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ABSTRACT

The two main purposes of this thesis are:
(i) To investigate the sequential completeness of 81 with respect
to weak topologies generated by subspaces of m whose R-dual
1s 31 H
(ii) To introduce a class of summability methods that contains the

method of almost convergence and to study its properties.

Chapter 1 is of an introductory nature. In Chapter 2 we
obtain a characterization of those subspaces of m whose B-dual is

£., and then obtain several external characterizations of those subspaces

1’
of m that generate sequentially complete weak topologies on 81 . In
Chapter 3 we introduce a new class of summability methods that contains
the method of almost convergence, and then study the properties of the
subspaces of m generated by these methods. In Chapter 4, by
establishing the sequential completeness of 81 under suitable weak

topologies, we obtain consistency theorems for the summability methods

introduced in Chapter 3.
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CHAPTER 1

PRELIMINARIES

§1. Introduction.

Using the notion of Banach limits, Lorentz [13] introduced the
concept of almost convergence and developed a significant theory.
Further studies related to almost convergence have since been carried
out in [llj, [16], [19] and [4]. Replacing the Banach limits by T-Banach
limits (3.2 Definition 3), we define a new class of summability methods,
which we call the T-almost convergence methods. A main purpose of this
thesis is to study properties leading to the establishment of a bourided

consistency theorem for these methods.

The bounded consisteqcy theorem is oﬁe of the most important
results of summability theory. The first proof of this famous theorem,
requiring seven pages of calculations, was given by Brudno [7]. The
result was merely stated by Mazur and Orlicz in [15], though a special
case was given by Banach [2, p. 95]. The challenge of construéting a
shorter proof was met by Petersen [17] by giving a streamlined version of
Brudno's proof. C(bserving the basic relationship between this theorem
and the sequential.completeness of Zl under appropriate weak
topologies, Bennett and Kalton [ 5] constructed a functional analytic
proof. The same observation led them to extend the theorem to the

space of almost convergence sequences [4].

The relationship between the bounded consistency theorem and

the sequential completeness of Zl leads us to study the dual structure



of 81 with some subspaces of m . In doing so we are able to

characterize the class of subspaces of m whose f-dual is 81

a consequence of this characterization, we also answer some open

questions raised in [24].

As



§2. Seqguence spaces.

The primarf aim of this and the remaining sections is to
collect together the basic definitions and results of sequence space
theory and summability theory, of which we shall make frequent use in
the rest of the thesis. A detailed study of these materials can be

found in [10] and [24].

We denote by ® the set of all real sequences. The set w ,
under the usual operations of pointwise addition and scalar multiplication,
becomes a vector space over R . Any subspace E of w is called a
sequence space. An arbitrary member (xh) of ®w is sometimes denoted
by x only. For x in & , we write |x| to mean (anl). The
pointwise multiplication of two sequences x and y is denoted by Xx.y;

i.e., Xy = (xnyn). The matrix multiplication of two sequences is,

denoted by xy; i.e., xy = XY -

n ™8

n=1

We also adopt the following notation:

e, ek € W are given by
e=(1,1,....... )
ek = (0,...,0,1,0,...) with the one in the kth position;

¢ is the linear span of {ek[k € iN};

mn = {x € o ﬂx”o° = sgplxnf < @};
c = {x €w ]| lim x_ exists};
n “n
c = {x €c | lim x_ = 0};
o o “n
ac = {x €w | lim(x

= n+l+xn+2+...+xn+p)/p exists uniformly in n }



= G i +. +... = 1 1 Y
ac_ {x € ac l li?(xn+l X 42 +xn+p)/p 0 uniformly in n }
(s
- - <
b=t eo|lxll, = & [x| <=},
=1
We consider only sequence spaces containing ¢ . For x € @,
we write

an = (x ,x2,...,xh,0,...) .

1

For any subset M of WM , we denote the characteristic function of M
by Xp? i.e.,
1 if kX €M

e =

0 if k ¢ N\\\M .

DEFINITION 1, A sequence space E 1is called monotone if XM.x € E for

every x € E and every M C N,
For a subset S of ® , <S> denotes the linear span of S,
If E and F are two subspaces of ®w , then E ® F denotes the direct

sum of E and F .



8§3. Topologies on sequence spaces.

DEFINITION 1. A sequence space E with a locally convex topology T 1is

called a K-space provided that the linear functionals

are continuous on E . If, in addition, (E,T) 1is complete and

metrizable, then (E,T) is called an FK-space.

DEFINITION 2. A K-space (E,T} 1is called an AD-space if ¢ is dense

in E .

DEFINITION 3. A K-space (E,T) is called an AK-space if (an)

converges to x for every x € E .

An FK-space has a topology generated by ansincreasing sequence -
of seminorms. If E, F are two FK-spaces with E C F, then the
FK-topology of E 1is finer than the FK-topology of F restricted to E .

In particular, the topology of an FK-space is unique.

The topological dual of a K-space (E,T)} is usually denoted
by E' . For some important K-spaces, E' cannot be represented as
a sequence space. To deal with this situation Kothe and Toeplitz [12]

introduced the og-dual and fB-dual of sequence spaces.

DEFINITION 4. ILet E be a sequence space and define

o]
(1) E” = xew]| = Ixnyn| < © for every y € E}, and
n=1



o«

8

(ii) E" = {x € w l z Xy ~ converges for every y € E},
n=1

B

Then E® and E are called the o~ and 8- dual of E , respectively.

There is a natural way of defining K-space topologies by
considering dual pairs of sequence spaces. For a given sequence space
E, let F denote a subspace of Eg with ¢ C F . Then E and F form

a dual system under the bilinear functional < x,y > , where

Any K-space topology on E 1is said to be compatible with the dual
system < E,F > if E' = F . The weak topology O(E,F) is the smallest
compatible topology on E . For each 0(F,E)-bounded subset K of F ,

define the seminorm Py on E by

Py (x) = sup | < x,y> | .
y €K
If F is a family of o(F,E) bounded subsets of F , then the topology
on E generated by the collection of seminorms '{pKIK €Fl 1is called
the topology of uniform convergence on members of F . The topology of
uniform convergence on convex O (F,E)-compact subsets of F 1is called
the Mackey topology and denoted by T(E,F). The Mackey topology is
the largest compatible topology on E . The topology of uniform
convergence on O(F,E)~bounded subsets of F is called the strong
topology and denoted by B (E,F).
The following important results concerning dual systems can

be found in [23].



PROPOSITION 1. Let < E,F > be a dual pair of sequence spaces. If A

is a convex subset of E , then the o(E,F)~closure of A coincides with

the T(E,F)-closure of A .

PROPOSITION 2. Let < E,F > be a dual pair of sequence spaces and let

n .
T be a compatible topology on E . Suppose (x ) is a T-Cauchy
sequence in E . If (xn) is 0o(E,F)-convergent to x in E, then

(xV)  is T-convergent to x in E

If < E,F > 1is a dual pair of sequence spaces, then
Proposition 1 implies that (E,T(E,F)) 1is an AD-space. The following
result concerning dual pairs is known as the Grothendieck criterion.
THEOREM 1. Let < E,F > be a dual pair, and let F be a family of
o(F,E) bounded subsets of F . Suppose the topolegy T (on E) of uniform
convergence on members of F is compatible with the dual pair < E,F > .
Then (E,T) is complete if every linear functional on F , which is

o(F,E)-continuous on members of F, belongs to E .

A comprehensive study of dual systems including the proof of

Theorem 1 is contained in [23].

A topological space X is called separable if X has a

countable dense subset.

PROPOSITION 3. Every AD-space is sgeparable.

Proof. Let E be an AD-space. We claim that D = {x = (xk) € @lxk 3Ke)
for every k €IN} is a countable dense subset of E . For each finite

subset M of IN , let D, = {x ¢ D[x

M =0 for k £ M}. Then D, is

k



countable and, moreover, D = U{DMIM is a finite subset of IN}. Since
the collection of finite subsets of IN is countable, D is also -
countable. Now let x € E, and let p be a continuous seminorm on E .
Let €.> 0. Since E is AD, there exists y € ¢ such that
p{x~-y) < %-. Since y € ¢ , there exists m ¢|N such that

m

vy= L ykek . For each k (=m), let
k=1

)oo

n=1 be a sequence in Q

Sy

in IR . Since E is a topological vector

such that 1ﬁm Yien Yy

, k k .
space, lﬁm Yin, € = ¥ © in E and hence
- x_ 2 x
lim X y e = L y,e =y in E . Thus there exists n_ €N such
n kn k o
k=1 k=1
m
that p( Z Yin © y) < €/2 . Therefore,
k=1 o
m m
k k € €
p(Z Yin © x) =p(Z Yin © y) + ply=x) < sty =¢€.
k=1 o : k=1 o ' -
- k
Since Ly € D, it follows that D 1is a dense subset of E .

e
k=1 kno



84. Topological properties of K-spaces.

The following fundamental result characterizes compact subsets

of a K-space. The proof is given in [9, p. 1010].

THEOREM 1. ILet (E,T) be a K-space. Then M is a relatively
compact (respectively, compact) subset of E if and only if M is a
relatively sequentially compact (respectively, sequentially compact)

subset of E .

T be two K-space topologies on a sequence space

THEO 2.
REM Let T,, T,

E . Then the following statements are equivalent:

(i) E has the same convergent sequences with respect to Tl and Tz;
(ii) E has the same Cauchy sequences with respect to Ty and Tz;
(iii) E has the same null sequences (sequences converging to Q) with
respect to Tl and T,
(iv) E has the same compact sets with respect to Tl and T2 .

The proof of ((i) = (ii) = (iii)) 4is given in [22,p. 343],

Applying Theorem 1, one can easily show that ({i) = (iv) = (iii)).

We denote by m the linear span of all sequences taking only
the values zero and one. It is easy to check that m is dense in
(m,“ ”w). Now we state the well-known Schur's lemma. The proof of

this lemma is given in [23, p. 4].

THEOREM 3. A sequence (x)  in 81 is O(&l,mo)—convergent if and only

if (xM) is Zl—norm convergent.



10.

The following theorem, characterizing relatively compact
subsets of El , is stated in [5, pP- 563] without proof. We give an

elementary proof.

THEOREM 4. An El-norm bounded subset K of El is relatively compact

[ov]
if and only if limsup I |x.,| =0 .
. 1
n x€K i=n

Proof. (Necessity) Suppose a bounded subset K of El is relatively

[o e}

compact. Assume that 1lim sup 2 Ixi[ # 0 . Then there exists an
n x€K i=n

€ > 0 , a strictly increasing sequence (nm) of positive integers and

a segquence (¥ in X such that
@ Ikl >e.

Since X 1is relatively sequentially compact, there exists a subsequence

(x %) of (¥ such that (x V) converges in El . Let limx = = x.
k
Since x € El , there exists p € N such that
[ o]
(2) I [xil <e/2 .,
i=p

Since (x ) converges to x in 81 there exists ko(>p) €IN such that

(3) z lx?k - x.[ <eg/2 for k= k_ .
- i i o)

Now, for k =2k _,



1.

1A
e}

z

i=n i=p

(since p <k_ =k
o my

) n&( © lxnﬁc‘

[ne]
%
[N
tA

IA
™~

xS = x|+ T x|
i=p

i=p

A

€/2 +€/2 = by (2) and (3),

=0}

This contradicts (1). Hence 1lim sup I Ixil = 0.
n x€K i=n"

(sufficiency) Suppose X 1is a bounded subset of 81 such

(=]
that 1lim sup I lxil = 0. let (x) be a sequence in KX ., Since
n X€K i=n '

(") is pointwise bounded, there exists a subsequence (x ) of (x)

such that (x ) converges pointwise to a member x of @ , Since

(¥  is Zl—norm bounded, x € 81 . To show that (x =) converges

to x in (£_,|l ”1), let € >0 . Choose p €N such that, for k <IN,

l'
© n o
4 I Ixikl <es3 and I |x.| <e/3.
i=p i=p *

Also we can choose ko €IN such that

k
(5) § lxi - xil <e/3 for k = kg.
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For a given FK-space E , the sets S and W are

E E
defined by:
>k
s.={x€E| x= Iexl};
E o1k
[o o]
k
W, =1{x €E| £(x) = I f(e")x, for every f € E'}.
E k=1 k

The following results concerning FK-spaces containing c, are

,given in [5, p. 5651].

THEOREM 5. An FK-space E contains c if and only if

(f(ek)) € 81 for every f € E' .

THEOREM 6. For any FK-space E containing c s © cs

C W, .
o —

E E

Iet X be a vector space over IR with two homogeneous
norms || || and | H*. Also assume that || || is finer than || H*.
Then (X,1 [, | H*) is called a two-norm space. A seqguence (xn) in
X 1is said to be two-norm convergent to a member x in X if
sgp”xnﬂ < ©» and 1%m”xn—xH* = O.' A linear functional f on X is
called a two-norm linear functional if l%m f(xn) = 0 for every (xn)
in X such that (xn) is two-norm convergent to 0 . The following

result regarding two-norm linear functionals is given in [1, p. 130].



%* .
THEOREM 7. Let (X, |l I, Il | } be a two-norm space. Then f is a
two-norm linear functional on X if and only if £ is in the

%*
closure of the dual of (X, || |} in (x, || ID".

13.
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§5, Infinite matrices.

Given an infinite matrix A = (a )}, we define the set ®

nk A

[o0]

tobe {x €w [ kEla.nkxk converges for every n € IN}. For x € Wy
o]
we write y = Ax to mean that Y, = (Ax)n = kElankxk for each n .

Given a sequence space E and an infinite matrix A , we define the

set E, to be {x ¢ N | ax € E}. 1t is easy to verify that E, is a

sequence space. When E = ¢, this set is called the convergence domain

of A . I1If x € Cpr %%m(Ax)n exists and we denote this limit by I%P X.

Zeller [25] proved that, for any FK-space E , EA is also an

FK-space. Bennett [3] proved that E is a separable FK-space if E

A

is a separable FK-space. For convenience, we write W_  _for Wc .

A A
b o]
- . e . < o
et A (ank) be an infinite matrix. If sup z [ank[ , we say
k=1
o]
that A has a finite norm and write [|a] = sgp X Iankl' A matrix A
k=1

is called regular if A contains ¢ and l%m X = lim X for every
n

x € ¢ . A main theorem of summability theory is the Silverman-Toeplitz
theorem which characterizes regular matrices. The proof of this

theorem can be found in [24, p. 6].

THEQREM 1. A matrix A 1is regular if and only if the following

conditions hold:

(1) flall < ;



15.

(ii) l%m a ., = 0 for k=1,2,... ;

(iii) 1lim

Il ™~ 8
[+1]
I
|_l

The proof of the following result is given in [18, p. 568].
THEOREM 2. Let A be a matrix such that
1) lall <~ , ana

(ii) lima, =0 for k=1,2,... . Then W. NMm=c¢c Nm.
n nk A oA

1

The following associative laws for matrices are given in

[24, p.8]. We frequently use them in Chapter 3.

-

THEOREM 3. ILet A, B and C be matrices with finite norms. Let

t €2, and x €m . Then the following laws hold:

1
(i) t(ax) = (tA)x. (Here t(Ax) = T t_(Ax) = I I ta X
n n n nk
n=1 n=1 k=1
and (tdA)x = I (tA) = I Ita ) ;
k=1 kxk k=1 n=1 n nkxk

(ii) (aB)C = A(BC);

(iii) (aB)x = A(Bx) .



CHAPTER 2

SEQUENTIAL COMPLETENESS

§1. Introduction.

In many situations the sequence spaces under consideration
are not complete. It is known that important results in the general
theory can be established under the weaker hypothesis of sequential
completeness (e.g., the uniform boundedness theorem). Furthermore, in
their papers ([5], [ 4]) Bennett and Kalton observed that the bounded
consistency theorem is implied by the sequential completeness of Zl
under suitable weak topologies., Two different methods are generally
used to establish the sequential completeness of 51 under such
topologies; The first one uses elementary gliding hump - arguments,
while the second uses more sophisticated functional analysis methods
involving Orlicz-Pettis type results. Both rely on some structural
properties of the subspace of m which generates the weak topology

on Zl .

