
POLYGON PARTITIONING FOR ELECI'RON BEAM

LITHOGRAPHY OF INTEGRATED CIRCUITS

by

Frederick John Slawson

B.Sc. (Hons.), Simon Fraser University, 1969

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the Department

of

Computing Science

@ Frederick John Slawson 1985

SIMON FRASER UNIVERSITY

May 1985

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Frederick John Slawson

Degree: Master of Science (Computing Science)

Title of Thesis: Polygon Partitioning for Electron Beam Lithography of Integrated Circuits

Examining Committee:

Chairperson: Binay K. Bhattscharya

Richard F. Hobson
Senior Supervisor

Associate Professor

-
Wo-Shun Luk

Associate Professor

- - - - . ,
w

John C. Dill
External Examiner

VLSI Design Tools and Systems Manager
Microtel Pacific Research LM.

Burnaby, British Columbia

D ate Approved: 23 May 1985

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Un ive rs l t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L lbrary, and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r I n response t o a request from the

l i b r a r y o f any o ther un ive rs i t y , o r o ther educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l not be allowed

wi thout my w r i t t e n permission.

T i t l e o f Thes i s/Project/Extended Essay

Po LV GO N P A R T I T ~ ~ \ ~ I N G FOR ELECTRON BEAM

Author:

(s ignature)

Electron beam lithography is a technique used to prepare high resolution masks for

integrated circuit fabrication. While most integrated circuit layouts are described by rectangles

and polygons, electron beam lithography systems accept only a few simple geometric shapes

(triangles and/or quadrilaterals) as input data. Thus software which prepares data for electron

beam systems must partition polygons into suitable geometric primitives. Most algorithms

which have been devised to perform this partitioning suffer from a lack of generality. This

thesis describes the selection and refinement of a polygon partitioning algorithm, resulting in an

algorithm of high generality. The refined algorithm has been successfully implemented in the

context of a complete electron beam lithography data preparation program.

Little effort appears to have been made to optimize mask data so that electron beam

machine mask making time is reduced. Several possible optimization techniques are described.

One, which partitions polygons along non-horizontal (as well as horizontal) lines, is explored by

developing a heuristic. An algorithm based on this heuristic has been introduced into the data

preparation program described above. The. observed impact on data optimality is small: how-

ever, it does represent a beginning in the area of electron beam lithography data optimization.

ACKNOWLEDGEMENTS

Financial support was provided for the major part of this research by the Natural Sciences

and Engineering Research Council of Canada, in the form of a Postgraduate Scholarship. This

support is gratefully acknowledged.

Microtel Pacific Research Ltd. (Burnaby. British Columbia) kindly allowed the use of

software which formed part of the computing environment in which this research was con-

ducted. Their cooperation is much appreciated.

And .last, but not least. I am grateful to my wife Linda, for enduring the long evenings

and weekends which I spent preparing this thesis. Thank you. Linda. for your support and

your patience.

TABLE OF CONTENTS

TITLE PAGE ... i
APPROVAL PAGE .. ii
ABSTRACT ... iii
ACKNOWLEDGEMENTS .. iv
TABLE OF CONTENTS .. v
LIST OF ILLUSTRATIONS ... viii
CHAPTER 1 INTRODUCTION ... 1
1.1 PREVIOUS WORK ... 1
1.2 OBJECTIVES ... 2
1.3 BACKGROUND .. 2
1.3.1 Processing of IC Chips ... 2
1.3.2 Exposure of Photoresist 4
1.3.3 Multi-Chip Wafers 4
1.3.4 Mask Making .. 1 5
1.3.4.1 Exposing The Mask ... 1 7
1.3.4.1.1 Optical Method .. 7
1.3.4.1.2 Electron Beam Lithography Method ... 7
1.3.4.2 Advantages of Electron Beam Lithography 8
1.3.5 Electron Beam Lithography Sysiems 8
1.3.5.1 Raster Scan ... 8
1.3.5.2 Vector Scan ... 9
1.3 5.3 Speed Considerations 10
1.3.5.4 Recent Developments In Vector Scan 11
1.3.6 The Perkin-Elmer MEBES Machine .. 11

.. 1.3.6.1 Components 12
1.3.6.2 The Stripe Concept ... 12
1.3.6.3 Figures Accepted .. 14
1.3.6.4 Sequencing ... 14
1.4 OVERVIEW OF THESIS .. 15

... CHAPTER 2 POLYGON PARTITIONING 16
2.1 INTRODUCTION ... 16
2.1.1 Objectives .. 16
2.1.2 Definitions ... 16
2.2 PREVIOUS WORK ... 19
2.2.1 Pate1 Algorithm .. 20
2.2.2 Little & Heuft Algorithm ... 23
2.2.3 Newel1 & Sequin Algorithm ... 25
2.2.4 Otto Algorithm ... 33
2.3 ANALYSIS ... 34

2.3.1 Pate1 Algorithm ...
2.3.2 Little & Heuft Algorithm ...
2.3.3 Newel1 & Sequin Algorithm ...
2.3.4 Refinement of Newel1 & Sequin Algorithm ..
2.3.4.1 Sorting the Active List ...
2.3.4.2 Failure To Detect Crossing Point ...
2.3.5 The Refined Newel1 & Sequin Algorithm ...
2.4 EXPERIMENTAL ...
2.4.1 Context
2.4.1.1 Input ...
2.4.1.2 Output ..
2.4.2 Testing ...
2.4.3 Results ...

... CHAPTER 3 OPTIMIZATION TECHNIQUES
3.1 INTRODUCTION ...
3.2 REDUCTION OF TRAPEZOID COUNT ..
3.2.1 Non-Horizontal Partitioning ...
3.2.2 Trapezoid Merging ..
3.3 RECOGNITION OF REPEATED PATTERNS ..
3.4 SEQUENCING OF RASTERIZATION AND STAGE MOVEMENT
3.5 SELECTION OF OPTIMIZING TECHNIQUE ..
CHAPTER 4 NON-HORIZONTAL PARTITIONING ...
4.1 OBJECTIVES ..
4.2 ANALYSIS ... i. ..
4.2.1 The Need For A Heuristic ...
4.2.2 The Collinear Edge Heuristic ..
4.2.3 Partitioning Conditions For Collinear Edge Heuristic

... 4.2.4 Justification of Partitioning Conditions
4.2.4.1 Necessity of Conditions .. : ..
4.2.4.1.1 Collinearity ... :
4.2.4.1.2 Traversa* ii)mction ...
4.2.4.1.3 Non-Enclosure ...
4.2.4.1.4 Non-Zero-Width ..
4.2.4.2 Sufficiency of Conditions ...
4.2.5 Tests Used In Partitioningconditions ..

... 4.2.5.1 Vertex Convexity Algorithm
.. 4.2.5.2 Justification of Vertex Convexity Algorithm

4.2.5.2.1 Non-Enclosure Condition ..
4.2.5.2.2 Non-Zero-Width Condition ..
4.2.6 An Algorithm For Non-Horizontal Partitioning
4.3 EXPERIMENTAL ...
4.3.1 Context ..

4.3.2 Testing ...
... 4.3.3 Results

4.4 DISCUSSION ..
... 4.4.1 Exclusion of Self-Crossing Polygons

.. CHAPTER 5 CONCLUSIONS
5.1 POLYGON PARTITIONING ..
5.2 BIFMEBES ..
5.3 E-BEAM DATA OPTIMIZATION ...
5.4 RECOMMENDATIONS FOR FURTHER WORK ..
APPENDIX 1 COLLINEARITY ..

.........................*................... APPENDIX 2 VERTEX CONVEXITY ..
REFERENCES ...
BIBLIOGRAPHY ...

. vii .

LIST ILLUSTRATIONS

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9

Creation of Metal Layer ..
Multi-Chip Wafer
Mask Making Process ...
Raster Scan Technique
Vector Scan Technique ...
Partitioning At Stripe Boundaries ..
Figures Accepted By MEBES Software ..
Self -Touching Polygons ...
Self -Crossing Polygons ...
Ideal Wire ...
Implemented Wires ..
Pate1 Algorithm ..
Example For Pate1 Algorithm
Example For Little & Heuft Algorithm :.
Winding Number
Polygon Which Foils Parity Convention ...

Figure 2-10 Calculation of Winding Number from Direction Tags
Figure 2-11 Example For Newel1 & Sequin Algorithm ...
Figure 2-12 Self-crossing Polygon
Figure 2-13 Wire With Self-Touching Centerline ...
Figure 2-14 Polygon With Concave Bottom
Figure 2-15 Unsortable Edges ..
Figure 2-16 Crossing Point Not Detected
Figure 2-1 7 Trapezoids Generated ..
Figure 2-18 Edges With Common xcurr Value ...
Figure 2-19 Ordering Of Edges By Angle ..
Figure 2-20 Definition of Cotangent ..
Kgdre 2-2 1 Cotangent Function ..
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9

Horizontal & Non-Horizontal Partitioning ..
Trapezoid Merging
Edge Rearrangement in Collinear Edge Heuristic ..
Example of Edge Rearrangement Algorithm ...
Invalid Edge Rearrangement ..
Rearrangement of Non-Collinear Edges ..
Edges With Opposite Traversal Direction ...
Generation of Zero-Area Trapezoid ...
..
Half-Planes HI and H2 ..

. viii .

Figure 4-10 ..
Figure 4-11
Figure 4-12 ,. ...
Figure 4-13 ..
Figure 4-14 ..
Figure 4-15 Legitimate Partition Rejected ...
Figure 4-16 Wire Envelope ..
Figure A2-1 Edge Angle ...
Figure A2-2 Convex and Concave Polygons ..
Figure A2-3 Testing a Single Vertex
Figure A2-4 Edge Angle Comparison ..

Chapter 1

INTRODUCTION

1.1. PREVIOUS WORK

Electron beam lithography is rapidly taking over from conventional optical methods for

producing large scale integrated circuit (LSI) and very large scale integrated circuit (VLSI)

masks. This new method offers both higher speed and higher accuracy, so its growing popular-

ity is no surprise.

Electron beam machines require data in a special format. Previously developed software

to prepare such data has not always been reliable. One example of this unreliability was

discovered while testing a program written to convert electron beam data back to the original

design database format (section 2.4.2). A simple integrated circuit (IC) design was converted

into electron beam (e-beam) format, using software on one of the original (and widely used)

commercial IC design workstations. The e-beam data was transported (via magnetic tape) to

our computer, and used as test data for the conversion program. When the output was plotted.

a small but distinct error was observed. Hand-decoding a hexadecimal dump of the e-beam data

demonstrated that the error was already present in that data, before it was processed by the

conversion program. The data used as input to the workstation was verified to be correct. Thus

the error had to be introduced by the workstation software. The error was small enough to

have gone unnoticed up to this time, but it was present nonetheless.

Another example of software unreliability was reported to the author during personal

correspondence with a major U.S. aerospace corporation. That company had purchased software

to prepare data for electron beam lithography, only to find that they had to correct program

errors.

CHAPTER 1 INTRODUCTION 2

Some previously developed software has imposed unreasonable restrictions on the IC

designer. For example, self-intersecting polygons are often prohibited; this forces the designer

to manually partition such polygons. Also, there appears to have been little effort made to

optimize the data so that electron beam machine time is reduced. (This refers to the time taken

to process the data and expose the mask.)

The objectives of this research were

(1) to develop software to prepare electron beam lithography mask data which is accurate

and reliable, while imposing no unreasonable restrictions on the designer, and

(2) to explore methods to optimize electron beam data so that e-beam machine time (for

data processing and mask exposure) is reduced.

13. BACKGROUND

13.1. Processing of IC Chips

The processing of IC chips involves the creation of layers of different materials on and

under the surface of a silicon wafer. The circuit which is produced is determined by the pat-

terns in which these layers are formed. The fundamental steps in the creation of one layer are

as follows (~ igure 1-11.

(1) The partially processed silicon wafer is coated with the material needed for this layer.

Typical materials are aluminum, polycrystalline silicon, and silicon oxide (made by oxi-

dizing the surface of the wafer).

(2) A coating of photoresist is applied over top of this material.

(3) The photoresist is exposed to ultraviolet light in the desired pattern.

(4) The photoresist is developed. (This involves dissolving the more soluble areas of the

CHAPTER 1 INTRODUCTION

photoresist in a suitable solvent. In positive resists, the more soluble areas are those

which have been depolymerized by exposure to the light. In negative resists, the unex-

posed areas are more soluble, while the exposed areas become polymerized and less solu-

ble.)

(5) The areas (of material applied in step 1) no longer protected by photoresist are etched

away (e.g. by acid or plasma).

(6) Remaining photoresist is stripped off with an appropriate solvent.

(7) Any required processing (e.g. ion implantation) is performed.

oxide 7 ////////// metal .

silicon L U
sensitized
photoresist

develop +-
r

/ / / / I / / / / / / /
expose

metal
strip 7, > '///<oxide

+- silicon

Figure 1-1 Creation of Metal Layer

CHAPTER 1 INTRODUCTION

13.2. Exposure of Photoresist

. The IC manufacturing step of particular interest in this study is the polymerization or

depolymerization of photoresist in the desired pattern. There are two methods for doing this:

"optical" and "direct write on wafer".

