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Abstract 

Areas of spectral reflectance, or highlights, can be analyzed for a wide range of 

information or clues that they give us about a scene. This thesis presents a local 

algorithm for analyzing a moderately unconstrained color image to  determine the 

areas of spectral reflectance. The algorithm is based on the separability of the 

diffuse and spectral reflection components by differential methods. 

. 
The location of specular reflectances are marked by finding zero-crossings in 

concave down regions for two-dimensional arrays of intensities representing the 

color image. These zero-crossings -correspond to the centers of the highlight regions. 

The highlight centers are then expanded to highlight regions by region growing in 

a direction orthogonal to the local orientation of the highlight. Thus, at the 

conclusion of the algorithm, the information known about each highlight includes 

location, size and direction. 
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Chapter 1 

Introduction 

Computer Vision is often perceived as something that should be trivial. The 

reason for this perception is that we are ourselves so good at vision, we take the 

whole process of vision for granted. In fact, the interpretation of our three 

dimensional world, as portrayed in a two dimensional array of intensities, is 

anything but trivial. While humans bring a vast amount of 'intrinsic' information 

to bear on the problem of image analysis, the computer does not have the 

capacity, at the current time, to perform the same feat. Therefore, to permit any 

useful analysis of an image whatsoever, we tend to limit, or constrain our image 

world such that analysis becomes feasible with respect to the limited amount of 

knowledge we can impart to the computer. 

A particularly useful and efficient task that we practice every day, however 

unwittingly, is that of distinguishing between objects made from different 

materials. An important prerequisite for such perception is the ability to discern 

the quality of an object's appearance. Various qualities of appearance are apparent 

in the world around us, such as texture, color, shine, luster, etc., all of which give 

us important clues as to an object's composition. This thesis will concern itself 

with the quality of surface gloss. 

Glossiness, in general, is correlated with specular reflectance [Beck 721. By 



looking a t  figure 1-1 we can easily determine which objects are shiny by the 

' presence of areas of spectral reflectance. 

Figure 1-1: Objects with different reflection properties 

Surface sheen, shine, gleam, etc., (see [Wyszecki 751 for a discussion of these 

terms) is a very important aspect in material discrimination. We regard metals as 

having a shiny appearance, whereas plastics, while they may have as smooth a 

finish, appear somewhat dull in comparison. Other surfaces may be altogether 

matte. These differences are caused by the presence, or absence, of local mirror- 

like or specular regions of reflected light, henceforth called highlights. If we can 

detect these highlights within an image, we can glean information that will help 

. US to identify materials. 

I Some other consequences of finding highlights are that: (i) they would aid in 

constraining the size, color, and location of a light source; (ii) they would simplify 



object recognition or matching by identifying the regions so that some of the 

of the illumination could be 'factored out'; and (iii) they also would enable 

constraints to  be placed on object size and location [Thrift 821. Perhaps a more 

basic or fundamental reason for wanting t o  locate highlights is that computer 

vision is concerned with modeling human vision, of which an inherent feature is 

the ability to  locate highlights. 

The thesis format is as follows: Chapter 2 contains a review of pertinent 

literature, Chapter 3 discusses the research equipment, Chapter 4 is comprised of 

the image analysis algorithms, Chapter 5 presents the results, Chapter 6 proposes 

some extensions and Chapter 7 is the conclusion. 



Chapter 2 

Review of Literature 

For the purpose of discussion, this will be the illumination model referred to; 

#& Source 

Viewer 

Figure 2- 1: Illumination Model 

i = angle between ray incident on the surface and the normal(N) to 
the surface at that point (P). 

e = angle between reflected ray and the surface normal at  point P. 

g = angle between the incident and reflected ray, or the phase angle. 

If we are talking about an ideal specular reflecting surface, then the angle of 

incidence equals the angle of reflectance i =  e and, by Fermat's principle of least 



time [Sears 581, i,e, and N, all lie in the same plane. Therefore i +  e =  g. In 

most surfaces are not perfectly specular, and therefore they scatter light in 

a cone shaped region centered about the ideally reflected ray. It has been shown 

[Horn 751 that the cosine of the angle between the direction for perfect specular 

reflection and any other direction is 2cos(i)cos(e) - cos(g). In the ideal direction 

(i = e and i + e = g) this equals one and falls to zero as the angle increases to  a 

right angle. 

A computer graphic simulation of the specular contribution of light scattered 

from a surface is accomplished by calculating 2cos(i)cos(e) - ~ o s ( g ) ~  for some 

positive integer n. The greater the value of n ,  the more compact the the 

highlight becomes. Phong [Phong 751 simplified Horn's term by using cosn(i- e), 

showing that the shape of the highlight curve is not critical to the perception of 

such phenomenon. The contribution of the highlight is only one component in 

the final calculation of the intensity value for a given computer generated surface. 

A complete system such as Hall and Greenberg's [Hall 831 reflectance model (see 

figure 2-2), using ray-tracing techniques, has produced very realistic images. 

The important thing to note, from the simulation model, is that the components 

of the illumination are separable, and that the spectral component creates a very 

conspicuous curve that peaks with respect to the mirror direction. It  is this 

'peaked' region that constitutes a highlight. 

Highlights of various sizes and shapes can be divided into two classes that are 

appropriate for analysis; those arising from curved surfaces, and those from planar 

surfaces. 
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Figure 2-2: Hall illumination model 

2.1. Highlights from curved surfaces 

By assuming a point source and viewer located at infinity, Forbus [Forbus 

771 generated a series of one dimensional profiles of intensities to determine the 

parameters relevant to the perception of highlights in achromatic images. Forbus 

found that the contrast between the specular and diffuse illumination components 

was not an important factor in perceiving highlights, but rather that the ratio of 

their respective widths is. Forbus also noted that the shape of the specular 

component curve 2cos(i)cos(e) - cos(g) did not matter, as long as it was not a 

step-change in intensity. He concluded that: 

(i) If the diffuse component was from a curved matte surface, then as long as 

the specular component width was less than 75% of the total width of the 

reflecting surface, it appeared as a highlight (see figure 2-3). If the diffuse 
A 

component's width is B and the specular component's width is A; - < .75. 
A+B 



Figure 2-3: Highlight vs. Curved Matte Surround 

(ii) If the diffuse component was constant, then as long as the specular 

component width was less than 20% of that component's width, i t  appeared as a 

highlight (see figure 2-4). If the diffuse component's width is B and the specular 
A 

component's width is A; - < .2. 
B 

Figure 2-4: Highlight vs. Constant Surround 

Forbus' conclusions are extremely useful for computer generation of scenes that 

contain highlights, but they do not give any insight into how highlights may be 

detected in a natural image. If an image could be segmented into objects the 



to determine Forbus' parameters would require the parsing of the object 

into highlight and surround regions. Forbus does say that part of the requirement 

for this subsequent parsing is that the local context must be right. This merely 

means that the second derivative of intensity must exist and be non zero. 

2.2. Highlights from planar surfaces 

If surfaces are perfect mirrors, then we can interpret the search for the 

highlights they cause as equivalent to a search for light sources within the image. 

These virtual sources will have all the properties of real sources and can be 

located by looking at two adjacent areas in the image and computing both their 

intensity and gradient ratios assuming they have the same orientation and 

illumination (see Appendix A). If the ratios are not equal, then one of the areas 

is perceived as a light source [Ullman 7 5 ) .  

The problem, as Ullman points out, is that real images tend to be noisy and 

the boundaries of areas tends to be quite indistinct (see figure 2-5). 