In this chapter we obtain a characterization of those sub~-

spaces of m whose B-dual is 51 , and then obtain an external

characterization of those subspaces of m that generate sequentially

complete weak topologies on 51 . As a consequence of these results,

we answer some openh questions about FK-spaces raised in [24].

le.
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§2, Definitions and basic results.

DEFINITION 1. A sequence space (E,T) 1is called sequentially

complete if every Cauchy sequence in E T-converges to a member of E.

The following result is essentially contained in [24, p. 253].

PROPOSITION 1. Let < E,F > be a dual pair of sequence spaces. Then

a sequence (anl of members of E is O(E,F)-Cauchy if and only if

where A = (a ;) 1is the infinite matrix whose nth row

ce
FZC% “nk
n

is a .

Proof. Suppose (@) is O(E,F)-Cauchy, and let x € F . Then

(Z a;xk) -1 is a Cauchy sequence in R . Since |R 1is complete,

[e0]
A E a;:xk)n=1 € ¢ . This means that. Ax € ¢ and hence x € Cp

Suppose F C ¢

[o4]
n =]
5 - Then (_kf“:_lakxk)n=l € ¢ for every x €F ,

This implies that (a™) is o (E,F)-Cauchy.

PROPOSITION 2. ILet < E,F > be a dual pair of sequence spaces, and

suppose (E,0(E,F)) is sequentially complete. Then FB =E,

B 8

Proof, Since < E,F > is a dual pair, ECF . Let x € F , Then

o
o
kElxkyk converges for every y € F . This implies that (an)n=l is

is O0(E,Fl-Cauchy since ¢ S E. Since (E,0(E,F)). is sequentially com=-
3

[o0]
plete, (an)n= is 0(E,F)-convergent to x in E. Hence x € E and thus F° C E,

1
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The following proposition states a well known result for
monotone sequence spaces (see 1.2 Definition 1). The proof can be

found in [10, p. 188].

PROPOSITION 3. Let < E,F > be a dual pair of sequence spaces such that
g

FF =E . If F is monotone, then (E,0(E,F)] is sequentially complete.

The following result is generally known for normed spaces.

PROPOSITION 4. Let (X,]] ||} be a normed space, and let Y be a sub-

space of X'-the dual space of X . Then every norm bounded 0 (X,Y]l-Cauchy
sequence (xn) in X is O0(X,Y)<Cauchy. Here Y is the closure of Y
with respect to the usual norm topology on X' ., Moreover, if (xn) is

g (X,¥)-convergent, then (xn) is 0o(X,¥)-convergent.

Proof. Suppose (xn). is a norm bounded o (X,Y)-Cauchy sequence in X .

Let g €Y and € > 0 . Then there exists h € Y such that
llg-hj] < — £ . Choose n_€IN such that |h(x -x )| < €/2 for n,m= n_.
4 sup xnl o n m ' (o}
n

Thus, for n,m = n_,
o

lgtx_-x )| = [(g-n) (x -x )| + |ntx ~x )| < llg-nllllx ~x || + e/2

1A

”g—h..Z st”an +€/2 <€/2 +€/2 =¢€ ,

Hence (xn) is G(X,?)-Cauchy.

The last part can be proved by a similar argument,
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§3. Weak topologies on 81.

Proposition 2 of the previous section implies that the S-dual

of every subspace E of m which generates a sequentially complete weak

B

topology on 81 must be 81 . But E° = 81 is not a sufficient condition

for sequential completeness of the corresponding weak topology on 81 .

For instance, (Zl,o(ﬂl,c)) is not sequentially complete, though cB = 51.

It seems difficult to obtain an internal characterization of such sub-

spaces of m . The following theorem, however, characterizes subspaces

of m whose B-dual is 51 , and consequently we obtain a useful

external characterization of subspaces of m generating sequentially

complete weak topologies on 81 .

THECREM 1. Let E be a subspace of m containing ¢ . Then the

following are equivalent:

(ii) every O(ZI,E)—bounded sequence in 81 is 81vnorm bounded ;

(iii) every O(ZI,E)'bounded subset of 81 is £.-norm bounded ;

1

(iv) every O(ﬁl,E)—Cauchy sequence in 81 is £¢.-norm bounded ;

1

(v) every O(ﬂl,E)—Cauchy sequence in 51 is o(Zl,w)—convergent.

Proof. ({i} = (ii))}. Suppose EB = 81 , and let (x) be a

G(ﬂl,E)—bounded sequence in 81 . Suppose sgp ”an = ® _ Since (xn)

is G(Zl,E)—bounded and ¢ € E,

p n
1) sup z ]xk] <o for p=1,2,... .

k=1



20.
let k., = 1.

n
1 Choose n., €N

1 n
N ,
1 such that |lx ”l (2+1) Sup le] + 2+1 ,

[+ 0]
and then k2(>k ) €IN such that z
k

k=
k2

Zl:ﬁ{n|>2[xll+2 ie.,

[xkll <1, Note that
2+l

*1

ST %
v >2 I + 2 . Since
kl+l Xk k=1 Xk

k= k=

%

sup L kal < © by (1), we can choose n_(>n,) €IN such that
no1 2

n k2
l|x 2” > (2°+1) sup L ]x;l + 22+l, and then k_(>k,) €N such that
1 N 3
b 5 k3 n2 5 k2 n, 2
z ka | <1. Note that z ka | >2° ¢ lxk I+ . We
k=k3+l k=k2+l k=1

can proceed to choose strictly increasing sequences (k)

and (n ) of
r
positive integers such that:

r+l ] nr| k l rl
(2) M = z >2 z +2 ;
T k=k_+1 x k=1 "x
r
® n
(3) z lx, ] < 1.
k=k_ .41 %
r+l
n
xkr
lw
— . = ——— <k =k
From (2) (Mr)r=l € El Let vy, T for k_

r+l ° Then (yk)

is a sequence of real numbers such that

r+l
(4) z

1
v ] = L.
k=k +1
r
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(4) implies that (.yk). £ 81 . Let z €E . Then, for any r €N,

r+l nr | ’°° nr | oo nr © nr
z X"z | =X z |+ z [ z|5|Z z | + ||zl
k=1 X % k=1 R k= +1}S‘ k k=1xk k @
r+l
© n
by (3). Since (x") is o(£ (E)-bounded, sup I E :ﬁ(rz [ < ® and hence
1 r k=1 k
|r+1 nr ‘ S 1 kr+1 nr
sup | Z 2| <o _ Thus L —/— (L 2z, ) converges since
r k=1 xk k =1 er k=1 }5{ k
1 [e.]
('rM )1=1 ¢ 81 :
r
k
1z (% wtz)| < lel, = % 7]
But I — (L z )] =< |z I —/—(Z )
BT o1 M pop K
m .
=< Hz“m LI —— (by (2)) <o
r=1 r2
o 1 kr+1 nr o
Hence I — ( I z,) converges. Now we show that I vy z is
=1 k=k_+1 * K k=1 K
Cauchy. ILet € > 0 . Choose ro €N such that:
m 1 kr+1 nr
—— > .
(51 [ z T ( Zz X, zk)f < eg/3 for £,m = r, i

r=f “r k=k +1
r

1 £
(6) — < .
T, 3”2”00
Iet p,g €N such that kr < p =g . Then there exist s,t €N such
o
<p= <g= . =s = .
that ks o} ks+1 and kt q kt+l Note that r =s t
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s+1 llzll,,
< < <
2 vzl = Dlyzls T lyzlslell, s Gy = < e/3
k=p k=p k=k _+1 o
(by (8)) <€ .
Case 2. t = s+l.
[ q I ks+lI | q ks+l | ks+2 I |
Tyz | = 2 J|y.z, |+ % ly.z | = T lyz |+ z v, 2
k k k k k k k k k k
k= k=p k—ks+1+l k—ks+l k—ks+1+l
1 2€ .
< — — - —— —
s lzll, &+ lzll, 55 ey 40 =zl ~ <3 by (61) < €.
Case 3 t > s+l
Sl Pl ol 5 nede §
| Zyz | = L vz, | + | z v.z | + L V., Z
k=p £ ¥ k=p KK K=k 41 F % Kk +1 k k
s+1
ks+l l [ t-1 kr+l | kt+1 [ [
= I ly.z, | + T (Z vzl + I v, 2
k=k +1 Kk r=s+1 k=k +1 kk k=k, +1 k k
S r t
1 I t-1 1 kr+1 nr 1
szl =+1 2 - z )| + llzll oz by (4).
TS el M kek 41 Tk ®
Pr
and since y = fE— for k_ <k =k )
k er r T Tr+l
(] 1 € ] 1 S
< ”Z”°° 7 3 ”Z”m pa (by (5) since r < s+l = t-=1)
o o
<S4S+ my ) -e.
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V1% is Cauchy and hence convergent. Since (zk) is arbitrary

o0
Thus z
=]

k

in E , (yk) € EB . This contradicts that EB = 81 since (yk) £ 81 .

((ii) = (1ii)) and ((iii) = (iv)) are obvious.

((iv) = (v)). Suppose condition (iv) holds. Let (x") be

0(81,E)*Cauchy, Then (x7) is o(w,p)-Cauchy. Hence there exists x € w

n, .
such that (x) is o0(w,p)-convergent to x . Since sup Hanl < oo,

ESE

1 k 1

I e =}
[ e =

im|x*| = . o< € a €2
. llﬁmlxkl = sgp 1B ”l © for m € N, and hence x

Thus (xn) is 0(81,@)—convergent.

((v) = (i)). Suppose candition (v) holds, and let x € EB . Then
e o]
» o ) .
k§1 Xy, converges for every y € E and hence (an)n=1 is
. e o]
0(81,E)—Cauchy. Thus (an)n=l is 0(81,@)—convergent. This implies
that x € £ and hence E8 Cf . Since ECm, £ C EB .

1 -1 1 -

COROLLARY 1. ILet E be a subspace of m containing ¢ . Then the

following are equivalent:

(ii) for every matrix A = (ank) such that E < Cpr all <,

Proof. ((i) = (ii)). Assume EB = £, and suppose A = (a,) is a

1l nk

is a sequence in £, , where

nw
matrix such that E E_cA . Then (a) 1

n=1
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n

n By Proposition 1 of §2, (a') is O(EI,E)—Cauchy.

)oo
a = (ahk k=1"

By Theorem 1 ((i) = (iv)), [lall = sup 2%, < = .
n

B

((ii) = (1)). Assume condition (ii) and let t € E .

Define a matrix A = (ank) by

t if 1=k =n

@ if k>n.

B

Since t € E, E C c_  and hence lall < © . This implies that t € 31

A
B

- c 31 . Since E & m, 31 CE

so that E B.

COROLLARY 2. Let E be a subspace of m containing ¢ such that 31

is G(JI,E)-sequentially complete, and let A = (ank) be an infinite

matrix. If E C c,, then lall < » and (@ is O(El,E)-convergent,

A'
n o
where a = (_ank)k=l .
Proof. Since El is O(JI,E)-sequentially complete, EB = 31 by

Proposition 2 of §2. Hence ||All < @ by Corollary 1. Also, by
Proposition 1 of §2, (@M is O(&l,E)—Cauchy. Since 31 is
O(EI,E)—sequentially complete, (a™) is O(ﬂl,E)—convergent.

Now we use Theorem 1 to obtain an external characterization
of those subspaces of m generating sequentially complete weak

topologies on 81 .
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THEOREM 2. Let E be a subspace of m containing ¢ . Then 81 is

O(El,E)-sequentially complete if and only if

(i) E° = ¢, , and

(ii) E S_CA = E E-Co , whenever A is an infinite matrix such
A

that ”AH < o and such that each column of A belongs to c, -

Proof. (Necessity). Suppose 81 is O(Bl,E)-sequentially complete.

Then EB = 81 by Proposition 2 of §2. Let A = (a_,) be an infinite

nk

matrix such that HAH < ® and such that each column of A Dbelongs to c0

n,«
Suppose E E‘CA . Then (a)

n=1 is O(ﬁl,E)—Cauchy by Proposition 1 of

o0

) Since £, is O(Bl,E)—sequentially complete,

n
§2, where a = (ank'k=l . 1

(a") is OJﬁl,E) convergent. But (a™) pointwise converges to 0 , and

-

hence (a") is O(El,E)—convergent to 0. This implies that E C c,
A

(Sufficiency) . Suppose conditions (i) and (ii) hold and
let (x') be a O(El,E)—Cauchy sequence in El . Then

sup Hxnﬂl < o, and (xp) is 0(51,¢)vconvergent to a member x of 81,
n

. . =
by Theorem 1({i) = (iv) and (i) = (v)). Let a (Xk Xk) for

n,k €N and A= (a_). Then [af < © and each column of A belongs

nk
; S N (£, ,E) hy, E C b
to c, - Since (x - x n=1 1S oL, —Can v, Sy by
(e}
Proposition 1 of 82, Thus E E-Co . This implies that =" - X)n=1

A

O(ﬁl,E)-converges to 0, and hence (=) O(Bl,E)—converges to x .
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COROLLARY 1. Let E be a subspace of m containing ¢ , If EB'= gl

and E C c then 81 is O(!l,E)—sequentially complete,
Proof. Iet A be an:infinite matrix such that HAH < © and such that

each column of A belongs to c, - First we show that g S_co . Let

A
. €
X = (xk) € c, and € > 0 . Choose kO € N such that ka] < 3Tal for
v X
. [
k= ko' and then n €M such that killankl < EWEW; for n = n -
Thus, for n=zn_,
o
k -1
o] [e) o]
s a x| =z Ja |+ = Ja . x|
ol DK'K SRRt L nk >k
o
k_~1 -
< lxll, T lagl+spp = I2 |
w'k=l k 2lla x=k nk
€ €
<- + x Al =€ .
T P

This implies that 1lim x = 0 and hence c, < c, - Since E E.co '
A A

E S_co . Thus El is O(El,E)—sequentially complete by Theorem 2.
A

PROPOSITION 1. Let E be a subspace of m containing ¢ . Then El is

-0
G(Zl;E)-sequentially complete if and only if El is G(Bl,E )-sequentially

complete and EB = 81 .

Proof. (Necessity). Suppose 81 is G(Zl,E)—sequentially complete.

Then EB = El by Proposition 2 of 82, and hence any O(Zl,E)—Cauchy
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sequence (x")  in 81 is 8lvnorm bounded by Theorem 1 ((i) = (iv)).

-0
Thus (.El,G(lzl,E)) and (Zl,G(_Bl,E 1) have the same Cauchy S$egquences by
Proposition 4 of §2, By 1.4 Theorem 2, (Bl,OCel,E)) and (51’0(51’5”))
have the same convergent sequences. This implies that 51 is
. -0
O(Bl,E J-sequentially complete.

(sufficiency). Suppose 81 is c(&l,ﬁw)-sequentially complete

8

and ET = Bl . Using the same argument as above we can conclude that

=00
(El,G(EI,E)) and (Zl,c(ﬁl,E )) have the same Cauchy sequences and the
same convergent sequences. This implies that 81 is c(&l,E)—sequentially

complete.

DEFINITION 1. Iet E be a subspace of m cohtaining ¢ such that 81

. . -0
is G(Aﬂl,E)-sequentially complete. Further assume that e £ E . Let

=00
ﬁ=E

I

=00
® <{e}> . For each x € G, there exist y € E and o € R such

that x =y + 0e . 0o is called the E-limit of x and we write

E-1lim x o .

Remark. ¢ £ G since ¢ C E .

The following consistency theorem holds for E-limits.

THEOREM 3. ILet E be a subspace of m containing ¢ such that 81 is

c(el,E)—sequentially complete. Further assume that e £ B . Let

G=E @<fe}> . If A is a regular matrix such that G E_cA » then

E-lim x = l%m x for every x € G.
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-0
Proof. (ﬁl,O(ﬂ E )) 4is sequentially complete by Proposition 1.

ll
—00 00 .
Since E <€ G & Cp * E Eﬁco by Theorem 2, This implies that
A
-0
limx =0 for every x € E . Let x € G and E-lim x = 0 . Then

A

~00
there exists y € E such that x = y + 0e, and hence

lim x = lim v + lim 0e = a0 = BE-lim x .
A A A

The following theorem gives another external characterization
of subspaces of m generating sequentially complete weak topologies on
81 . A similar result was proved by J.J. Sember in [20] and we follow

essentially the same argument.

