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Electron beam lithography is a technique used to prepare high resolution masks for 

integrated circuit fabrication. While most integrated circuit layouts are described by rectangles 

and polygons, electron beam lithography systems accept only a few simple geometric shapes 

(triangles and/or quadrilaterals) as input data. Thus software which prepares data for electron 

beam systems must partition polygons into suitable geometric primitives. Most algorithms 

which have been devised to perform this partitioning suffer from a lack of generality. This 

thesis describes the selection and refinement of a polygon partitioning algorithm, resulting in an 

algorithm of high generality. The refined algorithm has been successfully implemented in the 

context of a complete electron beam lithography data preparation program. 

Little effort appears to have been made to optimize mask data so that electron beam 

machine mask making time is reduced. Several possible optimization techniques are described. 

One, which partitions polygons along non-horizontal (as well as horizontal) lines, is explored by 

developing a heuristic. An algorithm based on this heuristic has been introduced into the data 

preparation program described above. The. observed impact on data optimality is small: how- 

ever, it does represent a beginning in the area of electron beam lithography data optimization. 
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Chapter 1 

INTRODUCTION 

1.1. PREVIOUS WORK 

Electron beam lithography is rapidly taking over from conventional optical methods for 

producing large scale integrated circuit (LSI) and very large scale integrated circuit (VLSI) 

masks. This new method offers both higher speed and higher accuracy, so its growing popular- 

ity is no surprise. 

Electron beam machines require data in a special format. Previously developed software 

to prepare such data has not always been reliable. One example of this unreliability was 

discovered while testing a program written to convert electron beam data back to the original 

design database format (section 2.4.2). A simple integrated circuit (IC) design was converted 

into electron beam (e-beam) format, using software on one of the original (and widely used) 

commercial IC design workstations. The e-beam data was transported (via magnetic tape) to 

our computer, and used as test data for the conversion program. When the output was plotted. 

a small but distinct error was observed. Hand-decoding a hexadecimal dump of the e-beam data 

demonstrated that the error was already present in that data, before it was processed by the 

conversion program. The data used as input to the workstation was verified to be correct. Thus 

the error had to be introduced by the workstation software. The error was small enough to 

have gone unnoticed up to this time, but it was present nonetheless. 

Another example of software unreliability was reported to the author during personal 

correspondence with a major U.S. aerospace corporation. That company had purchased software 

to prepare data for electron beam lithography, only to find that they had to correct program 

errors. 
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Some previously developed software has imposed unreasonable restrictions on the IC 

designer. For example, self-intersecting polygons are often prohibited; this forces the designer 

to manually partition such polygons. Also, there appears to have been little effort made to 

optimize the data so that electron beam machine time is reduced. (This refers to the time taken 

to process the data and expose the mask.) 

The objectives of this research were 

(1) to develop software to prepare electron beam lithography mask data which is accurate 

and reliable, while imposing no unreasonable restrictions on the designer, and 

(2) to explore methods to optimize electron beam data so that e-beam machine time (for 

data processing and mask exposure) is reduced. 

13. BACKGROUND 

13.1. Processing of IC Chips 

The processing of IC chips involves the creation of layers of different materials on and 

under the surface of a silicon wafer. The circuit which is produced is determined by the pat- 

terns in which these layers are formed. The fundamental steps in the creation of one layer are 

as follows (~ igure  1-11. 

(1) The partially processed silicon wafer is coated with the material needed for this layer. 

Typical materials are aluminum, polycrystalline silicon, and silicon oxide (made by oxi- 

dizing the surface of the wafer). 

( 2 )  A coating of photoresist is applied over top of this material. 

(3) The photoresist is exposed to ultraviolet light in the desired pattern. 

(4) The photoresist is developed. (This involves dissolving the more soluble areas of the 
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photoresist in a suitable solvent. In positive resists, the more soluble areas are those 

which have been depolymerized by exposure to the light. In negative resists, the unex- 

posed areas are more soluble, while the exposed areas become polymerized and less solu- 

ble.) 

(5 )  The areas (of material applied in step 1) no longer protected by photoresist are etched 

away (e.g. by acid or plasma). 

(6 )  Remaining photoresist is stripped off with an appropriate solvent. 

(7) Any required processing (e.g. ion implantation) is performed. 

oxide 7 ////////// metal . 

silicon L U  
sensitized 
photoresist 

develop +- 
r 

/ / / / I / / / / / / /  
expose 

metal 
strip 7, > '///<oxide 

+- silicon 

Figure 1-1 Creation of Metal Layer 
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13.2. Exposure of Photoresist 

. The IC manufacturing step of particular interest in this study is the polymerization or 

depolymerization of photoresist in the desired pattern. There are two methods for doing this: 

"optical" and "direct write on wafer". 

The conventional method uses the optical approach. A "mask" containing clear and dark 

areas is placed between an ultraviolet light source and the wafer. When the light is turned on, 

those areas of the photoresist not blocked by the dark regions of the mask are exposed. (The 

mask is somewhat analogous to a photographic "negative", except that most negatives have con- 

tinuously variable density instead of the binary "dark" or "clear" nature of masks. Also, a 

mask may be a positive image instead of negative.) Thus the pattern on the mask determines the 

pattern in which the photoresist is exposed. One mask is required for each layer in the IC. 

In the "direct write on wafer" method, the photoresist is replaced by an electron resist. 

and the ultraviolet light and mask are replaced by a computer-controlled electron beam. The 

beam is selectively blanked as it is scanned over the surface of the wafer. The pattern in which 

the electron resist is exposed is determined by the blankinghon-blanking behavior of the beam. 

While the direct write on wafer method eliminates the need for making masks and offers 

higher resolution, it is much slower than the optical method. (At present, it takes considerably 

longer to expose a wafer with an electron beam than it does optically.) For this reason, the on* . 

cal method is preferred in all but low volume research applications, and for ICs requiring 

greater resolution than possible optically. 

1 3 3 .  Multi-Chip Wafers 

Chips are not fabricated one at a time, for to do so would be economically and temporally 

undesirable. Instead, a number of chips are laid out in a grid-like pattern on a single silicon 

wafer (Figure 1-2). 
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Figure 1-2 Multi-Chip Wafer 

The wafer is processed intact, and then sawed up into individual chips after all processing has 

been completed. A typical 4 inch wafer will produce 100 - 500 chips. depending on chip size. 

In a production wafer, all chips are identical, whereas a research (multiproject) wafer contains a 

variety of chips. 

For any given layer, the entire wafer is usually sensitized by a single exposure. Thus the 

multi-chip layout is an inherent part of each mask. (Note: as VLSI minimur ~eature size 

shrinks, there will be an increasing tendency to expose each chip on the wafer individually, SO 

that layer to layer registration requirements may be met.) 

- 13.4. Mask Making 

Making a mask is very similar to the process used to create one layer of an IC. (See Figure 
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photoresist 
chromium 

glass 

expose 

sensitized, sensitized 

t / / / / l  . strip , I 7 7 Z  chromium 
I 

Figure 1-3 Mask Making Process 

(1) A glass plate is coated with metal (usually chromium). 

(2) The metal is coated with photoresist or electron resist. 

(3) The resist material is exposed in the desired pattern, causing pol; ~erization or depoly- 

merization. 

(4) The resist is developed (dissolving the more soluble areas). 

( 5 )  The metal no longer protected by resist is etched away. 

(6) The remaining resist is stripped off. 

This leaves a pattern of dark (metal) and clear (glass) areas. 
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1.3.4 .I. Exposing The Mask 

The key step in placing the correct pattern on a mask is exposure of the mask resist 

material. Like exposure of the resist on a wafer, there are two methods: optical and electron 

beam lithography. 

1.3.4.1.1. Optical Methai The optical method consists of the following steps. 

(1) An intermediate mask is made at ten times the final size. (This is called a IOX reticle.) 

Exposure of the reticle's photoresist is done using an optical pattern generator (also 

called a block flasher.) This is a device which projects an image of a rectangular aperture 

onto the reticle, which is mounted on a movable stage. A xenon flashtube provides the 

light source. By changing the aperture shape, size, and orientation, and by moving the 

stage between flashes, the photoresist can be exposed in the desired pattern. The optical 

pattern generator is controlled by a computer, which reads data representing the pattern. 

Once exposed, the reticle is developed, etched, and stripped of remaining photoresist, as 

described above. 

(2 )  An image of the reticle, reduced to actual chip size. is projected onto the mask's pho- 

toresist. 

(3) After the .first exposure has been made, the mask is moved and a second exposure is 

made, right beside the first one. 

(4) The mask is stepped to the next chip position, and a third exposure is made. This step 

and repeat process is continued until all desired copies of the reticle image have been 

made. 

1.3.4.1.2. Electron Beam Lithography Method Instead of photoresist, an- electron resist is used 

to coat the mask. The mask is mounted on a movable stage in an evacuated chamber, and is 

exposed using a focused beam of electrons. Beam position, beam blanking, and stage position are 
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controlled by a computer using data which represents the desired pattern. The electron beam 

traces out the pattern at actual chip size, for all instances of the chip on the mask. 

1.3.4.2. Advantages of Electron Beam Lithography 

The fact that there were over fifty commercial e-beam lithography systems developed by 

1982 [2] attests to the rapidly growing popularity of this method. The reason for this popular- 

ity is a combination of speed and accuracy. 

(1) Speed. The elimination of the intermediate reticle and the absence of an optical step and 

repeat process result in significantly faster turnaround for masks exposed by e-beam 

lithography. 

(2) Accuracy. The inherently shorter wavelength of electrons allows smaller features to be 

written, and the absence of a separate step and repeat process results in better layer to 

layer registration. For these reasons, e-beam lithography is capable of higher accuracy 

than optical methods. (Note that X-ray lithography also provides a suitably short 

wavelength, but still requires a separate step and repeat process [2].) 

135. Electron Beam Lithography Systems 

E-beam lithography systems can be classified into two categories, depending on their beam 

scanning strategy: raster scan and vector scan. 

1.3.5 .I. Raster Scan 

In the raster scan technique, the electron beam is scanned back and forth in a regular pat- 

tern over the surface of the mask (or wafer). The beam is thus addressed to every possible 

position within the writing field, whether exposure is needed there or not (Figure 1-41. 
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Beam Off 
(Blanked) 

Beam On 

I 

Figure 1-4 Raster Scan Technique 

Whenever the beam is aimed at a spot which should not be exposed, it is blanked (deflected 

away from the mask). The beam is actually scanned in one dimension only; motion in the other 

dimension is provided by moving the stage on which the mask is mounted. 

1.3.5.2. Vector Scan 

In the vector scan. technique, the elect- beam is blanked and addressed to the position of 

a figure. It is then unblanked and scanned back and forth to fill in the area enclosed by the 

figure. Next, it is blanked and addressed to the position of the next figure. This sequence con- 

tinues until all figures within the writing field have been exposed (Figure 1-51. 
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Beam Off 

Figure 1-5 Vector Scan Technique 

The stage is then moved to the next writing field. and exposure continues. 

Unlike the raster scan technique, the beam is addressed to only those positions needing 

exposure (and those lying on the paths between figures). Also, scanning of the beam takes place 

in two dimensions (not one). In most vector scan machines, the stage is stationary during expo- 

sure (instead of moving in one dimension, as in raster scan machines). 

1.3 S.3. Speed Considerations 

At first sight, one would expect raster scan to be the slower of the two techniques, since 

much time is wasted scanning the electron beam over positions which need no exposure. In 

practice, however, this is not the case. 

In vector scan, each movement of the beam from one figure to the next requires an adjust- 

ment of the magnetic and electrostatic fields used to aim the beam. These fields are controlled 

by voltages and currents - analog quantities. Since the description of each figure is in the digi- 
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tal domain, a digital-to-analog conversion is required each time a new figure is to be started. 

The time required for these digital-to-analog conversions, together with the settling time of the 

beam following each jump between figures, are responsible for making vector scan machines 

slower than raster scan. 

