^{\infty} e^{k} x_{k}\right\} ; \\
& W_{E}=\left\{x \in E \mid f(x)=\sum_{k=1}^{\infty} f\left(e^{k}\right) x_{k} \quad \text { for every } f \in E^{\prime}\right\}
\end{aligned}
$$

The following results concerning FK-spaces containing c_{o} are . given in [5, p. 565].

THEOREM 5. An FK-space E contains c_{o} if and only if $\left(f\left(e^{k}\right)\right) \in \ell_{1}$ for every $f \in E^{\prime}$.

THEOREM 6. For any FK-space E containing $c_{o}, c_{O} \subseteq S_{E} \subseteq W_{E}$.
Let X be a vector space over \mathbb{R} with two homogeneous norms $\|\|$ and $\| \|^{*}$. Also assume that $\|\|$ is finer than $\| \|^{*}$. Then $\left(x,\| \|,\| \|^{*}\right)$ is called a two-norm space. A sequence $\left(x_{n}\right)$ in X is said to be two-norm convergent to a member x in X if $\sup _{n}\left\|x_{n}\right\|<\infty$ and $\lim _{n}\left\|x_{n}-x\right\|^{*}=0$. A linear functional f on x is called a two-norm linear functional if $\lim _{n} f\left(x_{n}\right)=0$ for every (X_{n}) in x such that $\left(x_{n}\right)$ is two-norm convergent to 0 . The following result regarding two-norm linear functionals is given in [1, p. 130].

THEOREM 7. Let $\left(X,\| \|,\| \|^{*}\right)$ be a two-norm space. Then f is a two-norm linear functional on X if and only if f is in the closure of the dual of $\left(x,\| \|^{*}\right)$ in ($x,\| \|$).

§5. Infinite matrices.

$$
\text { Given an infinite matrix } A=\left(a_{n k}\right) \text {, we define the set } \omega_{A}
$$

to be $\left\{x \in \omega \mid \sum_{k=1}^{\infty} a_{n k} x_{k}\right.$ converges for every $\left.n \in \mathbb{N}\right\}$. For $x \in \omega_{A}$, we write $y=A x$ to mean that $y_{n}=(A x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k}$ for each n. Given a sequence space E and an infinite matrix A, we define the set E_{A} to be $\left\{x \in \omega_{A} \mid A x \in E\right\}$. It is easy to verify that E_{A} is a sequence space. When $E=c$, this set is called the convergence domain of A. If $x \in c_{A}, \lim _{n}(A x)_{n}$ exists and we denote this limit by $\lim _{A} x$. Zeller [25] proved that, for any FK-space E, E_{A} is also an FK-space. Bennett [3] proved that E_{A} is a separable FK-space if E is a separable $F K$-space. For convenience, we write W_{A}.for $W_{C_{A}}$.
Let $A=\left(a_{n k}\right)$ be an infinite matrix. If $\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|<\infty$, we say that A has a finite norm and write $\|A\|=\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right|$. A matrix A is called regular if c_{A} contains c and $\lim _{A} x=\lim _{n} x_{n}$ for every $x \in c . A$ main theorem of summability theory is the Silverman-Toeplitz theorem which characterizes regular matrices. The proof of this theorem can be found in $[24$, p. 6].

THEOREM 1. A matrix A is regular if and only if the following conditions hold:

$$
\text { (i) }\|A\|<\infty \text {; }
$$

(ii) $\quad \lim _{n} a_{n k}=0$ for $k=1,2, \ldots$;
(iii) $\lim _{n} \sum_{k=1} a_{n k}=1$.

The proof of the following result is given in [18, p. 568].

THEOREM 2. Let A be a matrix such that
(i) $\|A\|<\infty$, and
(ii) $\lim _{\mathrm{n}} \mathrm{a}_{\mathrm{nk}}=0$ for $k=1,2, \ldots$. Then $W_{A} \cap \mathrm{~m}=c_{o_{A}} \cap \mathrm{~m}$. The following associative laws for matrices are given in [24, p. 8]. We frequently use them in Chapter 3.

THEOREM 3. Let A, B and C be matrices with finite norms. Let $t \in \ell_{1}$ and $x \in m$. Then the following laws hold:
(i) $t(A x)=(t A) x . \quad$ Here $t(A x)=\sum_{n=1}^{\infty} t_{n}(A x)_{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} t_{n} a_{n k} x_{k}$
and $\left.(t A) x=\sum_{k=1}^{\infty}(t A)_{k} x_{k}=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} t_{n} a_{n k} x_{k}\right)$;
(ii) ($A B) C=A(B C)$;
(iii) ($A B) x=A(B X)$.

SEQUENTIAL COMPLETENESS

§1. Introduction.

In many situations the sequence spaces under consideration are not complete. It is known that important results in the general theory can be established under the weaker hypothesis of sequential completeness (e.g., the uniform boundedness theorem). Furthermore, in their papers ([5], [4]) Bennett and Kalton observed that the bounded consistency theorem is implied by the sequential completeness of ℓ_{1} under suitable weak topologies. Two different methods are generally used to establish the sequential completeness of ℓ_{1} under such topologies. The first one uses elementary gliding hump arguments, while the second uses more sophisticated functional analysis methods involving Orlicz-Pettis type results. Both rely on some structural properties of the subspace of m which generates the weak topology on ℓ_{1}.

In this chapter we obtain a characterization of those subspaces of m whose β-dual is ℓ_{1}, and then obtain an external characterization of those subspaces of m that generate sequentially complete weak topologies on ℓ_{1}. As a consequence of these results, we answer some open questions about $F K$-spaces raised in [24].
§2. Definitions and basic results.

DEFINITION 1. A sequence space (E, τ) is called sequentially complete if every Cauchy sequence in $E \quad \tau$-converges to a member of E. The following result is essentially contained in [24, p. 253].

PROPOSITION 1. Let $\langle E, F\rangle$ be a dual pair of sequence spaces. Then a sequence $\left(a^{n}\right)$ of members of E is $\sigma(E, F)$-Cauchy if and only if $F \subseteq C_{A}$, where $A=\left(a_{n k}\right)$ is the infinite matrix whose nth row is a^{n}.

Proof. Suppose $\left(a^{n}\right)$ is $\sigma(E, F)$-Cauchy, and let $x \in F$. Then $\left(\sum_{k=1}^{\infty} a_{k}^{n} x_{k}\right)_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}. Since \mathbb{R} is complete,
$:\left(\sum_{k=1}^{\infty} a_{k}^{n} x_{k}\right)_{n=1}^{\infty} \in c$. This means that $A x \in c$ and hence $x \in c_{A}$. Thus $F \subseteq C_{A}$.

Suppose $F \subseteq c_{A}$. Then $\left(\sum_{k=1}^{\infty} \sum_{k}^{n} x_{k}\right)_{n=1}^{\infty} \in c$ for every $x \in F$.
This implies that $\left(a^{n}\right)$ is $\sigma(E, F)$-Cauchy.

PROPOSITION 2. Let $\langle E, F\rangle$ be a dual pair of sequence spaces, and suppose $(E, \sigma(E, F))$ is sequentially complete. Then $F^{\beta}=E$. Proof. Since $\langle E, F\rangle$ is a dual pair, $E \subseteq F^{\beta}$. Let $x \in F^{\beta}$. Then $\sum_{k=1}^{\infty} x_{k} y_{k}$ converges for every $y \in F$. This implies that $\quad\left(P_{n} x\right)_{n=1}^{\infty}$ is is $\sigma(E, F)$-Cauchy since $\varphi \subseteq E$. Since $(E, \sigma(E, F))$ is sequentially complate, $\left(P_{n} x\right)_{n=1}^{\infty}$ is $\sigma(E, F)$-convergent to x in E. Hence $x \in E$ and thus $F^{\beta} \subseteq E$,

The following proposition states a well known result for monotone sequence spaces (see 1.2 Definition 1). The proof can be found in [10, p. 188].

PROPOSITION 3. Let <E,F > be a dual pair of sequence spaces such that $F^{\beta}=E$. If F is monotone, then $(E, \sigma(E, F))$ is sequentially complete. The following result is generally known for normed spaces.

PROPOSITION 4. Let $(X,\| \|)$ be a normed space, and let Y be a subspace of X^{\prime}-the dual space of X. Then every norm bounded $\sigma(X, Y)$-Cauchy sequence $\left(X_{n}\right)$ in X is $\sigma(X, \bar{Y})$-Cauchy. Here \bar{Y} is the closure of Y with respect to the usual norm topology on X^{\prime}. Moreover, if $\left(x_{n}\right)$ is $\sigma(X, Y)$-convergent, then $\left(X_{n}\right)$ is $\sigma(X, \bar{Y})$-convergent.

Proof. Suppose $\left(X_{n}\right)$ is a norm bounded $\sigma(X, Y)$-Cauchy sequence in X. Let $g \in \bar{Y}$ and $\varepsilon>0$. Then there exists $h \in Y$ such that $\|g-h\|<\frac{\varepsilon}{4 \sup _{n}\left\|x_{n}\right\|}$. Choose $n_{0} \in \mathbb{N}$ such that $\left|h\left(x_{n}-x_{m}\right)\right|<\varepsilon / 2$ for $n, m \geq n_{0}$. Thus, for $n, m \geq n_{0}$,

$$
\begin{aligned}
\left|g\left(x_{n}-x_{m}\right)\right| & \leq\left|(g-h)\left(x_{n}-x_{m}\right)\right|+\left|h\left(x_{n}-x_{m}\right)\right|<\|g-h\|\left\|x_{n}-x_{m}\right\|+\varepsilon / 2 \\
& \leq\|g-h\| \cdot 2 \sup _{n}\left\|x_{n}\right\|+\varepsilon / 2<\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Hence $\left(X_{n}\right)$ is $\sigma(X, \bar{Y})$-Cauchy. The last part can be proved by a similar argument.

§3. Weak topologies on ℓ_{1}.

Proposition 2 of the previous section implies that the β-dual of every subspace E of m which generates a sequentially complete weak topology on ℓ_{1} must be ℓ_{1}. But $E^{\beta}=\ell_{1}$ is not a sufficient condition for sequential completeness of the corresponding weak topology on ℓ_{1}. For instance, $\left(l_{1}, \sigma\left(l_{1}, c\right)\right)$ is not sequentially complete, though $c^{\beta}=\ell_{1}$. It seems difficult to obtain an internal characterization of such subspaces of m. The following theorem, however, characterizes subspaces of m whose β-dual is ℓ_{1}, and consequently we obtain a useful external characterization of subspaces of m generating sequentially complete weak topologies on ℓ_{1}.

THEOREM 1. Let E be a subspace of m containing φ. Then the following are equivalent:
(i) $E^{\beta}=\ell_{1}$;
(ii) every $\sigma\left(\ell_{1}, E\right)$-bounded sequence in ℓ_{1} is ℓ_{1}-norm bounded;
(iii) every $\sigma\left(\ell_{1}, \Sigma\right)$-bounded subset of ℓ_{1} is ℓ_{1}-norm bounded;
(iv) every $\sigma\left(\ell_{1}, E\right)$-Cauchy sequence in ℓ_{1} is ℓ_{1}-norm bounded;
(v) every $\sigma\left(\ell_{1}, E\right)$-Cauchy sequence in ℓ_{1} is $\sigma\left(\ell_{1}, \varphi\right)$-convergent.

Proof. $\quad(i) \Rightarrow$ (ii)). Suppose $E^{\beta}=\ell_{1}$, and let $\left(x^{n}\right)$ be a $\sigma\left(\ell_{1}, E\right)$-bounded sequence in ℓ_{1}. Suppose $\sup _{\mathrm{n}}\left\|\mathrm{x}^{\mathrm{n}}\right\|=\infty$. Since $\left(\mathrm{x}^{\mathrm{n}}\right)$ is $\sigma\left(\ell_{1}, E\right)$-bounded and $\varphi \subseteq E$,
(1) $\sup _{n} \sum_{k=1}^{p}\left|x_{k}^{n}\right|<\infty$ for $p=1,2, \ldots$.

Let $k_{1}=1$. Choose $n_{1} \in \mathbb{N}$ such that $\left\|x^{n}\right\|_{1}>(2+1) \sup _{n}\left|x_{1}^{n}\right|+2+1$, and then $k_{2}\left(>k_{1}\right) \in \mathbb{N}$ such that $\sum_{k=k_{2}+1}^{\infty}\left|x_{k}^{n}\right|<1$. Note that $\sum_{k=2}^{k_{2}}\left|x_{k}^{n^{1}}\right|>2\left|x_{1}^{n_{1}}\right|+2$, i.e., $\sum_{k=k_{1}+1}^{k_{2}}\left|x_{k}^{n^{n}}\right|>2 \sum_{k=1}^{k_{1}}\left|x_{k}^{n^{1}}\right|+2$. Since
k_{2}
$\sup _{n} \sum_{k=1}^{2}\left|x_{k}^{n}\right|<\infty$ by (1), we can choose $n_{2}\left(>n_{1}\right) \in \mathbb{N}$ such that
$\left\|x^{n_{2}}\right\|_{1}>\left(2^{2}+1\right) \sup _{n} \sum_{k=1}^{k_{2}}\left|x_{k}^{n}\right|+2^{2}+1$, and then $k_{3}\left(>k_{2}\right) \in \mathbb{N}$ such that
$\sum_{k=k_{3}+1}^{\infty}\left|x_{k}^{n_{2}}\right|<1$. Note that $\sum_{k=k_{2}+1}^{k_{3}}\left|x_{k}^{n_{2}}\right|>2^{2} \sum_{k=1}^{k_{2}}\left|x_{k}^{n_{2}}\right|+2^{2}$. We
can proceed to choose strictly increasing sequences (k_{r}) and (n_{r}) of positive integers such that:
(2) $M_{r}=\sum_{k=k_{r}+1}^{k_{r+1}}\left|x_{k}^{n_{r}}\right|>2^{r} \sum_{k=1}^{k_{r}}\left|x_{k}{ }^{n}\right|+2^{r}$;
(3) $\sum_{k=k_{r+1}+1}^{\infty}\left|x_{k}^{n}\right|<1$.

From (2) $\left(\frac{1}{M_{r}}\right)_{r=1}^{\infty} \in \ell_{1}$. Let $y_{k}=\frac{x_{k}^{n_{r}}}{r M_{r}}$ for $k_{r}<k \leq k_{r+1}$. Then (y_{k})
is a sequence of real numbers such that
(4) $\sum_{k=k_{r}+1}^{k_{r+1}}\left|y_{k}\right|=\frac{1}{r}$.
(4) implies that $\left(y_{k}\right) \notin \ell_{1}$. Let $z \in E$. Then, for any $r \in \mathbb{N}$,
$\left|\sum_{k=1}^{k+1} x_{k}^{n} r_{z_{k}}\right| \leq\left|\sum_{k=1}^{\infty}{ }^{n}{ }_{k} r^{n} z_{k}\right|+\sum_{k=k} \sum_{r+1}^{\infty}\left|x_{k}^{n} r_{k}\right| \leq\left|\sum_{k=1}^{\infty} x_{k}^{n} r_{k}\right|+\|z\|_{\infty}$
by (3). Since $\left(x^{n}\right)$ is $\sigma\left(\ell l_{1}, E\right)$-bounded, $\sup _{r}\left|\sum_{k=1}^{\infty} x_{k}^{n} r_{k}\right|<\infty$ and hence
 $\left(\frac{1}{r M_{r}}\right)_{r=1}^{\infty} \in \ell_{1}$.

$$
\leq\|z\|_{\infty} \sum_{r=1}^{\infty} \frac{1}{r 2^{r}} \quad(\text { by }(2))<\infty
$$

Hence $\sum_{r=1}^{\infty} \frac{1}{r M_{r}}\left(\sum_{k=k_{r}+1}^{k_{r+1}}{ }_{x_{k}{ }^{n} z_{k}}\right.$) converges. Now we show that $\sum_{k=1}^{\infty} y_{k} z_{k}$ is
Cauchy. Let $\varepsilon>0$. Choose $r_{o} \in \mathbb{N}$ such that:
(5) $\left|\sum_{r=\ell}^{m} \frac{1}{r M_{r}}\left(\sum_{k=k_{r}+1}^{k_{r+1}} x_{k}^{n_{r}} z_{k}\right)\right|<\varepsilon / 3$ for $\ell, m \geq r_{0}$;
(6) $\frac{l}{r_{0}}<\frac{\varepsilon}{3\|z\|_{\infty}}$.

Let $p, q \in \mathbb{N}$ such that $k_{r_{0}}<p \leq q$. Then there exist $s, t \in \mathbb{N}$ such that $k_{s}<p \leq k_{s+1}$ and $k_{t}<q \leq k_{t+1}$. Note that $r_{0} \leq s \leq t$.

Case 1. s = t.

$$
\begin{aligned}
& \left|\sum_{k=p}^{q} y_{k} z_{k}\right| \leq \sum_{k=p}^{q}\left|y_{k} z_{k}\right| \leq \sum_{k=k_{s}+1}^{k_{s+1}}\left|y_{k} z_{k}\right| \leq\|z\|_{\infty} \frac{1}{s} \quad(\text { by }(4)) \leq \frac{\|z\|_{\infty}}{r_{0}}<\varepsilon / 3 \\
& \quad(\text { by (6)) }<\varepsilon .
\end{aligned}
$$

Case 2. $\quad \mathrm{t}=\mathrm{s}+1$.

$$
\begin{aligned}
\left|\sum_{k=p}^{q} y_{k} z_{k}\right| & \leq \sum_{k=p}^{k_{s+1}}\left|y_{k} z_{k}\right|+\sum_{k=k_{s+1}}^{q}\left|y_{k} z_{k}\right| \leq \sum_{k=k_{s}+1}^{k}\left|y_{k} z_{k}\right|+\sum_{k=k_{s+1}}^{k_{s+1}}\left|y_{k} z_{k}\right| \\
& \leq\|z\|_{\infty} \frac{1}{s}+\|z\|_{\infty} \frac{1}{s+1} \quad \text { (by (4)) } \leq\|z\|_{\infty} \frac{2}{r_{0}}<\frac{2 \varepsilon}{3} \quad \text { (by (6)) }<\varepsilon .
\end{aligned}
$$

Case 3. \quad > s+1.

$$
\begin{align*}
& \left|\sum_{k=p}^{q} y_{k} z_{k}\right| \leq \sum_{k=p}^{k_{s+1}}\left|y_{k} z_{k}\right|+\left|\sum_{k=k}^{k_{s+1}} \dot{y}_{k} z_{k}\right|+\sum_{k=k_{t}+1}^{q}\left|y_{k} z_{k}\right| \\
& \leq \sum_{k=k_{s}+1}^{k_{s+1}}\left|y_{k} z_{k}\right|+\left|\sum_{r=s+1}^{t-1}\left(\sum_{k=k_{r}+1}^{k_{r+1}} y_{k} z_{k}\right)\right|+\sum_{k=k_{t}+1}^{k_{t+1}}\left|y_{k} z_{k}\right| \\
& \leq\|z\|_{\infty} \cdot \frac{1}{s}+\left|\sum_{r=s+1}^{t-1} \frac{1}{r M_{r}}\left(\sum_{k=k_{r}+1}^{k_{r+1}}{ }^{n_{k}}{ }^{r} z_{k}\right)\right|+\|z\|_{\infty} \cdot \frac{1}{t} \quad \text { (by } \tag{4}\\
& \text { and since } y_{k}=\frac{x_{k}{ }^{r_{r}}}{r M_{r}} \text { for } k_{r}<k \leq k_{r+1} \text {) } \\
& <\|z\|_{\infty} \cdot \frac{1}{r_{0}}+\frac{\varepsilon}{3}+\|z\|_{\infty} \cdot \frac{1}{r_{0}} \text { (by (5) since } r_{0}<s+1 \leq t-1 \text {) } \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \text { (by (6)) }=\varepsilon \text {. }
\end{align*}
$$

Thus $\sum_{k=1}^{\infty} y_{k} z_{k}$ is Cauchy and hence convergent. Since $\left(z_{k}\right)$ is arbitrary in $E,\left(y_{k}\right) \in E^{\beta}$. This contradicts that $E^{\beta}=\ell_{1}$ since $\left(y_{k}\right) \& \ell_{1}$. $((i i) \Rightarrow(i i i))$ and ($($ iii) \Rightarrow (iv)) are obvious.
((iv) $\Rightarrow(v))$. Suppose condition (iv) holds. Let (x^{n}) be $\sigma\left(\ell_{1}, E\right)$-Cauchy. Then $\left(x^{n}\right)$ is $\sigma(\omega, \varphi)$-Cauchy. Hence there exists $x \in \omega$ such that $\left(x^{n}\right)$ is $\sigma(\omega, \varphi)$-convergent to x. Since $\sup _{n}\left\|x^{n}\right\|_{1}<\infty$, $\sum_{k=1}^{m}\left|x_{k}\right|=\sum_{k=1}^{m} \lim _{n}\left|x_{k}^{n}\right| \leq \sup _{n}\left\|x^{n}\right\|_{1}<\infty \quad$ for $\quad m \in N, \quad$ and hence $\quad x \in \ell_{1}$. Thus $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, \varphi\right)$-convergent.
$((v) \Rightarrow(i))$. Suppose condition (v) holds, and let $x \in E^{\beta}$. Then $\sum_{k=1}^{\infty} x_{k} y_{k}$ converges for every $y \in E$ and hence $\left(P_{n} x\right)_{n=1}^{\infty}$ is $\sigma\left(\ell_{1}, E\right)$-Cauchy. Thus $\left(P_{n} x\right)_{n=1}^{\infty}$ is $\sigma\left(\ell_{1}, \varphi\right)$-convergent. This implies that $x \in \ell_{1}$ and hence $E^{\beta} \subseteq \ell_{1}$. Since $E \subseteq m, \ell_{1} \subseteq E^{\beta}$.

COROLLARY 1. Let E be a subspace of m containing φ. Then the following are equivalent:
(i) $E^{\beta}=\ell_{1}$;
(ii) for every matrix $A=\left(a_{n k}\right)$ such that $E \subseteq C_{A^{\prime}}\|A\|<\infty$. Proof. $((i) \Rightarrow(i i))$. Assume $E^{\beta}=\ell_{1}$ and suppose $A=\left(a_{n k}\right)$ is a matrix such that $E \subseteq c_{A}$. Then $\left(a^{n}\right)_{n=1}^{\infty}$ is a sequence in ℓ_{1}, where
$a^{n}=\left(a_{n k}\right)_{k=1}^{\infty}$. By Proposition 1 of $\S 2,\left(a^{n}\right)$ is $\sigma\left(\ell_{1}, E\right)$-Cauchy. By Theorem $1\left((i) \Rightarrow\right.$ (iv)), $\|A\|=\sup _{n}\left\|a^{n}\right\|_{1}<\infty$.

$$
C(i i)=(i)) \text {. Assume condition (ii) and let } t \in E^{\beta} \text {. }
$$

Define a matrix $A=\left(a_{n k}\right)$ by

$$
a_{n k}=\left\{\begin{array}{l}
t_{k} \text { if } 1 \leq k \leq n \\
0 \text { if } k>n .
\end{array}\right.
$$

Since $t \in E^{\beta}, E \subseteq c_{A}$ and hence $\|A\|<\infty$. This implies that $t \in \ell_{1}$ so that $E^{\beta} \subseteq \ell_{1}$. Since $E \subseteq m, \ell_{1} \subseteq E^{\beta}$.

COROLLARY 2. Let E be a subspace of m containing φ such that ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete, and let $A=\left(a_{n k}\right)$ be an infinite matrix. If $E \subseteq c_{A}$, then $\|A\|<\infty$ and $\left(a^{n}\right)$ is $\sigma\left(\ell_{1}, E\right)$ convergent, where $a^{n}=\left(a_{n k}\right)_{k=1}^{\infty}$.

Proof. Since ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete, $E^{\beta}=\ell_{1}$ by Proposition 2 of §2. Hence $\|A\|<\infty$ by Corollary 1. Also, by Proposition 1 of $\S 2,\left(a^{n}\right)$ is $\sigma\left(\ell_{1}, E\right)$-Cauchy. Since ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete, $\left(a^{n}\right)$ is $\sigma\left(\ell_{1}, E\right)$-convergent.

Now we use Theorem 1 to obtain an external characterization of those subspaces of m generating sequentially complete weak topologies on k_{1}.

THEOREM 2. Let E be a subspace of m containing φ. Then ℓ_{1} is $\sigma\left(l_{1}\right.$, E) -sequentially complete if and only if
(i) $E^{\beta}=\ell_{1}$, and
(ii). $E \subseteq c_{A} \Rightarrow E \subseteq c_{O_{A}}$, whenever A is an infinite matrix such that $\|A\|<\infty$ and such that each column of A belongs to c_{0}.

