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ABSTRACT 

In this thesis we describe one method of extracting more 

detailed information from heavy ion collisions than is possible 

from single particle inclusive data. This method, the so-called 

Hanbury-Brown Twiss Effect, involves the measurement of 

correlations between identical particles emitted in the reaction 

with nearly equal momenta. We apply it to protons, deuterons and 

tritons emitted from high-energy heavy ion collisions and obtain 

information on the emitting region via the probability of 

observing two identical particles close together in phase space. 

This correlation is quite sensitive to the space-time structure 

of the emitting region. It may also be used to look for 

indications of thermalisation inside the reaction volume. The 

effect is shown to be strongly dependent on the identity of the 

emitted particles, it being much weaker for deuterons and 

tritons than protons. It appears that the heavier mass particles 

are emitted from a larger region than the lighter protons. This 

picture is consistent with the formation of a small, hot region 

- the 'fireballw, which emits particles while gradually 
expanding and cooling. A comparison with the available data from 

pp, dd and tt coincidence experiments is made and the source 

sizes and lifetimes are extracted. 

iii 



DEDI CAT1 ON 

The heavens declare the glory of God 

and the firmament proclaims his handiwork. 

Ps 19:l 
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1 .  Introduction - 

1.1 General - 

Experiments with heavy ions, defined in this thesis to be 

any nucleus heavier than helium, began in the 1960's with the 

pioneering scattering experiments of Bromley, Kuehner and 

~lmqvistl using 12C and 160 at the Chalk River Nuclear 

Laboratory. They measured the excitation functions and angular 

distributions for protons, deuterons and gamma-rays from the 

reactions 12C + 12C, 12C + 160, and 160 + 160. Most of the 

results of this and later experiments were explained 

semi-quantitatively using the optical model. This model compares 

the scattering of nuclei by nuclei to the diffraction of light 

by a partially absorbing disc. 

Since then various semi-classical models have been 

proposed, some of which contain mutually exclusive assumptions. 

For example, the direct model pictures a nucleus-nucleus 

collision as a superposition of free nucleon-nucleon collisions 

and requires that each nucleon undergo at most one significant 

collision. Consequently, the nucleon mean free path is much 

larger than the linear dimension of the system. At the other 

extreme the thermal model needs a short mean free path so that 

the energy of a nucleon is lost gradually through many 

1 



collisions. Obviously it would be helpful to be able to 

distinguish between these processes, and to find out when a 

particular mechanism predominates. To do this it is not 

sufficient just to measure the energy spectra, multiplicity and 

angular distribution of the reaction products, because there are 

still very many ways the system may evolve into a state 

described by such coarse observables. With beam energies of 10 

MeV per nucleon and fifty or more nucleons in each ion a 

description in terms of single particle inclusive data is very 

incomplete. We are reminded of the description of a gas by its 

pressure, volume and temperature which leaves the gas free to be 

in any one of a large number of microstates. 

The next level of description of a heavy ion collision 

involves small-angle coincidence measurements. These are 

sensitive not only to the particles emitted, but also to any 

final state interactions of the particles, and more importantly, 

to the structure of the emitting region. 

The dependence of two-particle coincidence rates on the 

source was first demonstrated in the 1950's by Hanbury-Brown and 

~ w i s s ~ - ~ .  They measured the time of arrival of photons from a 

distant star in two detectors. The results showed that the times 

of arrival were correlated, there being more coincidences, and 

photon pairs, at small time seperations than was expected if the 

photons were emitted at randomly spaced times. With the advent 

of the laser it was found that this effect did not exist for the 

coherent light from a laser. It was attributed to the chaotic 



nature of the source which shows large fluctuations in the 

intensity of the emitted light. At the peak of one of these 

fluctuations there is an enhanced probability of detecting a 

photon coincidence, hence the name photon bunching. For the 

constant intensity light from a laser there are no fluctuations 

and hence no photon bunching. 

The possible application of this effect (called the HBT 

effect after its originators) to particles emitted in a heavy 

ion collision was pointed out by Cocconi4 in the early 

seventies. He derived a simple example of an interference 

pattern in the coincidence spectra of identical pions emitted 

during a nuclear collision, and related the interference effect 

to the quantum mechanical path ambiguity which arises when 

detecting two identical particles from a chaotic source. From 

the interference effect he was able to calculate the angular 

diameter of the source. 

Since then much work has been done on two-pion correlation. 

measurements5-* and the search has been extended to protonsg l o  

and just recently, to deuterons and tritons." The results of 

these experiments show that small-angle two-particle coincidence 

measurements are quite sensitive to the space-time structure of 

the emitting region and may be used to determine the size and 

lifetime of this region. More tentatively it has been suggestede 

that the degree of coherence of the source, i.e. the departure 

/ from random emissiob of particles, might also be obtainable, and 

from this an inaication of possible collective motion in the 



nuclei such as hydrodynamic flow. Although the experimental 

results gained so far preclude strong assertions on collective 

motion, they do lead to fairly accurate estimates of the size of 

the emitting region. 

Source sizes of the order of 3-5 fm have been found from 

protons-l1 and p i ~ n ~ - ~  coincidence experiments. The question 

then arises whether larger fragments, such as deuterons and 

tritons, are emitted from roughly the same size region or a 

larger one. Because these particles are loosely bound (for 

deuterons the binding energy is 2.2 MeV) they tend to break up 

if emitted early on in the reaction when the temperature of the 

nucleus is high. Later on, when the temperature has dropped, 

emission of light, bound particles takes place. This would lead 

to larger source sizes for such particles than for protons or 

pions. 

If this is found to be the case it supports the idea of a 

thermalised region of hot, dense nuclear matter created in the . 
collision which emits particles while expanding and cooling 

down. The light particles would be emitted early on in the 

reaction from a small source, the heavier particles later from a 

larger source. 

The lifetime of the source is also an important quantity to 

be determined as it may be used to discriminate between several 

currently popular models. In particular, if it is found to be 

short, say less than 90 fm/c, then the idea of the reaction 

proceeding by the formation of compound nuclei, which 



subsequently decay emitting light fragments, may be discarded as 

this requires times of the order of 300 fm/c for each step. l 2  

compound nucleus formation is the limit of extreme inelastic 

collisions. All the kinetic energy of the projectile is absorbed 

by the compound system which must have a lifetime long enough 

for complete internal equilibrium to take place. The break-up of 

this system is then independent of the entrance channel, except 

for conserved quantities like total mass, energy and charge. 

Small-angle coincidence measurements are thus an important 

means of characterising heavy ion reaction mechanisms. However, 

it is possible that the effect is swamped by the interactions 

among the many particles emitted during such a collison. As was 

first pointed out by ~ o o n i n l ~ ,  final state interactions of the 

particles, rather than obscure the correlation effect, actually 

enhance it. Thus, although in photon measurements, and to a 

lesser extent in pion measurements, final state interactions may 

be neglected, or simply corrected for with a multiplicative 

normalising constant, in pp, dd and tt coincidence experiments 

these effects must be taken into account explicitly. When this 

is done, the results, although different from the simple HBT 

effect, are still capable of yielding quantitative information 

about the collision volume. 

In the remainder of this introduction we describe the HBT 

effect for two identical, spinless particles, neglecting final 

state interactions. In Section 2 we describe the various 

semi-classical models of heavy ion reaction mechanisms and give 

5 



their strengths and weaknesses and discuss results from 

experiments which illustrate the various mechanisms involved. In 

Section 3 we derive the HBT effect for two protons taking into 

account the final state interactions and show how this leads to 

a modification of the simple picture presented in Section 1.2. 

We calculate the effect assuming a Gaussian distribution 

function in space and time for the emission of a proton from the 

source volume. Then, because of the bad convergence properties 

of the solution for large values of the source lifetime, we 

derive the correlation function assuming a 6-function shape in 

space while keeping the Gaussian time dependence. In this latter 

case we lose any angular dependence of the emitting region but 

are enabled to calculate an upper limit for the source lifetime. 

We also extend the calculation to deuteron and triton 

coincidences with negligible source lifetimes, and compare the 

results for the different types of particles. Finally, in 

Section 4 we discuss our results and compare them to published 

data in pp, dd and tt coincidence experiments and extract the 

"Best Fit" source sizes and lifetimes. Appendix A contains the 

full calculations sketched in Section 3, and Appendix B contains 

examples of the computer programmes which were written for these 

calculations. 



1.2 The Hanbury-Brown Twiss Effect -- 

We outline here the calculation of the HBT effect for two 

identical spinless particles, for example, two photons from a 

star or two pions from a heavy ion collision. We include the 

case of two fermions but shall ignore spin for the moment. This 

is possible as we shall ignore final state interactions until 

later. 

Consider the situation shown in Figure 1: 

Figure 1. Diagram of the HBT Effect 

Let two particles be randomly emitted from the source at 

space-time points (rl,tl), (IC,,~,), and at a later time a 

coincidence be registered in the two detectors A and B situated 

at (X1,Tl) and ( l 1 2 , T 2 ) ,  (TI a T2). Because of the path ambiguity 

we do not know whether the particle detected by A came from 5 ,  
l 

or IC,, similarly for that detected by B. Hence the total 



amplitude for detecting two bosons (fermions) in the sum 

(difference) of the amplitudes for each path. 

The probability of detecting a coincidence is the square of 

this sum, 

i - E T -  ik2 (X2-x2 ) - i ~ ~  (T2-t2 ) 
prob a I e e 

E , k are the energy and wave-vector for the particle 
i i 

detected at X , and the upper sign refers to bosons, the lower 
i 

to fermions. 

 quat ti on 1 may be rewritten as 

P(g1T1, g2Tz) = 1 f cos(g.r - - Et) 
where 

We see that an interference pattern results which depends 

essentially on the size of the source. The interference pattern 

is seen by varying the angular separation of the detectors, and 

hence varying g. So far we have assumed two point sources, let 

us now assume a normalized distribution function D(x,t) for the - 
emission of a particle at (x,t). - The two-particle joint 

probability distribution function is obtained by integrating the 

product of the distribution functions for the emission of two 

particles and the probability of detecting a coincidence over 

8 



the coordinates of the source. The correlation function is 

defined as the ratio of the joint probability to the square of 

the single-particle probability. If the single-particle 

distribution function is normalised so that its integral over 

all space-time is unity the correlation function is given by 

For example, consider a Gaussian distribution function 

where r,, 7 are measures of-the spatial and temporal extent of 

the source. The correlation function is now 



We have plotted C ,  (for T=O) in Figure 2. 

Figure 2: Two-Particle Correlation Function 

The upper curve applies to bosons, the lower to fermions. 

