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ABSTRACT

Let T be a mapping of a metric space X into itself., Wwe call
x a fixed point of T if Tx=x. The central question of this
thesis is what conditions on T or ¥ will guarantee that T has a
fixed point.

The most famous result of fixed-point theory is that of
Banach. Different ways to prove Banach's theorem and its various
generalisatidns are pres=2nted. In most cases, two kinds of proof
are shown: the original and a newer, simpler method.

3rouwer's and 3chauder's theorems are also discussed, along
with some miscellan=ous results, including common fixed points

for a sequence of mappings and a converse to Banach's theorem.
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I. Introduction

Fixed point theorems have been around for some years, The
earli=st one we discuss in this thesis is Brouwer's theoren,
which Poincare proved in an equivalent form in 1886 [24]. The
most famous result is Banach's fixed point theorem, published in
1922 [4]. |

Banach's theorem deals with mappings of a metric space into
itself that shrink distances under a "Lipschitz condition", In
other words, T:X-->X is such that, for some k, 0<k<1,

(M 4(Tx,Ty) £ kda(x,y)
for all x and y in X. If X is complete, says Banach, T will have
a fixed point in X. In chapter 2, we give the classical proof of
this, together with a couples of more recent proofs that involve
the use of Cantor's intersection theorenm.

Chapters 3 and 4 deal with various generalisations of
Banach's theor=2m., In the first of these, Wwe remove the Lipschitz
condition, that is, we coasider T:X-->X where 7T satisfies

(2) d(Tx,Ty) < 4(x,y)
for all x,veX, x#Y. Under compactness of X (or a weak=2r
condition on T), T will have a fixed point in X. We also
consider mappings for which, for some £>0, 0<d(x,y)<€ implies
(2), as well as the case where (2) is true for some itesration

™ of T, n possibly depending on x and y.



Do

A good deal of work is b=ing done with non-expansive

maopings, i.e. those where

d(Tx,Ty) £ d(x,Y¥),
Non-=2xpansive mappings are generally considered in subsets K of
3anach spaces Wwith T(X)¢K. In Chapter 4, we show that if K is a
weakly compact, convex set that has a property called "normal
structure", then T has a fixed point in XK.

The main thrust of Chapter 5 is an alternate method of
dealing with the types of mappings in Chapters 3 and 4. This
method, dues to J.S.W. kKong, involves considerinqla new function

B (x) = d(x,Tx). )
In compact X and under suitable conditions on T, we can show
that ¢ reaches its minimum on X and this usually gives us the
fixed point of T. The proofs of this kind are generally much
simpler than those considered in chapters 3 and 4.

Chapter 6 is mainly about Schauder's thecrem, which says
that if ¢ is a compact, convex subset of a Banach space, and
T:C-->C is continuous, then T has a fixed point in C. We first
consider Srouwer's thecorem, which is really Schauder's theora2n
restricted to finite-dimensional vector spaces. Then we use 3
seguance of mappings that converge uniformly to T, =ach mapping

peing a mapping of a finite-dimensional subspace into itself.

This will accomplish the proof of Schauder's theoren.
Chaptar 7 deals briefly with two interesting aspects of
fixed point theory not yet covered. One result is a

generalisation of Banach's theorem for a segquence of mappings,



only some of which satisfy (1). The other is a partial converse

- L LT P Y -y P T T

A mapping T is called a self mapping of X if T:X-->X., If

CgX, and T(C)EC, then we call C T-invariant. A fixed point, of

course, is a point x such that Tx=x. We call T an jteration of

T, where TV is dafined inductively as T'=T, and T™=T(T""'). We
assune T® is the identity. This definition will apply everywhere
excedt in one part of Chapter 7, where another definition is
given, The W22k topology on a normed space X is the weakest
topologjy that makes all the bounded linear functionals on X
continuous.

We will use cl(A) to denote the closure of a set A, and
diam(d) to denote its diameter. (diam(A)=sup{d(x,y): Xx,y€A}). If
X apd vy are two polnts in a vector space, then we will call the
segment batween them seg(x,y). R will mean the set of real

nurbers, and R the vector space that is the product of n

copi=s of R.



II., Banach's Fixed Point Theoren

The classical fixed-point theorem is due to S. Banach {4].

It deals with a class of mappings called contractions.

such that™
0<k<1, and
for every x,y in X, d(Tx,Ty) < kd(x,y).

and we will call k a Lipschitz constant.
As it turns out, in the context of a complete metric space,

2ach contraction mapping has a fixed point.

THEQREM 2.1(Banach): If (X,d) is a complete metric space,
and T:X-->X a contraction mapping, then T has a unigue fixed
point in X.

PROQF: Define the sequence {Xn} inductively as xn=Tnx°
with x. an arbitrary element of ¥X. Clearly, for 2ach positive
integer n,

d(Xne)rXp) € KN (x,,Xp) .
Looking at d(Xgs X)), for m2n, we see by the triangle inequality

and by the formula for the sum of a geometric series:



1 (XmeXn) € d(XqoXmay) + d(Xen-i v Xm-2)

t c.. ¢+ d(xn+‘,xn)

kM, L xg) kK™ acx, ,xg)

IA

*eee v kM a(x,,xp)
< (kN7 (1-k)} d(x,,xp) .
Thus {xn} is a Cauchy sequence, and by the complateness of
X, 1t converges to a point z in X.
Now conSider Tz. For n21,
d(xn+1,Tz) < k d(xn,z) < d(xn,z),
which means d(xn,Tz)-->O as n-->w0, so 2z=Tz and z is A fixed
point of T.
It is easy to show that any fixed point of a contraction is
unigue, Suppcse there were two fixed points, z, and 2. Then
d(z\,zz) = d(Tz,,Tz9) £ k d(z, ,29) .

Since k<1, d(z‘,zl) < k d(z,,zz) only if z,=z,.(

This proof leads to an immediate corollary of Theorem 2.1,
which has practical applications as regards actually calculating

the fixed point of a contraction,

COBOLLARY 2.1.1: Let (X,d) be a complete metric space,
T:X-->X a contraction mapping, and z its fixed point. Then for
any X in X, the sequance {xn}, where xn=T"xo, converges to the
fixed point z. Furthermore, for any n,

1(xy,2) € (K7 (1-00) d(xg, Txp)

PROOF: Convergence of {xn} has already be2n established,



The distance criterion is estaplish=2d as follows:
1(xpe2) = 4 (%, 172) < KV (xgs2)
Furthermore,
d(xo,z) < d(xo,Ty3) + i(TxO,z) < d(xo,Txo) + k d(xo,z)
So a little algebra gives us
d(xo,z) < d(xo,Txo)/(1-k).
Thus, combining these two ra2sults, we get th2 raquired

ineguality.(}

There 1s another method of vroving Theorazm 2.1, which
De#. Boyd and J.S.d., Wonqg published in 1969 [7]. It involves the
use of Cantor's intersection theoram, which we 3tate hare. 3ee

Gcldberg, [186], p.158 for a proof.

THEOREM 2.2 (Cantor): Let (¥,d) be a complete metric
space, and for each positive integer n, lat Fn b2 a non-enpty,
closed and bounded subset o0f X, such that

(1) Fn+‘Q Fws, for =ach n, and
(2) diam(ﬂq) --> 0 2as n-=->0,
‘Then 531 contains exactly one point.

The basic idea of the proof using Cantor's theoram is to
define a new function ¢(x)=d(x,Tx), which has the property that
¢(x)=0 if and only if x is a fixed point of T.

Altsrnate Proof of Theorem 2.1 (Boyd & Wong, 7): Define a

new tfunction ¢(x)=d(x,Tx), for xeX. This is continuous, since

¢x) - Pa) = d(x,Tx) - d(a,Ta)



IA

d(x,a) + d(a,Ta) + d(Ta,Tx) - 4(a,Ta)

IN

d(x,a) + kd(x,a)

(1+x) d(x,a),

and similarly for'¢(a)-¢(z), so 1P(x)-F(a)| € (1+k)d(x,a), and
¢ is continuous.

Furthermore, for any xeéX, #(Tx) < k"@&(x), so B(1™x)-->0 as
n-->00, Now, for =2ach positive integer nm, define a set
C= {XEX: ¢Kx)51/m}. By continuity of ¢, these sets are all
closed, and since ¢(Tnx)-->0, sach set is also non-=2npty. We
obtain boundedness from the following estimate of the diameter
of each Cpy

Let x,Y€Cyp. Then

d(x,y) £ d(x,Tx) + d4(Tx,Ty) + d(Tv,Y)

B(x) + kd(x,y) + B(y)
(2/m) + kd(x,Y)

in

IA

50 d4(x,y) £ 2/{m(1-k)} for =ach x,yéCp and Cny is bounded, with
diam(qn)—->0 as m-->m, Thus the sets {qn} satisfy the conditions
of Theorem 2.2, and acﬁ\contains precis=ly one point, which we
call z, Clearly, z i3 the unique fixed point of T, since

2€NCpy <==> P(z)=0 <==> Tz=z,

0f course, the prcof of Cantor's Theorem r=2quires the use
of Cauchy sequences as auch as Banach's proof of Theorem 2.1, so0
this alternate method of proof doesn't really gain usg much in

that direction., On the other hand, the idea of using the



function ¢ instead of T generalises to a method of proof that
can be used on a wide class of mappings that are less
restrictive than the contractions, This method of proof tends to
he simpler than the usual methods, and sométimes eliminates tHe
necessity of using the Axiom of Choice. We will return to this
topic in Chapter 5.

