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ABSTRACT

We define a graph G to be a set of vertices V(G) =
{1l,...,v} together with a set of edges E(G) of unordered
pairs from V. We represent G in R™ by points
PiseecasPoy corresponding to the vertices of G,
together with the line segments which join p, and p,
when (i,j) is in E(G}).

We say the representation of a graph G is rigid in
R™ if every continuous movement of the representation
which preserves edge lengths also preserves the distance
between every pair of points in that representation. We say
the representation of G is flexible if there is a continuous
movement of that representation which preserves edge lengths
but does not preserve the distance between every pair of
points in the representation.

We use the Inverse Function Theorem to determine the
rigidity or flexibility of a given representation of G. From
this we show that if a representation of G is rigid in
R® and the affine hull of piy...,p. has
dimension n then G must be n-connected, have at least
nv-nin+l1}/2 edges and contain a subgraph which is minimally
rigid in R". We demonstrate the existence of 2n-1
connected graphs which are flexible in R™.

We apply the above results to the Structural Analysis
of trusses and spaceframes. In particular, the determination
of minimally rigid sub-graphs gives a new method for the
automation of the flexibility method of structural analysis.

We describe some flexing panel structures including a
guonset type shelter and a flexing tube.

The results from a computer program are used to
determine the rigidity or +flexibility of some specific
examples.
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CHAPTER 1

INTRODUCTION

We see examples of rigid and flexible objects around us
in many manifestations. These range from simple structures
such as a tripod to sophisticated machinery such as jet

aircraft and also include our own bodies.

When one‘studies a mechanism or designs a structure
some sort of a model is used to define the relationships
between the various components. One of the simplest models
that is often used is a point and line diagram. Indeed one
of the first things that a child learns to draw is a stick
figure. This type of model arises naturally in many
applications and corresponds directly to the mathematical
concept of a graph as a set of points together with a set of
relations between pairs of points. The intent of this thesis
is to explore some of the relationships between the rigidi;y
or flexibility of a structure and the properties of an

abstract mathematical model of that structure.

The modern study of rigidity dates back gp to 1813 when
A. L. Cauchy [91 published his paper on the rigidity of
convex polyhedra with rigid polygonal faces. There is no
doubt that Cauchy had more than an academic interest in the

theory of rigidity as his title is given as "Ingenieur des



Ponts et Chaussees which literally translates to Engineer
of Bridges and Roads. In the latter part of the nineteenth
century and the early part of the twentieth century work was

done by such people as James Maxwell, Sir Robert Ball and

Raoul Bricard (see [&8]) .

More recently a paper by G. Laman [?]) in 1970 sparked
renewed interest in rigidity theory with a graph theoretic
approach. LLaman outlines rigidity reguirements for planar
graphs and clearly distingushes between the concepts of
rrgrdrty and rnfinrtesrmal rigridrty. Branko Grunbaum and
G. C. Shephard [81 point out the ambiguity and lack of

rigour in previous treatments of rigidity.

In 1974 H. Gluck [?]1 develops a theaorem for determining
rigidity in his treatment of closed simply connected
surfaces. This theorem is expanded to deal with graphs in
Euclidean n-space by L. Asimow and B. Roth [1] in 1978,
L. Lovasz and Y. Yemini [10]1 use combinatorial arguments
and results from Matroid Theory to examine the rigidty of
planar 9raphs in a paper published in 1982. Also published
in 1982 is a paper by Henry Crapo and Walter Whitely [&1
which deals with rigidity and statics of frameworks from the

point of view of projective geometry.



This thesis is based primarily on the works of G. Laman
and Asimow and Roth. In Chapter 2 the theory of rigidity in

Euclidean n-space is examined.

Chapter 3 deals with minimally rigid graphs. These
graphs have some interesting properties which have a special
application in structural analysis. Also we show how the
singular value decomposition can be wused to apply rigidity

theory to concrete examples.

In Chapter 4 we give a brief introduction to the
methods employed in the structural analysis of bar and joint
frameworks. We then show how the results of Chapters 2 and 3
can be applied to structural analysis. In particular we
demonstrate how rigidity theory and the singular value
decomposition can be used to automate the flexibility method

of structural analysis.

Chapter 5 describes some flexing panel structures which
can be created from a flat piece of material. There are a
large number of different designs based on the relatively
simple ideas outlined here. While this chapter may not be
rigorous, it was the study of these structﬁres that +Ffirst

interested the author in rigidity theaory.

In Chapter & we examine some concrete examples using a



Fortran program written by the author. This program makes
use of the singular value decompastion to apply the theory
developed to the concrete examples. A listing of the program

code is included in this thesis as an appendix.

The author plans +further work in the application of
these results to structural engineering and in the

investigation of the properties of flexing panel structures.



CHAPTER 2

THE THEORY OF RIGIDITY OF GRAPHS

In this chapter we will develop mathematical tools +far
determining the rigidity (or flexibility) of almost all
representations of a given graph in an n-dimensional
Euclidean space. Also we will give some corollaries of the

theory described.
2.1 PRELIMINARY DEFINITIONS AND MOTIVATION

For our purposes a graph G={V,E}, where V is a set of
vertices V=(1,...,Vv) and E is a set of edges, where each
edge is an unordered pair from V. We will restrict our
attention to simple connected graphs. In other words we will
allow no multiple edges, no edges containing only ane vertex
(a loaop) and every vertex must be connected to every other
vertex by a path. Throughout the rest of this thesis we will
use v and e to denote the number of elements in V and E

respectively.

We represent G in R™ by selecting v points
Pijyeaeype in R™ such that p;:; corresponds to
vertex i of V . Note that p:=(p:,15.c-35P1,.n}.
These points in R™ then represent the vertices of our

graph.



2 (0,1) p=

3 (0,0) Py “p5 (1,0)
G = (V,E} = {(1,2,3),((1,2),(1,3),(2,3))3

Figure 2.1

The natural representation of the edges of our graph G
in R is then the 1line segments connecting points

p:s and p, where (i,j) is an element of E .

I¥f we consider the possible motions of uﬁe point in
R™ we see that we require n coordinates to represent
this. To represent the motion of v unconstrained points in
R™ we require nv coordinates. Thus we can represent
the points pis...,p., ps in R, by a single
point p in R™v such that

P = (P1,12yercssPi,ny=c-3Pv,215ccecsPu,n) .
That is the +first n coordinates of p represent p,,
the second n coordinates of p represent p=z , and so
on. In the case of Figure 2.1 p=(0,0,0,1,1,0). We will
denote this representation ot 6 in R™ at p;,...

e3P by G(p) .

The basic notion of rigidity requires that an object or
structure be inflexible. This does not mean that the

structure cannot move at all but that the structure can-

’



not change shape. A triangle constructed by joining rigid
bars together at the ends has this property. The triangle
may be moved about or turned around but the shape does not
change. However suppose four rigid bars are connected at the
ends by flexible joints to form a rectangle, it is easy to
see that this arrangement is not rigid.

a) b)

Figure 2.2

For our representation of the qgraph 6 in R",
denoted by G(p) , we will allow the points of G(p) to
move in R~ bﬁt will require that the lengths of the line
segments, corresponding to the edges of G s remain
constant. To represent the edge lengths of G(p) we will
define an edge functrorn for G(p). We order the edges of G.
Then the edge function is

folp)=l...,1ip1-p,iis...)
where iipi-py!! is the k" coordinate of
fatlp) if (i,j) is the k*" edge of G. This gives us a
function from R™v into R'®', We note that the square

of the edge lengths is used in (11.

Now that we have defined the edge function for some
G(p) we will define rigidity and +flexibility in terms of

this edge function.



Definition We say that T is an /sometry of R" if

HiTx = Tyill = tix - yii for all x,y in R™ .,

We say that two representations of a graph are
congruent it there is an isometry of R™ which maps one

representation to the other .