Proof. (Necessity). Suppose ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete. Then $E^{\beta}=\ell_{1}$ by Proposition 2 of $\S 2$. Let $A=\left(a_{n k}\right)$ be an infinite matrix such that $\|A\|<\infty$ and such that each column of A belongs to c_{0}. Suppose $E \subseteq c_{A}$. Then $\left(a^{n}\right)_{n=1}^{\infty}$ is $\sigma\left(l_{1}, E\right)$-Cauchy by Proposition 1 of §2, where $a^{n}=\left(a_{n k}\right)_{k=1}^{\infty}$. Since ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete, $\left(a^{n}\right)$ is $\sigma_{n}\left(l_{1}, E\right)$ convergent. But $\left(a^{n}\right)$ pointwise converges to 0 , and hence $\left(a^{n}\right)$ is $\sigma\left(\ell_{1}, E\right)$-convergent to 0 . This implies that $E \subseteq c_{O_{A}}$. (Sufficiency). Suppose conditions (i) and (ii) hold and
let $\left(x^{n}\right)$ be a $\sigma\left(\ell_{1}, E\right)$-Cauchy sequence in ℓ_{1}. Then $\sup _{\mathrm{n}}\left\|\mathrm{x}^{\mathrm{n}}\right\|_{1}<\infty$, and $\left(\mathrm{x}^{\mathrm{n}}\right)$ is $\sigma\left(\ell_{1}, \varphi\right)$-convergent to a member x of ℓ_{1}, by Theorem $1\left((i) \Rightarrow\right.$ (iv) and (i) \Rightarrow (v)). Let $a_{n k}=\left(x_{k}^{n}-x_{k}\right)$ for $n, k \in \mathbb{N}$ and $A=\left(a_{n k}\right)$. Then $\|A\|<\infty$ and each column of A belongs to c_{0}. Since $\left(x^{n}-x\right)_{n=1}^{\infty}$ is $\sigma\left(\ell_{1}, E\right)-$ Cauchy, $E \subseteq c_{A}$ by Proposition 1 of §2. Thus $E \subseteq c_{O_{A}}$. This implies that $\left(x^{n}-x\right)_{n=1}^{\infty}$ $\sigma\left(\ell_{1}, E\right)$-converges to 0 , and hence $\left(\mathrm{x}^{\mathrm{n}}\right) \sigma\left(\ell_{1}, E\right)$-converges to x .

COROLLARY 1. Let E be a subspace of m containing φ. If $E^{\beta}=\ell_{1}$ and $E \subseteq c_{0}$, then ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete.

Proof. Let A be an infinite matrix such that $\|A\|<\infty$ and such that each column of A belongs to c_{0}. First we show that $c_{0} \subseteq c_{O_{A}}$. Let $x=\left(x_{k}\right) \in c_{0}$ and $\varepsilon>0$. Choose $k_{o} \in \mathbb{N}$ such that $\left|x_{k}\right|<\frac{\varepsilon}{2\|A\|}$ for $k \geq k_{o}$, and then $n_{o} \in \mathbb{N}$ such that $\sum_{k=1}^{k_{0}}\left|a_{n k}\right|<\frac{\varepsilon}{2\|x\|_{\infty}}$ for $n \geq n_{o}$. Thus, for $n \geq n_{o}$,

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} a_{n k} x_{k}\right| & \leq \sum_{k=1}^{k_{0}^{-1}}\left|a_{n k} x_{k}\right|+\sum_{k=k}^{\infty}\left|a_{n k} x_{k}\right| \\
& \leq\|x\|_{\infty} \sum_{k=1}^{k_{0}^{-1}}\left|a_{n k}\right|+\frac{\sum_{n}}{2\|A\|} \sum_{k=k}^{\infty}\left|a_{n k}\right|
\end{aligned}
$$

$$
<\|\mathrm{x}\|_{\infty} \frac{\varepsilon}{2\|\mathbf{x}\|_{\infty}}+\frac{\varepsilon}{2\|\mathrm{~A}\|} \cdot\|\mathrm{A}\|=\varepsilon
$$

This implies that $\underset{A}{\lim x=0}$ and hence $c_{0} \subseteq c_{o_{A}}$. since $E \subseteq c_{0}$, $E \subseteq c_{O_{A}}$. Thus ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete by Theorem 2. PROPOSITION 1. Let E be a subspace of m containing φ. Then ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete if and only if ℓ_{1} is $\sigma\left(\ell_{1}, E^{\infty}\right)$-sequentially complete and $E^{\beta}=\ell_{1}$.

Proof. (Necessity). Suppose ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete. Then $E^{\beta}=\ell_{1}$ by Proposition 2 of $\S 2$, and hence any $\sigma\left(\ell_{1}, E\right)$-Cauchy
sequence $\left(x^{n}\right)$ in ℓ_{1} is ℓ_{1}-norm bounded by Theorem 1 ((i) \Rightarrow (iv)). Thus $\left(\ell_{1}, \sigma\left(\ell_{1}, E\right)\right)$ and $\left(\ell_{1}, \sigma\left(\ell_{1}, E^{\infty}\right)\right)$ have the same Cauchy sequences by Proposition 4 of 52 . By 1.4 Theorem 2, $\left(\ell_{1}, \sigma\left(\ell_{1}, E\right)\right)$ and $\left(\ell_{1}, \sigma\left(\ell_{1}\right.\right.$, E $\left.\left.^{\infty}\right)\right)$ have the same convergent sequences. This implies that ℓ_{1} is $\sigma\left(\varepsilon_{1}, \mathrm{E}^{-\infty}\right)$-sequentially complete.
(Sufficiency). Suppose ℓ_{1} is $\sigma\left(\ell_{1}\right.$, E $\left.^{\infty}\right)$-sequentially complete and $E^{\beta}=\ell_{1}$. Using the same argument as above we can conclude that $\left(\ell_{1}, \sigma\left(\ell_{1}, E\right)\right)$ and $\left(\ell_{1}, \sigma\left(\ell_{1}, \bar{E}^{\infty}\right)\right)$ have the same Cauchy sequences and the same convergent sequences. This implies that ℓ_{1} is $\sigma\left(\ell_{1}\right.$, E)-sequentially complete.

DEFINITION 1. Let E be a subspace of m containing φ such that ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete. Further assume that $e \notin \mathrm{E}^{-\infty}$. Let $G=\widetilde{E}^{\infty} \oplus\langle\{e\}\rangle$. For each $x \in G$, there exist $y \in \mathbb{E}^{\infty}$ and $\alpha \in R$ such that $\mathrm{x}=\mathrm{y}+\alpha e$. α is called the E-limit of x and we write E-lim $x=\alpha$.

Remark. $c \subseteq G$ since $\varphi \subseteq$ E.

The following consistency theorem holds for E-limits.

THEOREM 3. Let E be a subspace of m containing φ such that ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete. Further assume that e $\notin \bar{E}^{\infty}$. Let $G=E \mathcal{H}\langle\{e\}\rangle$. If A is a regular matrix such that $G \subseteq c_{A}$, then E-lim $x=\lim _{A} x$ for every $x \in G$.

Proof. ($\left.\ell_{1}, \sigma\left(\ell_{1}, \bar{E}^{\infty}\right)\right)$ is sequentially complete by Proposition 1. Since $\bar{E}^{-\infty} \subseteq G \subseteq c_{A}, \bar{E}^{-\infty} \subseteq c_{o_{A}}$ by Theorem 2. This implies that $\lim _{A} x=0$ for every $x \in \bar{E}^{\infty}$. Let $x \in G$ and $E-\lim x=\alpha$. Then there exists $y \in \mathbb{E}^{\infty}$ such that $x=y+\infty$, and hence
$\lim _{A} x=\lim _{A} y+\lim _{A}^{i m} \alpha e=\alpha=E-\lim x$.

The following theorem gives another external characterization of subspaces of m generating sequentially complete weak topologies on ℓ_{1}. A similar result was proved by J.J. Sember in $[20]$ and we follow essentially the same argument.

THEOREM 4. Let E be a subspace of m containing φ. Then the following are equivalent:
(i) ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete;
(ii) If F is any separable $F K$ space containing E, then $c_{0} \oplus E \subseteq W_{F}$.

Proof. $((i) \Rightarrow(i i))$. Since $\left(\ell_{1}, \sigma\left(\ell_{1}, E\right)\right)$ is sequentially complete, $E^{\beta}=\ell_{1}$ by Proposition 2 of $\$ 2$. Let F be a separable FK-space contanning E. By Theorem 5 ((i) \Rightarrow (iv)) of [6, p. 517] it follows that $E \subseteq W_{F}$. Now we show that $c_{0} \subseteq W_{F}$. Let $f \in F^{\prime}$. Then $f(x)=\sum_{k=1}^{\infty} x_{k} f\left(e_{k}\right)$ for every $x \in E$, since $E \subseteq W_{F}$. This implies that $\left(f\left(e_{k}\right)\right)_{k=1}^{\infty} \in \ell_{1}$, since $E^{\beta}=\ell_{1}$. It follows that $c_{o} \subseteq F$ by
1.4 Theorem 5. Since F is an $F K$ space containing $c_{0}, c_{0} \subseteq W_{F}$ by 1.4 Theorem 6.
((ii) $\Rightarrow(i))$. We first show that condition (ii) implies that $E^{\beta}=\ell_{1}$. To this end suppose $E \subseteq c_{A}$, where A is an infinite matrix. Since c_{A} is a separable $F K$-space condition (ii) implies that $c_{0} \subseteq c_{A}$. Since $c_{0}^{\beta}=\ell_{1}$, Corollary 1 of Theorem 1 implies that $\|A\|<\infty$. Now the same corollary implies that $E^{\beta}=\ell_{1}$.

To show that $\left(\ell_{1}, \sigma\left(\ell_{1}, E\right)\right)$ is sequentially complete, let A be a matrix such that $\|A\|<\infty$ and such that each column of A belongs to c_{0}. Suppose $E \subseteq c_{A}$. Then condition (ii) implies that $E \subseteq W_{A}$ since c_{A} is a separable $F K$-space. But $W_{A} \cap m=c_{O_{A}} \cap m$ by 1.5 Theorem 2 . Thus $E \subseteq c_{O_{A}}$ and hence $\left(\ell_{1}, \sigma\left(\ell_{1}, E\right)\right)$ is sequentially complete by Theorem 2.

COROLLARY 1. Let E be a separable $F K$-space such that $E \subseteq m$. If
ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete, then $E=c_{0}$.

Proof. It follows from Theorem 4 that $E \oplus C_{0} \subseteq W_{E}$. Since $c_{0} \subseteq E \subseteq m$, the $F K$-topology on E is finer than the uniform topology on E. Hence $W_{E} \subseteq c_{o}$ so that $E=W_{E}=c_{o}$.

COROLLARY 2. Let A be a matrix such that $\|A\|<\infty$ and such that each column of A belongs to c_{0}. If $c_{O_{A}} \neq c_{0}$, then $c_{O_{A}}$ contains an unbounded sequence.

Proof. By 1.5 Theorem 2, $W_{A} \cap m=c_{o_{A}} \cap m$. Since $c_{o} \subseteq c_{A}$, it follows from Theorem 3 of $[5, \mathrm{p} .568]$ that ℓ_{1} is $\sigma\left(\ell_{1}, c_{o_{A}} \cap\right.$ m)-sequentially complete. Suppose $c_{o_{A}} \subseteq m$. Then ℓ_{1} is $\sigma\left(\ell_{1}, c_{o_{A}}\right)$-sequentially complete. Since $c_{O_{A}}$ is a separable FK-space, Corollary 1 implies that $c_{O_{A}}=c_{0}$. This contradiction shows that $C_{O_{A}} \notin m$.
A. Wilansky asked the following questions in [24, p. 260, 300].

1. Is there an FK-space smaller than c_{0} whose β-dual is l_{1} ?
2. Is c_{0} the only $F K$-space which is $A D$ and whose β-dual is ℓ_{1} ? The following corollaries give a partial answer to 1 and an affirmative answer to 2 .

COROLLARY 3. If E is a separable $F K$-space such that $E \subseteq c_{0}$ and $E^{\beta}=\dot{\ell}_{1}$, then $E=c_{0}$.

Proof. ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete by Corollary 1 of Theorem 2, Thus, by Corollary 1 of Theorem $4, E=c_{o}$.

COROIJARY 4. Let E be an FK-space. If E is $A D$ and $E^{\beta}=\ell_{1}$, then $E=c_{0}$.

Proof. The condition $E^{\beta}=\ell_{1}$ implies that $E \subseteq I$. Thus the FK-topology on E is finer than the uniform norm topology on E. Hence $c_{0}=\bar{\varphi}^{-\infty} \supseteq \bar{\varphi}=\mathrm{E}(\bar{\varphi}$ is the closure of φ in E with respect to the FK -topology). Since E is AD ; it follows from 1.3, proposition 3 that E is separable. Thus Corollary 3 implies that $E=c_{0}$.

THEOREM 5. Let E be a monotone subspace of m containing φ. Then the following are equivalent:
(i) ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete;
(ii) If F is any separable $F K$ rspace containing E, then

$$
c_{0} \oplus \mathrm{E} \subseteq S_{F}
$$

Proof.((i) \Rightarrow (ii)). Since ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete, $E^{\beta}=\ell_{1}$ by Proposition 2 of $\S 2$, Since E is monotone, Theorem 6 of $[6$, . 519] can be applied (see the remark of p. 519) to give the condition $E \subseteq S_{F}$. We can apply the same argument as in the proof of Theorem 4 to show that $c_{0} \subseteq E$.

$$
((i i) \Rightarrow(i)) . \text { It follows from the same argument as in the proof }
$$ of Theeorem 4 that $E^{\beta}=\ell_{1}$. Since E is monotone, ℓ_{1} is $\sigma\left(\ell_{1}, E\right)$-sequentially complete by proposition 3 of $\S 2$.

CHAPTER 3

T-ALMOST CONVERGENCE

§1. Introduction.

Lorentz, in [13], introduced the concept of almost convergence. One of his equivalent forms of a bounded sequence being almost convergent was

$$
\lim _{p}\left(x_{n+1}+x_{n+2}+\ldots+x_{n+p}\right) / p \text { exists uniformly in } n .
$$

It is easy to observe that this formulation is also equivalent to

$$
\lim _{p}\left(T_{0} x+T_{0}^{2} x+\ldots+T_{0}^{p} x\right){ }_{n} / p \text { exists uniformly in } n \text {, }
$$

where $T_{0}=\left(t_{n k}\right)$ is the infinite matrix defined by

$$
t_{n k}= \begin{cases}1 & \text { if } k=n+1 \\ 0 & \text { otherwise. }\end{cases}
$$

In this chapter we replace the matrix T_{o} by a more general matrix T, and then study the sequence spaces that are generated by T in the same way that the space of almost convergence sequences is generated by T_{0}, Also, for these sequence spaces, we establish several results already known for the special case of almost convergence.

We apply some of the basic techniques in $[4]$ to obtain these results. Some of the details are more difficult than those of $[4]$. We need considerable preparation, for example, to establish Theorem 2 of §5.
§2. Definitions and basic results.

DEFINITION 1. A continuous linear function $L: m \rightarrow \mathbb{R}$ is called an extended limit if $L(x)=\lim _{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$ for every $\mathrm{x}=\left(\mathrm{x}_{\mathrm{n}}\right) \in \mathrm{c}$.

PROPOSITION 1. Extended limits exist.

Proof. Let $L: c \rightarrow R$ be defined by $L(x)=\lim _{n} x_{n}$. Since $|L(x)|=\left|\lim _{\mathrm{n}} \mathrm{x}_{\mathrm{n}}\right| \leq\|\mathrm{x}\|_{\infty}$, L is continuous. By the Hahn Banach theorem L can be extended continuously over. m .

REMARK. In general the norm of an extended limit is taken to be one. We drop this condition from our definition since it does not serve any useful purpose in our work.

DEFINITION 2. An infinite matrix $T=\left(t_{n k}\right)$ of non-negative entries is called lifting if
(i) $t_{n k}=0$ for $n \geq k$, and
(ii) $\sum_{k=1} t_{n k}=1$ for $n \in \mathbb{N}$.

REMARK. Every lifting matrix is regular.

DEFINITION 3. Let T be a lifining matrix. An extended limit L is called a T-Banach limit if $L(x)=L(T x)$ for every $x \in m$. In the rest we assume that $T=\left(t_{n k}\right)$ is a lifting matrix, The existence of T-Banach limits will be shown later, We denote by Λ_{T} the set of all T-Banach limits and also use the following notations:

$$
\begin{aligned}
U_{T} & =\{x-T x \mid x \in m\} ; \\
T a c & =\left\{x \in m \mid L(x)=L^{n}(x) \text { for } L, L \in \in \Lambda_{T}\right\} ; \\
\operatorname{Tac}_{0} & =\left\{x \in \operatorname{Tac} \mid L(x)=0 \text { for } L \in \Lambda_{T}\right\} .
\end{aligned}
$$

It is easy to verify that U_{T}, $T a c$ and $T a c{ }_{o}$ are linear subspaces of m. For each $x \in T a c, L(x)$ assumes a common value for every T-Banach limit L. We denote this common value by T-Lim x and say that \mathbf{x} is T-almost convergent to $T-\operatorname{Lim} \mathbf{x}$, Also note that $T-\operatorname{Lim} \mathbf{x}$ is a linear functional on Tac.

PROPOSITION 2. Let T be a lifting matrix. Recall that $U_{T}=\{x-T x \mid x \in m\}$. Then
(i) $U_{T}=\left\{\dot{x}-T^{n} x \mid x \in m, n \in \mathbb{N}\right\}$, and
(ii) U_{T} is a linear subspace of Tac $_{o}$ with $\varphi \subseteq U_{T}$.

Proof. (i) For $x \in m$ and $n \in \mathbb{N}$,

$$
x-T^{n} x=\left(I-T^{n}\right) x
$$

$$
=(I-T)\left(I+T+\ldots+T^{n-1}\right) x \text { by } 1.5 \text {, Theorem } 3(\text { iii }) .
$$

Since $\left(I+T+\ldots+T^{n-1}\right) x \in m, x-T^{n} x \in U_{T}$.
(ii) For $x \in m$ and $L \in \Lambda_{T}, L(x-T x)=L(x)-L(T x)=0$, and hence $x-T x \in T a c_{0}$. Thus $U_{T} \subseteq T_{0 c}$. Since $t_{i j}=0$ for $i \geq j$, $(I-T) e^{1}=(1,0,0, \ldots),(I-T) e^{2}=\left(-t_{12}, 1,0,0, \ldots\right), \ldots,(I-T) e^{n}=$ $\left(-t_{1 n},-t_{2 n}, \ldots,-t_{n-1, n}, 1,0,0, \ldots\right), \ldots$. Hence $\varphi \subseteq U_{T}$.

PROPOSITION 3. Let T be a lifting matrix. Then the following statements are true:
(i) $T-\operatorname{Lim} x=\lim _{n} x_{n}$ for every $x=\left(x_{n}\right) \in c$;
(ii) $\quad c \underset{F}{\subsetneq} \mathrm{Tac}$ and $c_{0} \subsetneq \mathrm{Tac}_{0}$;
(iii). $\mathrm{TaC}=\mathrm{Tac}_{\mathrm{O}} \oplus<\{\mathrm{e}\}>$;
(iv) Tace and Taco are closed linear subspaces of m.

Proof. (i) follows directly from the definitions.
(ii) $c \subseteq T a c$ and $c_{0} \subseteq T_{0}$ follow from the definitions. Now we show that $\mathrm{Tac}_{\mathrm{o}} \underline{\&} \mathrm{c}$. By Proposition 2 (ii), $U_{T}=\{(I-T) x \mid x \in m\} \subseteq T_{0}$. Since $\sum_{k=1}^{\infty}\left|(I-T)_{n k}\right|$ is not uniformly convergent in $n, U_{T} \notin \mathrm{C}$ (see [14, p. 10]). Hence $\mathrm{Tac}_{\mathrm{O}} \underline{\not} \mathrm{c}$. Thus $c \neq \mathrm{Tac}$ and $c_{0} \neq \mathrm{Tac}_{0}$.
(iii) For each $x \in T a c, x=(x-(T-\operatorname{Lim} x) e)+(T-\operatorname{Lim} x) e$.

Since $(x-(T-\operatorname{Lim} x) e) \in T_{0}, x \in T_{0} \oplus<\{e\}>$ and hence Fac $\subseteq \mathrm{Tac}_{\mathrm{O}} \oplus<\{\mathrm{e}\}>$. Since $\mathrm{c} \subseteq$ Tace (by (i)) and Taco \subseteq Pac, $\mathrm{Tac}_{\mathrm{O}} \oplus<\{\mathrm{e}\}>\subseteq$ Tace.
(iv) Suppose $\left(\mathrm{x}^{\mathrm{n}}\right)$ is a sequence in Tac such that $\left(\mathrm{x}^{\mathrm{n}}\right)$ is convergent to x in $\left(m,\| \|_{\infty}\right)$. Then, for every $L \in \Lambda_{T^{\prime}}\left(L\left(x^{n}\right)\right)_{n=1}^{\infty}$ is convergent to $L(x)$ in R. Since $x^{n} \in \operatorname{TaC}, L\left(x^{n}\right)=T-\operatorname{Lim} x^{n}$
for $n \in N$. Hence $L(x)=\lim _{n}\left(T-\operatorname{Lim} x^{n}\right)$ for every $L \in \Lambda_{T}$. Thus $x \in \operatorname{Tac}$ and $T-\operatorname{Lim} x=\lim \left(T-\operatorname{Lim} x^{n}\right)$. Therefore, Tact is closed in $\left(m,\| \|_{\infty}\right)$. The same argument can be used for Taco.

PROPOSITION 4. Let L be a continuous linear functional on ($m,\| \|_{\infty}$), and let T be a lifting matrix. Then L is a T-Banach limit if and only if (i) $L(e)=1$, and (ii) $L\left(U_{T}\right)=\{0\}$.

Proof. (Necessity). Suppose L is a T-Banach limit. Then (i) follows from the definition of T-Banach limit. Let $x \in m$. Then $L(x-T x)=L(x)-L(T x)=0$ and hence (ii) holds.
(Sufficiency). Suppose (i) and (ii) hold for a continuous linear functional L on $\left(m,\| \|_{\infty}\right)$. Then $L(\varphi)=\{0\}$ since $\varphi \subseteq U_{T}$ by Proposition $2(\mathrm{ii})$. Hence $L\left(c_{0}\right)=L\left(\Psi^{\infty}\right)=\{0\}$. Since $L(e)=1$, it follows that $L(x)=\lim _{n} x_{n}$ for $x \in c$. Thus L is an extended limit. Also condition (ii) implies that $L(x)=L(T x)$ for every $x \in m$. Hence L is a T-Banach limit.
§3. A characterization of T-almost convergent sequences.

Modifying the technique used in [4] to establish a characterization of almost convergent sequences, we obtain a similar characterization for T-almost convergent sequences (Theorem l). First we state the following lemma, which can be found in [4, p. 26].

LEMMA 1. FOr every $x \in m \backslash c_{0}$, there exists an extended limit L such that $L(x) \neq 0$.

THEOREM 1. Let $A=\left(a_{n k}\right)$ be a regular matrix such that $\lim _{\mathrm{n}} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k-1}\right|=0$ (assume $a_{n o}=0$ for every n), and let $x \in m$. Let T be a lifting matrix. Then $x \in T a c$ and $T \rightarrow \operatorname{Lim} x=\alpha$ if and only if $\lim _{p} \sum_{k=1}^{\infty} a_{p k}\left(T^{k} x\right)_{n}=\alpha$ uniformly in n : Proof. First we show that $x \in T a c_{0}$ if and only if $\lim _{p} \sum_{k=1}^{\infty} a_{p k}\left(T^{k} x\right)_{n}=0$ uniformly in n. Suppose $x=\left(x_{n}\right) \in T a c{ }_{o}$. Let $\left(n_{p}\right)$ be any sequence of positive integers. Define the linear map $\psi: m \rightarrow m$ by $[\psi(y)]_{p}=\sum_{k=1}^{\infty} a_{p k}\left(T^{k} y^{\prime} n_{p}\right.$. Then

$$
\begin{aligned}
\left|[\psi(y)]_{p}\right| & =\left|\sum_{k=1}^{\infty} a_{p k}\left(T^{k} y\right)_{n_{p}}\right| \leq \sum_{k=1}^{\infty}\left|a_{p k}\right|\left\|T^{k} y\right\|_{\infty} \\
& \leq\|y\|_{\infty} \sum_{k=1}^{\infty}\left|a_{p k}\right| \text { (since }\|T\|=1 \text {) } \leq\|y\|_{\infty}\|A\| .
\end{aligned}
$$

Hence ψ is continuous and, moreover,
(1) $\quad \lim _{p}[\psi(e)]_{p}=\lim _{p} \sum_{k=1}^{\infty} a_{p k}\left(T^{k} e\right)_{n_{p}}=\lim _{p} \sum_{k=1}^{\infty} a_{p k}$
(since $T e=e$) $=1$ (since A is regular).

Let $y=\left(y_{n}\right) \in m$. Then
$\left|[\psi(y-T y)]_{p}\right|=\left|\sum_{k=1}^{\infty} a_{p k}\left[T^{k}(y-T y)\right]_{n_{p}}\right|=\left|\sum_{k=1}^{\infty} a_{p k}\left(T^{k} y\right)_{n_{p}}-\sum_{k=1}^{\infty} a_{p k}\left(T^{k+1} y\right)_{n_{p}}\right|$
(since each series is absolutely convergent) =
$\left|\sum_{k=1}^{\infty}\left(a_{p k}-a_{p, k-1}\right)\left(T^{k} y_{n}\right)_{p}\right| \leq\|y\|_{\infty} \sum_{k=1}^{\infty}\left|a_{p k}-a_{p, k-1}\right| \rightarrow 0$ as $p \rightarrow \infty$.

This implies that $\psi(y-T y) \in c_{0}$ and hence
(2) $\psi\left(U_{T}\right) \subseteq c_{0}$.
and (ii) $\operatorname{Lo} \psi\left(U_{T}\right)=\{0\}$ (by (2)), where O denotes the composition of two functions. Thus Proposition 4 of $\$ 2$ implies that
(3) Lo' ψ is a T-Banach limit.

It follows that $L(\psi(x))=0$, since $x \in \operatorname{Tac}_{0}$, Since L is an arbitrary extended limit, by Lemma $1, \psi(x) \in c_{0}$ so that $\lim _{p} \sum_{k=1}^{\infty} a_{p k}\left[T^{k} x\right]_{n_{p}}=0$. Since $\left(n_{p}\right)$ is an arbitrary sequence of positive integers, $\lim _{\mathrm{p}} \sum_{\mathrm{k}=1}^{\infty} \mathrm{a}_{\mathrm{pk}}\left(\mathrm{T}^{\mathrm{k}} \mathrm{x}\right)_{\mathrm{n}}=0$ uniformly in n .