I. I. Kolodner [23] presents another interesting method of
proving Theorem 2.1 using Cantor's intersection theorem. In this
proof, we start out by looking at a complete metric space that
is also bounded, and then show how this result generalises to
the unbounded case. Kolodner's theorem, you will note, says a

little bit more than Theorem 2,1,

THEQREM 2.3: Let U be a self-mapping of a bounded,
complete metric space X with diameter D, and suppose there
exists a positive integer p such that T=uP is a contraction with
Lipschitz constant k. Then

(1) U has a-unique fixed point z in X,

(ii) for any s with 0<s<(p-1),

vP**3(x), then d(z,x)<x"D, and

if xe
(iii) if (X} is a sequence in X such that
X, & UT(X), then xp-->z.
and diam(T"(X))<k"D-->0 as n-->®, These two conditions will

still be satisfied if we take the closure of 2ach eslement of the

sequence, so the saegquence {cl(Tn(X))} satisfies all the



hypoth=s2s of Cantor's theorem. This means that acl(Tn(X))
contains only ons point, which we will call z.
Consider the two sets of fixed points, ‘
5,=(xeX: Ux=x}, and
Sp={xeX: Tx=x}.

Clearly, 5 QSPSQCI(Tn(X)). On the other hand, T is continuous,

50 We have

T (Nl (T7(x)))
NT (c1 (TN (X)))

T({z})

N

¢ neerer™ )
= {z}
30 Tz=z, 2anand thus Sp={z}. Also, notice that
T(Cz)=U(Tz)=U(z), so UzeéSp={(z}, and hence Uz=2z,
This takes care of (i). Part (ii) follows because
oP™"S (x)e TN (X), and diam(T™(X))<k"D. Part (iii), of course,

follows immediately from part (ii).[

Convaniently =2nough, we can reduce the general case to the
bounded cas2 if Wwe consider the closed ball Y (x) centred at an
arbitrary point x in ¥, with a radius of d(x,Tx)/(1-k). This
radius is motivated by the following considerations: If yeY(x),
where Y(x) is the ball w2 just defined, then

4(x,Ty) £ d(x,Tx) + d4(Tx,Ty)

d(x,Tx) + kd(x,Y)

IA

A

d(x,Tx) + kd(x,Tx)/(1=-k)

a(x,Tx)/ (1-k).



This means that T(Y(x))SY(x).

Also, it happens that, if 2z should be a fixed point of T,
then

4(x,z) € 4(x,Tx) + d(Tx,Tz)
€ d(x,Tx) + kd(x,2)

so d(x,z)<d(x,Tx)/(1-k), which means that any fixed point of T
will be in Y (x).

Then if we consider only the restriction of U to Y(x), we
can be assured of the existence of a fixed point that is unique\
in Y(x), and hence in all of X. We therefore have the following

corollary to Theorem 2.3:

COROLLARY 2.3.1: Let U be a self-mapping of a complete
metric space X such that there exists a positive integer p such
that T=UP is a contraction with Lipschitz constant k. Then
(1) U has a unigque fixed point z in X,
(ii) if weUP"(Y(x)), for some Y(x) as
defined above, then
d(z,w)<2k d(x,uPx)/(1-x), and
(iii) if ({x,} is such that x,¢uP™(¥(x)),
then xn——>z.

PROOF: (i) was shown above. The difference between (ii)
and (iii) here and in Theorem 2.3 is that here, we don't know
that U(Y(x))SY(x). (ii) follows from

d(z,%) € d(™Mz,™x) + a(t'x,w)

< kNd(z,x) + kMd(x,7 W)

10



< 2kMa(x,Tx)/(1-%),
since z is in Y(x) and w is in TM(Y(x)). Again, (iii) is an

immediate consaquence of (ii).[]

11




ITI. Fixed Point Theorems on Contractive Mappings

Now that we have ssen Banach's Theorem, it might be
inter=sting to s=2e how far we can generalise it. Probably the
most obvious idea would be to remove the Lipschitz condition, or

ther words, to make a definition like:

[¢]

in

DE]

{4
3

INITION 1: A mapping T:X-->X is said to be contractive

if for each x,yeX with x#y, we have

d(Tx,Ty) < d(x,¥)

(The literature, unfortunat2ly, doesn't make a clear distinction
petw2an this kind of contractive mapping and those with a
Lipschitz condition., Either kind is said to be contractive or a
contraction, as the sentence requires. Perhaps it is best to
call the contractions of Chapter 2 Banach contractions if th2
meaning is not clear from the context.)

n. Hdelstein [13] was apparently the first to look at
contractions orf this type, and managed to prove that, in the
context of 3 compact metric space, these contractions’will
inde=d have fix=d points,.

The method of proof is basically to consider only those
pairs of points (x,y) with the property that

d(Tx,Ty) < Rd(x,¥) ' ™)
for suitable O0<R<1. Then from compactness we know that every

‘ , n
32quenca {Tnx} has a subseguence, {T Kx}, that converyes, say to

12
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26X Clearly, Tnk(Tx)-—>Tz. If we chose R SO that
d(Tz,T22)<Rd(z,Tz) (as wa cAan easily do0), then it turns out that
(T“lz,T"*” Z) aventually satisfies (*). In that case, w2 can use
arquments similar to those gsed in th= proof of Theorem 2.1. Th2
getails follow. Note tnat instead of assuming compactness, We

use 2 characteristic of [Tnx} that is always true in a conmpact

metric space, in order to gain 2 degree more generality.

THEQREM 3.1 (Edelstein, 14): Let X be 2 natric space and
T:X~-->X 2 contractive mapping. Suppose there exists chX such
that the saguence (T”xo} has a convergent subsaguence, Then T
has a unigue fixed point in X.

PROGF: let {TnKxo} be the subseguence that converges to Z,
say. Since T is contractive, 1t is clear that {T"k*'xo]-—>Tz.
Let us assuie that z#Tz, and derive a contradiction.

To do this, we define a new function r. Let
Y= ((x,7)€ XR¥: x#y} = XXX -4,

where A is the diagonal of tXX., Detfine 7 fynction r from ¥ to

the reals Dby

A(T%, TY)

It's easy to see that r is continuous (under the nroduct
topoloqy) s since 3 (Tx,TY) and d{(x,y) are bhoth continuous, 2nd
d(x,y) is non-zero on Y.

Tais being the case, we can find a real R such that

r(z,Tz) < R < 1,

13



and a Y-n2ighberhood U of (z,Tz) with the property that
(x,v)eU ==> r(x,y)<R ==> 4 (Tx,Ty) < Ed(x,Y)
We can also find two op=n disks, 5 and 5,, centred at z and Tz

respectively, and having radius p small enough that p<d(z,Tz)/3

and SIX SzE Ue
However, it turns out that {Tn*xo} is eventually in 5;, and
{TW"xo} is eventually in S,. That is, there is a natural number

N such that

. ; it
2N ==> Tn3x°es'and T"i'xoesz.

. ,*l
This means that for any j>N, d(Tn>x°,TnJ Xg)>p. It also means

mnj+l

o+’ X,) 1is in U, And in that case wWwe have

ni+) niti n; n;+i
da(1") XgoT 17" x,) < R4A(T )xo,T 17 x4)

On the other hand, from contractivity we see

TS N3t

) € a(t™s Xgr T 5) .

a:
d (T Jx,,
Combining these two, and iterating, we have
n, + Niyt n;., +2
™M™ xg) < a(r i lxo.T s Xp )
n;. ne, t
< R d(T J'xo,T )=t 'xo)

< r a2t

.
< Mg 1Ny, TN iy

Since R<1, the last term goes to 0 as j=-->e, 2ut we have =zaid
that d(Tn3xa,T05*'xo)>p, so this 1s impossible. Thus it must be
that Tz=z.

Pinally, it is easy to see that the fixed point is unigue.
For if z, and z; ar2 distinct fixed points of T, then

‘_d(z‘,zl) = d(Tz,,Tzz) < d(z,,29)

14




which 1s impessible.(]

An obs=srvation we aight make here is that from uniqueness
of the tixed point, we can see that, for any xéX, every
convergent subsequence of {Tnx} must converge to the fixed
point, and, more importantly, if x€X is such that {T"x} has a
convergent subsequence, then ™Mx-->z also. We prove this as a

corollary.

CCROLLARY 3.1.1: Let X and T be as in Theorem 3.1. Then if

[@]
20

xéX i3 such that {TMx} has a convergent subksegquence, then
™x-->z, the fix=d point of T.

DROQOF: Let {Tn“x} be the convergent subsequence, Then for
each £>C, there exists N=N(€) such that >N ==> d(z,Tnax)<E. But
in that case, for nan, we have

d(z,™x) = a(T""M™M 2, "N (TN )

d(z, T x)

< €,

IN

whence Tnx-->z.D

Also, 25 we mentioned earlier, in a compact metric space, all

sequencas have convergent subsequences, SO we can say:

CCROLLARY 3.1.2: If X is a compact metric space and

T:X~-->¥ 1s a contractive mapping, then there exists a unigue

fixed point to which the seguence {Tnx} converges for each xeX.

15



It's also 2asy to 322 that Wwe could replace the
completeness condition on X in Th=2orem 2,1 with a condition on T
similar to that in Th=soresm 3.7, but it's not clear we would

really gain all that auch.

A slight generalisation of the "contractive'" concept is

ng-contractivity", defined as

DEFINITION 2: A mapping T:X~-->X 1is called £-contractivs

if, for all x,y in X, 0<d(x,¥)<€==>3(Tx,Ty)<d(x,7).

It should be notesd that £ -contractive mappings are
continuous, so the function r:Y-->R as definsd in the oroof of
Theorem 3,1 is still continuous.

Interestingly enough, £-contractive mappings do not always
have fixed points. For example, the function f(x)=-(x%*+{x])/2X
on the compact space [-2,-1W[1,2] is é-contractive, but has no ~
fixed points. On the other hangd, f1(1)=1, and in fact we <an
show that £-~-contractive mappings have "periodic points", i.e.,

there exists a point z and a positive integer k such that Tkz=z.

19

The proof of this follows the lines of Theorem 23,1, except that
in the b2ginning we have to have th=2 subsequencs of {T"xo}
converge to the point where d(T"x,,2z)<€. This is how

"periodicity", so to speak, arises.