Let G(gq) be the representation of G at points
Qis=-=-+358v in R™. I+

folq) = $o(p)
then the length of the corresponding edges of G(p) and
G(g) are the same. This does not mean that G(p) is
congruent to G(q). See Figure 2.3 for an example of two
representations which are not congruent yet have the same

edge lengths.

There are three cases. First, G(qgq) is congruent to
G(p) . Seco;d, G(gq) may be a representation of G that can be
reached by deforming G(p) while not changing the lengths of
the edges (as in Figure 2.2 a and b). In this case we would
call G(p) flexible. Third, G(q) is not congruent to G(p) and
is not a flexing of G(p). Figure 2.3 gives an example of

this in R= |



a) ; b) ;
Figure 2.3

We are then interested in the set of points q in R"
such that fo(q) equals fa(p) . This set is

fo~tifalp)) ,
which we will call the 7r/b6re of G at p , and denote as

fibre(G,p).

Let K, be the complete graph on v vertices (every
pair of vertices is joined by an edge) and K(p) be the
representatipn of K., on the points of G(p) . Then the
distance between every pair of points of K(p) is fixed.
Movements which preserve the distances between the points o+f
K(p) correspond to rigid movements of G(p) . It is easy to
see that the possible movements of K{p) must be contained by

the possible movements of G(p) .

2.1.1 Definition: Let G be a graph on v vertices, K
the complete graph on v vertices and p a point in
Rrv . Then G(p) is rrigid in R"” it there exists a
neighborhood U of p in R"Y such that

fibre(G,p) 1 U = +ibret(k,p)l U

G(p) is Flexrble in R™ i+ there exists a continuous



path x:[0,11 » R™v such that x(0) = p and x(t) is in
fiber(G,p) N U - +ibre(K,p)NU

tor all t in (0,11 and some open neighborhood U of p .

In other words G(p) is rigid only if any movement o+f
the points of G(p) which preserves edge lengths is a rigid

movement of G(p).

Note that i+

+iber(G,p) N U - +ibrelk,p) N U # 0 ,
we can construct a smooth path x(t) with x(0) = p by taking
neighborhoods U, such that U, contains U,-,

and x(t,) is in U, - U,-, .

We will now develop this characterization of rigidity

and flexibility into a useful tool.

2.2 APPLICATION OF THE INVERSE FUNCTION THEOREM

For a smooth map f:X » ¥ where X and Y are smooth
manifolds, we denote the Jacaobdian of £ at x in X by
df(x) . Let k = max(rank df(x): x in X). Then x is a
regular point of ¥ if rank dfi(x) = k and a singular

point otherwise.

10



2.3 Proposition [11 (et +:R"IR™ bLe a smooth
map and k = max{rank(df(x)ix in R"}. If %o rs
a regular point of + ¢then the image under + of some

nerghborhood of xXxo 1Is a k-dimensional manifold.

Proof Let £ = (+,,¥2) where . consists of
the first k coordinate +functions of + and assume that
rank d+f, (xo) = k . Since rank df, = k the
inverse function thereom [20,p34]1 yields local coordinates
at %o such that F,(x,,xz2) = x; .
Thus in local coordinates
i I o !
df = | 0fz OJfz !
! 9%, Ox= !
Since rank(df) = k near xXo,0f=/ Jx= = O near
X » Then +fa2(x,,x2) = g(x,) which gives
filx1,%x2) = (X31,9(x4))
near xo . Thus + map§ some neighborhood of xo onto

{{x,¥v): v = gi{x)}, the graph of g, which is a k-dimensional

manifold since g is differentiable. [1

It follows that i+ p is a regular point of +o

then fibre(G,x) is a manifold of co-dimension k near p .

A subset M of R™ is said to be an a77ine set i+
M contains the entire line through each pair of points in

M . The drimension of an affine set is defined to be the

11



dimension of the subspace M-M ={x-yix,y in M} parallel
to M . We will denote the dimension of an affine set M

by dim(M) .

The affine Aull of a set S in R™ is the smallest
affine set containing § . Let P be the affine hull of

Piss-sPv -

2.3 DETERMINING RIGIDITY AND FLEXIBILITY

The following test +for rigidity was introduced by
Herman Gluck in [?7] and expanded by Asimow and Roth to deal

with higher dimensional cases in [1] .

2.3 Theorem (11 (271 Let G be a graph with v
vertices, e edges and edge function +o. Suppose
that p In R°v is a regular pornt of fa and
let dim(P) =m . Then the graph G(p) is rigid 1in
R™ 77 and only 17

rank(dfoet(p)) = nv - (m+1)(2n-1)/2
and Gip) Is flexible In R~ if and only 17

ranki{dfs(p)) < nv - (m+1)(2n-1)/2 .

Proaof. Let k = max{rank dfei{x): x in Rrv}. Then

rank dfaotip) k . By Proposition 2.3 there exists a

neighborhood U of p in R™v such that the intersection of

12



fibre(G,p) and U is an (nv-k)-dimensional manifold.

Let Ji(n) be the nin+l)/2-dimensional manifold ot
isometries of R™ and define F:J(n)2R"v by
F(T) = (TP1s«..,TH.) for T in J(n) .

Note that F is smooth and that the image under F of
folp) is +ibretK,p) (F corresponds to the rigid
movements of G(p) ). Then F—*(p) is the subgroup of
J(n) consisting of isometries which yield the identity on P.
Then F~*(p) can be identified with the {(n-m)(n-m-1)/2
~dimensional manifold Ot(n) of orthogonal linear
transformations of N where N is the (n-m)-dimensional
subspace orthogonal to the m-dimensional subspace P-P .
Let

wi:lin) > J(n)/F~1(p)
be the natural projection and define

E:J(n)/F~*(p) > RV
so that F=F w. Then E is smooth and E:J(n)/F~*(p)
¥ im(E) is a diffeomorphism. Since J(n)/F~*(p) is a
manifold of dimension (m+1) (2n-m) /2 we conclude that
im(F) = im(F) = fibre(K,p) is an (m+1) {(2n-m)/2~-dimensional
manifold. Note that this corresponds to the rigid movements

of G(p).

Since all the rigid wmovements of G(p) are contained

in the set of all possible edge length preserving movements

13



of G(p), then the intersection of fibre(K,p) and U is
contained in the intersection of fibre(G,p) and U . This
gives us
k £ nv - (m+1) (2n-m) /2 .
Then k = nv - (m+1) (2n-m) /2 i¥ and only if there exists a
neighborhood W of p in R"v such that
fibre(K,p) N1 W = fibre(G,p) nw .

Then the only possible edge length preserving movements of

G(p) are the rigid movements of G(p) . Since we have
that kK ¢ nv - (m+1)(2n-m)/2 , then G(p) is flexible in
R if and only i+ k < nv - (m+1)(2n-m) /2. (1

2.4 COROLLARIES

In the first part of this section we will deal with
representations of G in different dimensions. For a
representation of 6 in R™ we will denote the edge

function of the graph G by fom .

2.4.1 Lemma £11 Let G be a graph with v

vertices. Suppose p Iin R™Y s a regular point of

fon and let m = dim(P) . 7Then there axists q In
R™v  such that qQ is a regular paint of fowm ,
dim(@) = m and rank dfoe~(p) = rank dfemi(g) . I7

Gip) Is rigid in R" then G(Q) Is rigird in

14



Proot: Define C:R™ >» R™ by

C(Xz,-.-xm) = (Xn.,...xm,o,---,O) .

