A STUDY OF THE AVAILABILITY AND SERIALIZABILITY

IN A DISTRIBUTED DATABASE SYSTEM
by

David Wai-Lok Cheung
B.Sc., Chinese University of Hong Kong, 1971

M.Sc., Simon Fraser University, 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY -
in the School
of .

Computing Science

© David Wai-Lok Cheung 1988
SIMON FRASER UNIVERSITY

January 1988

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

Name: David Wai-Lok Cheung
Degree: Doctor of Philosophy

Title of Thesis: A Study of the Availability and Serializability
. in a Distributed Database System

Examining Committee:

Chairperson: Dr. Binay Bhattacharya
Senior Supervisor: Dr. Tiko Kameda
7 - \A 4 A 4 T IPUIVV

Dr. Arthur Lee Liestman

Dr. Wo-Shun Luk

ey 2l S B V.ot = A

Dr. Jia-Wei Han

P Vi P N VI o

External Examiner: Toshihide Ibaraki
Department of Applied Mathematics and Physics
Kyoto University, Japan

‘Date Approved: January 15, 1988

- §i -

PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend
my thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make partial or
single copies only for such users or in response to a request from the
library of any other university, or other educational institution, on
its own behalf or for one of its users, | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. It is understood that copying
or publication of this Qork for financial gain shall not be allowed

without my written permission.

Title of Thesis/Project/Extended Essay
A CTudY OF THE AVAILAZILITY Al
SERI AL =AGILITY &F (N & DISTRIBYTED

DATABAST SYSTEM

Author:

(signature)
DapA Wal— Lok C/-/?:'0N57

{name)

ABSTRACT

Replication of data objects enhances the reliability and availability of a distributed database
system. However, due to the inherent conflict between serializability and availability, if
serializability is to be guaranteed in a partitioned database system, degradation of availability is
inevitable. We first characterize serializable transaction executions in a partitioned database system,
by means of a graph theoretical method. We then derive an upper bound on the availability of a
database system with two partitions. This upper bound holds for a general class of transaction

distributions that satisfy the "weak uniformity assumption”.

Since it is impossible to simultaneously achieve serializability and high availability in a general
database system, we investigate database systems in which constraints are imposed on the read/write
activity of the transactions. In particular, we propose a fragmented database system, in which
transactions are classified as either local or global. This model can be used to realize wide-area
distributed database systems, in which messages encounter substantial communication delays. We
argue that a transaction scheduling policy that favors local transactions over global transactions
should be adopted in wide-area distributed database systems. Two schemes are proposed for

concurrency control in this kind of system.

The first scheme, Global Timestamp Order Certification, uses an "active" approach, and sends
out requests for global transactions to be certified by remote sites. The second scheme, Global
Timestamp Order Synchronization, adopts a "passive" approach in which a global transaction is
made to wait until it is known that the transaction has read consistent data object values from other
sites. In both approaches, no global transaction blocks a local transaction. Moreover, local

transactions are executed as if they were in the single-site environment, in which communication

delays are négligible.

ACKNOWLEDGEMENTS

I wish to express special appreciation and gratitude to Professor Tiko Kameda, my senior
supervisor, for his constant guidance, advice, suppon and availability. Without his support and
supervision which I enjoyed during the last four years of my study at Simon Fraser, the completion
of this thesis would not have been possible. His insistence on precision and clarity in writing has

been immensely helpful in the preparation of this thesis.

I am also indebted to Dr. Wo-shun Luk, Dr. Arthur Liestman and Dr. Jia-wei Han, not only for
their reading and commenting on this thesis, but also for their constant advice and encouragement.
Thanks are also due to Professor Toshihide Ibaraki, the external examiner of this thesis, for his

valuable and stimulating suggestions and comments.

My thanks go also to many of the graduate students in the School of Computing Science at
Simon Fraser, who either read and commented parts of my thesis, or provided me with various kinds
of help when they were most needed: Ada Fu, Steven Yap, Mimi Kao, Frank Tong, Patta

Pattabhiraman, Siu-Cheung Chau, Wuyi Wu and many others.

Finally, this work is dedicated to my wife, Juana. She gave me love and support, and
encouraged my endeavour to study at an age when most men have to work. This thesis is also
dedicated to my parents, brothers and sisters. They have been caring so much about me, my wife and

my children.

= Y =

TABLE OF CONTENTS

ACKNOWIEAZEMENLS ...ooovirieicriremriniecenirtisrisisisresessisis s sassessesses s ssastestssnssseasasssssessnssssnsssssnesussnses
TaADIE Of COMNIENLSocvevreierreirreerrrrenresessassressnesessessstesessseossssamssesssiossossosssostessnssssssasessassesrassassasnes
LISt Of FIZUIES ..ccueiuivrrieerrieecrestesinsiesnestesesceessinestsnnesssasssssssssesessessessesssssssnsssass suassssnsassesssnsesssaasssss
Chapter One. INTRODUCTIONccccovvnimniiniineiniiiiisssneis e stesssssssssssassassssssssscsssscases
1.1. Replicated Database Managementcccocireiiiniinniesniinnineseeesnsiesennenssssssssssnsassses
1.2, GOAlS OF the thESIS ...vvieerieieeieirrcreirntirnreteeseesenensceresenssessesessnsensshessesesessansssesssessassnsarassonsans
1.3. Overview 0Of the thESiS ...ccccvveerininiiininiiiienneens s s e e e srsssesaasnens

Chapter Two. CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEM

..

2.1. Concurrency Controlccocemimniininnnninniisoscscsnn, e s
2.2. Serializability in a Single Site Database SYSIEMicceceevirircninrinnisneniincinsnrenesensens
2.3. Disjoint-Interval TOPOIOZICAl SOITcccoverriiicerrernrreinieeesrerrensstsesesstessessensssssressssssessesssns
2.4. Serializability in a Distributed Database SYSICIMLcocvicieevcrninniiiccmsecnnnenneinisesiiniens
Chapter Three. COPING WITH PARTITION FAILUREScccovnininininincrenesnsiesnnnns
3.1, Partition Failurecccvvevimminiininiiiiic it ssnessessssssnssessssssssassssses
3.2. Pessimistic Approach to Dealing witﬁ Partition Failurescecovveveveirnesinennnniinnisnsenns

3.3. Optimistic Approach to Dealing with Partition Failurescocovevrinnniinnenienennnenn
, _

e Y a=

ii

11

13

18

18

20

24

3.4, Transaction-CIUSLET LOEcccoviiiiiiiiiiniinciniiincniene st rerstes s s s atas e s s sssaninans 26
3.5. Characterization of Executions Admissible under Partition Failuresccccovnennnen. 29
Chapter Four, LIMITATION ON AVAILABILITYcccoceverinmeinsniseniesnimsmnnssssssssseees 38
4.1. Availability in Partitioned Databasecoceueene rebeeretete e sateree s sa e e st s b sassanebesansstnehe 38
4.2. Uniform Transaction Distribution and AVailabilitycce.eeeeesresessessessssesssensrsesses 42
4.3, A General Upper Bound on Availabilityc.c.cceceverveincncninniinnc s 44
Chapter Five. TECHNIQUES FOR ACHIEVING HIGH AVAILABILITYccooceinniiivinnne 49
5.1. Trade-off between Serializability and Availabilityccccocminrinirnnernrnninninnnn. 49
5.2. A Highly Available Distributed Database SYStemcccecernrercmnrnncnmnnennnioninenn. 50
5.3. Fragmented Distributed Database SYStEMc.cocvvveiiriiisiniioninicnsnenemnenmmeneens 52
5.4. Transaction Processing with a Static Read Access Graphcvninnnininecicininns 56

Chapter Six. A CONCURRENCY CONTROL SCHEME FOR WIDE-AREA DISTRI-

BUTED DATABASE SYSTEMcovvninnevnneesscnreinnas eeeereseseeaet st srer e beaenens 63
6.1. A Model for Wide-Area Distributed Database SyStemscccvvervecvenvsneisiccneisenvensinenns 63
6.2. Architecture for Wide-Area Distributed Database System (WADDS)coovvennninienees 69
6.3. Correctness of Fragmented Executions .. 74
6.4. An Algorithm to Control Fragmented EXECULIONcccccerveerrverrecnrccrnnseseesesseseesessesnseesnes 86
6.5. Performance ANQALYSISc.ccocevieninininenieienninrieneneniesssssssssssssossosssssessssnesssssosssssssssaeans 102
6.6. Partition Failures in a Fragmented Database SYSIEMcccovereererrerrecrenrecsenineccsesnosnssenns 104

Chapter Seven. ANOTHER CONCURRENCY CONTROL SCHEME FOR FRAGMENT-

ED EXECUTION ..ottt st stsnssessssssenesssassmsssesssssasasssssones 109
7.1. Another Scheme to Control Fragmented EXECULONcccocieverirrensecvenssninnnssnininieennns 109
7.2. AN ATCHIEORITE fOF GTOS ...orerorreseesesressessnesssssss s s s s 111

- Vi -

7.3. Timestamp and Virtual Clock Managementooeeereererrmrreeeneesresesiensessessensossessosesns

7.4. Global Timestamp Ordering Synchronization AlZorithmcceevevereveeeereeiereieneserennns

7.5. COITECINESS Of GTOScooverrreeenireeinestreererrrsssserssesssessse e ssssssessesssessesessssessserssssnsssssns

7.6. Performance 0f GTOSocvcvvvviecerneniniineninnsseseeesesesesesesssesessesssessssessasssssesessssssssssees

CONCIUSION ...ovirinniiiiiriiiictrte ettt s secsisestesesesnastsseses s beser s s s sessnsesessesasesasserasssessrnssesessrsnnen

RELEIENCES ...ouvvvncecniieeininirieters st etrer e s e ss et s st e e e s se s ebabe bbb sasasassbabesonsestesssnsnns
]

-- vii --

116

125

128

130

134

136

LIST OF FIGURES

Figure 2.1.1 Illustration for Example 2.1.1. s
Figure 2.2.1 Transaction Read-from graphs. ...
Figure 2.3.1 TIO graph and DITS. ...ttt nssasess
Figure 2.4.1 Translation of transactions into posets of physical operations.c.ccccvceuennes
FIgure 2.4.2 ATPIOZ. ottt st sse s e s s s sn s s s s e s sasues vrvenneone
Figure 2.4.3 TIO graphof arplog L and DITS. ..o
Figure 3.1.1 Rplog L and TIO(L).ccoovvmmiimmniciiiiinieinieiitiieneiestesssassnessesiessessesansnons
Figure 3.2.1 Ilustration for EXample 3.2.1. ..ccocoevuiveiimriisinsnssessesensssssssssssesesssesesscesesasens
Figure 3.3.1(a-d) Illustration for Example 3.3.1.ccocviviviinnnnninninnniniiiieeennens
Figure 3.3.1(e-f) Ilustration for Example 3.3.1. ..ol e
Figure 3.4.1 Iustration for Example 3.4.1. ... stneeesan s
Figure 3.4.2 Iustration for Example 3.4.2.ccovrriiiniccncenniniiinsesmnieninesnes
Figure 3.5.1 Illustration for Examples 3.5.1 and 3.5.2.
Figure 3.5.2 An illustration for the Non-Selective ASSUMPLON.cccccovevervmniererrseseesesneneens
Figure 4.1.1 Acceptance RALO.cccocveveiririiiceeirieneeee st rnenseeesvest st s csesssssrasssssnesstanessns
Figure 4.2.1 Two PIO Sraphs.cccciivmiiiniercecreniriinnneseensresrssssesessssssssssssnsssaesssessassssessosssses
Figure 4,3.1 Two DITS’S fOr PIO(L). ...oovviieeieriieiecieere e reeseneese st norensassnesssesassassssesansasosns
Figure 4.3.2 Inclusion relationships.‘ ..
Figure 5.2.1 Architecture 0Of SHARD. ...ttt setsresncsse s s sessassssssssasisane

Figure 53.1 A fragmented database system.

= Vil ==

140

141

142

143

144

144

145

145

146

147

148

149

150

151

152

153

154

155

156

157

'Figure 5.4.1 Iustration for EXAMPIE 5.4.1.c.ueveeeveeeeerrieseseenssssssssssssssssessaenessssssssessens
Figure 5.4.2(2-C) THree RAG S, ..ccviviirerrerirreenienienirnnesressssssesesessesssessssssosssssesssasseessessensesens
FIgure 5.4.2(d) ARAG. ..iiieeceecnneeeeeseseseneseeessssessssssssesessosssssssssesssessssssensssessssacsess
Figure 5.4.3 RAG of Example 54.3.ccovveeneennes eereseseeereesttenaeas e et ssnansane et te st st e aennann
Figure 5.4.4(a-b) lustration for Example 5.4.4. ettt
Figure 5.4.4(c-d) Illustration for Example 5.4.4.cccociririneninninrrnnicnenisieinesnescesnnns
Figure 5.4.5 RAG for a fragmented database.ccocvvveerenrerneeeveerernseessirseesseesieeseeseeeseesesnees
Figure 6.1.1 IMustration for EXample 6.1.1.cccccovvinrinnennienensnenennnnscsmsesessessesoseecesenes
Figure 6.1.2 (a-b) Illustration for Example 6.1.2.c.oovcvveivinrrnivenreeineneerersresresenssessenseenes
Figure 6.1.2 (c-d) INMustration for Example 6.1.2.ccccovvniiverinicnenienneeneecrenenenssonesssennens
Figure 6.2.1 An architecture for a single-site database.
Figure 6.2.2 An architecture for GTOC.oovivviriieiieennierrereteereesteressessssessersssassssesseaens
Figure 6.3.1 (a-b) Precedence edge and gldbal-read edge. ...ooovveen. ..
Figure 6.3.1 (c-d) Two kinds of induced €dges.cccvoevrveevierererererenenrnrnneieeresenesssesssaesens
Figure 6.3.2 A GOS SIaPh. ..ot etnssee s st e s s ebbesnesbesbersessessennens
FIgure 6.4.1 A GOS Graph. ..ocuccccvcviiirrrieieneeie e s eree s ertesessesesassassesassessessssssaensesesssssssones
FIigure 6.4.2 A GOS Braph. ..ottt sessssessssessesersessssessstessessrsessasones
FIZure 6.4.3 DEAALOCK.cccveeeeeeeeerrreereiese ettt cr et st ssesesrsssesssrssessessesssressonsssassasenss
Figure 7.2.1 An architecture for GTOS. ..ot srebeeese e ersseerae s
Figure 7.2.2 Compatibility among h-1ocks and 1-10CKS.cccoervverrrrerieieninereineeeserseenenes
Figure 7.3.1 Update and timeout MESSALES.ocuvvereirrrinrinriasrsrinsinissssassssssssssssesssssesssssanns
Figure 7.3.2 Deadlock and @ reMEdY.cccecevereeernrerivserernisnesssesissssesessesesesessessssssssesssessesasens

i

Figure 7.3.3 Global-start messages and global-completion messages.co.eoevvvevverereneennes

an X ==

158

159

160

160

161

162

163

164

165

166

167

168

169

170

171

172

172

173

174

175

176

177

178

Figure 7.4.1 Time Chart of Transaction EXCCULON.veeveeerrererressseessseessseessessssssseens 179

= X ==

CHAPTER 1

INTRODUCTION

1.1. Replicated Database Management

Replication of a database in terms of a backup copy has long been used as a means to achieve
higher reliability. The backup copy is not normally used when the master copy is accessible; it is

used only when a disastrous failure has destroyed the master copy.

In a distributed database system, replication provides an additional advantége besides
reliability, i.e., availability. In this thesis, we define availability as 1 minus the fraction of
transactions that cannot be executed due to inaccessibility of some data objects, caused by
communication failure. (Availability will be formally defined in Chapter 4.) If there are multiple
copies of a data object located at different sites, this data object can be quickly accessed locally,

though it cannot always be updated.

Unfortunately, replication is not cheap. Primarily, there are two kinds of costs associated with
replication. The first is incurred in maintaining (storage) and updating multiple copies. This cost is
intrinsic and cannot be avoided. The second are delays incurred in the concurrency control of
distributed transaction execution, in other words, in synchronizing read/write operations at different

sites to ensure some kind of correctness.

If the possibility of failure is taken into account, the issue of concurrency control becomes

much more ¢omplicated. The worst kind of failure, as far as concurrency control is concemed, is

w1

chapter one ' section 1.1

network partitioning. When a network partitions, sites in different partitions cannot communicate
with each other. A site in a partition has no knowledge about the activity in the other partitions.
Therefore, it is no longer possible to synchronize the operations at all the sites through
communication. As a result, the activity within a partition must be restricted in order to maintain
global serializability for an execution which consists of operations executed in more than one

partition. This restriction degrades availability.

1.2. Goals of the thesis

The first goal of this thesis is to study the availability of a replicated database under partition
failures. Much work has been done in designing concurrency control schemes that achieve good
availability for distributed database systems which are prone to partitioning failures
[ASC8S, AbT86, Dav84, Gif79, Miw82, SkW84]. However, to the best of our knowledge, no work
has been done to characterize transaction executions admissible uﬁder a partition failure. In this
thesis, we first attempt a graph theoretical characterization for such executions. Then we will
characterize the executions over a partitioned database system generated by an important class of
protocols, called prevention protocols. We shall also derivé a theoretical upper bound on the
availability of a replicated database system under partition failures. It will be demonstrated that the

upper bound is achievable in some cases.

In a replicated database system, availability and serializability appear to be two conflicting
goals. An approach taken by several researchers is to increase availability by abandoning the
correctness criterion of serializability [BGR83,BIK85,GAB83,LBSS6, SBKS85, Sar86]. However,
this approach introduces a new difficulty. It becomes difficult to specify the correctness of an

execution. In some cases, a compensation of incorrect execution necessitates cascading rollbacks.

-2

chapter one g : section 1.2

Without giving up the generality of the database system model under consideration, it is
unlikely that high availability and serializability can be achieved simultaneously. For this purpose, a
restricted model, the fragmented database system, has been proposed by Garcia-Molina and Kogan
[GaK87]. This model, though not general, is applicable to many real-life situations. The
significance of their work is that it demonstrates a possible way to achieve both high availability and
serializability by restricting the activity allowed in a transaction. They have designed some
concurrency control algorithms which use a fixed "access pattern”. In particular, they do not allow
any cycle in the directed graph representing the access pattern. In this thesis, we shall propose
algorithms to solve a more general case where the access pattern can be any directed graph. Also,
the algorithms proposed in this thesis are dynamic in the sense that it is not necessary to fix the
access patiern prior to an execution of the algorithms. These algorithms are particularly useful when
applied to a wide-area distributed database, in which communication delays are significant. (Chapter

5).

1.3. Overview of the thesis

In Chapter 2, we will first illustrate an anomaly in a database system, if concurrency control is
not provided. Then a correctness criterion, serializability, for an execution of transactions in a
single-site database system will be defined. We will show that the serializability of an execution can
be characterized by its transaction IO graph, which is a directed graph containing information on
the read-from relation among transactions in the execution. We will also generalize this

characterization to a distributed database system.

In Chapter 3, we will study the characteristics of an execution generated in a partitioned

database sysfem. We will show that an execution generated by a prevention protocol in a

-3

chapter one ‘ section 1.3

partitioned database system can be characterized by its partition IO graph, which is a modification

of its transaction 1O graph.

In Chapter 4, we will formally define the availability for a transaction distribution. Then we
will discuss an upper bound on the availability for a transaction distribution found in [COK86]. The
transaction distributioﬁs studied in [COK86] have to satisfy the uniformity assumption. We
propose a more general assumption, the weak uniformity assumption. We will also derive an upper
bound on the availability of transaction distributions which satisfy this assumption. In the derivation

of this upper bound, the characteristics of the partition I0 graph found in Chapter 3 are used.

Since there is an upper bound on the availability of a transaction distribution, it is not possible
to achieve both serializability and full (100%) availability in a distributed database system which is
susceptible to partition failures. A new approach to solve this dilemma is to restrict the behaviour of
the transactions submitted to a distributed database system. In Chapter 5, a new model, fragmented
database system, will be described along this line. We will discuss two schemes proposed in
[KoG87], which achieve both serializability and high availability in a fragmented database system.

These two schemes adopt fixed "access patterns” which are rather restrictive.

In Chapter 6, we will propose a concurrency control scheme for a fragmented database system,
in which the access pattern can be any directed graph. Since the condition on the access pattern is
relaxed, this scheme is more general then those proposed in [KoG87]. We will show that this
scheme can be applied to wide-area distributed database systems, for which conventional
concurrency control schemes are not feasible because of large communication delays. This
concurrency control scheme is called "Global Timestamp Order Certiﬁcétion". This scheme is an
"active" scheme in the sense that timestamps of data objects read by a transaction at a site are sent to
other sites for certification. it is basically a distributive protocol in which the values read by a

transaction are certified by remote sites.

i -

chapter one ’ section 1.3

In Chapter 7, another scheme for concurrency control for a fragmented database is proposed.
This scheme is called "Global Timestamp Order Synchronization". In this scheme, transactions are
serialized by their timestamps. It is a "passive"” schéme in the sense that a transaction does not send
out requests to other sites but just waits until it is known that all the values the transaction has read

are "correct”.

-5

CHAPTER 2

CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS

2.1. Concurrency Control

Concﬁrrency control is the activity of coordinating concurrent accesses to a database. While
several users access a database concurrently, each should have the illusion that he or she is executing
alone on a dedicated system. The main technical difficulty in attaining this goal is how to prevent
database updates performed by one user from "interfering" with the database retrievals and updates

performed by others.

Let us use an example to illustrate "interference", which happens because concurrent accesses

to a database are not properly controlled.

Example 2.1.1. We consider as an example an on-line electronic funds transfer system.
Suppose that two customers A and B are simultaneously acces.sing their joint accounts by executing
the following two tranéactions.

Customer A (who wants to transfer $1000 from the savings account to the checking account) : reads
the balance in the savings account, subtracts one thousand dollars from it, writes the updated balance
back to the savings account, reads the balance in the checking account, adds one thousand dollars to
it, and writes the updated balance back to the checking account.

Customer B (who wants to print the total balance in the savings and checking accounts) : reads the

savings account, reads the checking account, and prints the total of the two readings.

.-

chapter two : section 2.1

In the absence of concurrency control, these two transactions could interfere with each other as
shown in Figure 2.1.1. A’s transaction reads the savings account balance, subtracts $1000 and writes
the update back into the database. Next, B’s tmﬁsaction reads the balances in the savings and
checking accounts and prints out the total. Then A’s transaction finishes the funds transfer by
reading the checking account, adding $1000, and ﬁnally storing the update into the database. Even
though the final values in the two accounts are correct, B’s transaction prints an incorrect total, which

is $1000 short. This is surely not acceptable. O

The above example does not exhaust all possible ways in which concurrent users can interfere
with each other. However, it explains why concurrency control is necessary in database

management,

In Section 2.2, a correctness criterion, serializability, for concurrency control in a single-site
database system is introduced. In Section 2.3, a transaction IO graph (TIO graph) is used to
characterize the serializability of an execution. Ii is shown in {[IKMS87] that the transaction IO graph
of a serializable execution must have a disjoint interval topological sort (DITS). In Section 2.4,
the notions of TIO graph and DITS are extended to distributed database systems and a result similar

to the one in [IKM87] is derived.

2.2, Serializability in a Single Site Database System

Serializability theory deals with the correctness of a set of concurrently executing transactions.
It also provides a guiding principle for designing concurrency control algorithms
[BSW79,BeG81, Cas81,IKM87,Pap79]. In this section, we briefly review serializability theory,

based on the work contained in [IKM87].

. -

chapter two : section 2.2

A database system consists of a set D of data objects and a set of transactions
T={To,T1,T2..., Tr}. Toand Ty are two fictitious transactions called the initial transaction and
the final transaction, respectively. Transaction T is a write only transaction that "writes" all the
data objects in D before any other transaction starts, and T is a read-only transaction which "reads"
all data objects after all the other transactions have completed. A read operation R;[X] of
transaction T; returns a value of data object X, and a write operation W;[X] of transaction T; updates
the value of X. Sometimes, we use R;[A], where A <D, to represent a set of read operations
{Ri[X11X € A}. Similarly, W;[A] is used to represent a set of write operations {W;[X]11X € A}.

Abbreviations such as R;[X, Y] for R;[{X,Y }] and W;[X, Y] for W;[{X, Y }] are used in the following.

The execution of a transaction T; € T is modeled by a totally ordered set T; = (i, <;), where Z;
is the set of read and write operations issued by transaction T;, and <; is a total order on X,

representing the order in which these operations are executed.

For a set of transactions T = {To, T1, Ty, ..., Ty}, where T; = (Z;, <i), i =0, 1,..., f, let Z(T)
denote the set of all the read and write operations of the transactions in T. A dbs log (or simply a
log, history or execution) over T represents an execution of Ty, ..., Ty. More formally, a log over
T is a totally ordered set L = (£(T), <), where (1) Z(T) =/ Zi; @) Uio<i €< ; (3) for every
A[X]e Xy and every B[Y]e Z(T)—-Zo, A[X] < B[Y] holds; and (4) all pairs of conflicting operations
in X(T) are < related. (Two operations on the same data objects are said to conflict, if one of them is
a write operation). In order to represent the total order <, we simply write the operations from left to

right in the order of <. For two operations A and B in X(T), we say that A precedes B inL ifA <B.

Let L be a log over T. Transaction T; reads X from transaction T; if (1) W;[X] and R;[X] are
in Z(T); (2) Wi[X]1<R;[X]; and (3) no W,[X] falls between these two operations with respect to <.

Two logs L and L’ are said to be equivalent, written L =L’, if for each data object X and indices i

i

-8

chapter two ’ section 2.2

énd Jj transaction T; reads X from transaction 7; in L if and only if T; reads X from T; in L".

A serial log is a log such that for every pair of transactions T; and T;, either all of T;'s
operations precede all of T;’s, or vice versa. A log L is serializable, if there exists a serial log L’
such that L =L°, SR denotes the set of all serializable Iogs. We use [T1T, - - - T,] to denote the serial
log in which all the operations of transaction T; are clustered before all the operations of T;,,, for
i=12,---,n-1.

Example 2.2.1. The following log L, is clearly serial.

Ly=WolX,YIR\[XIW\[YIRAX IW X Y IR 3[X TW 3[Y IR [X Y].
Consider a non-serial log L ,:

La=WolX,YIR\1[X]RAXIW2AX YIR3[XIW [YIW3[Y IR/ [X Y]

In L,, operation W,[Y] is executed after an operation, i.e., R3[X1, of Ts. However, the delayed
execution of W[Y] in L, compared with L, does not affect the read-from relation between any two
transactions in the log. It is easy to see that the two logs L, and L, are equivalent and therefore L, is

serializable. O

In order to represent the read-from relation implied by a log, a directed graph is constructed.
Let L = (X(T), <) be a log over a set T of transactions. The transaction read-from graph (TRF
graph, for short) [IKM87] for L, denoted by TRF(L), has a node set T and an arc set A. If a
transaction T; reads X from T; in L, an arc (T;,T;) € A labeled by X is introduced. This arc is
denoted by (T;, T;):X. There are no other nodes or arcs in TRF(L). If follows immediately from

definition that two logs L, and L , are equivalent if and only if TRF (L,)=TRF (L>).

Example 2.2.2. Consider a serial log L :

—-9..

chapter two ' section 2,2

L =WlX,YIR\[XIWI[YIR2AX IR s[Y IWs[Y IR, [X, Y).
Figure 2.2.1(a) shows TRF (L). O

An interval of a TRF graph is a set of all arcs that have the same label and originate from the
same node. For example, the three arcs, (T, T1):X, (To, T2):X and (T, Tr):X form an interval in

Figure 2.2.1(a). The arc (T, T3):Y by itself is an interval.

In Figure 2.2.1(a), we have intentionally placed the nodes in the serial order implied by L. Itis
observed that the intervals in TRF (L) which have the same label do not "overlap”. For example, the
interval labeled by X spans from T, to Ty, (i.e., the longest arc in this interval goes from T to Ty),
and it is the only interval labeled by X. There are two intervals labeled by Y. The first one spans
from T, to T3, the second one spans from T3 to Ty, and these two intervals are disjoint. (Two
intervals are disjoint, if the sets of nodes ordered between the first and the last nodes, inclusively, of
the two intervals contain at most one node in common). It is generally true that the TRF graph of
any serial log, with their nodes ordered according to the order of thé transactions in the log, has no

overlapping interval with the same label [IKM87].

However, it is noted that the converse is not true in general. For example, log L; in the
following example is not serializable, although the nodes in TRF (L) can be arranged linearly so that

there is no overlapping interval with the same label in the resulting arrangement.

Example 2.2.3. The TRF graph, TRF (L ;), for
L3=WolXIR\[XIW3 XWX IRLIXIWLIXIR([X],

is shown in Figure 2.2.1(b). With the order of the nodes given in Figure 2.2.1(b), it is observed that
no two intervals with the same label overlap. However, from the following observation, it can be
seen that L, is not serializable. T, reads X from T,; therefore, T, must be serialized before T5.

Hence, only the serial logs [ToTsT1ToTy], [ToT1TsT2T¢] and [ToT1T2T3T7] need be considered. It

-10--

chapter two ’ section 2.2

can be checked that none of these three logs is equivalent to L3. Hence L is not serializable. O

It turns out that the non-serializability of L, can be detected if its TRF graph i§ slightly
modified. In alog, a write operation which creates a value that is never read by any other transaction
is said to be useless. For the useless write W4[X] in Example 2.2.3, if a dummy node T3 and a
dummy arc (T3, T3):X are added to the TRF (L), then there always exist two overlapping intervals
labeled by X, no matter what serial order is used to arrange the nodes. (See Figure 2.2.1(c)). This
observation is formalized and used in the next section to state a necessary and sufficient condition for

an execution to be serializable.

2.3. Disjoint-Interval Topological Sort

As was explained in the last section, the notion of TRF graph has to be extended in order to

define a necessary and sufficient condition for a log to be serializable.

-

Definition 2.3.1 [IKM87]. Let L =(X(T),<) be a log over a set T of transactions. The
transaction 10 graph (TIO graph, for short) for L, denoted by T/0 (L), is an arc-labeled directed
graph with the node set T U T’, where T’ consists of dummy nodes as defined below, and the arc set
A. If T; reads X from T;, there is an arc (T}, T;) € A labeled by X. If W;[Y] is a useless write, then
we introduce a dummy node T;' € T’ together with a dummy arc from T; to T; labeled by Y. There is

no other node or arc in 770 (L.). O

Example 2.3.1. Consider log L, in Example 2.2.1 again. The TIO graph of Lo, TIO (L), is
shown in Figure 2.3.1(a). Note that there are three useless writes, WolY], W1[Y] and W[Y]. Because

of these useless writes, three dummy nodes T{, T3 and T3 have been introduced. O

For any two logs L, and Lo, TRF (L) =TRF (L) if and only if TI0 (L) = TIO (L,;). Hence, the

equivalence (;f logs can also be tested by their TIO graphs.

11 --

chapter two ‘ section 2.3

Example 2.3.2. The TIO graph of L, in Figure 2.3.1(a) can be rearranged as in Figure 2.3.1(b),
in which no two intervals with the same label overlap. In fact, the first interval of X spans from T to
T, and the second interval of X spans from T, to T;. So, these two intervals do not overlap.

Similarly, the intervals labeled by Y are all disjoint. O
The property of disjoint intervals is used below in a characterization of serializable executions.

Definition 2.3.2 [[KM87]. Let L be a log. A total ordered « on the set of nodes of TIO (L) is a

disjoint-interval topological sort (DITS, for short), if it satisfies the following two conditions:
(1) ifT; < Tj, then there is no path from T; to T; in TIO (L), and

(2) if T, < T; and there are two arcs labeled by X from T, to T; and T; to Ty in TIO(L) (j # k),

thenT; « T;.0

Intuitively, if 710 (L) has a DITS, then it can be ordered linearly from left to right by the order
<, so that all the arcs are directed from left to right (condition (1)), and no two intervals labeled with
the same data object overlap (condition (2)). The following theorem characterizes a serializable

execution.

