
Turning Null Responses into Quality Responses

by

Mimi A. Kao

B~ath(Hons.), University of Waterloo, 1984

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Mimi A. Kao 1986

SIMON FRASER UNIVERSITY

November 1986

All rights reserved. This thesis may not be
reproduced in whole or in part. by photocopy

or other means. without the permission of the author.

Approval

Name: 'Mimi A. Kao

Degree: Master of Science

Title of Thesis: Turning Null Responses into Quality Responses

Lou Hafer
Chairman

Nick Cercone
Senior Suhervisor

Wo Shun Luk
Senior Supervisor

Jim klgrande

Gordon McCalla
External Examiner

August 15. 1986
Date Approved

PARTIAL COPYRIGHT LICENSE

i hereby grant t o Slmon Fraser Un ive rs l t y the r i g h t t o lend

my thesis, proJect o r extended essay (t he t i t l e o f which i s shown below)

t o users o f the Simon Fraser Un ive rs i t y L ibrary, and t o make p a r t i a l o r

s i ng le copies only f o r such users o r i n response t o a request from the

l i b r a r y o f any o ther un ivers i ty , o r other educational i n s t i t u t l o n , on

i t s own behalf o r f o r one of I t s users. I f u r t he r agree t h a t permission

f o r mu l t i p l e copying o f t h i s work f o r scho lar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r pub l i ca t ion o f t h i s work f o r financial gain shal I not be allowed

wi thout my w r i t t en permission.

T i t l e o f Thesis/Project/Extended Essay

Author:

(s ignature)

(date)

Acknowledgements

I would like to express my deepest gratitude to my two supervisors, Prof.

Nick Cercone and Prof. Wo-Shun Luk, for their devoted support and guidance during

the course of this thesis. Their friendly and earnest advice and criticisms are

invaluable to the realization of this thesis.

I am very grateful to Dr. Jim Delgrande for acting in my examining

committee. and for always being a helpful teacher. I am also indebted to Dr. Gordon

McCalla for being my external examiner. Constructive comments and suggestions

from both Dr. Jim Delgrande and Dr. Gordon McCalla have helped a lot to improve

the original version of this thesis.

I would also like t o acknowledge the financial support received from Simon
L

Fraser University and the National Sciences and Engineering Research Council of

Canada.

Finally. I would like to take this opportunity to express my love to my

parents and my family. Their immeasurable love and care has always been a source

of confidence for me in my life.

Abstract.

Natural language interfaces to database systems free the user from the undue

formalism of learning a query language. However, the more important issue from the

system's point of view. besides correctly interpreting the natural language query. is to

respond correctly and cooperatively. In particular, the generation of quality responses

has proven problematical in situations when null values arise. If a user's query

cannot be answered by the system because of an incorrect assumption that the user

has made. i t would be appropriate for the system to inform the user what has gone

wrong. The query. "Whut grade did John Doe get in MATHIOO?", might result in a

null answer because John is. not enrolled in MATH100. It is important for a system

to realize these kinds of complementary issues in order to be truly "natural".

Most recent work on cooperative responses has relatively overlooked null value

events. In this thesis, we present an initial classification of null event problems in
8

natural language database systems. and methods for responding with appropriate

answers to some classes of null events. Assuming that the database is relational and

that the database query language is SQL, we develop and incorporate a knowledge

base into the system based on the RM/T model, an extended relational model

proposed by E. F. Codd, to furnish information for diagnosis of failed queries. The

knowledge base, which is also in the relational model, consists of meta-level data

information. This knowledge base provides information such as: entity concept

hierarchies: generalization and aggregation hierarchies: entity relationships and entity

relationship constraints;' event precedence in the database domain; and knowledge about

null values existing in the database. Algorithms which further explicate the function

of the knowledge base model are given to demonstrate the kind of quality responses

we can obtain instead of a simple null answer.

Table of Contents

Approval
Acknowledgements
Abstract
Table of Contents
List of Figures
1. Introduction
2. Natural Language Database Systems

2.1. "Tout Ensemble"
2.1.1. PLANES
2.1.2. LADDER

2.2. Cooperative Responses
2.2.1. Summary Responses
2.2.2. University of Pennsylvania Research Efforts
2.2.3. CO-OP

2.3. Some Other Systems
2.3.1. Query Generalization
2.3.2. PIQC'E
2.3.3. JETS
2.3.4. BROWSER

3. Classification of Null Events
3.1. A Classification of Null Events

3.1.1. Null answer due to the need for general rules.
3.1.2. Null answer due to the lack of inferencing.
3.1.3. Null answer due to the lack of knowledge about the database

structure
3.1.4. Null answer due to the lack of ability to handle partial

information.
3:1.5. Null answer due to a misconception.

4. The Knowledge Base Model
4.1. Knowledge Base vs Database
4.2. The Knowledge Base Model
4.3. What if the Knowledge Base has null values?

viii

5. Algorithms for Detecting a User's Misconceptions 46

5.1. Extensional Misconception 4 7
5.2. Two Simple Examples of Extensional Misconceptions 49
5.3. Intensional Misconception 5 2
5.4. An Example for Intensional Misconception 5 5
5.5. Selection Mechanism 5 8
5.6. Algorithm for Extensional Misconception 5 9
5.7. Algorithm for Intensional Misconception 66

6. Concluding Remarks 75

6.1. Future Research 77
6.1.1. Short term research directions 7 7
6.1.2. Long term research directions 8 3

Appendix' A. Control Flow Diagram of the Algorithm for Detecting a
User's Misconception 85

Appendix B. Preliminary Algorithm for Hierarchy Construction 86

References 90

vii

List of Figures

Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4::
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 6-1:
Figure A-1:

Figure B-1:

A typical NLDB system
A Classification of Null Events
Database Schema
Relations of the Knowledge Base Model except for AG-relations
A NLDB system with a Knowledge Base component
Integrating a knowledge base into a NLDB system
Two Alternative Course Descriptions in the Database
A sample database
An example to illustrate Procedure Intensional~Misconception
Suggested DIS-relation to capture disjunctive information.
Top Down Hierarchical Program Structure of Misconception
Algorithm
6 simple entities identified.

viii

Introduction

Chapter

Introduction

ru'atural language interfaces were introduced into database management systems

primarily to relieve users of the necessity to learn a formal query language, for

example. SQL, in order to access data in the database. In this way, a database

system could be valuable to non-expert users.

