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Abstract

Maloney proposed solving the colour constancy problem by using a finite-dimensional
linear model. His method depends on the number of sensor classes being larger than
the number of basis functions Nﬁeeded.to model the surface spectral reflectance. Since
the surface spectral reflectances of most natural objects require at least three basis
functions for accurate mpdeling. according to Maloney's paper we must have four
sensor classes in order to achieve colour constancy. However, most experiﬁlents suggest
that the human ViSUE‘l] system is tri-chromatic. That is. there are only three classes of
sensors in the human visual system. As a result, we must look for other spectral

information 1o help us achieve colour constancy. We claim that chromaétic aberration

can help here. .

tbrom the chromatic aberration which occurs at the edge between two coloured
regions under unknown illumination, we derive the difference of the spectral power
distributions of the lights reflected from these regions. Using finite-dimensional linear
models of illumination and surface spectral reflectances as our basic assumption, we
obtain a set of equations for the coefficients that describe the illumination and the
surface spectral reflectance. In combination with the equations obtaiffed from the
sensors inside each coloured region. we determine the surface spec'tral reflectances,
hence colours. of the regions and the spectral powe; distribution of the illumination,

if the number of sensor classes used is not smaller than that of the dimensions of

the finite-dimensional linear model for surface spectral reflectance.

11
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Since using degree three in the linear model approximates most of surface spectral
reflectances very well, we only need to use three classes of sensors and chromatic
aberration 10 recover the surface spectral reflectances. Without . using chromatic

aberration, Maloney had to use at least four sensors. Thus the information provided

by chromatic aberration is very vyaluable.
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Chapter 1

Introduction

@

Colour is becoming more and more useful in computational vision today. Just as

e .
black and white tgJevision sets are gradually abandoned. we are moving from grey

level computational vision to computational colour vision.

Colour plays an important role in computational vision. It helps us to identify
objects, distinguish ‘regious and recognize patterns. For examp.le:%}hen we see a traffic
light. we can use colour to distinguish a red light from a green light, whereas in a
black and white image, we can only distinguish the red light from the green light by

their relative positions.

" We do not notice much of a change in the colours of objects regardless of whether

we see them by daylight or artificial light, nor do "we notice much change resulting

from the variations in natural light in the course of a day. The perceptual ability of
assigning stable colours to objects despite lighting variation is called colour constancy.
In order fully to use the information which colour provides us, we must achieve

colour constancy. By colour constancy. we mean the a'bjlily to recover the colour of

an object even if it is viewed under different illumination. Human beings have this

abililty, at least in most circumstances. Before we can answer the question how a
similar colour constancy can be achieved in computational vision, we must define the
colour of an object. Many definitions for the term colour exist; however. from the
point of view qf colour constancy. the colour of an obiect should be defined as an

s
intrinsic property of the object, not in terms of the illumination or the surroundings.

1
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’ 2
° ) ‘
’Like other researchers in vision, we take the surface spectral reflectance of an object
as the intrinsic éhromatic property of that object. The surfatg spectral reflectance “of
an object specifies the. fraction of incident -light reflect;d by this -obje'ct at each

waifeler{gth. Consequently, the problem of colour constancy is reduced to the problem

of recovering surface spectral reflectance. It is not known how the human visual

e

’
system obtains the surface reflectance, since the_receptors in the cortex ‘only receivt/

the product of the illuminance and the surface spectral® reflectance. ‘However. we can

at least try to find out what machine visual sensing can do.

EH. Land {Land 71] proposed a theory called "retinex theory" to determine the
colour of an object. Land’s theory has been shown io be valid under a limited set of
physical conditions [Brainard 85]. In 1985, Laurence T. Maloney proved that we
could determine the colours of objects with over 90 percent confidence provided we
have four sensors and a sufficient number of distinct colours in.the image. His result

relies on the finite-dimencional model. The finite-dimensional model states that most

spectral power distributions of ambient light can be modeled well by a linear

cqr\nbination of a finite number of basis functions; this is also true for surface
A’J: . . .

spedtral reflectance [Maloney 85]. We will give more detailed explanations in a later

section.

In this paper we will- show that some information about the spectral power

distribution can be obtained from the chromatic aberration effect that occurs at the

. ~
o

boundary between two coloured regions'. This information is very useful since the

i

kriowledge of the spectral power distribution is similar to getting extra sensors. Thus,

by using the finite-dimensional model weé can determine the surface reflectance of an

3

]Credn is given 10 “iBrian Funt for suggesting this idea 1o me



objegl, and hence the colour of the object. Chromatic aberration is often c;onsideredr an
undesirable effect in image formation. It causes images to be blurred, because light
of different wavelengths travels at different velocities within a medium so that light
of shorter wavelength has a higher refractive index thz;n longer ones and hence is
focused in front of light of longer wavelength. However. in our work, we turn the
negative features of chromatic aberration into positive ones. Although it is known that
a variely of/:;lromalic aberration exists in- the human visual system, whether
chromatic aberration is actually used in colour perception by the  human visua] system

1s still a puzzle' and needs 1o be investigated. We will here show that it can be used

to help colour constancy perception in machine vision.



Chapter 2

Previous Work

Computer vision scientists have put much effort into solving the colour constancy
problem. An early success was achieved by land in his retinex theory. Land
assumed that Lheb illumination gradually changes over the scene. Based on this
.assumption, he used the ratio of the intensities near the edge of two regions in the
image to eliminate the effect of the illumination variation. The algorithm land used
is first to find all the edges of a coloured region. Then sequential products are
computed along many arbitrary pathways that wander through the two dimensional
array of the intensity image taken through a filter. The sequential products of the
pixels withip  the same coloured region are so close as o be virtually the same.

s b —“\x
Afterward, the sequential products are normalized to range from zero to one. When
‘a scene is imaged through different filters, eg. red, green and blue. a~ 3-tuple
descriptor of the sequential products is obtained at each pixel. L.and used this tuple to

decide the colour of that point [Land 71). [Land 74] and [l.and 83] In this way.

Land assumed that the colour of a point having a descriptor (1.1.1) 15 white

Land's retinex theory has received much criticism. In tfact, the retinex theory does
“~
not provide an exact colour constancy result exactly. It simply computes constant

colour descriptors in a fixed scene, because all of the colour descriptors 1in a scene

depend on the true colour of the guessed colour patch.

Laurence T. Maloney proposed computational approaches 1o colour constancy

[}

&

"“\—-‘_‘

-



[Malonéy 85]. He ‘'used finite-dimensional models of the sp'edral power distributions
of ambient light. E(\). and for surface spectral reflectances, S(A). T.hesé models will
be presented in detail in the later s'ections, Maloney’'s mechanism for achievement of
colour constancy. relies jointly on the validity of these models and on the presence of
a sufficiently large number of different coloursv in the scene being observed. Maloney's.

mechanism does not depend on a guess of the colour of a region as does Land’s

retinex theory. Maloney further assumes that ambient light is constant over the

whole scene.

Briefly, Maloney assumes that a linear combination of a finite set of basis

illumination functions Ej()\) is sufficient to describe the ambient light, that is

EX) = Z eEN)
=1

Similarly he assumes that any spectral reflectance is sufficiently well specified by a

v

linear combination of a finite set of basis reflectance functions Sj()\):
$

SN = X oS ().

=1 ', - .
So the number of parameters required to specify the ambient spectrum is m and. the

number required to specily the reflectance is n.

Consider now the problem of achieving colour constancy in a scene consisting of
regions  with & distint ;olours. The spectral composition of light reflected from a
single colour element in the scene is the product of E(A) and S(A). We now analyze
the image of the scene with sensors having s different spectral response functions
(such as the red-. green-. and blue-filtered images produced within a colour television
camera). This analysis produces sk independent relations in the parameters € and o

A necessary condition for solution of these equations is that sk 2 m + kn, or
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i

s 2 n+ m/k. Since both s and n are integers and m > 0, the condition becomes
s 2 n+l. If a sufficiently large number of distinct colours, & 2 m. is present in
the scene, then a minimum of s = n + 1 kinds of sensors with different spectral

response functions is required 1o achieve colour constancy.

Mai‘oney [Maloney 85] shows that if the number of sensor classes is greater than
the number of basis funglions required to model the surface reflectances of a scene.
we can recover the surface reflectance of each region in the scene. provided that there
is a "sufficient” number of distinct col;)ur regions in the image. The number of
distinct  colour regions required depends on the numi)er of sensor classes.  In his
paper, Maloney also discusses models of light and surface reflectance in detail. lle sets
out conditions for the feasibility of the set of equations. He also demonstrates the
import of his work for biological and machine vision. The main contribution of his

paper is to provide a computational approach 1o colour constancy.

The major problem with Maloney's approach is that it requires the number of
classes of - sensors 10 be al least one greater than the number of basis functions in
modeling the surface spectral réf]ectances., It has been shown that at least three basis
functions are needed to model most of the surface sp'eclral reflectances [Cohen
64) and [Maloney 85). This means that there should be four classes of sensors. But it

¢
is generally acknowledged that only three sensor classes (the cones) are active in Lhe

human colour vision system. The colour constancy problem according to Maloney is

therefore reduced to finding a fourth sensor class.

Other researchers have tried to use finite-dimensional models and other information
to discover the colour of an object. To recover the descriptors of surface spectral

reflectance. M. D'Zmura and P. Lennie [D'Zmura 65] use the mechanisms of light



adaptation with eye movements. They give a procedure for assigning these descriptors

to corresponding hues, which are the representations of surface colour independent of

object shape and viewing geometry.

Gershon, Jepson and Tsotsos [Gershon 87] also use finite-dimensional linear models
for the spectral power distribution of light and the spectral reflectance of surfaces to
achieve colour constancy. Their mecharism requires that the averag; of _1the spectral
reflectances of the surfaces in a scene be known. And they use this ,averageras‘

additional information to accomplish surface spectral reflectance recovery. However,

such a requirement is very restricted.

In the present paper. we propose a different approach to the problem of recovering
the surface spectral reflectances. We use the mechanism of chromatic aberration io
find extra information on the spectral power distribution of incoming light in order to
recover the spectral power distribution of the illumination as well as the surface

speclralireflectances and thus to achieve .colour constancy.

< .
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Chapter- 3

Motivation
Since we only have the cone responses of the product of the illumination and
surface reflectance, we need to know more about the spectral power distribution of
this product in order to achieve colour constancy for most objects. There may be

more than one ways 1o achieve this goal: one of them is chromatic aberration. A

rainbow is a naturally occurring example of the effect of chromatic aberration. When

!
white light passes through a prism, we can see a range of colours from violet to red.