Theorem 2.3.1 [IKM871. A log L is serializable if and only if TIO(L) has a DITS which orders

Ty first and Ty last. O

Example 2.3.3. Consider log L, of Example 2.2.1 again. TIO(L,) has a DITS as shown in
Figure 2.3.1(b). Therefore L, is serializable and the order of the transactions in the serial log implied

by the DITS is To, T1, T3, T3, Ty. 00

Theorem 2.3.1 characterizes a serializable log in a single-site database system (sometime called
centralized database system). This result will be generalized to the distributed case in the next

section,

-12 .-

chapter two ‘ section 2,3

2.4. Serializability in a Distributed Database System

In a distributed database system, data objects are often replicated at different sites. The copy of
a data object X at site i is denoted by X;. A data object and its copies are called logical data object
and physical data objects, respectively. In general, when we use the term "data object”, we refer to
a logical data object. When we use the term "coby", we refer to a physical data object. When a
transaction T; executes, the system uses a translation function 7; to translate logical operations into
physical operations, i.c., W;{X] is translated to W;[X,], Wi[Xs], - - -, Wi[X,], where X,, ---, X, are
some copies of X and R;[X] is translated into R;[X.] for some copy X. of X. (Normally, W;[X] is
translated to physical write operations on all the copies of X. However, in some cases, only a subset
of all the copies are written. For example, under a partition failure, a write operation W;[X] may be
translated to physical write operations on the subset of accessible physical data objects representing
X). Under translation 7;, transaction T; is mapped to a partially order set (poset, for short) of
physical operations in 1;(X;), where ; is the set of logical operations in T;. For a logical operation A

in X;, the operations in 1;(A) are said to be associated with each other as well as to A.

Example 2.4.1 In Figure 2.4.1(a), a transaction T; = R [X IR ;[Z]W,[X] is translated into a poset
of operations executed distributively at three different sites §,, S, and S,. Similarly, transactions
To=R,[X1W,[Y] and T3=R[Z]IW,[YIW,[Z] are translated into two posets of operations shown in

Figure 2.4.1(b) and (c), respectively. 0

The execution of a set of transactions in a distributed database system with replicated data
objects can be modeled by a replicated log [BeG81]. A replicated log (or a rp log, for short) over a
set T of transactions {T; = (%;, <;)} is a poset L = (X(T), <) such that (1) Z(T) =_/oT:(Z:), where 7;
is the translation function for T;; (2) for each i and any two operations p; and ¢; in &;, if a € T:(p;),

b € 1:(qi), pi <i ¢; and the physical copies accessed by a and b belong to the same site, then a < b;

3

—-13 -

chapter two ’ section 2.4

(3) all pairs of conflicting physical operations are < related (two physical operations conflict if they
operate on the same physical copy of a data object and at least one of them is a write operation); and
(4) as in a centralized database, T contains two ﬁctitiéus transactions To and Ty. T is translated to a
set of write operations, one for each copy of each object, and it precedes all other operations on that
copy with respect to <. Similarly, T is translated to a set of physical read operations, one for each
logical data object. Such a read operation is preceded by all physical write operations on the copies

of the corresponding logical data object.

We now give intuitive meanings of the above four conditions. Condition (1) states that each
physical operation be a result of translation from a logical operation submitted by a transaction.
Note that in a 1p log, X(T) represents a set of physical operations, not a set of logical operations as in
the case of a log in a single-site database. Condition (2) states that the rp log preserves the order
among the operations of each transaction. This condition is slightly more general than the condition
used for defining a rp log in [BeG81)]. Condition (3) states that the order among conflicting
operations must be specified. Condition (4) states that each copy read in L should have been given
some value, and that, after the completion of the execution, only one value for each logical data

object updated in L can be read by any subsequent read operation.

Example 2.4.2. Figure 2.4.2 shows a 1p log L for the three transactions given in Example
2.4.1. The arcs in the graph indicate the partial order among the operations in the obvious way. Note
that even if A < B for physical opérations A and B, if there is a path from A to B, no arc is drawn

from A to B in the figure. O

A transaction T; reads X from another transaction T; in a rp log L = (X(T), <) if there exists a
copy X, such that (1) W;[X,] and R;([X,] are operations in X(T); (2) W;[X,] < R;[X,); and (3) there is
no Wi[X,] such that W;[X,] < W,[X,] < R;[X,]. Inthe above case, transaction T; is also said to have

read a physical data object (or a copy) X, from T;.

- 14 --

chapter two ' section 2.4

Serial logs we use in connection with rp logs are over logical operations. Thus in a serial log, it
is as if the transactions were executed in a single-site database, which maintains only one copy of
each data object. For example, Wo[X,Y,Z]R1[X,Z]W1[X]R2[X]W2[Y]R s[ZIW3Y ZIRs[X,Y,Z] is a
serial log for the transactions in Example 2.4.2. This kind of serial log, in which data objects
accessed by an operation no longer have location indices, is called 1 copy serial log (or 1C serial

log, for short).

A rp log L, is equivalent to another log L, which is either a rp log or a 1C serial log, if both
L, and L, have the same read-from relation. A rp log is serializable if it is equivalent to a 1C serial
log over the same set of transactions. As in the case of a single site database system, in a distributed
database system, we use [TT,---T,] to denote a 1C serial log in which the operations from the

transactions are clustered in the order Ty, T3, « - -, T,.

Note that, a rp log in which transactions are executed serially, as shown in the following

example, may not be equivalent to a 1C serial log. -

Example 2.4.3. Consider a rp log
L =W o[Xa Xp,Ye YalR 1\ [X W\ [YLIR (Y IW o[X, IR, [X, X3 Y Y al,

over transactions T, =R;[X]W,[Y] and T,=R,[Y]W,[X]. Note that L, is a rp log in which the
transactions are executed serially. However, it is not equivalent to the 1C serial log (T T T2T¥],

because in L, transaction T, reads Y from T instead of T,. 0

In the above example, L, is not equivalent to a serial execution in which each transaction sees
all the changes made by the transactions executed before it. This is why 1C serial log is used in

defining serializability for rp logs.

In order to generalize Theorem 2.3.1 to rp logs, we must distinguish between logical and

physical data bbjects in defining the transaction 10 graph in the distributed context. IfinarploglL =

15 --

chapter two ’ section 2.4

(Z(T), <) transaction T; reads X from T;, the arc from T; to T; in 770 (L) should be labeled by X, i.e.,

the arc is labeled by a logical data object. In the distributed context, a logical write operation of a
transaction is said to be useless if no physical write ‘operation associated with it writes a value read
by another transaction. 'With these interpretations, the TIO graph of a rp log is defined in the same
way as the TIO graph of a log in a single-site database. The TIO graph, TIO(L), of 1p log L in
Example 2.4.2 is illustrated in Figure 2.4.3(a). The following theorem characterizes a serializable rp

log.

Theorem 2.4.1. A rp log L is serializable if and only if TIO (L) has a DITS which orders To

first and T last.
Proof. Similar to the proof of Theorem 2.3.1 given in [IKM87].

To prove the if part, assume that 770 (L) has a DITS that orders T first and T, last. (Assume
that the nodes in the DITS are arranged from left to right.) We have to show that there exists a 1C
serial log L, equivalent to L. Let o be the sequence of transactions corresponding to the DITS, and
let L, be the 1C serial log generated from ¢ by removing all the dummy transactions in 6. Note that
o has the property that if T; reads a data object from T; in L, then T; is the last transaction preceding
T; in o that writes X. If this is not the case, then either T; follows T; in g, or another transaction T}
which writes X is located between T; and T; in . In the first case, the arc (7;,T;):X would be
directed from right to left, which contradicts the definition of DITS. In the second case, there would
be two overlapping intervals starting from T; and T, respectively, which violates a condition of

DITS.

We now show that TIO(L)=TIO(L,). Let T; read X from T; in L. Since T; is the last
transaction that writes X before T; in g, T; also reads X from 7; in L,. On the other hand, suppose

T, reads X from T, in L,. Let T, reads X from T, in L. Then T, reads X from T, in L. This

¥

- 16 -

chapter two ' section 2.4

implies that T, and T, are identical. Hence T, reads X from T, in L. Therefore, we have

TIO(L)=TIO (L}).

To prove the only-if part, we assume that L is serializable and equivalent to a 1C serial log L ;.
Since L is equivalent to Ly, TIO(L)=TIO (L;). It follows from Theorem 2.3.1 that TIO (L) has a
DITS which orders T first and T, last. Hence TIO (L) also has a DITS which orders T first and T

last. O

Example 2.4.3. The TIO graph, TIO (L), of the rp log L in Example 2.4.2 is illustrated in
Figure 2.4.3(a). TIO(L) has a DITS as illustrated in Figure 2.4.3(b). Hence L is serializable and it is

equivalent to the 1C serial log ToT 2T T1T,. O

-17 -

CHAPTER 3

COPING WITH PARTITION FAILURES

3.1. Partition Failure

In a distributed database system, different kinds of failures can occur. One of them is a site

failure, which can be either fail-stop or a Byzantine failure.

Fail-stop is a "clean" type of failure and is relatively easy to handle. A site or a component just
crashes, losing all the information it had in volatile memory before the crash; thereaftef no activity
takes place at the site until it is repaired. In general, fail-stop can be handled by using checkpoints
and a transaction log to recover a consistent state of the database [BeG83, Gra78]. A database is in a
consistent state, if the values of all its data objects are the same as the results of serially executing a

set of transactions completely and before starting a new transaction.

As for a Byzantine failure, a site suffering from it may déliberately send incorrect messages to
other sites. It is very costly in terms of the number of messages for the non-faulty sites to come to an
agreement and to take coordinated actions against this kind of malicious activity by failing sites. The
problem of reaching agreement despite Byzantine failures has been well studied and is known as the

Byzantine Generals Problem [Dol82, FLP85, PSL80].

Besides site failures, we must face paﬁition failures in designing distributed database systems.
This kind of failure results from the breakdown of communication links among sites, causing the

sites in a network to be separated into two or more groups. Sites in each group can still communicate

- 18 --

chapter three ‘ section 3.1

with each other, but sites in different groups can no longer talk to each other. The activity in one

group is completely unknown to the sites in the other groups. These groups are called partitions.

A distributed database system that has undergone a partition failure is called a partitioned
database system. Thus the topology of the underlyihg network changes dynamically. In this
chapter, we discuss the problems associated with transaction processing in a partitioned distributed
database system. In particular, we are interested in the characterization of rp logs generated by an
important class of protocols, called prevention protocols. The property of prevention protocols will
be discussed in Section 3.2, In Sections 3.4 and 3.5, we will show that the PIO graph of an
execution generated by a prevention protocol in a partitioned database system must have a DITS.
The PIO graph of an execution in a partitioned database system is a modification of the TIO graph of
the execution over the partitions. The characteristic of the PIO graph of an execution will be used in
Chapter 4 in the discussion of an upper bound on the availability of a partitioned distributed database

system.

-

Example 3.1.1. Suppose a distributed database system consists of two sites §; and S,. Both of
these sites have copies of two data objects X and Y. The copies of these objects at site S, (S5) are
denoted by X, and Y, (X, and Y5,), respectively. A transaction 7', submitted at S, needs to read X

and write Y, and a transaction 7', submitted at S, needs to read Y and write X .

Suppose the system is partitioned into two partitions, each containing one site. Since there is
no communication between the two sites, Ty can only read X, and update Y, and T can only read Y,
and update X,. In Figure 3.1.1(a), a rp log L representing this execution is illustrated. The TIO
graph, T10 (L), is shown in Figure 3.1,1(b). Itis clear that 770 (L) does not have a DITS and hence L

is not serializable. O

19 -

chapter three ' section 3.1

Example 3.1.1 indicates clearly a problem which crops up in a partitioned database system; if a
data object is updated in one partition by a transaction and is read by a transaction in another

partition, then the resulting execution may not be serializable.

In a partitioned database system, a set of executions, one for each partition, is called a global
execution. A great deal of work have been doné in trying to control the activity allowed in a
transaction when it is executing in a partitioned database system. The goal is to ensure that the
global execution is serializable. In general, there are two different approaches to achieving this

goal: pessimistic approach and optimistic approach.

3.2. Pessimistic Approach to Dealing with Partition Failures

A protocol PT that always generates a serializable execution in any partitioned database system
is said to be a partition-tolerant protocol. The pessimistic approach is based on the assumption
that, if individual partitions exercise concurrency control auton(;mously, then there is a high
probability of generating a non-seﬁalizal;le global execution. Therefore, a partition-tolerant protocol
designed with this assumption has to make sure that the global execution consisting of all the
operations granted in individual partitions is serializable, even though it must decide to accept or
reject an operation submitted in a partition, based solely on the information available within the
partition. Partition-tolerant protocols based on this approach are called inconsistency prevention
protocols (prevention protocols, for short) and they are the major objects of investigation in this
thesis. This kind of protocol is also referred to as an on-line protocol in [COK86], because, once an
operation is granted in one partition, it can be committed and will never be rolled back. Hence, it can

be used for on-line processing.

.20 --

chapter three ' , section 3.2

The general strategy used in this approach is to define a mutually exclusive condition for read
and write operations on the copies of the same logical data object, so that, if a write operation on a
data object is allowed in one partition, then any read or write operation on any other copy of the

same logical data object is not permitted in-any other partition.

Alsberg and Day used the notion of "primary site" [AID76] to implement read-write exclusion.
In their primary site model, a single site is designated as the primary site and every read/write
access to any data object must first be granted by the scheduler at that site. In the original proposal,
locking was used by the scheduler. However, this scheme is too centralized, causing a bottleneck at
the primary site. Also, a failure of the primary site will jeopardize the whole system. In the case of a
partition failure, only the transactions submitted in the partition which contains the primary site can

be executed.

Stonebraker modified the idea of primary site by "distributing" the primary site. Instead of one
primary site, one copy of each data object is designated as the primary copy [Sto79] of that data
’object and these primary copies are distributed at more than one site. Any access to a data object
must be preceded by the locking of its primary copy. In this scheme, there are no longer severe
bottlenecks. Moreover, in the case of a partition failure, more than one partition might be able to
execute traqsactions. However, this scheme also has shortcomings. Firstly, the system has to be
equipped with the ability to detect distributed deadlocks. Secondly, if partitioning has occurred, it is
not clear how to deal with the locks in a partition that were requested (before the failure) by
transactions in other partitions. Thirdly, if the access demand on a primary copy within the partition
in which it resides is relatively low in comparison with that from other partitions, then availability

degrades.

Gifford [Gif79] presents a simple and elegant "voting scheme" to enforce read-write exclusion.

The basic idea is to use a read quorum ¢, and a write quorum g¢,. To read a data object, a

ee 2] e

chapter three ’ section 3.2

trénsaction must be able to access g, copies of that object. In other words, a transaction at a site ;
can execute a read operation on a logical data object X by reading a local copy only if it can be sure
that there are at least g, copies of X located in the péutition to which §; belongs. We assume that a
site can determine the set of sites in the partition it beldngs to, upon detecting a partition failure,
With the help of a global directory, a site can thus determine whether there are ¢, copies in its
partition. As for writing, a transaction must be able to access g, copies of a data object before it can
update it. Updating is performed on every copy that is accessible. In order to achieve mutual
exclusion, ¢, + ¢, must be larger than n, the total number of copies of the data object, and ¢, must
be larger than n/2. The first condition ensures that read and write operations on the same data object
are not performed in two different panitiohs. The second condition guarantees that a write operation
on a data object done in one partition will exclude any write operation on the same iogical data

object in other partitions.

Example 3.2.1. In Figure 3.2.1, a databasc system consisting of five sites, §;, *-- , Ss, i
divided into two partitions P, and P,. Data objects X and Y are partially replicated as shown in the

figure. Let ¢,(X) and ¢,,(X) denote, respectively, the read and write quorums of data object X .

Suppose ¢,(X)=¢,(X)=3 and ¢,(Y)=4,(Y)=2. Then X can be rcad and written in P but not

in P,. Similarly, Y can be read and written in P, but not in P .

If ¢g,(X)=2 and ¢,(X)=4, then X is now readable in both P; and P,, but X is no longer

writable in P; or P»,. O

An interesting feature of this approach is that the quorums can be altered to change the
accessibility of data objects. Suppose that the quorums of X has been changed in Example 3.2.1
from the first set of quorums to the second set. Before the change, X was accessible only in partition

P,. After the change, it becomes read-accessible in both P; and P,. The problem with this scheme,

-2

chapter three ' section 3.2

however, is that there may not exist any partition that has a quorum required for an operation. As a
matter of fact, some work has been done [BGS86, Jaj87], which has tried to ensure that, for any data

object X, at least one partition has a quorum in most cases.

Minoura and Wieder’nold [MiW82] have proposed an "extended true-copy token" scheme, in
which primary copies are marked by tokens which can migrate. This scheme allows more than one

partition to execute read operation on the same data object.

Eager and Sevcik [EaS83] have proposed the "missing write algorithm", which is a variant of
Gifford’s voting scheme. In this scheme, a transaction considers a read operation as the reading of
any copy and a write operation as the writing to all the copies. However, this is only possible when
there is no partition failure. Once a partition failure is detected, the system goes into the "partition
mode”, in which Gifford’s scheme of mutually exclusive quorums is used. The advaniage of this

scheme is a reduction in the overhead of reading when there is no failure,

Abbadi, Skeen and Christine [ASC85], and later Abbadi "and Toueg [AbT86], modified
Gifford’s scheme to the "virtual partition scheme”. They attempt to track changes in the network
topology as closely as possible without being constrained by the need to cope with the changes
instantaneously. A virtual partition is a set of nodes that have agreed that they can communicate
with each other and further that they will not communicate with any other site outside the virtual
partition. A transaction can interpret a read operation as the reading of any accessible copy, as long
as the data object was announced accessible when the virtual partition was formed. A data object is
accessible in a virtual partition, if the partition has a majority of its copies. This scheme permits
cheaper read operations. In return, it must be made sure that all the copies have the most up-to-date
value when a virtual partition is formed. This bookkeeping incurs a lot of overhead, whenever there

is any change in the network’s topology.

=23

chapter three ‘ : section 3.2

In all of the above schemes, no restriction is imposed on the transactions submitted for
execution. Wright and Skeen [SkW84] adopt the notion of transaction class and propose an
interesting scheme to handle partition failures. A ciass of transactions is defined by its readset and
writeset, so that any transaction in the same class reads and writes the same set of data objects. In
this model, only a predefined set of classes of transéctions can be submitted to a site. The complete
information on the classes of transactions that can be submitted to each site is known to every site.
Therefore, a partition can use this information, to find out, with the help of a “class conflict graph", a
possible conflict between its transactions and those in the other partitions that may lead to a
nonserializable execution. This conflict is then resolved by removing some transactions which
contribute to the conflict. In this scheme, it is not clear how to avoid unnecessary removal of

transactions in different partitions. Unnecessary removal will of course degrade the availability.

As can be seen from the above schemes, the key idea used in designing prevention protocols is
to limit the access to data objects in different partitions independently to make sure that the rp log of
the global execution is serializable. Note that these schemes can decide on the fly whether to grant or
to reject a request gor an operation. Once they have granted an operation, they will not rollback the

operation.

3.3. Optimistic Approach to Dealing with Partition Failures

The optimistic approach is based on the assumption that, even if individuai partitions exercise
concurrency control autonomously, there is only a small probability that the global execution
generated is non-serializable. A transaction Submitted in a partition is allowed to execute so long as
it can be serialized together with other transactions in the same partition. Any non-serializable

global execution is detected when partitions are merged together after the partition failure has been

24 -

chapter three ’ section 3.3

repaired. Once nonserializability is detected, some operations in the global execution must be rolled
back to rebuild a serializable global execution. This involves undoing and redoing some
transaction(s). Partition-tolerant protocols using this approach are called nonserializability

detection protocols with rollback (detection protocols, for short).

Example 3.3.1. Assume that two sites § and §, belong to two different partitions P, and P,
respectively. Suppose two transactions Ty =R [X1JW1[Z,] and T, =R o[Z,]W[Y] are executed in P,
in such a way that the execution is equivalent to the lC serial log [T1T,]. Suppose also that a
transaction T3 =R 3[Y,]W3[X] is executed alone in P,. If the two partitions are merged later, then
the rp log L in Figure 3.3.1(a) represents the result of merging. (In this example, T reads X from X,
instead of from X,. If T, had read X from X, the rp log L would be different from the one in Figure
3.3.1(a). Whether T, should read from X, or X, depends on the protocol used to control read
operation in the final partition.) By looking at the TIO graph, T/0 (L), in Figure 3.3.1(b), it is clear
that the execution is serializable. Such an execution will be happily accepted by a scheduler that

uses the optimistic approach.

Suppose now that T, is changed to T, = R,[X 11W[Y,]. Then the result of merging is the rp log
L, shown in Figure 3.3.1(c). It can be seen that 770 (L), shown in Figure 3.3.1(d), has no DITS and

hence the global execution is nonserializable.

If the scheduler discovers that the global execution is not serializable, it can eliminate the effect
of some of the transactions in order to modify the execution into a serializable one. For example, T
can be eliminated from L, by rolling back its update on Y¥,. Then the rp log now looks like L3 in
Figure 3.3.1(e), and 710 (L ;) has a DITS as shown in Figure éiS.l(f). Hence the resulting execution

is serializable. 0

25

chapter three ' section 3.3

However, in general, testing whether a rp log is serializable and, if not, selecting the minimum
number of transactions to be rolled back are both NP-complete [Dav84]. Davison [Dav84] has
proposed an "optimistic protocol” in which a "précedence graph” is used to represent a global
execution over two parﬁtions. In her model, the transactions are restricted to those whose writesets
are contained in their readsets. She proves that the precedence graph is acyclic if and only if the
execution is serializable. Hence, the serializability of an execution resulting from merging two
partitions can be tested efficiently. However, selecting the minimum number of transactions for
rollback is still very costly. A number of heuristics are suggested to solve this selection problem in

[Dav84].

When a transaction is rolled back, those transactions which have read data written by it must
also be rolled back. This cascading effect could incur a lot of overhead. Finally, all the transactions
that are rolled back in this process have to be redone. In addition, if any rolled back transaction had
an external action (e.g., output money to a user), then a compensating action may have to be carried
out. Because of such limitations, transactions cannot be committed as they are completed. Instead,
they must be committed only after nonserializability detection and resolution have completed.
Therefore, protocols based on the optimistic approach are also referred to as off-line protocols

[COK86], indicating that they are only suitable for off-line processing.

3.4. Transaction-Cluster Log

In this and the next sections, we study the characteristics of global executions which are
realizable in a partitioned distributed database system. In particular, we characterize the rp logs of
executions generated by any prevention protocol. This characterization will form the basis of our

study of an upper bound on the availability of a partitioned database system to be presented in

- 26 --

chapter three ' section 3.4

chapter 4.

As time goes on, partitions may be reconnected to form a larger partition, or further split into
smaller partitions. If partition A merges with some other partition to form partition B, or if A is split
into a set of partitions including B, we say that A happens before B. With the relation "happens-
before", the set of all the partitions corresponding to a "partition history" is partially ordered. If the
same partition occurs more than once in a "partition history", each instance is considered as a
different partition. We introduce two special partitions Poyand Pg, where P is the initial partition
consisting of all the sites such that T, is executed in it, and P, is the final partition, again,
consisting of all the sites such that T, is executed in it. We assume that P, always happens before

every other partition and every partition (except for P) happens before P;.

Given a 1p log L = (X(T), <) over a set of transactions T, its sublog in a partition P; &is arplog
L; = (Z;, <), where X; consists of those operations in Z(T) which belong to the transactions executed |
in P;, and the order among the operations in X; is inherited from L. Here, we assume that a
transaction can execute in only one partition. A transaction T is said to belong to a partition P;, if T
is executed in P;. We use Trans(P;) to represent the set of all the transactions belonging to a

partition P;,

We now associate a class of 1C serial logs with a poset of partitions. Each 1C serial log in this
class has the property that all the operations of the transactions belonging to a partition appear
consecutively. More formally, a 1C serial log L = [T, - - - T,] is a transaction-cluster 1C serial log
(TC-serial log, for short) with respect to a poset of partitions P = {Py, ..., P, Ps}, if (1) for every
partition P, in P, there exists an interval [in, ju] < [1, 7] such that a transaction Ty € Trans(P,,) if
and only if i, <k < j,, (2) all the intervals [i,, j,], m =0,..., f, are disjoint and (3) for any two
transactions T, € Trans(P;) and T, € Trans(P;), T, precedes T, in L if P; happens before P; in P.

Intuitively, the transactions in a TC-serial log are grouped into several disjoint clusters such that each

2] -

chapter three ' section 3.4

ciuster contains -all the transactions executed in one partition and the order of the clusters is
compatible with the partial order on P. (Thus the sites running the transactions in a cluster can
communicate with each other without disruption.)‘ A 1p log L over a poset of partitions P is
transaction-cluster serializable (TC-serializable, for short), if it is equivalent to a TC-serial log.
The set of all TC-serializable rp logs, denoted by TC, is a proper subset of the set of all serializable

p logs, SR. (See Example 3.4.1 below.)

Example 3.4.1. In Figure 3.4.1(a), a rp log L over two partitions P, and P, is illustrated. Each
arrow in the figure represents the happens-before relationship between its two end partitions. The
sublog L, of L in P, is

RAIXAIWAHIZ R O[Z1)Wo[X],
and the sublog L, of L in P, is
R3[Y 2]Ws[Y o).

-

The TIO graph of L is illustrated in Figure 3.4.1(b), and it has a DITS, Ty, To, T1, T2, T3, Ty.
Therefore, L is equivalent to the 1C serial log L = [ToT',T2T3T,]. Since both transactions T and T,
belonging to P, are ordered before transaction T3 which belongs to P, in L,, L, is a TC-serial log.

Hence, the 1p log L is TC-serializable. OO

Example 3.4.2. In Figure 3.4.2(a), a rp log L’ over two partitions P, and P, is illustrated. The

sublog L'y of L in P, is

Ry\[X1IWolY4],
and the sublog L', of L"in P, is

R[Y2]WslY ol

The TIO graph of L is illustrated in Figure 3.4.2(b), and it has a DITS. It is clear from the graph that

-n 28 -

chapter three ' section 3.4

To, Tl, T3, T2, Ty is the only DITS for TI0 (') and [ToT T 3T ,T,] is not a TC-serial log. Therefore,

L’ is serializable, but not TC-serializable. OO

3.5. Characterization of Executions Admissible under Partition Failures

In this section, we try to characterize the rp logs of executions generated by any prevention

protocol. Here again, the notion of DITS plays a useful role.

Given a rp log L over a poset of partitions P = {Py,..., Py, Py}, if the sublog of L in each
partition P; € P is serializable, then under what condition is L serializable? This question can be
answered by regarding all the operations from the transactions in a partition as coming from one
"super transaction”. First of all, we have to clarify the meaning of a "serializable sublog”. In Section
2.4, we defined a serializable rp log by adding to it two fictitious transactions T and T,. In order to
define the serializability of sublog L; in a partition P;, we introduce two fictitious transactions T;o and
Ty Transactions in a partition P; may read the values of different copies of a data object written by
different transactions belonging 1o a partition or partitions that happen before P;. However, in a rp
log generated by any prevention protocols defined in Sectiop 3.2, the following two conditions
always hold. The first condition is about the values "imported” by a partition from partitions which
happen before it. Initially, the copies of a data object X in a partition P; may have different values.
That is, these copies may have been written by different transactions belonging to a partition or
partitions that happen before P;. However, only one of these values is read by transactions in P;.
The second condition is about the values "exporied" by a partition to partitions which happen after it.
(A partition P; happens after a partition P; if P; happens before P;.) If Y is a data object written by
some transactions in a partition P;, the copies of Y in P; may have different final values. However,

only one of these values can be read by transactions in partitions which happen after P;.

-29..

chapter three ’ section 3.5

For partition P; € P, let PB; = {P; € P : P; happens before P;} and RS; = (X € D : there exists
a transaction in Trans(P;) that reads X from a transaction in Trans(P;), P;e PB;}. Let
PA; = (P; € P: P; happens after P;} and WS; = {Y e D :Y is updated by some transaction(s) in
Trans(P;)}. We now fbnnally state the Unique IO Assumption on a rp log L over a poset of

partitions P,

Unique 10 Assumption

(1) ForeachX e RS;, every transaction in Trans(P;) that reads X from some transaction belonging

to a partition in PB;, reads X from the same transaction T, (X).

(2) ForeachY e WS;, there exists a transaction T,(Y) € Trans(P;) such that, for any P; € PA;, if a

transaction Ty € Trans(P;) reads Y from a transaction in Trans (P,-), Ty reads Y from 7,(Y). O

In condition (2) above, even if no transaction belonging to a partition in PA; reads Y, T,(Y)

-

must still exist.

Note that a rp log generated by any one of the prevention protocols described in Section 3.2
satisfies the unique 10 assumption. For example, in the primary copy protocol, if the primary copy
of a data object X is located at a site in a partition P;, then the lést transaction that wrote the primary
copy of X before P; is formed is T,(X). Any transaction in Trans(P;), that reads X from a transaction
belonging to a partition happening before P;, reads the primary copy of X thus from 7,(X). Also, the
last transaction in Trans (P;) that writes the primary copy of X is T,(X). Therefore, the primary copy

protocol satisfies the unique 10 assumption.

To see that the quorum protocol also satisfies the unique IO assumption, suppose that the read
and write quorums of a data object X are ¢, and g,,, respectively. As stated earlier, the sum of ¢, and

gw is larger than n and g,, > n/2, where n is the total number of copies of X. Every copy of a data

30 --

chapter three ' section 3.5

object has a version number [ASC85, AbT86]. When a write operation updates X in a partition P;,
it must be able to write at least ¢,, copies of X. Also, it must update the version numbers of all the
copies that its has written to a number larger than zﬂl the version numbers that these copies had.
When an operation reads X in P;, it must be able to access g, copies of X and it reads the copy that
has the highest version number. Suppose X can be read in P;. The copies of X in P; may initially
have different values and version numbers. Suppose a copy X; initially has the highest version
number. Then the transaction that wrote the initial value on X; is 7,(Y). On the other hand, suppose
X can be written in P;. Before the copies of X migrate to the partitions that happens after P;, they
may have different version numbers. If the version number of a copy X; is the largest among all
these version numbers, then the transaction in Trans (P;), which wrote this version number, is T,(X).
Since T,(X) must have written g, copies of X in P;, any transaction belonging to a partition
happening after P;, that reads X from a transaction in Trans(P;), reads X from T,(X). Hence, quorum
protocols satisfy the unique IO assumption. In the following, we assume that the unique 10

assumption holds for all rp logs generated by a prevention protocol.

For a rp log over a poset P of pattitions, let P; € P, and RS; and WS; be as defined earlier in this
section. For a data object X € RS;, let Copies;(X) be the set of copies of X in P; that are read by some
transaction(s) in Trans(P;). By condition (1) of the unique IO assumption, all the copies in
Copies;(X) can be considered as initially written by the same transaction T,(X) defined in the
assumption. We thus introduce a fictitious write-only transaction T;o in P;, which writes the value of
X written by T,(X) into all the copies in Copies;(X), for every data object X € RS;. We use RS; to

represent the set {X; € Copies;(X) : X € RS;}, i.e., RS; is the set of physical copies written by T;o.

We introduce another fictitious read-only transaction Ti in P;, which reads Y from T,(Y)
defined in condition (2) of the unique IO assumption for every data object Y € WS;. We use WS; to

represent the set of copies, (Y, : Y, is written by T,(Y), Y € WS;}, i.e., WS; is the set of copies at the

-3 .-

chapter three ' . section 3.5

sites in P; whose values are written by T,(Y). Therefore if P; € PA; and a copy Y, € WS; is inherited

by P; from P;, then the initial value of ¥, is considered to have been written by T,(Y).

Now we can define the serializability of the sublogs of a log L generated by a prevention
protocol over a poset P of partitions. For a sublog L; = (Zi,<)of L ina partition P; € P, its extension
is a poset (LU UL, <), where Z; and % are the sefs of operations in T;o and Ty, respectively, and
<’ is defined as follows. (1) For any two operations p € %; and g € 5, p < ¢ if and only if p < g;
(2) p <’ q for any two operations p € X; and g € % on the same copy; and (3) p <'q for any two
operations p € %; and ¢ € Z; on the same copy. A sublog L; of L is serializable if its extension L’;

is serializable.

Given a serializable sublog L; in a partition P;, for every object X updated in L;, the transaction
T.(X) (recall (2) in the unique IO assumption) in L; is called the output transaction for X in L;, and

the write operation on X of 7,(X) is the external write on X in L;.

Given a mp log L generated by a prevention protocol’ over a poset of partitions
P=(Py,..., Pa, P}, if all its sublogs are serializable, then we can construct a partition IO graph
for L. As before, let L; denote the sublog of L in P;, fori =0, .., m, f. The partition IO graph for
L, denoted by PIO(L), is a arc-labeled directed graph with a node set PN U PN’ and an arc set A,
where PN=P. A has an arc from P; to P; labeled by X, denoted by (Pi, P;):X, if L; has a read
operation which reads a physical copy updated by the external write of X in L;. For any partition P;
and any data item X, if the external write on X in L; is not read by any transaction in other partitions,
then PN’ contains a dummy node P’; and A has an arc (P;, P’;):X. There is no other nodes or arcs in
PIO(L). Since, for every data object X, transactions in one partition can read the update of X
inherited from only one of the partitions that happens before it (recall condition (2) in the unique 10

assumption), no two incident arcs to a node in P10 (L) are labeled by the same data object.