There exists an isometry T af R™ taking the m

dimensional subspace im(C) onto the affine hull P of

Pis---3Pv . Then (T o €C) maps R" onto P . Let

Qs = C~*{T-*p,) . Since T is nonsingular
then dim(P) = dim(Q) where @ is the affine hull of
Qiy-:+39v - Since

max(rank d¥om) < max(rank dfoen)
= rank dfon(p)

= rank dfom(q)

|~

max (rank dfom! .

q is a regular point of fom. [1

can
of G(
o

Let G be a graph with v vertices. Then R~V
be partitioned according to the rigidity or flexibility
p) 5 into the sets of regular and singular points o+

or according to whether dim(P) = wmini{v-1,n) or

dim(P) < min(v-1,n) . The first few corollaries explore the

relat

2.4.2

ionships between these partitions of R™v.

Corollary (131 (et G be a graph with v

vertices. Ir G(p) Is rigfid in R where p 1Is

& regular pornt aof o then dim(P) = mini(v-1i,n) .

13



Proof Let m = dim(P). By the lemma there exists a q
in R™ with q a regular point of fom, dim(Q) = m,
rank dfomi(q) = rank dfae~.(p) and G(q) rigid in

R™. Then by the Theorem 2.3 we have

mv - (m+1)(2m-m) /2 = rank dfom(q) = rank dfan(p)}
= nv - (m+1) (2n-m) /2 .
since g(x) = vx - (m+1) (2x-m) /2 is aftfine and gim) = g(n),

then m=n or the coefficient of v-(m+1l) of x in g9(x)

is zero. Therefore m = min(v-1,n). (1

2.4.3 Corollary (11 (et G be a graph with v
vertices and edge fTunction +o. I p,q in

R are regular points of +a and Glp) iIs
rigid in R%, then G(q) Is rigid in R™ anda

dim(P) = dim(Q) .

Progt Let m = dim(P}) and 1 = dim(89) . Since p and q
are both regular points of fo then we have d+talp)
= dfsl(q) and by the lemma G(q) is rigid. Applying
Theorem‘2.3 and Corollary 2.4.2 we have m,1 2> v-1 and
nv - (m+1)(2n-m) /2 = nv ~- (1+1)(2n-1)/2 .
This reduces to
(1-m) (1+m+1-2n) = O .
I+ m#1 then m+l = 2n-1 and either m or 1 is less
than n . If we assume that m { n , then dim(P) = v-1 and

dim(8) = v-1 by Corollary 2.4.2 . (1

16



2.4.4 Cogrollary [1] Ltet G be a graph wrth A4
vertices and e edges. If¥ e < nv - n(n+1)/2 and v
> n then G(p) Is flexible in R™ for all regular
points of fo.
Proof Let p in R be a regular point of fo
and  dim(P) = n . Then

rank dfe ¢ ¢ < nv - nin+1)/2

£nv - (m+1)(2Z2n-m) /2

and thus G(p) is flexible by Theorem 2.3 .(1
2.4.5 Corollary (11 (et G be a graph with v
vertices and e edges. If p Iin Rov iIs a
regular point of fo , dim(P) = v-1 and Glp) is
rigid in R, then G Is the complete graph on v
vertices.
Progf Let v-1 = m . Then G(p) rigid implies that

e > nv - (m+1)(2n-m)/2 .
Substituting wv-1 for m gives

e > viv-1)/2
But e ¢ viv-1)/2,
complete graph on
The

next Co

with equality holding only if G is the

v vertices. (1

rollary uses Euler’'s Formula

17
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relating the numbers of vertices, faces and edges in a

planar graph.

2.4.6 Corollary (11 (et G be a planar graph such
that Gip) Is rigid for all reguiar points p , In
R=v of +fao . Then the average nunmber A of

edges on each Tace éf G is less than 4 and ¥ v > 2

then G contarns a triangle.

Proof: Since Gi(p) is rigid in R= at all regular
points p in R®v of +fao then e > 2v - 3 and

A = 2/t = 2e/(2-v+a) { de/le+l) < 4 .,
Suppose that v > 2 and that G has no faces with three
edges. Then A = 2e/+ > 4 since every face must have at
least 4 edges. Since this can not hold at least one face

has three edges. (1

2.5 INFINITESIMAL RIGIDITY AND FLEXIBILITY

In the previous sections we have only dealt with
rigidity and +flexibility at regular points of the edge
$unction. In this section we develop some theory to deal

with singular points of the edge function.

tet G be a graph with edge function o and p

a point in R"v ., lLet x(t) be a swmooth path in

i8



R with x(0) = p . Then df (fa O x) (0) = 0
implies that at p the rate of change of the edge lengths

o

is zero. This can be written as dfs(p) dx(0)
Thus dx(0) is an element of the kernel ({or null

space) of dfei(p). Let X be the collection of all

such paths. Note that i+ x is a smooth path in
fibre(K,p) = <+ 71p{fc(p)) with x(0) = 0 then x
is in X . Thus the tangent space T to

fibre(K,p) at p is a subspace of ker dfo(p).

2.5.1 Definition Gi(p) is 7in¥initesimally rigrd in
R™ if Tx = ker dfoe(p) and Iinfinitesimally

flexrble otherwise.

Thus Gi{p) is infinitesimally flexible in R" i+f
and only if there is a path x in X which is not tangent
at p to a smooth motion of K{(p) in R". A simple
example of this type of situation ocurrs when the the points

of a triangle are co-linear.

From the previous section we have

rank dfe(p) £ nv - (m+1){(2n-m)/2
where m = dim(P) . Since Tx is contained in the
kernel of dfoe(p) we have that G(p) is infinitesimally
rigid in R™ i and only i+f

rank dfoe(p) = nv - (m+1) (2n-m) /2

19



and G(p) is infinitesimally flexible in R™ if and
only if

rank dfs(p) < nv - (m+1)(2n-m)/2 .
Thus at regular points of fo rigidity and infinitesimal
rigidity are the same, as are flexibility and infinitesimal
flexibility. The following theorem deals with singular

points of +fo .

2.5 Theorem [2]1 G(p) Is Infipitesimally rigrid 1iIn
R™ If and only If p Is a regular point of +a

and G(p) iIs rigrd in R™ .

Proo#: If G(p) is infinitesimally rigid then

rank dfo(p) = nv - (m+1)(2n-m)/2 .
Since this is wmaximal then p is a regular point of
fo and G(p) is rigid. If G(p) is rigid and p 1is a
regular point of +fo then

rank dfe(p) = nv - (m+1) (2n-m)/2
and Tx = ker dfa(p) at p . Thus G(p) is

infinitesimally rigid. [1
The proofs for the following corollaries are analogous

to the proofs of the corresponding corollaries of the

previous section.

20



2.3.1 Corgllary (231 IFf G(p) Is Infinitesimally rigid

in R™ then dim(Pl)=min(v-1,n) .

2.5.2 Corollary (21 I7 Gip) Is Infinitesimally rigid

for p & regular point of +o then Glqg) iIs
Iinfrnitesimally rigid for all regular points q 1iIn
R™ .

2.5.3 Coropllary [21 If G 1Is a graph with v
vertices and e < nv - nin+l1)/2 edges then G(p) iIs

infinitesinally rflexible for all p In R"™.

2.5.4 Corollary [1] (Let G be a graph with v
vertices and e edges. I7 dim(P) = v-1 and G(p) Is
infinitesimally rigrd in R, then G 1iIs the conplete

graph an v vertices.
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CHAPTER 3

MINIMALLY RIGID GRAPHS

In Chapter 2 we developed tools that can be used to
determine the rigidity or flexibility of a given graph G
for all regular points of the edge function. We will now use
this theory to examine minimally rigid graphs. We say that a
graph G is minially rigid in R™ it it is rigid in
R and if the deletion of an edge of G results in
a 9graph which is flexible in R". The simplest example
of a3 minimally rigid graph is a triangle in R=,
Minimally rigid graphs have a special application in

structural analysis. This will be explored in Chapter 4.
3.1 THEORY AND COROLLARIES

3.1 Theorem (9] Let G bLe a graph with v vertices
and edge function ¥o . Suppose that G Is rigid

in R™ at a regular point p of the eadge function

and dim{P) = m . 7Then G contains a nminrmally rigrd
subgraph G’ on v vertices wrth

e = nv - (m+1)(2n-m)/2 edges.