Figure 2-5: Realistic image intensity data 

To alleviate some of the problems this causes, he derived a S-operator which finds 

the light source intensity. The S-operator (S) is defined as follows: 



(S) L = ~ P ~ - ~ P ~ * ( S , / S , ) + S , ~  

L = source intensity(assumed to be in area 0) 

d = distance from area 0 to  area 1 

S = gradient in subscripted area 

Amp = intensity reaching the eye (image intensity) at subscripted area 
boundary 

The use of the S-operator includes setting a threshold above which an area is 

labeled as a source. The S-operator is not without its faults, such as: 

(i) insufficient image resolution which creates problems when trying to determine 

region boundaries; 

(ii) singularities in image intensities that cause spurious results; and 

(iii) light sources detectable at low background intensities become undetectable a t  

higher ones. 

Forbus [Forbus 771 extended Ullman's S-operator by relaxing the restriction that 

the orientation of the areas be the same. The problems Forbus encountered were: 

(i) the variation in the intensity gradient due to the beam spread of the source, 

- which alters the angle of incidence to the surface; and 

(ii) the effects caused by the lack of spatial uniformity in actual light sources 

and the effects of mutual illumination. 



Forbus' S-operator gives a better indication of how to locate highlights from 

achromatic, planar surfaces, but there still exists the problem of subdividing the 

image into adjacent areas for analysis. Even if the areas could be found, Forbus' 

S-operator requires knowing the exact orientation of at least one of the areas so 

that the relative orientation between areas may be calculated. 

Highlights and Color 

Ullman's S-operator, later modified by Forbus, was used to search for highlights 

in an achromatic image. This was deemed important by Forbus since he observed 

that people can recognize highlights in black and white photographs. The use of 

color as a tool for highlight analysis resulted from Shafer's [Shafer 841 quest to 

separate the effects of shading from those of highlights. 

Shafer separated the reflection components of materials into two parameters - 

interface and body reflection. These parameters are basically equivalent to  the 

specular and diffuse reflection terms that are more generally used. Interface 

reflection occurs a t  the surface of the object, while body reflection occurs a t  the 

internal pigment level. Therefore interface reflection will have the color of the 

illurninant and body reflection will have a color caused by the interaction of the 

light with the subsurface pigment layer. Materials that have both types of 

reflection are called inhomogeneous.' Shafer's work is only relevant for 

inhomogeneous materials. 

'examples include plastics, most paints, ceramics, varnishes, etc. 



1f the assumption is made that the objects are uniformly colored then a plane 

may be fitted through the object's pixel values in color space. Shafer then 

bounded this plane by a parallelogram whose sides are the values of the interface 

and body reflection colors. This means that you can then express any pixel color 

value for the object as a linear combination of these two factors. 

To separate the effects of highlights from that of shading, or interface from 

body reflection, the parallelogram could be parsed into two regions across which a 
L 

recognizable color shift occurs. Difficulties in implementing Shafer's method would 

arise in defining the boundaries of tjhe objects in the scene and in subdividing the 

resulting parallelograms. The latter of these two problems would cause the method 

to fail as a highlight detection scheme for inhomogeneous materials because the 

color shift apparent in real images could be extremely gradual, which means that 

the parallelogram would have contiguous color values from one side to the other. 

It would only be possible to determine where the color shift actually occurred 

with probabilistic analysis. 

The previous discussions focussed on research that concerned the detection of 

highlights within an image. The following section will pertain to the uses of 

identified highlights. 

2.4. Applications of Highlights 



2.4.1. Object Shape, Size and Orientation 

One use for the identified highlight is the determination of object properties 

such as shape, size and orientation. By looking a t  figure 1-1 we can easily see 

that this information is apparent in this scene. However, the extraction of such 

information from the scene depends on having the highlights predefined. 

Thrift and Lee [Thrift 821 use highlights to constrain object size and location for 

cylinders and spheres assuming known highlight and point source location. They 

use the 'highlight point', that is the point where i = e and i + e = g, to  derive their 

constraints. The simplest case to imagine would be a specularly reflecting sphere 

with a single highlight pixel on it that corresponds t o  the highlight point. 

Knowing the source direction you can deduce the normal t o  the surface at tha t  

highlight point. Using the equations that define the distance to  the highlight 

point you can derive constraints for the sphere's radius and center location. 

Babu, Lee and Rosenfeld [Babu 851 studied methods of determining the 

orientation of specularly reflecting planar surfaces. By assuming all the properties 

of the light source are known, they used the contours of equal brightness to find 

the surface normal. Along these contours the normal and source vectors are 

constant, as are the parameters describing the surface reflection properties. This 

means that by using a reflectance model such as Horn's, it is possible to  derive 

the unknown normal vector. While this is true for planar surfaces only, a 

highlight detection algorithm is of great use in defining the highlight region so 

that it can be analyzed. 



2.4.2. Object Material Classification 

As stated previously, one use of highlights is to  constrain object size and 

location. An additional use for highlights is outlined by the discovery of Cook 

and Torrance [Cook 821, of the visual difference between metal and plastic. 

A typical plastic has a substrate that is transparent or white, with 
embedded pigment particles. Thus the light reflected directly from the 
surface is only slightly altered from the light source. Any color alterations 
are a result of the reflectance of the surface material. Light that 
penetrates into the material interacts with the pigments. Internal Peflection 
thus gives rise to a colored, uniformly distributed diffuse reflection. 

... reflection from a metal occurs essentially a t  the surface. Thus internal 
reflections are not present to contribute to a diffuse component, which 
can be important for a nonmetal. ... The specular reflectance component [of 
copper] has a copper color ... showing that a correct treatment of the color 
of the specular component is needed to obtain a nonplastic appearance. 

[Cook 821 

Bearing this in mind, we could use this information to differentiate between 

objects made of plastic, and those made of metal. This analysis requires the use 

of color images rather than black and white. 



Chapter 3 

Research Equipment 

An International Imaging System (11s) Model 70F interactive digital processing 

system with a Vax 750 host computer was used for the displaying and processing 

of previously digitized color images. The IIS provides a mode whereby 48 

different arithmetic and logic functions can be used to process 512*512*8 bit 

images in 33 milliseconds or one frame tjme. The ability to do these 

computationally intense operations very quickly is particularly important since the 

algorithms in this thesis require a series of many such operations. 

The IIS provides a Refresh Memory (RM) in which images resident on the host 

computer's disk are stored for either processing or displaying or a combination of 

both. Preliminary image processing may occur in the Input Function Memory 

(IFM) as the data travels from the disk to the RM. This preliminary processing 

helps to increase the overall speed of the imaging system since some of the 

operations performed by the IFM would otherwise have to be done by the much 

slower host computer. 

The IFM is a look-up table that is applied to the data on the way to the RM. 

It may be used or bypassed. Since the RM can store only 8 bits of information, 

the IFM may do things such as scale, take logarithms of, add constants to, etc. 

any data from the disk of up to 13 bits. 



1 I 
BYPASS 

Figure 3-1: Disk data  path 

Whether the data from the disk passes through or bypasses the IFM it arrives 

at the RM to be stored. The current configuration has four RM boards, or 

channels, which are labeled as CHANNL1, CHANNL2, CHANNL3 and CHANNL4. 

The data may be stored in any or all of the channels. Once the data is stored in 

the channel(s) it can be displayed on the color monitor. 

3.1. The IIS image display path 

The IIS has a red, green and blue (RGB) output which feeds the RGB monitor. 