-

chapter three ’ section 3.5

Example 3.5.1. In Figure 3.5.1(a), there is a poset of partitions {Po, P1, P2, P3,P4,Pr}. The
execution in each partition is illustrated in an oval. The PIO graph of the rp log L representing the

global execution is shown in Figure 3.5.1(b). O

A PIO graph was deﬁned above with respect to a rp log generated by a prevention protocol over
a poset of partitions. However, it can also be defined for a TC-serial log L over a poset of partitions
P in a similar way. For each partition P; € P, there is a segment of transactions in L in which all the
transactions are executed in P; and the last transaction in the segment that writes a data object X is

the output transaction for X. PIQ (L) can be defined in the same way.

Lemma 3.5.1. The PIO graph of any TC-serial log L over a poset of partitions

P ={Po,..., Pu, Ps} has a DITS which orders P first and Py last.

Proof. Since L is a TC-serial log, it consists of a set of clusters of transactions, one for each
partition. Let the nodes in PN be ordered from left to right by the order of their corresponding
clusters in L. As for a node P’; € PN, insert P’; immediately after'P; in the above ordering. We
claim that the resulting order is a DITS for PIO (L) in which Py and P, are ordered first and last,
respectively. First of all, all the edges in PIO(L) are directed from left to right. Also, since L is
serial, there is ﬁo overlapping intervals with the same label, if the nodes of PIO (L) are arranged in
the above order. Since the order of the partitions in P is preserved in the order of the corresponding

clustersin L, P, and P are ordered first and last, respectively, in the DITS constructed above. O

Theorem 3.5.1. A rp log L generated by a prevention protocol over a poset {Py, ..., Pn, Pr}
of partitions is TC-serializable if and only if the sublogs of L in all the partitions are serializable and

PIO (L) has a DITS which orders P, first and Py last.

Proof. We first prove the if part. Let 6=Po, Py, -+, P'n,P; be the sequence of nodes,

except for dummy nodes, corresponding to a DITS of PIO(L). For each P’;, let L,(P’;) be the 1C

33

chapter three ‘ ‘ section 3.5

serial log equivalent to L%, the sublog of L in P%. Let L, be the 1C serial log
Ly(Po)Ls(P"1) - - - Ly(P"n)Ls(Py), with all the fictitious transactions removed, except for To and Ty.
We will show that L is equivalent to L, and hence L is TC-serializable. Suppose T; reads X from T;
inL. If both T; and T; belong to the same partition P, 7; reads X from T; in both L', and L,(P "),
and hence in L,. If T; and T; belong to two different vpanitions P’y and P}, respectively, then there is
an arc (P, P')):X in PIO (L). Since o is a DITS for PIO (L), no node between P, and P} in o has
an outgoing edge labeled with X. This implies that no transaction executed in the partitions Pz, to
P’y writes X. Furthermore, since 7; and T; belong to two different partitions, T; must be the output
transaction in L,(P ;) that writes X. Therefore, there is no write operation on X between T; and T; in

L;. Hence, T; reads X from T; in L;.

On the other hand, assume that T; reads X from T; in L,. We want to show that T; also reads X
from T; in L. Suppose T; reads X from T} in L. This implies that T; reads X from T} in L,. Hence
T and T; must be identical. Therefore, T; reads X from T; in L. It is now clear that L and L, are

equivalent.

Let us next prove the only if part. Suppose that L is TC-serializable and let L, be a TC-serial
log equivalent to L. For every partition P;, there is a segment L’; of transactions in L, which is
equivalent to L;. Since L, is a 1C serial log, for any data object X, all the transactions (if >any) in L
that read X from some transaction(s) ordered before L'; read X from the same transaction T. Since
Ls and L are equivalent, for any data object X, all the transactions (if any) in L; that read X from
some transaction(s) not in L; read X from T. Similarly, for any data object Y, all the transactions (if
any) in L but not in L;, that read Y from a transaction in L;, read Y from the same transaction. It is
clear that the extension of L; is equivalent to the serial log [T;oL ;Ti], Where [T;oL i Ti¢] is the 1C
serial log beginning with the operations of T;o, followed by all the transactions in L’;, ordered serially

as in L';, and ending with the operations of T;. Hence the sublog L; is serializable. It follows that

ce 34 wn

chapter three ' section 3.5

ail the sublogs of L are serializable. Because of the equivalence of L and L,, PIO (L) is identical to
PIO(L,). Since L, is TC-serial, by Lemma 3.5.1, PIO (Ls) has a DITS which orders P first and Py

last. Hence, PIO (L) also has a DITS which orders Py first and P, last. O

Example 3.5.2. The PIO graph, PIO (L), of the rp log L over the partitions {P, P2, P3, P4} in
Figure 3.5.1(b) has a DITS illustrated in Figure 3.5.1(c). Hence, L is TC-serializable and the

serialization order is given by

ToT\ToTTsT4Ty. 0]

In the following, we will characterize the executions generated by prevention protocols. We
assume that these protocols satisfy the non-selective assumption defined below. Recall the
definitions of RS; and WS; given earlier in this section; RS; contains all copies read by transactions in
L;, whose values were inherited from some other partitions which happen before P;, and WS;
contains those copies whose updated values may be read if they migrate to another partition.
Non-selective Assumption: Let L =(X(T), <) be the rp log of an execution generated by a
prevention protocol PT over a poset of partitions P. For every partition P; € P, let L; = (%;, <) be the
sublog of L in P;. Then PT must grant all the operations of traﬁsaction T =R {RS;1W [WS;] when it is

submitted alone in P;. 1

The non-selective assumption holds for almost all the prevention protocols, except for those
which restrict admissible transactions 1o a fixed set of transaction classes. For example, the “class-
conflict protocol” proposed by Skeen and Wright does not satfsfy this assumption [SkW84]. The
following two results give a general characierization for serializable executions generated by any

prevention protocol under partition failures.

—-35-

chapter three ’ section 3.5

Theorem 3.5.2 If the non-selective assumption holds for a prevention protocol PT, then all the

rp logs generated by PT are TC-serializable.
Before giving a proof for Theorem 3.5.2, we use an example to illustrate the idea of the proof.

Example 3.5.3. Suppose that PT is a partition-tolérant protocol and that the rp log L in Figure
3.5.2(a) is generated by PT in two partitions P, and P,. L is serializable and equivalent to the serial
log [ToT 1T 3T 2Ty]. It is not difficult to see that L is not TC-serializable. With respect to L, we have
RS, ={X1,Z,), WS,1=(Y1,Z,), R§2={Y,), and WS, =(X,). If PT is a prevention protocol satisfying
the non-selective assumption, then the rp log L, illustrated in Figure 3.5.2(b) must also be accepted
by PT. However, L, is not serializable and this violates the property of PT that it generates only
serializable rp logs. Hence, it is not possible for PT to generate L, which is serializable but not TC-
serializable. This is because PT cannot know what takes place in P,, based on the information
available in P,. However, a detection protocol is able to do so and can tell that L is, but L, is not,

serializable, when the partitions are merged. O -

Proof of Theorem 3.5.2. Suppose that L is a serializable rp log generated by a prevention
protocol PT over a poset of partition {Py, ..., Pn, P¢}, but that L is not TC-serializable. It follows
from Theorem 3.5.1 that PIO (L) does not have a DITS. For each partition P;, (i #0,), construct a
transaction T; = R;[RS;1W;[WS;], where RS; and WS; are two sets of copies defined earlier in this
section. According to the non-selective assumption, PT would also accept the log L’ whose sublog
in each partition P; consisted only of transaction 7;. From the way that T;’s are constructed, it can be
seen that PIO (L") is the same as PIO(L). This implies that PIO (L") does not have a DITS. In L’
there is only one transaction executed in every partition. Therefore, PIO (L°) is identical to TI0 (L"), if
P; is replaced by T; for each node P; in PIO(L"). Hence TIO (L") does not have a DITS, and L’ is not
serializable. This contradicts the property of PT that it generates only serializable rp logs.

Therefore, ev“ery 1p log generated by PT is TC-serializable. O

- 36 --

chapter three) section 3.5

The following theorem follows immediately from Theorem 3.5.2 by replacing "TC-

serializable" with an equivalent condition in Theorem 3.5.1.

Theorem 3.5.3. If the non-selective assumption holds for a prevention protocol PT, then every
rp log L generated by PT over a poset of partitions P= {Po,..., Pm,Ps} have the following two

properties :
(1) Sublog L; of L in each partition P; is serializable;
(2) PIO(L) has a DITS which orders P first and Py last.

In the following chapter, we will present an application of Theorem 3.5.3, in which an upper

bound on availability will be derived.

37 -

CHAPTER 4

LIMITATION ON AVAILABILITY

4.1. Availability in Partitioned Database

Informally, availability is a performance measure of a partition-tolerant protocol. A partition
failure degrades the availability of a distributed database. As mentioned in Sections 3.2 and 3.3,
many protocols for dealing with partition failures have been proposed. However, little work has
been done in investigating the limit on availability. Coan, Oki and Kolodner [COK86] give an upper
bound on availability for the 2-partition case, wherein they assume that the transactions submitted
are uniformly distributed over all sites. In this section, we will formally define the notion of
availability. In Section 4.2, the work by Coan, Oki and Kolodner will be described in more detail.
In Section 4.3, we will derive an upper bound on availability using a more general model. In this
derivation, the characteristics of the PIO graph of an execution generated by a prevention protocol

discovered in Section 3.5 are used.
In order to define availability more formally, let us start with an example.

Example 4.1.1. In a distributed database system, suppose four sites S, S5, S3 and S4 are
partitioned into two partitions P, and P, as shown in Figure 4.1.1(a). There are two data objects X
and Y, and their copies are distributed as shown in the figure. Transaction T;=R,[X]W,[Y] is
submitted at S, transactions T2=Ro[XIWalX] and T3=R[YIWi[X] are submitted at S,, and

transaction T4= R 4[Y1W 4[Y] is submitted at S3;. Let us consider two different executions of this set

38 -

chapter four ’ section 4.1

of transactions under a quorum protocol. We use ¢,(X) and ¢.(X) to denote, respectively, the read
and write quorﬁms for data object X. The rp log L in Figure 4.1.1(b) represents the first execution,
in which ¢,(X)=2, ¢,(X)=2,¢,¥)=1and ¢,(Y) = 3.‘ In this execution, both T, and T4 are rejected

because the necessary quorums cannot be obtained in the partitions they belong to. Therefore, only
half of the transactions submitted are executed. We vsay that the acceptance ratio of the given set of

transactions in L, with respect to this set of quorums, Ac (L), is 1/2.

If the quorums used are changed t0 ¢,(X)=2, ¢,(X) = 2, ¢-¥)=2 and ¢,,(Y) =2, then the rp log
L, in Figure 4.1.1(c) represents another execution of the same set of transactions. In this execution,
T, and T; are rejected, and again Ac (L,) = 1/2. Since there are three copies of Y, ¢,,(Y) 2 3/2 must be
satisfied. Therefore, T, can never be granted by any quorum protocol, since P ; has only one copy of
Y and no write operation on Y can be performed in P;. Only one of T3 and T4 can be granted, since
they have a read-write conflict. Therefore, it can be concluded that 1/2 is the maximum acceptance

ratio of this set of transacticns over all possible sets of quorums. O3

A set of transactions with the sites of submission specified is called a transaction distribution.
More fonnally, a transaction distribution is a set of ordered pairs, ((T;,S;):7; is a transaction
submitted at site S;}. In Example 4.1.1, {(T1,8,), (T2, 82), (T3 82), (T4, S3)} is the transaction
distribution. In the following, an execution of the transactions listed in a transaction distribution §, in
which each transaction is submitted to the site specified by an ordered pair in §, is called an
execution of the transaction distribution. In the execution of a transaction distribution 8, some
transactions may be rejected because of a partition failure. For log L of an execution of a transaction
distribution & over a poset of partitions {Po, ..., P, Pr}, the acceptance ratio, Ac(L), is the ratio

of the number of transactions in L to the total number of transactions in 3.

From this point on, we focus our attention on the executions generated by a prevention protocol

which satisfies the strongly non-selective assumption. This assumption is slightly more restrictive

-39 ..

chapter four ’ section 4.1

than the non-selective assumption given in Section 3.5. Recall RS; and W5; defined for a rp log L in

Section 3.5.

Strongly Non-selective Assumption : Let L = (X(T), <) be the rp log of an execution generated by a
prevention protocol PT over a poset of partitions P. For each partition P; € P, let L; = (Z;, <) be the
sublog of L in P;. If the readset and writeset of a transaction T are subsets of RS; and WS;,
respectively, then PT must grant all the operations of transaction T when it is submitted alone in P;.

a

For the rest of this chapter, when we refer to a prevention protocol, we assume that it satisfies

the strongly non-selective aSsumption.

Definition 4.1.1. Let E be the set of all executions of a transaction distribution & genérated bya
partition-tolerant protocol PT over a poset of partitions P= {Py,..., Pn,Pr}. The availability,

Av(5,PT,P), for the transaction distribution 8 over P with respect to PT is ‘defined to be

max{Ac(L):L € E}.O.

In Definition 4.1.1, we used the maximum acceptance ratio over all possible executions of 3.
The following lemma shows that the maximum acceptance ratio does not depend on the order of
submission of the transactions in 8. In fact, it depends on the conflicts among the transactions

submitted in different partitions, which will be defined formally in Section 4.3,

Lemma 4.1.1. Given a transaction distribution 3, a prevention protocol PT and a poset of
partitions P = [Po,..., Pn, Pr}, there exists a set T’ of transactions in & such that, if L is any
execution of T', in which all the transactions belonging to P; are executed serially in P;, for each

i=0,...,m,f,thenAc(L)=Av(S, PT,P).

40 -

chapter four ' section 4.1

Proof. Let L, be an execution of & such that Ac(L,)=Av(3,PT,P). Then T is the set of
transactions in L. According to the strongly non-selective assumption, if 7; € T and it is submitted
alone in P;, then all the operations of 7; are accepted by PT. Hence all the transactions in T that

belongs to P; will be granted by PT if they are submitted and executed serially in P;. [

In Example 4.1.1, the maximum availability for the transaction distribution given in the
example, with respect to any quorum protocol, was 1/2, i.e., the maximum value of
{Av (8, PT,P): PT is a quorum protocol} is 1/2. However, if other protocols are used, the availability

for the same distribution may be different.

Example 4.1.2. Let X, and Y, be the primary copies (see Section 3.2) in Example 4.1.1, and
suppose the primary copy protocol is applied to the transaction distribution. Then all the transactions
submitted in P, are accepted, and transaction T, submitted in P is rejected. Hence, thé acceptance
ratio of this execution of the transaction distribution is 3/4. It can be seen that no other execution can
accept all four transactions, if the primary copy protocol is used. Hence the availability is equal to

3/4, with respect to the primary copy protocol. O

From Examples 4.1.1 and 4.1.2, we can conclude that availability depends not only on the
transaction distribution, but also on the protocol used. It is interesting to see if a general upper bound
on availability for any prevention protocol exists. In the case of a defection protocol, every
transaction submitted to a partition is accepted. Therefore, we would not discuss the limit on the
availability for detection protocols. In the following, we consider only the 2-partition case (not
counting Po and P,) and hence we will not explicitly mention the poset of partitions, and the
availability of a transaction distribution § with respect to a protocol PT in the 2-partition case will be
denoted by Av (S, PT). We are interested in finding a general upper bound on the availability for
some classes of transaction distributions having a certain property, with respect to any prevention

protocol. Finding a general upper bound in the case where there are more than two partitions appears

41 --

chapter four ' section 4.1

rather difficult,

4.2. Uniform Transaction Distribution and Availability

In this section, we review the upper bound on availability in the 2-partitions case, given by
Coan, Oki and Kolodner [COK86]. The database model they use is a fully replicated database and
each transaction has a readset containing its writeset. Also, a transaction always reads a data object
before updating it. A transaction which writes some data objects is called an update transaction.
The class of transaction distributions considered in their model are assumed to satisfy the uniformity

assumption stated below.

Uniformity Assumption. Fori=1,2, ---,n, let f; be the fraction of update transactions submitted
at a site S; over all update transactions, and let D be any set of data objects. Among all the update

transactions with writeset D , the fraction of update transactions submitted at S; is also equal to f;.

For a given transaction distribution §, the partition, P,.;, which has the majority of transactions
is called the majority partition, while the partition, P ,,,, which has the minority of transactions is
called the minority partition. (If the two partitions have the same number of transactions, then
either one can be the majority partition and the other the minority partition). The following are the

parameters used in specifying the upper bound in [COK86].
t = total number of transactions listed in &

Umaj = fraction of ¢ that are update transactions and are submitted in P,,;

-d2 .

chapter four ’ section 4.2

u min = fraction of ¢ that are update transactions and are submitted in P i,
rmaj = fraction of ¢ that are read-only transactions and are submitted in P,

r in = fraction of ¢ that are read-only transactions and are submitted in P ;,

Theorem 4.2.1.[COK86] For any transaction distribution § that satisfies the uniformity

assumption and for any prevention protocol PT , we have

Av(S,PT)Su,,,a,- + T'aj + 1 mine a

Since Theorem 4.2.1 is proved in [COK86], we provide here only an intuitive reasoning for the
theorem. Firstly, for any two update transactions T, and T, which update the same object, say X, if
they are submitted in Pn,; and P s, respectively, then one of them must be rejected. To see this,
suppose that both of them are granted. Then both P, and P mia must’have a transaction that reads X
from T ¢ belonging to the initial partition P, because the ;'alue of X must be inherited from To. Also
, Ty € Py (the final partition) must read X from a transaction belonging to either Ppaj OF P in. If Ty
reads X from P,,j, then the PIO graph of the global execution cdntains the subgraph shown in Figure
42.1(a). If T; reads X from P ,;, then the PIO graph of the global execution contains the subgraph
in Figure 4.2.1(b). In either case, the PIO graph does not have a DITS and the corresponding global
execution is not serializable. Hence, it is impossible for both T and T to appear in a serializable

execution.

Secondly, by the uniformity assumption, for any update transaction accepted in the P, there
are more (or at least as many) update transactions with the same writeset that are rejected in Pmax.

Therefore, the availability is maximized by accepting the update transactions submitted in Pmax and

w43 --

chapter four ‘ section 4.2

rejecting those submitted in P, All the read-only transactions can be accepted. Thus, it follows

that Av (3, PT) is bounded bY upaj + 7maj + 7 min-

4.3. A General Upper Bound on Availability

In this section, we shall derive a general upper bound on the availability for a class of
transaction distributions in the 2-partition case. As before, we use 8 to denote a transaction
distribution and P;, i = 1 or 2, to denote the two partitions under consideration. Fori =1, 2, let I}
denote the set of transactions in the transaction distribution 8, submitted in P;. Further, we use
WS(A) and RS(A) to denote the writeset and readset of a set of transactions A, respectively, i.e.,
WS(A) (RS(A)) is the union of the writesets (readsets) of all the transactions in A. Two transactions
Tie Trans(P)) and T,e€ Trans(P;) are said to conflict, if WS({T1})nRS({T2}) or
RS({T1}) n WS ({T,}) is nonempty. (The reason we do not regard T, and T, as conflicting, when
WS ({T1}) n WS({T,)) is nonempty will be explained at the end o’f this section.) A transaction T
reads from (writes into) a set D of data objects, if the readset (writeset) of T has a nonempty
intersection with D. Note that this condition does not require the readset (writeset) of T to be a

subset of D

In the following discussion of an upper bound on availability, we adopt the weak uniformity

assumption on transaction distribution 3, defined as follows.
Weak Uniformity Assumption. For any set D of data objects, if the number of transactions in &

submitted in P (P,), which read from (write into) D , is larger than the number of transaction in 3

submitted in P, (P), which write into (read from) D , then any subset of D also has this property. Ol

44 -

chapter four ’ section 4.3

Note that the above assumption is not strictly "weaker" than the uniformity assumption,
because of the condition on the read set. However, if the readset and writeset of a transaction are
always the same, then the uniformity assumption imi)lies the weak uniformity assumption. Because
of the conflict betweeh the transactions in I'; and T, not all the transactions submitted can be
accepted. Let Ci, denote the set WS (I'1)NRS (I'z) and C; denote the set WS (I')NRS (I'y). In other
words, C 2 and C5; are the "source of conflict" between the transactions in I'y and I',. We define the

following parameters for specifying an upper bound on the availability for 8.

p1 = the set of all transactions belonging to P, that write into C 5, i.e., those which conflict with some
transactions belonging to P, because they have written some data objects which are read by some

transitions in Trans (P).

0, = the set of all transactions belonging to P , that read from C,, i.¢., those which conflict with some

transactions belonging to P, because they read some data objects which were written by some

transitions in Trans (P).

p2 = the set of all transactions belonging to P, that write into C 4, i.e., those which conflict with some
transactions belonging P, because they have written some data objects which are read by some

transitions in Trans (P).

0 = the set of all transactions belonging to P, that read from C 4, i.e., those which conflict with some
transactions belonging to P, because they read some data objects which were written by some

transitions in Trans (P ;).

- 45 --

chapter four ' section 4.3

Theorem 4.3.1. For any transaction distribution 8 that satisfies the weak uniformity

assumption and for any prevention protocol PT , we have

m
Av(S, PT)<1 - VES IR
where m = min (1p1,1p21,10,1,1621).

Proof. Suppose L is the rp log of an execution of § over {P, P,} with protocol PT. According

to Theorem 3.5.3, PIO (L) must have a DITS, which is either P oP 1P oPs OF PP yP (Py.

Let 1, be the set of all the transactions appearing in the sublog of L in P, and let 1, be the set of
all the transactions appearing in the sublog of L in P,. Note that 1, cT'; and 12 ¢ I', since some
transactions may be rejected by PT. Suppose that PIO (L) has a DITS given by PoP P oPs. As
illustrated in Figure 4.3.1(a), there can be no data object X such that X, is written by a transaction in
1y and X, is read by any transaction in 1,, where X; and X, are two copies of X in P, and P,,
respectively. Otherwise, PP PPy would not be a DITS of PIO (L), since PIO (L) would have an
arc (Po, P,):X, because a transaction in P, can read only from T, belonging to P (i.e., X 2 iS written
by Ty,) but not from any transaction belonging to P,. Hence, WS (1;) and RS (t,) must be disjoint.
C 12 contains two disjoint subsets Wy, and R 1, where W, = WS (tl)hC 12and R 12 =RS (12)NC 2. (The
inclusion relationships among the sets WS(Ty), RS(I2), WS(t1), RS(t2), C12, W12 and R,2 are

illustrated in Figure 4.3.2).

Let RJ; =T —14, i.e., the set consisting of all the transactions submitted in P, that are rejected
by PT. In other words, RJ, consists of all the transactions submitted in P that write into C 1, — W,.
Also let RJ,=T,~1,, i.c., the set consisting of all the transactions submitted in P, that are rejected

by PT. RJ, thus consists of all the transactions submitted in P, that read from C 2, - R 2.

Suppose the number of transactions in P, which write into C, is larger than the number of

transactions in P, which read from C,. It follows from the weak uniformity assumption that

- 46 --

chapter four ' section 4.3

IRJ11 2 1AC |, where AC ; is the set of transactions in P, which read from R 2. Since 8, is defined
as the set of transactions in P, which read from C,, it is clear that 6, is the union of AC, and R/J,.

Hence,

byl + 1l = I = IRJ | + IT5) — |RJ 5l
<IN+ 1Tt —(lAC2| + IR.’2|)

< ITy 1 + T, = (6. @.1)

(Note that AC, and RJ, may not be disjoint, and this is why the last inequality in (4.1) is not an
equality). If the number of transactions in P, which write into C; is smaller than the number of
transactions in P, which read from C,,, then 1RJ;l 2 1AC 1, where AC, is the set of transactions in

P, which write into W,. Since p; is defined as the set of transactions in P, which write iﬂto Ciy, itis

clear that p, is the union of AC, and RJ,. Hence,

140 + 151 = Iy 1 = IRJ 1 + IT31 = RT,|
< ITy1+ ITy1 = (JACy | + IRJ41)
<ITy1+ 1050 = 1pyl. @

On the other hand, if the DITS in PIO (L) is PP P 1Py, then no data object X written by a
transaction submitted in P, can be read by any transaction submitted in P, as illustrated in Figure
4.3.1(b). Hence, WS (t;) and RS(t,) must be disjoint. In this case, the following two inequalities

correspond to (4.1) and (4.2), respectively.

Il + Il S ITy 4+ IT! = 1641, 43)

47 .-

chapter four ' ' section 4,3

It + 1128 S I + ITa0 — |p2| “4.4)
Therefore, we have
_ |‘Cl|+|‘tz| :
Ac L) =TT
<1- m
II"ll + II"2| ’

where m = min(1p;1,1p21,16,1,1021). Since this is true for the rp log of any execution of & over

{P ., P}, it follows that

Note that when we considered the DITS PP ,P,P, in the above proof, only data objects caused
conflicts between the transactions in 1, and 1,. We did not consider the data objects in
WS (11)NWS (1), because, if there exists a data object X € WS (1))nWS(t2), P oP 1P 2P, will still be a
DITS for PIO(L) as long as X € RS(t,). This is the reason why we ;iid not consider the intersection

of their writesets when we defined conflict between transactions.

--48 -

CHAPTER 5

TECHNIQUES FOR ACHIEVING HIGH AVAILABILITY

5.1. Trade-off between Serializability and Availability

In Chapter 4, it was shown that under a partition failure there is a limitation on the availability
of distributed database systems. Serializability and availability are conflicting goals in designing
distributed database systems. It was suggested in [GaK87] that the trade-off between these goals can
be viewed as a linear spectrum of possible solutions. At one end, there is global serialiiability, and

at the other end, there is 100% availability.

Systems that guarantee serializability, e.g., [AbT86, BeG81, Dav84, DGS85, Gif79, SkW84],
suffer from high communication overheads and low availability. When a transaction updates a data
object, it must also update all, or at least a majority of, the copies of the object at remote sites. In the
worst case, when a communication failure causes partitioning of the network, availability is seriously
degraded. However, such a system has the very desirable feature that global \serializability is

maintained.

As for systems at the other end of the spectrum, e.g., [BGR83, GAB83, SBK85], they
emphasize local availability of data objects. All data objects are fully replicated. Read and write
operations are always executed locally. Therefore, the execution of a transaction is guaranteed to be
fast. Even if a communication failure occurs, there is no degradation in execution speed or

availability. The most serious deficiency of these systems is that there is no guarantee of

d9 ..

chapter five ' section 5.1

serializability. In fact, very little can be said about the correctness of these systems.

In Section 5.2, a system which ignores serializability but provides the maximum availability is
described. Then, in Section 5.3, we will review an approach to achieving both serializability and
high availability by restricting transaction behaviour. “For this purpose, we will discuss a model
called fragmented database system. In Section 5.4, two schemes proposed by Kogan and Garcia-
Molina [KoG87] for a fragmented database system will be discussed. Their schemes adopt fixed
"access patterns”, which are rather restrictive, to achieve both serializability and high availability. In

Chapters 6 and 7, we will propose two schemes which are more general than those in [KoG87].

5.2. A Highly Available Distributed Database System

In this section, we describe the system SHARD (System for Highly Available Replicated Data),

developed and implemented at CCA (Computer Corporation of America) [SBK85, Sar86].

The database in this system is fully replicated. The execution of a transaction is completed
locally at the site of its submission and updates are broadcast afterwards. No site or partition failure -
can affect the execution of any transaction at an operational site, and updates will eventually arrive at
every operational site, after the partition failure has been repaired. Therefore, availability is
guaranteed to be 100%. The main issues are how to merge the updates from different sites and how

to define correctness for this kind of execution.

Figure 5.2.1 shows the architecture of SHARD at each site. The DB and Update History are
two secondary storages, and a copy of the whole database is stored in the DB. In addition, tﬁere are
three modules, called Interactor, Distributor and Checker. Interactor is the interface between the
system and the local users. By reading data from the DB, it generates responses to user requests and

“update actions". Here, we use an example of cash withdrawal in a banking system to illustrate the

50 --

chapter five ' section 5.2

idea of an update action. After money is output to a user, instead of changing the balance
immediately, an update action, which is a transaction in itself that decrements the amount withdrawn
from the balance, is generated. If this update action énd the output action are executed together as an
atomic action, the resulting database is always consistent. However, this would require a transaction
to wait for its update actions at all the sites to complete, before the output action can be executed.
This prolongs the response time of the transaction and it will be blocked if a partition failure occurs
in the middle of its execution. In order to achieve the high availability objective, SHARD takes
another approach. Money is output first and an update action is executed afterwards, independently

at different sites.

The update actions generated by Interactor are first stored in Update History. Distributor is
responsible for broadcasting them to all the other sites by using a reliable broadcast prdtocol, e.g.,
[AwE84, GLB85], which guarantees delivery of messages at every site. (The delivery may suffer
from a long delay). When an update action is broadcast, it carries a global timestamp, indicating the

time when the update action was generated.

Checker executes the update actions in Update History in their timestamp order. When
Checker updates the DB, it may miss some update actions from a remote site because of slow
communication or a partition failure. This can be remedied only by undoing and redoing some
update actions once it is discovered. Eventually, the copies at different sites are guaranteed to be

mutually consistent, i.e., the copies of the same logical data object will have the same value.

However, in general, an execution generated in SHARD is not guaranteed to be serializable by
the timestamp order of the transactions involved. This can be explained as follows. Suppose that a
transaction T, is executed at a site S, with a timestamp ¢, and it reads only a data object X. When T,
interacts with the Interactor, it retrieves for T, a value of X from the DB. The output action and

update action of T, are generated based on this value. Suppose also that a transaction T, with a

w51 --

chapter five ' section 5.2

ﬁmestamp t2 < £ has been executed at another site S and the update action of T5, which also writes
X, arrives at S, after the update action and output action of T, have been generated. In this case, T,
has missed the value'of X written by T,. If these twb transactions are serialized by their timestamps,
T; should read the value of X updated by T,. Hence, an execution in SHARD may not be
serializable by the timestamp order of the transactiéns involved. In other words, the database state in
which an update action is eventually executed is, in general, different from the state in which it was
generated; therefore, serializability is not guaranteed in SHARD, even though mutual consistency
and high availability are achieved [SBKS85, Sar86]. In [SBK85, Sar86], "compensation action" is

used to remedy inconsistency, once it is discovered.

When Checker tries to merge update actions from different sites, techniques such as data-

patching and log transformation [BGR83, BIK85] may be used.

Another issue in this scheme is the definition of correctness. The correctness of the executions
generated using this scheme depends in many cases on the semantics of the operations involved. It is
very difficult to give a general correctness criterion to these executions. Lynch, Merrit, Siegel

[LBS86] attempt to solve this problem. However, this is an area that requires further research.

5.3. Fragmented Distributed Database System

In Chapter 4, we showed that, if serializability is required, there is a limit on the availability of
a general distributed database system. On the other hand, it is demonstrated in SHARD, described in
Section 5.2, that it is possible to achieve a full (100 percent) availability by ignoring serializability.
In general, the two conflicting goals of serializability and availability must be compromised.
However, there is a third approach which provides both serializability and high availability by

reducing the generality of transactions allowed in a system. In the rest of this thesis, we focus our

-5 .

chapter five ' section 5.3

study on this approach.

In the most general case, a transaction submitted at a site can read and write any data object
either at the local site or some remote site. However, in some domains of application, this generality -
can be restricted to some extent without affecting the defined goal. In such a case, it is possible to

achieve both serializability and availability by restricting the behaviour of transactions.

For example, -in an airline information management system, a flight scheduling system may be
centralized at the airline’s headquarters. For the sake of fast accessibility and reiiability, the database
of flight schedules may be replicated at many different sites. In this case, it is reasonable to restrict
updating of a flight schedule to be executed only at the headquariers. A site other than the
headquarters can read any flight schedule by accessing its local copy. However, no site except for
the headquarters is allowed to modify any flight schedule for itself. The only way in which a site can
modify a flight schedule is to send a request to the headquarters. On the other hand, it is necessary
for a site other than the headquarters to read flight schedules. For example, the accounting
department needs to read flight schedules to find the total flying time of every pilot to calculate the
payroll. In this example, we are trying to put constraints on data objects that a transaction can read
and write. In the following, this kind of restriction is formalized and a new database model, called
fragmented database, is introduced. A similar model has been independently developed by
Garcia-Molina and Kogan [GaK87]. However, their approach and results have different flavors and

applications from ours.

In a fragmented database system, data objects are fully replicated at all the participating

sites!. The logical database is partitioned into disjoint pieces called fragments; and each site

manages exactly one fragment. Therefore, there is a one-one correspondence between the fragments

! The assumption of full replication can be relaxed to pantial replication, without affecting the results presented in the following.
This assumption is made to make the description and discussions simple.