1.3.5.4. Recent Developments In Vector Scan 

Several recent developments in vector scan systems are worthy of note. 

8 Beam Shaping. In this technique, the electron beam shape can be changed from the con- 

ventional fixed size round spot to a variety of shapes and sizes. By dynamically shaping 

the beam, considerable time can be saved while filling in areas to be exposed [S. 9. 101. 

8 Continuously Moving Stage. Fields are still written one at a time, but the stage moves 

continuously during writing. To make this possible the beam must track the stage as it 

moves. In a conventional vector scan machine, the stage is moved only between writing 

of adjacent fields. Following each stage movement, writing must be delayed until stage 

oscillations have settled. The continuously moving stage approach eliminates this delay 

191. 

With refinements such as these to vector scan systems, it is likely that they will eventually 

become faster than raster scan. At the present, however, commercially available raster scan 

machines are faster. 

13.6. The Perkin-Elmer MEBES Machine 

The software developed in this project produces data for the Perkin-Elmer MEBES 

machine. This is a raster scan e-beam lithography system capable of direct write on wafer as 

well as writing masks. (The acronym "MEBES" stands for Manufacturing Electron Beam E x p  

sure System. The word "manufacturing" refers to the direct write on wafer capability.) The 

original version of the e-beam data preparation software was developed for Microtel Pacific 
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Research Limited. Burnaby, British Columbia, during two work semesters of a Co-operative 

Education Program. The fact that Microtel employs mask vendors which use the Perkin-Elmer 

machine explains the choice of this particular e-beam system. 

1.3.6.1. Components 

The Perkin-Elmer MEBES machine consists of the following components: 

a Data General Eclipse minicomputer, which handles job control and preprocesses 

geometric figure data from the input files 

a microprocessor, which rasterizes geometric figures and controls the electron beam unit 

a bit map memory, which stores the rasterized figures 

and an electron beam unit. This includes the electron beam column, and the stage to 

hold the mask or wafer. The stage is movable in both horizontal dimensions under con- 

trol of the microprocessor, and is positioned accurately by using a laser interferometer 

servomechanism. 

1.3.6.2. The Stripe Concept 

The simplest way to save rasterized figures in the bit map would be to use the bit map like 

the screen memory of a raster scan display device; each bit would correspond to one pixel. 

Unfortunately, this approach would require an enormous amount of memory. For example, a 

typical 4 inch wafer could produce 300 square chips, each 5 mm on a side. If the mask for such 

a wafer were exposed with a 0.5 micrometer diameter beam, it would consist of 30 billion pix- 

els, and the bit map would require approximately 4 gigabytes of memory. Just one 5 mm 

square chip. exposed with a 0.5 micrometer spot, would require 100 million pixels. and a 12.5 

megabyte bit map. Even this is more memory than available on the MEBES system, and so a 

chip must be rasterized in sections. 
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To avoid distortion. the distance actually scanned by the electron beam is quite small, typ- 

ically no more than 250 micrometers. On the other hand, the width of an entire chip can be 

covered by moving the stage. Since the beam is scanned in one dimension while the stage is 

moved in the other, the mask is exposed in a series of long, narrow "stripes". The obvious way 

to rasterize a chip in sections is to make each section correspond to one of these stripes. The bit 

map can then store the rasterized image of one stripe. When the data is organized into stripes. 

the x axis is, by convention, parallel to the direction of stage travel, so each stripe is oriented 

horizontally. (By making the stripe length longer than most chips. the need to section the data 

vertically is avoided.) 

MEBES data preparation software must thus organize the data into stripes, and must par- 

tition figures which span boundaries between stripes (Figure 1-6). 

\ 
STRIPE !] , BOUNDARY 

\ 

a. Before Partitioning b. After Partitioning 

Figure 1-6 Partitioning At Stripe Boundaries 
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1.3.6.3. Figures Accepted 

The MEBES machine software accepts only five types of geometric figures: rectangles. 

parallelograms, and three types of trapezoids (Figure 1-7). 

L Rectangle . 

Parallelogram 

Trapezotd 1 Trapezoid 2 Trapezoid 3 

Figure 1-7 Figures Accepted By MEBES Software 

(Triangles are represented by a trapezoid with zero width top or base.) The figures used in lay- 

ing out an integrated circuit are not, however, restricted to these five primitive shapes; polygons 

abound. This means that e-beam data preparation software must partition the 1% layout polygons 

into the primitives accepted by the MEBES machine. 

I .3.6.4. Sequencing 

On the MEBES machine, the following sequence is followed. 

(1) All of the data for one stripe is rasterized and saved in the bit map. 

(2) The stage is positioned to the first instance of the current stripe, and the stripe is writ- 

ten. 
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(3) The stage is moved to the next instance of the current stripe, and the stripe is written. 

(4) The above step is repeated until all instances of the current stripe have been written. 

( 5 )  Data for the next stripe is rasterized. 

(6 )  All instances of that stripe are written. 

(7) Etc. 

1.4. OVERVIEW OF THESIS 

Chapter two discusses algorithms for partitioning of polygons into trapezoids, and 

describes the implementation of one such algorithm. In chapter three some possible techniques 

are discussed for optimizing MEBES data. Chapter four describes the.development, implemen- 

tation, and evaluation of an algorithm based on one of the optimizing techniques. Chapter five 

contains conclusions and recommendations for further work. 



Chapter 2 

POLYGON PARTITIONING 

2.1. INTRODUCTION 

As discussed in Chapter One, electron beam lithography systems do not accept general 

polygons as input data; they accept only a small set of simple geometric figures. The Perkin- 

Elmer MEBES machine, in particular, accepts five types of figures, all of which can be classified 

as trapezoids with horizontal top and base. Thus it is necessary to partition all polygons of a 

mask layout into trapezoids of this type. This polygon partitioning is the process of primary 

importance, since the rest of the data preparation is really just an exercise in two dimensional 

graphics. 

2.1.1. Objectives 

The objectives for this part of the study were 

(1) to explore polygon partitioning algorithms, and 

(2) to implement the most desirable algorithm in the context of a complete e-beam data 

preparation program. 

2.1.2. Definitions 

Before proceeding, it will be useful to define several terms which will be used throughout 

the remainder of this thesis. 

A self-touching polygon has non-adjacent edges which touch, but do not cross each other. 

(See Figure 2-1 .) 
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Figure 2-1 Self-Touching Polygons 

A self-crossing pdygon has non-adjacent edges which cross each other. (See Figure 2-2). 

A self-intersecting polygon is a self-touching or self-crossing polygon. 

A wire is a geometric primitive of IC layouts; it is most commonly used to electrically 

connect different points in a circuit (hence the name). A wire is described by its width and 

center-line, where the center-line is a set of vertices defining the path which the wire follows. 

An ideal wire is the set of all points within one half-width of the center-line [4]. See Figure 2-3 

for an example. 
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Figure 2-2 Self-Crossing Polygons 

Figure 2-3 Ideal Wire 
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Note that an ideal wire has rounded comers and a rounded cap on each end. These rounded por- 

tions are intended to facilitate connecting wires at  arbitrary angles. Because many output dev- 

ices have difficulty in rendering circular shapes, wires are often simplified to have square ends 

and no rounded comers. (See Figure 2-4.) 

(a) Truncated Corners & Ends (b) Extended Corners 8 Ends 

Figure 2-4 Implemented Wires 

2.2. PREVIOUS WORK 

The constraint that trapezoids have horizontal top and bottom eliminates many polygon 

partitioning algorithms from consideration. (Many partition polygons into triangles or quadri- 

laterals, without considering the orientation of the top or bottom.) 

One of the earliest algorithms developed for this type of polygon partitioning is described 

in an M.Sc. thesis by Harris [I]. Although that thesis was not available for examination, an 

algorithm based on the Harris algorithm is described in a paper by Pate1 [8]. 
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2.2.1. Pate1 Algorithm 

POLYGON PARTITIONING 

The Pate1 algorithm is based on the concept of "uplines" and "downlines". Polygons are 

classified as "type A" or "type B". A type A polygon encloses an area to be exposed, while a 

type B polygon encloses an area not to be exposed (i.e. a "hole" in a type A polygon). Type B 

polygons exist only inside of type A polygons. The data for type A polygons must be ordered 

such that the polygon is traversed in a clockwise direction, while type B polygons must be 

traversed counterclockwise. All polygons then consist of directed edges. An upline is a directed 

edge which points upward (increasing y coordinate), while a downline points downward 

(decreasing y coordinate). 

As described in the paper, the algorithm includes further decomposition of trapezoids into 

triangles, rectangles and parallelograms for a more primitive e-beam machine. This extra 

decomposition is not necessary for the MEBES machine, and will not be covered here. The 

(paraphrased) algorithm is as follows. (Refer to Figure 2-5). 
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Figure 2-5 Pate1 Algorithm 
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find uplines and downlines; 
for each upline do 
begin 

u + vertex at  upline's lower end; 
v + vertex at  upline's upper end; 
while u f v do 
begin 

find nearest downline; 
/* 

Presumably the nearest downline is the 
nearest one which intersects a horizontal 
ray extending to the right from u. 

*/ 
d +vertex at  downline's upper end; 
e +vertex at downline's lower end; 
t + v or d (whichever is lower); 
b + intersection of de with horizontal line 
through u; 
L l  + horizontal line through t ; 
p + intersection of uv with L1; 
q + intersection of de with L1; 
z + a vertex enclosed by trapezoid upqb; 
while z exists do 
begin 

L1 + horizontal line through z ; 
p + intersection of uv with L1: 
q + intersection of de with Ll ;  
z +- a vertex enclosed by trapezoid upqb; 

end; 
output trapezoid upqb; 
u + p; 

end; 
end; 

It should be pointed out that the statement of the Pate1 algorithm in [8] contains an error: the 

check for a vertex enclosed by the t ~ l ~ t a t i v e  trapezoid is performed only once. whereas it must 

be repeated until no such vertex is found. (This has been corrected in the statement shown 

here.) 

For an example of the operation of the Pate1 algorithm, consider polygon ADEFGHIL 

shown in Figure 2-6. (The reader is invited to copy the diagram and work through the example 

by hand, relabeling lines and vertices as they are changed by the algorithm, and shading in tra- 

pezoids as they are generated. This suggestion also applies to subsequent examples.) 
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Figure 2-6 Example For Pate1 Algorithm 

The uplines are identified as AD and GH; the downlines are EF. FG and IL. Upline AD is 

selected. (The order in which uplines are processed is arbitrary: we could start with GH and get 

the same results.) The nearest downline is IL. Tentative trapezoid ADIL encloses vertex F. 

Tentative trapezoid ACJL encloses vertex G. Trapezoid ABKL encloses no vertex, and is out- 

put. The upline now becomes BD. The nearest downline is FG. Trapezoid BCFG contains no 

vertex, and is output. Thr ?.?line becomes CD. The nearest downline is EF. Trapezoid CDEF 

encloses no vertex, and is output. This completes the processing of upline AD. Upline GH is 

selected, The nearest downline is IL. Trapezoid G H l K  encloses no vertex, and is output. There 

are no more uplines to be processed, so this completes the partitioning. 

2.2.2. Little & Heuft Algorithm 

Little and Heuft [3] describe an algorithm to be used for decomposing polygons into com- 

ponent trapezoids. Although the intended purpose of the trapezoids was to drive a raster graph- 

ics display controller, they could just as easily be used for preparing data for the MEBES 
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machine. The algorithm makes use of vertex adjacency information (i.e. which vertices are 

adjacent to each other). This contrasts with other algorithms, which discard this information. 