Initial work on natural language interfaces addressed problems of natural

language understanding and the linguistic coverage of the query'. Representative

example systems include the PLANES system [Waltz 781, and the LIFER

system [Hendrix. Sacerdoti. Sagalowicz, and Slocum 781. The present generation of

natural language database systems emphasizes portability [~ a p l a n 781. avidso son

821 and cooperative responses [Webber, Joshi. Mays. and McKeown 831.

Using natural language to access the database has freed the user from learning

a specialized formal database language. However, since natural language is less

restrictive, queries may be rendered to the system less precisely and responses

generated may be misleading. To illustrate this point. consider the following example:

01: D i d anyone get a grade of E i n CMPT 101 l a s t semester?
R4: No.

02: D i d anyone f a i l CMPT 101 l a s t semester?

lgy linguistic coverage we mean the breadth of natural language expressions that can be "correctly"
parsed and analysed for meaning content.

Turning Null Responses into Quality Responses

Introduction

R2: Yes.

If the user believes that "EN is the failing grade, then the user might become

very confused with the two different responses. R1 and R2, he received. Moreover, if

the second question 'is not asked at all, then the user might be misled into the belief

that no one failed in CMPT 101 last semester.

According to Grice's four principles of cooperative human conversation [Grice

' 751, a conversation is cooperative only if the speaker's responses incorporate:

1. the maxim of quantity: be as informative as required;

2. the maxim of quality: contribute only when an adequate
amount of evidence is present:

3. the maxim of relation: be relevant;

4. the maxim of manner: avoid obscurity of expression.
avoid ambiguity, be brief.

A natural language database (NLDB) system should not be misleading and
L

should also provide responses according to Grice's four maxims of cooperative response.

Furthermore. we want a natural language database system to be able to answer

queries concerning the database structure as well. Hence, in our earlier example, the

system should respond that "Em is not a "known" or "valid" value for grade.

Research interest in generating cooperative responses has taken different forms.

Kalita concentrated on giving summary responses of short non-enumerative answers,

which under certain circumstances are more appealing and more desirable [Kalita

841, [Kalita, Jones, and McCalla 861. For example.

03: Which s tudents have completed l e s s than 5 courses?
R 3 : A i l f i r s t year s t u d e n t s .

Turning Null Responses into Quality Responses

Introduction 3

Schank and Lehnert have worked on extended responses when the user's

question tends to be vague and does not reflect a very clear intention [Schank and

Lehnert 791. For example.

Q4: What i s t h e p a t t e r n of w i t h d r a w a l s from computing sc ience courses
over t h e past 3 years?

In this example. "pattern of withdrawals" can mean many different things. including:

the perspective on the reasons why students have chosen to withdraw from a

computing science course; a description of the trends, showing the increases or

decreases in the number of withdrawals; a report on the number of withdrawals in

each computing science course, etc.

McCoy and McKeown attempted to generate answers to requests on the

database structure and show how it is possible to automatically generate this kind of

meta-knowledge2 in a generalization hierarchy from the data itself [M C C O ~

821. [McKeown 821 .

All the systkms mentioned above require a knowledge base of some sort3.
L

Kaplan, however, worked on cooperative responses which correct user's misconceptions

without using an separate knowledge base [Kaplan 781; and. Motro worked on the

method for interpreting null answers by assuming the existence of necessary

knowledge in the database [~ o t r o 861. It is our contention that the need for a

general knowledge base to support the generation of a wider variety of cooperative

responses is essential.

 eta-level data information is information pertaining to the data in the database. Thus, beside
information about how the data are organized and related, information concerning what a null value in the
database mean is also a kind of meta-level data information, see chapter 4.

3~lease refer to chapter 4 for the distinction between a knqwledge base and a database.

Turning Null Responses into Quality Responses

Introduction 4

A brief survey of appropriate natural language database systems which generate

cooperative responses is presented in chapter 2; these systems demonstrate the kind of

problems that are subjected to my investigation in the subsequent chapters (especially

null value events). Motro's recent approach to interpreting null answers using query

generalization [~ o t r o 861 is also discussed in the last section of chapter 2 together

with some other related systems. A preliminary classification of null events is

developed and presented in chapter 3. This classification provides suggested focusses

for the development of a general knowledge base in natural language database

systems. In chapter 4, the relational knowledge base model is described for relational

databases, and the advantages of this approach are discussed. To illustrate the utility

of the knowledge base model, two algorithms are introduced in chapter 5 along with

illustrative examples for providing quality responses to user's misconceptions. In

chapter 6, the concluding chapter, some of the contributions in this research are

discussed and some directions for future research are outlined.

Turning Null Responses into Quality Responses

Nauru1 Language Database Systems

Chapter 2

Natural Language Database Systems

We introduce several examples of natural language database systems in this

chapter. These systems include PLANES [Waltz 781 and LADDER [Hendrix, Sacerdoti.