3.2 (Edelstein, 14): Let T:X-->¥ b2 £-contractive

16



and sSuppose there exists xoeX such that {Tnxo} has a subseguence
that converges to, say, z. Then z is a periodic point of T.
I such that 12T implies d(TnLXO'Z)<€/u. In that case,
d(Tni+'xo'Tnl“-rh z)<€/4 also, and we have
STNRAT} : \ : Nig)-NY¢
d(Z'TnL+I ncz) < d(zfrn‘+'xo)+d(Tn¢*'xo,T EIRALIN

< /2.

From nOw On, we wil} let K=n1+,-nI, and w=TKz. It will turn out
that w must equal z, which proves our assertion.
Suppbose w#zZ. Then We can again define r as we did before,
and find 2 Y-neighbourhood of (z,w) such that
(x,7)eU ==> r(x,y)<R, where r (w,z)<’<1.

Again we choose s' and SZ' open disks centred at z and w

respectively, each with radius p<d(z,w)/3 and 5,¥5,89, As before

we see that {T™Mx,} is eventually in S, and {Tni*Kxo} is

} 14

eventually in S,. This means that (TMyx etk

T xo)eS,XSZQU for

0'
all i greater than some N.
Thus,

n[+Kxo)’

d(Tnl*lxo,T"i“‘” xp) <Rd (TMx, T
and as before we hava, for i)y,
CECRAPINE LU SIS IR WAL IERE LU P LU, PIS
This converges to 0 as i-->%0, But again this is incompatible

with the radii of Sl and Sz. Thus we know z=u=TKz, and z is a

periodic point. ]

17



Wwe might remark that if T is £-contractive, and zeX is such
that Tkz=z but Tz#z, then
d(z,Tz)=d(TKz,Tk+|z)<d(z,Tz)

if d(z,Tz)<E.‘Under this last condition, then, the periodic
point is actually a fixed point. Edelstein gives other
conditions for this occurence. For example, € ~contractive
self-mappings cf a compact, convex subset of R will always have
fixed points. This, of course, takes care of our =arlier
example.

Just as a matter of interest, Wwe note that in a compact
space, th2r2 are only finitesly many periodic points of a given
€ -contractive mapping. This is because, if T™y=x and T"y=y,
m,n>0, and if 0<d(x,y)<€, then d(x,y)=a(T™"x,T™y)<d (x,y). Thus,
every pair of periodic points is a distance of at least & apart.
Than by compactness, there can only be finitely many.
delst2in pubiished his contractive and £-contractive

Aft

D
&)

rC

rt

results, D. F., Bailey [2] invented yet another class of mappings’
czlled "wezakly contractive”, The proof of his fixed point
theorea recuires another related idea, that of "proxiamal"

points.

e  —  — —

of X. If x,ye€X are such that for every £>0, theres exists n=n()
such that d(T“x,Tny)<£, then x and y are said to be proximal

under

1+3

If T is such that for every x,v€X, d(x,y)>0, there exists

18



4

n=n(x,y) such that d(Tnx,T“y)<d(x,y), then T is said to be

If €>0 and T is such that for every x,yeX with £>3(x,y)>0, there

exists n(x,y) such that d(Tnx,Tny)<d(x,y), then T is said to be

——— — — — v S e < — - —

A simple example of a weakly contractive function is the
function f(x)=f;z on the space [0.1,1]). Since fn(x)——>1 for all

x, £ is weakly contractive, but is clearly not contractive.

LEMMA 1: Let X be a compact metric space, and T:X-->X be

continuous. If for some x€¢X and some positive integer k, x is

proximal to Tkx, then there exists z€éX such that Tkz=z.

that nc*\>ni and
a(r ™My, TN Ry —o50
as i-->. Since T"'x has a convergent subsequence, wWithout loss

of generality, we can assume T"{ x-->z, By continuity,

NYR Ntk

T x--)Tkz. But since d(Tnéx,T x)-->0, it must be that

Tnz=z.U

LFMMA 2: Let X be compact, T:X-->X be continuous and

~weakly contractive. Then every pair of points in X is proxinmal

under T.

PROOF: Suppos2 this is not the case, that is, there exists

19



a pair {x,y)} of points that are not proximal und=2r T. In that
case Tnx#Tny for every positive n, so by weak contractiveness,
we can find a sequence {n;} of positive integers with the
property that

d(x,y) > a(rMx,T™y) > ... > ar M, ™My > ...
Assume also that each n; is the smallest possible that fulfills
this requirement. If that is true, then k<n; implies that
d(TKx,Tky)>d(T"5x,Tn£y). This is also true for any subsequence
of {n;}, and in particular, it is true of the subsequ=nce {nz/}
where TnUx-->a and Tnvy-->b. We will call this subsequence {n;}
from now on.

Since x and y are not proximal, a#b. However, if we choose

any positive integer k, we see that ng+k<n;,, . This means that
a (r™tRy, Ntk

d (T®a, T%b) lim )

lim a(TNitry, pNirR g

v

= d(a,b).
This is not compatible with weak contractivity, so x and y must’

4

be proximal.[]

THEQREM 3.3: Let X b= compact, T:X-->X continuous and
weakly contractive. Then T has a unigue fixed point in X.
PROQF: B8y Lemma 2, Tx is proximal to x for any xeX, so by

Lemma 1, a fixed point exists. It is unique because if x and y

were distinct fixed points, then we could find some n such that

a(x,y)=a (T"x,T"y)<d (x, 7). 0
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It's probably not startling that if T is f-weakly
contractive, we can a2gain show the existence of finitely many
periodic points. The proof follows the lines of Lemma 2

(starting with d4(x,y)<€) and Theorem 3.3 exactly.
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IV. Non-Expansive Mappings

The next generalisation of Banach's Theorem we might make

is the following:

DEFINITION 1: Let X be a metric space. A mapping T:X-->X

d(Tx,Ty) € d(x,Y)e.

Much of the work currently being done on fixed point
theorems is being done on non-expansive mappings in EBanach
spacas. The question we are concerned with is what kind of
subsets of Banach spaces have the "fixed point property™ for
non-expansive mappings, i.e., for which subsets X of a 3anach
space will every non-expansive mapping T:K-->X be guaranteed to
have a fixed point. Clearly, we have lost any hope of
uniqueness, since the identity is always non-expansive,

Compactness of K is certainly not enough, since a rotation
of the unit circle in R? is non-expansive, but of course has no
fixed points. It turns out that in a convex, compact set, =ach
non-expansive mapping has a fixed point. This is a consequence
0f Schauder's fixed-point theorem, which we will discuss later
on. A certain amount of labour has been expended recently to

generalise the compactness to weak compactness. The first
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results on this guestion came in 1965 when Browder [8, §], Kirk
{20}, and Gohde [15] all announced more or less similar results,
Kirk's being the most general, The theorem we prove below is due
to Kirk (1980, [22]). First, how=ver, we need the concept of

normal structure.,

DEFINITION 2: Let X be a Banach space and KgX. Let diam(K)

be the diameter of K. A point x of K is said to be a diametral
peint of K if
sup {d(x,k): keK} = diam(X).

A convex set K is said to have normal structure if every bounded

convex subset H of K containing more than one point has a
non-diametral point, i.e., if, for each suitable HSK, there

exists xeH such that sup{d (x,h):heH}<diam(H).

We will also note the following well-known properties of

weakly compact sets:

LEMMA 1: A closed, convex set is weakly closed.

non-empty intersection. A set K is (weakly-)compact if and only
if every family of (weakly-)closed subsets of K that has the

finite intersection property also has a non-e2mpty intersection.
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For a proof of Lemma 1, see Taylor & Lay, [ 28], Theorenm
ITI.6.,3. Lemma 2 is an elementary property of compactness. S=2e
Willard, [29], 17.4, for example.

Finally, we are ready to prove the following theorem:

THEOREM 4.1 (Kirk, 22): Let X be a Banach space, and K a
nonempty, weakly compact convex subset of X, and suppose K has
normal structure. Then every non-expansive mapping T:K-->K has a
fixed point.

The method of proof here is to show first that K has a
minimal T-invariant, non-empty, closed, convex subset H, That
is, # is T-invariant, non-empty, closed, and convex, and has no

proper subset with these properties. We prove this first as a

lemma, and then show H contains only one point.

LEMMA 3: Let K, X, and T be as in Theorem 4.1, Th2n K
contains a minimal T-invariant, non-empty, closed, convex
subset.

closed convex subsets of K, partially ordered bty inclusion. It
is any nonempty linearly ordered chain in#H, than tte "minimal'
element” of L will be the intersection of all the elemants of Z.
To see this, we note that the intersection is closed, convex,
and invariant, so the question is, will it be non-enpty? But 2ll

closed convex sets are weakly closed, and a linearly order=ad

chain certainly has the finite intersection property, and thus

24



by Lemma 2 and weak compactness of K, the answer is yes. Then by

Zorn's lemma,'H khas a minimal element.(]

PROQF of Theorem 4,1: Let H be the minimal subset
guaranteed by Lemma 3. K is weakly compact, hence bouhded, so H
is bounded also. Now suppose H has more than one point, Then by
normal structure on K, there is a point zeH such that

"t = sup{d(z,h): h€H} < diam(H).
In that case, the set

C={xeH:HsB (x51T)},

where 8(x;r) is the closed ball about x Hiﬁh radius r, is
non-empty. It can easily be seen that C is closed and convex,
and if we can show that C is also T-invariant, then by
minimality of H, we have C=H. So we need to show that C is
T-invariant,

For a set A, let conv(A) be the smallest closed convex set
that contains A, i.e., if ASB and B is closed and convex, then
conv (A)C R, Now since T (H)EHY, conv(T(H))eH alsc, and thus
T(conv (T (H)))ST(4)E€conv(T(H)). So conv(T(H)) is T-invariant.
Then by the minimality of H, H=conv(T(H)). But Dby
non-expansiveness of T, if zeC, wWwe have

HEB (z;r) ==> T(H)EB(Tz;r)
==> conv(T(H))EB(Tz;r)
==> HER(Tz;r),

and so TzeC also. Thus C is T-invariant, and so C=H,
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On the other hané, consider diam(C). If 2,,2€6C, then
z‘GHSB(zz:r), S0 i(zl,zz)gr, diam(C)<r, and we have
diam (C)<£r<diam(H)=diam (C),

which 1s impossible. So it must be that H has only one point.[]

The r=ason we l=2ft the part relating to Zorn's lLamma as a

»
v

separzte iemma is to ewphasise that this is the only place where

[}

{

we used weak compactness. Thus it is possible to change the

theorem slightly.

