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ABSTRACT 

As microtechnology becomes more advanced, it is necessary to consider local networks 

with thousands of processors as opposed to the tens that were possible with minicomputers 

alone. As local networks become larger and larger, it is infeasible to store global topological 

information at each processor. In addition to the extra memory required to store this 

information, every time there is a change in the network topology, all the processors would 

need to be notified to update their topological information. This would require a 

considerable amount of time and would affect the mutual consistency of the topological 

information. It is therefore a practical and important problem to design algorithms that are 

fully distributed, which require only local topological knowledge at each processor during 

execution. 

we s+..~.. Luuy ~ W G  graph problems: cycle h d h g  and maxim-an matehhg. A 

synchronous cycles finding algorithms, is presented with message complexity 

p21-1 
O(e(d-1) ), where d is the maximum degree and e is the number of edges in the graph 

for cycles of length k .  An asynchronous algorithm wlth message complexity 0(n2e) ,  where 

n is the number of vertices in the graph, for maximum matching is also presented. The 

algorithm for maximum matching has been implemented and tested on a variety of graphs 

using a distributed network simulator. 
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CHAPTER 1 

INTRODUCTION 

As microtechnology becomes more advanced, it is necessary to consider local networks 

with thousands of processors as opposed to the tens that were possible with minicomputers 

alone. As local networks become larger and larger, it is infeasible to store global topological 

information at each processor. In addition to the extra memory required to store this infor- 

mation, every time there is a change in the network topology, all the processors would need 

to update their topological information. This would require a considerable amount of time 

and would affect the mutual consistency of the topological information. It is therefore a 

practical and important problem to design algorithms that are fully distributed, which 

require only local topological knowledge at each processor during execution. 

Many distributed algorithms have been proposed, but this field of research is still 

young. Some of the problems which have been studied are: finding an extremum, also 

known as electing a leader (Chang & Roberts [ChR79]: Dolev et al. [ D K R ~ ~ ] ;  Peterson 

[Pet82]: Matsushita [Mat83]), determining medians (Rodeh [Rod82]; Santoro & Sidney 

[Sa~82]: Matsushita [Mat83]), ranking (Korach et al. [ K R s ~ ~ ,  ~ ~ ~ 8 4 1 ) .  selection (Shrira et 

al. [ S F R ~ ~ ] ;  Rotem et al. [ R s S ~ ~ ] ) ,  finding minimum-weight spanning trees (Spira [~pi77]: 

Parker & Samadi [ J ~ s s ~ ] :  Gallager et al. [ G H s ~ ~ ] ) ,  knot detection (Misra & Chandy 

[ ~ i ~ 8 2 ] ) ,  sorting (Loui   LOU^^]; Rotem et al. [RSS83]), shortest paths (Chandy & Misra 

[ ~ i ~ 8 2 ] :  Chen [Che82]; Lakhani [Lak84]), and maximum flows (Segall [SegSZ]). These 

Papers use a variety of models of distributed computation. 



The model used here requires no centralized control, admits no shared memory and 

data transfer only on a communication network. Each processor has an associated 

distinct identity, which is known only to itself. IVo processor has a priori knowledge of 

the number of processors in the network. Each processor communicates by exchanging mes- 

sages with its neighbors in the network, and can detect from which neighbor a message is 

received. A link of the communication network is an un-ordered pair of processors on 

which messages can be sent in both directions. Processor x can send a message directly to 

processor y if and only if link (x .y )  is in the network. The computation can be started at 

one or several processors and the result of the computation will be known at one or more 

processors. It is assumed that each processor executes an identical algorithm. Each proces- 

sor is assumed to have an unbounded input buffer in the form of a queue from which the 

message must be removed in FIFO order. If processor x sends a message to its neighbor y. 

the message is appended to the end of y's input queue after a finite, arbitrary delay. These 

assumptions hold for the algorithms presented later unless stated otherwise. 

I .  



CHAPTER 2 

FINDING CYCLES OF A GIVEN LENGTH 

2.1. Definitions and Previous Results 

Let G = ( V J )  be a graph that represents a general communication network, with IVI = n 

and IEl = e. The nodes and edges of the graph correspond to the processors and communica- 

tion links of the network, respectively. We will use these terms interchangeably. A cycle 

is defined to be a path (vil .vi2,  . . ,vik) in which the terminal vertex vik coincides with the 

initial vertex vZl and which does not include any vertex twice. The length of such a cycle is 

the number of edges encountered. 

It is known that finding the longest cycle in a graph is an NP-complete problem 

[GaJ79]. A sequential algorithm to find the shortest cycle in a graph was devised by Itai 

and Rodeh [1tR77] in average time 0(n2) .  Finding a cycle of specified length was found to 

be solvable in polynominal time by Itai & Rodeh [ItR77] and Richards & Liestman [RiL85]. 

Itai & Rodeh present three algorithms to find a cycle of length 3 if one exists. The three 

algorithms are O(n3I2), O(ne), and O(n log2(')) in the worst case. Richards & Liestman 

present algorithms requiring times of O h 2 ) .  0 (n3 ) .  and O(nk+lk5I2) for finding a 

cycle of length 4. 5 ,  2k (for k 3 3) and 2k + 1 (for k 3 3 )  in G ,  respectively, if one exists. 

In this chapter we present distributed algorithms to find a cycle of length k in our net- 

k121-1 
Work G with message complexity ~ ( e ( d - l ) l  ). where d is the maximum vertex degree. 

The algorithms are based on a breadth-first-search and are similar to one of the algorithms 

of Itai & Rodeh [1t~77]. If the network G contains cycles of the specified length ( k ) ,  the 

algorithm may identify more than one such cycle in the network G. A subsequent election 



could be used to select one of the cycles found if exactly one such cycle is required. We do 

not consider this election process when analyzing our algorithms. In this chapter, the word 

cycle will be used to denote a cycle of length k. 

2.2. Preliminary Algorithm for Cycles of Even Length 

In this chapter we make the following additional assumptions: 1) each processor can 

inspect its own input buffer in any order, but messages must be removed in FIFO order. 

2) the network is phase synchronous, that is, each processor can locally determine the start- 

ing time for each phase. 3) each message transmitted in phase i arrives at  beginning of phase 

i+l, and 4) a processor does not know the names of its neighbors but can distinguish among 
"- 

rts incident edges. Initially all processors are active and will initiate messages at the same 

time. In each phase sufficient time is allowed so that every processor receives all the mes- 

sages from its neighbors before the start of the next phase. 

The algorithm is divided into two stages: c --.. -- nd c t. If a 

cycle of the specified length exists in G, members of the cycle found will detect its existence 

at the end of the cycle detection stage. All the members on that cycle will then be notified 

that they are the members of the cycle during the cycle announcement stage. If there is 

more than one cycle in G, the algorithm is not guaranteed to identify all of them but at  

least one cycle will be detected. After a processor detects a cycle, it will stop the cycle 

detection stage locally. At the end of the cycle announcement stage, a processor which has 

not been notified that it is in a cycle knows that the algorithm was terminated, but does not 

know whether it is in any cycle or not. 

The algorithm uses two types of messages: explorer and announcement. An explorer 

is of the form <ORIGINATORJD,PATH.COUNT>, where ORIGINATOR contains the id 

of the originator of the message, ID is a list which contains the identities of those processors 



which the message has visited in sorted order. PATH is a list which contains all the identi- 

ties in ID in the order in which they were visited, and COUNT contains the length of the 

path traversed so far. Initially, each processor sends messages to all of its neighbors with 

its own id as ORIGINATOR. COUNT set to one and both ID and PATH set to nil. These 

messages then traverse the network in a breadth-first manner. In the cycle detection stage. 

- each processor receiving a message of the above format determines whether the message has 

traveled less than k/2 edges and has not been to the current processor before (either as ori- 

ginator or along the path). If so, the processor inserts its own identity into ID (a list main- 

tained in ascending order), appends its own identity to the end of PATH, and increments 

the variable COUNT. The message is then relayed to all its other neighbors. If the message 

has previously visited this processor, the message is discarded. A cycle of length k is found 

when a processor receives two messages which traveled exactly a distance of k/2 with dis- 

joint sets of ID'S and matching ORIGINATOR. If such a cycle exists. the processor sends an 

announcement message to the members of the cycle found. An announcement message is of 

the form <CYCLE.COUNT,INDEX>. where CYCLE is a list which contains the identities 

of the processors in the cycle in the cycle order, COUNT is the distance the message needs to 

travel. INDEX is an index which indicates the position of the id of the most recent sender 

of the message in CYCLE. We use CYCLEINm to represent the I N D E F ~  element in the 

list CYCLE. The processor which detects the cycle can construct CYCLE from the two 

PATH lists, the ORIGINATOR and it own id. There are two ways to perform the cycle 

announcement: 1)  send an announcement message along the cycle with COUNT set to k-1, 

and 2) send two announcement messages around the cycle in opposite directions with 

COUNT set to k/2 and k/2-1, respectively. In each case, a processor which receives an 

announcement message, saves the CYCLE, decrements the value of COUNT, and then relays 

the message to its other neighbor on the cycle if COUNT > 0. The algorithm in the next 

section uses the former method above to ease the explanation and analysis of the algorithm. 



2.2.1. Algorithm 

Step 1 and each iteration of steps 2 and 3 require one synchronous phase. The algo- 

rithm executes steps 1 and 2 during the cycle detection stage and step 3 during the cycle 

announcement stage. The correctness of the algorithm is shown in Theorem 2.1. The cycle 

finding algorithm for processor P is as follows: 

( 1 )  Send the message <P.NIL.NIL.l> to all neighbors. 

(2) For phase = 1 to k /2  DO 
WHILE more incoming messages from the previous phase DO 

take a message <ORIGINATORp.ID,.PATH,.COUNTp > from the input queue 
IF P f ORIGINATOR, and P is not contained in ID, THEN DO 

IF COUNT, < k/2 THEN DO 
insert P into ID, 
append P to PATH, 
send <ORIGINATORp.IDp.PATH,.COUNTp+ 1 > to all other neighbors 
OD 

ELSE IF COUNT, = k /2  THEN DO 
IF there is a message <ORIGINATORq.IDq.PATH,.COUNTq> in the input 

queue. s.t. 
1. ORIGINATOR, = ORIGINATOR,. 
2. ID, does not contain P, 
3. COUNT, = k/2. and 
4. ID, and IC ,  are disjoint T H E N  DO 

set up the CYCLE list as follows: 
i) starting with P. 
ii) followed by the ids in PATH,, 
iii) then ORIGINATOR,, and 
iv) followed by the ids in PATH, in reverse order. 

empty the input buffer 
send <CYCLE.k-1.1> to CYCLE* 
OD 

OD 
OD 

OD 
OD. 