Conversely, suppose $\lim _{\mathrm{p}} \sum_{\mathrm{k}=1}^{\infty} \mathrm{a} p \mathrm{~m}\left(\mathrm{~T}^{\mathrm{k}} \mathrm{x}\right)_{\mathrm{n}}=0$ uniformly in n .
Since $\sum_{k=1}^{\infty}\left|a_{p k}\right|\left\|T^{k} x\right\|_{\infty} \leq\|x\|_{\infty} \sum_{k=1}^{\infty}\left|a_{p k}\right|$ (since $\|T\|=1$) $\leq\|x\|_{\infty}\|A\|<\infty$,
(4) $\sum_{k=1}^{\infty} a_{p k} T^{k} \mathrm{x}$ is a convergent series in $\left(m,\| \|_{\infty}\right)$ for each p. Hence the hypothesis is equivalent to
(5) $\quad \lim \left(\sum_{k=1}^{\infty} a_{p k} T^{k} x\right)=0 \quad$ in $\left(m,\| \|_{\infty}\right) .$.

Thus, for each T-Banach limit L,

$$
\begin{aligned}
|L(x)| & \left.=\left|\lim _{p} \sum_{k=1}^{\infty} a_{p k} L(x)\right| \quad \text { (since } \lim _{p} \sum_{k=1}^{\infty} a_{p k}=1\right) \\
& =\left|\lim _{p} \sum_{k=1}^{\infty} a_{p k} L\left(T^{k} x\right)\right| \quad \text { (since } L\left(T^{k} x\right)=L(x) \text { for every } k \text {) } \\
& =\left|\lim _{p} L\left(\sum_{k=1}^{\infty} a_{p k} T^{k} x\right)\right| \quad \text { (by (4) and since } L \text { is continuous) } \\
& =0 \text { (by (5) and since } L \text { is continuous). }
\end{aligned}
$$

This implies that $x \in \mathrm{Tac}_{0}$.

Now suppose $x \in \operatorname{Tac}$ and $T-\operatorname{Lim} x=\alpha$. By Proposition 3 (iii)
of $\S 2$, there exists $y \in T a c_{o}$ such that $x=y+\alpha e$. Since
$\lim _{\mathrm{p}} \sum_{k=1}^{\infty} a_{p k}\left(T^{k} y\right)_{n}=0$ uniformly in $n, \quad \lim _{p} \sum_{k=1}^{\infty} a_{p k}\left(T^{k} x\right)_{n}$
$=\lim \left[\sum_{k=1}^{\infty} a_{p k}\left(T^{k} y_{n}+\sum_{k=1}^{\infty} a_{p k} \alpha\right]=\alpha\right.$ uniformly in n.

Conversely, suppose $\lim _{\mathrm{p}} \sum_{k=1}^{\infty} a_{p k}\left(T^{k}\right)_{n}=\alpha$ uniformly in n. Then
$\lim _{p} \sum_{k=1}^{\infty} a_{p k} T^{T^{k}}(x-\alpha e)_{n}=\lim _{p}\left[\sum_{k=1}^{\infty} a_{p k}\left(T^{k} x\right)_{n}-\sum_{k=1}^{\infty} a_{p k}{ }^{\alpha}\right]=0$ uniformly in n
and hence $x-\alpha e \in T a c_{0}$. This implies that $x \leqslant T a c$ and $T-L i m x=\alpha$.

REMARK. (3) assures the existence of T-Banach limits.

COROLLARY 1. Let T be a lifting matrix. Then $x \in T a c$ and T-Tim $x=\alpha$ if and only if $\lim _{\mathrm{p}} \frac{1}{\mathrm{p}}\left(T \mathrm{x}+\ldots+\mathrm{T}^{\mathrm{p}} \mathrm{X}_{\mathrm{n}}=\alpha\right.$ uniformly in n .

Proof. Choose $A=\left(a_{n k}\right)$ such that $a_{n k}=\frac{l}{n}$ for $l \leq k \leq n$, and $a_{n k}=0$ for $k>n$. Then A is regular and $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k-1}\right|$ $=\lim _{\mathrm{n}} \frac{2}{\mathrm{n}}=0$. Now apply Theorem 1 .

COROLIARY 2. Let T be a lifting matrix. Then $T_{0}=U_{T}^{\infty}$. Proof. Let $x \in T a{ }_{0}$. Then $x-\frac{T x+\ldots+T^{p} x}{p}=$ $\frac{(x-T x)+\ldots+\left(x-T^{p} x\right)}{p} \in U_{T} \quad$ (by Proposition $2(i)$ of $\S 2$) and $\left\|x-\left(x-\frac{T x+\ldots+T^{p} x}{p}\right)\right\|_{\infty}=\left\|\frac{T x+\ldots+T^{p} x}{p}\right\|_{\infty} \rightarrow 0$ as $p \rightarrow \infty$ by Corollary 1. Hence $x \in \mathbb{U}_{T}^{\infty}$ so that $T_{0} \subseteq \mathcal{U}_{T}^{\infty}$. Since T_{0} is closed in m and $U_{T} \subseteq T_{o c}, \bar{U}_{T}^{\infty} \subseteq T_{0}$.

THEOREM 2. Let $A=\left(a_{n k}\right)$ be a regular matrix, and let $x \in m$. Let T be a lifting matrix. If $\lim _{\mathrm{p}} \sum_{\mathrm{k}=1}^{\infty} \mathrm{a}_{\mathrm{pk}}\left(\mathrm{T}^{k} \mathrm{x}\right)_{\mathrm{n}}=\alpha$ uniformly in n, then $x \in T a c$ and $T-\operatorname{Lim} x=\alpha$.

Proof. The proof is the same as the proof of the sufficiency of Theorem 1.
§4. Some examples.

EXAMPLE 1. First we consider the case when $T=\left(t_{n k}\right)=T_{o}$ ie.,

$$
t_{n k}= \begin{cases}1 & \text { if } k=n+1 \\ 0 & \text { otherwise }\end{cases}
$$

It is clear that, for this matrix, $T a c=a c$ (the space of almost convergent sequences). Moreover, we can easily verify that $U_{T}=b s$ (the space of bounded series) and hence $\overline{b s}^{\infty}=a c_{0}$.

Now we are in a position to give an easy proof of a principal result in [13, Theorem 7, p. 176].

THEOREM 1. Let $A=\left(a_{n k}\right)$ be a regular matrix, Then ac $\subseteq c_{A}$ if and only if $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k-1}\right|=0$ (assume $a_{n, 0}=0$). Moreover, when A has this property, $T_{0}-\operatorname{Lim} x=\lim _{A} x$ for every $x \in a c$. Proof. (Necessity). Suppose ac $\subseteq c_{A}$. Then, for every $x \in m,\left(x-T_{0} x\right) \in c_{A}$ and hence $A\left[\left(I-T_{0}\right) x\right] \in c . B y 1.5$, Theorem 3(iii), $\left[A\left(I-T_{0}\right)\right] x \in c$. Hence, by Schur's Lemma (1.4, Theorem 3), $\lim _{n} \sum_{k \equiv 1}^{\infty}\left|\left[A\left(I-T_{0}\right)\right]_{n k}\right|=\sum_{k=1}^{\infty}\left|\lim _{n}\left[A\left(I-T_{0}\right)\right]_{n k}\right|$, i.e., $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k-1}\right|$ $=\sum_{k=1}^{\infty}\left|\lim _{n}\left(a_{n k}-a_{n, k-1}\right)\right|=0$ since A is regular.
(Sufficiency) suppose $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k-1}\right|=0$. Let $x \in a_{o}$.

Then $\lim _{n} \sum_{k=1}^{\infty} a_{n k} x_{k+1}=\lim _{n} \sum_{k=1}^{\infty} a_{n k}\left(T_{0}^{k} x\right)_{1}=0$ by Theorem 1 of §3. But
$\lim _{n} \sum_{k=1}^{\infty}\left(a_{n k}-a_{n, k-1}\right) x_{k}=0$, since $\lim _{n} \sum_{k=1}^{\infty}\left|a_{n k}-a_{n, k-1}\right|=0$. Hence
$\lim _{n} \sum_{k=1}^{\infty} a_{n k} x_{k}=0$ so that $x \in c_{O_{A}}$. This implies that ac $\subseteq c_{A}$ (since
$e \in c_{A}$) and that $T_{0}-\operatorname{Lim} x=\lim _{A} x$ for every $x \in a c$.

COROLLARY 1. Let $A=\left(a_{n k}\right)$ be a regular matrix. Then
$\left\{x \in m \mid \lim _{p} \sum_{k=1}^{\infty} a_{p k} x_{k+n}\right.$ exists uniformly in $\left.n\right\}=a c$ if and only if
$\lim _{p} \sum_{k=1}^{\infty}\left|a_{p k}-a_{p, k-1}\right|=0$.
Proof. To prove the necessity, let $x \in a c$. Then $\left(0, x_{1}, x_{2}, \ldots\right) \in a c$ and hence $\lim _{p} \sum_{k=1}^{\infty} a_{p k} x_{k}$ exists so that $x \in c_{A}$. Thus, by Theorem 1, $\lim _{p} \sum_{k=1}^{\infty}\left|a_{p k}-a_{p, k+1}\right|=0$. The sufficiency follows from Theorem 1 of 53 .

EXAMPLE 2. We consider the case when $T_{1}=\left(t_{n k}\right)$ is given by

$$
t_{n k}=\left\{\begin{array}{lll}
1 & \text { if } & k=n+2 \\
0 & \text { if } & k \neq n+2
\end{array}\right.
$$

Then, by Corollary 1 of Theorem 1 , of $\S 3, x \in T_{1} a_{o}$ if and only if
$\lim _{p} \frac{1}{p}\left(T_{1} x+\ldots+T_{1}^{p} x\right)_{n}=0$ uniformly in n, i.e.,
$\lim _{\mathrm{p}} \frac{1}{\mathrm{p}}\left(\mathrm{x}_{\mathrm{n}+2}+\mathrm{x}_{\mathrm{n}+4}+\ldots+\mathrm{x}_{\mathrm{n}+2 \mathrm{p}}\right)=0$ uniformly in n. Thus $\left((-1)^{\mathrm{n}}\right) \& \mathrm{~T}_{1} \mathrm{ac}{ }_{0}$. Note that $(-1)^{n} \in a c_{0}$.

EXAMPLE 3. Let $J_{1}=\{1,2,4,7,11, \ldots\}$

$$
J_{2}=\{3,5,8,12, \ldots\}
$$

$$
J_{3}=\quad\{6,9,13, \ldots\}
$$

$$
J_{4}=\quad\{10,14, \ldots\}
$$

$$
J_{5}=\quad\{15,20, \ldots\}
$$

$$
\begin{aligned}
& \vdots \\
& J_{n}=\left\{\frac{n(n+1)}{2}, \frac{n(n+1)}{2}+n, \frac{n(n+1)}{2}+n+n+1, \ldots\right\}
\end{aligned}
$$

$$
\vdots
$$

Note that the $J_{n} s$ are pairwise disjoint,
Let $T=\left(t_{n k}\right)$ be defined by

$$
t_{n k}= \begin{cases}I & \text { if } n, k \text { are two consecutive numbers of one of } J_{i} s \\ 0 & \text { otherwise. }\end{cases}
$$

Then it is easy to check that each row of T contains only one non-zero entry which is equal to 1 and lies above the main diagonal. Let us denote $J_{i} ; i=1,2, \ldots$ by $\left\{j_{1}^{i}, j_{2}^{i}, \ldots\right\}$. If $n \in \mathbb{N}$, then there exist $i, k \in \mathbb{N}$ such that $n=j_{k}^{i}$. For $x \in \operatorname{Tac}_{0},(T x)_{n}=\sum_{\ell=1}^{\infty} t_{n \ell} x_{\ell}=x_{j} j_{k+1}^{i}$; $\left(T^{2} x\right)_{n}=\sum_{\ell=1}^{\infty} t_{n \ell}{ }^{(T x)} \ell=(T x)_{j_{k+1}}^{i}=x_{j_{k+2}}^{i} ; \ldots ;\left(T^{p}\right)_{n}=x_{j}^{i} \quad$. Hence $x \in \operatorname{Tac}_{0}$ if and only if $\lim _{p} \frac{1}{p}\left(x_{j_{k+1}}^{i}+x_{j_{k+2}}^{i}+\ldots+x_{j}^{i}\right)=0$ uniformly in i and k. Let $x=\left(x_{k}\right)$ be defined by $x_{1}=1, x_{2}=x_{3}=-1$, $x_{4}=x_{5}=x_{6}=1, x_{7}=x_{8}=x_{9}=x_{10}=-1, \ldots$. Then $x \in \operatorname{Tac}$ but \mathbf{x} 采 ac_{0} 。
§5. Duality between ℓ_{1} and $\mathrm{Tac}_{\mathrm{o}}$.

For every lifting matrix $T, T a c o$ and ℓ_{1} form a dual pair of sequence spaces with interesting properties. In this section we study some of these properties. We start with the following proposition.

PROPOSITION 1. Let $T=\left(t_{n k}\right)$ be a lifting matrix and $y \in \ell_{1}$. Then
(i) $y^{T} \in \ell_{1}$ and $(y T)_{k}=y_{1} t_{l k}+y_{2} t_{2 k}+\ldots y_{k-1} t_{k-1, k}$
(thus $(Y(I-T))_{k}=y_{k}-y_{1} t_{1 k}-y_{2} t_{2 k}-\ldots-y_{k-1} t_{k-1, k}$), and
(ii) $\||Y| T\|_{1}=\|Y\|_{1}$, where $\quad|y|=\left(\left|y_{k}\right|\right)$.

Proof. (i)

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|(y T)_{k}\right| & =\sum_{k=1}^{\infty}\left|\sum_{i=1}^{\infty} Y_{i} t_{i k}\right| \\
& \leq \sum_{k=1}^{\infty} \sum_{i=1}^{\infty}\left|y_{i}\right| t_{i k} \\
& =\sum_{i=1}^{\infty}\left|Y_{i}\right| \sum_{k=1}^{\infty} t_{i k}=\sum_{i=1}^{\infty}\left|Y_{i}\right|<\infty \text { since } y \in \ell_{1} .
\end{aligned}
$$

Hence $\mathrm{yT} \in \ell_{1}$.

$$
\text { Also }\left(y^{T}\right)_{k}=\sum_{i=1}^{\infty} y_{i} t_{i k}=y_{1} t_{1 k}+y_{2} t_{2 k}+\ldots+y_{k-1} t_{k-1, k}
$$

since $\quad t_{i k}=0$ for $i \geq k$.
(ii) $\||y| T\|_{1}=\sum_{k=1}^{\infty}\left|\sum_{i=1}^{\infty}\right| y_{i}\left|t_{i k}\right|=\sum_{i=1}^{\infty}\left|y_{i}\right| \sum_{k=1}^{\infty} t_{i k}=\sum_{i=1}^{\infty}\left|y_{i}\right|=\|y\|_{1}$.

THEOREM 1. Let $T=\left(t_{n k}\right)$ be a lifting matrix and suppose $\left(x^{n}\right)$ is a sequence in ℓ_{1}. Then the following are equivalent:
(i) $\left(x^{\text {n }}\right)$ is $\sigma\left(\ell_{1}\right.$, Tace $\left._{0}\right)$-convergent to x in ℓ_{1};
(ii) ($\left.\mathrm{x}^{\mathrm{n}}\right)$ is $\sigma\left(\ell_{1}, \mathrm{U}_{\mathrm{T}}{ }^{\Psi} \mathrm{C}_{0}\right)$-convergent to x in ℓ_{1};
(iii) $\sup _{n}\left\|x^{n}\right\|_{1}<\infty$ and x is a sequence such that $\underset{n}{\lim \|\left(x^{n}-x\right)}(I-T) \|_{1}=0$.

Proof. ((i) \Rightarrow (ii)) This is obvious since $U_{T}{ }^{\oplus} C_{0} \subseteq{ }^{T}{ }^{T}{ }_{0}$.
$\left(\right.$ (ii) \Rightarrow (i)) Assume (ii). Since $c_{0}^{\beta}=\ell_{1},\left(U_{T}{ }^{\oplus} c_{o}\right)^{\beta}=\ell_{1}$, thus
$\sup _{\mathrm{n}}\left\|\mathrm{x}^{\mathrm{n}}\right\|_{1}<\infty$ by 2.3, Theorem $1((i) \Rightarrow$ (iv)). Now by 2.2, Proposition 4, $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-convergent to x (since $\bar{U}_{T}{ }^{\Phi c_{0}}{ }_{0}^{\infty}=T a c_{0}$, by Corollary 2 of Theorem 1 of §3).

$$
\left((i i) \Rightarrow \text { (iii)) Assume (ii). Again, since } c_{0}^{\beta}=\ell_{1}\right. \text {, }
$$

$\left(U_{T} \oplus c_{0}\right)^{\beta}=\ell_{1}$, thus $\sup _{n}\left\|x^{n}\right\|_{1}<\infty$ by 2.3, Theorem $1((i i) \Rightarrow$ (iv)). Moreover, since $\left(x^{n}\right)$ is $\sigma\left(l_{1}, U_{T}\right)$-convergent to x, $\lim _{n} \sum_{k=1}^{\infty}\left(x_{k}^{n}-x_{k}\right)[(I-T) y]_{k}=0$ for every $y \in m$. Since $x^{n}-x \in \ell_{1}$, $\|I-T\|<\infty$, and $y \in m$, by 1.5, Theorem 3 (i),
$\sum_{k=1}^{\infty}\left[\left(x^{n}-x\right)(I-T)\right]_{k} y_{k}=\sum_{k=1}^{\infty}\left(x_{k}^{n}-x_{k}\right)[(I-T) y]_{k} \rightarrow 0$ as $n \rightarrow \infty \quad$ for every
$y \in m$. Thus $\left\|\left(x^{n}-x\right)(I-T)\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty$ by 1.4, Theorem 3.

$$
((i i i) \Rightarrow(i i)) \text { Assume (iii). Since } \lim _{n}\left\|\left(x^{n}-x\right)(I-T)\right\|_{1}=0,
$$

$\lim _{n}\left[\left(x^{n}-x\right)(I-T)\right]_{k}=0$ for every $k \in \mathbb{N}$. For $k \in \mathbb{N}$,
$\left[\left(x^{n}-x\right)(I-T)\right]_{k}=\left(x_{k}^{n}-x_{k}\right)-\left(x_{1}^{n}-x_{1}\right) t_{l k}-\ldots-\left(x_{k-1}^{n}-x_{k-1}\right) t_{k-1, k}$ by Proposition $1(i)$. Thus $\lim _{n}\left[\left(x^{n}-x\right)(I-T)\right]_{1}=\lim _{n}\left(x_{1}^{n}-x_{1}\right)=0$ and

$$
\left.\lim _{n}\left[x^{n}-x\right)(I-T)\right]_{2}=\lim _{n}\left[\left(x_{2}^{n}-x_{2}\right)-\left(x_{1}^{n}-x_{1}\right) t_{12}\right]=0
$$

and hence $\lim _{\mathrm{n}}\left(\mathrm{x}_{2}^{\mathrm{n}}-\mathrm{x}_{2}\right)=0$. By induction, we can easily show that $\lim _{n}\left(x_{k}^{n}-x_{k}\right)=0$ for every k. Now, for each $p \in \mathbb{N}$,

$$
\sum_{k=1}^{p}\left|x_{k}\right|=\lim _{n} \sum_{k=1}^{p}\left|x_{k}^{n}\right| \leq \sup _{n}\left\|x^{n}\right\|<\infty
$$

Hence $x \in \ell_{1}$ and thus $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, \varphi\right)$-convergent to x. By 2.2, Proposition 4, $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, c_{0}\right)$-convergent to x. Moreover, since $\lim _{n}\left\|\left(x^{n}-x\right)(I-T)\right\|_{1}=0, \quad \lim \sum_{k=1}^{\infty}\left[\left(x^{n}-x\right)(I-T)\right]_{k} y_{k}=0 \quad$ for every $y \in m$. By 1.5, Theorem 3(i),

$$
\sum_{k=1}^{\infty}\left(x_{k}^{n}-x_{k}\right)[(I-T) y]_{k}=\sum_{k=1}^{\infty}\left[\left(x^{n}-x\right)(I-T)\right]_{k} y_{k} .
$$

Hence $\lim _{n} \sum_{k=1}^{\infty}\left(x_{k}^{n}-x_{k}\right)[(I-T) y]_{k}=0$ for every $y \in m$. Thus (x^{n}) is $\sigma\left(\ell_{1}, U_{T}\right)$-convergent to \mathbf{x}.

REMARK. Condition (iii) of Theorem 2 identifies $\sigma\left(\ell_{1}, T_{\text {Tac }}\right.$) with a two norm topology. For details concerning this type of topology we refer the reader to [1].

COROLLARY 1. Let T be a lifting matrix. Then $\left(\ell_{1}, \sigma\left(\ell_{1}, T a c,\right)\right)$ and $\left(l_{1}, \sigma\left(l_{1}, U_{T} \oplus C_{0}\right)\right.$ are sequentially complete.

Proof. Suppose $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}\right.$, Tac $)$-Cauchy. Then $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, c_{0}\right)$-Cauchy and hence there exists $x \in \ell_{1}$ such that $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, c_{0}\right)$-convergent to x since, by 2.2 , Proposition $3,\left(\ell_{1}, \sigma\left(\ell_{1}, c_{0}\right)\right)$ is sequentially complete. Without loss of generality we can assume that $x=0$. Also, by Theorem $1\left(\right.$ iii),$\left(x^{n}(I-T)\right)_{n=1}^{\infty}$ is Cauchy in $\left(\ell,\|\cdot\|_{1}\right)$ and hence there exists $y \in \ell_{1}$ such that $\lim _{n}\left\|x^{n}(I-T)-y\right\|_{1}=0$. Thus, for $k \in \mathbb{N}, y_{k}=\lim _{n}\left[x^{n}(I-T)\right]_{k}=\lim _{n}\left(x_{k}^{n}-x_{1}^{n} t_{1 k}-\ldots-x_{k-1}^{n} t_{k-1, k}\right) \quad$ (by Proposition $1(i))=0$ since $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, c_{0}\right)$-convergent to 0 . Moreover, since $\operatorname{Tac}_{0}^{\beta}=\ell_{1}, \sup _{n}\left\|x^{n}\right\|_{1}<\infty$ by 2.3 , Theorem $1((i) \Rightarrow$ (iv)). By Theorem 1, $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-convergent to 0 . The same argument can be used for ($\ell_{1}, \sigma\left(\ell_{1}, U_{T}{ }^{\oplus} c_{0}\right)$).

COROLLARY 2. Let T be a lifting matrix. If A is a regular matrix such that $T a c \subseteq c_{A^{\prime}}$ then $T-\operatorname{Lim} x=\lim _{A} x$ for every $x \in T a c$.

Proof. Apply 2.3, Theorem 3, letting $E=$ Tac $_{o}$ and $G=$ Tac.

COROLLARY 3. Let T be a lifting matrix. Then ($\mathrm{Tac}_{0},\| \|_{\infty}$) is not separable.

Proof. By Proposition 3 of §2, $c_{0} \underset{\neq}{\subset} \mathrm{Tac}_{0}$. Now apply 2.3, Theorem 4. COROLLARY 4. Let T be a lifting matrix. Then, for a subset C of ℓ_{1}, the following are equivalent:
(i) C is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-relatively compact;
(ii) C is $\sigma\left(\ell_{1}, U_{T} \oplus \mathrm{c}_{0}\right)$-relatively compact.
(iii) C is ℓ_{1}-norm bounded and $C(I-T)$ is relatively compact in

$$
\left(l_{1},\| \|_{1}\right), \text { where } C(I-T)=\{x(I-T) \mid x \in C\} .
$$

Proof. ((i) \Leftrightarrow (ii)) A subset of a K-space is relatively compact if and only if it is relatively sequentially compact, by l.4, Theorem l. Hence it follows from Theorem 1 that (i) and (ii) are equivalent.

$$
((i) \Rightarrow(\text { iii })) \text { Suppose } C \text { is } \sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right) \text {-relatively compact. }
$$

Then C is $\sigma\left(\ell_{1}, T a c_{0}\right)$-bounded. Since $\operatorname{Tac}_{o}^{\beta}=\ell_{1}$, it follows from 2.3, Theorem $1((i) \Rightarrow(i i))$ that C is ℓ_{1}-norm bounded. Suppose $\left(x^{n}\right)$ is a sequence in C. Then there exists a subsequence $\left(x^{n}\right)$ of $\left(x^{n}\right)$ such that $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, T a c_{0}\right)$-convergent to a member x in ℓ_{1}. By Theorem $I((i) \Rightarrow(i i i)), \quad \underset{i}{i m}\left\|\left(x^{n}-x\right)(I-T)\right\|_{1}=0$. Thus $\quad\left(x^{n}(I-T)\right)_{i=1}^{\infty}$ is ℓ_{1}-norm convergent to $x(I-T)$, and hence $C(I-T)$ is relatively compact $\operatorname{in}\left(\ell_{1},\| \|_{1}\right)$.
$\left(\right.$ (iii) \Rightarrow (i)) Assume condition (iii) and suppose $\left(x^{n}\right)$ is a sequence in C. Then there exists a subsequence $\left(x^{n}\right)$ of $\left(x^{n}\right)$ such
 Cauchy in $\left(\ell_{1},\| \|_{1}\right)$. Since $\left(x^{n}\right)$ is ℓ_{1}-norm bounded, it follows from

Theorem $I((\mathrm{iii}) \Rightarrow(\mathrm{i}))$ that $\left(\mathrm{x}^{\mathrm{n}}\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}\right)$-Cauchy. since ℓ_{1} is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-sequentially complete by Corollary $1,\left(\mathrm{x}^{\mathrm{n}}\right)$ is $\sigma\left(\ell_{1}\right.$, Tace $\left._{0}\right)$-convergent.