Sagalowicz, and Slocum 781 in the first group of the early "tout ensemblen systems.

Summary responses [~ a l i t a 841. [~ a l i t a . Jones, and McCalla 861. ENHANCE [MCCOY

821, TEXT [~ c ~ e o w n 821. monitor offers [~ a y s 821. and CO-OP [Kaplan 781 make up

the second group of cooperative response systems. Query generalization [Motro

861, an as 791. conceptual coverage [Finin. Goodman. and Tennant 791. discourse

focus [Davidson 821, and troubleshooting [Dankel 791 are some other related systems.

From this brief survey, we can observe how research interest in natural language

database systems has shifted its focus from treating the total natural language
L

interface problem to a concentration on a particular aspect of the system, that is.

towards providing better quality responses.

2.1. "Tout Ensemble"

We examine two early natural language database systems that attempt to

develop an inclusive natural language interface to a database system. These systems do

not address particular issues in building "complete" systems, but tIJ. to demonstrate

that workable natural language interfaces can be implemented. As a result, they

emphasize problems of natural language understanding and the linguistic coverage of

the query.

Turning Null Responses into Quality Responses

Natural Language Database Systems

2.1.1. PLANES

PLANES which stands for Programmed LANguage-based Enquiry System [Waltz

781 was developed at the University of Illinois as a natural language interface to a

large relational database of aircraft flight and maintenance information. It is one of

several natural language systems that came out in the 1970's.

The natural language processing portion of PLANES comprises a number of

augmented transition networks. Each transition network matches phrases for a

particular meaning along with context registers and concept case frames. Context

registers are history keepers; they help resolve pronoun reference and ellipsis of future

requests. Concept case frames enumerate patterns of questions understood by the

system to infer missing information. So in cases when some useful information is

missing, matching these concept case frames with the rest of the sentence suggests

what type of phrase is necessary to complete the concept. The matched patterns.

which are transformed into unordered sets of semantic constituents with canonical

phrases substituting for the user's terms, and with pronoun references and ellipsis

resolved, are then translated into the formal query language. DSL Alpha.

Other features that PLANES incorporates include: providing a browsing ability;

tolerating vague and poorly defined questions; handling ungrammatical inputs;

correcting simple spelling mistakes: and paraphrasing and generating dialogue for

clarifying partially understood questions.

To generate meaningful and cooperative responses. PLANES usually returns

more fields than what are asked for. To decide which data fields to return for an

answer. PLANES uses a simple rule: all variables and sets of constants are presented

in the answer. For example.

Turning Null Responses into Quality Responses

Natural Language Database Systems 7

0 5 : Which p lanes had 20 o r more f l i g h t hours i n May?

Here "planes" is considered as a variable and "20 or more flight hours" is a set of

constants. Therefore PLANES will return a list of flight hours and plane numbers.

even though only the planes are explicitly requested. For example.

R5: BUSER TOTHRS
67 2 1
68 28
76 27
81 24

Here BUSER stands for Bureau SERial number - a plane identification number, and

TOTHRS is the total number of flight hours for that plane.

2.1.2. LADDER

LADDER, for Language Access to Distributed Data with Error

Recovery [Hendrix. Sacerdoti. Sagalowicz. and Slocum 781. is a natural language

system developed at SRI International. It provides an intelligent interface for natural

language access to a large body of data distributed over a computer network, the

ARPA net. The user is buffered from the actual database management systems by

three layers of insulating components: INLAND, IDA and FAM. These layers operate

in series, converting natural language queries into actual calls to the DBMSs.

The first component, the natural language component. INLAND, is constructed

within the framework of a language processing package called LIFER. LIFER uses a

semantic grammar and makes use of production rules, lexical entries and subgrammars

to interpret the user's query. It generates a sequence of queries to the VLDB (Very

Large Data Base) in a LISP internal language. Queries from INLAND are then passed

to IDA (Intelligent Data Access) which in turn breaks down the queries against the

entire distributed database into a sequence of queries against individual files. FAM.

the file access manager, then performs the actual file access, which involves finding

Turning Null Responses into Quality Responses

Natural Language Database Systems

the location of generic files and managing the access to them.

In employing a semantic grammar, domain semantics can be easily embedded

into the language. For example. semantic grammars use patterns like:

<present> the < a t t r i b u t e > o f <ship>

instead of the more general (BNF formal) pattern such as:

<noun-phrase> < v e r b p h r a s e > .

Generalization of concepts and meta-knowledge about the data can be easily

accomplished with production rules in LIFER. Other concerns that LIFER also focusses

on include spelling correction. general elliptical input processing, redefinition of terms

and paraphrase handling. However. LIFER still suffers from a limitation on its

syntactic and semantic coverage: it can only recognize very simple straight .forward

questions. Resolving relative clauses which contain long distance dependencies,

conjunctive and disjunctive sentences, and resolving definite noun phrases which

depend on the context, are problems for LIFER.

.
PLANES and LADDER are among the earlier successful natural language

database systems. In both systems considerable effort has been expended on the

linguistic coverage and the natural language understanding of the query. These earlier

systems were mainly directed towards concerns (i) and (ii) stated in [Cercone and

i. the kinds of language used
constrained; ways must be
natural language systems:

ii. techniques must be evolved

when interfacing with a database are usually
found of expanding the linguistic coverage of

to integrate syntax, semantics, and pragmatics
so that whatever action is appropriate at a given time can be done.

iii. the separation of the linguistic component sets up an arbitrary barrier

Turning Null Responses into Quality Responses

Natural Language Database Systems 9

which may have become counterproductive; a means of re-integrating data
and language must be found;

iv. traditional (relational) database structures are not necessarily conducive to
promoting the kind of inferences which need to be made for the query to
be comprehended or answered properly; more sophisticated structures must
be devised:

v. the user's understanding of the capabilities of the linguistic and database
components is an important aspect of the man-machine communication.
which must be taken into account: the user cannot be ignored; and

vi. even in a restricted linguistic domain such as natural language database
interfacing, many discourse phenomena arise which must be accounted for
if the natural language system is to behave cooperatively.