(3) For phase = 1 to k-1 DO 
WHILE more incoming messages from the previous phase DO 

take a message <CYCLE.COUNT.INDEX> from the input queue 
save the CYCLE 
IF COUNT > 1 and P = CYCLEINDEx-l THEN 

send < CYCLE.COUNT-1 .INDEX-1 > to CYCLEINDEX.--2 
ELSE IF COUNT > 1 and P = CYCLEINDEx+I THEN 

send < CYCLE.COUNT-1 ,INDEX+ 1 > to CYCLEINDEX.+P 
OD 

OD. 



Theorem 2.1: If there is a cycle of length k in the network, the algorithm will find 

it. 

Proof: Assume that a cycle of length k exists. Each processor will initiate mes- 

sages containing its own ID, and relay messages received to each of the other neigh- 

bors after incrementing COUNT. The messages initiated by the members of the cy- 

cle will travel around the cycle in both directions. Each pair of them will meet 

half way around the cycle and cause the termination of the cycle detection stage. 

In this case, an announcement message is formed an being relayed around the cycle 

found until COUNT reached 0. If no such cycle exists, each message will be re- 

layed until COUNT exceeds k/2 .  At this point, the message will be ignored. The 

cycle detection stage terminates when all of the messages COUNTs exceed k/2.  The 

cycle announcement stage terminates when all of the message COUNTs exceed k-1. 

0 

2.2.2. Message Complexity 

In phase 0 of the cycle detection stage, all processors initiate their messages (step 1). 

During the other phases of the cycle detection stage, processors analyze each message in the 

input buffer (from the previous phase) and relay the message to each of the other neighbors 

(at most d-1) after incrementing the variable COUNT. During each phase of the cycle 

announcement stage, processors analyze each message in the input buffer and relay the mes- 

sage to one neighbor after changing the variable COUNT and INDEX. Since each processor 

detects at  most one cycle, at  most n announcement messages are sent in each phase of this 

stage. Each of these messages will be forwarded to at  most k-1 vertices. 

Let e be the number of links and d be the maximum degree of the network. The 

number of messages sent in the first stage is as follows: 



phase 0 : 
phase 1 : 
phase 2 : 

2e messages sent, 
< 2e(d-1) messages sent. 
< 2e(d-112 messages sent, 

phase k/2-1 : < 2e(d-l)k12-1 messages sent. 

Notice that, phase k / 2  of the cycle detection stage coincides with the phase 0 of the cycle 

announcement stage. The number of messages sent in each phase of the second stage is as 

follows: 

phase 0 : 
phase 1 : 

< n messages sent, 
6 n messages sent, 

phase k-2 : < n messages sent. 

Therefore, the total number of messages sent is 

' / 

2.2.3. Time complexity for local processing 

We use the term local processing time to denote the worst case time complexity of a 

single processor in the network. The local time complexity of the algorithm during the 

cycle detection stage is dominated by the testing parts in various phases. The time required 

to transmit the initial messages is at  most d units of time. During phase i, for i = 1 to k / 2  - 

2 .  each message received will be checked for the distance it has traveled and log2(i) com- 

parisons are used to determine whether it has visited the current processor before. Each 

valid message is forwarded to at  most d-1 other processors. The time required during 

these phases is at  most 



r=k12-2 
6 8e(d-1)'"-~ + 4e(d-1)~'~- '  + 4e log(i)(d-1)'.  

r=l 

SO the time required in the last phase is at  most 4ke2(d-l)k-2 + 4e210g(k)(d-l)k-2 + 

8e2(d-l)k-2. In phase k/2  - 1, each message received requires at  most 

2e(d-1)k'2-1(k + log(k) + 2 )  comparisons to go through the messages in the input buffer. 

During the cycle announcement stage, the total local time complexity is a t  most 2nk. Thus. 

the total local processing time is 0(ke2(d-l)k-2).  

2.3. An Improved Algorithm for Cycles of Even Length 

In the above algorithm. every cycle of length k is discovered by k processors. Each of 

them sends two messages half way around the cycle. Our strategy is to t ry  to eliminate 

this redundancy by allowing only the messages initiated by the processor with the smallest 

ID on the cycle to survive. This can be achieved, in part, if each processor relays to its 

neighbors only those messages that contain an ORIGINATOR smaller than its own. 

2.3.1. Algorithm 

( 1 )  Send the message <P,NIL.NIL.l> to all neighbors. 

( 2 )  For phase = 1 to k / 2  DO 
WHILE more incoming messages from the previous phase DO 

take a message <ORIGINATORp.ID,.PATHp.COUNT,> from the input queue 
IF P f ORIGINATOR, and P is not contained in ID, THEN DO 

IF COUNT, < k / 2  THEN DO 
IF P is > the ORIGINATOR, THEN DO 

insert P into IDp 
append P to PATH, 
send < ORIGINATORp.IDp.PATHpPCOUNT,+l > to all other neighbors 
OD 

DO 
ELSE IF COUNT, = k/2  THEN DO 

IF there is a message < ORIGINATORq.lrD,.PATH, .COUNTq > in the input 
queue, s.t. 

1. ORIGINATOR, = ORIGINATOR,, 
2. IDq does not contain P. 
3. COUNT, = k / 2 ,  and 



4 .  ID, and ID, are disjoint THEN DO 
set up the CYCLE list as follows: 

i) starting with P, 
ii) followed by the ids in PATH,. 
iii) then ORIGINATOR,, and 
iv) followed by the ids in PATH, in reverse order. 

empty the input buffer 
send <CYCLE.k-1.1 > to CYCLE2 
OD 

OD 
OD 

OD 
OD. 

(3) For phase = 1 to k-1 DO 
WHILE more incoming messages from the previous phase DO 

take a message < CYCLE.COUNT.iNDEX > from the input queue 
save the CYCLE 
IF COUNT > 1 and P = CYCLEINDEX-l THEN 

send < CYCLE.COUNT-1 .INDEX-1 > to CYCLEINDEX--2 
ELSE IF COUNT > 1 and P = CYCl%INDEX+l THEN 

send < CYCLE.COUNT-1 .INDEX+ 1 > to CYCLEINDEX+2 
OD 

OD. 

Again step 1 and each iteration of steps 2 and 3 of the modified algorithm require one syn- 

chronous phase. 

2.3.2. Correctness of the modified algorithm 

Before analyzing the message complexity of the modified algorithm we present the fol- 

lowing lemmas which show that the modified algorithm does find such a cycle if one exists. 

Lemma 2.2: If there is a cycle of length k, at  least one processor will discover its 

existence. 

Proof: Assume there exists a cycle C = ( C ~ . C ~ .  - - .ck). and that processor cl has the 

smallest ID in C .  The messages initiated by c ,  will be relayed by the other proces- 

sors of C since cl is the smallest identity among them, and will reach ck.2. 



Lemma 2.3: If a cycle of length k exists, at  most two pairs of messages travel com- 

pletely around the cycle. 

Proof: By Lemma 2.2 ,  there is at least one such pair of messages. Let us assume 

that c, has the smallest and ci the second smallest id in C. Any message initiated 

by any other processor will be stopped by either cl or ci if it reaches them. The 

messages initiated by ci will only be stopped by cl. If i=k /2 ,  ci's messages will 

reach cl and c,'s messages will reach ci. 

0 

2.3.3. Message Complexity 

In phase 0 of the cycle detection stage, all processors initiate messages. During the 

other phases of the cycle detection stage, processors analyze and may relay the messages 

received. Notice that two messages sent between two incident processors during the first 

phase will only have one survivor as we assumed all the ids are distinct. The number of 

messages sent in each phase of the first stage is as follows: 

phase 0 : 
phase 1 : 
phase 2 : 

2e messages sent. 
< e(d-1) messages sent, 
< e(d-112 messages sent, 

phase k/2-1 : < e(d-1 )k12-1 messages sent. 

The number of messages sent during the cycle announcement stage is at most n(k-1). 

Therefore the total number of messages sent is 



During the notification stage at most 2k announcement messages will travel around 

each cycle found instead of k2 in the preliminary algorithm. This is a significant improve- 

Illent in the number of message sent. 

2.3.4. Local processing time 

As for the previous algorithm, the local processing time in each phase depends on the 

number of messages sent during the previous phase. The reduction of the number of mes- 

sages sent substantially reduces the overall processing time. However, some additional 

local processing results from the necessity of determining whether P is smaller than the 

ORIGINATOR of the message received. Thus the improved algorithm reduces both the 

number of messages sent and local processing time. 

2.4. An Algorithm for Cycles of Odd Length 

There are two obvious ways to extend the algorithm of Section 2.2 to work for odd 

length cycles: I )  finding two disjoint paths of length lk/21 and lk/21, respectively or 2 )  build 

two length lk/21 disjoint paths from endpoints of an edge. We choose the latter method 

- 
which requires fewer messages in the average case. After we present a simple version of the 

algorithm, we will show how to reduce the number of messages sent. 

To find a cycle of odd length, every edge becomes a "core" of a search. The ID of a 

core is the ordered set of ids of the two incident nodes. Messages containing the core id will 

be initiated by both nodes. The algorithm of Section 2.2 can be modified easily by adding a 

preliminary phase in which every processor informs his neighbors of his own id. Each pro- 

cessor then forms a list of cores to which it belongs and then begins the cycle detection 

stage replacing "originator id" with "core id". The resulting algorithm requires 2de initial 

messages rather than the 2e message used in Section 2.2. 



To reduce the number of messages sent, we observe that all of the initial messages for 

any node sent along any one of its edges propagate along the same path until they reach the 

specified lengths. We may combine these messages into a single message with many core 

ids, and proceed as in Section 2.2. If such a message arrives at a node that has been visited 

before (either as originator or along the path), discard the message. Otherwise, remove the 

id of the current node from the core ids if it is there. Two messages determine a cycle of 

length k if they have a common core id, all of the intermediate ids encountered are distinct. 

and the COUNT value are both lk/2J. Each processor in the network initiates only one mes- 

sage to each neighbor and then relays messages received. This results in an algorithm with 

2e initial messages. 

Further improvement can be made by applying the technique of Section 2.3. This does 

not guarantee a substantial reduction in the number of messages sent as it did in Section 2.3 

but the total number of bits sent in all the messages can be reduced. We define the current 

"core id" of a processor to be its own 15 together with the I D  of the neighbor that sent it 

the current message. A core id (ah) is said to be smaller than core id (c.d) if and only if 

a <c  or if a=c and b<d. Recall that a C b  and c<d.  In this way, a processor only relays 

those messages that have a core id smaller than its own current core id. If a message con- 

tains more than one core id, we remove the IDS from CORE whose corresponding core id is 

greater than the current core id. The message is then updated and relayed to all the other 

neighbors if the CORE field of the message is not empty. Otherwise, the message is dis- 

carded. 