Proof: Since G(p) is rigid in R™ then
rank dfgs(p) = nv - (m+1) {(2n-m) /2

by Theorem 2.3 . Thus we can +ind nv - (m+1){(2n-m)/2
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linearly independent rows of dfs(p) . Each row
corresponds to an edge of G. Let G’ be the graph induced by
these rows. Then

rank dfae- (p) = nv - (m+1)(2n-m) /2

and G’{(p) is rigid in R™ . [1

3.1.1 Corollary [P Let G bLe a graph on v >n
vertices. Suppose that G Is minimally rigrd in
R at a regular point p o7 the edge Ffunction and
dim(P) = m . 7hen G has exactly nv-{(m+l){(2n-m)/2

edges.

Proof: This follows immediately from Theorem 2.3 . [1

The following Corollary is an expanded version of a
theorem due to G. Laman concerning planar graphs. It gives a

necessary conditions for a graph to be minimally rigid.

3.1.2 Corollar o Let G be a graph on v
vertices and e edges. let G’ be a subgraphr of G

’ vertices with e’ edges and suppose that

on v

dim(P) = n. 7hAen G 1Is mipnimally rigid in R" at

a regular point p of the edge function only if
e = nv - nintl1)/2

and for every subgraph G’ of G

e’ < nv/ - n(n+1)/2 .
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Proof: Suppose that G is minimally rigid. Then from

Theorem 2.3, rank dfs(p) = nv - ni(n+1)/2 . Since the

rows of dfos(p) correspond to the edges of G then

e = nv - nin+1)/2 .
Suppose e’ > nv’ - n(n+1)/2 for some G’ . Then
rank dfoe’ (p) = nv’ - n(n+1)/2 < e’

and there is at least one linearly dependent row
dfo- (p) . Since the rows of dfae (p) are a subset of
the rows of dfo(p) this implies that dfa(p) does

not have full rank and thus G(p) is not rigid. (1

3.2 CONNECTIVITY AND RIGIDITY

We will use minimally rigid graphs to show

in

relationship between connectivity and rigidity. We say that

a graph G is A-vertex connected i¥ the deletion of any

set of k-1 vertices does not disconnect G . A graph is

A-regular i+ each vertex is incident with exactly k edges.

3.2.1 Corollary Let G obe a graph with v > n
vertices and edge function +o . I7¥ p a Is regular
paint of +$o ;, dim(P) = n and G(p) Is rigid In

Rn then G Is n-vertex connected.
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Proof: Assume that G is minimally rigid in R™ , Let

C be a cut—set of vertices of G and assume that C
contains k = n-1 vertices. Let E(C) be the edges of G
on C . Define G’ and G® so that the interestection o+
V(G’) and V(G") is C , G’ and G" have no edges in common and
the union of G, G®" and E(C) is G . Let v‘, v* and e’,

2" be the number of vertices and edges in G’ and G"
respectiQely. Note that v/ + v* = v + k and that there are

at most k(k-1)/2 edges on € .

Since G is minimally riqid by Corollary 3.1.1

e’ < nv/ - nin+1)s2 |,

e® £ nv* - n(p+1)/2 and

e’ + e"™ (e =nv - nin+1)/2 .
Then

e’ + e" ¢ ntv +v®) - nin+1)

= nv - nin+1)/2 + nk - ntn+1)/2

nv - nin+1)/2 -

|/\

Since G’, G* are contained in G we have must have
e’ + e” £ nv - nin+1)/2 - (nk - nin+1)/2) .
Since 6’ and G" have no edges in C we have
e + e”™ > nv - ni(n+1)/2 - ktk-1)/2 .
Combining the last two equations gives us
ktk-1)/2 2 nk - n(n+1)/2 ,
which reduces to

(k=n)= > k-n ,
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which implies that k > n . This contradicts our assumption

that k = n-1 and thus G must be n-vertex connected. [1]

3.2.2 Corollary Let G be a t-regular graph such
thrat k < 2n and dim(P) = n . If v > nin+1)/({2n-k)
thren Gip) iIs flexible in R~ for all regular

points p of to sSuch that dim(P) = n .

Proo+f: If 6 is k-regular then G has exactly vk/2 edges.
Suppose that G(p) is rigid in R™ for p a regular

point of +fo. Then

e vk/2 > nv - nin+l1)/2 which reduces to
v £ nin+1) /(2n-k) .
Thus +for v 2> nint1)/(2n-k) and k < 2n G does not have

enaugh edges to be rigid. [1

These types of graphs do exist [14,p44] and a simple
example which is 3-vertex connected with 8 vertices and 12

edges is given in Figure 3.1 . This graph flexes in R=,

Figure 3.1
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Since every rigid graph contains a minimally rigid
subgraph these results hold for rigid graphs in general.
Then if G(p) is rigid in R"™ and dim(P)=n then G is
n-vertex connected. However Corollary 3.2.2 shows that

this is not sufficient.
3.3 APPLYING THE SINGULAR VALUE DECOMPOSITION

We can use the singular value decompostion to determine
rigidity or flexibility for specfic examples. If G(p) is
rigid then we can find a minimally rigid subgraph. If G(p)

is flexible then we can identify the flexings of G(p).

We state the following theorem without proof. (This

proof may be found in Golub and Van Loan (135, p 16-171 .)

Theorem Zet A be an m by n matrix. Then there
exist orthogonal matrices U and V ,where U Iis
mbym and V Iis n by n such that

UTAV = diag{Si1,...,5k)
where k = min(m,n) and

512522---2_5n20-

The s.'s are the singular values of A and the
index of the smallest non-zero singular value is the rank of

A . Suppose rank A =r . Then the +irst r rows of U
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span the row space of A and the last n-r rows of V span

the null space of A .

We will assume that dim(P) = n . Let dfg(p) = A .
Then applying the singular value decomposition to A we get
UTAV = diag(s:;...,8k) .
Let s, be the smallest non-—-zero singular value. I¥
i = nv - ni(n+1)/2 then G(p) is infinitesimally rigid .
and i+ i < nv - ni(n+1)/2 then G(p) is infinitesimally
flexible . To determine if G(p) is flexible one must insure

that p is a regular point of the fo .

I+ G(p) is rigid we can find a minimally rigid subgraph
G’/ tp) by ’growing’ a graph with successive applications o+f
the singular value theorem. A more effective method of
finding a set of linearly independent rows may be found in

£15,p416]1 .

We can find an isometry T of R, such that
TPy = (0,...,0)

and for i=2,...,n
:I'p. = (Q1,2300e93591,1-2505.0.,0)

and for i = n+l,...,Vv

Since T 1is an isometry the distances between every pair of

points is preserved . This is a special application of the
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GR decomposition. A treatment of this may be found in
{1S5,p 1641 . We say that Gi(p) is in standard position
when Tp, =ps for i = 141,...,v . Let us assume

that Gip) is in standard position. Then by only
considering movements of p. in directions in which the
coordinates of p:s are not identically zero we

etfectively fix G(p) in R,

I+ G(p) is +flexible then we can determine the
unconstrained points from the last nv - ni(n+1)/2 - r rows
of V . These rows give us the tangents to the paths along
which the péints of G(p) can move while preserving the edge
lengths of Gt(p). Since we know what types of paths the
points must follow we can construct these paths from this
information. For a given tangent vector we find a point
which can move while preserving edge lengths but is
connected to a fixed point. This point must then move on a
spherical surface centered at the fixed point. Once this
path is determineq the paths of other points can be related
to it. Note that each tangent vector corresponds to one
degree of +reedom for the flexing of the graph. Thus for k
tangent vectors we need k independent variables to

describe the flexings of the graph.