COROLIARY 5. Let T be a lifting matrix, and suppose C is a $\sigma\left(\ell_{1}\right.$, Tace $)$-relatively compact subset of ℓ_{1}. Then the convex hull of \hat{C} of C is also $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-relatively compact.

Proof. Suppose C is a $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-relatively compact subset of ℓ_{1}. Then C is ℓ_{1}-norm bounded and $C(I-T)$ is relatively compact in $\left(\ell_{1},\| \|_{1}\right)$, by Corollary $4((i) \Rightarrow(i i i))$. Hence the convex hull \hat{C} of C is ℓ_{1}-norm bounded and $\hat{C}(I-T)$ is relatively compact in ($\ell_{1},\| \|_{1}$), since $\hat{C}(I-T)$ is the convex hull of $C(I-T)$. Thus \hat{C} is $\sigma\left(\ell_{1}, T a c_{0}\right)$ relatively compact, by Corollary $4($ (iii) \Rightarrow (i)).

REMARK. Corollary 5 implies that $\tau\left(\mathrm{Tac}_{0}, \ell_{1}\right)$ is the topology of uniform convergence on $\sigma\left(\ell_{1}\right.$, Tace $)$-compact sets.

We use the following lemmas to establish some topological
properties of $\left(\operatorname{Tac}_{0}, \tau\left(\operatorname{Tac}_{0}, \ell_{1}\right)\right)$.
LEMMA 1. Let T be a lifting matrix. Suppose a sequence $\left(x^{n}\right)$ in ℓ_{1} is $\sigma\left(\ell_{1}, T a c_{0}\right)$-convergent to x. Then $\left(\left|x^{n}\right|\right)$ is $\sigma\left(\ell_{1}\right.$, Tace $)$-convergent to $|x|$, where $\left|x^{n}\right|=\left(\left|x_{k}^{n}\right|\right)_{k=1}^{\infty}$ and $|x|=\left(\left|x_{k}\right|\right)$.

Proof. Let $\left(x^{n}\right)$ be a sequence in ℓ_{1} such that $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-convergent to x . Then, by Theorem $l((i) \Rightarrow(i i i))$.
(1) $\quad \lim _{n}\left\|\left(x^{n}-x\right)(I-T)\right\|_{1}=0$ and $\sup _{n}\left\|x^{n}\right\|_{1}<\infty$.

Case 1. $\mathrm{x}=0$. Then

$$
\text { (1)' } \quad \lim _{n}\left\|x^{n}(I-T)\right\|_{1}=0 \quad \text { and } \quad \sup _{n}\left\|x^{n}\right\|_{1}<\infty
$$

Let $M=\left\{n\left|\left\|\left|x^{n}\right|(I-T)\right\|_{1}>\left\|x^{n}(I-T)\right\|_{1}\right\}\right.$. If M is finite, then there exists $n_{0} \in \mathbb{N}$ such that $\left\|\left|x^{n}\right|(I-T)\right\|_{1} \leq\left\|x^{n}(I-T)\right\|_{1}$ for every $n \geq n_{0}$. Thus $\lim _{n}\left\|\left|x^{n}\right|(I-T)\right\|_{1}=0 \quad$ by (1)'. Also $\sup _{n}\left\|\left|x^{n}\right|\right\|_{1}=\sup ^{n}\left\|x^{n}\right\|_{1}<\infty \quad$ by (1)'. Hence $\left(\left|x^{n}\right|\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-convergent to 0 by Theorem $1((i i i) \Rightarrow(i))$. Suppose M is infinite. Then the members of M form a strictly increasing sequence of positive integers. Let us denote this by $\left(n_{k}\right)_{k=1}^{\infty}$. Let, for $k \in \mathbb{N}$,

$$
\begin{aligned}
& \varepsilon_{k}=\left\|\left|x^{n_{k}}\right|(I-T)\right\|_{1}-\left\|x^{n_{k}}(I-T)\right\|_{1} \text {, i.e., } \\
& \varepsilon_{k}=\sum_{i=1}^{\infty}\left[| | x_{i}^{n_{k}}\left|-\left|x_{1}^{n^{k}}\right| t_{1 i}-\ldots-\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}\right|-\left|x_{i}^{n_{k}}{ }^{n} x_{1}^{n_{k}}{ }_{t}{ }_{1 i}-\ldots-x_{i-1}^{n_{k}} t_{i-1, i}\right|\right]
\end{aligned}
$$

(see Proposition l(i)).

First notice that
(2) $\sum_{i=1}^{\infty}\left(\left|x_{i}^{n}{ }^{k}\right|+\left|x_{1}{ }^{n}\right| t t_{i}+\ldots+\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty}\left|x_{i}{ }^{n}\right|+\sum_{i=1}^{\infty}\left(\left|x_{1}{ }^{n}\right| t_{1 i}+\ldots+\left|x_{i-1}^{n}\right| t_{i-1, i}\right) \\
& \left.=\left\|x^{n_{k}}\right\|_{1}+\left\|\left|x^{n_{k}}\right| T\right\|_{1} \quad \text { (by Proposition } 1(i)\right) \\
& =2\left\|x^{n_{k}}\right\|_{1} \quad \text { (by Proposition } 1 \text { (ii). }
\end{aligned}
$$

Similarly,
(3) $\sum_{i=1}^{\infty}\left(\left|x_{i}^{n_{k}}\right|-\left|x_{1}^{n_{k}}\right| t_{1 i}-\ldots-\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}\right)=0$.

Let $P_{k}=\left\{i| | x_{i}^{n}\left|\geq\left|x_{1}^{n}\right|^{n_{1 i}}+\ldots+\left|x_{i-1}^{n}\right| t_{i-1, i}\right\}\right.$. Then, for $i \in P_{k}$,
(4)

Let $\quad Q_{k}=\mathbb{N} \backslash P_{k}$. Then

$$
\begin{aligned}
& \varepsilon_{k}=\sum_{i \in Q_{k}}\left[| | x_{i}^{n}\left|-\left|x_{1}^{n}{ }^{n}\right| t_{l i}-\ldots-\left|x_{i-1}^{n}\right| t_{i-1, i}\right|-\left|x_{i}{ }^{n_{k}}-x_{1}{ }^{n_{k}}{ }_{1 i}-\ldots-x_{i-1}{ }^{n_{k}}{ }_{i-1, i}\right|\right] \\
& +\sum_{i \in P_{k}}\left[| | x_{i}^{n}{ }^{n}\left|-\left|x_{1}{ }^{n_{k}}\right| t_{l i}-\ldots-\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}\right|-\left|x_{i}^{n_{k}}-x_{1}^{n_{1}} t_{1 i}-\ldots-x_{i-1}^{n_{k}} t_{i-1, i}\right|\right] \\
& \leq \sum_{i \in Q_{k}}\left(\left|x_{1}{ }^{n_{k}}\right| t_{l i}+\ldots+\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}-\left|x_{i}^{n_{k}}\right|\right)+ \\
& \sum_{i \in P_{k}}\left[\left|x_{i}^{n_{k}}{ }_{-x_{1}}^{n_{1}} t_{l i}-\ldots-x_{i-1}^{n_{k}} t_{i-1, i}\right|-\left(\left|x_{i}^{n_{k}}\right|-\left|x_{1}^{n_{k}}\right| t_{l i}-\ldots-\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}\right)\right](b y(4)) . \\
& =\sum_{i=1}^{\infty}\left(\left|x_{1}{ }^{n}\right| t_{l i}+\ldots+\left|x_{i-1}^{n_{k}}\right| t_{i-1, i}-\left|x_{i}^{n^{k}}\right|\right)+\sum_{i \in P_{k}}\left|x_{i}^{n_{k}}-x_{1}^{n} k_{t}{ }_{l i}-\ldots-x_{i-1}^{n_{k}} t_{i-1, i}\right| \\
& \leq 0+\sum_{i=1}^{\infty}\left|x_{i}{ }^{n}-x_{1}{ }^{n}{ }^{t_{t}}{ }_{l i}-\ldots-x_{i-1}^{n_{k}} t_{i-1, i}\right| \text { (by (3)) } \\
& \left.=\left\|x^{n^{k}}(I-T)\right\|_{1} \text { (by Proposition } I(i)\right) \rightarrow 0 \text { as } k \rightarrow \infty \text { by (l)'. }
\end{aligned}
$$

i.e., $\left\|\left|x^{n_{k}}\right|(I-T)\right\|_{1}-\left\|x^{n_{k}}(I-T)\right\|_{1} \rightarrow 0$ as $k \rightarrow \infty$. Also, for $n k M=\left\{n_{k}\right\} \mid$ $k \in \mathbb{N}\},\left\|\left|x^{n}\right|(I-T)\right\|_{1} \leq\left\|x^{n}(I-T)\right\|_{1}$. Hence it follows from (1)' that $\lim _{n}\left\|\left|x^{n}\right|(I-T)\right\|_{1}=0$. Also $\sup _{n}\left\|\left|x^{n}\right|\right\|_{1}=\sup _{n}\left\|x^{n}\right\|_{1}<\infty . \quad$ Thus (| $\left.x^{n} \mid\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-convergent to 0 by Theorem $1(($ iii $) \Rightarrow(i))$.

Case 2. x is any member in ℓ_{1}. Let $\varepsilon>0$. Since $x \in \ell_{1}$, there exists $m \in \mathbb{N}$ such that
(5) $\sum_{k=m}^{\infty}\left|x_{k}\right|<\varepsilon / 16$.

Since (x^{n}) is pointwise convergent to x , there exists $\mathrm{n}_{0} \in \mathbb{N}$ such that
(6) $\sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|<\varepsilon / 8$ for $n \geq n_{0}$.

Since $\left(x^{n}-x\right)_{n=1}^{\infty}$ is $\sigma\left(\ell_{1}, \operatorname{Tac}_{0}\right)$-convergent to $0,\left(\left|x^{n}-x\right|\right)_{n=1}^{\infty}$ is $\sigma\left(\ell_{1}, T a c_{0}\right)$-convergent to 0 , and hence $\lim _{n}\left\|\left|x^{n}-x\right|(I-T)\right\|_{1}=0$ by Theorem $1((i) \Rightarrow(i i i))$. Also, by (1), $\lim _{\mathrm{n}}\left\|\left(\mathrm{x}^{\mathrm{n}}-\mathrm{x}\right)(\mathrm{I}-\mathrm{T})\right\|_{1}=0$. Thus there exists $n_{1}\left(>n_{0}\right)$ such that:
(7) $\left\|\left(x^{n}-x\right)(I-T)\right\|_{1}<\varepsilon / 8$ for $n \geq n_{1}$;
(8) $\left\|\left|x^{n}-x\right|(I-T)\right\|_{1}<\varepsilon / 8$ for $n \geq n_{1}$.

For $n \geq n_{1}$,

$$
\left\|\left(\left|x^{n}\right|-|x|\right)(I-T)\right\|_{1}=\sum_{k=1}^{\infty}\left|\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{1}^{n}\right|-\left|x_{1}\right|\right) t_{1 k}-\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right|\right) t_{k-1, k}\right|
$$

(by Proposition IIi))

$$
\begin{aligned}
& =\sum_{k=1}^{m-1}\left|\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{1}^{n}\right|-\left|x_{1}\right|\right) t_{1 k}-\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right|\right) t_{k-1, k}\right|+ \\
& \sum_{k=m}^{\infty} \mid\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{1}^{n}\right|-\left|x_{1}\right|\right) t_{1 k}-\ldots-\left(\left|x_{m-1}^{n}\right|-\left|x_{m-1}\right|\right) t_{m-1, k} \\
& -\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right|\right) t_{k-1, k} \mid \\
& \leq \sum_{k=1}^{m-1}\left(\left|x_{k}^{n}-x_{k}\right|+\left|x_{1}^{n}-x_{1}\right| t_{1 k}+\ldots+\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right) \\
& +\sum_{k=m}^{\infty}\left|\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{m}^{n}\right|-\left|x_{m}\right|\right) t_{m k}-\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right|\right) t_{k-1, k}\right| \\
& +\sum_{k=m}^{\infty}\left(\left|x_{1}^{n}\right|-\left|x_{1}\right|\right) t_{1 k}+\ldots+\left(\left|x_{m-1}^{n}\right|-\left|x_{m-1}\right|\right) t_{m-1, k} \mid \\
& \leq \sum_{k=1}^{m-1}\left(\left|x_{k}^{n}-x_{k}\right|+\left|x_{1}^{n}-x_{1}\right| t_{1 k}+\ldots+\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right) \\
& +\sum_{k=m}^{\infty}\left(\left|x_{1}^{n}-x_{1}\right| t_{1 k}+\ldots+\left|x_{m-1}^{n}-x_{m-1}\right| t_{m-1, k}\right) \\
& +\sum_{k=m}^{\infty}\left|\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{m}^{n}\right|-\left|x_{m}\right|\right) t_{m k}-\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right|\right) t_{k-1, k}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|+\left[\sum_{k=1}^{m-1}\left(\left|x_{1}^{n}-x_{1}\right| t_{1 k}+\ldots+\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right)\right. \\
& \left.+\sum_{k=m}^{\infty}\left(\left|x_{1}^{n}-x_{1}\right| t_{1 k}+\ldots+\left|x_{m-1}^{n}-x_{m-1}\right| t_{m-1, k}\right)\right] \\
& +\sum_{k=m}^{\infty}\left|\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{m}^{n}\right|-\left|x_{m}\right|\right) t_{m k}-\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right|\right) t_{k-1, k}\right| \\
& =\sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|+\left|\left|\left(\left|x_{1}^{n}-x_{1}\right|,\left|x_{2}^{n}-x_{2}\right| \ldots,\left|x_{m-1}^{n}-x_{m-1}\right|, 0,0, \ldots\right) T\right| l_{1}\right. \\
& +\sum_{k=m}^{\infty} \mid\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|\right)-\left(\left|x_{m}^{n}\right|-\left|x_{m}\right|\right) t_{m k}-\ldots-\left(\left|x_{k-1}^{n}\right|-\left|x_{k-1}\right| 2 t_{k-1, k} \mid\right.
\end{aligned}
$$

(by Proposition l(i))

$$
\begin{aligned}
& \leq 2 \sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|+\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1}\right| \\
& \left.+\sum_{k=m}^{\infty}\left(\left|x_{k}\right|+\left|x_{m}\right| t_{m k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right) \quad \text { (by Proposition } 1(i i)\right) \\
& =2 \sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|+\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right| \\
& +\sum_{k=m}^{\infty}\left|x_{k}\right|+\sum_{k=m}^{\infty}\left(\left|x_{m}\right| t_{m k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right) \\
& =2 \sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|+\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right| \\
& \left.+\sum_{k=m}^{\infty}\left|x_{k}\right|+\left\|\left(0,0, \ldots, 0,\left|x_{m}\right|,\left|x_{m+1}\right|, \ldots\right) T\right\|_{1} \quad \text { (by Proposition } 1(i)\right)
\end{aligned}
$$

$$
=2 \sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right|+\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right|+2 \sum_{k=m}^{\infty}\left|x_{k}\right|
$$

(by Proposition $1(i i)$)

$$
\begin{aligned}
& <\frac{\varepsilon}{4}+\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-I, k}\right|+\frac{\varepsilon}{8} \quad \text { by (6) and (5) } \\
& \text { since } n \geq n_{I}>n_{0} . \\
& \text { i.e., (9) }\left\|\left(\left|x^{n}\right|-|x|\right)(I-T)\right\|_{I}<\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-I}^{n}\right| t_{k-1, k}\right|+\frac{\varepsilon}{2} \\
& \text { for } n \geq n_{I} .
\end{aligned}
$$

Now

$$
\left\|\left|x^{n}-x\right|(I-T)\right\|_{1}=\sum_{k=1}^{\infty}| | x_{k}^{n}-x_{k}\left|-\left|x_{1}^{n}-x_{1}\right| t_{1 k}-\ldots-\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right|
$$

(by Propositon 1 (i)).

$$
\begin{aligned}
& \geq \sum_{k=m}^{\infty}| | x_{k}^{n}-x_{k}\left|-\left|x_{1}^{n}-x_{1}\right| t_{1 k}-\ldots-\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right| \\
& \geq \sum_{k=m}^{\infty}| | x_{k}^{n}-x_{k}\left|-\left|x_{m}^{n}-x_{m}\right| t_{m k} \cdots-\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right| \\
& -\sum_{k=m}^{\infty}\left(\left|x_{1}^{n}-x_{1}\right| t_{1 k}+\ldots+\left|x_{m-1}^{n}-x_{m-1}\right| t_{m-1, k}\right) \\
& \geq \sum_{k=m}^{\infty}| | x_{k}^{n}-x_{k}\left|-\left|x_{m}^{n}-x_{m}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right| \\
& -\sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right| \quad\left(\text { since } \sum_{k=m}^{\infty} t_{i k l} \leq 1 \text { for } i \in \mathbb{N}\right),
\end{aligned}
$$

Let $\quad \alpha(n, k)=\left|\left|x_{k}^{n}-x_{k}\right|-\left|x_{m}^{n}-x_{m}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}-x_{k-1}\right| t_{k-1, k}\right|$.

Then $\alpha(n, k)=\left|\left|x_{k}^{n}-x_{k}\right|-\sum_{j=m}^{k-1}\right| x_{j}^{n}-x_{j}\left|t_{j k}\right|$

$$
\left.\geq \max \left\{\left(\left|x_{k}^{n}-x_{k}\right|-\sum_{j=m}^{k-1}\left|x_{j}^{n}-x_{j}\right| t_{j k}\right), \sum_{j=m}^{k-1}\left|x_{j}^{n}-x_{j}\right| t_{j k}\right)-\left|x_{k}^{n}-x_{k}\right|\right\}
$$

Hence $\quad \alpha(n, k) \geq \max \left\{\left(\left|x_{k}^{n}\right|-\left|x_{k}\right|-\sum_{j=m}^{k-1}\left(\left|x_{j}^{n}\right|+\left|x_{j}\right|\right) t_{j k}\right)\right.$,

$$
\begin{aligned}
& \left.\left.\sum_{j=m}^{k-1}\left(\left|x_{j}^{n}\right|-\left|x_{j}\right|\right) t_{j k}\right)-\left|x_{k}^{n}\right|-\left|x_{k}\right|\right\} \\
& \text { ide., } \alpha(n, k) \geqq \max \left\{\left(\left|x_{k}^{n}\right|-\sum_{j=m}^{k-1}\left|x_{j}^{n}\right| t_{j k}\right)-\left(\left|x_{k}\right|+\sum_{j=m}^{k-1}\left|x_{j}\right| t_{j k}\right)\right. \text {, } \\
& \left.-\left(\left|x_{k}^{n}\right|-\sum_{j=m}^{k-1}\left|x_{j}^{n}\right| t_{j k}\right)-\left(\left|x_{k}\right|+\sum_{j=m}^{k-1}\left|x_{j}\right| t_{j k}\right)\right\} . \\
& \text { Hence } \quad \alpha(n, k) \geq\left|\left|x_{k}^{n}\right|-\sum_{j=m}^{k-1}\right| x_{j}^{n}\left|t_{j k}\right|-\left(\left|x_{k}\right|+\sum_{j=m}^{k-1}\left|x_{j}\right| t_{j k}\right) \text {. } \\
& \text { Thus }\left\|\left|x^{n}-x\right|(I-T)\right\|_{1} \geq \sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right| \\
& -\sum_{k=m}^{\infty}\left(\left|x_{k}\right|+\left|x_{m}\right| t_{m k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right)-\sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right| \\
& =\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right|-2 \sum_{k=m}^{\infty}\left|x_{k}\right|-\sum_{k=1}^{m-1}\left|x_{k}^{n}-x_{k}\right| \\
& \text { (since } \sum_{k=m}^{\infty}\left(\left|x_{k}\right|+\left|x_{m}\right| t_{m k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right)=\sum_{k=m}^{\infty}\left|x_{k}\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=m}^{\infty}\left(\left|x_{m}\right| t_{m k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right)=\sum_{k=m}^{\infty}\left|x_{k}\right|+\|(0,0, \ldots \\
& \left.\ldots, 0,\left|x_{m}\right|,\left|x_{m+1}\right| \ldots . .\right) T \|_{1}=2 \sum_{k=m}^{\infty}\left|x_{k}\right| \text { by Proposition 1) } \\
\geq & \sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right|-\frac{\varepsilon}{8}-\frac{\varepsilon}{8}(\text { by (5) and (6). } \\
& \text { since } \left.n \geq n_{1}>n_{0}\right) .
\end{aligned}
$$

Since $n \geq n_{1},\left\|\left|x^{n}-x\right|(I-T)\right\|_{1}<\varepsilon / 8$ by (8) and hence

$$
\sum_{k=m}^{\infty}| | x_{k}^{n}\left|-\left|x_{m}^{n}\right| t_{m k}-\ldots-\left|x_{k-1}^{n}\right| t_{k-1, k}\right|<\frac{\varepsilon}{4}+\frac{\varepsilon}{8}<\frac{\varepsilon}{2}
$$

Thus $\left\|\left(\left|x^{n}\right|-|x|\right)(I-T)\right\|_{1}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ for $n \geq n_{1}$ by (9).

Hence $\lim _{n}\left\|\left(\left|x^{n}\right|-|x|\right)(I-T)\right\|_{1}=0 . \quad$ Also $\sup _{n}\left\|\left|x^{n}\right|\right\|_{1}=\sup _{n}\left\|x^{n}\right\|_{1}<\infty \quad$ by (1).

Thus $\left(\left|x^{n}\right|\right)$ is $\sigma\left(\ell_{1}\right.$, Taco $\left._{0}\right)$-convergent to $|x|$ by Theorem $l((i i i) \Rightarrow(i))$.

LEMMA 2. Let T be a lifting matrix. If a subset C of ℓ_{I} is $\sigma\left(\ell_{1}\right.$, Tace $\left._{0}\right)$-relatively compact, then $\mathrm{CU}|\mathrm{C}|$ is $\sigma\left(\ell_{1}\right.$, Tace $\left._{0}\right)$-relatively compact, where $|c|=\left\{\left(\left|x_{n}\right|\right) \mid\left(x_{n}\right) \in c\right\}$.

Proof. Suppose a subset C of ℓ_{1} is $\left.\sigma\left(l_{1}, \text { Tace }\right)_{0}\right)$-relatively compact.
Let $\left(x^{n}\right)$ be a sequence in $C U|C|$. Then there exists a subsequence $\left(x^{n}\right)_{k=1}^{\infty}$ of $\left(x^{n}\right)$ such that $\left(x^{n} k\right)$ is in C, or $\left(x^{n}\right)^{n}$ is in $|c|$.

If $\left(x^{n}\right)$ is in C, then there exists a subsequence $\left(x^{k_{i}}\right)_{i=1}^{\infty}$ of $\left(x^{n}\right)$ such that $\left(x^{n_{k_{i}}}\right)_{i=1}$ is $\sigma\left(\ell_{1}, T a c_{o}\right)$-convergent since C is $\sigma\left(\ell_{1}\right.$, Tace $)$-relatively compact. If $\left(x^{n}\right)$ is in $|c|$, then there exists a sequence $\left(y^{k}\right)$ in C such that $\left|y^{k}\right|=x^{n}$ for each k. since C is $\left.\sigma\left(\ell_{1}, \text { Taco }\right)_{0}\right)$-relatively compact, there exists a subsequence $\left(y_{i}\right)_{i=1}^{\infty}$ of (y^{k}) such that $\left(y^{k_{i}}\right)$ is $\sigma\left(\ell_{1}, T a c_{0}\right)$-convergent. By Lemma 1 ,
$\left(\mid y^{k_{i}}\right)_{i=1}^{\infty}=\left(x^{k_{i}}\right)_{i=1}^{\infty}$ is $\sigma\left(\ell_{1}\right.$, Taco $\left._{o}\right)$-convergent. Hence $|c| \cup C$ is $\sigma\left(\ell_{1}, T a c_{0}\right)-r e l a t i v e l y ~ c o m p a c t . ~$

LEMMA 3. Let T be a lifting matrix. If a subset of C of ℓ_{1} is $\sigma\left(\ell_{1}\right.$, Tace $\left._{0}\right)$-relatively compact, then $P(C)=\left\{P_{n} x \mid x \in C\right.$ and $\left.n \in \mathbb{N}\right\}$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-relatively compact.

Proof. Suppose a subset C of ℓ_{1} is $\sigma\left(\ell_{1}, \text { Tace }\right)_{0}$-relatively compact. Then $\mathrm{CU}|\mathrm{C}|$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-relatively compact by Lemma 2. Thus $(C U|C|)(I-T)$ is relatively compact in $\left(\ell_{1},\| \|_{1}\right)$ by Corollary 4 ((i)) (iii)) of Theorem 1. By 1.4, Theorem 4,

$$
\lim _{n} \sup _{x \in C U|C|}\left\|x(I-T)-P_{n}(x(I-T))\right\|_{1}=0
$$

Let $\varepsilon>0$. Then there exists $n_{0} \in N$ such that
(1) $\sup _{x \in C \backslash|C|} \| x(I-T)-P_{n}\left(x(I-T) L \|_{1} \leqslant \varepsilon / 2\right.$ for $n \geq n_{0}$.

We claim that $\sup _{x \in P(C)}\left\|x(I-T)-P_{n}(x(I-T))\right\|_{1}<\varepsilon$ for $n \geq n_{0}$. Let $m \in \mid N$, $n \geq n_{0}$, and $x \in C$.