Thus the image that is located in the R M  can be displayed in any one of these 

primary colors on the screen and these color outputs are called the r e d ,  g reen  or  

blue p ipe .  A complete color image requires each tricolor-band component of the 

image to be sent to the screen through its respective pipe. What this means is 

that, to get a color picture displayed on the screen, the IIS requires three 

different disk images of the same scene, one each for the red, green and blue 

intensity components that make the RGB display image. Post R M  image intensity 

pipeline data can be altered to change the colors that are actually displayed on 

the screen in the p ipe l ine  color processor.  There is one pipeline color processor for 

each color pipe. 



I 1 Red Pipe I Red Pipeline 1 - 
Green Pipe Green Pipeline Refresh Memory Processor 

Blue Pive Blue Pipeline 

I 
Figure 3-2: L ~ a t a  display path 

A pipeline color processor has features such as image scrolling, hardware zoom, 

an adder array, a Look-Up Table (LUT) for each RM channel and a Output 

Function Memory (OFM). The 8 bit image intensity data stream from the RM 

channel is modified by using each intensity value as an index into the LUT array 

and replacing it with the value stored there. For example if there is a negative 

LUT for one channel (each image intensity value is replaced with its negative 

counterpart), and a positive LUT for a different channel and the data stream is 

sent through the same pipeline color processor then the adder array will do the 

two's complement sum of the LUT outputs. The result will be the difference of 

the two images. This enables arithmetic operations such as add, subtract, 

multiply and divide to be accomplished in one cycle time. 

Figure 3-3: Pipeline color processor 

Before the results of any such operations on the data  can be displayed it may 

be necessary to scale the results. The IIS provides the OFM to perform this task. 

Hardware 
Manipulation 

OFM --cp)- isplay LUT/ 
Channel 

< 

-C 
Adder 
Array 



The OFM is just a LUT whose output generates the final RGB values, 0 to 255, 

to be displayed. It should be noted that the original data in the RM channel is 

unmodified no matter what operations are performed to get the display image. To 

keep the display image requires storing it in a RM channel. 

* 

3.2. Image processing 

Image processing often requires more modifications to the image intensity data 

stream than those that can be performed along the image display path. The data 

may need to  be stored, remodified, compared, displayed, or stored, in a cycle that 

may have many iterations. To increase the speed of these more complex image 

processing operations the IIS provides a loop from output to input that omits the 

intermediate display and store steps. This is called the feedback loop. The 

feedback loop has an ar i thmet ic  and  logic u n i t  (ALU) that can perform 48 

different operations on the data from the OFM. The ALU requires two inputs for 

the operations, one being the output from the OFM and the other being the 

512*512"n bit (n = 8 or 16) data in the accumulator.  The precision of the 

accumulator can be 8 or 16 bits depending on whether channel 1 or the channel 1 

and channel 2 pair (channel 1 for low order bits and channel 2 for high order 

bits) are used respectively. 

The application of image analysis procedures such as smoothing, differentials and 

edge enhancement are accomplished by convolving the original image by an odd 

sized mask that represents the task. A convolution is the sum of all the pixels 

under the mask, with each pixel being weighted in the sum by its overlying mask 

value. Each pixel in the original image is rewritten as the resultant of this 



weighted sum when the image pixel is under the mask center. If we have a n-by- 

n image and a m-by-m mask, this means that 

The importance of using an image processing system like the IIS is realized upon 
I 

the comparison with the host computer's capabilities. To perform a convolution on 

an entire image. with a 3*3 mask, takes 11 feedback cycles or 363 milliseconds, 

whereas with "a conventional computer, it would be necessary to perform 2,359,296 

floating point multiplications and 262,144 floating point divisions." [Bryant 831 



Chapter 4 

Image Analysis 

4.1. Taking Pictures 

The photographic process involves finding the subject matter, taking a light 

meter reading to determine the correct exposure and f-stop setting, and then 

exposing the film. It is irrelevant if some areas are recorded incorrectly on the 

film, as long as the picture looks correct. This merely means that we can process 

a picture distorted by filters, incorrect exposure, etc. and still describe what the 

picture contains ie. we can recognize a mountain and a tree no matter what color 

they happen t,o be. 

The problem with taking pictures for a computer to interpret is that the 

computer does not know what 'looking right7 means for a scene. An example could 

be a picture taken of a car's bumper on a sunny day. We know that a car's 

bumper should appear quite shiny and therefore those bright spots in the picture 

are specular reflections. The computer has no conception of what a car's bumper 

is and must formulate its conclusions solely on the intensity values present within 

the picture. If those bright spots in the picture were actually overexposed, their 

digitization would not produce curves that the computer could interpret as 

highlights, but more like step changes in intensity or edges. 



Adjusting the picture-taking process so that the highlights are not overexposed 

may cause the rest of the bumper, or the car to  be underexposed. The realization 

that highlights can be many times brighter than 'white' under the same lighting 

conditions gives some idea of the difficulties when taking pictures of scenes that 

contain highlights. This is particularly important since the number of different 
t 

intensity values that the IIS can quantize is 256. 

The IIS has a video digitizer whose input comes from a black and white 

surveillance camera. To get a RGB image of a scene with the video digitizer and 

a black and white camera requires each color component of the scene to be 

digitized separately through a color filter. The filters used are standard tri-color 

separation filters. There is a problem with using the surveillance camera with color 

filters as frame input since the transmittance of each of the filters is different 

and the camera tube records intensity values into the near infrared. Non- 

equivalent transmittances can be corrected by adjusting the f-stop on the lens, but 

the infrared problem proved to be unmanageable. 

The contribution of the infrared radiation of objects to  the digitized scene 

effectively adds a constant to each one of the color bands, which is like 

whitewashing the displayed RGB color image. Colors are pale and indistinct. An 

infrared absorbing filter can be used in conjunction with the tri-color separation 

filters to  alleviate this problem, but the added absorption of the infrared filter to 

that of the darker blue and green filters causes the scene to be so dark that f- 

stop adjustment to equalize transmittances becomes ineffectual. If the scene is 

digitized in its dark state the colors are all distorted since the camera's gain and 



pedestal hardware tries to correct for this situation. To try and bypass these 

problems color slide film was used in preference to the surveillance camera. 

Color slide film was exposed at various f-stop settings with a constant shutter 

speed so that the best possible picture of the scene could be recorded. The best 

possible picture was so judged based on the minimization of the problems 

associated with highlight scenes. This picture was then digitized into its three 

color bands with a resolution of 25 microns using an Optronics Digitizer with its 

built-in RGB filters. An additional advantage to using color slide film is that the 

scene needs to be recorded only once; whereas, with black and white film or a 

black and white camera, the same scene must be immobilized for three pictures to 

prevent the aliasing of pixels. 

4.2. Differential Operator 

Luminance edge detection has become one of the primary building blocks used 

for image analysis. The luminance edge is caused by local discontinuities in image 

intensity values, and often demarcates the boundaries between objects. The analysis 

of 'edge' images is less complicated than analyzing the objects themselves because 

of the amount of information that must be processed. The principal methodology 

for extracting edge information has been through the use of differential operators. 

First order spatial derivatives are defined as; 

which gives rise to the following scenario (see figure 4-1) for an illumination edge. 



Ideal edge 

First differential 

Figure 4-1: One dimensional directional derivatives 

The problem with using first order differentials is that a threshold must be set, 

above which a pixel is considered an edge element. The setting of the threshold is 

not an elementary chore since it depends upon the noise and range of intensity 

values present within the image. If the threshold is set too low, discontinuities 

caused by noise could be interpreted as edges, whereas if the threshold is set too 

high, smaller valued edges could be eliminated as noise. Marr and Hildreth [Marr 

751 rectified the problem of setting an arbitrary threshold by looking a t  the second 

order differential rather than the first order differential. 