THECRZIX 4.2 (¥Kirk, 20): Let X be a reflexive Banach space
and K b2 a nonempty, pounded, closed, and convex subset of X%, K
having normal structure. If T:K-->K is a non-expansive mapping,
then T has a fixed point in K.

This is the theorem that Kirk originally proved. To show

the existence of H, we need to use a characterisation of

reflexivity due to Smulian [27].

-

every bounded descending seguence of non-empty, closed, convex

subsets of X has a non-empty intersection,

to
(o2



Fixed Points Without Normal Structure

One interesting aspect of all this is the property of
“noraal structure", Normal structure is a fairly natural
property, and it is apparent that it holds for all suitable
subsets of R", An example of a space that does not have normal
structure is the following, from Karlovitz, [19].

For a given real number B, let I% be the real space 12 with

the following norm:

1Xig = max{i{Xh,, 1xiy /B}.
In the space ﬁ;, consider the set
c=(xef%: x(i)20 for each i, [xl, <1}

which is bounded and convex.

(Note: Q% is a space of sequences, so x (i) represents the

i-th element of the sequence x, "xp" would represent the

n-th segquence in a seguence of elements of 11.)

It*'s not difficult to show that diam(C)=1. Furthermore, if

for each natural n, we let X be a seguence such that

Xp(n)=1 and xn(i)=0 for i#n, then lim |xn-yls=1 for any yecC.

Thus, it is easy to see that since xnec for every n, there

is no non-diametral point in C, so C does not have normal

structure.

Karlovitz shows, however, that lé_still has the fixed point
property for non-expansive mappings. In fact, Baillon and
Schoneberg [ 3] manage to pr&ve the fixed-point property for

!% with 3<2. To do this, they make use of a generalisation of
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normal structure called asymptotic normal structure.

-— e - —— = S

—— s e — ————

that has more than one point, and for each sequence {xn} in C
satisfying Xn~Xn4)--2>0, there is a point x&X such that

lim inf|xn-x|<diam(c).

It should be fairly obvious that any space with normal
structure also has asymptotic normal structure, since
lim infixn-x| £ sup{ly-x]:yeC} < diam(C),

for x 2 non-diametral point of C, It turns out that asymptotic

normal structure is enough to give us the fixed-point property.

THEOREM 4.3 (Baillon & Schoneberg, 3): Let X be a
refleiive Banach space and KX be closed, bounded, convex, and
non-enpty, and have asymptotic normal structure, Then every
non-expansive mapping T:K-->K hasAa fixed point in K.

The method of proof is this: By the same arguments we used
in Lemma 4 (or Lemma 3, with suitable changes to the present
hypothesis), we can deduce the existence of a minimal, closed,
bounded, non-empty, convex, T-invariant subset H of K. We can
also construct a sequence {Xn} in H with the two properties that
xn-Txn-->O and Xp=Xp4;-->0 as n-->w, From this second property,

and asymptotic normal structure, we see that there exists a

point xeK such that lim inf]xn-x|<diam(H). (This is assuming
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that H has more than one point.) Unfortunately, using the first
property and minimality of H, we can show that |x,-x|-->diam(H)
for all x in H. This last point we prove as Lemma 6. First,
howeve;, we need to state another well-known lemma, which is

really just a special case of the Hahn-Banach Extension Thoorem.

then there exists a bounded linear functional f on X such that
f(xo) = jxyl, and

£(x) £ x|, for all x in X.

LEMMA 6 (Karlovitz, 19): Let X, K, and T be as in Thecren
4,3, and suppose H is a minimal T-invariant, non-empty, closed,
bounded, convex subset of K. If {xn} is a sequence in H with the
property that xn-Txn-->0. then |xn=-x{-->diam(H) for all x in H.
D={xeH: lim sup|x-xn|<s}
which is easily shown to be non-empty, closed, and convex. If it
is also T-invariant, then we know D=H,. Ana it is, for if x is in
D,
lTx-xnl < |Tx-Txn|+|Txh-xn| < |x—xn|+1Txn—xn|.

ITXp=%X1-->0, so 1lim supiTx-xpi<lim suplx-xpl<s.

Now take a subseguence {xn,} such that ly-xn,]| converges,
to s', say. We want to show that for any x in H, ]x-xn,l—->s'.

Suppose not. Then there must exist some 2z&H such that

|z-xn,|7L>s'. Hence, there must be a subsequence {xnn] of {xn,}
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such thzat lz-xnnl-->t, for some t#s’.

Then the set E={x€H: 1lim suplx-xn,lgmin(t,s')} is
norn-ampty, sSince it contains either_y or z, but not both.
However, by argquments similar to those above, we can prové that
E=H, which is a2 contradiction. So limlx-xn,|=s' for all x in H.

Now w2 show that s'=diam(H). The set

F={ueH:Ju-x|<s' for each x in H}

is clearly closed and convex,., It is also non-empty, as follows.
Sinc= H is bounded and X is reflexive, {xn.} has a weakly
converjent subsegquence {Xpn} whose limit we will call 2z, (See
Taylor & Llay, 32, Th III.10.6. Note that this is the only place
in the Lemma where we use reflexivity.) From the Hahn-Banach
axtension theorem, for any Xx#z, there is a bounded linear
functional f such that f(x-z)=]x-2z| and f£(y)<]y] for all yveX.
S5ince xqu-->z, weakly, |f(xn")-f(z)|——>0. In that case,

{x-z2] = f(x=-2) = f (x-x

) + f(x ~-z)

ne n*
S lx=xpul + 1£(x,,)-t(2) 1
-=>s' + 0,

since |x-x,.,1-->s'. Thus, |z-x1<5' for all x in X, and z€F. Now

ne
all we need to do is show that F is T-invariant., Since T(H)EH,
conv (T (H))=H, by minimality. Hence, for arbitrary u in H and
E)O, we can find v in H so that Ju-v|<§ and v=2‘.:>~1'rx‘-, where
tJW=1, 0< M <1, and x;€H for each positive integer i. In that
case we zee that 1f w is in F, then so is Tw, for

| Tw-u] £ {Tw-v}] + |Jv-ul

< |g /\'L(Tu-Txi)l + £
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ZXITw=-Tx;| + £
< 2)\11“°le + £

s' + £.

IA

Thus it must be that |Tw-u|<s' for all weF and u€H, so F is
T-invariant, and F=H. Clearly then s'=djiam(H).

The effect of all this is to show that, for any xeH, if
{xn,} is a subsequences of {xp}., and IX'Xn,J converges, then it
converges to diam(H). Since {xn] is bounded, this means

limjx-x diam(H). [

nl=
Now we arz ready to prove the theoren,

PROQJF of Theorem 4.3 [3]: The only thing that remains to
be done is to construct the sequence {xn] in H such that
Xn~TX,=->0 and x,~X,, -->0. In order to accomplish this, we make
use of Banach's fixed point theoren.

Fix z¢H, and for each natural number n, define a function Un
so that
Unx = (z/n) + {1-(1/n)}Tx.
Since T is non-expansive, it is easy to see that Upn is a Banach
contraction with Lipschitz constant {1-(1/n)}. Also, xeH==D>TxeH,
and by convexity of H, U,x€H also. Thus, the requirements of
Theorem 1 are met, and thers must be a fixed point X 0f Up, SO
X = (z/n) + {1-(1/n)}Txn.
The seguence {xn} of fixed points is our desired sequence, In
the first place,

XA~ TXq = (z-Txp) /n-=->0 as n-->b,
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! 1 1 |
| x_ -x | = | ====-- (z-Tx,,) + 1= === (Tx~-Tx Y i
N "Nty | n(n+1) n ( el ) n né | ‘

$ {/n(n+N)}iz=Txpl + {1- 1/ (n+ 1)} 1Xq~Xpyy i,

by non-expansiveness, and rearranging and dividing gives us

fx < |z-Txn|/n --> 0 as n~-=-> ,

n"Xnae!

as desired.[]

Once again, of course, we can eliminate the requirement
that X be reflexive if instead we require K to be w=akly

compact, yielding!?

THEOREM 4.4: Let X be a Banach space, K¢I be weakly
compact, nonempty, and convex, and also have asymptotic normal
structure, Then every nhon-expansive mappinhg T:K-->K has a fixed

point in K,

The proof is identical, except for a slight difference in the

lemma,

LEMMA 7: Let X, K, and T be as in Theorem 4.4, and H as 1in
Lemma 6, If {xn} is a seguence in H with the property that
xn-Txn-->0, then lxn-xl-->diam(ﬂ) for all x in H,

PROQOF: As before, except the existence of the weakly

P2

convergent subseguence {xn,,} comes from weak compactness (see
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Taylor & Lay, 28, Th. III.10.10).(]

Finally, we briefly note some further results of Baillon
and Schoneberg, It turns out that, for B>1, the space l%
described in the example above has normal structure if and only
if B<V2, and has asymptotic rormal structure if and only if B8<2.
Also the space }i has the fixed point property for non-expansive
mappings even though it does not have asymptotic normal
structure. On ths other hand, an example has be2n found of a
weakly compact, convex subset of a Banach space that has
non-expansive self-mappings without fix=d4 points. See Alspach

[1] and Schechtman [25],
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V. Fixed Points Using Wong's Methods

In section 1, you will recall, we proved Banach's
fixed-point theorem using a function $(x)=d(x,Tx), and said that
later on w2 would be able to prove more fixed-pnint theorems
using the same jidea. To do this, we will reduce the various

propertiss of T to properties of the related function 6. For

(8
Y

example, $(x)=1(x,Tx), then one property ¢ has is that #(x)=0

if ang only if x=Tx. We will call this property TI-invariance. We

also defins the following property of ¢.