We can determine the light composition of a rainbow from its colours. Similarly, we

can reconstruct the light since we know the spectrum of colours which results when

the light passes through a prism. | In this way we obtain more information about the
incoming light. Later we will demonstrate that surface spectral reflectance can be

recovered with this additional information

It has‘ been demonstrated that there is much chromatic aberration inside the human
eve. Early studies [Wald 547] and [Bedford 57] showed that the average chromatic
aberration is approximately 1.75 D- between 420 and 660 nm. Here D is an optical
unit. standing for Diopter, which is the reciprocal meter (m ') It is used for the
measurement of “curvature." We can imagine the wavefront of a point light source.
With different distances from the point source (the point of convergence), the
curvature ‘of the wavefront changes. In other words. the curvature of any surface is
inversely proportional to the radius of the curvature. When we use the term Diopter

for lenses, Diopter refers to the reciprocal of the focal length of a lens expressed in

&
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meters. B: Gilmartin and R. E. Hogan (1984) found a mean chromatic range of 1.87
D between 488 and—633 nm. When they repeated the experiment under . different
conditions, the range increased slightly to 1.91 D. Gilmartin and Hogan also found

that the fange is 2.65 D for the wavelengths 458 and 476 nm. There are many

rothe}‘ consistent studies, including those described in [Gilmartin 85]. Peter Alan

Howarth and Arthur Bradley (1985) studied 20 subjects and discovered that the
- .

average aberration is 1.82 D with a standard deviation of 0.15 D [Howarth 86].
These results prove the existence of chrdmatic aberration' inside the human eye.
Malacara ,shov'ved further that the p;pil of the eye affects the amount of chromatic
aberration in lﬁe eye. Since the extent of the opening of the iris depends upon :the
ambient light, the chromatic aberration in the eye depends indirectly on the ambient
light. Howéver, [HOWARTHS84] and certain other researchers think that the chromatic
aberration in the eye is a ne;ative feature and therefore try to correct it. We have
not found any evidence to show that the human visual system uses: the chromatic

aberration effect to achieve colour constancy. Since it can be shown however, that

chromatic aberration is helpful in computational vision, it will prove to be of positive

use.

Chromatic aberration has already been utilized by Juetz, Sincerbox and Yung, who

have done spectral range sensing using dynamic chromatic aberration [Juetz 85].



Chapter 4 V-

‘Chromatic Aberration -

Chromatic aberration is an optical phenomenon. When light passes from one medium
into another, it is refracted. The angle of refraction is not the same as the incident
angle but depends on the refractive indices of the two media. Experiments show that?
the index of refraction varies with wavelength. For glass, for example, the refractive
index decreases as the wavelength increases. In this chapter, we will investigate the

spectral information we can obtain from chromatic aberration.

4.1. Assumptions

The first assumption is that all the parameters. such as the foca] length for each
wavelength, the aperture of the lens, the image plane distance, of the camera are
known. This is a very reasonable assumption. The second assumption is that we can
always focus on either end of the :visible wavelength. This assumption may not be
reasonable since consistent focusing on either end is hard to achieve: we will discussl 4
method for solving this problem later. In later calculations. we assume that the image
plane is placed at the image point of the shortest visible wavelength.  Although
Malacara demonstfated that to a normal eye, distant blue light should always appear
fuzzier than distant red light [Malacara 75]. this may be due to the fact that the

’ s
number of red cones inside our eyes is larger than the number of blue cones. |t is a
common observation when we look at projector that it is harder to read red pen
writting than blue pen. Another reason for such assumption is to make 'the amount of

10
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distortion from chromatic aberration increases with the amount of distortion from

x

diffraction. W

4.2. Background

Our later calculations are based on the following background in optics, which must

be understood before any results can be derived from chromatic aberration.
4.2.1. Light Refraction

incident light normal

Qi

refracted light

Figure 4-1: Refractive effect on a light ray
passing from one medium into another

When a ray of light enters a medium from another, it is refractéd. The refracted
; P

ray lies in the plane of the incident light and the normal to the surface of the .

chelectric media at the intersection point of the incident ray and the surface

[See fig. 4-1]1 . The angle between the refracted ray and the normal 6_ obeys Snell’s

law [See fig. 4-1):

sm()z \

—

Ny

2

sing r v
r

1

to
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wherg Gi is- the incident angle formed between the incident ray and the normal. 6, is

the refracted angle. n, = (c¢/v) is the index of refraction of medium . ¢ is the speed
: \

of light' in a vacuum, and v; is the wave velocity of light in medium i, Chromatic

aberration arises from the fact that the refractive index of a medium varies with the

wavelength of the incoming ray. When a light ray. consisting of lights of different

wavelengths, enters another medium. the lights with different wavelengths will be

refracted with different angles.

green

blue

Figure 4-2¢ Chromatic aberration effect of
white light passing through a prism

Since visible white light is composed of lights with all wavelengths from about 400
nm to 700 nm, we can see a spectrum of lights when white light passes through a
prism (fig. 4-2]. This effect is known as chromatic dispersion. See [Klein 70] and

[Meyer-Arendt 72] for references. »

4.2.2. Index of Refraction

The index of refraction varigs continuously with the wavelength. See fig. 4-3 for
an approximate outline of the refractive index as a function of wavelength. The index
function n(\) is normally monotonic, as it is for glass. Therefore, we can prove that

the index function of glass has an inverse.
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. , ) ) Jﬂ
refractive index n - .

wavelength
visible
Figure 4-3: Approximation of the refractive
index of glass vs. wavelength
4.2.3. Thin Lens
-

# Figure 4-4:  Cross-section of a circular double convex thin lens
A camera usually consists of a set of thin convex lenses. However, since the effect
of this set of thin lenses is the same as a single thin lens. we must now understand

how a thin lens works. (In this paper, the term "thin lens" shall be understood to

\1
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mean "convex circular thin lens” [See fig.- 4-41) A thin lens consists of two
refracting surfaces close enough for their .separation to be negligible with respect to
-the object and image djstances and the focal length. A well known law for thin
lenses is the Gaussian thin-lens equation: -
1 + 11
s s 7
where S is the distance between the object and the lens, §' is the distance between
the lens and the image of the object and f is the focal length of the lens. If the two
surfaces of the lens are fractions of two spheres. then the focal length of the lens is
determined by the Lens Maker’s Equation:
1 n 1 1
7 }—(;—1)(1\,—1—;;2-).
Here the radii are signed with directions. For the double convex lens. the above

equation becomes
1 1
I_R—ll + -L;_I)

1 n
}—-('n‘—l)( ;

&_{f

R1

Convex Lens

Figure 4-5: Circular double convex thin lens
with surface radii R, and R,

where RI is the radius of one surface while Rz is the radius of the other [See fig.
4-5]. n is the index of refraction of the outside medium, assumed to be vacuum or
air here, while n' is the refractive index of glass. In our paper. we suppose the
outside medium to be vacuum (ie. n = 1 and does not vary with wavelength). Thus,

the focal length of a lens’ depends on the refractive index, and hence on the



o
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wavelength of the incoming ljght ray. Consequently if the incoming ray is white

light, only a fixed wavelength can be in focus while all ‘other -different wavelengths

will not be in focus.

For a lens whose thickness d is not negligible, the previous equation becomes

(" — n)d
+ —)

1 1
RZ n'RlR2

R

1 n
;—(;—])(l—

4.2.4. Relationship between Wavelength and Focus

As a result of the above discussion, we know. that

1 n " 1
7—(;— IJ(R_I_i_?;)'
If n =n,and n' = n(X), we can express n(A) as

/()\)no
(1/R,;=1/R,) ] )
Then we can use the inverse function to find wavelengl<)\ in terms of focal length

~

n(A) = 1 +

fno

= A(f) = NO1 + m)

/.
A
where N(y) is the inverse function of n(X).

! - -

‘Even with the thick lens equation
1 n 1 1 (n' = n)d

== (= = 1)(R——E’+T—')
fooom 1 2 "Rk

It is éasy to see that the focal length f strictly increases with the index of refraction

n', and hence we can still find“the inverse function N(f).



4.2.5. Diffraction

Diffraction can be defined as any "distortion” not accounted for by geometric Ol—ﬁliCS
[M‘eyer-Arendt 72]. For a circular aperture, the result of diffr-action will be a series
of concentric circles. The energy at any point beyond the first minimum in the
diffr;éiion function is small enpugh 19' be ignored. We can therefore truncate lhe.
spreﬁd function at that point. The first minimum voccu'rs at an angular departure of
about 0.61\/r, where r is the radius of the arperture. 4lf the image plane is L from
the lens, the first minimum in the image plane will differ by

m(A) = 0.61AL/r ' -

from the point predicted by geometric optics.

4.2.6. Spread Function

&
Without diffraction, we know that a light with wavelength A will form a circular

disk of radius d(\) according to the Gaussian dhin-lens Equation.

i |

— C < image plane

Figure 4-6: This figure shows the case where the image of a
point is in front of the image plane

In fig. 4-6, S is the distance bétween the object (or incoming point source) and the

-
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lens. f is the focal length of the lens to the light with A wavelength. S" is the image
distance of the point source. L is the distance between the lens and the image plane.
Then we can express the radius of the circular disk in terms of S and r. where r is

the aperture of the lens. We know

1

\J
- s
¢

S= .
1// - 1/

E

S
L
) F
: /4 G
—~ °
C image plane

lens

Figure 4-7:  This figure shows the case where the image
of a point is behind the image plane

There are two cases to be considered. As shown in fig. 4-6 and fig. 4-7, we can
either have § € L or § 2 L. In the case where & < L [fig. 4-6], the triangle
BHO is similar to the triangle GHF. Thus FG/BO = FH/HO or |

d\)/r = (L - 8)/S.

2 ::*l’{at is.

o

d\) = (L - $)/S.

or
(IS = N = IS
) = = 7 \
A

In the case where S > L [fig. 4-7] the triangle BHO is similar to the triangle EHF.

Thus EF/BO = FH/OH, or d(A)/r = (§ - L)/S. That 1s
—r LIS = ) = 1S
I

d(X) =
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where f is a function of A.

|

For a distant point source, i.e.. for any object distance § > > r. the spread function
without diffraction effect can be thought of as uniform. because every poinl receives

light of the same intensity.

