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Abstract 

Maloney proposed solving the colour constancy problem by using a fi&e-dimensional 

linear model. Zlis method depends on the number of sensor classes being larger than 

the number of basis functions needed to model the surface spectral reflectance. Since 

the surface spectral reflectances of most natural objects require at least three basis 

functions for accurate modeling. xcording to Maloney's paper we must have four 

sensor classes in order to achieve colour constancy. However, most experiments suggest 

that the human visual system is tri-chromatic. That is. there are only three classes of 

sensors in the human visual system. As a result, we must look for  other spectral 

information to help us achieve colour constancy. We claim that  chrom&c aberration 

can help here. , . 

f'rom the chromatic aberration which occurs a t  the edge between two coloured 

regions under unknown illumination. we derive the difference o f  the spectral power 

distributions of the lights reflected from these regions. Using finite-dimensional linear 

models of illumination and surface spectral reflectances as our basic assumption, we 

obtain a set of equations for the coefficients that describe the illumination and the 

surface spectral reflectance. In combination with the equations obtailred from the 

sensors inside each coloured reglon. we determine the surface spectral reflectances. 
b 

hence colours. of the regions and the spectral power distribution of the illumination. 

~f the number of sensor classes used is not smaller than that  of the dimensions of 

I he f inite-dimensional linear model for surface spectral reflectance. 



Since u s i q  degree three in the linear model approximates most of surfac; spectral 

reflectances very well, we only need to use three classes of sensors and chromatic 

aberration to recover the surface spectral reflectances. Without using chromatic 

aberration, Maloney had to use a t  least four  sensors. ~ h i s  th; information provided 

by chromatic aberration is very valuable. 
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Chapter- 

Introduction 

Colour is becoming more and more useful -in computational vision today. Just as 

d 
black and white t6evision sets are gradually abandoned, we are moving from grey 

level computational vision to computational colour vision. 

Colour plays an important role in computational vision. It helps us to  identify 

objects. distinguish r e g i o m  and recognize patterns. For example,'%hen ,' we see a traffic 

Ilght, we can use colour to distinguish a red light from a green light, whereas in a 

'I' 
black and white, image, we can only distinguish the red light from the green light by 

thelr relative positions. 
- - 

N'e do not notice much of a change in the colours of objects regardless of whether 

we see them by daylight or artificial light, nor do 'we notice much change resulting 
- 

from the variations in natural light in the course of a day.  The perceptual ability of 

assigning stable colours to objects despite lighting v~ariation is called colour constancy. 

In order fully to use the information which colour provides us, we must achieve 

colour constancy. By colour constancy. we mean the ability to recover the colour of 

an object even if it is viewed under different illumination. Human beings have this 

ability. at least in most circumstances. Before we can answer the question how a 

similar colour constancy can be achieved in computational vision. we must define the 

colour of an object. Rlany definitions for the term colour exist; however, from the 

p i n t  of view of colour constancy, the colobr of an object should be defined as an 
/ 

intrinsic p o p r t y  of the object. not in terms of the illumination or the surroundings. 
1 



a 

Like other researchers in vision. we take the surface spectral reflectance of an object 

as the intrinsic chromatic property of that  object. The surface spectral reflectance of 

an  ,object specifies the fraction of incident .light reflected by this object at each 

wavelength. Consequently. the problem of colour constancy is reduced to the problem 

of recovering surface spectral reflectance. It is not known how the human visual 

b 
system obtains the surface reflectance, since the _, receptors in the cortex ' only receive 

* /' 

the product of the illuminance and the surface spectral" reflectance.. l~owever .  we can 

at least. t r y  to find out what machine visual sensing can do. 

E.H. Land [Land 711 proposed a theory called "retinex theory" to determine the -. 
colour of an object. Land's theory has been shown to be valid under a limited set of . 

physical conditions [ ~ r a i n a r d  851. In 1985. Laurence T. Maloney proved that we 

could determine the colours of objects with over 90 percent confidence provided we 

have four sensors and a sufficient number of distinct colours in . the  image. tIis result 

relies on the finite-diqw;.cional model. The finite-dimensional model states that most 

spectral power distributions of ambient light can be modeled well by a lmear 

c mbination of a finite number of basis functions; this is also true for surface \ 
\h J 

spe tral reflectance [Ma.loney 851. We will give moreidetailed explanations in a later 

section. 
+ 

In this paper we will. show that some information about the spectral power 

distribution can be obtained from the chromatic aberration effect that :?ccurs at the 
\ 

/. 

b o u n d a ~ y  between two  coloured regions1.';, This information is very useful since the 

kriowledge of the spectral power distribution is similar to getting extra sensors. Thus. 

by using the finite-dimensional model we can determine the surlac? reflectance of an 

9 
'credit  is given to 'Br ian  Funt  for suggestmg t h ~ s  ~ d e a  to rnr i 



objert,  and hence the colour of the object. Chromatic aberration is often considered an 

undesirable effect in image formation. It causes images to be blurred, because light . 

of different wavelengths t r ave l s ' a t  different velocities within a medium so that  light 

of shorter wavelength has a higher refractive index than longer ones and hence is 

focused in front of light of longer wavelength. However. in our  work,  we tu rn  the 

negative features of chromatic aberration into positive ones. Although it is known that  

it variety A h r o r n a t i c  aberration exists in the human visual system, whether 

chromatic aberration is actually used in colour perception by the 'human  visual system 

1s s~ill a puzzle' and needs to be investigated. We will here show that  it can be used 

to help colour constancy perception in machine vision. . 



Chapter 2 

Previous Work 

Computer  vision scientists have put  much effort  into solving the colour cnnstancv 

problem. An early success was  achieved by Land in his retinex theory.  I.ancl 

assumed tha t  the illumination gradually changes over the scene. I3ased on this 

assumption. he used the rat io of the intensities near the edge of rwo regions in the 

image to eliminate the effect of the  illumination variation. 'I'he algorilhm ].and used 

is f i rs t  to  find all the  edges of a coloured region. Then sequenlial products are 

computed along many  arb i t ra ry  pa thways  that  wander through the two  d~mensroni~l  

a r r ay  of the  intensity , image taken through a filter.  The  sequential p r o ~ l u ~ t s  0 1  l t w  

pixels withp, the same coloured region are  so close a s  to be vir tual ly the sanw *. * 
-. -- .- ----.. 

Afte rward ,  the  sequential products a re  normalized to range from zero to one. When 
1 

a scene is imaged through different f i l ters ,  e.g..  red, green and blue, a--3-1uplc 
f-3 

descriptor of the sequential products is obtained at  each pixel. ].and used this lupl r  to E 

decide the  colour of that  p o ~ n t   a and 711.  a and 741, and [ I -and h 3 ] .  In this w a y .  

Land assumed that  the colour of a polnt havlng a descrtptor ( 1  - 1 . 1  ) 1s white  

Land's  retinex theory has received much criticism. In fact ,  the retinex theory does 
C 

not provide an exact colour constancy result exactly. I t  s imply computes conatan1 

colour descriptors in a fixed scene, because all  of the colour descriptors In a scene 

depend on the  t rue  colour of the guessed colour patch. 

Laurence T. \laloney proposed computational approache5 to colour constancy 
d 



[Maloney 851. He used finite-dimensional models of the spectral power distributions 

I 4  
of ambient light. E(h). and for surface spectral reflectances. S(A). These models will 

be presented in detail in the later sections. Maloney's mechanism for achievement of 

colour constancy* relies jointly on the validity of these models and on the presence of 

a suffic~ently large number of different colours in the scene being observed. Maloney's 

mechan~sm does not depend on a guess of the colour of a region as does Land's 

retinex theory. illaloney further assumes that ambient light is constant over the 

whole scene. 

l l r~ef l>. ,  lZlaloney assumes that a linear combination of a finite set of basis 

lllurnination functions E, (A)  is sufficient to describe the ambient light, that is 

Slm~lar ly  he assumes that any spectral reflectance is sufficiently well specified by a 

1 Inear com binat ion of a f inite set of basis reflectance functions S - ( h  ): 
J * 

/= 1 4. - 
So the number of parameters required to specify the ambient spectrum is m and. the 

number required to spec~fy  the reflectance is n .  

('onslder now the problem of achieving colour constancy in a scene consisting of 

regions ~ . i t h  k d ~ s t i n r  colours. The spectral composition of light reflected from a 

s~ngle  colnur element In t h e  scene is the product of E(A) and S(A). We now analyze 

t h e  image of the scene u.ith sensots having s different spectral response functions 

( s u c h  as the red-. green-. and blue-filtered images produced within a colour television 

camera). This analysis produces sk independent relations In the parameters E ,  and 0.. 
I 

.A necessarJ. condition for solution of these equations is that sk  2 m + kn.  or 



6 

1 

s 3 n + m / k .  Since both s and n are integers and m > 0, the condition becomes 

s n-tl. If a sufficiently large number of distinct eolours. k 3 m ,  is present in 

the scene, then a minimum of 5 = n + 1 kinds of sensors with d ~ f t e r e n t  spectrul 

response functions is required to achieve colour constancy. 

Maloney [Maloney 851 shows that  ~f the number of' sensor classes is greater than 

the number of basis func&ions requlred to model the surface reflectances of a scene. 

we can recover the surface reflectance of each region in the scene. provided that [lrerr 

is a "sufficient" number of distinct colour regions in the image. 'I'he number ol 
-% 

distinct co\our regions required depends on the number of sepsor classes. In his 
b 

paper, Maloney also discusses models of light and surface reflectance in detail. Ilr sets 

out conditions for the feasibility of the set of equations. fle also demonstrates thr  

import of his work for biological and machine vision. The mairi contribution 0 1  h ~ ?  

paper is to provide a computational approach to colour constancy. 

The major problem with hlaloney's approach is that it requires the number of 

classes of-sensors to be at least one greater than the number of basis functions In 

modeling the surface spectral ref lectances, It has been shown that at  least three . bas~s  

functions are needed to model most of the surface spectral reflectances (Cohen 

64; m d  [hlaloney 851. This means that there should be four classes ol sensors. I3ut 11 

1s generally acknowledged that only three sensor classes ( the  cones) a& actlve in the 
& 

human colour vision system. The colour constancy problem accord~ng to Maloney 1s 

therefore reduced to finding a fourth sensor class 

Other researchers have tried to use finite-dimens~onal models and other lnformatron 

to discover the colour of an object. To recover the descriptors of surface spectral 

reflectance. \I. D'Zmura and P. Lennie [D'zmura  651 use the mechan~sms of light 



7 

adaptation with eye movements. They give a procedure for assigning these descriptors 

to corresponding hues, which are the representations of surface colour independent of 

object shape and viewing geometry. 

