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ABSTRACT 

We de+ine a graph G to be a set o+ vertices V t G )  = 
, , v  together with a set of edges EtG) o+ unordered 
pairs from V. We represent G in Rn by points 
p r , . . . , ~ ~ ,  corresponding to the vertices of G, 
together with the line segments which join p s  and p, 
when ( i , j )  is in EtG). 

We say the representation o+ a graph G is rigid in 
Rn i f  every continuous movement o+ the representation 
which preserves edge lengths also preserves the distance 
between every pair o+ points in that representation. We say 
the representation o+ G is flexible if there is a continuous 
movement of that representation which preserves edge lengths 
but does not preserve the distance between every pair o+ 
points in the representation. 

We use the Inverse Function Theorem to determine the 
rigidity or flexibility of a given representation of G. From 
this we show that i+ a representation o+ G is rigid in 
Rn and the affine hull o+ p , p  has 
dimension n then G must be n-connected, have at least 
nv-ntn+l)/2 edges and contain a subgraph which is minimally 
rigid in Rn. We demonstrate the existence of 2n-1 
connected graphs which are flexible in Rn. 

We apply the above results to the Structural Analysis 
of trusses and spaceframes. I n  particular, the determination 
0 minimally rigid sub-graphs gives a new method +or the 
automation of the +lexibility method o+ structural analysis. 

We describe some +lexing panel structures including a 
quonset type shelter and a flexing tube. 

The results from a computer program are used to 
determine the rigidity or +lexibility of some speci+ic 
examples. 
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CHAPTER 1 

INTRODUCTION 

We see examples of rigid and flexible objects around us 

in many manifestations. These range from simple structures 

such as a tripod to sophisticated machinery such a s  jet 

aircraft and also include our own bodies. 

When one studies a mechanism or designs a structure 

some sort of a model is used to define the relationships 

between the various components. One of the simplest models 

that is often used is a point and line diagram. Indeed one 

of the +irst things that a child learns to draw is a stick 

figure. This type of model arises naturally in many 

applications and corresponds directly to the mathematical 

concept of a graph as a set of points together with a set of 

relations between pairs of points. The intent of this thesis 

is to explore some of the relationships between the rigidity 

or flexibility of a structure and the properties of an 

abstract mathematical model of that structure. 

The modern study of rigidity dates back to to 1812 when - 
A. L. Cauchy C 9 1  published his paper on the rigidity of 

convex polyhedra with rigid polygonal faces. There is no 

doubt that Cauchy had more than an academic interest in the 

theory of rigidity a s  his title is given a s  .Ingenieur des 



Ponts et Chaussees ' which literally translates t o  Engineer 

o+ Bridqes and Roads. In the latter part o+ t h e  nineteenth 

century and the early part of the twentieth century work was 

done by such people a s  James Maxwell, Sir Robert Ball and 

Raoul Bricard (see Cdl) . 

More recently a paper by G. Laman 191 in 1970 sparked 

renewed interest in rigidity theory with a graph theoretic 

approach. Laman outlines rigidity requirements for planar 

graphs and clearly distingushes between the concepts of 

rigidity and infinitesimal rigidity. Branko ~ r u n b a u m  and 

G. C. Shephard E 8 1  point out the ambiguity and lack o+ 

rigour in previous treatments o+ rigidity. 

In 1974 H. Gluck E 7 1  develops a theorem for determining 

rigidity in his treatment o closed simply connected 
L 

surfaces. This theorem is expanded t o  deal with graphs in 

Euclidean n-space by L. Asimow and B. Roth El3 in 1978. 

L. Lovasz and Y. Yemini C101 use combinatorial arguments 

and results +rom Matroid Theory to examine the rigidty of 

planar graphs in a paper published in 1982. Also published 

in 1982 is a paper by Henry Crapo and Walter Whitely t 6 l  

which deals with rigidity and statics of frameworks +rom the 

point o+ view of projective geometry. 



This thesis is based primarily on the works o+ G. Laman 

and Asimow and Roth. In Chapter 2 the theory o+ rigidity in 

Euclidean n-space is examined. 

Chapter 3 deals with minimally rigid graphs. These 

graphs have some interesting properties which have a special 

application in structural analysis. Also we show how the 

singular value decomposition can b e  used t o  apply rigidity 

theory t o  concrete examples. 

In Chapter 4 we give a brief introduction to the 

methods employed in the structural analysis o+ bar and joint 

frameworks. We then show how the results o+ Chapters 2 and 3 

can b e  applied t o  structural analysis. In particular we 

demonstrate how rigidity theory and the singular value 

decomposition can b e  used t o  automate the +lexibility method 
L 

of structural analysis. 

Chapter 5 describes some flexing panel structures which 

can b e  created from a +lat piece o+ material. There are a 

large number of different designs based on the relatively 

simple ideas outlined here. While this chapter may not b e  

rigorous, it was the study o-f these structures that +irst 

interested the author in rigidity theory. 

In Chapter 6 w e  examine some concrete examples using a 



Fortran program written by the author. This program makes 

use of the singular value decompostion t o  apply the theory 

developed t o  the concrete examples. A listing o+ the program 

code is included in this thesis a s  an appendix. 

The author plans further work in the application of 

these results t o  structural engineering and in the 

investigation of the properties o+ flexing panel structures. 



CHAPTER 2 

THE THEORY O F  RIGIDITY OF GRAPHS 

In this chapter w e  will develop mathematical tools for 

determining the rigidity (or flexibility) o+ almost all 

representations of a given graph in an n-dimensional 

Euclidean space. Also we nil1 give some corollaries of the 

theory described. 

2.1 PRELIMINARY DEFINITIONS AND MOTIVATION 

For our purposes a graph G=CV,E3, where V is a set o+ 

vertices V = l , . , v  and E is a set of edges, where each 

edge is an unordered pair from V. W e  will restrict our 

attention t o  simple connected graphs. In other words we will 

allow no multiple edges, no edges containing only one vertex 

(a loop) and every vertex must be connected t o  every other 

vertex by a path. Throughout the rest of this thesis w e  will 

use v and e t o  denote the number of elements in V and E 

respectively. 

We represent G in R n  by selecting v points 

 PI,...,^., in Rn such that p i  corresponds t o  

vertex i of V . Note that pi=(pi,,, ...,pi, ,). 
These points in Rn then represent the vertices of our 

graph. 



G = CV,E3 = C(1,2,3),((1,21,(1,3),(2,3))3 

Figure 2.1 

The natural representation o+ the edges of our graph G 

in Rn is then the line segments connecting points 

p i  and p, where (i,j) is an element of E . 

I+ we consider the possible motions o+ o n e  point in 

Rn we see that we require n coordinates t o  represent 

this. T o  represent the motion o+ v unconstrained points in 

Rn w e  require nv coordinates. Thus w e  can represent 

the points pr,=-.,Pw, p, in Rn, by a single 

point p in Rnw such that 

P " (~r.l,==*,Pr.n,.=-~P~,r,..-,Pv.n) 

That is the +irst n coordinates o+ p represent p l S  

the second n coordinates of p represent pr , and so 

on. In the case of Figure 2.1 p=(O,O,O,l,lSO). We will 

denote this representation of G in Rn at pr,. . . 
-.,pv by G(P) . 

The basic notion of rigidity requires that an object or 

structure b e  in+lexible. This does not mean that the 

structure cannot move at all but that the structure can- 
t 



not change shape. A triangle constructed by joining rigid 

bars together at the ends has this property. The triangle 

may b e  moved about or turned around but the shape does not 

change. However suppose four rigid bars are connected at the 

ends by +lexible joints t o  form a rectangle, it is easy t o  

see that this arrangement is not rigid. 

I 

Figure 2.2 

For our representation of the graph G in Rn, 

denoted by G(p) , we will allow the points of G(p) t o  

move in Rn but will require that the lengths of the line 

segments, corresponding t o  the edges of G , remain 

constant. T o  represent the edge lengths of G(p) we will 

de+ine an edge function for G(p). W e  order the edges of G. 

Then the edge +unction is 

fo(p)=(. . . , : :pi-p, : :, . . . )  

I s where p i - p  is the kern coordinate of 

if ti, j is the kern edge o+ G. This gives u s  a 

+unction from R n V  into Rt='. W e  note that the square 

of the edge lengths is used in t l l .  