- 53--

chapter five ’ section 5.3

ahd the sites. The site which manages a fragment is called its home site. The fragment managed by
a site is called the home fragment of the site. Data objects in a fragment belong to the fragment’s
home site. The fragments other than the home fraglﬁent of a site are called remote fragments with-
respect to that site. Note that each site has not only its home fragment, but also the copies of the

remote fragments.

A transaction is said to belong to the site at which it is issued and this site is called its home
site; we also refer to the home fragment and the remote fragments of a transaction’s home site as its
home fragment and remote fragments, respectively. In this model, transactions can update only
data objects in their home fragments. Therefore, updating a data object in a remote fragment must be

done by sending a request to the home site of the remote fragment.

Two kinds of transactions are allowed to run in a fragmented database system. A local
transaction can read and write data objects only in its home fragment. A global transaction can

read from any fragments, but it can write only into its home fragment.

Both local and global transactions execute their read operations by accessing the copies
available at their home sites. (Recall that the database is fully replicated). A transaction is
committed (i.e., its updates are permanently reflected in the database) after all its read and write
operations have completed at its home site. As a result of this, to commit a transaction, the system
never has to wait for replies from other sites confirming the arrival of its updates. No waiting is
necessary to perform distributive commitment. Instead, the updates by a transaction are packaged
and broadcast asynchronously to all other sites after the transaction has been committed locally.
Therefore, even if there is a partition failure, a transaction can still commi} at its home site and let a

broadcast protocol take care of the delivery of its updates afterwards.

w54

chapter five ' section 5.3

At each site, there is a local scheduler which controls local read/write accesses and remote
updates from other sites, so that the result of their executions is serializable. We require that at each
site the updates of transactions are broadcast to othef sites in a serialization order of the transactions.
For example, if the local scheduler is timestamp-based [BeG81], then updates granted by it are
broadcast in their timestamp order. Furthermore, updates from the same site are processed by every
receiver site in the order they are sent. Hence, a transaction always reads all data objects in its

readset from a consistent database state.

Example 5.3.1. In Figure 5.3.1, the sites S, S, and S5 are the home sites of the fragments F;,
F, and F, respectively, and F{, F, and F are the replicas of F,, F, and F,, respectively. The data
objects X, Y, Z and W belong to fragments as shown in the figure. The sﬁbscripts of the data object

copies indicate their sites

A transaction T'; submitted at S, which reads X and writes Y, is a local transaction belonging
to §1. T is completed locally at S before its update is broadcast to S, and S; to update Y, and Y,

respectively.

A transaction T, submitted at §;, which reads Z, W and writes X, is a global transaction
belonging to §;. T, is also completed locally by reading Z; and W, before its update is broadcast.

Note that only transactions submitted at S can update data objects in F ;. O

In this section, we have introduced the notion of a fragmented database system, in which
transaction behaviour is restricted. In the next section, we shall discuss results in [GaK87,KoG87],
which demonstrate that both high availability and serializability can be achieved in a fragmented

database system.

--55..

chapter five ' section 5.4

5.4. Transaction Processing with a Static Read Access Graph

In a fragmented database system, in general, a transaction submitted at one site can read data
objects belonging to any other site. If the local schedulers located at different sites work
independently of each other, non-serializable executions may be generated. We shall illustrate this

fact by the following example.

Example 5.4.1. Consider a fragmented database system in Figure 5.4.1(a), which consists of
two sites §; and §, with fragments F, and F,, respectively. The database contains two data objects
X and Y with copies at the two sites. Suppose that initially the copies of X have a value Aq, while the

copies of Y have a value vy,

Two local transactions T,=R[XIW[X] and T,=R,[Y]W,[Y] are submitted at §; and S,
respectively. X is updated by T, to a new value A, while Y, is updated by T, to v, at foughly the
same time. After T, and T, are committed locally, their updates are sent to the other site. (See
Figure 5.4.1(b)). Suppose that before the arrival of these updates, two read-only global transactions
T3=R3[XIR5[Y] and T,=R4[X]IR4[Y] are executed at sites §, and S, respectively. Since the
updates do not arrive in time, the values read by T, are A, for X and v, for Y. As for T4, the values
read are Ao for X and v, for Y. Since T; has read the update from T, but not from T,, T3 must be
serialized after T, and before T,. On the other hand, T4 has read the update from T, but not from T',,
T, must be serialized after T, and before T,. Therefore, this execution of the four transactions is not

serializable. O

From Example 5.4.1, it is clear that the restriction given above on transaction behaviour in a
fragmented database is not sufficient to guarantee global serializability. The approach taken in
[GaK87, KoG87] to ensure global serializability is to further require each transaction’s read and write

operations to conform to a static access pattem.

- 56--

chapter five ’ : section 5.4

Definition 5.4.1.{GaK87] Given a fragmented database with sites S§;,..., S, and
corresponding fragments Fy,..., F,, the read-access graph (RAG, for short) is a directed graph |
G=(N, A), where N=(Fy,..., F,}) and A= ((F;,F;):i+#j and a transaction T with home

fragment F; can read any data objectin F;}. 0

The RAG is an abstraction of the constraints imposed on the activity of transactions.
Transactions submitted at S; are allowed to read data objects belonging to F;, only if there is an arc
from F; to F; in the RAG. Of course, reading is not done by sending outi a remote request to S;, but
rather by reading the copy of F; at S;, which is updated when new values from S; arrive at S;. Thus,
if there is no outgoing edge at fragment F; in a RAG, transactions submitted at S; can read and write
only the data objects in F;. In other words, no global transaction can be submitted at S;. Since we
assume a one-to-one correspondence between the fragments and the sites, we sometimes refer to the
nodes of a RAG as sites rather than fragments, whenever it is more convenient. A directed graph is

loepless, if it has no undirected cycle in it.

Example 5.4.2. Figure 5.4.2(a) shows a RAG, which is a complete graph, for three fragments
Fy, F, and F, of a database. This is the most general RAG for three fragments, in which a

transaction submitted at any site is allowed to read data objects from any site.

Figure 5.4.2(b) shows a restricted cyclic RAG for the same set of fragments. Transactions

submitted at one site can read data objects at only one more site.

Figure 5.4.2(c) shows an acyclic RAG, in which transactions submitted at S, have no
restriction on access. They can read from both F, and Fi. As for the transactions submitted at S s,
they can read only from S;. The most severe restriction is imposed on the transactions submitted at

§1. They can read and write only data objects in its own fragment F .

57 ..

chapter five ' section 5.4

The restrictions imposed by the RAG in Figure 5.4.2(d) are even stronger than those in Figure
5.4.2(c). Figure 5.4.2(d) shows a loopless RAG. It is not only acyclic, but its nondirected version is
also acyclic. With this RAG, only the transactions submitted at S, can read data objects from other

fragments. The transactions submitted at §; and S 3 can access only their own fragments. [

The following theorem states that a fragmented database with a very restrictive static access

pattern can achieve both serializability and high availability.

Theorem 5.4.1.[GaK87] If the RAG imposed on a fragmented database is loopless, any

execution in the database is serializable. O
The following example illustrates an application of this theorem.

Example 5.4.3. This example is oversimplified; however, it serves the purpose of

demonstrating a plausible application of Theorem 5.4.1.

In this application, we keep track of sales and inventory stock for a wholesale company. There
are k warehoﬁses at which the merchandise is sold to retailers. At e:ach location, there is a fragment
that contains a record of every sale made, a record of every new merchandise shipment received at
that location, and the quantity in stock of each product. Name these fragments Fy, Fa, '+, Fy.
Furthermore, there is a fragment C controlled by the company’s central office. In this fragment,
information is recorded which represents decisions conceming future purchases (from

manufacturers). These decisions are arrived at by computations based on the periodic readings of

fragments {F; : i =1,..., k}. This database is characterized by the RAG shown in Figure 5.4.3.

Note that there is a high degree of availability in this database system. For instance, each
warehouse can still enter the sales and shipment information even if there is a communication failure.
On the other hand, global serializability is never violated, even during a partition failure. Of course,

o

if the system is facing communication failure, the central office has to make decisions relying on

- 58 --

chapter five ’ section 5.4

stale information. However, this is unavoidable in the case of a partition failure. [

Theorem 5.4.1 implies that it is possible to have both serializability and high availability;
however, this is achieved at the expense of a restricted read access pattern. With a slight relaxation
on the requirement defined by the RAG, the theorem no longer holds. The following example shows

that an acyclic RAG with a loop may generate a non-serializable execution.

Example 5.4.4. Consider the RAG for three fragments F1, F, and F 5 given in Figure 5.4.4(a),
which is an acyclic graph with a loop. The copies of three objects X, Y and Z are located as shown
in Figure 5.4.4(b). F,, F,, and F 5 are the home fragments of S, S, and § 3, respectively, and Fi, Fa
and F 5 are the replicas of §,, S, and S, respectively. Transaction T3 =R 3[Z]W[Z], submitted at S 3,
changes the value of Z from Ay to a new value A;. The value A; is broadcast to §; and Sa.
Transaction T, =R ,[Z]W,[Y 1, submitted at §,, reads the value A, of Z received from T, Tz changes
the value of Y from v to v, and v; is broadcast to §; and §;. Transaction Ty =R,[Y,Z]1W[X],
submitted at §;, is executed before the arrival of A; and after the arrival of v,. This is possible
because of variable delays on different communication links. Therefore, T reads the obsolete value

Ao of Z and the updated value v; of Y.

This execution can be described by the rp log L illustrated in Figure 5.4.4(c). It is clear from
this execution that T3 has to be serialized before T, because T, reads Z from T5. Also, T has to be
serialized before T, because T, reads Y from T,. However, T; reads Z from T, i.€., not from T3.
This makes it impossible for the TIO graph, TIO (L), of log L to have a DITS. (See Figure 5.4.4(d)).

Hence, this execution is non-serializable. O

Even though Theorem 5.4.1 is an interesting result, it can be argued that its condition is t00
restrictive. It is not applicable in the case where a RAG is acyclic but has a loop. Kogan and

Garcia-Molina have successfully improved on this result to allow the RAG to contain loops.

- 59 --

chapter five ' section 5.4

With a close examination of Example 5.4.4, it can be seen that the main source of problem,
which affects the serializability of the execution given in the example, is the disparity in the arrival
times of the update of T, at sites S; and S,. Because of the late arrival of this update at S,

transaction T, submitted at S ,, could read both a stale value of Z and an updated value of Y.

On the other hand, suppose that the update of T3 at S5 is first sent to S, and then relayed to S,
by S2. Also let S, send the update of T3 to S, before the update of any transaction executed at S5,
which has read the update of T3. Then the combination of values of Y and Z read by Tkl can be only
one of the following three, because the value A, is sent to S, before the value v; : Y =20 and Z = vg;
Y= and Z =vg; Y =, and Z =v,. The execution of these three transactions is serializable in any
one of these three cases. Therefore, if the rule mentioned above for update propagation is adhered to,
then any execution in the fragmented database of Example 5.4.4 will be globally serializable. This

observation has been abstracted and proved formally in [KoG87], as we explain below.

Given a directed graph G = (N, E), a topological sort of G is a total order on N such that if A
and B are two nodes in N and there is a directed path from A to B in E, then A is ordered before B.
Let G be an acyclic RAG of a fragmented database system with fragments {F, ..., F,} and sites
{$1,.... 8,). For simplicity, assume that F,,..., F, is a topological sort of G. We define a

propagation order in G by a function Send , where
Send(i)=i-1,forl<i <n,

Note that Send is not defined for i = 1, i.e., the first node in the sorted order. The update, U (T), by a
transaction T submitted at S;, which is carried in a packet containing all the updates done by T, is
sent to the site indexed by Send (i), i.c., S,-_ll in this case. Whenever a site S; (k #1) receives an
update U(T) of some transaction T, S relays it to the site indexed by Send(k), i.c., Si-i.

Furthermore, the update U(T) must be sént out by S, according to the following rule. Let X be a

- 60 --

chapter five ' section 5.4

data object with an update in U(T). If T, is a transaction executed at S, which has read the value of
X before X is updated by T, then U(T) must be sent out after the update of T,,. If T; is a transaction
executed at Si, which has read the value of X in U(T), then U (T') must be sent out before the update

of T;. Thus, Send defines a route for the propagation of updates.

For example, Fy, F, F3 is a topological sort for the acyclic RAG in Figure 5.4.4(a). A route
for update propagation can be defined in the reverse order. Therefore, updates done in S5 are sent to
S, and then relayed to §,. Updates done in S, are sent directly to §,. The following was proved by
Kogan and Garcia-Molina in [KoG87], which deals with the case in which the RAG is acyclic but

not loopless.

Theorem 5.4.2.[KoG87] Given a fragmented database system with an acyclic RAG, if update
propagation is controlled by the propagation function Send defined above, then any execution is

globally serializable. O
In the following, we present an example which shows an application of Theorem 5.4.2.

Example 5.4.5 [KoG87]. This is an example of an airline reservation system. The database
contains information on flight schedules, customer reservations, and seat assignments. The database

is replicated at different sites, including the airports at which this airline operates.

The RAG for this fragmented database is shown in Figure 5.4.5. Fragment F contains the
flight schedules which are managed by the central office. Only the central office needs and has the
authority to update flight schedules. There are two disjoint fragments for reservation; one for the
west coast (fragment R,,), and the other for the east coast (fragment R,). The sites which manage R.,
and R, are able to read flight schedules in order to accept clients’ reservation orders. However, there
is no need for the central office which handles flight scheduling to access reservation information.

There are three other sites, which are the airlines’ offices at three different airports. Fragments A,,

- 61 --

chapter five ' section 5.4

A, and A, belonging to these three sites S,, S, and S., respectively, contain seat allocation
information. In order to allocate seats, sites S,, S, and S, have to access flight schedules in F and the
reservation lists in R, and R,,. The RAG in this database is acyclic and contains no loop. Therefore,

Theorem 5.4.2 is applicable.

High availability is achieved in this fragmented database system. For example, it is possible to
assign passengers to their seats at the airports even if the computers located at the airports are cut-off
from the rest of the system. Similarly, there is no need for the operators at the airport and those at
the reservation centers to execute schedule changes. Therefore, a temporary cut-off from the rest of

the system would not stop the central office from updating the flight schedule. C1

There are, however, shortcomings in the application shown in Example 5.4.5. Suppose that the
propagation order used is the reverse of a topological order A,, As, A;, Rw, R., F. Any change in
flight schedule would have to be sent from the central office to the site managing R,, then relayed to
the site managing R,,, then through S, and S,, until it arrives at the last site S,. If a partition failure
puts the sites managing F, A,, A, and A, in one partition and the others in another partition, then the
update done on F cannot be sent to S,, S, or S., even though these three sites are connected to the
central office. Instead, seat allocation at §,, S, and S, have to use stale data in F that were received
prior to the failure. This problem is unavoidable if a static access pattern is adopted. In the next two
chapters, we will study this issue. In particular, we will investigate the case in which the RAG may

be any directed graph.

-6 --

CHAPTER 6

A CONCURRENCY CONTROL SCHEME FOR

WIDE-AREA DISTRIBUTED DATABASE SYSTEM

6.1. A Model for Wide-Area Distributed Database Systems

In Chapter 5, we discussed Kogan and Garcia-Molina’s scheme for achieving high availability
in a fragmented database system, which requires the RAG (read access graph) to be acyclic. In their

scheme, any transaction, whether it is local or global, is accepted if its read and write operations

serializability is guaranteed by the RAG. However, the acyclicity requirement on the RAG severely

restricts the applicability of their scheme.

In this chapter, we relax the restriction on access pattern by allowing the RAG to be any
directed graph. It is then no longer possible to achieve serializability without any gloﬁal concurrency
control as in Kogan and Garcia-Molina’s scheme. However, it will be shown that to maintain
serializability global concurrency control is needed only for global transactions. In other words,
local transactions can be managed solely by local schedulers, as if they were running in a single-site

system.

An interesting feature of our scheme is that a global transaction which reads a data object
belonging to a remote site S; never makes the data object inaccessible to a local transaction

submitted at S;. In other words, a local transaction is never rejected because it wants to access a data

—-63 --

chapter six ' section 6.1

6bject which is being read by a global transaction submitted at another site. Namely, local
transactions have higher priority than global transactions, if they happen to be competing for the
same data object. Also, in our scheme, even if there is a partition failure, any local transaction
submitted at an operational sife can still be accepted. In this way, local transactions enjoy good
response time and high availability. As will become evident in the following, this approach is very

useful for a wide-area distributed database system.

In many distributed database systems, participating sites are spread over a geographically wide
area. This kind of database system is called a wide-area distributed database system (WADDS,
for short). In some cases, these sites may even be located on different continents. Communication
among the sites in a wide-area distributed database system is conducted through a long haul network
and the delay for message transmission across the network might well be on the order of seconds.
(For example, it may take several hops of satellite transmission to reach a receiver). In the remainder
of this thesis, we consider only fully replicated wide-area distributed database system. The reason

for replication is reliability and "accessibility".

When a transaction updates a data object in a conventional replicated database system, besides
the local copy, it also must update all affected remote copies before its completion. With
communication delays on the order of seconds, these remote update}s will undoubtedly cause delays
that are unacceptable in many applications. This is why the conventional way of transaction
processing is inadequate [NoA83] and new models and schemes for a wide-area distributed database

system are investigated.

The model of fragmented database system solves some of the problems raised in a wide-area
distributed database system. For example, in a fragmented database system, both local and global
transactions complete their executions by accessing local copies available at their home sites;

updates are then broadcast asynchronously afterwards. This climinates the problem of prolonged

w64 -

chapter six ' section 6.1

waiting for the completion of remote updates. Hence, the updating strategy used in a fragmented

database is quite suitable for wide-area distributed database systems.

Besides update propagation, the issue of concurrency control has to be solved in a wide-area
distributed database system. One option is to adopt é conventional scheme like the distributed
locking scheme. Another option is to adopt the scheme proposed by Kogan and Garcia-Molina
which we discussed in Chapter 5. Suppose that we adopt the distributed locking scheme for
concurrency control. If a data object is locked by a global transaction, then all local transactions
accessing the data object must wait until the global transaction is completed. Because of
communication delay, the completion of a global transaction may take a long time. This
significantly degrades the performance of local transactions. Therefore, the first option is not
practical. The scheme proposed by Kogan and Garcia-Molina will work well with a wide—area
distributed database system, except that it requires the underlying RAG to be acyclic, which is too
restrictive for general application. In the following, we will propose a new scheme for concurrency
control for a wide-area distributed database system, which is based on the fragmented database

model,

The difference between our scheme and Kogan and Garcia-Molina’s scheme (KG's scheme, for

short) are as follows.

(1) The underlying RAG in KG’s scheme must be acyclic, while the RAG in our scheme can be
any directed graph. In general, in our scheme, we assume that the RAG is a complete graph.

Therefore, a transaction submitted at one site can read the data object from any set of remote

fragments.

(2) We assume that much more local transactions than global transactions are submitted to the

~system. In KG's scheme, there is no explicit assumption on the ratio of local transactions to

- 65 --

chapter six ' section 6.1

global transactions.

(3) There is no explicit global concurrency control in KG's scheme except for the constraints
imposed by the RAG. In our scheme, no global concurrency control is needed for local
transactions; however, it is needed for global transactions in order to maintain serializability

among all the transactions. (This will be discussed extensively in Section 6.3).

The difference mentioned in (1) implies that our scheme is more general than KG’s scheme,
We believe that the assumption mentioned in (2) is usually valid in wide-area distributed database
systems. As a matter of fact, it is quite usual that most transactions access only their home
fragments. For example, in a banking database system, it is likely that most of the transactions
submitted at a particular branch access only the accounts opened at that branch. As for (3), KG’s
scheme imposes such a strict constraint that global concurrency control is not needed. Since we
impose no restriction on the RAG in our scheme, we cannot do away with global concurrency
control. However, the merit of our scheme is that global concurrency control needs to be applied
only to global transactions. Therefore, the large number of local transactions can be synchronized
only by the local schedulers at their home sites as if they were running in a single-site database
system. Our scheme also ensures that a local transaction has a higher priority than a global
transaction if they are competing for the same data object. This guarantees that all local transactions

enjoy good response time and high availability.

The following example illustrates a wide-area fragmented distributed database system for

inventory and price control with a complete RAG.

Example 6.1.1. A manufacturing company does business in many districts spread over several
continents. In each district, it has an office and a plant. The plant is responsible for three aspects of

one line of product; manufacturing, inventory control and pricing. The office manéges the local sale

- 66 --

chapter six ' section 6.1

and local inventory of all the products for the district.

In terms of our model, there are n sites § 1 - S, and each site S; owns a fragment F;
@ =1,..., n). Ineach fragment F;, there are three sets of data objects. The first set, INVENT;, is the
inventory of all the products in the district controlled by S:;. The second set, TOTAL;, is the total
inventory over all districts of the line of product manufactured at §;. The third set, PRICE;, is the

price list of the products manufactured at ;.

Data objects are fully replicated according to the fragmented database system model. Each site
S; must read from INVENT;, for j =1,..., n, in order to update TOTAL;. Then S; uses TOTAL; as an
indication of the market demand to adjust PRICE;. Also, each site §; has to read PRICE;,
ji=1,..., n to determine the prices of all the products for local sales. Therefore, the RAG for this

system is a complete graph. Figure 6.1.1 shows the RAG of this inventory system, assuming that

there are only three sites. 0

In the following example, we will explain several cases in which an execution consisting of

local and global transactions may or may not be serialized.

Example 6.1.2. Suppose that there are two sites §; and §, in a fragmented database system
and the schedulers at §, and S, are timestamp-based schedulexﬁ [BeG81]. Let A, and A, be the sets
of transactions executed at §; and S, respectively. A transaction in A, (A,) is represented by T;
(T%), where i is its local timestamp. Timestamps are assigned to the transactions in A, and A,
independently, i.e., a transaction in A; may have the same timestamp as another one in A;. An
update sent from a site to another site has the timestamp of the transaction by which this update was

written, and this timestamp is stored together with the update in the database at the receiving site.

In case (@), A1={T\,T12,T13}, A2={T2,T2», T} and all the transactions are local

transactions. (See Figure 6.1.2(a).) Since the schedulers are timestamp-based, (Ty;)%; is a

- 67 -

chapter six ' section 6.1

serialization order of the transactions in A,. Similarly, (T)%: is a serialization order of the
transactions in A,. Since a local transaction reads and writes only data objects in its home fragment,
any order of the transactions in A ;UA ,, in which the orders (Ty;)3; and (T 5), are preserved, is a

serialization order.

In case (b), A, is same as in case (a) and A, has one more global transaction T than it has in
case (a). (See Figure 6.1.2(b).) In Figure 6.1.2(b), there is an edge from T, t0 Ty, indicating that
T4 has read a data object from T 2. Since T2, T2, T2 do not update the data objects written by T2,

the order (T'11, T12, T21, T22, T3, T24, T13) is a serialization order of the transactions in A yUA 5.

In case (c), A, has one more local transaction Ty than it has in case (b). A, has one more
global transaction T4 than it has in case (b) and T4 has read a data object X from Ts. (See Figure
6.1.2(c).) It can be seen that the order (T'11, T12, T21, T2, T23, T24, T13, T2s, T14) iS a serialization order

of the transactions in A yUA 5.

In case (d), A, and A, have the same contains as in case (c); however, T14 reads X from T, but
not from T,s. In this case, the transactions in A ,0A, may not be serializable. When T4 was
executed at S, it read the local copy of X ; hence the value of X may not be current, i.e., X may have
been updated again at §,. The only information S, knowS is that the value of X read by T4 is written
by a transaction at S,, whose timestamp is 2. We do not assume S, r;tcords the writesets of the
transactions executed there. Hence after T»; has completed, neither S nor S, knows that if T3, the
transaction serialized immediately after T, at §,, has written X. Therefore, in order to serialize T4
with those at §,, it would require T4 to be serialized after T, and before T»3. Similarly To, would
be required to be serialized after Ty, and before T13. However, T2 and T3 are serialized before T4
and T,,, respectively. Therefore, there would be a cycle in the serialization order if we try to

serialize the transactions in this way. O

- 68 --

chapter six ' section 6.1

In the above example, a way 1o avoid the problem occurred in case (d) is to send the timestamp
of X read by T4 to S, for certification. The idea of certification is to ensure that the transactions in
AUA, can be serialized by knowing only the tirhestamps of the data objects read by global
transactions from remote sites. In the above example, we have shown only a few cases in which the
read operation of a global transaction has to be. certified. It is not yet clear how to perform

certification algorithmically. In Section 6.4, we will explain the details of certification.

In Section 6.2, we will present an architecture for wide-area distributed database systems. In
Section 6.3, we will model an execution generated in a wide-area distributed database system by a
fragmented execution. We will also discuss a sufficient condition for a fragmented execution to be
serializable. In Section 6.4, we will propose a concurrency control, called Global Timestamp
Order Certification (GTOC), for a wide-area distributed database with the properties ‘mentioned
above. In Section 6.5, the performance of GTOC is compared with other conventional schemes. In

Section 6.6, we will discuss partition failures in a fragmented database.

6.2. Architecture for Wide-Area Distributed Database System (WADDS)

A single-site database system, in general, consists of four components: the transaction
manager (TM), the scheduler, the data manager (DM) and the database (DB). Their relationships
are shown in Figure 6.2.1. The TM is an interface between the system and user transactions. The
operations of transactions submitted to the TM are rearranged by the scheduler. The scheduler uses
concurrency control to ensure that the executions generated are serializable. The operations granted
by the scheduler are executed by the ’DM on the DB. The data values retrieved by the DM are sent

‘back to a workspace in the TM via the scheduler for processing.

=69 --

chapter six ' section 6.2

The architecture proposed for a WADDS is illustrated in Figure 6.2.2, which is a modification
of the architecture in Figure 6.2.1. In the architecture for WADDS, the TM contains two
subcomponents : the local transaction manager.(LTM) and the global transaction manager
(GTM). The LTM and the GTM are responsible for managing local and global transactions,
respectively. The DB is divided into two parts : éne part contains the data objects belonging to the
home fragment and the other part contains the copies of those belonging to the remote fragments.
The scheduler contains three subcomponents : the home fragment scheduler (HFS), the remote
fragment scheduler (RFS) and the global synchronizer (GS). The HFS and RFS synchronize
operations accessing the home fragment and remote fragments, respectively. The HFS is a
timestamp-based scheduler. The RFS can be any scheduler that maintains serializability, e.g., a
timestamp-based scheduler. Operations granted by the HFS and the RFS are executed by the DM on
the DB. As mentioned in Section 6.1, in our scheme only global transactions have to be
synchronized by global concurrency control, More precisely, fonly read operations of global
transactions, which access data objects in remote fragments, have to be synchronized by global
concurrency control. The synchronization is done by certifying the readings done by global
transactions, as explained in detail in Section 6.4. The subcomponent GS in the scheduler is
responsible for certification. After a global transaction has finished reading from remote fragments
by accessing local copies in the DB, the values read have to be certified by the GS. The GS has to
ensure that the global transaction can be serialized with the local and global fransactions at other
sites. The GS’s at all the sites achieve this goal by running a distributed algorithm which will be
discussed in Section 6.4. Besides the four components, i.e. the TM, the scheduler, the DM and the
DB, there are two additional components. vThe first is the update propagation manager (UPM)
which broadcasts the updates by transactions after their completion. The second is the

communication manager (CM), which is linked to the CM’s at all other sites and is responsible for

-0 --

chapter six ' section 6.2

sending and receiving messages.

Local transactions are managed by the LTM and their operations are synchronized by the HFS.
The operations granted by the HFS are executed by the DM and the values retrieved from the home
fragment are stored in a workspace in the LTM. Wheﬁ a local transaction commits, its updates are
installed permanently in the home fragment. Up to this point, a local transaction is processed in
exactly the same way as a transaction in a single site database. After a local transaction has
committed its updates at its home site, its updates are then broadcast by the UPM to the UPM’s at all
other sites via the CM. The UPM at each site installs the updates received from other sites in the

copies of the remote fragments by submitting them to the RFS.

The read and write operations of a global transaction, which access data objects in its home
fragment, are processed in the same way as an operation of a local transaction. As for the read
operations which access data objects in remote fragments, they are synchronized by the RFS and
executed by the DM on the local copies of the remote fragments. As mentioned above, the results of
these reading operations from remote fragments have to be certified by the GS. If the certification is
successful, the global transaction proceeds to complete its remaining part. Then its updates are
broadcast by the UPM in the same way as a local transaction. If the certification fails, the global

transaction is aborted.

In the following, we describe in detail the processing of a local and a global transaction in the

architecture described above.

A local transaction can request four kinds of operations : LOCAL-BEGIN, READ, WRITE
and END. Each local transaction starts with a LOCAL-BEGIN and ends with an END. In between
these two operations is a sequence of READ and WRITE operations. These operations are

interpreted in the usual way [BeG81]. A global transaction, on the other hand, starts with a

w71 -

chapter six ' section 6.2

GLOBAL-BEGIN, followed by a GLOBAL-READ, then a sequence of READ and WRITE
operations, and ends with an END. GLOBAL-READ(X, Y, ---) is a request to read data objects
belonging to some remote fragment(s). READ and WRITE operations, on the other hand, access

only data objects in the transaction’s home fragment.

When a LOCAL-BEGIN operation from a local transaction T arrives at the TM, the LTM
initializes a temporary workspace for T. The first thing that the LTM does is to retrieve a timestamp
from a local clock and assign it to T. Requests from T are sent via the LTM to the HFS with the
timestamp of T. The HFS uses a timestamp-based algorithm to synchronize the requests from the
LTM. Every data object in the home fragment has a read-timestamp and a write-timestamp, which
indicate the timestamps of the transactions which last read and wrote the data object, respectively.
The granted requests are then submitted to the DM. Data retrieved from the DB is sent back to the

TM and stored in T's workspace.

When the END operation arrives at the LTM, it initiates two actions. Firstly, it sends a commit
message to the DM via the HFS to commit the updates in the DB. Secondly, it compiles a remote
update request and sends it to the UPM. The remote update request contains a vector
<x,Viy,Vy, oo+ ,t> where x,y, - - -, are the names of data objects, V,, V,, -- -, are their updated
values, and ¢ is the timestamp of T. The UPM implements a reliable broadcast protocol which
ensures that (1) a remote update request is broadcast to every other site and it will be received
eventually even if the netwofk experiences a temporary failure, and that (2) the remote update
requests from a site are sent and received by each receiver in their timestamp order
[AwE84, GLB85]. The UPM sends out its messages via the CM. Upon receiving a remote update
request from another site, the UPM converts it into an internal update transaction which is then
submitted to the RFS. The RFS can use any algorithm which guarantees serializability and preserves

the timestamp order of the remote updates. When a receiver’s RFS installs a remote update request,

-T2 -

chapter six ' section 6.2

if also attaches the timestamp of the request to all the updated data objects in the DB. At each site §;,
every data object has one or two timestamps. If a data object belongs to S;, it has read and write
timestamps. Otherwise, it is a copy of a data objecf belonging to a remote fragment, and it has the
timestamp of the last remote update. The timestamps from different sites are completely
independent of each other. This doesn’t cause any problem, since data in a fragment can be updated

only by transactions submitted at its home site and they get their timestamps from the same clock.

When the GLOBAL-BEGIN operation of a global transaction T arrives at the TM, the GTM
initializes a workspace for T. The second operation from T must be a GLOBAL-READ(X,Y, ---),
and the GTM interprets this as a read-only transaction which reads the copies named by the
parameters. The GTM initiates two consecutive steps to execute the GLOBAL-READ. Firstly, a
read request for every parameter is sent to the RFS, and in response to it, both the value of the data
object and its timestamp are retrieved by the DM and sent back to the GTM via the scheduler. At
this point, the GTM does not know whether the read operations just performed can be serialized with
the operations at the other sites. Therefore, the second step is to activate the GS to certify these read
operations. The GS first generates a set of certification requests, one for each remote fragment from
which some data objects were read by the GLOBAL-READ operation. Then it sends these
certification requests to the GS’s in the home sites of the remote fragments involved. The local GS
and the remote GS’s involved use a distributed algorithm to decide whether the values retrieved by
the GLOBAL-READ operation can be certified. (One possible certification algorithm is described in
Section 6.4). If they cannot be certified, then the GTM is informed by the local GS of this fact and
the transaction is aborted. If they are certified, the execution of the remaining part of the global
transaction is identical to that of a local transaction. The GTM will now request a timestamp from
the local clock and attach it to the remaining READ and WRITE operations of the global transaction

and send them to the HFS. (Note that unlike a local transaction, to which a timestamp is assigned

73 -

chapter six ' section 6.2

before any operation is submitted to the scheduler, a global transaction is assigned a timestamp after
its GLOBAL-READ operation is completed.) When the GTM receives an END, it commits the
transaction’s updates in the DB. The GTM then generates a remote update request and sends it to the

UPM in the same way as the LTM handles remote updates for local transactions.