29



CHAPTER 4
APPLICATION OF RIGIDITY THEORY
TO

STRUCTURAL ANALYSIS

The determination of rigidity is an essential part of
Structural Analysis. The natural model of a bar and joint
framework structure (joints flexible) gives a representation
of a graph in R® or R3, The joints of the framework
become the vertices of the graph and the bars of the
framework become the edges of the graph. This natural
correspondence suggests that results +from rigidity theory

can be applied in structural analysis .

4.1 STRUCTURAL ANALYSIS OF TRUSSES

The object of é structural analysis of a truss is to
determine whether or not a truss of a given design can
support the loads placed on it. This determination is made
on the basis of the truss supporting the required load
without being displaced more than a given amount. Thus the
results of a_  structural analysis should give the

displacement of a truss in terms of the applied load.

We will give a brief overview of the two basic methods

employed in structural analysis. These two methods are the
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Stiffness method and the Flexibility method. Both methods
use systems of linear equations to relate the internal
forces acting along the bars to the external (or loading)
forces acting on the joints. Similarly the internal
displacements {(changes in the bars) are related to external
displacements (movements of the joints). Implicit in these
relations is a constraint on the displacements of the joints
of the framework. These constraints correspond to the
standard position (defined in Section 3.3 of Chapter 3)
of a representation of a graph G in R . The constraints

are necessary for a unique determination of the

displacements of the joints. (see (181, ([191)

These two systems of equations are linked together by a
representation of the physical characteristics of the bars
of the truss to give the final relation between the external

forces and the external displacements.

The first method examined is the stiffness (or
displacement) method. This method is the most widely used as
it can be automated easily. However a solution of the
stiffness method requires that a large matrix be inverted.
The second method is the +flexibility {(or force) method
which, at present, can not be automated easily. However the
flexibility method can be solved by inverting a smaller

matrix (in many cases much smaller) than the matrix inverted
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in the stiftfness method.

4.1.1. The Stitftness Method of Structural Analysis

Let T s in R=, be a truss with v joints and e
bars. Let

X = (Xz, 13X3,250ve3Xv,19%Xe,2)7T
represent the displacements of ’the joints of T wunder
external +forces

X = (Xz, 19X, 293X ,15%0,2)7
acting on those joints. Similarly let

s = (5"""59)T
represent the changes of lengths of the bars of T (we only
consider the bars as compressing or stretching) and

8 = (S,.,...,Se)'r
be the corresponding forces along the bars. Now we construct
the matrix B so that

(1) s = Bx .

This can be accomplished as +follows. For each i
select some k and set %, =0 +for some i and all j
not egual to k and then record the changes in the lengths o+
the bars atfected by that displacement o+ that joint. By
taking the sum of the changes of bar lengths over all
possible i agd k we have the changes in bar lengths in terms
of the displacements of the joints (which is valid provided

the relationship between displacement and force is linear).
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Using a result based on the conservation of energy,
which is called the "Principle of Virtual Work® [18,p251, we
get the following relation between internal and external
forces. This is

(2) X = BTS .

Now we require the relationship between the internal
forces acting along the bars and the changes in lengths of
the bars. This depends on the physical characteristics of
the bars. Let K’ = diagfki,...,k,) be an e by e matrix
such that S, = ks, (a unit force results in a
compression of k; units on bar bi:). Thus

(3) S =K's .

Combining expressions (1), (2) and (3) we get

X BTK’ Bx or

(4) X Kx .
The +final requirement is to compute K- to get
{3) x = K-X .

It should be noted that the final computation is not trivial

even for relatively small trusses.

4.1.2 The Flexibility Method

Let T be a truss with v joints and e bars and x,
X, s and S be as above. First we determine the relationship
between the forces acting along the bars and the external

forces acting on the joints. This is done by treating the
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forces along redundant bars (a set of bars is redundant i+f
they can be removed without making the structure +flexible)
as external forces so that the equilibrium equations
have a unique solution. One of the aims of this thesis is
to provide a method for automating the determination of a

redundant set of bars in a given structure.

Let Y represent the forces along the redundant bars.
Then we represent the new external force vector as

[X! s and let B be the matrix such that
Y

(H S = B[X(
Y

The relationship between the changes of length of the
bars and the displacements of the joints is obtained from
the Principle of - Virtual Work. Since we are treating the
forces along the redundant bars as external fofces on the
vertices the physical lengths of the redundant bars do not
directly influence the displacements of the vertices. One
might imagine the middle of the bar being replaced with a
mechanism which maintains a constant force regardless o+
changes in the distance between the end points of the bar.
After the flexibility equations are solved the engineer or
designer must tailor the physical characteristics of the
redundant bars so that they will be compatible with the
structure. To represent this we extend x with the same

number of zeros as there are redundant bars. We then get
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(2) lxl = B"s .
0
We now deal with the relationship between the
internal +forces and the changes o¥f lengths of the bars.
Here we let F/ = diag(fi,...,f;) , where ¢, is the
flexibility of bar by and s, = ¥,S;:,. Then
(3) s = F’S -

Combining (1), (2) and (3) we get

lx’ = BTF’B!Xl or
0 Y
(4) lxi = F‘X‘ .

0 Y

We will rewrite F in (4) as

IX‘ = {Fia FLZ! le
O Fa, Fa=2 Y

and then separate the equations to get

]

{(S) x F,.,.X + F;zY and

{&) 0 Fz1:X + FaaY .
Solving (&) for Y and substituting into (3) we get

{7) X = [Fi1 - (Fi2 Fz2"* F2:)1 X .

Note that with the flexibility method we only have to
invert an r by r matrix Fz2 , where r is the
number of redundant mwmembers in T . Thus one would like a
method for determining sets of redundant members that lends

itself to automation.
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4.2 RIGIDITY THEORY AND RESOLUTION OF FORCES

In this section we will develop the necessary
conditions for a unigue resolution of forces acting on a bar
and joint framework structure. First we will assume that all
forces act at the joints of the framework, the framework is
infinitesimally rigid and the structure does not move in

space.

4.2.1 Preliminary Detinitions

Let G be a graph with v vertices (v>n), e edges
and edge function fo which represents the lengths of
the edges of G in R". We represent G in R"™ by
identifying the wvertex i of G with p, in R",
Suppose that G{p) is in standard position and that Gi{p) is
rigid in R® for some regqular point p in R"Y of the

edge function. {(Hence G{p) is infinitesimally rigid.)

Let the external force acting on vertex i be denoted
by X, such that

X = (0,...,007

Xe = Xy, 150009X2,.2-2505:02:,007
for i =2,...,n and

Xe = (X3 ,1050003X1,n)7
for i = ntl,...,Vv .

Alsao, let X be an (nv-ni(n+l)/2)-vector constructed from
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the X.,,’'s which are not identically zero. Thus
X = (X2, 14X3, 13X, 290se3%0,n)7 .

Similarly let x, represent the displacement of vertex

p: . Then

X = (Xz,19X3, 19X, mge0nsXw,n) T .
In this way we only apply forces on points in the
direction(s) in which they may be displaced. This is

necessary so that the displacements of the points can be

uniquely determined.

For each edge (i,j) in E(G) we represent the force
acting along the corresponding edge of G(p) by S.i, ,
where S, is a scalar representing the magnitude of the
force on edge ti,j) . Then the force acting on point p,

due to (i,j) is given by

Let

S = (S1,...589)7
be an e-vector with the k*" entry corresponding to the
ket e@dge of G . Similarly 1let the change in edge
lengths be represented by

5 = (s;,...,se)f .