Now that w e  have defined the edge function +or some 

G(p) we will define rigidity and flexibility in terms of 

this edge function. 



ge+inition W e  say that T is an isometry o+ Rn i+ 

::Tx - Ty:: = " I ,x - y:: for all x,y in Rn . 

We say that two representations o a graph are 

congruent i+ there is an isometry o+ Rn which maps one 

representation t o  the other . 

Let G(q) b e  the representation o+ G at points 

qr,-..,qv in Rn. If 

+o(q) = 

then the length o+ the corresponding edges of G(p) and 

G(q) are the same. This does not mean that Gtp) is 

congruent t o  G(q). See Figure 2.3 for an example of two 

representations which are not congruent y e t '  have the same 

edge lengths. 

There are three cases. First, G(q) is congruent t o  

G(p) . Second, G(q) may be a representation o+ G that can b e  
reached by de+orming G(p) while not changing the lengths o+ 

the edges (as in Figure 2.2 a and b ) .  In this case w e  would 

call G(p) +lexible. Third, G(q) is not congruent t o  G(p) and 

is not a +lexing o+ G(p). FPgure 2.3 gives an example o+ 

this in R Z  . 



Figure 2.3 

We are then interested in the set of points q in R" 

such that fo(q) equals fa(p) . This set is 
fo-*(fo(p) 1 , 

which we will call the fibre of G at p , and denote as 

fibre(G,p). 

Let K, be the complete graph on v vertices (every 

pair of vertices is joined by an edge) and K(p) b e  the 

representation of K, on the points of G(p) . Then the 
distance between every pair of points of K(p) is fixed. 

Movements which preserve the distances between the points of 
L 

Ktp) correspond t o  rigid movements of Gtp) . It is easy t o  

see that the possible movements of K(p) must b e  contained by 

the possible movements of G(p) . 

2.1.1 Definition: Let G b e  a graph on v vertices, K 

the complete graph on v vertices and p a point in 

Rnw . Then G(p) is rigid in Rn if there exists a 

neighborhood U of p in Rnw such that 

fibre(G,p) n U = fibre(K,p)n U 

G(p) is flexible in Rn if there exists a continuous 



path x: tO,ll 3 RnV such that x(O) = p and x(t) is in 

fiber(G,p) r) U - fibre(K,p) flu 

for all t in (0,ll and some open neighborhood U of p . 

In other words G(p) is rigid only if any movement of 

the points of G(p) which preserves edge lengths is a rigid 

movement of Gtp). 

Note that if 

+iber(G,p) n U - fibre(K,p) n U # 0 , 

we can construct a smooth path x(t) with x(0) = p by taking 

neighborhoods U S  such that U S  contains U i - %  

and x(ti) is in U S  - Ui-% . 

We will now develop this characterization of rigidity 

and flexibility into a use+ul tool. 

2.2 APPLICATION OF THE INVERSE FUNCTION THEOREM 

For a smooth map f:X 3 Y where X and Y are smooth 

manifolds, we denote the lacobian o+ f at x in X by 

d+(x) . Let k = maxtrank df (XI:  x in X I .  Then x is a 

regular point o f i+ rank df (x) = k and a singular 

point otherwise. 



2.3 P r o ~ o s i t i o n  Elf Let f:Rn+Rm b e  a smooth 

nap and k = maxCrank(df (x):x in Rn>. If xo is 

a regular point of f then the inage under f of some 

neighborhood of XQ is a k-dimens.ional manifold. 

Proof Let 9 = (f1,fs) where f r  consists of 

the first k coordinate functions of f and assume that 

rank df r (XO) = k . Since rank dfr = k the 

inverse +unction thereom E20,p343 yields local coordinates 

at XQ  such that f,(x,,x,) = X I  . 
Thus in local coordinates 

Since rank (df = k near xo, af =/  ax= = 0 near 

near xo . Thus f maps some neighborhood of xo onto 

C(x,y): y = gtx)?, the graph of g, which is a k-dimensional 

manifold since g is differentiable. f3 

It follows that if p is a regular point of f, 

then +ibre(G,x) is a manifold o+ co-dimension k near p . 

A subset M of R n  is said t o  b e  an affine set if 

M contains the entire line through each pair o+ points in 

M . The dimension of an af+ine set is defined t o  b e  the 



dimension of the subspare M-M =<x-y:x,y in MI parallel 

t o  M . We will denote the dimension of an affine set M 

by dim(M) . 

The affine hull of a set S in Rn is the smallest 

affine set c ~ n t a i n i n g  S . Let P b e  the affine hull of 

P L ? * . ? P V  - 

2.3 DETERMINING RIGIDITY AND FLEXIBILITY 

The +allowing test for rigidity was 

Herman Gluck in C 7 3  and expanded by Asimow and 

with higher dimensional cases in C11 . 

2.3 Theorem C11 171 Let G be a graph 

introduced by 

Roth t o  deal 

with v 

vertices, e edges and edge function +a. Suppose 

that p in Rnv is a regular point of fo and 

let dim(P) = m . Then the graph G(p) is rigid in 

Rn if and only if 

rank (d+o(p) = nv - (m+l) (an-1) /2 

and G(p) is flexible in Rn if and only if 

rank(dfo(pl) < nv - (m+1) (2n-1)/2 . 

Proof. Let k = maxCrank d+-(x): x in Rnv3. Then 

rank dfo(p) = k . By Proposition 2.3 there exists a 

neighborhood U of p in RnV such that the intersection of 



+ibre(G,p) and U is an (nv-k)-dimensional mani+old. 

Let J(n) be the n(n+l)/2-dimensional mani+old o+ 

isometries o+ Rn and define F:J(n)+Rnw by 

F(T) = (Tpl,...,Tp,) +or T in J(n) . 
Note that F is smooth and that the imaqe under F of 

+o(p) is +ibre(K,p) (F corresponds t o  the riqid 

movements of G(p) 1 .  Then F'l(p1 is the subqroup o+ 

J(n) consistinq o+ isometries which yield the identity on P. 

Then F-&(p) can be idsnti+ied with the (n-m) (n-m-1112 

-dimensional mani+old O(n) o+ ort hoqonal 1 i near 

trans+ormations o+ N where N is the tn-m)-dimensional 

subspace orthogonal t o  the m-dimensional subspace P-P . 
Let 

w: Jln) 9 J(n) /F-Z (p) 

b e  the natural projection and de+ine 

F:J(n)/F'&(p) 9 Rnw - 
so that F = r  w. Then F is smooth and E: J(n) /F'L(pl 

9 im(E) is a di+feomorphism. Since J(n)/F'%(p) is a 

mani+old o+ dimension (m+l) (2n-m)/2 we conclude that 

im(r) = im[F) = +ibre(K,p) is an (m+1)(2n-m)/2-dimensional 

mani+old. Note that this corresponds t o  the rigid movements 

o+ G(p). 

Since all the riqid movements of G(p) are contained 

in the set o+ all possible edqe length preserving movements 



of G(p), then the intersection of fibre(K,p) and U is 

contained in the intersection of +ibre(G,p) and U . This 
gives u s  

k 2 nv - (m+1) (2n-m) /2 . 
Then k = nv - (m+1)(2n-m)/2 if and only if there exists a 

neighborhood W of p in RnV such that 

fibre(K,p) n W = fibre(G,p) n W . 
Then the only possible edge length preserving movements of 

G(p) are the rigid movements of G(p) . Since w e  have 

that k I nv - (m+1)(2n-m)/2 , then G(p) is flexible in 

Rn if and only if k < nv - (m+l) (2n-m)/2. E l  

2.4 COROLLARIES 

In the first part of this section we will deal with 

representations o-f G in different dimensions. For a 

representation of G in Rm w e  will denote the edge 

+unction of the graph G by fom . 

2.4.1 Lemma C13 L e t  G be a  graph  w i t h  v 

vertices. S u p p o s e  p i n  RnV is a r e g u l a r  p o i n t  o f  

fan and let m = dim(P) . Then there e x i s t s  q i n  

RmV s u c h  t h a t  q is a . r e g u l a r  p a i n t  o f  fam , 

dim(@) = m and rank d+an(p) = rank dfomtq) . I f  

G(p) is r i g i d  i n  Rn t h e n  G(q) is r i g i d  i n  

Rm . 