For both types of particle the two-particle correlation function 

becomes 1 at large q = k,-k,. This expresses the fact that the 

two-particle joint probability goes over to the square of the 

single-particle probability when the events are independent, 

i.e. as the two particles diverge in momentum. There is an 

enhanced probability of finding two bosons with equal momenta, 

i.e. q=O, whilst the probability for detecting two such fermions 

is zero because of the Pauli exclusion principle. We note that 

the effect depends essentially on the path ambiguity, and this 

in turn means that the particles must satisfy the "uncertainty 

relation" A~ecAt < Ii where AQ, At are the differences between - 



the two particles' momenta and times of emission. This brings 

out the fact that i f  the particles are widely separated in time 

or space their statistics are not important. 

From equation 4 we may determine the spatial and temporal 

extent of the Gaussian emitting region, by relating the 

correlation function to the two-particle and single-particle 

inclusive cross-sections measured in experiments. We define this 

relation by 

where AQ is the relative momentum of the two particles. 

With this definition we see that the two-particle inclusive 

cross-section becomes the square of the single particle 

cross-section as the particles move apart in phase space. This 

is expected because two particles with widely different momenta 

or energies are independent. 

We see from this simple calculation that a measurable 

effect exists and that the rate of two-particle coincidences is 

twice the random rate at zero relative momentum for bosons, and 

zero for fermions. These results are not drastically changed by 

the inclusion of final state interactions between the particles 

although the calculation becomes considerably more complicated 

than the simple derivation presented here. 



2. Reaction Mechanisms in Heavy Ion Collisions - - 

2.1 Introduction - 

In collisions involving two heavy ions the large number of 

participating nucleons implies that several different mechanisms 

may contribute to the reaction mechanism which are absent in 

free nucleon-nucleon (NN) collisions. There is still the 

analogue of the free NN process, where each nucleon undergoes at 

most one significant collision, although it may be modified by 

the presence of the residual nucleus. At the other extreme there 

is the possibility of each nucleon in the projectile undergoing 

many successive collisions and giving up its energy to a large 

number of nucleons which form a thermally equilibrated system. 

This region of 'hot' nuclear matter then cools down gradually as 

it expands and breaks up into fragments. To distinguish these 

two processes we define the nucleon mean free path A ,  and the 

mean linear dimension of the system R. The mean free path is the 

average distance betwen successive NN collisions. 

In the next two sections we discuss the two extreme 

pictures of HI collisions: as a superposition of many free NN 

collisions, and as the formation of a hot, dense region of 

nuclear matter due to multiple scattering of the participating 

nucleons. As we shall see most of the inclusive data are not 

well described by either of these pictures alone but fall 

somewhere in the middle. However the formation of a region of 
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hot nuclear matter is supported by some recent experimental 

evidence based on a hydrodynamic approach. 

2.2 Direct Limit - 

For the nucleons inside the projectile to undergo only one 

collision the mean free path X must be much greater than the 

linear dimension R. This is called the direct limit. Obviously, 

it will lead to reaction products, and hence inclusive spectra, 

similar to free NN collisions. However the presence of the 

residual nucleus cannot be ignored. In a free elastic NN 

collison the energy of the projectile is shared between the two 

particles. There is thus an allowed range of energies for each 

particle from zero up to the total beam energy. In HI Collisions 

where the two nucleons are embedded in large nuclei this simple 

two-body scattering picture is obscured by the fact that the 

residual nucleus can leave with a large momentum though small 

energy. The energy and momentum of the ejectile may thus be very 

large, e.g. the emission of a high transverse momentum proton. 

This leads to a larger amount of phase space available to the. 

ejectiles than is possible in the free NN process. Another new 

effect is due to the fermi motion of the nucleons inside the two 

nuclei. I f  we treat the nucleus as an ideal gas of fermions, 

then the Pauli exclusion principle will cause the nucleons to 

fill up the lowest energy states. There will be a maximum 

ground-state energy, called the fermi energy, of the order of 



tens of MeV for heavy nuclei. Nucleons much below the fermi 

surface cannot participate in scattering through large angles as 

there is no empty state for them to go into. However if they 

gain enough energy to jump above the fermi surface they can 

interact. There is a certain minimum momentum necessary for a 

particle to scatter through a large angle. Because of this the 

quasielastic scattering peak will be reduced at large angles, 

where the energy of the particles is small. We can see this 

effect in Figure 3, which shows data from protons on 12C from 

~anihata et a1.14 l 5  At small angles a peak due to pp or pn 

quasi-elastic scatterings is visible and the energy of the 

ejectile is large. As we go to larger angles the energy of the 

particle drops and the peak becomes lost in the background. The 

fermi motion of the nucleons inside the nuclei effectively 

smears out the quasi-elastic scattering peak. This peak also 

disappears as the projectile and target mass increase reflecting 

the greater importance of multiple scattering for such systems. 

The relative importance of the direct component in heavy ion 

collisions may be determined from large-angle two-proton 

correlations.14 l 5  In these experiments the ratio of in-plane 

coincidences to out-of-plane coincidences is measured. This 

ratio should be near one if the thermal process is dominant as 

the emission of particles is then random. However, i f  the direct 

limit applies this ratio should be larger than one because pp 

quasi-elastic scatterings tend to produce two protons in the 

same reaction plane. It is found that the ratio is larger than 

14 
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one and shows a peak at the momentum expected from quasi-elast 

pp scattering, although the data show that only about one sixt 

of the protons emitted are from direct processes which suggest 

that the direct component is watered down by the presence of 

multiple scattering of the nucleons. 



Figure 3. Inclusive proton spectra from p+C collisions at a beam 
energy of 800 MeV. The arrows indicate the momenta expected from 
pp or pn quasielastic scatterings. Figure from Ref. 27 



We turn now to a determination of the proton mean free path 

in HI collisions from pp coincidence experiments.14 l 5  

In Figure 4a the target mass dependence of the single 

proton quasi-elastic scattering yield is shown, and Figure 4b 

shows the dependence of the two-proton in-plane coincidence 

yields from pp quasi-elastic scattering. The single proton 

inclusive yields are easily calculated at forward angles as the 

data are strongly forward peaked. The yields are proportional to 

A where A is the target mass number. Figure 4b shows that 

the coincidence cross-section increases with mass up to A = 5 0  and 

then decreases. This is to be expected as the probability of NN 

scattering increases with mass but so also does the probability 

of subsequent rescattering of one of the particles. I f  either of 

the two particles is rescattered the coincidence is of course 

destroyed. 

By relating the probability of rescattering to the proton 

mean free path, a fit to the data yielded a value of Xz2.4  fm. 

This is somewhat larger than is expected from free NN 

collisions, a fact due to the strong forward peaking of the 

-elastic scattering at the energies involved, where the nucleons 

may undergo collisions which do not significantly alter their 

momenta, causing the mean free path to appear larger than it 

really is. 



-..-..- "a' 2.0 
*.-.. 

-*'-.. - 1.6 
Target moss 

Figure 4. Target-mass dependence of (a) inclusive proton and (b) 
- two-proton quasielastic scattering cross-sections. Figure from 

Ref. 27. 



2.3 Thermal Limit - 

It has been found that even for light targets a significant 

amount of multiple scattering takes place.16 This suggests that 

the projectile's energy will be shared among all the nucleons 

within a certain region. If the interaction time is long enough 

this region may reach thermal equilibrium and provide an example 

of very hot, dense nuclear matter. The question of whether 

thermal equilibrium is actually reached in HI reactions is still 

open. The approach to thermal equilibrium has been investigated 

in the so-called fireball model." l 8  In its original form this 

model proposed that the projectile sweeps out a cylindrical 

region of the target nucleus leaving a spectator region from the 

target, and, if the impact parameter is large enough, also one 

from the projectile. The swept out nucleons form a thermally 

equilibrated system which then decays as an ideal Fermi gas. The 

properties of the fireball, i.e. the number of swept out 

nucleons, the laboratory velocity of the centre of mass and its 

energy can all be calculated as a function of the impact 

parameter. In calculating the temperature of the fireball it is 

assumed that the available energy per nucleon is the incident CM 

energy minus the binding energy. It is assumed that this energy 

heats up the nucleons leading to a quasi-equilibrated region - 
the "fireball". This fireball is then treated as a relativistic 

ideal gas, whose temperature depends on the available energy per 

nucleon, which cools down emitting protons and light particles. 



Using the fireball model, Westfall et a1.17 were able to 

fit the proton inclusive spectra from the reactions ' ~ e  and   ON^ 

on 238U at 250 MeV/Nucleon and 400 MeV/~ucleon. Good agreement 

with the data was found. However for the higher energy reaction 

20Ne on 238U at 2100 ~eV/~ucleon, the model failed to describe 

the data. It was necessary in the fireball calculation to assume 

that almost all the initial CM kinetic energy of the projectile 

went into heating up the system. This produced good agreement 

with the low energy data but for the high energy reaction the 

temperature and velocity of the fireball were too high. If it 

was assumed that only about one quarter of the initial energy 

went into heating up the fireball then agreement with the data 

could be restored. The authors tried to explain this by assuming 

that two fireballs were produced in very high energy reactions. 

They also pointed out that the success of such a simple model at 

low energies suggests the importance of using thermodynamic 

concepts in relativistic HI reactions. The large number of 

nucleons involved and multiple scattering of the particles leads 

to a thermally equilibrated region which may be described using 

the language of.equilibrium thermodynamics. 

With this indication that thermalisation is partially 

achieved in HI reactions, one may use the small-angle 

two-particle coincidence measurements described in Chapter 1 to 

measure the size of the thermally equilibrated region. The 

results of these experiments with protons and pions suggest a 

value for the radius of a Gaussian source of 3-5 fm. 5 - 1 1  



2.4 The Hydrodynamic -- 

A final example 

Model 

of the application of semi-classical models 

to HI reactions is the hydrodynamic model. 

The thermal model assumes a short mean free path for 

nucleons inside the nucleus and a long interaction time and 

treats the reaction as a hot, dense system of nucleons in 

thermal equilibrium. However it does not make any specific 

assumptions as to how the system reaches this equilibrium state. 

The hydrodynamic model also assumes a very short mean free path 

and a long interaction time but makes the assumption that the 

nuclei can be treated as drops of an ideal fluid. The idea of 

treating nuclei as drops of a classical, incompressible liquid 

was first put forward forty years ago by Von ~eizsacker'~ when 

proposing the semi-empirical mass formula. He treated a nucleus 

as a drop of liquid with energy terms due to the volume, surface 

tension, Coulomb energy of the protons, etc. In a collision, one' 

basically assumes that the nuclei are incompressible and hence 

must either bounce off one another or break up. For small impact 

parameter collisions we expect the nuclei to break up due to the 

large energy transfer while for peripheral collisions we expect 

them to bounce off one another. 