A A
B image
plane
C y
/
/
D 1y
S
.18
LI
lens point in
) " focus

Figure 4-8: For uniform incoming flux. the flux arriving
at the image plane will also be uniform

fig 4-8 shows that the spread function is uniform, let us look at fig 4-8 This is the
one-dimensional case. Assuming that the incomivng light energy arri!\@s at the lens
uniformly, the density of the energy flux is e. Let poimsl A. B and C in figure 4§
be the consecutive points in the lens at which the light flux arrives. Since the image
plane is parallel to the lens, the triangle ABQ is similar to the triangle A'B'O) and the
triangle BDO'is similar lc\)r the triangle B'D'O. Thus we have AB/A'B' = BO/BO and’
BO/BO = DO/D'O. That is. AB/AB' = DO/DXO. Likewise we have BC/BC = DXO/DYO.
Since points A, B and C are consecutive points, we should have AB = BC = 1/e.
Hence A'B' = B'C. Therefore, the flux density at the image plane should/_be uniform.
This result is independent of the image point being in front of or behind the image
plane. The' proof of the uniformity of the spread function in the two-dimensional

case is similar. We will not prove it° here. Therefore, the spread function of

wavelength A without diffraction is:
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e = 1T, TS

When the diffraction effect is conéideredi the sbféa’ci function will not be uniform.
The ‘spread function due to the diffrac’tion effect is also wavelength dependent. For
monochromatic light, the point spread function of wavelength A when the image is in
focus is ‘UOA(X) = [Trrz/(AZLZ)][2Jl(t)/t]2, where r is the radius of the aperture, L is
distance between the lens and Lhe.image plane: t = 27wrx/(AL), d is the distance of
the point from the center of the image and Jl(t) is the first-order Bessel function.
[Klein 70]. The point spread func‘tbion R(x.A) for an out-of-focus optical system will

be the convolution of OOA(X) and the uniform disk with radius d(A).

4.2 Cut-off Point for the Point Spread Function

I)é to diffraction, the cut-off point will not be the geometric one d(\) as
calculated above. Instead. a quantity of m(A) = 0.61LA/r should be added to d(\). |
Thus. the cut-off point for the point spread function should be

DIA) = d(X) + m(X)

FHLS = AXN)) = ANS)

= s + 0.61LA/r.

If we assume that the image plane is placed at the image point of the shortest visible

wavelength A_. . we have

L= SO_)

in

SIS — SO L

It is obvious that the function m(XA) is strictly increasing with wavelength. If the
image plane s placed al or in ffom of the image point of the shortest visible
wavelength. the function d(A) will also strictly increase with wavelength. In this case.
the cut-off point function D(XA) will increase with wavelength. This is one of the
reasons why we assume that the image plane is placed at the image point of the

shortest visible wavelength.
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4.3. Spectrum Information f rom Chromatic Aberration

In this section, we will use chromatic aberration to find the spectral power
distribution of “the incoming light. The result of this section is independent of the
»

specific form of the spread functions derived above. The method is valid for any

spread function as long as it has the properties described below.

*
Let us assume that the picture plane is fixed at the image point of either end of

the visible spectrum. In order to find the spectral power distribution of the incoming

s

light using chromatic aberration, the spread function must have a finite cut-off.

Figure 4-9:  This figure shows that at a long distance
a spread function is too small 1o be measured

That is. it must be ‘approximately zero at some sufficiently Jong distance [See [fig.
4-9]. This is a reasonable assumption since the intensily at a long distance is small
enough not to be measured by a receptor. In addition, Lhe) cut-off point must vary
monotonically with wavelength. The D(X) is either increasing with wavelength if the
picture plane 1s a® the image point of the shortest visible wavelength, or decreasing
\.;.'ilh wavelength if the picture plane is at the image point of the longest visible
wavelength [See fig. 4-10). For convenience, we assume the image plane is located at

the image point of the shortest visible wavelength. Thus. the cut-off point function

will strictly increase with wavelength.
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IiM
source

™~

T

T~ £

lens image plane image plane
at image at image
point of min point of max
wavelength wavelength

Figure 4-10: Enlarged chromatic aberration effect of a thin lens

We will present the analytical results of the simplest to the most complicated case.
We start with the one-dimensional case with a ur;iform spread function and point
light source, and we finally go to the chromatic aberration of an edge with any
spread function in two dimensions. Since in some cases it is difficult or even:
impossible to get a closed-form solution, v;/e propose numerical solutions for those

equations (integration equations). In the following discussion, let the visible

wavelenghth range be [A_. . A__ ]

max

4.3.1. Point Source in One Dimension

As in fig. 4-11, light from a point source of spectral power distribution I(A) at
point O comes through the lens and forms an image in the picture plane, located at
the image point of the shortest wavelength A_. ~of the visible spectrum. So the cut-

off point for wavelength X is D(A) as calculated in the previous section.
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S min
S max -
A =
f
E
\ [)mu
B
O r G
r
C image
plane ,
P

Figure 4-11:  Pure chromatic aberration effect of a point source

Let x be a point at the image plane that is located at a distance ‘x from the optical
axis.  All light with wavelength A such that D()) Z x will affect the intensity of
this point. In fact, the intensity at point x consists of all the light I(A)R(x.A) where
the function R(x.\) is the defocus spread function for light of wavelength A at a
point with distance x from thle center of the image, and I(\) is lhé spectral power
distribution of the incoming light. Because we assume that the cut-off point of the
spread function of wavelength A is D(A), R(x.A) = 0 for z;ll the A such that

D(X) . < x. Since the summation is over the whole visible spectrum. it becomes an

integral. And we get

>~

px) = [ IOORGAdN.

where p(x) is the intensity at the point x. Only the visible spectrum [A_ . A ] will

be in effect for the human visual system, so the integral becomes



)
A \

max
po = [ I00RGA N,
A

min
This is an integral equation in which p{(x) and R(x,A\) are known. Moreover, we want

to find I(\).

Because the cut-off function D(A) is strictly increasing in our case, it must have an
inverse function. Let A(D) be the inverse function of D(A), then the function A(D) is
strictly increasing. Since the D(A) specifies the leﬁgth of the spread function from tl;—
center 10 one end, ‘the whole length of the spread function is thus 2D(A). If the

spread function is uniform, i.e., if the function R(x,A) is such that

¢ 1/2D00). A 2 A(x)

RGxA) = 20y < Nx)

then we can get a closed-form solution to the integral equation, which becomes

A
P = [ I00RGA)IA
A

min

Amax

= f IN)/[2DOV)AA.
Aax)

Hence. differentiating p(x) we get
Px) = -IOONGY/[2DOV)).

or

IA) = -2p()DN)/N(x).
Substituting D(A) for x, we get
HA) = -2p(DIX)DCA)/N(D(A))

where D(X) is as given above. Now the function I(A) is expressed in terms of D(X),
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A(D) and A(D). hence .the index of refraction function n(A), its inverse and their
derivatives. The solution for the function I(A) is the spectral power distribution of
the incoming light, which is  what is 'being sought.  Since the function p(x) is
decreasing, p'(D(A)) is always negative. Hence the negative sign in front ensures lhf

I(A) will be positive.

It is not generally possible tc find a solution in closed form for I(A) given an

arbitrary spread function R(x.A). The equation then is

A

max

p0) = [ I00RGAA.
’ A

min -
Using the fact that A(x) is strictly increasing or decreasing. the equation can be solved

numerically. If the function A(x) is strictly increasing. that is. the image plane is
located at the image point of the shortest visible wavelength, and if the visible
wavelength range is divided into n+l1 intervals from A_. to A ... then
Aoin = A9 < Ay < .. < A, =A_.. Due to the monotonically increasing nature
of D(A). we have D(A,)) < D(A)) < .. < D(A) Let us assume we have the mean
measurement of intensity at each interval {A ;. A] as p(D(A)). In such a case the

integration becomes a summation. The equation can be numerically rewritten as

follows:
PO N=1(A JR(DA DA JN =X _,)

PDN)) = Z IX)RDAIAIN = _))
=1

where 1 < k < n.

The first equation holds because R(D(A )A) = O for all i < n. The second equation
i1s obtained by changing the integral into summation. Because the spread function cut-
off point is D(X). the spread function R(D(A JA) = O for all i < k. Hence The

second equation can be writlen as:
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n
D)) = X IA)RD AN =N _). : .
i=k
Writing the set of equations in terms of I(A), we get:

I0n) p(D()\n))/{R(D()\n).lAn)D\n |

n
(DA~ L IO)DRMDAI NI =X _DVIRIDA)X N, =X, }.
i=k+1
We obtain a numerical solution from this recursive expression of I(A). Since the

1)

function p(x) usually has discrete values, this set of equations is more useful because

of its easy application.

o

4.3.2. Edges in One Dimension

It is harder to derive the incoming spectral power distribution from an edge than
from a point source. So let us assume that the off-center spread function in this case

1s the same as the spread function at the center.

region |
! -\
! +
X
L 0
|
i
| ><
¥
region 2
image )
plane

Figure 4-122  The image forming of an off-optical axg¥imy

(See -fig. 4-12 for a better understanding.) Let the points in the picture plane above

the center be positive and points below negative. At a point x, the intensity depends
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on the light emitted from a range of points on the object. The points in region 1 can
at most affect a point x in the picture with x 2 -D()\mx). Am; the ;;oims in
region 2 can at most affect a point xin the picture with x € D(A_, ). Let D,
b(xmax), Since all points in the same region will imave -tbe same colour, let the
spectral power distribution of the reflected light from region 1 be 1,(A) and that,
from region 2 be 1,(A). Similar to the point source case, we have the following:

For x > D_..

Amax Dma.z

.= [ f LOR(xA)dxd.
« A

mm max

For x < -D

max’

Amax Dmax

po = [ f I, ()RGeA)dxd.
: A

mzn max

For 0 < y £ D

Amaszax - Amax
py) = f f](X)R(xA)dxd)\ + f f 1,(M)R(x \)dxdA.
n'u'n -y mL max

For 0 > y 2 -D

maXx’
’\maxDmax A
p) = [ [ LOORGMdxdr + f f L (VRGN )d M.
A -y Mun—Pma ’
mn min

These are the equations which can be derived from chromatic aberration. The first
two eguations are quite obvious. For a point x > 0 with a distance from the center
greater than D__ . the intensity at this point is solely due to colour 2. Similarly for

a point x < -D the intensity at that point is solely due to colour 1. When a

max’
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point is within the range (0, D_ ), eg. x. the intensity at this* point consists of.
. ,

both colour 1 and colour 2. Therefore. the integral is broken into two parts. The first

integral represents the light co:ﬁing from the region of colour 2 and the second

»

integral represents the ligh't‘ coming from the colour 1 région. We obtain the last

équation in the same manner. .

S

Let us now consider the simplest case, in which the spread function is uniform.