Proof: Define C:Rm 9 Rn by 

C(x1,.-.xm) = (X2,. .. x,,O,...,O) . 
There exists an isometry T of Rn taking the m 

dimensional subspace im(C) onto the af-fine hull P of 

pl,...,~, . Then ( T  o C )  maps Rm onto P . Let 
q r  = c-'{T-*p~) . Since T is nonsingular 

then dim(P) = dim(@) where B is the affine hull of 

ql,...,q, . Since 
maxtrank dfom) maxfrank d-fon) 

= rank dfon tp) 

= rank dfom(q) 

< maxtrank df,,,) , - 
is a regular point o-f -fom. C 3  

Let G b e  a graph with v vertices. Then RnV . 
can be partitioned according t o  the rigidity or flexibility 

o-f G(p) , into the sets of regular and singular points of 

fo , or according t o  whether dim(P) = mintv-1,n) or 

dim(P) < minIv-1,n) . The first - few corollaries explore the 

relationships between these partitions of RnV. 

2.4.2 Corollary El3 Let G be a graph with v 

vertices. If G(p) is rigid in Rn where p is 

a regular point of  -fo then dim(P1 = min(v-1,n) . 



m o o +  Let m = dim(P1. By the lemma there exists a q 

in Rm" with q a regular point o+ fa,, dim(Q) = In 9 

rank d+am(q) = rank d+a,(p) and G(q) rigid in 

Rm. Then by the Theorem 2.3 we have 

mv - (m+1)(2m-m)/2 = rank d+-,(q) = rank d+-,(p) 

= nv - (m+l) (2n-m) /2 . 
Since g(x) = vx - (m+1) (2x-m) /2 is a++ine and g(m) = g(n), 

then mrn or the coe++icient o v-(m+1) o+ x in g(x) 

is zero. There+ore m = min(v-1,n). C I  

2.4.3 Corollarv C11 Let G be a graph with v 

vertices and edge function +-. If p,q in 

RnV are regular paints of f a  and G(p) is 

rigid in Rn, then G(q) is rigid in Rn and 

dim(P) = dim(Q) . 

Proo+ Let m = dim(P) and 1 = dim(Q) . Since p and q 

are both regular points o+ +- then we have d+a(p) 

= dfo(q) and by the lemma G(q) is rigid. Applying 

Theorem 2.3 and Corollary 2.4.2 we have m, 1 2 v-1 and 

This reduces to 

I+ m + 1 then m+l = 2n-1 and either m or 1 is less 

than n . I+ we assume that m < n , then dim(P) = v-1 and 

dint641 = v-1 by Corollary 2.4.2 . C1 



2.4.4 Corollary I Let G be a graph 

vertices and e edges. I f  e < nv - n(n+1)/2 and 

3 n then G(p) is flexible in Rn fur all regular 

points of f W. 

Proof Let p in RnV be a regular point of fa 

and dim(P1 = n . Then 
rank dfw I e < nv - n(n+l) /2 

< nv - (m+l) (2n-m) 12 - 
and thus G(p) is +lexible by Theorem 2.3 . t l  

2.4.5 Corollary 113 Let G be a graph with v 

vertices and e edges. If p in RnV is a 

regular point af f o  , dim(P) = v-1 and Gtp) is 

rigid in Rn, then G is the cunplete graph on v 

vert ires. 

Proof Let v-1 = m . Then G(p) rigid implies that 

e 1 nv - (m+l) (2n-m) /2  . 
Substituting v-1 for m gives 

e 2 v(v-1)IZ . 
But e I vtv-1112, with equality holding only if G is the 

complete graph o n  v vertices. C l  

The next Corollary uses Euler's Formula (v-e+f=2) 



relating the numbers of vertices, faces and edqes in a 

planar qraph. 

2.4.6 Corollary Cll Let G be a  planar graph such 

t h a t  G(p) is r i g i d  f o r  a l l  r e g u l a r p o i n t s  p , i n  

R2' o f  fa . Then the  average number A o f  

edges  on each f a c e  o f  G i s  l e s s  than 4 and i f  v > 2 

then G c o n t a i n s  a  t r i a n g l e .  

Proof: Since G(p) is rigid in Rz at all regular 

points p in RZV of fa then e 2 2 v  - 3 a n d  

A = Ze/f = 2e/ (2-v+e) ( 4e/ (e+l) < 4 . 
Suppose that v > 2 and that G has no faces with three 

edges. Then A = 2e/f 4 since every face must have at 

least 4 edges. Since this can not hold at least one face 

has three edqes. C 3  

2.5 INFINITESIMAL RIGIDITY AND FLEXIBILITY 

In the previous sections w e  have only dealt with 

rigidity and flexibility at reqular points of the edge 

function. In this section w e  develop some theory t o  deal 

with singular points of the edge function. 

Let G be a graph with edge function fo and p 

a point in R ~ v  . Let xtt) b e  a smooth path in 



RnV with x(0) = p . Then df (fa o x) (0) = 0 

implies that at p the rate of change o+ the edge lengths 

is zero. This can b e  written a s  d+=(p) dx(0) = 0 

Thus dx(0) is an element of the kernel (or null 

space) of dfo(p). Let X b e  the collection o+ all 

such paths. Note that if x is a smooth path in 

fibre(K,p) = f-*~(f,(p)) with x(0) = 0 then x 

is in X . Thus the tangent space Tx to 

fibre(K,p) at p is a subspace of ker dfo(p). 

2.5.1 De+inition G(p) is infinitasinally r i g i d  in 

Rn if TX = ker dfatp) and infinitesimally 

flexible otherwise. 

Thus G(p) is infinitesimally flexible in Rn if 

and only if there is a path x in X which is not tangent 
L 

at p to a smooth motion of K(p) in Rn. A simple 

example of this type of situation ocurrs when the the points 

of a triangle are co-linear. 

From the previous section w e  have 

rank dfo(p) nv - (m+l) (Zn-m) / 2  

where m = dim(P) . Since Tx is contained in the 

kernel of dfa(p) we have that G(p) is infinitesimally 

rigid in Rn if and only if 

rank dfo (p )  = nv - (m+1) (2n-m) /2 



and Gtp) is infinitesimally flexible in Rn if and 

only if 

rank df ~ ( p )  < nv - (m+l) (2n-m) /2 . 
Thus at regular point5 of f a  rigidity and infinitesimal 

rigidity are the same, a s  are flexibility and infinitesimal 

flexibility. The +allowing theorem deals with singular 

points of fe . 

2.5 Theorem C 2 3  G(p) is infinitesimally rigid in 

Rn if and only i f  p is a regular point of fa 

and G(p) is rigid in Rn . 

Proof: If G(p) is infinitesimally rigid then 

rank dfatp) = nv - (rn+l)(Pn-m)/2 . 
Since this is maximal then p is a regular point of 

fa and G(p) is rigid. If Gtp) is rigid and p is a 

regular point of f a  then 

rank df e(p) = nv - (m+l) (2n-m) /2 

and Tx = ker dfo(p) at p . Thus G(p) is 

infinitesimally rigid. C I  

The proofs for the +allowing corollaries are analogous 

t o  the proofs of the corresponding corollaries of the 

previous section. 



2.5.1 Corollar~ 1 2 3  If G(p) is infinitesimally rigid 

in Rn then dim[P)=min(v-1,n) . 

2.5.2 Corollary 121 If G(p) is infinitesimally rigid 

for p a regular point of f then G(q) is 

infinitesimally rigid for all regular points q in 

R" . 

2.5.3 Corollary I21 If G is a graph with v 

vertices and e < nv - n(n+1)/2 edges then G ( p )  is 

infinitesimally flexible for all p in Rn. 

2.5.4 Corollarv I 1 3  Let G b e  a graph with v 

vertices and e edges. If dim(P) = v-1 and G(p) is 

infinitesimally rigid in Rn, then G is the complete 

graph on v vertices. 



CHAPTER 3 

MINIMALLY RIGID GRAPHS 

In Chapter 2 we developed tools that can be used to 

determine the rigidity or flexibility of a given graph G 

+or all regular points of the edge function. We will now use 

this theory to examine minimally rigid graphs. We say that a 

graph G is ~ i n i a l l y  rigid in Rn i+ it is rigid in 

Rn and if the deletion of an edge of G results in 

a graph which is flexible in Rn. The simplest example 

of a minimally rigid graph is a triangle in R". 

Minimally rigid graphs have a special application in 

structural analysis. This will be explored in Chapter 4. 