Gershon, Jepson and Tsotsos [Gershon 871 also use finite-dimensional linear models 

for the spectral power distribution of light and the spectral reflectance of surfaces to 

achieve colour constancy. Their mechanism requires that  the average of& spectral . 

reflectances of the surfaces in a scene be known. And they use this .average as 
< 

add~tional information to accomplish surface spectral reflectance recovery. However. 

such a requirement is very restricted. 

In the present paper, we propose a different approach to the problem of recovering 

the surface spectral reflectances. R'e use the mechanism of chromatic aberration to 

1 ind extra information on tee spectral power distribution 'of 'incoming light in order to 

recover the spectral power distribution ,of the illumination as well as the surface 

spectral reflectances and thus to achieve xolour constancy. 



Chapter 3 

Motivation 

Since we only have the cone responses of the product of the illumination and 

surface reflectance, we need to know more about the spectral power distribution of 

this product in order to achieve colour constancy for most objects. There may be 

more than one ways  to achieve this goal: one of them is chromatic aberration. A 

rainbow is a naturally occurring example of the effect of chromatic aberration. When. 
I 

white hght passes through a prism, we can see a range of colours fi-om violet to red. 

We can determine the light composition of a rainbow from its colours. Similarly, we 

can reconstruct the light since we  know the spectrum of colours which results when 

the light passes through a prism. in this way we obtain more information about the 

incoming light. Later we will denionstrate that  surface spectral reflectance can be 

recovered with this additional informatioa 

It has been demonstrated that  there is much chromatic aberration inside the human 

eye. Early studies [Wald 471 and [Bedford 571 showed that  the average chromatic 

aberration is approximately 1.75 D -  between 420 and 660 nm. llere I) IS an  optical 

unit ,  standing for Diopter, which is the reciprocal meter (rn I ) .  It is used for the 

measurement of "curvature." We can imagine the wavefront of a point light source. 
% 

With different distances from the pomt source ( the point of convergence). the 

curva tu re '  of the wavefront changes. In other words. the curvulure of any surface is 

mversely proportional to the radius oJ the curvature. When we use the term Iliopter 

for lenses. Diopter refers to the reciprocal of the focal length of a lens expressed In 



meters. B; Gilmartin and R .  E. Hogan (1984) found a mean chromatic range of 1.87 
L. 

1) between 488 a m 3 4 3 3  nm. When they repeated the experiment under,differen€ 

conditions, the range increased slightly to  1.91 D. Gilmartin and Hogan also found 

that the range is 2.65 D for the wavelengths 458 and 476 nm. There are many 

o ther  consistent studies, including those described in [Gilmartin 851. Peter Alan 

Howarth and Arthur Bradley (1985) studied 20 subjects and discovered that the . 
I 

average aberration is 1.82 D with a standard deviation of 0.15 D [ ~ o w a r t h  861. 
- 

These results prove the existence of chdmat ic  aberration' inside the human eye. 

hlalacara showed further that the pupil of the eye affects the amount of chromatic 

aberration in the eye. Since the extent of the opening of the iris depends upon .the 

ambient light, the chromatic aberration in the eye depends indirectly on the ambient 

light. 1lowPver. [ H O N ' A R T H ~ ~ ]  and certain other researchers think that the chromatic 
I 

aberration in the eye is a negative feature and therefore t r y  to  correct it. We have 

not found any evidence to show that the human visual system uses- the chromatic 

aberration effect to achieve colour constancy. Since i t  can be shown however, that  

chromatic aberration is helpful in computational vision, it will prove to  be of positive 

use. 

Chromatic aberration has already been utilized by Juetz. Sincerbox and Yung, who 

have. done spectral range sensing using dynamic chromatic aberration [Juetz 851. 



Chapter 4 

. Chromatic Aberration 

Chromatic aberration is an optical phenomenon. When light passes from one medium 

into another. i t  is refracted. The angle of refraction is not the same as the incident 

angle but depends on the refractive indices of the two  media. Experiments show thut? - 
the index of refraction varies with wavelength. For glass, for example. the refractive 

index decreases as the wavelength increases. In this chapter, we will investigate the 

spectral information we can obtain from chromatic aberration. 

4.1. Assumptions 

The first assumption is that  all the parameters. such as the foca! length for each 

wavelength, the aperture of the lens, the imagi plane distance. of the camera are 

known. This is a very reasonable assumption. The second assumption is that we can 

always focus on either end of the visible wavelength. This assumption may not be > 

reasonable since consistent focusing on either end is hard to achieve: we will discuss a 

method for solving this problem later. In later calculations. we assume that the image 

plane is placed a t  the image point of the shortest visible wavelength. Although 

5lalacara demonstrated that  to a normal eye. distant blue light should always appear 

fuzzier than distant red light [Malacara 751, this may be due to the fact that the 
1 

number of red cones inside our eyes is larger than the number of blue cones. I t  is a 

common observation when we look at projector that it is harder to read red pen 

writting than blue pen. .Another reason for such assumption is to make 'the amount of 



distortion from chromatic aberration increases with the amount of distortion from 

diffraction. L 

4.2. Background 

Our later calculations are based on the following background in optics, which must 

be understood before any results can be derived from chromatic aberration. 

4.2.1. Light Refraction 

light 

Figure 4-1: Refractive effect on a light ray 
p a ~ i n g  from one medium into another 

N'hen a ray of light enters a medium from another, it is refractsd. The refracted 
F 

ray lies in the plane of the incident light and the normal to the surface of the 

dielectric media at the intersection p i n t  of the incident ray and the surface 

[See f i g .  4-11 . The angle between the refracted ray and the normal or obeys Snell's 

law [See f i g .  4-11: 
s:nUI n, \ ,  - - - - - = -  
s d r  " 1 " 



where el is. the incident angle formed between the incident ray and the normal. 8, is 

there f rac ted  angle. ni = ( c / v i )  is the index of refraction of medium i .  c is the s& 

of ligh; in a vacuum. and rl is the wave velocity of light in medium i . '  Chromatic 

aberration arises' from the fact that the refractive index of a medium varies with the 

wavelength of the incoming ray. When a light ray,  consisting of lights of different 

wavelengths, enter$ another medium. the lights with different wavelengths will be 

refracted with different angles. 

green 

blue 

Figure 4-2: Chromatic aberration effect of 
white light passing through a prism 

Since visible white light is composed of lights with all wavelengths from about 400 

nm to 700 nm, we can see a spectrum of lights when white light passes through a 

prism [fig. 4-21. This effect is known as chromatic dispersion. See [lilein 701 and . 

[%eyer-Arendt 721 for references. h 

4.2.2. Index of Refraction 

The index of refraction varies continuously with the wavelength. See fig. 4-3 for 
1 

an approximate outline of the refractive index as a function of wavelength. The index 

function n(X) is normally monotonic. as i t  is for glass. Therefore, we can prove that 

the index function of-glass has an inverse. 



! index n 

wavelength 
< 1 

visible 

Figure 4-3: Approximation of the refractive 
index of glass vs. wavelength 

. 3.2.3. Thin Lens 

$g, Figure 4-4: Cross-section of a circular double convex thin lens 

A camera usually consists of a set of thin convex lenses. However. since the effect 

of this set of thin lenses is the same as a single thin lens, we must now understand 

how a thin lens works. (In this paper. the term "thin lens" shall be understood to 



mean "convex circular thin lens" [See fig. .  4-41,) A thin lens consists of two  

refracting surfaces close enough for  their separation to  be negligible with respect to 

.the object and image distances and the focal length. A well known law for  thin 

lenses is the Gaussian thin-lens equation: 

where S is the distance between the object and the lens. 5' is the distance between 

the lens and the image of the object ,and f is the focal length of the lens. If the two  

surfaces of the lens are fractions of two  spheres. then the focal length of the lens i s  

determined by the Lens Maker's Equation: 

Here the radii are signed with directions. For the double convex lens, the above 

equation becomes 

Convex Lens 

Figure 4-5: Circular double convex thin lens 
with surface radii R 1  and H 2  

where RI is the radius of one surface while R2 is the radius of the other [See f i g .  

4-51. n is the index of refraction of the outside medium, assumed to be vacuum or 

air here. while n' is the refractive index of glass. In our paper, we suppose the 

outside medium to be vacuum ( i . e .  n = 1 and does not vary with wavelength). 'I'hus. 

the focal length of a-lens' depends on the refractive index, and hence on the 



wavelength of the incoming ljght ray. Consequently if the incoming ray is white 
* 

light, only a fixed wavelength can be in focus while all 'other .different wavelengths 

will not be in focus. . 

For a lens whose thickness d is not negligible, the previous equation becomes 

4.2.4. Relationship between Wavelength and Focus 

As a result of the above discussion, we know that 

If n = no and n' = n(A), we can express n(X) as 

P h ) n ,  
n(A) = 1 + 

( ~ / R ~ - I / R ~ ) .  

Then we can use the inverse function to find waveleng X in terms of focal length 

1. 

where N(y) is the inverse function of n(A). 

7 

. . Even wiih the thick lens equation 

1 1 n' 1 ( n ' - n ) d  
- = (- - I ) ( -  - - + 
f n R 1  R 2  n S R 1 R 2  

1. 

It is easy to see that the focal length f strictly increases with the index of refraction 

n', and hence we can still fin&the inverse func-tion N f f ) .  



Diffraction can be defined as any "distortion" not accounted for by geometric optics 

[ M e y e r - ~ r e n d t  721. For a circular aperture. the result of diffraction will be a series 

of concentric circles. The energy a t  any point beyond the first minimum in the 
,' 

diffraction function is small enough to be ignored. We can therefore truncate the 

spread function a t  that  point. The first minimum occurs a t  an angular departure of 

about 0.61);/r, where r is the radius of the aperture. If the image plane is 1, from 

the lens, the first minimum in the image plane will differ by 

m(A) = 0.6lhLlr . 

from the point predicted by geometric optics. 

4.2.6. Spread Function 

E 

Without diffraction, we know that  a light with wavelength A will form a circular 

disk of radius d ( A )  according to the Gaussian bhin-lens Equation. 

Figure 4-6: This figure shows the case where the image of a 
point is in front of the image plane 

In fig. 4-6, S is the distance between the object (or incoming point source) and the 

P 



lens. f is the focal length of the lens to  the light with A wavelength. S is the image 
> -" 

dlstance of the point source. L is the distance between the lens and the imige plane. 