PLANES did attempt to provide more informative responses by returning more fields

than required. but this methodology does not always give positive results, for

example.

Q6: How many p lanes o f type A 7 had 20 o r more f l i g h t hours i n May?
R 6 : 1000.

BUSER TOTHRS
67 21
68 28

996 instances

In subsection 2.2.1 we will see how lengthy enumerative responses could give

contrapositive results. In the following section, we consider some of the more recent

natural language database systems which emphasize cooperative responses.

Turning Null Responses into Quality Responses

Natural Lungwge Database Systems

2.2. Cooperative Responses

In this section, we describe several systems that emphasize cooperative

responses. Each of these systems tries to solve a particular problem. which is

different from the others, in a natural language database system. However, all of

them demonstrate the need to go beyond simple data access in a natural language

database system, and the need to take the next step of cooperative responses.

2.2.1. Summary Responses

Kalita's summary response system was developed at the University of

Saskatchewan [Kalita 841. This system generated non-enumerative summary responses

which were less verbose and could often avoid any misleading implicatures.

According to Grice [Grice 751, an important convention of human conversation is to

ensure that no participant monopolizes the discourse. Hence, a response with a lengthy

list of data may not convey the salient point of the answer. Under certain

circumstances, summary responses are more appealing and more desirable. Furthermore.

extensional responses can sometimes mislead the user by generating false implications .
whereas summary responses would not. For example [Gallaire, King. Mylopoulos.

Reiter, and Webber 831.

Q7 : Which department managers e a r n over $40,000 per year?
R7.1: A b e l , Baker . C h a r l e s , Doug.
R7.2: A l l o f them.

By enumerating all of the managers who earn over $40,000 (R7.1). the system

would imply that there are still managers who do not earn that much if the user

does not know that R7.1 implies R7.2. This is called a sccdar implicature according to

[Grice 751. A cooperative principle of conversation requires a speaker to say as

much as he can and not say anything that is believed to be false. A responder could

give R7.1 as the response if he could not say the more inclusive answer R7.2.

Turning Null Responses into Quality Responses

Nurural Lunguage Database Systems

Kalita's system employs a knowledge base which consists of

1. frames that are used to store useful information about the relations and
their attributes in the database and

2. heuristics that guide the search for "interesting" patterns in the data.

The system will undertake a heuristic search of the data that satisfies the user's

query, and try to discover and respond with any underlying patterns or implicatures

by consulting the information stored in the frames of the knowledge base. One basic

problem with this approach is that not all underlying patterns are "applicable" or

relevant. For example,

08 : Which students a r e accepted i n t o the honors program of the
School of Computing Science?

R8.1 : A l l undergraduate students w i t h a GPA of 2 . 7 or h igher .
R8.2 : A l l undergraduate students w i t h a soc ia l insurance number.

For query 4 8 , response R8.2 is certainly not relevant or suitable, a more relevant

response might be one such as R8.1. In fact, one of the main reasons for having the

frames and the significant values defined in them is to try to cut down the

possibilitv of discovering irrelevant regularities. like R8.2. from the enumerative result.

2.2.2. University of Pennsylvania Research Efforts

Research efforts into natural language database systems have been very active

at the University of Pennsylvania under the supervision of Dr. Bonnie Webber. In

this section. we examine the work of three of Webber's students. McKeown. McCoy,

and Mays.

McKeown and McCoy have developed systems that are able to answer queries

about the structure of a database [McKeown 821. [McCoy 821. This area of concern is.

in fact, very important in a natural language database system because answering

queries about the database structure will mean that some cooperative problem-solving

interaction can be made available.

Turning Null Responses into Quality Responses

Natural Language Database Systems 12

McKeown's TEXT system [Mc~eown 821 was developed to respond dynamically

to three types of database structure questions:

1. requests for definitions.

2. questions about the kind of information available in the database.

3. questions about the differences between entities existing in the database.

TEXT employs a knowledge base that is comprised of taxonomic, functional

and attributive information about the concepts in the database. It is basically an

annotated generalization hierarchy on the entities in the database.

McCoy's ENHANCE system [McCoy 821 generates part of TEXT'S knowledge

base automatically. The ENHANCE system assumes that the database is static in order

to generate an annotated generalization hierarchy. This hierarchy defines entities in

terms of their superordinates and their subclasses: it also contains information such as:

1. based database attribute lists - these lists indicate the reasons for splitting
into subclasses.

2. Distinguishing Descriptive Attributes (DDA) - attribute-value pairs whose
values will distinguish one subclass from others.

3. database attribute lists - names and values of all attributes which are
constant within a subclass.

McCoy also employs several world knowledge axioms in order to generate the

hierarchy.

Mays worked on a system that has the ability to take the initiative and

produce monitor .offers of additional information that are both competent and relevant

to the user's query [~ a y s 821. For example.

Turning Null Responses into Quality Responses

Natural Language Database Systems

09: D i d John pass C W T l B l ?
R9: No, the semester hasn ' t ended, so he hasn ' t r ece i ved a grade y e t

S h a l l I l e t you know then when he passes the course?