3.1 THEORY AND COROLLARIES 

3.1 Theorem C91 Let G be a graph with v vertices 

and edge function fe . Suppose that G is rigid 

in Rn at a regular point p of the edge function 

and dim(P) = m . 7ben G contains a minimally rigid 

subgraph G' on v vertices with 

e' = nv - (m+l) (2n-m) /2 edges. 

Proof: Since G(p) is rigid in Rn then 

rank dfe(p) = nv - (m+11 (2n-m) 1 2  

by Theorem 2.3 . Thus we can find nv - (m+l)(Zn-m)/2 



linearly independent rows of dfo(p) . Each row 

corresponds t o  an edge of G. Let G' be the graph induced by 

these rows. Then 

rank dfol (p) = nv - (m+l) (2n-m)/2 

and G' ( p )  is rigid in Rn . C I  

3.1.1 Corollary C 9 1  Let G be a graph on v > n 

vertices. Suppose that G is nininally rigid in 

Rn at a regular point p of the edge function and 

dimtP) = m . Then G has exactly nv-(m+l) (2n-m)/2 

edges. 

Proof: This follows immediately from Theorem 2.3 . t l  

The following Corollary is an expanded version of a 

theorem due t o  G. Laman concerning planar graphs. It gives a 
L 

necessary conditions for a graph t o  be minimally rigid. 

3.1.2 Corollary C 9 1  Let G be a graph on v 

vertices and e edges. Let G' be a subgrrpb of G 

on v' vertices with e' edges and suppose that 

dim(P) = n. Then G is minimally rigid in Rn at 

a regular point p of the edge function only if 

e = nv - n(n+l)/2 
and for every subgraph G' af G 

e' inv' - n(n+l)/2 . 



Proof: Suppose that G is minimally rigid. Then from 

Theorem 2.3, rank dfo(p) = nv - n(n+1)/2 . Since the 

rows o+ dfo(p) correspond t o  the edges o+ G then 

e = nv - n(n+l)/2 . 
Suppose e' > nv' - n(n+l)/P +or some G' . Then 

rank d+-# (p) = nv' - n(n+l) /2 < e' 

and there is at least o n e  linearly dependent row in 

d f ~  ( p )  . Since the rows of dfa# (p) are a subset of 
the rows of dfo(p) this implies that d+-(p) does 

not have full rank and thus G(p) is not rigid. 1 3  

3.2 CONNECTIVITY AND RIGIDITY 

We will u s e  minimally rigid graphs t o  show a 
L 

relationship between connectivity and rigidity. W e  say that 

a graph G is k-vertex connected i +  the deletion of any 

set of k-1 vertices does not disconnect G . A graph is 

k-regular i+ each vertex is incident with exactly k edges. 

3.2.1 Corollary Let G be a graph with v > n 

vertices and edge function fa . If p a is regular 

point of f a  , dim(P) = n and Gfp) is rigid in 

Rn then G is n-vertex connected. 



Proof: Assume that G is minimally rigid in Rn . Let 
C b e  a cut-set of vertices of G and assume that C 

contains k = n-1 vertices. Let E(C) be t h e  edges of G 

on C . Define G' and G' so that the interestection of 

V(G') and V(Gm) is C , G' and G m  have no edges in common and 

the union of G', G' and E ( C )  is G . Let v', v m  and e', 

e m  b e  the number o+ vertices and edges in G' and G' 

respectively. Note that v' + v' = v + k and that there are 

at most k(k-1)/2 edges o n  C . 

Since G is minimally rigid by Corollary 3.1.1 

ef 2 nv' - n(n+l)/2 , 

em L nv' - n(n+l) /2 and 

ef + e m  L e  = nv - n(n+l)/2 . 
Then 

e' + e m  2 n(v'+vm) - n(n+l) 

= nv - n(n+l)/2 + nk - n(n+1)/2 

< nv - n(n+l)/P . - 
Since G', G' a r e  contained in G w e  have must have? 

et + e m  L n v  - n(n+l)/2 - (nk - n(n+l)/2) . 
Since G' and G' have no edges in C we have 

e' + e m  L n v  - n(n+l)/2 - k(k-1)/2. 
Combining the last two equations gives u s  

k(k-1112 2 nk - n(n+l)/2 , 

which reduces t o  

(k-nIE 2 k-n , 



which implies that k 2 n . This contradicts our assumption 
that k = n-1 and thus G must b e  n-vertex connected. E l  

3.2.2 Corollary Let G b e  a k-regular graph such 

that k < 2 n  and dim(P) = n . If v > n(n+l)/(2n-k) 

then G(p) is flexible in Rn for all regular 

points p of f- such that dim(P) = n . 

Prooi: I G is k-regular then G has exactly vk/2 edges. 

Suppose that G(p) is rigid in Rn for p a regular 

point of fa. Then 

e = vk/2 nv - n(n+1)/2 which reduces t o  

v I_ n(n+l)/(Zn-k) . 
Thus for v > n(n+l)/(Zn-k) and k < 2n G does not have 

enough edges t o  b e  rigid. E l  

These types o i  graphs d o  exist t14,p441 and a simple 

example which is 3-vertex connected with 8 vertices and 1 2  

edges is given in Figure 3.1 . This graph flexes in R2. 

Figure 3.1 



Since every rigid graph contains a minimally rigid 

subgraph these results hold for rigid graphs in general. 

Then if G(p) is rigid in Rn and dim(P)=n then G is 

n-vertex connected. However Corollary 3.2.2 shows that 

this is not su+ficient. 

We can use the singular value decompostion t o  determine 

rigidity or flexibility for specfic examples. If G(p) is 

rigid then w e  can find a minimally rigid subgraph. If Gtp) 

is flexible then w e  can identify the .flexings of G(p). 

We state the following theorem without proof. (This 

proof may b e  +ound in Golub and Van Loan ClS, p 16-171 . I  

Theorem Let A be an m by n matrix. 7hen there 

exist orthugunaC matrices U and V ,where U is 

m b y m  afid V is n b y n  suchthat 

U7AV = diag(sa,...,swl 

where k = min(m,n) and 

s a  1 ss! 2 ... 2 s,. 2 0 . 

The S ~ ' S  are the singular values o+ A and the 

index of the smallest non-zero singular value is the rank of 

A . Suppose rank A = r . Then the first r rows of U 



span the row space of A and the last n-r rows of V span 

t h e n u l l  s p a c e o f  A .  

We will assume that dim(P) = n . Let dfa(p) = A . 
Then applying the singular value decomposition to A we get 

UTAV = diag(sl,.. . ,s,) . 
Let si be the smallest non-zero singular value. If 

i = nv - n(n+1)/2 then G(p) is infinitesimally rigid . 
and if i < nv - n(n+1)/2 then Gtp) is infinitesimally 

-flexible . To determine if G(p) is flexible one must insure 

that p is a regular point of the fa . 

If Gtp) is rigid we can find a minimally rigid subgraph 

~ ' ( p )  by 'growingy a graph with successive applications of 

the singular value theorem. A more effective method o-f 

+inding a set of linearly independent rows may be found in 

t1SSp4163 . 

We can find an isometry T of R, such that 

Tpr = (0,. . . ,0) 
and for i=2, ..., n 

Tpi = (q*.~,.--,qi.a-a~O,.--~O) 

and for i = n+l,...,v 

Tpt = qi - 
Since T is an isometry the distances between every pair of 

points is preserved . This is a special application of the 



QR decomposition. A treatment of this may b e  found in 

C15,p 1643 . W e  say that G(p) is in standard position 

when Tpi = pi for i = 1 . v  . Let u s  assume 

that G(p) is in standard position. Then by only 

considering movements of p i  in directions in which the 

coordinates of pa are not identically zero we 

effectively fix G(p) in Rn. 

If G(p) is +lexible then w e  can determine the 

unconstrained points from the last nv - n(n+1)/2 - r rows 

of V . These rows give u s  t h e  tangents t o  the paths along 

which the points of G(p) can move while preserving the edge 

lengths of G(p). Since we know what types of paths the 

points must follow we can construct these paths from this 

information. For a given tangent vector w e  find a point 

which can move while preserving edge lengths but is . 
connected t o  a fixed point. This point must then move on a 

spherical surface centered at the fixed point. Once this 

path is determined the paths of other points can b e  related 

t o  it. Note that each tangent vector corresponds t o  one 

degree of freedom for the flexing of the graph. Thus for k 

tangent vectors w e  need k independent variables t o  

describe the flexings of the graph. 