Then we can express the radius of the circular disk in terms of S and r ,  where r is 

the aperture of the lens. We know 

1 
S= 

1 // - I / $  

C 
image plane 

lens 

Figw'e 4-7: This figure shows the case where the image 
of a point is behind the image plane 

'I'here are two cases to be considered. As shown in fig. 4-6 and fig. 4-7, we can 

< L [fig. 4-61, the triangle either have S < L or S . 2 L. In the case where S 

1JHO is similar to the triangle GHF. Thus FG/BO = FH/HO or 

In the case \,here S > L [fig. 4-71 the triangle BHO is similar to  the triangle EHF. 

Thus FI:,'BO = F H / O H ,  or d ( A ) / r  = ( S  - L ) / S .  That is 



where f is a function of A. 

For a distant point source. i.e.. for  any object distance S > > r ,  the spread ir~ncrion 

without diffraction effect can be thought of as uniform, because every p i n t  receives 

light of the  same intensity. 

point in lens 
focus 

Figure 4-8: For uniform incoming f lux,  the flux arrrvlng 
a t  the image plane will also be uniform 

fig 4-8 shcws that the spread function is uniform. let us look a t  f i g  4 - 8 .  ' l 'h~s  rs the 

one-dimensional case. Assuming thai  the incoming light energy arrlv \ at the lens 4 
uniformly,  the density of the energy flux is e .  Let polnts A .  13 and (: In f ~ g u r r  4 X 

be the consecutive points in the lens a t  which the llght flux arrrves. Since the Image 

plane is parallel to the lens. . the  triangle -4BO is similar to the triangle A'IYO and the 

triangle BDO* is' similar to the triangle B'D'O. Thus we have AfV.4'13' = IU)/IN) and'  

BOIB'O = DO/D'O. That is, ABiA'B' = DO/TYO. I>ikewise we have lK:/H'C = I)o/IYO. 

Since points A ,  B and C are consecutive points, we should have A13 = 1K = lie. 

qence A'B' = B'C. Therefore, the flux density a t  the image plane should be unrlorm. 

a 
This result is independent of the image point being in front of or behind the rrnagc 

plane. The proof of the uniformity of the spread function in the two-dimensional 

case is similar. We will not prove i t '  here. Therefore, the spread function of 

wavelength A without diffraction is: 



When the diffracuon effect is considered. the spiead function will not be uniform. 

The spread function due  to the diffraction effect is also wavelength dependent. For 

monochromatic light, the p i n t  spread function of wavelength X when the image is in 

focus is 0' (x) = [ T ~ ~ / ( A ~ L ~ ) I [ ~ J ~ ( ~ ) / ~ ] ~ ,  where r is the radius of the aperture. L is > A 

d~s tance  between the lens' and the image plane, t = 2nrx/(AL), d is the distance of 
* 

the point from the center of the image and 

[Klein 703. The point spread function R(x.X) 

be the convolution of OOA(x) and the uniform 

J l ( t )  is the first-order Bessel function. 

for an out-of-focus optical system will 

disk with radius d(A). 

Cut-off Point for  the Point Spread Function 

to diffraction, the cut'-off point will not be the geometric one d(A) as  

calculated above. Instead, a quantity of m(A) = 0.61LA/r should be added to d(X) 

'I'hus, the cut-off point for the p i n t  spread function should be 

I f  ute assume that the image plane is placed a t  the image point of the shortest visible 

i r  1s ob\,ious that the function m(A)  is strictly increasing with wavelength. If the 

image plane 1s p'aced at  or In front of the image point of the shortest visible 

ua\ .elength,  the functibn d ( A )  will also strictly increase with wavelength. In this case. 

the cut-off point function D(A) will increase with wavelength. This is one of the 

reasons ~ , h y  we assume that the image plane is placed at  the image point of the 

shortest \,islble u,avelength. 



4.3. Spectrum Information from Chromatic Aberration 

In this  section, . w e  will use chromatic aberration to f ind the spectral power 

distr ibut ion of the incoming light. The  result a f  this section is independent of the 
'+ 

specific f o r m  of the spread functions derived above. The method is valitl for  any  

spread function a s  long a s  it has the properties described b l o w .  

* 

Let u s  assume tha t  the  picture plane is fixed a t  the image point of either end of 

the  visible spectrum. In order to find the spectral power distribution of the incoming 

light using c.hromatic aberration, the  spread function must  have a finite cut-off .  . 

Figure 4-9: This  figure shows that  a t  a long distan'ce 
a spread function is too small to be measured 

Tha t  is. it must  be approximately zero at  some sufficiently .long d~s t ance  [see / i ~  

4-91. This  is a reasonable assumption slnce the intensity a t  a long distance is small 

enough not to be measured by a receptor. In addition, the cut-011 point must  vary 

monotonically wi th  wavelength. The  D ( A )  1s either increasing with wavelength if the 

picture plane is a#@ the image point of the shortest visible wavelength. o r  derrrawng 

wi th  wavelength if the picture plane is a t  the image point of the longest visible 

wavelength [see fig. 4-10]. For convenience, we  assume the image plane is located a t  

the image point of the shortest visible wavelength. I 'hus,  the cut-off point f unctron 

wil l  s t r ict ly increase wi th  wavelength 



lens image plane image plane - . 

at  image a t  image 
point of min point of max 
wavelength wavelength 

Figure 4-10: Enlarged chromatic aberration effect of a thin lens 

We will present the analytical results of the simplest to the most complicated case. 

We start  with the one-dimensional case with a uniform spread function and point 

light source, and we finally go to the chromatic aberration of an edge with any 

spread function in two dimensions. Since in some cases it is difficult or even, 

~mpossible to get a closed-form solution, we propose numerical solutions for those 

equations (~ntegration equations). In the following discussion. let the visible 

u;a\.elenghth range be [A ,,,. A,,,]. 

3.3.1. I'oin t Source in One Dimension 
-. 

As in fig. 4-11 ,  light from a point source of spectral power distribution I(X) a t  

point 0 comes through the lens and forms an image in the picture plzne. located a t  

the image point of the shortest wavelength Amin  of the visible spectrum. So the cut- 

o f f  point for wavelength A is D(A) as calculated in the previous section. 



Figure 4-11: Pure chromatic aberration effect of a point source 

Let x be a point a t  the  image plane tha t  is located a t  a distance x f rom the optical 

axis. All light w i th  wavelength A such tha t  D(A) 3 x will affect the intensity of' 

this  point. In fac t ,  the intensity a t  point x consists of all the  light I(h)H(x,h) where 

.the funct ion R(x.A) is the  defocus spread function for  Iight of wavelength h at  a 

point wi th  distance x f rom the center of the image, and I(A) is the spectral power 

distr ibut ion of the  incoming light. Because w e  assume tha t  the cut-off point ol' the 

spread function of wavelength A is D(A). H(x.A) = 0 for  all  the A. such that  

D(X) - <  x .  Since the summation is over the whole visible spectrum.. it becomes an 

integral. .4nd w e  get 
?- 

where d x )  ~s the intensity a t  the point x .  Only the visible spectrum [ A ~ , , , , ,  An lax]  will 

be in effect for  the human visual sys tem,  so the ~ntegra l  becomes 



hmm 

This is an integral equation in which A x )  and R(x,X) are known. Moreover, w e  want 

to find I(A). 

Hecause the cut-off function D(A) is strictly increasing in our case, i t  must have an 

inverse function. Let A(D) be the inverse function of D(A), then the function A(D) is 
- 

strictly increasing. Since the D(A) specifies the length of the spread function from the 

center to one end. 'the whole length of the spread function is thus 2D(A). If the 

spread function is uniform, i.e.. if the function R(x,A) is such that  

then we can get a closed-form solution to the integral equation, which becomes 

uthere D(A) 1s as gi\.en above. Now the function I(A) is expressed in terms of D(A). 



A(D) and X'(D). hence .the index of refraction function n(A), its i n v e r s ~  and their 

derivatives. The  solution for  the function I ( A )  is the spectral p w e r  distribution of 

the  incoming light. which is . w h a t  is being sought. Since the function p ( x )  is 

decreasing. pl(D(A)) is a lways  negative. Hence the negative sign in f ron t  ensures t h  

I(X) will  be positive. 

It is not generally possible tc find a solution in closed form for  l ( h )  glven an 

arb i t ra ry  spread function R(x.A). The  equation then is 

Using the faci ,that A(x1 is s tr ict ly increasing or  decreasing. the equation can he solved 

numerically. If  the function A(x) is s tr ict ly increasing. that  is, the image plane is 

located a t  the image point of the  shortest visible wavelength, and i f  the visible 

wavelength range is divided into n + l  intervals from Am],  A m a x .  L hen 

A m i n  = A. < A l  < ... < A = A max '  Due to  the monotonically increasing nature 

of D(A), w e  have D(A,) < D(A,) < ... < D(An) Let u s  assume we  have the mean 

measurement of intensity a t  each interval  hi^], hi]  a s  p(D(h,)). In such a case the 

integration becomes a summation.  The  equation can be numerically rewritten a s  

follows: 

The  f irs t  equation holds because R!D(An),A.) = 0 for  all  i < n. I 'he second equation 

is obtained by chang~ng  the ~n teg ra l  into summation.  Because the spread functlcm cut -  

off point is D(h), the spread function R(D(Ak).AI) = O for  all  i < k .  Jience 'I'hr 

second equation can be wri t ten as: 



R 

d D ( A k ) )  = l(Al)R(D(Ak),Al)(Al-Al-l ). 
1=k 

Writing the set of equations in terms of I(A), we get: 

1=k+l 

We obtain a numerical solution from this recursive expression of ](A). Since the 

function p ( x )  usually has discrete values, this set of equations is more useful because 

of its easy application. 

4.3.2. Edges in One Dimension 

I t  IS harder to derive the incoming spectral power distribution from an edge than 

from a point source. So let us assume that the off-center spread function in this case 

1s t h e  same as the spread function a t  the center. 

region 1 

1 
! 

I 

I 
image 
plane 

Figure 4-12: The image forming of an off-optical a nt .  

(See .fig. 4-12 for a better understanding.) - Let the points in the picture plane above 

the center k p s i t l v e  and p i n t s  k l o u -  negative. At a p i n t  x .  the intensity depends 



on the light emitted from a range of points on the object. The points in region 1 can 

at most affect a point x in the picture with x 3 -D(A,,,). And the points in 

region 2 can at most affect a point x in the picture with x d D(h,,,). Let Dm,, 'I 

D(A,,,). Since all points in the same region will have the same colour. let the 

spectral power distribution of the reflected light from region 1 be 1,(A) and that. 

from region 2 be '12(A). Similar to the'point source case, we have the following: 

For x > Dmax. 
\ 

'mar Dmax 

For x < -Dmax. 