The algorithm uses messages with five fields: ORIGINATOR. CORE. ID. PATH and 

COUNT. The ORIGINATOR contains the id of the originator of the message. CORE is a list 

which contains the IDS of the originator's neighbors: each one of them together with the 

originator corresponds to a core id. I D  is a sorted list which contains the identities of those 



processors which the message has visited. PATH is a list which contains the identities in ID 

in the order which they were visited. COUNT contains the length of the path traversed and 

is initialized to one. The algorithm is similar to the algorithm of the previous section, with 

the conditions for relaying a message modified. When a message arrives at  node P: 1 )  If P is 

contained in the ID field of the message, delete the message. 2) If P is the originator of the 

- message. delete the message. 3) If P is contained in CORE and is not the only id in CORE. 

remove it from the CORE, insert the id of P into ID,  and append the id P to PATH. 4) If P 

is the only id in CORE, delete the message. If the message has not been deleted, increment 

COUNT. If COUNT < lk/21. send the message to all neighbors other than the neighbor from 

which it was received. If two messages have traveled exactly [k/2] edges, the ORIGINATOR 

of each message is in the CORE of the other message and the two ID fields are disjoint, then 

a cycle of length k has been found. The cycle found contains the two ORIGINATORS and 

all the ids in the PATH fields. The members of the cycle can now be informed as in the 

previous algorithms. 

2.4.1. Algorithm 

The algorithm for processor P is as follows: 

( 1 )  Send the message < P> to all the neighbors. 

( 2 )  Sort the ids received from neighbors and store them in CORE. Send the message 
< P.CORE.NIL.NIL.l> to all neighbors. 

(3) For phase = 1 to k / 2  DO 
While more incoming message from the previous phase DO 

take a message < ORIGINATOR,.CORE,,IDp.PATH,.COUNTp > from the input 
queue 

If P f ORIGINATOR, and P is not contained in ID, Then DO 
If COUNTP < [k/21 Then DO 

If the size of CORE,-P 3 1 Then 
remove P from CORE, 
insert P into ID, 
append P to PATH, 
For id E CORE, DO 

If the core id corresponding to id > the current core id Then 



remove id from COREp 
OD 
If CORE, # N I L  Then 

send < ORIGINATORp.CORE,,.IDp,PATHp.COUNTp+ 1 > to all other 
neighbors 

OD 
OD 

Else If COUNT, = 1k/21 Then 

If there has a message <ORIGINATOR,.CORE,.ID,.PATH,.COUNT, > is in 
the input queue, s.t. 
1. ORIGINATORp is in CORE,. 
2. ORIGINATOR, is in CORE,. 
3. ID, does not contain P. 
4. both COUNT, and COUNT, = IkI21, and 
5. ID, & ID, are disjoint THEN DO 

set up the CYCLE list as follows: 
i) starting with P, 
ii) followed by the ids in PATHp, 
iii) then ORIGINATOR,, and 
iv) followed by the ids in P A T 4  in reverse order. 

empty the input buffer 
send <CYCLE.k-1.1 > to CYCLE2 
OD 

OD 
OD 

OD. 

(4) For phase = 1, to k-1 DO 
WHILE more 'incoming messages from the previous phase DO 

take a message <CYCLE.COUNT.INDEX> from the input queue 
save the CYCLE 
IF COUNT > 1 and P = CYCLEINDEX-I THEN 

send < CYCLE.COUNT-1 .INDEX-1 > to CYCLEIEDEX.-2 . 
ELSE IF COUNT > 1 and P = CYCLEINDEX+l T H E N  

send < CYCLE,COUNT-1 .INDEX+ 1 > to CYCLEINDEX'+Z 
OD 

OD. 

Note that step 1 and each iteration of steps 2 and 3 require one synchronous phase as in pre- 

vious sections. 

2.4.2. Message Complexity 

In the preliminary phase, each processor sends its id to its neighbors. After collecting 

all of the neighbors' ids, each processor initiates messages in the next phase. During the 



later phases of the first stage, processors analyze, modify and relay the messages received. 

The number of messages sent in each phase of the first stage is as follows: 

phase 0 : 
phase 1 : 
phase 2 : 
phase 3 : 

phase lk/2j : 

2e messages, 
2e messages, 
6 2e(d-1) messages, 
< 2e(d-1 )2 messages, 

k12]-1 6 2 e (d-1) messages. 

Since at most n(k-1) announcement messages sent during the second stage. Therefore the 

total number of messages sent is at most 

25.  Conclusion 

The synchronous algorithms derived in this chapter successfully detect a cycle if one 

exists, and terminate even if no such cycle exists. The message complexity for the algo- 

I 1  rithms to find cycles of length k for both even and odd k is O(ed ' I 2  -') with local processing 

time 0(ke2dk-=). A straightforward sequential implementation of our algorithm would use 

time 0(ndkI2+'). Although it is desirable to have an asynchronous algorithm for this prob- 

lem, we have been unable to devise such an algorithm. The main difficulty appears to be 

terminating the algorithm when no such cycle exists. 



CHAPTER 3 

MAXIMUM MATCHING FOR GENERAL GRAPHS 

3.1. Introduction 

Let G = ( V J )  be a simple connected graph with IVI = n and El= e .  The graph represents 

a communication network. where the nodes and edges of the graph correspond to the pro- 

cessors and communication links of the network respectively. A subset M of E is called a 

matching in G if no two edges of M are adjacent in G. If an edge is contained in M ,  then it 

is said to be matched, otherwise it is said to be unmatched. A maximum matching M is a 

matching whose cardinality is maximum. A node is free or unmatched if all the edges 

incident on it are unmatched, and matched otherwise. An augmenting path is a simple 

path between two free nodes whose edges are alternately in ,34 and not in M .  

The problem of finding sequential algorithms to find a maximum matching has long 

been studied. In 1957 Berge [Ber57] proved that a matching is maximum if and only if the 

graph has no augmenting paths. Since then many researchers have proposed algorithms for 

the problem [EvK75, Gab72. HoK73. MiV801 . Currently, the best algorithm has a running 

time of O(nl'-' e )  for general graphs. 

In this chapter, we present an asynchronous distributed algorithm to find a maximum 

matching in the network G using 0(n2 e )  messages. The nodes do not need to know the 

. topology of the graph, the maximum degree or the size of the graph. Although the algo- 

rithm is not fully decentralized, the central control processor will be altered from time to 

time throughout the execution of the MATCHING algorithm. 



The algorithm presented in this chapter is a distributed version of Witzgall & Zahn's 

algorithm [W~Z~S] ,  which is a modification of Edmonds' algorithm [~dm65]. Both of these 

algorithms search for outer vertices, although their definitions of outer vertex are slightly 

different. Edmonds defined outer vertices to be those vertices which are free (wish respect 

to a maximum matching). Witzgall & Zahn observed that the notion of outer vertex is 

closely related to accessibility by simple alternating paths. They defined a vertex v to be an 

outer vertex rooted at some vertex r ,  if r is an unmatched vertex and there is a simple 

alternating path of even length from r to v .  Otherwise, v is an inner vertex. The latter 

definition is used throughout this chapter. Witzgall & Zahn restated Berge's theorem as: A 

matching is maximum if and only if no free vertex is adjacent to an outer vertex which is 

rooted at  a free vertex different from the vertex r. This statement is true for all matchings 

in a graph [Wi~65]. 

1 
00-- 

(root ) --- unmatched 

Figure 3.1: A matched graph G and its directed graph DG. 



Witzgall & Zahn modified Edmonds' algorithm with the introduction of bi-edges and 

the notion of predecessors. Observe that an alternating path between an unmatched vertex 

and an outer vertex can be broken into segments of length two. These segments consist of 

an unmatched edge followed by a matched edge. Such a segment is called a bi-edge. A bi- 

edge from u to v. (u,m(v).v), indicates a sense of direction from u to v ,  where m(v) is used to 

denote the match mate of v .  For any bi-edge (u.m(v),v), u is called the predecessor of v.  We 

use p(v )  to denote the predecessor of v.  Given a matched graph G, we can construct a 

directed graph DG with the same vertex set by replacing each bi-edge from u to v in G with 

a directed edge from u to v in DG (as in figure 3.1). Thus, each path in DG corresponds to 

an alternating path of even length in G and vice versa. However, a simple path in DG may 

yield a non-simple alternating path in G. That is, the alternating path in G may reuse some 

edges. We therefore call a directed path in DG legal if it corresponds to a simple alternating 

path in G. Witzgall & Zahn proved the following theorem: 

Theorem 3.1: Let DG be the graph of hi-edges of a matched graph G. let r be an ar- 

bitrary vertex of DG and denote by a the set of all vertices of DG that are legally 

accessible from r. Then DG contains as a subgraph a tree T which is rooted at r. 

such that 1) T has SZ as its vertex set, and 2) every simple path in T that joins a 

vertex v from the root r is legal. 

Since every matched graph G is in one-to-one correspondence with such a directed graph 

ffi, we do not actually need to construct the directed graph DG in order to construct the 

tree T. By labeling the vertices of G as inner and outer vertices with respect to a free vertex 

r and carefully maintaining the predecessor relation as in figure 3.2, we can obtain the same 

effect as converting G into its DG (w.r.t vertex r )  in order to construct the tree T. Witzgall 

& Zahn termed such a labeling of graph G a labeled subgraph, denoted as ( A , a  J.p), where 

A is a subgraph of G. The vertices of A are labeled either outer or inner, sets and 1, 
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Figure 3.2: a) A labeled graph A and b) a particular tree T of the graph. 

respectively. The two sets are disjoint. The last component p is a single-valued function p: 

a-{r} + 42 called the predecessor function. Witzgall & Zahn proved that all the outer ver- 

tices in A are legally accessible from the root vertex. Thus, the path for any outer vertex v 

in A towards the root of A in the predecessor relation can be represented by a simple alter- 

nating path as (v.m(v).p(v~.mp(v>.$(v).m$(v). - - . ,T(v)=r). We write mp(v) for m(p(v)) 

and $(v) for p(p(v)) and so on. We use the term ancestor of v to mean any vertex pi(v) for 

i2 1. A path formed by the predecessor relation is called a back-tracing path (abbreviated 

btp below). 



Witzgall & Zahn presented their algorithm as two sub-algorithms: LL and MM. The 

sub-algorithm LL constructs the labeled subgraph (A,O. l .p )  with respect to a free vertex. 