Since the cut-off point of- R(x.A) is D(A\) from the centér, the whole length of the

spread function for X is 2D()). So

1/(2D(V)), . X 2 X(x)

— f
RGA) =065 X < ax)

let. UA) = 1/(2D(X\)). Assume that the functions I(A) and R(x,A) are so smooth that
I(A)R(_x.x) has continuous first and second derivatives.” In fact. the condition can be
relaxed. All that is required is to be able to exchange the places of the integrals in

the double integration. So the integral equation can be written as follows:

For 0 < y € D__. ,
‘ DmaIAmaI -y max
p) = [ [ roorReddx + [ [ 100RGM dAx
=Y Main “DraxMmin
DrexMmax -y Mnax : ¢
= [ [ Lowoad + [ 1,00u00dnax. |
-y AMx) —-Dmu)\(x)

Taking the first derivative we get

A A

max max
s = [ nowoa - [ Lo
Aly) Aly) . )

Taking the second derivative we have

Pi(¥) = -LADUAGING) + LAy)IUNING).



or
LG + LAG) = p" UGN
That is ‘}
L) - LA = p(DO))[UNN(DA))]

= 2p*(D(A))D(A)/A(D(A))
We will get the same result from the last integral equation when a. point is ‘in
(-Dmnx: 0). Therefore, the chromatic aberration occurring at the edge of two distinct
adjacent ‘regions gives us .the dif, erence between the spectral power distrib,uiioﬁs of the

incoming lights f\f*'pm the two regions.

\

. . ¢ .
We will also obtain the difference of the spectral power distributions of the

incoming lights from adjacent regions when the spread functiobn is not uniform.
However, the equations have to be solved numerically. We will discuss these

equations in the two-dimensional case.

There are two interesting facts concerning the derivatives of the intensity function.

The first is p(x) = p'(-x) for, x in [-D_, . D_, ] The second>is p"(x) = -p"(-.{:) for x

max

in [—D}mx, Dmax]. These equations will also hold in the two-dimensional case. It is
ea}s{ o see that p'(0) = 0. This is congistent with zero-crossing edge finding

~ .
technique. .

4.3.3. Edges In Two Dimensions

Two-dimensional chromatic aberration is a simple extension of the one-dimensional
case. Let D_ . = D(A__ ) as above and the widths of the colour regions in the

(See fig. 4-13 for a better

picture are assumed to be much larger than D_. .

understanding of the problem. Region 1 and region 2 are of different colour. I,(A)

and 1,(A) respectively.) As in the one-dimensional case, there are different equations
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region 1 7~ : 6max + '

. line O
region 2

objects lens ‘irage plane

Figure 4-13: Formation of -the image in the two-dimensional case

for different points in the picture, depending on the distance from the point to the
minimum visible wavelength image of the edge, wyhich is the liné O in fig. 4-13. Let
the )\m"; wavelength edge image, i.e., line O, be the zero line. Since there is no
difference in the horizontal direction, only the distance of a point to this line is
significant. - However. the intensity of the light at a point is now not just due to a
set of points in a line as in the one-dimensional case. It is instead due to a circular
disk of points on the object that will affect the point. Thus, we will~ gel a triple
integral in the integral. equations rather than a double integral as in the one
dimensional case. Let s be the distance’of the point s from the line O The equations
are: |
For s > D_,..

max

A .
Ks) = f f IZ(A)R(\/x2+)'2.A)d.£dydA = ¢,
N

2
min x2+y2 S D* ax

For s < —Dm“.

‘?h 'J
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A'1'71&.1' - ~

= [ [ [ F LR 20 dxdyan = e,
A in x2+).2 <p? .

For 0 < s < Dm“.

A'77'1.61.1 .

p(s) = f f f LR x*+y2 \dxdyd\

: Mmin x2+y2 < D?‘max&x > —s '

12+yz < Dzmax&x < —s

Ama.t
+ [
Amin'

For 'Dmax < 5 < 0,

Amax
pls) = f f f 11(}\)R(-\/x2+y2,)\)dxdyd>\
Min x2+yz < Dzmax&x > —s ’
A ax
+ f f ' f L,O0R( x24y? N)dxdydh.
Amin 12+y2 < Dzmax&x < =5 :

Note that
p(S) + p(—s) =¢ +t ¢y = constant.
Assuming the function p(s) has second derivatives, we have
pP(s) - pl-s) = 0,
or
ps) = pl-s)
and

p(s) = -p(=s).

i,
f %:v II(A)R('\/x2+y2,)\)dxdyd)\.

foed

It is hard tbl get a closed-form solution to the above set of integral equations even if

the spi'ead function is uniform. Hence. we will look for a numerical solution. Let

the picture plane be located at the mage int of the shortest visible wavelength.
P p Qig po ng

N
LY
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Then the function D(X) is monotonically increasing. Suppose the visible wavelength is

© Apaw Amax = Ao > Ay > o > A=A

divided into n+1 values from .)‘mi m

n
Thus, we have D(Ay) > D(\;) > .. > D(A). Here the interval [X, X ,] is
assumed to be so small that the spectral power distribution of the incoming light is
approximately consta;n over the interval [)\i. )\H) for i=1 to n. That is.
1)) = L) and L(A) = LX) for all A € ‘D‘i' X\, ;). Here [a, b] means closed

interval and (a, b) means open interval. [a, b) means closed at the left end and open

at.the right end.

After the division of th;e visible wavelength into a finite number of segments. one
can see from fig. 4-14 that at the first outer ring only the light of wavelengih Ao
will be present. At the second outer ring, only the light of wavelengths A, and A,
will be present, and so on. Let

Qp = (x> +y2 € D) &y > DAL S

00

Thus. we have the following solution:

pD)) =c, + [1,(r,) — 12v()\0)]f:m‘.uffQOOR(-\/xZ_-i-yZ,)\)dxdyd)\,
or o

Lxy) - Lxg)= [(D(A))) - ¢, )/A,.

where

max

A
a, = [ [ [ R4y N)dxdyan,
Amm Q00 '

This equation holds because at point D(A,). R(D(A;)A) = O for all A < X,;. Hence
the spectral power distribution 1,(A) with A € X, will not affect the intensity of
the point D(A;). (I,(A) - 1,(A)) can be taken out of the integration because lj()\) is

assumed to be approximately constant over the previously divided intervals. The

-
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Py

A0

Figure 4-14: Chromatic aberration in the
two-dimensional case. The shaded areas are the
areas of the An's,

spread function R(rA) is also assumed 1o be approximately constant with respect to A
over the region [)‘0' A,). This assumption is only made for the convenience of

ot
i
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presentation. Even if it does not hold, the integration "equation is still solvable

numerically. Given this assumption, A’) = (A, - A;JA,, where )

Ay = ffR('\/x2+y2,)\o)dxdy.
200
And the equation for I,(X,) - L,(X,) becomes
Lhy) - L= [pDO)) - e VI(r, - ADA,).
In general, we have
L) - L) =

{ p(D()\kH))—cz-—E:O] [, =L, =2, DS [ o, R +y))V2 X dxdy [ =), DA, ).

o,

where

Q, = {x24+y? £ Dz()\i) & x24+p% 2 DZ()\I.H) &y > D()\kﬂ)}

_ //‘L

and g

A, = ffR({'\/xz?!-yz,)\k)dxdy.

Qi :

with ‘
Q,, = ks € DY) &/x?+y2 2 DA, ) & y > D\, D)
and k range from O to n;4. A, is the volume of the spread function of wavelength
A, over the k"M darkened area as shown in fig. 4-14. The above set of recursive

&Aations provides a way to solve the integral -equation numerically. Thus, the

difference of the spectral powér distributions of the two distinct colour regions can be

obtained in this way.
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" 4.4. Discussion 3
The result of the previous section confirms that the difference of the spectral power
distributions o‘f__two _different incoming lights can be obtained from the chromatic
aberration occurring at the edge between these two lightsl The algorithm to find the
difference of spectral power distributions, given in the previous section, does not
depend on the defocus spread function of a given wavelength. For our algorithm to

work, certain pausible assumptions have to be made. such as the f{inite cut-off and

the monotonic property of the cut-off points in terms of wavelength.

o

The main difficulty of uging chromatic aberration is that the image_“umust be focused
on the shortest visible wavelength, i.e. the image .‘plané ‘must be located at the image
point of tihis wavelength. There \may be some question as to how such focusing can
be achieved. Since all the parameters of the carﬁera are known, if the distance to the
object is known, the Gaussian thin lens formula can be used lo compute the image
distance using the focal length of the lens for‘ the shortest visible wavelength; then
the image plane is situated at this distance from the lens. If the distance between the
object and the lens is not given, infinite distance is assumed. This assumption is
usually .Jegitimate, because the distance of the object from the camera will be far
greater than the focal length of the camera. Other means can be used to calculate the
depth of an object. The litérature a:/ailable on finding depth is quite extensive. Stereo

vision. shape from shading. texture. motion. and various other means can be used 10

find the depth of an object.
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4.5. Depth from Chromatic Aberration

Another technique to find the depth of an edge-is to use the chromatic aberration
information in the image. It is assumed that the image plane is in front of the image
point of the shortest visible wavelength, ie., the image plane distance from the lens is

smaller than the distance of the shortest visible wavelength image point from the lens

(fig 4-15).
S
Pt —
A
F
\ E
B
G g D
r
lens image
plane

Figure 4-15:  Figure for finding the depth of a coloured point or
edge from its image of chromatic aberration

Let the distance of a paint from the lens be S. Since the triangle ABD is similar to
the triangle FGD. we have AB/FG = BD/GD. AB = r = the aperture which is given.

GD = BD - BG. Because the image plane distance (BG = L) is known, we have

L

BD =

In the image plane. the intensity beyond the cut-off point of the longest visible

wavelength A = of the incoming spectrum is constant. and between this point and the

X

optical axis is not constant. Hence we can find out the cut-off point of SIS %

Y
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using the first directional derivative of the intensity function along the normal of the
edge. Let the distance between the cut-off point and the center of the geometrical
image of 318 point or edge be a. The point F in fig 4-15 differs from the actual cut-

off point by the amount of diffraction m()\max) of the wave]englh Apax: Thus, we

have FG = a - m()\max), where m()\max) = 0.61LA__ /r. So

Lr2

BD = 5 ;
r- —ra + 0.61L)\ma1

Since BD is the geometric image distance for the point. we have
1
l//()\max) - 1/BD

S:

Because r, L and a are known and f is a given function, knowing A will provide

max

the object distance S of the point. However. it is not necessary that the incoming
light contain the whole visible spectrum. Therefore. different known f[ilters should be
used to take the image. We assume that the incoming spectral power distribution
contains at least one of the A__ s of the filters. Since BD is the image distance of

the light of wavelength A BD is constant. It is easy to see that 1/f(X) decreases

Y«
with wavelength.  Thus, 1/f(A) - 1/BD, ‘hence 1/S decreales with wavelength if

A hax Z A, which is certainly true from our assumption. ln another words, the

calculated object distance is greater than the true object distance if f(A) where

A < A, is used in the calculation. As a result, the smallest S calculaled\g using

different filters will provide the object distance of the point. If all of the A s of

the filters are within the visible spectrum. using largest of the A__ 's will bring the

V]
most reliable results. Therefore, if the incoming spectral power distribution contains

at least one of the wavelengths A_ .~ of the filters used. the object distance can be

X
determined with these filters by means of the chromatic aberration effect. In fact, the
image plane can also be placed behind the image point of the maximum visible

wavelength; then the calculation is almost identical with the one above. except that

the A . °s of the filters are used. This may provide a more accurate result than the
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former method because the width of the chromatic aberration effect is much 1arger

and easier to measure.