For 0 < y < Dmax. 

For 0 > J 2 ,-Dmax, 

D ' m x  mar 'ma* -y 

These are the equations which can be derived from chromatic aberration. The first 

two equations are quite obvious. For a point x > 0 with a distance from the center 

greater than Dmax. the intensity at this point is sbkly due to colour 2. Similarly for  

a p i n t  x < -Dmax, the intensity at that point is solely due to colour 1.  When a 



point is within the range (0, Dmax), e.g., x ,  the intensity a t  this '  point consists of 
* 

both colour 1 and colour 2. Therefore, the integral is broken into two parts. The first 

integral represents the light coming from the region of colour 2 and the second 
0- 

integral represents the lighi coming from the colour. 1 region. We obtain the last 

equation in the 'same manner. 
J-- 

1 ~ t  US now consider 

Since the cut-off point 

spread function for A is 

the simplest case, in whic the spread function is uniform. "; 
\ 

of- R(x,A) is D(A) from the center, the whole length of the 

I.et U(A) = 1/(2D(A)). Assume that the functions I(A) and R(x.A) are so smooth that 

I ( A  )R(x.A) has continuous first and second derivatives.. In fact, the condition can be 

relaxed. All that is required is to be able to exchange the places of the integrals in 

the double integration. So the integraI equation can be written as follows: 

For 0 < y 6 D,,,. I 

Taking the first derivative we get 



We will get the s a p e  result from the last integral equation when a p i n t  is in 

(-DmaX. 0). Therefore. the chromatic aberration occurring at  the edge of two distinct 

adjacent 'regions giv& us the d i v r e n c e  between the spectral power distributions of the 
S 

incoming lights f>$m the two regions. 
\ 

~ ' e  will also o h i n  the difference 

incoming lights from adjacent regions 

However, the equations have to be 

2 
of the spectral power distributions of' the 

when the spread function is not uniform. 

solved numerically. We will discuss these _ 

equations in the two-.dimensional case. 

There are two interesting facts concerning the derivatives of the intensity function. 

The first is pl(x) = pl(-x) for, x in [-Dmax. Dm,,]. The secondsis pn(x) = - p U ( - x )  for x 

- in [-DFax. Dmrx]. These equations will also hold in the two-dimensional case It is 
, 

ea,&'' to s k  that $"'O) = 0. This is corisistent with zero-crossing edge finding 
'd 

technique. \ 

4.3.3. Edges In Two Dimensions 

Two-dimensional chromatic aberration is a simple extension of the one-dimensional 

case. Let Dm,, = D(Amax) as above, and the widths of the colour regions in the 

picture are assumed to be much larger than Dm,,. (See jig. 4-13 for a hetter 

understanding of the problem. Region 1 and region 2 are of different colour. I l ( A )  

and ],(A) - respec t idy . )  As in the one-dimensional case, there are different eq'batlons 



region 1 

- , / 
region 2 

C ects lens 

line 0 

Figure 4-13: Formation of -the image in the two-dimensional case 

for different points in the picture, depending on the distance from the point to the 

minimum visible wavelength image of the edge, which is the line 0 in fig. 4-13. Let 

the A m i n  wavelength edge image. i.e., line 0, be the zero line. Since there is no 

difference in the horizontal direction, only thc distance of a point to this line is 

significant. However. the intensity of the !ight a t  a point is now not just due to a 

set of points in a line as in the one-dimensional case. It is instead due to a circular 

disk of points on the object that will affect the point. Thus, we wilk-get a triple 

integral in the integral. equations rather than a double integral as in the one 

dinlensional case. Let s be the distance0of the point s from the line 0. The equations 

are: 

For s > Dmax. 

For s < -Dmcrx, 



For 0 < s < D,,,. 

2 '  'min x +y- 6 ~ ~ ~ ~ ~ & x  > -s 

For -Dmax < s < 0 ,  - 

Note that  ,, 

p(s) + p(-s) = c ,  + c2 = constant 

Assuming the function p(s)  has second derivatives. we ha.ve 

and 

It is hard to get a closed-form solution to the above set of integral equations even i f '  

the spread function is uniform. Hence. we will look for a nknerical  solution. Let 

the picture plane be located a t  the age point of the shortest visible wavelength. c -* 



Then the function D(A) is monotonically increasing. Suppose the visible wavelength is 

divided into n+l  values from Amin  to Amax. Amax = A. > A1 > ... > A, = Amin. 

Thus, we have' D(AJ > D(A,) > ... > A .  Here the interval [Ai. is 

assumed to be so small that the spectral power distribution of the incoming light is 

approximately constant over the interval [Al. for i =  1 to n. That is. 

],(A) z= ],(A,) and ]*(A) " I,(AI) for all A E [Ai, Here [a. b] means closed 

interval and (a. b) means open interval. [a, b) means closed a t  the left end and open 

at the right end. 

After the division of the visible wavelength into a finite number of segments, one 

can see from fig., 4-14 that at the first outer ring only the light of wavelength A. 

will be present. At the second outer ring, only the light of wavelengths A. and A1 

will be present, and so on. Let 

no, = ( x 2  + r' < D' & y > D(A,)}. max 

' Thus. we have the following solution: 

This equation holds because at point D(Al). R(D(Al).A) = 0 for all A < A1. Hence 

the spectral power distribution Il(A) with A < A l  will not affect the intensity of 

the p i n t  D(A1). (],(A) - I,(A)) - can be taken out of the integration G a u s e  Ij(A) is 

assumed to be approximately constant over the previously divided' intervals. The 

4 .  

\ 



Figure 4-14: ~ h r o m a t i c  aberration in the 
two-d~mensional case. The shaded areas are the 

areas of the An's. 

spread function R(r .h)  is also assumed to be approximately constant with respect to A 

over the region [A,-,. A , ) .  This assumption is only made for the convenience of 



presentation. Even if it does notL' hold, the integration equation is still solvable 

numerically. Given this assumption. Ato = (Ao - A,)A,, where -.. 

In general, we have 

+-7 where 

and 

with 

f and k range from 0 to n- . Ak is the volume of the spread function of wavelength 

A, over the liIh darkened area a? shown in fig. 4-14. The above set of recursive 
4 

h a t i o n s  provides a way to solve the integral equation numerically. Thus. ;he 

difference of the spectral power distributions of the two distinct colour regions can be 

obtaified in this way 



4.4. Discussion 

The result of the previous section confirms that the difference of the spectral power 
, " 

distributions of two  different incoming lights can be obtained from the chromatic 

aberrat10.n occurring a t  the edge between these two lights. The algorithm to find the 

difference of spectral power distributions. given in the previous section, does not 

depend on the defocus spread function of a given wavelength. For our algorithm to 

work,  certain pausible assumptions have to be made. such as the finite cut-off und 

the monotonic property of the c u t - ~ f f  points in terms d wavelength. 
h 

The main difficulty of using chromatic aberration is that the image" must be focused 
J" 

; ,  
on the shortest visible wavelength. i.e, the image plane .must be located at the image 

point of this wavelength. There may be some question as to how such focusing can 

be achieved. Since all the parameters of the camera are known, if the distance to the 

object is known. the Gaussian rhin lens formula can be used to compute thq' image 

distance using the focal length of the lens for the shortest visible wavelength; then 

the image plane is situated at this distance from the lens. If the distance between the 

object and the lens is not given, infinite distance is assumed. This assumption is 

usually Jegitimate, because the distance of the object from the camera will be far 

greater than the focal length of the camera. Other means can be used to calculate the 

depth of an object. The literature available on finding depth is quite extensive. Stereo * 
vision. shape from shading, texture. motion, and various other means can be used to 

find the depth of an object. 



43. Depth from Chromatic Aberration 

Another technique to find the depth of an edge is to  use the chromatic aberration 

Information in the image. It is assumed that  the image plane is in f ront  of the image 

point of the shortest visible wavelength. i.e.. the image plane distance f rom the lens is 

smaller than the dlstance of the shortest visible wavelength image point from the lens 

lens image 
plane 

Figure 4-15: Figure fo r .  finding the depth of a coloured point or  
edge from its image of chromatic aberration 

Let the distance of a w i n t  from the lens be S. Since the triangle ABD is similar to  

the triangle FGD, we have AB/FG = BD1G.D. AB = r = the aperture which is given. 

GI1 = BI) - HG. Because the image plane distance (BG = L) is known, we have 

b--' 
In the image plane. the intensity beyond the cut-off point of the longest visible 

w a ~ ~ e l e n g t h  Amax of the incoming spectrum is constant. and between this point and the 

optical axis is not constant. Hence we can find out the cut-off point of A,,,. by 
b 



using the  first directional derivative of !he intensity function along the normal of the 

edge. Let the distance between the cut-off p i n 1  and the center of the geometricrrl 

image of t e point or edge be a. The point F in f i g  4-15 differs from the actual cut- f 
off point by the amount of diffraction m(Am,,) of the wavelength Ama;. Thus. we 

have FG = a - m(A,,,), where m(Amax) = 0.61LAmaX/r. So 

rL - ra + 0.61LAmu 

Since BD is the geometric image distance for the point. we have 

Because r. L and a are known and f is a given function, knowing Anlax  will provide 

the object distance S of the point. However. it is not necessary that the incoming 

light contain the whole visible spectrum. Therefore. different known C i l  ters should be 

used to take the image. We assume that the incoming spectral power distribution 

contains a t  least one of the Amax's of the filters. Since UI) is the image distance of 

the light of wavelength Amax ,  BD is constant. It is easy to see that l /f(A) decreases 

with wavelength. Thus,  l /f(A) - l/BD: .kence 1/S decredes with wavelength i f  

?max >/ A, which is certainly true from our assumption. In another words, the 

calculated object distance is greater than the true object distance if f(A) where 

A < Amax is used in the calculation. As a result. the smallest S calculated% using 

different filters will provide the object distance of the point. I f  all of the Amax's 0 1  

the filters are within the visible spectrum. using largest of the Amax's will bring the 

p'" 

most reliable results. Therefore, if the incoming spectral power distribution contain< 

at least one of the wavelengths Amax of the filters used. the obJect distance can be 

determined w ~ t h  these filters by means of the chromatic aberration effect. In fact, the 

image plane can also be placed behind the image point of the maximum visible 

wavelength; then the calculation is almost identical with the one above. except that 

the Amln's of the filters are used. This may prov~de  a more 'accurate result than the 



fl 

former method because the. width of the chromatic aberration effect is much larger 
- 

and easier to measure. 