DEFINITION 1: Let X be a metric space, T a self-mapping of

T - - e - - —— -  ——  — - — -

exists n=n(x), a positive integer, such that ¢(Tnx)<¢(x).

It'z 2asy to se=2 that if T is a Banach contraction then
¢(x)= 4(x,Tx) is weakly contractive with respect to T. In fact,
this is still true if T is just a contractive mapping or even if
T is only weakly contractive.

The common property of weak contractiveness leads to a
useful theorem, of which several of our earlier results becone

simple corollaries,

THEQREY 5.1 (Wong, 30): Let X be a compact metric space
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and T a self-mapping of X. If theore exists a continuous,
nonnega;ive real-valued function ® on X which is T-invariant and
weekly contractive with respect to T, then T has a fixed point
in X.

its minimum on X. Let ¢(z) be the minimum, and assume ¢(z)>0.
Then thers exists n(z) such that O(TM2)<P(z), which is

impossibdble if'¢(z) is a minimum. SO ¢(z)=0, and by invariance, 2

4

is a fixed peint of T.[]

Aftar we make the obvious remark that 1f T is continuous,
¢(x)=4(x,Tx) is also continuous, and that contractive mappings
are zlways continuous, we can go on to state the following

corollaries.

CCROLLARY 5.1.1 (Corcllary 3.1.2): Let X be a compact

metric space, T:X-->X a contractive mapping. Then T has a fixed

point in X,

CCROLLARY 5.1.2 (Theorem 3.3): Let X be a compact metric
space, T:X-->X a weakly contractive, continuous mapping. Then T
has 2 fixed point in X.

PROQF (Wong, 30): Llet ¢(x)=d(x,Tx). By weak contractive-
ness of T, ¢ is weakly contractive with respect to T, and
clearly also continuocus and T-invariant. Thus, by the theorem, T

has a fixed point in X. [}



¥e can also derive a theorem to take care of our
"f-contractive" conditions., First we make the obvious definition
of "€-weakly contractive with respect to T'", namely that a2 real

valued function ¢ is 3aid to be f-¥weakly contractive with

resgect to a function T if and only if 0<¢(x)<£==> there exists

n=n(x) such that ¢(Tnx)<¢(x). Then our theorem becomes:

=3

e

$0);

]
kv
=

5.2: Let T be a self-mapping of X, a compact

fix
|
|

metric space. 3uppose there exists a continuous, nonnegative
real-valued function ¢ that is5 £-weakly contractive with respect

to T and thzt 13 Tr—invariant for some natural number k. Then if

i)

thare is an x€X such that ¢(x)<£, ~x has a fixed point in X,

_ PROCF (¥Wong, 30): Again, ¢ reaches its miniumum on X. If
$(z) is the minimum, clearly $(z)<€. If @$(z)>0, then there
exists © such that ¢(f“z)<¢(z), which is impossible if ¢(z) is a

minircum. JJ

COBOLLARY 5.2.1 (see Theorem 3.2): Let X be a compact

metric space, and let T:X-->X be £-contractive. Then T has a

periodic point in X.

T:X-->X be continuous and £-weakly contractive. Then T has a
periodic point in X,
PRO0OF: Since X is compact, for any xe¥X there exist

positive integers k,m such that d(me,Tm*kx)<E. In that case,
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positive integers k,m such that d(ﬂ“x,ﬂ”+kx)<£. In that case,
let ¢(x)=d(x,Tkx), and z=T™x is such that ¢(z)<£. Obviously,

¢ is Tk-invariant and £-weakly contractive.(]

Anoth2r weakening of the contractive fixed points ideza we
considared previously was to eliminate compactness of X, but
reguires instead that {Tnx} had a convergent subseguence, for
some x€X. We can obtain results using Wong's methods, but we

need another condition on the function ¢.

—— e . - ——— - ———

THEQOREM 5.3: L=t X be a metric space, and let T:X-->X be
continuous. Suppose there exists a nonnegative continuous
functional ¢ which is T-invariant, weakly contractive, and

regular with respect to T. Then if the sequence {Tnx} has a

convergent subsequence for some xéX, T has a fixed point in X.

converges to z. Assuming ¢(z)>0, there exists N such that

¢(TNZ)<¢(2). Then using reqularity 2nd continuity of ¢, Wwe s=2e

@ (z) = 1in G (™ x) (continuity)
= linm ¢(TnK+Nx) (regularity)
= ¢(lim fV+N x) (continuity)
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otV (1inm TPKx)) (cont. of T)

¢(TN2) (defn. of z)
< ¢(z) (weak-contr.)

This is impossible, so ¢(z)=0, and z is a fixed point.

CORILLARY 5.3.1 (Theorem 3.1): Let X be a metric space and

T:X-->X b= 2 contractive mapping. If there exists x&X such that

the s2guence {Tnx} has a convergent subseguence, then T has a

N

fixed point in X.

COHRJLLARY 5.3.2 (Wong, 30): Let X be a metric space ani
T:X-->X be a weakly contractive mapping that is also non-ex-
pansive., If there 2xists xé€X such that the sequence {T"x} has a
convergent subseguence, then T has a fixed point in X.

PRODF: T is continuous since it is non-expansive., Let
®(x)=d(x,Tx), which is weakly contractive with respect to T,
T-invariant, and continuous. 3ince R is complete and for any x,
the sequence {$(T"x)}=(a (™%, " x)} is non-incraasing (by

non-expansiveness), @ is reqular. Then by Theorem 5.3, T has a

fixed point in X.[J
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W2 have now taken care of all the theorems proved in
Chapters 2 and 3. The situation for non-expansive mappings is
not quite a3 simple, unfortunately. Theorem 4.1 does not respond
well to these methods, although we can obtain some results on
weakly compact subsets, as we shall see in the next section of
this chaptere.

n tha other hand, L.P,. Belluce’and W.d., Kirk obtained a
few interesting results on non-expansive mappings by placing
additional restrictions on the mapping itself, rather than on
its domain. These restrictions involve various conditions of

"shrinking orbits".

DEFINITION 3: Let X be a metric space, and T a self-mapn-

ping of X. Call the set denoted by

O(Tnx):{Tnx, Tn+' X, Tn’lx, D) }

the orpit of ™ x (for n>d). Define r(x)=lim(diam(O(Tnx)),'the

limiting orbital diameter of x. If r(x)<diam(0(x)) for every

i — ———— ————— — — {—— —— — — ——

x€X with diam(0(x))>0, then we say that T has diminishing

orbital diameters.

Belluce and Kirk proved in 1967 (5, using a result of
Zdelstein, 14) that in a compact space, a non-expansive mapping
with diminishing orbital diameters has a fixed point. Kirk [21]

showed that it was sufficient that the mapping be continuous

with diminishing orbital diameters. We will first present Kirk's



proot, anij then use Hong's method on it.

TEZQOREYM S5.4: Let X be a compact metric space, and lest

T:Y=~>Y¥ ne continuous with diminishing orbital diamet2rs. Then T

N

asz a f£ixed point z in X, and every seguence {Tnx} in X has a

=

ubseguance that converges to a fixad point cf T.

17}

PEDOY (Kirk, 21): For any xe€X, let L(x) be the set of all
lipits of convergent subssquences of {Tnx}. X is compact, so0
L(x) is non-empty. Since T is continuous, T(L(x))&L(x), and from
the definition, L(Xx) is =asily seen toc be closed. By Zorn's
lemma, we can find XEL(X) that i3 a minimal clos2d, nonemoty,
T-invariant subset of L(x). Lot X, €K and assum2 Xo#TXg. Then

O(XO)QK, ani, again by continuity, cl(O(xo)) is T-invariant.

That means cl(0(x,))=K. However, by diminishing orbital

51

diameter=, there is an N such that cl(O(TNxo)) is a proper

4

non-empty, closed, T-invariant subset of cl(o(xo)), and hence of

K. This iz a contradiction, so xoszo.D

We might note that this proof requires the use of Zorn's
lemma, which is not necessary if we say that T is also
non-expansive, As well, Belluce andlxirk {[5] also obtain results
in weakly compact settings, the method being similar to that
used in Theor=nm U.1.

A simple =2xample of a mapping with diminishing orbital
diameters is the fuction f(x)=Vx on the space [0,1]. Since
fn(x)—->1 for 211 x§0, f has diminishing orbital diameters, bdut

because O is included, it is not non-expansive or indeed even
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weakly contractive.
In order to use Wong's methods on this kind of mapping, we

need to examine a slightly weaker version of continuity.

DEFINITION 4: Let X be a metric space and ¢ a real-valued

function on X, We call ¢ lower semi-continuous if, for each real
r, the s=t
-l
¢ (x ) = (xex: $(x)>r)
is open in X,
The wutility of this is that a lower semi-continuous
function 2lways reaches its minimum on a compact set. (see
Duguniii, 12, XI.2.4). What we are going to do is to show that

the function ¢(x)=diam(0(x)) is lower semi-continuous. For this,

we ne=2d the following lemma.

continuous real-valued mapping of X. Then
P(x) = sup{¢p(x): n a positive integer)
is lower =2mi-continuous.
DEQQF [12]: ¢(x)>a if and only if at least one

n -
bn(x)>a, so P (a,mw) = \,J‘Pn' (a,@). [

THEQREM 5.5: Let X be a compact metric space, and T a
self-mapping of X. If there exists a lower semi-continuous
function ¢:X-->R*which is T-invariant and weakly contractive

with respect to T, then T has a fixed point in X.
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PROOF: This is just a slight generalisation of Theorenm

—— i o —

5.1, and the proof is identical, exCept we use our sStatement
apbout the minimum of a lower semi-continuous functinn on a

compact set. []

PROOF of Theorem 5.4 as a corollary of Theoram 5.5: If we
let $(x)=diam(0(x))=sup{a(T*x,T¥x): 1,320}, then ¢ is obviously
T-invariant, and by the lemma, it is 2150 lower semi-continuous.