The conventional method uses the optical approach. A "mask" containing clear and dark

areas is placed between an ultraviolet light source and the wafer. When the light is turned on,

those areas of the photoresist not blocked by the dark regions of the mask are exposed. (The

mask is somewhat analogous to a photographic "negative", except that most negatives have con-

tinuously variable density instead of the binary "dark" or "clear" nature of masks. Also, a

mask may be a positive image instead of negative.) Thus the pattern on the mask determines the

pattern in which the photoresist is exposed. One mask is required for each layer in the IC.

In the "direct write on wafer" method, the photoresist is replaced by an electron resist.

and the ultraviolet light and mask are replaced by a computer-controlled electron beam. The

beam is selectively blanked as it is scanned over the surface of the wafer. The pattern in which

the electron resist is exposed is determined by the blankinghon-blanking behavior of the beam.

While the direct write on wafer method eliminates the need for making masks and offers

higher resolution, it is much slower than the optical method. (At present, it takes considerably

longer to expose a wafer with an electron beam than it does optically.) For this reason, the on* .

cal method is preferred in all but low volume research applications, and for ICs requiring

greater resolution than possible optically.

1 3 3 . Multi-Chip Wafers

Chips are not fabricated one at a time, for to do so would be economically and temporally

undesirable. Instead, a number of chips are laid out in a grid-like pattern on a single silicon

wafer (Figure 1-2).

CHAPTER 1 INTRODUCTION 5

Figure 1-2 Multi-Chip Wafer

The wafer is processed intact, and then sawed up into individual chips after all processing has

been completed. A typical 4 inch wafer will produce 100 - 500 chips. depending on chip size.

In a production wafer, all chips are identical, whereas a research (multiproject) wafer contains a

variety of chips.

For any given layer, the entire wafer is usually sensitized by a single exposure. Thus the

multi-chip layout is an inherent part of each mask. (Note: as VLSI minimur ~eature size

shrinks, there will be an increasing tendency to expose each chip on the wafer individually, SO

that layer to layer registration requirements may be met.)

- 13.4. Mask Making

Making a mask is very similar to the process used to create one layer of an IC. (See Figure

CHAPTER 1 INTRODUCTION

photoresist
chromium

glass

expose

sensitized, sensitized

t / / / / l . strip , I 7 7 Z chromium
I

Figure 1-3 Mask Making Process

(1) A glass plate is coated with metal (usually chromium).

(2) The metal is coated with photoresist or electron resist.

(3) The resist material is exposed in the desired pattern, causing pol; ~erization or depoly-

merization.

(4) The resist is developed (dissolving the more soluble areas).

(5) The metal no longer protected by resist is etched away.

(6) The remaining resist is stripped off.

This leaves a pattern of dark (metal) and clear (glass) areas.

CHAPTER 1 INTRODUCTION

1.3.4 .I. Exposing The Mask

The key step in placing the correct pattern on a mask is exposure of the mask resist

material. Like exposure of the resist on a wafer, there are two methods: optical and electron

beam lithography.

1.3.4.1.1. Optical Methai The optical method consists of the following steps.

(1) An intermediate mask is made at ten times the final size. (This is called a IOX reticle.)

Exposure of the reticle's photoresist is done using an optical pattern generator (also

called a block flasher.) This is a device which projects an image of a rectangular aperture

onto the reticle, which is mounted on a movable stage. A xenon flashtube provides the

light source. By changing the aperture shape, size, and orientation, and by moving the

stage between flashes, the photoresist can be exposed in the desired pattern. The optical

pattern generator is controlled by a computer, which reads data representing the pattern.

Once exposed, the reticle is developed, etched, and stripped of remaining photoresist, as

described above.

(2) An image of the reticle, reduced to actual chip size. is projected onto the mask's pho-

toresist.

(3) After the .first exposure has been made, the mask is moved and a second exposure is

made, right beside the first one.

(4) The mask is stepped to the next chip position, and a third exposure is made. This step

and repeat process is continued until all desired copies of the reticle image have been

made.

1.3.4.1.2. Electron Beam Lithography Method Instead of photoresist, an- electron resist is used

to coat the mask. The mask is mounted on a movable stage in an evacuated chamber, and is

exposed using a focused beam of electrons. Beam position, beam blanking, and stage position are

CHAPTER 1 INTRODUCTION 8

controlled by a computer using data which represents the desired pattern. The electron beam

traces out the pattern at actual chip size, for all instances of the chip on the mask.

1.3.4.2. Advantages of Electron Beam Lithography

The fact that there were over fifty commercial e-beam lithography systems developed by

1982 [2] attests to the rapidly growing popularity of this method. The reason for this popular-

ity is a combination of speed and accuracy.

(1) Speed. The elimination of the intermediate reticle and the absence of an optical step and

repeat process result in significantly faster turnaround for masks exposed by e-beam

lithography.

(2) Accuracy. The inherently shorter wavelength of electrons allows smaller features to be

written, and the absence of a separate step and repeat process results in better layer to

layer registration. For these reasons, e-beam lithography is capable of higher accuracy

than optical methods. (Note that X-ray lithography also provides a suitably short

wavelength, but still requires a separate step and repeat process [2].)

135. Electron Beam Lithography Systems

E-beam lithography systems can be classified into two categories, depending on their beam

scanning strategy: raster scan and vector scan.

1.3.5 .I. Raster Scan

In the raster scan technique, the electron beam is scanned back and forth in a regular pat-

tern over the surface of the mask (or wafer). The beam is thus addressed to every possible

position within the writing field, whether exposure is needed there or not (Figure 1-41.

CHAPTER 1 INTRODUCTION 9

Beam Off
(Blanked)

Beam On

I

Figure 1-4 Raster Scan Technique

Whenever the beam is aimed at a spot which should not be exposed, it is blanked (deflected

away from the mask). The beam is actually scanned in one dimension only; motion in the other

dimension is provided by moving the stage on which the mask is mounted.

1.3.5.2. Vector Scan

In the vector scan. technique, the elect- beam is blanked and addressed to the position of

a figure. It is then unblanked and scanned back and forth to fill in the area enclosed by the

figure. Next, it is blanked and addressed to the position of the next figure. This sequence con-

tinues until all figures within the writing field have been exposed (Figure 1-51.

CHAPTER 1 INTRODUCTION

Beam Off

Figure 1-5 Vector Scan Technique

The stage is then moved to the next writing field. and exposure continues.

Unlike the raster scan technique, the beam is addressed to only those positions needing

exposure (and those lying on the paths between figures). Also, scanning of the beam takes place

in two dimensions (not one). In most vector scan machines, the stage is stationary during expo-

sure (instead of moving in one dimension, as in raster scan machines).

1.3 S.3. Speed Considerations

At first sight, one would expect raster scan to be the slower of the two techniques, since

much time is wasted scanning the electron beam over positions which need no exposure. In

practice, however, this is not the case.

In vector scan, each movement of the beam from one figure to the next requires an adjust-

ment of the magnetic and electrostatic fields used to aim the beam. These fields are controlled

by voltages and currents - analog quantities. Since the description of each figure is in the digi-

CHAPTER 1 INTRODUCTION 11

tal domain, a digital-to-analog conversion is required each time a new figure is to be started.

The time required for these digital-to-analog conversions, together with the settling time of the

beam following each jump between figures, are responsible for making vector scan machines

slower than raster scan.

1.3.5.4. Recent Developments In Vector Scan

Several recent developments in vector scan systems are worthy of note.

8 Beam Shaping. In this technique, the electron beam shape can be changed from the con-

ventional fixed size round spot to a variety of shapes and sizes. By dynamically shaping

the beam, considerable time can be saved while filling in areas to be exposed [S. 9. 101.

8 Continuously Moving Stage. Fields are still written one at a time, but the stage moves

continuously during writing. To make this possible the beam must track the stage as it

moves. In a conventional vector scan machine, the stage is moved only between writing

of adjacent fields. Following each stage movement, writing must be delayed until stage

oscillations have settled. The continuously moving stage approach eliminates this delay

191.

With refinements such as these to vector scan systems, it is likely that they will eventually

become faster than raster scan. At the present, however, commercially available raster scan

machines are faster.

13.6. The Perkin-Elmer MEBES Machine

The software developed in this project produces data for the Perkin-Elmer MEBES

machine. This is a raster scan e-beam lithography system capable of direct write on wafer as

well as writing masks. (The acronym "MEBES" stands for Manufacturing Electron Beam E x p

sure System. The word "manufacturing" refers to the direct write on wafer capability.) The

original version of the e-beam data preparation software was developed for Microtel Pacific

CHAPTER 1 INTRODUCTION 12

Research Limited. Burnaby, British Columbia, during two work semesters of a Co-operative

Education Program. The fact that Microtel employs mask vendors which use the Perkin-Elmer

machine explains the choice of this particular e-beam system.

1.3.6.1. Components

The Perkin-Elmer MEBES machine consists of the following components:

a Data General Eclipse minicomputer, which handles job control and preprocesses

geometric figure data from the input files

a microprocessor, which rasterizes geometric figures and controls the electron beam unit

a bit map memory, which stores the rasterized figures

and an electron beam unit. This includes the electron beam column, and the stage to

hold the mask or wafer. The stage is movable in both horizontal dimensions under con-

trol of the microprocessor, and is positioned accurately by using a laser interferometer

servomechanism.

1.3.6.2. The Stripe Concept

The simplest way to save rasterized figures in the bit map would be to use the bit map like

the screen memory of a raster scan display device; each bit would correspond to one pixel.

Unfortunately, this approach would require an enormous amount of memory. For example, a

typical 4 inch wafer could produce 300 square chips, each 5 mm on a side. If the mask for such

a wafer were exposed with a 0.5 micrometer diameter beam, it would consist of 30 billion pix-

els, and the bit map would require approximately 4 gigabytes of memory. Just one 5 mm

square chip. exposed with a 0.5 micrometer spot, would require 100 million pixels. and a 12.5

megabyte bit map. Even this is more memory than available on the MEBES system, and so a

chip must be rasterized in sections.

CHAPTER I INTRODUCTION 13

To avoid distortion. the distance actually scanned by the electron beam is quite small, typ-

ically no more than 250 micrometers. On the other hand, the width of an entire chip can be

covered by moving the stage. Since the beam is scanned in one dimension while the stage is

moved in the other, the mask is exposed in a series of long, narrow "stripes". The obvious way

to rasterize a chip in sections is to make each section correspond to one of these stripes. The bit

map can then store the rasterized image of one stripe. When the data is organized into stripes.

the x axis is, by convention, parallel to the direction of stage travel, so each stripe is oriented

horizontally. (By making the stripe length longer than most chips. the need to section the data

vertically is avoided.)

MEBES data preparation software must thus organize the data into stripes, and must par-

tition figures which span boundaries between stripes (Figure 1-6).

\
STRIPE !] , BOUNDARY

\

a. Before Partitioning b. After Partitioning

Figure 1-6 Partitioning At Stripe Boundaries

CHAPTER 3 INTRODUCTION

1.3.6.3. Figures Accepted

The MEBES machine software accepts only five types of geometric figures: rectangles.

parallelograms, and three types of trapezoids (Figure 1-7).

L Rectangle .

Parallelogram

Trapezotd 1 Trapezoid 2 Trapezoid 3

Figure 1-7 Figures Accepted By MEBES Software

(Triangles are represented by a trapezoid with zero width top or base.) The figures used in lay-

ing out an integrated circuit are not, however, restricted to these five primitive shapes; polygons

abound. This means that e-beam data preparation software must partition the 1% layout polygons

into the primitives accepted by the MEBES machine.

I .3.6.4. Sequencing

On the MEBES machine, the following sequence is followed.

(1) All of the data for one stripe is rasterized and saved in the bit map.

(2) The stage is positioned to the first instance of the current stripe, and the stripe is writ-

ten.

CHAPTER 1 INTRODUCTION

(3) The stage is moved to the next instance of the current stripe, and the stripe is written.

(4) The above step is repeated until all instances of the current stripe have been written.

(5) Data for the next stripe is rasterized.

(6) All instances of that stripe are written.

(7) Etc.

1.4. OVERVIEW OF THESIS

Chapter two discusses algorithms for partitioning of polygons into trapezoids, and

describes the implementation of one such algorithm. In chapter three some possible techniques

are discussed for optimizing MEBES data. Chapter four describes the.development, implemen-

tation, and evaluation of an algorithm based on one of the optimizing techniques. Chapter five

contains conclusions and recommendations for further work.

Chapter 2

POLYGON PARTITIONING

2.1. INTRODUCTION

As discussed in Chapter One, electron beam lithography systems do not accept general

polygons as input data; they accept only a small set of simple geometric figures. The Perkin-

Elmer MEBES machine, in particular, accepts five types of figures, all of which can be classified

as trapezoids with horizontal top and base. Thus it is necessary to partition all polygons of a

mask layout into trapezoids of this type. This polygon partitioning is the process of primary

importance, since the rest of the data preparation is really just an exercise in two dimensional

graphics.

2.1.1. Objectives

The objectives for this part of the study were

(1) to explore polygon partitioning algorithms, and

(2) to implement the most desirable algorithm in the context of a complete e-beam data

preparation program.