The sub-algorithm MM uses the result of LL (a labeled subgraph with a free vertex, other 

than the root, that is adjacent to an outer vertex) to construct a maximum matching. LL is 

divided into two steps: the forward step and the blossom step. These two steps alternate to 

label the matched graph until either a potential augmenting path is found or no augmenting 

path can be found. For the latter case, LL is repeated by using another free vertex that has 

not be examined before. The two sub-algorithms repeat the labeling and updating of the 

matching until a matching with the maximum cardinality is found or until all the free ver- 

tices have been given the chance to search for an augmenting path. 

The forward step of LL enlarges the labeled subgraph if u is an outer vertex with 

unexplored neighbor x (neither an outer nor an inner vertex) and the edge (x.u) is matched. 

These three vertices form the new bi-edge (v.x.u). The labeled subgraph (A.R.1.p) is 

enlarged by setting A := _A C) !v.x) V h), C! := 9 L' v. I := I ?I x, p(t) := p:z) for z E a, 

and p(z) := u for z = v .  

The blossom step enlarges the subgraph if there is an edge (s,t) between two outer ver- 

tices s and t which is not in the current labeled subgraph. These two vertices have a t  least 

one common ancestor in the predecessor relation. A blossom in a matched graph is defined 

to be an odd circuit with one more unmatched edge than the matched edges. Witzgall & 

Zahn's blossom step includes a special structure (figure 3.3) as a blossom, and handles it in 

the same way as other regular blossoms as defined above. The base vertex for such vertices 

s and t is defined to be their nearest common ancestor with respect to the back-tracing paths 

of s and t .  The back-tracing paths from s and t to their common ancestor x can be 

represented by a sequence of vertices in terms of s and t .  Without loss of generality, the 

btp from s to x can be represented by (~=p~(s) .m(s) .~(s ) ,  . . ,mpk-l(s).x=pk(s)). The ver- 
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Figure 3.3: A special case for the blossom step. 

tices of the form pi(s) for i > / O  are said to be even or outer w.ith respect to the btp of s. 

The others are said to be odd or inner with respect to the btp of s .  Consider the vertices 

which are inner with respect to the btp of t and which lie between x and t on the btp of t. 

We define the blossom splitting vertex of s, denoted b(s), to be the inner vertex with respect 

to the btp of t closest to x on the btp of t which does not have a predecessor (if such a ver- 

tex exists). The vertices between t and b ( ~ )  (inclusive) which are odd with respect to the 

btp of t will be added to the new subgraph A. The blossom step makes s the ancestor of all 

of the inner vertices between t and b(s) (including b(s)) on the btp of t. This is done by 

changing the predecessor of each inner vertex on this path to be the next inner vertex in the 

direction of t. The vertex s becomes the predecessor of m(t) (unless there was no vertex 

b(s)). The inner vertices on the btp of s are treated similarly with t becoming their ances- 



tor. All those vertices involved are removed from the set I and added to the set a. 

The distributed algorithm is divided into three phases. The first phase of the algo- 

rithm elects an initial control processor. During the second phase, this processor conducts a 

depth-first search (abbreviated DFS below) of the network and an initial matching is 

formed from the DFS tree. The last phase of the algorithm is further divided into two 

sub-phases, which will be repeated until a maximum matching is found, i.e. until no aug- 

menting path exists. The first sub-phase elects a control processor among all free processors 

that have not been elected before. During the second sub-phase the elected processor super- 

vises a search for an augmenting path, and updates the existing matching if any augmenting 

path is found. We will show that the free processors with degree one can be excluded from 

these elections. 

Throughout this chapter, when we refer to the size of a message, we will temporarily 

ignore the bits that are required to represent the message type. The additional bits required 

to  distinguish the message types will be cmsidered i:: the conchsioii (see Lemma 3.10). 

3.2. The First Phase Of The Matching Algorithm 

The first phase is based on the Multi-source Biggest Finder algorithm of Chang 

[Cha79]. We first negate the IDS of leaf nodes (degree one processors), so that they won't 

be elected. By doing this, the root of any subtree in a DFS tree (assuming more than 2 

nodes) is a non-leaf node. In this way we maximize the number of leaf nodes in the initial 

matching because all leaf nodes have the highest priority to be matched with their parents 

in a DFS tree. This will be explained in more detail in the next section. The purpose of 

phase one is to choose a control processor to carry out the DFS of the network. Allowing 

only non-leaf nodes to be elected (to maximize the number of leaf nodes in the initial 

matching) will not affect the end result of the algorithm as shown in Lemma 3.2 below. 



Any processor may initiate the MATCHING algorithm. A sleeping or inactive processor 

will wake up when a message arrives and will then join the others in the election. The 

number of messages in this phase is no more than 4ne. Each message sent during this phase 

carries at  most one field of information, the ID of the initiator, that can be represented by a 

string of log2(n) bits. Therefore the total number of bits sent during this phase is no more 

than 4nelog2(n). 

We can reduce the number of messages by allowing only the processors that awakened 

before a message arrived to be candidate in this election. To ensure that the controller of 

the DFS is a non-leaf node, if the elected node is a leaf node we make its neighbor the con- 

troller. In the worst case, all processors initiate the election and the number of messages 

does not change. 

Lemma 3.2: Each vertex of degree one is in some maximum matching. 

Proof: By way of contradiction, assume that this is not  the case. TG avoid triviali- 

ties, we assume that there are at least three vertices. Consider a maximum match- 

ing M and an unmatched vertex u of degree one. Its neighbor v must be matched to 

some other vertex w (otherwise M is not a maximum matching). Edge uv can re- 

place edge w in the matching M to form a matching M' with same cardinality. 

0 

3.3. The Second Phase of The Matching Algorithm 

The second phase is to create a DFS tree and construct an initial matching among the 

processors based on the structure of that tree (see figure 3.4 for an example). The elected 

processor from the first phase begins the DFS by sending out an explorer to one of its neigh- 

bors. The explorer is relayed to the other processors in the network in a depth-first 



manner. When a node receives its first explorer and it declares the sender to be its parent 

node. An explorer reaching a terminus (a node of degree one or a node previously visited in 

this phase) causes a reply (an echo to the parent or a reject message to the sender). Both the 

sender and the receiver of an explorer message mark the edge as scanned and that edge will 

not be used for transmitting explorer messages again. The parent node or sender then tries 

to explore other neighbors and returns an echo to its parent when no unexplored neighbors 

remain. The process is repeated until the root (the controller) has explored all of its neigh- 

bors. Only the control processor knows when the second phase terminates and signals the 

start of the next phase by initiating an election command. Each processor keeps track of 

some local information, such as its parent (the neighbor that first sent it an explorer) and 

its match-mate (the processor's mate in the matching). 

Seven message types are used to construct the initial matching: explorer, echo-leaf. 

echo-candidate, echo-eliminate, echo-reject. confirm-match and eche-ccnfirm. We may clas- 

sify these message types into three groups: explorer messages, echo messages and confirm 

messages. Explorer messages are used in the forward sweep of the DFS. An explorer is 

relayed throughout the network until terminated by an appropriate response message. The 

echo messages are replies to an explorer. The first three types of echo messages convey 

information to the parent about the initial matching on the subtree rooted at the sender of 

these echo messages. A processor will not send these echo messages to its parent until all of 

its neighbors have been explored and have replied. The echo-leaf message indicates that it is 

a preferred match-mate for the parent. The echo-candidate message indicates that it is a 

possible match-mate for the parent. The echo-eliminate message indicates that it is already 

matched and can be ignored. A parent processor makes a local matching decision based on 

the responses sent from all of its children. A parent processor will t ry  to match with an 
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Figure 3 A  A DFS tree and an initial matching. 

unmatched child before it permits matching with its own parent (by sending the request 

message echo-candidate to the parent). If there is more than one child, it will first t ry  to 

match with a leaf, if any. Otherwise it matches with any unmatched child. Requests of 

the same type are chosen arbitrarily. When a processor decides to match with one of its 

children, it sends a confirm-match to the child and waits for its reply. After receiving the 

reply,.it returns the message echo-eliminate to its parent. The echo-reject message is sent 

by a previously visited processor in response to an explorer. The confirm-match message is 

sent from a parent node to its child to inform the child that it is being chosen as match- 

mate. The echo-confirm message is a reply to the confirm-match message, which is used to 

ensure that both nodes are aware that they are matched before the next election phase 

starts. 



3.3.1. Algorithm for phase 2 

The controller starts the DFS traversal by sending an explorer to one of its neighbors. 

The controller then waits for an echo from that neighbor. After an echo is received. 

the process is repeated with the remaining unexplored neighbors. This phase ter- 

minates when the last echo has arrived. 

When an explorer arrives at  a node of degree one, the node marks the edge scanned 

and 'echo-leaf' is returned. 

When an explorer arrives at  a previously visited node, the node marks the edge 

scanned and 'echo-reject' is returned. 

When an explorer comes to a node p of degree greater than one for the first time, the 

node from which it arrived is marked as parent and scanned. The explorer is relayed 

to another unscanned neighbor and the processor waits for an echo from the neighbor. 

When the echo is received, the process is repeated with the remaining neighbors. After 

all the neighbors have been explored, an echo is sent to the parent of the node. The 

content of the echo depends on the replies received by p: 

1. if all replies are 'echo-reject', return 'echo-candidate', 

2. if all replies are 'echo-eliminate', return 'echo-candidate', 

3. if at  least one echo of the form 'echo-leaf' is received, choose one of these replies 

arbitrarily, mark the corresponding neighbor as match-mate, send 'confirm-match' 

to that neighbor and return 'echo-eliminate' after receiving an 'echo-confirm' back 

from that neighbor. 

4. otherwise, choose a candidate node, mark it as match-mate, send 'confirm-match' to 

that neighbor and return 'echo-eliminate' after receiving an 'echo-confirm' back 

from that neighbor. 



( 5 )  When a confirm-match message arrives at  a node, mark its parent as match-mate and 

return 'echo-confirm'. 

3.3.2. Analysis of phase 2 

Theorem 3.3 shows that the phase two algorithm successfully creates a matching, and 

guarantees that the matching created contains the maximum number of degree one vertices. 

Lemma 3.4 states that no more degree one vertices can be added to the matching without 

sacrificing other degree one vertices already in the matching. This observation is important 

to the algorithm in the next phase of the algorithm, which will be explained more later. 

Theorem 3.3: Phase two creates a matching. 