Note that the GS’s have no knowledge about the actions taken by the HFS’s. The GS's can use
only the information supplied to it in the certification requests to certify GLOBAL-READ’s. The
separation of the GS from the HFS ensures that the GS at 6ne site never interferes with the HFS's at
the other sites. In other words, while a global transaction is executing a GLOBAL-READ on a data
object X, any local transaction submitted at the home site of X can still access X. Therefore, local
transactions will never be blocked by a global transaction. However, it is mandatory for the GS’s at
all sites to ensure that the execution generated, which consists of operations from local and global
transactions, is serializable. In Section 6.3, we will derive a sufficient condition for the serializability
of an execution generated in this architecture. In Section 6.4, we will propose an algorithm for the

GS’s to use to satisfy the condition.

6.3. Correctness of Fragmented Executions

In this section, we will model the execution of transactions in a fragmented database by a
fragmented execution, and present a sufficient condition for a fragmented execution to be

serializable.

Let & be a global execution, i.e., a rp log over a set of global and local transactions, in a
fragmented database over a set of sites S={S;:i=1,..., n}. In the following, we assume that
every global transaction involved in § accesses some data object(s) in its home fragment. A global

transaction that accesses only remote fragment(s) can be modified to satisfy this assumption by

w74 -

chapter six ' section 6.3

putting a dummy read operation in it to access its home fragment. For each site §;, the subexecution
E; of & at S; is a poset which contains all the operations in § that are executed at S;. The partial order
among the operations in &; is inherited from the paﬁial order in §. Note that §;, in general, contains
operations from both local and global transactions. Let &; be the poset containing all the operations
in &; that access S;’s home fragment. The partial ovrder among the operations in & is inherited from
&. Note that §; contains all the operations executed at S; except for those that access the copies of
remote fragments of §;. We assume that there is a ﬁctitioﬁs initial transaction T;, which is executed
before any operation at S; and writes all the data objects in the home fragment of §;. Execution & is
locally serializable at S; if & is equivalent to a 1C serial log of all the transactions involved in &;.

(Please refer to Section 2.4 for the meaning of equivalence.)

Definition 6.3.1. A global execution & = (Z(T), <) over a set of sites S= {S; :i =1, cen }isa
fragmented execution if (1) & is locally serializable at S;, fori =1,..., n, and (2) for each site §;,
there is a serialization order o; of the transactions in & such that for any two transactions T, and 7},
in &, if T, precedes T, in &; and W,[X] and W, (Y] are, respectively, two write operations of T, and
Ty, then, for each site S;, j #i, Wa[X;] and W,[Y;1 € X(T) and W,[X;] < W,[Y;], where W,[X;] and
W, [Y;] are the execution of W,[X] and W,[Y] on the copies at §;, respectively. The serialization

order o; in (2) is called the broadcast order at S;. O

In Definition 6.3.1, (2) has an intuitive meaning. It indicates that the updates of the
transactions in o; are broadcast in their order in o;. If a global execution & is locally serializable at a
site S;, there may be more than one serialization order for £;. If £ is a fragmented execution, one of
these serialization orders is the broadcasting order at S;. Note that a fragmented execution has n

initial transactions, one for each site. This is different from a general rp log.

In defining a fragmented database system in Section 5.3, all transactions submitted at a site are

synchronized by a local scheduler and the updates of these transactions are broadcast in a

5 -

chapter six ' section 6.3

sén’alization order of these transactions. Hence every execution generated in a fragmented database
system is a fragmented execution. In a WADDS with the architecture given in Section 6.2, the HFS
at a site is a timestamp-based scheduler. Hence, all transactions submitted at a site can be serialized
by their timestamps and their updates are broadcast in this timestamp order. Therefore, any

execution generated in a WADDS is a fragmented execution.
We use an example to illustrate the notion of fragmented execution.

Example 6.3.1. Let §; and S be two sites of a WADDS which has the architecture given in
Section 6.2. Let {X, Y} and {A, B} be data objects belonging to the home fragments of S and S,

respectively. Let € be an execution over {S, S,}. Suppose that subexecution &, of £ is
W 10[X 1, Y 1IR 11[X 11R 12[A (JW 11X 11R 120X (IR 13[Y JW 1afX (IW 13[Y 1].

According to the architecture of WADDS, every transaction has a timestamp assigned by the LTM or
GTM at its home site. In &, the second index of an operation is the timestamp of the corresponding
transaction. Note that, even though the RFS and HFS are two ;iifferent subcomponents of the
scheduler at a site, the operations granted by them are submitted to the DM sequentially. Therefore,
the output from the scheduler is a totally ordered set of operations. Among the transactions involved

in &, T1y, T13 are local and T, is global. Suppose that subexecution &, of £ granted by the scheduler

at§,is
W 20[A 2, B2]R 21[A 2R 22[B 2]W 21 [A 2]W [B 5]R 23[X 2R 23[Y 2]W 2a[B 2].

Arﬁong the transactions involved in &,, T, Ty, are local, and T3 is global. Assume that the read
operation R 12[A] of T'12 in &, reads the value of A written by T, in &,. In other words, the update of
Ty issentto S, and A, is updated accordingly before T, reads A;. Similarly, suppose that the read
operations R 2[X 2] and R 23[Y 2] of T in &, read the values of X and Y written by Ty, and T3 in &,

respectively. (For simplicity, when we listed the operations of &, in the above, update operations

w76 -

chapter six ' section 6.3

from S, such as Wy[A,} were not shown. Similarly, when we listed the operations of &;, update

operations from §; such as W 15[X ;] were not shown.)

Note that
€1 =W iolX 1, Y1IR X IW X 1R 12[*1]13 13[Y 1]W 120X 11W 13[Y 1]
is equivalent to the serial log
WaolX 1, Y1IR X 0W (X1 IR 120X 1 IW 120 X1 R 15[11W 1a[Y).

As a matter of fact, the above equivalency is guaranteed by the timestamp scheduler HES at §, and
the transactions are ordered by their timestamps in the above serial log. Hence, & is locally
serializable at §,. Let o, represent the timestamp order of the transactions in &, i.e.,
0y =(T10, T11, T12, T1a). The updates of the transactions in o, are sent to S, by their order in o;.

Similarly,
E2=WlA 2, B2IR 21[A 3]R 2[B 231W 5 [A 1W n[B351W 2B 3)

is serializable and a serialization order is given by 63 = (T2, T21, T22, T23). §2 broadcasts the updates
of the transactions in o, by their order in o,. Hence & is locally serializable at both §; and S, and
{01, 62} are the broadcast orders at S, S, respectively. Thus £ is a fragmented execution over

{§1,82}. 00

We shall now investigate under what condition a fragmented execution is (globally)

serializable. Given a set of sequences of transactions {o;=(T};)/:i=1,...,n}, let
ID={ij:i =1..., n,j=0,..., n;} be the set of indices of the transactions ino;, i =1,...,n. A
merge of {o;:i=1,...,n} is a sequence of transactions (T}, where m =2 n;+n and
h:{1,..., m} > 1ID is a permutation on ID such that, if Ty, is ordered before Ty, in o;, then
p<q.

T -

chapter six ' section 6.3

Definition 6.3.2 A fragmented execution & over a set of sites S= (S;:i =1,..., n} with a set
of broadcast orders BO = {o; =(Tj)/0:i =1,..., n} is said to be serializable if there exists a
merge o= (Tha) of the sequences {o;:i=1,..., n}, such that § is equivalent to the 1C log

(Taqy*** Taemy]. O

In Definition 6.3.2, the initial transactions T;o,i =1, ..., n, are also included in the sequence o,

and they are not necessarily the first » transactions in c.

Example 6.3.2. Consider the fragmented execution £ in Example 6.3.1. Let BO = {ay, 02},

where 6, = (T10, T11, T12, T13) and 62 = (T20, T21, T22, T23). Let o be the sequence
T10:T20, T11.T21, T12, T 22, T 13, T 3.

In&, T, reads A from Ty, T»; reads X and Y from T, and T3, respectively. Let L be the 1C serial
log [T10T20T 11 To1 T12 T2 T13 T3} corresponding to o which is a merge of oy and o,. In L, no
transaction is ordered between T, and Ty;. Therefore, T, reads Ayfrom To in L. Since Ty can
update only the data objects belonging to S, therefore T3 reads X and Y from Ty, and T3 in L,

respectively. It follows that € is equivalent to the 1C serial log L. Hence & is serializable. O
Given a fragmented execution & over a set of sites S={S;:i=1,...,n}, let

BO = {0, =(T;j)j20:i =1,..., n} be the set of its broadcast orders. Let us consider if we can merge
{oi:i=1,...,n} into a sequence o=(Ty;)2 such that & is equivalent to the 1C log
[Thqy - - - Taem)l. For a global transaction Tj; in o; and k #i, let RF(T};, k) = {T}, : T;; reads a data

object from T, }. Thus, RF(T;, k) is the set of transactions belonging to site S, from which T;; reads
some data object(s). In Example 6.3.1, RF(T‘12, 2)= {Tx} and RF(T 2, 1) = {T12, T13}. (RF(T, k)
is empty if T;; does not read any data object from S;.) Note that the updates of the transactions in oy
are broadcast and received in their order in o;. Suppose that Ty is the last transaction in oy that

belongs to RF(T;;, k). If T;; reads X from a transaction Ty, € RF(T};, k), a <!, then no transaction

-8 -

chapter six ' section 6.3

drdered between Ty, and Ty, in o, writes X, If T, a transaction ordered between Ty, and Ty in o,

wrote X, then the update on X written by T}, would be received by S; after that of Ty, and before that
of Ty. Therefore, if T;; has read the update of Ty, itvwould have read the update of X from T}, not
from Ty,. Hence, if T; is serialized with the transactions in o, by inserting it after Ty and before the
transaction following Ty in oy, then all the read-frbm relations between T;; and the transactions in
RFE(T;;, k) are preserved. Therefore, to preserve the read-from relationships between T;; and all the
transactions in RF(T;;, k) when Tj; is merged into oy, Ty piays a crucial role. In merging o; and o,

in Example 6.3.2, we inserted Ty, after Ty, and T, after T3,

Based on the above observation, we define the global-read relation for a fragmented execution
containing only those "crucial” read-from relationships. Given a fragmented execution § over a set
of sites S={S;:i=1,...,n} and its broadcast orders BO = {0; =(T;})/0:i=1,..., n}, the
global-read relation Gr(§) in & is a set of all ordered pairs (Ty, T;;), k #i, such that T;; is a global
transaction in o; that reads a data object from a transaction Ty in o, and
I'=max {p : Ty, € RE(T}j, k)}. In other words, (Ty, T;;) belongs to Gr(&), if and only if T;; is a global
transaction and Ty is the last transaction in o, from which 7;; has read some data objects. In

Example 6.3.2, Gr(§) = {(T'21, T12), (T13, T23)}. Even though T3 has read X from Ty, since Ty is

ordered before T3 in 6y, (T 12, T23) € Gr(£).

In the following, we will associate a directed graph with a fragmented execution. Let § and BO
be defined as above, and consider a transaction T;; in o;. The global transaction preceding T;; is T;;
itself, if it is a global transaction; otherwise it is the last global transaction before T;; in o;, if any.
The global transaction following Tj; is the first global transaction after T;; in o;, if any. If a global
transaction T;; is followed by a global transaction T;, then T;; and T;; are two consecutive global

transactions, and there may be some information flow from Tijto Ty.

-79 --

chapter six ' section 6.3

As mentioned in Section 6.1 we will show that it is possible to achieve serializability in a
fragmented database by synchronizing only global transactions. To this end, we now introduce a
graph to extract the information related to the global fransactions. For a fragmented execution & over
a set of sites S=(S;:i,..., n},let BO = {0; = (T}j)"o: i=1,..., n} be its broadcast orders, Gr(€)
be the global-read relation of &, GT be the set of glébal transactions involved in &, and IT be the set
of initial transactions {Tis:i=1,..., n.}. The global-serialization graph (GOS graph , for short)
for &, denoted by GOS(£), is a directed graph (N, E), whefe N contains a node for each transaction
T;; e GTUIT, and E contains the following four sets of edges. (Tj; is used to represent both a
transaction and the node representing it in the GOS graph. For intuitive justification of the edges, see
the next paragraph.) (1) There is a precedence edge from each transaction T;; € GT U IT to the
global transaction Ty following it, if any. (Please see Figure 6.3.1(a).) (2) For each T;; € GT and
(T, Ty) € Gr(§), if T, is the global transaction preceding Ty, then there is a global-read edge from
Ty, to Ty if no global transaction precedes Ty, then there is a global-read edge from Ty to Tj;.
(Please see Figure 6.3.1(b).) (3) For each T;; € GT, if (T, T;;) e Gr(€) and T, is the global
transaction following Ty, then there is an edge from T;; to Tiw. (Please see Figure 6.3.1(c).) (4) For
Tij, Tma € GT, if both (Ty,, T;;) and (Ty,, Tms) belong to Gr(), p < ¢q, and the global transactions
preceding Ty, and Ty, is identical, or no global transaction precedes them, then there is an edge from
Tij t0 Tns. (Please see Figure 6.3.1(d).) The edges introduced by (3) and (4) are called induced

edges.

We now give some intuitive meanings for the four sets of edges introduced above in a GOS
graph. The first set are precedence edges. In a merge of {o; :i =1,..., n}, the relative positions of
an initial transaction and the global transaction following it should not change. This is also true for
two consecutive global transactions; information may flow from a global transaction to the global

transaction following it. Precedence edges are used in a GOS graph to represent these orders.

- 80 --

chapter six ' section 6.3

Let us consider the set of edges (2) and (3). Suppose (Tw, T;;) € Gr€) and Ty, T are the
global transactions preceding and following T;j, respectively. Note that T, is last transaction in o,
from which T;; has read some data object(s). Since eite S; has no control over the local transactions
submitted at S;, we assume that S; has no knowledge about the writesets of the local transactions that
come after Ty in o;. In other words, if T;; has read X from Ty, then it is not known to S; whether the

'transaction after Ty in o, also writes X. Hence, Tj; is serialized after Ty, and before the transaction
following Ty in o;. This implies that T;; should follow T,,,,y and precede T}, in a global serialization

order.

As for the set of edges (4), suppose that both (T}, T;;) and (T, Tma), P < ¢, belong to Gr(),
and the global transaction preceding T, and T,, are identical or no global transaction precedes them.
Let T,, be the global transaction preceding Ty, and T,,, if any, or Ty, otherwise. There are two
global-read edges directed from Ty, to T;; and T,.,. Following the same line of reasoning as given in
the previous paragraph, T;; should be scrialized after Ty, and before the transaction that comes afier
Ty in oy, and T, is serialized after Ty, and before the transaction that comes after Ty, in 6. Since
p <q, Ty, is ordered before Ty, in o, and thus T,, must be serialized before Ty,. Hence Tj; is
serialized before Ty,. Therefore, T;; should be serialized before T.., in a global serialization order.

Thus the fourth set of edges are introduced. We show below an example of a GOS graph.

Example 6.3.3 Consider a fragmented database with four sites S, S2, S3 and S4. The set
broadcast orders BO = {0y, 02, 63, 64} and global-read relation Gr(€) of a fragmented execution &

over {§1, S2, 81, S4) are defined as follows.

61=T10,T11,T12,T13, T14, T15.T16, T17, T18, T 19,

62="T20, T2, T2, T3, To, T,

- 81 --

chapter six ' section 6.3
03=T130,T31,T32, T3,
O4=Ta0, Ta1, Ta2, T43, T aa, Tss.

Gr €)= {(T25. T17), (T12, T23), (T 14, T33), (T 43, T33), (T 19, T 45)}.

{T17, T2, T3, T4s} and {T 1o, T20, T30, T 40} are the set of global transactions and the set of initial
transactions in &, respectively. Figure 6.3.2 illustrates the GOS graph GOS (€). The precedence edges
between an initial transaction and the global transaction following it are placed horizontally in the
graph. Since there are four sites, there are four such precedence edges in GOS (§). There is no other
precedence edge in GOS(E), because there are no consecutive global transactions in &. For the
purpose of illustration, for each site S;,i =1,..., 4, the local transactions in o; ordered after T;o and
before the global transaction following it are placed on the corresponding precedence edge in Figure
6.3.2. For example, the local transactions Ty, T2, T13, T14, T15, T16 are placed on the precedence
edge from Ty io Ty;. In the graph, for each element (T, T;).in Gr(), the global-read edge
associated with it is labeled by /, the second index of the first element. Since (T2, T23) € Gr(€) and
no global transaction is preceding T), there is a global-read edge from T to T3 labeled by 2. Since
Ty is the global transaction following T, there is an induced edge from T2 to Ty7. Similarly, there
are global-read edges from T3 to T labeled by 5, from Ty to T33 labeled by 4, from T4 to T3
labeled by 3, and from T7 to T4s labeled by 9. There are induced edges from T3; to Tﬁ and Tys.
Also, since both (T2, T2), (T14, T33) € Gr(§) and no global transaction is preceding T2 or T4, there

is an induced edge from Ty to T33. OO

Theorem 6.3.1. A fragmented execution & over a set of sites S={S;:i=1,...,n} is

serializable, if the GOS graph GOS (€) is acyclic.

-82 -

chapter six ' section 6.3

Example 6.3.4. Before giving a proof for Theorem 6.3.1, as an example, we first construct a
1C serial log equivalent to the fragmented execution & in Example 6.3.3. The GOS graph for & in
Figure 6.3.2 is acyclic, and Ty, T2, T30, Ta0, T23, T33, T17, Tas is a topological sort. Now we will
show that the local transactions can be inserted into this sequence to create a sequence ¢ which is a
merge of {o;:i=1,..., 4} such that the 1C serial log corresponding to ¢ is equivalent to the
execution €. In a merge of {o;:i =1,..., 4], the relative positions of all the transactions in each o;
are preserved. For each site §;, only transactions belonging to S; can update data objects in F;.
Therefore, fori =1, ..., 4, the read-from relations in & among the transactions in o; are not altered in
a merge of {o;:i=1,...,4). The remaining question to be addressed is the read-from relations
between global transactions and local transactions at remote sites. For example, (T 12, T23) € Gr(€)
implies that T should be serialized after Ty, and before T15. Since both (T4, Tas) and (T 43, T 2)
belong to Gr(€), T3, should be serialized after T4 and T,43 and before Tys and T4, Similarly, T17
should be serialized after T'»s. Also, T4s should be serialized after T1o. It is not difficult to see that

the serial order
TwT2wTTawTuTeTnTnTnTiaT1aTaTaaTaaTo T2aTa3ToaTosT1sT16T17T1g T Taa T as,

which is a merge of {o; :i=1,..., 4}, preserves all the read-from relations in €. Therefore, the
fragmented execution £ is serializable. O

Proof of Theorem 6.3.1.

Let BO = {0, : 6; = (Tij)j%0, i =1,..., n) be the set of broadcast orders of £ and Gr(§) be the
global-read relation in £. Let GOS (§) be acyclic and +(GOS (£)) be a topological sort of GOS (£). We

assume without loss of generality that the first n transactions in ¢(GOS (£)) are the initial transactions

Tio, ..., Too. We want to show that the sequences {o; :i=1,..., n} can be merged to form a

sequence © = (Th(;))Z1, where m = 3 n; + n, such that the 1C serial log [Thq) - - - Thm] is equivalent

- 83 --

chapter six ' section 6.3

to &. The merging must be done without violating the order given by t(GOS (£)).

Initially, ¢ is an empty sequence. In the merging process, let M; (i =1,..., n) denote the last
transaction in o; that has been merged into o. Initially, M; is undefined. Afier the initial transaction

Tioof o; is merged into o, M; is set to T;o.

To construct o, we first apply the following procedure iteratively to all the nodes in ¢(GOS (§)),
starting with its first node. Let T;, be the current node under scan in ¢ (GOS (§)) and apply one of the

following two operations to T;,.
(1) If T, is an initial transaction, then let 6 = ¢ T, i.€., append T, to G.

(2) IfT, is a global transaction, then it has one incident precedence edge and one or more iqcident
global-read edges. Apply (a) below to every incident global-read edge. Then apply (b) to the
incident precedence edge.

() If there is a global-read edge from a node Ty 10 Tia (k #i), and (Tu, Tix) € Gr(§), then let

Ty, - - - Tu be the segment of transactions in o, between Ty, ami Ty, inclusive, where T}, is the

transaction following M, in ;. Let 6=0Tj, - - Ty and update M; to Ty. (Note that Ty is

unique; please see the definition of global-read relation defined earlier in this section.)

(b) If there is a precedence edge from Tj to Ti,, then let 0=0Ty ‘- T, where Tj, is the

transaction following M; in o; and T,-; .-+ T, is the segment of transactions in o; between T,

and T;,, inclusive. Then update M; to Tj,.

After the above procedure has completed, for every i=1,..., n, if M; is not the last
transaction in o;, then let =0Ty - - - T;;, where Ty is the tran;action following M; in o;, T is the
last transaction in o;, and Ty --- Ty is the‘segment of transactions in o; between Ty and Ty,

inclusive. The construction of ¢ completes at this point.

.- 84 --

chapter six ' section 6.3

It can be seen that ¢ is a merge of {c;:i=1,..., n}). Hence o can be represented by a

sequence (T,)21, Where h is a permutation on the indices of the transactions and m = f;n,- +n. Let
) £

L be the 1Clog [Thqy - * - Taemy]- In the above construction of o, for each site §;, the relative positions
of all the transactions in o; are preserved in ¢. Since only transactions belonging to §; can modify
the data objects in F;, it follows that the read-from relations among transactions in g; are the same

with respectto € and L.

Let us now examine the read-from relations across sites. If a global transaction T;, reads X
from a transaction Ty, t‘)elonging to another site S; in &, then Ty, € RF(T,,, k) by definition. Let Ty
be the last transaction in o, that belongs to RF(T;,, k). Then (Ty, Ti,) € Gr(£) and there is a global-
read edge from T, to T;,, where Ty, is either the global transaction preceding Ty or Tyo. We will
show that T;, is ordered in o after Ty and before the transaction following Ty in oy, if one exists.
Besides the global-read edge, there must be a precedence edge from T, to T;, in GOS (€), where T,
is either the global transaction preceding 7“,~,, or T;e. In the construction of a, Ty is appended too
when the global-read edge from Ty, to T;, is processed. After that, T;, is appended to0 ¢ when the
precedence edge from T;, to T, is processed. The transaction following Ty in o, is appended to ¢
after T;, has been processed. Therefore, T;, is ordered in o after Tu and before the transaction
following Ty in 6. According to an observation made earlier in this section, when the global-read
relation was defined, no transaction in o, after Ty, and before T,; writes X ; hence T;, reads X from
Tw in L. On the other hand, suppose that T;, reads X from T,, in L. By the above argument, if T;,
reads X from Ty, in &, then T, reads X from T}, in L. Hence T,, and T,, must be identical and T},
reads X from T, in E. Therefore, the read-from relations between a global transaction and a
transaction belonging to a remote site are the same with respect to £ and L. Hence, £ is equivalent to

L and is serializable. [0

w85 .

chapter six ' section 6.3

6.4. An Algorithm to Control Fragmented Execution

The HFS’s in a WADDS with the architecturg proposed in Section 6.2 are timestamp-based
schedulers. Therefore, an execution generated in a WADDS is always locally serializable at each
site; the timestamps of the transactions involved provide a serialization order. The updates of the
transactions completed at a site are broadcast in their timestamp order. Hence every execution
generated in it is a fragmented execution. In this section, we present the core of a concurrency
control algorithm for fragmented execution, called Glbbal Timestamp Order Certification
(GTOC), which makes use of Theorem 6.3.1. It runs distributively in the GS’s at all sites in a
WADDS having the architecture given in Section 6.2, to certify the values read by a GLOBAL-
READ. The sole function of GTOC is to ensure that, for any fragmented execution generated, its

GOS graph is acyclic, and hence, it is globally serializable.

Let S={S;:i=1,..., n} be the set of sites in a WADDS, and {F;:i=1,..., n} be their
corresponding home fragments. In GTOC, we use two sets of timestamps, local timestamps and
global timestamps. Suppose that a transaction T;; is submitted to the TM at §;. If Tj; is a local
transaction, before any of its operations are executed, it is assigned a timestamp. This timestamp is
called the local timestamp of T;;. If T;; is global, on the other hand, after its GLOBAL-READ
operation is certified, it is assigned a timestamp, and this timestamp is used for processing the
remaining operations in 7;;. This timestamp is also called the local timestamp of global transaction
T;;. We use Lis(T;;) to denote the local timestamp of a transaction 7;;, whether it is local or global.
Local timestamps are retrieved from local clocks. (In Section 6.2, the local timestamp of a
transaction T;; was referred to only as a timestamp. We refer to this timestamp in GTOC as the local

timestamp, because we will later introduce global timestamps.)

As stated before, the operations submitted to the HFS of a site are scheduled by a timestamp-

based scheduler at the HFS. As a matter of fact, the timestamps used by this scheduler are the local

- 86 --

chapter six ' section 6.4

timestamps of these transactions. Also, the updates of these transactions are broadcast and delivered
in their local timestamp order. For each i, let o; be the sequence of committed transactions at §;

ordered by their local timestamps. Therefore o; is also the broadcast order at ;.

We now introduce the timestamps for data objects; which are used for certification. If a copy
X; in the DB at a site §; belongs to the home fragment F; of S;, then it has a read and a write
timestamp. (Please refer to the description of the HFS in Section 6.2.) The write timestamp is the
local timestamp of the last transaction that has updated X;. This write timestamp is called the
timestamp of X;, denoted by #s(X;). If X; is in a remote fragment F,, then its value is received from
a remote update of a transaction Ty executed at a remote site S,. In this case, X; has just one
timestamp called the timestamp of X;, which is set to Lts(Ty), and this timestamp, denoted by s(X;),

is attached to X; in the DB of ;. (Please refer to the description of the RFS in Section 6.2.)

Suppose that a global transaction T; is submitted at site §; and its GLOBAL-READ operation
has finished the reading of data object copies in remote fragments in the DB. (Refer to the execution
of a global transaction described in Section 6.2.) The major problem we face is how to certify the
values read by the GLOBAL-READ of T;. Recall that certification consists of testing the GOS
graph of the execution of all committed transactions and T for acyclicity. Unfortunately, testing the
GOS distributively for acyclicity incurs too much communication overhead. Therefore we are forced
to verify only a sufficient condition for acyclicity. For this purpose, we introduce global timestamps
for global transactions. We want to ensure that, if the GLOBAL-READ of Ty is certified, then the
edges introduced by Ty in the GOS graph, consisting of Ty and all the committed global
transactions, are all directed from a transaction with a smaller global timestamp to another with a

larger global timestamp. Hence, the global timestamps of the transactions give a topological sort of

the graph.

- 87 --

chapter six ' section 6.4

The above requirement on global timestamps may or may not be satisfied, depending on the
global timestamp assigned to T. Unfortunately, we need to assign a global timestamp to T before
the certification. If it is found that the above fequiremem is not satisfied, we consider the
certification as failed even though the GOS graph may be acyclic. Thus we are testing only a
sufficient condition for acyclicity. Let GS; denote tﬁe global synchronizer GS at site S;,i =1,..., n.
When GS; starts to certify the values read by the GLOBAL-READ of a global transaction Ty, it
assigns a global timestamp Gis(Ti) to Ti, before a locill timestamp is assigned to T;. Global
timestamps are retrieved from a system-wide unique global clock. Lamport’s logical clock [Lam78]
can be used for this purpose, and the site identity can be appended to make the clock values unique.
In Lamport’s logical clock, whenever a site §; receives a message with a timestamp ¢ from another

site, if ¢ is larger than the clock value at §;, it is advanced to a value that is one tick larger than¢.

Note that we cannot use the global timestamp of a global transaction T; as Ty’s local
timestamp. If this is done, while T; is waiting for the certification of its GLOBAL-READ, local
transactions with timestamps larger than Gts(Ti) cannot be executed until T; has completed,
because these local transactions may have to read some values written by T;,. This violates our

policy of assigning higher priority to local transactions.

After a global timestamp Gis(Tj) is assigned to Ty, GS; generates a set of certification
requests, {CR;(Ti) : F; € pi}, one for each remote fragment F; in px, where p; is the "readset” of |
Ty in terms of fragments, i.e., pax = {F; : the GLOBAL-READ of T; reads some data objects from
F;}. For each F; € pi, GS; can determine ¢;(T;) = max {ts(X;) : X; is a copy of X € F; at §; read by
the GLOBAL-READ of Ty}. Clearly, there exists a transaction T at site §; such that
Lts(Tjp) = t;(Ty). Tj is in fact the last transaction in 6; whose updates were read by the GLOBAL-
READ of Ty. CR;j(Ty) contains two timestamps, Gts(Ty) and t;(Ty), which are called the global

timestamp and the data timestamp of the centification request CR;(Tj), respectivély. For

- 88 -

chapter six ' section 6.4

convenience, these two timestamps are denoted by CR;(Ti).Gts and CR;(Ty).Dts, respectively.
Certification request CR;(Ty) is sent to the corresponding global synchronizer GS;. As explained
below in more detail, GS; compares the transaction and data timestamps of CR;(T;) with the

timestamps of the global transactions that have already committed at ;.

As noted above, there exists a transaction T; in o; such that Lts(Tj) = tj(Ty) = CR;j(Ta).Dts.

Suppose Tj, and Tj, are consecutive global transactions in o; such that
Gis (Tja) < CRj(Tik).GIS < G[S(ij). (641)

If
Lts (Tja) < CRj(T,'k).DIS < Lts (ij), (64.2)

then the certification request CR;(T;;) can be granted by GS; as far as all the committed transactions
at §; are concerned. The reason for this is as follows. Since CR;(Ty).Dts =Lts(Tj), condition
(6.4.2) implies that T;, and T; arc the global transactions preceding and following Tj in o,
respectively. Hence, a global-read edge from Tj, to Ty, and an induced edge from T; to T, are
introduced in the GOS graph consisting of T and all committed transactions. According to (6.4.1),
these three edges are all directed from a node with a smaller global timestamp to a node with a larger
global timestamp. If this is true at each site S; that receives certification request CR;(T), then the
GOS graph consisting of T and all the committed global transactions can be topologically sorted by

the global timestamps of the transactions.

According to the above discussion, in certifying CR;(T), GS; has to identify T, and T} in
condition (6.4.1) and compare their local timestamps with CR;(Tx).Dts. If condition (6.4.2) is
satisfied, CR;(T) should be certified by GS; as far as the committed transactions are concerned.
Besides considering committed transactions at §;, GS; also has to compare the timestamps of

CR;(Ty) with that of some waiting global transactions; this will be discussed later in this section.

-89 -

chapter six ' section 6.4

Before doing so, we give an example to illustrate what we have just discussed and an additional

requirement of certification.

Example 6.4.1. Consider three sites §,, S,, and §3 in a WADDS, and suppose that a global
transaction T, is submitted at §,. Let o, be the sequencé of all committed transactions at § ;, ordered
by their local timestamps. Suppose that T, and T s are two global transactions committed at §; such
that Lts(T12) =2, Gts(T12) =1, Lis(T15) =5, and Gts(Ts)=4, and that there is no global transaction
between T, and T s in 6,. If the GLOBAL-READ of T, has read some data objects belonging to §,
such that CR (T 30).Dts =t¢,, then there exists a transaction T, (1 < k < 5) belonging to §; such that
Lts(T) =t; and Ty, has read a data object from T,;,. When CR (T) arrives at GS,, it is found that
(6.4.1) is satisfied, i.e., Gts (T 12) < CR (T 2).Gts = Gts(T) < Gts(T 15). 1f (6.4.2) holds, i.e., Lts(T)
< ty<Lts(Ts), then Ty, and T,s are the global transactions preceding and following T,
respectively, and the GOS graph involving T,, T s and T has a precedence edge from T'y5t0 s, @
global-read edge from T2 to T2, and an induced edge from T, to Tys. This GOS graph is shown in
Figure 6.4.1. Since Gis(T12) < Gis(T 22) < Gts(T;s), these three edges are all directed from a node
with a smaller global timestamp to a node with a larger global timestamp. Therefore the certification

request CR (T 22) should be granted if Lts (T12) < CR (T).Dts < Lts(T 1s).