A polygon is represented as a doubly linked list structure. Each node in the list stores the 

data for one vertex; adjacent nodes store adjacent vertices. The Little & Heuft algorithm is as 

follows. 

while polygon vertex list is not empty do 
begin 

/* Find top of trapezoid. */ 
a + vertex with greatest y coordinate; 
if there is a vertex adjacent to a with the same 
y coordinate 
then b + that vertex; 
else b + a; 
/* Find sides. */ 
c + vertex adjacent to b such that c Z a; 
d + vertex adjacent to a such that d f b: 
/* Find bottom. */ 
if the region enclosed by abcd contains any other vertices 
then e + the contained vertex with largest y coordinate; 
else e * (-00.-00); 

ybtm + max(y(c).y(d).y(e)); 
/* y(v) is the y coordinate of vertex v. */ 
f + intersection of bc with line y = ybtm; 
g + intersection of ad with line y = ybtm; 
remove component trapezoid abfg from polygon vertex list; 

end; 

For example, consider application of the algorithm to the polygon in Figure 2-7. 
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Figure 2-7 Example For Little & Heuft Algorithm 

S is identified as the top of the first trapezoid. Reg~on STQ contains no other vertex. R, the 

intersection of edge QS with line y = y(T 1, is computed. Trapezoid STR is removed from the 

polygon vertex list and output. RT becomes the top of the next trapezoid. RTVQ contains no 

other vertex. U,  the intersection of edge TV with line y = y(Q), is computed. Trapezoid RTUQ 

is removed. QU becomes the top of the next trapezoid. Q W P  contains no other vertex. No new 

intersection point is introduced this time. Trapezoid Q W P  is removed. The polygon vertex list 

is now empty, and the process is complete. 

2.2.3. Newell & Sequin Algorithm 

A polygon partitioning algorithm based on scan conversion is described by Newel1 and 

Sequin [6]. Their algorithm utilizes a method to determine if a point is inside a polygon, using 

the "nonzero winding number" convention. Suppose we want to know if point p is inside or 

outside of a polygon. The winding number of the polygon boundary with respect to p is defined 

as the net number of times that a point (b) on the boundary wraps around p while b makes one 
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complete traversal of the boundary. The nonzero winding number convention states that a point 

is inside a polygon if the winding number of the polygon boundary with respect to that point is 

nonzero. For example, consider point P in Figure 2-8. 

Figure 2-8 Winding Number 

B *  C F 

Imagine that a loop of stiff wire is bent into the shape of polygon ABCDEFGHIJKL. The wire 

is placed on a board with a peg mounted at point P. A piece of thread is anchored to the side of 

the peg; its other end is attached to a bead which has been threaded on the wire. Moving the 

bead around the wire loop causes the thread to wind around the peg. Suppose we start with the 

bead at vertex A. By the time the bead has reached vertex G, there is half a turn of thread 

around the peg: by the time the bead has returned to A, the peg has one complete turn of thread. 

The number of turns of thread around the peg represents the winding number of the boundary 

with respect to point P. Thus the winding number for P is nonzero, and P is deduced to be 

inside the polygon. Now consider the same exercise for point Q. Again, start with the bead at  

A. By the time the bead has reached vertex I, there is approximately three quarters of a turn of 

thread around the peg. But, by the time the bead has returned to A, the thread has beeri 

thread 

bead -4)- 

D E 

I- --. P 
-/-- 

_/-- 

a 
K J . Q 

A .  a L I * 6 H 
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unwound, leaving zero turns on the peg. The winding number with respect to Q is zero, and Q 

is deduced to be outside of the polygon. 

The nonzero winding number convention is quite general. The same cannot be said for all 

interiodexterior testing methods. For example, consider the commonly used "parity conven- 

tion". A ray is constructed from the test point, extending to infinity in any direction. Intersec- 

tions of the ray with polygon edges are counted, and the parity of the count determines the 

state of the point: if the count is even, then the point is outside, else it is inside. This method 

works in many cases, but fails with some self-crossing polygons. For example, any point in the 

shaded area of Figure 2-9 will be classified as outside of the polygon. This is the wrong answer 

for polygons being used to create masks! 

The nonzero winding number convention handles self-crossing polygons without any such 

difficulties. (The reader is encouraged to visualize the "peg and thread" exercise for this exam- 

ple.) 

0 

0 

s . m . . >  .......... . . . . . . . . . .......... 
2.-.-...........*. . . . . . . . . . .......... . . . . . . . . . 
f :.:.:.:.:.:.:.:.: 

0 

0 

Figure 2-9 Polygon Which Foils Parity Convention 

.:.:.:.:.:.:.:.:.:. :.:.>:.:+:.>:.: 
0 
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Newel1 and Sequin describe a scan conversion algorithm using the nonzero winding 

number convention to determine which pixels on the current scan line should be turned on. 

Each polygon edge is assigned a direction tag: +1 for edges which are traversed in an upward 

(increasing y coordinate) direction: -1 for downward directed edges; and 0 for horizontal edges. 

If the direction tags are summed for all edges which intersect the scan line to the left of some 

point p on the scan line, then the total is equal to the winding number of the boundary with 

respect to p. For example, consider the polygon in Figure 2-10. 

WINDING NUMBER 

Figure 2-10 Calculation of Winding Number from Direction Tags 

The winding number for all points on the scan line to the left of A is 0. All points between A 

and B have a winding number of 1. Between B and C, all points have winding number equal to 

2. And so forth; winding numbers for points in each region of the scan line are labeled on the 

diagram. If one chooses any point on the scan line and adds the direction tags for all edges 

which intersect the scan line to the left of the point, the sum will be equal to the winding 

number for that point. This is the technique used in the scan conversion algorithm. 
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Newel1 and Sequin use a modification of their scan conversion algorithm to perform 

polygon partitioning. The current y value is stepped from one point of interest to the next. 

rather than from one raster scan line to the next. The winding number is used as follows. A 

sum (wind) is initialized to zero. As a horizontal line through the current y value (line y = 

ycurr) is scanned from left to right, the direction tag for each edge encountered is added to 

wind. In this way, as each edge is encountered, wind becomes equal to the winding number for 

points which are on line y = ycurr, to the right of the edge, and to the left of the next edge (Fig- 

ure 2-10). Thus, as the scan is performed, a change in wind from zero to nonzero signals the 

left side of a trapezoid, and a change from nonzero to zero indicates the right side. The bottom 

of a trapezoid is a horizontal line with y = y coordinate at which the side edges first become 

paired. The top of a trapezoid is a horizontal line with y = y coordinate at which the side edges 

become unpaired. To use this algorithm to generate data for the MEBES machine, it must be 

modified to partition trapezoids at stripe boundaries. The algorithm, so modified. is as follows. 
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NEWELL & SEQUIN ALGORITHM 

generate edge list, omitting horizontal edges and those 
outside stripe, and assigning direction tag to each edge; 
sort edge list on ymidedge): 
/* ymin(z) = y coordinate of lowermost point in z */ 
while active list or edge list is not empty do 
begin 

if active list is empty then do 
begin 

ycurr + ymin(first edge in edge list); 
if ycurr < ymidstripe) 
then ycurr + ymin(stripe); 

end; 
edge + first edge in edge list; 
while ymidedge) < ycurr do 
begin 

transfer edge from edge list to active list; 
xcurdedge) + x(edge.ycurr); 
/* 

xcudedge) = x coordinate of 
intersection of edge with line y = ycurr 
x(edge,ycurr) is the x coordinate of point 
on edge with y coordinate = ycurr 

*/ 
edge + next edge in edge list; 

end; 
sort active list on xcurr(edge); 
find ynext; /* See below. */ 
generate trapezoids; /* See below. */ 
for each edge in active list do 
begin 

/* 
ymax(z) = y coordinate of uppermost point in z 

*/ 
if ymax(edge) = ynext or ynext = ymax(stripe) then do 
begin 

if edge has a mate then output trapezoid 
and unpair edge's mate; 
remove edge.from active list; 

end: 
else xcurr(edge) + xnext(edge1; 
/* 

xnexdedge) = x coordinate of 
of edge with line y = ynext 

*/ 
end; 
ycurr + ynext; 

end; 

intersection 
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"FIND YNEXT" SEQUENCE 
ynext + midactive list ymax values); 
ynext + min(ynext.ymin(first edge in edge list)); 
ynext + min(ynext.ymax(stripe)); 
for each edge in active list do 

xnext(edge) + x(edge.ynext); 
sort active list on xnexdedge): 
if active list order at ycurr Z order at ynext 
then do 
begin 

find intersection point of edges out of sort; 
break up 2 intersecting edges into 4 new edges. 
leaving lower 2 in active list and inserting 
upper 2 into edge list; 
ynext +-  intersection point): 
go back to loop which assigns xnext values; 

end: 

"GENERATE TRAPEZOIDS" SEQUENCE 
wind + 0; 
left + first edge in active list; 
for each edge in active list do 
begin 

wind + wind + directiodedge); 
/* 

directiodedge) = direction tag assigned to edge 
wind = winding number for points to immediate right of edge 

*/ 
if wind = 0 then do 
begin 

if left and edge are not mates then do 
begin 

if left has a mate then output trapezoid 
and unpair left's mate; 
if edge has a mate then output trapezoid 
and unpair edge's mate; 
pair left and edge and initialize a 
trapezoid; 

end; 
left + next edge in active list; 

end; 
end; 
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For an example of the functioning of the Newel1 & Sequin algorithm, refer to Figure 2-11. 

Figure 2-11 Example For Newel1 & Sequin Algorithm 

We are given polygon ACEFHIJKM, defined in a clockwise direction. (It could be defined coun- 

terclockwise with no detrimental effect on the algorithm.) Note that vertex D is not part of the 

initial polygon; edges CE and FH simply cross at that point. Edges AC, CE and IJ receive direc- 

tion tags of + l ;  FH and KM receive direction tags of -1; EF. Hi. J K  and MA receive tags of 0. 

Assume that the polygon lies entirely within a stripe, so no partitioning at ,;ipe boundaries 

will be performed. Ycurr becomes y(A). Edges AC and KM are transferred from the edge list 

to the active list. Ynext becomes y(H). Edges AC and KM are paired. Ycurr becomes y(H). 

Edges FH and IJ are transferred from the edge list to the active list. Ynext becomes y(J). 

Edges AC and FH should now be paired, but AC already has a mate, so trapezoid ABLM is out- 

put. Edges AC and KM are unpaired. AC is now paired with FH, and IJ is paired with KM. 

Because ymax(N) = ynext, this edge will no longer be active once ycurr is stepped, so it must 

be removed from the active list. First, though, since IJ has a mate, trapezoid IJKL is output. 

and KM is unpaired. 1.7 is then removed from the active list. KM is also removed from the 
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active list because ymax(KM) = ynext. Ycurr becomes y(J). No edges are transferred from 

the edge list to the active list at this point. Ynext becomes y(C ). AC and FH should be paired. 

but are found to be already paired, so no action is necessary. Because ymax(AC ) = ynext, tra- 

pezoid BCGH is output and edges AC and FH are unpaired; AC is then removed from the active 

list. Ycurr becomes y(C 1. Edge CE is transferred from the edge list to the active list, leaving 

the edge list empty. Ynext is set to y(F), but the active list order at this value of ynext does 

not match the order at ycurr. Thus the intersection point D is found; edge CE in the active list 

is replaced by edge CD, and DE is inserted into the edge list. Similarly. FH in the active list is 

replaced by DH, and FD is inserted into the edge list. Ynext becomes y(D). Now the active list 

order is the same at ycurr and ynext. Edges CD and DH are paired. Then. because ymax(CD) 

= ynext, trapezoid CDG is output, and CD is removed from the active list. DH is also removed. 

Ycurr becomes Y(D) Edges DE and FD are transferred from the edge list to the active list, 

leaving the edge list empty Ynext becomes y(F ). Edges FD and DE are paired. Ymax(FD) = 

ynext, so trapezoid DEF is output. and FD is removed from the active list. DE is also removed. 

leaving the active list empty. Now both edge list and active list are empty, and the process ter- 

minates. 