Data from some recent experiments20 seem to show this type 

of behaviour. From the reaction 'ONe + at beam energies of 

393 MeV/A the high multiplicity events (presumably from small 

impact parameter collisions) show no signs of the strong forward 



peaking seen in low multiplicity events and expected from 

cascade or thermal models. There is instead a broad peak in the 

cross-section for low energy protons at lab angles of 70'-90'. 

Stocker et a121 2 2  have interpreted this broad peaking as the 

result of the hydrodynamical side-splash. At small impact 

parameters a large part of the target nucleus is pushed forward 

by the projectile nucleus. The non-overlapping parts of the 

target however receive a sideward push from the collision. This 

sidewards push should show up in the low energy fragments as it 

happens mainly in the spectator regions of the target. 

Another hydrodynamic effect is seen in the pp coincidence 

data taken from the same experiment. It was found that i f  a fast 

proton was detected at 40'  to the beam then the coincidence rate 

for another fast proton on the same side or a slow proton on the 

opposite side of the beam was increased above the background. 

This suggests that the fast protons came from the projectile 

nucleus which 'bounced off' the target (in a large impact 

parameter collision) while the slow protons came from the target 

nucleus which was pushed in the opposite direction. 

Hydrodynamic behaviour of nuclei in heavy ion collisions is 

still a speculative topic, especially as the principal condition 

of a short mean free path ( k R )  is not likely to be satisfied. 

The results seem to indicate that hydrodynamic effects 

contribute perhaps 10-30% of the reaction products. 



3. The Nuclear Hanbury-Brown -- 

3.1 Introduction - 

Twiss Effect 

In section 1.2 we derived a simple case of the HBT effect 

for two particles where we ignored all final state interactions 

(FSI) so the correlation was due only to the particles' boson or 

fermion nature. This is justifiable if the particles are weakly 

interacting, as, for example. for photons from a star, but not 

for particles emitted in a HI collision. For pion emission the 

Coulomb interaction is generally 

standard Gamow f a c t ~ r ~ - ~  

corrected for by using the 

where v is the Sommerfeld parameter. This is approximately the 

modulus squared of the wave function for relative motion of the 

two particles as their distance apart goes to zero, and is a 

measure of the attraction or repulsion of the interaction 

between the particles. For protons and heavier fragments this 

correction is not sufficient, and the interaction of the 

particles, via the strong nuclear force and Coulomb force, must 

be taken into account directly by calculating their effect on 

the trajectories of the emitted fragments. Qualitatively, we 

expect that two identical charged partitles emitted with'in the 



range of the strong nuclear force will be drawn together 

(assuming an attractive potential) whilst the repulsive Coulomb 

force will prevent them ever having precisely equal final 

momenta. This should lead to an enhancement in the number of 

coincidences at small relative momenta although the Coulomb 

repulsion will cause the number of coincidences to drop to zero 

as the relative momentum goes to zero. Defining the correlation 

function R(ElfE2) to be the ratio of the two-particle inclusive 

cross-section to the square of the single particle inclusive 

cross-section 

- 2 
d20 - [g] ( ~ + R ( Q I , E ~ ) )  

d ~ l  d ~ 2  

We expect R to be - 1  at E ~ = E ~ ~  rise to a positive peak for 

small values of relative momentum and fall to zero as I E , - E ~ ~  Rr 
F- 
%- increases further. In this section we derive an expression for 
c 

i the correlation function including the effects of final state 

Cd interactions. These are seen to alter the correlation function 
4 

from its form due to statistics alone, and this alteration 

82 follows the simple picture given above. We derive it first for 
? 

r- the case of a Gaussian source in both space and time and then 
)r 

i 
c6 for the case of a 6-function distribution in space keeping the 

O 
Gaussian time dependence. Finally we extend the derivation to 

5 two-deuteron and two-triton correlation functions with 

negligible source lifetimes. 
5' 
k 
b 

k 



The - Correlation Function 

3.2.1 - PP Correlation Function with Negligible Source Lifetime - 

We describe here the calculation first derived by Koonin13 

of the two-proton correlation function. We consider a source 

volume in an HI collision which emits protons evenly over its 

surface, with random spin alignments. Let D(l,t,~) be the 

distribution function for producing a proton of momentum E at 

space-time point (r,t). - D is normalized by taking its integral 

over all space-time to be equal to the single proton 

differential cross-section divided by the total proton inclusive 

cross-section 

Let two protons be emitted at space-time points (rl,tl), 

(r2,t2) with equal momenta 2, and t22tl. Then at time t2 the 

first proton is at L ~ ' =  ~ , + ~ ( t 2 - t 1 ) ,  where = P/M is the 
laboratory velocity of the pp centre of mass, - P=g1+g2 is the 
total momentum and M = 2m . The probability of observing two 

P 
protons with momenta E,= g2= 2, is then the modulus squared of 

the wave function for two protons at 3 ' ,  r2. Since two protons 
may combine to form a spin 0 or spin 1 state, with statistical 

weights 1/4, 3/4 respectively, we must add the probabilities of 

each state. After considering the case t12t2 as well, the 



two-proton inclusive cross-section is given by 

where '8, and '* are the singlet and triplet pp scattering wave 
functions, which are respectively symmetric and anti-symmetric 

under interchange of the two particles, and satisfy the time 

independent two-body Schrodinger equation with nuclear and 

Coulomb potentials. 

We have neglected the influence of the nuclear mean field 

on the two protons and so the scattering wave function is the 

product of a plane wave for CM motion and the wave function for 

relative motion. The former depends only on the total momentum 

and CM position, - R = (rl' +r2)/2, - and the latter only on the 

relative momentum Ae = (2,-p2)/2, and relative position 

We now assume a Gaussian shape in space and time for the 

distribution function, with the normalisation condition given in 

equation 8 ,  



The parameters ro,r are the Gaussian radius and lifetime of 

the region producing protons, yo is the laboratory velocity of 

this region taken to lie along the beam direction. We have used 

(c-X0t) because in general we expect the source volume to move 

with a non-zero velocity rather than being at rest as was 

tacitly assumed before. Equation 10 is now inserted into 

equation 9, together with the wave functions and the integral 

evaluated as far as possible. We show the calculation in 

~ppendix A, here we just state the result. The two-proton 

correlation function R ( P ~ , E ~ )  is given by 

where - V'=V-Vo, - -  p2=ro2+(~'r)2, and the wave functions are now the 

anti-symmetrised solutions of the Schrodinger equation for 

relative motion of two protons. Equation 1 1  must be evaluated 

numerically. The wave functions are expanded in a partial wave 

series and the Coloumb potential is used in all partial waves. 

The nuclear potential is used only in the S-wave as the 

short-range nuclear force is only effective in correlating 

protons with relative momenta ApS40 ~eV/c. 

In evaluating equation 1 1  we treat several cases. For 

simplicity we first derive the T=O limit of the correlation 

function. This case describes collisions which emit particles 

27 



P 

over a finite spatial region but with a negligible lifetime. 

With ?=Or equation 1 1  becomes 

To evaluate this we need to know the singlet and triplet 

wave functions for relative motion. The Schrodinger equation for 

the relative motion of two protons, with reduced mass p = tm , 
P 

moving under the influence of their mutual coloumb and nuclear 

forces, is 

I f  V ( r )  = 0 we obtain as the solutions the so-called 
nuc 

Coulomb wave functions which are written in terms of a partial 
i 

wave expansion as 



- v r / 2  L ikr 

where r(Z) is the complex gamma function, v = fie2/K2k is the 

Sommerfeld parameter, and ,F,(a,c;z) is the confluent 

hypergeometric function given by the series expansion 

The solution, equation 15, is obtained by solving the 

Schrodinger equation in spherical polar coordinates and equating 

the asymptotic form of the solution as r-> to the solution in 

parabolic coordinates. We choose the normalization such that the 

solution behaves as a plane wave in the absence of the coulomb 

interaction and goes over to a plane wave asymptotically as 

r->a. 

Now two protons may combine to give states of total spin 

S=O or 1 which are respectively anti-symmetric and symmetric 

under interchange of the two spins.   he total wave function for 

relative motion is thus composed of a product of a spin part and 

a space part 



'I' = 'I' (L) x (1,2) 
re1 space spin 

In order that the total wave function be anti-symmetric 

under interchange of the two protons, as required by the Pauli 

exclusion principle, the anti-symrnetrised form of equation 17 

must be used, denoting the total spin by a superscript 

O'I' = 1 {'I' (L) + 'I' (-~)l Ox(1,2) 
Re1 4 2  space space 

where O x  is anti-symmetric and lx symmetric under an 

interchange of their spin arguments. Assuming normalized spin 

eigenfunctions (which will drop out on taking the modulus 

squared of the probability amplitude), we may write the 

anti-symrnetrised solutions of equation 13 as 

'I' = 1{Z 9 (kr)P cos(8) f Z 9 (-kr)P (cos8)) 
Re1 d? L L L L L L 

where the upper sign refers to the singlet case, the lower to 

the triplet, and the summation is over all partial waves. Now 

r->-r is equivalent to 8->A-8, +>r+tp and there is no tp - - 
dependence, also 



[ and so ! 
j 

OQ = d 2  C a (kr) P (case) 
Re1 L even L L 

l r ~ r  = d 2  c a (kr)P (case) 
Re1 L odd L L 

We shall use the abbreviation in this section that 

C '  = P C + P I: 
s L even t L odd 

- 
denotes P times the sum over even L plus P times the sum over 

s t 
odd L, where P = 1/4 ,  P = 3/4 are the statistical weights of 

S t - the singlet and triplet states respectively. The correlation 

function may now be written 



The summation over L is bounded as it is just the wave function 

for relative motion and vanishes at infinity. Interchanging the 

order of the sum and integral over 9 and using the orthogonality 
- 

of Legendre Polynomials gives 

 quat ti on 20 now has to be evaluated numerically. To 

calculate the wave functions we use the Couloumb potential and 

Reid Soft-core nuclear potential for the S-wave, and the Coulomb 

potential only for higher partial waves. 

The S-wave was calculated by numerically integrating 

Schrodinger's equation; the higher partial waves were evaluated 



from the series solution, equation 15, and the asymptotic form 

of this solution for large values of kr. 