Proof: The control processor initiates a single explorer which traverses the tree in a 

depth-first fashion. No other processor initiates an explorer. Each processor keeps 

track of its parent in the DFS tree. The only edges which may be placed in the 

matching are the edges of the DFS tree. The edges for the matching are chosen dur- 

ing a leaf to root sweep of the tree with each parent choosing to match with a t  

most one of its unmatched children. A parent never matches with a previously 

matched child. Obviously, no two edges chosen are adjacent. 

Lemma 3.4: A leaf node will never be matched during the search for augmenting 

paths if it is not matched during the construction of the initial matching above. 



Proof: Berge [Ber57] proved that a matching is maximum if and only if the graph 

has no augmenting paths. To extend the initial matching to a maximum matching, 

we search for augmenting paths. By our construction, if any leaf node U is not 

matched in the initial matching, its neighbor must be matched to another leaf node. 

Thus. no augmenting path can add u to the matching. 

The message complexity of the phase 2 algorithm is shown in the Lemma 3.5. Since 

the messages used in this phase carry no information other than the message type. we can 

postpone the analysis of the bit complexity until the total number of messages types is 

determined in the next section. 

Lemma 35: At most 2e + n messages are sent in phase 2. 

Proof: Three groups of messages are used. An explorer is sent along each edge once 

, .  in either direction. Thus e explorers are sent. Each explorer causes exactly one 

echo-leaf, echo-candidate, echo-eliminate or echo-reject message, so another e echos 

messages are required. Each matched pair causes exactly one confirm-match and 

one echo-confirm message. Thus at most n/2 confirm-match and n/2 echo-confirm 

messages are sent. Therefore, the total number of messages sent during phase two 

is at  most 2e + n. 

3.4. The Third Phase of The Matching Algorithm 

Phase 3 is divided into two parts which are repeated until a maximum matching is 

found. In Phase 2, the maximum possible number of degree one vertices were placed in the 



matching. They can be ignored in this phase which tends to reduce the number of iterations 

required. A controller is elected among the unmatched non-leaf processors which have not 

been elected previously in phase 3. The controller initiates a search for an augmenting path 

from itself to some other vertex x. If such a path is found, an augmentation will be per- 

formed. Otherwise, the controller initiates a new election. When there are no further can- 

didates for controller, the algorithm terminates. 

3.4.1. Election Phase 

During this phase, each processor keeps track of some local information: mas-ID, vot- 

ID, parent, maxID-node, message-out, match-mate and candidate-count. The variable 

max-ID contains the maximum ID encountered so far (including its own). The variable 

vot-ID contains the ID used for the election. Initially, all previously elected. matched or 

leaf processors have vot-ID equal to zero and any other processor has vot-ID equal to its 

own ID. When a processor is elected, its vot-ID is set to zero. The parent, of a pmcessor is 

the neighbor that first sent it an explorer in the current election. The variable maxID-node 

contains the neighbor from which the processor received the largest ID encountered other 

than its own. Initially, each processor uses its own ID as the value of maxID-node. The 

variable maxID-node will indicate the direction from the controller to the newly elected 

processor. The variable messages-out contains the number of replies expected and is reset to 

zero for each election. The match-mate is the processor's mate in the matching. Its initial 

value is determined in the previous phase. The variable candidate-count contains the 

number of descendents with a non-zero vot-ID. Its initial value is zero or one, depending 

on the value of the processor's own vot-ID. 

This election algorithm uses three types of messages: explorer, echo and control. The 

control processor begins the election process by broadcasting an explorer message to all of 



its neighbors in parallel. When a processor first receives an explorer message, it marks that 

neighbor as parent. The explorer is then relayed to the other processors in the network. 

Each processor upon receiving the same number of explorer and echo messages as the 

number of neighbors it has returns an echo to its parent. An echo message contains the 

max-ID that it has encountered and the number of vertices that it knew with non-zero 

vot-ID. Besides, it marks the neighbor that sent it the largest max-ID value as maxID-node. 

When the control processor receives the max-ID, it knows the election is finished. The 

newly elected controller will be notified to start the next phase if the max-ID is non-zero 

and the candidate-count is greater than one. Otherwise, all processors will be notified to 

terminate the MATCHING algorithm. 

3.4.1.1. Algorithm for the Election Phase 

The control processor p starts the election by sending explorers to all of its neighbors. 

After all the replies are received, if the max-ID Is non-zero m d  candidate-cwnt is 

greater than one, p passes control to the newly elected controller (with ID equal to the 

max-ID) who will start the next phase. If no processor is elected, the MATCHING 

algorithm terminates. 

When an explorer arrives at an unvisited node, the neighbor from which it arrived is 

marked as parent. Explorers are then relayed in parallel to the other neighbors of the 

node. 

When an explorer arrives at  a leaf, the neighbor from which it arrived is marked as 

parent. The explorer terminates and 'echo < vot-1D.candidate-count > ' is sent to the 

parent. 

Subsequent explorers arriving a t  a node are terminated and treated as a reply from 

that neighbor. 



( 5 )  When 'echo <echo-IDxandidate-count > ' arrives at a node, echo-ID is compared with 

max-ID. The larger value is saved in maxID and both the maxID-node and candidate- 

count is updated if necessary. 

( 6 )  After receiving replies from all neighbors, a node sends 'echo <max-1D.candidate- 

count > ' to its parent. 

3.4.1.2. Message Complexity for the Election Phase 

Lemma 3.6: At most 2(e + n - 1) messages are sent during the first sub-phase. 

Proof: Only the control processor initiates an explorer. When a node first receives 

an explorer it sends explorers to all of its other neighbors. Since these explorers are 

sent in parallel, an explorer may be sent along an edge from each end-point at the 

same moment. Thus at  most 2e explorers are sent. An echo message is only sent 

from a child to  Its parer?t. Thus at ~ o s t  n-1 echos are sent. Passhg ccntro! frsm 

the initiator to the newly elected processor requires at most another n-1 messages. 

Therefore, the total number of messages sent during the election is 

< 2 e + n - l + n - 1  

Lemma 3.7: The number of bits sent in the first sub-phase is no more than 

(n-1 )log2(n). 



Proof: The explorer and control passing messages contain no information other 

than the message type representation which will be discussed later in this chapter. 

Each echo message carries an ID value and the number of candidate-count, which 

requires 210g2(n) bits. Therefore the total number of bits sent duing this phase is 

at most 2(n-l)log2(n). 

3.4.2. Augmentation Phase 

The phase three algorithm is based on the algorithm of Witzgall & Zahn [WiZ65], 

which does not require a complicated data structure and can be more easily simulated in a 

distributed network. This distributed algorithm to find an augmenting path is invoked by 

the newly elected control processor p. It begins by performing a depth-first-search of G and 

constructing the labeled subgraph as Witzgall & Zahn did in their algorithm. We call this 

process bi-edge depth-first-search (abbreviated BDFS below). The algorithm will terminate 

if there is a free processor other than the control processor p that is adjacent to an outer 

vertex rooted at the controller p (that is, an augmenting path is found), or if all edges 

incident to the control processor have been scanned and have replied negatively. In both 

cases, an election is initiated for the next iteration of phase 3. 

The following local variables are kept by each processor: predecessor, match-mate, 

node-status, blossom-edge, blossom-number, unconfirm-predecessor, scan-replied, edge-scan 

and btp-edge. The predecessor of a vertex v (denoted p(v)) is a vertex u such that there is a 

bi-edge from u to v and both u and v are outer vertices. The match-mate of a vertex v 

(denoted m(v))  is v's current mate in the matching. The variable node-status indicates 

whether the node is an outer vertex or an inner vertex with respect to the labeled subgraph 

A rooted at the controller. The variable blossom-edge contains the label of an edge on 

which the processor received the notification that it is in a blossom. The variable blossom- 



number is the number of the blossom found. This value may differ from processor to pro- 

cessor. Each processor will update the value of its blossom-number when i t  receives a 

higher value. The variable unconfirm-predecessor is the processor's potential predecessor 

which will become its predecessor if a confirmation message arrives from some neighbor. 

The variable scan-replied is used to indicate whether a processor has replied to its parent or 

" 

not. The list edge-scan contains the status of the incident edges, one element for each edge. 

indicating whether each edge was scanned or not. The variable btp-edge is the edge on the 

current back-tracing path. 

The algorithm is divided into three tasks: BI-EDGE, BLOSSOM and AUGMENTA- 

TION. At any one time, only one task is active. Both BI-EDGE and BLOSSOM 

(corresponding to Witzgall & Zahn's forward and blossom step, respectively) are used to 

enlarge the labeled subgraph A,  whose predecessor relation corresponds to the BDFS tree 

mentioned in Section 3.1. BI-EDGE expands the BDFS tree by searching for bi-edges formed 

by the vertices that have not been searched before. BLOSSOM expands the BDFS tree by 

searching for bi-edges formed by the vertices that have been searched before. During the 

BI-EDGE expansion, BLOSSOM is called when a blossom is detected. Control is returned to 

BI-EDGE once the BLOSSOM task is finished. AUGMENTATION updates the existing 

matching once an augmenting path is found (a free vertex is found adjacent to an outer ver- 

tex during BI-EDGE). 

During the BI-EDGE expansion only one processor is active. A BDFS is similar to a 

DFS, with branching occurring only at an outer vertex. An outer vertex t starts the search 

for a bi-edge by sending an explorer along an unmatched edge to one of its neighbors s. 

Whenever a vertex sends an explorer along an unscanned edge, it marks that edge scanned. 

When an unmatched vertex s receives an explorer (from its neighbor t )  an augmenting path 

is found. In this case. AUGMENTATION is called to trace the back-tracing path of t back 



to the control processor and update the matching along this path. When an unmatched ver- 

tex s receives its first explorer (from vertex t )  along an unmatched edge, a new bi-edge is 

formed among the vertices t. s and m(s). The node status of s is set to inner, and s marks 

the edge to t as scanned. The explorer is forwarded to m(s). Vertices s and m(s) mark the 

edge between them as scanned and the node status of m(s) is set to outer. The labeling pro- 

cess is continued by m ( ~ )  which sends the explorer along an unmatched edge to one of its 

neighbors. When a subsequent explorer arrives at outer vertex s (from t), both s and t 

mark the edge scanned. Since both s and t are outer. BLOSSOM is called to enlarge the sub- 

graph A. When a subsequent explorer arrives at inner vertex s (from t), m(s) already has a 

predecessor and both s and m(s) are in A. In this case, vertex s returns an echo-scan mes- 

sage to t. When a vertex receives an echo-scan message, it starts the search for a bi-edge if 

it is an outer vertex and has an unexplored neighbor. Otherwise, it returns an echo-scan to 

its parent (or calls for an election if it is the control processor). 