2.2.4. Otto Algorithm 

A paper by Otto [7] mentions the reduction of polygons tc ,-beam primitives using a 

recursive divide and conquer strategy. The polygon is sliced horizontally or vertically from a 

reference vertex, producing two new polygons. The procedure is recursively applied to each of 

the new polygons. until all polygons have been reduced to e-beam primitives. 

An approach such a s  this could potentially lead to an 0 (n log n) algorithm. (Finding a 

slicing line might require 0 (n) time. If each partition generates two polygons with equal 

numbers of vertices, then recursion would proceed to a depth of logan levels.) Unfortunately. 

the description of the algorithm was too sketchy to permit any kind of evaluation. 
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23. ANALYSIS 

POLYGON PARTITIONING 

23.1. Pate1 Algorithm 

The Pate1 algorithm works satisfactorily for most polygons, but breaks down when 

applied to self-crossing polygons. Consider the polygon in Figure 2-12. 

Figure 2-12 Self-crossing Polygon 

When applied to this polygon, the Pate1 algorithm fails tc ddect the crossing point. and outputs 

an invalid trapezoid. This is not a serious drawback for this type of polygon: the internal area 

is reduced to zero at the crossing point, and the polygon would be invalid in an IC layout. 

Unfortunately, the Pate1 algorithm also fails with self-crossing polygons which originate as 

wires with self-touching center-lines, such as that shown in Figure 2-13. 
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Figure 2-13 Wire With Self-Touching Centerline 

In this example, points B, C, D. G. H I  J and M are not part of the original polygon. The Patel 

algorithm outputs the following trapezoids: ABJQ, BCMJ. CDPM. DEFG. KLMJ, and Nff iH.  

No data is output to cover region JMWI. Because this type of polygon is valid in IC design, the 

Pate1 algorithm is unacceptable without substantial refinement. 

23.2. Little & Heuft Algorithm 

The Little & Heuft algorithm gets into serious trouble when applied to a polygon with a 

concave portion at the bottom, such as shown in Figure 2-14. 
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Figure 2-14 Polygon With Concave Bottom 

Tracing the operation on this example-~ields the following. CD is identified as the top of the 

first trapezoid. Region CDFA contains vertices I and H ,  and ybtm is set to y(I  1. Trapezoid 

CDEB is removed and output. If IH is selected as the top of the next trapezoid, then region 

IHGJ is found to contain no other vertices, and a trapezoid is generated for that region. If BE is 

selected as the top of the next trapezoid, then region BEFA contains no other vertices, and tra- 

pezoid BEFA is generated. In either ca-6.  he region bounded by I. H. G and J becomes filled in. 

The algorithm is clearly inadequate as stated. and needs to be equipped with the ability to 

recognize when the polygon has been split horizontally by a concavity. 

23.3. Newel1 & Sequin Algorithm 

The Newel1 & Sequin algorithm showed the greatest promise: it was designed to work with 

arbitrary polygons, including all types of self-crossing polygons. It is not, however, without 

problems. 
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One problem' arises when attempting to sort the active list on xcurr. If two edges have the 

same xcurr value, then the active list at ycurr cannot be sorted. A similar problem exists for 

sorting the active list on xnext. It is essential that the active list be sorted correctly because the 

determination of winding number relies on this sorting. Also, an incorrectly sorted active list 

will prevent the test for edges which cross each other ("find ynext" sequence) from working. 

For example. see Figure 2-15. 

Figure 2-15 Unsortable Edges 

When ycurr = y(A), edges EA and AB have the same xcurr value, and edges AB and BC have 

the same xnext value. 

A second problem arises in the test for crossing edges. If two edges cross at y = y(p). 

where p is some other vertex of the polygon, then the crossing will not be detected. For exam- 

ple. consider Figure 2-16. 
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- - - - - -  - - - - - - -  A&,= El-l - - -  ynext 

- - I - - - - - -  - - - - - -  ycurr 

Figure 2-16 Crossing Point Not Detected 

When ycurr = y(I) ,  the active list contains edges HI. FG. DE and BC. Ynext is initially set to 

y(D). Edges HI and FG will have the same xnext value. Assuming that the active list ordering 

problem is corrected, the order at ycurr will match the order at ynext, and ynext = y(D) is 

accepted. Edge HI will be paired with edge FG. When ycurr becomes y(D), the active list con- 

tains edges HI and FG. Ynext is tentatively set to y(G ). The active list order at ycurr and 

ynext agrees, and vn: ,t = y(G ) is accepted. Edges HI and FG remain paired. Before removing 

these edges from the active list, trapezoid IFHG is output. Thus the trapezoids generated from 

this polygon are as shown in Figure 2-17. Clearly, this is not what was intended! 
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Figure 2- 17 Trapezoids Generated 

2.3.4. Rehement of Newell & Sequin Algorithm 

2.3.4.1. Sorting the Active List 

If two edges have the same value of xcurr, then they must intersect at y = ycurr. and they 

cannot possibly cross each other between ycurr and ynext. TholA their order at ynext can be. 

used to resolve the order at ycurr. Similarly, edges which have the same xnext value can be 

sorted at ynext by using their order at ycurr. This approach would require delaying sorting of 

the active list at ycurr until the order at ynext is known. 

A cleaner solution is to use the cotangent of the angle formed by the line y = ycurr and 

the edges to be sorted. A justification for this follows. Consider a number of active list edges 

which intersect at the point (xcurr.ycurr). All such edges must extend above ycurr, otherwise 

they would have been removed from the active list. We are not concerned with any portions of 
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these edges below ycurr, because such portions have already been processed. So, consider a set 

of edges (or partial edges) which intersect at the point (xcurr.ycurr), and which extend 

upwards from that point (Figure 2-18). 

(xcurr, ycurr) 

Figure 2-18 Edges With Common xcurr Value 

Define ray "ref" as the ray with endpoint (xcurr.ycurr) and equation y = ycurr, and which is 

directed to the right of (xcurr.ycurr). For each edge, define 0 to be the angle formed by ref and 

the edge, measured in the conventional sense (co~nterc~a~kwise) (Figure 2-19). 0 can be used to 

sort these edges: the edge with largest 8 should appear first in the active list, and the one with 

smallest 8 should appear last. 1.e. edges with equal xcurr value can be sorted on decreasing 8. 

This solution would work, but would require considerable machine time to compute the angles 

from the edge data. 

Fortunately, there is a trigonometric function which is easy to compute, and which works 

just as well as 8 to sort the edges: cotangent. (The cotangent of the angle between horizontal 

line y = y, and a line segment with end points (xl,yl) and (x2.y2) is just (x2 - xl) / (y2 - y,): 
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ref 

I 

Figure 2-19 Ordering Of Edges By Angle 

Because there are no horizontal edges in the active list, and we are not concerned with portions 

. of edges below ycurr. 0 < 8 < r. In this range, there is a one-to-one mapping between 8 and 
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cot(8) (Figure 2-21); 9 can be treated as a function of cot(@. 

I 

Figure-2-21 Cotangent Function 

Thus, because cot(@) increases as 9 decreases, active list edges with equal xcurr can be sorted on 

increasing cot(@. 

A similar argument holds for edges with equal xnext value. In this case, we would like to 

sort on increasing 0, but can equivalently sort on decreasing cot(@. 

2.3 .#.2. Failure To Detect Crossing Point 

The failure of the Newel1 & Sequin algorithm to detect the crossing of edges when some 

vertex has the same y coordinate as the crossing point prevents it from being completely gen- 

eral. A solution to the problem is as follows: when sorting the active list on xnext, check for 

pairs of edges in which both edges have the same xnext value and both extend above ynext. 

Any such pair crosses at (xnext.ynext), and must be broken up into four non-crossing edges. 

The only exception is collinear edges. 
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Why does this test work? The edges intersect at (xnext.ynext) because they have the same 

xnext value. Since both edges are in the active list, both are active at ycurr; thus both extend 

below ynext. If both edges also extend above ynext, then they must cross at (xnext.ynext). 

Collinear edges are an exception because they can have the same value of xnext, can extend 

below and above ynext, but not cross. 

235. The Re&& Newell & Sequin Algorithm 

The Newel1 & Sequin algorithm, refined as described above, is shown below. 
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NEWELL & SEQUIN ALGORITHM (REFINED) 

generate edge list, omitting horizontal edges and those 
outside stripe, and assigning direction tag to each edge; 
sort edge list on ymidedge); 
/* ymin(z) = y coordinate of lowermost point in z */ 
while active list or edge list is not empty do 
begin 

if active list is empty then do 
begin 

ycurr t ymidfirst edge in edge list): 
if ycurr 4 yminbtripe) 
then ycurr + ymin(stripe); 

end: 
edge + first edge in edge list; 
while ymin(edge) < ycurr do 
begin 

transfer edge from edge list to active list; 
xcurr(edge) + x(edge.ycurr); 
/* 

xcurdedge) = x coordinate of intersection 
of edge with line y = ycurr 
x(edge.ycurr) is the x coordinate of point 
on edge with y coordinate = ycurr 

*/ 
edge + next edge in edge list; 

end: 
sort active list on xcurr(edge1, subsort on 
cotangent of angle between edge and line y = ycurr; 
find ynext: /* See below. */ 
generate trapezoids; /* See below. */ 
for each edge in active list do 
begin 

/* 
ymax(z) = y coordinate of uppermost point in z 

*/ 
if y b:x(edge) = ynext or ynext = ymadstripe) then do 
begin 

if edge has a mate then output trapezoid 
and unpair edge's mate: 
remove edge from active list; 

end; 
else xcurdedge) + xnext(edge); 
/* 

xnext(edge) = x coordinate of intersection of 
edge with line y = ynext 

*/ 
end; 
ycurr + ynext: 

end: 
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TIND YNEXT" SEQUENCE (REFINED) 
ynext + midactive list ymax values); 
ynext + min(ynext.ymin(first edge in edge list)); 
ynext + min(ynext.ymax(stripe)); 
for each edge in active list do 

xnext(edge1 + x(edge.ynext); 
sort active list on xnext(edge1, subsort on cotangent 
of angle between edge and line y = ynext; 
for each pair of active list edges (edgel and edge2) 
such that xnext(edge1) = xnext(edge2) do 
begin 

if ymax(edge1) > ynext and ymax(edge2) > ynext and 
edgel and edge2 are not collinear then do 
begin 

create edge3 with endpoints 
(xnext(edge1 ).ynext) and upper-end(edge1); 
create edge4 with endpoints 
(xnext(edge2).ynext and upper-end(edge2); 
insert edge3 and edge4 into edge list; 
upper-end(edge1) + (xnext(edge1 ).ynext); 
upper-end(edge2) + (xnext(edge2).ynext); 

end; 
if active list order at ycurr Z order at ynext 
then do 
begin 

find intersection point of edges out of sort: 
break up 2 intersecting edges into 4 new 
edges, leaving lower 2 in active list and 
inserting upper 2 into edge list; 
ynext +  intersection point); 
go back to loop which assigns xnext values; 

end; 
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"GENERATE TRAPEZOIDS" SEQUENCE 
wind + 0; 
left + first edge in active list; 
for each edge in active list do 
begin 

wind 4- wind + directiodedge); 
/* 

directiodedge) = direction tag assigned to edge 
wind = winding number for points to immediate right of edge 

*/ 
if wind = 0 then do 
begin 

if left and edge are not mates then do 
begili 

if left has a mate then output trapezoid 
and unpair left's mate; 
if edge has a mate then output trapezoid 
and unpair edge's mate; 
pair left and edge and initialize a 
trapezoid; 

end; 
left + next edge in active list; 

end; 
end; 

2.4. EXPERIMENTAL 

2.4.1. Context 

The partitioning of polygons into trapezoids has been implemented within the context of a 

, program to generate IC mask data for the Perkin-Elmer MEBES machine. The program was ini- 

tially developed while working at Microtel Pacific Research under the Co-operative Education 

Program, and is still in routine use there. That version uses a polygon partitioning algorithm 

similar to that by Little and Heuft [3], but refined to handle horizontal splitting due to concavi- 

ties. All program segments were initially written in the C programming language and designed 

to run under the UNIX operating system. Several of the high profile modules were later rewrit- 

ten in assembler (by Microtel Pacific Research staff) to improve speed. 
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During subsequent work at Simon Fraser University the polygon partitioning part of the 

program was rewritten, using the refined Newel1 & Sequin algorithm. This change not only 

enabled the program to correctly handle arbitrary polygons (including all types of self- 

intersections) but also resulted in a reduction of CPU time, typically in the order of 50%. 