THEOREM 4. Let E be a subspace of m containing ¢ . Then the

following are equivalent;: -

(1) 81 is 0(81,E)«sequentially complete ;

(ii) If F is any separable FK space containing E , then

Proof. ((i) = (ii)). Since (ﬁl,O(Jl,E)) is sequentially complete,

EB = El by Proposition 2 of §2. 1Iet F be a separable FK-space con-

taining E . By Theorem 5 ((i] = (iv)) of [ 6, p. 517] it follows that

EC WF . Now we show that c, E.Wf . et £ €F' , Then
<«

flx) = I }&(f(e ) for every x € E , since E C W_ . This implies
k=1 k - ~ F

. Since EB =4, . It follows that c, CF by

that (fle)), _; € ¢ N

1
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1.4 Theorem 5. Since F 1is an FK space containing C ¢ C W by
. 1.4 Theorem 6.

((ii) = (i)). We first show that condition (ii) implies that

EB = Zl . To this end suppose E C Cp v where A is an infinite matrix.

Since Cn is a separable FK-space condition (ii) implies that e, < Cy -

Since ci = 51, Corollary 1 of Theorem 1 implies that J[[a| < « .

Now the same corollary implies that EB =£_ .

1

To show that (;El,

O‘(.&l,E)) is sequentially complete, let A be
a matrix such that HAH < @ and such that each column of A belongs to

c, - Suppose E C Cp - Then condition (ii) implies that E EWA since

. is a separable FK-space, But W‘A N m= <, Nm by 1.5 Theorem 2.
A

Thus E C . and hence (ZZl,O(LEl,E)) is sequentially complete by
A

Theorem 2.
COROLLARY 1. Iet E be a separable FK-space such that E ¢ m . If

El is O(.,Zl,E)—sequentially complete, then E

il
Q

Proof. It follows from Theorem 4 that E @ <, < W‘E . Since

<, C E € m, the FK-topology on E is finer than the uniform topology on

E. Hence W_ C c so that E=W_=c¢c_ .
E— o E o}

COROLLARY 2. Let A be a matrix such that I|A|| < o and such that each

column of A belongs to co . If co # cO , then co contains an-

unbounded sequence.
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Proof. By 1.5 Theorem 2, W, Nm= s NAm. Since c_Cc
A

follows from Theorem 3 of [5, p. 568] that 81 is O(Zl,co N m)-sequentially
A
complete. Suppose c, Cm. Then £, is OCZl,co )=sequentially complete.

- N 1 A

]
QO

Since c, is a separable FK-space, Corollary 1 implies that c,
A A

This contradiction shows that c, Zm .
a
A. Wilansky asked the following questions in [24, p. 260, 300].

1. 1Is there an FK-space smaller than c, whose B-dual is 81 ?
2. Is c, the only FK-space which is AD and whose B-dual is 81 ?

The following corollaries give a partial answer to 1 and an

affirmative answer to 2.
COROLLARY 3. If E 1is a separable FK-space such that E Ehco and

E™ = 81 , then E = c, -

Proof. £. is 0(£,,E)-sequentially complete by Corollary 1 of Theorem 2.

1 -1’
Thus, by Corollary 1 of Theorem 4, E = c, -

CORQLIARY 4. Let E be an FK-space, If E is AD and EB = 81,

then E = ¢ .
o)

Proof. The condition EB = 51 implies that E Cm , Thus the

FK-topology on E 1is finer than the uniform norm topology on E .
-0 - - . .
Hence ¢ =¢@ D¢ =E (p is the closure of ¢ in E with respect
to the FK-topology). Since E is 4D, it follows from 1,3, Proposition 3

that E is separable. Thus' Corollary 3 implies that E = c

[¢)
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THEOREM 5. ILet E bhe a monotone subspace of m containing ¢ . Then

© the following are equivalent:

(1} 81 is G(ll,E)—sequentially~complete;

(ii} If F 1is any separable FK~space containing E , then

Proof.((i) = (ii)). Since ¢, is G(&l,EL—sequentially~complete, EB =4

1 1

by Proposition 2 of 82, Since E 1is monotone, Theorem 6 of I 6, p. 519] can

be applied (see the remark of p. 519] to give the condition E E~SF . We

can apply the same argument as in the proof of Theorem 4 to show that

c CE,
o —

((ii) = (i)).. It follows from the same argument as in the proof

B

of Theorem 4 that E™ = 81 . Since E is monotone, 51 is .

G(Zi,E)—sequentially complete by Proposition 3 of 82,
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CHAPTER 3

T-ALMOST CONVERGENCE

§1. Introduction.

Lorentz, in [13], introduced the concept of almost convergence.
One of his equivalent forms of a bounded sequence being almost convergent

was

;m(xn+l X . + xn+p)/p exists uniformly in n

It is easy to observe that this formulation is also equivalent to
. 2 . . .
lim(T x + T x + ... + Tpx) /P exists uniformly in n ,
P o o o 'n

where ‘To = (tnk) is the infinite matrix defined by

1 if k = n+l

nk

0 otherwise.

In this chapter we replace the matrix To by a more general
matrix T , and then study the sequence spaces that are generated by T
in the same way that the space of almost convergence segquences is generated
by To . Also, for these sequence spaces, we establish several results

already known for the special case of almost convergence.

We apply some of the basic techniques in [ 4] to obtain these
results. Some of the details are more difficult than those of [ 4]. We

need considerable preparation, for example, to establish Theorem 2 of §5.
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§2. Definitions and basic results.

DEFINITION 1. A continuous linear function L: m >R 1is called an

extended limit if L(x) = l%m X for every x = (xn) €c.

PROPOSITION 1. Extended limits exist.

Proof. Let L: ¢ * R be defined by L(x) = l%m X Since
lL(x)l = ll%m xnl = ”x”°° , L 1is continuous. By the Hahn Banach theorem

L can be extended continuously over m .

REMARK. In general the norm of an extended limit is taken to be one. We
drop this condition from our definition since it does not serve any use-

ful ‘purpose in our work.

DEFINITION 2. An infinite matrix T = (tnk) of non-negative entries is

called 1lifting if

(i) t. =0 for n = k, and
nk
o0
(ii) z tnk =1 for n €m .
k=1

REMARK. Every lifting matrix is regular,

DEFINITION 3. Iet T be a lifting matrix. An extended limit L is

called a T-Banach limit if L(x) = L(Tx) for every x € m .

In the rest we assume that T = (tnk) is a lifting matrix,

The existence of T-Banach limits will be shown later, We denote by

AT the set of all T-Banach limits and also use the following notations:
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{x - x| x € m};

(@}
]

Tac = {x €m I L(x} = L.*(x) for L,L* € AT};

Tac_ = {x € Tac | L(x) =0 for L ¢ AT} .

It is easy to verify that U Tac and Taco are linear sub-

T ’
spaces of m . For each x € Tac, L(x) assumes a common value for every
T-Banach limit L . We denote this common value by T-Lim x and say

that x 1is T-almost convergent to T-Lim %, Also note that T-Lim x

is a linear functional on Tac.

PROPOSITION 2. Let T be a lifting matrix. Recall that

Up = {x - ™ | x € m}.‘ Then
(i) U, = {*x ~Tx.] x €m, n €N}, and

(ii) s is a linear subspace of Tac with o SAUT .

Proof. (i) For x € m and n €N,

x - T'x

(I - THx

(I-T((I+T+ ... +T L)x by 1.5, Theorem 3(iii).
14

Since (I + T + ... + Tn-l)x €m, x - ™x € UT .

(ii) For x €m and L € AT’ L(x - Tx) = L(x) - L(Tx) = 0, and

hence x - Tx € Tac_ . Thus U_C Tac_ . Since t,, =0 for iz 3j,
- o T — o ij

1,0,0,..),...,(I ~me"

(I - mel = (1,0,0,...), (I - T)e? = (-t

(-t -t 1,0,0,...),... . Hence ¢ S_UT .

R ™
In’ 2n’ " "n-1,n’
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PROPOSITION 3. Let T be a lifting matrix. Then the following

statements are true:
(1) T-Lim x = lim x for every x = (x ) € c ;

n “n n
(ii) ¢ € Tac and c¢_ C Tac_;

7 °7

o

(iii) Tac = Tac ® < {e} > ;
(iv) Tac and Taco are closed linear subspaces of m .
Proof. (i) follows directly from the definitions.

(ii) ¢ E_Tac and co E‘Taco follow from the definitions. Now

we show that Taco £ c. By Proposition 2 (ii),

[oo]

Ll -m
=1

is not uniformly

= - C 1
UT {(z-7)x I x € m} < Taco . Since kl

k

convergent in n, UT g c (see [14, p. 10]). Hence Tac £ c. Thus

c Tac nd c¢ T .
# a o # ac

(iii) For each x € Tac, x = (x - (T - Lim xJe] + (T - Lim x)e,
Since (x - (T - Lim x)e) € Tac_, X € Tac_ ® < {e} > and hence
Tac E‘Taco~@ < {e} > . since ¢ € Tac (by (i)) and Tac_ ¢ Tac,
Tac @ < {e} > < Tac.
(iv) Suppose (x") is a sequence in Tac such that (x)  is
n, .«
convergent to x in (m, || ”m). Then, for every L € AT’ (L(x ))n_l

. : . . n, . o}
is convergent to L(x) in R . Since <" € Tac, L(x') = T = Lim x
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for n € N. Hence L(x) = l%m(T - Lim x") for every L € A, . Thus
x € Tac and T - Lim x = l%m(m - Lim x7). Therefore, Tac is closed in

(m, |l Hw). The same argument can be used for Taco .

PROPOSITION 4. Let L be a continuous linear functional on

(m, || Hw), and let T be a lifting matrix. Then L is a T-Banach

limit if and only if (i) L(e) =1, and (ii) L(U;) = {o}.

Proof. (Necessity). Suppose L is a T-Banach limit. Then (i) follows
from the definition of T-Banach limit. Let x € m. Then

L(x - Tx) = L{x) -~ L(Tx) = 0 and hence (ii) holds.

(sufficiency).. Suppose (i) and (ii) hold for a continuous

linear functional L on (m,] ”m). Then L(gp) = {0} since 0 E-UT by

Proposition 2(ii). Hence L(cO) =Ll ) = {o}. since ©L(e) = 1, it
follows that L(x) = l%m X for x € c, Thus L is an extended limit.

Also condition (ii) implies that L(x) = L(Tx) for every x € m.

Hence L 1is a T-Banach limit.
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§3. A characterization of T-almost convergent seguences.

Modifying the technique used in [ 4] to establish a
characterization of almost convergent sequences, we obtain a similar
characterization for T-almost convergent sequences (Theorem 1). First

we state the following lemma, which can be found in [4, p. 26],

LEMMA 1. For every x €m C e there exists an extended limit L such

that L(x) # O.

THEOREM 1. Let A = (an ) be a regular matrix such that

>

o]
lim Z la
n

l =0 (assume a =0 for every n), and let x € m.
k=1 no

nk ~ °n,k-1

Let T be a lifting matrix. Then x € Tac and T-Lim x = a if and only

o]
if lim I a (Tkx) = o uniformly in n .
P - PK n ;
. K
Proof. First we show that x € Tac_ if and only if lim Z a . (Tx)_ =0
o P k=1 pk n

uniformly in n . Suppose x = (xn) € Taco . Let (np) be any sequence

of positive integers. Define the linear map VY:m > m by

[wy)] = I a (T . Then
3 k=1 pk np
® X ® X
vyl |l =12 a (ry)_ | = ¢ Ja_llryl,
P k=1 PK Dy k=1 FK

IA

”y””'kzllapk! (since [Tl = 1) = lyll,lall .

Hence Y is continuous and, moreover,
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[o0] [o0]
(1) lim[y(e)] = 1im & a k('L[‘ke). =1lim . L a K
(since Te =e) =1 (since A is regular).
let y = (yh) € m. Then
> K ot K > K+l
, . +
[y -] | =] Z a k[T (y - Ty)]n | =1]2 a KTy - zZa L (T 7Y)
P k=1 P | P k=1 F p k=17P
(since each series is absolutely convergent) =
[o0] k [o0]
l I (a, - a ) (Ty) I = lyll z !a - a >+ 0 as p > o,
k=1 pk p,k-1 np © k=1 pk p,k-1

This implies that Y(y - Ty) € c, and hence

(2) w(UT) E_co .

If L is an extended limit, we have (i) Loy(e) = 1, (by (i)),
and (ii) Low(UT) = {0} (by (2)), where o denotes the composition of

two functions. Thus Proposition 4 of §2 implies that

(3) Loy is a T-Banach limit,
It follows that ©L(Y(x)) = 0, since x € Tac_ . Since L 1is an

arbitrary extended limit, by Lemma 1, ¥(x) € c, so that

[o0]
lim Z a [Tkx] = 0. Since (n ) is an arbitrary sequence of
. pk n p
k=1 P
(>3

positive integers, 1lim I a ('L[‘kx)ﬁ_n = Q uniformly in n .

k=1 P¥



39.

o0
Conversely,suppose lim I a (Ikx) = 0 uniformly in n .
P -1 pk n
o0 k o0
Since I Iapk|HT xll, = l=ll, T lapkl (since |7l = 1) = [Ixll_llall <=,
k=1 k=1
o0
(4) akakx is a convergent series in (m, | “m) for each p .
k=1

Hence the hypothesis is equivalent to

(oo

(5) lim( Z a kax) =0 in (m,” Hm)"
P k=1P

Thus, for each T-Banach limit L ,

[o0] [ee]
IL(x)l = |lim Z a kL(x)l (since 1lim L a_, = 1}
P k=1 F P k=1 PX
t K
= |[lim I a L(Tkx)l (since L(T x) = L(x) for every k)
P =1 PX
= |1lim L( Z a_ T x)| (by (4) and since L is continuous)
P k=1 PX

0 (by (5) and since L is continuous).

This implies that x € Taco .

Now suppose x € Tac and T-Lim X = Q. By Proposition 3 (iii)

of §2, there exists y € Tac such that x = y + 0e. Since

0.

. k
lim I a_, (T y)n =0 uniformly in n , l%m

-k
kel pk a.Pk-(.T X)._n

z

k=1

_ N -
= 1lim] T apk(T vyl + I a

n @] = o uniformly in n .
P k=1 k=1

pk
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[oe]
Conversely,suppose lim I a (Tkx) = a uniformly in n . Then
P Pk n
k=1
lim Z a T (x -ae) = lim[ Z a_ (T x) Za.da]l =0 uniformly in n
Py PK noP o PR R I
and hence x - O0e € Taco . This implies that x € Tac and T-Lim x = O.

REMARK. (3) assures the existence of T-Banach limits.

COROLLARY 1. Iet T be a lifting matrix. Then x € Tac and T-Lim x = 0Q

if and only if l%m %{Tx + ...+ Tpx)n = o uniformly in n .

Proof. Choocse A = (a_,) such that a =-l for 1 =k =n, and
nk nk n

(e o]

a. =0 for k>n . Then A is regular and lim I |a, - a
n no_ nk n, k-1

="1im §-= 0 . Now apply Theorem 1.

’ -0
COROLIARY 2. Let T be a lifting matrix. Then Taco = UT .

P
+ ...
Proof. Let x € Taco . Then x - Ix o *Tx
(x - Tx) + 'é‘ + (x = ™) € U (by Proposition 2(i) of §2) and
T + ... + Tpx Tx + ...+ Tpx
IIx - (x - 1, = | l,>0 as p>=
p p
00 =00 .
by Corollary 1. Hence x € UT so that Taco < UT . Since Taco
. -0
is closed in m and U_ <€ Tac , U € Tac .
T — o] T — o
THEOREM 2. et A = (ank) be a regular matrix, and let x € m. Let
T be a lifting matrix. If 1lim Z a  (I"x) = o uniformly in n ,
k=1 Pk n ’

then x € Tac and T-Lim x = 0o ,



Proof. The proof is the same as the proof of the sufficiency of

Theorem 1.

41,
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84, some examples.

EXAMPLE 1. First we consider the case when T = Ctnk) = To' i,e.,

1 if k = n+l

t
nk
0 otherwise,
It is clear that, for this matrix, Tac = ac (the space of almost

convergent sequences). Moreover, we can easily verify that UT = bs

——0
bs

(the space of bounded series) and hence = ac .