BLOSSOM is called from RI-EDGE whet zn edge (s.t) net ir: A (i.e. an edge have nat 

marked scanned) is found joining two outer vertices in A. To perform BLOSSOM distribu- 

tively, we need to identify the nearest common ancestor of s and t. This is done by sending 

a message (blossom-scan) carrying the current blossom number along the back-tracing 

paths of s and t .  This message also informs each vertex of its match-mate's potential prede- 

cessor. The first common ancestor ( x )  will notice these two messages and determine that it 

is the base vertex. It then sends messages (blossom-retreat) back along the two back- 

tracing paths to the vertices s and t .  As these messages travel to s and t ,  vertices on the 

paths update their predecessors and 'each inner vertex on the path changes its node status to 

outer. 

So far,  the distributed algorithm is a straightforward implementation of the sequen- 

tial algorithm. However, a complication arises at  this point in the distributed algorithm 



Figure 35: A particular BDFS of a matched graph. 
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which does not occur in the sequential algorithm. A vertex which has just been changed 

from inner to outer and has already replied to its parent during the previous BI-EDGE 

search must be re-examined and allowed to explore its neighbors. The BDFS only allows 

, outer vertices to explore their neighbors. During the BDFS, a vertex v replies to its Parent 

when all the vertices in the subtree rooted at v are scanned. Unfortunately, some inner 

vertices in such a subtree may change to outer during a BLOSSOM expansion as shown in 

figure 3.5. Vertex a in the figure is the control processor. In figure 3.5-a, the BDFS ter- 

minates at vertex g, since the unscanned edge incident on vertex g leads to an inner vertex 

(b). The BDFS backs up to vertex c and the labeling continues until a blossom is detected 

by vertices a and k (figure 3.5-b). The BLOSSOM process changes all these vertices 

(a.b.c,h.i,j.k) to outer. BI-EDGE is resumed and the BDFS construction continues from k. 

Eventually, the BDFS backs up to vertex b. Vertex b has not marked its edge to g as 

scanned. A blossom is detected when b sends an explorer to g (as shown in figure 3.5-c). 

At this point, all the vertices in the graph, except vertices I ,  m and n are outer and scanned. 

Notice that. vertices f and d were previously inner and did not explore their neighbors (in 

figure 3.5-a). If we now allow vertex b (which has scanned all of its neighbors) to reply to 

its parent a. the augmenting path search fails to locate the augmenting path 

(a.k.j.i.h.c.b,g.f .e). 

To overcome this problem, we allow these vertices (f and d) to continue the BDFS 

before a reply is sent to vertex b's parent. If vertices such as f and d exist, they will be 

discovered during BLOSSOM. It is shown below (Property 3.2) that if such vertices exist. 

either they all lie along the back-tracing path of s or they all lie along the back-tracing path 

of t .  Without loss of generality, assume the back-tracing path of s contains such vertices. 

namely mp'(s).m$(s). . . . mp'(s), with I < j < k < l ,  such that m#(s) is the closest to the 

base vertex x on the btp of s. If these vertices exist, we make t the parent of s, s the parent 



of mb), m(s) the parent of p(s). - . .mp'-'(s) the parent of p'(s), p'(s) the parent of mp'(s) 

and so on. An example of this process is shown in Figure 3.6. We then allow mp'(s) to 

resume BI-EDGE. After mp'(s) finishes exploring its neighbors, it returns an echo-scan mes- 
' 

. sage to its parent. Subsequent vertices along this path are allowed to explore their neigh- 

bors if they haven't done so previously. If no such vertex exists, t resumes the BI-EDGE 

search. 

Ten types of messages are used in the augmenting phase: explorer, echo-found, echo- 

blossom, echo-scanned, echo-resume, echo-extend, blossom-scan, blossom-retreat, extend 

and request-ok. The explorer message contains both the ID of the initiator and the blossom 

number (denoted blossom-number). The value of blossom-number indicates the current 

- matched 
--- unmatched 

Figure 3.6: An extension of BI-EDGE search. 



blossom number and its value will be increment when a new blossom is found. This value 

allows x to determine that it is the base vertex of the blossom. If any vertex receives two 

blossom-scan messages with different blossom-numbers, it discards the message with the 

smaller blossom-number. The echo-found message contains the information for it to trace 

back to the root of T. The echo-blossom message contains the ID of the initiator. The 

echo-scanned message contains the blossom-number. The blossom-scan message contains 3 

fields: btp-edge, unconfirm-predecessor and the current blossom-number. The btp-edge field 

is used to back-tracing to the root of T. The unconfirm-predecessor field carries the poten- 

tial predecessor that may be the receiving processor's future predecessor. The blossom- 

retreat message contains 3 fields: blossom-number, node-status and extend-ID. The node- 

status field has two values: inner and outer, which are used to indicate the occurrence of the 

first Inner vertex. Subsequent processors receiving this message with node-status equal to 

inner can update their predecessors. Extend-ID is the ID of the new outer vertex v closest 

to x (on the path of the blossom-retreat message travel back to vertices s and t )  that has 

replied to its parent before the current BLOSSOM took place. Under that circumstance the 

current BDFS tree should restart the BI-EDGE task from this vertex. The extend message 

carries an extend-ID and routing information to the processor extend-ID, is used to signal 

the vertex (with id equal to extend-ID) to resume the execution. The echo-extend is the 

message for vertex s to signal t that there exists a non-nil extend-ID on its btp. The 

request-ok message is the reply for t to signal s to let extend-ID start BI-EDGE. The echo- 

resume is to signal t to resume it suspended job. 

3.4.2.1. Algorithm for the Augmentation Phase 

(1) The controller p starts the alternating path labeling by sending out an 'explorer 

<p,blossom-number> ' bearing its own ID on one of its incident edges. It marks the 



edge scanned and waits for an echo along that edge. After each echo from an explored 

neighbor is received, the traversal is repeated on the remaining unscanned incident 

edges. This sub-phase is terminated after all edges incident on the control processor 

are scanned and have replied, or when the controller receives an echo-found message 

from an explored neighbor. 

(2) When an 'explorer <ID,blossom-number> ' message arrives at  p along an unmatched 

edge for the first time, p saves the blossom-number, becomes an inner vertex and 

marks the edge as both scanned and parent. Then the 'explorer <ID.blossom- 

number>' is relayed on a matched edge. If no such edge exists, an 'echo-found < p > '  

message is returned to its parent. 

(3)  When a subsequent 'explorer <'iD.blossom-number > ' message arrives at  an outer 

vertex p along an unmatched edge, it saves the blossom-number, and marks the edge 

scanned. Vertex p is the vertex s of the blossom. Then p sends an 'echo-blossom 

<p>' message as a reply along the edge that i i  received ihe explorer niessage. Furth- 

ermore, p initiates a 'blossom-scan <pfp).ID.blossom-number+l > ' message along the 

matched edge if there exists one (that is, if p is not the controller). 

(4)  When a subsequent 'explorer <ID.blossom-number>' message arrives at an inner 

vertex p along an unmatched edge, it saves the blossom-number and returns an 'echo- 

scan < blossom-number > ' -message. 

( 5 )  When an 'explorer <ID,blossom-number> ' message arrives at a node p along a 

matched edge, p becomes an outer vertex, assigns I D  as its predecessor, and marks the 

edge as both scanned and parent. The message 'explorer <p.blossom-number>' is 

relayed on an unscanned edge incident to p and p waits for an echo along that edge. 

This process is repeated until all the neighbors of p are scanned. At this point, an 

'echo-scan < blossom-number > ' message is returned to the parent. 



When an 'echo-found < I D > '  message arrives at a node p along an unmatched edge, 

then the edge is mark as matched (match-mate) and the message 'echo-found <p(p)>' 

is relayed along the previous matched edge. When an 'echo-found < ID> ' message 

arrives along a matched edge, it is relayed along the I D  edge and the edge is marked 

matched (match-mate). 

When an 'echo-scanned < blossom-number > ' message arrives at  an outer vertex p, it 

updates its blossom-number and sends an 'explorer <p,blossom-number>' message 

along one of its unscanned edges. This process is repeated on the remaining incident 

edges after each reply is returned along an explored edge until all the incident edges 

are scanned. After all incident edges are scanned, an 'echo-scanned <blossom- 

number > ' message is returned to the parent. 

When an 'echo-scanned < blossom-number > ' message arrives at  an inner vertex p, it 

updates its blossom-number and relays the 'echo-scanned < blossom-number > ' mes- 

sage to the parent. 

When an 'echo-blossom < b > ' message arrives at  a node p, the execution of the explore 

traversal is suspended. The node marks itself as vertex t and starts the blossom 

traversal by initiating a 'blossom-scan <p(p),b.blossom-number+l > along its 

matched edge. 

( 10) When a 'blossom-scan < btp-edge,unconfirm-predecessor.blossom-number > ' message 

arrives at  a node p along a matched edge, p determines whether it came from the 

current blossom. If so, it saves both the blossom-number and unconfirm-predecessor 

and relays a 'blossom-scan < NIL,p.blossom-number > ' message along the btp-edge. 

Otherwise. discard the message. 

( f 1) When a 'blossom-scan < btp-edge,unconfirm-predecessor.blossom-number > ' message 

arrives a t  a node p along an unmatched edge, determine whether it came from the 



current blossom. If it is not from the current blossom, discard the message. If it came 

from the current blossom and is arriving at p for the first time p updates its blossom- 

number, saves the unconfirm-predecessor and relays the 'blossom-scan 

<p(p).unconfirm-predecessor,blossom-number > ' along its matched edge. If it came 

from the current blossom and is the second arrival of such a message at p, a 

'blossom-retreat < blossom-number.outer,NIL > ' message is sent along the blossom- 

edge(s). 

(12) A 'blossom-retreat <blossom-number,status,extend-ID> ' message arrives at  a node p 

along a matched edge. If p is not one of the two vertices that detected the blossom, it 

relays the message along the blossom-edge. If p is vertex s, it signals vertex t to 

resume BI-EDGE. If p is vertex t (the one that suspended BI-EDGE), it resumes BI- 

EDGE if the extend-ID during BLOSSOM is equal to NIL, otherwise BI-EDGE is 

resumed at the vertex with id equal to extend-ID. For the latter case, p sends 'extend 

< extend-ID.p(p)> ' along the matched edge. 

( 13) When a 'blossom-retreat < blossom-number.status.extend-ID > ' message arrives at an 

outer vertex p along an unmatched edge, p updates its predecessor relation if the vari- 

able status in the message it received indicates an inner vertex has been encountered 

during the retreat process. The message is relayed along the blossom-edge. 