This system deals with a dynamic database because it is able to reason about

possible future states. To provide answers such as R9, a system must be able to

recognize what events are actually possible, what additional information is relevant,

and when it is appropriate to perform such services. Mays uses a branching-time

temporal logic to achieve these goals. The system employs six composite temporal

operators:

(Ex)P - ho lds i f f P i s t r u e a t some immediate f u t u r e .
(Ax)P - ho lds i f f P i s t r u e a t every immediate f u t u r e .
(EF)P - ho lds i f f P i s t r u e a t some t ime o f some f u t u r e .
(AF)P - ho lds i f f P i s t r u e a t some t ime o f every f u t u r e .
(EG)P - ho lds i f f P i s t r u e a t every t ime of some f u t u r e .
(AG)P - ho lds i f f P i s t r u e a t every t ime o f every f u t u r e .

To illustrate how these operators are used to specify the system's view about the

possibility of change in a dynamic database contents, consider the following example:

Let P stands f o r the p r e d i c a t e "s tudent has passed course" and
R s tands f o r the p r e d i c a t e "s tudent i s r e g i s t e r e d f o r course" ,

then

(AG)[R + (EX)P] means i f a s tudent i s r e g i s t e r e d f o r a course then
i t i s nex t p o s s i b l e t h a t he/she has passed i t .

(AG)[P - + - R] means i f a s tudent has passed a course, then he/she
i s no t r e g i s t e r e d f o r i t .

Axioms such as the above would specify the relationship of the current state of the

database to possible future states, and hence govern how the system views the

possibility of whether the database contents may or may not be changed.

Turning Null Responses into Quality Responses

Natural Language Database Systems 14

CO-OP [Kaplan 781, developed at the University of Pennsylvania by Jerrold

Kaplan, is a natural language database system that specializes in the generation of

cooperative responses. The motivation behind the development of such a cooperative

response system is that if a natural language database system is capable of only

providing direct responses to questions. then it will often result in some inappropriate

or meaningless responses. Especially in the case of a null answer query, the

appropriate response is rarely the direct answer to the question, but: rather is an

indirect answer. For example in [~ a ~ l a n 78, pg 21,

010: Which s tudents got a grade o f F i n CMPT100 l a s t semester?
R10: N i l [empty s e t] .

011: D i d anyone f a i l CMPT100 l a s t semester?
R11: No.

012: How many s tudents passed CMPT100 l a s t semester?
R12: N i I .

013: Was CMPT100 o f f e r e d l a s t semester?
R13: No.

In these examples, it is inappropriate or uncooperative to give an answer such '

as R10. In the following example [Kaplan 78, pg12], an answer such as R14 will be

meaningless if Bill was not at the banquet at all.

014: How many Bloody Marys d i d B i l l d r i n k a t the banquet?
R14: 0 .

The cooperative responses that CO-OP can offer include: corrective indirect

responses, suggestive indirect responses and supportive indirect responses. The

mechanism that CO-OP employs to produce cooperative responses is domain

transparent. The only domain specific knowledge that CO-OP needs can be derived

from the information present in the database system if a suitably encoded lexicon is

present. The cooperative response mechanism relies on language-driven inferences; that

Turning Null Responses into Quality Responses

Natural Language Database Systems 15

is, inferences concerning the user's presuppositions are driven from the particular

phrasing of the user's input. Thus for Q14. inferences that can be made about the

user's presuppositions are:

1. there is a Bill.

2. there is a banquet,

3. there is a liquor called Bloody Mary,

4. the liquor was available at the banquet,

5. Bill was at the banquet, etc..

To accomplish this. CO-OP transforms the user's query into an intermediate

representation called Meta-Query Language (MQL).

The MQL is a graph structure that encodes some of the syntactic relationships

between entity sets present in the natural language query. Nodes in the graph

represent entity sets, and edges represent binary relations defined on the connecting

nodes. Each connected subgraph of the original graph corresponds to an assumption

the user has made about the domain of discourse. Thus. if the initial query returns a

null response, the system will check the user's assumptions by passing each connected

subgraph. in turn, to be compared against the database to check for its non-emptiness.

An empty set result for any one of the subgraphs will prove the falsity of the

corresponding assumption, and thus an appropriate indirect response can be generated.

For example, if the subgraph of inference 5 of 414 returns a null answer, then the

more appropriate response will be:

Bill was not at the banquet.

Kaplan's work on cooperative responses is closely related to my work, except

Turning Null Responses into Quality Responses

Natural Language Database Systems 16

that Kaplan's language-driven inference mechanism is very domain independent. This

language-driven inference mechanism of CO-OP only enables it to handle requests for

data retrieval, it cannot handle queries concerning the database structure or queries

that require substantial inferences or comparisons of the data for generating an

appropriate answer. 4

2.3. Some Other Systems

2.3.1. Query Generalization -

Motro has presented another approach to interpreting null answers using a

technique called query generalization [Motro 861. When a query returns with a null

answer, an attempt is made to generalize the query, that is, to modify the query

such that the answer set of the generalized query is a superset of that of the original

query. This can be done by removing or substituting a condition in the search criteria.

For example, consider the query to list all beer lovers:

O (X) = (x , E , PERSON) and (x ; LOVES~BEER) ,

if this query results in a null answer, and there exists the fact:

then the query generalizer will produce the following query:

a, (x) = (x . E , PERSON) and (x , LOVES, ALCOHOLIC-BEVERAGE)

The answer to this query results in a response to the user with a list of all persons

that love alcoholic beverages. When the queries produced by the query generalizer

4~ also believe that there are misconceptions that cannot be detected just from the surface language
structure of the user's queries; this concern requires further investigation.

5 < is a special entity that expresses the generalization relationship between 2 types. A concept described
by the second type is more general than the concept described by the first type.