2.1.2. Definitions

Before proceeding, it will be useful to define several terms which will be used throughout

the remainder of this thesis.

A self-touching polygon has non-adjacent edges which touch, but do not cross each other.

(See Figure 2-1 .)

CHAPTER 2 POLYGON PARTITIONING 17

Figure 2-1 Self-Touching Polygons

A self-crossing pdygon has non-adjacent edges which cross each other. (See Figure 2-2).

A self-intersecting polygon is a self-touching or self-crossing polygon.

A wire is a geometric primitive of IC layouts; it is most commonly used to electrically

connect different points in a circuit (hence the name). A wire is described by its width and

center-line, where the center-line is a set of vertices defining the path which the wire follows.

An ideal wire is the set of all points within one half-width of the center-line [4]. See Figure 2-3

for an example.

CHAPTER 2 POLYGON PARTITIONING

Figure 2-2 Self-Crossing Polygons

Figure 2-3 Ideal Wire

CHAPTER 2 POLYGON PARTITIONING 19

Note that an ideal wire has rounded comers and a rounded cap on each end. These rounded por-

tions are intended to facilitate connecting wires at arbitrary angles. Because many output dev-

ices have difficulty in rendering circular shapes, wires are often simplified to have square ends

and no rounded comers. (See Figure 2-4.)

(a) Truncated Corners & Ends (b) Extended Corners 8 Ends

Figure 2-4 Implemented Wires

2.2. PREVIOUS WORK

The constraint that trapezoids have horizontal top and bottom eliminates many polygon

partitioning algorithms from consideration. (Many partition polygons into triangles or quadri-

laterals, without considering the orientation of the top or bottom.)

One of the earliest algorithms developed for this type of polygon partitioning is described

in an M.Sc. thesis by Harris [I]. Although that thesis was not available for examination, an

algorithm based on the Harris algorithm is described in a paper by Pate1 [8].

CHAPTER 2

2.2.1. Pate1 Algorithm

POLYGON PARTITIONING

The Pate1 algorithm is based on the concept of "uplines" and "downlines". Polygons are

classified as "type A" or "type B". A type A polygon encloses an area to be exposed, while a

type B polygon encloses an area not to be exposed (i.e. a "hole" in a type A polygon). Type B

polygons exist only inside of type A polygons. The data for type A polygons must be ordered

such that the polygon is traversed in a clockwise direction, while type B polygons must be

traversed counterclockwise. All polygons then consist of directed edges. An upline is a directed

edge which points upward (increasing y coordinate), while a downline points downward

(decreasing y coordinate).

As described in the paper, the algorithm includes further decomposition of trapezoids into

triangles, rectangles and parallelograms for a more primitive e-beam machine. This extra

decomposition is not necessary for the MEBES machine, and will not be covered here. The

(paraphrased) algorithm is as follows. (Refer to Figure 2-5).

CHAPTER 2 POLYGON PARTITIONING 21'

Figure 2-5 Pate1 Algorithm

CHAPTER 2 POLYGON PARTITIONING

find uplines and downlines;
for each upline do
begin

u + vertex at upline's lower end;
v + vertex at upline's upper end;
while u f v do
begin

find nearest downline;
/*

Presumably the nearest downline is the
nearest one which intersects a horizontal
ray extending to the right from u.

*/
d +vertex at downline's upper end;
e +vertex at downline's lower end;
t + v or d (whichever is lower);
b + intersection of de with horizontal line
through u;
L l + horizontal line through t ;
p + intersection of uv with L1;
q + intersection of de with L1;
z + a vertex enclosed by trapezoid upqb;
while z exists do
begin

L1 + horizontal line through z ;
p + intersection of uv with L1:
q + intersection of de with Ll ;
z +- a vertex enclosed by trapezoid upqb;

end;
output trapezoid upqb;
u + p;

end;
end;

It should be pointed out that the statement of the Pate1 algorithm in [8] contains an error: the

check for a vertex enclosed by the t ~ l ~ t a t i v e trapezoid is performed only once. whereas it must

be repeated until no such vertex is found. (This has been corrected in the statement shown

here.)

For an example of the operation of the Pate1 algorithm, consider polygon ADEFGHIL

shown in Figure 2-6. (The reader is invited to copy the diagram and work through the example

by hand, relabeling lines and vertices as they are changed by the algorithm, and shading in tra-

pezoids as they are generated. This suggestion also applies to subsequent examples.)

CHAPTER 2 POLYGON PARTITIONING 23

Figure 2-6 Example For Pate1 Algorithm

The uplines are identified as AD and GH; the downlines are EF. FG and IL. Upline AD is

selected. (The order in which uplines are processed is arbitrary: we could start with GH and get

the same results.) The nearest downline is IL. Tentative trapezoid ADIL encloses vertex F.

Tentative trapezoid ACJL encloses vertex G. Trapezoid ABKL encloses no vertex, and is out-

put. The upline now becomes BD. The nearest downline is FG. Trapezoid BCFG contains no

vertex, and is output. Thr ?.?line becomes CD. The nearest downline is EF. Trapezoid CDEF

encloses no vertex, and is output. This completes the processing of upline AD. Upline GH is

selected, The nearest downline is IL. Trapezoid G H l K encloses no vertex, and is output. There

are no more uplines to be processed, so this completes the partitioning.

2.2.2. Little & Heuft Algorithm

Little and Heuft [3] describe an algorithm to be used for decomposing polygons into com-

ponent trapezoids. Although the intended purpose of the trapezoids was to drive a raster graph-

ics display controller, they could just as easily be used for preparing data for the MEBES

CHAPTER 2 POLYGON PARTITIONING 24

machine. The algorithm makes use of vertex adjacency information (i.e. which vertices are

adjacent to each other). This contrasts with other algorithms, which discard this information.

A polygon is represented as a doubly linked list structure. Each node in the list stores the

data for one vertex; adjacent nodes store adjacent vertices. The Little & Heuft algorithm is as

follows.

while polygon vertex list is not empty do
begin

/* Find top of trapezoid. */
a + vertex with greatest y coordinate;
if there is a vertex adjacent to a with the same
y coordinate
then b + that vertex;
else b + a;
/* Find sides. */
c + vertex adjacent to b such that c Z a;
d + vertex adjacent to a such that d f b:
/* Find bottom. */
if the region enclosed by abcd contains any other vertices
then e + the contained vertex with largest y coordinate;
else e * (-00.-00);

ybtm + max(y(c).y(d).y(e));
/* y(v) is the y coordinate of vertex v. */
f + intersection of bc with line y = ybtm;
g + intersection of ad with line y = ybtm;
remove component trapezoid abfg from polygon vertex list;

end;

For example, consider application of the algorithm to the polygon in Figure 2-7.

CHAPTER 2 POLYGON PARTITIONING

Figure 2-7 Example For Little & Heuft Algorithm

S is identified as the top of the first trapezoid. Reg~on STQ contains no other vertex. R, the

intersection of edge QS with line y = y(T 1, is computed. Trapezoid STR is removed from the

polygon vertex list and output. RT becomes the top of the next trapezoid. RTVQ contains no

other vertex. U, the intersection of edge TV with line y = y(Q), is computed. Trapezoid RTUQ

is removed. QU becomes the top of the next trapezoid. Q W P contains no other vertex. No new

intersection point is introduced this time. Trapezoid Q W P is removed. The polygon vertex list

is now empty, and the process is complete.

2.2.3. Newell & Sequin Algorithm

A polygon partitioning algorithm based on scan conversion is described by Newel1 and

Sequin [6]. Their algorithm utilizes a method to determine if a point is inside a polygon, using

the "nonzero winding number" convention. Suppose we want to know if point p is inside or

outside of a polygon. The winding number of the polygon boundary with respect to p is defined

as the net number of times that a point (b) on the boundary wraps around p while b makes one

CHAPTER 2 POLYGON PARTITIONING 26

complete traversal of the boundary. The nonzero winding number convention states that a point

is inside a polygon if the winding number of the polygon boundary with respect to that point is

nonzero. For example, consider point P in Figure 2-8.

Figure 2-8 Winding Number

B * C F

Imagine that a loop of stiff wire is bent into the shape of polygon ABCDEFGHIJKL. The wire

is placed on a board with a peg mounted at point P. A piece of thread is anchored to the side of

the peg; its other end is attached to a bead which has been threaded on the wire. Moving the

bead around the wire loop causes the thread to wind around the peg. Suppose we start with the

bead at vertex A. By the time the bead has reached vertex G, there is half a turn of thread

around the peg: by the time the bead has returned to A, the peg has one complete turn of thread.

The number of turns of thread around the peg represents the winding number of the boundary

with respect to point P. Thus the winding number for P is nonzero, and P is deduced to be

inside the polygon. Now consider the same exercise for point Q. Again, start with the bead at

A. By the time the bead has reached vertex I, there is approximately three quarters of a turn of

thread around the peg. But, by the time the bead has returned to A, the thread has beeri

thread

bead -4)-

D E

I- --. P
-/--

_/--

a
K J . Q

A . a L I * 6 H

CHAPTER 2 POLYGON PARTITIONING 27

unwound, leaving zero turns on the peg. The winding number with respect to Q is zero, and Q

is deduced to be outside of the polygon.

The nonzero winding number convention is quite general. The same cannot be said for all

interiodexterior testing methods. For example, consider the commonly used "parity conven-

tion". A ray is constructed from the test point, extending to infinity in any direction. Intersec-

tions of the ray with polygon edges are counted, and the parity of the count determines the

state of the point: if the count is even, then the point is outside, else it is inside. This method

works in many cases, but fails with some self-crossing polygons. For example, any point in the

shaded area of Figure 2-9 will be classified as outside of the polygon. This is the wrong answer

for polygons being used to create masks!

The nonzero winding number convention handles self-crossing polygons without any such

difficulties. (The reader is encouraged to visualize the "peg and thread" exercise for this exam-

ple.)

0

0

s . m . . >
2.-.-...........*.
f :.:.:.:.:.:.:.:.:

0

0

Figure 2-9 Polygon Which Foils Parity Convention

.:.:.:.:.:.:.:.:.:. :.:.>:.:+:.>:.:
0

CHAPTER 2 POLYGON PARTITIONING 28

Newel1 and Sequin describe a scan conversion algorithm using the nonzero winding

number convention to determine which pixels on the current scan line should be turned on.

Each polygon edge is assigned a direction tag: +1 for edges which are traversed in an upward

(increasing y coordinate) direction: -1 for downward directed edges; and 0 for horizontal edges.

If the direction tags are summed for all edges which intersect the scan line to the left of some

point p on the scan line, then the total is equal to the winding number of the boundary with

respect to p. For example, consider the polygon in Figure 2-10.

WINDING NUMBER

Figure 2-10 Calculation of Winding Number from Direction Tags

The winding number for all points on the scan line to the left of A is 0. All points between A

and B have a winding number of 1. Between B and C, all points have winding number equal to

2. And so forth; winding numbers for points in each region of the scan line are labeled on the

diagram. If one chooses any point on the scan line and adds the direction tags for all edges

which intersect the scan line to the left of the point, the sum will be equal to the winding

number for that point. This is the technique used in the scan conversion algorithm.

CHAPTER 2 POLYGON PARTITIONING 29

Newel1 and Sequin use a modification of their scan conversion algorithm to perform

polygon partitioning. The current y value is stepped from one point of interest to the next.

rather than from one raster scan line to the next. The winding number is used as follows. A

sum (wind) is initialized to zero. As a horizontal line through the current y value (line y =

ycurr) is scanned from left to right, the direction tag for each edge encountered is added to

wind. In this way, as each edge is encountered, wind becomes equal to the winding number for

points which are on line y = ycurr, to the right of the edge, and to the left of the next edge (Fig-

ure 2-10). Thus, as the scan is performed, a change in wind from zero to nonzero signals the

left side of a trapezoid, and a change from nonzero to zero indicates the right side. The bottom

of a trapezoid is a horizontal line with y = y coordinate at which the side edges first become

paired. The top of a trapezoid is a horizontal line with y = y coordinate at which the side edges

become unpaired. To use this algorithm to generate data for the MEBES machine, it must be

modified to partition trapezoids at stripe boundaries. The algorithm, so modified. is as follows.