Now we are in a position to give an easy proof of a principal

result in [13, Theorem 7, p. 176].

THEOREM 1. let A = (ank) be a regular matrix. Then ac E_cA if

0.
and only if lﬁm kEl!ank - an,k—l| = 0 (assume an,o = 0). Moreover,

when A has this property, To - Lim x = l%p x for every x € ac.

Proof. (Necessity). Suppose ac S_cA. Then, for every

x €m, (x - Tox) € Cp and hence A[(I - To)x] € ¢c. By 1.5, Theorem 3(iii),

[a(1 - To)]x € c. Hence, by Schur's Lemma (1.4, Theorem 3),

fo o] fo o] fo o]

lim £ I[A(I ~T)] l = I llim[A(I -T)] |, i.e., lim Z Ia - a
nooo o "nk k=1 n o "nk n- o nk n, k-1

fo o]
= I lllg.lm(_ank - an,k—l)l = 0 since A is regular.

k=1

fo o]
(sufficiency) suppose lﬁm kgllank -y -l = 0. Let x € ac_ -
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o)

1™ 8

. L. k., _ '
Then lim kElankxk+l = lﬁm k_lank(Toxll = Q by Theorem 1 of §3. But

co co

l%m z (an - a k—l)xk = Q, since l%m z [ank - = 0. Hence

k

a
k=1 ’ k=1 n k-1

o)

. - _ c s . c .
l%m kElankxk 0 so that x € cOA . This implies that ac —-CA (since

e € cA) and that To—Lim X = lim x for every x € ac.
A

COROLLARY 1. et A = (ank) be a regular matrix. Then

[oo]
{x ¢ mllém k§1 apkxk+n exists uniformly in n} = ac if and only if
[oo]
lim I |a_, - a | =o.
k=l pk plk—l

Proof. To prove the necessity, let =x € ac. Then (0,xl,x2,...) € ac
'co i -
and hence 1lim Z a xk exists so that x € CA. Thus, by Theorem 1,

o)

lim I |a

o ok ap,k+l| = 0. The sufficiency follows from Theorem 1 of §3.

EXAMPLE 2. We consider the case when Tl = (tnk) is given by
1 if k = n+2

nk
0 if k # n+2,

Then, by Corollary 1 of Theorem 1, of §3, x € 'TlaCo if and only if

lim S(T.x + ... + T5%) = 0 uniformly in n, i.e.,
p P 1 1 'n

1, . . n
im = = . Thus ((-1)") £ T.ac .
lém p(xn+2 +X gt e xn+2p) 0 uniformly in n ) £ 13C4

Note that (Fl)n € ac -
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EXAMPLE 3. lLet J, = {1, 2, 4, 7, 11, ... }
J, = {3, 5,8, 12, ... }
3, = {6, 9, 13, ... }
T4 = {10, 14, ... }
g = {15, 20, ...}
_ n+l) n(n+l) n(n+l1)
Jh = { > R > + n, 5 + n + n+l, . .}

Note that the J s are patrwise disjoint,
Let T = (tnk) be defined by
1 if n,k are two consecutive numbers of one of Jis

nk
0 otherwise.
Then it is easy to check that each ‘row of T contains only one non-zero
entry which is equal to 1 and lies above the main diagonal. Let us

denote Ji; i=1,2,... by {ji,j;,...}. If n €IN, then there exist

[s0]
. . i
i,k €IN such that n=3j . For x € Tac, (Tx) = It ,x, =x4 ;
k o n =1 nese 341
[s0]
2 . . .

(T x)n = I tnz(TX)B = (Tx).i =x,1 ; ...7 (Tpx)n = x,1 . Hence

2=1 kel k2 k+p

x € Taco if and only if 1lim l-»(x.i +x,i + ... +x.,1i ) =0 uniformly
Ik+1 k2 Jx+p

in i and k. Ilet x = (xk) be defined by %, = 1, X, = X3 = -1,

X, =x%x.=Xx. =1, Xy = Xg = Xg = X4 = -1, ... . Then x € Tac but
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§5. Duality between 31 and Tac

For every lifting matrix T , Taco and 81 form a dual pair
of sequence spaces with interesting properties. In this section we study

some of these properties. We start with the following proposition,

PROPOSITION 1. lLet T = (tnk) be a lifting matrix and y € @l . Then

(1) yT ¢ Zl and (_yT)k = ¥yt t Yoty toees yk—ltkel,k

(thus (y(I -~ T).)k =y ), and

PR ST CL SRR TR VI L

(ii) “!y!T”l = “y“l , Wwhere Iyl = ('lykl)‘

[o o] o o] [o o]
Proof. (i) I |(yD, | = | T y.t.,|
k=1 o
(o] @x
= I z Iy.lt.
k=1 j=1 * 1K
o o] (o] o o]
= Zly.] zt., = Z]y.] <~ since y €2 .
i=l k=1 YR a1 7R 1
Hence yT € El .
(o]
Also (.y-Tlk = iElyi toe = Yot * Yobop + ovn # yk—ltk—l,k
since t.,. =0 for i=2k .
ik
(o] o o] (o] co [s o}
iy Myl = 212 Jy e, I = 2y ey = Tyl = Iyl

NIRAEN
k=1 j=1 * =1 Lxa1 R
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THEOREM 1. Let T = (tnk) be a lifting matrix and suppose (x") is a

sequence in El . Then the following are equivalent:

(1) M) s o‘(_Zl,Taco) -convergent to x in 81 r

. Ly . .
(ii) (x) is O‘(,El,UTeac-o) -convergent to x in El ;

(iii) sup[lanl < » and x is a sequence such that lim|| (x"-x) (1-T) ”l = 0.
n n

Proof. ((i) = (ii)) This is obvious since UT©co < Taco.

((ii) = (1)) Assume (ii). Since cB = 4., (U @c )B = £_, thus
o 1 T o 1

Sgpllxn”l < ® by 2.3, Theorem 1 ((i) = (iv)). Now by 2.2, Proposition 4,

n ——— 00
. _ . = Tac’ :
(x) is G(El,Taco) cqnvergent to x (since UT*Bco ac_ . by

Corollary 2 of Theorem 1 of §3).

((ii) = (iii)) Assume (ii). Again, since ci = El .

B _ n - i1 o (4
(UT€9CO) = {., thus sgp”x ”l < by 2.3, Theorem 1 ((ii) (iv)).

ll

. n .
Moreover, since (x°) is G(Aﬂl,UT)-convergent to x ,

o0}

]'1'jimk§l(xlr<l - xk)[(I—T)y]k =0 for every y €m. Since X - x € zl ,

lz-T|| < © , and y €m, by 1.5, Theorem 3 (i),
[os] [os]
n n
- - = - - > >
kil[(x x) (I-T) ]kyk kEl()ﬁc ’ﬁ()[(-l T)y]k 0O as n > for every

y € m. Thus || (x"-x) (I-T) ”l + 0 as n > by 1.4, Theorem 3.

((£ii) = (ii)) Assume (iii). Since linfG"-xy(1-mf|; = q,

1gm[ (" ~x) ('J:--T)]k =0 for every k €IN. For k €N,
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n _ n_ - n_» - - n _
[0 (- ] = Ggm) = Gepmxp )by = o = (g g% ) &

by Propositionl1l(i). Thus lim[(xn-x)(I-T)] = lim(x'-x.) = 0 and
n 1 n 171
n n n
. _ _ - 1s oy - =0
lém[x x) (I T)]2 lrllm[(x2 x2) (xl xl)tlzj ’

and hence l%m(xg—xz) = 0. By induction, we can easily show that

0 for every k . Now, for each p €IN,

. n
lﬁm(xk—xk)
P
z

P
x| = 1m 2 |G| = supllx” < = .
k=1

k=1

Hence x € Zl and thus (x") is U(Zl,@)-convergent to x . By 2.2,

‘o n . .
Proposition 4, (x) is U(&l,co)-convergent to x . Moreover, since

i%m”(xn-x)(I-T)Hl =0, l%m kEl[(xn-x)(I-T)]kyk =0 for every y € m.
By 1.5, Theorem 3(i),
0. o)
I (-x ) [(1-my] = I [x"-x)(z-T) 1y, -
el %% kKT o1 kYk
0o
Hence l%m kEl(x;-xk)[(I—T)y]k = 0 for every y € m. Thus (") is

U(Zl,UT)-convergent to x .

REMARK. Condition (iii) of Theorem 2 identifies U(8l,Taco) with a
two norm topology. For details concerning this type of topology we refer

the reader to [1].

COROLLARY 1. Let T be a lifting matrix. Then (61,0(81,Tacol) and

(ﬁl,c(ﬁl,UTﬁco) are sequentially complete,
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Proof. Suppose (x")  is O(ﬁl,Taco)—Cauchy. Then (x") is

'0(8l,co)-Cauchy and hence there exists x € 81 such that (xn) is

0(8l,co)—convergent to x since, by 2.2, Proposition 3, (81,0(8l,c0)) is
sequentially complete. Without loss of generality we can assume that

[v0]
x = 0. Also, by Theorem 1(iii), (xn(I—T))n

. : (2 ,lle
=, 1is Cauchy in ’l'” ”l) and

hence there exists vy € 81 such that l%m”xn(I—T)qul = 0. Thus, for

n )

- X tee1 k) Y

. n oa n_.n _
k €N, Yy = lﬁm[x (1 T)]k = lﬁm(xk xltlk ..
Proposition 1{i)) = 0 since (¥ is O(Zl,co)—convergent to O .

Moreover, since Taci = 81, sgp”xnnl < © by 2.3, Theorem 1((i) = (iv)).

By Theorem 1, (x")  is 0(81,Taco)-convergent to 0 .

The same argument can be used for (81;0(81,UT@*CO)).

COROLLARY 2. Iet T be a lifting matrix. If A is a regular matrix
such that Tac C Cpr then T-Lim x = lim x for every x € Tac.
- A

Proof. Apply 2.3, Theorem 3, letting E = Taco and G = Tac.

COROLLARY 3. Let T be a lifting matrix. Then (Taco,” Hm) is not

separable.

Proof. By Proposition 3 of §2, <, c Taco. Now apply 2.3, Theorem 4.
#

COROLLARY 4. Iet T be a lifting matrix. Then, for a subset C of

81, the following are equivalent:
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(1) C is G(ﬁl,Taco)—relatively compact;
(ii) ¢ is G(Zl,UT(Bc )-relatively compact.
o

(1ii)} cC is Zlenorm bounded and C(I-T) is relatively compact in

@,

2 ), where C(I-T) = {x(I-T)|x € c}.

I
Proof. ((i) « (ii)) A subset of a K-space is relatively compact if and
only if it is relatively sequentially compact, by 1.4, Theorem 1. Hence

it follows from Theorem 1 that (i) and (ii) are equivalent,

((i) =» (iii)) Suppose C 1is O(ﬁl,Tacolﬂrelatively compact.
Then C is G(&l,Taco)—bounded. Since Taci = 81, it follows from 2.3,
Theorem 1 ((i) = (ii)) that C is Zlenorm bounded. Suppose (x") is a

n,
. . _ i n
sequence in C . Then there exists a subsequence (x ~) of (x) such

n,
that (x %) is G(Zl,Taco)—convergent to a member x in 81. By
n, n, o
Theorem 1((i) = (iii)), 1lim/(x lsx)(I—T)”l = 0. Thus (x ~(I-T)),_, is
i =

Zl—norm convergent to x(I-T), and hence C(I-T) 1is relatively compact

in (2l ).

((iii) = (i)) Assume condition (iii) and suppose (x) is a

n,
sequence in C . Then there exists a subsequence (x 1) of (¥ such
n, n,
i ) i o .
that (x “(I~-T)), is £.-norm convergent. Hence (x ~(I-T)), is
i=1 1 i=1
n,
Cauchy in (Zl,H Hl). Since (x 1) is Zl—norm bounded, it follows from
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n

Theorem 1((iii) = (i)) that (x *) is O(JI,Taco)—Cauchy1 Since le is

nA
0(£l,Taco)-sequentially complete by Corollary 1, (x ') is

O(Zl,Taco)-convergent.

COROLLARY 5. et T be a lifting matrix, and suppose C 1is a
O(Zl,Taco)—relatively compact subset of Zl . Then the convex hull of

A

C of C is also O(Zl,Taco)-relatively compact,

Proof. Suppose C is a O(ﬁl,Taco)«relatively compact subset of Zl .
Then C is Zl—norm bounded and C(I-T) is relatively compact in

(51,“ ”l),by Corollary 4 ((i) = (iii)). Hence the convex hull ¢ of cC
is Zl-norm bounded and C(I-T) is relatively compact in (Zl,H “l)’

. since C(I-T) 4is the convex hull of C(I~T). Thus ¢ is O(&l,Taco)*

relatively compact/by Corollary 4((iii) = (i)).

REMARK. Corollary 5 implies that T(Taco,Zl) is the topology of
uniform convergence on OKJI,Taco)—compact sets.
We use the following lemmas to establish some topological

properties of OTaco,T(Taco,Zl)).

LEMMA 1. et T be a lifting matrix. Suppose a sequence (xn) in Zl

is O(ll,Taco)-convergent toc x . Then (anl) is O(Zl,Taco)—convergent
to lx!, where [xnl = (Jx;!):=l and lx[ = ([xkl).

Proof. let (x') be a sequence in Zl such that (x) is

O(Zl,Taco)—convergent to x. Then, by Theorem 1((i) = (iii)) ,
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. . n n
1 - - =
(1) lﬁmH(x x) (I T)I[l 0 and sHpHx ”1 < o
Case 1. x = 0. Then
(1) l%m”xn(I—T)Hl = 0 and sgp”xnul < o,
let M = {nlﬂlxnl(I—T)”l > Hxn(I-T)”l}. If M is finite, then there

exists ng €N such that H[xnl(I-T)Hl = Hxn(IqT)Hl for every n = n_ .

. n n n
Thus lﬁmnlx I(I-T)Hl =0 by (1)'. Aalso sgp”]x ‘“l = sup|lx “l <o by (1)'.
Hence (ixn|) is O(ﬁl,Taco)—convergent to 0 by Theorem 1((iii) = (i)).

Suppose M is infinite. Then the members of M form a strictly increasing

sequence of positive integers. Let us denote this by (nk):=l . Let,
for k €N,
n
k n .
€, = = I(I—T)“l - = k(I-T)l[l, i.e.,
- "k 1k "k " x "k
ek = iil[llxi l—lxl |tli—... 91xiellti-l,i‘?|x1‘=xl tl\ X i—l,ilJ
(see Proposition 1(i)).
First notice that
© n n n
k k k
(2) E (lxi |+!xl ltli+...+|xi_l{ 1011
i=1
<] n o« n n
- k k k
= .Z lxi | + 'Z (|xl |t1i+...+|xi_l[ti_l'i)
i=1 i=1

n n
k ; .
llx ”l + ”lx k|T”l (by Proposition 1(i))

n
2|lx k”l (by Proposition 1(iil.
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Similarly,
[s o] n n
(3) I (|x?k|-|x k | £ —[x,k |t ) =0
i=1 i 1 1li -1 i-1,i
n n n
. k k k ,
et Pk = {lllxi | > le |tli + ... + lxi'—‘l ti—l,i}' Then, for i € Pk '
nk nk nk nk nk nk
I D TE T TP I T b N TR LA L IO
n n
k k k
o LT N R ) L
Tet Qk —IN\Pk Then
_ Kk X Ny e Py P
L T e L £ ti—l,in Y % 1%501,1 )]
1€Qk
n n n n
k k k
e LDl ey %2y ti-l,il BT i—lti-l,il]
1€Pk
n n n
X k K
= .Z (le ltll+ .+Ixi,1| iflli‘[xi ‘) +
1€Qk
n n n n n n
x "k k k, 1 "k k
'Z [Ixi -%; tli—"'_xi—lti—l,il_(lxi |—|x1 Itli—...-lxi_llti_l’i)](by(4))
1€Pk
o n n n n n n
k k k k "k k
L R L] LN P e e TR T L
i=1 lEPk
[o] n n n
k k :
=0 + iEIIX —Xl tli_..'_xi-lti?'l,,il (by (3))

n
[P k(.I-T)H1 (by Proposition 1(i)) = 0 as k > by (1)'.
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nk nk
i.e., ”]x I(I-T)Hl - |z (_I-T)Hl + 0 as k »+ «, Also, for n ¥ M= {nk}l
k €N}, Hlxnl(IéT)Hl < Hxn(I-T)“l. Hence it follows from (1)' that
. ny, n n n )
lﬁm“!x l(I—T)Hl = 0. Also sgp”|x ‘”l = sgp“x ”l <o, Thus (|x l) is
O(&l,Taco)—convergent to 0 by Theorem 1l((iii) = (i)).