The second order differential has a zero-crossing at the point of the luminance 



discontinuity. A zero-crossing is a term describing the positive to  negative or 

negative to positive transition of neighboring pixels within the second differential 

image. The application of the second differential is direction dependent and thus 

must be applied enough times to coincide with all the possible orientations for 

edges. However, there is an operator, called the Laplacian, which is formed from 

the second order spatial derivatives 

that is non-directional [Pratt 781, ie. it is a scalar. One important point about 

the solution to Laplace's equation, dZZ+  d y y  = 0, is that the intensity cannot have 

a relative maximum or minimum inside the region defined by the solution unless 

the intensity is constant [Powers 791. This proves to be an important factor in 

Marr and Hildreth's edge detection algorithm. 

The formation of highlights takes on a different interpretation than edges. For 

example we have seen that highlights are of a roughly triangular shape (see figure 

4-2), so rather than having a zero-crossing in the second derivative, used by Marr 

and Hildreth to  identify edges, we want to  locate zero-crossings in the first 

derivative.These points correspond to aI /ax=o and aI/ay=O. Since these points 

can be either a maximum or a minimum, care needs to be taken that a peak is 

truly found and not a trough as might be caused by a shadow edge. Therefore a 

second operator must be used in conjunction with the previous operator to  

eliminate this possibility. The following sections describe these two operators. 
*c 



Figure 4-2: Highlight curve and its derivative 

4.3. First Differential Operator 

The existence of noise and other types of intensity singularities have proved to  

be a source of frustration when trying to  analyze images. The use of a smoothing 

operator has been employed to try and eliminate these image irregularities. As 

Marr points out 

The reason why one chooses the Gaussian for this purpose, rather than 
blurring with a cylindrical pill-box function (for instance), is that the 
Gaussian distribution has the desirable characteristic of being smooth and 
localized in both the spatial and frequency domains and, in a strict sense, - 
being the unique distribution that is simultaneously optimally localized in 
both domains. And the reason, in turn, why this should be a desirable 
property of our blurring function is that if the blurring is as smooth as 
possible, both spatially and in the frequency domain, it is least likely to 



introduce any changes that were not present in the original image. [Marr 

821 

The idea, therefore, is to  use a Gaussian operator on the image intensity values to 

eliminate said singularities. 

The form of the smoothing operator is a two dimensional mask of values, 

calculated to  simulate a Gaussian, which can then be convolved with the image. 

The spatial constant u, which denotes the shape of the Gaussian, determines the 

size of the image irregularities that will be removed. Since u defines the shape of 

the Gaussian, it is important that the size of the Gaussian mask be variable with 

u because they are dependent terms (see Appendix B). 

Once the image is smoothed, the procedure is then to differentiate the image 

intensity values by convolving -it with another mask that represents the first 

differential. The simplest mask for doing this is based upon the definition of the 

derivative. 

Considering discrete valued image coordinates, the minimal value for h is 1 and 

the resultant x and y directional derivatives are: 

By looking a t  the corresponding convolution masks in figure 4-3 it is obvious that 

- they are not symmetric and the range of pixels that contribute to  the calculated 

differential is quite small. Since the convolution will write the result of the 

ap$cation of the mask to  the pixel ( x , ~ )  the differential will be biased in the 



Figure 4-3: x & y directional derivative masks 

direction of (x+l,y) and (x,y+l) for the x and y directional derivatives 

respectively. That only two pixels contribute to  the convolution also causes a 

problem since the error in the average over those two pixels can be quite high. 

The two problems are linked because an increase in the number of pixels 

contributing to  the convolution decreases both the error in the average over those 

pixels and the non--symmetrical nature of odd-ordered derivatives (odd-ordered 

derivatives have an even number of terms while even-ordered derivatives have an 

odd number of terms). These difficulties can be corrected by a mathematical 

identity. That is, the derivative of the image that results from convolving the 

original image with the Gaussian is equivalent to  convolving the derivative of the 

Gaussian with the original image. 

If G ( x , y )  i s  the Gauss ian  
and $2 the convolut ion operator. 

and likewise for the y direction. 

This enables flexibility in the range over which the first differential applies 

because the range now becomes a function of cr. We can make the mask as large 

as we like by choosing an appropriate <r which negates the effect of the 

unbalanced symmetry. 



While we may choose to  apply our differential operator using a single value for 

a, that would be as difficult as setting a threshold for the determination of edges. 

Highlights with a wide range of sizes can only be located by using multiple values 

for cr and then ORing all the results together. To ensure that we find zero- 

crossings not caused by singularities due to the choice of cr, the algorithm 

incorporates a phase which finds the zero crossings for two values of a and then 

ANDs those images together. Taking two values of cr relatively close together 

ensures that when we AND the results we do not eliminate 'true' highlights due 

to the scale of our operator. We can then OR a few such CT pairings to cover the 

gamut of highlight sizes. 

However, we must remember that the differential masks are directional (non- 

isotropic) and by using a mask larger than 2-by-1, this means other directions, 

besides just the x and y axes, become relevant. The actual form of the nth order 

generalized derivative is given by: 

n n 
fn(x,y) = Z (k)an~(x ,y)  cosn-'% sinkO [Prewitt"i] 

k = ~  axn-kayk 

and in particular the first order directional differential of the Gaussian, G(x,y), 

will be: 

The consequence of having a non-isotropic differential operator is that it must 

be applied to the image a t  various angles of 8. If, for example, a highlight is 

vertically oriented in the image we would expect a vertical line of zero-crossings 

to result from the application of our operator. If the differential operator is 



computed with 8 equaling 0 degrees (horizontally sensitive) the outcome of its 

convolution with the image would be zero values rather than zero crossings. 

Therefore the first differential Gaussian operator was convolved with the image for 

various angles of 8. 

By looking at the possible orientations of highlights in an image we can 

determine which angles of 8 should be used. Of course we could use the angles 

that correspond to  the N, NE, E, ... NW compass point neighbors of a pixel, but 

to reduce the number of computations necessary to  find the zero-crossings we 

would like to  minimize the number of angles. As mentioned previously, highlights 

oriented perpendicular to that of the differential operator do not give a zero- 

crossing. However, as long as the differential operator's angular orientation is 

within forty-five degrees of the highlight's orientation, zero-crossings will result 

along the line of the highlight (of course this is assuming that the highlight is of 

sufficient size to be recognized as such). But if the differential operator is applied 

a t  every forty-five degrees, we are back to looking a t  each pixel's neighbors for 

all the points of the compass. 

The solution to this dilemma comes from the realization that if the orientations 

of two differential operators are 180" apart, then the only difference between their 

resultant zero-crossings is whether the zero-crossing transition goes from positive to 

negative or negative to  positive. The key factor is that the zero-crossings are 

identical. Therefore we need only apply the differential operator four times with 8 

being 0", 45", 90" and 135" (see figure 4-4 for zero-crossings vs. B).Since it was 

determined that an angle of forty-five degrees between the differential operator's 



Figure 4-4: Zero-crossings vs. angle 

and highlight's orientation was the upper limit for zero-crossing detection, it might 

be assumed that differential masks should only be convolved with the image a t  

two angles, say 0" and 90". 