Case 1. m $\leq n$.

$$
\begin{aligned}
\left\|\left(P_{m} x\right)(I-T)-P_{n}\left[\left(P_{m} x\right)(I-T)\right]\right\|_{1} & \left.=\sum_{k=n+1}^{\infty}\left|x_{1} t_{l k}+\ldots+x_{m} t_{m k}\right| \text { (by Proposition } 1(i)\right) \\
& \leq \sum_{k=n+1}^{\infty}\left(\left|x_{1}\right| t_{1 k}+\ldots+\left|x_{m}\right| t_{m k}\right) \\
& \left.\leq \sum_{k=n+1}^{\infty}\left(\left|x_{1}\right| t_{l k}+\ldots+\left|x_{n}\right| t_{n k}\right) \text { (since } m \leq n\right) .
\end{aligned}
$$

Now $\left|\sum_{k=n+1}^{\infty}\left(\left|x_{k}\right|-\left|x_{1}\right| t_{1 k}-\ldots \cdots\left|x_{k-1}\right| t_{k-1, k}\right)\right|$

$$
=\left|\sum_{k=n+1}^{\infty}\right| x_{k}\left|-\sum_{k=n+1}^{\infty}\left(\left|x_{1}\right| t_{1 k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right)\right|
$$

$$
=\left|\sum_{k=n+1}^{\infty}\right| x_{k}\left|-\sum_{k=n+1}^{\infty}\left(\left|x_{1}\right| t_{I k}+\ldots+\left|x_{n}\right| t_{n k}\right)-\sum_{k=n+1}^{\infty}\left(\left|x_{n+1}\right| t_{n+1, k}+\ldots+\left|x_{k-1}\right| t_{k-1, k}\right)\right|
$$

$$
=\left|\sum_{k=n+1}^{\infty}\right| x_{k}\left|-\sum_{k=n+1}^{\infty}\left(\left|x_{1}\right| t_{1 k}+\ldots+\left|x_{n}\right| t_{n k}\right)-\left\|\left(0,0, \ldots, 0,\left|x_{n+1}\right|, \ldots\right) T\right\|_{1}\right|
$$

$$
\text { (by Proposition } 1(i) \text {) }
$$

$$
\left.=\sum_{k=n+1}^{\infty}\left(\left|x_{1}\right| t_{1 k}+\ldots+\left|x_{n}\right| t_{n k}\right) \quad \text { (by Proposition } 1(i i)\right)
$$

Hence

$$
\begin{aligned}
\left\|\left(P_{m} x\right)(I-T)-P_{n}\left[\left(P_{m} x\right)(I-T)\right]\right\|_{1} & \leq\left|\sum_{k=n+1}^{\infty}\left(\left|x_{k}\right|-\left|x_{1}\right| t_{1 k} \cdots-\ldots x_{k-1} \mid t_{k-1, k}\right)\right| \\
& \leq \sum_{k=n+1}^{\infty}| | x_{k}\left|-\left|x_{1}\right| t_{1 k}-\ldots-\left|x_{k-1}\right| t_{k-1, k}\right| \\
& =\left\||x|(I-T)-P_{n}(|x|(I-T))\right\|_{1}(\text { by Proposition } 1(i)) \\
& <\varepsilon / 2 \text { by (1). }
\end{aligned}
$$

Case 2. m > n.

$$
\left\|\left(P_{m} x\right)(I-T)-P_{n}\left[\left(P_{m} x\right)(I-T)\right]\right\|_{1}
$$

$$
\begin{aligned}
& =\sum_{k=n+1}^{m}\left|\left[\left(P_{m} x\right)(I-T)\right]_{k}\right|+\sum_{k=m+1}^{\infty}\left|\left[\left(p_{m} x\right)(I-T)\right]_{k}\right| \\
& =\sum_{k=n+1}^{m}\left|x_{k}-x_{1} t_{1 k}-\ldots-x_{k-1} t_{k-1, k}\right|+\sum_{k=m+1}^{\infty}\left|x_{1} t_{1 k}+\ldots+x_{m} t_{m k}\right|
\end{aligned}
$$

(by Proposition 1 (ii))

$$
\leq \sum_{k=n+1}^{\infty}\left|x_{k}-x_{1} t_{1 k}-\ldots-x_{k-1} t_{k-1, k}\right|+\sum_{k=m+1}^{\infty}\left(\left|x_{1}\right| t_{1 k}+\ldots+\left|x_{m}\right| t_{m k}\right)
$$

Now, as in Case 1 , we can show that
$\sum_{k=m+1}^{\infty}\left(\left|x_{1}\right| t_{1 k}+\ldots+\left|x_{m}\right| t_{m k}\right)=\left|\sum_{k=m+1}^{\infty}\left(\left|x_{k}\right|-\left|x_{1}\right| t_{1 k}-\ldots-\left|x_{k-1}\right| t_{k-1, k}\right)\right|$.

Thus

$$
\begin{aligned}
& \left\|\left(P_{m} x\right)(I-T)-P_{n}\left[\left(P_{m} x\right)(I-T)\right]\right\|_{1} \\
& \leq \sum_{k=n+1}^{\infty}\left|x_{k}-x_{1} t_{1 k}-\ldots-\dot{x}_{k-1} t_{k-1, k}\right|+\left|\sum_{k=m+1}^{\infty}\left(\left|x_{k}\right|-\left|x_{1}\right| t_{1 k}-\ldots-\left|x_{k-1}\right| t_{k-1, k}\right)\right|
\end{aligned}
$$

$$
\leq \sum_{k=n+1}^{\infty}\left|x_{k}-x_{1} t_{1 k} \cdots \ldots-x_{k-1} t_{k-1, k}\right|+\sum_{k=m+1}^{\infty}| | x_{k}\left|-\left|x_{1}\right| t_{1 k}-\ldots-\left|x_{k-1}\right| t_{k-1, k}\right|
$$

$$
\left.=\left\|x(I-T)-P_{n}(x(I-T))\right\|_{1}+\left\||x|(I-T)-P_{m}(|x|(I-T))\right\|_{1} \quad \text { (by Proposition } 1(i)\right)
$$

$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$ by (1) since $m>n \geq n_{0}$.

Hence $\lim _{n} \sup _{x \in P(C)}\left\|x(I-T)-P_{n}(x(I-T))\right\|_{1}=0$. Thus $P(C)(I-T)$ is relatively compact in $\left(\ell_{1},\| \|_{1}\right)$, by 1.4 , Theorem 4. Since C is $\sigma\left(\ell_{1}, \text { Taco }\right)_{0}$-relatively compact, C is ℓ_{1}-norm bounded by Corollary $4((i)=(i i i)$) of Theorem 1. Thus $P(C)$ is also ℓ_{1}-norm bounded. It follows from the same Corollary that $P(C)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-relatively compact.

The following theorem was proved for $a c_{0}$ in [4, Theorem 4, p. 30].

THEOREM 2. Let T be a lifting matrix. Then (Tace ${ }_{0}, \tau\left(T a c_{o}, \ell_{1}\right)$) is an AK-space.

Proof. Let C be a $\sigma\left(\ell_{1}\right.$, Tace $\left._{0}\right)$-relatively compact subset of ℓ_{1}. Then $P(C)=\left\{P_{n} x \mid x \in C\right.$ and $\left.n \in \mathbb{N}\right\}$ is $\sigma\left(\ell_{1}\right.$, Taco $\left.C_{0}\right)$-relatively compact by Lemma 3. Let $y=\left(y_{k}\right) \in \operatorname{Tac}_{0}$. Then

$$
\sup _{n} \sup _{x \in C}\left|\sum_{k=1}^{n} x_{k} y_{k}\right|=\sup _{x \in P(C)}\left|\sum_{k=1}^{\infty} x_{k} y_{k}\right|
$$

Thus the family $P_{n}:\left(\right.$ Tace $_{0}, \tau\left(\right.$ Tace $\left.\left._{0}, \ell_{1}\right)\right) \rightarrow\left(\right.$ Tace $_{0}, \tau\left(\right.$ Tace $\left.\left._{0}, \ell_{1}\right)\right), n=1,2, \ldots$ is equicontinuous. Now we claim that the set
$S=\left\{x \in \operatorname{Tac}_{0} \mid\left(P_{n} x\right)_{n=1}^{\infty}\right.$ is $\tau\left(\right.$ Taco $\left._{0}, \ell_{1}\right)$-convergent to $\left.x\right\}$ is $\tau\left(\right.$ Tace $_{0}, \ell_{1} \ell$-closed. Suppose a net $\left(x^{\lambda}\right)$ in S is $\tau\left(\mathrm{Tac}_{0}, \ell_{1}\right)$-convergent to x in Tac_{0}. Let $\left\|\|\right.$ be a $\tau\left(\mathrm{Tac}_{0}, \ell_{1}\right)$-continuous seminorm on Tac_{o}, and let $\varepsilon>0$. Since the family $P_{n}, n=1,2, \ldots$ is equicontinuous and $\lim \left\|x^{\lambda}-x\right\|=0$, there exists λ_{0} such that
(1) $\sup _{n}\left\|P_{n} x^{\dot{\lambda}_{0}}-P_{n} x\right\|<\varepsilon / 3$, and $\left\|x^{\lambda} 0-x\right\|<\varepsilon / 3$.

Since $x^{\lambda_{0}} \in S$, there exists $n_{0} \subseteq N$ such that
(2) $\left\|P_{n} x^{\lambda} o_{-x} \lambda_{0}\right\|<\varepsilon / 3$ for $n \geq n_{o}$.

Now

$$
\begin{aligned}
\left\|P_{n} x-x\right\| & \leq\left\|P_{n} x-P_{n} x^{\lambda} o_{0}\right\|+\left\|P_{n} x^{\lambda} o_{-x}{ }^{\lambda} o_{\|}+\right\| x^{\lambda_{0}}{ }_{-x \|} \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon \text { for } n \geq n_{o} \text { by (1) and (2). }
\end{aligned}
$$

Hence $\left(P_{n} x\right)_{n=1}^{\infty}$ is $\tau\left(\operatorname{Tac}_{0} \cdot \ell_{1}\right)$-convergent to x so that $x \leq s$. Thus S is $\tau\left(\right.$ Tace $\left._{0}, \ell_{1}\right)$-closed. By 1.3, Proposition 1,
$\bar{\varphi}^{\tau\left(\mathrm{Tac}_{0}, \ell_{1}\right)}=\bar{\varphi}^{\sigma\left(\mathrm{Tac}_{0}, \ell_{1}\right)}=\mathrm{Tac}_{0}$. Thus $S=\mathrm{Tac}_{0}$ since $\varphi \subseteq S$.

LEMMA 4. Let T be a lifting matrix. Then $\left(\ell_{1},\|x(I-T)\|_{1}\right)$ is a normed space and $\left(\ell_{1}, \| x\left(I-T \|_{1}\right), \subseteq \operatorname{Tac}_{0}\right.$.

Proof. To claim that $\|x(I-T)\|_{1}$ is a norm on ℓ_{1} it suffices to show that $x(I-T)=0 \Rightarrow x=0$. Suppose $x(I-T)=0$. Then
$(x(I-T))_{1}=x_{1}=0 ; \quad(x(I-T))_{2}=x_{2}-x_{1} t_{12}=0$, hence $x_{2}=0$.
Inductively we can easily show that $x_{k}=0$ for all k.

$$
\text { Since } x \rightarrow x(I-T) \text { is a continuous linear function from }
$$

$\left(\ell_{1},\| \|_{1}\right)$ into $\left(l_{1},\| \|_{1}\right)$ and $\left(l_{1},\| \|_{1}\right)$ iss $A K$,
$\left\|\left(\left(P_{n} x\right)-x\right)(I-T)\right\|_{I} \rightarrow 0$ as $n \rightarrow \infty$ for $x \in \ell_{1}$. Hence $\left(\ell_{1},\|x(I-T)\|_{1}\right)$
is also an AK-space. Now let $f \in\left(\ell_{1},\|x(I-T)\|_{1}\right)^{\prime}$. Then, for every $x \in \ell_{1}, f(x)=\sum_{k=1}^{\infty} x_{k} f\left(e^{k}\right)$ since $\left(\ell_{1},\|x(I-T)\|_{1}\right)$ is $A K$. Let $y_{k}=f\left(e^{k}\right)$ for each k. We claim that $y=\left(y_{k}\right) \in \operatorname{Tac}_{0}$. Since $f \in\left(\ell_{1},\|x(I-T)\|_{1}\right)$, , (1) $\left|\sum_{k=1}^{\infty} x_{k} y_{k}\right|=|f(x)| \leq\|x(I-T)\|_{1}\|f\|$ for $x \leq \ell_{1}$.

Let $p \in \mathbb{N}$. Then the nth row of $\frac{T+\ldots+T^{p}}{p}$ is in ℓ_{1} for each n, and hence

$$
\begin{aligned}
\left|\left(\frac{T+\ldots+T^{p}}{p} y^{p}\right)_{n}\right| & =\left|\sum_{k=1}^{\infty}\left(\frac{T+\ldots+T^{p}}{p}\right)_{n k} y_{k}\right| \\
& \leq\left\|\left[\left(\frac{T+\ldots+T^{p}}{p}\right)_{n k}\right]_{k=1}^{\infty}(I-T)\right\|_{1}\|f\|(b y \text { (i)) } \\
& =\sum_{k=1}^{\infty}\left|\left(\frac{T+\ldots+T^{p}}{p}\right)_{n k}-\left(\frac{T^{2}+\ldots+T^{p+1}}{p}\right)_{n k}\right|\|f\| \\
& =\sum_{k=1}^{\infty}\left|\left(\frac{T-T^{p+1}}{p}\right)_{n k}\right|\|f\| \\
& \left.\leq \frac{2}{p}\|f\| \text { (since } \sum_{k=1}^{\infty}\left|(T)_{n k}\right|=\sum_{k=1}^{\infty}\left|\left(T^{p+1}\right)_{n k}\right|=1\right) .
\end{aligned}
$$

Thus $\lim _{\mathrm{p}}\left|\frac{\left(\mathrm{T}+\ldots \mathrm{T}^{p}\right.}{\mathrm{p}} \mathrm{y}_{\mathrm{n}}\right|=0$ uniformly in n . By Corollary 1 of Theorem 1 of $\S 3, \mathrm{y} \leq \mathrm{Tac}_{\mathrm{o}}$.

THEOREM 3. Let T be a lifting matrix. Then (Taco,$\tau\left(T_{0} \mathcal{C}_{0}, l_{1}\right)$) is complete.

Proof. To show that ($\mathrm{Tac}_{0}, \tau\left(\mathrm{Tac}_{0}, \ell_{1}\right)$) is complete we use Grothendieck's
criterion (see 1.3, Theorem 1.) Let f be a linear functional on ℓ_{1} which is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-continuous on each $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-compact set, and suppose $\left(x^{n}\right)$ is a sequence in ℓ_{1} which is convergent to 0 in the two-norm topology $\left(\ell_{1},\|x\|_{1},\|x(I-T)\|_{1}\right)$. Then, by Theorem $1($ (iiii) $\Rightarrow(i))$, $\left(x^{n}\right)$ is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-convergent to 0 . Hence $\left\{\mathrm{x}_{\mathrm{n}} \mid \mathrm{n} \in \mathbb{N}\right\}$ is $\sigma\left(\ell_{1}\right.$, Tac $_{0}$ L-relatively compact so that f is $\sigma\left(\ell_{1}, \mathrm{Tac}_{0}\right)$-continuous on $\left\{x_{n} \mid n \in \mathbb{N}\right\}$. Thus $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$ is convergent to 0 in \mathbb{R}. Therefore, f is continuous in the two norm-topology $\left(\ell_{1},\| \|_{1}\|x(I-T)\|_{1}\right)$. Hence f lies in the closure of $\left(\ell_{1},\|x(I-T)\|_{1}\right)$ in $\left(\ell_{1},\| \|_{1}\right)$ (i.e., $\left.\left(m,\| \|_{\infty}\right)\right)$ by 1.4, Theorem 2. Since $\left(\ell_{1},\|x(I-T)\|_{1}\right) \subset^{\prime}$ Tac $_{0}(b y$ Lemma 4) and Taco is closed in $\left(m,\| \|_{\infty}\right), f \leq \operatorname{Tac}_{0}$. Hence $\left(\operatorname{Tac}_{0}, \tau\left(\mathrm{Tac}_{0},{ }^{\ell} 1\right)\right)$ is complete by Grothendieck's criterion.

CHAPTER 4

CONSISTENCY THEOREMS FOR T-ALMOST CONVERGENCE

§1. Introduction.

The main purpose of this chapter is to establish the bounded consistency theorem for T -almost convergence. The bounded consistency theorem is a principal result in the theory of summability. Two different approaches to establish this theorem for almost convergence can be found in [4] and [21]. It seems difficult to construct a proof for T-almost convergence parallel to these proofs. In proving this theorem we first establish the sequential completeness of ℓ_{1} under certain weak topologies. To do this we apply a gliding hump argument together with a technique called "the principle of aping sequences". Erdös and Piranian developed this technique in [8] and derived the classical bounded consistency theorem as a quick application. As we expected, it was necessary to penetrate deep into the structure of T-almost convergent sequences to establish the theorem. This made some arguments rather long and difficult. Finally, employing some techniques already developed, we obtain a result for T-almost convergent sequences (Theorem 3 of section 3) which is unknown even for convergent sequences.

§2. Notations and basic results.

Recall the definition (3.2, Definition 2) of a lifting matrix $T=\left(t_{j k}\right)$ in Chapter 3. When T is a lifting matrix, T^{n} (nth power of T) is defined for $n \in \mathbb{N}$, and for convenience we write $T^{n}=\left(t_{j k}^{n}\right)$ for $\mathrm{n}=0,1,2 \ldots$ with $\mathrm{T}^{0}=\mathrm{I}$ and $\mathrm{T}^{1}=\mathrm{T}$. It should be noticed that $\mathrm{t}_{\mathrm{jk}}^{\mathrm{n}}$ is not the $n^{\text {th }}$ power of $t_{j k}$. Under these notations we obtain the following proposition.

PROPOSITION 1. Let $T=\left(t_{j k}\right)$ be a lifting matrix. Then the following hold:
(i) $t_{j k}^{n}=0$ for $k<j+n$;
(ii) $\sum_{k=1}^{\infty} t_{j k}^{n}=1$ for $n=0,1,2, \ldots$ and $j=1,2, \ldots$;
(iii) $\sum_{k=1}^{q} t_{j k}^{m} \leq \sum_{k=1}^{q} t^{n}{ }_{j k}$ (equivalently, $\sum_{k=q+1}^{\infty} t^{m}{ }_{j k}^{m} \geq \sum_{k=q+1}^{\infty} t_{j k}^{n}$.) for $m>n$ and $q, j=1,2, \ldots$.

Proof. (i) Clearly it is true for $n=0,1$. Suppose $t_{j k}^{n}=0$ for every j, k such that $k<j+n$. Then $t_{j k}^{n+1}=\sum_{p=1}^{\infty} t_{j p} t_{p k}^{n}=0$ for $k<j+n+1$, since $t_{j p}=0$ for $p \leq j$ and $t_{p k}^{n}=0 \quad k<p+n$. So (i) follows by induction.
(ii) This follows from the fact that $\mathrm{T}^{\mathrm{n}} \mathrm{e}=\mathrm{e}$.
(iii) It is sufficient to show that $\sum_{k=1}^{q} t_{j k}^{n+1} \leq \sum_{k=1}^{q} t_{j k}^{n}$.

If $q<j+n+1$, then $\sum_{k=1}^{q} t_{j k}^{n+1}=0$ by (i). Suppose $q \geq j+n+1$.
Then $\sum_{k=1}^{q} t_{j k}^{n+1}=\sum_{k=j+n+1}^{q} t_{j k}^{n+1}$ by (i). Also, for $k \geq j+n+1$,
$t_{j k}^{n+1}=\left(T^{n} T\right)_{j k}=\sum_{i=1}^{\infty} t_{j i}^{n} t_{i k}=\sum_{i=j+n}^{k-1} t_{j i}^{n} t_{i k} \quad$ (since $t_{j i}^{n}=0$ for $i<j+n$
and

$$
\begin{aligned}
& t_{i k}=0 \text { for } i>k-1 \text { by (i)). H } \\
& \sum_{k=j+n+1}^{q} t_{j k}^{n+1}=\sum_{k=j+n+1}^{q} \sum_{i=j+n}^{k-1} t_{j i}^{n} t_{i k}
\end{aligned}
$$

$$
\leq \sum_{k=j+n+1}^{q} \sum_{i=j+n}^{q} t_{j i}^{n} t_{i k} \quad(\text { since } \quad k \leq q)
$$

$$
=\sum_{i=j+n}^{q} t_{j i}^{n} \sum_{k=j+n+1}^{q} t_{i k}
$$

$$
\leq \sum_{i=j+n}^{q} t_{j i}^{n} \quad \text { (by (ii)) }
$$

$$
=\sum_{k=j+n}^{q} t_{j k}^{n}=\sum_{k=1}^{q} t_{j k}^{n} \quad(b y \text { (i)) }
$$

Thus $\sum_{k=1}^{q} t_{j k}^{n+1} \leq \sum_{k=1}^{q} t_{j k}^{n}$.

§3. Main results.

In this section we obtain several consistency theorems for T-almost convergent sequences by establishing the following theorem. The proof of this theorem is difficult and uses a complicated gliding hump argument based on the properties of lifting matrices and T -almost convergent sequences.

THEOREM 1. Let T be a lifting matrix, and let $B=\left(b_{j k}\right)$ be an infinite matrix such that $\|B\|<\infty$ and such that every column of B belongs to c_{0}. Then ℓ_{1} is $\sigma\left(\ell_{1},\left(\mathrm{Tac}_{0}\right)_{B} \cap_{m}\right)$-sequentially complete. Proof. Let $B=\left(b_{j k}\right)$ be an infinite matrix such that $\|B\|<\infty$ and such that every column of B belongs to c_{0}, and suppose $A=\left(a_{j k}\right)$ is an infinite matrix with the same properties as B such that ($\left.\mathrm{Tac}_{\mathrm{o}}\right)_{B} \mathrm{~nm}_{\mathrm{m}} \subseteq \mathrm{c}_{\mathrm{A}}$. Since $\quad c_{o} \subseteq c_{o_{B}} \subseteq\left(\mathrm{Tac}_{o}\right)_{B},\left[\left(\mathrm{Tac}_{o}\right)_{B} \cap \mathrm{~m}\right]^{\beta .}=\ell_{1}$ and hence, because of 2.3 , Theorem 2, it suffices to prove that $\left(\mathrm{Tac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap_{\mathrm{m}} \subseteq \mathrm{c}_{\mathrm{o}_{\mathrm{A}}}$.

Suppose there exists $x=\left(x_{k}\right) \in\left(\mathrm{Tac}_{o}\right)_{B} \cap_{m}$ such that
$\lim _{A} x \neq 0$. We may assume that $\underset{A}{\lim x}=1$. Let $y=B x$ and $z=A x$. Then $y \in T a c o$ and $z \in c$. We construct a bounded sequence $u=\left(u_{k}\right)$ such that $u . x \in\left(\mathrm{Tac}_{0}\right)_{B} \backslash_{A}$. This leads to a contradiction since $\left(\mathrm{Tac}_{0}\right)_{B} \cap^{n} \subseteq \subseteq c_{A}$.