Turning Null Responses into Quality Responses

Natural Language Database Systems 17

fail, the generalization process is applied again until it finds one query with a set of

all successful generalized subqueries.

This approach is demonstrated with the author's Loose Structure Data Model.

which overlays the underlying database. However, depending on the underlying

database. the amount of necessary information for cooperative responses available in a

traditional database system is questionable, especially meta-level data information.

This process of query generalization for interpreting null answer from the database is

similar to Kaplan's technique of passing each connected subgraph of the original graph,

in turn. to be compared against the database to check for user's misconceptions.

Janas also took an approach similar to Motro and Kaplan to generate indirect

answers to failed queries in database management systems a an as 791. From the formal

representation of the user's failed query,6. the .system recursively substitutes the failed

query by their failing predecessors until no more failed queries are found. This

process results in a more informative answer than the user's original null response. A

predecessor of a query is obtained by simply removing one term from the query

expression without ended up with an unconnected expression, and which may have

predecessors itself. For example, consider a relational database model:

EMP(N&, SAL. AGE)
CAR(=, OWN, COL)

Q3 is a predecessor of Q2.

Q2: j x I ((x.AGE < 3 0) a d 3 y ((y . 0 ~ ~ = x.NAM) m d
(y.COL = ' r e d 1))) {

a3: j x (((x .AGE < 3 0) and 3 y ((y . o w ~ = x.NAM))#

6~ predicate calculus based query language.

Turning Null Responses into Quality Responses

Natural Language Database Systems 18

Janas restricted his problem to query expressions which are connected. Q2 is

an exaplple of a connected expression where variables x and y are connected by

(y.OWN = x.NAM). A set of rules which specify how to obtain predecessors from a

well formed query, and an algorithm using these rules to provide appropriate answers

is also provided in anas as 791.

2.3.2. PIQUE

In a natural language environment, a user will very often phrase his input

with respect to the current perceived focus of the dialogue. Therefore. retaining a

model of the user's current focus will assist the system to behave more appropriately

and less erroneously.

Davidson has worked on modelling the user's focus during hidher interaction

with the database [Davidson 821. The user's focus is modelled by the segment of the

database that the user's is currently accessing. The focus representation is just a DML

(Data Manipulation Language) expression which can be viewed as an intensional

description of that particular database segment that are on focus. The focus space

determined by the DML might then provide the referent in subsequent dialogue.

Interpretation-in-context is done via query modification. For example. consider the

following two queries:

Q4: "Who a r e t h e programmers?"

Q5: "What i s Jones' s a l a r y ? "

a DML expression for Qq could be:

jx.name : x E emps I x .occupat ion = programmer'^

and for Q5. the DML interpretation without context could be:

[x . s a l : x E emps I x.name = ' J o n e s ')

but interpreting Q5 in context of Q4 using query modification could result in:

Turning Null Responses into Quality Responses

Natural Language Database Systems

1 x . s o l : x E emps 1 x.name = ' J o n e s ' afld x . o c c u p a t ion = ' p r o g r a m m e r a $

Although there could be an inappropriate effect when evaluating the query

with respect to a restricted focus space when the user didn't intend this restriction.

Davidson tries to minimize this misuse of focus by restricting the use of focus to

monotonic queries7, and by employing several heuristic rules to determine whether a

context-directed interpretation is appropriate.

2.3.3. JETS

JETS is a sequel of PLANES which was developed in the University of

Illinois [Finin, Goodman, and Tennant 791. JETS is centered on improving the

- conceptual coverage in natural language database systems. Often. users refer to

concepts that are related to the activities in the domain. but are not actually

represented in the database. Conceptual coverage of a system refers to the set of

concepts that the system can deal with: concepts which are consistent with the

domain, but which may not have been specifically forseem8
.

a The architecture of JETS is a network of frames. The generality/specificity

links found in the system enables us to view the conceptual system as a directed tree

of frames rooted at the most general concept with property inheritance. Interpretation

of the conceptual frames is done by using a set of rules which are also frames

themselves. The rules

solving frames which

are basically pattern matchers. There are also a set of problem

help in the development of plans to extract required information

7 ~ o u g h l y speaking, monotonic queries are those which contain neither universial quatification, nor (certain
forms of) negation [Davidson 821.

' ~ c c o r d i n ~ to the definition of closure in the manipulation of concepts by Woods [Woods 771.

Turning Null Responses into Quality Responses

Natural Language Database Systems 20

from the database, and also generate dialogue with the user when ambiguous

terminologies arise in the user's input.

In order to achieve closure in terms of semantic interpretation. JETS

concentrates on conceptual modification. For example, to give an interpretation to the

phrase "engine damage", where the ENGINE concept modifies the DAMAGE concept.

JETS fill the damage-object slot in the DAMAGE concept with the ENGINE concept.

However, solving the problem of conceptual modification in JETS does not imply that

the system should be able to handle the concept in terms of answering questions

about the concept in the database.

2.3.4. BROWSER

BROWSER is an automated system which searches a database for interesting

patterns or configurations primarily for troubleshooting the database system [Dankel

791. BROWSER explores the database using some special data models and a collection

of data-dependent and data-independent heuristics. Interesting patterns occurring in

the database are identified by using simple statistical techniques.

Representation of knowledge about the database is done via data-models and

some data-dependent heuristics. There are five different types of models. Data Base

Models contain descriptions of data fields in data files. Data Specific Models provide

information on how the various data fields are related to each other. The Specific

Models and the Typical Models provide the generalization and aggregation organisation,

and the G e w a l Models provide information on typical data structures used within the

data.