CHAPTER 2 POLYGON PARTITIONING

NEWELL & SEQUIN ALGORITHM

generate edge list, omitting horizontal edges and those
outside stripe, and assigning direction tag to each edge;
sort edge list on ymidedge):
/* ymin(z) = y coordinate of lowermost point in z */
while active list or edge list is not empty do
begin

if active list is empty then do
begin

ycurr + ymin(first edge in edge list);
if ycurr < ymidstripe)
then ycurr + ymin(stripe);

end;
edge + first edge in edge list;
while ymidedge) < ycurr do
begin

transfer edge from edge list to active list;
xcurdedge) + x(edge.ycurr);
/*

xcudedge) = x coordinate of
intersection of edge with line y = ycurr
x(edge,ycurr) is the x coordinate of point
on edge with y coordinate = ycurr

*/
edge + next edge in edge list;

end;
sort active list on xcurr(edge);
find ynext; /* See below. */
generate trapezoids; /* See below. */
for each edge in active list do
begin

/*
ymax(z) = y coordinate of uppermost point in z

*/
if ymax(edge) = ynext or ynext = ymax(stripe) then do
begin

if edge has a mate then output trapezoid
and unpair edge's mate;
remove edge.from active list;

end:
else xcurr(edge) + xnext(edge1;
/*

xnexdedge) = x coordinate of
of edge with line y = ynext

*/
end;
ycurr + ynext;

end;

intersection

CHAPTER 2 POLYGON PARTITIONING

"FIND YNEXT" SEQUENCE
ynext + midactive list ymax values);
ynext + min(ynext.ymin(first edge in edge list));
ynext + min(ynext.ymax(stripe));
for each edge in active list do

xnext(edge) + x(edge.ynext);
sort active list on xnexdedge):
if active list order at ycurr Z order at ynext
then do
begin

find intersection point of edges out of sort;
break up 2 intersecting edges into 4 new edges.
leaving lower 2 in active list and inserting
upper 2 into edge list;
ynext +- intersection point):
go back to loop which assigns xnext values;

end:

"GENERATE TRAPEZOIDS" SEQUENCE
wind + 0;
left + first edge in active list;
for each edge in active list do
begin

wind + wind + directiodedge);
/*

directiodedge) = direction tag assigned to edge
wind = winding number for points to immediate right of edge

*/
if wind = 0 then do
begin

if left and edge are not mates then do
begin

if left has a mate then output trapezoid
and unpair left's mate;
if edge has a mate then output trapezoid
and unpair edge's mate;
pair left and edge and initialize a
trapezoid;

end;
left + next edge in active list;

end;
end;

CHAPTER 2 POLYGON PARTITIONING

For an example of the functioning of the Newel1 & Sequin algorithm, refer to Figure 2-11.

Figure 2-11 Example For Newel1 & Sequin Algorithm

We are given polygon ACEFHIJKM, defined in a clockwise direction. (It could be defined coun-

terclockwise with no detrimental effect on the algorithm.) Note that vertex D is not part of the

initial polygon; edges CE and FH simply cross at that point. Edges AC, CE and IJ receive direc-

tion tags of + l ; FH and KM receive direction tags of -1; EF. Hi. J K and MA receive tags of 0.

Assume that the polygon lies entirely within a stripe, so no partitioning at ,;ipe boundaries

will be performed. Ycurr becomes y(A). Edges AC and KM are transferred from the edge list

to the active list. Ynext becomes y(H). Edges AC and KM are paired. Ycurr becomes y(H).

Edges FH and IJ are transferred from the edge list to the active list. Ynext becomes y(J).

Edges AC and FH should now be paired, but AC already has a mate, so trapezoid ABLM is out-

put. Edges AC and KM are unpaired. AC is now paired with FH, and IJ is paired with KM.

Because ymax(N) = ynext, this edge will no longer be active once ycurr is stepped, so it must

be removed from the active list. First, though, since IJ has a mate, trapezoid IJKL is output.

and KM is unpaired. 1.7 is then removed from the active list. KM is also removed from the

CHAPTER 2 POLYGON PARTITIONING 33

active list because ymax(KM) = ynext. Ycurr becomes y(J). No edges are transferred from

the edge list to the active list at this point. Ynext becomes y(C). AC and FH should be paired.

but are found to be already paired, so no action is necessary. Because ymax(AC) = ynext, tra-

pezoid BCGH is output and edges AC and FH are unpaired; AC is then removed from the active

list. Ycurr becomes y(C 1. Edge CE is transferred from the edge list to the active list, leaving

the edge list empty. Ynext is set to y(F), but the active list order at this value of ynext does

not match the order at ycurr. Thus the intersection point D is found; edge CE in the active list

is replaced by edge CD, and DE is inserted into the edge list. Similarly. FH in the active list is

replaced by DH, and FD is inserted into the edge list. Ynext becomes y(D). Now the active list

order is the same at ycurr and ynext. Edges CD and DH are paired. Then. because ymax(CD)

= ynext, trapezoid CDG is output, and CD is removed from the active list. DH is also removed.

Ycurr becomes Y(D) Edges DE and FD are transferred from the edge list to the active list,

leaving the edge list empty Ynext becomes y(F). Edges FD and DE are paired. Ymax(FD) =

ynext, so trapezoid DEF is output. and FD is removed from the active list. DE is also removed.

leaving the active list empty. Now both edge list and active list are empty, and the process ter-

minates.

2.2.4. Otto Algorithm

A paper by Otto [7] mentions the reduction of polygons tc ,-beam primitives using a

recursive divide and conquer strategy. The polygon is sliced horizontally or vertically from a

reference vertex, producing two new polygons. The procedure is recursively applied to each of

the new polygons. until all polygons have been reduced to e-beam primitives.

An approach such a s this could potentially lead to an 0 (n log n) algorithm. (Finding a

slicing line might require 0 (n) time. If each partition generates two polygons with equal

numbers of vertices, then recursion would proceed to a depth of logan levels.) Unfortunately.

the description of the algorithm was too sketchy to permit any kind of evaluation.

CHAPTER 2

23. ANALYSIS

POLYGON PARTITIONING

23.1. Pate1 Algorithm

The Pate1 algorithm works satisfactorily for most polygons, but breaks down when

applied to self-crossing polygons. Consider the polygon in Figure 2-12.

Figure 2-12 Self-crossing Polygon

When applied to this polygon, the Pate1 algorithm fails tc ddect the crossing point. and outputs

an invalid trapezoid. This is not a serious drawback for this type of polygon: the internal area

is reduced to zero at the crossing point, and the polygon would be invalid in an IC layout.

Unfortunately, the Pate1 algorithm also fails with self-crossing polygons which originate as

wires with self-touching center-lines, such as that shown in Figure 2-13.

CHAPTER 2 POLYGON PARTITIONING

Figure 2-13 Wire With Self-Touching Centerline

In this example, points B, C, D. G. H I J and M are not part of the original polygon. The Patel

algorithm outputs the following trapezoids: ABJQ, BCMJ. CDPM. DEFG. KLMJ, and Nff iH.

No data is output to cover region JMWI. Because this type of polygon is valid in IC design, the

Pate1 algorithm is unacceptable without substantial refinement.

23.2. Little & Heuft Algorithm

The Little & Heuft algorithm gets into serious trouble when applied to a polygon with a

concave portion at the bottom, such as shown in Figure 2-14.

CHAPTER 2 POLYGON PARTITIONING 36

Figure 2-14 Polygon With Concave Bottom

Tracing the operation on this example-~ields the following. CD is identified as the top of the

first trapezoid. Region CDFA contains vertices I and H , and ybtm is set to y(I 1. Trapezoid

CDEB is removed and output. If IH is selected as the top of the next trapezoid, then region

IHGJ is found to contain no other vertices, and a trapezoid is generated for that region. If BE is

selected as the top of the next trapezoid, then region BEFA contains no other vertices, and tra-

pezoid BEFA is generated. In either ca-6. he region bounded by I. H. G and J becomes filled in.

The algorithm is clearly inadequate as stated. and needs to be equipped with the ability to

recognize when the polygon has been split horizontally by a concavity.

23.3. Newel1 & Sequin Algorithm

The Newel1 & Sequin algorithm showed the greatest promise: it was designed to work with

arbitrary polygons, including all types of self-crossing polygons. It is not, however, without

problems.

CHAPTER 2 POLYGON PARTITIONING 37

One problem' arises when attempting to sort the active list on xcurr. If two edges have the

same xcurr value, then the active list at ycurr cannot be sorted. A similar problem exists for

sorting the active list on xnext. It is essential that the active list be sorted correctly because the

determination of winding number relies on this sorting. Also, an incorrectly sorted active list

will prevent the test for edges which cross each other ("find ynext" sequence) from working.

For example. see Figure 2-15.

Figure 2-15 Unsortable Edges

When ycurr = y(A), edges EA and AB have the same xcurr value, and edges AB and BC have

the same xnext value.

A second problem arises in the test for crossing edges. If two edges cross at y = y(p).

where p is some other vertex of the polygon, then the crossing will not be detected. For exam-

ple. consider Figure 2-16.

CHAPTER 2 POLYGON PARTITIONING 38 "

- - - - - - - - - - - - - A&,= El-l - - - ynext

- - I - - - - - - - - - - - - ycurr

Figure 2-16 Crossing Point Not Detected

When ycurr = y(I) , the active list contains edges HI. FG. DE and BC. Ynext is initially set to

y(D). Edges HI and FG will have the same xnext value. Assuming that the active list ordering

problem is corrected, the order at ycurr will match the order at ynext, and ynext = y(D) is

accepted. Edge HI will be paired with edge FG. When ycurr becomes y(D), the active list con-

tains edges HI and FG. Ynext is tentatively set to y(G). The active list order at ycurr and

ynext agrees, and vn: ,t = y(G) is accepted. Edges HI and FG remain paired. Before removing

these edges from the active list, trapezoid IFHG is output. Thus the trapezoids generated from

this polygon are as shown in Figure 2-17. Clearly, this is not what was intended!

CHAPTER 2 POLYGON PARTITIONING 39

Figure 2- 17 Trapezoids Generated

2.3.4. Rehement of Newell & Sequin Algorithm

2.3.4.1. Sorting the Active List

If two edges have the same value of xcurr, then they must intersect at y = ycurr. and they

cannot possibly cross each other between ycurr and ynext. TholA their order at ynext can be.

used to resolve the order at ycurr. Similarly, edges which have the same xnext value can be

sorted at ynext by using their order at ycurr. This approach would require delaying sorting of

the active list at ycurr until the order at ynext is known.

A cleaner solution is to use the cotangent of the angle formed by the line y = ycurr and

the edges to be sorted. A justification for this follows. Consider a number of active list edges

which intersect at the point (xcurr.ycurr). All such edges must extend above ycurr, otherwise

they would have been removed from the active list. We are not concerned with any portions of

CHAPTER 2 POLYGON PARTITIONING 40

these edges below ycurr, because such portions have already been processed. So, consider a set

of edges (or partial edges) which intersect at the point (xcurr.ycurr), and which extend

upwards from that point (Figure 2-18).

(xcurr, ycurr)

Figure 2-18 Edges With Common xcurr Value

Define ray "ref" as the ray with endpoint (xcurr.ycurr) and equation y = ycurr, and which is

directed to the right of (xcurr.ycurr). For each edge, define 0 to be the angle formed by ref and

the edge, measured in the conventional sense (co~nterc~a~kwise) (Figure 2-19). 0 can be used to

sort these edges: the edge with largest 8 should appear first in the active list, and the one with

smallest 8 should appear last. 1.e. edges with equal xcurr value can be sorted on decreasing 8.

This solution would work, but would require considerable machine time to compute the angles

from the edge data.

Fortunately, there is a trigonometric function which is easy to compute, and which works

just as well as 8 to sort the edges: cotangent. (The cotangent of the angle between horizontal

line y = y, and a line segment with end points (xl,yl) and (x2.y2) is just (x2 - xl) / (y2 - y,):

CHAPTER 2

see Figure 2-20.)

POLYGON PARTITIONING

ref

I

Figure 2-19 Ordering Of Edges By Angle

Because there are no horizontal edges in the active list, and we are not concerned with portions

. of edges below ycurr. 0 < 8 < r. In this range, there is a one-to-one mapping between 8 and

CHAPTER 2 POLYGON PARTITIONING

cot(8) (Figure 2-21); 9 can be treated as a function of cot(@.

I

Figure-2-21 Cotangent Function

Thus, because cot(@) increases as 9 decreases, active list edges with equal xcurr can be sorted on

increasing cot(@.

A similar argument holds for edges with equal xnext value. In this case, we would like to

sort on increasing 0, but can equivalently sort on decreasing cot(@.

2.3 .#.2. Failure To Detect Crossing Point

The failure of the Newel1 & Sequin algorithm to detect the crossing of edges when some

vertex has the same y coordinate as the crossing point prevents it from being completely gen-

eral. A solution to the problem is as follows: when sorting the active list on xnext, check for

pairs of edges in which both edges have the same xnext value and both extend above ynext.

Any such pair crosses at (xnext.ynext), and must be broken up into four non-crossing edges.

The only exception is collinear edges.

CHAPTER 2 POLYGON PARTITIONING 43

Why does this test work? The edges intersect at (xnext.ynext) because they have the same

xnext value. Since both edges are in the active list, both are active at ycurr; thus both extend

below ynext. If both edges also extend above ynext, then they must cross at (xnext.ynext).

Collinear edges are an exception because they can have the same value of xnext, can extend

below and above ynext, but not cross.

235. The Re&& Newell & Sequin Algorithm

The Newel1 & Sequin algorithm, refined as described above, is shown below.