(14) When a 'blossom-retreat < blossom-number.status.extend-ID> ' message arrives at  an 

inner vertex p along an unmatched edge, p changes its node-status to outer and 

updates its predecessor relation. If p has already replied to its parent and the extend- 

ID it received is NIL, it sends a 'blossom-retreat <blossom-number.inner.p>' along 

the blossom-edge. Otherwise, it sends a 'blossom-retreat <blossom- 

number,inner,extend > ' along the blossom edge. 



(15) When an 'extend <extend-1D.pred-edge> ' message arrives at a node p along a 

matched edge, p marks the edge both scanned and parent. The message is then relayed 

along the pred-edge. 

(16) When an 'extend <extend-ID.pred>' message arrives at  a node p along an unmatched 

edge, p marks the edge both scanned and parent. If p equal to the extend-ID, then p 

starts BI-EDGE. Otherwise, p sends 'extend  extend-^^.^(^)> ' along its matched 

edge. 

We observe the following properties: 

Property 3.1: ,4 vertex with a node-status "outer" will never change its node- 

status. A vertex with node status "inner" may change its node-status to "outer". 

Property 3.2: When a blossom is detected by two adjacent outer vertices s and t ,  

at most one of the back-tracing paths of veriices of s and i t o  iiieir nearest common 

ancestor x may contain inner vertices which have replied to their parents previous- 

ly. 

Proof: If either s or t is the nearest common ancestor x ,  then there is only one 

back-tracing path. Otherwise, since the algorithm performs a bi-edge depth-first- 

search of the graph G ,  one vertex, say t ,  must have been an inner vertex at the time 

s did its BDFS (as in figure 3.5-c). In this case all the vertices on the back-tracing 

path of t which already replied to their parents are outer and only the btp of s 

may contain a vertex that is inner and has replied to its parent. 



Theorem 3.8: If there is an augmenting path with the control processor at  one end, 

the augmentation algorithm will find such a path. 

Proof: An augmenting path exists if there is a free vertex other than the control 

processor adjacent to an outer vertex with respect to the control processor. BI- 

EDGE simulates Witzgall & Zahn's forward step, enlarging the labeled subgraph A 

by searching for a vertex that is not already in A. BLOSSOM updates the labeled 

subgraph A by searching for an edge not in A that joins two outer vertices of A,  as 

does Witzgall & Zahn's blossom step. The distributed algorithm repeats the search 

for those vertices which are changed to outer vertices during BLOSSOM and which 

have previously replied to their parents. This guarantees that all vertices adjacent 

to an outer vertex are labeled and ensures that an edge joining two outer vertices in 

A will be found if such an edge exists. 

3.4.2.2. Analysis of the Augmenting Phase 

Lemma 3.9: The number of messages sent during the second sub-phase is at  most 

2en + 4e + 2 -n2  - 2n.  



Proof: An explorer may traverse an edge in both directions except for those edges 

upon which a processor receives its first explorer. Thus, at  most 2e-n+l explorers 

will be sent. Each explorer causes an echo (-found. -blossom or -scan) in return. 

Thus, at most 2e-n+l echoes are sent. A blossom may be detected when an edge 

which is not in A is found joining two outer vertices. There can be at most e-ni-1 

of these, as a blossom can only be found between two outer vertices. connected by 

an edge that joins two branches of the tree T mentioned in Section 3.1. Each blos- 

som detection will cause at  most n-1 blossom-scan messages and an equal or 

smaller number of blossom-retreat messages. Thus at most 2(e-n+ 1 )(n-1) 

blossom-scan and blossom-retreat messages are sent. Every time a blossom is 

detected, either one echo-resume or one echo-extend message and one request-ok 

message is used for vertices s and t to conclude the BLOSSOM step. Thus no more 

than 2(e-n+l) such messages are required. At most n/2 vertices are inner. There- 

fore, no more than (n-2)n/2 extend messages and the same number of echo- 

scanned messages are used for this extension process. Therefore, the total number 

of messages used in this sub-phase is: 

< 2e - n + 1 + 2e - n + 1 + 2(e-n+l)(n-1) + 2(e-n+l) + n(n-2) 

Lemma 3.10: The number of bits sent during the second sub-phase is at  most 

7enlog2(n) + 3elog2(n) + 9nlog2(n) + en + 2n. 



Proof: An explorer carries two fields of information, the ID and the blossom- 

number which can be any value in the range from 0 to n2-1. Thus, we need 

310g2(n) bits for each explorer message. Thus 310g2(n)(2e-n+l) bits are required 

for all the explorer messages. The echo-found and echo-blossom messages carry a 

value less than n,  so at most log2(n) bits are required. An echo-scanned message 

carries the blossom-number which requires 210g2(n) bits. Since each echo message 

causes one of the above echo messages to be returned, at  most 210g2(n)(2e-n+l) 

bits are required. The blossom-scan message carries three fields: the blossom- 

number which requires 210g2(n) bits and the other two which require log&) bits 

each. Therefore, each blossom-scan message uses 410g2(n) bits. The blossom- 

retreat message carries three fields, using 1 bit to represent the node-status, 1og2(n> 

bits to represent extend-ID and 210g2(n) bits for the blossom-number. Thus each 

blossom-retreat uses 310g2(n) + 1 bits and all blossom messages require at most 

7enlog2(n) + 14nlog2(n) + en + 2n 

- (7n210g2(n) + 7elog2(n) + 710g2(n) + n2 + e + 1) bits. 

The echo-resume, echo-extend and request-ok messages require no bits other than 

the message type. The extend message and the additional echos passing the control 

back to z require another 2n210g2(n) bits. Therefore the total number of bits is: 

< 7enlog2(n) + 3elog2(n) + 9nlog2(n) + en + 2n 

- (5n210g2(n) + n2 + e + 210g2(n> + 1). 

3.5. Conclusion 

After the second phase, at most n-2 non-leaf processors remain unmatched. As men- 

tioned in EPaS82, WiZ6.51, once a free processor P has failed to find an augmenting path, 



there will never be an augmenting path starting with P. Each iteration of phase 3 will 

eliminate at  least one processor either by matching it with a neighbor if an augmenting path 

is found, or by setting its voting identity (vot-ID) to zero otherwise. Phase 3 will be 

repeated at most n-2 times. 

Lemma 3.11: The MATCHING algorithm correctly finds a maximum matching us- 

ing O h 2  e) messages. 

Proof: The algorithm terminates when the election in phase 3 concludes with zero 

as the elected ID. This implies that either no free processor exists or that every 

free processor has already been elected and failed to find an augmenting path. 

Therefore the current matching is maximum. The number of messages sent in 

phase 1 and phase 2 are 4ne and 2e + n, respectively. The number of messages sent 

in each iteration of phase 3 is at  most 2en + 6e - n2. Phase 3 will be repeated no 

more than n-2 times. Therefore, the total number of messages sent for the 

MATCHING algorithm is 

< 4ne + 2e + n + (n - 2)(2en + 6e - n2) 

= 2en2 + 6en + 2n2 + 2 - n3 - 6e 

Lemma 3.12: The number of bits sent during the MATCHING algorithm is 

O h 2  e log2(n)). 



Proof: In Phase 1 each message requires log2(n) bits. Thus, at most 4enlog2(n) bits 

are used in the first phase. The messages used in the second phase carry no other 

information besides the message type representation, which will be take care to- 

gether with the other messages in the other phase. The total number of bits used in 

each iteration of phase 3 is the sum of the values given in Lemmas 3.7 and 3.10. 

Phase 3 will repeat at  most n-2 times. Therefore, the total number of bits sent for 

the MATCHING algorithm (excluding the bits for message representation) is 

< 4enlog2(n)+(n-2)(7enlog2(n) + 3elog2(n) + llnlog2(n) + en + 2n) 

- (n-2)(5n210g2(n) + n2 + e + 410g2(n) + 1) 

Since there are 22 different types of messages, 5 bits are required in each message to 

represent the message type. Therefore, the total number of bits sent during the 

MATCHING algorithm including the message type bits is 

The time required by the MATCHING algorithm can be calculated if we assume that 

each message sent takes one time unit to arrive and that each processor can simultaneously 

send and receive a message. Most of the algorithm, except for the election in the first phase 

and some steps (blossom message), is done sequentially, that is only one processor is active 

at a time. Therefore the time required to find the maximum matching is approximately the 

same as the total number of messages sent. 



CHAPTER 4 

SIMULATION OF THE MATCHING ALGORITHM 

In the previous chapters, we presented distributed algorithms finding cycles of a 

given length and for maximum matching. The worst case message complexity of each of 

the problems has been analyzed. In this chapter we report the results of an implementation 

of the maximum matching algorithm on various sizes of graphs and study the algorithm's 

performance as the density of edges of the graph varies. For each size and edge density, we 

consider the average number of messages sent, the average number of iterations required in 

phase 3 and the average time to complete the computat.ion. 

We begin by describing the simulator used for our implementation and the method 

used to generate the networks. The simulation results are shown in Section 4.4. 

4.1. Simulator 

The algorithm was implemented and tested on a distributed network simulator. The 

simula~ion package, "Distributed C" (abbreviated DC below). is an extension of the C pro- 

gramming language by Muir [Mui85a, Mui85bI. Within DC. which provides a message 

driven mechanism for testing distributed algorithms, the user defines his own network 

topology and the code executed by each node. A DC program consists of the DC software 

library and the user supplied algorithm. The DC software library consists of the run ker- 

nel, library routines, simulation and debugger utilities. The simulation package DC has 

been adapted for use at Simon Fraser University on SUN-2 workstations running Unix 4.2. 



The DC software library routines are self contained and sufficient to handle many dis- 

tributed algorithms. However, a few facilities were added, which we found useful but 

were not supported by DC. These additional facilities include edge scanning functions 

(reset-scan, scan-ports and more-unscan), random-send and random-relay. (These give the 

user flexibility to design an algorithm for a node to explore its neighbors arbitrarily (for 

example a DFS).) The functions random-relay and random-send examine all the incident 

edges that have not been scanned. They assign a probability to each of those edges and the 

edge with the highest probability is chosen to send the next message along. In this way. 

during different runs, we can expect to generate different DFS and BDFS, trees (given 

different starting points for the random number generator). The scanning functions (reset- 

scan, scan-ports and more-scan) allow the user to mark all the edges unscanned, mark an 

edge as scanned, and test whether or not all the edges incident on a processor are marked 

scanned, respectively. 

The user supplied algorithm consists of 3 basic parts: 1) DC language extensions. 