4.2.2 Eguilibrium Conditions

Since we have assumed that Gi(p) is in standard
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position we only need to find the equilibrium conditions for
the coordinates of the points of G(p) which are not

identically zero.

We require that the sum of the forces at each vertex is

zero. Using the notation defined above we have

(1) Xy = X Sy, {ps-p,) )
j in a(i) tipi-py i
where af(i) = (j:{i,j) in E{(G)}). This condition must hold

for every vertex.

4.2.3 The Edge Function and ResolutionAof Forces

In Chapter 2 we dealt with the edge function of a
graph, but we were only interested in the rank of the
derivative of the edge function. Here we will determine the
displacements of the points in terms of the applied forces,
the physical characteristics of the edges and the derivative
of the edge function. Again we assume that Gi(p) is rigid in
R™ and in standard position. Recall that

(1) falp) = (oo, iipa-pytiseee)
where (ip:s-p,ii is the k=" entry of folp) if

(i,j) is the k*" edge of G .

Then the derivative of the edge function, dfa(p),
is an e by nv matrix with nv - nin+1)/2 non-zero columns.

The entries of dfe(p) are then
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D4 . m=P . m)
(2) Tipa-p,
dfe(plu,nct-s1r+m =
O otherwise
where (i, j) is the k*" edge of G and m=1l,...,n . Thus
each row of dfe(p) has at most 2n non-zero entries and
the row sums are zero. This edge function is continuously
differentiable provided the edge lengths are non-zero. If we

assume that all edges have non-zero length then the results

of Chapter 2 will hold.

Now we apply the equilibrium conditions to the Jacobian
of the edge function to get a resolution of the external
forces acting on the vertices in terms of the internal
forces acting along the edges. Recall the equilibrium
condition 4.2.2(1) which gives the requirements +for the

equilibrium of the forces at each vertex i

4.2.2(3) X. = 2 ( S., {(p,-p) ) .
j in afti) 1ipa-py it

Consider the columns of dfoe(p) which correspond to
vertex i . Then the k*" row entries in these columns

are

where the kt" edge of G is (i,j) .
Let us denote dfof(p) by A . Then

{3) X = ATS .,
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Since we have assumed that Gi(p) is rigid we know from
Theorem 2.3 that the rank of dfs(p) is nv - nin+1)/2.
Thus (3) has a unique solution only if dfs(p) has full
rank. From Chapter 3 this implies

e = nv - nin+1)/2

and that G{(p) must be minimally rigid.

4.3 APPLICATION TO STRUCTURAL ANALYSIS

The determination of theoretical rigidity in the
evaluation of a proposed design is an immediate application
of rigidity theory in the +ield of structural analysis.
However rigidity theory can be applied to both the stiffness
and flexibility methods of structural analysis in useful

ways.

4.3.1 Application to The Stiffness Method

As in Section 4.2.1 let S = (S1,...,5 )T be an
e-vector representing the forces acting on the edges of
G(p), 5 = (S15...535 )7 represent the changes of
lengths of the edges of G(p), x = (Xz_ 15.:23%Xv,n)T
represent the displacements of the vertices o+ _G(p) and
X = (Xz.;,---,xv_n)T be the corresponding forces
on those vertices. Let A be the matrix created by taking
columns of dfo(p) which correspond to coordinates of the

points of G(p) which are not identically zero.
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We will rewrite the stiffness equations in terms of the
A . From 4.2.3 (3) we have X = AT™S ., This corresponds to
the equilibrium equation for the stiffness method 4.1.1(2) .
Thus we get the compatibility equation
4.1.1(1)

(2) s = Ax .
And using 4.1.1 (3) we have

{3) S =K's |,
where K’ is the edge stiffness matrix. Combining these
equtions we get

(4) X = ATK'A x .
Thus we have the stiffness equation written in terms of the
derivative of the edge function of G . However this still

leaves us with a largé matrix to invert.

4.3.2 Application to the Flexibility Method

By applying rigidity theory to the flexibility method
of structural analysis we are able to express the
flexibility equations in terms of the edge function defined
above.We are also able to determine a set of redundant edges
of G(p) which are necessary to solve the flexibility

equations.

Since the rows of dfe(p) correspond to the edges
of G(p) and since the rank of dfas(p) is nv-ni(n+l1}/2 we
can find nv - n{(n+1)/2 linearly independent rows of A .
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(As noted in Chapter 3 this can be done using the singular
value decompostion.) The graph G’ (p) induced by the edges
corresponding to those rows is then rigid. We will call
the edges of G/ (p) basic edges and the edges of Gip)
which are not in G’'(p) redundant edges. Note that this

partitions the rows of dfoe(p) and hence the rows of A.

Let the matrix formed by the rows corresponding to the
basic edges be denoted by A, and the matrix formed
by the rows corresponding to the redundant edges be
denoted by A- . Let Sy, be the forces on the basic
edges and S, be the forces on the redundant edges. From
4.2.3(3) we have

(1) X = ATS |,
Since A has full rank then AcAs™ has an
inverse which we will call ™M .
This gives

(2} Se = MALX .
And then MAp corresponds to B in Section 4.1.2 and

(4) x = (MAg)TF/ (MAL)X

where F’ is the flexibility matrix of the edges .

Now we must represent the redundant edges of G(p)
as forces acting on the points of G(p) . Again we use the
derivative of the edge function to accomplish this. We can
use (1) to find the forces the redundant edges exert on the
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points of G{(p) . Let X. represent these forces. Then
{(3) A-TS. = X, .
From (2) we can find the effect of these redundant edges aon

the basic edges.

(8) Se MAs (X + X.) or

(2} Se MAL (X + A.TS.) .

Since the stresses on the redundant edges must get mapped to

themselves we get

= MA MALA.-T

(8) S =1Se o
1S~ 0 I

0N X
3

which we will rewrite as

S = &i

X
S~
Again using the Principle of Virtual Work we get

(P) H or

a87F’'aix !
1Sk

O x

QX

= F!

X
S,
where F’ is the edge +flexibility matrix. Since we have
assumed that the edges are only stretched or compressed we
can split the flexibility matrix into a matrix for the basic

edges and a matrix for the redundant edges denoted as

F’y, and F/- respectively. Separating the equations
we find
(10) x = Fi1,X + Fi12S. and
O = F2.X + F2aS. .
where

Fii = AsTMTF’/ MA,
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Fiz = As™MTF/ o MALA,-T
Fzi = ArAS™MTF/ uMAL
Fzz = ArAS™MTF/ oMALA,-T
+ Fr-
Then from 4.1.2(7) we have the final solution

(11) x = [Fy: - (FiaF22"tFz,)1X .

In Chapter 3 we described how the singular value
deomposition can be used in conjunction with rigidity theory
to determine whether or not the representation of a graph is
rigid. I+ that representation is rigid then a linearly
independent set of edges can be +found. Since the singular
value decomposition can be implemented (15,p293,p416] for
both these applications we then have a method for automating

the flexibility method of structural analysis.

As well we can use the Jacobian of the edge function of
a representation of a graph to determine the relationship
between the internal and external forces in a bar and joint
structure and the relationship between the internal
displacements (changes in lengths of the bars) and the
external displacements (changes in the postions of the

vertices).
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CHAPTER 3

Flexing Panel Structures

In this chapter we will descibe some +flexing panel
structures. We use the term "flexing panel structure” to
denote structures created by joining rigid pql&gnnal panels
together along their edges by flexible hinges. Some examples
of this type of structure are of particular interest as they
can fold up into very compact packages which can be deployed
quickly and simply to provide strong lightweight shelters.
The structures described below can be modelled using heavy

paper which has been suitably folded.
S.1 PRELIMINARY DISCUSSION

The structures we are interested in can be broken down
into similar strips of polygonal elements. These strips must
then be able to flex so that each strip is compatible with
its neighbors. Thus we will begin by examining the required

behavior of these strips.