2.4.1.1. Input 

The program (called "bifmebes") receives as data an IC layout in Microtel's "Binary Inter- 

mediate Form" (BIF). BIF is a low level graphics language, somewhat similar to Caltech Inter- 

mediate Form (CIF) [4]: the differences are of no consequence here. 

2.4.1.2. Output 

Bifmebes generates the following output. 

one MEBES data file for each layer of the IC 

one MEBES tape header file (which is used as a tape directory) 

0 one conversion log file, in which are reported the names of BIF modules used, warnings 

and error messages, timing statistics, and statistics on e-beam primitives generated. 

2.4.2. Testing 

The program was tested on two types of data. It was first tested on data contrived to 

exercise various features, including various aspects of the partitioning algorithm. It was then 

tested on actual IC design data. The output was verified using several different techniques: 

0 examination of the conversion log file 

hand decoding of a hexadecimal dump of the MEBES binary data 

conversion of the MEBES data back to BIF, followed by overlaying plots of the original 

and converted polygons in different colors on the same monitor 

comparison of generated data to MEBES data produced by the earlier version of the 
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program. The earlier version has been tested by the above techniques and also by photo- 

graphic enlargement of a mask produced on the MEBES machine using bifmebes output. 

2.43. Results 

In all cases, polygon partitioning has been shown to be correct. The data generated is con- 

sistently accurate to within the resolution of the MEBES machine. 



Chapter 3 

OPTIMIZATION TECHNIQUES 

3.1. INTRODUCTION 

Mask vendors usually include the total amount of e-beam machine time consumed in the 

cost of mask fabrication. Typically there is a fixed charge up to a certain time limit, and then 

the customer pays for each minute of machine time past that limit. This provides economic 

motivation to minimize e-beam machine time, and makes optimization.of the MEBES data desir- 

able. There are several possible techniques to do this: 

reducing the trapezoid count 

recognizing repeated patterns. and 

sequencing of rasterization and stage movement. 

3.2. REDUCTION OF TRAPEZOID COUNT 

Each trapezoid in the e-beam data must be decoded and rasterized - the more trapezoids. 

the more machine overhead. (With raster scan machines, the actual time spent exposing the 

mask will not be affected, as writing does not start until all trapezoids of the current stripe 

have been rasterized and saved in the bit map. With vector scan systems, though, the trapezoid 

count would affect exposure time.) Two possible techniques for reducing the trapezoid count are 

non-horizontal partitioning and trapezoid merging. 

3.21. Non-Horizontal Partitioning 

Although Newel1 and Sequin [6] claim that their algorithm generates a minimum set of 

trapezoids, this is not true. Neither is it true for any of the other polygon partitioning 
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algorithms examined. The reason? All such algorithms are limited to partitioning along hor- 

izontal lines. If polygons could also be partitioned non-horizontally. then the total trapezoid 

count could be reduced. 

For example. refer to Figure 3-1. 

Figure 3-1 Horizontal & Non-Horizontal Partitioning 

The figure on the left (a) cannot be partitioned into any less than three trapezoids. In this 

orientation, horizontal partitioning yields the minimum set. But if the figure is rotated through 

90 degrees, this is no longer true. Horizontal partitioning now produces five trapezoids (figure 

b), while non-horizontal partitioning yields three (figure c). 

3.2.2 Trapezoid Merging 

In this technique adjoining trapezoids which satisfy certain conditions are merged into a 

single trapezoid. Consider two adjoining trapezoids. ABCD and EFGH (Figure 3-2). 
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Figure 3-2 Trapezoid Merging 

Let vertex B be coincident with vertex E, and let vertex C be coincident with vertex H. If edges 

AB and EF are collinear, and if edges CD and GH are collinear, then the trapezoids may be 

merged, yielding one new trapezoid. AFGD. 

It is possible that trapezoid merging could significantly reduce the number of trapezoids. 

The application of hierarchical design techniques to integrated circuits results in modularization 

of the IC layout. Each module is placed into the overall design wherever its pattern is *,quired. 

Often, modules are designed to abut, greatly reducing the amount of explicit interconnection 

needed. I.e. interconnection is achieved by butting polygons, and butting polygons will give rise 

to mergable trapezoids. 

33. RECOGNITION OF REPEATED PATTERNS 

The MEBES system software accepts a "data compaction option", which is of benefit in 

designs having a high degree of regularity (e.g. memory). This option is equivalent to an array 
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of trapezoids. A trapezoid is described once, together with a row count, a column count, the 

inter-row spacing. and the inter-column spacing, and the MEBES software generates and raster- 

izes all instances of the trapezoid. Making use of the data compaction option would require the 

recognition of array-like patterns of trapezoids. (Although this type of information is often 

available at the design level, it is lost on translation to BIF or CIF.) 

3.4. SEQUENCING OF RASTERIZATION AND STAGE MOVEMENT 

As described in Chapter One, the MEBES machine rasterizes one stripe, and then writes all 

instances of that stripe on the mask before proceding to the next stripe. This is an efficient 

approach for production type masks, in which all dies on the mask are identical. (A die is the 

pattern corresponding to one chip.) It may not be so efficient, though, for research type masks. 

in which a number of different dies are present. With a production mask, stage movement 

between instances of a stripe is small. But in a multi-project mask. such stage movement can be 

fairly large, and much time can be wasted. 

An alternative sequence would be as follows. 

until all instances of all stripes have been written do 
begin 

rasterize the stripe closest to the current stage position; 
write that stripe onto the mask: 

end: 

This sequence could also be inefficient at times. For example, if the next instance of the current 

stripe is close, it may be faster to move the stage than to rasterize the next stripe. The optimum 

sequence is somewhere in between the two extremes. 

A branch and bound approach could be used to find the optimum sequence, but would be 

far more time consuming than just using the normal sequence. There is a very large number of 

stripes on a mask, so the branching factor in a branch and bound tree would be high. Thus a 

heuristic would be needed to find a near optimal sequence. 
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35. SELECTION OF OPTIMIZING TECHNTQUE 

Trapezoid merging was not attempted due to insufficient time. 

The recognition of array-like patterns for the data compaction option was not tried 

because it was unlikely to have much impact on e-beam machine time. The major benefit of 

data compaction is in reducing the quantity of data; data compaction does produce a slight 

reduction in overhead, but its effect on overall machine time is minimal (personal communica- 

tion with Lee Bernier. Software Manager at Perkin Elmer. 4 May 1983). 

The sequencing of rasterization and stage movement was not attempted for two reasons. 

(1) Current MEBES machines do not provide any control over such sequencing. 

(2) Information needed to simulate the effect of different sequences on machine time was 

difficult to obtain. 

The only optimization technique actually tried was non-horizontal partitioning. This is 

discussed in detail in Chapter Four. 



Chapter 4 

NON-HORIZONTAL PARTITIONING 

4.1. OBJECTIVES 

As discussed in Chapter 3, non-horizontal partitioning of polygons is one way to reduce 

the total trapezoid count and hence partially optimize the e-beam data. The objectives of this 

part of the study were 

(1) to develop an algorithm for non-horizontal partitioning of polygons. 

(2) to implement the algorithm, and 

(3) to evaluate its effectiveness. 

4.2. ANALYSIS 

4.2.1. The Need For A Heuristic 

An obvious method to introduce 'non-horizontal partitioning would be to use a branch and 

bound algorithm instead of one like Newel1 and Sequin's. In this approach, the tree of all possi- 

ble partitions would be traversed, backtracking wherever the partition does not yield acceptable 

e-beam trapezoids or wherever the trapezoid count exceeds the best solution found so far. This 

technique would find an optimum partitioning, but would likely be prohibitive in CPU time. 

This suggests the need for a heuristic which could be used to partition a polygon non- 

horizontally. Once no further partitioning by the heuristic is possible, each new polygon gen- 

erated can be partitioned horizontally using the Newel1 and Sequin algorithm. 
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4.2.2. The Collinear Edge Heuristic 

The observation which prompted the "collinear edge heuristic" is as follows: in many 

cases, non-opt id  partitioning is caused by failing to recognize that two coUinear edges should 

(under the right conditions) be rearranged to form two new edges, partitioning the polygon in the 

process. An example of this is seen in Figure 3-1. In this example. horizontal partitioning of 

the figure in (b) yields five trapezoids. In (c), the trapezoid count has been reduced to three by 

rearranging pairs of collinear edges. A rough algorithm for edge rearrangement in the collinear 

edge heuristic follows. (Refer to Figure 4-1.) 

a 
edgel 

a\ edge1 

Figure 4-1 Edge Rearrangement in Collinear Edge Heuristic 
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find a pair of collinear edges (edgel and edge21 which 
satisfy the conditions for the collinear edge heuristic; 
a + endpoint of edgel farthest from edge2; 
b + endpoint of edgel closest to edge2; 
u + endpoint of edge2 closest to edgel; 
v + endpoint of edge2 farthest from edgel; 
edgel + edge av : 
edge2 + edge ub; 
polygon1 + polygon containing av ; 
polygon2 + polygon containing ub; 

For example, application of the algorithm to the polygon in Figure 4-2 proceeds as follows. 

edge1 edge1 

Figure 4-2 Exampie of Edge Rearrangement Algorithm 

a G, b + F, u + C, and v + B. Edge1 + GB and edge2 + CF. Polygon1 + ABGH and 

polygon2 + CDEF. 

4.2.3. Partitioning Conditions For Collinear Edge Heuristic 

AU pairs of collinear edges can't be rearranged to partition a polygon and produce valid e- 

beam data. For example, consider the polygon shown in Figure 4-3. 
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E - F  

Figure 4-3 Invalid Edge Rearrangement 

Edges BC and FG are collinear, but rearrangement as described above produces two new 

polygons which, together, do not resemble the original. Specifically, the region bounded by ver- 

tices C. D. E and F has been filled in. 

The conditions which must be met before applying edge rearrangement in the collinear 

edge heuristic are as follows. 

(1) Edges to be modified a ~ s t  be collinear. 

(2) Edges to be modified must have the same traversal direction. 

(3) After edge rearrangement, polygon1 must not enclose any vertex of polygon2, and vice 

versa (non-enclosure condition). 

(4) After edge rearrangement, if polygonl or polygon2 has any regions of zero width, then 

each such region must be no larger than a point (non-zero-width condition). 
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4.2.4. Justification of Partitioning Conditions 

These four conditions are necessary and sufficient to permit non-horizontal partitioning 

using the collinear edge heuristic with no loss of data integrity. In the following justification 

for this claim, let the edges involved be as shown in Figure 4-1. 

4.2.4.1. Necessity of Conditions 

4.2.4.1.1. Collinearity Suppose collinearity of edges ab and uv isn't necessary. Then rearrange- 

ment of two edges which satisfy all of the other conditions for partitioning must produce a 

valid partition. Consider the polygon in Figure 4-4. 

Figure 4-4 Rearrangement of Non-Collinear Edges 

Edges CD and FA are not collinear, but satisfy the traversal direction, non-enclosure and non- 

zero-width conditions. Edge rearrangement must involve formation of an edge between C and 

A. (The only other possibility would be an edge between C and F, but this would leave edge 
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FA intact while breaking edge EF, i.e. edge EF would be involved instead of FA.) Thus edges 

CD and FA are broken, and edges CA and FD are formed. This yields two polygons whose 

union bears little resemblance to the original. Thus a counterexample has been demonstrated 

which contradicts the above supposition, indicating that edge collinearity is a necessary condi- 

tion. 