Now suppose that Ty, has committed, and a new global transaction T4 is submitted at S,
whose GLOBAL-READ operation reads some data objects belonging to S§; such that
CR ((T4).Dts =15. When CR (T14) arrives at S, it is found that Gts (T22) < CR (T 3).Gts = Gts(T34) <
Gis(Tys) at GSy. If CR(T2).Dts =t < to < Lts(T1s) holds, then T4 and T3 have the same global
transaction T, preceding them. The GOS graph involving Ty, Ts, T22, and T4 is shown in Figure
6.4.2. There is a global-read edge from T, to T3, and an induced edge from T34 to Ts. Besides
these two edges, there is an additional induced edge from T to T34. (Recall the definition of edge

set (4) of a GOS graph in Section 6.3.) Since Gts(T13) < Gts(Tx) < Gts(Tx) < Gts(T,s), the four

- 90 --

chapter six ' section 6.4

edges mentioned above are all directed from a node with a smaller global timestamp to a node with a

larger global timestamp. Therefore, CR 1(T'14) should be certified if CR (T'22).Dts < t2 < Lts(T1s). O

In the above example, GS; could certify CR(T2) using the conditions (6.4.1) and (6.4.2).
However, to certify CR (T14), GS; had to compare the tifnestamps of CR (T 1) not only with those of
the global transactions already committed at S; but also with that of T which has sent a certification
request to GS; and has committed at another site §,. We wish to process both CR (T32) and CR (T)

uniformly.

It follows from the above observation that there are two sets of committed global transactions
to consider when GS; is certifying CR;(Ty). The first set consists of the committed global
transactions belonging to §;, such as T2 and Ts at GS; in the above example. The second set
consists of the committed global transactions belonging to sites other than §;, which have sent
certification requests to GS;, such as T2, when T34 arrives at GS, in the above example. In order to
treat all certification requests (e.g., CR(T2) and CR (T 34)) uniformly, we order the two sets of
global transactions together by their global timestamps at S;, and replace Tj, and T, in (6.4.1) and
(64.2) by T, and Ty, respectively, where T., (Tw) is defined as the global transaction with the
largest (smallest) global timestamp less (larger) than CR;(Ty).Gts. T., and Ty may or may not

belong to §;. Hence (6.4.1) is modified to
Gts(Tea) < CRj(Ti).Gts < Gts(Tap), (6.4.3)
and (6.4.2) to
LDs;(Tea) < CR;(Tie).Dts < LDis;(Ts), (6.4.4)

where LDtsj(Ty,) = Lts(Tyy), if Ty, belongs to S;; otherwise, LDts;(Ty,) = CRj(Ty).Dts, for xy = ca, db.
The second inequality in (6.4.2), ’strictly less than’, has been replaced by ’less than or equal to’ in

(6.4.4), because CR;(Ty).Dts and LDts;(T4) may be equal if Ty doesn’t belong to S;. If T, belongs

--9] -

chapter six ' ‘ section 6.4

fo Sj, i.e., ifd =j, then CRj(T,'k).DIS ¢LDISj(Tdb); if CRj(T,'k).Dts =LDISj(Tdb), T would have read
from T and we would have Gits (Ti) > Gts (Ta) and (6.4.3) would not hold. Hence testing <’ in the

second inequality of (6.4.4) is equivalent to testing '<’ in this case.

To facilitate the comparisons in (6.4.3) and (6.4.4), at each site §;, GS; makes use of a data
structure COMMIT;, which is a list of records. Each record in COMMIT; represents a transaction T in
one of the above two sets of committed global transactions and has two fields Gts and Its. Gis is the
global timestamp of transaction T. If T is a global transacﬁon in the first set, Its = Lts(T). If T is a
global transaction in the second set, the home site of T must have sent a certification request CR;(T)
to GS;, and Its = CR;(T).Dts. The records in COMMIT; are sorted in the increasing order of their

values in the Gis field.

If there are p fragments in the system, let ¢4, ..., f, be the p smallest global timestamps. For
any site S;, COMMIT; is initialized to a list containing only one record corresponding to the initial

transaction T;o. This record has Gts =1; and Its = 0.

Suppose the certification request CR;(T) of a global transaction T is received by GS ; from §;.
GS; checks (6.4.3) and (6.4.4) as follows. Since COMMIT; is sorted by the Gis field, it is easy to
determine T, and T5. Aninterval [ty,¢,], where ¢, (¢5) is the Its value of the record representing T,
(Ts), is called the safe interval for CR;(Ty) with respect to COMMIT;. If Ty doesn’t exist, then
ty=oo, If CR;(Ta)Dts € [t1,12), the certification request CR;(Ty) is said to have passed the
acceptance test against COMMIT;, and CR;(Ty) can be granted as far as all the transactions in
COMMIT; are concemned. If T is eventually committed at S;, then a record representing it will be
inserted into COMMIT;, with fields Gts = Gts(Ty) and lts = CR;j(Ty).Dts. It is clear from the
construction of COMMIT; and the acceptance test that the Gts values are monotonically increasing;

while the Irs values are monotonically non-decreasing.

-92 .

chapter six ' section 6.4

The acceptance test against COMMIT ; given above is justified by the following lemma.

Lemma 6.4.1. Let G be the (acyclic) GOS igraph representing all committed global
transactions such that the global timestamps of the transactions correspond to a topological sort of
G. Let Ty be a new global transaction whose‘ ceftiﬁcation requests are to be tested and
pir = (F; : the GLOBAL-READ of Ty reads some data objects from F ;}. Consider the GOS graph G’
which is obtained from G by adding Ty and the edges associated with it to G. The global
timestamps of the transactions correspond to a topological sort of G’ if both (6.4.3) and (6.4.4) hold

Jor Ty with respect to all site S;, Fj € pi.

Proof. Consider any of the new edge e = (u, v) introduced into G to form G, e can be either a
global-read edge or an induced edge. We want to show that, if (6.4.3) and (6.4.4) hold for T, then
the global timestamp of « is larger than that of v. There are three cases to consider. Let fca and Ty
be as defined in (6.4.3) and (6.4.4) when CR;(Ty) is tested against COMMIT;, F; € pi. Note that it is

always true that LDts;j(u) < LDts;(v) for any (u,v) e G'. -

(1) e is a global-read edge (T}, Tj).
T, has read a copy of a data object belonging to F;. Let X; be such a copy with the largest
timestamp. When the value of X; was broadcast from S}, S: should have received a global

timestamp at least as large as Gts(T;.). Hence Gts(Tj.) < Gts (Ty).

(2) e is aninduced edge (T, T;») belonging to edge set (3) in the definition of GOS graph.
Since e is an induced edge, LDts;(Ty) # Lts(Tj»). As commented earlier, LDts;(Ta) < Lts (Tjs);
therefore LDtsj(Ta) < Lts(Tj»). By definition of T.,, and Tg, it is not possible that
Gis (Tea) < Gis (Tjy) < Gts(Tgp). If Gts(Tj) < Gts(T,,), it follows from the monotonicity of the
records in COMMIT; that LDts;(Ty) < Lis(Tj») < LDtsj(T.,), which contradicts (6.4.4). Hence

Gis(Tjn) 2 Gts(Tg) > Gts(Tyy).

—-93 ..

chapter six ’ section 6.4

(3) e is an induced edge (Ti, Tx) belonging to edge set (4), where k #1, j.
It is not possible that Gts(T.,) < Gts(Tw) < Gts(Ta). According to the definition of edge set
(4), LDtsj(Ty) < LDtsj(Ty). If Gts(Ty) < Gts(Te,), then LDitsj(Ty) < LDtsi(Ty) < LDtsi(Te,),

which contradicts (6.4.4). Hence Gts(Ty) = Gts(Tg) > Gts (Ti).

After the certification request CR;(Tx) passes the acceptance test against COMMIT;, GS; has to
test it against some waiting global transactions. There are two sets of waiting transactions to be
considered at S;. The first set consists of those belonging to §; that are waiting for the GS’s at
remote sites to grant their certification requests. If T; is such a transaction, its local timestamp
Lts(Ty) will not be assigned until its GLOBAL-READ is certified. Hence Lts(Tj;) must be larger
than CR;(T;).Dts. Therefore, Gts (T;) must also be larger than Gts(Ty) in order that CR;(T;) can be
granted by GS;. The second set consists of the global transactions waiting at sites other than ;
whose certification requests sent to GS; have been granted. Suppose Ty is such a transaction and its
request CR;(Ty) has been granted by GS j- If CRj(Ty) arrives at GS; after CR;(Tu) has been granted,
it cannot ignore the fact that T,y may be committed and join COMMIT; later. Therefore, T; must be
tested against these two sets of waiting transactions in the same way as it was tested against the
committed transactions in COMMIT;. If T, passes this second test, then even if all the waiting
transactions are committed later and are added to the list COMMIT;, T; will still pass the acceptance
test against this extended COMMIT;. If T; fails this test, the waiting transaction T that caused the
failure is identified and CRj(Ty) will be made waiting at GS; until either T is committed or aborted.

If T is committed, CR;(Ty) is doomed to be rejected; otherwise, it is submitted again to GS;.

In order to keep track of the waiting transactions, GS; maintains a list WAIT;, which contains
the records representing the waiting transactions mentioned above. Each record in WAIT; has three
fields Gts, Its and retry. Gts is the global timestamp of a waiting transaction 7 that the record

represents. If T belongs to the first set of waiting transactions, then the lts field is undefined. If T

94 --

chapter six ' section 6.4

beiongs to the second set, then CR;(T) has been granted by GS; and Its = CR;(T').Dts. The field retry
is a pointer to a retry list of reco;ds representing the global transactions which have been rejected
because of T. As with COMMIT;, the records in WAIT,- are sorted in the increasing order of their
values in the Gts field. Initially, WAIT; contains only one record Wjo such that Gts =¢;, (¢; is the
timestamp used to initialize COMMIT;,) Its =0 and retry = the null pointer. If we ignore the retry
field, each record in WAIT; is just like a record in COMMIT;. In fact, we could add all records in
WAIT; 1o COMMIT; and apply the test based on (6.4.3) and (6.4.4). However, since there is a

possibility that some transactions represented in WAIT; may not be committed, we maintain a

separate list WAIT;.

CR;(Ty) is tested against WAIT; by GS; in the following way. Firstly, we determine a safe
interval [w), w,] against WAIT;. We compute [w, w] as we computed the safe interval of CR i(Tix)
against COMMIT;, (list COMMIT; should be replaced by WAIT;). If CR;j(Ti).Dts € [w1,wal, CR;(Ti)
passes the acceptance test against WAIT;. Note that w, = LDis;(T.s) and wa=LDts;(Ta), where T,
and Ty are defined in (6.4.3) when CR;(Ty) is tested against WAIT;. For the convenience of future
discussion, we say that T,, (T) is the transaction associated with w; (w5) in the acceptance test
against WAIT;. If CR;(T;) passes the acceptance test against WAIT;, then it is granted by GS; and a
reply message is sent back to GS;. If CR;(T;) does not pass the acceptance test against WAIT;, then
either t{ < CR;(Ty).Dts <wy Or wo <CR i(Ti).Dts <t,, since we assume CR;(T;) has already passed
the acceptance test against COMMIT;. In the first case, the acceptance test fails because of the
transaction T,, and CR;(Ty) is put to wait in list retry of the record representing T, in WAIT;. In the
second case, the acceptance test fails because of the transaction Ty and CR;(Ti) is not made to wait
but simply rejected. The reason for rejecting CR;(Tx) in the latter case is to avoid a possible
deadlock among waiting transactions. The policy used is to allow only a transaction with a larger

global timestamp to wait for another one with a smaller global timestamp. (An example of deadlock

.95 ..

chapter six ' section 6.4

will be shown in Example 6.4.2 below, if T is allowed to wait for the transaction associated with
Ta.) If CRi(Ty) is granted by GS;, a record is inserted into WAIT; to represent Ty, of which

Gts = CRj(Ty).Gts, lts = CR;(Ty).Dts, and retry is the null pointer.

The GLOBAL-READ of transaction Tj is‘ grahted by GS; if all certification requests
{CR;j(Ta) : Fj € pa) are granted; otherwise, Ty is aborted. If T is committed at S; eventually, then
a record associated with it is inserted in COMMIT; and COMMIT;, for each site S; such that F; € pj.
Also, the records associated with T in WAIT; and WAIT,-,’ for each site S; mentioned above, are

deleted.

Example 6.4.2. Consider a WADDS consisting of four sites §,, S5, $3 and S4, in which two
global transactions 7’3, and T4, are waiting for GTOC to certify their certification requests. Suppose
that T3, submitted at S5 has sent two certification requests CR (T3,) and CR »(T'3,) to Si and §,,
respectively, and that T4, submitted at S 4 has sent two certification requests CR (T 45) and CR (T 45)
to §, and S, respectively. CR(T3,) now arrives at §; before CR (T 4) and has been granted by GS;.
WAIT, thus contains only two records associated with T5, and the initial transaction T;o, when
CR (T 4) arrives at GS). Let CR(T3,).Dts =w; and CR (T 4).Dts =t4. When CR (T 4) arrives at
GS;, suppose it passes the acceptance test against COMMIT | and the safe interval is [¢, 5] such that
1) <tg<wy <ty IfGts(Ts,) < Gts(T4), then the safe interval of T4, against WAIT, is [w,, «]. This
is illustrated in Figure 6.4.3(a). Since t4¢ [w, 0], the acceptance test of T4, against WAIT; is
negative. Since 14 € [t1, wi], the failure of T4, in the acceptance test is caused by T1,; hence Ty, is

put to wait in the retry list associated with T3,.

Next, suppose that CR (T 45) arrives at S, before CR o(T'3,) and has been granted by GS,. WAIT,
thus contains only two records associated with T,, and the initial transaction Ty, when CR (T 3,)
arrives at GS,. Let CRx(T4).Dts =w, and CRy(T,).Dts =ts. When CR(Ts,) arrives at GS,,

suppose it passes the acceptance test against COMMIT , and the safe interval is [¢'1, t2] such that

- 96 --

chapter six ' section 6.4

t'i <wsj <tz<t's. IfGts(T1) < Gis(T4), the safe interval of T3, against WAIT, is [0, w2]. This is

illustrated in Figure 6.4.3(b). Since f3¢ [0,w;], the acceptance test of T3, against WAIT, is
negative. Since t4€ [w, "], the failure of T4, in thé acceptance test is caused by T4. If we allow
T», to wait for T4, then a deadlock occurs. This is the reason that this waiting is not allowed in the

algorithm GTOC. O

In the following, the Global Timestamp Order Certification algorithm is formally presented in

four phases.
Algorithm GTOC
Input : A certification request by global transaction T.

Phase One [Initialization] :
(a) GS; assigns a global timestamp Gts (Ty) to Ty.
(b) {CR;(Ty) : Fj € pa} is generated, where py = {F; : the GLOBAL-READ of T reads
some data objects from F;}. Each CR ,(ﬁk) is sent by §; to the corresponding GS;.
(¢) A record W is appended to WAIT;, where W.Gts = Gts(Ty), W.lts is undefined, and

W.retry is the null pointer.

Phase Two [Acceptance Test against committed transactions] :
(a) When CR;(Ty) arrives at S;, an acceptance test of CR;(Ti) against COMMIT; is
performed by GS;. |
(b) If the acceptance test is negative, CR;(Tx) is rejected and a reply message

reject (CR;(Ty)) is sent back to GS;. Otherwise, the algorithm proceeds to its third phase

--97 ..

chapter six section 6.4

at GSj.

Phase Three [Acceptance Test against waiting transaetions] :

(a) An acceptance test on CR;(T;) against WAIT; is performed by GS;.

(b) If the acceptance test is positive, a repiy message accept (CRj(Ty)) is sent back to GS;
and a record W is inserted between the records associated with wy and w, in WAIT;,
where w,, w, are as defined in the acceptance test against WAIT; and W.th =‘=Gls (Ta),
W.lts = CRj(Ty).Dts and W.retry is set to the null pointer.

(c) If the acceptance test is negative, let R be a record with two fields such that
R.Gts = Gis(Ty) and R.ts =CRj(Ty).Dts. If ty<CRj(Ty).Dts <wi, appends R to the
retry list of the record associated with w,, where ¢, is as defined in the acceptance test

against WAIT;. Otherwise, send a reply message reject (CR;(Ty)) to GS;.

Phase Four [Termination] :

(a) If GS; receives a reject (CR,(Ty)) from a site S,, then abort T; and delete the records
representing Ty in WAIT; and WAIT;, for all F; e Pik- The trensaction in the retry list
W.retry is resubmitted to GS;, where W is the record representing T in WAIT;. For each
F;j € pi, GS; retests the transactions in the retry lists W'.retry, where W’ is the record
representing T, in WAIT;.

(b) If GS; receives an accept (CR;(T)) from every site S;, F; € pi, it delays T;, until no
other transaction with a smaller global timestamp belonging to S; is in WAIT;, namely,
until all these waiting transactions have completed their GLOBAL-READ operations.
(This waiting ensures that all the precedence edges between global transactions executed

at §; are directed from one with a smaller (older) global timestamp to another one with a

- 08 .-

chapter six ' section 6.4

larger (newer) global timestamp.)

(c) Once the GLOBAL-READ operation of T; is completed, a message is sent to every site
S; (F; € pa) to delete the record representing Ty in WAIT; and to insert into COMMIT; a
record representing T;. At the home site S,- of T,, delete the record representing Ty

from WAIT; and insert a new record representing T;; into COMMIT;. [0

Let us examine if the possibility of a deadlock among waiting transactions. In Phase Three (c),
we allow T to wait only for the transaction associated with w, but not the one associated with w.
This ensures that T may wait only for a transaction with a smaller global timestamp. Also in Phase
Four (b), a transaction waiting to complete a GLOBAL-READ operation may wait only for

transactions with smaller global timestamps. Therefore, deadlock is not possible in GTOC.

Theorem 6.4.1. A fragmented execution generated by GTOC in a WADDS is globally

serializable.

Proof. Suppose & is a fragmented execution generated bi' GTOC over a set of sites
{S;:i=1,...,n}. Let T be the set of transactions involved in &. Since a transaction submitted is
eventually either committed or aborted, T contains only committed global transactions. Let o;,
i=1,..., n,be the sequence of transactions belonging to §; ordered by their local timestamps. We
want to show that the edges in GOS (§) are all directed from a global transaction with a smaller global

timestamp to another one with a larger global timestamp, and thus GOS (§) is acyclic.

Let Ty € T. All the certification requests of T must have been granted before it commits. It
follows from Lemma 6.4.1 that the new edges introduced in GOS (&) by Tx are all directed from a
global transaction with a smaller global timestamp to another with a larger global timestamp. Hence

all the global-read edges and induced edges in GOS (£) satisfy the required property.

99 ..

chapter six ’ section 6.4

Step (b) of Phase Four of GTOC ensures that the global transaction preceding T in o; has a
global timestamp smaller than that of T;;. Hence the precedence edge introduced by T;; also satisfies
the required property. Hence all edges in GOS (§) afe directed from a transaction with a smaller
global timestamp to another with a larger global timestamp and GOS (€) is acyclic. Therefore & is

globally serializable. 0

In the following, we will discuss some problems related to GTOC. The first problem with
GTOC is the amount of storage occupied by COMMIT; and WAIT; at each site S;. Records in WAIT;
are deleted after the corresponding transactions are committed. Therefore, the space occupied by
WAIT; is not a serious problem. What we need is a garbage collection mechanism for the records in
the COMMIT;. This can be done by finding out the smallest global timestamp ¢, among all the
waiting transactions. Periodically, every site S; finds the smallest global timestamp among all the
transactions in WAIT;. These global timestamps are then broadcast to all the other sites. The
smallest global timestamp ¢, is then computed. At each site S;, let C be the record in COMMIT; with
the largest C.Gts < ;. After C has been identified, the global timestamps of all certification requests
arriving at S; must be larger than C.Gts. Therefore, all the records C, in COMMIT; such that
Cir.Gts < C.Gts are no longer needed for acceptance test. All these records can be deleted from

COMMIT;.

The second problem concemns aborted global transactions. Suppose a certification request
CR;(Ty) of Ty is rejected by GS; at site S; because Gts(Ty) is too large. Suppose T is resubmitted
after being assigned a larger global timestamp. Let RS (T;) be the readset of T;. If no data object in
RS (Ta)F; is updated since T last read it, then CR;(Tx).Dts remains unchanged and CR;(Ty) is
rejected again by GS;. In order to avoid this, GS; can send the name of a data object
X € RS(Ta) " F; to §; when it sends CR;(Ty). If S; finds that CR;(Ti) is rejected by GS; because

Gis (Ty) is too large, then it can broadcast X with a timestamp larger than the current time at S;. In

- 100 --

chapter six ' section 6.4

this way, CR;(Ty).Dts will be increased every time T is submitted again.

If global transactions are rare, then the probability that a global transaction is aborted because
its GLOBAL-READ is rejected by a GS is small. However, it cannot be guaranteed that a global
transaction won’t be aborted. In the worst case, the GLO‘BAL-READ of a global transaction may be
rejected every time the global transaction is submitted or resubmitted. In order to remedy this
"starvation”, a site S; can change the status of a global transaction to urgent. We want to ensure that
no certification request of an urgent global transaction will be rejected by the GS at a remote site. To
this end, site §; sends out a timestamp query message g (T;) which contains the name of a data
object X € RS (Ty) N F; to each site S; with F; e py on behalf of an urgent global transaction. When
a site §; receives ¢ (Ty), GS; stops processing certification requests. After all waiting transactions in
WAIT; have committed or aborted, GS; sends to §; the largest global timestamp c; amohg all the
transactions in COMMIT; and broadcasts X with a new timestamp larger than the current time at §;.
After receiving all timestamps (c;:Fje€ pa}., Ty executes it GLOBAL-READ and sends out
certification requests with a global timestamp larger than any timestamp in {c; : F; € pa}. For each
Fiepa, let C; be the record in COMMIT; such that C;Gis=c;. Since
CR;(T).Gts = Gts(Ty) > cj = C;.Gts, the safe interval for T, against COMMIT; is [Cj.lts,). As
mentioned above, §; broadcasts a data object in RS (Ty) N F; with a timestamp larger than C;.lis
after it has received ¢ (7). Therefore, CR;(Ty).Dts > C;.lis. Hence CR;(T;) passes the acceptance
test against COMMIT;. CR;(Ty) also passes the acceptance test against WAIT;, because WAIT;
contains only one record associated with the initial transaction. Since this is true for all §; with
Fj € pi, the GLOBAL-READ of T, won’t be rejected. This is achieved by sacrificing the response
time of other global transactions. Since we don’t anticipate a frequent occurrence of urgent global
transactions, this strategy is acceptable. A site can issue only one urgent global transaction at a time.

Also, a site can reply positively to only one timestamp query message at a time; timestamp query

--101 --

chapter six ' section 6.4

messages arriving later have to wait until the urgent global transaction associated with the first
timestamp query message has completed. In order to avoid deadlock, we allow only the timestamp
query message of a urgent global transaction with a larger timestamp to wait for another with a

smaller global timestamp.

6.5. Performance Analysis

Compared with other conventional schemes for concurrency control, GTOC strongly favors
local transactions. In the following, we compare its performance with the primary copy two-phase
locking scheme (PC, for short). (See Section 3.2 for an explanation of the primary copy locking
scheme.) In a fragmented database, it is natural to regard the copy of a data object at its home site as

the primary copy of the data object.

Let t; denote the execution time for a local transaction under GTOC. Note that ¢ equals local
processing time Lg at its home site. If PC is used, the execution time fp of a local transaction
consists of two parts, Lp and r,, where Lp is local processing time and ¢ is the time spent for
communication. The communication time ¢ in turn consists of the time to deliver the updates and to
run a commit protocol. Here, we assume that the most primitive 2-phase commit protocol is used.
Therefore, two round trips of communication are needed. In the first round, the home site of the
local transaction sends out update messages to all other sites and acknowledgements of receipt are
returned to the home site. In the second round, commit messages are sent to. all these sites to instruct
them to commit the updates, and confirmations are returned to the home site so that the locks on the
updated data objects can be released. We {hus have ¢ =40,, where o, is the average time for

sending a message across the network.

--102 --

chapter six ' section 6.5

Subtracting ¢ from ¢p, we get
tp —tc=(Lp —Lg) +40,. v (6.5.1)

In a wide-area distributed database (WADDS), a, may be as large as a few seconds. In general, it is
much larger than the difference (Lp — Lg). This is particularly true for short transactions which can
be processed in microseconds. Hence, in this kind of environment, GTOC performs much better than

PC with regard to the execution time of a local transaction.

Let us consider the average execution time over all transactions, assuming that a fraction r of
all transactions are global transactions. Let ac and ap be, respectively, the average execution times

of a transaction under GTOC and PC.

When a global transaction Tj is executed under GTOC, its execution time consists of two parts.
The first part is Gg which includes the processing time of T at its home site and the processing time
of its certification requests at remote sites. G also includes the waiting time if a certification request

of T, has to wait in a retry list at a remote site. The second part is 2, which is the communication

time for sending out certification requests and receiving replys from remote sites. Hence
acg =(1-=r)Lg +r(Gg +204),
where L is the processing time of a local transaction under GTOC as defined above.

Under PC, a global transaction T; spends 2a, units of time to remotely lock the primary copies
of the data objects in its readset which belong to other sites. It spends 2o, units of time to send out
updates and receive replies. Lastly, it has to send out commit messages and wait for reply messages
to release locks. Therefore, the execution time of T under PC is Gp + 6a,, where Gp is the local

processing time of T; at its home site. As analysed above, the execution time of a local transaction

under PC is (Lp + 40,,). Hence

- 103 --

chapter six ' section 6.5
ap =(1-r)(Lp +40,) +r(Gp + 60,), and

ap —ag =(1—rXLp — Lg) +r(Gp — Gg) +40,.

As discussed above, the difference (Lp —Lg) can be ignored when compared with the term 4o,

Therefore,
ap —ag =r(Gp — Gg) +40,. (65.2)

In general, G; might be larger than Gp. However, if r is sufficiently small, the difference (ap — ag)
is dominated by the term 4a,. Therefore, in case r is small, GTOC performs better than PC in terms
of average execution time of a transaction. In fact, the term 2, for sending out updates of a local
transaction cannot be avoided in any conventional concurrency control. Therefore, GTOC is
definitely better than such schemes if fast response to local transaction is crucial. As for the average
execution time, it depends very much on the fraction r of global transactions among all transactions.

Still, if r is small, GTOC is preferable to other conventional schemes..

6.6. Partition Failures in a Fragmented Database System

The technique used in Chapter 4 for deriving an upper bound on availability can be applied to
fragmented databases. We will show that the upper bound is achievable given some additional

information about the partitions.

Consider a fragmented database system over n sites {S;:i=1,...,n} with corresponding
fragments {F;:i=1,...,n}. Suppose the system is divided into two partitions P, and P,. As in
Section 4.3, let & be a transaction distribution submitted in P, and P,, and L be any serializable
execution of & generated by a prevention protocol. Then P/O (L) has a DITS. There are only two

possible DITS’s, i.e., PoP P 2Py and PoP oP 1Py.

--104 --

chapter six ' section 6.6

Consider a DITS given by PP PoP,. For every site §;, we assume that many more local
transactions are submitted at S; than global transactions. We further assume that the number of local
update transactions submitted at S; is larger than the total number of global transactions submitted at

all other §;, (j #1i), that read some data objects from F;. '

Let us first introduce a set of notations which will be used in the following.
I'1 () : the set of transactions submitted at the sites in P, (P).
LC, (LC,) : the set of local transactions submitted at the sites in P (P2).
G (G») : the set of global transactions submitted at the sites in P (P2).
G, (G») : the set of global transactions submitted at the sites in P, (P,) that read only data objects
belonging to sites in P; (P ,).

LR (LR) : the set of local read-only transactions submitted at the sites in P (P 7).

With respect to the execution L, we define the following subsets :
1) (t2) consists of all the transactions in I'y (I';) that are executed in L ,-
ic (Ic2) consists of all the transactions in LC, (LC) that are executed in L,
21 (g2) consists of all the transactions in G ; (G) that are executed in L,
iry (Ir,) consists of all the transactions in LRy (LR ,) that are executed in L, and

21 (7») consists of all the transactions in G, (G) that are executed in L.

Fori=1,..., m,let Ay; be the set of local update transactions belonging to S;.
By : the set of global transactions submitted in P, that have read data objects belonging to S;.
oy; : consists of all the transactions in A ; that are executed in L.
B2 : consists of all the transactions in B y; that are executed in L.
Note that 1A ;1 is much larger than 1B ;| by assumption. Fori=1,..., m, we also assume that the
weak uniformity assumption (see Section 4.3) holds for the transaction distribution consisting of all

the transactions in A ;B »;. In this transaction distribution, all the transactions are submitted at their

-- 105 --

chapter six

section 6.6

home sites. In this particular case, this assumption means that, for any subset X of F; (i =1,..., m),

the number of local transactions in A,; that write into X is larger than the number of global

transactions in B ; that read some data objects from F;. It follows from the analysis done in the

proof of Theorem 4.3.1 that

log; L+ 1Bul < 1Al fori=1,..., m

6.1)

A transaction in 1, is either a local update transaction, a local read-only transaction, or a global

transaction. Hence

TI=0n VoV - ual,,.ulrlugl,and
Ta=lcaUgaUBnUBRU -+ UP.
Therefore,

Iyl = Sl | + Hryl + 1241,
=

120 < el + 172 + 2'132:'-

(6.3) is an inequality, because some of the Bz, ’s may have nonempty intersection.

From (6.2) and (6.3), we have

Tl + 10 < 1iryl +‘= Fou; | +§IB2,'I + lgil + el + 1gal.
It follows from (6.1) and (6.4) that

Il + tt < Urb+ Y 1A+ Mgyl + Heal + g5l

Note that (_A ;)% U Iry is a subset of LC. Therefore, it follows from (6.5) that

-- 106 --

(6.2)

(6.3)

(6.4)

(6.5)

chapter six ' section 6.6

Iyl + 1Tl SILC 11+ 1G 11 + ILCal + 1G ol (6.6)

On the other hand, if the DITS order in PIO (L) is P ¢P 2P 1Py, then
1Tyl + 112l S ILCol + 1G 2l + ILC11 +1G). , 6.7)

Let hy=1G1 - 1G1! and h,= 1G,1- 1G.l. Note that hi (k) is the number of global transactions
submitted in P, that have read some data objects belonging to sites in P, (P;). It follows from (6.6)

and (6.7) that

I+ Il SILC 1+ 1G 1 + ILC2) + 1G 2l —min(hy, ha)

= It + 1Tl -—min(hl,hz).
Hence

lul+ 15l min(hy, hy)
T+ 1T, = T+

and 1- -ﬁ%%—- is an upper bound on the availability of 5.

Note that even if the sites in both P; and P, have no knowledge about the sizes of h, and &,
they can execute the transactions in LC, U G, and LC, U G, without violating serializability. This

gives availability 1~ 142

T which is near-optimal. That is, the sites in each partition can still

execute all local transactions and global transactions that access only fragments whose home sites are

in the partition. This shows that a fragmented database achieves a high availability.

Furthermore, if there is enough information available so that #; and h, can be computed by the
sites in the two partitions, then the optimal availability is achievable. For example, if n;, the number
of global transactions submitted at §;, is known to every site, and the likelihood that a fragment F; is

read by a transaction issued at S; is the same for every k #i, then

-« 107 --

chapter six section 6.6

h1=%1"—_n.~,and

h2=n—'_'_11-.f: n;.

i=m+1

Hence min(hy, h2) is computable in both of the two partitions. If h,=min(hy, h,), then P, can
execute all the transactions submitted in it, and P, has to give up those global transactions in
Ga2— G, If hy=min(h, h2), on the other hand, then P ,, instead of P ;, can execute all the transaction
submitted in it, and P, has to give up those global transactions in G, ~ G;. In any case, the optimal

availability is achievable.

-- 108 -

CHAPTER 7

ANOTHER CONCURRENCY CONTROL SCHEME

FOR FRAGMENTED EXECUTION

7.1. Another Scheme to Control Fragmented Execution

As described in Section 6.4, GTOC sends certification requests to remote sites to certify the
values read by a GLOBAL-READ. Afier the GLOBAL-READ of a global transaction T, has
finished its reading from copies in the DB of T,’s home site §;, certification requests are generated
and sent to the global synchronizers (GS’s) at the remote sites whpse fragments were read. The
certification request of T, received by a remote site §; is tested against COMMIT; and WAIT;. If the
request passes both tests, it is granted by the GS at §;. Transaction T, can execute its remaining part
if all the recipient remote GS’s reply positively to its certification requests. This scheme is an active

scheme in the sense that the home site takes the initiative to send certification requests.