CHAPTER 2 POLYGON PARTITIONING

NEWELL & SEQUIN ALGORITHM (REFINED)

generate edge list, omitting horizontal edges and those
outside stripe, and assigning direction tag to each edge;
sort edge list on ymidedge);
/* ymin(z) = y coordinate of lowermost point in z */
while active list or edge list is not empty do
begin

if active list is empty then do
begin

ycurr t ymidfirst edge in edge list):
if ycurr 4 yminbtripe)
then ycurr + ymin(stripe);

end:
edge + first edge in edge list;
while ymin(edge) < ycurr do
begin

transfer edge from edge list to active list;
xcurr(edge) + x(edge.ycurr);
/*

xcurdedge) = x coordinate of intersection
of edge with line y = ycurr
x(edge.ycurr) is the x coordinate of point
on edge with y coordinate = ycurr

*/
edge + next edge in edge list;

end:
sort active list on xcurr(edge1, subsort on
cotangent of angle between edge and line y = ycurr;
find ynext: /* See below. */
generate trapezoids; /* See below. */
for each edge in active list do
begin

/*
ymax(z) = y coordinate of uppermost point in z

*/
if y b:x(edge) = ynext or ynext = ymadstripe) then do
begin

if edge has a mate then output trapezoid
and unpair edge's mate:
remove edge from active list;

end;
else xcurdedge) + xnext(edge);
/*

xnext(edge) = x coordinate of intersection of
edge with line y = ynext

*/
end;
ycurr + ynext:

end:

CHAPTER 2 POLYGON PARTITIONING

TIND YNEXT" SEQUENCE (REFINED)
ynext + midactive list ymax values);
ynext + min(ynext.ymin(first edge in edge list));
ynext + min(ynext.ymax(stripe));
for each edge in active list do

xnext(edge1 + x(edge.ynext);
sort active list on xnext(edge1, subsort on cotangent
of angle between edge and line y = ynext;
for each pair of active list edges (edgel and edge2)
such that xnext(edge1) = xnext(edge2) do
begin

if ymax(edge1) > ynext and ymax(edge2) > ynext and
edgel and edge2 are not collinear then do
begin

create edge3 with endpoints
(xnext(edge1).ynext) and upper-end(edge1);
create edge4 with endpoints
(xnext(edge2).ynext and upper-end(edge2);
insert edge3 and edge4 into edge list;
upper-end(edge1) + (xnext(edge1).ynext);
upper-end(edge2) + (xnext(edge2).ynext);

end;
if active list order at ycurr Z order at ynext
then do
begin

find intersection point of edges out of sort:
break up 2 intersecting edges into 4 new
edges, leaving lower 2 in active list and
inserting upper 2 into edge list;
ynext + intersection point);
go back to loop which assigns xnext values;

end;

CHAPTER 2 POLYGON PARTITIONING

"GENERATE TRAPEZOIDS" SEQUENCE
wind + 0;
left + first edge in active list;
for each edge in active list do
begin

wind 4- wind + directiodedge);
/*

directiodedge) = direction tag assigned to edge
wind = winding number for points to immediate right of edge

*/
if wind = 0 then do
begin

if left and edge are not mates then do
begili

if left has a mate then output trapezoid
and unpair left's mate;
if edge has a mate then output trapezoid
and unpair edge's mate;
pair left and edge and initialize a
trapezoid;

end;
left + next edge in active list;

end;
end;

2.4. EXPERIMENTAL

2.4.1. Context

The partitioning of polygons into trapezoids has been implemented within the context of a

, program to generate IC mask data for the Perkin-Elmer MEBES machine. The program was ini-

tially developed while working at Microtel Pacific Research under the Co-operative Education

Program, and is still in routine use there. That version uses a polygon partitioning algorithm

similar to that by Little and Heuft [3], but refined to handle horizontal splitting due to concavi-

ties. All program segments were initially written in the C programming language and designed

to run under the UNIX operating system. Several of the high profile modules were later rewrit-

ten in assembler (by Microtel Pacific Research staff) to improve speed.

CHAPTER 2 POLYGON PARTITIONING 47

During subsequent work at Simon Fraser University the polygon partitioning part of the

program was rewritten, using the refined Newel1 & Sequin algorithm. This change not only

enabled the program to correctly handle arbitrary polygons (including all types of self-

intersections) but also resulted in a reduction of CPU time, typically in the order of 50%.

2.4.1.1. Input

The program (called "bifmebes") receives as data an IC layout in Microtel's "Binary Inter-

mediate Form" (BIF). BIF is a low level graphics language, somewhat similar to Caltech Inter-

mediate Form (CIF) [4]: the differences are of no consequence here.

2.4.1.2. Output

Bifmebes generates the following output.

one MEBES data file for each layer of the IC

one MEBES tape header file (which is used as a tape directory)

0 one conversion log file, in which are reported the names of BIF modules used, warnings

and error messages, timing statistics, and statistics on e-beam primitives generated.

2.4.2. Testing

The program was tested on two types of data. It was first tested on data contrived to

exercise various features, including various aspects of the partitioning algorithm. It was then

tested on actual IC design data. The output was verified using several different techniques:

0 examination of the conversion log file

hand decoding of a hexadecimal dump of the MEBES binary data

conversion of the MEBES data back to BIF, followed by overlaying plots of the original

and converted polygons in different colors on the same monitor

comparison of generated data to MEBES data produced by the earlier version of the

CHAPTER 2 POLYGON PARTITIONING 48

program. The earlier version has been tested by the above techniques and also by photo-

graphic enlargement of a mask produced on the MEBES machine using bifmebes output.

2.43. Results

In all cases, polygon partitioning has been shown to be correct. The data generated is con-

sistently accurate to within the resolution of the MEBES machine.

Chapter 3

OPTIMIZATION TECHNIQUES

3.1. INTRODUCTION

Mask vendors usually include the total amount of e-beam machine time consumed in the

cost of mask fabrication. Typically there is a fixed charge up to a certain time limit, and then

the customer pays for each minute of machine time past that limit. This provides economic

motivation to minimize e-beam machine time, and makes optimization.of the MEBES data desir-

able. There are several possible techniques to do this:

reducing the trapezoid count

recognizing repeated patterns. and

sequencing of rasterization and stage movement.

3.2. REDUCTION OF TRAPEZOID COUNT

Each trapezoid in the e-beam data must be decoded and rasterized - the more trapezoids.

the more machine overhead. (With raster scan machines, the actual time spent exposing the

mask will not be affected, as writing does not start until all trapezoids of the current stripe

have been rasterized and saved in the bit map. With vector scan systems, though, the trapezoid

count would affect exposure time.) Two possible techniques for reducing the trapezoid count are

non-horizontal partitioning and trapezoid merging.

3.21. Non-Horizontal Partitioning

Although Newel1 and Sequin [6] claim that their algorithm generates a minimum set of

trapezoids, this is not true. Neither is it true for any of the other polygon partitioning

CHAPTER 3 OPTIMIZATION TECHNIQUES 50

algorithms examined. The reason? All such algorithms are limited to partitioning along hor-

izontal lines. If polygons could also be partitioned non-horizontally. then the total trapezoid

count could be reduced.

For example. refer to Figure 3-1.

Figure 3-1 Horizontal & Non-Horizontal Partitioning

The figure on the left (a) cannot be partitioned into any less than three trapezoids. In this

orientation, horizontal partitioning yields the minimum set. But if the figure is rotated through

90 degrees, this is no longer true. Horizontal partitioning now produces five trapezoids (figure

b), while non-horizontal partitioning yields three (figure c).

3.2.2 Trapezoid Merging

In this technique adjoining trapezoids which satisfy certain conditions are merged into a

single trapezoid. Consider two adjoining trapezoids. ABCD and EFGH (Figure 3-2).

CHAPTER 3 OPTIMIZATION TECHNIQUES 51

Figure 3-2 Trapezoid Merging

Let vertex B be coincident with vertex E, and let vertex C be coincident with vertex H. If edges

AB and EF are collinear, and if edges CD and GH are collinear, then the trapezoids may be

merged, yielding one new trapezoid. AFGD.

It is possible that trapezoid merging could significantly reduce the number of trapezoids.

The application of hierarchical design techniques to integrated circuits results in modularization

of the IC layout. Each module is placed into the overall design wherever its pattern is *,quired.

Often, modules are designed to abut, greatly reducing the amount of explicit interconnection

needed. I.e. interconnection is achieved by butting polygons, and butting polygons will give rise

to mergable trapezoids.

33. RECOGNITION OF REPEATED PATTERNS

The MEBES system software accepts a "data compaction option", which is of benefit in

designs having a high degree of regularity (e.g. memory). This option is equivalent to an array

CHAPTER 3 OPTIMIZATION TECHNIQUES 52

of trapezoids. A trapezoid is described once, together with a row count, a column count, the

inter-row spacing. and the inter-column spacing, and the MEBES software generates and raster-

izes all instances of the trapezoid. Making use of the data compaction option would require the

recognition of array-like patterns of trapezoids. (Although this type of information is often

available at the design level, it is lost on translation to BIF or CIF.)

3.4. SEQUENCING OF RASTERIZATION AND STAGE MOVEMENT

As described in Chapter One, the MEBES machine rasterizes one stripe, and then writes all

instances of that stripe on the mask before proceding to the next stripe. This is an efficient

approach for production type masks, in which all dies on the mask are identical. (A die is the

pattern corresponding to one chip.) It may not be so efficient, though, for research type masks.

in which a number of different dies are present. With a production mask, stage movement

between instances of a stripe is small. But in a multi-project mask. such stage movement can be

fairly large, and much time can be wasted.

An alternative sequence would be as follows.

until all instances of all stripes have been written do
begin

rasterize the stripe closest to the current stage position;
write that stripe onto the mask:

end:

This sequence could also be inefficient at times. For example, if the next instance of the current

stripe is close, it may be faster to move the stage than to rasterize the next stripe. The optimum

sequence is somewhere in between the two extremes.

A branch and bound approach could be used to find the optimum sequence, but would be

far more time consuming than just using the normal sequence. There is a very large number of

stripes on a mask, so the branching factor in a branch and bound tree would be high. Thus a

heuristic would be needed to find a near optimal sequence.

CHAPTER 3 OPTIMIZATION TECHNIQUES

35. SELECTION OF OPTIMIZING TECHNTQUE

Trapezoid merging was not attempted due to insufficient time.

The recognition of array-like patterns for the data compaction option was not tried

because it was unlikely to have much impact on e-beam machine time. The major benefit of

data compaction is in reducing the quantity of data; data compaction does produce a slight

reduction in overhead, but its effect on overall machine time is minimal (personal communica-

tion with Lee Bernier. Software Manager at Perkin Elmer. 4 May 1983).

The sequencing of rasterization and stage movement was not attempted for two reasons.

(1) Current MEBES machines do not provide any control over such sequencing.

(2) Information needed to simulate the effect of different sequences on machine time was

difficult to obtain.

The only optimization technique actually tried was non-horizontal partitioning. This is

discussed in detail in Chapter Four.

Chapter 4

NON-HORIZONTAL PARTITIONING

4.1. OBJECTIVES

As discussed in Chapter 3, non-horizontal partitioning of polygons is one way to reduce

the total trapezoid count and hence partially optimize the e-beam data. The objectives of this

part of the study were

(1) to develop an algorithm for non-horizontal partitioning of polygons.

(2) to implement the algorithm, and

(3) to evaluate its effectiveness.

4.2. ANALYSIS

4.2.1. The Need For A Heuristic

An obvious method to introduce 'non-horizontal partitioning would be to use a branch and

bound algorithm instead of one like Newel1 and Sequin's. In this approach, the tree of all possi-

ble partitions would be traversed, backtracking wherever the partition does not yield acceptable

e-beam trapezoids or wherever the trapezoid count exceeds the best solution found so far. This

technique would find an optimum partitioning, but would likely be prohibitive in CPU time.

This suggests the need for a heuristic which could be used to partition a polygon non-

horizontally. Once no further partitioning by the heuristic is possible, each new polygon gen-

erated can be partitioned horizontally using the Newel1 and Sequin algorithm.

CHAPTER 4 NON-HORIZONTAL PARTITIONING

4.2.2. The Collinear Edge Heuristic

The observation which prompted the "collinear edge heuristic" is as follows: in many

cases, non-opt id partitioning is caused by failing to recognize that two coUinear edges should

(under the right conditions) be rearranged to form two new edges, partitioning the polygon in the

process. An example of this is seen in Figure 3-1. In this example. horizontal partitioning of

the figure in (b) yields five trapezoids. In (c), the trapezoid count has been reduced to three by

rearranging pairs of collinear edges. A rough algorithm for edge rearrangement in the collinear

edge heuristic follows. (Refer to Figure 4-1.)

a
edgel

a\ edge1

Figure 4-1 Edge Rearrangement in Collinear Edge Heuristic

CHAPTER 4 NON-HORIZONTAL PARTITIONING

find a pair of collinear edges (edgel and edge21 which
satisfy the conditions for the collinear edge heuristic;
a + endpoint of edgel farthest from edge2;
b + endpoint of edgel closest to edge2;
u + endpoint of edge2 closest to edgel;
v + endpoint of edge2 farthest from edgel;
edgel + edge av :
edge2 + edge ub;
polygon1 + polygon containing av ;
polygon2 + polygon containing ub;

For example, application of the algorithm to the polygon in Figure 4-2 proceeds as follows.

edge1 edge1

Figure 4-2 Exampie of Edge Rearrangement Algorithm

a G, b + F, u + C, and v + B. Edge1 + GB and edge2 + CF. Polygon1 + ABGH and

polygon2 + CDEF.

4.2.3. Partitioning Conditions For Collinear Edge Heuristic

AU pairs of collinear edges can't be rearranged to partition a polygon and produce valid e-

beam data. For example, consider the polygon shown in Figure 4-3.