4.2.4.1.2. Traversal Direction Consider a point which traverses the polygon boundary in such a 

way that each vertex is passed only once. The traversal direction of each edge is the direction in 

which the point travels as it traverses that edge. The traversal direction condition states that 

edges to be rearranged in the collinear edge heuristic must have the same traversal direction. 

Suppose this condition is not necessary. Let edges ab and uv satisfy all of the other partitioning 

conditions, but have opposite traversal directions (Figure 4-51. 

Figure 4-5 Edges With Opposite Traversal Direction 

Aside from edge ab, there must be a path from b to a to close the polygon. This path must 

include u and v, otherwise those vertices would not belong to the same polygon. The portion of 
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this path between b and u must include v, otherwise the traversal directions of ab and uv would 

be violated. Thus the vertex adjacency list for the polygon is a,b, ... ,v,u,... ,a. Rearrangement of 

ab and uv as per the collinear edge heuristic generates the following vertex adjacency list: 

a,v,  ..., b,u, ... ,a. But this is still one polygon; partitioning has not occurred! This example con- 

tradicts the assumption regarding traversal direction. Edges to be rearranged must have the 

same traversal direction. 

4.2.4.1.3. Non-Enclosure Edge rearrangement partitions a polygon into two new polygons. 

polygonl and polygon2. Suppose polygonl may enclose some of polygon2's vertices (or vice 

versa) without harming data integrity. Consider the polygon in Figure 4-3. Edges BC and FG 

satisfy all conditions of the collinear edge heuristic except for non-enclosure. Rearrangement of 

these two edges yields polygons ABGH and CDEF. This will have the effect of filling in the 

region enclosed by vertices C ,  D, E, and F, which is clearly an error. The counterexample con- 

tradicts the assumption that non-enclosure is not necessary 

4.2.4.1.4. Non-Zero-Width If partitioning a polygon yields a region of zero width which is 

larger than a point, then subsequent partitioning will generate a zero-area trapezoid for that 

region. This increases, rather than decreases the amount of e-beam machine overhead, and on 

<dme machines, may not even be tolerated at all. Thus the non-zero-width condition is neces- 

sary. 

For example, refer to Figure 4-6. Edges BC and FG satisfy all collinear edge heuristic con- 

ditions except for non-zero width. Edge rearrangement yields polygons CDEF and ABGHIJKL. 

Subsequent horizontal partitioning of the latter polygon generates trapezoids ABKL. GHIJ and 

JKKJ. 



CHAPTER 4 NON-HORIZONTAL PARTITIONING 

Figure 4-6 Generation of Zero-Area Trapezoid 

4.2.4.2. Su@ciency of Conditions 

The conditions for partitioning using the collinear edge heuristic are sufficient to ensure 

data integrity if the shape of the union of the areas enclosed by the new polygons is the same as 

the shape of the area enclosed by the original polygon. Collinear edge heuristic partitioning 

introduces no new vertices, deletes no vertices, and moves no bertices. Furthermore, because of 

the non-enclosure condition, no vertex will be obscured by another polygon. Thus any change 

in polygon shape must be due to edge modification. not vertex modification. 

Two, and only two edges are modified (Figure 4-7). 
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Figure 4-7 

Consider the polygon before edge rearrangement. Because of the collinearity condition. a,  b, u. 

and v all lie on the same line. As a result of the non-enclosure condition, no part of the boun- 

dary can pass between b and u, thus this region must be inside the polygon. Since polygons are 

area-filled on a mask, a line segment between b and u would not affect the shape on the mask. 

Now consider the two new polygons after edge rearrangement. Vertices a,  b, u and v have not 

been moved. thus they must still lie on the same line. The portion of av between a and b (after 

partitioning) is equivalent to ab (before partitioning). The portion of av between u and v is 

equivalent to uv. The portion of av between b and u, and edge ub are both equivalent to a line 

segment between b and u. Nothing has been introduced which can alter the shape of the 

- enclosed area. Thus the collinear edge heuristic partitioning conditions are sufficient to ensure 

data integrity. 
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4.23. Tests Used In Partitioning Conditions 

For a discussion of the collinearity test, see Appendix 1. 

The test for traversal direction is quite simple. Because the edges under test will only be 

considered if they are collinear and non-horizontal, the test reduces to determining whether 

each edge is upwards or downwards directed. This is just the edge direction tag used in the 

Newel1 and Sequin algorithm. 

An obvious algorithm for the non-enclosure test is to tentatively partition the polygon. 

and then test each vertex of each new polygon for enclosure by the other polygon. This method 

would have complexity of 0 (n2). An alternative algorithm uses the convexity or concavity of 

vertices; this algorithm (which is discussed next) also tests for the non-zero-width condition at  

the same time. 

4.2.5.1. Vertex Convexity Algorithm 

This approach requires that the polygon not be self-crossing, and that the collinearity and 

traversal direction conditions be met. The algorithm is as follows. (Refer to Figure 4-1.) 

if vertex b is convex or vertex u is convex 
then reject the partition; 
else 

if any edge of the polygon (except those adjacent to 
b and u) intersects the gap between b and u 
then reject the partition: 

The gap between b and u is defined to be the non-existent straight line segment with end points b 

and u. Also, recall that (at least within this thesis) intersect means to touch or cross. For a 

description of how to determine the convexity or concavity of a vertex, refer to Appendix 2. 

The requirement that the polygon be non-self-crossing makes this algorithm less general 

than the obvious one. On the other hand, what is gained by this restriction is a reduction in 

complexity from 0 (n2) to 0 (n). 
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4.2.5.2. Sustijicution of Vertex Convexity Algorithm 

As mentioned above, the vertex convexity algorithm provides a test for both the non- 

enclosure and non-zero-width conditions. In the following proof of this claim, let ab and w be 

the edges under test, let them belong to a non-self-crossing polygon, and let them satisfy the 

collinearity and traversal direction conditions. Edges ab and uv are as shown in Figure 4-1. 

4.2.5.2.1. Non-Enclosure Condition We must show that 

(a) the convexity of b or u implies that non-enclosure cannot be guaranteed, and 

(b) the concavity of b and u together with the absence of any edge which intersects gap bu 

implies that non-enclosure is met. 

The line containing ab and uv partitions the plane into two half-planes. Let HI  be the half- 

plane on the interior side of ab, and H2 be the half-plane on the exterior side (Figure 4-81. 

H 1 
\ 
\ H 2  
\ 

(INTERIOR) \ \ (EXTERIOR) 

Figure 4-8 Half-Planes HI and H2 

There must be a path from b to a (other than edge ab) to close the polygon. This path must 
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include u and v,  otherwise these vertices would not be part of the same polygon. The portion of 

this path between b and v must include u, otherwise traversal direction would be violated. 

Thus the vertex adjacency list is a b  ..... u.v. .... a. Imagine a point moving along the polygon boun- 

dary from a  to v. Using that point as a viewpoint, and the traversal direction as the viewing 

direction, the polygon interior is always on the same side of the boundary. (The only way this 

could be violated is if edges were allowed to cross each other.) Thus, regardless of what course 

the path from b  to u takes. H1 is always on the interior side of both ab and uv. 

First let us address point (a). Given that vertex b  is convex, prove that non-enclosure can- 

not be guaranteed. Let c be the vertex # a adjacent to b (Figure 4-9). 

Figure 4-9 

By the definition of a convex vertex, interior angle(abc) < 180". and c lies in HI. 

Suppose edge rearrangement is performed on ab and uv ; these edges are replaced by av and 

ub (Figure 4-10). Let polygon1 be the new polygon containing a  and v. Let polygon2 be the 

new polygon containing u, b and c. The section of av between a and b  (after partitioning) is 
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equivalent to ab (before partitioning). The section of av between u and v is equivalent to uv. 

Because H1 was on the interior side of ab and w, it is also on the interior side of av. Vertex c 

still lies in HI. Since no edge crosses bc, no part of the boundary separates c from the interior 

of polygonl. Thus a vertex of polygon2 (c )  is enclosed by polygonl, and non-enclosure has not 

been met. A similar argument holds for the case where u is convex. It may then be concluded 

that neither b nor u may be convex if non-enclosure is to be guaranteed. 

Figure 4- 10 

Now we will address point (b): the concavity of b and u together with the absence of any 

edge intersecting gap bu ensures that non-enclosure will be met. Let ab, uv, H1 and H2 be as 

before. Let c be the vertex f a adjacent to b, and let t be the vertex f v adjacent to u. Given 

that b and u are both concave, and that no edge intersects gap bu. Refer to Figure 4-11. 
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Figure 4-1 1 

There must be a path from c to a (other than a,b,c) to close the polygon. This path must 

include t ,  u and v ,  since these vertices are part of the polygon. Also, the part of the path 

between c and v must include t and u, otherwise the traversal direction would be violated. 

Thus the vertex adjacency list is a.b.c. .... t.u.v. .... a. When edge rearrangement is applied to edges 

ah and uv, they are replaced by new edges av and ub (Figure 4-12). 
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Figure 4-12 

One new polygon (polygonl) will haLe vertex adjacency list a,v, ... a; the other (polygon2). will 

have vertex adjacency list b.c ,... ,t.u.b. 

The only edges affected by the partitioning are ab and w. Because no other edge of the ori- 

ginal polygon crosses any other edge, the only edges which might introduce edge crossing after 

partitioning are av and ub. The portion of av between a and b is equivalent to ab, the portion 

between u and v is equivalent to w, and the portion between .' 3.1d u is equivalent to gap bu. No 

edge crosses ab or uv. Since no edge intersects gap bu, no edge crosses this gap. Thus no edge 

will cross av. Edge ub is equivalent to gap bu; since no edge crosses the gap, no edge will cross 

ub. Thus polygonl and polygon2 are non-self-crossing. Furthermore, no edge of polygonl 

crosses any edge of polygon%. 

Refer back to the pre-partitioned situation (Figure 4-11). Because b is concave, interior 

angle(abc) > 180". and c lies in H2. Similarly, t also lies in H2. After partitioning (Figure 4- 

12). HI will be on the interior side of av, and H2 on the exterior side. Because no vertices are 
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moved, c and t still lie in H2. No edge crosses bc or tu, so no part of a boundary can separate c 

or t from the exterior of polygonl. Thus c and t are outside of polygonl. Vertices b and u lie 

on edge av, but are not inside polygonl. The only way in which any other vertex of polygon2 

can be inside polygonl is for a polygon2 edge to cross a polygonl edge. But this has been shown 

to not happen. Thus polygonl cannot enclose any polygon2 vertex. 

But what about polygon2 enclosing a polygonl vertex? Consider the polygon before parti- 

tioning (Figure 4-13). 

Figure 4-13 

The line containing edge bc partitions the plane into two half-planes. Let H3 be the half-plane 

on the interior side of bc, and H4, the half-plane on the exterior side. Because b is concave, inte- 

rior angle(ubc) > 180". and a lies in H4. Now consider the situation after partitioning (Figure 

4-14). 
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Figure 4-14 

Edge bc is still in the same place.. Polygon2's vertex adjacency list means that the region 

bounded by edges tu, ub and bc is inside polygon2. Thus, following edge rearrangement. H3 is 

still on the interior side of bc, and H4 is still on the exterior side. Because no vertex is moved, a 

still lies in H4. No edge crosses QV (established above), thus no boundary separates a from the 

exterior of polygon2, i.e. a is outside of polygon2. 

A similar argument holds for v : t l  ir vertex is also outside polygon2. The only way for 

any other polygonl vertex to be inside polygon2 is for a polygonl edge to cross a polygon2 edge. 

Since this cannot happen, no vertex of polygonl can be enclosed by polygon2. 