Consider a strip S of length L and width ¥ lying on a
flat surface. We want to consider the behavior of that strip
when it has a single fold. Denote this fold by F and denote
the acute angle between the line of F and the edge of the S
by f. For now suppose that 0 < + < T/2.
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Figure 5.1

Let S be folded completely over at F as below.

Figure 5.2

It can be seen immediately that the angle b formed on each
edge of S is b = T -2f. Now suppose that S is unfolded so
that one edge of S remains on the surface. This requires
that the other edge of S lift off the surface. Let the angle
between S and the surface be a.

a)l

Wsinta) Side view

/

b)

Wcos ta) b(aFQ:\\\\‘ Top view

Then the projection of S directly down onto the surface has

Figure 3.3
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width Wcos(a) and the top edge is lifted Wsin(a) off the
surface. Note that the plane induced by the top edge of S is
paraliel to the flat surface. Then the angle b(a) induced by
F and a in the projection of S onto the surface is given by

(1 bta) = T -~ 2Arctan(tan(f)cos(a)) .

Now consider the case where S has more then one fold.
We require that one edge of S remain on the flat surface at
all times. This means that folds must be oriented so that a
+ull twist is not induced in S (each fold induces a hal+f

twist in S). Also we require that no two folds cross on S.

We say that a fold is increasing i+ it is in the
same direction as the first fold and decreasing if it is in

the opposite direction to the first fold.

decreasing

+irst fold increasing
Figure 5.4
I+ F. is an increasing fold then

(2) b.ta) = T - 2Arctan(tan(f,)cos(a))

and if F, is a decreasing fold then

(3 bita) = T + 2Arctan(tan{f,)costa)) .

Now let S’ be the mirror image of S (obtained by
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flipping S over). Then by joining S and S’ along a common
edge we have a larger strip which is flexible. By repeating
this process we can construct as wide a strip as desired.
Also by picking appropriate folds we can create many
different types of structures. One should be aware that

certain constraints arise due to physical considerations.

5.2 A SIMPLE SHELTER

Here we will describe a design for a simple +flexing
structure that may be used for a shelter. This design folds
up into a regular hexagon and can be deployed as a “quonset®
type shelter. Designs based on other regular polygons can
be constructed in a similar manner. We will base this

descripticn on the construction of a paper madel.

Suppose that we have a heavy piece of paper of width &
and length 6(3)*7= ., Identify the lower left corner of
the paper with (9,0) so that the width is measured along the
vertical axis. Starting at 1 unit vertical rule 35 horizontal

lines 1 unit apart on the paper.

Figure‘5.5
Rule a diagonal line from the lower left corner to the upper
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right corner and parallel lines that meet the edge of the
paper at the ends of the horizontal lines. Then starting at
the wupper left corner and going to the lower right corner

repeat this process.

This partitions the paper into triangles which
correspond to our panels. Note that this design can be
extended indefinitely in both directions. Also note that the
horizontal lines partion the paper into strips similar to
the strips described abgve. The 1lines that we have drawn
will be the hinges of our structure. Since we are dealing
with triangles this design might be constructed using a bar

and joint framework where the line segments are the bars.

Now comes the tricky part. All the horizontal lines
must be folded in one direction while the diagonal lines
must all be folded in the other direction. Do not try and
accomplish this in one pass. First make all the horizontal
folds, flatten ocut the paper, make one set of diagonal folds
and then the other. Now carefully compress the top and
bottom edges together and correct any folds that are forming
in the wrong direction. As this is done the paper will start
to form an arch with the horizontal folds internal to the
arch and the diagonal folds on the outside of the arch. By
completing the folding process the model collapses into a
regular hexagon.

49



5.3 FOLDING UP THE PLANE

This is a +flexing panel design which can collapse a
plane surface into a very compact package. One might think
of this as a simultaneous double pleating of the plane.
Again we base this description on the construction of a

paper model.

We will start with a heavy piece of paper of width 6
and length 12. Identify the lower left corner of the paper
with (0,0) so that the width is measured along the vertical
axis. Rule horizontal lines at unit intervals and vertical
lines at intervals of 3 (this interval is arbitrary but
should be greater then 2). Now at points (i,3j) (i=0,2,4,6
j=1,3) draw diagonal lines at angles of M/4 and 3T/4
through these points until the lines meet the adjacent
horizontal lines. Repeat this process at points (i,6)
{i=1,3,5). This will result in vertical strings of diamonds

centered on these points.

aN
N
AN
N
paN
\\//

K
PP

Figure 5.6

Again note that this design can be expanded indefintely in

both directions.



We will concern ourselves only with the hoizontal lines
and the diagonal lines. Consider the horizontal lines as
line segments outside the diamonds and inside the diamonds.
Going up the paper the line segments outside the diamonds
must be folded alternately (pleated). Going across the paper
the 1line segments in the diamonds must be folded opposite
the line segments outside the diamonds. The diagonals must
be +folded opposite the 1line segments inside the diamond
which contains that diagonal. Again crease all the folds in
the proper direction individually. Then compress the top and
bottom edges together correcting the folds as réquired. As
the model takes shape it resemples a series of major peaks
and valleys crossed by minor valleys and ridges. By
completing the folding process the paper will collapse into
a compact package 4 by 3 and 12 times the paper thickness
deep. There are many possible varitations based on this

basic design.

One interesting aspect of this design is that it does
not trap any part of the paper "inside" the folds. The whole
sheet unfolds in both directions simultaneously. This may be

very useful for handling large flexible sheets of material.
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5.4 A FLEXING TUBE

We can build a +Flexing cylinder if we allow
perpendicular folds across the strips. The perpendicular
fold does not open but allows one to double the strip back
on itself. As we can see from 5.1(3) as a increases from O
, the angle formed by the edges of the strip at a fold gets
closer tof . 1f we allow a perpendicular fold next to a
regular fold then as we increase a the angle formed by the
edges of the strip still increases with a but as the fold
opens it doubles the strip back onto itself. We will call
these t;pes of folds inverted folds. Using this technique o+f
perpendicular folds we can construct a +flexing tube. Note
that due to the doubling back of the strip onto itself this

tube is not isomorphic to a cylinder.

Let R = {i: F, is a regular fold} and let
S = {i:F, is an inverted +fo0ld} . We require that

2 {f4) + X ($,) = 4NT
i in R i in S

where N is the total number of folds. This may seem to give
a contradiction but using inverted folds we can create folds
which have an angle of T and thus do not contribute to
the angles of the polygon until the strip starts to unfold.
Then the increase in the the sum of the angles of the

regular folds is offset by the decrease in the angles of the
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inverted folds as the strp unfolds.

AERN

ta)

Layed out flat

{(b)

Folded up Completely.

Figure 5.7 An inverted fold .

A simple example of such a flexing cylinder is a folded
strip which which has one regular <fold of angle 7T/2, an
inverted fold of angle T , two more regular folds of angle
M/2 , another inverted +fold of angle T and +Finally a
regular fold of angle /2 . In this construction let the
distances between the regular folds and the inverted folds

be the same.

2

PP

<
< para

Figure 5.8 A diagram for a flexing tube.

The ends of the strips are then identified. There are
many variations of this type of design. The basic idea is to
make the changes of the sum of all the angles zero while the
strip is flexing.
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In Chapter & we give an example of a rigid tube

constructed from triangular panels.
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CHAPTER 6

CALCULATIONS

In this chapter we calculate the rank of the derivative
of the edge functiaon for some explicit examples of graphs
represented in R and R® . The calculations are
done using a Fortran program written by the author which
uses the singular value decomposition to determine the
rank of the derivative of the edge function. The actual
determination of the singular value decomposition is carried
out using the National Algorithm Group Fortran Library
routine FO2WCF. This routine is available at Simon Fraser

University in the public MTS file ¥NAGD.