CHAPTER 4 NON-HORIZONTAL PARTITIONING 57

E - F

Figure 4-3 Invalid Edge Rearrangement

Edges BC and FG are collinear, but rearrangement as described above produces two new

polygons which, together, do not resemble the original. Specifically, the region bounded by ver-

tices C. D. E and F has been filled in.

The conditions which must be met before applying edge rearrangement in the collinear

edge heuristic are as follows.

(1) Edges to be modified a ~ s t be collinear.

(2) Edges to be modified must have the same traversal direction.

(3) After edge rearrangement, polygon1 must not enclose any vertex of polygon2, and vice

versa (non-enclosure condition).

(4) After edge rearrangement, if polygonl or polygon2 has any regions of zero width, then

each such region must be no larger than a point (non-zero-width condition).

CHAPTER 4 NON-HORIZONTAL PARTITIQNING

4.2.4. Justification of Partitioning Conditions

These four conditions are necessary and sufficient to permit non-horizontal partitioning

using the collinear edge heuristic with no loss of data integrity. In the following justification

for this claim, let the edges involved be as shown in Figure 4-1.

4.2.4.1. Necessity of Conditions

4.2.4.1.1. Collinearity Suppose collinearity of edges ab and uv isn't necessary. Then rearrange-

ment of two edges which satisfy all of the other conditions for partitioning must produce a

valid partition. Consider the polygon in Figure 4-4.

Figure 4-4 Rearrangement of Non-Collinear Edges

Edges CD and FA are not collinear, but satisfy the traversal direction, non-enclosure and non-

zero-width conditions. Edge rearrangement must involve formation of an edge between C and

A. (The only other possibility would be an edge between C and F, but this would leave edge

CHAPTER 4 NON-HORIZONTAL PARTITIONING 59

FA intact while breaking edge EF, i.e. edge EF would be involved instead of FA.) Thus edges

CD and FA are broken, and edges CA and FD are formed. This yields two polygons whose

union bears little resemblance to the original. Thus a counterexample has been demonstrated

which contradicts the above supposition, indicating that edge collinearity is a necessary condi-

tion.

4.2.4.1.2. Traversal Direction Consider a point which traverses the polygon boundary in such a

way that each vertex is passed only once. The traversal direction of each edge is the direction in

which the point travels as it traverses that edge. The traversal direction condition states that

edges to be rearranged in the collinear edge heuristic must have the same traversal direction.

Suppose this condition is not necessary. Let edges ab and uv satisfy all of the other partitioning

conditions, but have opposite traversal directions (Figure 4-51.

Figure 4-5 Edges With Opposite Traversal Direction

Aside from edge ab, there must be a path from b to a to close the polygon. This path must

include u and v, otherwise those vertices would not belong to the same polygon. The portion of

CHAPTER 4 NON-HORIZONTAL PARTITIONING 60

this path between b and u must include v, otherwise the traversal directions of ab and uv would

be violated. Thus the vertex adjacency list for the polygon is a,b, ... ,v,u,... ,a. Rearrangement of

ab and uv as per the collinear edge heuristic generates the following vertex adjacency list:

a,v, ..., b,u, ... ,a. But this is still one polygon; partitioning has not occurred! This example con-

tradicts the assumption regarding traversal direction. Edges to be rearranged must have the

same traversal direction.

4.2.4.1.3. Non-Enclosure Edge rearrangement partitions a polygon into two new polygons.

polygonl and polygon2. Suppose polygonl may enclose some of polygon2's vertices (or vice

versa) without harming data integrity. Consider the polygon in Figure 4-3. Edges BC and FG

satisfy all conditions of the collinear edge heuristic except for non-enclosure. Rearrangement of

these two edges yields polygons ABGH and CDEF. This will have the effect of filling in the

region enclosed by vertices C , D, E, and F, which is clearly an error. The counterexample con-

tradicts the assumption that non-enclosure is not necessary

4.2.4.1.4. Non-Zero-Width If partitioning a polygon yields a region of zero width which is

larger than a point, then subsequent partitioning will generate a zero-area trapezoid for that

region. This increases, rather than decreases the amount of e-beam machine overhead, and on

<dme machines, may not even be tolerated at all. Thus the non-zero-width condition is neces-

sary.

For example, refer to Figure 4-6. Edges BC and FG satisfy all collinear edge heuristic con-

ditions except for non-zero width. Edge rearrangement yields polygons CDEF and ABGHIJKL.

Subsequent horizontal partitioning of the latter polygon generates trapezoids ABKL. GHIJ and

JKKJ.

CHAPTER 4 NON-HORIZONTAL PARTITIONING

Figure 4-6 Generation of Zero-Area Trapezoid

4.2.4.2. Su@ciency of Conditions

The conditions for partitioning using the collinear edge heuristic are sufficient to ensure

data integrity if the shape of the union of the areas enclosed by the new polygons is the same as

the shape of the area enclosed by the original polygon. Collinear edge heuristic partitioning

introduces no new vertices, deletes no vertices, and moves no bertices. Furthermore, because of

the non-enclosure condition, no vertex will be obscured by another polygon. Thus any change

in polygon shape must be due to edge modification. not vertex modification.

Two, and only two edges are modified (Figure 4-7).

CHAPTER 4 NON-HORIZONTAL PARTITIONING 62

Figure 4-7

Consider the polygon before edge rearrangement. Because of the collinearity condition. a, b, u.

and v all lie on the same line. As a result of the non-enclosure condition, no part of the boun-

dary can pass between b and u, thus this region must be inside the polygon. Since polygons are

area-filled on a mask, a line segment between b and u would not affect the shape on the mask.

Now consider the two new polygons after edge rearrangement. Vertices a, b, u and v have not

been moved. thus they must still lie on the same line. The portion of av between a and b (after

partitioning) is equivalent to ab (before partitioning). The portion of av between u and v is

equivalent to uv. The portion of av between b and u, and edge ub are both equivalent to a line

segment between b and u. Nothing has been introduced which can alter the shape of the

- enclosed area. Thus the collinear edge heuristic partitioning conditions are sufficient to ensure

data integrity.

CHAPTER 4 NON-HORIZONTAL PARTITIONING

4.23. Tests Used In Partitioning Conditions

For a discussion of the collinearity test, see Appendix 1.

The test for traversal direction is quite simple. Because the edges under test will only be

considered if they are collinear and non-horizontal, the test reduces to determining whether

each edge is upwards or downwards directed. This is just the edge direction tag used in the

Newel1 and Sequin algorithm.

An obvious algorithm for the non-enclosure test is to tentatively partition the polygon.

and then test each vertex of each new polygon for enclosure by the other polygon. This method

would have complexity of 0 (n2). An alternative algorithm uses the convexity or concavity of

vertices; this algorithm (which is discussed next) also tests for the non-zero-width condition at

the same time.

4.2.5.1. Vertex Convexity Algorithm

This approach requires that the polygon not be self-crossing, and that the collinearity and

traversal direction conditions be met. The algorithm is as follows. (Refer to Figure 4-1.)

if vertex b is convex or vertex u is convex
then reject the partition;
else

if any edge of the polygon (except those adjacent to
b and u) intersects the gap between b and u
then reject the partition:

The gap between b and u is defined to be the non-existent straight line segment with end points b

and u. Also, recall that (at least within this thesis) intersect means to touch or cross. For a

description of how to determine the convexity or concavity of a vertex, refer to Appendix 2.

The requirement that the polygon be non-self-crossing makes this algorithm less general

than the obvious one. On the other hand, what is gained by this restriction is a reduction in

complexity from 0 (n2) to 0 (n).

CHAPTER 4 NON-HORIZONTAL PARTITIONING

4.2.5.2. Sustijicution of Vertex Convexity Algorithm

As mentioned above, the vertex convexity algorithm provides a test for both the non-

enclosure and non-zero-width conditions. In the following proof of this claim, let ab and w be

the edges under test, let them belong to a non-self-crossing polygon, and let them satisfy the

collinearity and traversal direction conditions. Edges ab and uv are as shown in Figure 4-1.

4.2.5.2.1. Non-Enclosure Condition We must show that

(a) the convexity of b or u implies that non-enclosure cannot be guaranteed, and

(b) the concavity of b and u together with the absence of any edge which intersects gap bu

implies that non-enclosure is met.

The line containing ab and uv partitions the plane into two half-planes. Let HI be the half-

plane on the interior side of ab, and H2 be the half-plane on the exterior side (Figure 4-81.

H 1
\
\ H 2
\

(INTERIOR) \ \ (EXTERIOR)

Figure 4-8 Half-Planes HI and H2

There must be a path from b to a (other than edge ab) to close the polygon. This path must

CHAPTER 4 NON-HORIZONTAL PARTITIONING 65

include u and v, otherwise these vertices would not be part of the same polygon. The portion of

this path between b and v must include u, otherwise traversal direction would be violated.

Thus the vertex adjacency list is a b u.v. a. Imagine a point moving along the polygon boun-

dary from a to v. Using that point as a viewpoint, and the traversal direction as the viewing

direction, the polygon interior is always on the same side of the boundary. (The only way this

could be violated is if edges were allowed to cross each other.) Thus, regardless of what course

the path from b to u takes. H1 is always on the interior side of both ab and uv.

First let us address point (a). Given that vertex b is convex, prove that non-enclosure can-

not be guaranteed. Let c be the vertex # a adjacent to b (Figure 4-9).

Figure 4-9

By the definition of a convex vertex, interior angle(abc) < 180". and c lies in HI.

Suppose edge rearrangement is performed on ab and uv ; these edges are replaced by av and

ub (Figure 4-10). Let polygon1 be the new polygon containing a and v. Let polygon2 be the

new polygon containing u, b and c. The section of av between a and b (after partitioning) is

CHAPTER 4 NON-HORIZONTAL PARTITIONING 66

equivalent to ab (before partitioning). The section of av between u and v is equivalent to uv.

Because H1 was on the interior side of ab and w, it is also on the interior side of av. Vertex c

still lies in HI. Since no edge crosses bc, no part of the boundary separates c from the interior

of polygonl. Thus a vertex of polygon2 (c) is enclosed by polygonl, and non-enclosure has not

been met. A similar argument holds for the case where u is convex. It may then be concluded

that neither b nor u may be convex if non-enclosure is to be guaranteed.

Figure 4- 10

Now we will address point (b): the concavity of b and u together with the absence of any

edge intersecting gap bu ensures that non-enclosure will be met. Let ab, uv, H1 and H2 be as

before. Let c be the vertex f a adjacent to b, and let t be the vertex f v adjacent to u. Given

that b and u are both concave, and that no edge intersects gap bu. Refer to Figure 4-11.

CHAPTER 4 NON-HORIZONTAL PARTITIONING 67

Figure 4-1 1

There must be a path from c to a (other than a,b,c) to close the polygon. This path must

include t , u and v , since these vertices are part of the polygon. Also, the part of the path

between c and v must include t and u, otherwise the traversal direction would be violated.

Thus the vertex adjacency list is a.b.c. t.u.v. a. When edge rearrangement is applied to edges

ah and uv, they are replaced by new edges av and ub (Figure 4-12).

CHAPTER 4 NON-HORIZONTAL PARTITIONING 68

Figure 4-12

One new polygon (polygonl) will haLe vertex adjacency list a,v, ... a; the other (polygon2). will

have vertex adjacency list b.c ,... ,t.u.b.

The only edges affected by the partitioning are ab and w. Because no other edge of the ori-

ginal polygon crosses any other edge, the only edges which might introduce edge crossing after

partitioning are av and ub. The portion of av between a and b is equivalent to ab, the portion

between u and v is equivalent to w, and the portion between .' 3.1d u is equivalent to gap bu. No

edge crosses ab or uv. Since no edge intersects gap bu, no edge crosses this gap. Thus no edge

will cross av. Edge ub is equivalent to gap bu; since no edge crosses the gap, no edge will cross

ub. Thus polygonl and polygon2 are non-self-crossing. Furthermore, no edge of polygonl

crosses any edge of polygon%.

Refer back to the pre-partitioned situation (Figure 4-11). Because b is concave, interior

angle(abc) > 180". and c lies in H2. Similarly, t also lies in H2. After partitioning (Figure 4-

12). HI will be on the interior side of av, and H2 on the exterior side. Because no vertices are

CHAPTER 4 NON-HORIZONTAL PARTITIONING 69

moved, c and t still lie in H2. No edge crosses bc or tu, so no part of a boundary can separate c

or t from the exterior of polygonl. Thus c and t are outside of polygonl. Vertices b and u lie

on edge av, but are not inside polygonl. The only way in which any other vertex of polygon2

can be inside polygonl is for a polygon2 edge to cross a polygonl edge. But this has been shown

to not happen. Thus polygonl cannot enclose any polygon2 vertex.

But what about polygon2 enclosing a polygonl vertex? Consider the polygon before parti-

tioning (Figure 4-13).

Figure 4-13

The line containing edge bc partitions the plane into two half-planes. Let H3 be the half-plane

on the interior side of bc, and H4, the half-plane on the exterior side. Because b is concave, inte-

rior angle(ubc) > 180". and a lies in H4. Now consider the situation after partitioning (Figure

4-14).