Pentland's method of finding depth of field using defocusing [Pentland 871 is similar 
e 

i 

to the technique described here. However. Pentland assumes the spread function for 

the spectral power distribution of the incoming light to  be Gaussiw, while our 

calculation shows that the spread function of a particular wavelength is not Gaussian. 
' 

Theoretically, the sum of these spread function over the visible wavelength is also not 

Gaussian. .Therefore, our method may provide a more accurate result. 

The human visual system selects a particular wavelength to be in focus. Polack 0 

demonstrates that the wavelength chosen for focusing by the human eye varies from 

one end of the visible spectrum to the other, as the fixation varies progressively [See 

f i g .  4-16] [Polack 221. G.  Wald. D. R .  Griffin. H. H. Emsley. C. Lapicque, and 

I .  Borish report that the wavelength in focus for the eye varies from 555nm to 589 

nm [Wald 471, [Emsley 521. [Lapicque 731 and [Borish 701. J. G. Sivak and 

C. W. Bobier. find a variation in the wavelength in focus depending on fixation 

distance. Their experiments also suggest that the wavelength in focus in the human 

visual system is determined by a learning process. 

In summary. a depth-finding method can be used to calculate the- distance of an 

object to the lens: and this distance can then be used to calculate the distance where 

the image plane is required to be put. In fact, chromatic aberration can be used as a 

depth cue. 



wavelength 
(nm)  

accomodative st imulus (dioptres) . . 
.- 

. Figure 4-16: Variation of the Wavelength in focus on the retina 
as  a function of accommodative stimulus. The thin line represents 

the mean results obtained by lvanoff (1953) .  while the bold 
line represents the results of Millodot and Sivak (1973) .  

This figure is reproduced from [ ~ i v a k  781. 

4.6. Implementation and Results 

The numerical method of_ solving the integral equation for chromatic aberration has 

been programmed in C. The formula for thick lenses is used instead of that f-or thin 

lenses because the thickness of the lens 

been tested using the real image of 

problems. such as distance measurement. 

here used is not negligible. The program has 

an edge. Since the re  are various technrcal 

5 
in taking an accurate picture, the prcture IS a 



little distorted from the  ideal one. (The photographic profile of the edge is displayed 

in fig. 4-17.) 

Intensity Expected 

-1.92 0.0 
distance from the center of the edge in mm 

Figure 4-17: Intensity profile of the chromatic 
aberration effect of an edge 

The picture is taken using ILFORD PAN F black and white film and a Nikon FM 

camera. The lens is a double convex lens made of higher dispersion crown glass. The 

9 
radius of the lens is 19mm, and the p d i i  of the surfaces of the  lens are both 

52.9mrn. and its thickness is 8.5mm.  h he illumination w e  used is tungsten light of 



Chapter 5 

- Colour Constancy .. 

In this chapter, we will show how the chromatic abeiration iesult found in the 

previous sections helps achieve colour constancy. The approach we use is to model the 

light and surface spectral reflectance using a finite-dimensional model. 'The spectral 

difference provided by chromatic aberration will give us sets of equations and will 

help us determine the surface spectral reflectance and the illumination., 

B 

Here a point in the picture is denoted by a single variable x .  At each location, we 

assume that  there are s sensor classes R, ,  ..., Rs. Let E(A) denote the spectral power 

distribution of illumination, and let S(A) denote the surface spectral reflectance. Then 

- t h e  measurement of the ,  colour signal piX at  location x with sensor i can be expressed 

where EX(A) is the spectral power distribution of the ambient llght on p i n t  x and 

SX(X) is the surface spectral reflectance a t  x 

5.1. Assumptions 

In this paper, the surface spectral reflectances and the spectral power distribution of 

ambient light are assumed to be well ' described by the f inite-dimensional model. In 

addition. we assume that  the illumination (also referred to as "ambient light") remains 

constant over the whole scene. We also require that  the objects lie in a plane 



4 1 

t' 

perpendicular to the optical axis of the lens, and that the objects are coloured regjons. 

The edges between these regions are assumed to be 

9 

5.2. Finite-dimensiohal Models for 

Swf'ace Reflectance 

Stiles. Wyszecki and Ohta( 1977). Buchsbaum and 

sharp. 

Illumination and 

Gottschalk (1984) show that many 

surface spectral reflectances are well-approximated by a specific finite-dimensional 

linear model comprising. frequency-limited functions. In 1973, Sallstrom used the 

frnite-dimensional model in colour vision to approximate surface spectral reflectances. 

Brill. Buchsbaum and Maloney also used this model. Since the publication of 

Maloney's paper, many computer colour visjon researchers have used this model. In 

his Ph.D. thesis Maloney giws a good justification for the use of finite-dimensional 

models [Maloney 851. 

The finite-dimensional .linear model states the following: first, a set of Gasis 

functions called Si(h), with i ranging from 1 to n, are selected.. Then, any surface 

spectral reflectance is represented as the linear combination of these basis functions. 

Such modeling of the surface spectral reflectance is called the finite-dimensional model 

- for  surface spectral reflectance. The constraint we put on the basis functions, as in 

linear algebra, is that all the basis functions must be linearly independent. That is. 

i f  $,S,(h) + ... + I(I,S,(X) = 0, all $l's must be zero. The number of basis functions 

is called the degree of freedom of the linear model. The finite-dimensional linear 

model for illumination can be similarly defined. except that the basis functions for 

illumination may differ from those for surface spectral ref lectances. 

The number of parameters in the finite-dimensional model for surface spectral 

reflectances is the same as the number of basis functions used, namely. n. If we use 

m b ~ t s  functions for the lighting. the number of parameters for the light is m. 



The finite-dimensional model of the surface spectral reflectance may not be able to ' 

express the  surface spectral reflectance of an object exactly. Therefore. we defin; the 
I 

error in the finite-dimensional model for the spectral reflectance of an object as the 

integral of the square of the difference of the real surface spectral reflectance i n d  the 

approximated function of the model. The parameters of the model should be taken in 
\ 

such a way  that  the error value is minimal. ' 

a 
5.3. Models of Illumination and Surface Spectral 

Ref lectanix 

In the following d~scussion. we take the v~sible spectrum to be approxmately 

400nm to  700nm in wavelength. Over the visible 

reflectance curves of natural objects usually are reasonably smooth and continuous. 

Many exper~ments on empirical surface s-l reflectances show that the surface 

reflectances o i  natural objects are very limited and most of them can be modeled 

using a few basis functions. Cohen(1964) analyzed the surface spectral reflectances of 

150 Munsell chips and computed the characteristic vectqrs for these chips. The result 

shows that  using the first three of Cohen's characteristic vectors accounts for 99.2 

percent of the variance in the fit.  Adding another characteristic vector only yields a 

slight improvement (about 0.5 percent) [Cohen 641. Maloney(l985) showed that most 

surface spectral reflectances of natural objects can be modeled adequately by means of  

three basis functions. (Detailed information can be found in Maloney's Ph.1). thesis 

[Maloney 851.) Similarly. three to five basis functions suffice in modeling most of 

the natural daylight. 

Let surface spectral reflectance have n basis functions Sl(A). .... S,(A). and the 

spectral power distribution of illumination have m basis functions  el(^). .... L , ( h ) .  

S o w  the surface spectral reflectance a t  point x can be written as 



k= l  

Likewise the spectral power distribution of ambient 

the basis functions, 

light can be expressed in terms of 
3 

Let us have s classes of sensors at  each point and let the classes be denoted as Rk(A). 

k - 1 to s. Hence, within each region we have 

5.4. Finding the Colour of a Surface 
r) 

& 

The measurement of the colour signal at  a point taken through a filter is termed 

i 
the colour carch. If there are s class% of sensors at each point, the colour catches pk. 

m 
k = 1 to s, at each point can be measured. We also assume that' the ambient light 

remalns constant over the whole scene. .Because pkX is given at each point, there are 

s equations for the n t m variables of the ti's and a . ' s  within each region. They are 
J 

h 

where gllk = E,(h)Sl(A)Rk(A)dA and k = 1 to s. If two regions with different 

colours are adjacent, there will be n + n variables for the surface spectral reflectances 

for the two regions and m variables for the spectral power distribution of ambient 

light. Let the two regions be labeled 1 and 2. Then there are s + s = 2s equations 



derived earlier, the difference of the two  

from the chromatic aberration occurring at  the - 
, *.. 

edge. Thus. 

Concrete values of the variable A can be substituted into the function C(A) to get as 

many equations as one wants, but only independent equations are actually needed. 

Depending on the dimension o f# the  set .o f  the functions Ei(A)Sj(A)'s. a number of 

Z 
independent equations for  the 'variables siSs.  u."s and o2 ' s  are obtained. The number 

. , , - I 1 
81 

3 .of independent equations is 'the dimension of the set of the functions El(A)Sj(A)'s. 
\ *., 
Other methods, swh' as using least squares fitting, can also be used to derive - i 

independent equatio$ for the unknowns E ~ ' S  and o 's. We will address the bound of. 
1 

1% 

the dimension of t h i s h e t  below. 
I 

5.4.1. Best Case 
f 

1 6- 
-, 

At best,' all the functions Ej(A)S.(A) are linearly independent. Then we can solve for 
1 

all ~ ~ ( o ~ ~  - U .  Since the unknowns appear as products. ~t 1s imposs~ble to solve for 
8. 

b m 
absolute values of the el's and o s .  However. some constrarnt such m El= ,  ( e l l 2  = 1 

J 
h 

or  llXm ep1(A)II = 1 can be used. Here llfll stands for the norm of Ilence, we can 
I= 1 

2 solve for EiVs and u - o. . In this case, the b n k n o w y  riVs for the spectral power 
1 1 

distribution o f  the ambient light and all pairs of u.' - u 2  for the surface spectral 
1 1 

reflectances can be recovered. Therefore, th&e are n equations for the variables U l's 
l 

and cr2'.s from the chromatic akr ra t ion .  Then using the 2s equations from the 
1 

colour catches within the two  regions, r of the (uI1 - u can be expressed in 
rr 1 

9 
L -  \ 

1. 

\ 



terms of the E;'S and the rest of the ( u . '  - u.~) ' s .  That is, s of the equation; fo r  
1 I 

' i7 
u and 02 ' s  are dependent on the other equations. Therefore. there iu' a to:al of 

J 1 

n + 2s - s = n - s independent equations for the 2n variables u."s and u.~'s. The 
1 I 

condition' for obtaining a unique solution for the u ' s  is 2n 6 n + s, or n 6 s. If. 

as in the human visual system, there are 3 sensors at each point (i.e. s =. 3). the 

degree of freedom of the linear for the surface spec t~a l  reflectances can be as larie as 

3. 