From diminishing orbital diameters, diam(O(Tnx))<diam(O(x)), ror

some n, SO ¢ is w2akly contractive with respect to T.[]

Th

1))

r2 are a couple of interesting points to notice about
this result. First of all, of course, we have eliminated the use
of Zorn's lemma. Also, the example we just used (£(x)=0¥) is an
example of a non-weakly contractive function f with a related
functional that is weakly contractive with respect to f.

Kirk {21] defines another type of mapping with diminishing
orbital diameters, raguiring that the mapping T satisfy a
“gyniform Lipschitz condition", i.2., there exists a constant C
(which may be greater than 1) such that for every positive
integer n and every x,Yy€X,

a(r"x,™y)<c a(x,y).
If T satisfies this condition, then diam(O0(x)) turns out to be a

continuous function on X.
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suppose that T satisfies a uniform Lipschitz condition with

constant C. Then Jdiam(0(x)) is a continuous function on X.
show that diam(o(xn))-->diam(0(xo)).
Cf course, diam(O(xn))=sup{d(T‘xn,T1xn): i,3j>0}. Then for
any € >0, thare is a positive integar ¥ such that n>2N implies
d(xn,xo) < &/c.
This means that
d (TRx, TRYp) < €
for any k., This fact, plus the triangle inequality, shows that
for n>N and any j,k,
by Ry y - a(pdg TR
1d(T9xp, T x,) d(TVx,,T%) 1 < 2E.
Thus, we can say
1diam(0(xy))-diam(0(x4)) 1 £ 26,

for n>N, and we see that diam(O(xn))—->diam(0(xo)).U .

Then we can prove this corollary of Theorem 5.3:

]

OROLL

[

RY 5.3.3 (Kirk, 21): Let X be a metric space, ang
let T:X-->X satisfy 2 uniform Llipschitz condition with constant
C, and also have diminishing orbital diameters., If there exists
xeX such that {T”x} has 2 convergent subsequence, then T has a
fixed point in X.

PROQF (wWong, 30):Let ¢(x)=diam(0(x)). 5y the lenwa, ¢ is

continuous, By diminishing orbital diameters, ¢ iz weakly

contractive and regular with respsct to T. Clearly, ¢ is
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T-invariant, so by Theorem 5.3, T has a fixed point in X.[

As we mentioned adove, a result similar to (but weaker
than) Theorem 4.1 is possible using Wong's method of proof. We
first note that, as in the nors topology, a weakly lower
semi-continuous function reaches its minimum on a weazkly compact
set, If{ we let T be a non-expansive function andi require also
that T be weakly continuous, then ¢(x)=d(x,Tx) is w=2akly lowear

semi-continuous, which we provs below as a lemma.

LEMMA 3: Let X be a normed space, and let T:%X-->X be
weakly continuous. Then the function ¢(x)=d(x,Tx) is weakly
lower =emi-continuous,
showing that ¢-‘Cﬂv,a] is wezkly closed. Let M be a directed s=t
and {xm} a net order=d by M. (For an explanation of nets, se=2
Wwillard, 29, section 11) Suppose X,-->Xx,, weakly, and for each
m, ¢(gﬂ)$a. We show that ¢(xo)5a, as well.
By the Hahn-Banach extension theorem, therz exists a

bounded linear functional £ on X such that

f(xo-Txo) = 1Xg-TXpol, and

f{x) £ |x|], for all x in X.
Since T is weakly continuous and Xy, CONVerges weakly to Xq,

xanxn;->xo—Txo, w2akly, also. This means that f(xm-Txm)-—>
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f(xg-Txq) (strongly). For each m, f(xm-Tg“)glg“-Tg“|ga, SO
a2lim L (%y=TXpy)= f(xo—Tx°)=1xo-Tx°|.D

This means, in particular, that if X is a weakly compact
subset of X, and T:X-->K is weakly continuous, then the function
| x-Tx} T2aches its minimum on K. For our theorem, we will also

need the following dzfinitiorn.

DETINITION 5: A normed space X is called strictly convex

if for each x,y in X, [x+yi=|x|+|y} implies x and y are linearly

dependent,

4 simple calculation shows that in a strictly convex space,
a vector z is on the segment between x and y (z€seg(x,Yy)) if and

only if d(x,y)=4(x,z)+d(z,Y).

THEOQREX 5.6: L=t X be a strictly convex normed space, and
let ¥ be a weakly compact, convex subset of X. If T is a weakly
continuous, non-expansive self-mapping of K, then T has a fixed
point in K.

PRCOF: Let ¢(x)=d(x,Tx). Then by the lenma, ¢ reaches its
minimum on XK. Let ¢(z) bea this minimum, and consider seqg (z,T2).

If we choose any xé€seg(z,Tz), then we see that

$(x) = 4(x,Tx) < d(x,Tz) + d(Tz,Tx)

IA

d(x,Tz) + d(z,x)

(z).

"

i(z,Tz)

1}
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Sinze ¢(z) is a
d(x,Tx)=4(x,Tz)+d(Tz
However, we can
i(rz,T¢2) <

<

minimun,
,Tx), and
also say
d(Tz,Tx)
d(z,x) *+

d(z,Tz)

this means that

by strict convexity, Tz€s2g(x,Tx).

+ d(Tx,T%z)

d(x,Tz)

Again, this means that Txeseq(Tz,Tzz). Combining this and

Tze€seg(x,Tx) shows us that Tzeseq(z,Tzz), and hence that

d(z,T%2)

4(z,Tz) +

2 d(z,7T2)

d(Tz,Tzz)

We can continue this process inductively and eventually

show that, for any positive integer n, d(z,Tnz)=n a(z,Tz).

Weakly compact sets are bounded, so this is impossible unless

d(z,Tz)=0. {]
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VI. Brouwer's and Schauder’'s Theorens

The various types of mappings we have discussed thus far
have at least one thing in common, namely that they are all
continuous. It's interesting to note that any continuous
mapping, under suitable restrictions on its domain, will have a
fixed point. Our goal in this section will be to prove
Schauder's theorem, which says that a continuous mapping on any
compact, convex subsest of a Banach space will have a fixed
point. Our method in this is first to show that in RN, any
continuous self-mapping of the unit ball will have a fixed
point, and later to generalise this statement to Schauder's

theoren,

Brouwer's fixed-point theorem involves mappings of the unit
ball of R" into itself, For convenience, we will call
B"={xeR": ]x}<€1}, the closed unit ball of R” and the surface of
8" will be SM=({xeR": |xj=1}. By I we will mean the closed unit
interval, i.e, I=[0,1). Also, we establish the following sets of

definitions:

DEFINITION 1: Let X and Y be topological spaces, with XC€Y

———— e . . . e . e
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continuous and r(x)=x for all x in X. If a retraction exists, X

is called a2 retract of Y.

DEFINITION 2: Let X and Y be topological spaces, anij

f,3:X-->Y two continuous functions. Then f and g are homotopic

if there exists a continuous function @:XXI-->Y with the

property that ¢(x,0)=f(x) and $(x,1)=g(x). Such a 9 is called =a

e e - s S S s et e e B

if the identity map is nullhomotopic.

One might wonder if the two concepts of "contractible" and
"retract" are related. In the case we're interested in, it turns

out that they are.

——— ——

r{s™ (the restriction of r to S") is the identity on s, and if
we let
P(x,t) = r(tx) for xes", terl,
9 will be a homotopy of the identity to the constant function
r(0)e
On the other hand, if a homotopy ¢ exists, Wwe can again set
r(tx) = @(x,t)

Then r:B’n-->Sn is well-defined (since r(0)=0(x,0), a constant),
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and i35 clearly a r=2traction.(]

As 1t happens, this lempa is rather a moot point, since, as
we will show later, s" is not a retract of B". In fact, this
statement is eguivalent to Brouwer's Fixed Point Theorem, which

we give below,.

THEOREM 6.1 (Brower's Fixed Point Theorem): Every

—-—— e o - ———

continuous mapping £:8"-->8" hes a fixed point in 8",

LEXMA 2: Brouwer's fixsd point theorem is egquivalent to
the proposition that s is not a retract of 8N,

PROOF([17]), Thme 4.1,5. cf [12], XVI.2.2): Suppose a
retraction r did exist. Then -r is continuous, and has no fixed
points,

On the other hand, suppose that there exists sonme
continuous function f:B™-->B" with no fixed points. Then define
r:8"-->sN so that r(x) is the point where the directed ray fronm
x to f{x) intersects s, This point can be calculated by using

the inner product, and, as long as x#f(x), r will be well-

defined and continuous. Thus, r is a retraction.[]

Now Wwe have to show that no retraction exists, or
eguivalently, that the identity on s is not nullhomotopic. To

do this, following Dugundji [ 12], we need the concept of the

=t

"jegree" of a s=2lf-mapping of s". In the plane, the degree of a
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function f is simply th=2 number of times that € (x) *"rotates" a=
¥ MARkes one rotation around the circle. This is obviouszly an
intesyger, sinca f£(x) has to end up back wherever it started. One
way to count the rotations is to divide the circla intc a finite
number of arcs, starting at some arbitrary point and working our
way clockwise around the circle. This is called a triangulation
of 52, Each arc should b2 small enough that its image does not
contain as much as half the circle, 50 we might reguire that th=
diam=ter of each image be less than 1, saye. Call the endpoints
of the arcs Py, Pypsr eee Ppue pn+,=P,, in clockwise order. For
2ACh Pir Pley » ¥e chonosa the shorter of the twe arcs betws=n
f(ry) and f(pc+i), which w2 will denote arc(f(pi),f(p£+|)). If
this arc runs clockwise, call it positive. Otherwise, 1t is
negative.