Case 2. ¥ 1is any member in 51 . TLet €& > 0. Since x € 81, there

exists m €N such that

o

5y I lx | < e/i6.
k=m xk

. n . . . .
Since (x') is pointwise convergent to Xx , there exists ng € N such that

n-1
(6) % no_ < >
lxk xk| €/8 for n = ng
k=1
s Pex)” . is o(2,,Tac ) £ to 0, (|P-x” . is
ince (x'-x) _, 1is ,+Tac ) -convergen o 0, x =x{)__,
O(Zl,Taco)-convergent to 0 , and hence l%m”|xn—xl(I—T)”l =0 by

Theorem 1((i) = (iii)). Also, by (1), l%m”(xn-x)(I-T)Hl =0 ., Thus

there exists nl(> no) such that:

(7) || x™-x)(T-T) ”1 <e/8 for n

IV
=]

(8) ”Ixn—x|(I-T)Hl <eg/8 for nZn



H(lxnl—lx[)(I—T)Hl =

P
N ™ 8
._l

(by Proposition

m-1
= T (<= )=~ x| x, )
EALEAEPNEREAEENIE
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1..n n n
I (kal_I}ﬁ(I )‘(|xll_|xll )tlk-' e "(ka_ll-l)ﬁ(qll)tk-l,k

1(1))

kT Ikl l"kll k-1,k'*

Z l([xkl—lxkl) (lx I—lel)tlk— ..!(|x$_1|-[xh_l|)tm_l K
k=m !
n
R e E Y DL
= Z (|xk xk|+|x ltlk+"'+lx;-l-xkvlltk-l,k)

+ 2 | gl =T D=l == ey -

n n
+ T (] xll-lxl[)tlk+...+(,|xm_l[
k=m

IA

k=1

n n
+ I (|x)-x ltlk+...+ X1 %01

..—(Ixi_ll‘lxkﬁll)tk-l,k

)t

-| xm—.lI m-1,k

m-1
L ( ﬁn"%l +|xr11'""1 eyt oot l’ﬁqn—l‘xk-ll teo1,x)

ltm—l,k)

€y B S DLW



- Z lxk xkl+f T (lx A R LR

n
+ kEm([x 1[tlk+...+ X 17X tm—l,k)]

+ LAl -lx D= l=1x e~ [=Ix Dty x
k=m

n n

= E ka i O T PP L S
2 n n n
+ kiml<|xkl—lxkl)—(!xml—lxml)tmk—...—<|xk_1l-lxk_lllt

(by Proposition 1(i))

m-1 @
=2 killxk-xkl ¥ kiml[xkl‘Ixmltmk“"*ka91ltk—1,l

k=m

n
“lxk-lltk-l,k

-2 'g‘lﬁﬁw AR

+ Z [xk[ + Z (Ix [t +. +lxk—1|tk-1 K
k=m k=m !

-1

=2 I lnen] s E kal—lx R L

l k-1,k

(s}

+ kimlxkl + H(o,o,...,o,lxm|,|xm+l|,...

Tl

k-l,k|

+ L (lxk|+|xm[tmk+'"+'xk—1ltk-1,k) (by Proposition 1(ii))

)TIIl (by Proposition 1(i))

55.
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=l > n n n >
= 2 killxk-xkl + kimlkal-lxm|tmk----flxk_lltk_l,k +2 kimlxkl
(by Proposition 1(ii))
w . .
<+ kim'lxil“lletmk“"-lxk—lltk—l,k +g by (6) and (5)

since n2n, > n

z €
e, @ Nd«=lxha-nil, < z [[G]-lqle —emlx e g ]+ 5
k=m

for n=n._.

Now

o
H|xn-x|(1—T1H1 kzllIx;‘xkl‘lxg‘xlltlk""“lngl‘xk—litkﬁl,k

(by Propositon 1(i))

v

o]

n n n
L e [ =l [egmemlg mx ity g i
k=m

v

[0}
n n n
kémlka_xk!‘lxm“xm[tmk""“ka-l“xk—lltk-l,k

n
- t
xm--l xm—ll m-1,k

)

[0}
z (lxg_xlltlk+'°'+
k=m

v

z 1o =g eI g I8

m=1 n @ :
X lx -X (since L t, . <1 for i €IN) .
k 'k . ik '

k=1 k#=n



Let oal(n,k) = I[xi—xk|~|x;-xm!tmk—...-|x;_l—xk_l tk—l,k .
n k=l n
Then a(n,k) = llxkexk[ - jfm Ixj_x‘ltjkl

k-1 k=1
> max{([x;-xkl - .Z [x?-letjk)' (z Ix?—letjk)_[x;-xk[}
=m =m

J j

k-1
Hence of(n,k) = max{(lx;l-lxkl - I (Ix?|+[x.|)t.k),
jem 33073

j=m

k-1
2 aGl-layheg = [G1-Ix [}

0 k-1 k-1
i.e., a(n,k) émax{(.]ﬁl - § |xj|tjk) - (,kal + § Iletjk) ,
j=m j=m
. o k-1 k-1
- (!xkl-‘E Iletjk)-(lxkl + u:lxj[tjk)}.
j=m j=m
0 k-1 k-1
Hence of(n,k) = lekl - 'E lxj[tjk] - (lxkl + -? ]letjk).
j=m j=m
Thus ”Ixn-xl(I—T)Hl > kEmllx;l“‘x;'tmk_°"Q!xiﬂlltknl,k

0 m-1
- T (xf+lx Itmk+"'+lxk—1!tk—1 K~ F [x;“xkl
k=m m ' k=1

n

@ @ m-1
= T gl-lelepmemlg el -2 8 5l = T lag-x |
k=m d k=1

k=m

e}

(since I (| |+1x |t oo |t ) = I | |
NEFRES SRR W 5SS L SIS U

57.
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+ L (_[xmltnﬂ(+...+[:ﬁ(_\l[tkﬁllk)_ =z lxk[+l| (Q,Q, ...
k=m k=m

Q.
l,...lT“l =2 I lxkl by Proposition 1)

..,0 |x I l
’ ’ m ’ k=m

X
m+l

[oe]
n n n € €
> L |kal%lxmltmk_"'-!xk-lltk-l,k -5 §-(by (5) and (6)«

k=m

since n>=n_, >n ).

since n 2 n,, H|xn-xl(I-T)H1 < £€/8 by (8) and hence

o0
n n n ’ € £
kzmllxkl_lxmltmk-"°-|xk—lltk—l,k < 7zt §.<

INTI)

n e €
Thus || (|x |—|x|)(I-T)H1 <y+3=¢€ for n2xn, by (9).

Hence I%m”(lxnl-lxl)(I-T)Hl = 0. Also sgp“fxnlﬂl = sHp“xnul < o py (1).

Thus (lxnl) is O(Zl,Taco)-convergent to |x| by Theorem 1((iii) = (i)).

LEMMA 2. Iet T be a lifting matrix. If a subset C of Zl is

O(Zl,Taco)—relatively compact, then CUIC' is O(Zl,Taco)—relatively

compact, where |c|= {([xn|)[(xn) € c}.

Proof. Suppose a subset C of Zl is O(JI,Taco)vrelatively compact .

n, .
Let (x) be a sequence in cU|c|. Then there exists a subsequence

n,_ . n n
(x k) of (x7) such that (x k) is in C, or (x k)

k=1 is in [C[.



n
If (x ¥). is in C, then there exists a subsequence (x 7). ef (x k)

n
k:
such that (x l)i=l is G(Zl,Taco)nconvergent since C 1is
Tk
G(Zl,Taco)-relatively compact. If (x ) is in |[c|, then there exists

a sequence (yk) in C such that lykl = X k for each k . Since C is
K k

G(El,Taco)-relatively compact, there exists a subsequence (y )i—l of (y)

k.,
such that (y %) is O(El,Taco)—convergent. By Lemma 1,
K. Pk,
(Iy ll)m = (x l)m is o(£,,Tac )-convergent. Hence !CIUC is
i=1 i=1 b o

G(El,Taco)-relatively compact.

LEMMA 3. Let T be a lifting matrix. If a subset of C of 81 is

O(Zl,Taco)—relatively compact, then- P(C) = {anleC and n €N} is

o] (.El ,Taco) -relatively compact.

Proof. Suppose a subset C of 81 is G(El,Taco)-relatively compact.
Then _CUICI is G(Zl,Taco)‘relatively compact by Lemma 2. Thus
(CUICI)(I—T) is relatively compact in (ﬁl,H "l) by Corollary 4 ((i)= (iii))

of Theorem 1. By 1.4, Theorem 4,

lim  su [x(I-T) - P (x(_I-T),)]]l =0,
B xecu]c] n

Let € > 0. Then there exists n € N such that

(1) su lx(I-T) - P (k(I—TL)”l < €/2 for n = n_ -
xécU] | n
We claim that sup [[x(I-T) -~ P (x(I-T)J|l, <€ for nZ=Zn_ . ILet m*4IN,
x<p (C) n 1 °

n = n_ and x £ C
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Case 1. m = n.

le_x) (1-0 ~ Pn[(mel(I—T)]lh = k—§+1lxltlk+...+xmtmk[ (by Proposition 1(i))

IA

z ([xlltlk+...+[xm[tmk)

k=n+1
S T (x|t 4. ¥]x |t ) (since m = n).
k=n+1 T+ ¥ n' nk
Now | T Ux |-{x |t -...-] It )|
jom1 KLk k-1' k-1, k
i |k=i+l\Xk‘ ) k=i+l(lXI‘tlk+...+lxk‘lltk?llk)‘
[ee] o0 © )
- |k=i+1| | - k=i+1(|x1|tlk+'"+!xnltnk) = k=§+l([xn+lltn+l,k+'"+lxk—lltk—l,k)I
= lk=§+llxkl _k=§+l('[xl|tlk+’"+lxnltnk)' -l (O,O,...,O,Ixm_ll,.,,)T||1|

(by Proposition 1(i))

o0}

z (Jx
k=n+1

i

1[t1k+..,+lxnltnk) (by Proposition 1(ii)).

Hence

lkpmx)(I-T) - Pn[(pmx)(I—T)]Hl < |k=i+ilxk|‘lxllt1k’“"*ka—1|tk*1,k)l

o0}

k=r21+1l‘xkhlxl!tlk—""glxk—lltkgl,kl

1A

= H‘xl(IfT) - Pn(ix‘(I—T))Hl (by Proposition 1(i))

< e/2 by Q).
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Case 2. m > n .

e x) (z-T) — 2 [P x)(x=T) ]l
m n m 1

m [e 0]
= I |[exam]l |+ = [[exa-onl]
k=n+l 1 k k=m+1 m k
m [a0]
= IoImemtpeeew gt g T It
k=n+l k=m+1
(by Proposition 1(ii))
[e 0] [e 0]
< T |x -xt, -...- t '+ ¢ (= Jt  +...4|x [t ).
N Xk *151x *%-1"k-1,k femsl 11k m' mk
Now, as in Case 1, we can show that

[a0] [s 0]

z (lxlltlk+...+[gm|tmk) =| =z (kal-lxl]tlk—...qlxk_l]tkql k)l.
k=m+1 k=m+1 "
Thus
le_x) (z-m) - 2 [(2 x) (x-m Il

[a0] o
S I |x -x t, -...-x% t [ + ! z (l ]alx It -] x [t )l
ot X" *1 1k *-1"%-1,x - AR RS S T k-1'"k-1,k

oo [>+8
S T |x -t me..ex, ot I+ = = |-]= |t ~.=lx ]t

kent1 X ® N1k ™kl k-1 Lk Y LS R TN 1! Tkl k

= || x(1-T) - Pn(x(I-T))”l +,HIXI(I—T)er(Jx|(I—Tl)”l (by Proposition 1(i))

€ [ . .
< _ — > >
7+ 3 by (1) since m > n n_ .
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Hence 1lim sup [ x(I-T) - Pn(x(IeT)lHl = 0. Thus P(C) (I-T) is relatively
xX€P(C) .
compact in (¢, |lj}, by 1.4, Theorem 4. Since C is 0(% ,Tac )-relatively
compact, C is El—norm bounded by Corollary 4 ((i)= (iii)) of Theorem 1.
Thus P(C) is also Zl—norm bounded. It follows from the same Corollary
that P(C) is O(Zl,Taco)—relatively compact.
The following theorem was proved for aco in [4, Theoren 4,
p. 30].

THEOREM 2. Let T be a lifting matrix. Then (Taco,T(Taco,gl)) is an

AK-space.

Proof. let C be a O(Jl,Taco)—relatively compact subset of 31.
Then P(C) = {anlx €C and n ¢ N} is O(@l,Taco)—relatively compact
by Lemma 3. Let y = (yk) € Taco. Then

n [eo]

supsup | I xy | = sw [I xvy].

R el KT Lp(e) kel KK
Thus the family Pn: (Taco,T(Taco,gl)) -+ (Taco,T(Taco,zl)), n=1,2,...
is equicontinuous. Now we claim that the set

[eo]
= G ) 1 T b t i T *
s = {x Tacol(an)n=l is (Taco,ﬂl) convergent to x} is (Taco,ﬂl)-closed
A . . :

Suppose a net (x) in § is T(Taco,ﬂl)-convergent to x in TacO
let || || be a T(Taco,zl)-continuous seminorm on Taco, and let € > 0.

. . LA
Since the family P, n= 1,2,... is equicontinuous and limﬂx -x|| = 0,

there exists Ao such that
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Ay A
(l? sgp”an - an” < €/3,_and ”x - X H < €/3.

Since x © € g, there exists n ¢ N such that
, X ko
2)  fip x °-x 9| <e/3 for n= n,

Now

A

A A
e x-xll = |p %P x O] + |P.x Ox °|| + lx %-x]
n n" 'n n

<e/3+€/3+¢€/3=¢€¢ for nZ= ng by (1) and (2).

[0 o}
Hence (P x)
n"'n

-1 is T(Taco,El)-convergent to x so that x € S. Thus

S is T(Taco, %}—closed. By 1.3, Proposition 1,
Y/
__T'(Taco,Zl) o (Taco, )

0} =9 Sl Taco. Thus § = Taco since ¢ C S.

LEMMA 4. Let T be a lifting matrix. Then (Zl,”x(I—T)”l) is a normed

- v
space and (Zl,Hx(I THl) < Tac .

Proof. To claim that Hx(I--T)Hl is a norm on Zl it suffices to show

that x(I-T) = 0 = x = 0. Suppose x(I-T) = 0. Then

(]

(x(I—T))l = X 0; (X(I—T))2 =x, - Xt = 0, hence x, = 0.

1 2 1712 2

Inductively we can easily show that X = 0 for all k .

Since x » x(I-T) is a continuous linear function from

ol dinto LIl I ana @l ) is ax,

”((anl—x)(I-T)Hl -0 as n*>o for x € El . Hence (Zl,Hx(I-T)“l)
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is also an AK-space. Now let £ € (&l,”x(I-Tl”ll’, Then, for every
[e ]

' _k ) . .k
[4 = -y - ig =
x € Zl, fF(x) = kzlxkf(e ) since (&1’HX(I“T1”11 is AK. Let Yy £(e)

for each k . We claim that y = (y.) € Tac . Since £ ¢ (£ Jxa-mill)e
k o 1 1° 7

(1) IkEl}ﬁ{ykl = g = Ixa-mll l£ll for x <& .
Let p € IN. Then the nth row of Ei;g;izi is in Zl for each n, and hence
T+. . . +T° _ C el TP
|| = lk§l<- W
T+.. +7F, o _
= |IT¢ 5 ) a-mil el ey @)

k=1

o .. .+TP T
= I - )| ]
k=1
© 1
7Pt
= I le—=—_ |l
k=1 P
2 . > 5 +1 _
< E-Hf” (since kil!(Tlnk[ = kzl!(Tp )nk! = 1).
[(EELLLIE-y)nl = 0 uniformly in n . By Corollary 1 of

Thus 1lim
P o)

ey

Theorem 1 of §3, y ¢ Taco.