6.1 THE PROGRAM

The Fortran program RIGID, written by the author; uses
as input the number of vertices of graph G , the dimension
of the space in which G is represented, the adjacency matrix
of G and the positinns of the points pis,...;p. .

From this dfa(p) is calculated and the NAG routine
FO2WCF is then called to determine the singular values. The
pragram then produces the number of vertices, edges and the
singular values of dfas(p). From this information we are

able to determine whether or not

rank dfa(p) = nv - (m+1){(2Zn-m)/2 ,
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where m is the dimension of the affine hull o+f

Pis-<--sPv

6.2 THE EXAMPLES

Except in section 6.2.2 we work in RS, Let C,

denote the n-cube.

6.2.1 The Cube
We represented Cs (in 3-space) with edge lengths of

10 . The singular value decompostion produces exactly 12

identical singular values equal to 14.142 . Thus the rank
of dfcip) is 12 . Since Cs has 8 vertices and 12
edges this is maximal. But 3%8 - 6 = 18 so the cube must be

flexible in RS .,

We now examine the complete graph'nn the points of the
cube. The program returns 18 non-zero singular values. Thus
R as one would expect, this representation is rigid. Since
Ke has 28 edges we can +ind a subgraph with 18 edges

which would be rigid.

6.2.2 The Hypercube

We represent C, in R® with edge lengths of 10.
RIGID returns 32 identical singular values and again this

is exactly the number of edges of Ca . Since 4¥%15 - 10
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is 446, Ca is flexible in R=,

We examine the complete graph on the points of the
hypercube. RIGID returns 47 non-zero singular values. The
46*" singular value is 4.834 and the 47%*" is 0.76 .

Since we expect at most 446 non-zero singular values this
indicates that further work is necessary for the numerical
cnmputatidns. The unexpected singular value is probably due
to rounding error in the computation. In any case we require
46 non-zero singular values and thus there are 74 redundant

edges in this representation.

6.2.3 The Shelter

We represent a graph corresponding to a shelter similar
to the one described in Chapter 5 . This graph has 22
vertices and 49 edges. The points are represented as

follows;

(-5.0,0.0 ,5.4%i) i=0,1,2

Pir+>s

Pzews = (-2.5,4.33,3.4%i) i=0,1,2

Psess = { 2.5,4.33,5.4%i) i=0,1,2
Pasws = ( 5.0,0.0 ,S.4%i) i=0,1,2
Pos»s = (-4.33,0.0 ,2.7+5.4%i) i=0,1
Paswrs = (-4.33,2.5 ,2.7+5.4%i) i=0,1
Prews = { 0.0 ,5.0 ,2.7+5.4%i) i=0,1
Pos»s = ( 4.33,2.5 ,2.7+5.4%i) i=0,1

Po+swy = ( 4.33,0.0 ,2.7+5.4%1i) i=0,1 .
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The edges are as follows;

E =((i,i+1):i=VU\4,9,13,18,223U{(i,i+5):1i=V\9,18,19,20,21,22}
U(i,i+4):i=VU\5,14,19,20,21,22} .

RIGID return 49 non-zero singular values. Since 3¥22-6=40

then the shelter is flexible and lacks at least 11 edges

in order to be rigid in and of itsel+f.

6.2.4 A Rigid Tube

This example is based on a tube constructed +from
identical triangular panels. The underlying graph has 12
vertices and 30 edgés. The vertices are represented as
follows;

Pi+ras = { 0.0 ,5-0 ,5-4*1) i=°,1

Pzres = (-4.33.-2.5,5.4%i) i=0,1
Ps+res = ( 4.33.-2.5,3.4%i) i=0,1

Pases = ( 4.33, 2.5,2.7+5.4%i) i=0,1
Po+es = (-4.33, 2.5,2.7+5.4%i) i=0,1

Parar = ( 0.0 ,-5.0,2.7+3.4%i) i=0,1 .
The edges of this graph are as followsj

E = ((i,i+1),(i,i+2),(i+1,i+2):i=1,4,7,103UC(1,4),(1,5),

(2,5),(2,6),(3,4),(3,6),1(4,7),(4,9),(3,7),(5,8),
(6,8),(6,9),(7,10),(7,11),(8,11),(8,12),(7,10),(9,12) 1.

RIGID returns 30 non-zero singular values. Since 3#12-6 is
30 this representation is infinitesimally rigid. Also since
this is exactly the number of edges the representation of

this tube is an example of a minimally rigid graph.
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APPENDIX A

The following is a listing of a Fortran program which

computes the singular values of the derivative of the edge

function for some representation of a graph G .

noaonn

nDaoo0an

0oon

100

A-DERIVATIVE OF THE EDGE FUNCTION, G-LEFT HAND
SINGULAR VECTORS, PT-RH SINGULAR VECTORS AS COLUMNS
P-ROW I OF P GIVES COORDINATES OF POINT 1
SV-SINGULAR VALUES

DOUBLE PRECISION A(200,200),8(200,200),PT (200,200},

*P (50, 10) ,SV(50) , WORK (40600)

ADJ-ADJACENCY MATRIX, E-# OF EDGES, V-# OF VERTICES
ND-DIM OF EUCLIDEAN SPACE, M-ROWS OF A, N-COLS OF A
EDGE-STORES EDGES OF GRAPH

INTEGER ADJ(50,50),E,V,ND,M,N,EDGE (200, 2)
INPUT # OF VERTICES AND DIMENSION OF E-SPACE

READ (S, 100) V,ND
FORMAT (213)

INPUT ADJACENCY MATRIX

DO S I=1,V
READ(5,101) (ADJ(I,J),J=1,V)
FORMAT (S011)

COUNT EDGES

=0

DO 10 I=1,V

DO 20 I=1,I

IF (ADJ(1,J).EQ.0) GOTO 20
=E+ADJ(I,J)

CONTINUE

CONTINUE

WRITE(6,201) V,E

FORMAT (1X,213)

SET DIMENSIONS OF A
M=E
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N=V¥ND
c INPUT POSITIONS OF POINTS

DO 30 I=1,V
30 READ(5,102) (P(I,J),J=1,ND)
102 FORMAT (10F&.3)

c ZERC A, PREPARE DERIVATIVE OF EDGE FUNCTION

DO 40 I=1,E
DO S0 J=I,N
50 A(I,J)=0
40 CONTINUE

c ENTER ELEMENTS OF A , ORDER EGDES LEXICOGRAPHICALLY

KE=0
DO 40 I=1,V
DO 70 J=I,V
IF (ADJ(I,J).EQ.0) GOTQ 70
KE=KE +1
I1=ND¥(I-1)
J1=ND¥(J~-1)
DO 80 K=1,ND
A(KE, I1+K)=P(I,K)-P(J,K)
A(KE,J1+K)=P(J,K)-P(I,K)
EDGE(KE, 1)=1I
EDGE (KE, 2)=J
80 CONTINUE
70 CONTINUE
&0 CONTINUE

o4
c FIND MIN M,N
c

MINMN=MINO(M,N)

c
c CALL ¥NAGD ROUTINE FO2WCF
c
IFAIL=0
LWORK=3%MINMN+MINMNEMINMN
NRA=200
NRE=200,
NRPT=200
CALL FOZWCF(M,N,MINMN,A, NRA,&,NR&,SV,PT,NRPT, WORK,
¥LWORK, IFAIL)
c
€ OUTPUT SINGULAR VALUES
c

WRITE(6,202) (SV(I),I=1,MINMN)
202 FORMAT{(1X,200F7.3)
END
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