Pentland’'s method of finding depth of field using dffocusing [Pentland 87] vis similar
to the technique described here.‘ However, Pentland assumes the spread function for
the spectral power distribution of the incoming light to be Gaussian, while our
calculation shows that the spread function of a‘pa‘rticular wavelength is not Gaussian.
Theoretically, the sum of these spread function over the visible wavelength is also not

Gaussian. Therefore, our method may provide a more accurate result.

The human visual system selects a particular wavelength to be in focus. Polack

demonstrates that the wavelength chosen for focusing by the human eye varies from

one end of the visible spectrum to the other, as the fixation varies progressively [See

fig. 4-16] [Polack 22]. G. W>a1d, D. R. Griffin, H. H. Emsley, C. Lapicque and
. Borish report that the wavelength in focus for the eye varies from 555nm to 589
nm [Wald 47). [Emsley 52). [Lapicque 73] and [Borish 70). J. G. Sivak and
C. W. Bobier find a variation in the wavelength in focus depending on fixation
distance. Their experiments also suggest that the wavelength in focus in the human

visual system is determined by a learning process.

In summary. a depth-finding method can be used to calculate the. distance of an
object to the lens: and this distance can then be used to calculate the distance where

the image plane is required to be put. In fact, chromatic aberration can be used as a

depth cue.

&>
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wavelength 700_
(nm)

650

50Q_
e

4504

accomodative stimulus (dioptres)

-Figure 4-16:  Variation of the wavelength in focus on the retina
as a function of accommodative stimulus. The thin line represents
the mean results obtained by Ivanoff (1953), while the bold
line represents the results of Millodot and Sivak (1973).
This figure is reproduced from [Sivak 78].

4.6. Implementation and Results

The numerical method of solving the integral equation for chromatic aberration has
been programmed in C. The formula for thick lenses is used instead of that for thin
lenses because the thickness of the lens here used is not negligible. The program has

been tested using the real image of an edge. Since there are various technical

problems. such as distance measurement, in taking an accurate picture, the picture is a
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little distorted from the ideal one. (The photographic profile of the edge is displayed

in fig. 4-17.)
Intensity - Expected ‘ )
Actual

-1.92

distance from the center of the edge in mm

Figure 4-17: Intensity profile of the chromatic
aberration effect of an edge

The picture is taken using ILFORD PAN F black and white film and a Nikon FM
camera. The lens is a double convex lens made of higher dispersion crown glass. The
radius of the lens is 19mm, and the radii of the surfaces of the lens are both
52.9mm. and its thickness is 8.5mm. The illumination we used is tungsten light of

2805°K.



Chai)ter 5
- Colour Constancy

In this chapter, we will show how the chromatic aberration result found in the
previous sections helps aéhieve colour constancy. The approach wé use is to model the
light and surface spectral reflectance using a finite-dimensional model. The spectral
difference pfovided by'chl"omatic aberration will give us sets of equations and will

help us determine the surface spectral reflectance and the illumination.,

-ty

Here a point in the picture is denoted by a singlé variable x. At each location, we
assume that there are s sensor classes R;. ... R.. Let E(A) der;ote the spectral power
distribution of illumination, and let S(A) denote the surface spectral reflectance. Then
. the’ measurement of lhe'colou; signal pix at location x with sensor i can be expressed
as
p* = [E*OUS*()R,(M)dA.

where Ex()\)‘is the spectral power distribution of the ambient light on ;}oint x and

S*(\) is the surface spectral reflectance at x.

P

5.1. Assumptions o

In this paper, the surface spectral reflectances and the spectral power distribution of
ambient light are assumed to be well described by the finite-dimensional model. In
addition, we assume that the illumination (also referred to as "ambient light") remains

constant over the whole sceme. We also require that the objects lie in a plane

40
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perpendicular to the optical axis of the lens, and that the objects are coloured regions.

The edges between these regions are assumed 1o be sharp.

-
5.2. Finite-dimensional Models for Illumination and |

Surface Reflectance

Stiles, Wyszecki and Ohta(1977). Buchsbaum and Gottschalk (1984) show that many
surface spectral reflectances are well-approximated by a 'specific finite-dimensional
linear model comprising . frequency-limited functions. In 1973, Sallstrom used II;e
finite-dimensional model in colour vision to approximate surface spectral refléctances.
Brill, Buchsbaum and Maloney also used this model. Since the publication of
Maloney's paper, many computer colour visjon researchers have used this model. In
his Ph.D. thesis Maloney gives a good justif.icalion for the use of finite-dimensional

models [Maloney 85].

The finite-dimensional _linear model states the following: first, a set of basis
functions called Si(x). with i ranging from 1 to n, lare selected.. Then, any surface-
spectral reflectance is represented as the linear combination of these basis functions.
Such modeling of the su;face spectral reflectance is called the finite-dimensional model
for surface spectral reflectance. The constraint we pui on the basis functions, as in
linear algebra. is that all'the basis functions must be li.nearly independent. That is.
if ¥,8;(A) + .. + ¢ S (A) =0. all ¢y's must be zero. The number of basis functions
1s called the degree of freedom of the linear model. The finite-dimensional linear

model for illumination can be similarly defined, except that the basis functions for

illumination may differ from those for surface spectral reflectances.

The number of parameters in the finite-dimensional model for surface spectral
reflectances is the same as the number of basis functions used. namely, n. If we use

m besis functions for the lighting. the number of parameters for the light is m.
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Thg finite-dimensional model of the surface spectral reflectance may not be able to
express the surface spectral reflectance of an object exactly. Ther-efore. we define the
error in the finite-dimensional model for the spectral reflectance of anrobjecl as the R
integral of the square of the difference of the réa] surface spectral reflectance and lhév
approxi'rnaled function of the mode].'The parameters of the model should be taken in

N

such a way that the error value is minimal.’

N
5.3. Models of Illumination and Surface Spectral

Reflectance

In the following discussion. we take the visible spectirum to be approximately

400nm to 700nm in wavelength. Over the visible spectrum, the surface spé
reflectance curves of natural objects usually are reasonably smooth and continuous.
Many experiments on empirical surface speciral reflectanges show that the surface
reflectances of nalural‘ objects are very limited and most of them can be modeled
using a few basis functions. Cohen(1964) analyzed the surface spgctral reflectances of
150 Munsell chips énd computed the characteristic vectars for- these chips. The result
shows‘ that using the first three of C;)hen's characteristic vectors accounts for 992
percent of the variance in the fit. Adding another characteristic vector only yields a
slight improvement (about 0.5 percent) [Cohen 64]. Maloney(1985) showed that most
surfacé spectral reflectances of natural objects can be modeled adem{alely by means of

three basis functions. (Detailed information can be found in Maloney's Ph.D. thesis

[Maloney 85].) Similarly. three to five basis functions suffice in modeling most of

the natural daylight. , &
Let surface spectral reflectance have n basis functions S]()\), Sn(/\). and the
spectral power distribution of illumination have m basis functions E,(0). .. E_(A)

Now the surface spectral reflectance at point x can be written as



' .n
- X
S*\) = 2, o, 78, (\).
k=1 '
Likewise the spectral power distribution of ambient light can be expressed in terms of

2

the basis functions,

A

m
E*\) .= T e*E(\). -
i =1 A
Let us have s classes of sensors at each point and let the classes be denoted as Rk()\).

k = 1 to s. Hence, within each region we have

\ i m n
bt = JEOSORMA = T L €707,
i 1

— i=1 j= !J 4

“where g = [ EXASXO)R,(\d\.

- 5.4. Finding the Colour of a Surface

2
The measurement of the colour signal at a point taken through a filter is termed

. J . ;
the colour catch. I there are s classes of sensors at each point, the colgur catches Py

k = 1 to s, at each point can be measured. We also assume that' the ambient light

“

remains constant over the whole scene. Because pk" is given at each point, there are

s equations for the n + m variables of the €’s and .O'j's within each region. They are
| T o

where ik = fE‘.(A)Sj(A)Rk(A)d)\ and k = 1 to 5. If two regions with different

i

colours are adjacent. there will be n + n variables for the surface spectral reflectances
e

for the two regions and m variables for the spectral power distribution of ambient

light. Let the two regions be labeled 1 and 2. Then there are s + 5 = 25 equations

m n
P = z ZG,JO',IS,,k. for k. = 1t s and x = 1 or 2.
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x5

Given the chromatic aberratjon result derived earlier. the difference of tl}e two

incoming lights C(A)}"Can be determined from the chromatic aberration occurring at the -~

edge. Thus,
o
EQS'N) — EQISP(A) = C(V).

te.,

“m
n 1 _ 2 _
(Z eEMNT_ (o) — @, )SN] = C).
i=1
Concrete values of the variable A can be substituted into the function C(A) to get as

gw

many equations as one wants, but only independent equations are actually needed.

Depending on the dimension of éthe set of the functions 'Ei()\)Sj()\)'s. a number of

1 2

: .
independent equations for the variables €s, o 's and o, ‘s are obtained. The number

of independent equations is -‘the dimension of the set of the functions E()S,(A)'s.
N - & 3 .

Other methods, such as using least squares fitting, can also be used to derive

- g
N

independent equationg for the unknowns €’s and O'J.'s. We will address the bound of
_ < v

the dimension of this™set below.
T

/

i

v 5.4.1. Best Case

s

-

T (‘ .
At best. all the functions Ei()\)Sj()\) are linearly independent. Then we can solve for

all ei(O'.l - 0'32). Since the unknowns appear as products, it is impossible to solve for
V . . . \ m 2
absolute values of the €’s and ;s However, some constraint such as E,:, (€)= 1
~

or IIEZ] erEl.(X)lI = 1 can be used. Here llfll stands for the norm of /. llence, we can

solve for éi's and ij] - crjz. In this case. the unknowns €'s for the spectral power

1

distribution of the ambient light and all pairs of o - crj2 for the surface spectral

reflectances can be recovered. Therefore, there are n equations for the variables O'J]'s

and O'jz's from the chromatic aberration. Then using the 25 equations from the

colour catches within the two regions, 5 of the (crj1 - O'jz)'s can be expressed in
ﬂ .