The differential mask with 90" orientation would find all the zero-crossings for 

highlights between 45"-135" and 255O-315"' similarly, the other mask would find all 

the remaining zero-crossings. While this works for most object's highlights, the 

exception is spherical or planer objects that create circularly symmetric highlights 

when the source is also circularly symmetric. We would expect that the result of 

the convolutions with the image to  give a symmetric blob located at the center of 

the highlight. Instead, due to the symmetrical shape of the highlight, a differential 

mask oriented at any angle 8, will find a line of zero-crossings across the 

highlight oriented at that angle 0. This is because a cross-section of a circularly 
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symmetric highlight in a direction perpendicular to  that of the differential mask's 

looks like a one-dimensional highlight curve. Therefore that pixel is interpreted as 

a zero-crossing element. To alleviate the confusion this might cause when trying 

to  interpret the resulting zero-crossing diagram, it is necessary to regress to using 

four angles of 8. The convolution of the differential mask with the image need 

only be done twice however (for two orthogonal angles) since the other angular 

orientations can de derived from those results. Once we have the zero-crossings 

for the four angles of 9 the algorithm must then combine the results in some 

manner. 

The solution is to  binarize (set zero-cxossings to  one and everything else t o  zero) 

the four zero-crossing images and then logically AND all the six possible image 

pairs together. The six images resulting from the previous ANDing operations are 

then logically ORed together to form the final zero-crossing diagram for the 

original image (see figure 4-5). A precursor to any of the aforementioned logical 

operations is the necessity to blur or widen the zero-crossing chains present in the 

zero-crossing image. This is because the ANDing of two images in which the zero- 

crossing chains are one pixel wide could mistakenly give a zero where there should 

be a one. This occurs because pixels may be diagonally connected in two 

directions and not overlap, even though they represent the same highlight (see 

figure 4-6). The blurring operation is accomplished by convolving the zero-crossing 

image with a 3-by-3 mask so that the zero-crossing chains become three pixels 

wide, thus leaving no holes between diagonally connected pixels. 

Now that we have the final, fattened, zero-crossing image, we must parse it into 



Figure 4-5: Final zero-crossing image 
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Figure 4-6: Non-overlapping highlight chains 

zero-crossings caused by peaks and troughs in intensity. Upon completion of this 

task it will be necessary to undo the effects of blurring the zero-crossing chains 

since we only want a single pixel wide chain representing the center of the 

located highlight. The next section describes the algorithm for determining 

concavity. 



4.4. Concavity Operator 

The zero-crossing image we have thus far contains more information than we 

can make use of. First of all the blurred eero-crossings are too wide and secondly 

the unwanted zero-crossings caused by regions of darkness in the original image 

are still incorporated in the zero-crossing image. The undesirable zero-crossings can 

be removed by looking a t  the concavity of the region in which the zero-crossing 

pixels lie. If it is concave down then the zero-crossing is caused by a highlight; 

otherwise, it is assumed to be caused by a valley. 

Concavity is determined by taking the second derivative with respect to the 

curve and looking a t  the sign of the resultant. In our case this means convolving 

the original image with a second differential mask. The mask could be formed in 

the same manner as the first differential directional mask, that is the 

differentiation is with respect to the Gaussian, but with the exception of using the 

Laplacian rather than the directional derivative so that the convolution need only 

be done once. The result of the convolution is an image composed of positive 

and negative regions demarcating concave up and concave down areas respectively. 

The unfortunate part about this scheme is the need to be accurate in the 

determination of these regions. The integer arithmetic performed by the IIS array 

processor during a convolution causes inaccuracies in the resultant concavity image 

that cannot be overcome. This is illustrated in Appendix C. 

To alleviate the inaccuracies of the IIS, an operator was designed to  do the 

work of the second differential, ie. find the concavity in the neighborhood of a 

pixel. This operator is more effective than the Laplacian of the Gaussian since it 



uses larger mask values overall, and does so in a manner that facilitates a better 

understanding of the resultant image. 

What we are really doing when we convolve the second differential mask with 

an image is determining whether or not a particular pixel has a greater value 

than all of its neighbors. If it does then it must be locally concave down at that 

point. Due to inherent noise in the images, rather than choosing a single central 

pixel to  compare to  its neighbors, it is more desirable to take an average of a 

bounding area around that center pixel. For the same reason an average should be 

taken over the surrounding neighborhood to  be used for comparison to the center 

area. The mask is named neighborhood-average for obvious reasons. 

The neighborhood-average mask is grown by a square tessellation out from the 

mask center, which is zero-valued. If the center of the mask is (0,O) then the 

square perimeter a t  a distance i from (0,O) will have the number of pixels = 

23 x i. So if the central portion of the mask has width centersize, the total 

Icentersize/~) 3 
number of pixels in the center area will be C 

2=1 
2 x i. Likewise, the 

wingsize 3 
surround will have C 

J=I 
2 x [\centersize/2] + spacesize + j ]  , where wingsize is 

the width of the square perimeter surround and spacesize is the width of space 

between the end of the central area and the start of the surround (see figure 

4-7). 

The concavity is determined by the sign of the value in the image produced by 

the convolution of the neighborhood-average mask with the original image. Since 

the surround area comprises more pixels than the center and the values for the 

surround mask are calculated such that their sum with that of the center is zero, 



Figure 4- 7: neighborhood- -average mask. 
centersize=3,wingsiee= l,spacesize=2 

it was desirable to  maximize the values present in the center area. The effect is 

to offset the error caused by small mask values as discussed in Appendix C. 

As was stated previously, we. can determine the concavity by the sign of the 

resultant image value. However, there is more information in this convolution 

image than just the concavity. Underlying the sign of the concavity is the 

gradient of the highlight in the concave down regions. If we were to make 

assumptions about consistency in source lighting and object reflectivity, we could 

use this information to  give a measure of object orientation. This is because the 

maximum value of the gradient will occur when the view and source vectors are 

45" from the surface normal and lie in the same plane as the surface normal (see 

Chapter 2). However, no such assumptions were made for this thesis, and so we 

cannot use the gradient information in such a manner. What we can do is choose 

a number for the gradient that will enable the calculation of what values are 

expected from the convolution and then exclude all resultant pixels from the 

convolution image that have smaller values. This assumes consistency in image 



surfaces over the range of the convolution mask and small image gradients due to 

source location and size. 

If the neighborhood-average mask center (0,O) overlays a highlight peak pixel 

with intensity VAL and we call the gradient SLOPE (assumed constant for the 

calculation), the expression for the resultant image value I V  after the convolution 

is given by: 

spacesize = s 
wings i ze  = w 
centersize  = c 
masks i ze  = centersize  + 2x(spaces i ze  + wingize )  = m 

therefore 

The interesting part about this equation is that it expresses the relative 

difference between the center and surround based on the neighborhood-average 

mask parameters and the image gradient and does not depend on the absolute 

magnitude of the intensities in the image. This equation is particularly useful since 

we can ignore small gradients that could not possibly be interesting as concave 

down sections by setting up a LUT that sets pixels whose value is less than I V  

to zero. Obviously the gradient has to be one or more over the area considered, 

and the value chosen for the gradient was two. 

The choice of two was due to the consideration of the IIS hardware as well as 



the desire to  minimize the number of excluded pixels. Maximum OFM values are 

generated when the neighborhood-mask values are scaled upwards by a factor of 

4, which also helps reduce the error caused by small mask values. The 

neighborhood-average mask used had centersize = 3, spacesize and wingsize = 2. 

Thus the convolution of the neighborhood-average mask with the image will give 
-4 

values between -14 and 1020 (72 x 255 and 255 x 4 ). This means we need two 

channels for the accumulator (channel 1 and 2) for fifteen bits of integer precision 

and a sign bit. Using two channels requires checking the sign bit in channel 2 

and then picking up the relevant data pixels from both channels. To save a lot of 

work it is desirable to circumvent the necessity of examining two channels. This 

was done by only looking at the positive values present in channel 2. Since the 

most significant bit of channel 2's eight bits is the sign bit, this corresponds to 

values between 1 and 127. But the values in channel 2 actually correspond to 

numbers between 28 and 215. Therefore a pixel value of 1 in channel 2 actually 

means 256. The slope multiplicity factor from the previously derived I V  equation 

is 142 for the neighborhood-average mask being used and therefore the SLOPE 

value is equal to 1256/1421 or two. 