The second scheme, to be discussed in this section, is termed passive. Unlike GTOC, this
scheme makes use of only global timestamps, which are generated by a system-wide global clock.
(An implementation of the global clock was discussed in Section 6.4.) Every transaction, be it local
or global, is assigned a timestamp by the gIQbal clock. In this scheme, transactions are scheduled
using their timestamps. The updates of transactions, which contain the timestamps of the
transactions, are broadcast to the other sites in their timestamp order. The copy of a data object in

the DB has a timestamp which is the timestamp of the transaction which performed the last update

-- 109 --

chapter seven ' section 7.1

on it. Global concurrency control is needed only for global transactions, i.e., no global concurrency
control is needed for local transactions. As in GTOC, local transactions executed under GTOS are
given higher priority than global transactions. Thus, a local transaction trying to access a data object

X will never be blocked by a global transaction which is accessing X .

The scheduler lets a global transaction T, first read all the data objects in its readset and then
assign a timestamp to T,, denoted by ts(T,). (The method to assign a timestamp to a global
transaction will be explained later in Section 7.2.) We refér to a data object belonging to a remote
fragment as a remote data object. Note that the actual reading of a remote data object takes place
locally from the copy of remote fragment. T, waits until its home site finds out if all the values of
remote data object read by T, are correct with respect to T,,’s timestamp. The correctness of a value
of a.remote data object read by a global transaction is defined as follows. Let X; be the copy of a
remote data object X belonging to F;. The value of a copy X; read by T, at its home site S; is
correct for T, if (1) the value of X; was written at §; by a trapsaction T, with a timestamp
ts(Ty) < ts(T,), and (2) no other transaction with a timestamp smaller than s(7,) and larger than
ts (Tp) has written X at §;. The timestamp ts(T}) is sent to S; by S; together with an update of T, on
X. Therefore, when ts(T,) is assigned to T,, ts(T,) can always be set larger than ¢,. Hence we can
always make condition (1) hold. If the values of all remote data objects that T, has read are correct,
then T, can be committed on completion. (Further detail§ on committing a global transaction are
described in Section 7.2.) In this way, all the execution generated will be serialized; the timestamps
of the transaction provide a serialization order. The only problem is how to find out whether the
value of a remote data object read by T, is correct. We assume that the messages from the same site

are broadcast and received by other sites in their timestamp order.

Suppose T, has read a copy X; of a remote data object belonging to F; with a timestamp

t1 <ts(T,). If no update of X with a timestamp smaller than ¢s(T,) and larger than ¢, is received by

-- 110 --

chapter seven ' section 7.1

Si " and an update of some data object belonging to F; with a timestamp larger than ¢s(T,) is received
by S;, then S§; knows that the value of X; is correct for T,. If a new copy of X with a timestamp
smaller than ts(T,) and larger than ¢, is received by S,-; then S; knows that the value of X; read earlier
by T, is not correct; in this case, T, replaces the value of X by the new value and goes back to
waiting until S; can determine whether this new value is the correct value for 7,. However, if
nothing is received from S;, then §; cannot know if the value of X; is correct and hence the
transaction may have to wait forever. Therefore, timeout messages which indicate the time at each
site must be broadcast when needed. If S; receives nothing but a timeout message with a timestamp
larger than s(T,) from §;, then it knows that there is no new update of X generated between ¢, and
ts(T;) at S;. Hence the value of X; is correct for T,. The method used in this scheme is called

Global Timestamp Order Synchronization (GTOS).

In Section 7.2, an architecture for a WADDS to implement GTOS is described. In particular,
ihe execution of both local and global transactions under GTOS will pe described. The management
of timestamps and virtual clocks are crucial in GTOS. A virtual clock for a site S; at another site S;
has the latest time of S;, which is known to §; by receiving messages from ;. In Section 7.3, we
will discuss the management of virtual clocks in detail. In Section 7.4, an implementation of GTOS
will be described. The correctness of GTOS will be discussed in Section 7.5. In Section 7.6, we will

discuss some performance issue of GTOS.

7.2. An Architecture for GTOS

In the WADDS architecture in which GTOS is implemented, there are five functional
components at each site : the transaction manager (TM), the scheduler, the database manager

(DM), the update propagation manager (UPM), the timestamp manager (TSM) and the

--111 --

chapter seven ' section 7.2

communication manager (CM). The scheduler has two subcomponents, the home fragment
scheduler (HFS) and the remote fragment scheduler (RFS). The interconnection among these
components is illustrated in Figure 7.2.1. To describe the functions of these components, we will

now explain how GTOS processes local and global transactions.

A local transaction starts with a LOCAL-BEGIN operation, followed by a sequence of READ
and WRITE operations, and ends with an END operation just as in GTOC. For simplicity, we
assume that each global transaction consists of two steps. In Section 7.5, we will show that GTOS,
with a slight modification, is also applicable to more general (non 2-step) transactions. A 2-step
transaction first executes all its read operations and then all its write operations. For a 2-step
transaction T,, we use D, and D, to denote its readset and writeset, respectively. T, can thus be

represented as T, =R [D,1W [D,].

Let us use a 2-phase locking scheduler for the HFS. (We can use some other scheduler, but we
choose a 2-phase locking scheduler for simplicity). In order to give higher priority to local
transactions, GTOS allows a local transaction to preempt a global transaction in case the latter holds
a lock on a data object required by the former transaction. Two types of locks are provided by the
HFS: high priority lock (h-lock) and low priority lock (I-lock). H-locks are used by local
transactions, while 1-locks are used by global transactions. High priority read lock, low priority read
lock, high priority write lock, and low priority write lock are denoted, respectively, by hr-lock, Ir-
lock, hw-lock and Iw-lock. As usual, read locks are compatible among themselves and incompatible
with write locks, while write locks are incompatible with each other as well as with read locks. A
local transaction requesting a hw-lock can preempt a Iw-lock or Ir-lock on a data object held by a
global transaction. This aborts the latter transaction. The compatibility among h-locks and 1-locks is
shown in Figure 7.2.2. Any hr-lock or hw-lock request submitted when there is a queue of lock

requests waiting to lock a data object is always inserted before all the Ir-locks and 1w-locks in the

- 112 --

chapter seven ' section 7.2

queue. The RFS is a FIFO queue. Since updates from a remote site are received in their timestamp
order and the RFS is a FIFO queue, these updates are submitted to the DM in their timestamp order.
There is no need to control the read operations of global transactions accessing the remote fragments

in the DB, because a global transaction will be given the correct value if it is not the value it read.

As shown in Figure 7.2.1, at each site §;, thére is a timestamp manager, named TSM. The
TSM maintains a local clock C; and a set of virtual clocks Cjj, one for each site S; (j #i). Time
t(C;) retrieved from C; is the local clock value with the site identity of S; appended to it at the least
significant end to make it globally unique. Whenever the communication manager CM receives a
message from another site, C; is adjusted to a value that is one tick larger than the timestamp in the
received message, if the received timestamp is larger than ¢(C;). With a clock defined in this way,
the timestamps are unique and all timestamped events can be totally ordered [Lam78]. This global

clock is implemented in the same way as the global clock used in GTOC described in Section 6.4,

The time of a virtual clock C;; at a site S; reflects the time of C; known to §;. More precisely,
site §; knows. that the time ¢(C;) is at least as large as that of C;;. In fact, two time values are
associated with C;;. In Section 7.3, we will explain how a TSM manages its virtual clocks and how
the virtual clocks are used to determine whether the value of a remote data object read by a global

transaction is correct.

At site S;, when LOCAL-BEGIN of a local transaction T, arrives, the TM allocates a
workspace for T, and sends hr-lock (hw-lock) requests to the HSF on behalf of T,’s READ (WRITE)
operations. (Note that local transactions are not necessarily 2-step transactions). If a hr-lock is
granted, then the READ operation is executed by the DM. If a hw-lock is granted, updating is done
in the workspace. When the END operation of T, arrives, the TM performs twc; steps. In the first
step, it obtains ¢(C;) and assigns it to 7,. (Note that this is the first time that a timestamp is assigned

to a local transaction.) Then it tells the DM to commit the updates and releases all the locks held by

-113..

chapter seven ’ section 7.2

T.. In the second step, the TM submits a remote update request to the UPM on behalf of T,. The
request contains the committed values and ¢(C;). The UPM broadcasts the request to every other site
through the CM, which is connected to the CM’s‘at all other sites. The UPM uses a reliable
broadcast protocol (e.g., [AWE84, GLB85]) to send out remote update requests. (The properties of a
reliable broadcast protocol were mentioned in Secﬁon 6.2). The UPM broadcasts remote update

requests in their timestamp order.

When the CM at a site S; receives a remote update reQuest from §;, the request’s timestamp is
sent to §;’s TSM to update the virtual clock Cj;. To process the updates in the request, the UPM
issues a write-only transaction to install them in the replica of F;. The write operations of this
transaction are submitted to the FIFO queue at the RFS. This completes the discussion of a local

transaction.

A global transaction starts with a GLOBAL-BEGIN operation, followed by a set of READ
operations, then a set of WRITE operations, and terminates with an END operation. The execution

of a global transaction T, =R [D.IW[D,] submitted at a site §; consists of the following two phases.

Phase One [Reading and Locking].

When T,’s first operation, GLOBAL-BEGIN, arrives at S;, the TM allocates a workspace for it.
Then the TM submits a Ir-lock request to the HFS for all the data objects in D,~F; on behalf on T,.
For each remoté fragment F;, TM submits a read request to the RFS for all the remote data objects in
D,nFj, if it is not empty. If a Ir-lock submitted to the HFS or a read request submitted to the RFS on
a data object is granted, the READ operation on the data object is executed and the value is retrieved
into the workspace. After all data objects in D, are read, the TM issues Iw-locks for all data objects
in D,. The first phase completes at this point. Even if a lw-lock is granted, T, does not immediately

execute the corresponding WRITE operation. Instead, this is done in the second phase.

--114 --

chapter seven ' section 7.2

Phase Two [Waiting and Commit/Abort].

The clock value ¢(C;) is now assigned to T, as its timestamp ¢s(T,). Then T, waits until the
TM can determine that the values of all the remote data objects it has read are correct. If these values
are correct, then all the 1-locks of T, are converted to h—locks and all its WRITE operations are
executed in T,’s workspace. We convert the 1-locks to h-locks to prevent a global transaction from
being preempted by a local transaction after it has been determined that all the remote data objects it
has read are correct. When 7, issues an END, T, commits and releases all its locks. Then its
updates are broadcast to all the other sites in the same way as the updates of a local transaction are
broadcast. If S; receives a new copy of a data object X and finds that the old value of X read earlier
by T, is not correct for T,, then the TM replaces the value of X stored in the workspace by the new

value and T, waits again. O

Note that if we ignore the read operations of global transactions that access remote fragments,
the HFS is a 2-phase locking scheduler. A timestamp is assigned to a transaction, be it local or
global, after it has locked all the data objects in its readset and writeset that belong to its home
fragment and before it releases these locks. Hence, the timestamp order is a serialization order of all
transactions. In addition, if all values of remote dt;ta objects read by every global transaction are

correct, then it is clear that all transactions can be serialized in their timestamp order.

The above description of the execution of a global transaction is not complete. In Section 7.3,
we will discuss the management of virtual clocks. The algorithm used to determine whether the

value of a remote data object read by a global transaction is correct will be described in Section 7.4.

--115 .-

chapter seven (section 7.3

7.3. Timestamp and Virtual Clock Management

In the following, a message broadcast by a site which contains the update of a transaction and
its timestamp is called an update message. (In fact, update messages are the remote update requests
discussed in Section 7.2.) If A is the set of updates oan transaction with timestamp ¢, the update
message broadcast on behalf of the transaction is represented by u(A,). If A contains only a data

object X, u(X, t) is used to represent u ({X }, 1).

How does a site know that a global transaction has read the correct value of a remote data
object? There are three possible cases to be discussed, which are illustrated in Figure 7.3.1. The
time axes in all these figures refer to the global time, i.e., the time given by the clock C; at site S;. As

before, the timestamp of a transaction T, is denoted by ts(T,).

In Figure 7.3.1(a), an update message u (X, 1,) is broadcast by site §, at time ¢, and is received
by site S, at time ¢';. More precisely, ¢, is the timestamp of the transaction which issues the update
message u(X, ;). Suppose that a global transaction T, submitted at S,, with a timestamp 2> ¢,
has read the value of X in u(X,,) and is waiting to determine if the value read is correct. Later at
time ¢, > 1°, another update message u(Y, t,) on a data object Yis broadcast by S, and is received by
S, at t's. If no other update of X is received between ¢, and ¢, S5 at ¢'3 can confirm that the value of
X in u(X,ty) is the latest value of X written by a transaction with a timestamp smaller than

t2=1s(T3). Hence, S, confirms that the value of X read by T is correct.

In the second case shown in Figure 7.3.1(b), a new update message u (X, {2) of X is broadcast
by S, at 12 <t and received by S at 1’3 >¢’. That is, when T, is waiting, a newer value of X is
received which has a timestamp less than 1% = 1s(T5). At ts, S knows that the value of X in u(X, t;)
is not the latest copy of X before 1. Hence, the value of X that T, has read is not correct. In this

case, T replaces the value of X by the new value and goes back to waiting until S, can determine if

-- 116 --

chapter seven ’ ‘ section 7.3

the new value is correct for T».

In the third case (see Figure 7.3.1(c)), after the update message u (X, t;) is broadcast, no further
update is broadcast from §,. If this the situation remains, it will cause T to wait for a very long
time. To prevent this situation from arising, the timestanip manager TSM at every site §; broadcasts
timeout messages periodically with a fixed period A, called the time tolerance. If the latest update
broadcast by S; has timestamp ¢ and since then, no update has been broadcast by §; for a period of A,
then §;’s TSM broadcasts a timeout message tm(¢+A) at tinie t+A, which carries the timestamp ¢+A.
When this timeout message arrives at any other site S;, §; can be sure that no new update has been

broadcast by S; since ¢.

In Figure 7.3.1(c), a timeout message tm(t2), t2 =t + A, is broadcast after a period of A with no
update. When the timeout message arrives at site S, at time ¢, S, knows that it was correct for T, to

read the value of X in u (X, ¢,).

Timeout messages and update messages are broadcast by a sife in their timestamp order. At
any site §;, a timeout message with a timestamp ¢, cannot be broadcast before an update message
with a timestamp ¢, < ¢, i.e., before a transaction with timestamp ¢, is completed. Otherwise, when
the timeout message with timestamp ¢, arrives at another site S; before the update message with

timestamp ¢,, §; may mistake that no update has happened before ¢, at S;.

The above scheme works correctly in deciding whether a global transaction has read correct
values. However, it can cause a deadlock, which must be remedied. An example of deadlock is
illustrated in Figure 7.3.2(a). An update message u (X, 1) broadcast at ¢; by site S, arrives at site S,
at time t°, and at roughly the same time ¢,, an update message u (Y, t';) broadcast by S, at ¢} arrives
at ;. A global transaction T, with ts(T;) =13, which has read only the value of ¥ in u(Y,t"), is

waiting at §;. Similarly, a global transaction T, with ¢s(T5) = t5, which has read only the value of X

--117 --

chapter seven ' section 7.3

invu(X , 1), is waiting at §,. No update has been broadcast since ¢; and ¢°,. Suppose t4=t;+A> 13
and t’4=1"1+A>1’5. In this case, only the arrival of the timeout messages tm(t's) and tm(t4) can
unblock T, and T,, respectively. However, these tinieout messages cannot be sent out, because, as
mentioned above, m (¢4) can be sent out only after T, has completed and its update message has been
broadcast. Otherwise, tm(t4) would be sent out before the update message of T,, which has
timestamp ¢3 < t4. Similarly m(t’s) can only be sent out after T, has completed. Hence, T, and T,
wait for events blocked by each other. This is a deadlock and neither of the two transactions can

proceed.

In order to solve the deadlock problem mentioned above, a global transaction T, waiting at a
site §; with ts(T,) =1 should let the other sites know that the time at S; is already . However, this
cannot be achieved by sending out an update message for T,, because T, has not completed yet. In
order to solve this dilemma, a global-start message gs(¢) which carries the timestamp ¢ is broadcast
when ¢ is assigned to T,. The timestamp ¢ in the global-start message is called a global-start
timestamp. In the example illustrated in Figure 7.3.2(b), global-start messages gs(ts) and gs(r’s)
arrive at S, and §, at times ¢’s and ¢s, respectively. By looking at the times in the global-start
messages, S, (S2) at 5 (¢'s) knows that T, (T;) has read the correct values, and T, (T2) can proceed

without waiting. Therefore, the deadlock between T, and T, is resolved.

We have mentioned above that update messages and timeout messages are sent out in their
timestamp order. After the introduction of global-start message, this must be modified. The purpose
of introducing global-start messages is to allow a global transaction T, waiting at site S; to inform
the other sites of the time ¢s(7,). However, the broadcast of the update message of T, is delayed
until 7, is completed, even though the timestamp of the update message is also ts(7,). Hence, there
is a time lag between the broadcasts of the global-start message and the update message of T,. Some

local transactions may be committed with timestamp larger than ¢s(T,) before T, is completed. In

-- 118 --

chapter seven ' section 7.3

order not to delay the broadcast of the updates of these local transactions and the advance of the
virtual clocks for S; at other sites, some update messages of local transactions, timeout messages and
global-start messages with timestamps larger than rs(7,) may be broadcast before the update
message of T,. Therefore, global-start messages, timeout messages and update messages of local
transactions are broadcast in their timestamp order, bﬁt the update message of a global transaction is
broadcast at the time when the transaction is completed. Therefore, some messages with larger
timestamps may be broadcast before it, which violates the rule that messages are sent in their

timestamp order.

The introduction of global-start messages raises another problem. By a global-start message,
time information is sent out prematurely. For a local transaction, its timestamp is broadcast with its
updates. In this case, there is no time lag between the arrival of an update and its timestamp.
However, this does not hold any more once global-start messages are introduced for global
transactions. As mentioned above, there is a time lag between the.broadcasts of the global-start
message and the update message of a global transaction. This time lag could cause a problem for a
waiting global transaction when it is trying to determine whether a value read by it is correct. This

problem will be illustrated by the following example.

Example 7.3.1. In Figure 7.3.3(a), an update message u(X,t,) of a data object X is broadcast
at t; by S, and is received by S, at t';. At Sy, a global transaction T, is assigned a timestamp ¢, and a
global-start time message gs(r2) is broadcast at ¢, and received by S, at t'5. Assume that T, has
updated only X and its update message u(X,t,) is broadcast after a waiting period at t4, which
arrives at S, at t’4. Before T, completes at t4, another global transaction T3 at S, is assigned
timestamp 3 < t4. Hence, a global-start message gs (¢5) is broadcast by S; on behalf of T3 at ¢4 and

received by S, at t's. Assume that no update of X is issued by S after ¢, and before ¢3.

-119 ..

chapter seven ' section 7.3

Suppose that there is a global transaction T4 submitted at S, with a timestamp ¢ such that
t'2<t <13, and T, has read the value of X in u(X, ;). Both global-start messages gs(t2) and gs(¢3)
carry no information except their timestamps. When ﬂle global-start message gs(¢5) is received at ¢,
it would indicate to S, that the time at S, is at least 13 > ¢. Since no update of X has been broadcast
after ¢, at Sy, S, would mistakenly regard the valﬁe of X in u(X,t,) as the correct value for T,.

However, the correct value of X for T4 should be the value of X in u (X, t,). O

Example 7.3.1 shows that the introduction of global-start message may cause problem in
identifying the correct values for a waiting global transaction. Note that the same problem occurs if
the second global-start message gs(fs) in Figure 7.3.3(a) is replaced by a timeout message or an

update message of a local transaction with the same timestamp ¢ 5.

One way to remedy the above problem would be to stop broadcasting any messége after a
global-start message has been broadcast until the update message of the corresponding global
transaction has been broadcast. However, this would delay the broadcast of the updates of all other
local and global transactions. Another remedy is to let a local transaction with a larger timestamp to
preempt a waiting global transaction, even if there is no need to do so because the union of the
readset and writeset of the local transaction has no intersection with the writeset of the global
transaction. However, this would increase significantly the chance of preemption of global

transactions.

We now propose a more efficient way to remedy this problem. Firstly, we modify the global-
start message gs(t,) of a global transaction T, =R[D,]W(D,] to carry not only the timestamp
t, = ts(T,), but also the writeset D, of T,. We use WS (gs (1,)) to represent the writeset in gs(4,). In
this way, when gs (1) is received by a site S;, even though the update of T, has not yet arrived at § s
a global transaction T, with a timestamp larger than ¢, waiting at §; can decide whether it should

wait to read the update of 7, by checking if WS (gs (1.))nRS (Ty) = @, where RS (T) is the readset of

- 120 --

chapter seven ’ section 7.3

T;. Secondly, when a global transaction T, broadcasts its update, a global-completion message
gc (A, 14, 1) is broadcast instead of an update message, which carries the set A of updates by T, and
two timestamps ¢, = is(T,;) and ¢, where ¢ is the time ét which T, committed. If A contains only one
data object Y, gc(Y, t,,1) is used to represent gc({Y }, 1,,). The timestamp ¢ is called the global-
completion timestamp of T,. Note that the timestamp of the updates in a global-completion
message gc(A, 1, 1) is 1,, not t. When these updates are stored in the DB of a site, the timestamp ¢,
are attached to them. Global-completion messages from the same site are broadcast in the order of

their global-completion timestamps.

We now examine how the above affects the execution of global and local transactions.
Suppose T, =R (D, W [D,] and T, =R [D,,]W[D}] are two global transactions waiting at the same site
Si, where ts(T,)=ts <ts(Ty)=1,. Therefore gs(t,) was broadcast before gs(1,). Suppose T,
commits earlier than T,. This is possible if D, Dy v 15,,) = (. In this case, the global-completion
message of T, will be broadcast before that of T,, even though ts(T,) < ts(T»). Note that the earlier
arrival of T,’s updates would not cause any problem for those global transactions waiting to read the
updates of T,, because D,nD, = @. Therefore, the updates of global transactions may sometimes be

broadcast out of their timestamp order.

Consider another scenario in which a local transaction 7, is submitted at a site S; while a global
transaction T, =R [D.1W [D,] is waiting at §;. If D, overlaps with either the writeset or readset of Ty,
then T, will be preempted by T; otherwise, T, may be committed earlier than 7,. Hence the update
message of T, may be broadcast earlier than that of T,, even though ts(T}:) > ts(T,). Based on the
above examples, we make the following observation : the updates of a transaction with a larger
timestamp may be broadcast earlier than that of a global transaction with a smaller timestamp, if

their writesets do not overlap. However, the updates on a data object X are still broadcast by its

home site in their timestamp order.

-- 121 --

chapter seven ' section 7.3

Since the update message of a global transaction is replaced by a global-completion message,
from now on, update messages are used only for local transactions. For clearness, we rename update
messages as local-update messages. The arrival 6f a global-completion message indicates the
completion of a global transaction whose timestamp has been announced by a global-start message

broadcast earlier.

Let us see how the inclusion of a writeset in a global-start message and the introduction of
global-completion messages solve the problem raised in Example 7.3.1. The update message
u(X,t7) in Figure 7.3.3(a) is replaced by a global-completion message gc(X,t2,t4) in Figure
7.3.3(b). After gs(t3) is received by S, at 1’3, S, knows that the time of clock C, at §, is at least
t3>t. Also, it knows that the smallest global-start timestamp of the global transactions waiting at §,
is 1, <. At this point, S, can determine whether T4 has to wait for the global-completion message
of Ty, If WS (gs(12))NRS (T 4) =D, (this doesn’t hold for the example in Figure 7.3.3(b)), then T4 does
not have to wait for the global-completion message of T, and the valye of X in u (X, t,) is correct for
T, Otherwise, T4 has to wait for gc (X, 12,14). In the latter case, after gc (X, 12, t4) has arrived, S,
knows that T, is no longer a waiting transaction and the smallest global-start timestamp of the global
transactions waiting at S, becomes 3> ¢. Hence, S, knows that T, no longer has to wait for the

update from other global transactions and the value of X in gc (X, 12, t4) is correct for T,.

According to the above discussion, S, must keep track of two types of information sent from
§1. The first is the largest timestamp, 1, received so far. §, can infer that the time at S; is not
smaller than 4. The second is the list of global-start messages of the global transactions waiting at
§1. With the writesets in the global-start messages received by S,, S» can determine whether a
waiting global transaction at S, has to wait for some global-completion messages from §,. This

observation forms the basis of the virtual clock management which will be discussed below.

--122 --

chapter seven ' section 7.3

In the above discussion, four kinds of messages have been discussed : timeout messages,
local-update messages, global-start messages and global-completion messages. The first three kinds
of messages carry only one timestamp. A global-cohpletion message carries two timestamps, and
we refer to its global-completion timestamp as the timestamp of the message. After the introduction
of completion timestamp, there is no more violation in the sending order of messages, i.e., all

messages are broadcast and received in their timestamp order.

Corresponding to the four kinds of messages, there are four kinds of timestamps. The
timestamp in a local-update message of a local transaction is called a local-update timestamp. The
timestamp in a timeout message is called a timeout timestamp. We have already defined a global-

start timestamp and a global-completion timestamp.

We are now in a position to discuss the management of virtual clocks. As méntioned in
Section 7.2, at each site S;, a set of virtual clocks C;;, one for each remote site S; (j #i), are
maintained. The virtual clock C; has two virtual times. The upper virtual time w (Cj;) is the
largest timestamp that S; has received from S;. The lower virtual time /t(C;;) is the smallest
global-start timestamp received by S; from S; such that the corresponding global transaction is still
waiting at ;. If no such global-start timestamp has been received or no global transaction associated
with the received global-start timestamps is waiting at S;, then /t(C;;) = ut (C;j). These two virtual
times are used by S; to determine if the values of remote data objects read by a global transaction at
S; are correct. Thus Cj; is actually a list of timestamps, which initially contains the smallest
timestamp which was received in a timeout message. The timestamps in C;; are ordered by their
values. The upper virtual time ut(Cj;) is given by the largest timestamp in C;;. The lower virtual
timestamp It (Cj;) is given by the smallest timestamp in C;;. Whenever a message with timestamp ¢

arrives at §; from a site §;, the TSM of S; uses the following procedure to update the list C;;.

- 123 --

chapter seven ' section 7.3

Before presenting a formal procedure, we briefly describe the idea behind it. Since local-

update timestamps and timeout timestamps will be handled in the same way, we call them

independent timestamp. Suppose a timestamp ¢ from S; arrives at S;.

1

05

Suppose ¢ is an independent timestamp or a globai-start timestamp. Since ¢ is larger than any
timestamp in Cj;, ut(C;) should be advanced to ¢. If C;; contains a global-start timestamp, it
must be smaller than ¢ and ! (C;;) should remain unchanged. If there is no global-stamp in Cj;,
It(Ci;) should be advanced to ¢+. This is done by first deleting all independent timestamps in
Cij, if any, and then appending ¢ to C;;. From the above discussion, it can be seen that if ¢ is an
independent timestamp or a global-start timestamp, then we have only one of the following two
cases after + has been processed. (a) C;; contains nothing but an independent timestamp. (b)
C;; is a list of some global-start timestamps and at most one independent timestamp. In case
(b), the independent timestamp, if any, is always the largest timestamp in C;;. Note that when a
global-start timestamp ¢ is appended to Cj;, the writeset WS (gs (1)) of the associated global-start

message gs(¢) is stored in TM.

If ¢ is a global-completion timestamp which arrives in a global-completion message gc (4, t', t),
then there must be a global-start timestamp ¢” in C;;. It follows from the discussion in (1) that
C;; contains a list of global-start timestamps and at most one independent timestamp. The
arrival of the global-completion timestamp ¢ indicates that the global transaction with
timestamp ¢" is no longer waiting. Therefore, ¢* should be removed from C;;. After the removal
of ¢, It(C;;) is equal to the smallest remaining global-start timestamp in Ci;, if any; if no
global-start timestamp remains, then /f(C;;) will advance to ¢. Also, ut (Cij) should be advanced
to ¢, because it is the largest timestamp received from S;. This is done by first deleting ¢” and
the only independent timestamp from Cj;, if any, then converiing ¢ to an independent

timestamp and appending it to Ci;. Since the global transaction with timestamp ¢’ is no longer

--124 --

chapter seven ' section 7.3

waiting, the value of ¢ simply indicates the latest time at S;. This is why ¢ is converted to an
independent timestamp. When a global-start timestamp is deleted from C;;, the writeset

associated with it is no longer needed and hence is removed from the TM at site S;.

Procedure to maintain a virtual clock C;; at site S;

Initialization : Cj; is initialized to a list containing only the smallest independent timestamp = 0.

Input : a message with timestamp ¢ from site S;

(1) If ¢ is a simple or global-start timestamp, then delete all independent timestamps in Cj;, if any,
and append ¢ to C;;.

(2) If ¢ is a global-completion timesiamp which arrives in gc (4,1, 1), then delete ¢" and all
independent timestamps from C;;, if any, convert ¢ to an independent timestamp and append it to

Cj. O

7.4. Global Timestamp Ordering Synchronization Algorithm

In this section, we describe the method used by GTOS for scheduling global and local
transactions. The execution of a local transaction has been described in Section 7.2. The main
concern of GTOS is to ensure that all the values read by a global transaction are correct. The
procedure for executing a global transaction consists of two phases and was briefly described in
Section 7.2. In the following, its second phase, which provides a mechanism to determine if the

values read are correct, will be described in more detail.

Procedure for the execution of a global transaction

Input : a global transaction T, = R [D,]W[D,] submitted at S;

- 125 --

chapter seven ' section 7.4

Phase One [Reading and Locking].

As described in Section 7.2.

Phase Two [Waiting and Commit/Abort].

Assign clock value ¢(C;) to T, as its timestamp. Broadcast a global-start message containing

T,’s timestamp and writeset. Then execute the following steps.

(1) Make T, wait until either condition C1, C2, or C3 is true, where

)

3

)

C1 : there exists a remote fragment F; and a data object X € D,nF; such that a new update of
X with a timestamp ¢, is received by S; at 15, where 1, < ts(T,) < 12,

C2 : for all remote sites S; (with fragment F;) such that F;nD, #@, (i) ut(Cij) > ts (T,f), and (ii)
It(Cij) > ts (T,) or WS(gs(t))nD, =, for all global-start timestamps # < ts(T;) in Cyj,
where gs (1) is the global-start message carrying 1,

C3 : T, is preempted by a local transaction.

If C1 is true, then replace the old value of X by the new value in T,’s workspace. Then goto

1).

If C2 is true, then convert all the 1-locks of T, to h-locks and execute all its WRITE operations
on the data objects in D,. Then commit T,, retrieve a timestamp ¢, release all the locks held by
T,, and broadcast a global-completion message for T, with ¢ as its global-completion

timestamp. The global-completion message also contains T,’s updates and timestamp.

If C3 is true, then abort T, and broadcast to all other sites a global-completion message, which

contains the timestamp of 7, and a global-completion timestamp which is the time of abortion

of T,, but no update. [0

-- 126 --

chapter seven ' section 7.4

Note that if C1 is true, the value of X that T, has read is not correct for T,. GTOS replaces the

old value of X in F; by the new one and makes T, wait again.

If C2 is true, condition (i) implies that the times of C; at all these remote sites S; have passed
ts(T,). For each of these remote site Sj, if It(C;;) > (s(T;), then no waiting global transaction at S;
has ti_mestamp smaller than s(7,). On the other hand, if WS (gs())nD, =@ for all global-start
timestamps # < ts(T,) in Cy;, then T, does not have to wait for the update of any waiting global
transaction at S;. In either case, it can be concluded that vTa has read the correct values from F;.
Hence, T, can execute its write operations and commit. The reason that we convert the 1-locks to h-
locks is to protect T, from being preempted by a local transaction at this stage. Since T, is no longer
waiting for any remote message and is about to commit, there is no need to abort it because of a

competing local transaction.

If C3 is true, T, is preempted because it is holding a 1-lock on a data object on which a local
transaction is requesting an incompatible h-lock. In this case, T, is aborted. When 7, is aborted, a
global-completion message with no update has to be broadcast to delete T,’s global-start timestamp
from the virtual clocks at all remote sites. Otherwise, there will be some dangling global-start

timestamps.