The correlation function was calculated on a computer, with 

the lifetime 7 set equal to zero, using the programme CORFUN10 

in Appendix B. Figures 5a-c show the two proton correlation 

F function plotted against relative momentum for several values of 

r, (with The data are taken from experiments performed at 

I 
Michigan State University and Oak Ridge 2 3  for Au, A1 and C 

targets bombarded by 400 MeV 0 ions. 
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Figure 5a. Two-proton correlation function, R(P,,P,), for a 
source with Gaussian equivalent radius r, and zero lifetime. The 
data are for the reaction 1 9 ' ~ ~ ( 1 6 0 , p p ) ~  from Ref. 23. The curve 
labels are: ro=2.0 fm , ro=3.0 fm- - , 
ro=3.7 fm- - -. 
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- 
Figure 5b. Two-proton correlation function. R(P,,P,)! for a 
source with Gaussian equivalent radius r0 and zero lifetime. The 
data are for the reaction 27A1('60,pp)X from Ref. 23. The curve 
labels are: ro=2.0 fm ro=3.0 fm- - , 
ro=4.7 fm- - -. 
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Figure 5c. Two-proton correlation function, R(gl,P2), for a 
source with Gaussian equivalent radius ro and zero lifetime. The 
data are for the reaction 12C(160,pp)X from Ref. 23. The curve 
labels are: ro=2.0 fm , ro=3.0 fm- - , 
ro=4.9 fm- - -. 



From the figures it can be seen that the nuclear force 

causes a large peak in the correlation function at A p  2 0  MeV/c. 

The peak drops with increasing r, as the short-range nuclear 

force cannot affect two protons far apart in space. The peak 

height also decreases with decreasing target mass, we shall 

return to this point in Chapter 4. 

To close this section, it is worthwhile to look at some 

limiting cases of the T = O  correlation function. Firstly, we 

present the case where the particles have no interactions except 

their statistics, i.e. bosons or fermions, and secondly, we take 

the limit as the relative momentum goes to zero keeping the 

Coulomb interaction only. 

a) Correlation Function with no FSI: 

In this case the wave function for relative motion is just 

a plane wave, the correctly symmetrised singlet and triplet wave 

functions are then 



so equation 12 becomes 

Evaluating the 3 dimensional Gaussian integral gives 

Comparing this result with the simple case derived in 

Section 1.3, (recalling the relation C2 = 1 + R(glrg2)) we see 

that the effect of the statistics is just the numerical factor 

in front of the exponential. Taking the limit as k goes to 0 of 

equation 23 just gives R(g1,g2) = - 1/2. By setting all the 

potentials equal to zero in the prograinme CORFUNIO the limit 

given by equation 23 was found. 

b) Correlation Function with Couloumb Interaction Only as k -> 0 

Returning to. the definition, equation 12 



We make a partial wave expansion of the Coulomb wave 

functions as before and note that as the relative momentum goes 
* 

to zero the only partial wave which remains non-zero is the 
i 

S-wave, which goes over to the Gamow factor 

Lim l@,(kr)12 = 2 r v  
kr+O 2 n v  

e - 1 

where v  is the Sommerfeld parameter. In the limit as k 

approaches zero, v  goes to infinity and hence the wave vanishes. 

Thus the correlation function is just 

This expresses the fact that the long-range Coulomb force 

prevents two protons from ever having precisely equal final 

momenta regardless of when or where they were emitted. 

Comparing equations 2 3  and 25 we see that in the absence of 

any FSI two protons can have identical momenta as long as they 

have opposite spin. Once the Coulomb force is turned on two 

protons can never have exactly the same momentum and a complete 

anti-correlation results. 



3.2.2 Series Expansion -- For the & Correlation Function 

The pp correlation function defined in terms of an 

integral, equation 11, can only be evaluated numerically. 

However the case of negligible source lifetime ( r = O )  is much 

easier to evaluate than the corresponding non-zero lifetime 

case. Here we evaluate the correlation function for finite r  by 

expanding the exponential involving V ' r  as a Taylor Series and 

integrating term by term. We leave to the next section a more 

elegant way of finding an upper limit on the lifetime of the 

source. 

From equation 1 1  the exponential can be expanded in a 

Taylor series 

to give the correlation function in terms of a series of 

integrals. 
th 

The n order contribution in ( V ' r I 2  is denoted by 



The wave functions for relative motion are given by 

equation 15 in Section 3.2.1. The next step is the evaluation of 

the scalar product in the above equation. The relative position 

vector, L,  is defined in a coordinate frame with A2 along the z 

axis. The velocity vector V' - is defined in a frame with the 

source velocity, V, - along the z axis. The transformation which 

rotates the laboratory frame into the CM frame is used to 

calculate the components of 1' and the product LOX' may-then be 

calculated. This product results in a series of terms involving 

powers of sine, cose, sin4 and cos4; 8 and 4 being the polar and 

azimuthal angles of L in the CM frame. The 4 integration is done 

by hand, the orthogonality of cos@ and sin4 eliminating all 

terms involving odd powers of either. 

The remaining integrations are carried out numerically 

using the programme CORFUNIO. This programme 

7=0 contribution to the correlation function 

each successive order in V'7. 

first evaluates the 

and then calculates 

It calculates the integrals involving powers of cose and 

Legendre polynomials using the recurrence relation 

The results for each value of L are stored in an array. The 

sum over partial waves is then carried out, multiplying each 

term by the appropriate @-integral, finally the sum over the 

orders of V'r is performed and the radial integration performed 



by calling a numerical integration routine. 

The programme only calculates the first 10 orders, as the 

difficulty in calculating the #-integral by hand limits the 

number of orders to be used. In fact, the convergence of the 

series for VVr>ro is very poor. The next section describes a 

method for avoiding the series expansion which is valid for all 

7 .  

3.2.3 Alternative Derivation of The Correlation Function -- 

Consideration of equation 1 1  will show that the integral 

cannot be calculated in terms of simple functions. The scalar 

product in the exponential effectively gives a "Gaussian-like" 

integral in the angular coordinates which can only be evaluated 

numerically. To avoid this difficulty an alternative approach is 

to change the form of the distribution function .to a 6-function 

in space and keep the Gaussian in time. For collisions involving 

appreciable lifetimes this should not be too unphysical. It 

will, of course, only give an upper bound on the lifetime as any 

finite source size will reduce the correlation function. This 

arises because separating the particles in space or time both 

have the effect of reducing the correlation due to the 

short-range nuclear force. 

We take then the form of the distribution function to be 



The normalisation condition is the same as for the Gaussian 

distribution function. Substituting equation 28 into equation 9 

and following the procedure outlined in Appendix A to evaluate 

the correlation function gives the result 

+ P I  Z (kr) P (cos8')12) 
t L odd L L 

where 8' is the angle between V' and yo.'We see that there is .no - 
angular dependence in equation 29 except that due to 8'. The 

assumption of a point source eliminates any dependence on the 

direction of AE. The source does however have a preferred 

direction given by-the vector V' - formed of the source velocity 

V, - and the pp CM velocity 1. 

The numerical evaluation of equation 29 is straightforward. 

The same potential is used as in the previous section to 

generate the nuclear wave functions. In Figures 6a-c the 

two-proton correlation function obtained from the &-function 

source is plotted against the relative momentum of the two 



protons for several values of V'r. The data are taken from 

Reference 23 as before. The scattering angle is the angle 

between the beam velocity, yo,  and the pp CM velocity, V; it was - 
set at 15' in these experiments. An upper limit on the source 

lifetime may be obtained from these graphs. For the Au data this 

limit is V'r 1 1 8  fm and for the A1 and C data VVr=30 fm. For 100 

MeV protons this corresponds to a source lifetime in the range 

7'16 - 27 x sec. We shall discuss these results in Chapter 

4. 
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Figure 6a. Two-proton correlation function, R(P,,P2), for a 
source with a &-function shape in space and Gaussian time 
dependence. V 1  is the difference between the pp CM velocity and 
the source velocity, and 7 is the source lifetime. Data are as 
Figure 5a for a gold target. The curve labels are: 
V1 r=6 fm , V1r=l2 fm-- , 

, V17=24 fm---, V17=18 fm----- 
v1 7330 fm -- - - - - . 
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Figure 6b. Two-proton correlation function, R(P,,P1), for a 
source with a 6-function shape in space and Gaussian time 
dependence. V' is the difference between the pp CM velocity and 
the source velocity, and T is the source lifetime. Data are as 
Figure 5b for an aluminum target. The curve labels are: 
V ' T = ~  fm , V'?=12 fm--, 
v'~=18 fm--- -- , V'~h24 f m  -, 
V 1 ~ = 3 0  fm-- - -- -. 
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Figure 6c. Two-proton correlation function, R(P,,P,), for a 
source with a 6-function shape in space and Gaussian time 
dependence. V' is the difference between the pp CM velocity and 
the source velocity, and r is the source lifetime. Data are as 
Figure 5c for a carbon target. The curve labels are: 
V'r=6 fm , V1r=12 fm-- , 
vvT=18 fm---A- , V' ?=24 fm - - -, 
Vfr=30 fm------- 



3.3 Extension to Deuterons and Tritons - - - 

3.3.1 Two-Deuteron Correlation Function 

We see from the derivation of the pp correlation function 

that the fermion nature of the particles only appears in the 

wave functions. Hence to extend the correlation function to 

deuterons and other particles we need only to calculate their 

respective probability distributions, given by the square of the 

wave function for relative motion of the two particles. Since 

deuterons have spin 1 ,  they may combine to form states of total 

spin 0, 1 or 2, with statistical weights 1/9, 3/9, 5/9 

respectively. Because of the difficulties involved with the 

integral for non-zero lifetimes we choose the simpler case T = 0 

in all that follows. As we shall see the correlation betweeen 

the particles drops rapidly as the particles become heavier and 

also we do not expect to be able to determine T accurately from 

experiment. The two deuteron correlation function is then, by 

analogy with equation 12, 

The total spin of the two particles is labelled by a 

superscript. The evaluation of equation 30 is straightforward 



and follows the same procedure as for the pp case. 

The total wave function for relative motion of two 

deuterons must be symmetric under interchange of the two 

particles, and it may be shown, by examining the symmetry 

properties of the Clebsch-Gordan coefficients for combining two 

spin 1 particles, that even spin states are symmetric, odd spin 

states anti-symmetric. Hence the spin 0 and 2 wave functions in 

equation 30 consist of a sum over even L partial waves only, and 

the spin 1 wave function consists of odd L partial waves only. 