It has been shown that no vertex of polygonl is enclosed by polygon2, and that no vertex 

of polygon2 is enclosed by polygonl. and so the vertex convexity algorithm provides a reliable 

test for non-enclosure. 

Note: throughout this discussion, it has been assumed that there is a space between vertices 

b and u. If this is not true, then edges ab and uv must overlap, or at  least touch. In this case, 
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since no edge crosses ub or uv, no edge will cross gap bu, and it would be unnecessary to test for 

such a crossing. In most cases. however, there will be a space between b and u, and it will be 

necessary to perform the test. 

4.2.5.2.2. Non-Zero-Width Condition We will now justify the claim that the vertex convexity 

algorithm establishes the non-zero-width condition. (Review Figure 4-6 for an example of the 

production of a polygon containing a zero-width region.) Collinear edge heuristic edge rear- 

rangement adds, deletes and moves no vertices. Only two edges are affected: ab and w, which 

become av and ub after partitioning (Figure 4-11. As before, let polygonl be the new polygon 

containing a and v, and polygon2 be the new polygon containing u and b. 

As discussed before, the portion of QV between a and b is equivalent to ub, and the portion 

between u and v is equivalent to uv. All that's new in polygonl is the portion of av between b 

and u; this is the only place in polygonl where edge rearrangement might introduce a zero- 

width region. To produce such a zero-width region, some part of the polygon boundary must 

touch av between b and u. But this part of av is equivalent to the pre-partitioning gap bu, and 

the vertex convexity algorithm prevents partitioning if any edge of the polygon intersects this 

gap. If partitioning has taken place, then no part of the polygon boundary intersects QV between 

b and u, and no zero-width region is introduced into polygonl. (This is not to say that there 

could not have been any zero-wdth regions in the polygon before partitioning, only that parti- 

tioning does not introduce any'zero-width regions.) 

In polygon2, all that's new is edge ub. To produce a zero-width region, some part of the 

polygon boundary must touch this edge. But ub is equivalent to gap bu, and the same argument 

applies to polygon2 as to polygonl. Thus the vertex convexity algorithm establishes the non- 

zero-width condition as well as the non-enclosure condition. 
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4.2.6. An Algorithm For Non-Horizontal Partitioning 

An algorithm has been developed for non-horizontal partitioning, based on the collinear 

edge heuristic. The test for collinearity is performed as described in Appendix 1. Edge traver- 

sal direction is tested as discussed above (using direction tags). The vertex convexity algorithm 

is employed to establish non-enclosure and non-zero-width. Each new polygon produced is 

recursively partitioned until no more non-horizontal partitions are possible, a t  which point it is 

partitioned horizontally (using the Newel1 .and Sequin algorithm). (The switch to horizontal 

partitioning also provides the recursion escape mechanism.) The algorithm is as follows. 

procedure partition(po1ygon) 
begin 

for edgel +- first edge to last edge of polygon do 
begin 

if edgel is horizontal then iterate with next edgel; 
for edge2 +- edge after edgel to last edge do 
begin 

if directiodedgel) Z direction(edge2) 
then iterate with next edge2; 
if edgel and edge2 are not collinear 
then iterate with next edge2; 
a +- endpoint of edgel farthest from edge2; 
b + endpoint of edgel closest to edge2; 
u +- endpoint of edge2 closest to edgel: 
v +- endpoint of edge2 farthest from edgel; 
if b is convex or u is convex 
then iterate with next edge2; 
for edge3 +- each edge of polygon (excluding 
edgel, edge2, and the edges adjacent to these) do 

if edgm'3 ,ntersects gap between b and u 
then iterate with next edge2; 

edge1 t edge av ; 
edge2 +- edge ub; 
polygon1 + polygon containing edgel ; 
polygon2 +- polygon containing edge2: 
partition(polygon1); 
partition(polygon2); 
return; 

end; 
end; 
horizontally-partition(po1ygon); 
return; 

end; 
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4.3. EXPERIMENTAL 

43.1. Context 

The above algorithm has been implemented within the context of the "bifmebes" program 

described in Chapter 2. Procedure "partition" and associated procedures for determining col- 

linearity, vertex convexity, etc. were written in C. Bifmebes was modified to pass each polygon 

to partition, instead of to the Newel1 and Sequin procedure; partition takes care of calls to the 

latter, as discussed above. 

4.3.2. Testing 

The revised program was tested using data contrived to exercise various aspects of the 

algorithm, and then with actual IC layout data. MEBES data generated was verifed by exami- 

nation of the conversion log file, and by overlaying plots of pre- and post-conversion data, as 

before. 

4.3.3. Results 

In all cases, polygon partitioning was shown to be correct, and the output accurate to 

within the resolution of the MEBES machine. 

Two versions of bifmebes, one with and one without non-horizontal partitioning (NHP). 

were run on data for several designs. The following table summarizes the differences observed. 
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Design 

1 
2 
3 
4 
5 
6 
7 
8 

ed 
Change 
-5.6% 
-6.6% 
-2.7% 
-2.0% 
-5.6% 
-3.8% 
-1.1% 
-1.4% 

Trapezoids Generi CP 
No NHP 

0:07 
0:08 
056 
1:oo 

25:02 
26:06 
33:32 
33:26 

No NHP 
3 72 
392 

5851 
6022 

174790 
176229 
221403 
214713 

Time (min:: 
With NHP 

0:08 
0:lO 
1:08 
1:09 

37:02 
3252 
39:25 
37:ll 

With NHP 
35 1 
366 

5694 
5904 

165070 
169488 
218868 
211821 

:> 
Change 
+14.3% 
+25.0% 
+21.4% 
+15.0% 
+47.9% 
+2$.9% 
+17.5% 
+I 1.2% 

(Design 1 is a flipflop cell. 3 is an arithmetic logic unit. 5 is a multi-project chip, and 7 is a 

microprocessor. Designs 2. 4.6 and 8 are the same as 1. 3 .5  and 7 respectively, except that each 

has been rotated through 90•‹.) Non-horizontal partitioning resulted in a trapezoid count reduc- 

tion of 1% to 6%. accompanied by a CPU time increase of 11% to 48%. 

4.4. DISCUSSION 

The impact of the collinear edge heuristic on the total trapezoid count was disappointing, 

although not insignificant. It is clear that the magnitude of the trapezoid count reduction is 

dependent on the nature of the IC design. 

The use of the vertex convexity algorithm is effective in establishing the non-enclosure and 

non-zero-width conditions. In fact, in some cases it represents some overkill. Consider the 

polygon in Figure 4-15. 
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Figure 4-15 Legitimate Partition Rejected 

Edges BC and FG satisfy all conditions for the collinear edge heuristic. However, because edges 

HI and IA intersect gap CF, the partition is rejected by the vertex convexity algorithm. Thus 

some cases for non-horizontal partitioning are missed, although probably not many. (Shapes 

such as that in Figure 4-15 are not common in IC layouts.) 

4.4.1. Exclusion of Self-crossing Polygons 

The failure to handle self-crossing polygons is a definite disadvantage. This drawback can. 

however, be partially offset. One source of self-crossing polygons is the expansion of wires 

with self-touching center-line. Let ub and uv be two edges of a wire envelope polygon, with b 

closest to uv, and u closest to ab (Figure 4-16). 
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I 

Figure 4-16 Wire Envelope 

Let these edges be collinear and have the same traversal direction. If edge rearrangement is to 

be applied, then vertices b and u must both be concave. As a result, the other side of the wire 

envelope will cross gap bu, and the partition will be rejected. Because application of the col- 

linear edge heuristic to wires would seldom (if ever) produce any partitions, little is lost by not 

even trying to apply it to wires. Thus, wires can be processed directly by the horizontal parti- 

loning routine; non-horizontal partitioning is bypassed, and wires with self-touching center- 

lines will be handled correctly. 

This, of course. does not solve the problem for self-crossing polygons in general. The 

approach is satisfactory for experimental purposes, but not for commercial applications. The 

program should check the data for self-crossing polygons as a first step, and issue a warning for 

each one found. This would make the implementation safe, but would still leave the task of 

dealing with self-crossing polygons to the designer. 
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The collinear edge heuristic is an experiment in e-beam data optimization. In view of its 

inability to handle self-crossing polygons, the small reduction in trapezoid count achieved, and 

the increased CPU time requirements, it is probably not suitable for commercial applications. 

Nonetheless, it does represent a step towards optimization of *beam data. 



Chapter 5 

cONCLu$IoNs 

The objectives of this research (as set out in Chapter 1) were 

(1) to develop software to prepare electron beam lithography mask data which is accurate 

and reliable. and 

(2) to explore methods to optimize e-beam data so that e-beam machine time is reduced. 

5.1. POLYGON PARTITIONING 

The first objective necessitated the selection and implementation of a suitable algorithm to 

partition polygons into e-beam trapezoids. A number of previously developed algorithms have 

been reviewed, the most promising of which was one by Newel1 and Sequin, based on the wind- 

ing number convention [6] .  In spite of its intended generality, the Newel1 and Sequin algorithm 

suffers from several limitations. The refinements discussed in this thesis have overcome these 

limitations, producing an algorithm which is capable of partitioning arbitrary polygons, includ- 

ing all types of self-intersections. 

"Bifmebes" represents an implementation of the refined Newel1 and Sequin algorithm 

within the context of a complete e-beam data preparation program. This program meets the 

objectives stated above: it is accurate and reliable, and imposes no unreasonable restrictions on 

the designer. 
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53. E-BEAM DATA OPTIMIZATION 

Several possible techniques for optimizing e-beam data have been discussed. One method. 

which attempts to reduce the trapezoid count by the use of non-horizontal partitioning, has 

been implemented using the collinear edge heuristic. Application of this heuristic to test data 

produced a small but desirable reduction in the total trapezoid count, a t  the expense of an 

increase in computer time. (This increase takes place on the local computer used to prepare the 

data. not on the computer at the e-beam installation.) Although the collinear edge heuristic has 

only a small impact on the trapezoid count and is unable to handle self-crossing polygons, it 

does represent a beginning in the area of optimizing data for e-beam lithography systems. 

5.4. RECOMMENDATIONS FOR FURTHER WORK 

Two possible optimization techniques discussed in Chapter 3 bear further investigation: 

trapezoid merging and e-beam stage control. Merging of butting trapezoids would definitely 

reduce the total trapezoid count: by how much remains to be seen. But perhaps the greatest 

reduction in e-beam machine time (at least for multi-project masks) will be achieved by 

exercising more intelligent control over the sequence of rasterization and stage movement. 

Although this will not be possible until manufacturers of e-beam lithography systems provide 

for such control, it would be worthwhile to simulate its impact on mask fabrication costs. 

In view of the flaws uncovered in all of the earlier polygon partitioning algorithms exam- 

ined, it would be highly desirable to develop a proof for the refined Newel1 and Sequin algo- 

rithm. This project is being considered for further work, but will not be included in this thesis. 
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COLLINEARITY 

In this appendix we will address the problem of determining whether two polygon edges 

(or more generally. two line segments) are collinear. 

First, consider the familiar form of the line equation: 

y = m x + b  

where m is the slope, and b is the y intercept. This form is not sufficiently general, since calcu- 

lation of m runs into trouble if Ax is 0. A preferable form of the equation is: 

A x + B y + C = O  

where the coefficents A. B and C may be found as follows: 

Here (xl.yl) and (x2.y2) are two unique points on the line. 

THEOREM Al. l  

Two line segments are collinear if and only if their line equation coefficients are proportional 

(i.e. if segment1 has coefficients A,. B, and C,, and segment2 has coefficients A2. B2 and C2. then 

Al/A2 = Bl/B2 = C,/C,). 

Proof 

We will first prove that collinearity is implied by proportional line equation coefficients. Let 

segmentl. segment2. A,. B,. C,. A2. B2 and C2 be as above. Let Al/A2 = B1/B2 = C,/C2 r r. 