Example 7.4.1. Figure 7.4.1 is a possible time chart of message broadcasts from a site S;. The
upper horizontal axis records the timestamps of the messages. The lower horizontal axis records the
times when the corresponding messages are broadcast. In the beginning, two timeout messages are
sent out separated by a time interval of A. Then two local transactions T;; and T;, are executed.
Their local-update messages are broadcast -at the times when timestamps are assigned to the
transactions. When a timestamp is assigned to a global transaction T;3, a global-start message is sent
out. After it has finished a waiting period, it executes all its write operations and a global-completion

message is broadcast at the end. In the case of global transaction 734, after it has broadcast a global-

-- 127 --

chapter seven ' section 7.4

start message, it is preempted twice by local transactions T;s and T;¢. Eventually, T;4 is restarted with

anew timestamp and completed after T;¢. O

7.5. Correctness of GTOS

We first show that GTOS is deadlock-free. A set of sites Q deadlocks, only if there are some
waiting global transactions at §; € Q, and each site §; is waiting for some message(s) from some
other sites in Q. Without loss of generality assume that all global transactions at the sites in Q are
waiting forever. To see that this is impossible, suppose that T, = R [D ;]W [D ;] belonging to site S;
has the smallest global-start timestamp ¢;, among all the waiting global transactions. Note that a
global transaction waits only if it is in phase two and none of the three conditions C1, C2, and C3
holds. (See the procedure for executing a global transaction in Section 7.4.) Suppose all global-start
messages have been received. For every remote site S; (with fragment F;), such that D ;,,nF; # @, let
ti be the smallest timestamp of the waiting transactions at ;. 'i‘he set consisting of all these
smallest timestamps is represented by ST. C;; does not contain any global-start timestamp smaller
than ¢;. Otherwise, t; would not be the smallest. Therefore, C;; contains only an independent
timestamp. (Refer to the discussion of virtual clock in Section 7.3.) In this case, both u(C;;) and
It(C;;) are advanced t0 tj > t;m. (See (1) in the procedure for maintaining virtual ciocks, in Section
7.3). After all the global-start timestamps in ST have been received by §;, condition C2 in GTOS

becomes true for T,,, and T;,, is unblocked. This shows that GTOS is deadlock-free.

It is relatively easy to see that any execution generated is serializable in timestamp order. No
matter whether a transaction 7, is local or global, the timestamp of T, is assigned to it after it has
locked all the data objects in its readset and writeset that belong to its home fragment, and before any

of these locks is released. Since the HFS at each site uses 2-phase locking, the timestamp order of all

--128 --

chapter seven ' section 7.5

thé transactions belonging to a site is compatible with the order of their lock-points [BSW79).
Hence, a serial execution in their timestamp order of all the transactions belonging to a site preserves
all read-from relations among them. As for a global transaction T, submitted at §;, if it has read a
copy X; € F; written by a transaction 7; (belonging to site S), then GTOS ensures that the value read
is correct for T;. In other words, T; is the transaction with the largest timestamp smaller than ¢s (Tx)
that has written X. Hence, the read-from relation between T, and T, is maintained in a serial
execution in which all the transactions are ordered by their timestamps. This proves that any

execution generated by GTOS is serializable.

In GTOS, we cannot bound the waiting time of a global transaction because it may be
preempted many times by local transactions. In order to avoid infinite waiting, the system or the user
can assign different modes to a global transaction. We propose two different modes, high priority
mode (hp-mode) or low priority mode (Ip-mode), indicating two levels of priority. A global
transaction T, =R[D,JW[D,] in the hp-mode requests h-locks .for all the data objects in
(Da U Do)NF;, where F; is its home fragment; if it is in the Ip-mode, it requests 1-locks for all these
data objects. Since a hp-mode global transaction holds h-locks on data objects in its readset and
writeset, no local transaction can preempt it. A user can explicitly specify the hp-mode for a global
transaction so that its execution is guaranteed. Alternatively, a TM can convert a global transaction,
whose waiting time has exceeded a predefined limit, from the Ip-mode to hp-mode. Of course, we
have to trade this off with the blocking of some local transactions that are competing with a hp-mode

global transaction for accessing the same data object(s).

As the last remark, we mention that global transactions can be generalized from 2-steps to
multi-steps. A timestamp can be assigned to a global transaction when it commits, i.e., after all the
read and write operations have been executed, instead of before any write operation is executed.

(Updates are recorded only in a workspace and changes are reflected in the database only if the

--129 --

chapter seven section 7.5

trénsaction commits). If this is done, read and write operations can interleave and the 2-step
requirement is not necessary. However, step (2) in GTOS has to be modified in this case. If
condition C1 in the procedure for executing a global transaction (see Section 7.4) is true, i.e., a new
copy of a data object read by a waiting global transaction T, has arrived at T,’s home site, T, cannot
just read the new copy. T, may have to redo its computation, if the computation depends on the

value of this new copy.

7.6. Performance of GTOS

In the following, we will analyse the performance of transaction execution under GTOS.
Under GTOS, a local transaction is never blocked by a waiting global transaction in the 1p-mode.
Since we don’t assume a frequent occurrence of hp-mode global transactions, the blocking caused by
them will be insignificant. The execution time of a local transaction consists only of local processing
time and no communication time. Hence, there should be no sig;liﬁcant difference between the

response time for a local transaction under GTOS and GTOC.

Now we want to estimate the time that a global transaction has to wait under GTOS after it is
assigned a timestamp and before it proceeds to execute its write operations or before it is preempted
by a local transaction. Let & be the maximum difference between the clocks at any pair of sites. We
assume that the fastest local clock remains to be the fastest for some time until the clocks are reset.
(This assumption may not be very practical, but it provides a basis to do the estimation.) We want to
show that ¢ is bounded by «,, + A, where @, is the maximum time required to send a message from
one site to another in the underlying hetwork; measured by the fastest local clock. This is derived as
follows. Let the site with the fastest local clock be S;. Suppose S; broadcasts a message at time ¢,

When this message is received by another site §;, the local clock at S; is advanced to ¢ + 1. At the

--130 --

chapter seven ' section 7.6

séme time the local clock at §; by our assumption must be larger than ¢ + 1 and is at most ¢ + a,,.
Therefore, at any time when S; receives a message from S;, the difference of the clock values at S;
and §; is bounded by o,,. If there is no message to be broadcast, §; sends out timeout messages in
every A units of time. Therefore, during the time when S; receives no rﬁessage from §;, the difference

between their local clocks is at most o, + A, i.€., € < 0y + A,

Let W, be the time that a global transaction has to wait until it can proceed to execute its write
operations or until it is preempted by a local transaction. There are two cases that a global
transaction 7, with timestamp ¢, has to wait. In the first case, it waits for some messages but not for
the global-completion message from a waiting global transaction. In the second case, it is waits for
the global-completion messages of some waiting global transactions as well as other messages. In
the first case, after a waiting period of at most €, the local clocks at all other sites will pass ¢,. After
waiting for additional A + a,, time units, T, will definitely receive all messages it was waiting for. In
other words, within a period of e+ A+ an,, T, is either aborted because condition C3 in GTOS
becomes true, or T, can start to execute its write operations because condition C2 in GTOS becomes
true. Condition C1 may become true many times during the waiting period and 7, goes back to wait
e\;ery time it has read a new value. However, this does not affect the bound € + A + o, on the waiting
time. Hence W, is bounded by €+ A+ a,, and the average value of W, is e+ A2 + o,, where o, is

average time required to send a message from one site to another site.

In thevsecond case, at any real time ¢, let WT be the set of all global transactions that are
waiting at 1. The size of WT depends on¢. Let G = (WT, E) be a directed graph in which the nodes
are the transactions in WT' and for any two transactions T; and T; in WT, (I3, T;) € E if and only if T;
is waiting for the global-completion message of 7;. The graph G is acyclic; otherwise, there would
be a deadlock among the transactions in WT. Let (T, T,, ..., T;) be a longest path in G. We will

show that the waiting time W, of any global transaction in WT is bounded by e + A+ ha,,. Note that,

--131 --

chapter seven ' section 7.6

fdr i=2,..., h, the timestamp of T; is larger than that of T;_;, and T; is waiting for the global-
completion message(s) of T;—; and possibly some of the transactions in {Ti,..., T;-1}. Since T; is
not waiting for the global-completion message of aﬁy global transaction in WT, it follows from the
above discussion that the waiting time of T, is bounded by € + A + 0,,,. In the worst case, the global-
completion message of T, is sent after T, has waited for € + A + a,, units of time. This global-
completion message is received by T'; after T, has waited for e + A + 2a,,. By induction, the waiting
time for T, is bounded by €+ A + ha,,. (Note that in the above discussion, we have ignored the time
for processing all its write operations after a global transaction has finished its waiting period,

because this time is insignificant compared with its waiting time.)

In the ideal case, in which global transactions are very rare, a global transaction seldom has to
wait for the global-completion messages of other global transactions. Thus, the waiting time W, is
£+ A/2+ 0, On average. In general, A is set much smaller than a,, because the smaller A is, the
shorter is the waiting time of a global transaction. Since € < a,, + A, the average value of W, is
approximately equal to 2a,. Recall that, under GTOC, if all certification requests of a global
transaction are granted by remote GS’s (global synchronizers) without much waiting, the time spent
for communication is also 2a,. Therefore, if global transactions are very rare, there is no significant
difference between the waiting times for a global transaction under GTOC and GTOS. However, if
the speeds of the clocks at different sites are very close to each other so that ¢ is much smaller than
0, then the waiting time W, under GTOS would be much smaller than 2o, and hence GTOS would

perform better than GTOC in this case.

If we compare GTOS with the primary copy locking scheme (PC), the result would be similar
to those in Section 6.5. In particular, the equations (6.5.1) and (6.5.2) still hold when GTOC is
replaced by GTOS. Hence, in a WADDS in which global transactions are rare, GTOS, as well as

GTOC, is definitely better than PC and other conventional concurrency control schemes, in which

--132 -

chapter seven ' section 7.6

the updates of a local transaction must be sent out before it can be completed.

When comparing GTOC with GTOS, it can be seen that they have different flavors. However,
it is not clear which is better. Under GTOC, a global transaction may have to wait in a retry list for
other global transactions, when it is waiting for remote sités to grant its certification requests. On the
other hand, under GTOS, a global transaction has to wait for messages from other sites to determine
whether the values it has read are correct. Also, it may be preempted many times before it can be
completed. The control mechanism of GTOS is simpler than that of GTOC. A site under GTOS can
decide by itself if a global transaction should be committed or aborted by simply waiting for
messages. In contrast, a site under GTOC has to run a distributed algorithm to get remote sites to
certify the GLOBAL-READ of a global transaction. Also, at every site S;, GTOC has to consume a
considerable amount of space to store two lists of records, COMMIT; and WAIT;. As for*GTOS, a
drawback is the cost of broadcasting timeout messages. In any case, they both serve the purpose in
that local transactions enjoy good response time and high availability. Moreover, only global

transactions have to be controlled by a global concurrency control.

-=133 --

CONCLUSION

If reliability and availability are adopted as design goals, then replication is indispensable in a
distributed database system, even though replication substantially increases the complexity of the
control algorithm. Unfortunately, in a partitioned database system, degradation of availability is

inevitable.

In this thesis, we have shown that an execution generated by a prevention protocol in a
partitioned database can be characterized by a partition IO graph; an execution is serializable if and
only if the partition IO graph has a DITS. We have also shown that every execution generated by a

prevention protocol is TC-serializable.

We have derived an upper bound on the availability of any database system with two partitions.
The weak uniformity assumption on the transaction distribution submitted is more general than the
uniformity assumption used elsewhere [COK86]. We have shown that our upper bound is achievable

in a fragmented database system.

The inherent conflict between serializability and availability in a general database system has
forced us to introduce a model with less generality. We have demonstrated that both serializability
and high availability are achievable in a fragmented database. The activity of transactions in a
fragmented database system is rather restricted. However, this model is applicable in many
situations, particularly in a wide-area distributed database system, in which communication delay is
substantial. We have chosen a policy which favors local transactions over global transactions.

Under this policy, no local transaction will be blocked due to a global transaction.

We have introduced a fragmented execution to model an execution in a fragmented database

system. It was proved that a fragmented execution is serializable if its GOS graph is acyclic. This

-134 -

conclusion

result shows that global concurrency control is necessary only for global transactions in a fragmented

database.

Two algorithms, Global Timestamp Order Certification (GTOC) and Global Timestamp Order
Synchronization (GTOS), are proposed in this thesis to synchronize a partition execution. The
former is an active scheme which sends out certification requests to remote sites. If all certification
requests are granted by the remote sites, a global transaction can execute and broadcast its update.
The latter is a passive scheme in which a global transactioﬂ waits until it is determined whether the
copies from remote sites are correct. We have also shown that these two algorithms perform better
than other conventional schemes such as primary copy locking, if they are applied to a fragmented

database system.

.-135..

References

[ASC85]

[AbT86]

[AID76]

[AWES4]

{BGS86]

[BSW79]

[BeG81]

REFERENCES

A. E. Abbadi, D. Skeen and F. Cristian, An Efficient, Fault-Tolerant Protocol for
Replicated Data Management, Proc. 4th ACM Symposium on Principles of Database

Systems, Mar 1985, 215-229.

A. E. Abbadi and S. Toueg, Availability in Partitioned Replicated Databases, Proc. 5th

ACM Symosium on Principles of Database Systems, Mar 1986, 240-251.

P. A. Alsberg and J. D. Day, A Principle for Resilient Sharing of Distributed Resources,
Proc. of the 2nd International Conference on Software Engineering, Oct 1976, 562-

570.

B. Awerbuch and S. Even, Efficient and Reliable Broadcast is Achicvable in an
Eventually Connected Network, Proc. 3rd ACM Symposium on Principles of Distributed

Computing, 1984, 278-281.

D. Barbara, H. Garcia-Molina and A. Spauster, Protocols for Dynamic Vote Assignment,

Proc. 5th ACM Symposium on Principles of Distributed Computing, Aug. 86, 195-205.

P. A. Bemstein, D. W. Shipman and S. W. Wong, Formal Aspects of Serializability in
Database Concurrency Control, IEEE Trans. on Software Eng. SE-5, 3 (May 1979),

203-216.

P. A. Bemnstein and N. Goodman, Concurrency Control in Distributed Database

Systems, ACM Computing Surveys 13,2 (June 1981), 185-221.

-~ 136 --

[BeG83]

[BGR83]

[BIKS8S]
[Cas81]

[COK86]

[Dav84]
[DGS85]

[Dol82]

[EaS83]

[FLP85]

P. A. Bernstein and N. Goodman, The Failure and Recovery Problem for Replicated
Databases, Proc. 2nd ACM Symposium on Principles of Distributed Computing, Aug.

1983, 114-122,

B. T. Blaustein, H. Garcia-Molina, D. R.‘ Rie.s, R. M. Chilenskas and C. W. Kaufman,
Maintaining Replicated Database Even in the Presence of Partitions, Proc. IEEE
EASCON Conference, 1983, 1-8.

B. T. Blaustein and C. W. Kaufman, Updating Replicated Data During Communications

Failures, Proc. of the 11th Intl. Conf. on Very Large Databases, Aug 1985, 49-58.

M. A. Casanova, The Concurrency Control problem for Database Systems, in Lecture

Notes in Computer Science 116, Springer Verlag, Berlin, 1981.

B. A, Coan, B. M. Oki and E. K. Kolodner, Limitations on Database Availability When

Networks Partition, Proc. 5th ACM Symposium on Principles of Distributed Computing,

Aug 1986, 187-194.

S. B. Davidson, Optimism and Consistency in Partitioned Distributed Database Systems,

ACM Transactions on Database Systems 9 , 3 (Sept 1984), 456-481.

S. B. Davidson, H. Garcia-Molina and D. Skeen, Consistency in partitioned networks,

ACM Computing Surveys 17, 3 (September 1985), 341-370.
D. Dolev, The Byzanitine Generals Strike Again, J. of Algorithms 3, (1982), 14-30.

D. Eager and K. C. Sevcik, Achieving Robustness in Distributed Database Systems,

ACM Trans. Database Systems 8, 3 (Sept, 1983), 354-381.

M. Fischer, N. Lynch and M. Paterson, Impossibility of Distributed Consensus with One

Faulty Process, J. ACM 32, 2 (1985), 374-382.

- 137 --

[GAB83] H. Garcia-Molina, T. Allen, B. Blaustein, R. M. Chilenskas and D. R. Ries, Data-Patch:

[GLBS5]

[GaK87]

[Gif79]

[Gra78]

[IKM87]

[1aj87]

[KoG87]

[Lam78]

[LBS86]

Integrating Inconsistent Copies of a Database after a Partition, Proc. 3rd IEEE

-Symposium on Reliability of Distributed Software and Database Systems, Oct 1983,

38-46.

H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman, S. Sarin and O. Shmueli, Notes
on a Reliable Broadcast Protocol, Tech. Rep. CCA-85-08, Computer Corporation of

America, Dec 1985.

H. Garcia-Molina and B. Kogan, Achieving High Availability in Distributed Databases,

Proc. 3rd International Conf, on Data Engineering, Feb, 1987,

D. K. Gifford, Weighted Voting for Replicated Data, Proc. 7th ACM Symposium on

Operating System Principles, Dec 1979, 150-162.

J. Gray, Notes on Database Operating Systems. Operating Systems: An Advanced

Course, Lecture Notes in Computer Science 60, Springer-\}erlag, New York, 1978.

T. Ibaraki, T. Kameda and T. Minoura, Serializability with constraints, ACM Trans.

Database Systems 12, 3 (Sept 1987), 429-452,

S. Jajodia, Managing Replicated Files in Partitioned Distributed Database Systems,

Proc. 3rd Int. Conf. on Data Eng., Feb. 87,412-418.

B. Kogan and H. Garcia-Molina, Update Propagation in Bakunin Data Networks, Proc.

6th ACM Symposium on Principles of Distributed Computing, Aug 1987, 13-26.

L. Lamport, Time, Clocks and the Ordering of Events in a Distributed Multiprocess

Systems, Comm. ACM 21, (July 1978), 558-564.

N. Lynch, B. Blaustein and M. Siegel, Correctness Conditions for Highly Available

Replicated Databases, Proc. 5th ACM Symposium on Principles of Distributed

-- 138 --

[MiW82]

[NoA83]

[Pap79]

[PSL80]

[SBK85]

[Sar86]

[SkW84]

[Sto79]

Computing, Aug 1986, 11-28.

T. Minoura and G. Wiederhold, Resilient Extended True-Copy Token Scheme for a
Distributed Database System, IEEE Transactions on Software Engineering SE8, May

1982, 173-189.

A. D. Noman and M. Anderton, Empact, a distributed database application, Proc.

AFIPS Nat. Computer. Conf. 52, (1983), 203-217.

C. H. Papadimitriou, The Serializability of Concurrent Database Updates, J. ACM 26, 4

(Oct. 1979), 631-653.

M. Pease, R. Shostak and L. Lamport, Reaching Agreement in the Presence of Faults, J.

ACM 27, (1980), 228-234.

S. K. Sarin, B. T. Blaustein and C. W. Kaufman, System Architecture for Partition-
Tolerant Distributed Databases, IEEE Transactions on Computers C-34, 12 (Dec 1985),

1158-1163.

~S. K. Sarin, Robust Application Design in Highly Available Distributed Databases,

Proc. Fifth Symposium on Reliability in Distributed Software and Database Systems,

Jan 1986, 87-94.

D. Skeen and D. D. Wright, Increasing Availability in Partitioned Networks, Proc. 3rd

ACM Symposium on Principles of Database Systems, April 1984, 290-299,

M. Stonebraker, Concurrency Control and Consistency of Multiple Copies in Distributed

INGRES, IEEE Transaction on Software Engineering SE-3,3 (May, 1979), 188-194,

--139 -

Execution of
A’s transaction

Read jy

$ 5000

Subtract $1000 l

$ 4000

\

Read Checking

$ 5000

Add $1000

P SN

$ 6000

Wﬁwc;;;;\\\\\\\

DB

S $5000

C $5000

S $4000

C $5000

S $4000

C $6000

figure

Execution of
B’s transaction

wiavin g

$ 4000

1 Read Checking

$ 5000

1 Print Total

Total = $9000

Figure 2.1.1 Tllustration for Example 2.1.1.

-- 140 --

figure

X
X .
X
Y

Y

(@) TRF(L).
X

=) O O

(b) TRF(L5).

X

X X
) X

(c) Modified TRF (L).
Figure 2.2.1 Transaction Read-from graphs.

- 141 --

figure

(a) TIO (L»).

(b) DITS for TIO (L,).

Figure 2.3.1 TIO graph and DITS.

-- 142 --

Ty = R\[X]1R,[Z] W,[X]

Ry[X,] ? WilX,]
R\[Z,] -_— WilXe]
(a)

Ty = Ro[X]Wa[Y]

R (X)) —_— W,ylY.]

WalY4]

(b)
T3 = R3[Z1Wa[Y] W4[Z]

RA(Z,] - WilY4]

W'S[Ze]

©

Figure 2.4.1 Translation of transactions into posets of physical operations.

-~ 143 -

figure

figure

WolX.] — R[X.] > WilX,] - Rf[Xa]

X

W olX5) RiZ) === WX

WolY,] R 3[X,]

WolY,) Wil¥dd ™ R[Y,)
WolZ.) —® Ri(Z) ™ Wizl —> R/Z)

RplogL
Figure 2.4.2 Anrplog.

(@) TIO (L).
X X
(= (=)
XZ
z :

(b) DITS of 710 (L).

Figure 2.4.3 TIO graph of a rp log L and DITS.

- 144 --

figure

WolX1] e Ri[X1] —— WilY 4] — Rf[Y]]

WolX 2]

WolY1]

WolY] —" RofYy] —— WyX;] —" R/[X)]

(aA)ArmplogL

ooWoro

() IO (L)

Figure 3.1.1 RplogL and TIO(L).

s
S ! 4
|
|
|

S S3 '
|
!

Figure 3.2.1 Illustration for Example 3.2.1.

-- 145 --

figure

/RI[XI] - Wi[Z] = R3[Z,] —» W[Y] \

WolX1,Y1.Z1.X2.Y 2]

Rf[Z1,Y 4]

Ry[X 3]
\R3[y2] - . W3[X2] /

(@) RplogL

() TIoL)

/RI[XI] — WilZ)] == R[X] —= W,[Y] \

O[Xlt 1» 17;(2’) 2] R [X]
W Y,z flaz

(c) Rplog L,

5 o o

(d) TIO(Ly)

RelZ1,Y1]

Figure 3.3.1 Illustration for Example 3.3.1.

-~ 146 --

figure

Rl[Xl] —-————FWI[ZI] \
/ | Rf1Z1,Y1)
WolX1,Y1,Z,X2,Y,]
| / o
Ro[Y;] —————W,[X,]

(¢) Rplog L,

() TIo (L)

Figure 3.3.1 Illustration for Example 3.3.1.

-- 147 --

figure

P,

Ry([X] W {[Z | }——smR o[Z 1] W ,[X]

P
0 Pf
.
(a) RplogL
Z
X X
Y
(b) TIO (L)

Figure 3.4.1 Illustration for Example 3.4.1.

-- 148 --

figure

RyX] —» W,[Y]

P2 “//‘J’
\@___’ W3[X2_]

(@ RploglL’

X

() TIO (L")

Py

Figure 3.4.2 MMustration for Example 3.4.2.

-~ 149 -

figure

P,y

Ri[X1] —» W\[Y1]

R4[Z3] == W ,[Z,)

Ro[Z,] == WX 1]

/

R3[X 3] = W3[Zo] — W3[Z3]

(a) RplogL

() PlOL)

Y
X
X Z
Xz

(c) DITS of PIO (L)

Figure 3.5.1 Iustration for Examples 3.5.1 and 3.5.2.
-= 150 --

figure

P,
R\[X1]=— W, [Z]—» R2[Z,] —@
Po _ Py
P,

R[Y)] =————» Wi[X]

(a) RplogL

(b) RplogL,

Figure 3.5.2 An illustration for the Non-Selective Assumption.

-- 151 --

figure

Py P

2
Sl SZ Ss S4
T, R \(X]IW,[Y]

T2:Ro[X] WalX] T4:RAYIW4Y]
T3:R3[Y]W3lX]

(@

P,

Ro[X]——® R;[Y || —W[X] — W,[X,]

\ Wo[X 5] ——= W3[X 3]

qr(X) =2, g,(X)=2

) 9 (V)=1, qu(¥)=3

R4[Y 3] =——> W ,[Y,]

: W4lY 4]
7X)=2, q,(X)=2

7 (¥)=2, ¢,(Y)=2

(©

Figure 4.1.1 Acceptance Ratio.

-- 152 --

figure

(b)

Figufe 4.2.1 Two PIO graphs.

-- 153 --

figure

O 0 0T

(a) IfPoP 1P 2Pf is a DITS
of PIO(L) ,X #Y.

(b) IfPoPgPle lsaDITS
of PIO(L) X #Y.

Figure 4.3.1 Two DITS’s for PIO (L).

--154 --

figure

ws () RS (T2)

Figure 4.3.2 Inclusion relationships.

-- 155 .-

figure

Checker

Distributors
Distributor jt—————p» gt other
sites
Update
Interactor

Users

Figure 5.2.1 Architecture of SHARD.

-- 156 --

figure

Sy
e —
X1
Zl W1
Y, '
SR
S2 Fy Fa Fs 53
g ——— ey
X2 X3
Zy W, Z3 W,
Y, Y,
o o S

Fy

R
I

w

o)
B!
]

Figure 5.3.1 A fragmented database system.

-- 157 --

figure
S1
Fy Fa

X2 Y,

M Vo

(a)

Ty = Ri[X]1WilX] Ty = Ro[Y]W,lY]

(X is updated to) (Y, is updated 1o v;)
Fq 1—7—2 Fy
Xy Y, Y,

M Vo Vi

T3 = R3[X]R3[Y] T4 = RAX1R4[Y]

values read by T'3 : values read by T4 :
X=q X=»h
Y =w Y =v

()

Figure 5.4.1 Nustration for Example 5.4.1.

-- 158 --

Fz F3

(a) A complete RAG

Fi

(b) A cyclic RAG

Fy

Fy

" (©) An acyclic RAG

Figure 5.4.2(a-c) Three RAG’s.

--159 --

figure

figure

F 2 Fi
(d) Loopless RAG

Figure 54.2 ARAG.

Figure 5.4.3 RAG of Example 5.4.3.

-- 160 -

Th=R\[Y,Z] W,lX]

figure

Fa

< T3=R;3[Z]1W;[Z]

S2

T2=RoZ] WalY]

(b) An execution in a fragmented database

Figure 5.4.4(a-b) Ilustration for Example 5.4.4.

- 161 --

figure

WolX .Y ,Z1,Z2,Z3] -

R1[Z3] '—\’ WilZ3] / WlY,] WX 1)

WilZ 2] =R 3[Z 3] et W 5[Y 5] / WilX-]

— R1[Z,] \Wz[Yll"""’Rl[Yll ——’“QXI]
—-—————\:Wg[zl] > Re[X1,Y1.Z4]

(¢) RplogL

@) 1TIO (L)

Figure 5.4.4(c-d) Ilustration for Example 5.4.4.

--162 -

A,

Figure 5.4.5 RAG for a fragmented database.

«= 163 --

Ay

%'

figure

INVENT,
TOTAL,
PRICE,

INVENT ,

TOTAL ,
PRICE

Figure 6.1.1 Illustration for Example 6.1.1.

-- 164 -

figure

figure

Tn T12 T13
S, O O O
S, O O O
T21 T22 T23
(@)
Ty Ty Ty,
S, O O O
S, O O O
Tx Ty Ty ’
T
(b)
‘ Fo! local transaction

——-O— global transaction

Figure 6.1.2 (a-b) Illustration for Example 6.1.2,

-- 165 --

figure

Ty
Ty T Ty
) c \
Ty Ty T Tas
Ty
(©)
Ty
Tn T2 T3
S| o o o »

O

S2 O O O
m N o

T2 Ty 3
Ty

(d)

local transaction

o
A d

—O— global transaction

Figure 6.1.2 (c-d) Ilustration for Example 6.1.2.

-~ 166 --

figure

Transactions

™

Scheduler

DM

DB

Figure 6.2.1 An architecture for a single-site database.

-- 167 --

figure

user
transactions

™

[t | | o™ |

Scheduler

HFS RFS GS -

UPM jg—a»] CM f———e M (.}f
other sites

DM

home remote
fragment | fragments

_____/

Figure 6.2.2 An architecture for GTOC.

-- 168 --

figure

precedence edge

(a) Precedence edge.

(b) Global-read edge.

——O— global transaction

o local transaction

» precedence edge

...................... > global_read edge

Figure 6.3.1 (a-b) Precedence edge and global-read edge.

- 169 --

Oy

G;

O

Om

figure

’/ induced edge
4

3
.

," induced edge
----------- ----------------

(d) Induced edge.

——O— global transaction

O local transaction

» precedence edge

...................... T global_read edge

---------- - induced edge

Figure 6.3.1 (c-d) Two kinds of induced edges.

- 170 --

figure

TiuT12T13T14T15Ts

0t
.t
.
.
.
.
.
.
.
.

————— precedence edged

.............. » global-read edge

------ - induced edge

Figure 6.3.2 A GOS graph.

--171 --

figure

t ,
= precedence edged

.............. > global-read edge

______ - induced edge

Figure 6.4.1 GOS graphof Ty, , T» and T'ys.

/
/, !

. 1 // ! ~————— precedence edged
N e : Cereerrerrea > global-read edge
’ KN

R : ------ - induced edge
/ !

/

/

Figure 6.4.2 GOS graph of T3, T1s, Ty and T,

-172 --

figure

t w1 2
Wy =oc0
S | | I | 2
1 I ! I I
ta
[¢1, 5] - safe interval of T, against COMMIT ;.
[w1, t2] -- safe interval of T 4, against WAIT .
t4=Dts(CR, (T4)).
(@
1 Wé t'2
wi=0
S, i

[t'y, t')] -- safe interval of T3, against COMMIT 5.
[t'1, w] - safe interval of T3, against WAIT,. ~

t3=Dts(CR2(T3,)).

()

Figure 6.4.3 Deadlock.

--173 --

3

user
transactions

Scheduler

HFS

RFS

DM

home
fragment

‘-_______

remote
fragments

_-———"”

TSM e
A |
o
UPM CM

Figure 7.2.1 An architecture for GTOS.

-- 174 --

figure

CM’s at
other sites

locks
new held hr-lock hw-lock Ir-lock lw-lock
request
hr-lock compatible incompatible compatible preempts
hw-lock incompatible incompatible preempts preempts
Ir-lock compatible incompatible compatible incompatible
lw-lock incompatible | incompatible | incompatible | incompatible

- 175 --

Figure 7.2.2 Compatibility among h-locks and 1-locks.

figure

figure

ty=ts(Ty) ta=ts(T3)

time axis at §;

u(Xa tl)
\ ¢ time axis at S,
t' t'a=ts(Ty) t's
@) th<1,
f t2 .
4 } $ time axis at S,
1
I
(
)
u(X,fl) :
'
'
‘
1
1
l . .
} time axis at S o
t'l t'2 t'3
(b) t2<t
tH ta=t1+A . .
} 1 t - time axis at §
|
I
(
1
u(X,) ' tm(t2)
'
}
!
I
1
1
¥ 4 time axis at § o
t ' t

(c) timeout message with time tolerance A

Figure 7.3.1 Update and timeout messages.

--176 --

h t2 i t3=ts(Ty) ta=t1+A
4 | $ { time axis at §¢
u(X’tl)
u(Y,tll)
f } t : time axis at S,
" th ta=ts(Ty) T =t +A

(a) Deadlock.

3) t3=ts(T1) ta 15
4 ' : time axis at §;

u(X,ty)

u(Y7tll)

Y f et time axis at S 5
t, ty ta=ts(Ty) t'y s

(b) Global-start messages, gs ().

Figure 7.3.2 Deadlock and a remedy.

- 177 --

figure

figure

to=ts(Ty) ta=ts(T3) ta

time axis at S,
M(X\ :s(t\ \Y(h) \M(X 1)

‘ time axis at S ,
1y t=ts(Tg) 1’5

(a) Problem caused by global-start messages.

1 o=ts (Tz)

T time axis at S
|

1

'

]

:

u(X\ :s(x: \s(m) \:(X ta, ta)

:

|

I

|

H .

time axis at S
t2t=t5(Ts) 175 .

(b) Remedy.

Figure 7.3.3 Global-start messages and global-completion messages.

--178 --

figure

timeout timeout . . timeout
‘ msg msg Ty Ti 3 Tis Tis T4 Tis T3 msg
timestamp T T T . T -r
0 1 | (' ' 1
| 0 | (1 1 1
[| | 1 1 1)
1 | |] 1 | |
' | | ! 1 | |
t ¢ | ' | | |
t t I 1 ' | !
| | t 1 ' (!
1 ' ¢ 1 I 1 ' !
: 0 t 1 i (' :
0 [} [} 1] ! 1 i
]] 1 []] 1 |
broadcast !] '] 1 ! ! 1
time of S TR ! | I
the i ' :
messages : ' h
] ' : 1
1 ! : |
Vo R
| A I | A I
waiting execution :
time time :
of T;s of T;s
l‘ waiting time of T;4 | |
execution
time
of T,‘4
------ - timeout message

-~————]ocal-update message

——epm—pn global-start message

~—————t—» global-completion message

Transactions with a **” are global transactions.

Transactions with a "**’ are global transactions resubmitted with new timestamps.

Figure 7.4.1 Time Chart of Transaction Execution.

-~ 179 --