5.4.2. Worst Case 

At worst, there are still mux{m.n) number of independent equations based on the . , 

information provided by the  chroma;^ aberration a t  an edge. Since all EiSs are 

independent. lil(A) ik 0. Also. because Sj's are independent. all El(A)Sj(A) are 

independent provided EI(A) has only a finite number of zero points. Thus. the 

maximum d m b e r  of independent functions k n. Likewise, the maximum number of 

independent functions m. Overall, there are a t  least max{n,m) + 2s 2 m + 2s 

independent equations and m + 2n number of unknowns. The requirement for the 

feasibility of this set of equations will be m + 2n 6 m i- 2s or simply n 6 s. So. 

with s = 3 .  even in the worst case the degree of freedom of the h e a r  model can be 

as large as 3 in modeling the surface spectral reflectances. 

5.3.3. Algorithm 

L'sually. the cnlours o'f the adjacent regiens are so different that  the  2s equations of 

arc -independent. where gIjr = jEi(A)Sj(A)Rk(A)dA. Hence, the solvability of these 

equations is not an issue. In fact, it does not matter whether these Quations are 



independent. The functional equation from the chromatic aberration will providi .the 
, . 

rest of the information necessary for  solving. the €, and 0:s. TheT algorithm to solve ' 

J .  

them is simple. Assume that  'the functions El(A)Sj(A)'s are linearly indepcndcnt: The? 

use t i  2 equation 

where the function C(A) is given by the chromatic aberration effect. Substituting a 

number of different values for the variable A, we obtain a set of linear equations'for 
I 

the variables Ei(u U . ~ ) ' S .  In the case of n = 3 and rn = " 3 .  nine diffe-rent values 
1 I 

o f .  A can be used. so lv ing  :this set of linear equations will provide ali u ' - u ') 's. 
I J 

However. the finite-dimensional model may not describe the speci'ral power ' ~ 

distribution of ambient light and the surface spectral reflectances with precision, in 

which case we will not get a satisfactory solution for the variables s , ( u l  - u 2 ) ' s .  
J I .  

- .  
~ l t e r n a t i v e l ~ ,  the least squares method or other statistical methods can be used ,to 

determine the best fitting solption Let e i ( u J 1  - u 2 ,  = c . .  Then we will have €, - 
1 '1 - 

2 ( c l c  )E , .  fo r  i > 1. In combinati0.n with Z E l  (5 )  = I we can solve !or the €,'s. 
I l j  

.After this. all remaining equations for the u "s and 0 2's -  are linear equations, and 
1 J 

standard algorithms can then be applied to solve them 

However, when we solve for el's, we have higher order equations tnstead of ' l~near  

equations if the condition for r , 's  is non-linear. Thus.  there will be multiple sets of 

solutions for the el's .  But some sets of solutions are not realtsttc, and thus can k 

ignored. For instance, using the conditions proposed above. there will k two sels of 

solutions. However, in one se r  all el's  are negative. which IS not realtstrc 'l'herefore. 



we can ignore this solution. In practice, the condition for E,'S should be of as low a 
- 

degree as possible. Wandell [Wandell 871 proposes a condition for the E vector that  

e = I .  - I f  el can never be &o, this condition will eliminate the multiple solution 
I 

problem. In the next . section, I the dependency of the basis functions for the spectral 

power dis~ribution of ambient light and for the surface spectral reflectances as  well 

as the prd6~ems of multiple solutions arising from the dependency of these functions - 
A 

will be discussed in more detail. 

54.4. Feasibility of the Solutions 

Using the algorithm in the previous section. the, spectral power  distribution of the 

ambient llght can be betermined f r o m .  chromatic aberration provided all of the 

E,(h)S,(AJ's are Ilnearly' independent. However. it may not be realistic to assume that 

I;(A)s,~)'s are linearly independent. -4 better assumption is that the basis functions 
I 

% 

for the spectral power distribution of ambient light and surface speciral reflectances 

are the same. In this case, the surface spectral reflectances can still be found. but 

there are multiple solutlons. The multiple solutio-ns have the property that if there is 

'a set of solutlons for B,'S and the (o ' - s then there will also be another set of 
I 1 

I 

solutlons In whlch the el 's  correspond to the u  * - u s  in the first solution h d  
' 

J > .  the (0)' - uJZ) ' s  of the second solu~ion 'correspond to the ai 's  of the first one. 

% 
Ii'hen the surface spectral reflectance of one  region is a multiple of that  of the 

other. absolutely certain solutions ' f o r  the colour constancy problem cannot be 

- obtalned. .A simple example is a beam of red light illuminating on a white and a grey 

parch. This sltuatlon 1s mdisringuishable from the situation in which a white light 

fai ls  on a llght red and a dark red patch. Although these situations cannot be, 

d~stinguishecl, our previous equations still bring results since the solvability does not 

depend on the colours of the regions. \That one will get in these cases is a finite 



number  of solutions. The  mult iple so!utions cause confusing c i r c u m s t a n c k s ~ h e  smhe 

also happens to the human visual system. Hut the reason for  getting il finite instead 

of a n  infinite number of solutions is that we use finite-dimensional models which 

only model a subset of the spectral power distribution of ambient light und of t h r  

surface spectral reflectances. For instance, u , e  can either get .t = 1 and y - 0 or  . 

x = 0 and y = 1 as  solution to the equation a + = 1 .  11 non-negative Integer 

. solutions are  'desired. However. there is an  rn f~n i t e  number 01 real solutions. .4 - 

finite-dimensional model models an infinite number of spectral I unctions. %.h~c. t~ are 

only a subset of al l  possible spectral functions. 

I f  the basis functions for  both thh spectral power d i s~ r lbu t ion  ot ambient Ilght and 

the surface spectral reflectance are the same and the functrons / /  are lrnearly 
J 

Independent for  i and j in the  range from 1 to n and i < & J .  the number 01 

equations obtained from the functional equation prov~tied by the chroma~rc. aberriition 

effect "at the edge is n + n(n  - 1 ) i 2 ,  where we  assume nl = n .  II ni = n - 3 .  then 

f t f 2 .  f J ,  j , I 2  f l f - 3  and f 2 f i  are  all l ~ n e a r l y  Independent. 'l'hus. there arc six 

equations. namely the equations for  E ] x , ' s .  e l x L  + E ~ X ] .  .. e l l 3  + E ~ . x ,  and c2xl - €;.I,. 

u h e r e  x l  = (oil - u S ~ n c e  there a re  S I X  variables s and ( c , r 3  - slr,) 's  and six 

equations, the set of equations is solvable. but  w ~ t h  multiple s o l u t ~ o n >  due  to t h e  

second order  terms In these equations. In general, the illumination anti the surracc 

spectral reflectances can still  be determined i f  n >/ 3 ,  because the number ol 

equations n + nin - I ) . ' ?  is greater than the number of unknown,> 2n 

Here we ~ 1 1 1  s o l ~ e  the  case of n = 3 as an example W e  f ~ r s t  solve for the 

coefflclent\ of the Independent functions F i ( A ) S I ( A )  s b o  we have E i x  = c ,  for  r = 1 



? 
equations give ( c ~ ~ / c , ~ ) ( E ~ / E ~ )  + ( E ~ / E , )  = c12/cII. We can now solve for e2/eI. Since 

the equation is in the second order. .there will be two  solutions. From the symmetry 

of the equation we can derive that if E,  = d i  and x .  = e., the other solution is Ei = ei 
J J  

and x = d l  Once we solve for the E~ ' s .  the rest will be the same as that  in the 
J 

Algorithm section. 

After the multiple solutions for  he speciral power distribution of ambient light are 

obtained, they can be verified for consistency with other solutions in the same scene. 

I h r m g  the verification process. some of the solutions are eliminated to arrive a t  a 

unique solution. Verification can only take place if there are more than two  regions 

of sufficiently different colours in the scene. 

The algorithm has been implemented usjng the first three of Cohen's vectors [Cohen 

041 for surface spectral reflectance and the first three of Judd's  vectors [ ~ u d d  641 for  

sprclral power distribution of ambient light. If these particular basis functions are 

used. all E,(A)S(A) are independent. Therefore, the algorithm for solving the Ei and 
J 

u , ' s  are programmed. Given the difference of the spectral power distribution of the 

Incornmg lights and the existence of sensor catches with three sensor classes a t  each 

reglon. the t ,  and U]'S ( that  is. the colours of the objects) can be recovered. 

in practice. fin~te-dimensional models can not model the spectral power distribution 

and the surface spectral reflectances with precision. Therefore. satisfactory results 

canna1 be obtained from solving the system of equations which is 'obtained by 

subst~tut ing different values of A .  Instead. let the visible spectrum of wavelengths be 

d~\ , ided into k i n t e ~ v a l s  A(, < A ,  < ... < A k .  Assume that the spectral power 

d ~ s t r i b u t ~ o n  of the Incoming light I (h )  is given. Then the least squares method is 

used to minimize the equation 



The set of equations f ~ r  the minimization are the following: 

for  t=l' to 3 .  

for  t=l  to 3.  

.4 numerical algorithm is used to solve such systems of nonlinear equations. l 'h r  

actual package we ,use is minpack. Since the daylight spectral power distribution is 

v e r y  limited, we can obtain a close approximation for the €, 's.  and hence for the uI's. 

which can be taken as  the  init'ial valuespfor input into the minpack programs. Once 

we obtain the solution, w e  also !lave the approximate spectral power distribution ol 
- 

the illumination and the approximate difference of the surface spectral rerlectances. In 

the next chapter, we will show that  the estimated surface spectral reflectance is really 

a sat'isfactory approximation i f  the finite-dimensional models can satisfactorily model 

the spectral power distribution of the illumination and the surface s p c ~ r a l  

ref lectances. 



5.5. Implications 

Contrary to normal expectation, no special sensors are needed in analyzing the 

chromatic aberration effect. All that  is required is a light intensity sensor, i.e.. a 

black and white receptor. The interesting part of the finding is that  chromatic 

aberration provides the whole spectral power distribution instead of colour catches. 

i.e.. intensity values of different sensors. Thus, this information is much richer than 

that obtained by merely using three chromatic classes of sensors. Once the spectral 

power distribution of the incoming light of a region is known, those of the others in 

the same scene are easily found. . - 

When there is no chromatic aberration existing in the image, for example, in an 

image taken -through a pinhole camera,. other types of distortion, such as diffraction. 

at  the common edge of two  regions. can also be used to find the difference of the 

spectra of the regions. If the aperture decreases, th"e amount of chromatic aberration 
-. 

decreases, but the amount of diffraction increases. Thus. the technique is not restricted 

lo the presence of a chromatic aberration effect. 