Now choose any point Xn On 52 such that xo#f(pi), for any
Pi. For each i, if xjearc(f(p),f(pgy, )), then £(x) must have
passad threough x, while x moved from p; to Pi#s * The sion of
arc(pt,pck|) t2lls which direction f(x) was travelling at the

time, In this way, the number of positive arcs(f(pt),f(pc+‘))

minus the number of negativa arcs it's in, gives

-

containing L
us the "net" number of rotations that f(x) makes, in the course
of one clockwise rotation of x. This number will pe the "dzgree"”
of f. It turns out that the deqree is independent of either the
speéific triangulation we use or the point x w2 choos= to count

with.



According to th2 discussion above, it is clear that ths
degree -of the identity is 1 and that of a constant function is
0. ¥e will show later that the degrees of two homotopic
functions must be equal, This of course will show that the
identity is not nullhomotoric, proving 3rouwer's fixed point

theorem,

\

First, howevaer, we need to generalise the idea <f degre= to

n-space.

DEFINITIOX 3: If (PgrPys o + +,Pm} 15 a s2t of n+1 pcints

in B7, then the convex hull of this set is called an n-simpl=ax.

If we establish a definite order for the simplex, then we call

A ———— — e oo o S o S

etc., we will call the vertices of S. The convex hull of any

subset of S containring n members is called a face of S. We can
also speak of the determinant of the ordered simplex. If

(x},%;... X;) are the coordinates of p;, then

I ... xS 1)
» 'o . o’
det (ppr eoes pn) = {. . ]
lo L] "

n n
1x\ R AU N

The sign of an ordesred simplex S is merely the sign of det (S).
If det(3)=), then 3 is s3id to be degenerate.

Geometrically, it can be seen that S is deg2nerate if and

only if all the vertices of S 1liz on th2 same (n-1)-hyperplane,



This gives us th2 following lemma, which will prove useful:

LEMMAR 3: 1ot S and S*' be two non-degen=rate n-simplexes
that have a common face (i.e., S=(po,p|, eeesPp) and
S'=(p°',p|,....pn). Let L be the (n-1)-hyperplana that contains
the common face. Then S and S' have the same sign if and only if
Po and po‘ are on the same side of L (i.e., the line segment
between p, and Pp' does not intersect L).

the form,Apo+(1-A)po', 0<A\<1. If one of thes=2 points, call it
po", is in L, then S"=(po", cesye pn) is in L, so S" is
degenerate, But det (S")=Adet(S)+(1-A)det(S'), and this could
only be 0 if det(S) and det(S') were of opposite signs, since

neither is degenerate.(]

DEFINITION 4: Let {po, Dys ssevs Pn-y} be an ordered set of
n vectors that all lie on s™ If it happens that the convex hull
of {pgs Pis eeer Pp-;} does not contain the origin, then we can
project the hull from there to the sphere. We will call this
and sign of an ordered spherical simplex will be that of the

ordered n-simplex (pPgs P;s eees Pp-], 0)e We will call a

spherical n-simplexes such that no two overlap 2xcapt at a face
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and each face of any simplex is shared by exactly one other

simplex.

If we are considering a continuous function f:Sn-->Sn, and
w2 have a specific triangulation T in mind, we can discuss the
“image" 0% each S in T, in the sense that
ka)=(f(p°), seesr f(Pn.)). Since s is compact, we can alwavys
find a triangulation T such that, for each S=(pgs Pys eees ®n-1)
in T, diam{f(po), (D )e eoes f(pn_l)}<1. This conZition will
assure us that, for each spherical simplex in T, the convex hull
of {f(po), PR f(pn_')} will not contain the origin, so it can
be projected into a spherical siaplex. Call 2 triangulation of
this type an "f-triangulation”. In each case, let f(S) inherit
the order of 5, although the sign may be different. Also note
that the image set of spherical simplexes won't necessarily be a
triangulation or even a cover of 5N, It is also likely to
contain degenerate or overlapping spherical simplexes.

Now Wwe are ready to define the degree of a function.

DEFINITION 5: Let £:5"-->s" be continuous and suppose T 1is
an f-trianqulation of SN, Order each simplex in T so that it is
positive. Choose any point x on 3™ that is not on a face of f£(3)
for any 3 in T, let p(x) be the number of positive spherical
simplexes f(5) that contain x, and n(x) the number of negative
image spﬂerical simplexes containing x. Then let

D(f,T,x)=p(x)-n(x).
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This number D(f,T,x) will be what we use to defin2 the
degree of a function. We now shkow that D(f,T,x) is independent

of both 7 and x.

f-triangulation of 5", Order each simplex in T so that it is
positive, Then D(f,T,x) is the same for amy x on S™ that is not
contained in any face of any f£(S), S€T.

PREDQOF: There are two cases to consider, depending on

whether f(T)={f(S): S€T} contains any degenerate simdlexes,

CASE 1, no degenerate simplexes: Let y and z be any two suitable

points on S™. We can connect them with a curve that enters or
leaves any simplex only by way of one of its faces, Consider
what happens to D(f,T,x) as x moves along the curve from y to 2Z.

Clearly, D(f,T,x) cannot change except when X passes
through a face of an f(S). Suppose the curve does pass through
the image of a givan face F=(p|. vos s pn_‘). Then F is shared by
exacfly two spherical simplexes, say S=(pgs P+ e« Pp-)) and
S'=(p°',p|, cenr pn_'). Let L be the hyperplane that contains
the common face (f(pl), ...,f(pn-|)). Assuming that f(p,) and
f(py') are on the same side of L, the image simplexes would secn
to have the same sign. However, since S and 53*' are in the
triangulation, Py 20d pp' must be on opposite sides of the
common face, and so 5 and S' must have opposite s5igns. Thus, we
need to re-order one of them, say 5', to makes them both

positive, in accordance with our hypothesis. Let 5" be the
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re-ordered simplex, Then f(S") is of opposite sign to £(S') and
therefore of opposite sijn to £(S) z2lso. Finally, when we are
passing tnrough the common face of £(S) and f£(3') w=2 are
entering (or leaving) both f(5) and f(S'), so we are gaining or
losing one positive and one negative simplex simultaneously.
Thus, D(f,T,X) remains unchanged.

A similar arqument applies 1if f(go) and f£{pp') are on
opposite sides of L, except in that case, we would be gaining a
positive or negative simplex at the same time as losing another
of the same sign.

CASE 2, d2generate simrvlexes: In this case, we could mova

certain vertices by a small enough amount that we don't affect
the number of simplexes that contain y or z or change the sign
of any non-degenerate simplex, but by enough that all the new
simplexes will be non-degenerate. Using the case above, we see

that D(f£,T,x) will still remain unchanged., [

f-triangulations of S"., Then D(f,T,x) = D(f,T',X).

PRDQOF: If we add an additional vertex to T, we can build a
new triangulation that will use the new vertex, and it will
clearly still be an f-triangulation. Also, we can build the new
triangulation so that it contains at least one of the simplexes

of the old triangulation. Then if we choose an x contained in

the image of this simplex, D(f,T,x) will be unchanged. In this

(@ 1]
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way, Wwe could increm2ntalily change T 2and T' into a common
triangulation T", ani in that case, we s22

D(£,T,x)=D(f,T",x)=D(£f,7',x).0

Tne last two lemmas show that the degree of a function
depends on neither the triangulation we use nor the point we
choos2 to count simplexes on. From now on, Wwe can refer to
D(f,T,x) as D(f)., It is easy to s2e that the degree of the
identity is 1, and that the degree cf a constant function must
be 0. Our next lemma shows that homotopic functions always have
the same degree., Indeed, if 9 is a homotopy of two continuous
functions f and g, then we can define functions ff, t€¢I, such
that f{(x)=®(x,t). If we do that, we can speak of a function
D(t)=D(ft). This function turns out to be continuous, and since
it has only integer values, it must be cons?ant, which will
prove Brouwer's theorem for us, First, however, we nesd the

following lenmma.

LEMMA 6: Let f15M-->s" pe continuous, and let T be an
f-triangulation. Then there is an €>0 such that if £* is another
continuous function on S with the property that [f(p)—f*(p)|<6
for svery vertex p of T, then D(£)=D(f¥%).

€<Min{d(x,f(p)): p a vertex in T}. Clearly, D(£,T,x) 1is

unchanjyed by moving the vertices of f£(T) by an amount smaller

than €, and small enough that no simplex containing x changes
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sign. Thus, D(f)=D(f%*), by Lemma 4.[.

~N

LEMNBA 7: If f.q:5n~->o are homotopic, then D(f)=D(g).

PEOQF: Let ¢:53"XI-->s™ be the homotopy of f anid g. For
each te€I, define a function fg(x)=®(x,t). Since S"XI is compact
and ¢ is continuous, P is also uniformlv continuous. Thus we can
find £>0 such that d(x,v)<€ implies d(£4(x),£¢(¥))<1 for all t
in I. This means there exists a triangulation T that is an
i-triangulation for every t in I. We will use this triangulation
from now on.

Now choose any t in I, By Lemma 6, there is an € such that
if I£4(P)-£*(p) I<E forT every vertex p of T, then D(f4)=D(f%).
However, a2gain by uniform continuity, there is a2 & such that
|t-t"|<8§ implies ]ft(x)-ft,(x)|<5 for every x in sh, Thus, for
every t in I, there is a & such that Jt-t'|<§ implies that
D(ft)=D(ft,). If we define a function D*:I-->Z (the integers) by
D*(t)=D(ft), then D¥ is a continuoué integral function, and Ehus

a constant function, so D(f)=D(g).[]

Pinally, of course, the proof of Brouwer's function is
trivial. We have shown in Lemma 2 that it is esguivalent to the
non-contractibility of the unit ball. By Lemma 1, this is
2guivalent to the identity on S not being nulihomotopic. This
last is proved by Lemma 7 and the fact that the degress of the

identity and the constant map are not egual,
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Also, 3rouwer's theorem is easily generalised to apply to
any compact, convex'subset of a finite-dimensional space. In the
first place, it is clear that if X is a topological space with
the rroparty that evsry continuous function has a fixed point,
then every space Y homeomorphic to X has the same property.
Also, any n-dimensional normed svace is homeomorphic to RN, (See

Duguniji, 12, p. %13) And 1t can be shown that any compact

convex subset of R" is homeomorphic to g" (or at least to 8™,

with m<n). Thusz, we have the following e2asy corollary to Theorem

6.1

COEOLLARY 6.1.1: If C is a compact, convex subset of a

finite-dim2nsional Banach space, and f:C-->C is continuous, then

f has 2 f£ixed point in C.