) . . Lo
™~
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terms of the €'s and the rest of the (O'jl - O'jz)'s. That is, s of the equation; for

e

O'jl -and O'jz's are dependent on the other equations. Therefore, there is- a to:al of

n+2s-s =n-s independent equations for the 2n variables O'jl's and O'jz's. The
condition for obtaining a unique solution for the o's is 2n € n+s, orn < 5. If,
as in the human visual system, there are 3 sensors at each point (i.e. s = 3), the

degree of freedom of the linear for the surface spectral reflectances can be as larée as

3

5.4.2. Worst Case

At worst, there are sti'll max{m.,n} nur;)bey of independent equations based on the
information provided by the chromaiic aberration at an edge. Since all E/s are
independent. E () £0. Also. because Sj's are independent, all EI(A)SJ.()\) are
independent provided E (A) has only a finite number of zero points. Thus, the
maximum n{mber of independent functions 2 n. Likewise, the maximum number of
independent functions 2 m. Overall, there are at least max{nm} + 25 2 m + 2s
indépendent equations and m + 2n number of unknowns. The requirement for the
feasibility of this set of equations will be m + 2n €& m + 25 or simply n € 5. So.

with s = 3. even in the worst case the degree of freedom of the linear model can be

as large as 3 in modeling the surface spectral reflectances.

5.4.3. Algorithm "

Usually. the colours of the adjacent regiens are so different that the 2s equations of

m

=1 j=1

are ‘independent. where g = fEi()\)Sj()\)Rk()\)d)\. Hence, the solvability of these

equations is not an issue. In fact. it does not matter whether these équations are
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P -

v

independent. The functional equation from the chromatic aberration will provide -the )
rest of the information necessarv for sol\'iné, the éi and crj's. The. algorithm to solve
them is simple. Assume that the functions Ei(A)Sj()\)'s are linearly independent.- Then"

use tl 2 equation ; -

) EMSTN) — EOV)SE(A) = c\) ' ‘ )

or

m n
(L eEMIE (0} = a5 ()] = .
=1 =1 )

where the function C(A) is given by the chromatic aberration effect. Substituting a

number of different values for the variable A, we obtain a set of linear equations for
%he variables éi(crj] : Uj[?)'s.» In the case of n = 3 andrm ="3, nine different vulua;s
of \A can be used. ‘S(‘;lving:this'Set of linear equations will provide all el(ch' - crjz)'s.
’How‘ever, the finite-dimensional model may not describe the speciral p:)wer
distribution of ambient light and the surface spectral reflectances with precision, in
~ which case we will not get a satisfactory solution for the variables e‘(crll - crjz)'s.’
Alternatively, the least squares method or other statistical methods can be used to
" determine the best fitting solption. Let ei(crjl . ch_Z) = ¢ Then we will have € =
'(cij/c\lj)el, for i > 1. In combination with Ezn:] (el)2 = 1 we can solve for the €'s.

After this. all remaining equations for the crjl's and UJZ'sf are linear equations, and

standard algorithms can then be applied to solve them.

2

However, when we solve for €’s, we have higher order equations instead of" linear
equations if the condition for €'s is non-linear. Thus. there will be multipie sets of
solutions for the €'s. Bul some sets of solutions are not realistic, and Lhusl can be
ignored. For instance, using the conditions proposed above. there will be two sets of

solutions. However, in one set all €’s are negative. which 1s not realisuc Therefore.
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we can ignore this solution. In practice, the condition for €’s should be of as low a

degree as possible. Wandell [Wandell 87) proposes a condition for the € vector that

= 1. - If € can never be zero, this condition will eliminate the multiple solution

61 . !

problem. In the next section, the dependency of the basis functions for the spectral
power distribution of ambient light and for the surface spectral reflectances as well
as the problems of multiple solutions arising from the dependency of these functions

~

will be discussed in more detail.

5.4.4. Feasibility of the Solutions

Using the algorithm in 1‘he previous section, the\‘ spectral power distribution of the
ambient light can be/\\deterinined from . chromatic abel:ration,p_rovided all of the
E(A)S (A)'s are linearly’ I'ndependeni. However. it may not be realistic to assume that
IzI(A)S}'(X)"s are linearly independent. A better assumption is that the basis funcfions
for the spectral power distribution of ambient light and surface spectral reflectances
are the s'ame'. In this case. the surface spectral reflectances can still be found. but
there are multiple solutions. The multiple s;)lulions have the property that if there is

’ ‘a set of solutions for €’s and the (a’jl - a'j_z_)'s. then there will also be another set of

I3
]

‘solutions in which the €'s corréspond to the ((J’j1 - a'ﬁ)'s in the first' solution nd

) _ the (O’J’ 'VO’JZ)'S of the second solution correspond to the €'s of the first one.

When the surface spectral reflectance of ohe region is a multiple of that of the
ther. absolutely certain solutions’ for the colour constancy problem cannot be
obtained. A simple example is a beam of red light illuminating on a white and a grey
patch. This situation is indistinguishable from the situation in which a white light
falls on a light red and a dark reda patch.  Although these situations cannot be
distinguished. our previous equations still bring results sin-ce the solvability does not

depend on the colours of the regions. What one will get in these cases is a finite
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number of solutions. The multiple solutions cause confusing circumstances. The same’

also happens to the human visual system. But the reason for getting a finite instead
of an infinite number of solutions is that we use finite-dimensional models which

only model a subset of the spectral power distribution of ambient light and of the

surface spectral reflectances. For instance. we can either get x = 1 and v = 0 or
x =0 and y = 1 as solution to the equation x + ¥ = 1. if non-negative integer
solutions are 'desired. However, there is an infinite number of real solutions. A

finite-dimensional model models an infinite number of spectral functions. which- are

only a subset of all possible spectral functions.

If the basis functions for both the spectral power distribution ol ambient hght and
the surface spectral reflectance are the same and the functions /r/J are linearly
independent for ¢ and j jin the range from 1 to n and { < _j. the number 0'~
equations obtained from the functional equation provided by the chromatic aberration
effect "at the edge is n + n(n - 1)/2, where we assume m = n. Il m = n = 3, then
Iy fof5 S35 /1/2. fif; and f,f; are all linearly independent. Thus. there are s

equations. namely the equations for €x;'s. €x, + €x,, €x; + €,x, and €,x; - €11,

where x = (crll - crl’). Since there are six variables €’'s and (€,x, - €,1,)'s and six
equations, the set of equations is solvable. but with multiple solutions due to the
second order terms in these equations. In general, the illumination and the surface

spectral reflectances can still be determined if n 2 3, because the number of

equations n + nfn - 1)’2 is greater than the number of unknowns 2n.

Here we will solve the case of n = 3 as an example. We first solve for the
coefficients of the 'independent functions EI(A)SJ(A)‘S. So we have €x = ¢ for ¢ = 1
1o 3, €,X, * &X; = (5 €,X; + €x, = ()3 and €,X, - €31, = (43 where

] ¢ )

- 07). Thus. ¢|,¢; = x5 x; + €€, and ¢;,/¢,, = €x,/(€,x,). These two

x = (o

i Z
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. . y .
equations give (c,,/c )€, /€,) + (e,/€,) = c;,/c;;. We can now solve for €,/€,. Since
the equation is in the second order, .there will be two solutions. From the symmetry

of the equation we can derive that if € = d; and X = e the other solution is € = e,

and X = dj. Once we solve for the ei's. the rest will be the same as that in the

Algorithm section.

After the multiple solutions for ihe speciral power distribution of ambient light are
obtained. they can be verifieq for consistency with other solutlions in the same scene.
During the verification process. some of the solutions are eliminated to arrive at a
unique solution. Verification can only take place if there are more than two regions

of sufficiently different colours in the scene.

5.4.5. Implementation

The algorithm has been implemented using the first three of Cohen's vectors [Cohen
64] for surface spectral reflectance and the first three of Judd's vectors [Judd 64] for
spectral power distribution of ambient light. If these particular basis functions are
used. all El()\)SJ()\) are independent. Therefore. the algorithm for solving the € and
O'J's are programmed. Given the difference of the spectral power distribution of the
incoming lights and the existence of sensor catches with three sensor classes atl each

region. the € and GJ's (that is. the colours of the objects) can be recovered.

In practice. finite-dimensional models can not model the spectral power distribution
and the surface spectral refleclances with precision.  Therefore, saiisfaclory results
cannot be obtained from solving the system of equations which is ‘obtained by
substuituting different values of A. Instead. let the visible spectrum of wavelengths be
divided into & inlernvals Ao < A, < .. < A, Assume that the spectral power

distribution of the incoming light I(A) is given. Then the least squares method is

used 10 minimize the equation



4
k n

ZAZ eEQNZ a,8(0) = IO

1=0 i=1 j=1

The set of equations for the minimization are the following:

for ¢=1 to 3,

k m n m
ZEQUL o SQONCE e EQL a8 (X)) = IA)}=0:

=0 j=1 i=1 j=1
for t=1 10 3,

k n n m
2 SONE e EQNE e EQNE oS (A)) — 1(A)])=0.
=0 - i=1 =1 . =1

. . . H]
A numerical algorithm is used to solve such systems of nonlinear equations. The
actual package we use is minpack. Since the daylight spectral power distribution is

.

very limited, we can obtain a close approximation for the €'s. and hence for the O’)'S.
which can be taken as the initial values for input into the mL:npack programs. Once
we obtain th‘e solution, we also have the approximaté sbectral power distribution of
the illumination and the approximate difference of the surface spectral refleclapces. In
the next chapter. we will show that the estimated surface spectral reflectance is reélly
a satisfactory approximation if the finite—divmensional models can satisfactorily model

the spectral power distribution of the illumination and the surface spectral

reflectances.
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5.5. Implications

Contrary to normal expectation, no special sensors are needed in analyzing the
chromatic aberration effect. All that is required is a light intensity sensor, ie., a
" black and white receptor. The interesting part of the fin@ing is that chromatic
/aberraticm provides the whole spe'ctral power distribution instead of colour catches,
i.e., intensity values of different sensofs. Thus, this information is much richer than

that obtained by merely using three chromatic classes of sensors. Once the spectral

power distribution of the incoming light of a region is known, those of the others in

the same scene are easily found.

When there is no chromatic aberration existing in the image, for example, in an
image taken :through a pinhole camera, other types of distortion, such as diffraction,

al the common edge of two regions, can also be used to find the difference of the

spectra of the regions. If the aperture decreases, thie amount of chromatic aberration
decreases, but the amount of diffraction increases. Thus, the technique is not restricted

to the presence of a chromatic aberration effect.

By means of the information derived from chromatic aberration, colour constancy

can be achieved from only two distinct colour regions with sharp edges. The

prerequisites of this achievement are that the illumination is constant over the scene
5

and that the finite-dimensional models are valid for the spectral power distribution of

the illumination and for the surface reflectances. Maloney [MALONEY85] requires that

there should be a sufficient number of distinct . colour regions in the scene.
N }
Furthermore. the condition for colour constancy in Maloney's paper is that the degree

of freedom of the linear model in modeling the surface spectral reflectances must be

less than the number of sensor classes. With three classes of sensors, as in the huraan

IS
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visual system, only two basis functions can be used. which imposes severe limitations.
However, if chromatic aberration is used. two distinct colour regions presentl in the
scene will be sufficient. In addition, the number of possible basis functions used to
model the surface—spectral reflectances can be as large as the number of sensor

classes. .