By means of the information derived from chromatic aberration, colour constancy 

can be achieved from only two distinct colour regions with sharp edges. The 

prerequisites of this achievement are that the illumination is constant over the scene 
5 

and that the finite-dimensional models are valid for the spectral power distribution of 

the illumination and for the surface ref lectances. Maloney [MALOKEY851 requires that  

there should tx a sufficient number of distinct . colour regions in the scene. 

1;urthermore. the condlt~on for colour constancy in Maloney's paper is that  the degree 

of freedom of the linear model in modeling the surface spectral reflectances must be 

less than the number of sensor classes. With three classes of sensors. as in the human 



visual system, only two basis functions can be used. which imposes severe limitations. 

However, if chromatic aberration is used. two distinct colour regions present in the 

scene will be sufficient. In addition. the number of possible basis functions used to B 

model the surface-spectral reflectances can be as large as the number of sensor 
, - 

classes. 

Once the surface spectral reflectance of an object is recovered. a colour descriptor 

which is independent of the illumination is obtained for that object. Therefore, colour 

constancy is achieved. 



Chapter 6 

Separation- of Illumination and Surface 
Reflectance from Incoming Light Spectrum 

In this chapter. we will show that  if the basis functions for the spectral power 

distribution and surface spectral reflectance have certain properties. i t  is possible to 

recover both of the illumination and reflectance from the spectral power distribution 

of the incoming light. In the following sections, we will prove a number of theorems 
\ 

d 
l- 

which justify our claim. .. .-- 

6.1. Exact models 

When the spectral power distribution of illumination and surface spectral reflectance 

are modeled precisely by a finite dimensional model. both the spectral power 

distribuuon o i  the illumination and the surface spectral reflectance can be derived 

easily and exactly. except for a multiplicative scale factor. 

Let the basis functions for the spectral power distribution of the illumination be 

E , ( A ) .  E , ( A ) .  . . .  E,(A). and that  for the surface s'pectral reflectance be 

S , ( A ) .  S , ( A ) .  - .... S , (h ) .  Let the spectral power distribution of the incoming light be 

] ( A )  and that of the illumination be 

and let the surface spectral reflectance be 



Since the spectral power distribution of the illumination and the surface spectral 

reflectance are precisely modeled. we have E(A)S(h> = I(A). That is. 

If ali the product functions E,(A)S.(X) are linearly independent, then . we can choose 
J 

nm different A values A ] .  A2', ..., An, so that the matrix M.  whose columns consist 01 

[El(A, ) s j ( i ,  ). EI(h2)Sj( i2) .  .... is nonsingular. Hence, when these nrn 

values of A are substituted, nm linearly independent equations in terms of s lo , ' s  are 
1P 

obtained. Because of the linearly independent property, the solution for  the coefficients 

e , u ' s  is ,unique. If the illumination function E(A) is normalized so that €, = 1 ,  then 
I 

we have unique solutions for the E ~ ' S  and w-'s. Thus, it is possible to d e r ~ v e  the exact 
J 

illumination and the surface spectral reflectance except for a scaling applied to 

riormalize E, to 1 

6.2. Approximated Models 

In real cases, the finite-dimensional models will not describe the spectral power 

distribution of illumination and the surface spectral but will only 

approximate the illumination and the surface mathematical 

terms. this can be expressed as 

and 



'I'herefore. the above method can not be applied. We to use the least squares 

f ~ t t i n g  of the product of the models to extract the surface reflectance and the 

illumination. We select the el 's and a . ' s  so that 
1 - 

is minimum, with the condition of e l  = 1 

In ,general. the result of the least squares fitting will not be satisfactory. For 

example, if f(A)g(A) is the result of the least squares fitting of the function I(A). 

then [ f (h) /c(~)][~(A)c(A)]  will also be the solution for  any non-zero function c(A). In 

addition. there may be an infinite n u m k r  01 solutions to  the least squares fitting. 
3A 

However, i f  the set of possible illuminatior, distributions and the set of possible 

surface s p c r r a l  reflectances satisfy the assumptions stated in the preceding chapter. 

such f ~ t t i n g  will provide satisfactory results. The proof is presented in the next 

secrlon. 



&3. Theorems 

Theorem 1: 
\ 

Let x, and yi.  i = 1 to n,  be real numbers, then 

1 = 1  r=l r = l  

This is a well known theorem. It simply states that the cos~ne of the angle between 

the two vectors is less than or equal to 1. and it is known as Cauchy-Schwarz 

inequality. 

Theorem 2: 

Let x l  and y, ,  i = 1 to n ,  be real numbers. then 

n / n 

[Z  ( x [ + $ ~ ! ~ ' '  d [ Z  x':]"' + [ y'l]1'2. 

!=I t= 1 I =  1 

This theorem is the well known trlangle inequality 

Corollary 1: 

Define the norm of a function f to be 

1 = 1  

where all Xi's are given d~s t inc t  values in the dornaln of the functions. Then 

Corollary 2: 

llfl - llgll < llf Ir gll 

Corollary 3: 

ilj - gl d - h ~ !  + 1d-j - gr, 



Fact: 

Given the definition of Il f l l .  it immediately follows that  llfll = Il-01. 

Theorem 1, 2 and Corollary 1, 2 and 3 .  are well known so we will not give the 

proofs here. The proofs can be found in most linear algebra textbooks (for example. 

Theorem 3: 

Let x l  and y l ,  i = I to n. be real numbers, then 

Since x Z l  2 0 and y2,  3 0, 

Corollary 4: 
J 

Ilfgl! B ilfli x llgll 



,- ',, 
The result can be obtained by letting x, = f(A,) and- = g(A,) in Theorem 3. , 

Y 

Theorem 4: 

Let F and G be sets of bounded functions and let E(A) and S(A) be ,two 

given functions. and let all functions have the same domain; Let 

e ,  = Mints F { l l f  - Ell) 

and let I 

eG = Ming G{ llg - Sill. 

If  c is the bound for all the funtions in sets F and G and functions E(A) and S(A). 

Since c is the bound for all functions in sets F and G and functions I j ( A )  and S(A), . - 

Let f '  in F and g: in G be such functions that  eF = llf - HI a d  eG = IIg', - Sll hold. 

Then 
H 



Corollary 5:  
--.- 

I.et Ei(A),  i = 1 to rn. S.(A). j = 1 to n. E(A) and S(X) be given bounded functions. , 

J 

- and let all functions have the same domain. Let I = [a,b] be a bounded closed 

interval. Let 

and let 

n 

r ,  = Min, , i l l  Z qS,. - 511). 
/ = I  

r .  I hen there exists some constani c so that 

This corollary states thBt the error in the least squares fitting of the incoming light 

is proportional to the errors in the individual fitting for the illumination and surface 
i - . . .  

I '" .. . ? . '  
. ?  , 
. k 

speclral reflectance. If the finite-dimensional linear models closely approximate the 
L 

. , 

, ?  
illbrnination and surface spectral reflectance, the error in the least squares fitting of 

7 9, the product of the i l lum~nation and the surface spectral reflectance will be very 

sma 1 1. . , 

Since E,(A). i = 1 to m. are bounded functions. 



is also a bourided function. for  E ,  E 1. i = 1 to m.  Let 

rn 

F = { Z  e L E l ( A ) .  a, E I ,  i = 1 fo m } .  

1=1 

Then F is a set of bounded functions. Similarly 

n 

G = {x o ~ s ~ ( A ) .  rrJ E I .  j = 1 t o  ni 
j= I 

IS also a set of bounded f u n c t ~ o n s .  The w s u l ~  follows d ~ r e c t l y  from Theorem 4. 

Theorem 5 :  

Let E , ( A ) .  i = 1 to  m .  S ( X ) ,  j = 1 to n.  H(A) and S(X)  be given bounded lunct~onx.  
I 

and let all  funct ions have the same domain. I,et I = [a .b]  be a bounded close ~nt r rv i t l .  

m 

eF = Miner Allz €(El - Ell}, 
/ = I  

where 1 ,  and let 

eG = Min, , {llz u,Sj - St}. 
/ = I  

Let x , .  i = 1 to rn and x ,  = 1 ,  and y . j = 1 to n ,  be the such values thal 
1 

wilh  a, = 1. I f  a l l  the product funct ions E, (h)S l (A) .  I = 1 to m and j - I to n ,  i i w  

l ~ n e a r l y  Independent, then there exlst constants (' and I> so that  



' 1,et u,, i = 1 to m and u l  = 1, and v ,  j = I to n. be the such values that 
1 

m 

e,. = IIZ u$., - Ell 
I =  I 

and 

Since Iljg-LSIl; < c(zF + eG)  lo r  some constant c by Corollary 5. we have 

lltg - Pg' - ( - fQ - g'P + m)ll d c(eF + e G ) .  ., 



In addition. 

m n 

I3 EIE, and z oJsJ 
1=1 /= 1 

are bounded functidns. Therefore. there exists. d so that 

m 

11 2 ~,E~ll 6 d 

1=1 

and 
f 

n 
el. 

llZuS116 ! J d .  

/= 1 

A s  a- result .of Corollary 2 we know that 

'lote that 

I lence. 

That is. 

Let 



Ilef'ine the  vector function 

The  product function E,(h)S  (A) will be in column - 1  j o r  [(i-1 )n+jlth element of 
J 

the vector function V(A). We can understand this by  subst i tut ing i = 1 and j = 1. 

( 1  - l h  t 1 = 1 means EIS1 will  be in column 1 of V(X). If i = m and j = n.  

then ( i-1 ) n + j  = ( m - I  )n+n = nm.  So Ems, will be in column nm of V(A). Choose 

nm A values XI. . . . .  An, so that  the nm vectors V ( i l ) .  .... v(Anrn) a re  linearly 

tndependenr Thus .  the  matr ix M = [ \ ' ( A ~ ) . . . . . V ( A ~ ~ ) ] ~  is not singular.  where 

. . . .  Vx]' is the column vector of [ V I .  .... V L ]  T h i s i s  possible because of the 

l ~ n ~ a r  tndepentfency of the k S 's .  Substttutlng the nm values of h i ' s  into the previous 
I 

equaltons we have nm linearly independent equations, namely 

1 (.I I -  Y I - u,I;)E,(A,)S,(A,) = f i (h , ) .  t = 1 to nm. 

where u is the column vector [ x ~ ~ ~ - u ~ ~ ~ .  X ~ ~ ~ - U ~ V ~ .  .... x,y,-urnvnIT and A is the 

column vector [ l l ( h , ) .  . . .  Il(Anm)lT. Let M ' = (bIej) .  where M - '  is t he  inverse matrix 

of 31. Smce those 1,'s are  predetermined. 