——— . — —— — ——— o — - —

Schauder's Fixed Point Theorem essentially removes the
“finite-dimensional"® restrictionlfrom Brouwer's Theorem. The
method w2 use, following Istratescu [17], reduces the
infinite-dimensional case to a sequence of finite-dimensional

cases.

THEOREM 6.2 (Schauder's Fixed Point Theorem): Let C be a

compact, convex subset of a Banach space X, and suppose T:C-->C

is continuous., Th2n T has a fixed point in C.
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fini a Zinite set of pointsz of C, {x?, XQ, ....xgﬂ, with the

property that, for each xeX, there exists an integer j such that
I x=x§1<1/n.

Then we czn define the following functions:

(1/n) - |x - x?! if 1x - x?] < (1/n)

«{(x) =
0 otherwisse

These are clearly continuous, and by coapactness,
m

n
oé-L (x) # 0

Ll
for any x. Thus, we can define the following continucus

functions:

Let Ep be the closed convexlhull of {x?, sees x;}. Ep is
compact s3ince it is closa2d, and we observe tnat Tn(C)QEn. Also,
En is a subset of the vector space spanned by {x?, ses s xa}.
Notice, too, that if |x?—x|2(1/n), then dz(x)=0, 30 we have the

following inequality:



So {Tn} converges uniformly to the identity. If we define
T (X) =T (Tx%) , then Tﬁ-—)T uniformly.

2y the rewmarks above, we see that T'(En)gﬁn, S0 w2 can use
3rouwar's fixed point theorem to find a fixed point Xn for each
ne Sinca C 1s compact, the seguence {x,} has a subsequence that

converd=23s, say to Xa. Assuming that x_ -->x., we e2asily obtain
4 o n (o]

—

the result thast

lTﬁxn - xnl + |xh —xol.
The right-hand side convarges to 0, so Xp must be a fixed point

of T. {J



VII. Some Miscellaneous Results

In this chapter, we touch briefly on two areas of

fixed-point theory that we have not yet considered,

e - - - — - S - ———

One area of interest in fixed point theory is the idesa of
"cormon fixed points", When dealing with common fixed point
gquestions, we generally have a metric space X and a family of
mapoings ({Ty: Ty(X)E€X}, which are usually consider=d to be
commutative, and we want to know under what circumstances these
mappings will have a common fixed point. The findings in this
area tend to follow results for single mappings. See [ 10] or
{11] for some examples of common fixed point theorems.

In this section, we present a theorem dealing with a
sequence of mappings which, taken together, are similar to the
Banach contractions, although not all the mappings will
necessarily be contractions, This idea was inspired by a paper
of Yun's [31]. The following has been presented in Shen & Sound
[26].

DEFINITION 1: L2t X be a metric space. A s2guential
mapping T on X 1s a seguence {Tn} of self-mappings of X, By

—_—— =

. . . . | . . .
induction, we Adefine T\=T|, and T"Y =Tn+.T". A point z is said

-
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I = sup{d(Tnx,Tny)/d(x,y): X, Y€EX; x#Y).
If this holids, clearly w2 have
A1, TY) € Ty ennd (X, Y)
for =2ach Xx,yeX and each n.
contraction if =2ach Ty haz a contraction ratio and there 2xists
a constant G<1 such that for each n, the geometric mean
satisfies

Vin
Os(r.rz...rn) <G< 1.

for any positive integers ®m,n, and each x in X, we have

T (T =T (T )

THEQREX 7.1: L=t X be & complete metric =pace and T a
sequantially commutative g=sometric mean contraction on X. If
there exists x,€X such that the set

{d(Tnxo,xo): n any positive integer}
is bounded, then T has a unique common fixed point z, and
™Mx-->z, as n-->®™, for each x in X.
"*'xo,Tnxo).

PX0QF: Let D=sup d(TpXy,Xp). Then consider d(T

(1" x,, ™) = AT Ty X0, TNxg)

I

5™ (T X0 Xo)
< G"p

Then w2 have, similar to the argument in Theorem 2.1,
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A (T™® %, ™) < €™/ (1-6)

Then for k20, as m-->o&, d(Tm*hXO,TmX,)'->0, 50 {T"xo} iz a
Cauchy sequence, and thus converges to a point z in X. Moreover,
if yeX, then a(T"x,,T"Y)<G"A(x,y), so as n-->®, 3(T"x,,TMy)-->0,

and thus T"y-—)z as well. Finally, z is also a fixed point of

cach The foOr consider

n

z lim T"%Tny)

i

lim T, (T™My)

= T Ze

n

Inductively, ™22z also.

Furthermore, z is unique for each ™, since all the Tt

4]

are Banach contractions. Ip addition, z is the only fixed point
shared by every T, although it may be possible for some Tp to

have multiple fixed points.[]

M et m e m SO S eaeR eSS S axa e

Another interesting queétion in fixed point theory is
whether every function that has a unigue fixed point is a
contraction, Obviously, the answer is no, but the following
theorem, from Bessaga [6], is interesting in this regard. It
says, essentially that if T and each iteration of T have a
unigue fixed point, then we can always find a metric 4 that

makes T a Banach cohtraction.
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THZOREM 7.2: Let X be an abstract set, and T a
s521f-mapoing of X of which every iteration ™ has exactly one
fixed point. Th2n for every r=2al number K, 0<K<1, there is a
compliete metric 4 on X wWwith 4(Tx,Ty)<Kd(x,Yy).

PROOF: Since each iteration has only one fixed point, the
fixed point must be the same for every iteration. We will call
the fixsd point =z,

now define two =quivalence relations cn X.
(1.) %~y if and only if either x=y or there is a positive
integer n =such that

Pl 270 ™' y#tysand TPx=1"y.
(2.) xmy if and only if there are positive integers m and n with
™x=1"y.

We also define the eguivalence class [x])={yeX: x~y}, for
x€X. Then, letting [X)={[x): xeX}, define [[x]))={[yle[ X]: x=y}.

An interesting point here is that xe€[z] (z being the fixed
point) if z2nd only if x=z, Otherwise, x~z implies that

-\ - s X
n sznz, for some positive 1nteger n.

T
Now w2 ca2n define an integer-valued function f on X that
meets the following criteria:

i) If x~y, then £(x)=f(y)

x~Ty, then f(x)=f(y)+1.

Yy

ii) I

de accomplish this by recourse to the Axiom of Choice. From

b

each set [[x]] where [z)¢{[x]]), we can choose one element [Xx].
For every x' in [x], set £(x')=0. On the other hand, if y is

such that [yJ)#[x], put [y] is in [[x]], then it must be that



mezT“y, for some positive inteqgers m,n.

0f course, to satisfy 1ii, we would want f(me)=f(x)+m=m, S0
set £(M™ux)=n. Also ™ x~T"y, 50 set f£(T™y)=m also. Then we merely
set f(y)=m-n, and f(y')=f(y) for all y' in [y]. In this way we
can define f (x) for each x in X.

One might object, what happens if, for examnle,.x~y andg
x~Ty at the same time? In that case, y~Ty, and it can be seen
that Ty=z, 50 X,y,Tye{z], which means x=y=Ty=z. In [[z]], then,
we ought to choose f(z)=0, and, for yve{yll[z]], set £(y')=-n
if n is the smallest number with ™y'=z,

Finally, we are ready to define our metric, For a given
pair x,yeXx, we £ind »,nef{0,1,2,...0} as small as possible so
that me=T"y. (Here we adopt the convention that ™x=2z, 50 this
can be done unambiguously for every pair.) Then the metric 4 is

given by

OO (WL
d(x.y)=2r:i<“L + iKF‘a
i=1 1=1

whare ¥, resmember, is the Lipschitz constant chosen in the
statement of the theorem. This can be bz shown to be a valid
metric, although ths triasngle ineguality is a little
complicated, It is also a complete metric, because, as we will
show, any Cauchy seguence under this metric is =ither eventuilly

constant or =1lse convereges to z.



First note that, for any x€X,

foort (Kf(x)ﬂ Y/ (1K) «

5(x,z) < gK
Now let [x“} be a Cauchy sequence in X that is not eventually
constant, Choose £>0. If we take ¥ such that m,n>M implies
d(xm,xn)<£(1—x)/2, then for n2M, d(x,,z)<€. To show this, take
any xm?xn, with m>M. Then it must be that

K FOPP 3 o) < €00 /2

(Note: It is possible that this may not actually be true for
f(xm). 5ut in that case, it must be true for £(xp) which is
2ven better for us.) Then w2 also have

4 (xpr2) € f(x)+1

/(1-x) < E/2.
And in this case, of course, ty the triangle inequality, we have
d(xp,r2) <€,

Lastly, we should show that d(Tx,Ty)<Kd(x,v). If me=T"y

with m,n as small as possibtle, then (m-1) and (n-1) are the

smallest numbers that mnake Tm'\(Tx)=Tn-‘(Ty) true also.
Furthermore
m=1 £(TOH n=1 fOotiH
K = J K
i=1 i=1

m=1 )L
K ¢

i=1

o Lt
KLK{ .
i=1

IA

(The "<" comes in baczuse it might be that m=®,) The sam2 is

true for vy, so 3(Tx,Ty)<Kd(x,y).0



Also, Wwe might mention that L. Janos [ 18] has given the

following more topologically oriented converse:

THEOREM 7.3: Let X be a compact, metrizable topological
space, and let T be a continuous self-mapping of X that
satisfies

[

Nt = {23,
for z some element of X. Then if K is any nuamaber with 0<KK<1,
there 2xists a metric d that generates the original topology on

¥, ané that satisfies d4(Tx,Ty)<Kd(x,y), for all x,y in X.
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