THEOREM 3. Let T be a lifting matrix. Then (Taco,T(Taco,5l)) is

complete.

Proof. To show that (Taco,T(Taco,El)) is complete we use Grothendieck's
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criterion (see 1.3, Theorem 1.) Iet f be a linear functional on 81

which is o(£ Taco)econtinuous on each 0(!1,Taco)—compact set, and

17
suppose x") is a sequence in 81 which is convergent to 0 in the
two-norm topology (Zl,Hle,HxCI-T)”l). Then, by Theorem 1({iii) = (i)),
") is G(JI,TacO)—convergent to 0 . Hence {xn|n €N} is
0(81,Taco)-relatively compact so that £ is 0(31,Taco)vcontinuous on

{xnln €\N}. Thus (f(xn)): is convergent to 0 in R . Therefore,

=1
f 1is continuous in the two norm-topology (ﬁl,H Hle(IvT)Hl). Hence

f 1lies ip the closure of (ﬁl,Hx(I-T)Hl)‘ in (ﬂl,” ”l)‘ (i.e., (m,|l Hw))
by 1.4, Theorem 2. Since (Zl,Hx(I-T)”l)‘ S_Taco (by Lemma 4) and Taco

is closed in (m,]|| Hm), f ¢ Taco. Hence (Taco,T(Taco,il)) is complete by

Grothendieck's criterion.
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CHAPTER 4

CONSISTENCY THEOREMS FOR T-ALMOST CONVERGENCE

§1. Introduction.

The main purpose of this chapter is to establish the bounded
consistency theorem for T-almost convergence. The bounded consistency
theorem is a principal result in the theory of summability. Two different
approaches to establish this theorem for almost convergence can be found
in [ 4] and [21]. 1t seems difficult to construct a proof for T-almost
convergence. parallel to these proofs. 1In proving this theorem we first
establish the sequential completeness of 81 under certain weak
topologies. To do this we apply a gliding hump argument together with a
technique called "the principle of aping sequences". Erdds and Piranian
developed this technique in [ 3] and derived the classical bounded
consistency theorem as a quick application. As we expected, it was
necessary to penetrate deep into the structure of T-almost convergent
sequences to establish the theorem. This made some arguments rather long
and difficult. Finally, employing some techniques already developed, we
obtain a result for T-almost convergent sequences (Theorem 3 of

section 3) which is unknown even for convergent sequences.
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§2. Notations and basic results.

Recall the definition (3.2, Definition 2) of a lifting matrix

T = (tjk) in Chapter 3. When T is a lifting matrix, ™ (nth power of T)

is defined for n €N , and for convenience we write ™ = (t?k) for
n=0,1,2... with T°=1 and T = T. It should be noticed that t?k
is not the nth power of t, Under these notations we obtain the

jk*

following proposition.

PROPOSITION 1. Let T = (tjk) be a lifting matrix. Then the following

hold:

. n .
(i) tjk =0 for k < j+n ;

. [>]
(ii) T t® =1 for n=0,1,2,... and j = 1,2,... ;

k=1 I¥
g m ! ol ® m ® ol
(iii) o = I L (equivalently, I t, 2 I t.k)
k=1 3% k=1 k=q+l 15 k=q+l J

for m>n and q,j = 1,2,... .

Proof. (i) Clearly it is true for n = 0,1. Suppose t?k = 0 for every

o .
jsk such that k < j+n. Then t?+1 = It t"

= = < 3
ik I jp pk 0 for k j4n+1,

since tjp =0 for p=j and t;k =0 k<ptn . So (i) follows by

induction.

(ii) This follows from the fact that ™e = e.

q q
(iii) It is sufficient to show that z t?+1 =z t? .
k=1 I =y E



9 n+l

If q < j+n+l, then I t,, =0 by (i). Suppose q = j+n+l.

k=1 3%
q q
- Then I t?zl = z t?zl by (1). Also, for k = j+n+l,
k=17 k=j+n+l
n+l n ® n k-1 n n
toge = (TTD, = Ittt = ity (since t,, =0 for i< jin
j R i=j4m 3 j

and tix = 0 for i > k~1 by (i)). Hence
q q k-1
z t?zl = I Lothto
k=j+n+1 J k=j+n+l i=j4n I°*

q q
z It

k=j+n+l i=j+n

n
jitik

IA

(since k = q)

q q
= L t, z t

i=i4n T k=jtnt+l 1€

L]

! n
= Lty (by (ii))
i=j+n 3
q q
= 3 t?k = I t?k (by (1)).
k=j+n 3% k=1

q q
Thus z tqzl <= I tqk.
k=1 3 k=1 3
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§3. Main results.

In this section we obtain several consistency theorems for
T-almost convergent sequences by establishing the following theorem. The

proof of this theorem is difficult and uses a complicated gliding hump

argument based on the properties of lifting matrices and T-almost con-

vergent sequences.

THEOREM 1. Let T be a lifting matrix, and let B = (b,,) be an

jk
infinite matrix such that |Bf < ® and such that every column of B

belongs to c,e Then 81 is 0(81,(Taco)Bﬂm)~sequentially complete.

Proof. Let B = (bjk) be an infinite matrix such that ||B]] < ® and
such that every column of B belongs to o and suppose A = (ajk) is an

infinite matrix with the same properties as B such that (Taco)Bﬂm_S e

Since ¢ Cc¢ C (Taco)B, [(Taco)Bﬂm]B'= £. and hence, because of 2.3,

o o 1

B

Theorem 2, it suffices to prove that (Taco)Bﬂm c c,
" TA

Suppose there exists x = (xk) € (Iaco)Bﬂm such that

lim x # 0. We may assume that lim x=1. Let y =Bx and =z = Ax,

Then y € Taco and z € c. We construct a bounded sequence u = (uk)
such that u.x € (Taco)B\\FA' This leads to a contradiction since

(Iaco)Bﬂm.E Cye
Let kl £IN. Choose n

kl .
(b)) kil(lajk|+|bjk|) <5 for j=zmn;

lEm such. that;



1
(c.) Zt, ==
1 k=1 ik 2
it 5 5 1 .
For 1 =3 = nl, notice that kiltjk = tjj = 1, and that kiltjk =0

if p= ny (by Proposition 1(i) of §2). For 1 =3 =n,, let ijl

(0 =i,.. <n.;) be the largest integer such that

i1 0™
n
1 1,
(el) z t.il Z-%.
k=11
Let
(fl) 17 0 for j>mn; .

Notice that

. )
(g 1721 (by (e;) and (e;)), and ijl <n; for -j= 1,2,...
Choose k2 (>kl) €IN such that

(ay) z (|ajkl+|bjk[) <1 for j=ny .

k=k2

Now choose n, (>nl) €N such that:

k
2 gD <=
(.,) I (Ja. |+lb.|) <= for j=mn, ;
2 2 M Pk ) 2
n
2 i,.4n
jl 1 1 1
(Cz) Lt z §'+'—7~ for vl <] S_nl .

k=1 Jk 2
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i +n n i +n
n,1l

2 nll 1 2 1 1
By Proposition 1(i) of §2, I t K = ) t X (> Qby (_cz)),
k=1 ™1 ks2n. 41 . "1
1 mn.l
1
and hence
<
(dz) 2nl =,
) 5 5 )
For 1 =23 = Ny, notice that I e = tis = 1, and that I tl:.’k =0 if
k=1 7 k=17

p = n, (by Proposition 1(i) of 82). For 1= j = n,, let ijz(O =< 1j2 < n2)

be the largest integer such that
n, .

2 15
.t

1 1
(e,) 3> =24 =,
2/ C ke 272

Let

(fz) ij2 0 for j >mn, .

Notice that

v

ijl + 0y for 1 =3 < o, (by (,cz) and (‘ez)), and 1j2 < n,

(.gz) 1:9
for j =1,2,.

Choose k3(> k2) €N such that

[A
=]

iy 1
(ay) I (Ja, |+|b, ) <5 for 3
3 k=k3 jk l ik 2

Now choose n3(} n2) £ IN such that;
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y 1 .
(b3) El(‘ajkl+lbjk|) < ;3 for j zm, ;

k
n
3 1i,.,4n
(b3) z t.iz 2 = %-+-;§-+-j§ for 1 =3 =n, .
k=1 3% 2 2
"3 Tn 2™ T A
By Proposition 1(i) of §2, I t X = z t oy (> 0 by (c3)),
k=1 "2 k=2n.+i_ , "2
2 "n,2
2
and hence
(d3) 2n2 = n, .
"3 . 3
For 1 =< j <n,, notice that L t.,, =t,, =1, and that z t? =0 1if
3 =1 36 3 k=1 ¥

P ng (by Proposition 1(i) of §2). For 1 = i =< ng, let ij3(0 <i,,<n

be the largest integer such that

n

3 1i,
(e)) L t.f(3z—21—+i2+l3.
k=1 3 2 2
Let
(f3) ij3 =0 for j >m,.

Notice that

(g3) ij3 > +n, for 1=j=mn, (by (c5) and (e,)), and ij3 < ng

|
He
.
N
N

for j = 1,2,... .

We proceed inductively to construct strictly increasing

, ()"

sequences (k ) =1

=1 of positive integers, and increasing sequences
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(ijr)o;lg j=1,2,... of non-negative integers such that;
k
T © 1
(L) max [ I (Ja, |+lb,|) + E 1a., |+|b, =
L L lag l+b g | . Uag l+b D] =
r-T rtl +2
(see (b)), (b)), (by), (a,), and (a,));
r i © i
. jr_ 1, 1 1 . jr_ 1
(ii) T etz 4+ L.+ = (equivalently, LI t, < +
k=1 3k T2 52 2" ken_+1 36 27
1 .
=) + ...) for 1=3j< n, r= 1,2,... (see (el), (ez), and (e3));
(iii) 2n_=n_,, for r= 1,2,... (see (_d2) and (Ad3));

(iv) ij,r+1 > iy +n_ for 1 =3 =< n_, = 1,2,... (see (gz) and (,g3));

-

(v) i, < n_ for »j,r =1,2,... (see (_gl), (gz), and (g3));

(vi) ijr =0 for j > nr', r=1,2,... (see (fl), (‘fz), and'(f3)).

Define bounded sequences u = (_uj) and v = (yj) such that
o ad < : o i < s .
uj sinYr for kr =3 < kr—i—l and vj sin/r for n =] < g

First we show that (Bx).v (=y.v) € Taco .

By the definition of u and v,
Wl = vl = 1.

let 1>¢ > 0. Since y ¢ Taco, it follows from Corollary 1l of 3.3,

2 P
THT 4. T £

Theorem 1 that there exists p_ ¢ N such that I Ve <55

for p = P, - This means that



o

(2) | T (¢, +t2 +...+t§k)ykl < pe/20 for p=p

k=1 jk jk o’;

Choose r(>2) €N such that;
(3) n_ > max{ZOpo/e , 20poHy~Hm/€};

(4) |sin/m - sinvm-1| < €/20”wa for m=zr 4

oo

(5) 1/2% < e/20lyll .

k=r

Note that in the rest of the proof r is a fixed integer satisfying

(3), (4), and (5). Let p ¢IN such that

P,
€

p tn
T (o) r)};

€

(6) p > max{20( ):20]lyll ¢

Now we claim that, for p (¢N) satisfying (6),

[}

el p i€ _—
| z ('tjk+t' +...+tjk)ykvk|/p < g forevery j €N . Let j €WIN.

k=1 Jk

Case 1. i, = 1. Then
jr

(D' j=n_ by (vi).

Since p > n_ (by (6)) and 1jr <o by (), p > ljr . Let

s(Gr) ¢ such that ijs <p=i Then

j,s+l’

i=1,2,...

t

74.
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o
' P
(2 |k£l(_tjk+. . '+tjk) ykka
oo i 4 i +1 i
: jr - i j,rt+l
< |k£l(_tjk+...+tjk )ykvkl + Ilkil(‘tjk ot )ykvk[
o i +1 i w i +1 i,
e j.THl j,r+2 jas-1 js
+ lkil(tjk oot )ykvk|+'°°+[k£1('tjk ooty )ykvkl]
® ijs+1 >
+ ]kil(,tjk +...+tjk)ykvkl
® i
M |z (_tjk+...+tjir)ykvk{ = Ily.v[[m.ijr (by Proposition 1(ii) of §2)
k=1
< ly.vllg.n, by (V)

IA

Iyllen by (1))

A

pe/20 (since n_ < pe/ZOHyHm (by (6)).

< i < < 1
For r <m=<s and ljm q—lj,m+l’

o ijm+l q
\
(4 kEl(t:jk +.. .+tjk) ykvk}
nm+l ijm+l . o ijm+l T
< . \ .
< lkzl ('tjk +"'+tjk.)yk.vk.l + lk— z (tjk‘ +"'+tjk)ykvk,l’
= -‘n,m+1+l

s (he (1) :
oo >anJ (by (1)') and hence
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[oe]

z

k=nm+l+l

1/2k (by (i1)) < I 1/2k (since r < m) < 562___

i, o
e o < g
k=mr+2 k=t Iyl

jk -
(by (5)). Also, by Proposition 1(iii)) of §2,

o i_m+1 o i, +2 © i,
(5" T thJ( < i )
k=nm+1+1 k=nm+1+1 k=nm+f-

- < . .
Hence, for r =m = s and 1jm <q= 1j,m+1’
© ijm+1 q c
) 3 -1 >
6)' | z (e +...+tjk)ykvk| <yl (@ =130 55751
k—nm+1+l )

< (¢ - iy Gy ).

jm j,mtl’
Inm+1 1,41 . |
n" T (t +...+t,, )y v
k=1 k jk"7k 'k
ln i, . ol 151 . l
= | Z (t, +.oo4t )y, Vv + T (t, +...+t 0 ) (v -V )y
k=1 ik ik’ 'k N1 k=1 jk ik’ "'k no_q k
| | o+l 1+ . | Inm+1 1+ . |
< v | = (. +oo.+tl )y L+ LT (e, oot ) (v, -V )V |~
L1 k=1 jk jk’“k k=1 ik jk k noq
For j =n__ 1> ljm zn 4 by (iv). Hence j + ijm +1>n 4 for every j € N,
i, +1 i, +2 i
. jm - jm _ = j,mtl = . . .
Since tjk tjk .o tjk. 0 for k< j+ ljm + 1 by

Proposition 1(i) of 82,



Ol i
@' |z

k=1 Jk

o+l
| T

k=nm_ 1

and i,
jm

By the definition

jm

i
q
(tjk +.. ._+tjk) (yk—-vn

77.

+1
+.. !.+t;-]"k) (.Yk_'ﬁyn )ykl
m<l

'm+1
J )y-kl for r<=m=s
m=1

<q=<i
4= 1j,m+1'

of (»vk), for r=m=s and n_q <k =n_.qo

N [vk-v | < max{|sin/m~sin/m-1], lsim/m-i-l-sinvm—-ll}
nm—l
< 2€ by (4) (since m= r).
< < . < 3
Hence, for r =m=<s and ljm <q 1j,m+l’
okl i+ .
' —
(10) |k=§ (tjk +...+tjk)(vk vhm_l)yk[
- m-1
2e Sl 1,4 .
< . .z t, .. 4t by (9)")
m-1
< 30 (q - ijm)s (by Proposition 1(ii) of §2).
. < s
For r=m=<s and ljm<q_lj,m+l’
| | T+l 1t .
(1) |v l T (t. oo+t )y |
m-1 k=1 JK Jk Tk
© i . o 1+ q | by (1)
< |z (t, foo+tl )y, - L (t, +.o..+t0 )y (by
-1 Jk ik’ T jk k7 7k
k=1 k nm+l+l
© i +1 © i +1
. \ q
<]z @ d® 4wy [+ T @I Aty
k= ik jk kl Ik=n +1 jk J

mtl
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For r =m=s and ijm$q§ij,m+l’
o l'jm+l q c
az)' T (. +...04t ) < . . (g -1, by (5)!
Ik=n e 1% < Wl gy - @ - 1y Gy ()Y
m
= -1 ~—€|—
(@ - 1,075 -
For r=m=s and ijm<qfij,m+l’
- i"J'm+'l q
3! Z (t, +,..+t1 )y
|k=1 ik 10!
o o i,
= |2t 4 +tL )y - T (e 4.+t T
[k=l ik Jk.)yk k=1( ik ik )]
® w i,
= | % (ot Htidy |+ Gt 43Dy |
lk=l ik 10! lk=1(’ ik i %!