In this case, after doing the 6 and tp integrals the equation 

becomes 

L even L odd L even 

We have kept the superscript denoting the spin because the 

nuclear potential is spin dependent. We again evaluate equation 

31 numerically. The.nuclear potential is used in all partial 

waves with L 5 2. Further, a given S and L may combine to form 

states with total angular momentum J = S+L, S+L-I, ..., IS-LI, 
and each state has 2J+1 possible Z components of total angular 

momentum. The potential used is the Saxon-Woods form given in 

equation 32 



Two sets of potential parameters were used to generate the 

dd nuclear wave functions and are listed in Tables 1 and 2. The 

first set show a mainly repulsive potential and were obtained 

from the R matrix method of generating the dd phase shifts. 2 3  

The second set are mainly attractive and come from the 

resonating group method2'. 



TABLE 1 

Saxon-Woods Potential Parameters For Repulsive dd Potential 

TABLE 2 

Saxon-Woods Potential Parameters For Attractive dd Potential 



The repulsive nuclear potential depends on S t  L, J as given 

in Table 1. A statistical weight of (2~+1)/(2S+1)(2L+1) was 

assigned to each J state to ensure the correct probability of 

occupation. Only the Coulomb potential was used in the highest 

St2 states, as the nuclear phase shifts for these states were 

negligible. The attractive nuclear potential had no J dependence 

so only the spin statistical weight was used. 

The Coulomb potential alone was used for all partial waves 

with L>2. The two potentials produce very different results for 

the correlation function. This can be seen from Figure 7 which 

shows the two-deuteron correlation function obtained with the 

repulsive and attractive nuclear potentials respectively. For 

comparison, the correlation function using the Coulomb potential 

only is also shown. 

The attractive potential produces a result very similar to 

the pp correlation.function, with a peak at Ap= 35 ~eV/c, whilst 

the repulsive potential suppresses the correlation function 

strongly. Figures 8a,b show'the dd correlation function obtained 

with the repulsive nuclear potential, and data from the reaction 

1 9 7 ~ ~ ( 1 6 0 , d d ) X  and 12C(160,dd)X from M.S.U.23 It is clear that 

the data are well described by the phase shifts corresponding to 

the repulsive potential rather than the phase shifts obtained 

from the Resonating Group method, which produces the attractive 

' potential. The source size obtained from the figures is ro=6-8 

fm which is larger than the corresponding proton case. 
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Figure 7. Two-deuteron correlation function, R(P!,P2), for a 
source with a Gaussian shape in space and negligible lifetime 
assuming various dd potentials. The source radius is fixed at 6 
fm. The curve labels are: 

a). Repulsive nuclear plus Coulomb potential. . 
b). Attractive nuclear plus Coulomb potential. 
c). Coulomb potential only. 
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Figure 8a. Two-deuteron correlation function, R(P,,P,), using 
the repulsive dd potential for a Gaussian source of negligible 
lifetime. Data as Figure 5a for a gold target. The curve labels 
are: ro=6 fm , ro=8 fm- - , ro=10 fm- - 
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Figure 8b. Two-deuteron correlation function, R(P1,P2), using 
the repulsive dd potential for a Gaussian source of negligible 
lifetime. Data as Figure 5c for a carbon target. The curve 
labels are: r0=6 fm , rO=8 fm- -, 
ro=lO fm- - -. 



We conclude this section by looking at the dd correlation 

function in the absence of interactions except the effect of the 

Bose-Einstein statistics. In equation 30 the wave-functions are 

I now just plane waves, with the S=0,2 waves being symmetric and 

the S=1 wave anti-symmetric under interchange of the two 

particles. Since now the S=0,2 waves are identical they may be 

combined to give 

Putting these into equation 33 and evaluating the integral 

gives 

This result differs from the simple derivation of C 2  only 

by the numerical factor of 1/3. For bosons there is thus an 

enhanced probability of finding two particles with equal final 

momenta, the 1/3 arising from the spin statistics for the 



particles. Taking the limit as k goes to 0 gives R=+1/3, setting 

the potentials equal to zero in the programme again reproduced 

this limit. 

By analogy with the proton case the Coulomb repulsion of 

the two protons in the deuterons causes a complete 

anti-correlation as the relative momentum goes to zero, hence 

the correlation function R goes to - 1  in this limit. 

3.3.2 Two-Triton Correlation Function 

Figures 9a and 9b show the tt correlation function obtained 

with the Coulomb potential only. The data are taken from the 

M.S.U. and O.R.N.L. work23 on the reaction 1 9 7 ~ ~ ( 1 6 0 , t t ) ~  and 

12C(160, t t ) ~ .  At the beginning of the last section we pointed 

out that the spin of the particles only affects the wave 

functions. As the triton has spin 1/2 we may take over the 

results in section 3.2 by merely changing the reduced mass of 

two protons to that of two tritons. 

Because of the difficulty in obtaining accurate nuclear 

potential parameters for the tt interactions, only the Coulomb 

potential was used in calculating the tt correlation function. 



RELATIVE MOMENTUM (~eV/c) 

Figure 9a. Two-triton correlation function, R(P,,P~), using the 
tt Coulomb potential only for a Gaussian source of qegligible 
lifetime. Data as Figure 5a for a gold target. The curve labels 
are: ro=6 fm , ro=8 fm- - , ro=10 fm- - 7 



0 50 100 150 
RELATIVE MOMENTUM (~eV/c) 

Figure 9b. Two-triton correlation function, R(P1,P2), using the 
tt Coulomb potential only for a Gaussian source of negligible 
lifetime. Data as Figure 5c for a carbon target. The curve 
labels are: r0=6 fm , ro=8 fm- -, 
ro=10 fm- - 7 



3.4 Discussion of Numerical Methods - - 

The basic definition of the correlation function in Section 

3 is in terms of an integral. Because this integral cannot be 

evaluated in terms of simple functions we must use a numerical 

integration routine. This introduces the first source of 

uncertainty into the result. Secondly, the partial wave 

expansion of the wave functions must be truncated at some value 

of the angular momentum. This will cause a drop in accuracy at 

large values of the relative momentum where more and more 

partial waves are important. Thirdly, the evaluation of the 

correlation function requires the values of Coulomb partial 

waves at arbitrary radial distances. To accomplish this the 

series expansion of the wave functions was used out to a certain 

maximum distance and the asymptotic form beyond that. The slight, 

mismatching of the two sets of wave functions introduces another 

source of error. 

The integrations were carried out using the Numerical 

Algorithms Group Routines DOlGAF and DOIAJF. The first of these 

returns the area under a set of points with an estimate of the 

error, the second integrates a given function to a specified 

relative accuracy and returns an estimate of the absolute error 

obtained. To minimize the errors from the routines the integrand 

was specified at 0.2 fm steps over the range 0-50 fm for the pp 



calculations, and at 0.5 fm steps over the range 0-100 fm for 

the dd and tt calculations. The step size was 0.5 fm out to 150 

fm for the calculation involving the 6-function distribution The 

relative accuracy for the second routine was specified at 

for all cases except the non-zero 7 calculation. To reduce the 

computer time needed for the calculation to manageable 

proportions it was set at In practice the estimate of the 

error returned by DOlAJF was always negligible and that given by 

DOlGAF was of the order of 5-10% for the non-zero 7 case. The 

two routines were checked by integrating the exponential part of 

the integrand only and both returned almost exact answers. 

The upper limit of the integration was set at 12R0, unless 

this exceeded 50 fm for the proton case, or 100 fm for the 

deuteron and triton cases. These distances were chosen as beyond 

them the exponential had rendered the integrand completely 

negligible. For the calculation using the 6-function source the 

integration was taken out to 150 fm for large values of V'7 to 

ensure the same drop in the exponential. 

The error due to keeping only a finite number of partial 

waves in the expansion of the wave function is only important 

for relative momenta greater than 80 MeV/c. Because the 

correlation function is non-zero only in the range 0-70 MeV/c 

this source of error is negligible in this range. The 

calculation was done using 10 partial waves for the proton case 

and 15 for the deuteron and triton cases for ApS80 MeV/c which 

were increased to 15 and 24 partial waves respectively for Ap>80 



M~V/C. 

The final source of error due to the change-over to 

asymptotic Coulomb waves at large values of kr is more 

important. The asymptotic form of the Coulomb waves is only 

strictly correct in the limit as kr goes to infinity. However by 

choosing the change-over point to be as large as possible 

(kr-15) the exponential had rendered the integrand negligible by 

the time the asymptotic waves were used, except for ro=8-10 fm. 

For these values of ro it was still found to be negligible for 

relative momenta less than 60 MeV/c. Above this value the 

mismatch between the waves was of the order of 5-10%. 

In summary the combined maximum probable error in the 

calculation amounts to 2-5% for relative momenta in the range 

0-60 MeV/c and 5-10% for larger values. 



4. Conclusions - 

4.1 Source Sizes from EE, dd and tt data (r=0) - - ---- 

The conclusions from this work are divided into two 

sections: Firstly, we determine the 'Best-Fit' source sizes by 

comparison with the M.S.U./O.R.N.L. data from proton, deuteron 

and triton coincidence experiments, and secondly we examine the 

source lifetime dependence of the proton data. We discuss the 

implications of the results regarding the extent of final state 

interactions among the emitted particles and the degree of 

thermalisation achieved in HI reactions. 

The Gaussian equivalent source sizes for negligible source 

lifetimes are obtained from Figures 5a-c,8a-b and 9a-b in 

Chapter 3. The results are shown in Table 3 below. 

TABLE 3 

Gaussian Equivalent Source Sizes 

React ion Source -- Size (fm) 

1 9 7 ~ ~ ( 1 6 0 , p p ) X  3.8k0.1 

27A1(160,pp)X 4.7f0.1 



The results for the reaction 12C(160,tt)~ are not shown as 

the data do not allow an estimate of the source size to be made. 

This table shows that the protons are emitted from a region 

inside the collision volume about 3-4 fm in radius (actually 

this is the radius of the Gaussian corresponding to the source). 

This lends support to the fireball model which pictures the 

collision creating a small hot-spot inside the colliding nuclei 

which achieves thermal equilibrium and then decays by the random 

emission of particles. 

This 'Lack of memory' of its history is characteristic of a 

system which is in a state of equilibrium. By contrast the 

direct model gives a strongly forward peaked differential 

cross-section where the particles retain some memory of the 

incident direction. We cannot however draw strong conclusions 

from this for two reasons: The calculation is effectively impact 

parameter averaged since we asssumed the existence of a 

distribution function for emission of a particle which had no . 

dependence on the way the source was created, and, the 

single-particle inclusive data do not allow us to eliminate the 

direct model completely. 