Like the first directional differential mask, the choice of an operator with 

constant size and shape will not be optimal for all of the scales inherent in the 

image. The sphere in figure 4-8 does not have the center portion colored as being 

concave down because of the large size of the highlight as compared to  the 

neighborhood-average mask. We would like to find the correct concavity for 

highlights that have a smaller slope than those previously determined while still 

having a value of 1 in channel 2 as being our delimiter. The way to do this is 

called hierarchical discrete correlation or HDC [Burt 83a]. 



' Sr 

' I ,  

Figure 4-8: Concave down sections after one ' - I '  

application of the neighborhood-average mask ., 0 , .  I' 

The basic idea is that the samples that contribute to  the computation are not 

contiguous image pixels. "Rather, they are separated by a distance dl, and this 

distance is doubled with each iteration. As a consequence the HDC process 

generates a sequence of low-pass filtered images in which the bandlimit of each 

image is one octave lower than that of its predecessor." [Burt 83a] HDC uses the 

fact that contiguous encoded information in the image is redundant and any 

operators being used on subsequent images need not examine each pixel. In fact 

this methodology has been applied to storing images in a compact manner by 

reducing this redundancy [Burt 83b] without losing any relevant information. 

The HDC was used as a recursive process with dl being equal to one and two 

(for images containing very large highlights larger values of dl would have to be 



used). This means that a value of two for dl finds the regions for which the 

slope is equal to one or greater since our convolution mask with dl equal to one 

found regions whose slopes were two or greater (one octave difference between the 

two cases). The two images were then ORed together to form one image with 

the complete concavity information for the different sized masks. 

The image of the concave down sections found by the previous algorithm was 

then ANDed with the image containing the zero-crossing chains. The result is an 

image containing highlight chains for the original monochromatic image. There are 

still two other monochromatic images left from the original RGB images to 

process. Color is used to corroborate the data lKanade 81j so that we have a 

'true' highlight identification system. The basis for this assertion is that the three 

color bands must work in conjunction to produce a highlight. I t  may be expected 

that a color edge will have a possibility of being interpreted as a highlight in a 

monochrome image if it is of a ramp shape, but it clearly should not be labeled 

as a highlight, since it is only a stimulus due to a color change in one of the 

three color bands. I t  is therefore necessary to use color to eliminate this confusion. 

This is of course assuming a white light source. 

For example, if the monochrome ramp edge was caused by such a curve in the 

red band, we would see that the other two bands remained passive across the 

edge (see figure 4-9). If we had a 'true' highlight you would see different curves 

(see figure 4-10). After all the RGB images have been processed, their resulting 

highlight zero-crossing images are ANDed together to give the final zero crossing 

diagram for the RGB original image (see figure 4-11). The last image processing 

step is to thin the highlight chains. 
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Figure 4-9: Three band intensities 

Plastic highlight 

Red band 

Blue band ............................... ............................... 
Metallic highlight 

Blue band ............................... ............................... 

Band 

Red band 

Figure 4-10: Metal & plastic highlights 



Figure 4- 11: Final, fattened, zero-crossing image 
r. - '4 

S keletonizat ion 

now have an image that contains zero-crossings that correspond to 

highlights. A quandary arises from the desired reduction of the zero-crossing 

chain's thickness to a one pixel wide chain. This slimming can be achieved by 

skeletonizing each chain. Davies and Plummer [Davies 811 devised a quasi-parallel 

algorithm, with six stages, which accomplished this task with a fair degree of 

efficiency. A modification of their approach was designed to produce a fast 

skeleton of an image's contents using convolutions by the 11s. 

The primary idea of Davies' and Plummer's algorithm is their pixel identification 

and removal schema. They remove a North point if the window in figure 4-12 

appears, with additional constraints supplied by the previous two stages in the 
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Figure 4-12: Point removal window 

algorithm. The modification to  the point removal phases of Davies and Plummer 

requires no previously computed constraints, and reduces the whole algorithm to  

one operation (with the omission of their Clean and Purge stages used for noise 

spur removal). 

The new algorithm consists of setting up a 3 by--3 mask with the constraint 

that every different pixel combination under the mask will give a unique 

numerical answer. This can be accomplished by using a power-of-two mask as 

depicted in figure 4-13. 

Figure 4-13: Power-of-two mask 

Since the center pixel, North in this case, will be removed (set to zero) based on 

the result of the convolution of this mask with the zero-crossing image, it is 

irrelevant if that pixel is a one or a zero to begin with. The removal of the 

center pixel occurs if it is found to be exterior to the desired skeleton, which can 

be seen in figure 4-14. 

The convolution of the power mask with the zero-crossing image will give values 

between 0 and 255 if the zero-crossing image is binary valued. To delete a pixel 
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Figure 4-14: Pixel removal diagrams 

from the zero-crossing image merely requires checking to  see if the corresponding 

pixel value in the convolution image rnat,ches that of one of the values for 

diagrams A through E. There are thirty -four such values. But this is just for 

removal of a North pixel. Subsequent South, West and East pixel deletions occur 

by rotating the convolution mask by the required amount and then doing the 

same convolution and pixel value examination as was done for the North 

orientation. 

The algorithm continues in the N, S, W, E ... convolution pattern until 

completion. The algorithm terminates when it is determined that there are not 

any pixels in the resultant convolution image that have one of the values from 

diagrams A through E. We now have an image comprised of unit-width pixel 

chains that represent the center of the highlights in the original image (see figure 

4-15). Since the determination of these chains was exclusively by convolutions, we 

do not know where these chains are, ie. they are not stored in data structures. 

The next section describes the extraction of the highlight chains from the image 

and the color analysis. 



Figure 4-15: Highlight center chain skeleton in red. 

4.6. Highlight chain extraction 

Having completed all the image processing, we are left with an image that 

contains the highlight center chains, but we do not know where they are. The 

values in this image were binarized (chain pixels equal one and all others are 

zero) so that the algorithm could scan for highlight pixels. 

The scanning for highlight pixels proceeds by first horizontally searching the 

image row by row until one such pixel is found. Once a highlight pixel is 

located the pixel coordinate is put on a stack and that pixel's value set to  zero. 

The eight neighbors of the pixel are then examined to  see if they are highlight 

pixels and, if so, they are in turn put on the stack. The process continues until 

the chain is completely removed from the image and stored in a data structure. 



Horizontal scanning then continues from where it stopped until finding another 

highlight pixel or reaching the bottom of the image. Upon reaching the bottom, 

the process of identifying the locations of highlight chains is completed. The data 

structure containing all these chains is then passed to a procedure for color 

analysis. 

Since we used the RGB color bands to pinpoint highlights by assuming the 

characteristics of plastic and metal highlight curves are known, we can thus 

identify the material that creates the highlight. The plastic's highlight, assuming 

a white source, is of equal size and intensity in all three color bands, whereas the 

metal's rna~rltains the original color bias of the material. What this means is that 

the ratios R / (R tG+B) ,  G/(R+G+B), and B/(R+G+B) for plastic should be 

equal while for metal they should be constant, but not equal, along the highlight 

chain. The procedure for color analysis computes the averages of these ratios and 

decides whether the material is homogeneous, inhomogeneous, or unknown, by the 

value of that average and its standard deviation. 