The controlled execution of tasks is done by using an agenda, which is an

Turning Null Responses into Quality Responses

Natural Language Database Systems 2 1

ordered list of tasks. The tasks are all weighted according to various considerations,

for example, certain tasks must be executed before others. and certain tasks appear

more important to perform than others because of the results of pervious tasks. The

whole system is designed in a modified production system architecture. [Davis and

King 7.51

The system begins with a small basic set of concepts which describe the

database. The execution of the agenda will allow the system to identify and define

new significant subsets of data and explore them; thus, supplying a plausible

explanation to certain outcomes in order to achieve troubleshooting.

Turning Null Responses into Quality Responses

CLassi f ication of Null Events

Chapter 3

Classification of Null Events

In chapter 2. we briefly surveyed some previous work on natural language

database systems. Natural language database systems have advanced beyond the stage

of simple data access. There are systems that emphasize cooperative responses: [McCoy

821. [McKeown 821. [Kaplan 781. and [Mays 821; summary responses: [Kalita. Jones,

and McCalla 861; system that keeps track of the focus of a discourse: [Davidson 821;

system that emphasizes conceptual coverage: [Finin. Goodman, and Tennant 791; and

system for troubleshooting: [~ a n k e l 791. However, most of these systems have

overlooked the issue of null answers to queries. Kaplan, Janas, and Motro have

worked on giving some treatment to null values. In particular, Kaplan considered the

to avoid an? proper treatment of null answers to queries as

misleading implicatures.

very important

Database systems rarely contain all of the information necessary to model their

domain, hence null values arise in many database accesses. The ANSVSPARC interim

report [ANSI 751 lists 14 different manifestations of null values. for example:

1. not valid for this individual (for example, spouse of a bachelor)

2. valid, but does not yet exist for this individual (for example, a final
grade of a course for a student before the final exarninat i~n);~ etc.

' ~ o t i c e that Mays [Mays 821 has developed techniques to o'ffer monitor responses whenever there is a
null value of this type arises, see chapter 2.

Turning Null Responses into Quality Responses

Classification of Null Events . 2 3

Much research has attempted to give a proper semantic treatment to null values. I

propose an initial classification of null events occurring in natural language database

systems.

A typical natural language database system consists primarily of four major

components as shown in the Figure 3-1.

Figure 3-1: A typical NLDB system

We assume that the semantic interpreter is a very general semantic interpreter .
which can capture semantic information from the given database schema, and has its

own knowledge about the linguistic aspect of natural language. Assume further that

the semantic interpreter is as domain independent as possible, and does not carry

detailed pragmatic concerns of the domain. An example of such a semantic interpreter

can be found in [Cercone. Hadley. Martin. McFetridge, and Strzalkowski 841. where

the natural language database system architecture is also similar to the one in Figure

3-1.

some internal
-n

logical form *
natural language *

input

Before classifying null events, it is important to draw a clear distinction

between a "No" and a "Null" answer to a database query. For a "closed" query, such

as:

Turning Null Responses into Quality Responses

parser

.
parse

3

-
semantic

interpreter

output

answer)

4

query
generator

formal database

query

query
interpreter

Classification of Null Events

" I s John Doe a computing sc ience s tudent?"

which involves a "Yes/No" answer, a "Null" answer response should be interyreted as

"I don't know whether John Doe is a computing science student" instead d being

confused with the answer "No, John Doe is not a computing science student". In an

"open" query, such as:

"Who i s t a k i n g CMPT107 t h i s semester?"

a "Null" answer should be interpreted as "I don't know who is taking CMPTl07 this

semester" instead of being confused with the empty set, (01, which means that "no

one is taking CMPT107 this semester".

3.1. A Classification of Null Events

The classification scheme outlined below is very general and details five

categories of null events. Not all categories may arise in every database and the

extent to which domain information is incorporated into a semantic interpreter often

will obviate some categories from further consideration. In the examples given below.

Q represents the query, DB stands for a response from a system such as the one in

Figure 3-1 where the response is the result of consulting only the knowledge that is

available in the content of the database. KB assisted stands for a response that results

from adding a knowledge base component to the system in Figure 3-1 which aids in

providing more informative responses, and Null represents a null value response from

the database.

Natural language database systems are designed to accommodate naive users.

The more informal the query language is, the more sophisticated the system needs to

be in order to comprehend and answer queries properly. Traditional database

structures (for example, relational databases), however, are not conducive to providing

the kind of inferences that are required. This gives rise to the first two classes of

Turning Null Responses into Quality Responses

Classi fication of Null Events

null event problems.

3.1.1. Null answer due to the need for general rules.

In this section, null responses due to the need for general rules will be

discussed. Consider the following example:

Q : Does every graduate student have o f f i c e apace i n the computing
sc ience department?

DB: N u l l .

KB a s s i s t e d : Yes/No.

In this example, we require access to a general rule such as: "Every

has an office space" in order to provide some definite answers to the

graduate student

given query.

Let us take a closer look at this problem. If the semantic -interpreter can

interpret the above query as:

"Do t h e r e e x i s t graduate s tudents t h a t do not have o f f i c e space?"

and respond to the original query by interpreting the answer it receives from the

modified query, then we will not have a null value problem at all. However, if the

semantic interpreter does not know how to interpret the original query because it does

not know how to handle the universal quantifier. "every", then the selhantic

interpreter might reject the original query altogether. In this case, where we do not

get any response from the system, we considered it as a null event1' because the

original query might have received an answer from the system with the help of a

knowledge base. So, a null value problem is also a null event.

8

Notice here that separating the extensional facts and the intensional facts in our

case (see chapter 4) can provide means to handle exceptional cases. For example:

'O~o t i ce the slight difference between null value probht and nuU event as used here.