The size of the 'hot-spot' (3 -4  fm) is smaller than the 

radius of the target nucleus (-7 fm for gold target) and hence 

it appears that only a sub-set of the target nucleons attains 

thermal equilibrium. This result is important for estimating the 

extent of thermalisation in HI collisions in order to see if a 

possible hadron liquid-gas phase transition has any measureable 



effects. 

One surprising result of the data is that the source size 

seems to increase with decreasing target mass. This is best seen 

from the proton data where the radius is 3.8, 4.7, 4.9 fm for 

the Au, A1 and C targets respectively. This result cannot depnd 

on the energy of the emitted particles as the experimental 

procedure used to generate the data involved summing over all 

energies and angles of emission corresponding to a given 

relative momentum. This corresponds to a significant averaging 

process as stated in Reference 1 1 .  Naively, one would expect a 

heavier target nucleus to reach thermal equilibrium more easily 

as the number of possible collisions (which transfer energy and 

momentum to the surrounding nucleons) increases with target 

mass. This would lead to a larger source size for a gold target 

than, say, a carbon one. A possible explanation of the result is 

that energy is lost in the light target collision in moving the 

CM of the system whereas the heavy target stays essentially at 

rest and all the kinetic energy of the incident beam is 

converted into thermal energy rapidly heating up the system 

which then emits particles sooner (with respect to the time of 

impact) than the lighter targets. 

The results of the deuteron and triton experiments show 

that the source sizes are significantly larger (6-8 fm) than in 

the prot'on case (3-4 fm). This agrees with the picture of the 

source heating up to a temperature of,say,tens of MeV and 

emitting high energy protons whereas the low binding energy of 



the deuteron and triton causes them to break up in these early 

stages of the reaction. Later in the collision, after the source 

has expanded and cooled down the emission of heavier bound 

particles takes place. 

4.2 Source Lifetimes from Proton data - - - 

Figures 6a-c show the pp correlation function from the 

6-function calculation for the Au, A1 and C targets 

respectively. In this case the correlation function is a 

function only of V'r. The energy of the emitted particles enters 

the calculation through V' via the velocity of the pp centre of 

mass. Figure 10 shows the contours of r, and V f r  consistent with 

the peak in the correlation function data for detecting protons 

of a given kinetic energy. This data is also from 

M.S.U./O.R.N.L.~~ but involved only counting events 

corresponding to protons with energies in a given range. 

The series solution gives an upper bound on the source 

lifetime of 8.6 x sec for 50 MeV protons assuming a 

. realistic Gaussian source radius of 2.4 fm. This time will 

decrease for higher energy protons. From figures 6a-c we see 

that the 6-function approach gives an upper limit of 16-40 x 

sec for protons with energies in the range 50-100 MeV. 

It can be seen from figure 10 that the accuracy of the 

calculation decreases as V f r  increases. For increasing values of 

V'r more terms have to be kept in the series expansion in order 



to achieve the same accuracy, as we have kept only 10 the error 

due to neglecting higher order terms becomes progressively 

larger. This error is less than the numerical errors involved i f  

V'r5r0, for larger values of V ' r  the two sources of error are 

combined. 

Thus we see that the source lifetime is at most of the 

order of 10-30 x seconds, which is much less than that 

needed to form a compound nucleus - sec) which may 

be ruled out under these circumstances. 



V ' i  (fm) 

Figure 10. Contours of Gaussian equivalent source radii r, and 
lifetime r which produce a pp correlation function consistent 
with the data from Figure 2 of Ref. 26. The curves are for 
different ejectile energies: 

a) El+E2 = 60MeV. 
b) E1+E2 = 80 MeV. 
c) E1+E2 = 100 MeV. 



The final point to be made is the importance of final state 

interactions among the emitted particles. The simple calculation 

presented in section 1.2 neglected these interactions and 

produced the typical exponential decay seen in the stellar 

interferometry of Hanbury-Brown and Twiss. Also, data from pion 

interferometry are corrected for final state interactions by 

using a simple Gamow factor. In this work, however, it is 

obvious that final state interactions among the particles are 

very important. The large peak in the pp correlation function at 

small relative momenta and the suppression of the correlation 

function for all particles as the relative momentum goes to zero 

show that the particles interact via the strong nuclear and 

Coulomb forces for an appreciable time after the collision. 

Similarly, the deuteron data show that the dd potential is 

predominantly repulsive which implies that the phase shifts 

obtained ftom the resonating group method (which produce the 

large positive peak in the dd correlation function) must be 

rejected in favour of those produced by the R matrix method. 

Neglecting the nuclear interaction between tritons seems to be 

justified by the fairly good agreement between the curve 

produced with the Coulomb interaction only and the gold data. 



Appendix - A 

1. Derivation of Two-Proton Correlation Function with a Gaussian - - - -  
Source 

We start with the definitions given in Chapter 3. The 

two-proton correlation function is defined in terms of the 

two-particle coincidence cross-section by 

The distribution function for a Gaussian source is 

where ro,r are measures of the spatial and temporal extent of 

the source. The distribution function satisfies the 

normalisation condition 



In A2, (r-Vat) - - appears because we expect the source to move 

with a non-zero laboratory velocity, yo,  taken to be along the 

beam direction. The definition A2 applies in the lab frame. For 

convenience we can write 

The wave functions O9, '9 are the product of a plane wave 

in the CM coordinates - R = (~,'+g~)/2, and the wave function 8 
Re1 

for relative motion which depends on the relative coordinates 

r'=~~'-g2. Here ;l'=rl+~(t2-tl) and represents the fact that at - - - 
time t2 the particle created at (rl,tl) - has moved to ( ~ ~ ' , t ~ ) .  

The velocity of the proton is = P/M, where P is the total - 
laboratory momentum of the protons and M is twice the proton 

mass. The CM wave function disappears on taking the modulus - 

squared and so the wave function depends only on the relative 

momentum, A ~ = ( E ~ - E ~ ) / ~  and relative position - r'. Again for 

convenience we write 



With these def'initions, A1 become 

Changing to CM and relative coordinates in space and time 

R=E~l'+r2I/2 - 
r'=~, '-r2 - 
T=Etl+t2)/2 

t=tl-t2 (A71 

and using I' = - rl+V(t2-tl) - enables us to rewrite equation A6 in 

terms of the new variables. The 'volume' element transforms as 

and so 

- 

doing the integrals over dT and d 3 ~  gives 



Finally, doing the dt integral gives 

Where - Vr'=y-yo, p2=ro2+(~r'r)2 and the prime on - r' may now be 
dropped as it is a dummy variable. Remembering that c,(E,,Q,) = 

1 + R(E~,E~) gives the desired result  quati ti on 11, Chapter 3) 

2. Derivation of Two-Proton Correlation Function with a - - --  
6-Function Source 

We follow the same procedure as in part 1 of this appendix, 

except that now the distribution function for emission of a 

proton is 



The &function is normalized by 

J d3r 6(r-v0t) = 1 - - (A101 

Thus A9 satisfies the normalisation condition A3. The analogue 

of equation A6 is 

All terms being as defined before. Changing variables using the 

relations A7 and doing the d3R and dT integrals gives 

To eliminate the second 6-function the two angular integrations 

and the t integration may be used. Firstly, we note that the t 

integral has the range -a to +a and so we split it into two 

parts; -0 to 0 and 0 to +a. Letting t go to -t in the first part 

then gives 



Now we know 

where (e,#) and (8',4') are the polar and azimuthal angles of - r 
and V' - respectively in the coordinate frame with V, - along the z 

axis. Also 

as - V1=-(-V') - and letting V1->-V' - - is equivalent to letting 

8' ->r-8', 4'->r+#'. From equation A5 the sign of V' makes no 

difference to the function @(rl,A~). - This being so, the two 

terms in A12 may be added, and using 

~ ( r - v l t ) =  a ( t-r/vv 

gives 

x E P I C @  (kr) P (cose')l2 + P I C @  (kr) P (cos8')12) 
S L L t L L 
L even L odd 

(A141 

which is what we wanted to show (Equation 29, Chapter 3 ) .  



Appendix - B 

PROGRAMME SCHROPP NUMERICALLY INTEGRATES 
SCHRODINGER'S EQUATION. 
IMPLICIT REAL*8 (A-H,O-Y) 
INTEGER S,L 
LOGICAL FLAG 
DIMENSION PS1(50001),RST0(50001) 
DO 5 1=1,50001 
RSTO(I )=O.DO 
PSI(I)=O.DO 

INPUT STEP LENTGH 

DELR=O.OIDO 
KMAx= 1000 1 
RSTO(I)=~.DO 
RST0(2)=DELR 
PSI(I)=O.DO 
PSI (2)=0.01DO 
L=O 

REID SOFT-CORE L=O POTENTIAL PARAMETERS. 

NB. HARDCORE RADIUS OF RC .LT. 0.01 FM MUST BE INCLUDED. 
(I.E. RsTo(~) MUST BE GREATER THAN 0.01 FM) 

LOOP OVER MOMENTA 



AMA-0 .DO 
DO 100 K=3,50001 
WRITE(~,~~)R,RSTO(K) 
FORMAT( lX,2GlO.5) 
R=R+DELR 
RSTO(K)=R 
IF((R*A~).LT.~~O.DO) GO TO 95 
IF(FLAG) WRITE(6,86)R 
FORMAT(lX,'ERROR R TOO LARGE FOR EXPONENT',D15.5) 
FLAG=.FALSE. 
V=O .DO 
GO TO 96 

REID SOFT-CORE POTENTIAL. 

DER=(v+(~.~~D~/R)+(F~*H~~M/R**~)-E)/H~OM 
KMl =K- 1 
KM2=K-2 
PSI(K)=~.DO*PSI(KM~)-PSI(KM~)+DER*(DELR**~)*PSI~KM~~ 
IF(R~T~(K).LT.~~o.D~)GO TO 100 
TEST=DABS(PSI(K)) 
WRITE(~,~~)RSTO(K),PSI(K),AMA 
FORMAT(lX,F10.5,2G15.6) 
IF(TEST.GT.AMA)AMA=TEST 
CONTINUE 

END OF CALCULATION 

OUTPUT WAVE FUNCTIONS 

WRITE(6, 11O)AK 
F O R M A T ( ~ X , D ~ ~ . ~ )  
DO 150 K=l,KMAX,20 
IF(RSTO(K).LE.O.IDO)GO TO 145 
PSI(K)=FI*PSI(K)/(AMA*AK*RSTO(K)) 
WRITE(~,~~O)RSTO(K),PSI(K) 
F o R M A T ( ~ X , F ~ . ~ , ~ X , D ~ ~ . ~ )  
FORMAT( lX,Dl5.8) 
CONTINUE 
CONTINUE 
STOP 
END 



PROGRAMME TO CALCULATE THE PP CORRELATION FUNCTION IN 
HEAVY-ION COLLISIONS ASSUMING A GAUSSIAN DISTRIBUTION 
FUNCTION FOR EMISSION OF A PROTON. 