+ n

F <mss, j< "= i > i
or r=m=s, j=n (by (L") n_ and hence 1j ) 1jm 0

(by (iv)) > Zijm (by (v)). Thus

i i

__jmtl _jm
(14)' - ’m+].' <2 and - L <1 for r=<m=s.
1j,m+l_ljm 1j ,m+l_ljm

1A

For r=m=<s, j=n_ (by (1)") = n_ and hence i, Zn_ (by (iv))

j,+l = "m

20, > p, (by (3)). Thus, by (2,

o i
T j,m+l . . i
(15) Ikil(_tjk+...+tjk )yk] < i m170
) 1o ol i i )E
T B 5o’ "20
< (i m+1“ijm)'i% for r <m < s by (14)".
b



(2))

If 1.

jfnr, (by (l))<n,1

hence

®© i.
' ' - C Jo < i o=
im zp (r=m < s), lkzl(ﬁjkf"’+tjk.)yk| Lm0 (by
i _
- s . 4y £
i, tm T T e L a5 by (14",

jm

= llyll,

= (i

(16)'

|

| = (¢

<P, (x=mc<s), —l———- < _o_ (note that since

z
k=1

co

k=1

From (13)',

an'

From (11)', (17)', and (12)' with q =

18’

' ' .1 .
(_15) > and (16) with. q = lj ,m+1’
o i, +l 1
jm j,mtl 3e )
lkil(_tjk toort Ty < Gy -ty g for TS m Sl

v,

m-1 k=1

_'] okl Jm n

o

. <0
- m+1 Z n_ by (iv)) =

i,
jm, Wk \ s .
(t W tjk )yk,l < ”y”m'ljm (by Proposition 1(ii) of §2)

m+l

i,
__Jl‘i__ (i
Js

€

j ,m—i—l‘ljm 20 °

O+l i, 41
Iz (e.3™ +...4t

i,
jm .
jk+' . .+tjk )yk[ < (,1

i i) <yl . = . -i, )
j,ml “jm o 20yl j,mtl “jm
Thus

m+1 Jm)ﬁ for r <m =< s.

Ty,

J,m+1 . b4e
ik ik 2yl T R T

From (8)' and (10)',

79.

9 b 3
w -O—”‘—”—(Y())and

for r < m = s-1.
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n i, +1
: Jjm q g
a9)' | «.3" +. .+ )G -y )y, |
k=1 jk jk’ "k no1 k
< é%—(q - ijnge for *r<m<s and ijm <q=< ij, L

From (7)', (18)', and (19)' with q =1

j,ml’
"l i, +1 i
73 i . . 6e
20" | = (_tjim,+..,+tjf(’m+l)ykvkl S Uy pa~iydog o7 TSmS s-1
k=1
From (4)', (20)', and (6)" with q = ij,m+1’
oo i, +1 i,
jm j,ml i 1, )& < &=
21! lkEl(tjk +...+tjk’ )ykvk[ < (lj,m+l 1jm)20 for r=m = s-1
Hence
o i, +1 i o i, 4l i,
jr j,rt+l j,r+l j,rt+2
(22)' Ikgl(tjk +...+tjk’ )ykvkl + lkil(‘tjk ooty )y, v |
© dg o gH i
3
+...+[k§l(tjk oot )ykvk[
’e L+ d Te

<Gy P20 ¥ Gy ety )20 35715 ,s-120

. . Te
(st_ljr)'ZO

A

7 . .
——— < .
50 PE (since 1jS )

Since p > p, (by (6)),
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[o+}

1 P
(23) [kzl(_tjk+...+tjk)yk| < pe/20 (by (2)).

[o+}

If 1. 2 p_, | © (¢,

i,

js , .
+...+t, <i, /20 (b 2 < pe/20 (since
js 2 ik th )ykl g / (by (2)) < pe/

[+

p>i.). If i, <p, | I

i,
Jjs .
js is < Por I (et et Wl = lylly- iy Gy

1

€
Proposition 1(ii) of §2) < llyllp, = lIyll,-p-p /P < Il -P-gou5T
(>0

(by (6)) = pe/20.

Hence
o i.
v Js
(24)" | ZA(tjk+...+tjk )ykl < pe/20.
k=1
From (13)', (23)' and (24)' with m=s and q =p (note that ijS < p = ij,S+l)’
© ijs+1 . )
1
(25) |k£1(tjk +...+tjk)yk| < 29€/20i

From (11)', (25)' and (12)' with m=s and q = p,

n i, +1

s+1
' Js P
(26) [vns-lllkzl (tjk +...+tjk)yk| < 3pe/20.

From (7)', (26)', and (19)' with m=s and q = p,

Ts+1 ijs+1 .
L
(27) ]kil (tjk +...+tjk)ykvk|

A

5pe/20.

From (4)', (27)' and (6)' with m

s and q = p,
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® it >
L R
(28) |k£l(tjk +.. .+tjk)ykvk| < 6pe/20.

From (2)', (3)', (22)' and (28)°,

* | T (t

%
I +...+tjk)ykvkl < 1l4pe/20 < pe.

jk
Case 2. i. = 0. Let t be the smallest integer such that i, = 1. Then

jr , jt

(" t>r, i,

= i< i
5,e-1 0, and j = n_ (by (vi)).

For 1 =q =1,

jt’
o]
1" q
@ | E (tjk+...+tjk)ykvk|
k=1
n, - A ,
< | T (ta+e..+tidy v | + ]2 (EoiHettiDy v |.
k=1 jk jk"’k 'k k=nt+l jk ik’ ’'k 'k
© i © oo
. . " jt k . k
Since j = nt;(by (n"y, I tige = T 1/2° (by (1)) < I 1/2
] k=t+1 k=T

k=n +1
t

£
(since t > r by (1)'") < by (5). Also, by Proposition 1(iii) of §2,
20y o

[s] o0 2 [+ i't c
(M £ t,. < T t5 <...=s T t.> < 5oT5TC
k=n +1 Ik k=n +1 ik k=n_+1 ke 200yl
Hence, for 1 =q = 1jt
° e 1
" q _ 1
(4) ' z (tjk+...+tjk)ykvkl < ”y.V”w.q-W = 20 ge by (1).

k=nt+l



As same as (7)' in Case 1, we can show that

n

t
1n g q
(5) lkzl(tjk+. . .+tjk) ykvkl
n n
v 1z gy | 41T (e ttd ) )y, |
= v (b, +...+t )y + P U o v, =V y
nt.__2 k=1 jk jk" 'k k=1 jk jk k nt_2 k

Since t>r (by (1)) and r > 2, t-22 1. If j = D, oo then

by (iv). This is a contradiction since

[N
v

j,e-1 2 3,02 T P2

0 (by (1)) and n >0. Thus j >n_, and hence

ty,t-1 £-2
t = t2 = ... = t1jt =0 for k<n (by Proposition 1(i) of §2).
ik T Yk ik -2 :
Therefore, for 1 =q = 1,
Jt '

n n

Iz ; -]z )¢
)" L (e, . +...+1 ) (v, -v )y, | = T t., +...+t; v, -V

k=1 jk jk’" 'k n_, k k=nt_2 jk jk" 'k n__,

Since t-1= r (by (1)"), as same as (10)' in Case 1, we can show that

n
t
" |z (t

q - _2__ < < 49
=z jk+...+tjk)(vk vnt-z)yk! < 55-9€ for 1 =gq = 1jt .

t-2
As same as (11)' in Case 1, we can show that

n

t
)" |v | | T (t, +...+t1 )y I
D2 k=1 K &k

(o] (o]
<|z

k=1 k=n_+1
t

q q << << 4
(tjk+...+tjk)yk| + ]z (\tjk+...+tjk)ykl for 1sq<i

83.

)y, |

jt’
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Py 11"
For 1=<q = i by (3",
1" > q. 8 = -l—
9" |z (tjk+"'+tjk)ykl < Myllg-a- 2975 = 209€
k=nt+l 0

Now if p_=gq (fijt),

e}

(10)" | Z_l(_tjk+. ..+t?k)ykl < 2—]6‘ ge by (2).
k=

Therefore, if P, < q (= ijt)’ from (8)", (10)", and (",

n
t

u q 2
(11) Ivnt—2|k§l(tjk+...+tjk)yk[ <35 9

from (6)'" and (7)",

n
t

" q .
(12) | T (tjk+"'+tjk)(vk v

2
)y ! < % q€w,
k=1 -2 k

t

from (5)", (11)" and (12)",

n
t

" q b
(13) Ikil(tjk+...+tjk)ykvk| N and

from (2)", (13)", and (&))",

(o]

" q 2
asH" |z (tjk+...+tjk)ykvk[ < 55 Q€
k=1
0.
. « P N , . _
To show that lkil(tjkf..,+tjk)ykyk| < pe we consider the cases
> << > > . - . .
p > 1jt and p = 1jt separately. First let p > ljt' Then there exists

s (Z t) € N such that ijs <p=< Thus

1j,s+l'



oo}

o i
" P jt
(15) Ikil(tjk+...+tjk)ykvk[ < lkil(tjk+...+tjk )ykvkl

o i, +1 +1 i,
jt J,t+1 J,t+1 o+t j,tt+2 +
+ [lkil(tjk +. +t3k )yk kl + l Z (t et )ykvkl cen
—1 +1 S+1
.o+ z (t L M JS)y 1+ z (t J +. +tp Dyl
k=1 jk k'k

As same as (22)' and (28)' in Case I we can show that:

o i, +1 i o i +1
1" jt j,t+1 j’t+1 + J ’t+2
(16) | E (tjk +...+tjk )ykvkl + | E (tjk +ooott )ykvkl
k=1 k=1
e ij s 1+1 ijs 7
+ ..+|k£1(4tjk +...+tjk )ykvkl < 55 PE;
o ijs+1 6
" e
an" |z (e +- )yk | < 55 pe
k=1
o i't
. T s J
If ljt > pgs from (14)" with q = 1J I El(t +. +tjk )ykvkl

5 . 5 . .
Ea'ljt'e < 55 PE (since p > e

< ), and if ijt = P> then

[0}

| = (t " +tjit)ykvk{ < ”y'V”w'ijt (by Proposition 1(ii) of §2) =
k=1

ly.vllyp, = llyll,-pepy/p (by (1)) < Iyl —n—-ﬂ— (by (6)) = 0 pE .

Hence

[0}

1"
A®" | I gt )yk | <55 e

From (15)", (18)", (16)", and (17)",

85.
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e 18
#% | T (t, +...+E )y v | <55 pe < pe.
k=1 jk jk™’k 'k 20

Now let p = 1.

e Then, from (14)" with q =p (> P, by (6)),

o}

5
xx% | T (t, 4.4 )y v | < % pe < pe.
k=1 jk jk’ 'k 'k 20

Thus it follows from *, *%, and **%* (* is at the end of Case 1) that

© 0 Po+n
lkil(;jk+...+tjk)ykvk| < pe for p > max{20(

r pO-HII'
—, 20llyll,(—)} and j €.

This implies that

T+..

P
[(—I)—.i'r—') (y_v) ]j > 0 as P ] uniformly in J .

Hence vy.v(= (Bx).v) ¢ Tac, by Corollary 1 of 3.3, Theorem 1.

. A . > 0. €
Now we show that =x.u € (Taco)ﬁ\GA Let € > 0. Choose m_  €IN

such that:

1 . _E€ .
-1 2T,

(7)
2

. . . € € -
(8) lSln/I_E - sin m—-1 < min {ZHA”- ”X”m, > THB”X”OO} for m = ID.O

j = . i = € =j< .
Let j = mn Then there exists m(Z mo) N such that n =13 noq Now
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(9 |BGw]; - [(Bx>.v]jl

lkilbjkxkuk - (vkilbjkxk) .vjl

k km+1 1 km+2-1 o

Z b . Z b,
A R ST L L

|

C Z b ). v, |

g Kk

km km+1-1 km+2-—1

= | E b’jkxkuk + sin/m I bjkxk + sinv/mtl _Z bjkxk ,
k=1 k=km+1 k=k .,

2]

+ I kakuk ( Z b xk)51n/_| (by the definition of (uk) and (,vk))

o
“m kot _
= lkilbjkxk(uk—Sinfﬁ) + (sinvmtl - sin/@k=12i xk+k_12< jkxk (uk—sim/m) I

o+l ™2

Since llull = | (by (1)), ‘uk—sin/ﬁ‘ <2 for k €N, and hence

k
m -]
(10) lkilbjkxk(uk—sin/ﬁ) + k=12< bjkxk(_uk«sin/ﬁ)l
2
k

m
2=l 2 |by | + Z [b.. D
k=1 3 k )

1A

2|1l )

A

(by (i) since n_=3j <n

°°2m-1 m+1

IA

2||xll = (31nce m, = m)

A

2Hmeﬂ§ﬂ— (by (7)) = % .
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Also
km+2—l
(11) | (sin/mFl - sin/m) k=§ bjkxkl
m+1
< |sin'mtl —sin/ﬁl.]!B”.llxllm
<

2 BIEiE:‘”B””$”m (by (8) since m = mo)

= £.
2

From (9), (10), and (11) we have [[B(x.u)]j - [(Bx).v]jl <e for j=zan .

o)

Hence l%m{[B(x.u)]j - [(Bx).v]j[ = 0 so that B(x.u) - (Bx).v € c_ (S Tac)).

Since (Bx).v ¢ Taco, B(x.u) ¢ Taco and hence X.u € (Taco)B.
Replacing B by A , we can similarly show that

Alx.u) - (Ax).v ¢ ce Since limx =1 and (vk) oscillates between 1 and

-1, A(x.u) oscillates between 1 and -1, and hence x.u £ Cye
We now establish our first consistency theorem for T—almost
convergent sequences.
THEOREM 2. Let T = (tjk) and S = (sjk) be lifting matrices and let
A= (ajk) and B = (bjk) be regular matrices. Suppose (Sac)B Amc (Tac)A.

Then S-Limx = T-Limx for x € (Sac)_ N m.
B A B '

Proof. Let T = (tjk) and S = (sjk) be lifting matrices and let

A= (ajk) and B = (bjk) be regular matrices. Suppose
(_Sac)B Nmc (Tac)A. First we show that (Saco)B Nmc (Taco)A. Let

X € (Saco)B N m. Then x € (Tac)A and hence Ax € Tac. Let



89.
T-LimAx = a(x). Then, by Corollary 1 of 3.3, Theorem 1,

1 fi(Ax)+...+Tp(Ax))
im

= a(x) uniformly in j. This is equivalent to

) p
lim[(I—M-—';’—*-T—é) x] = a(x) uniformly in j by 1.5, Theorem 3(iii). 1In
p s

J

p
particular, lim [(ﬁ—;—-ﬂ—A) }E] =o(x). i.e.,
1 1

*® Y
lim Z <M> X = 0(x). Since this is true for every
P i=1 P I

x € (Sac_ )gN m and [(sac_)gN m]B =4, TAt...+T°4 € £, for
° ° 1 P liji=1 T

p o] o]
each p and, moreover, the sequence [((Iéi‘__"‘_']_f_A> D in 81 is
P 1i/i=1 p=1

0(81,(Saco)Bﬂ m)-Cauchy. Since 81 is AG(El,(Saco)Bﬂ m) -sequentially

’ P 0 0
complete by Theorem 1, ((l[\"'_""l'__é) D is 0(81,(Saco)Bﬂ m) -con-
. » P 1i/i=1]p=1

vergent to a member (yk) in 81. To show that (yk) = 0, it is sufficient

to show that (&——L% —} -+ 0 point-wise as p > ® . Let i €IN
P 1iJi=1

and € > 0. Since A = (ajk) is regular, 111<m ay = 0 and hence there

exists ko €N such that

@D Iakl! <% for k =k .

2/l

>
For p = c

b



| TA+...+TPA [ 90.
P 1i .