Since some highlights can be quite small there will only be a few pixels 

contributing to the color ratio calculation. Homogeneity can be more accurately 

determined by increasing the number of pixels that contribute to the color ratios. 

This can be accomplished by examining highlight pixels other than just the central 

ones. The color shift towards white for colored inhomogeneous material, or color 

- constancy for homogeneous material, can be used as corroborating evidence for the 

color ratio average when determining material type. The pixels that need to be 

inspected are those surrounding the highlight center that are part of the highlight 



and orthogonal to the local direction of the highlight chain. Orthogonality is 

important since it determines the direction that will have the correct geometry for 

the color shift. 

In figure 4-16, for example, a color shift does not occur along the major axes of 

the colored plastic pens. 

Figure 4-16: Color shift orthogonal I *  ' 

to highlight direction 

This is because along these axes the surface normals all lie in a plane and have 

the same direction. The only difference between neighboring pixel intensity values 

is due to the change in the incident and emittent angles with respect to the 

surface normal. If the source is far enough away, these values will be constant. 

Orthogonal to these axes the object pixel points will not have a constant value, 

rather the object curvature plays a part in determining the contribution of the 

specular reflection to the total intensity. Since the curvature is changing quite 



rapidly along the orthogonal axes the surface normal at each point is directed in a 

different direction than that of its neighbors. This means that the color shift will 

be  quite pronounced in this direction. 

The next section describes the method for finding the local direction and the 

region surrounding the highlight center. 

4.7. Highlight Growing 

The highlight pixels that surround the previously located highlight center chain 

can  be found by growing outwards from that central chain in a locally orthogonal 

direction. To ascertain which direction is orthogonal, the local direction of the 

highlight center chain is found over a 3-by-3 mask. The growing proceeds while 

the  results of convolving a growing one-dimensional orthogonal mask, with the 

original image, are increasing. 

The previous skeletonizing routine resulted in the highlight center chain being 

only one pixel wide. This means that by convolving the power-of-two mask in 

figure 4-13 with the binary valued highlight chain image (1 for highlight pixels 

a n d  0 otherwise)' and examining the resulting numeric value, we can determine the 

local direction. Using the eight--connected neighbor model there are four basic 

directions; North-South(NS), East-West (EW), Southwest-Northeast (S WNE) and 

Northwest-Southeast(NWSE). For example, if the the convolution result is 17 or 

68, the highlight center chain pixel is tagged with a EW or NS flag respectively. 

Similarly other values demarcate various compass directions. Direction flagging can 

be accomplished very quickly by setting up a different LUT value for each of the 



directions and feeding back the results of the convolution through the LUT to a 

storage channel. An example of SWNE direction flagging can seen in figure 4-17. 

Figure 4-1 7: S WNE direction flagged highlights. 
Flagged highlights are yellow, others are red. 

Choosing the orthogonal direction can be impossible for some of the patterns that 

can arise in a 3-by-3 area, so these pixels receive special treatment. 

These pixels are labeled 'blob' pixels since they are without a definite direction. 

To enable processing they are marked with a flag that states every direction is 

orthogonal, and thus they are processed for each of the four directions. Once all 

the center-chain pixels have been tagged for direction, the orthogonal direction 

highlight growing can proceed. 

Orthogonal to the center-chain pixels, which identifies the peak of the highlight, 

the highlight intensity values decrease until reaching the value of the diffuse 



intensity for that surface. Therefore a one dimensional orthogonal mask is set up 

to  calculate the difference between a highlight center pixel and points on either 

side of it (see figure 4-18 for a horizontal mask). 

Figure 4-18: Starting orthogonal mask 

At each iteration of the algorithm the positive values of the orthogonal mask 

remain where they are with respect to  the highlight center pixel, but the distance 

to the negative values increases by one pixel. This means that a t  each stage this 

calculated value should be increasing if the negative values are overlaying highlight 

pixels. This is because these pixels should be 'downhill' from the last pixels and 

thus have smaller values. The algorithm keeps iterating for each highlight pixel 

point as long as the calculated value is increasing. When the algorithm terminates, 

the current value for the masksize determines the diameter of the highlight in the 

orthogonal direction. Since blob pixels are processed for each direction, the 

current value of the mask size is stored so that it can be compared with the 

subsequent mask size values. The final mask size chosen for blob pixels will be 

the minimum of the directional mask sizes. The blob pixel will then be marked 

with one of the four directions that corresponds to the minimum sized mask. 

Of course highlights with small slopes in the orthogonal direction (slopes less 

than one) would cause the algorithm to terminate prematurely, therefore an 

average is taken over a few pixels for each negative side lobe, to minimize this 

possibility. Taking an average over a few pixels also helps to reduce the effects 

of noise in the image. Since highlights are not usually perfectly symmetric, the 



orthogonal direction is divided into two halves, one half on each side of the 

highlight. The 'new' orthogonal direction convolution proceeds on one half at  a 

time, with the orthogonal mask having only one negative side lobe rather than 

two (see figure 4-19). 

Figure 4- 19: Redefined horizontal, orthogonal masks 

The highlight diameter will be the minimum of the two orthogonal masks used for 

each highlight pixel. 

We now have each highlight-chain pixel tagged with a highlight diameter and a 

direction (see figure 4-20 for a scene with the highlight diameters used to generate 

disks around the highlight cent,er pixels). We can use this information to calculate 

the color ratios across the highlight. An additional use for this information could 

be the marking of the highlight pixels for subsequent removal from the image. 

This would make some image processing or identification tasks easier without these 

confusing illumination effects. 



Figure 4-20: Highlight diameters used 
to generate disks 
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Figure 5 ' - The original image. 
MetallL [ishing reel top and a ball bearing. 

Figure 5-1 is a scene containing metallic objects. There is specular reflection 

from both objects, as well as the black crepe paper that constitutes the 

background. There is an abundance of noise in both the background and objects 

themselves, which, in conjunction with the surface markings, makes the task of 

highlight detection quite difficult. 



Figure 5-2: The highlight image. 
Metallic fishing reel top and a ball bearing. 

Figure 5--2 shows the highlights found from applying the highlight detection 

algorithm to the original image. The detected highlights are shown in red, 

superimposed over the original image. The very large highlight in the central 

portion of the fishing reel was not detected because it has such a small gradient 

across it. The algorithm detects all the highlights regardless of the noise. 



Figure 5-3: The highlight region image. 
Metallic fishing reel top and a ball bearing. 

Figure 5-3 shows the results of using the diameter information, about each 

highlight-center-chain pixel to generate a solid disk about that pixel. The  

detected highlights are shown in red, superimposed over the original image in 

green. The diameter of the highlights are shown by blue disks with their centers 

along the highlight center chain. This figure gives an indication as to  the extent 

of the highlights. However, symmetric disks do not accurately portray the 

directional information that the central highlight pixels had been tagged with 

during the orthogonal direction processing. A more accurate covering method would 

involve joining the points a t  the extremes of the diameters in a closed, smoothed 

curve. Note that highlights are not necessarily convex. 



Figure 5-4: The original image. 
Two christmas ornaments. 

Figure 5-4 contains two spherical; metallic, christmas ornaments. One sphere is 

gold and the other is red. The light sources were a florescent bar light and' an  

incandescent bulb. The bar light source creates large, curved highlights, while the 

bulb creates circularly symmetric ones. Note the 'cross-specula? reflection occurring 

where one ornament creates a highlight on the other by reflecting the light source. 

These types of reflectances would be extremely confusing if highlights were to be 

used to determine source location. The color of cross-specular reflection makes the 

determination of source color as perplexing as that of location. 