J.C.SHILLCOCK S.F.U. AUGUST 1984. 

IMPLICIT REAL*8 (A-H,O-Y) 
REAL*8 W(1600),~(251),~(251),~~0(251),YT(251) 
REAL*8 K,MOD 
REAL*8 P1/3.14159265359~O/,C/2.9979246~+08/ 
COMPLEX*16 SUM 
INTEGER LMAX,LMIN,NMAX,IW(202) 
LOGICAL FLAG 
EXTERNAL INTGND,INTGN 
COMMON /AREA/ B,K,RO,LMAX,LMIN,NMAX 
COMMON /ARRAY/ ~(31,31,31),F(10,21) 
COMMON /BOX/ GAM3,PS,PT   BOX^/ EPSILN,FMAX 

INPUT PARAMETERS AND INITIALISE CONSTANTS. 
READ UNIT 2=INPUTFILE 

DELTA P = PP RELATIVE MOMENTUM VECTOR 
RO = RADIUS OF SOURCE (FM) 
TAU = LIFETIME OF SOURCE (SEC) 
VO = LAB.SOURCE VELOCITY (UNITS OF C) 
v = PP LAB. VELOCITY (UNITS OF C) 
VPRIME = V-vo (UNITS OF C) 
THETA = POLAR ANGLE BETWEEN V AND VO (DEGREES) 
PHI = AZIMUTHAL w 

THETAV = POLAR ANGLE BETWEEN VPRIME AND VO (DEGREES) 
ALPHA = POLAR ANGLE BETWEEN DELTA P AND VO (DEGREES) 
BETA = AZIMUTHAL w 

NR = NO. OF RUNS TO BE MADE 
NE = NO. OF VALUES OF RELATIVE MOMENTA TO BE USED 
NW = NO. OF VALUES OF NUCLEAR WAVE FUNCTIONS READ IN 

(ARRAYS CONTAINING NUCLEAR WAVE FUNCTIONS MUST 
HAVE AT LEAST DIMENSION NW) 

RW = UPPER LIMIT TO INTEGRATION (FM.) 
RMAX = "DISTANCEWAT WHICH ASYMPTOTIC WAVE FUNCTIONS ARE 

USED 
LMIN = MIN. COULOMB ONLY PARTIAL WAVE 
LMAX = MAX. w w w " (ARRAY P MUST HAVE 



DIMENSION AT LEAST 2*LMAX+1) 
NMAX = NO. OF ORDERS (ARRAY F MUST HAVE DIMENSION 

LEAST 2*NMAX+1) 
PS/PT = STATISTICAL WEIGHTS OF EVEN/ODD L STATES 

LOOP FOR DIFFERENT PARAMETER VALUES. 

SET UPPER LIMIT OF INTEGRATION = 12*RO 
AND RESET CONSTANTS FOR NEXT RUN. 

NMAX= 1 0 
LMI N= 1 
W A X =  1 0 
RW= 12 .DO*RO 
IF(RW.GT.~~.DO)RW=~O.DO 
THETA=(THETA*PI)/~~~.DO 
PHI=(PHI*PI)/~~O.DO 
ALPHA=(ALPHA*PI)/~~~.DO' 
BETA=(BETA*PI)/~~O.DO 
VX=V*DSIN(THETA)*DCOS(PHI) 
VY=V*DSIN(THETA)*DSIN(PHI) 
VZ=V*DCOS(THETA) 
VPRIME=DSQRT(V**~+VO**~-~.DO*V*VO*DCOS(THETA)) 
VPRIMZ=VZ-VO 
THETAV=DARCOS(VPRIMZ/VPRIME) 
G~~=DSIN(ALPHA)*DSIN(THETAV)*(DCOS(BETA)*DCOS(PHI)+ 
#D~IN(BETA)*D~IN(PHI))+DCOS(ALPHA)*DCOS(THETAV~ 
IF(TAU.EQ.O.DO) GO TO 30 
VTAU=VPRIME*TAU*C*l.D+15 
RHO=DSQRT(RO**2+VTAU**2) 
EPSILN=(VTAU/(RO*RHO))**~/~.DO 
GO TO 40 
RHO-RO 
VTAU=~. DO 
EPSILN=O.DO 
GO TO 42 



EVALUATION OF INTEGRALS OF LEGENDRE POLYNOMIALS 
AND POWERS OF cOS(THETA). 

DO 70 I=1,31 
DO 70 J=1,31 
DO 70 JK=1,31 
P(I,J,JK)=O.DO 
CONTINUE 

SET UP N=O INTEGRALS FOR L=1,30 

P(lt1,1)=2.DO 
NM2=2*NMAX 
DO 80 L=1,30 
P(L+~,L+~,~)=~,DO/DFLOAT(~*L+I) 
CONTI NUE 

SET UP N>O INTEGRALS FOR L=1,2*LMAX 

DO 90 I=l,NM2 
DO 90 L=1,30 
DO 90 M=1,30 
P(L+~,M+~,I+~)=(DFLOAT(L+~)*P(L+~,M+~~I)+ 

# DFLOAT(L)*P(L,M+~,I))/DFL~AT(~*L+I) 
P(I,M+~,I+~)=P(~,M+~,I) 
IF(I.GT.NMAX)GO TO 90 
P(~,~,~*I+I)=~..DO/DFLOAT(~*I+~) 
CONTINUE 

CALCULATE LEGENDRE POLYNOMIALS ONLY ONCE 

FLAG=.TRUE. 
CONTI NUE 

ANGULAR FUNCTIONS ARISING FROM PHI INTEGRATION 

DO 35 IB=I,IO 
DO 35 IC=1,21 
F(IB,IC)=O.DO 
CONTINUE 

G=GAM3 
GP=l.DO-G*G 
G2=G*G 
G4=G2*G2 
G6=G4*G2 
G8=G6*G2 
G1 O=G8*G2 
G12=G10*G2 
G14=G12*G2 
G16=G14*G2 
G18=G16*G2 
G20=G18*G2 







LI ST VARIABLES 

WRITE(~,~~)VO,V,VPRIME,VTAU,TAU,THETA,PHI,RO,RHO,EPSILN 
FORMAT(1H1,5Xt'V0 = '  ,F1 5.6/6Xt 'V =',F15.6/6Xt 
#'vPRIME=' ,~15.6/6~, 'VTAU = '  ,Fl5.6/6~, 
#'TAU =',E15.6/6Xt'THETA =',F15.6/6Xt1PH1 =',~15.6/6~, 
#'RO = '  ,F15.6/6Xt'RH0 = '  ,F15.6/ 
#6Xt'EPS1~N=',F15.6) 
WRITE(~,~~)THETAV,ALPHA,BETA 
FORMAT(~X,'THETAV=',F~~.~/~X,'ALPHA =',~15.6/6x,'BETA = ' ,  
#Fl5.6//) 
WRITE(6,39) 
FORMAT( IX, ' READING IN WAVE-FUNCTIONS' ) 



INPUT NUCLEAR WAVE 
TAU=O,ZEROTH ORDER 

FUNCTIONS FROM FILE:READ UNIT 5 
CONTRIBUTION TO R 

DO 100 IR=l,NW 
X(IR)=O.DO 
Y(IR)=O.DO 
YRO(IR)=O.DO 
READ(~,~~)x(IR),YR~(IR) 
F O R M A T ( I X , F ~ . ~ , ~ X , D I ~ . ~ )  
IF(X(IR).GT.RW) GO TO 100 
Y(IR)=~.DO*PS*(YRO(IR)**~) 

# *(x(IR)**~)/DExP(O.~DO*(X(IR)/RO)**~) 
CONTI NUE 

CALL DO~GAF(X,Y,NW,ANS,ER,IFAIL) 
~=0.0173491215DO/K 
CALL DOIAJF(INTGND,O.DO,RW,O.DO,~.D-O~,RESULT,ABSERR,W, 
#1600,1~,202,1F~I~) 
ANSWR=~.DO*(ANS+RESULT)/(DSQRT(~.D~*PI)*R~*RO*~O) 
ERR~R=~.DO*(ER+ABSERR)/(DSQRT(~.DO*PI)*R~*R~*RHO~ 

GO TO 2000 

TAU>O,Nth ORDER CONTRIBUTION TO R 



TEST TO SEE IF ASYMPTOTIC COULOMB WAVES ARE NECESSARY 

IF(X(IR).GT.(RMAX/K))GO TO 107 
CALL COULO(X(IR),M,SUM,MOD) 
GO TO 108 
CALL COULA(X(IR),M,SUM,MOD) 
Y T ( I R ) = Y T ( I R ) + ~ . D O * F ( N , I + ~ ) * P ( ~ , M + ~ ~ I + ~ ) * Y R O ~ ~ R ~  

# *MOD*DREAL(SUM) 
CONTI NUE 

Y(IR)=Y(IR)+YT(IR)*(x(IR)**NM~)*(EPsILN**N)/ 
# DFLOAT(NFACT) 

CONTINUE 
Y(IR)=Ps*Y(IR)/DEXP(O.~DO *(x(IR)/Ro) **2) 
CONTI NUE 

WRITE(6,133) 
FORMAT(IX,'CALLING DOIGAF'/) 
CALL D~~GAF(X,Y,NW,ANS,ER,IFAIL)' 

COULOMB PARTIAL WAVE CONTRIBUTION TO R 

REWIND 5 
CONT I NUE 
CALL TIME(I,-1,ITIME) 

STOP 
END 

SUBROUTINE INTGND RETURNS THE VALUE OF THE INTEGRAND 
FOR NAG ROUTINE DOIAJF AT EACH POSITION R,FOR TAU=O. 
IT USES COULC TO CALCULATE EACH COULOMB PARTIAL WAVE. 



REAL FUNCTION INTGNDe8 (R) 
IMPLICIT REAL*8 (A-H,O-Y) 
REAL*8 MOD 
COMPLEX*16 SUM,CMOD 
COMMON /AREA/ A,D,E,Ll,L2,NMAX 
COMMON /BOX/ T,PS,PT   BOX^/ EPSILN,RMAX 
I NTGND= 0. DO 
IF(R.GT.(12.DO*E))RETuRN 
MOD1 -0 .DO 
AMOD2=O .DO 
L3=L2+ 1 
L4=L1+1 

PARTIAL WAVE LOOP 

TEST TO SEE IF ASYMPTOTIC COULOMB WAVES ARE NECESSARY. 