CHAPTER 4 

APPLICATION OF RIGIDITY THEORY 

TO 

STRUCTURAL ANALYSIS 

The determination of rigidity is an essential part of 

Structural Analygis. The natural model of a bar and joint 

framework structure (joints flexible) gives a representation 

of a graph in R" or R3. The joints of the framework 

become the vertices of the graph and the bars of the 

framework become the edges of the graph. This natural 

correspondence suggests that results from rigidity theory 

can be applied in structural analysis . 

4.1 STRUCTURAL ANALYSIS OF TRUSSES 

The object of a structural analysis of a truss is to 

determine whether or not a truss of a given design can 

support the loads placed on it. This determination is made 

on the basis of the truss supporting the required load 

without being displaced more than a given amount. Thus the 

results of a* structural analysis should give the 

displacement of a truss in terms of the applied load. 

We will give a brief overview of the two basic methods 

employed in structural analysis. These two methods are the 



Stiffness method and the Flexibility method. Both methods 

use systems of linear equations t o  relate the internal 

forces acting along the bars t o  the external (or loading) 

forces acting on the joints. Similarly the internal 

displacements (changes in the bars) are related t o  external 

displacements (movements of the joints). Implicit in these 

relations is a constraint on the displacements of the joints 

of the framework. These constraints correspond t o  the 

standard position (defined in Section 3.3 of Chapter 3) 

of a representation of a graph G in Rn . The constraints 
are necessary for a unique determination of the 

displacements of the joints. (see t183, El911 

These two systems of equations are linked together by a 

representation of the physical characteriPtics of the bars 

of the truss t o  give the final relation between the external 

forces and the external displacements. 

The first method examined is the stiffness (or 

displacement) method. This method is the most widely used as 

it can b e  automated easily. However a solution of the 

stiffness method requires that a large matrix b e  inverted. 

The second method is the flexibility (or force) method 

which, at present, can not b e  automated easily. However the 

flexibility method can be solved by inverting a smaller 

matrix (in many cases much smaller) than the matrix inverted 



in the stiffness method. 

4.1.1. The Stiffness Method of Structural Analysis 

Let T , in RE, be a truss with v joints and 

bars. Let 

X = (xz.L,X~.S ,..., X V , l , X V , ~ ) T  
represent the displacements O+ the joints of T 

external forces 

X = ( X ~ . 1 • ÷ X 3 . 1  ,... •÷XV.L,XV,l)T 
acting on those joints. Similarly let 

s = (51,. . . ,SelT 

e 

under 

represent the changes 0-f lengths of the bars'of T (we only 

consider the bars a s  compressing or stretching) and 

S = (Sx, ..., S e I T  

b e  the corresponding forces along the bars. Now w e  construct 

the matrix B so that 

(1) s = B x .  

This can b e  accomplished as follows. For each i 

select some k and set xi,, = 0 for some i and all j 

not equal t o  k and then record the changes in the lengths of 

the bars affected by that displacement of that joint. By 

taking the sum of the changes of bar lengths over all 

possible i and k w e  have the changes in bar lengths in terms 

of the displacements of the joints (which is valid provided 

the relationship between displacement and force is linear). 



Using a result based o n  the conservation o+ energy, 

which is called the .Principle o+ Virtual Workg C18,p253, w e  

get the following relation between internal and external 

+orces. This is 

(2) 

Now w e  require the relationship between the internal 

+orces acting along the bars and the changes in lengths o+ 

the bars. This depends on the physical characteristics o+ 

the bars. Let K' = diagtkl, ..., ke) be an e by e matrix 

such that Si = kist ( a  unit +orce results in a 

compression o+ k i  units on bar br). Thus 

( 3  1 S = K's . 
Combining expressions (1),(2) and (3)  w e  get 

X = BTK'Bx or 

(4) X = K x .  

The +inal requirement is t o  compute K'l t o  get 

(31 x = K - % X  . 
It should b e  noted that the +inal computation is not trivial 

even +or relatively small trusses. 

4.1.2 The Flexibility Method 

Let T be a truss with v joints and e bars and x, 

X, s and S be a s  above. First w e  determine the relationship 

between the +orces acting along the bars and the external 

+orces acting o n  t h e  joints. This is done by treating the 



+orces along redundant bars ( a  set of bars is redundant if 

they can b e  removed without making the structure flexible) 

as external forces so that the equilibrium equations 

have a unique solution. One of the aims of this thesis is 

to provide a method for automating the determination of a 

redundant set of bars in a given structure. 

Let Y represent the forces along the redundant bars. 

Then we represent the new external force vector as 

ICI , and let B be the matrix such that 

S = B X  
I Y I  

The relationship between the changes of length of the 

bars and the displacements of the joints is obtained from 

the Principle o+ Virtual Work. Since we are treating the 

forces along the redundant bars as external forces o n  the 
L 

vertices the physical lengths of the redundant bars d o  not 

directly in+luence the displacements of the vertices. One 

might imagine the middle o+ the bar being replaced with a 

mechanism which maintains a constant force regardless o+ 

changes in the distance between the end points of t h e  bar. 

After the flexibility equations a r e  solved t h e  engineer o r  

designer must tailor the physical characteristics of the 

redundant bars so that they will b e  compatible with the 

structure. T o  represent this we extend x with the same 

number of zeros as there are redundant bars. W e  then get 



We now deal with the relationship between the 

internal forces and the changes o+ lengths o+ the bars. 

Here we let F' = diag(+r,...,fe) , where f r  is the 

flexibility o+ bar b r  and si = frSi. Then 

Combining (11, (2) and (3) we get 

We will rewrite F in (41 as 

and then separate the equations t o  get 

( 5  1 x = FzrX + FIZY and 

(6) 0 = FrrX + FsnY 

Solving 6 +or Y and substituting into ( 5 1  we get 

( 7 )  x CFrr - (Frz F Z E ~ - +  Flr)l X . 

Note that with the flexibility method we only have to 

invert an r by r matrix FIZ , where r is the 

number of redundant members in T . Thus one would like a 

method for determining sets of redundant members that lends 

itself to automation. 



4.2 RIGIDITY THEORY AND RESOLUTION O F  FORCES 

In this section w e  will develop the necessary 

conditions for a unique resolution of forces acting o n  a bar 

and joint -framework structure. First w e  will assume that all 

forces act at the joints o+ the +ramework, the +ramework is 

infinitesimally rigid and the structure does not move in 

space. 

4.2.1 Preliminary De+initions 

Let G be a graph with v vertices (v>n), e edges 

and edge +unction +* which represents the lengths o+ 

the edges of G in Rn. We represent G in Rn by 

identi+ying the vertex i o+ G with p i  in Rn. 

Suppose that G(p) is in standard position and that G(p) is 

rigid in R" +or some regular point p in RnV o+ the L 

edge function. (Hence G(p) is infinitesimally rigid.) 

Let the external +orce acting o n  vertex i b e  denoted 

by X i  such that 

X, = (O,...,O)T 

x, = (Xi, A,. . . ,xi. i-*,0,. . . ,0lT 
+or i = 2, ..., n and 

Xi = (Xi, +, . . . 
for i = n+l,...,v . 
Also, let X b e  an (nv-n(n+l)l2)-vector constructed +rom 
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the Xi,,'s which are not identically zero. Thus 

X = ( X z .  IPXJ. L , X J , ~ ,  . . . ,XW,nlT . 
Similarly let xi represent the displacement of vertex 

p i  . Then 
X = (xP.z,XJ.Z,XJ.I I..-, xw,nIT . 

In this way w e  only apply forces on points in the 

direction(s1 in which they may be displaced. This is 

necessary so that the displacements of the points can b e  

uniquely determined. 

For each edge (i,j) in E(G) we represent t h e  force 

acting along the corresponding edge o+ G(p) by St, , 
where Si, is a scalar representing the magnitude of the 

force on edge (i,j) . Then the force acting on point p i  
due t o  (i,jl is given by 

Let 

S = (Sx,...,SeIT 

b e  an e-vector with the kt" entry corresponding t o  the 

kt" edge of G . Similarly let the change in edge 

lengths b e  represented by 

s = (51, .. ., seIT . 