Let $k_{1} \leq \mathbb{N}$. Choose $n_{1} \in \mathbb{N}$ such. that:

$$
\left(b_{1}\right) \quad \sum_{k=1}^{k_{1}}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)<\frac{1}{2} \text { for } j \geq n_{1}
$$

$$
\left(c_{1}\right) \sum_{k=1}^{n_{1}} t_{l k} \geq \frac{1}{2}
$$

For $1 \leq j \leq n_{1}$, notice that $\sum_{k=1}^{n_{1}} t_{j k}^{o}=t_{j j}^{o}=1$, and that $\sum_{k=1}^{n_{1}} t_{j k}^{p}=0$
if $p \geq n_{1}$ (by Proposition 1 (i) of $\S 2$). For $1 \leq j \leq n_{1}$, let $i_{j 1}$
$\left(0 \leq i_{j 1}<n_{1}\right)$ be the largest integer such that

$$
\left(e_{1}\right) \sum_{k=1}^{n_{1}} t_{j k}{ }_{j l} \geq \frac{1}{2} .
$$

Let

$$
\left(f_{1}\right) \quad i_{j 1}=0 \quad \text { for } \quad j>n_{1} .
$$

Notice that

$$
\left.\left(g_{1}\right) \quad i_{11} \geq 1 \text { (by }\left(c_{1}\right) \text { and }\left(e_{1}\right)\right), \text { and } i_{j 1}<n_{1} \text { for } \cdot j=1,2, \ldots \text {. }
$$

Choose $k_{2}\left(>k_{1}\right) \leqslant \mathbb{N}$ such that

$$
\left(a_{2}\right) \quad \sum_{k=k_{2}}^{\infty}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)<1 \text { for } j \leq n_{1} \text {. }
$$

Now choose $\mathfrak{n}_{2}\left(>n_{1}\right) \in \mathbb{N}$ such that:

$$
\begin{aligned}
& \left(b_{2}\right) \sum_{k=1}^{k_{2}}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)<\frac{1}{2^{2}} \text { for } j \geq n_{2} ; \\
& \left(c_{2}\right) \sum_{k=1}^{n_{2}} t_{j k} t_{j 1}{ }^{+n} 1 \geq \frac{1}{2}+\frac{1}{2^{2}} \text { for } 1 \leq j \leq n_{1} .
\end{aligned}
$$

71.

and hence

$$
\left(d_{2}\right) \quad 2 n_{1} \leq n_{2}
$$

For $1 \leq j \leq n_{2}$, notice that $\sum_{k=1}^{n_{2}} t_{j k}^{o}=t_{j j}^{o}=1$, and that $\sum_{k=1}^{n_{2}} t_{j k}^{p}=0$ if
$p \geq n_{2}$ (by Proposition 1 (i) of §2). For $1 \leq j \leq n_{2}$, let $i_{j 2}\left(0 \leq i_{j 2} \leq n_{2}\right)$
be the largest integer such that

$$
\left(e_{2}\right) \sum_{k=1}^{n_{2}} t_{j k} i_{j 2} \geq \frac{1}{2}+\frac{1}{2^{2}} .
$$

Let

$$
\left(f_{2}\right) \quad i_{j 2}=0 \text { for } j>n_{2}
$$

Notice that

$$
\begin{aligned}
& \left(g_{2}\right) \quad i_{j 2} \geq i_{j 1}+n_{1} \text { for } 1 \leq j \leq n_{1}\left(\text { by }\left(c_{2}\right) \text { and }\left(e_{2}\right)\right) \text {, and } i_{j 2}<n_{2} \\
& \text { for } j=1,2, \ldots \text {. }
\end{aligned}
$$

Choose $k_{3}\left(>k_{2}\right) \in \mathbb{N}$ such that

$$
\left(a_{3}\right) \sum_{k=k_{3}}^{\infty}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)<\frac{1}{2} \quad \text { for } f \leq n_{2}
$$

Now choose $n_{3}\left(>n_{2}\right) \leqslant \mathbb{N}$ such that;

$$
\left(b_{3}\right) \sum_{k=1}^{k_{3}}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)<\frac{1}{2^{3}} \text { for } j \geq n_{3} \text {; }
$$

$$
\left(c_{3}\right) \sum_{k=1}^{n_{3}} t_{j k}^{i_{j}}{ }^{+n_{2}} \geq \frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}} \text { for } 1 \leq j \leq n_{2} \text {. }
$$

and hence

$$
\left(\mathrm{d}_{3}\right) \quad 2 \mathrm{n}_{2} \leq \mathrm{n}_{3}
$$

For $1 \leq j \leq n_{3}$, notice that $\sum_{k=1}^{n_{3}} t_{j k}^{o}=t_{j j}^{o}=1$, and that $\sum_{k=1}^{n_{3}} t_{j k}^{p}=0$ if $p \geq n_{3}$ (by Proposition 1(i) of §2). For $1 \leq j \leq n_{3}$, let $i_{j}\left(0 \leq i_{j 3}<n_{3}\right)$ be the largest integer such that

$$
\left(e_{3}\right) \sum_{k=1}^{n_{3}} t_{j k}^{i} \geq \frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}} .
$$

Let

$$
\left(f_{3}\right) \quad i_{j 3}=0 \text { for } j>n_{3}
$$

Notice that

$$
\begin{aligned}
& \left(g_{3}\right) \quad i_{j 3} \geq i_{j 2}+n_{2} \text { for } 1 \leq j \leq n_{2}\left(\text { by }\left(c_{3}\right) \text { and }\left(e_{3}\right)\right), \text { and } i_{j 3}<n_{3} \\
& \text { for } j=1,2, \ldots .
\end{aligned}
$$

We proceed inductively to construct strictly increasing sequences $\left(k_{r}\right)_{r=1}^{\infty},\left(n_{r}\right)_{r=1}^{\infty}$ of positive integers, and increasing sequences
$\left(i_{j r}\right)_{r=1}^{\infty} ; j=1,2, \ldots$ of nonnegative integers such that:
(i) $\max _{n_{r} \leq j \leq n_{r+1}}\left[\sum_{k=1}^{k_{r}}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)+\sum_{k=k_{r+2}}^{\infty}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)\right]=\frac{1}{2^{r-1}}$ (see $\left(b_{1}\right),\left(b_{2}\right),\left(b_{3}\right),\left(a_{2}\right)$, and $\left.\left(a_{3}\right)\right)$;
(ii) $\sum_{k=1}^{n_{r}} t_{j k}^{i} \geq \frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{r}}$ (equivalently, $\sum_{k=n_{r}}^{\infty}{ }^{\infty} t_{j k}^{i}{ }_{j r} \leq \frac{1}{2^{r+1}}+$ $\left.\frac{1}{2^{r+2}}+\ldots\right)$ for $1 \leq j \leq n_{r}, r=1,2, \ldots\left(\right.$ see $\left(e_{1}\right),\left(e_{2}\right)$, and $\left.\left(e_{3}\right)\right) ;$
(iii) $2 n_{r} \leq n_{r+1}$ for $r=1,2, \ldots\left(\right.$ see $\left(d_{2}\right)$ and $\left.\left(d_{3}\right)\right)$;
(iv) $i_{j, r+1} \geq i_{j r}+n_{r}$ for $1 \leq j \leq n_{r}, r=1,2, \ldots$ (see $\left(g_{2}\right)$ and $\left(g_{3}\right)$);
(v) $i_{j r}<n_{r}$ for $j, r=1,2, \ldots\left(\right.$ see $\left(g_{1}\right),\left(g_{2}\right)$, and $\left.\left(g_{3}\right)\right)$;
(vi) $i_{j r}=0$ for $j>n_{r}, r=1,2, \ldots$ (see $\left(f_{1}\right),\left(f_{2}\right)$, and $\left(f_{3}\right)$).

Define bounded sequences $u=\left(u_{j}\right)$ and $v=\left(y_{j}\right)$ such that
$u_{j}=\sin \sqrt{r}$ for $k_{r} \leq j<k_{r+1}$ and $y_{j}=\sin \sqrt{r}$ for $n_{r} \leq j<n_{r+1}$.
First we show that (Bx).v (=y.v) \leqslant Taco ${ }_{0}$.

By the definition of u and v,
(1) $\|\mathbf{u}\|_{\infty}=\|\mathbf{v}\|_{\infty} \leq 1$.

Let $1>\varepsilon>0$. Since $y \in T_{\mathrm{o}}$, it follows from Corollary 1 of 3.3 , Theorem 1 that there exists $p_{0} \subseteq N$ such that $\left\|\left(\frac{T+T^{2}+\ldots+T^{p}}{p}\right) y\right\|_{\infty}<\frac{\varepsilon}{20}$ for $p \geq p_{0}$. This means that
(2) $\left|\sum_{k=1}^{\infty}\left(t_{j k}+t_{j k}^{2}+\ldots+t_{j k}^{p}\right) y_{k}\right|<p \varepsilon / 20$ for $p \geq p_{Q} ; j=1,2, \ldots$, Choose $r(>2) \in \mathbb{N}$ such that:
(3) $\mathrm{n}_{\mathrm{r}}>\max \left\{20 \mathrm{p}_{\mathrm{o}} / \varepsilon, 2 \mathrm{p}_{\mathrm{o}}\|\mathrm{y}\|_{\infty} / \varepsilon\right\}$;
(4) $|\sin \sqrt{m}-\sin \sqrt{m-1}|<\varepsilon / 20\|y\|_{\infty}$ for $m \geq r$;
(5) $\sum_{k=r}^{\infty} 1 / 2^{k}<\varepsilon / 20\|y\|_{\infty}$.

Note that in the rest of the proof r is a fixed integer satisfying
(3), (4), and (5). Let $p \in \mathbb{N}$ such that
(6) $p>\max \left\{20\left(\frac{\mathrm{p}_{0}{ }^{+\mathrm{n}_{r}}}{\varepsilon}\right), 20\|y\|_{\infty}\left(\frac{\mathrm{p}_{0}{ }^{+\mathrm{n}_{r}}}{\varepsilon}\right)\right\}$,

Now we claim that, for $p(\epsilon \mathbb{N})$ satisfying (6),
$\left|\sum_{k=1}^{\infty}\left(t_{j k}+t_{j k}^{2}+\ldots+t_{j k}^{p}\right) y_{k} y_{k}\right| / p<\varepsilon$ for every $j \in \mathbb{N}$. Let $j \in \mathbb{N}$.
Case 1. $\mathrm{i}_{\mathrm{jr}} \geq 1$. Then
(1)' $j \leq n_{r}$ by (vi).

Since $p>n_{r}(b y(6))$ and $i_{j r}<n_{r}$ (by (y)), $p>i_{j r}$. Let
$s(\geq r) \in \mathbb{N}$ such that $i_{j s}<p \leq i_{j, s+1}$. Then

$$
\begin{aligned}
& \text { (2)' }\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} y_{k}\right| \\
& \leq\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k} y_{k}\right|+\left[\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i} r^{+1}+\ldots+t_{j k}{ }_{j}, r+1\right) y_{k} v_{k}\right|\right. \\
& \left.+\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}, r+l^{+1}+\ldots+t_{j k}^{i}, r+2\right) y_{k} v_{k}\right|+\ldots+\sum_{k=1}^{\infty}\left(t_{j k}^{i}, s-1^{+1}+\ldots+t_{j k}^{i}\right) y_{k} v_{k} \mid\right] \\
& +\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i} s^{+1}+\ldots+t_{j k}^{p}\right) y_{k} v_{k}\right| \\
& \text { (3). } \quad\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t{ }_{j k}^{i}\right) y_{k} v_{k}\right| \leq\|y \cdot v\|_{\infty} \cdot i_{j r} \quad \text { (by Proposition 1(ii) of } \S 2 \text {) } \\
& <\|y \cdot v\|_{\infty} \cdot n_{r} \text { (by (v)) } \\
& \leq\|y\|_{\infty} \cdot n_{r} \quad \text { (by (1)) } \\
& <p \varepsilon / 20 \text { (since } n_{r}<p \varepsilon / 20\|y\|_{\infty} \text { (by (6)). }
\end{aligned}
$$

For $\quad r \leq m \leq s$ and $i_{j m}<q \leq i_{j, m+1}$,
(4)' $\quad\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right) y_{k} v_{k}\right|$

$$
\leq\left|\sum_{k=1}^{n_{m}^{+1}}\left(t_{j k}^{i}{ }_{j m}^{+1}+\ldots+t_{j k}^{q}\right) y_{k} y_{k}\right|+\left|\sum_{k=n_{m+1}^{+1}}^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots,+t_{j k}^{q}\right) y_{k} y_{k}\right|
$$

For $r \leq m \leq s, n_{m+1}>n_{r} \geq j$ (by (1)') and hence
$\sum_{k=n_{m+1}+1}^{\infty} t_{j k}^{i}, m+1 \leq \sum_{k=m+2}^{\infty} 1 / 2^{k}$ (by (ii)) $<\sum_{k=r}^{\infty} 1 / 2^{k}$ (since $r \leq m$) $<\frac{\varepsilon}{20\|y\|_{\infty}}$
(by (5)). Also, by Proposition 1 (iii)) of $\S 2$,

Hence, for $r \leq m \leq s$ and $i_{j m}<q \leq i_{j, m+1}$,
(6) $\left.\right|_{k=n_{m+1}+1} ^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right) y_{k} v_{k} \left\lvert\,<\|y \cdot v\|_{\infty}\left(q-i_{j m}\right) \cdot \frac{\varepsilon}{20\|y\|_{\infty}}\right.$

$$
\leq\left(q-i_{j m}\right) \frac{\varepsilon}{20} \quad(b y(1))
$$

Also, for $r \leq m \leq s$ and $i_{j m}<q \leq i_{j, m+1}$,

$$
\text { (7)' }\left|\sum_{k=1}^{n_{m}^{m+1}}\left(t_{j k}^{i_{j m}^{+1}}+\ldots+t_{j k}^{q}\right) y_{k} v_{k}\right|
$$

$$
=\left|\sum_{k=1}^{n_{m+1}}\left(t_{j k}^{i_{j m}^{+1}}+\ldots+t_{j k}^{q}\right) y_{k} v_{n_{m-1}}+\sum_{k=1}^{n_{m+1}}\left(t_{j k}^{i_{j m}^{+1}}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n_{m-1}}\right) y_{k}\right|
$$

$$
\leq\left|v_{n}\right|\left|\sum_{k=1}^{n_{m-1}}\left(t_{j k}^{i_{j m} m^{+1}}+\ldots+t_{j k}^{q}\right) y_{k}\right|+\left|\sum_{k=1}^{n_{m+1}}\left(t_{j k}^{i_{j m}^{+1}}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n_{m-1}}\right) y_{k}\right|
$$

For $j \leq n_{m-1}$, $i_{j m} \geq n_{m-1}$ by (iv). Hence $j+i_{j m}+1>n_{m-1}$ for every $j \in \mathbb{N}$, Since $t_{j k}^{i_{j m}}{ }^{+1}=t_{j k}^{i_{j m}^{+2}}=\ldots=t_{j k}^{i_{j}, m+1}=0$ for $k<j+i_{j m}+1$ by

$$
\begin{aligned}
& \text { (8): } \sum_{k=1}^{n_{m+1}}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right)\left(y_{k}-y_{n_{m-1}}\right) y_{k} \mid \\
& =\left|\sum_{k=n_{m-1}}^{n_{m+1}}\left(t_{j k}^{i}+\ldots+t_{j k}^{q}\right)\left(y_{k}-v_{n} n_{m-1}\right) y_{k}\right| \text { for } r \leq m \leq s \\
& \text { and } i_{j m}<q \leq i_{j, m+1} .
\end{aligned}
$$

By the definition of $\left(v_{k}\right)$, for $r \leq m \leq s$ and $n_{m-1} \leq k \leq n_{m+1}$,
(9)

$$
\begin{aligned}
\left|v_{k}-v_{n_{m-1}}\right| & \leq \max \{\mid \sin \sqrt{m-\sin \sqrt{m-1}|,|\sin \sqrt{m+1}-\sin \sqrt{m-1}|\}} \\
& <\frac{2 \varepsilon}{20\|y\|_{\infty}} \text { by (4) (since } m \geq r \text {). }
\end{aligned}
$$

Hence, for $r \leq m \leq s$ and $i_{j m}<q \leq i_{j, m+1}$,

$$
\begin{aligned}
& \text { (10) }\left.\right|_{\sum_{k=n}^{m-1}} ^{n_{m+1}}\left(t_{j k}^{i_{j m}+1}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n_{m-1}}\right) y_{k} \mid \\
& \quad<\|y\|_{\infty} \cdot \frac{2 \varepsilon}{20\|y\|_{\infty}} \cdot \sum_{k=n_{m-1}}^{n_{m+1}}\left(t_{j k}^{i_{j m}+1}+\ldots+t_{j k}^{q}\right)\left(b y(9)^{\prime}\right) \\
& \left.\quad \leq \frac{2}{20}\left(q-i_{j m}\right) \varepsilon \quad \text { (by Proposition } 1 \text { (ii) of } \S 2\right) .
\end{aligned}
$$

For $r \leq m \leq s$ and $i_{j m}<q \leq i_{j, m+1}$,

$$
\begin{aligned}
& \text { (11)' }\left|v_{n_{m-1}}\right|\left|\sum_{k=1}^{n_{m+1}}\left(t_{j k}^{i_{j m}}+\ldots+t_{j k}^{q}\right) y_{k}\right| \\
& \leq\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right) y_{k}-\sum_{k=n_{m+1}+1}^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right) y_{k}\right| \\
& \leq\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i_{j m}}{ }^{+1}+\ldots+t_{j k}^{q}\right) y_{k}\right|+\left|\sum_{k=n_{m+1}}^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right) y_{k}\right| .
\end{aligned}
$$

For $r \leq m \leq s$ and $i_{j, m} \leq q \leq i_{j, m+1}$,
(12) $\left.{ }^{\prime} \mid \sum_{k=n m}^{\infty}+1 t_{j k}^{i_{j m}+1}+\ldots+t_{j k}^{q}\right) y_{k} \left\lvert\,<\|y\|_{\infty} \cdot \frac{\varepsilon}{20\|y\|_{\infty}} \cdot\left(q-i_{j m}\right)(b y$ (5)') \right.

$$
=\left(q-i_{j m}\right) \frac{\varepsilon}{20}
$$

For $r \leq m \leq s$ and $i_{j m}<q \leq i_{j, m+1}$,
(13)' $\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i} m^{+1}+\ldots+t_{j k}^{q}\right) y_{k}\right|$

$$
\begin{aligned}
& =\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}-\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right| \\
& \leq\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right|+\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i} m_{j}\right) y_{k}\right| .
\end{aligned}
$$

For $r \leq m \leq s, j \leq n_{r}\left(b y(1)^{\prime}\right) \leq n_{m}$ and hence $i_{j, m+1} \geq i_{j m}+n_{m}$
(by (iv)) $>\operatorname{ii}_{\mathrm{jm}}$ (by (v)). Thus
(14)' $\frac{i_{j, m+1}}{i_{j, m+1^{-i} j m}}<2$ and $\frac{i_{j m}}{i_{j, m+1^{-i}}{ }_{j m}}<1$ for $r \leq m \leq s$.

For $r \leq m \leq s, j \leq n_{r}\left(b y(1)^{\prime}\right) \leq n_{m}$ and hence $i_{j, m+1} \geq n_{m}$ (by (iv)) $\geq n_{r}>p_{o}$ (by (3)). Thus, by (2),
(15)' $\quad\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}, m+1\right) y_{k}\right|<i_{j \cdot m+1} \cdot \frac{\varepsilon}{2 \ddot{0}}$

$$
\begin{aligned}
& =\frac{i_{j, m+1}}{i_{j, m+1^{-i}}^{j m}} \cdot\left(i_{j, m+1^{-i}}{ }_{j m}\right) \cdot \frac{\varepsilon}{20} \\
& s\left(i_{j, m+1}{ }^{-i}{ }_{j m}\right) \cdot \frac{\varepsilon}{10} \text { for } r \leq m \leq s \text { by (14)'. }
\end{aligned}
$$

If $\quad i_{j m} \geq p_{o}(r \leq m \leq s),\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right|<i_{j m} \cdot \frac{\varepsilon}{20} \quad$ (by
(2)) $=\frac{i_{j m}}{i_{j, m+l^{-i}}{ }_{j m}} \cdot\left(i_{j, m+1}-\dot{j}_{j m}\right) \cdot \frac{\varepsilon}{\dot{2} \overline{0}}<\left(i_{j, m+1}^{-i_{j m}}\right) \cdot \frac{\varepsilon}{20}\left(b y(14)^{\prime}\right)$.

If $i_{j m}<p_{o}(r \leq m \leq s), \frac{i_{j m}}{i_{j, m+1}-i_{j m}}<\frac{p_{o}}{n_{m}}$ (note that since
$j \leq n_{r},\left(\right.$ by (1) $\left.{ }^{\prime}\right) \leq n_{m}, i_{j, m+1}^{-i}{ }_{j m} \geq n_{m}$ by (iv)) $\leq \frac{p_{o}}{n_{r}}<\frac{\varepsilon}{20\|y\|_{\infty}}$ (by (3)) and hence $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right| \leq\|y\|_{\infty} \cdot i_{j m}$ (by Proposition 1(ii) of §2)

$=\left(i_{j, m+1} i_{j m}\right) \frac{\varepsilon}{20}$. Thus
(16)' $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right|<\left(i_{j, m+1}-i_{j m}\right) \frac{\varepsilon}{20} \quad$ for $r \leq m \leq s$.

From (13)', (15)', and (16)' with $q=i_{j, m+1}$,
(17) ' $\quad\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i_{j} m^{+1}}+\ldots+t_{j k}^{i}, m+1\right) y_{k}\right|<\left(i_{j, m+1}^{-i}{ }_{j m}\right), \frac{3 \varepsilon}{20}$ for $r \leq m \leq s-1$.

From (11)', (17)', and (12)' with $q=i_{j, m+1}$,
(18) $\quad\left|v_{n}\right|\left|\sum_{k=1}^{n_{m+1}}\left(t_{j k}^{i_{j m}+1}+\ldots+t_{j k}^{i_{j}, m+1}\right) y_{k}\right|<\left(i_{j, m+1}^{-i}{ }_{j m}\right) \cdot \frac{4 \varepsilon}{20}$ for $r \leq m \leq s-1$.

From (8)' and (10)',

$$
<\frac{2}{20}\left(q-i_{j \pi}\right) \varepsilon \text { for } r \leq m \leq s \text { and } i_{j m}<q \leq i_{j, m+1} .
$$

From (7)', (18)', and (19)' with $q=i_{j, m+1}$,
(20)' $\quad\left|\sum_{k=1}^{n_{m+1}}\left(t_{j k}{ }_{j m}+\ldots+t_{j k}^{i}{ }_{j}{ }^{m+1}\right) y_{k} y_{k}\right|<\left(i_{j, m+1}{ }^{-i}{ }_{j m}\right) \frac{6 \varepsilon}{20}$ for $r \leq m \leq s-1$.

From (4)', (20)', and (6)' with $q=i_{j, m+1}$,
(21)' $\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}{ }_{j}{ }^{+1}+\ldots+t_{j k}^{i}, m+1\right) y_{k}{ }_{k}\right|<\left(i_{j, m+1}{ }^{-i}{ }_{j m}\right) \frac{7 \varepsilon}{20}$ for $r \leq m \leq s-1$.

Hence

$$
+\ldots+\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}{ }_{j, s-1}^{+1}+\ldots+t_{j k}^{i}{ }_{j s}\right) y_{k} v_{k}\right|
$$

$<\left(i_{j, r+1}{ }^{-i}{ }_{\mathrm{jr}}\right) \cdot \frac{7 \varepsilon}{20}+\left(\mathrm{i}_{\mathrm{j}, \mathrm{r}+2^{-i}{ }_{\mathrm{j}}, \mathrm{r}+1}\right) \frac{7 \varepsilon}{20}+\ldots+\left(\mathrm{i}_{\mathrm{js}} \mathrm{i}_{\mathrm{j}, \mathrm{s}-1}\right) \frac{7 \varepsilon}{20}$
$=\left(i_{j s}-i_{j r}\right) \cdot \frac{7 \varepsilon}{20}$
$<\frac{7}{20} \mathrm{p} \varepsilon$ (since $\mathrm{i}_{\mathrm{js}}<\mathrm{p}$).

Since $p>p_{0}(b y(6))$,
(23)' $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k}\right|<p \varepsilon / 20$ (by (2)).

If $i_{j s} \geq p_{o},\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right|<i_{j s} . \varepsilon / 20 \quad$ (by (2)) $<p \varepsilon / 20$ (since
$p>i_{j s}$). If $i_{j s}<p_{o},\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right| \leq\|y\|_{\infty} \cdot i_{j s}$ (by

Proposition 1(ii) of §2) < $\|y\|_{\infty} p_{o}=\|y\|_{\infty} \cdot p \cdot p_{o} / p<\|y\|_{\infty} \cdot p \cdot \frac{\varepsilon}{20\|y\|_{\infty}}$
(by (6)) $=p \varepsilon / 20$.

Hence
(24)' $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k}\right|<p \varepsilon / 20$.

From (13)', (23)' and (24)' with $m=s$ and $q=p$ (note that $i_{j s}<p \leq i_{j, s+1}$),
(25)' $\quad\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}{ }^{i}{ }^{+1}+\ldots+t_{j k}^{p}\right) y_{k}\right|<2 p \varepsilon / 20$.

From (11)', (25)' and (12)' with $m=s$ and $q=p$,
(26)' $\left|v_{n_{s-1}} \| \sum_{k=1}^{n_{s+1}}\left(t_{j k}^{i}{ }_{j}^{+1}+\ldots+t_{j k}^{p}\right) y_{k}\right|<3 p \varepsilon / 20$.

From (7)', (26)', and (19)' with $m=s$ and $q=p$,
(27)' $\left.\quad\right|_{k=1} ^{n_{s+1}}\left(t_{j k}^{i}{ }_{j k}^{+1}+\ldots+t_{j k}^{p}\right) y_{k} v_{k} \mid<5 p \varepsilon / 20$.

From (4)', (27)' and (6)' with $m=s$ and $q=p$,
(28)' $\left|\sum_{k=1}^{\infty}\left(t_{j k}{ }_{j k}+1 . .+t_{j k}^{p}\right) y_{k} v_{k}\right|<6 p \varepsilon / 20$.

From (2)', (3)', (22)' and (28)',
$* \quad\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} v_{k}\right|<14 p \varepsilon / 20<p \varepsilon$.

Case 2. $i_{j r}=0$. Let t be the smallest integer such that $i_{j t} \geq 1$. Then
(1)" $t>r, i_{j, t-1}=0$, and $j \leq n_{t}$ (by (vi)).

For $1 \leq \mathrm{q} \leq \mathrm{i}_{\mathrm{jt}}$,
(2)" $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} v_{k}\right|$

$$
\leq\left|\sum_{k=1}^{n}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} v_{k}\right|+\left|\sum_{k=n_{t}+1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{\dot{q}}\right) y_{k} v_{k}\right|
$$

Since $j \leq n_{t}\left(b y(1)^{\prime \prime}\right), \sum_{k=n_{t}}^{\infty}+1{ }^{\mathrm{i}}{ }_{j \mathrm{jk}} \leq \sum_{k=t+1}^{\infty} 1 / 2^{k}$ (by (ii))$<\sum_{k=r}^{\infty} 1 / 2^{k}$
(since $t>r$ by (1)") $<\frac{\varepsilon}{20\|y\|_{\infty}}$ by (5). Also, by Proposition 1(iii) of $\S 2$,
(3)" $\sum_{k=n_{t}+1}^{\infty} t_{j k} \leq \sum_{k=n_{t}+1}^{\infty} t_{j k}^{2} \leq \ldots \leq \sum_{k=n_{t}+1}^{\infty} t_{j k}^{i}{ }_{j t}<\frac{\varepsilon}{20\|y\|_{\infty}}$.

Hence, for $1 \leq q \leq \mathrm{i}_{\mathrm{jt}}$
(4)" $\quad \sum_{k=n_{t}+1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} v_{k} \left\lvert\,<\|y \cdot v\|_{\infty} \cdot q \cdot \frac{\varepsilon}{20\|y\|_{\infty}} \leq \frac{1}{20}\right.$ q \quad by (1).