CHAPTER 4 NON-HORIZONTAL PARTITIONING 70

Figure 4-14

Edge bc is still in the same place.. Polygon2's vertex adjacency list means that the region

bounded by edges tu, ub and bc is inside polygon2. Thus, following edge rearrangement. H3 is

still on the interior side of bc, and H4 is still on the exterior side. Because no vertex is moved, a

still lies in H4. No edge crosses QV (established above), thus no boundary separates a from the

exterior of polygon2, i.e. a is outside of polygon2.

A similar argument holds for v : t l ir vertex is also outside polygon2. The only way for

any other polygonl vertex to be inside polygon2 is for a polygonl edge to cross a polygon2 edge.

Since this cannot happen, no vertex of polygonl can be enclosed by polygon2.

It has been shown that no vertex of polygonl is enclosed by polygon2, and that no vertex

of polygon2 is enclosed by polygonl. and so the vertex convexity algorithm provides a reliable

test for non-enclosure.

Note: throughout this discussion, it has been assumed that there is a space between vertices

b and u. If this is not true, then edges ab and uv must overlap, or at least touch. In this case,

CHAPTER 4 NON-HORIZONTAL PARTITIONING 7 1

since no edge crosses ub or uv, no edge will cross gap bu, and it would be unnecessary to test for

such a crossing. In most cases. however, there will be a space between b and u, and it will be

necessary to perform the test.

4.2.5.2.2. Non-Zero-Width Condition We will now justify the claim that the vertex convexity

algorithm establishes the non-zero-width condition. (Review Figure 4-6 for an example of the

production of a polygon containing a zero-width region.) Collinear edge heuristic edge rear-

rangement adds, deletes and moves no vertices. Only two edges are affected: ab and w, which

become av and ub after partitioning (Figure 4-11. As before, let polygonl be the new polygon

containing a and v, and polygon2 be the new polygon containing u and b.

As discussed before, the portion of QV between a and b is equivalent to ub, and the portion

between u and v is equivalent to uv. All that's new in polygonl is the portion of av between b

and u; this is the only place in polygonl where edge rearrangement might introduce a zero-

width region. To produce such a zero-width region, some part of the polygon boundary must

touch av between b and u. But this part of av is equivalent to the pre-partitioning gap bu, and

the vertex convexity algorithm prevents partitioning if any edge of the polygon intersects this

gap. If partitioning has taken place, then no part of the polygon boundary intersects QV between

b and u, and no zero-width region is introduced into polygonl. (This is not to say that there

could not have been any zero-wdth regions in the polygon before partitioning, only that parti-

tioning does not introduce any'zero-width regions.)

In polygon2, all that's new is edge ub. To produce a zero-width region, some part of the

polygon boundary must touch this edge. But ub is equivalent to gap bu, and the same argument

applies to polygon2 as to polygonl. Thus the vertex convexity algorithm establishes the non-

zero-width condition as well as the non-enclosure condition.

CHAPTER 4 NON-HORIZONTAL PARTITIONING

4.2.6. An Algorithm For Non-Horizontal Partitioning

An algorithm has been developed for non-horizontal partitioning, based on the collinear

edge heuristic. The test for collinearity is performed as described in Appendix 1. Edge traver-

sal direction is tested as discussed above (using direction tags). The vertex convexity algorithm

is employed to establish non-enclosure and non-zero-width. Each new polygon produced is

recursively partitioned until no more non-horizontal partitions are possible, a t which point it is

partitioned horizontally (using the Newel1 .and Sequin algorithm). (The switch to horizontal

partitioning also provides the recursion escape mechanism.) The algorithm is as follows.

procedure partition(po1ygon)
begin

for edgel +- first edge to last edge of polygon do
begin

if edgel is horizontal then iterate with next edgel;
for edge2 +- edge after edgel to last edge do
begin

if directiodedgel) Z direction(edge2)
then iterate with next edge2;
if edgel and edge2 are not collinear
then iterate with next edge2;
a +- endpoint of edgel farthest from edge2;
b + endpoint of edgel closest to edge2;
u +- endpoint of edge2 closest to edgel:
v +- endpoint of edge2 farthest from edgel;
if b is convex or u is convex
then iterate with next edge2;
for edge3 +- each edge of polygon (excluding
edgel, edge2, and the edges adjacent to these) do

if edgm'3 ,ntersects gap between b and u
then iterate with next edge2;

edge1 t edge av ;
edge2 +- edge ub;
polygon1 + polygon containing edgel ;
polygon2 +- polygon containing edge2:
partition(polygon1);
partition(polygon2);
return;

end;
end;
horizontally-partition(po1ygon);
return;

end;

CHAPTER 4 NON-HORIZONTAL PARTITIONING

4.3. EXPERIMENTAL

43.1. Context

The above algorithm has been implemented within the context of the "bifmebes" program

described in Chapter 2. Procedure "partition" and associated procedures for determining col-

linearity, vertex convexity, etc. were written in C. Bifmebes was modified to pass each polygon

to partition, instead of to the Newel1 and Sequin procedure; partition takes care of calls to the

latter, as discussed above.

4.3.2. Testing

The revised program was tested using data contrived to exercise various aspects of the

algorithm, and then with actual IC layout data. MEBES data generated was verifed by exami-

nation of the conversion log file, and by overlaying plots of pre- and post-conversion data, as

before.

4.3.3. Results

In all cases, polygon partitioning was shown to be correct, and the output accurate to

within the resolution of the MEBES machine.

Two versions of bifmebes, one with and one without non-horizontal partitioning (NHP).

were run on data for several designs. The following table summarizes the differences observed.

CHAPTER 4 NON-HORIZONTAL PARTITIONING

Design

1
2
3
4
5
6
7
8

ed
Change
-5.6%
-6.6%
-2.7%
-2.0%
-5.6%
-3.8%
-1.1%
-1.4%

Trapezoids Generi CP
No NHP

0:07
0:08
056
1:oo

25:02
26:06
33:32
33:26

No NHP
3 72
392

5851
6022

174790
176229
221403
214713

Time (min::
With NHP

0:08
0:lO
1:08
1:09

37:02
3252
39:25
37:ll

With NHP
35 1
366

5694
5904

165070
169488
218868
211821

:>
Change
+14.3%
+25.0%
+21.4%
+15.0%
+47.9%
+2$.9%
+17.5%
+I 1.2%

(Design 1 is a flipflop cell. 3 is an arithmetic logic unit. 5 is a multi-project chip, and 7 is a

microprocessor. Designs 2. 4.6 and 8 are the same as 1. 3 .5 and 7 respectively, except that each

has been rotated through 90•‹.) Non-horizontal partitioning resulted in a trapezoid count reduc-

tion of 1% to 6%. accompanied by a CPU time increase of 11% to 48%.

4.4. DISCUSSION

The impact of the collinear edge heuristic on the total trapezoid count was disappointing,

although not insignificant. It is clear that the magnitude of the trapezoid count reduction is

dependent on the nature of the IC design.

The use of the vertex convexity algorithm is effective in establishing the non-enclosure and

non-zero-width conditions. In fact, in some cases it represents some overkill. Consider the

polygon in Figure 4-15.

CHAPTER 4 NON-HORIZONTAL PARTITIONING

Figure 4-15 Legitimate Partition Rejected

Edges BC and FG satisfy all conditions for the collinear edge heuristic. However, because edges

HI and IA intersect gap CF, the partition is rejected by the vertex convexity algorithm. Thus

some cases for non-horizontal partitioning are missed, although probably not many. (Shapes

such as that in Figure 4-15 are not common in IC layouts.)

4.4.1. Exclusion of Self-crossing Polygons

The failure to handle self-crossing polygons is a definite disadvantage. This drawback can.

however, be partially offset. One source of self-crossing polygons is the expansion of wires

with self-touching center-line. Let ub and uv be two edges of a wire envelope polygon, with b

closest to uv, and u closest to ab (Figure 4-16).

CHAPTER 4 NON-HORIZONTAL PARTITIONING 76

I

Figure 4-16 Wire Envelope

Let these edges be collinear and have the same traversal direction. If edge rearrangement is to

be applied, then vertices b and u must both be concave. As a result, the other side of the wire

envelope will cross gap bu, and the partition will be rejected. Because application of the col-

linear edge heuristic to wires would seldom (if ever) produce any partitions, little is lost by not

even trying to apply it to wires. Thus, wires can be processed directly by the horizontal parti-

loning routine; non-horizontal partitioning is bypassed, and wires with self-touching center-

lines will be handled correctly.

This, of course. does not solve the problem for self-crossing polygons in general. The

approach is satisfactory for experimental purposes, but not for commercial applications. The

program should check the data for self-crossing polygons as a first step, and issue a warning for

each one found. This would make the implementation safe, but would still leave the task of

dealing with self-crossing polygons to the designer.

CHAPTER 4 NON-HORIZONTAL PARTITIONING 77

The collinear edge heuristic is an experiment in e-beam data optimization. In view of its

inability to handle self-crossing polygons, the small reduction in trapezoid count achieved, and

the increased CPU time requirements, it is probably not suitable for commercial applications.

Nonetheless, it does represent a step towards optimization of *beam data.

Chapter 5

cONCLu$IoNs

The objectives of this research (as set out in Chapter 1) were

(1) to develop software to prepare electron beam lithography mask data which is accurate

and reliable. and

(2) to explore methods to optimize e-beam data so that e-beam machine time is reduced.

5.1. POLYGON PARTITIONING

The first objective necessitated the selection and implementation of a suitable algorithm to

partition polygons into e-beam trapezoids. A number of previously developed algorithms have

been reviewed, the most promising of which was one by Newel1 and Sequin, based on the wind-

ing number convention [6] . In spite of its intended generality, the Newel1 and Sequin algorithm

suffers from several limitations. The refinements discussed in this thesis have overcome these

limitations, producing an algorithm which is capable of partitioning arbitrary polygons, includ-

ing all types of self-intersections.

"Bifmebes" represents an implementation of the refined Newel1 and Sequin algorithm

within the context of a complete e-beam data preparation program. This program meets the

objectives stated above: it is accurate and reliable, and imposes no unreasonable restrictions on

the designer.

CHAPTER 5 CONCLUSIONS

53. E-BEAM DATA OPTIMIZATION

Several possible techniques for optimizing e-beam data have been discussed. One method.

which attempts to reduce the trapezoid count by the use of non-horizontal partitioning, has

been implemented using the collinear edge heuristic. Application of this heuristic to test data

produced a small but desirable reduction in the total trapezoid count, a t the expense of an

increase in computer time. (This increase takes place on the local computer used to prepare the

data. not on the computer at the e-beam installation.) Although the collinear edge heuristic has

only a small impact on the trapezoid count and is unable to handle self-crossing polygons, it

does represent a beginning in the area of optimizing data for e-beam lithography systems.

5.4. RECOMMENDATIONS FOR FURTHER WORK

Two possible optimization techniques discussed in Chapter 3 bear further investigation:

trapezoid merging and e-beam stage control. Merging of butting trapezoids would definitely

reduce the total trapezoid count: by how much remains to be seen. But perhaps the greatest

reduction in e-beam machine time (at least for multi-project masks) will be achieved by

exercising more intelligent control over the sequence of rasterization and stage movement.

Although this will not be possible until manufacturers of e-beam lithography systems provide

for such control, it would be worthwhile to simulate its impact on mask fabrication costs.

In view of the flaws uncovered in all of the earlier polygon partitioning algorithms exam-

ined, it would be highly desirable to develop a proof for the refined Newel1 and Sequin algo-

rithm. This project is being considered for further work, but will not be included in this thesis.

Appendix 1

COLLINEARITY

In this appendix we will address the problem of determining whether two polygon edges

(or more generally. two line segments) are collinear.

First, consider the familiar form of the line equation:

y = m x + b

where m is the slope, and b is the y intercept. This form is not sufficiently general, since calcu-

lation of m runs into trouble if Ax is 0. A preferable form of the equation is:

A x + B y + C = O

where the coefficents A. B and C may be found as follows:

Here (xl.yl) and (x2.y2) are two unique points on the line.

THEOREM Al. l

Two line segments are collinear if and only if their line equation coefficients are proportional

(i.e. if segment1 has coefficients A,. B, and C,, and segment2 has coefficients A2. B2 and C2. then

Al/A2 = Bl/B2 = C,/C,).

Proof

We will first prove that collinearity is implied by proportional line equation coefficients. Let

segmentl. segment2. A,. B,. C,. A2. B2 and C2 be as above. Let Al/A2 = B1/B2 = C,/C2 r r.

Line segment2 has the equation

A2x + B,y + C, = 0

APPENDIX 1

Multiply both sides by r :

r A 9 + rB2y + rC2 = 0

Substitute the value of r and simplify:

(A,/A,)A,x + (B,/B,)B,~ + (c1/C2)C2 = o

A l x + B l y + C l = O

which is just the equation for segmentl. Segment1 and segmenl ;2 have the same line equation.

so they must lie on the same line. Thus segmentl and segment2 are collinear.

We will now prove the converse. Given that segmentl and segment2 are collinear, we

must prove that their line equation coefficients are proportional. Let A. B and C be the

coefficients of the line which contains segmentl and segment2. Let.segment1 have end points

(xl1.yl1) and (xl2.yl2). The line equation for segment1 is

A x + B y + C = O

Substitute the coordinates at (xll.yll);

Axll + Byll + C = 0

Solve for yll:

yll = -(Axll + C)/B

Now repeat for end point (x12,y12):

y12 = -(Axl2 + C)/B

The line equation coefficients for segmentl may be calculated from its end points, as follows.