0 oo}
=| Tt .a +...+2tPa |/p
rmp 1Kki el 1k%ki
o © ko_]_ =) D
= | z tlkaki+"'+ z t1k aki+"'+ z tlkaki[/p (by Proposition 1(i) of §2)
k=2 k=k k=p+l
I © o ko_l o ko © P l
=]zt +...+ It A/ + |z t +...+ It A/p
P s = e, ki ek +1 T
, , o o ko-l l o ko o .
< suwla . |(L t +...+ I t Y/p + supla, .|(Z to +...+ I t5)/p
Kok 2, 1k ok, 1k ok i ook -+ 1k ol 1K
ko e p—k0+l
< ||All Yy + Y (by Proposition 2(ii) of §2, and by (1))
k0 €
< llal =+ 3
2]|Allk
£ € . oy_
< |lall . 3TTA] + 5 (since p = ——E—*—J— €

v 1 ®
Hence (iét;;5££~é + 0 pointwise as p > © . Thus (y, ) = 0.
P 14 i=1 k

This implies that oa(x) = 0, and hence Ax ¢ Tac0 so that x ¢ (Taco)A.
Therefore, (Sac )y N1 m & (Tac),.
€ - (S-Li € .
Now let x € (Sac)B N m. Then x - (S Limx)e 3 (Saco)B N m E'(Iaco) A
and hence T-Lim(x-(S-Limx)e) = 0. i.e., T-Limx = S-Limx.
A B A B
The following corollary is a statement, analogous to the

original bounded consistency theorem, for T-almost convergent sequences.

COROLLARY 1. Let T be a lifting matrix, and let A and B be regular

matrices. Suppose (Tac)B(\ meg c,. Then liéx = T—L%mx for x ¢ (Tac)B N m,

A"



1.

Proof. Suppose (Iac)B NmCSec,. Since c

A A S CIac)A, (Tac)p N m.SVCIac)A,

and hence it follows from Theorem 2 that T—Liyx = T-L%mx for x € (Tac)B N m.

But 1limx = T-Limx for x € c,, and hence Ilimx = T-Limx for
A A A A B

x £ (Tac)B N m.
1if k = j41

When T = t, 1is given by t,, = , Corollary 1
° ik jk 0 otherwise

reduces to the following, which was first obtained by Bennett and Kalton [4].

COROLLARY 2. Let A and B regular matrices and suppose (ac)B NmcC Cy

1 = - 1 [+
Then lkmx TO Limx for x € (ac)B N m.

Before stating our next result, let us recall the following

notation. If E 1is an FK-space containing ¢, then we write

W, = {x ¢ EIan + x weakly in E} .

THEOREM 3. Let T be a lifting matrix, and let B = (b,,) be an

jk
infinite matrix such that ||B]] < ® and such that every column of B

belongs toc . Suppose E is an FK-space containing c_ . Then ¢, is

0(&1,(Iaco)3 n (WE N m))-sequentially complete.

jk) be an infinite matrix such that |[B]| < © and

Proof. Let B = (b
such that every column of B belongs to c, and let E be an FK-space

containing c, - Suppose A = (a..) is an infinite matrix with the same

ik
properties as B such that (_Taco)B n (WE N m) € cp- Since
- B _ :
<, E_(Iaco)Blﬂ (WE N m), I(Taco)Bbﬂ (Wﬁ nNml° = Zl, and hence, as in the proof

of Theorem 1, it suffices to prove that (Tac ), N (W, N m) C ¢
o’ B E - oA



22.

Buppose there exists x = (xk) € (Iaco)B n (WE N m) such that
%me # 0. We may assume that limx = 1. As in the proof of Theorem 1,
we construct a bounded sequence u = (uk) such that
c . 3 3 r3 »
u.x € (Taco)B n (WE n m)\\cA. This leads to a contradiction,since

(Iaco)B N (WE h m C c

s - In constructing (uk) we only change the choice

of (kr) in the proof of Theorem 1 such that:
(a) the change does not affect the proof of u.x € (Taco)B\\cA;
(b) wu.x ¢ (WE N m).

Now we state this modification of the choice of (kr).

Let (pn) be an increasing sequence of seminorms which
generates the FK-topology on E . Since SR c E, the wiform norm topology
on ¢ is finer than the FK-topology on E restricted to o Thus we may

assume that

(1) pn(y) < |lyll, for n €N and y ¢ c, -

Since x ¢ WE N m, x belong to the weak closure (in E) of the convex hull P(x)
of the set {anln ¢ IN} . It follows from 1.3, Proposition 1 that the
closure of P(x) in E with respect to the FK-topology coincides with the

weak closure of P(x) in E. Hence there exists a sequence (x%) in ¢ such
that:

@ =", s fxll, for t €N ;

(3) x*+x in E with respect to the FK-topology (hence (xt) is

Cauchy in E with respect to the FK-topology).
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It follows from (3) that we can choose t; €IN such that

(al) pl(xt-xs) <-%5 for t,s >t

2 1

Choose kl €IN such that:

. tl

(.Yl) x =0 for kzk .
o]

j=1 as same as in the proof of Theorem 1.

Now we choose ny and (klj 1)

(3) implies that (x5  is pointwise Cauchy, and hence it follows

from (3) that wé can choose t2 ¢ tl) €N such that:

(o) p (xt—xs) <-jL for t,s =t
2 2 23
kl 1
_ t _s
(8,) kil |xk-xk] < >3 for t,szt, .

2 3

Now we choose k2(> kl) € N> such that:

t : .
2 = -
(Yz) x " =0 for kzk, ;
(az) E (lajk| + ijkl <1 for j = n -
k—k2

We choose n, and (ijZ)?=l as same as in the proof of Theorem 1.

We proceed to construct strictly increasing sequences (tr), (kr),

(o}
and (nr) of positive integers and increasing sequences (ijr)r=l’
j =1,2,... of non-negative integers. These sequences, in addition to

conditions (i) to (vi) in the proof of the Theorem 1, satisfy the

following conditions.

.. t s 1
(vii) Pr(x -x ) < s for s,t 2t , r = 1,2,... (see (al) and (az));



94,
kr—l

(viii) I xk-xkl <—Zy for s,;tzt, T= 2,3,.., (see (32));
k=1 2

t
(ix) xkr =0 for kzk_, r=12,.. (see (y) and (y,)).

Define bounded sequences u (uj) and v = (Vj) as same as

in the proof of Theorem 1. i.e., u

. . < s
g sin/r if kr =3jic< kr+ and

1
t

co
vy = sin/r if n_=j <n . Now we show that (x '.u)

1 r=1] 18 Cauchy

in E with respect to the FK-topology. Let € >0 and n €N . Choose

m (> n) such that:

[oe)

4 I -Lk<e/3;
k=m 2

(5) |sinyp - sinvp-1| < Sﬂiﬂ— for p = m.

-

Now, for q > p > m,

t t q-:l t t
(6) u.x P_u.x T T (u.x T u.x r+l).
I=p
t t
r r+l _ . .
For p<r < q, x & = 0 for k= kr and X =0 for k= kr+l by (ix),
and hence
(7) tr tr+l ( tr tr+l) (x +x )—u Xtr+l X
U.X =-Uu.X = (u.x "-u.x . -u. .
[l’kr—l] (kr-l,kr) [kr’kr+f
tr tr+l tr tr+l
= (u.x ~-u.x )'X[l K ]+sin¢r—l(x -X )°X(k k)
-1 r-1>r
t
- sin/T x X[k Lk .) (by the definition of (uk))
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tr t /’—‘ tI‘ tr+1
= (u.x "-u.x )Y + sinvr-1(x —x )X
[k, 4] (e 1okrer)
t t
- sin/T-1(x T=x r+1) X[k k) - sin/T x r+l X[k K_.)
r+l r+l
t t
= (u.x T-u.x ). X + sinvVr- (x -X ) X
[1,k (k )
b o 1 r-l’ r+l

) t
+ (sinvr-1 - sin/?)x

tr
=0 for k=k)).
*k r
For vy ¢ ¢ , by (1),
@ p ( = lyl, = Iyl
Hence, for (m<) p<r < q,
. tr ‘ t r—1
9 p [(u.x "=u.x D' 1= ¢
o J:1’kr—1] k=1
r-1
= Z
k=1
1
2r+1
For (m<) p<r<q,
t t
(10 pnIKsinJr;l x T-x r+1)-X(k " )]
Tr-1’"r+l
t t
r+1
=p [(x r—X )(X =X
n J:1’kr+1) J:]"krv-l

(since
kr+1)
tr t 1
| (% "=, ") |
t t
lxkr—xkr+1| (since |luf| = 1)
by (viii).
])] (since [sinvr-1] <



t t t t
< p, [(x Tox 1:ﬂ)‘x[l ] el T ™ X1k, o)
*Trel *Tr-1]
t t t t
< pr[x Tox r+1)] (since r=Zp>m>n and xkr,xkr+l

r-1 ¢t t
by (1) + 2 |x T "7 (by (8)
k=1

1 1 . T o
<<t I (by (vii) and (viii)) = = -
2 2 2
Also,
gq-1 t
(11) pn( T (sinvT-1 - sin/T)x r+1.x[k Kk ))
r=p r’r+l
q-1 t
< || T (sin/r=T - sin/D)x ”*1.x[k e oyl Gy @D
r=p r’r+l
Ertl
< sup |sinyr-1 - sin/r| [Ix I,
p=r<q '

Sﬂiﬂ_ . Hx“m = %- by (5) and (2) (since p > m).

From (6) and (7), for 4> P > m,

tp tq
pn(u.x -u.xX )
a-1 tr Crel tr Cr+1
=p (I [(u.x "—u.x ). X +sin/r-1(x ~~x
n =p [l’kr—l:I

t
+ (sin/T-1 - sin/D)x r+1.x[

96.

= >
0 for k = kr+

r+l

1
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< T (pn[(u.x r—u.x-r+l).x[l K ]]+pn[(sin¢r—l(x Tx ).x(k K
=p ' r-l r-1>"r+l
q-1 tr+1
+ pn( I (sinv/r-1-sin/T)x Ak .k ))
=p r’ r+l
sl g 1 €
< rC + =) +3 (by (9), (10), and (11))
r+l r 3
=p 2 2
>
< 2 3 —+E% (since P > m)
T 3
r=m 2
< ErEo e by )
3 3 e
by
Hence (u.x ) 1is Cauchy in E with respect to the FK-topology, and thus

t
. r . . -
converges to u.x since (u.x ) pointwise converges to u.x (by (3)).

To show that u.x € WE’ let f € E'. Then it follows from 1.4,
Theorem 5 that (f(ek)) € £, since c_C E. For convenience, let us write
¢, r ) T .
u.x =y for each r . Then 1limy = u.x in E with respect to the
r

FK~topology, and hence

[= o]
z f(ek)yi (since yr € ¢ for each 1),
k=1

(12) £(u.x) = lim £(y7) lim
T T

o0
Now we show that £f(u.x) z f(ek)ukxk. let € > 0. Since (f(ek)) €1
k=1

l’
there exists n €N such that

o

k €
(13) I |f(eN)] < .
k=n 4lix|l

r, | . .
Since (y’) 1is point-wise convergent to u.x, we can choose r €N
such that

n-1 X . c
(14) T |f(e )(_yk—ukxk)[ <% for rzr
=1

k 0
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t
For r €N, since y© = u.x °, ly7ll_ < Ix Tll, < Ixl, (by (2), and

o0

since |lul| = 1), and hence

(15) [y;—ukxkl < lyil + |ukxk| < 2|lxll, for k,r €WN.

Now, for r = T,

[+ o]

k r
lkilf(e )(yk-ukxk)l

1A

1'1;].| f( k r | e Kk r
e )(yk—ukxk)l-k z If(e )||yk—ukxk|
k=1 k=n

£

7+ 2, - g Gy 9, (9), and (3)

oo oo

Hence lim I f(ek)y; = I f(ek) Uy X and thus, by (12),
T k=1 k=1

o]

f(u.x) = L f(ek)ukxk. Therefore, u.x € WE .
k=1

Now using the same proof of Theorem 1, we can show that

¢
u.x € (TaCO)B\\CA .

1if k = j+1
) is given by t, = , Theorem 3

When To = (t ‘K
J 0 otherwise

jk

reduces to the following.

COROLLARY 1. Let B be an infinite matrix such that [[B|| < © and such
that each column of B belong to ¢, - Suppose E 1is an FK-space

containing ¢ - Then £, 1is G(ZY(aco)B‘ﬂ (WE N m))-sequentially complete.

When B = I, the Corollary 1 reduces to the following,which was

first obtained by Bennett and Kalton [4].



COROLLARY 2. If E 1is an FK-space containing o then 81 is

0(81,(aco) ﬂ’WE)—sequentially‘complete.

Now we establish the original bounded consistency theorem,

COROLLARY 2. (The bounded consistency theorem [9]).
Let A and B regular matrices, and suppose g Nmc o Then

. = - c -
lkm X lﬁm x for every x ¢ g N m.

Proof. let A and B regular matrices, and suppose q Nmc Cy

Letting E = cB,.it follows from Corollary 1 that 81 is

o(£y,(ac )y N (W N m))-sequentially complete. Since Wy N m=c Nm

(by 1.5, Theorem 2), (aco)B N (WB Nm) = <, N m and hence 81 is

B
0(£,,c_ N m)-complete. Since ¢ Nm¢c¢,, it follows from 2.3,
-1 oB ) oB — A
Theorem 2 that ¢ M mC ¢ . Now let x € g N m, Then
°B T O

¥-(1lim x)e € c N m< ¢ , and hence lim(x-(lim x)e) = 0,
B °8 °a A 5

i.e., lim x = lim x.
A B
Finally we show that Theorem 3 is still true if we replace
TacO by c, -

) be an infinite matrix such that |B|| =«

THEOREM 4. Let B = (b,

and such that every columm of B belongs to c, Suppose E 1is an

FK-space containing Coe Then 81 is O(Zl,co N WE 1 m) sequentially

B
complete.

Proof. Let B = (b,,) be an infinite matrix such that [B]| < =

jk

and such. that every column of B belongs to e, and let E be an

99.
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FK-space containing ¢, - Suppose A = (ajk) is an infinite matrix with

the same properties as B such that <, n WE NmCec
B.

A Since

c Cc N WE N m, (co n WE n mjg = Zl ,» and hence, as in the proof of

(o} 0

B

Theorem 1, it suffices to prove that ¢ N W_Nm¢c ¢
oB E — oA

Suppose there exists x = (xk) € s N WE N m such that lim x # 0.
- B

We may assume that lim x = 1. As in the proof of Theorem 3, we comstruct

a bounded sequence u = (uk) such that u.x ¢ (co n WE N m)\\\cA . This
B

leads to a contradiction, since ¢ NW. NmnCec .
oB E — A

As same as in the proof of Theorem 3, let (pn) be an increasing
sequence of seminorms which generates the FK~topology on E and (xt) a

sequence in ¢ such that
1 p ) syl for n €N and y €c_;
@ =, =l s
(3) x° > x in E with respect to the FK—topology.

Now,similar to the proof of Theorem 3, we can inductively

construct strictly increasing sequences (tr), (kr), and (nr) such that:

k_ - X
(1) max [ 2 (Ja.. |+ b, D+ = (a., | +b,. ) =—=
<s - jk jk <L jk jk r-1
nr..;]Snr+l k=1 k kr+1 2
. t _s _ .
(1) p (x'-x) < ST for s,t =t , r=12,...;
r-1
t s 1 _ .
(ii1) I ka-- | < 7 for s,;tzt, r= 2,3, 3

k=1 2



t

iv) xkr=0 for k=2 k_, r=1,2,... .

r

Define bounded sequences u = (_uj) and v

. : . = ot . < 3 .
in the proof of Theorem 3, i.e., uj sin/r if kr =3j < kr+l and

vj = sin/T if n_ =3 < n_q - Now as same as in the proof of

Theorem 3 we can show that u.x € WE N m.

Since x €c_ NWNm Bx €c_ and hence (Bx).v € ¢
og o o

Now as same as in the last part (from (7) to the end) of Theorem 1,

we can show that B(x,u) - (B.x).v ¢ c, (hence B(x.u) ¢ co) and

€
X.u }EcA. Therefore, =x.u ¢ COB\CA .

(vj) as same as

101.
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