As same as (7)' in Case 1 , we can show that
(5) " $\left.\right|_{k=1} ^{n_{t}}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} v_{k} \mid$

$$
\leq\left|v_{n}\right|\left|\sum_{k=1}^{n}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right|+\left|\sum_{k=1}^{n}\left(t_{j k}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n}\right) \quad y_{k-2}\right|
$$

$$
\text { for } 1 \leq q \leq i_{j t}
$$

Since $t>r\left(b y(1)^{\prime \prime}\right)$ and $r>2, t-2 \geq 1$. If $j \leq n_{t-2}$, then
$i_{j, t-1} \geq i_{j, t-2}+n_{t-2}$ by (iv). This is a contradiction since $i_{j, t-1}=0$ (by (1) ${ }^{\prime \prime}$) and $n_{t-2}>0$. Thus $j>n_{t-2}$ and hence
$t_{j k}=t_{j k}^{2}=\ldots=t_{j k}^{i}=0$ for $k<n_{t-2}$ (by Proposition 1(i) of §2).
Therefore, for $1 \leq q \leq i_{j t}$
(6)" $\quad \sum_{k=1}^{n_{t}^{t}}\left(t_{j k}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n}\right) y_{k-2}\left|=\left|\sum_{k=n_{t-2}}^{n_{t}}\left(t_{j k}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n_{t-2}}\right) y_{k}\right|\right.$,

Since $t-1 \geq r\left(b y(1)^{\prime \prime}\right)$, as same as (10)' in Case 1 , we can show that
(7)" $\left.\right|_{k=n} ^{n_{t-2}}\left(t_{j k}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n_{t-2}}\right) y_{k} \left\lvert\,<\frac{2}{20} . q \varepsilon\right.$ for $1 \leq q \leq i_{j t}$.

As same as (11)' in Case 1, we can show that
(8)" $\left|v_{n_{t-2}}\right|\left|\sum_{k=1}^{n_{t}}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right|$

$$
\leq\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right|+\left|\sum_{k=n_{t}+1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right| \quad \text { for } \quad 1 \leq q \leq i_{j t}
$$

For $1 \leq q \leq i_{j t}$, by (3)',
(9)" $\left|\sum_{k=n_{t}+1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right|<\|y\|_{\infty} \cdot q \cdot \frac{\varepsilon}{20\|y\|_{\infty}}=\frac{1}{20} q \varepsilon$.

Now if $p_{o} \leq q\left(\leq i_{j t}\right)$,
(10)" $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k}\right|<\frac{1}{20} q \varepsilon$ by (2).

Therefore, if $p_{o} \leq q\left(\leq i_{j t}\right)$, from (8)", (10)", and (9)",
(11)" $\left|v_{n_{t-2}}\right| \sum_{k=1}^{n}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} \left\lvert\,<\frac{2}{20} q \varepsilon\right.$,
from (6)" and (7)",
(12)" $\left.\right|_{k=1} ^{n_{t}}\left(t_{j k}+\ldots+t_{j k}^{q}\right)\left(v_{k}-v_{n_{t-2}}\right) y_{k} \left\lvert\,<\frac{2}{20} q \varepsilon_{n}\right.$,
from (5)", (11)" and (12)",
(13)" $\quad\left|\sum_{k=1}^{n_{t}}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} y_{k}\right|<\frac{4}{20} q \varepsilon \quad$ and
from (2)", (13)", and (4)",
(14)" $\quad\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{q}\right) y_{k} v_{k}\right|<\frac{5}{20} q \varepsilon$.

To show that $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} y_{k}\right|<p \varepsilon$ we consider the cases $p>i_{j t}$ and $p \leq i_{j t}$ separately. First let $p>i_{j t}$. Then there exists $s(\geq t) \in N$ such that $i_{j s}<p \leq i_{j, s+1}$. Thus
(15) " $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} v_{k}\right| \leq\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i} t_{j}\right) y_{k} v_{k}\right|$

$$
\begin{aligned}
& +\left[\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}{ }_{j}{ }^{+1}+\ldots+t_{j k}^{i_{j}}, t+1\right) y_{k} v_{k}\right|+\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i_{j}, t+1^{+1}}+\ldots+t_{j k}^{i}{ }_{j, t+2}\right) y_{k} v_{k}\right|+\ldots\right.
\end{aligned}
$$

As same as (22)' and (28)' in Case I we can show that:
(16)" $\left.\right|_{k=1} ^{\infty}\left(t_{j k}^{i} t^{+1}+\ldots+t_{j k}^{i}, t+1\right) y_{k} v_{k}|+| \sum_{k=1}^{\infty}\left(t_{j k}^{i}, t+1+1 \quad+\ldots+t_{j k}^{i}, t+2 y_{k} v_{k} \mid\right.$

$$
+\ldots+\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}, s-1+1+\ldots+t_{j k}^{i}\right) y_{k} v_{k}\right|<\frac{7}{20} p \varepsilon ;
$$

(17)" $\left|\sum_{k=1}^{\infty}\left(t_{j k}^{i}{ }_{j k}^{+1}+\ldots+t_{j k}^{p}\right) y_{k} v_{k}\right|<\frac{6}{20} p \varepsilon$.

If $i_{j t}>p_{o}$, from (14)" with $q=i_{j t},\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t{ }_{j k}^{i}\right) y_{k} v_{k}\right|$
$<\frac{5}{20} \cdot i_{j t} \cdot \varepsilon<\frac{5}{20} p \varepsilon \quad\left(\right.$ since $\left.p>i_{j t}\right)$, and if $i_{j t} \leq p_{o}$, then
$\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k} v_{k}\right| \leq\|y \cdot v\|_{\infty} \cdot i_{j t}$ (by Proposition 1(ii) of $\S 2$) \leq $\|y \cdot v\|_{\infty} \cdot p_{o} \leq\|y\|_{\infty} \cdot p \cdot p_{o} / p \quad$ (by (1)) $<\|y\|_{\infty} \cdot p \cdot \frac{\varepsilon}{20\|y\|_{\infty}}$ (by (6)) $=\frac{1}{20} p \varepsilon$.

Hence
(18)" $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{i}\right) y_{k} y_{k}\right|<\frac{5}{20} p \varepsilon$.

From (15)", (18)", (16)", and (17)",
$* *\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} v_{k}\right|<\frac{18}{20} p \varepsilon<p \varepsilon$.

Now let $p \leq i_{j t}$. Then, from (14)" with $q=p\left(>p_{o}\right.$ by (6)),
*** $\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} y_{k}\right|<\frac{5}{20} p \varepsilon<p \varepsilon$.

Thus it follows from *, $k *$, and $* * *$ ($*$ is at the end of Case 1) that
$\left|\sum_{k=1}^{\infty}\left(t_{j k}+\ldots+t_{j k}^{p}\right) y_{k} v_{k}\right|<p \varepsilon$ for $p>\max \left\{20\left(\frac{p_{o}^{+n} r}{\varepsilon}\right), 20\|y\|_{\infty}\left(\frac{p_{o}{ }^{+n} r}{\varepsilon}\right)\right\}$ and $j \in \mathbb{N}$.

This implies that

$$
\left[\left(\frac{T+\ldots+T^{p}}{p}\right)(y \cdot v)\right]_{j} \rightarrow 0 \text { as } p \rightarrow \infty \text { uniformly in } j
$$

Hence $\mathrm{y} \cdot \mathrm{v}(=(\mathrm{Bx}) . v) \leq \mathrm{Tac}_{0}$ by Corollary 1 of 3.3, Theorem 1.

Now we show that $x . u \in\left(\mathrm{Tac}_{o}\right)_{B} \backslash_{A}$. Let $\varepsilon>0$. Choose $m_{0} \leqslant \mathbb{N}$ such that:
(7) $\frac{1}{2^{m_{0}-1}}<\frac{\varepsilon}{4\|x\|_{\infty}}$;
(8) $\quad|\sin \sqrt{m}-\sin \sqrt{m-1}|<\min \left\{\frac{\varepsilon}{2\|A\| \cdot\|x\|_{\infty}}, \frac{\varepsilon}{2\|B\|_{x} \|_{\infty}}\right\}$ for $m \geq m_{0} \cdot$

Let $j \geq n_{m_{0}}$. Then there exists $m\left(\geq m_{o}\right) \leq \mathbb{N}$ such that $n_{m} \leq j<n_{m+1}$. Now
(9) $\left|[B(x \cdot u)]_{j}-[(B x) \cdot v]_{j}\right|$

$$
\begin{aligned}
& =\left|\sum_{k=1}^{\infty} b_{j k} x_{k} u_{k}-\left(\sum_{k=1}^{\infty} b_{j k} x_{k}\right) \cdot v_{j}\right| \\
& =\left.\right|_{k=1} ^{k_{m}} b_{j k} x_{k} u_{k}+\sum_{k=k_{m}+1}^{k_{m+1}^{-1}} b_{j k} x_{k} u_{k}+\sum_{k=k_{m+1}}^{k_{m+2}^{-1}} b_{j k} x_{k} u_{k}+\sum_{k=k_{m+2}}^{\infty} b_{j k} x_{k} u_{k} \\
& -\left(\sum_{k=1}^{\infty} b_{j k} x_{k}\right) \cdot y_{j} \mid \\
& =\mid \sum_{k=1}^{k_{m}} b_{j k} x_{k} u_{k}+\sin \sqrt{m} \sum_{k=k_{m}+1}^{k_{m+1}} b_{j k} x_{k}+\sin \sqrt{m+1} \sum_{k=k}^{\sum_{m+1}} b_{j k} x_{k} \\
& +\sum_{k=k}^{\infty} b_{j k+2} x_{k} u_{k}-\left(\sum_{k=1}^{\infty} b_{j k} x_{k}\right) \sin \sqrt{m} \text { (by the definition of }\left(u_{k}\right) \text { and }\left(v_{k}\right) \text {) } \\
& =\mid \sum_{k=1}^{k_{m}} b_{j k} x_{k}\left(u_{k}-\sin \sqrt{m}\right)+\left(\sin \sqrt{m+1}-\sin \sqrt{m} \sum_{k=k_{m+1}}^{k_{m+2}} b_{j k} x_{k}+\sum_{k=k}^{\infty} \sum_{m+2}^{\infty} b_{j k} x_{k}\left(u_{k}-\sin / m\right) \mid .\right.
\end{aligned}
$$

Since $\|u\| \leq \mid$ (by (1)), $\left|u_{k}-\sin \sqrt{m}\right| \leq 2$ for $k \leq \mathbb{N}$, and hence
(10) $\left.\right|_{k=1} ^{k_{m}} b_{j k} x_{k}\left(u_{k}-\sin \sqrt{m}\right)+\sum_{k=k}^{\infty} b_{m+2} x_{k}\left(u_{k}-\sin \sqrt{m}\right) \mid$
$\leq 2\|x\|_{\infty}\left(\sum_{k=1}^{k}\left|b_{j k}\right|+\sum_{k=k}^{\infty}\left|b_{j k+2}\right|\right)$
$<2\|x\|_{\infty} \frac{1}{2^{m-1}}$ (by (i) since $n_{m} \leq j<n_{m+1}$)
$\leq 2\|x\|_{\infty} \frac{1}{m_{0}-1}\left(\right.$ since $\left.m_{0} \leq m\right)$
$<2\|x\|_{\infty} \frac{\varepsilon}{4\|\mathrm{x}\|_{\infty}}$ (by (7)) $=\frac{\varepsilon}{2}$.
(11) $\left|(\sin \sqrt{m+1}-\sin \sqrt{m}) \sum_{k=k_{m+1}}^{k_{m+2^{-1}}} \mathrm{~b}_{\mathrm{m}} \mathrm{x}_{\mathrm{k}}\right|$

$$
\begin{aligned}
& \leq|\sin \sqrt{m+1}-\sin \sqrt{m}| \cdot\|B\| \cdot\|x\|_{\infty} \\
& <\frac{\varepsilon}{2\|B\|\| \|_{\infty}}\|B\|\|x\|_{\infty} \quad\left(b y \quad(8) \text { since } m \geq m_{0}\right) \\
& =\frac{\varepsilon}{2} .
\end{aligned}
$$

From (9), (10), and (11) we have $\left|[B(x . u)]_{j}-[(B x) . v]_{j}\right|<\varepsilon$ for $j \geq n_{m_{0}}$. Hence $\lim _{j}\left|[B(x \cdot u)]_{j}-[(B x) \cdot v]_{j}\right|=0$ so that $B(x . u)-(B x) \cdot v \in c_{o}\left(\subseteq \operatorname{Tac}_{o}\right)$. Since $(B x) . v \in T a c_{o}, B(x . u) \in T a c_{o}$ and hence $x . u \in\left(T a c_{0}\right)_{B}$.

Replacing B by A, we can similarly show that $A(x . u)-(A x) \cdot v \in c_{0}$. Since $l_{A} m x=1$ and $\left(v_{k}\right)$ oscillates between 1 and $-1, A(x . u)$ oscillates between 1 and -1 , and hence $x . u \notin c_{A}$.

We now establish our first consistency theorem for T-almost convergent sequences.

THEOREM 2. Let $T=\left(t_{j k}\right)$ and $S=\left(s_{j k}\right)$ be lifting matrices and let $A=\left(a_{j k}\right)$ and $B=\left(b_{j k}\right)$ be regular matrices. Suppose (Sac) $\cap \mathrm{m} \subseteq(\mathrm{Tac})_{A}$.

Proof. Let $T=\left(t_{j k}\right)$ and $S=\left(s_{j k}\right)$ be lifting matrices and let $A=\left(a_{j k}\right)$ and $B=\left(b_{j k}\right)$ be regular matrices. Suppose $(\mathrm{Sac})_{B} \cap \mathrm{~m} \subseteq(\mathrm{Tac})_{A}$. First we show that $\left(\mathrm{Sac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap \mathrm{m} \subseteq\left(\mathrm{Tac}_{\mathrm{o}}\right)_{A}$. Let $x \in\left(\mathrm{Sac}_{\mathrm{O}}\right)_{B} \cap \mathrm{~m}$. Then $\mathrm{x} \in(\mathrm{Tac})_{A}$ and hence $A x \in T a c$. Let

T-LimAx $=\alpha(x)$. Then, by Corollary 1 of 3.3, Theorem 1 ,
$\lim _{p}\left(\frac{T(A x)+\ldots+T^{p}(A x)}{p}\right)_{j}=\alpha(x)$ uniformly in j. This is equivalent to
$\lim _{\mathrm{P}}\left[\left(\frac{T A+\ldots+T^{P_{A}}}{\mathrm{P}}\right)_{\mathrm{x}}\right]_{j}=\alpha(\mathrm{x})$ uniformly in j by 1.5, Theorem 3(iii). In
particular, $\lim _{\mathrm{p}}\left[\left(\frac{T A+\ldots+\mathrm{T}^{\mathrm{P}} \mathrm{A}}{\mathrm{p}}\right) \mathrm{x}\right]_{1}=\alpha(\mathrm{x})$. ie.,
$\lim _{p} \sum_{i=1}^{\infty}\left(\frac{T A+\ldots+T^{P} A}{p}\right)_{1 i} x_{i}=\alpha(x)$. Since this is true for every
$x \in\left(S a c_{o}\right)_{B} \cap m$ and $\left[\left(\mathrm{Sac}_{o}\right)_{B} \cap m\right]^{\beta}=\ell_{1},\left[\left(\frac{T A+\ldots+T^{p} A}{P}\right)_{1 i}\right]_{i=1}^{\infty} \in \ell_{1}$ for each p and, moreover, the sequence $\left[\left(\left(\frac{T A+\ldots+T^{p} A}{p}\right)_{1 i}\right)_{i=1}^{\infty}\right]_{p=1}^{\infty}$ in ℓ_{1} is $\sigma\left(\ell_{1},\left(\mathrm{Sac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap \mathrm{m}\right)$-Cauchy. Since ℓ_{1} is $\sigma\left(\ell_{1},\left(\mathrm{Sac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap \mathrm{m}\right)$-sequentially complete by Theorem 1, $\left.\left[\left(\frac{T A+\ldots+T^{p} A}{P}\right)_{1 i}\right)_{i=1}^{\infty}\right]_{p=1}^{\infty}$ is $\sigma\left(\ell_{1},\left(\mathrm{Sac}_{o}\right)_{B} \cap m\right)-$ convergent to a member $\left(y_{k}\right)$ in ℓ_{1}. To show that $\left(y_{k}\right)=0$, it is sufficient to show that $\left[\left(\frac{T A+\ldots+T^{P} A}{p}\right)_{1 i}\right]_{i=1}^{\infty} \rightarrow 0$ point-wise as $p \rightarrow \infty$. Let $i \in \mathbb{N}$ and $\varepsilon>0$. Since $A=\left(a_{j k}\right)$ is regular, $\lim _{k} a_{k i}=0$ and hence there exists $k_{0} \subseteq \mathbb{N}$ such that
(1) $\left|a_{k i}\right|<\frac{\varepsilon}{2}$ for $k \geq k_{o}$.

For $\mathrm{p} \geq \frac{2\|\mathrm{~A}\|_{\mathrm{o}}}{\varepsilon}$,
$=\left|\sum_{k=1}^{\infty} t_{1 k} a_{k i}+\ldots+\sum_{k=1}^{\infty} t_{l k}^{p} a_{k i}\right| / p$
$=\left|\sum_{k=2}^{\infty} t_{1 k}{ }^{2}{ }_{k i}+\ldots+\sum_{k=k}^{\infty} t_{1 k}^{k_{o}-1} a_{k i}+\ldots+\sum_{k=p+1}^{\infty} t_{1 k}^{p} a_{k i}\right| / p \quad$ (by Proposition 1(i) of §2)
$\leq\left|\sum_{k=2}^{\infty} t_{l k} a_{k i}+\ldots+\sum_{k=k_{0}}^{\infty} t_{l k}^{k_{o}-1} a_{k i}\right| / p+\left|\sum_{k=k_{0}+1}^{\infty} t^{k}{ }_{1 k}{ }^{k}{ }_{k i}+\ldots+\sum_{k=p+1}^{\infty} t^{p} 1 k a_{k i}\right| / p$
$\leq \sup _{k}\left|a_{k i}\right|\left(\sum_{k=2}^{\infty} t_{1 k}+\ldots+\sum_{k=k_{o}}^{\infty} t_{1 k}^{k{ }_{o}^{-1}}\right) / p+\sup _{k>k_{o}}\left|a_{k i}\right|\left(\sum_{k=k_{o}+1}^{\infty} t_{1 k}^{k_{o}}+\ldots+\sum_{k=p+1}^{\infty} t_{1 k}^{p}\right) / p$
$\leq\|A\| \frac{k_{o}}{\mathrm{p}}+\frac{\varepsilon}{2} \cdot \frac{\mathrm{p}-\mathrm{k}_{\mathrm{o}}^{+1}}{\mathrm{p}}$ (by Proposition 2 (ii) of $\S 2$, and by (1))
$<\|\mathrm{A}\| \frac{\mathrm{k}_{\mathrm{o}}}{\mathrm{p}}+\frac{\varepsilon}{2}$
$\leq\|\mathrm{A}\| \cdot \frac{\varepsilon}{2\|\mathrm{~A}\|}+\frac{\varepsilon}{2} \quad$ (since $\left.\quad \mathrm{p} \geq \frac{2\|\mathrm{~A}\| \mathrm{k}_{\mathrm{O}}}{\varepsilon}\right)=\dot{\varepsilon} \quad$.

Hence $\left[\left(\frac{T A+\ldots+T^{p} A}{p}\right)_{1 i}\right]_{i=1}^{\infty} \rightarrow 0$ pointwise as $p \rightarrow \infty$. Thus $\left(y_{k}\right)=0$.
This implies that $\alpha(x)=0$, and hence $A x \in T a c{ }_{0}$ so that $x \leqslant\left(\operatorname{Tac}_{0}\right)_{A}$. Therefore, $\left(\mathrm{Sac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap \mathrm{m} \subseteq\left(\mathrm{Tac}_{\mathrm{o}}\right)_{\mathrm{A}}$.

Now let $x \in(S a c)_{B} \cap \mathrm{~m}$. Then $x-\left(S-\operatorname{Limx}_{\mathrm{B}}\right) \mathrm{e} \subseteq\left(\mathrm{Sac}_{\mathrm{O}}\right)_{\mathrm{B}} \cap \mathrm{m} \subseteq\left(\mathrm{Tac}_{0}\right)_{A}$.
and hence $T-\operatorname{Lim}\left(x-\left(S-\operatorname{Limx}_{B}\right) e\right)=0$, i.e., $\quad T-\operatorname{Limx}_{A}=S-\operatorname{Limx}_{B}$.
The following corollary is a statement, analogous to the original bounded consistency theorem, for T-almost convergent sequences.

COROLARY 1. Let T be a lifting matrix, and let A and B be regular

 and hence it follows from Theorem 2 that $T-\operatorname{Limx}_{A}=T-\operatorname{Limx}_{B}$ for $x \in(T a c)_{B} \cap \mathrm{~m}$.
 $x \in(\mathrm{Tac})_{B} \cap \mathrm{~m}$.

$$
\text { When } T_{o}=t_{j k} \text { is given by } t_{j k}=\left\{\begin{array}{l}
1 \text { if } k=j+1 \\
0 \text { otherwise }
\end{array} \text {, Corollary } 1\right.
$$

reduces to the following, which was first obtained by Bennett and Kalton [4].

COROLLARY 2. Let A and B regular matrices and suppose $(a c)_{B} \cap m \subseteq c_{A}$.
Then $\operatorname{limx}_{\mathrm{A}}=\mathrm{T}_{\mathrm{o}}-\operatorname{Limx}_{\mathrm{B}}$ for $\mathrm{x} \in(\mathrm{ac})_{\mathrm{B}} \cap \mathrm{m}$.
Before stating our next result, let us recall the following notation. If E is an FK-space containing φ, then we write

$$
W_{E}=\left\{x \in E \mid P_{n} x \rightarrow x \text { weakly in } E\right\}
$$

THEOREM 3. Let T be a lifting matrix, and let $B=\left(b_{j k}\right)$ be an infinite matrix such that $\|\mathrm{B}\|<\infty$ and such that every column of B belongs to c_{0}. Suppose E is an FK-space containing c_{0}. Then l_{1} is $\sigma\left(\ell_{1},\left(\mathrm{Tac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap\left(\mathrm{W}_{\mathrm{E}} \cap \mathrm{m}\right)\right.$)-sequentially complete.

Proof. Let $B=\left(b_{j k}\right)$ be an infinite matrix such that $\|B\|<\infty$ and such that every column of B belongs to c_{0}, and let E be an FK-space containing c_{0}. Suppose $A=\left(a_{j k}\right)$ is an infinite matrix with the same properties as B such that $\left(\mathrm{Tac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap\left(\mathrm{W}_{\mathrm{E}} \cap \mathrm{m}\right) \subseteq c_{A}$. Since $c_{o} \subseteq\left(\operatorname{Tac}_{o}\right)_{B} \cap\left(W_{E} \cap \mathrm{~m}\right),\left[\left(\operatorname{Tac}_{o}\right)_{B} \cap\left(W_{E} \cap \mathrm{~m}\right)\right]^{\beta}=\ell_{1}$, and hence, as in the proof of Theorem 1, it suffices to prove that $\left(\text { Tac }_{o}\right)_{B} \cap\left(W_{E} \cap \mathrm{~m}\right) \subseteq c_{o_{A}}$.

Suppose there exists $x=\left(x_{k}\right) \in\left(\text { Tac }_{o}\right)_{B} \cap\left(W_{E} \cap \mathrm{~m}\right)$ such that
$1 \dot{A} m x \neq 0$. We may assume that $1 \underset{A}{i m x}=1$. As in the proof of Theorem 1 , we construct a bounded sequence $u=\left(u_{k}\right)$ such that $u . x \leq\left(T a c_{o}\right)_{B} \cap\left(W_{E} \cap m\right) \backslash c_{A}$. This leads to a contradiction, since $\left(T a c_{o}\right)_{B} \cap\left(W_{E} \cap m\right) \subseteq c_{A}$. In constructing $\left(u_{k}\right)$ we only change the choice of $\left(k_{r}\right)$ in the proof of Theorem 1 such that:
(a) the change does not affect the proof of $u . x \in\left(\mathrm{Tac}_{o}\right)_{B} \backslash \mathrm{c}_{\mathrm{A}}$;
(b) $\quad u . x \in\left(W_{E} \cap m\right)$.

Now we state this modification of the choice of (k_{r}).

Let $\left(p_{n}\right)$ be an increasing sequence of seminorms which generates the FK-topology on E. Since $c_{0} \subseteq E$, the uniform norm topology on c_{0} is finer than the FK-topology on E restricted to c_{0}. Thus we may assume that
(1) $p_{n}(y) \leq\|y\|_{\infty}$ for $n \in \mathbb{N}$ and $y \leqslant c_{0}$.

Since $x \in W_{E} \cap m$, x belong to the weak closure (in E) of the convex hull $P(x)$ of the set $\quad\left\{P_{n} x \mid n \in \mathbb{N}\right\}$. It follows from 1.3, Proposition 1 that the closure of $P(x)$ in E with respect to the $F K$-topology coincides with the weak closure of $P(x)$ in E. Hence there exists a sequence (x^{t}) in φ such that:
(2) $\left\|x^{t}\right\|_{\infty} \leq\|x\|_{\infty}$ for $t \leq N ;$
(3) $x^{t} \rightarrow x$ in E with respect to the FK-topology (hence (x^{t}) is Cauchy in E with respect to the FK-topology).