4.2.2 Eauilibrium Conditions 

Sinee w e  have assumed that G(p) is in standard 



position w e  only need t o  find the equilibrium conditions for 

the coordinates of the points of G(p) which are not 

identically zero. 

W e  require that the sum of the forces at each vertex is 

zero. Using the notation de+ined above we have 

where a(i) = j 1 ,  in E(GI3. This condition must hold 

+or every vertex. 

4.2.3 The Edse Function and Resolution o+ Forces 

In Chapter 2 w e  dealt with the edge +unction o+ a 

graph, but w e  were only interested in the rank of the 

derivative of the edge +unction. Here we will determine the 

displacements o+ the points in terms of the applied forces, 
L 

the physical characteristics o+ the edges and the derivative 

of the edge function. Again we assume that G(p) is rigid in 

Rn and in standard position. Recall that 

where : :pr-p,:: is the ktk entry of fo(p) if 

(i,j) is the k t k  edge of G . 

Then the derivative of the edge function, d + ~ ( p ) ,  

is an e by nv matrix with nv - n(n+l)/2 non-zero columns. 
The entries o+ dfafp) are then 



where ( i ,  j is the k t "  edge of G and m=l,. . . ,n . Thus 
each row of dfe(p) has at most Zn non-zero entries and 

the row sums a r e  zero. This edge function is continuously 

di+ferentiable provided the edge lengths are non-zero. If w e  

assume that all edges have non-zero length then the results 

of Chapter 2 will hold. 

Now we apply the equilibrium conditions to the Jacobian 

of the edge function to get a resolution of the external 

forces acting o n  the vertices in terms of t h e  internal 

forces acting along t h e  edges. Recall the equilibrium 

condition 4.2.2(1) which gives the requirements for the 

equilibrium of the forces at each vertex i ; 

Consider the columns of dfa(p) which correspond to 

vertex i . Than the k t "  row entries in these columns 

a r e  

where the k t "  edge of G is (i,j) . 
Let u s  denote dfetp) by A . Then 

13) X = ATS . 



Since w e  have assumed that G(p) is rigid w e  know from 

Theorem 2.3 that the rank o+ dfa(p) is nv - n(n+l)/2. 
Thus ( 3 )  has a unique solution only if dfo(p) has full 

rank. From Chapter 3 this implies 

e = nv - n(n+l)/2 
and that G(p) must be minimally rigid. 

4.3 APPLICATION TO STRUCTURAL ANALYSIS 

The determination o+ theoretical rigidity in the 

evaluation o+ a proposed design is an immediate application 

of rigidity theory in the field of structural analysis. 

However rigidity theory can be applied to both the stiffness 

and +lexibility methods o+ structural analysis in use+ul 

ways. 

4.3.1 A o ~ l i c a t i o n  t o  The Stif+ness MethoQ 

A s  in Section 4.2.1 let S = (SL,.. .,S I T  b e  a n  

e-vector representing the forces acting o n  the edges of 

G ( p ) ,  s = (SL,...,S I f  represent the changes o+ 

lengths of the edges of Gcp), x = ( x z , ~ ,  ...,x.,,~)~ 

represent the displacements of the vertices of G ( p )  and 

X = X L , , X W T  be the corresponding forces 

o n  those vertices. Let A b e  the matrix created by taking 

columns o+ d+a(p) which correspond t o  coordinates o+ the 

points of G(p) which a r e  not identically zero. 



We will rewrite the stif+ness equations in terms of the 

A . From 4.2.3 1 3 )  w e  have X = ArS . This corresponds t o  
the equilibrium equation for the stif+ness method 4.1.1(2) . 
Thus w e  get the compatibility equation 

4.1.1(1) 

(21 s = A x  . 
And using 4.1.1 ( 3 )  we have 

(3) S = K ' S  , 
where K t  is the edge stiffness matrix. Combining these 

equtions w e  get 

(4 ) x = A ~ K '  A x . 
Thus w e  have the stiffness equation written in terms of the 

derivative of the edge function of G . However this still 
leaves u s  with a large matrix t o  invert. 

4.3.2 Aoolication t o  the Flexibility Method 

By applying rigidity theory to the flexibility method 

of structural analysis w e  a r e  able t o  express the 

flexibility equations in terms of the edge function defined 

above.We are also able t o  determine a set of redundant edges 

of G(p) which are necessary t o  solve the flexibility 

equat ions. 

Since t h e  rows of d+=(pI correspond t o  the edges 

of Gtp) and since the rank of dfo(p) is nv-n(n+l)/2 w e  

can find nv - n(n+l)/2 linearly independent rows of A . 
4 1  



(As noted in Chapter 3 this can b e  done using the singular 

value decompostion.) The graph G'lp) induced by the edges 

corresponding t o  those rows is then rigid. W e  will call 

the edges of G' (p) basic edges and the edges of G(p) 

which are not in ~ ' ( p )  redundant edges. Note that this 

partitions the rows of dfa(p) and hence the rows of A. 

Let the matrix formed by the rows corresponding t o  the 

basic edges be denoted by Am and the matrix formed 

by the rows corresponding t o  the redundant edges b e  

denoted by A, . Let Sm be the forces on the basic 

edges and S, b e  the +orces on the redundant edges. From 

4.2.3 (3) w e  have 

(1) X = ATS . 
Since Ab has full rank then 

inverse which w e  will call 

This gives 

(21 Sb = MAmX . 

AbAbf has an 

M .  

And then MA- corresponds t o  B in Section 4.1.2 and 

(41 X = (MAb) f F '  (MA-)X , 
where F' is t h e  flexibility matrix of the edges . 

NOW w e  must represent the redundant edges o+ G(p) 

a s  forces acting o n  the points of G(p) . Again w e  u s e  the 

derivative o+ t h e  edge function t o  accomplish this. W e  can 

use (1) t o  +ind t h e  forces t h e  redundant edges exert o n  the 
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points o+ Gtp) . Let X, represent these forces. Then 

From (2) w e  can find the effect o+ these redundant edges o n  

the basic edges. 

( 6 )  S b = M A e ( X + X , )  or 

Since the stresses on the redundant edges must get mapped to 

themselves we get 

which we will rewrite a s  

Again using the Principle of Virtual Work we get 

where F' is the edge flexibility matrix. Since we have 

assumed that the edges are only stretched or compressed we 

can  split t h e  flexibility matrix into a matrix for the b a s i c  

edges and a matrix for the redundant edges denoted as 

F's and F', respectively. Separating the equations 

where 

FII = AbfMfF'-MA- 



In Chapter 3 we described how the singular value 

deomposition can be used in conjunction with rigidity theory 

to determine whether or not the representation of a graph is 

rigid. I +  that representation is rigid then a linearly 

independent set of edges can be found. Since the singular 

value decomposition can be implemented tlS,p293,p4161 +or 

both these applications we then have a method for automating 

the flexibility method of structural analysis. 

A s  well w e  can use the Jacobian of the edge +unction of 

a representation of a graph t o  determine the relationship 

between the internal and external forces in a bar and joint 

structure and the relationship between the internal 

displacements (changes in lengths of the bars) and the 

external displacements (changes in the postions of the 

vertices). 



CHAPTER 5 

Flexing Panel Structures 

In this chapter we will descibe some +lexing panel 

structures. W e  use the term .+lexing panel structures t o  

denote structures created by joining rigid polygonal panels 

together along their edges by flexible hinges. Some examples 

o+ this type o+ structure are of particular interest a s  they 

can +old up into very compact packages which can b e  deployed 

quickly and. simply t o  provide strong lightweight shelters. 

The structures described below can b e  modelled using heavy 

paper which has been suitably folded. 

5.1 PRELIMINARY DISCUSSION 

The structures we are interested in can b e  broken down 

into similar strips o+ polygonal elements. These strips must 

then be able to flex so that each strip is compatible with 

its neighbors. Thus we will begin by examining the required 

behavior o+ these strips. 

Consider a strip S o+ length L and width W lying on a 

flat surface. We want t o  consider the behavior o+ that strip 

when it has a single +old. Denote this +old by F and denote 

the acute angle between the line O+ F and the edge o+ the S 

by +. For now suppose that 0 < + < n/2. 
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Figure 5.1 

Let S be folded completely over at F as below. 