2) coding of the processes, and 3) configuration of the network. The DC language exten- 

sions contain the macro definitions used by the user's algorithm to call the routines in the 

DC software library. The coding of the user's distributed algorithm begins with the 

optional declaration of states and messages, labeling of ports and process initialization. This 

is followed by the main body of the algorithm, which is divided into states and is message 

driven. The network configuration contains the scheduler information, processor definition 

and specification of the connections between processors in the network. 

DC is a sequential program which simulates the execution of an algorithm in a distri- 

buted environment. The message manager of DC uses a logical system clock to assign a ran- 

dom arrival time (within specified limits) for each message sent. Each processor's behavior 

is independent of the clock time. The package's logical system clock increments whenever 



all the messages scheduled to be received at the current time have been received by the 

appropriate processors. Since we assume that messages will arrive within some finite period 

of time and that the system is reliable, it is acceptable to assign an arrival time to each mes- 

sage sent. Each processor receives messages from its neighbors, performs local computations 

and sends messages to its neighbors in zero time. The time required to complete the compu- 

tation is the number of logical system clock ticks required to complete the computation. 

There are two schedulers in the simulator: the processor scheduler and the message 

scheduler. Both schedulers support fixed and random scheduling modes, which act 

differently in each scheduler. If the processor scheduler is in fixed mode, all processors 

wake up at the time the computation starts. If the processor scheduler is in random mode 

then the processors wake up arbitrarily within a specified (finite) period of time. If the 

message scheduler is in fixed mode, every message from one processor to another (its neigh- 

bor) takes exactly one unit of time to arrive. In random scheduling mode, a message sent 

from one processor to another takes an arbitrary amount of time to irrive (houfided by the 

user's specified maximum delay). Random scheduling mode is used for both the processor 

scheduler and the message scheduler throughout our computation with 21 clock ticks 

chosen for the maximum processor scheduler delay and 7 clock ticks chosen for the max- 

imum message scheduler delay. Since the maximum delay for the processor scheduler is 3 

times as much as the delay for the message scheduler, we expect that about 1/3 of the pro- 

cessors wake up by themselves and initiate election messages bearing their own ids. When 

the simulator begins execution, wakeup messages are sent to each processor by the system 

which arrive within the maximum delay specified. If a processor receives this message 

before receiving any message from its neighbors, it is considered to have awakened by 

itself. When a message is sent, it is given a propagation delay which is calculated by adding 

a random delay to the current value of the logical system clock. Thus, if messages are sent 



on different edges, a message sent earlier (with respect to the logical system clock) may 

reach its destination after a message sent in a later period. However, messages sent along 

the same edge arrive in FIFO order. A message on an edge can arrive no sooner than 1 time 

unit after a previous message on the same edge. Furthermore, no message is lost by the sys- 

tem. 

When a message is sent, it is assigned a propagation delay and is stored in a priority 

queue maintained by the simulator. The receiver of the first message in the priority queue 

is wakened by the simulator to perform the computation and send out responses if neces- 

sary. The priority queue is updated and the process is repeated for the next message in the 

priority queue. An execution is terminated when a processor reaches the stopping condition 

and signals termination. For empirical analysis we retain the total number of messages sent 

during this process, ignoring the wakeup messages sent by the simulator. 

4.2. Network Topology 

The networks used in our computation are random graphs generated by the constant 

density model (see Karp [Kar76]). A random graph generated by the constant density 

model IS defined as follows: for a graph of n vertices, each pair of i, j E (1 ... n}, include (i.j) 

as an edge with probability p, independent of what other edges are included. The networks 

used were generated in this manner with various values n and p, discarding those graphs 

which were not connected. For each network size n, we generated random connected 

graphs of varying densities. For networks of 23, 24 and 25 processors. we included edges 

with probabilities 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.75 and 1. For networks of 50 processors, 

we repeated these probabilities as well as 0.05. For networks of 100 processors. we gen- 

erated edges with probabilities 0.03. 0.05 and 0.1. For networks of sizes 23.24 and 25, the 

probability that a graph generated in this method is connected is near zero when the edge 



probability used is smaller than 0.1. Similarly for size 50, the probability that the graph is 

connected is quite small when the edge probability is smaller than 0.05 (see IKar761). The 

results in the tables are based on the total number of runs for each graph size and probabil- 

ity. For each graph size and probability, the algorithm was executed 50 times. 10 times 

each on 5 random connected graphs, except for the case of 50 processors with probability 1. 

In this latter case, the algorithm was executed for a total of 10 runs. The average number 

of messages sent and the average time to complete an execution are based on these results. 

4.3. Maximum Matching Algorithm 

The algorithm presented in the previous chapter, has been coded in DC. Each processor 

is in one of five states: INITIATOR, PhaseOne, PhaseTwo. Phase30ne and Phase3Two. Each 

processor is in the INITIATOR state until it is waken up. The PhaseOne and PhaseTwo 

states correspond to the multi-election and depth-first search phases. respectively. The last 

two states handle the augmentation of the matching problem. Pfiase30ne is the mono- 

election and state Phase3Two combined BI-EDGE, BLOSSOhl and AUGMENTING steps. 

Each state is divided into cases corresponding to the type of message that a processor may 

receive in that state. A processor upon receiving a message. performs local computations 

based on its local variables and the information contained in the message and makes an 

appropriate response. The following tables summarize the results of our simulations: 

4.4. Simulation Results and Conclusion 

The average number of messages sent during the execution of the maximum matching 

algorithm is shown in figure 4.1. The message complexity increases although the number of 

iterations in phase three (figure 4.7) tends to decrease as the density of the graph increases. 

This increase in the message complexity is in inverse proportion to the number of iterations 



of the third phase. This can be explained by considering the number of messages sent in 

each phase. 

The maximum matching algorithm is divided into three phases: multi-processor elec- 

tion, initial matching and augmentation. The average number of messages sent in each 

phase is shown in figures 4.2. 4.3 and 4.4, respectively. The first two phases are compul- 

sory for graphs of any size and topology. The number of messages sent in these two phases 

is directly proportional to both the graph size and density. 

The large number of messages sent in the first phase is partly due to the multiple ini- 

tiators of the election (table 4.1) and partly due to the increase in edge density. An election 

initiated by a processor requires at most 4e messages. Ideally, restricting the number of 

processors which initiate the election could substantially reduce the number of messages. 

For those graphs with high edge density, the number of messages needed to construct the 

initial matching dominates the total number of messages sent. Theoretically, it is difficult 

to restrict the number of processors which initiate the election in an asynchronous distri- 

buted network. For our simulation we assumed a fairly high number of initiators (see Sec- 

tion 4.1). Fortunately, in a "real world" situation, the number of processors which initiate 

the election is likely to be small, so this is not a critical, drawback of our algorithm. 

Table 4.1: Average number of processors 
initiating the phase one election. 

Network 

Size 
2 3 
24 
25 
50 

100 

Edge Probability x 100 

100 
2.98 
3.50 
4.06 
4.80 

3 ' 

33.82 

30 
5.66 
5.06 
5.36 
8.08 

50 
4.10 
4.40 
4.64 
6.14 

5 

17.58 
25.22 

75 
3.96 
3.64 
3.98 
6.24 

15 
7.08 
7.82 
7.68 

10.68 

10 
8.92 
8.44 
9.30 

13.40 
18.94 

20 
6.08 
6.72 
6.42 
9.58 

25 
5.98 
5.80 
6:12 
8.52 



Table 4.2: Average number of edges in graphs. 

The initial matching uses the DFS approach to create a large initial matching with 

Network 

Size 
2 3 
24 
25 
50 

100 

2e + n messages. This is relatively small compared to the number of messages used to per- 

form an election in phase three. 

Edge Probability X 100 

The initial matchings created by the DFS are close to maximum cardinality. This 

results in a small number of iterations of the third phase (figure 4.7). The number of mes- 

3 

161 

sages sent during the election of phase three increases steadily as the edge density increases. 

75 
188 
202 
230 
913 

However the total number of messages sent in phase three (figure 4.4) does not grow appre- 

100 
253 
276 
300 

1225 

5 

68 
252 

ci&!y once the edge density has reached 3070. This is due io  ihe dec~ease in iierations sf 

phase three. 

10 
29 
34 
35 

118 
482 

The average time for a processor to compute the maximum matching is shown in 

figure 4 .b .  

50 
129 
143 
144 
609 

15 
43 
43 
48 

185 

20 
52 

25 
64 

30 
70 

72 
61 57 73 

251 1 308 

83 
94 

382 



o network of size 23 
A network of size 24 
4 network of size 25 
o network of size 50 
7 network of size 100 

Figure 4.1: Average number of messages sent. 



o network of size 25 
t network of size 50 
v network of size 100 

Edge Probability (X 100) 

Figure 4.2: Average number of messages sent during phase one. 
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Figure 4.3: Average number of messages sent during phase two. 
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Figure 4.4 Average number of messages sent during phase three. 
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Figure 4.5 Average number of messages sent during the election of phase three. 
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Figure 4.6: Average number of messages sent during the augmentation of phase three. 
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Figure 4.7: Average number of iterations in phase three. 
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Figure 4.8: Average time to compute the maximum matching. 



CHAPTER 5 

CONCLUSION 

The two graph problems studied in this thesis are finding cycles of a given length and 

maximum matching in a distributed fashion for general graphs. An algorithm for the 

k/2]-1 
former problem with message complexity of O(e(d-1) ) for cycles of length k has been 

presented. The network is assumed to be synchronous for this problem. In this thesis we 

were unsuccessful in devising an algorithm for an asynchronous network. The main 

difficulty appears to be the termination of the algorithm in the event that no such cycle 

exists. It would be worthwhile to investigate this problem further for the asynchronous 

case. It would also be interesting to investigate the problem of finding a cycle of specified 

weight in a weighted graph. Our algorithms do not immediately generalize to solve this 

problem without requiring large amounts of storage at each processor. 

An algorithm for the maximum matching problem has been presented which has 

0(n2 e )  message complexity. For this problem, the network is assumed to be asynchronous 

and each processor requires no network topological information other than the number of 

neighbors that it has. This algorithm has been implemented and tested on a variety of 

graphs using the DC simulator. From the empirical results. we see that the complexity of 

the algorithm in a sparse graph is due to the number of iterations of the augmentation 

phase. As the density of the graph increase, the messages required for the election and the 

messages used to deal with blossoms dominate the complexity of the algorithm. This algo- 

rithm could be improved by a better election algorithm, a better method to deal with blos- 

soms, or possibly by a different approach to the augmentation. Since the algorithm 



presented is essentially a token passing algorithm it does not take full advantage of the 

parallelism which is possible in a distributed environment. It would be useful to design a 

more fully distributed algorithm for this problem. 12 would also be interesting to consider 

the problem of finding a maximum weight matching in a weighted graph. 
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