It follows from (3) that we can choose t_{1} s lN such that

$$
\left(\alpha_{1}\right) \quad p_{1}\left(x^{t}-x^{s}\right)<\frac{1}{2^{2}} \text { for } t, s \geq t_{1} .
$$

Choose $k_{1} \in \mathbb{N}$ such that:

$$
\left(\gamma_{1}\right) \quad x_{k}^{t}=0 \text { for } k \geq k_{1}
$$

Now we choose n_{1} and $\left(i_{j 1}\right)_{j=1}^{\infty}$ as same as in the proof of Theorem 1 .
(3) implies that $\left(x^{t}\right)$ is pointwise Cauchy, and hence it follows from (3) that we can choose $t_{2}\left(>t_{1}\right) \leqslant \mathbb{N}$ such that:

$$
\begin{aligned}
& \left(\alpha_{2}\right) p_{2}\left(x^{t}-x^{s}\right)<\frac{1}{2^{3}} \text { for } t, s \geq t_{2} ; \\
& \left(\beta_{2}\right) \sum_{k=1}^{k_{1}}\left|x_{k}^{t}-x_{k}^{s}\right|<\frac{1}{2^{3}} \text { for } t, s \geq t_{2} .
\end{aligned}
$$

Now we choose $k_{2}\left(>k_{1}\right) \leq \mathbb{N}$ such that:

$$
\begin{aligned}
& \left(\gamma_{2}\right) x_{k}^{t}=0 \text { for } k \geq k_{2} ; \\
& \left(a_{2}\right) \sum_{k=k_{2}}^{\infty}\left(\left|a_{j k}\right|+\left|b_{j k}\right|<1 \text { for } j \leq n_{1} .\right.
\end{aligned}
$$

We choose n_{2} and $\left(i_{j}\right)_{j=1}^{\infty}$ as same as in the proof of Theorem 1 .
We proceed to construct strictly increasing sequences $\left(t_{r}\right),\left(k_{r}\right)$, and (n_{r}) of positive integers and increasing sequences $\left(i_{j r}\right)_{r=1}^{\infty}$, $j=1,2, \ldots$ of nonnegative integers. These sequences, in addition to conditions (i) to (vi) in the proof of the Theorem l, satisfy the following conditions.

$$
\text { (vii) } p_{r}\left(x^{t}-x^{s}\right)<\frac{1}{2^{r+1}} \text { for } s, t \geq t_{r}, r=1,2, \ldots\left(\text { see }\left(\alpha_{1}\right) \text { and }\left(\alpha_{2}\right)\right) \text {; }
$$

(viii) $\sum_{k=1}^{k-1}\left|x_{k}^{t}-x_{k}^{s}\right|<\frac{1}{2^{r+1}}$ for $s, t \geq t_{r}, r=2,3, \ldots$ (see $\left.\left(\beta_{2}\right)\right)$;
(ix) $x_{k}{ }^{t} r=0$ for $k \geq k_{r}, r=1,2, \ldots\left(\operatorname{see}\left(\gamma_{1}\right)\right.$ and $\left.\left(\gamma_{2}\right)\right)$.

Define bounded sequences $u=\left(u_{j}\right)$ and $y=\left(v_{j}\right)$ as same as in the proof of Theorem 1. ie., $u_{j}=\sin \sqrt{r}$ if $k_{r} \leq j<k_{r+1}$ and $\mathrm{v}_{\mathrm{j}}=\sin \sqrt{\mathrm{r}^{\prime}}$ if $\mathrm{n}_{\mathrm{r}} \leq j<\mathrm{n}_{\mathrm{r}+1}$. Now we show that $\quad\left(\mathrm{x}^{\mathrm{t}}{ }^{r} \cdot \mathrm{u}\right)_{r=1}^{\infty}$ is Cauchy in E with respect to the $F K$-topology. Let $\varepsilon>0$ and $n \in \mathbb{N}$. Choose m ($>\mathrm{n}$) such that:
(4) $\sum_{k=m}^{\infty} \frac{1}{2^{k}}<\varepsilon / 3$;
(5) $\quad|\sin \sqrt{p}-\sin \sqrt{p-1}|<\frac{\varepsilon}{3\|x\|_{\infty}}$ for $p \geq m$.

Now, for $q>p>m$,
(6) u. $x^{t^{t}}{ }_{-u \cdot x}{ }^{t}{ }_{q}=\sum_{r=p}^{q+1}\left(u \cdot x^{t_{r}}{ }_{-u \cdot x^{t}}{ }^{t+1}\right)$.

For $p \leq r<q, \quad x_{k}^{t}=0$ for $k \geq k_{r}$ and $x_{k}^{t}{ }^{r+1}=0$ for $k \geq k_{r+1}$ by (ix), and hence

$$
\begin{aligned}
& =\left(u \cdot x^{t} r_{-u \cdot x^{t}}{ }^{t+1}\right) \cdot X_{\left[1, k_{r-1}\right]}+\sin \sqrt{r-1}\left(x^{t} r_{-x}{ }^{t} r+1\right) \cdot \chi_{\left(k_{r-1}, k_{r}\right)} \\
& \left.-\sin \sqrt{r} x^{t} r+X_{\left[k_{r}, k_{r+1}\right.} \text { (by the definition of }\left(u_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(u \cdot x^{t} r_{-u \cdot x}{ }^{t}{ }_{r+1}\right) \cdot \chi_{\left[1, k_{r-1}\right]}+\sin \sqrt{r-1}\left(x^{t} r_{-x}{ }^{t}{ }^{r+1}\right) \cdot \chi_{\left(k_{r-1}, k_{r+1}\right.}\right) \\
& -\sin \sqrt{r-1}\left(x^{t} r_{-x}{ }^{t} r+1\right) \cdot \chi_{\left[k_{r}, k_{r+1}\right)}-\sin \sqrt{r} x^{t} r+1 \quad \cdot \chi_{\left[k_{r}, k_{r+1}\right)} \\
& \left.=\left(u \cdot x^{t} r_{-u \cdot x}{ }^{t}{ }_{r+1}\right) \cdot x_{\left[1, k_{r-1}\right]}+\sin \sqrt{r-1}\left(x^{t} r_{-x}{ }^{t} r+1\right) \cdot \chi_{\left(k_{r-1}, k_{r+1}\right.}\right) \\
& \left.+(\sin \sqrt{r-1}-\sin \sqrt{r}) x^{t}{ }^{r+1} \cdot X_{\left[k_{r}, k_{r+1}\right.}\right) \quad(\text { since } \\
& x_{k}{ }^{t} r=0 \text { for } k \geq k_{r} \text {. }
\end{aligned}
$$

For $\mathrm{y} \in \varphi$, by (1),
(8) $\quad P_{n}(y) \leq\|y\|_{\infty} \leq\|y\|_{1}$.

Hence, for (m $<$) $\mathrm{p} \leq \mathrm{r}<\mathrm{q}$,
(9) $P_{n}\left[\left(u . x^{t} r_{-u \cdot x}{ }^{t} r+1\right) \cdot X_{[1, k}{ }_{r-1}\right] \quad \leq \sum_{k=1}^{k-1}\left|u_{k}\left(x_{k}{ }^{t} r^{r}{ }^{t}{ }_{k}{ }^{r+1}\right)\right|$

$$
\begin{aligned}
& \leq \sum_{k=1}^{{ }_{\mathrm{r}-1}}\left|\mathrm{x}_{\mathrm{k}}^{\mathrm{t}} \mathrm{r}_{-\mathrm{x}_{\mathrm{k}}{ }^{\mathrm{t}} \mathrm{r}+1}\right| \quad \text { (since }\|\mathrm{u}\| \leq 1 \text {) } \\
& <\frac{1}{2^{\mathrm{r}+1}} \text { by (viii). }
\end{aligned}
$$

For (m $<$) $\mathrm{p} \leq \mathrm{r}<\mathrm{q}$,
(Ia) $\mathrm{P}_{\mathrm{n}} \mathrm{I}^{\prime}\left(\sin \sqrt{\mathrm{r}-1}\left(\mathrm{x}^{\mathrm{t}} \mathrm{r}_{-\mathrm{x}}{ }^{\mathrm{t}}{ }^{\mathrm{r}+1}\right) \cdot \mathrm{X}_{\left(\mathrm{k}_{\mathrm{r}-1}, \mathrm{k}_{\mathrm{r}+1}\right)}\right]$

$$
\left.\left.\leq p_{n} I\left(x^{t} r_{-x}{ }^{t} r+1\right) \cdot\left(x_{\left[1, k_{r+1}\right.}\right)^{\left.-x_{\left[1, k_{r-1}\right.}\right]}\right)\right] \quad(\text { since } \quad|\sin \sqrt{r-1}| \leq 1)
$$

$$
\begin{aligned}
& \leq p_{n}\left[\left(x^{t} r_{-x}{ }^{t} r+1\right) \cdot X_{\left[1, k_{r+1}\right)}\right]+p_{n}\left[\left(x^{t} r_{-x}{ }^{t} r+1\right) \cdot \chi_{\left[1, k_{r-1}\right]}\right] \\
& \left.\leq p_{r}\left[x^{t} r^{t}{ }^{t} r+1\right)\right] \text { (since } r \geq p>m>n \text { and } X_{k}{ }^{t} r, x_{k}^{t} r+1=0 \text { for } k \geq k_{r+1} \\
& \text { by (ix)) }+\sum_{k=1}^{r-1} \mid x_{k}^{t} r_{k} x_{k}^{t} r+1 \text { (by (8)) } \\
& <\frac{1}{2^{r+1}}+\frac{1}{2^{r+1}} \text { (by (vii) and (viii)) }=\frac{1}{2^{r}} \text {. }
\end{aligned}
$$

Also,
(11)

$$
\begin{aligned}
& p_{n}\left(\sum_{r=p}^{q-1}(\sin \sqrt{r-1}-\sin \sqrt{r}) x^{t} r+1 . \chi_{\left[k_{r}, k_{r+1}\right.}\right) \\
& \left.\leq \| \sum_{r=p}^{q-1}(\sin \sqrt{r-1}-\sin \sqrt{r}) x^{\mathrm{t}} \mathrm{r}+1 . \chi_{\left[k_{r}, k_{r+1}\right.}\right) \|_{\infty} \quad(b y \text { (1)) } \\
& \leq \sup _{p \leq r<q}|\sin \sqrt{r-1}-\sin \sqrt{r}|\left\|x^{t} r+\right\|_{\infty} \\
& \leq \frac{\varepsilon}{3\|x\|_{\infty}} \cdot\|x\|_{\infty}=\frac{\varepsilon}{3} \text { by (5) and (2) (since } p>m \text {). }
\end{aligned}
$$

From (6) and (7), for $q>p>m$,

$$
\begin{aligned}
& p_{n}\left(u \cdot x^{t} p_{-u \cdot x^{t}}\right) \\
& \left.=p_{n}\left(\sum_{r=p}^{q-1}\left[\left(u \cdot x^{t_{r}} r_{-u \cdot x^{t}}{ }^{r+1}\right) \cdot X_{\left[1, k_{r-1}\right.}\right]^{+\sin \sqrt{r-1}\left(x^{t} r_{-x}\right.}{ }^{t_{r+1}}\right) \cdot X_{\left(k_{r-1}\right.}, k_{r+1}\right) \\
& \left.\left.+(\sin \sqrt{r-1}-\sin \sqrt{r}) x^{t} r+1 \cdot k_{r}, k_{r+1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{r=p}^{q-1}\left(p_{n}\left[\left(u \cdot x^{t} r^{r}-u \cdot x^{t} r+1\right) \cdot x_{\left[1, k_{r-1}\right]}\right]+p_{n}\left[\left(\sin \sqrt{r-1}\left(x^{t} r_{-x}^{t}{ }^{t}{ }^{r+1}\right) \cdot x_{\left(k_{r-1}, k_{r+1}\right)}\right]\right)\right. \\
& \quad+p_{n}\left(\sum_{r=p}^{q-1}(\sin \sqrt{r-1}-\sin \sqrt{r}) x^{t}{ }_{r+1} \cdot x_{\left[k_{r}, k_{r+1}\right)}\right) \\
& <\sum_{r=p}^{q-1}\left(\frac{1}{2^{r+1}}+\frac{1}{2^{r}}\right)+\frac{\varepsilon}{3}(\text { by }(9),(10), \text { and (11)) } \\
& <2 \sum_{r=m}^{\infty} \frac{1}{2^{r}}+\frac{\varepsilon}{3}(\text { since } p>m) \\
& <\frac{2 \varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon \quad(b y(4)) .
\end{aligned}
$$

Hence ($u . x^{t}{ }^{t}$) is Cauchy in E with respect to the FK-topology, and thus converges to $u . x$ since ($u . x^{t}{ }^{t}$) pointwise converges to u.x (by (3)).

To show that $u . x \in W_{E}$, let $f \in E^{\prime}$. Then it follows from 1.4, Theorem 5 that $\left(f\left(e^{k}\right)\right) \in \ell_{1}$ since $c_{o} \subseteq E$. For convenience, let us write u. $x^{r} r^{r} y^{r}$ for each r. Then $\lim _{r} y^{r}=u . x$ in E with respect to the FK-topology, and hence
(12) $f(u . x)=\lim _{r} f\left(y^{r}\right)=\lim _{r} \sum_{k=1}^{\infty} f\left(e^{k}\right) y_{k}^{r} \quad$ (since $y^{r} \in \varphi$ for each r). Now we show that $f(u . x)=\sum_{k=1}^{\infty} f\left(e^{k}\right) u_{k} x_{k}$. Let $\varepsilon>0$. Since $\left(f\left(e^{k}\right)\right) \in \ell_{1}$, there exists $n \in \mathbb{N}$ such that
(13) $\sum_{k=n}^{\infty}\left|f\left(e^{k}\right)\right|<\frac{\varepsilon}{4\|x\|_{\infty}}$.

Since (y^{r}) is point-wise convergent to $\mathrm{u} . \mathrm{x}$, we can choose $\mathrm{r}_{\mathrm{o}} \in \mathbb{N}$ such that
(14) $\sum_{k=1}^{n-1}\left|f\left(e^{k}\right)\left(y_{k}^{r}-u_{k} x_{k}\right)\right|<\frac{\varepsilon}{2}$ for $r \geq r_{0}$.

For $r \leq N$, since $y^{r}=u \cdot x^{t} r,\left\|y^{r}\right\|_{\infty} \leq\left\|\mathbf{x}^{t} r_{\infty} \leq\right\| x \|_{\infty} \quad$ (by (2), and since $\|u\| \leq 1$), and hence
(15) $\left|y_{k}^{r}-u_{k} x_{k}\right| \leq\left|y_{k}^{r}\right|+\left|u_{k} x_{k}\right| \leq 2\|x\|_{\infty}$ for $k, r \in \mathbb{N}$.

Now, for $r \geq r_{0}$,

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} f\left(e^{k}\right)\left(y_{k}^{r}-u_{k} x_{k}\right)\right| & \leq \sum_{k=1}^{n-1}\left|f\left(e^{k}\right)\left(y_{k}^{r}-u_{k} x_{k}\right)\right|+\sum_{k=n}^{\infty}\left|f\left(e^{k}\right)\right|\left|y_{k}^{r}-u_{k} x_{k}\right| \\
& <\frac{\varepsilon}{2}+2\|x\|_{\infty} \cdot \frac{\varepsilon}{4\|x\|_{\infty}} \quad \text { (by (14), (15), and (13)) } \\
& =\varepsilon .
\end{aligned}
$$

Hence $\lim _{\mathrm{r}} \sum_{k=1}^{\infty} f\left(e^{k}\right) y_{k}^{r}=\sum_{k=1}^{\infty} f\left(e^{k}\right) u_{k} x_{k}$ and thus, by (12),
$f(u . x)=\sum_{k=1}^{\infty} f\left(e^{k}\right) u_{k} x_{k}$. Therefore, u.x $\in W_{E}$.
Now using the same proof of Theorem 1, we can show that $u . x \in\left(T a c_{o}\right)_{B} \backslash C_{A}$.

When $T_{o}=\left(t_{j k}\right)$ is given by $t_{j k}=\left\{\begin{array}{l}1 \text { if } k=j+1 \\ 0 \text { otherwise }\end{array}\right.$, Theorem 3 reduces to the following.

COROLLARY 1. Let B be an infinite matrix such that $\|B\|<\infty$ and such that each column of B belong to c_{0}. Suppose E is an FK-space containing c_{0}. Then ℓ_{1} is $\sigma\left(\ell_{1}\left(\mathrm{ac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap\left(\mathrm{W}_{\mathrm{E}} \cap \mathrm{m}\right)\right)$-sequentially complete.

When $B=I$, the Corollary 1 reduces to the following, which was first obtained by Bennett and Kalton [4].

COROLLARY 2. If E is an FK-space containing c_{0}, then ℓ_{1} is $\sigma\left(\ell_{1},\left(\mathrm{ac}_{\mathrm{o}}\right) \cap \mathrm{W}_{\mathrm{E}}\right)$-sequentially complete.

Now we establish the original bounded consistency theorem,

COROLLARY 2. (The bounded consistency theorem [9]).
Let A and B regular matrices, and suppose $c_{B} \cap m \subseteq c_{A}$. Then $\lim _{A} x=\lim _{B} x$ for every $x \leqslant c_{B} \cap m$.

Proof. Let A and B regular matrices, and suppose $c_{B} \cap m \subseteq c_{A}$. Letting $E=c_{B}$, it follows from Corollary 1 that ℓ_{1} is $\sigma\left(\ell_{1},\left(\mathrm{ac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap\left(\mathrm{W}_{\mathrm{B}} \cap \mathrm{m}\right)\right.$)-sequentially complete. Since $\mathrm{W}_{\mathrm{B}} \cap \mathrm{m}=\mathrm{c}_{\mathrm{o}_{\mathrm{B}}} \cap \mathrm{m}$ (by 1.5, Theorem 2), $\left(\mathrm{ac}_{\mathrm{o}}\right)_{\mathrm{B}} \cap\left(\mathrm{W}_{\mathrm{B}} \cap \mathrm{m}\right)=\mathrm{c}_{\mathrm{o}_{\mathrm{B}}} \cap \mathrm{m}$ and hence ℓ_{1} is $\sigma\left(\ell_{1}, c_{o_{B}} \cap m\right)$-complete. Since $c_{o_{B}} \cap m \subseteq c_{A}$, it follows from 2.3, Theorem 2 that $c_{o_{B}} \cap \mathrm{~m} \subseteq \mathrm{c}_{\mathrm{o}_{\mathrm{A}}}$. Now let $\mathrm{x} \in \mathrm{c}_{\mathrm{B}} \cap \mathrm{m}$. Then
$x-\left(\lim _{B} x\right) e \leq c_{o_{B}} \cap m \subseteq c_{o_{A}}$, and hence $\lim _{A}\left(x-\left(\lim _{B} x\right) e\right)=0$.
i.e., $\lim _{A} x=\lim _{B} x$.

Finally we show that Theorem 3 is still true if we replace $\mathrm{Tac}_{\mathrm{o}}$ by c_{o}.

THEOREM 4. Let $B=\left(b_{j k}\right)$ be an infinite matrix such that $\|B\| \leq \infty$ and such that every column of B belongs to c_{o}. Suppose E is an FK-space containing c_{0}. Then ℓ_{1} is $\sigma\left(\ell_{1}, c_{o_{B}} \cap W_{E} \cap \mathrm{~m}\right)$ sequentially complete.

Proof. Let $B=\left(b_{j k}\right)$ be an infinite matrix such that $\|B\|<\infty$ and such that every column of B belongs to c_{o}, and let E be an

FK-space containing c_{o}. Suppose $A=\left(a_{j k}\right)$ is an infinite matrix with the same properties as B such that $c_{o_{B}} \cap W_{E} \cap m \subseteq c_{A}$. Since $c_{0} \subseteq c_{o_{B}} \cap W_{E} \cap \mathrm{~m},\left(c_{0} \cap W_{E} \cap \mathrm{~m}\right)^{\beta}=\ell_{1}$, and hence, as in the proof of Theorem 1, it suffices to prove that $c_{o_{B}} \cap W_{E} \cap \mathrm{~m} \subseteq c_{o_{A}}$.

Suppose there exists $x=\left(x_{k}\right) \in c_{o_{B}} \cap W_{E} \cap m$ such that $\underset{A}{\lim x \neq 0 .}$ We may assume that $\lim x=1$. As in the proof of Theorem 3 , we construct a bounded sequence $u=\left(u_{k}\right)$ such that $u . x \in\left(c_{o_{B}} \cap W_{E} \cap m\right) c_{A}$. This leads to a contradiction, since $c_{o_{B}} \cap W_{E} \cap \mathrm{~m} \subseteq c_{A}$.

As same as in the proof of Theorem 3, let $\left(p_{n}\right)$ be an increasing sequence of seminorms which generates the FK-topology on E and (x^{t}) a sequence in φ such that
(1) $p_{n}(y) \leq\|y\|$ for $n \in N$ and $y \in c_{0}$;
(2) $\left\|x^{t}\right\|_{\infty} \leq\|x\|_{\infty}$;
(3) $x^{t} \rightarrow x$ in E with respect to the FK-topology.

Now, similar to the proof of Theorem 3, we can inductively construct strictly increasing sequences $\left(t_{r}\right),\left(k_{r}\right)$, and $\left(n_{r}\right)$ such that:
(i) $\max _{n_{r} \leq j \leq n_{r+1}}\left[\sum_{k=1}^{k_{r}}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)+\sum_{k=k_{r+1}}^{\infty}\left(\left|a_{j k}\right|+\left|b_{j k}\right|\right)=\frac{1}{2^{r-1}}\right.$
(ii) $p_{r}\left(x^{t}-x^{s}\right)<\frac{1}{2^{r+1}}$ for $s, t \geq t_{r}, r=1,2, \ldots$;
(iii) $\sum_{k=1}^{k-1}\left|x_{k}^{t}-x_{k}^{s}\right|<\frac{1}{2^{r+1}}$ for $s, t \geq t_{r}, r=2,3, \ldots$;
(iv) ${ }_{X_{k}}{ }^{\mathrm{r}}=0$ for $k \geq k_{r}, r=1,2, \ldots$.

Define bounded sequences $u=\left(u_{j}\right)$ and $y=\left(y_{j}\right)$ as same as in the proof of Theorem 3, i.e., $u_{j}=\sin \sqrt{r}$ if $k_{r} \leq j<k_{r+1}$ and $v_{j}=\sin \sqrt{r}$ if $n_{r} \leq j<n_{r+1}$. Now as same as in the proof of Theorem 3 we can show that $u . x \in W_{E} \cap \mathrm{~m}$.

Since $x \in c_{o_{B}} \cap W \cap m, B x \in c_{o}$ and hence $(B x) \cdot v \in c_{o}$. Now as same as in the last part (from (7) to the end) of Theorem 1 , we can show that $B(x, u)-(B \cdot x) \cdot v \in c_{0}$ (hence $B(x . u) \in c_{o}$) and x.u $\in c_{A}$. Therefore, $\quad x . u \in c_{o_{B}} \backslash c_{A}$.

BIBIIOGRAPHY

[1] Alexiewicz, A. and Semadeni, Z., Linear functionals on two norm spaces, Studia Math. 17 (1958), 121-140.
[2] Banach, S., Thêorie des operations linéaires, Monografie Mat., PWN, Warsaw, 1932.
[3] Bennett, G., A representation theorem for summability domains, Proc. Iondon Math. Soc. 24 (3) (1972), 193-203.
[4] Bennett, G. and Kalton, N.J., Consistency theorems for almost convergence, Trans. Amer. Math. Soc. 198 (1974), 23-43.
[5] \quad 561-582. FK-spaces containing c_{o}, Duke Math. J. 39 (1972).,
[6] \longrightarrow Inclusion theorems for K-spaces, Canad. J. Math. 25 (1973), 511-524.
[7] Brudno, A.L., Summation of bounded sequences, Mat. Sb. 16 (1945), 191-247.
[8] Erdös, P. and Piranian, G., The topologization of a sequence space by Toeplitz matrices, Michigan Math. J. 5 (1958), 139-148.
[9] Garling, D.J.H., On topological sequence spaces, Proc. Cambridge Phil. Soc. 63 (1967), 997-1019.
[10] Kamthan, P.K. and Gupta, M., Sequence spaces and series, Vol. 65 Lecture notes in pure and applied math., Marcel Dekker Inc., N.Y. and Basel, 1981.
[11] King, J.P., Almost summable sequences, Proc. Amer. Math. Soc. 17 (1966), 1219-1225.
[12] Köthe, G. and Toeplitz, O., Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. reine angew. Math. 171 (1934), 193-226.
[13] Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
[14] Maddox, I.J., Infinite matrices of operators, Vol. 786, Lecture notes in math., Springer-Verlag, Berlin Heidelberg, N.Y., 1980.
[15] Mazur, S. and Orlicz, W., Sur les mẻthodes linẻaires de sommation, C.R. Acad. Sci. Pans 196 (1933), 32-34.
[16] Petersen, G.M., Almost convergence and the Buck-Pollard property, Proc. Amer. Math. Soc. 11 (1960), 469-477.
[17] , Summability methods and bounded sequences, J. London Math. Soc. 31 (1956), 324-326.
[18] Ruckle, W.H., The bounded consistency theorem, Amer. Math. Monthly 86 (7) 1979, 566-571.
[19] Schaefer, P., Almost convergent and almost summable sequences, Proc. Amer. Math. Soc. 20 (1969), 51-54.
[20] Sember, J.J., Families of sequences of O's and l's in FK-spaces, (submitted for publication).
[21] Snyder, A.K., Consistency theory in semiconservative spaces, Studia Math. 81 (1), 1982, 1-13.
[22] Webb, J.H., Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64 (1968), 341-364.
[23] Wilansky, A., Modern methods in topological vector spaces, McGraw-Hill, N.Y. (1978).
[24]
—_ Summability through functional analysis, Vol. 85 Math. studies, North-Holland, 1984.
[25] Zeller, K., Allgemeine Eigenschaften von Limitierungsverfabren, Math. Z. 53 (1951), 463-487.