Line segment2 has the equation 

A2x + B,y + C, = 0 
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Multiply both sides by r : 

r A 9  + rB2y + rC2 = 0 

Substitute the value of r and simplify: 

(A,/A,)A,x + (B,/B,)B,~ + (c1/C2)C2 = o 

A l x + B l y + C l = O  

which is just the equation for segmentl. Segment1 and segmenl ;2 have the same line equation. 

so they must lie on the same line. Thus segmentl and segment2 are collinear. 

We will now prove the converse. Given that segmentl and segment2 are collinear, we 

must prove that their line equation coefficients are proportional. Let A. B and C be the 

coefficients of the line which contains segmentl and segment2. Let.segment1 have end points 

(xl1.yl1) and (xl2.yl2). The line equation for segment1 is 

A x + B y + C = O  

Substitute the coordinates at (xll.yll); 

Axll + Byll + C = 0 

Solve for yll: 

yll = -(Axll + C )/B 

Now repeat for end point (x12,y12): 

y12 = -(Axl2 + C )/B 

The line equation coefficients for segmentl may be calculated from its end points, as follows. 

A1 = y12 - y11 

B1= xll - 3 2  

Cl = x12yll - xlly12 

Substituting the values of yll and y12 from above and simplifying yields 

A, = (A/B)(xll - x12) 

B1= - 5 2  
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Now repeat this exercise for segment2. Let segment2's end points be (x21.y21) and (x~~J, ,) .  The 

line equation for segment2 is 

A x + B y + C = O  

Substitute the coordinates at  ( ~ ~ ~ , y ~ ~ )  and solve for yZl: 

y,, = -(Ax2, + C )/B 

Substitute the coordinates at  ( ~ ~ ~ , y ~ ~ )  and solve for y22: 

y2, = -(Ax2, + C ) /B 

Calculate the line equation coefficients for segment2 from its end points. 

A2 = y22 - y21 

B2 = X21 - x22 

c2 = X22y21 - x21Y22 

Substitute the values of y2, and y2, from above and simplify. 

A, = (A/B)(xZ1 - x22) 

B2 = X21 - x22 

We are now in a position to calculate coefficient ratios for segmentl and segment2. 

Thus A1/A2 = B1/B2 = Cl/C2, and the collinearity of segmentl and segment2 implies the pro- 

portionality of their line equation coefficients. 
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Definition: a normalized line equation is one in which all coefficients have been divided by the 

coefficient with the smallest non-zero absolute value. 

THEOREM A1.2 

Two line segments are collinear if and only if their normalized line equations have identical 

coefficients 6.e .  if segmentl has coefficients A,. B, and C,, and segment2 has coefficients A2. B2 

and C,. then A, = A,. B, = B, and C, = C2). 

Proof 

First we will prove that collinearity implies identical coefficients. Given collinear line segments 

segmentl and segment2; segmentl has line equation coefficients Al. B, and C1; segment2 has 

coefficients A2. B2 and C,. Because segmentl and segment2 are collinear, they are contained by 

the same line: let that line's equation have coefficients A. B, and C, and let C be the one with 

smallest non-zero absolute value. (A similar argument holds for other cases.) Because segmentl 

and the line containing it are collinear, their coefficients are proportional (by Theorem Al.1). 

Thus 

Al/A = B,/B = C,/C E r 

A, = A r  

B, = Br 

C, = Cr 

From the above condition on C 

ICI < I A I  

Multiply both sides of this inequality by I r I and simplify. 

ICIIrl < IAilrl 

ICrI < IArI 

lCll < IAJ 

Similarly, 
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Icr < I B I  

IC l l r l  6 IB l l r l  

ICr I 6 IBr I 

I Cll < I Bll 

Thus C, has the smallest absolute value of segmentl's coefficients. Because C1 = Cr, and because 

C f 0. C, can only be zero if r is zero. If r = 0, then A,. B1 and C1 must all be zero, and seg- 

mentl is nothing more than a single point. Since there is little value in testing the collinearity 

of a point and a line, it is safe to assume that A,. B, and Cl cannot all be zero. Thus r Z 0, and 

C, # 0. So C, is the coefficient which would be chosen to normalize segmentl's coefficients. Let 

* * 
segmentl's normalized coefficients be A, . B, and C,*. 

A,* = A,/C, = Ar/Cr = A/C 

c,* = c,/c, = 1 

Now consider segment2; it and the line containing it are collinear, so by Theorem Al.1. 

A,/A = B,/B = C2/C E s 

A2 = As 

B, = Bs 

C, = cs 

From the condition imposed on C 

ICl < lAl 

I C l <  Is1 

Multiply both sides of each inequality by I s I and simplify. 

ICl l s l  < IAl l s l  

ICsI < IAsl 

1C.J ,< lA,I 
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ICl ls l  < IBl l s l  

ICsI < IBsI 

I C,l b I B,I 

By a similar argument to that used above, s f 0. And since C f 0. C2 f 0. Thus C, is the 

coefficient of segment2 with minimum absolute value, and would be used to normalize seg- 

ment2. 

B,* = B2/Cz = Bs/Cs = B/C 

c2* = c,/c, = 1 

Thus 

A,* = A,* 

Bl* = B,* 

cl* = c,* 

We have demonstrated that the collinearity of segmentl and segment2 implies that their nor- 

malized line equation coefficients are identical. Now we will prove the converse. 

Given segmentl with normalized line equation coefficients A ~ * .  B1* and c18, and segment2 

* * with normalized line equation coefficients A, , B2 and c,*. such that 

B1* = B,* 

C18 = C,* 

Let segmentl's unnormalized coefficients be Al, B, and C1. Let segment2's unnormalized 

coefficients be A,, B2 and C,. Let 

(A similar argument holds for the other cases.) Then C1 is the coefficient used to normalize seg- 
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mentl, and C2 is used to normalize segment2. 

A," = Al/Cl 

A,' = Az/C2 

A,/Cl = A2/C2 

Al/A2 = Cl/C2 

B,* = Bl/Cl 

B2* = B2/C2 

Bl/Cl = B2/C2 

Bl/B2 = Cl/C2 

Al/A2 = Bl/B2 = Cl/C2 

Segment1 and segment2 have proportional line equation coefficients, and by Theorem Al.1. they 

are collinear. 

Theorem A1.2 is very useful for testing the collinearity of polygon edges. The normalized 

line equation coefficients can be calculated once for each edge and stored. Subsequent tests for 

collinearity are accomplished simply and quickly by comparing normalized coefficients. 
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VERTEX COPJVEXITY 

In this appendix we will discuss methods for determining whether a polygon vertex is con- 

vex or concave. 

Definition: consider a point which is traversing the boundary of a polygon in such a way that 

each vertex is passed only once. The turning direction of a vertex is the direction (left or right) 

in which that point must turn as it passes the vertex. 

Definition: a minimum y vertex is a polygon vertex whose y coordinate is less than or equal to 

that of any other vertex of the same polygon. 

Definition: a minimum yx vertex is a minimum y vertex whose x coordinate is less than or equal 

to that of any other minimum y vertex of the same polygon. 

Definition: consider polygon vertex b, with adjacent vertices Q and c.  Let ml be the absolute 

value of the slope of edge ub. Let m2 be the absolute value of the slope of edge bc. The least 

slope magnitude of b is the lesser of m, and m2. 

Definition: if a polygon has only one minimum yx vertex, then it is the reference vertex of the 

polygon. If there is more than one minimum yx vertex, then the one with the minimum least 

slope magnitude is the reference vertex. 

In the research discussed in Chapter 4, the method used to determine if a polygon vertex is 

convex or concave is based on the following concept: within a given polygon, 

(1) all convex vertices have the same turning direction, 

(2) all concave vertices have the same turning direction, and 

(3) the turning direction of convex vertices is opposite to that of concave vertices. 
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The polygon is first "cleaned up" by eliminating any zero-length edges, and merging any 

adjacent collinear edges. The reference vertex is then found, and its turning direction deter- 

mind.  (Turning direction is found by comparing the unit vectors of the edges adjacent to the 

vertex.) The reference vertex is always convex, thus any vertex can be tested by comparing its 

turning direction to that of the reference vertex. If the directions are the same, then the vertex 

is convex, otherwise it is concave. 

A proof of this method has been developed, but it is not presented here in view of the fact 

that a superior test for convexity was discovered after the Chapter 4 research had already been 

completed. The latter test, which is based on a polygon convexity algorithm by Shamos [I l l ,  is 

superior because of its simplicity, and because the computations performed are expected to 

require less machine time. In any further work requiring a test for vertex convexity, this 

would certainly be the preferred method, and so it is presented in some detail here. 

DeGnition: a simple polygon is in standard form if its vertices are traversed in a counterclock- 

wise direction, zero-length edges have been eliminated, adjacent collinear edges have been 

merged, and traversal begins with the minimum yx vertex. 

The traversal direction of a polygon of n vertices is found by calculating the signed area 

using the following algorithm. 

signed-area + 0: 
prev + n: 
for i = 1 to n do 
begin 

next + modulo(i.n) + 1; /* modulo(i.n) = i modulo n */ 
signed-area + signed-area + (x[i] * (y[next] - ~[prev])); 
/* 

x[i] = x coordinate of vertex i 
y[il = y coordinate of vertex i 

*/ 
prev 4- i; 

end; 
signed-area + signed-area / 2; 

The traversal direction is counterclockwise if the signed area is positive, and clockwise if it is 

negative. 
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Each edge of a polygon has a length and a direction (its traversal direction) and can thus 

be represented by a vector. 

Definition: an edge angle is the angle between the x axis and the vector representing the edge. 

measured in the conventional sense (counterclockwise). For example, in Figure A2-1, a is the 

edge angle for AB, and /3 is the edge angle for DA. 

Figure A2-1 Edge Angle. 

In Theorem 2.4 of [ll]. Shamos proves the following: a polygon is convex iff in standard 

form its edge angles are non-decreasing. For example, the polygon in Figure A2-2(a) has non- 

decreasing edge angles (el < e2 < fI3 < e, < es) and the polygon is convex. 
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a. convex b. concave 

Figure A2-2 Convex and Concave Polygons 

In contrast, the polygon in Figure ~2 -2 (b )  has one decreasing edge angle (03 > 8,) and the 

polygon is concave. 

In a convex polygon, all vertices must be convex, and so Shamos' theorem readily leads to 

a test for a single vertex. Another way of viewing the theorem is: a polygon is convex iff in 

standard form the edge angles are non-decreasing for each pair of adjacent edges. Each pair of 

ad:>,ent edges intersect at a polygon vertex, and so we have the following: a polygon vertex v is 

convex iff. with the polygon in standard form, the edges adjacent to v have non-decreasing edge 

angles. For example, refer to Figure A2-3. 
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Figure A2-3 Testing a Single Vertex 

Vertex C has adjacent edges BC and CZ), with edge angles 0, and 0,. respectively. Since < 6,. 

C is convex. Vertex D has adjacent edges CD and DE, with edge angles 6, and e3, respectively. 

Since O2 > 03. D is concave. 

As Shamos points out in Chapter 3 of [ll], it isn't necessary to actually compute edge 

angles to compare them. Consider polygon edges AB and BC (Figure A2-4): we wish to compare 

their edge angles. 
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Figure A2-4 Edge Angle Comparison 

Translate the vectors representing these edges such that each has its tail at the origin (0). Let P 

be the point at the head of AB's vector, and Q, the point at the head of BC 's vector (Figure 

A2-4). Evaluate the signed area of triangle OPQ. If it is positive, then the triangle is traversed 

counterclockwise, and 0Q's edge angle is greater than that of OP : thus BC has a greater edge 

angle than AB. If the signed area is negative, then AB's edge angle exceeds that of BC. Thus a 

few simple calculations suffice to compare edge angles; trigonometric functions are not neces- 

sary. 

(Note that the order of traversal of the triangle was arbitrarily chosen to be OPQ. Any 

order is fine, as long as the interpretation of the signed area is consistent with the order chosen.) 
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