NB. COULC AND COULCA RETURN THE PRODUCT OF PARTIAL WAVES 
DIFFERING BY "DELTA" UNITS.IF DELTA=O,THEY RETURN THE 
MODULUS SQUARED OF THE Lth WAVE. 

IF(R.GT.(RMAX/D))G~ TO 50 
CALL COULC(R,L,O,SUM,CMOD) 
GO TO 55 
CALL COULCA(R,L,O,SUM,CMOD) 

PARTIAL WAVE SUM; MOD1 = EVEN L WAVES 
MOD2 = ODD L WAVES 

IF(IT)60,70,80 
AMOD~=AMOD~+~.DO*CMOD*SUM/DFLOAT(~*L+~) 
GO TO 70 
AMOD~=AMOD~+~.DO*CMOD*SUM/DFLOAT(~*L+~) 
CONTI NUE 
CONTI NUE 

RETURN VALUE OF INTGND 

INTGND=R*R*(PS*MOD~+PT*AMOD~)/DEXP(O.~DO*(R/E)**~) 
RETURN 
END 

SUBROUTINE COULC RETURNS THE PRODUCT OF PARTIAL WAVES 
DIFFERING BY "DELTA" UNITS. 

SUBROUTINE COULC(R,L,DELTA,SUM,CMOD) 



IMPLICIT REAL*8 (A-H,O-Y) 

 COMPLEX*^ 6. CMOD,AN,AND,SUM,SUMD, z 
COMMON /AREA/ A,D,E,Ll,L2,NMAX 
F=D*R 
MOD= 1 .DO 
IF(A.NE.O.DO)MOD=~.DO*A*PI/(DEXP(~.DO*A*PI~-~.DO~ 
CM~D=DCMPLX(DCOS(DFLOAT(DELTA)*PI/~.DO),DS~N(DFLOAT(DELTA) 
#*PI/2 .DO) ) 

CALCULATE PRODUCT OF HYPERGEOMETRIC FUNCTIONS 
AND THE MAGNITUDE OF THE COULOMB WAVE. 

N-IN-1 
SUM=SUM+AN 
SUMD=SUMD+AND 
AN=AN*Z*DCMPLX(DFLOAT(L+~+N),A)/DFLOAT((~*L+~+N)*(~+N)) 
AND=AND*z*DCMPLX(DFLOAT(L+DELTA+~+N),A)/DFLOAT 

# ((~*(L+DELTA)+~+N)*(~+N)) 
CONTINUE 

SUM=DCONJG(SUM)*SUMD 
CMOD=DCMPLX(MOD,O.D~)*CMOD 
RETURN 
END 

SUBROUTINE COULO RETURNS THE VALUE OF THE Lth PARTIAL WAVE 
REQUIRED BY NAG ROUTINE DO1GAF TO CALCULATE THE 
CONTRIBUTION FROM COUPLING BETWEEN WAVES. 

SUBROUTINE COULO(R,L,SUM,MOD) 
IMPLICIT REAL*8 (A-H,O-Y) 
REAL*8 MOD,PI/3.14159265359DO/ 
COMPLEX*16 AN,SUM,Z 
COMMON /AREA/ A,D,E,LI,L2,NMAX 
F=D*R 
MOD= 1 .DO 



ARG i =ARG i + i . DO/DFLOAT ( IN ) 
ARG~=ARG~+A/DFLOAT(L+IN)-DATAN(A/DFLOAT(L+IN) 
N-IN-1 
SUM= SUM+AN 
AN=AN*Z*DCMPLX(DFLOAT(L+~+N),A)/DFLOAT((~*L+~+N)*(~+N)) 
CONTI NUE 

ARG=A*ARGl+ARG2 
SUM=SUM*DCMPLX(DCOS(F+ARG+DFLOAT(L)*PI/~.DO) ,DSIN(F+ARG+ 
#DFLOAT(L)*PI/2.DO)) 
RETURN 
END 

FUNCTION INTGN RETURNS THE VALUE OF THE Nth ORDER 
INTEGRAND REQUIRED BY DOIAJF. 

REAL FUNCTION INTGN*8 (R) 
IMPLICIT REAL*8 (A-H,O-Y) 
COMPLEX*16 SUM,CMOD 
INTEGER DELTA 
COMMON /AREA/ A,DfE,L1,L2,NMAX 
COMMON /ARRAY/ ~(31,31,31),F(10,21) 
COMMON /BOX/ T,PS,PT   BOX^/ EPSILN,RMAX 
INTGN=O.DO 
IF(R.GT.(lS.DO*E))RETURN 
NFACT- 1 
DO 130 N=l,NMAX 
NFACT=NFACT*N 
N2=2*N+2 
N3=N2- 1 
AMODl=O.DO 
AMOD2=O .DO 
IF(L2.NE.O)GO TO 60 

L=O COULOMB PARTIAL WAVE 

IF(R.GT.(RMAX/D))GO TO 20 
CALL cOULC(R,O,M,WM,CMOD) 
GO TO 30 



CALL COULCA(R,O,M,SUM~CMOD) 
DO 50 II=2,N2,2 
I=II-2 
IF(P(~,M+~,I+~).EQ.O.DO)GO TO 50 
AMODT=AMODT+F (N, I + 1 ) *P( 1 ,M+ 1 , I + 1 ) *DREAL ( CMOD*SUM) 
CONTINUE 

AMODl=PS*AMODT 
LMIN= 1 
GO TO 70 
LMIN=LZ 
CONTINUE 
DO 120 L=LMIN,LI 
L4=L+2*N 
1 ~ ( ~ 4 . ~ ~ . 2 0 ) ~ 4 = 2 5  
AMODT=O.DO 
IT=(-I )**(L+I 
DO 100 M=LMIN,L4 
DELTA=IABS(L-M) 

TEST TO SEE IF ASYMPTOTIC COULOMB WAVES ARE NECESSARY 

IF(R.GT.(RMAX/D))GO TO 80 
CALL COULC(R,L,DELTA,SUM,CMOD) 
GO TO 85 
CALL COULCA(R,L,DELTA,SUM~CMOD) 
DO 100 II=2,N2,2 
I=II-2 
IF(P(L+~,M+I,I+~).EQ.O.DO)GO TO 100 
AMODT=AMODT+F(N,I+~)*P(L+~,M+~,I+~)*DREAL(CMOD*SUM) 
CONTI NUE 

PARTIAL WAVE SUM; AMODl = EVEN L WAVES 
MOD2 = ODD L WAVES 

IF(IT)104,120,106 
AMODI=AMODl+AMODT 
GO TO 120 
AMOD2=AMOD2+AMODT 
CONTINUE 

INTGN=INTGN+(PS*~OD~+PT*AMOD~)*(R**N~)*(EPSILN**N)/ 
#DFLOAT(NFACT) 
CONTI NUE 
INTGN=INTGN/DEXP(O.~DO*(R/E)**~) 
RETURN 
END 

SUBROUTINE COULA IS THE ASYMPTOTIC FORM OF COULO. 
IT CALCULATES COULOMB WAVE FUNCTIONS ,IN THE FORM; 



SUBROUTINE COULA(R,L,SUM,MOD) 
IMPLICIT REAL*8 (A-H,O-Y) 
REAL*8 ~0~,~1/3.14159265359~0/ 
COMPLEX*16 SUM 
COMMON /AREA/ A,DfE,L1,L2,NMAX 
F=D*R 
ARG1=-0.5772156649DO 
ARG2-0 .DO 
DO 20 J=1,50 
IF(J.LE.L)ARG~=ARGI+~.DO/DFLOAT(J) 
ARG~=ARG~+A/DFLOAT(L+J)-DATAN(A/DFLOAT(L+J)) 
CONTI NUE 
ARG=A*ARGl+ARG2 
MOD=DFLOAT(~*L+~)*DSIN(F-A*DLOG(~.DO*F)-DFLOAT(L)*PI/~.DO 
#+ARG /F 
SUM=DCMPLX(DCOS(ARG+DFLOAT(L)*PI/~.DO) ,DSIN(ARG+DFLOAT(L)* 
*PI/2.DO) ) 
RETURN 
END 

SUBROUTINE COULCA IS THE ASYMPTOTIC FORM OF COULC. 
IT CALCULATES THE PRODUCT OF COULOMB PARTIAL WAVES 
DIFFERING BY "DELTA" UNITS. 

SUBROUTINE COULCA(R,L,DELTA,SUM,CMOD) 
IMPLICIT REAL*8 (A-H,O-Y) 
INTEGER DELTA 
REAL*8 MODfPI/3.14159265359DO/ 
COMPLEX*16 CMOD,SUM,PHASE 
COMMON /AREA/ A,D,E,L1,L2,NMAX 
F=D*R 
PHASE=DCMPLX(I.DO,O.DO) 
ARG1=-0.5772156649DO 
ARG3=0 .DO 
DO 20 J=1,50 
IF(J.LE.L)ARGI=ARGI+I.D~/DFLOAT(J) 
ARG~=ARG~+A/DFLOAT(L+J)-DATAN(A/DFLOAT(L+J)) 
IF(J.LE.DELTA)PHASE=PHASE*D~MPLX(DFLOAT(L+J) ,A) 
CONTI NUE 

ARG=A*ARGl+ARG3 

ARG2=DATAN (DIMAG ( PHASE ) /DREAL ( PHASE ) ) 
MOD=DFLOAT((~*L+I)*(~*(L+DELTA)+~))* 
#DSIN(F-A*DLoG(~.D~*F)-DFLOAT(L)*PI/~.DO+ARG)* 
#DSIN(F-A*DLOG(~.DO*F)-DFLOAT(L+DELTA)*PI/~.D~+ARG+ARG~) 
#/(F*F) 
CMOD=DCMPLX(MOD,O.DO) 
SUM=DCMPLX(DCOS(ARG~+DFLOAT(DELTA)*PI/~.DO), 
#DSIN(ARG~+DFLOAT(DELTA)*PI/~.DO)) 



RETURN 
C 
C DELTA=O RETURN 
C 
30 MOD=(DFLOAT(~*L+~)*DSIN(F-A*DLOG(~.DO*F) 

#-DFLOAT(L)*PI/~.DO+ARG)/F)**~ 
CMOD=DCMPLX(MOD,O.DO) 
SUM=DCMPLX ( 1 .DO, 0 .DO) 
RETURN 
END 
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