Figure 5.2 

It can be seen immediately that the angle b formed on each 

edge of S is b = f l  -2f. Now suppose that S is unfolded so 

that one edge o+ S remains on the surface. This requires 

that the other edge of S lift o+f the surface. Let the angle C 

between S and the surface be a. 

a I 
WsintaI Side view 

Wcos (a) Top view 

Figure 5.3 

Then the projection of S directly down onto the surface has 



width Wcosta) and the top edge is lifted Umintr) off the 

surface. Note that the plane induced by the top mdge of S is 

papal Iel to the f lat surf ace. Then the angle btr) induced by 

F and a in the projection of S onto the surface 10 given by 

(1) b(a) = r - ZArctan(tantf1cos~a)) . 

Now consider the case where S has more then one +old. 

We require that one edge of S remain on the flat surface at 

all times. This means that folds must be oriented so that a 

+ull twist is not induced in S (each fold induces a half 

twist in S). Also we require that no two folds cross on S. 

We say that a fold is increasing if it is in the 

same direction a s  the first fold and decreasing if it is in 

the opposite direction to the first fold. 

Figure 5.4 

If F i  is an increasing fold then 

(2 )  b r  (a) = n - ZArctan(tan(f, )costa) 1 

and i+ F, is a decreasing fold then 

(3)  br (a) = 7 + 2Arctan(tan(f i )cos(a) 1 . 

Now let S' be the mirror image of S (obtained by 



+lipping S over). Then by joining S and S' along a common 

edge w e  have a larger strip which is flexible. By repeating 

this process w e  can construct a s  wide a strip a s  desired. 

Also by picking appropriate folds we can create many 

different types a+ structures. One should b e  aware that 

certain constraints arise due t o  physical considerations. 

5.2 A SIMPLE SHELTER 

Here w e  will describe a design for a simple flexing 

structure that may b e  used for a shelter. This design folds 

up into a regular hexagon and can be deployed as a 'quonsetm 

type shelter. Designs based on other regular polygons can 

b e  constructed in a similar manner. W e  will base this 

description o n  the construction of a paper model. 

Suppose that w e  have a heavy piece o+ paper of width 6 

and length 6 ( 3 I w E  . Id+nti+y the lower left corner of 

the paper with (0,O) s o  that the width is measured along the 

vertical axis. Starting at 1 unit vertical rule 5 horizontal 

lines 1 unit apart on the paper. 

Figure 5.5 

Rule a diagonal line from the lower le+t corner t o  the upper 
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right corner and parallel lines that meet t h e  edge of the 

paper at the ends of the horizontal lines. Then starting at 

the upper left corner and going t o  the lower right corner 

repeat this process. 

This partitions the paper into triangles which 

correspond t o  our panels. Note that this design can b e  

extended indefinitely in both directions. Also note that the 

horizontal lines partion the paper into strips similar t o  

the strips described above. T h e  lines that w e  have drawn 

will be the hinges of our structure. Since w e  a r e  dealing 

with triangles this design might b e  constructed using a bar 

and joint framework where t h e  line segments a r e  the bars. 

Now comes the tricky part. All the horizontal lines 

must b e  folded in one direction while the diagonal lines 
L 

must all b e  folded in the other direction. DO not try and 

accomplish this in one pass. First make all the horizontal 

folds, flatten out the paper, make one set of diagonal folds 

and then the other. NOW carefully compress the top and 

bottom edges together and correct any folds that a r e  forming 

in the wrong direction. As this is done the paper will start 

t o  form an arch with the horizontal folds internal to the 

arch and the diagonal folds o n  the outside of t h e  arch. By 

completing the folding process the model collapses into a 

regular hexagon. 



5.3 FOLDING 

This is a flexing pane 

UP THE PLANE 

1 design which can co1 

plane surface into a very compact package. One might 

of this as a simultaneous double pleating o f  t h e  

Again w e  base this description o n  the construction 

paper model. 

lapse a 

think 

plane. 

of a 

We will start with a heavy piece of paper of width 6 

and length 12. Identi+y the lower left corner of the paper 

with (0,O) so that the width is measured along the vertical 

axis. Rule horizontal lines at unit intervals and vertical 

lines at intervals of 3 (this interval is arbitrary but 

should be greater then 2). NOW at points (i,3j) (i=0,2,4,6 

j=1,3) draw diagonal lines at angles of T/4 and 3 T/4 

through these points until the lines meet the adjacent L 

horizontal lines. Repeat this process at points (i,6) 

Ii=1,3,S). This will result in vertical strings of diamonds 

centered on these points. 

Figure 5.6 

Again note that this design can b e  expanded inde+intely in 

both directions. 



We will concern ourselves only with the hoizontal lines 

and the diagonal lines. Consider the horizontal lines as 

line segments outside the diamonds and inside the diamonds. 

Going up the paper the line segments outside the diamonds 

must b e  folded alternately (pleated). Going across the paper 

the line segments in the diamonds must be folded opposite 

the line segments outside the diamonds. The diagonals must 

b e  +olded opposite the line segments inside t h e  diamond 

which contains that diagonal. Again crease all the folds in 

the proper direction individually. Then compress the top and 

bottom edges together correcting the folds a s  required. A s  

the model takes shape it resembles a series of major peaks 

and valleys crossed by minor valleys and ridges. By 

completing the folding process t h e  paper will collapse into 

a compact package 4 by 3 and 1 2  times the paper thickness 
L 

deep. There a r e  many possible varitations based on this 

basic design. 

One interesting aspect of this design is that it does 

not trap any part of the paper 'inside' the folds. T h e  whole 

sheet unfolds in both directions simultaneously. This may b e  

very use+ul for handling large flexible sheets of material. 



5.4 A FLEXING TUBE 

We can build a flexing cylinder if w e  allow 

perpendicular folds across the strips. The perpendicular 

fold does not open but allows o n e  to double the strip back 

on itself. A s  we can see from 5.1(3) a s  a increases from O 

, the angle formed by the edges of the strip at a +old gets 

closer t o r .  If we allow a perpendicular fold next t o  a 

regular fold then a s  w e  increase a the angle +ormed by the 

edges of the strip still increases with a but a s  the fold 

opens it doubles the strip back onto itself. W e  will call 

these types of folds inverted folds. Using this technique of 

perpendicular folds we can construct a flexing tube. Note 

that due to the doubling back of the strip onto itsel+ this 

tube is not isomorphic to a cylinder. 

Let R = Ci: Fi is a regular fold> and let 

S = Ci:FI is an inverted fold) . We require that 

where N is the total number o+ +oldr. This may seem t o  give 

a contradiction but using inverted folds w e  can create folds 

which have an angle of f l  and thus d o  not contribute t o  

the angles of the polygon until the strip starts t o  unfold. 

Then the increase in the the sum of the angles of the 

regular folds is offset by the decrease in the angles of the 



inverted folds as the strp unfolds. 

Layed out +lat 

Folded up Completely. 

Figure 5.7 An inverted +old . 

A simple example of such a +lexing cylinder is a folded 

strip which which has one regular fold of angle T / 2 ,  an 

inverted -fold of angle , two more regular folds o+ angle 

7 / 2  , another inverted +old o-f angle 7r and +inally a 

regular fold o+ angle T / 2  . In this construction let the 

distances between the regular folds and the inverted folds 

be the same. 

- -  - 

Figure 5.8 A diagram +or a +lexing tube. 

The ends of the strips are then identi+ied. There are 

many variations o+ this type o-f design. The basic idea is t o  

make the changes o+ the sum of all the angles zero while the 

strip is flexing. 



I n  Chapter 6 we g ive  an e x a m p l e  o+ a r i g i d  tube 

constructed +rom t r i a n g u l a r  panels.  



CHAPTER 6 

CALCULATIONS 

In this chapter we calculate the rank of t h e  derivative 

of the edge +unction +or some explicit examples o+ graphs 

represented in RJ and R4 . The calculations are 

done using a Fortran program written by the author which 

uses the singular value decomposition to determine the 

rank o+ the derivative o+ the edge +unction. T h e  actual 

determination o+ the singular value decomposition is carried 

out using the National Algorithm Group Fortran Library 

routine FOZWCF. This routine is available at Simon Fraser 

University in the public MTS +ile +NAGD. 