Once the surface spectral reflectance of an object is recovered. a colour descriptor

which is independent of the illumination is obtained for that object. Therefore. colour

constancy is achieved.



- Chapter 6

Separation-of Illumination and Surface
Reflectance from Incoming Light Spectrum

In this chapter, we will show that if the basis functions for the spectral power
distribution and surface spectral reflectance have certain properties, it is possible to
recover both of the illumination and reflectance from the spectral power distribution
of the incoming light. In the following sections, we will prove a number of theorfms \

%
~

which justify our claim.

6.1. Exact models

When the spectral power distribution of illumination and surface spectral reflectance
are modeled precisely by a finite dimensional model., both the spectral power
distribution of the illumination and the surface spectral reflectance can be derived

easily and exactly, except for a multiplicative scale factor.

Let the basis functions for the spectral power distribution of the illumination be
B, EJ(A). o E_(A). and  that  for the surface spectral reflectance  be
S, (M) S, S (A Let the spectral power distribution of the incoming light be

I(A) and that of the illumination be

EQ) = X eE ().

=1

and let the Surfgée spectral reflectance be

53
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S = X oS 0.
/=1

Since the spectral power distribution of the illumination and the surface spectral

reflectance are precisely modeled. we have E(A)S(X) = I(A). That is.

I = ¥ X ea EMSA).

i=1 =1

If all the product functions Ei(A)Sj(A) are linearly independent. then-we can choose

nm different A values )\]. )\2'. v A so that the matrix M. whose columns consist of

nm
[Ei(Al)Sj(Al), Ei(AZ)Sj(AZ). Ei(Anm)SJ(Anm)]T, is nonsingular. Hence, when these nm
values of A are substituted, nm linearly independent gqualions In terms of elcrj's are
obtained. Because of the linearly independent property. the solution for the coefficients
€0 s is unique. If the illumination function E(A) is normalized so that € = 1. then
we have unique solutions for the €’s and crj's. Thus, it is possible to derive the exact

ilumination and the surface spectral reflectance except for a scaling applied to

normalize € o 1.

6.2. Approximated Models

In real cases, the finite-dimensional models will not describe the spectral power
distribution of illumination and the surface spectral reflectance exactly, but will only
apéroximate the illumination and the surface sprectral rgflectance. {In mathematical

terms. this can be expressed as

EN) = Y eEN)
=1

and
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S = T oSK).
=1
‘ Thus

m n =

L 2 o EMS ). | ' .

=} j=1

l

1(A)

Therefore. the above method can' not be applied. We propfise to use the least squares

LY
fitting of the product of the models to extract the surface reflectance and the

illumination. We select the €'s and O’j's so that

ZIZ I €0 NS M0-100F

A =1 =l

is minimum, with the condition of € = 1.

In -general, the result pf the least squares fitting will not be satisfactory. For
example, if f(A)g(A) is the result of the least squares fitting of the function I(A),
then [f(A)/c(A\))g(A)c(A)] will also be the solution for any non-zero function c(A). In
addition, there may be an infinite number o! solutions to the least squares fitting.
Ho@ever. if the set of possit;le tlluminatior. distributions and the set of pOssiBle
surface spectral reflectances satisfy the assumptions stated in the preceding ch.apter.

such fitting will provide satisfactory results. The proof is presented in the next

seclion.
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6.3. Theorems

Theorem 1: , {

A

Let x, and y;, i = 1 10 n, be real numbers. then

n i n " n
)3 (xy) € (y xszg/z{ )3 yzl}m‘
i=1 =1 . =1

. This is a well known theorem. It simply states that the cosine of the angle between

the two vectors is less than or equal to 1, and it is known as Cauchy-Schwarz

-

inequalitly.

Theorem 2:

Let x, and y;. 1 = 1 10 n, be real numbers. then

n - /’n , ‘ n
[T G4y V2 < [T 22 4+ [Ty )12
=1 =1 =1

This theorem 1s the well known triangle inequality.

Corollary 1:

Define the norm of a function f to be

k
\lﬂl = [Z AT

=1

where all A’s are given distinct values in the domain of the functions. ‘Then

if + gl S UM+ digh

Corollary 2

it - g € Uf - gl ‘ P {

Corollary 3: N

If — gi S lf — Rl + 1A — gu
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Fact:
I = I=p.
Given the definition of Ifll, it immediately follows that Ul = li—fl.
Theorem 1, 2 and Corollary 1, 2 and 3.are well known so we will not give the
proofs here. The proofs can be found in most linear algebra textbooks (for example,
[Fraleigh 87)).
Theorem 3:
Let x and y,. i = 1 to n, be real numbers, then
n n . n
| > (xz‘yzl)]l/z < (X le]vz[z yglll/z_ '
Py =1 ' =1 =1

Proof:

=1 -1=1

n n
(y ¥ -‘2,)2,}1/2

=1 =1

n
2> {Z '\,21},2:}1/2
=1

Corollary 4:

i
ifgh € Al X igh

153 lenz },213}1/2
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Proof:
The result can be obtained by letting x, = f(A)) and- S’j = g()\j) in Theorem 3.

Theorem 4:
« [ ]
Let F and G be sets of bounded functions and let E(A) and S(A) be Jwo boundad

given functions, and let all functions have the same domain. let

e

F= MinfEF{N/ - E
and let - ’
ec T MingEG{llg — S}

If ¢ is the bound for all the funtions in sets F and G and functions E(A) and S(A).

then o

M’in/EF &g JMe — ESI S clep + )

Proof:

Since ¢ is the bound for all functions in sets F and G and functions E(A) and S(A),
we have IfOOIN< ¢, gl € c. IEQM € ¢ and IS S ¢ for all / € F and g € G.
Let f" in F and g in G be such functions that e; = If — £l and e; = lg', — St hold.

Then -

7

Min, . ;o ¢ Jf2 — ESI

< g — ESH

Ifg — fS + fS — ESI

ifrtg' — S) + (f = E)SI

< Hf (g — SN+ WS — ESH
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< Ifixlg — SI + Bf — Elxisk=
< cep + ceg

, = clep 4 ep).”

N

Corollary 5:

Let E(X). i =110 m, Sj()\). j =1 ton, EQA) and S(\) be given bounded functions,
and let all functions have the “same domain. let 1 = [a,b] be a bounded closed

interval. Let

m
¢y = Min_ MY eE — Bl
=} ‘
and let
n
e, = Ming/ ¢ Ml oS, — sk
4 =1

Then there exists some conslant ¢ so that

m n
Minel_’ o ¢ AT eE X oS, — ESI} S clep + ep).

1=1 =1
This corollary states that the error in the least squares fitting of the incoming light
is proportional to the errors in the individual fitting for the illumination and surface

speétra] reflectance.  If the finite-dimensional linear models closely approximate the

i'l]‘i;mination and surface spectral reflectance. the error in the least squares fitting of

thé -product of the illumination and the surface spectral reflectance will be very

small.
Proof:

Since E{A). i = 1 to m. are bounded functions,
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m .
2 €EM)
=1 )
is also a bounded function. for € € I.i=1 10 m. Let

. m
F = {Z GlEl()\). €€ /l.i=11 m).
. I:I -
Then F is a set of bounded functions. Similarly

n .
G = {ZU]S](A). o, € I.j=11w nj
7=1
is also a set of bounded functions. The result follows directly from Theorem 4.

Theorem 5:

Let E(M). i =1 to m, Sj()\), j = 1 to n, E(X) and S(A) be given bounded functions.

and let all functions have the same domain. let ! = {a.b] be a bounded close interval.

Let
m
er = Min MY eE — E),
. _
where €, = '1, and let
n
e = Min, . {13 oS — Sl
] =1
Let x. 1 =110 m and x; = 1. and Yy j = 1 to n, be the such values that
.m n N m n
WL xE T yS, — ESI = Minelﬂ] e MX ek 2 oS — ISl
=1 =1 =1 J=1
with € = 1. If all the product functions EI(A)Sj(A), i =11t mand j = 1 ton, are

linearlv independent. then there exist constants € and D so that

m
i2 xE—El S Cle, + e.)
=1

and
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n
12 yS—SHS Dle, + ep)
=1
Proof:
“let u,i =11t mandu =1 and 2 j = 1 to n, be the such values ‘that
m
e, = IX uk — El

=1

and

n
e, = I1X v,S = S

J=1
[et
m
PN = Y uE) — EX)
(=1
and.
Q) = T v S (A) = SA).
. -
Then I = e and QI = e, Let
m . n
JA) = L xEM). g = F xS ),
=1 =1
m A n
fA) = Z uF (X)) and g(\) = X v;S ().

=1 =1
Therefore,

ifg — FSU = e — (f = P)g' — QI

fy — fg' + fQ + g'P — PQuL

H

Iifg = f¢' — (=fQ — gP + PO
Since fg~£SH £ clep + eG) for some constant ¢ by Corollary 5. we have

fg = fg" = (=fQ — gP + PO S clep + ey).

o



In addition, : ‘
m n
2 €L and 2 oS,
=1 =l

are bounded functions. Therefore. there exists d so that

m
12 €ENS d
=1 ’
and
(
n
12 oSis a
=1 '
As a result .of Corollary 2 we know that
Ifg — fgh - W(—=fQ — g'P + POM < g — fg' — (=fQ — g'P + POM.
or ‘ 4
1 "
lifg — fgl < Ife — fg' — (—=fQ — g'P + PON + W=fQ — ¢'P + PON.
Note that
W(—rQ — g'P + PO
< I=£QI + lI=g'Pl + WPQI
= IfQI + lig'Pl + POV
Hence.
ifg — fgt < clep + ey) + QM1 + 1P + 1PQI
< clep + eg) + QI X I+ IPIXIQN + IPIXIQN
< clep + e;;) + dlep + e;) + ek
= (c + d)ep + ;) + eie(;.)
That is.
m n
h Z (xl_vj - ul\'/)ElS/H S (e + d)e, + ¢,) + €,
=1 ;=1

Let
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m n .
2 Xy, —uv)ES = HQ). -
=1 =1

Then

Wwn < (¢ + d)(eF + eG) + e
Define the vector function
VIA) = [E;()8,(0). E()S,(A), ... E_(MS_(A)].