: = I  , / = I  

is consfant.  .After 2o lv ing  this system of equations fo r  the coefficients of E S ' s .  w e  
J 



nm 

1 J X?J - = b n +  i = 1 to n, and j = 1 ro n. 
? 

1=1 

Slnce x l  = u l  = 1. 

- I  I < b[(c  + d) (eF  + eG)  + eFeG], j = 1 to n 
! ! 

Hence. 

n 

= I I ~  0, - 1. IS Il + eG 
J 1 

I= 1 

n 

C J P, - \;IIISrI1 + e, 

. /=I 
n 

< ( x llS ll)b[( c + d Xe,. + eti) + e,,eti] + eG. 
J 

/= 1 

From the above ~ n e q u a l i t y  11 1s obvlnus that  there exists a conslanl I )  so that 

Ilg-S1I < D(eF + e G ) .  And 1: is easy to show that  there exists another  constanl ( '  

which a l lows  the inequality ll1-Lll < C(eF  + eG)  to hold 



6*4 Discussion 

f irom-Theorem 5 in the previous section, we know that if the basis functions 

Il,(A)'s for the spectral power distribution of the illumination and S.(h)'s for the 
I 

surface spectral reflectances have the property that  all Ei(A)Sj(A) are linearly 
\ 

independent. a good approximation for the surface spectral reflectance and illumination 

can be achieved by using least squares fitting. This is useful when the spectral power 

distribution of the lncoming light is known. ln this case, any number of basis 

f unct~ons  can be used to model illumination and surface spectral reflectances. If the 

basis functions have the above independency and the norm of the inverse matrix M - I  

will not increase with the number of basis functions used, we can have errors in the 
d 

modeling as small as we wish. 

The ~ d e a  underlylng the e x ~ r a c ~ i o n  of ~llumination and surface spectral reflectance is 

l o  f ~ n d  r he mosl plausible separation of i l luminat~on and surface reflectance from 

their product. In general, the functions f(A) and g(A) cannot be derived from their 

d h ) .  This separation can be done only if the illumination and the surface spectral 

ref'lectances are very different. The difference between the illumination and the 

surface spcr ra l  reflectances is represented in the linear independency of the functions 

I',(A)S ( A ) .  Smce Judd's basls functions for daylight and Cohen's basis functions for  
J 

surface spectral reflectance have the required property, the illumination and the 

surface spectral reflectance can be recovered from their product 

7 



6.5. Implementation 

The algorithm has been implemented using the first three of Cohen's vectors [Cnhen 

641 as  basis functions for surface s p c t r a l  reflectances and the first three of' Jydd's 

vectors [Judd 641 as b a s s  functrons for spectral power d~st r lbut lon of ambient light 

If these partrcular basls f unctrons are used. all E,(A ISJ( A )  are lndepndent There1 ore, 

the algorithm for solving the €, and o . ' s  are programmed. Given the spectral p w e r  
I 

distribution of the incoming light, the E ,  and u 's, that is. the colours of the objects 
1 

can be recovered. 

Let the visible spectum of wavelength be divided into r *  intervals A(,  < A ,  < ... 

< A v .  In our program. we use samples at intervals of l i h m  from 400nm to 70t)nm. 

.Assume we know 'the spectral power distribution of the incoming light I ( A ) .  'I'hrn 

we will use the least squares method to mlnrmlze the equation 

1=0 r=l J= 1 

The set of equations for the minirnizatrctn are the following: 

For k = l  to m.  

1=0 /= 1 

For k = l  to n.  

v n n rn 

Sk(Al)[ 1 s1E,(Al) ] I (  sC,(A,) 1 x uS,(A,) ) - I(h,)l = 0 

1-4 t=l I = ]  ,I= I 

A numerical algorithm 1s used to solve these kinds of systems of nonl near equations I 
The mathematical library package minpack 1s used. After solving this set of nonlinear 

systems of .equations we can obtain the solutions for the E, and U 's. Since the 
J 

daylight spectral power d~stributron 1s very limited, we can have a very gocd guess 



f o r  the el's, and hence fo r  the a ' s  as the initial values for the input for the minpack 
1 

programs. Given the solution, the approximate spectral power distribution of the 
, .  

illumination and the approximate surface spectral reflectance can be derived. 

However, the minpack program is very unstable. That is. for slightly different initial 

values. it will produce different solution. Thus, another program which produces much. 

more stable results is used. The algorithm for this program uses the fact that the 

first m equations above are linear in El and the last n equations are linear in a.. 
1 

llence. given an initial value for the we can use the last n equations to solve for 

cr 's. then substitute the a.'s into the first m equations we have another set of Ei's. 
1 1 d 

I~eratively we finally get the convergent solutions. The convergence can easily be 

proved since all the equations are continuous. Since the viability of our program has 

Lwen proved for the 370 surface spectral reflectances recorded by Krinov and the 

daylights by Judd, the detail proof will here be omitted. For the theory concerning 

tiie convergence of our method, refer to [Miel 801. 

6.6. Results 

The results of the a lgorithm for krinov's  surface ref lectances and Judd's  daylights 

are promlslng. The errors produced by the least squares fittings range f rom 3.2 to 1.3 

times the errors of the individual fitting of the finite-dimensional models. The average 

is only about twice the error of the individual fitting. This means that  the error 

coefficient C in Theorem 5 is about 2 .  With the input as in fig. 6-1 which is the 
- 

spectram of l(#KKl•‹K daylight illuminating heather, the program will find the 

illumination ( j i g .  6-31 and the surface reflectance ( f i g .  6-2). fig.6-2 plots the spectral 

reflectance result of the program using 'the krinov's  surface spectral reflectance (#53)  

of heather and Judd's  10000% daylight. f i g .  6-3 shows the resulting illumination as 

well as the actual 10000% daylight. 
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wavelength in nm 

Figure 6-1: Spectrum of 1OWJ0K daylighl 
illuminating hea,ther 
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Actual . 

wavelength in nm 

Figure 6-2  Reflectance curve of heather and 
the fitted curve from our program. 
The ref iectance has &en magnified 

four times. 
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Figure 63: Result of the  iliumina~lon f rom 
our  program and the  actual loWO*K daylight 



Chapter 7 

Physics and Anatomy of the Human Eye - 

In t h ~ s  chapter, we want to show the amount of chromatic aberration occurring 

inside the human eye. The eye's lens has a diameter of about 9 to 10 millimeters 

and a thickness of about 4 to 5 millimeters. In addition, the lens is about 3 

millimeters from the surface of the cornea, and the sclera. choroid 'and retina together 

are approximately 1 millimeter thick. The diameter of the human eye is 

approximately 24  millimeter along the geometric axis [Fatt 781. Therefore. the 

distance between the lens and the fovea ( the  central part of the receptors) is about 

24  - 3 - 5. /2  - 1 = 17.5 millimeters. 

Ilxperirnents show that the chromatic aberration occurring inside the human eye is 

about 1.87 D~opter.  I f  the shorter wavelength end of the visible spectrilm is in focus. 

then the image distance of the other end of the visible spectrum will be S,  where S 

1s determined by the following equation: 

That is. S = lS.09mrn a~Froxlmatelv .  If the radius, of the iris opening of the eye is 

\ 
about f mm (one fif th of the eye's lens). the area of the chromatic aberration effect 

u.111 be a circle with' radius 

'This area is large in comparison to the size of the rods and cones. 



L ' Since the distance between the centers of the cones is about Jpm o r  35 seconds of 

arc [Cornsweet 701, there .are about 11 cones along the '  radius of the circle showing 

the c h r o y t i c  aberration effect when the pupil radius is lmm. The data also implies 

that the distance between the lens and the fovea is about 17.67 mm.' which is 
P 

consistent wlth the distance calculated above. The distance may be as small as 20  * 

seconds or  1.71 p m  at the very center of the fovea [Cornsweet 701. 'Thus. if the 

chromatic effect 'occurs a t  the very. center of the fovea. as many as 19 cones along 

the radius of the circle can be affected. Since there are inree classes of sensors inside 

the eye. there are at  least 7 cones of the same class along the radius. With such a 

large sample size. it is possible to recover the approximate spectral power distribution 
6 

of the incoming light. The above data provide an indication of the number of samples 

along the radius of the circle of chromatic aberration effect in the human visual 

system. In fact. the radius of the pupil is usuallv greater than 2mm. llence, the 

above figures should be doubled. 

As a result, we can conclude that the receptor% in the 'human eye are sul'l 'iciekly 

dense for  measuring the spectral power distribution of the ikoming  light from . 
chromat~c aberration. Although one may expect to see coloured fringes a t  the edges of 

0 white objects, the reason that these fringes are not seen is that the human e y i  makes 

1 

the necessary adaptations rather than that the aberration is insignificanl 



Chapter 

U 

We can conclude that riih chromatic information can be extracted from chromatic 

aberration. One application of chromatic aberration is to help determine the colours 

of objects, i.e. to achieve coiour constancy. We may al:o use the spectral information 
k E 

from chromatic aberration to solve further problems in computational vision. for  

instance, to find the depth of. an object. The work presented in this paper may be 

extended by considering three-dimensional objects and gradual changes of illumination. 

Moreover, we may continue to explore the information. provided by chromatic 

aberration In combination with other optic phenomena. 'such as  diffraction. to achieve 
1 

other tasks. such as measuring speed and motion on the basis of changes in colour. 

All the calculations in this paper can be applied to "distortions" other than 

chromatic aberration. For example. in the absence of chromatic aberration, the 

diffraction effect a t  the edge of two  regions can be used to find the difference of the 

spectral power distributions of the regions. This can be done because our calculations 

only rely on the spread function to be wavelength dependent. The best means for  

working on diffraction is to use a pinhole camera because this type of camera 

produces very little chromatic aberration. As the amount of chromatic aberration 

decrease;. the amount of diffraction increases, while the spread function still remains 

ueavelength dependent. Hence, ideally we can also get the difference of the spectral 

power distributions of two  regions. Applying the finite-dimensional models we can 

achieve colour constancy. 
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