6.1 THE PROGRAM 

The Fortran program RIGID, written by the author, uses 

a s  input the number of vertices o+ graph G , the dimension 

o+ the space in which G is represented, the adjacency matrix 

o+ G and the positinns o+ the points pr,...,p,, . 
From this d + ~ ( p )  is calculated and the NAG routine 

FOZWCF is then called t o  determine the singular values. The 

program then produces the number o+ vertices, edges and the 

singular values o+ d+,(pI. From this in-formation w e  a r e  

able t o  determine whether or not 

rank d+o(p) = nv - (m+1) (2n-m) /2 , 



where m is the dimension o+ the a++ine hull o+ 

Pl$...$P" . 

6.2 THE EXAMPLES 

Except in section 6.2.2 w e  work in RJ. Let C, 

denote the n-cube. 

6.2.1 The Cube 

We represented CJ (in 3-space) with edge lengths of 

10 . The singular value decompostion produces exactly 1 2  

identical singular values equal t o  14.142 . Thus the rank 

o+ d + ~ ( p )  is 1 2  . Since CI has 8 vertices and 1 2  

edges this is maximal. But 3+8 - 6 = 1 8  so the cube must b e  

flexible in R3 . 

We now examine the complete graph o n  the points o-f the 

cube. The program returns 1 8  non-zero singular values. Thus 

, a s  one would expect, this representation is rigid. Since 

Ks has 28 edges w e  can find a subgraph with 1 8  edges 

which would be rigid. 

6.2.2 The H y ~ e r c u b e  

We represent Cq in R4 with edge lengths of 10. 

RIGID returns 32 identical singular values and again this 

is exactly the number of edges o+ Cq . Since 4+16 - 1 0  



is 46, Cs is flexible in R-. 

W e  examine the complete graph on the points o+ the 

hypercube. RIGID returns 47 non-zero singular values. The 

46-- singular value is 4.854 and the 47th is 0.76 . 
Since we expect at most 46 non-zero singular values this 

indicates that +urther work is necessary for the numerical 

computations. The unexpected singular value is probably due 

to rounding error in the computation. In any case we require 

46 non-zero singular values and thus there are 74 redundant 

edges in this representation. 

6.2.3 The Shelter 

We represent a graph corresponding t o  a shelter similar 

to the one described in Chapter 5 . This graph has 22 

vertices and 49 edges. The points are represented as 

+PI lows; 

PL+Z, = (-5.0,O.O ,3.4*i i=O,1,2 

pr++i (-2.5,4.33,5.4+i) i=O,t,2 

PJ+TI = ( 2.5,4.33,5.4+i) i=O,1,2 

p4+91 = ( 5.0,O.O ,5.44ki) i=0,1,2 

p,+,, = (-4.33$0.0 ,2.7+5.4*i i=O, 1 

p * + ~ ,  = (-4.33,2.5 ,2.7+5.4+i) i=O,l 

p7+rr = ( 0.0 ,5.0 ,2.7+5.4+i) i=O,1 

Pm-ri = ( 4-33,2.5 92-7+5.4+i) i=0,1 

p-+,, = ( 4.33,O.O ,2.7+5.4+i) i=O,l . 



The edges are a s  f o l ~ o w s ;  

E =<(i,i+l):i=V\4,9,13,18,223U<~i,i+5~:i=V\9,18,19,~0,21~223 

U<(i,i+4):i=V\!!5,14,19s20,21,223 . 
RIGID return 49 non-zero singular values. Since 3+22-6=60 

then the shelter is -flexible and lacks at least 11 edges 

in order to be rigid in and of itself. 

6.2.4 A Risid Tube 

This example is based on a tube constructed from 

identical triangular panels. The underlying graph has 12 

vertices and 30 edges. The vertices are represented as 

+ol lows; 

p ~ + a ~  = ( 0.0 ,5.O ,S.4+i) i=0,1 

pr+ai = (-4.33. -2.5,5.4*i i=O, 1 

Pj+a* = ( 4.33.-2.5,5.4+i) i=0,1 

ps+ai = ( 4.33, 2.5,2.7+5.4*i) i=0,1 

ps+ai = (-4.33, 2.5,2.7+5.4+i) i=O,l 

pa+ai = ( 0.0 $-5.0,2.7+9.4*i) i=O,l . 
The edges o+ this graph are a s  follows; 

E = C(i,i+l)$ (i,i+2)$ (i+l,i+2):i=1,4,7s103UC(1,4),(l,5), 

(2,5), (2,6), ( 3 , 4 ) ,  (3,6) $ (4,7), (4,9), (S17), (5,81, 

(6,8), ~ 6 ~ 9 ~ ~ ~ 7 ~ 1 0 ~ ~ ~ 7 9 1 1 ~ ~ ( 8 ~ 1 1 ~ ~ ~ 8 ~ 1 2 1 ~ ~ 9 9 1 0 ~ ~ ~ 9 ~ 1 2 ~ 3 ~  

RIGID returns 30 non-zero singular values. Since 3+12-6 is 

30 this representation is in-finitesimally rigid. Also since 

this is exactly the number of edges the representation of 

this tube is an example of a minimally rigid graph. 



APPENDIX A 

The +allowing is a listing of a Fortran program which 

computes the singular values o+ the derivative o+ the edge 

function +or some representation of a graph G . 

A-DERIVATIVE OF THE EDGE FUNCTION, B-LEFT HAND 
SINGULAR VECTORS, PT-RH SINGULAR VECTORS AS COLUMNS 
P-ROW I OF P GIVES COORDINATES OF POINT I 
SV-SINGULAR VALUES 

DOUBLE PRECISION A ~ 2 0 0 ~ 2 0 0 ) ~ 8 ~ 2 0 0 ~ 2 0 0 ) I P T ~ 2 0 0 ~ 2 0 0 ~ ,  
+P (SO, LO) ,SV (5O), WORK (40600) 

ADJ-ADJACENCY MATRIX, E-# OF EDGES, V-# OF VERTICES 
ND-DIM OF EUCLIDEAN SPACE? M-ROWS OF A,  N-COLS OF A 
EDGE-STORES EDGES OF GRAPH 

INTEGER ADJ(50,50) ,E,V,ND,M?NIEDGEt20012) 

INPUT # OF VERTICES AND DIMENSION OF €-SPACE 

READ(S,100) V,ND 
FORMAT (213 ) 

INPUT ADJKENCY MATRIX 

DO 5 I=l,V 
READ(5,lOl) (ADJ(I,J),J=l,V) 
FORMAT (SO1 1) 

COUNT EDGES 

E-0 
DO 10 I=l,V 
DO 20 I=l,I 
IF (ADJ(1,JI.EQ.O) GOT0 20 
E=E+ADJ ( I, J 1 
CONTINUE 
CONTINUE 
WRITE(6,POl) VIE 
FORMAT(lX,PI31 

SET DIMENSIONS OF A 



N==VHD 
C 
C INPUT POSITIONS OF POINTS 
C 

DO 30 I=l,V 
30 READ(S,lOP) (P(I,J),J=l,ND) 
102 FORMAT(lOF6.3) 
C 
C ZERO A, PREPARE DERIVATIVE OF EDGE FUNCTION 
C 

DO 40 I=l,E 
DO 50 J=I,N 

50 A(I,J)=O 
40 CONTINUE 

C 
C ENTER ELEMENTS OF A , ORDER EGDES LEXICOGRAPHICALLY 
C 

KE=O 
DO 60 I=l,V 
DO 70 J=I,V 
IF (ADJ(I,J).EQ.O) GOT0 70 
KE=KE+ 1 
Il=ND+(I-1) 
31=ND+( 3-11 
DO 80 K=l,ND 
A(KE, Il+Kl=P(I,Kl-P(3,K) 
A(KE, Jl+K)=P(J,K)-P(I,K) 
EDGE(KE,l)=I 
EDGE(KE,Z)=J 

80 CONTINUE 
70 CONTINUE 
60 CONTINUE 
C 
C FIND MIN H,N 
C 

MINMN=MINO(M,N) 
C 
C CALL +NAGD ROUTINE F02WCF 
C 

IFAIL-0 
LWORK=3~INMN+MINMNMINMN 
NRA=2OO 
NRQ=200. 
NRPT-200 
CALL FOZUCF(M,N,MINMN,A,NRA,Q,NRQ,SV,PT,NRPT,WORK, 

SLWORK, IFAILI 
C 
C OUTPUT SINGULAR VALUES 
C 

WRITE(6,202) (SV(11, I=l,MINMN) 
202 FORMAT(lX,200F7.3) 

END 
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