A1 = y12 - y11

B1= xll - 3 2

Cl = x12yll - xlly12

Substituting the values of yll and y12 from above and simplifying yields

A, = (A/B)(xll - x12)

B1= - 5 2

APPENDIX 1 COLLINEARITY

Now repeat this exercise for segment2. Let segment2's end points be (x21.y21) and (x~~J, ,) . The

line equation for segment2 is

A x + B y + C = O

Substitute the coordinates at (~ ~ ~ , y ~ ~) and solve for yZl:

y,, = -(Ax2, + C)/B

Substitute the coordinates at (~ ~ ~ , y ~ ~) and solve for y22:

y2, = -(Ax2, + C) /B

Calculate the line equation coefficients for segment2 from its end points.

A2 = y22 - y21

B2 = X21 - x22

c2 = X22y21 - x21Y22

Substitute the values of y2, and y2, from above and simplify.

A, = (A/B)(xZ1 - x22)

B2 = X21 - x22

We are now in a position to calculate coefficient ratios for segmentl and segment2.

Thus A1/A2 = B1/B2 = Cl/C2, and the collinearity of segmentl and segment2 implies the pro-

portionality of their line equation coefficients.

APPENDIX 1 COLLINEARITY 83

Definition: a normalized line equation is one in which all coefficients have been divided by the

coefficient with the smallest non-zero absolute value.

THEOREM A1.2

Two line segments are collinear if and only if their normalized line equations have identical

coefficients 6.e . if segmentl has coefficients A,. B, and C,, and segment2 has coefficients A2. B2

and C,. then A, = A,. B, = B, and C, = C2).

Proof

First we will prove that collinearity implies identical coefficients. Given collinear line segments

segmentl and segment2; segmentl has line equation coefficients Al. B, and C1; segment2 has

coefficients A2. B2 and C,. Because segmentl and segment2 are collinear, they are contained by

the same line: let that line's equation have coefficients A. B, and C, and let C be the one with

smallest non-zero absolute value. (A similar argument holds for other cases.) Because segmentl

and the line containing it are collinear, their coefficients are proportional (by Theorem Al.1).

Thus

Al/A = B,/B = C,/C E r

A, = A r

B, = Br

C, = Cr

From the above condition on C

ICI < I A I

Multiply both sides of this inequality by I r I and simplify.

ICIIrl < IAilrl

ICrI < IArI

lCll < IAJ

Similarly,

APPENDIX 1

Icr < I B I

IC l l r l 6 IB l l r l

ICr I 6 IBr I

I Cll < I Bll

Thus C, has the smallest absolute value of segmentl's coefficients. Because C1 = Cr, and because

C f 0. C, can only be zero if r is zero. If r = 0, then A,. B1 and C1 must all be zero, and seg-

mentl is nothing more than a single point. Since there is little value in testing the collinearity

of a point and a line, it is safe to assume that A,. B, and Cl cannot all be zero. Thus r Z 0, and

C, # 0. So C, is the coefficient which would be chosen to normalize segmentl's coefficients. Let

* *
segmentl's normalized coefficients be A, . B, and C,*.

A,* = A,/C, = Ar/Cr = A/C

c,* = c,/c, = 1

Now consider segment2; it and the line containing it are collinear, so by Theorem Al.1.

A,/A = B,/B = C2/C E s

A2 = As

B, = Bs

C, = cs

From the condition imposed on C

ICl < lAl

I C l < Is1

Multiply both sides of each inequality by I s I and simplify.

ICl l s l < IAl l s l

ICsI < IAsl

1C.J ,< lA,I

APPENDIX 1 COLLINEARITY

ICl ls l < IBl l s l

ICsI < IBsI

I C,l b I B,I

By a similar argument to that used above, s f 0. And since C f 0. C2 f 0. Thus C, is the

coefficient of segment2 with minimum absolute value, and would be used to normalize seg-

ment2.

B,* = B2/Cz = Bs/Cs = B/C

c2* = c,/c, = 1

Thus

A,* = A,*

Bl* = B,*

cl* = c,*

We have demonstrated that the collinearity of segmentl and segment2 implies that their nor-

malized line equation coefficients are identical. Now we will prove the converse.

Given segmentl with normalized line equation coefficients A ~ * . B1* and c18, and segment2

* * with normalized line equation coefficients A, , B2 and c,*. such that

B1* = B,*

C18 = C,*

Let segmentl's unnormalized coefficients be Al, B, and C1. Let segment2's unnormalized

coefficients be A,, B2 and C,. Let

(A similar argument holds for the other cases.) Then C1 is the coefficient used to normalize seg-

APPENDIX 1 COLLINEARITY

mentl, and C2 is used to normalize segment2.

A," = Al/Cl

A,' = Az/C2

A,/Cl = A2/C2

Al/A2 = Cl/C2

B,* = Bl/Cl

B2* = B2/C2

Bl/Cl = B2/C2

Bl/B2 = Cl/C2

Al/A2 = Bl/B2 = Cl/C2

Segment1 and segment2 have proportional line equation coefficients, and by Theorem Al.1. they

are collinear.

Theorem A1.2 is very useful for testing the collinearity of polygon edges. The normalized

line equation coefficients can be calculated once for each edge and stored. Subsequent tests for

collinearity are accomplished simply and quickly by comparing normalized coefficients.

Appendix 2

VERTEX COPJVEXITY

In this appendix we will discuss methods for determining whether a polygon vertex is con-

vex or concave.

Definition: consider a point which is traversing the boundary of a polygon in such a way that

each vertex is passed only once. The turning direction of a vertex is the direction (left or right)

in which that point must turn as it passes the vertex.

Definition: a minimum y vertex is a polygon vertex whose y coordinate is less than or equal to

that of any other vertex of the same polygon.

Definition: a minimum yx vertex is a minimum y vertex whose x coordinate is less than or equal

to that of any other minimum y vertex of the same polygon.

Definition: consider polygon vertex b, with adjacent vertices Q and c. Let ml be the absolute

value of the slope of edge ub. Let m2 be the absolute value of the slope of edge bc. The least

slope magnitude of b is the lesser of m, and m2.

Definition: if a polygon has only one minimum yx vertex, then it is the reference vertex of the

polygon. If there is more than one minimum yx vertex, then the one with the minimum least

slope magnitude is the reference vertex.

In the research discussed in Chapter 4, the method used to determine if a polygon vertex is

convex or concave is based on the following concept: within a given polygon,

(1) all convex vertices have the same turning direction,

(2) all concave vertices have the same turning direction, and

(3) the turning direction of convex vertices is opposite to that of concave vertices.

APPENDIX 2 VERTEX CONVEXITY

The polygon is first "cleaned up" by eliminating any zero-length edges, and merging any

adjacent collinear edges. The reference vertex is then found, and its turning direction deter-

mind. (Turning direction is found by comparing the unit vectors of the edges adjacent to the

vertex.) The reference vertex is always convex, thus any vertex can be tested by comparing its

turning direction to that of the reference vertex. If the directions are the same, then the vertex

is convex, otherwise it is concave.

A proof of this method has been developed, but it is not presented here in view of the fact

that a superior test for convexity was discovered after the Chapter 4 research had already been

completed. The latter test, which is based on a polygon convexity algorithm by Shamos [I l l , is

superior because of its simplicity, and because the computations performed are expected to

require less machine time. In any further work requiring a test for vertex convexity, this

would certainly be the preferred method, and so it is presented in some detail here.

DeGnition: a simple polygon is in standard form if its vertices are traversed in a counterclock-

wise direction, zero-length edges have been eliminated, adjacent collinear edges have been

merged, and traversal begins with the minimum yx vertex.

The traversal direction of a polygon of n vertices is found by calculating the signed area

using the following algorithm.

signed-area + 0:
prev + n:
for i = 1 to n do
begin

next + modulo(i.n) + 1; /* modulo(i.n) = i modulo n */
signed-area + signed-area + (x[i] * (y[next] - ~[prev]));
/*

x[i] = x coordinate of vertex i
y[il = y coordinate of vertex i

*/
prev 4- i;

end;
signed-area + signed-area / 2;

The traversal direction is counterclockwise if the signed area is positive, and clockwise if it is

negative.

VERTEX CONVEXITY 89

Each edge of a polygon has a length and a direction (its traversal direction) and can thus

be represented by a vector.

Definition: an edge angle is the angle between the x axis and the vector representing the edge.

measured in the conventional sense (counterclockwise). For example, in Figure A2-1, a is the

edge angle for AB, and /3 is the edge angle for DA.

Figure A2-1 Edge Angle.

In Theorem 2.4 of [ll]. Shamos proves the following: a polygon is convex iff in standard

form its edge angles are non-decreasing. For example, the polygon in Figure A2-2(a) has non-

decreasing edge angles (el < e2 < fI3 < e, < es) and the polygon is convex.

APPENDIX 2 VERTEX CONVEXITY 90

a. convex b. concave

Figure A2-2 Convex and Concave Polygons

In contrast, the polygon in Figure ~2 -2 (b) has one decreasing edge angle (03 > 8,) and the

polygon is concave.

In a convex polygon, all vertices must be convex, and so Shamos' theorem readily leads to

a test for a single vertex. Another way of viewing the theorem is: a polygon is convex iff in

standard form the edge angles are non-decreasing for each pair of adjacent edges. Each pair of

ad:>,ent edges intersect at a polygon vertex, and so we have the following: a polygon vertex v is

convex iff. with the polygon in standard form, the edges adjacent to v have non-decreasing edge

angles. For example, refer to Figure A2-3.

APPENDIX 2 VERTEX CONVEXITY 91

Figure A2-3 Testing a Single Vertex

Vertex C has adjacent edges BC and CZ), with edge angles 0, and 0,. respectively. Since < 6,.

C is convex. Vertex D has adjacent edges CD and DE, with edge angles 6, and e3, respectively.

Since O2 > 03. D is concave.

As Shamos points out in Chapter 3 of [ll], it isn't necessary to actually compute edge

angles to compare them. Consider polygon edges AB and BC (Figure A2-4): we wish to compare

their edge angles.

APPENDIX 2 VERTEX CONVEXITY 92

Figure A2-4 Edge Angle Comparison

Translate the vectors representing these edges such that each has its tail at the origin (0). Let P

be the point at the head of AB's vector, and Q, the point at the head of BC 's vector (Figure

A2-4). Evaluate the signed area of triangle OPQ. If it is positive, then the triangle is traversed

counterclockwise, and 0Q's edge angle is greater than that of OP : thus BC has a greater edge

angle than AB. If the signed area is negative, then AB's edge angle exceeds that of BC. Thus a

few simple calculations suffice to compare edge angles; trigonometric functions are not neces-

sary.

(Note that the order of traversal of the triangle was arbitrarily chosen to be OPQ. Any

order is fine, as long as the interpretation of the signed area is consistent with the order chosen.)

REFERENCES

R.A. Harris, "Data Processing For The Electron Beam Machine", M S c . thesis, Electrical
Engineering Department. University of Manchester. UK (1970)

D.R. Herriott. "Electron Beam Lithography". Journal of Vacuum Science and Technology.
vol. 20. pp. 781-785 (1982)

W.D. Little and R. Heuft. "An Area Shading Graphics Display System", IEIEE Transactions
On Computers, vol. C-28 no. 7. pp. 528-531 (1979)

C. Mead and L. Conway. Introduction To VLSI Systems. Addison-Wesley. Philippines
(1980) pp. 115-127

R.D. Moore. "EL Systems: High Throughput Electron Beam Lithography Took". Solid State
Technology. vol. 26 no. 9, pp. 127-132 (1983)

M.E. Newel1 and C.H. Sequin. "The Inside Story On Self-Intersecting Polygons". Lambda.
pp. 20-24 (Second Quarter. 1980)

O.W. Otto. "EBCAD - Fully Integrated Pattern Data Processing For Direct Write Electron-
Beam Lithography Systems". Journal of Vacuum Science and Technology, vol. 19, pp. 993-
997 (1981)

K. Patel. "Computer-Aided Decomposition Of Geometric Contours Into Standardized
Areas". Computer-Aided Design, vol. 9 no. 3. pp. 199-203 (1977)

P. Petric and 0. Woodard. "Direct-Write Electron Beam System". Solid State Technology.
vol. 29 no. 9. pp. 154-160 (1983)

[lo] H.C. Pfeiffer. "Recent Advances In Electron-Beam Lithography For The High-Volume Pro-
duction Of VLSI Devices", IEEE Transactions On Electron Devic&s:Vol. ED-26 no. 4, pp.
663-674 (1979)

[l l] M.I. Shamos. "Computational Geometry". Ph.D. thesis. Yale University (1978)

BIBLIOGRAPHY

[I] E. Munro. "Electron Beam Lithography". Advcmes in Electronics and Electron Physics.
Supplement 13B. pp. 73-131 (1980)

121 J.A. Reynolds. "An Overview of E-Beam Mask Making". Solid State Technology, pp. 87-94
(August 1979)