‘The product function E,()\)SJ()\) will be in column (i-1)n+j, or [(i-1)n+/]" element of

I
o

the vector function V(A). We can understand this by substituting ¢ = 1 and j

(1 - 1)n + 1 n,

i

1 means ES; will be in column 1 of V(AN). If i = m and j

{m-1)n+n = nm. So E_S ~ will be in column nm of V(A). Choose

f

then (i-1 n+j

nm A values X, ... A = so that the nm vectors V(X,). ... V(X ) are linearly
independent.  Thus, the matrix M = [\/()\]),....V()\nm)]T is not singular. where
(v, .. Vk]] is the column vector of [V . ... V.]. This is possible because of the

linear independency of the }ilSJ's. Substituting the nm values of A/s into the previous

equations we have nm linearly independent equations, namely

mn n

) (.r,_v] - ulvj)El()\,)S/()\[) = H\). t =110 nm.

=1,=1
Or

Mw = A,
where w is the column vector [x]y]—ulvl. XY, U vy, - xmyn-umvn]T and A is the
column vector [H(A,). ... H()\nm)]T. Let M! = (b, ). where M is the inverse matrix

of M. Since those s are predetermined.

nm nm

b= X
=1 =1
is constant.  After solving this system of equations for the coefficients of EiSJ.'s. we

huve
w = M'A,

or
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nm
Xy, Ty, = Zb(l_l)nﬂ_,H()\[). i =1ltom anii j =11t n

=
=1 .
So
nm .
ey, =) = L by, HO
=1 2
rmM
<X B 1y, XU
=1
nm
S L by, XU
’ =1
< b[(c+d)(ef+eG)+eFeG].
Since o= up o= 1,
v = S blle + diep + eg) + epecl. i=11n
Hence.

lg — Sl = llg — (g = QI

Slg = g + 1Ql

n
=1Z (y, = vISH + ¢
/=1
n
SZ b, = vlSi + e,
J=1
n
< (z IlS/H)b[(c + d)(ef. +e.) + e[,eG] + e
J=1

From the above inequality it is obvious that there exists a constant 1) so that

g—Sh € D(eF + e;). And il 1s easy lo show thal there exisls another constlant ¢

which allows the inequality /—£I < Clep + e;) to hold.
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6.4. Discussion

From-‘Theorem 5 in the previous section, we know that if the basis functions
E(X)'s for the spéctral power distribution of the illumination and Sj()\)'s for the
surface spectral reflectances have the property that all Ei()\)Sj()\) are . linearly
independent, a good approximation for the surface spectral reflectance and illumination
can be achieved by using least squares fitting. This is useful when the spectral power
distribution of the incoming light is known. In this case. any number of basis
functions can be used to model illumination and surface spectral reflectances. If the
basiis functions have the above independency and the norm of the inverse matrix M!
will not increase with the number of basis functions used. we can have errors in the

{

modeling as small as we wish.

The 1dea underlying the extracion of illumination and surface spectral reflectance is
to find the most plausiblg separation of illumination and surface re_flectanée from
their prociuct‘ In general. the functions f(A) and‘g()\) cannot be derived from their
product f(A)g(X). because f(A)g(A) = [c(M)f(Mg(A)/c(A)] for any non-zero function
c(A).  This separation can be done only if the illumination and the surface spectral
rellectances are very different. The difference between the illumination and the
surface spectral reflectances is represented in the linear independency of the functions
l“l()\)SJ()\). Since Judd's basis functions for daylight and Cohen’s basis functions for
surface spectral reflectance have the required property. the illumination and the

surface spectral reflectance can be recovered from their product.



6.5. Implementation

The algorithm has been implemented ﬁsing the first three of Cohen’s vectors [Cohen
64] as basis functions for surface spectral rgflectances and the first three of Judd's
veclors‘ [Judd 64] as basis functions for spectral power distriﬁulioh of ambient .light.
If these particular l;asis functions are used. all E(AS(A) are independent. Therefore.
the algorithm for solving the € and Uj's are programmed. Given the spectral power

distribution of the incoming light. the € and UJ'S. that is, the colours of the objects,

can be recovereéd. .

Let the visible spectum of wavelength be divided inte v intervals A, < A, <
< A,. In our program. we use samples at intervals of 10nm from 400nm to 700nm.
Assume we know ‘the spectral power distribution of the incoming light (X)), 'Then

we will use the least squares method 1o minimize .lhe equation

¢

v n m
ZHLZegN) L Zasi) 1= I)F ”
=0 =] =1
The set of equations for the minimizatioh are the following:

For k=1 10 m.

ZEON Zos) R ZeEMN) N T aSh) ) — 1)) = 0.
=0 J=1 =1 J=1
For k=1 to n.

v n n m
SO ZeEN) N T eO) ) Zash)) — I} = 0.
(=0 =1 =1 =1
A numerical algorithm is used to solve these kinds of systems of nonl’near equalions.

The mathematical library package minpack is used. After solving this set of nonlinear
systems of equations we can obtain the solutions for the € and UJ'S. Since the

daylight spectral power distribution is very limited. we can have a very good guess
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for the €'s, and hence for the O'j's as the initial values for the input for the minpack

programs. Given the solution, the approximate spectral power distribution of the

illumination and the approximate surface spectral reflectance can be derived.

However, the minpack program is very unstable. That is. for slightly different initial .

values, it will produce different solution. Thus, another program which produces much
more stable results is used. The algorithm: fdr this program uses the fact that the
first m equations above are linearl in € and the last n equations are linear in o
Hence, given an initial value for the €’s. we can use the last n equations to solve for
O'J's. then substitute the O'j's into the firsE m equations we have another set of €.
Iteratively we finally get the convergent solutions. The convergence can easily be
proved since all the equations are continuous. Since the viability of our program has
been proved for the 370 surface spectral reflectances recorded by Krinov and the
daylights by Judd. the detail proof will here be omitted. For the theory concerning

the convergence of our method. refer to [Miel 80].

6.6. Results

The results of the algorithm for Krinov's surface reflectances and Judd's daylights
are promising. The errors.produced by the least squares fittings range from 3.2 to 1.3
times the errors of the individual fitting of the finite-dimensional models. The average
i1s only about twice the error of the individual fitting. This Ameans that the error
coefficient C in Theorem 5 is about 2. With the input as in fig. 6-1 which is the
spectram of 10000°K davlight illuminating heather, the program will find ther
illumination (fig. 6-3) and the surface reflectance (fig. 6-2). fig.6-2 plots the spectral
reflectance result of the program using the Krinov's surface spectral reflectance (#53)
of heather and Judd's 10000°K daylight. fig. 6-3 shows the resulting illumination as

well as the actual 10000°K daylight.

‘/}L
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intensity , . L

400 650
' wavelenglh in nm

Figure 6-1: Spectrum of 10000°K daylight
illuminating heather
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0.25

reflectance . Derived
N b

Actual

C, * /\__

0.0

400 650
wavelength in nm
Figure 6-2: Reflectance curve of heather and
the fitted curve from our program.
The reflectance has been magnified
four times. ’
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intensity’

Derived

Actual : ],

400 650

£ wavelength in nm

Figure 6-3: Result of the illumination from
our program and the actual 10000°K daylight
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Chapter 7

Physics and Anatomy of the Human Eye

In this chapter., we want to show the amount of chromatic aberration occurfing
inside the human eye. The eve's lens has a diameter of about 9 to 10 millimeters
and a thickness of about 4 to 5 millimeters. In addition, the lens is about 3
millimeters from the surface of the cornea. and the sclera. choroid and retina together
are approximately 1 millimeter thick: The diameter of V;he human eye 1s
approximately 24 millimeter along the geomelrié axis [Fatv 78] Therefore. the
distance between the lens and the fovea (the central part of the receptors) is about

24 - 3 - 572 -1 = 17.5 millimeters.

Experiments show that the chromatic aberration occurring inside the human eye is
about 1.87 Diopter. If the shorter wavelength end of the visible specirum is in focus.
then the image distance of the other end of the visible spectrum will be S, where §

1s determined by the following equation:
1 !

]

1.87 D

17.5mm S

or
1 1 1.87

17.5mm S 1000mm’
That is. § = 18.09mm a;;proximately. If the radius of the iris opening of the eye is

about Imm (one fifth of the eye's lens). the area of the chromatic aberration effect

will be a circle with radius
1x(18.09-17.5) o
y &« -—/—————————mMm = . .
s 0326mm

This area is large in comparison to the size of the rods and cones.

71
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" Since the distance between the centers of the cones is about 3um or 35 ‘s‘econds of
arc {Cornsweet 70). there -are about 11 cones along the radius of the circle “’Showing
the chromatic aberration effect ‘when the pupil radius is Imm. '_l‘he data also implies.
that the distance between the lens and the fovea is about 17.67 mm.’which’is
consistent with ‘the distance ca]cuialed above. The distance may be as small a: 20
seconds or 1.71 um at the very center of the fovea [Cornsweet U7O]. Thus, if the
chromatic effect ’occu.rs at the very. center of the fovea. as many as 19 1c0nes valong
the radius of the circle can be affected. Since there are ‘Lhree; classes of sensors inside
the eye. there are atl least 7 cones of the same class along the radius. With suc:h a
large sample size. it is possible to recover the approximate spectral power distribution
of the incorﬁing light. The above data provide an indication of the number of samples
along the radius of the circle of chromatic aberration effect in the human visual
svstem. In [fact. the radius of the pupil is usually greater than 2mm. Hence.‘ the
above figures should be doubled. } |

As a result. we can conclude that the receptort in the human eye are sufficiently
dense for méasuring the spectral power distribution of the iﬁcoming light from

chromatic aberration. Although one may expect to see coloured fringes at the edges of
white objects. the reason that these fringes are not seen is that the human eye makes

the necessary adaptations rather than that the aberration is insignificant

[HOW ARTHS4].
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. Chapter 8

. Conclusion

o
-

We ca.n‘conclude that rich chromatic information can be extracted from chromatic
aberration. One application of chromatic aberration is to help determine the colours
of objects, ie. to achieve colour constan‘cy;‘ We may als,o’ use the spectral information

R 3
from chromatic aberration to solve further problems in computational vision, for
instance, to {ind the depth of. an objectk. The work presented in this paper may be.
exlended by considering three-dimensional objects‘and gradual changes of illumination.
Moreover, we may continue to explore the information provided by chromatic
aber\_ration in combination with other optic phenomena, ‘such as diffraction. to achieve

x

other tasks. such as measuring speed and motion on the basis of changes in colour.

B

All the calculations in this paper can be applied to “distortions” other than
chromatic aberration. For example, in the absence ofb chromatic aberration, the
diffraction effect at the edge of two regions can be used to find the difference of the
spectral power distributions of the regions. This can be done becausé our calculations
only rely on the Spread function to be wavelength depehdem. The best éleans for
working on diffraction is to use a pinhole camera because this type of camera
producés very little chromatic aberration. As the amount of chromatic aberration

[ )
decreases. the amount of diffraction increases. while the spread function still remains
wavelength dependent. Hence, ideally we can also get the difference of the spectral

power distributions of t1wo regions. Applying the finite-dimensional models we can

achieve colour constancy.
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