Figure 5-5: The highlight image. 
Two christmas ornaments. 

Figure 5-5 shows the highlights detected by the algorithm. The detected 

highlights are shown in turquoise. Figure 5-6 shows the results of highlight region 

growing. The detected highlights are shown in red, superimposed over the original 

image in green. The highlight diameters are shown by blue disks with their 

centers along the highlight center chain. 



Figure 5-6: The highlight region image. 
I Two christmas ornaments. 



Figure 5-7: The original image. 
A blue plastic aerosol cap and a piece of chalk. 

Figure 5-7 is a scene containing one specularly reflecting surface and one 

completely matte reflecting surface. The light source in this case was a florescent 

bar. 



Figure 5-8: The highlight image. 
A blue plastic aerosol cap and a piece of chalk. 

Figure 5-8 shows the highlights found from applying the highlight detection 

algorithm to  the original image. The detected highlights are shown in red, 

superimposed over the original image. The algorithm does not find a highlight for 

the matte piece of chalk. Figure 5-9 shows the results of using the diameter 

information, for each highlight center chain pixel, to generate a solid disk about 

that pixel. The detected highlights are shown in red, superimposed over the 

original image in green. The highlight diameters are shown by blue disks with 

their centers along the highlight center chain. 



Figure 5-9: The highlight region image. 
A blue plastic aerosol cap and a piece of chalk. 

.. 1 .I 



Chapter 6 

Extensions 

All the theory presented thus far depends upon the light being a point source. 

Investigation could 'be done into changing the theory to include extended sources. 

This may aid in solving one of the problems that Forbus found when trying to 

apply the S -operator, that is, the effects on intensity across a surface (plane) due 

to absorption and beam spread. It  may turn out that this problem cannot be 

circumvented in the quest for a highlight detection algorithm, since point sources 

are basically theoretical, and everyday images deal with somewhat extended sources 

anyway. 

Although we may be able to extend the theory to incorporate extended sources, 

how do we know if the highlight is caused by an extended source, or not? It may 

be possible, by using the size and shape of the highlight, to derive this 

information. It  also seems that this information, while constraining the source 

properties, also has to constrain the surface properties as well. For example if we 

have a bar light source specularly reflected by a sphere, there seems no way to 

avoid the fact that it would appear as a curved bar (see figure 6-1). This curved 

highlight, present in our intensity data, therefore tells us something about both 

the light source and surface. Observations have been made that "a localized 

highlight is indicative of an elliptic surface, while a linearly extended one is 



* .  Figure 6-1: Highlights from a bar light source a '  ;' - 

indicative of a cylindrical surface" [Barrow 811, although this is generally only true 

for point light sources. There might be some confusion of course, ie. a curved 

bar light source reflected from a planar surface, but if we can make some general 

assumptions about the types of light sources involved, highlights still appear 

particularl) useful. 

It was hoped at the outset of this thesis to be able to ascertain material types 

by examining the colors of the detected highlights. However, the inability to 

produce colored highlights for colored metallic surfaces underlines the need for 

better color processing techniques. The capability is there for material type 

discrimination, but the current digitization process loses too much information to 

make this possible. 

It seems appropriate to conclude that there is a wide array of applications for 

highlights. 



Chapter 7 

Conclusion 

An algorithm is developed in this thesis which locally processes scenes of various 

objects to determine areas of spectral reflectance or highlights. The algorithm is 

based on the separqbility of the spectral from the diffuse reflectances by 

differential methods. Once the highlight center chains are detected by the 

algorithm, t.hey are expanded to highlight regions by region growing in a direction 

orthogonal to the local orientation of the highlight. At the conclusion of the 

algorithm, the information known about each highlight includes location, size and 

direction. Thus the algorithm provides information that a Computer Vision 

system must make use of when analyzing, or understanding, a scene. In addition, 

the information this algorithm provides can be used as a preprocessor to image 

processing algorithms that rely on predetermined areas of spectral reflectance. It  

can also be used to identify areas of spectral reflectance so that they can be 

removed from the scene. This eliminates illumination peculiarities which might 

confuse laterlother algorithms that do pattern matching. 

The fact that the algorithm is successful using moderately unconstrained images 

is important since it decreases the gap between the world that the computer can 

now understand and the extremely complicated one in which we live. 



Appendix A 

Ullman's Source Detector 

Figure A-1: One Dimensional Intensity Map 



Let Ip be the incident light intensity at a point p. 
r be the reflectance of the surface a t  a point p. 
P 

Ap be the resultant amplitude measurement a t  a point p. 

S, be the slope of the surface s. 
-. mean 'which can be redefined as' 

but r, - rb ro since a surface has 

constant reflectance. 

Let A A o  = Ampb Amp, 

AI, = Ib - Ia 
AIl  = Id - Ic 

but AI, = AI, since this is the 

illumination gradient with respect to the x direction 
and the points on each surface have an equivalent 
A x .  

A A ~ P ,  '0 
therefore - = - 

AAmpl '1 

So '0 

we also have that IA = IB since they are adjacent points 



Appendix B 

Sigma vs. Masksize 
for Gaussian Operators 

By looking a t  the two dimensional Gaussian, in alignment with one of the axes, 

we can get a perspective of how large a mask needs to be to accurately reflect 

the 

and 

For 

choice of a. The two dimensional Gaussian is given by: 

its x axis alignment by: 

positive x greater than 3 . 5 ~  the value of the second expression becomes 

negligible and thus the masksize needs to  be a t  least 7 a  when you also consider 

negative values of x. 

The first directional derivative of the x axis aligned Gaussian becomes: 

2 2 ,qX,~,.)) = -XCOS 8 e-x 

a 
and by letting 8 equal zero we can determine the first differential masksize. Like 

the previously determined masksize, choosing a positive x value of 3 . 5 ~  results in 

a negligible value for the first directional derivative expression as long as a is 

greater than 3. A positive x value of 4 . 5 ~  gives negligible values for cr greater 

than 1.  



Therefore we can see that the masksize is dependent on the choice of cr and is 

different for each differential degree. 



Appendix C 

Convolution inaccuracies the 

The Laplacian of the Gaussian is given by: 

v 2 ~ ( x . y )  = ~ I ~ G ( x , Y )  + a 2 ~ ( x , y )  

ax2 ay2 
but lets assume that the y component is zero, and look a t  the profile of the 

resultant in the x direction. 

By looking a t  the profiles of the' two curves, u = 2 and 4, shown in figure C-1, 

we can see the relative heights of the positive wings and negative center sections. 

If the maximum negative value for these curves was one, then it is easy to see 

that the positive values would be far smaller. The reason why this is important 

when considering the choice of masks to determine concavity is that the sum over 

the whole two-dimensional mask should be zero when applied to an area in the 

image with constant intensity. Unfortunately, this will not be true when this mask 

is used in conjunction with an integer array processor. 

For example, if the maximum positive value was 0.25 for this mask, then the 

result of overlaying a pixel with intensity less than three would be zero, whereas 

the maximum negative value would give -1. Therefore we can see how the 

problem arises. Every time a mask value is convolved with an image intensity 



Figure C-1: Profiles of the Laplacian 
of the Gaussian 



value it is converted to an integer and stored. This could be considered a very 

gross r o u n d ~ f f  error. It  is not that the positive and negative convolution 

values are treated any differently, but only that their relative magnitudes cause 

the results to  be biased towards the larger negative values. This example is a very 

simplistic one since the majority of the positive values are considerably smaller 

than 0.25 which means that even bigger image intensity values give a zero result 

during the convolution. 
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