Turning Null Responses into Quality Responses

Classification of Null Events 26

KB a s s i s t e d : Every graduate student has an o f f i c e space i n LB7602 except
J . S m i t h who i s on leave t h i s semester . He can be contacted
through h i s m a i l box.

By- extensional facts, we basically mean the content of the database. Extensional facts

are explicit information concerning the entities and relationships that exist at the

current instant, they may change at relatively short intervals. Intensional facts are

general facts about the world. constraints on how the world can be; for example,

information about the structure of the database such as the database schema, is

considered as intensional fact.

The following two examples further demonstrate the need for a knowledge base

with general rules in order for the semantic interpreter and the database system to

produce answers to the queries appropriately.

Q : W i l l Mark Johnson get an o f f i c e space i n the Computing Science
department i f he get accepted i n t o the graduate program?

DB : N u l l .

This query could be appropriately answered if we have again the general rule: "Every

graduate student has an office space".

.
Assuming the existence of the following two tuples in a STUDENT relation of

(name, id. major, address):

(Joe, 111111111, Math, 1 F i r s t Ave Burnaby BC)
(John, 999999999, CMPT, 1 F i r s t Ave Burnaby BC)

then the question "Does Joe know John?" would produce "Null". However, we might

be able to give an answer to this query with a general rule like:

VxVy(address(x)=address(y) + know(x.y))

Turning Null Responses into Quality Responses

Classification of Null Events

3.1.2. Null answer due to the lack of inferencing.

Assume the following relation:

w:j black

The question:

Q : Does carA have a l i g h t e r c o l o r than carB?
DB: N u l l .

results in a null answer since we require an inference rule which states what "lighter"

means, in terms of color.

In the following example,

Q : Can I t a k e Math102 next semester?
DB: Null. JBecause Math102 i s not an e x i s t i n g c o u r s e . 1

KB a s s i s t e d : No, Math102 i s not an e x i s t i n g course.
o r .

KB a s s i s t e d : No, Math102 i s not o f f e r e d next semester .

note that the knowledge base might have an inference rule which states: taking a

course means that the course is in existence, and is offered next semester. Thus a

knowledge based natural language database system is able to give an answer to the

above question instead of "I don't know". However, some databases might be able to

respond with something like: "Math102 cannot be found" possibly with only a very

slight modification in the retrieval routine. In chapters 4 and 5 , we develop a

knowledge base system to give quality responses to null events due to a user's

misconceptions. The knowledge base system is made general enough that it is actually

able to provide the more appropriate knowledge base responses seen in this example.

However, to completely solve the problem in this category requires further research

efforts.

Turning Null Responses into Quality Responses

Classi ficcrtion of Null Events

Consider another example, assuming the existence of the above relation: and

assuming that the first tuple is the only tuple in the relation with Cercone as the

recipient. Then. to answer the question "Is Kao doing any research work for NsERC?"

correctly, we will need an inference rule like:

3.13. Null answer due to the lack of knowledge about the database structure

Most existing formal query languages generally require the user to know what

kind of information is stored in the database. In particular, considerable knowledge

about how the database is actually structured is essential to construct the query. .
However, it is not essential in a natural language database system that the user need

to have this pre-knowledge in order to pose some well-formed queries. Furthermore, it

is not unusual for the user to want to know how the database is structured when he

is engaged in solving problems related to the domain of discourse. The two examples

below illustrate null responses due to a lack of knowledge about the database

structure and suggest more appropriate knowledge base responses.

" ~ o t e the similarity between the methods for handling null responses due to the lack of general rules
and those due to the lack of inferencing. By general rules, we mean to include the universal quantifier.
Thus, depending on which kind of inference mechanism we have, the class of null event due to the need
for general rules might be seen as a subclass of null events due to the lack of inferencing.

Turning Null Responses into Quality Responses

Classification of Null Events-

0 : What i s the number of the phone i n Rm1234?
DB: Nul I

KB a s s i s t e d : Rm1234 i s a t h e a t r e .
No phone i s present i n a t h e a t r e i n Simon F r a s e r U n i v e r s i t y .

0 : How many d i f f e r e n t job c l a s s i f i c a t i o n s do we have i n SFU?
D8: N u l l

KB a s s i s t e d : There a r e 14 d i f f e r e n t academic job c l a s s i f i c a t i o n s i n
Simon F r a s e r U n i v e r s i t y .

For the second query, if we have. separate employee records for different

departments in the university, then we will not be able to provide an appropriate

answer to the query without knowing how the university is structured. unless, of

course. the information about the different academic job classifications is explicitly

expressed in a particular relation in the database. Thus, both of the above queries

require some kind of hierarchies concerning the database structure in order to be able

to give the equivalent kind of knowledge base assisted responses as shown above. For

example, a facilities hierarchy, which tells us that theatre (including its location) is a

kind of facility in the university, and which aiso tells us what kind of facilities are .
present in a theatre, is needed for the first query: and an employee's hierarchy is

needed for the second query. '

3.1.4. Null answer due to the lack of ability to handle partial information.

Having partial information is not an uncommon real world situation. However,

partial information has typically not been represented in traditional databases. If the

partial information "teach(Joe. CMPT810) V teach(Art. CMPT810)" is known. this

information may only be approximated in the database (say, relational database) as:

12~ot ice that, on the other hand, hierarchies can be expressed as inference rules too.

Turning Null Responses into Quality Responses

Classification of Null Events 30

In this case, we have information that either Joe or Art is teaching CMPT 810 next

semester, but we don't know which. Then the questions

Q : Who i s t each ing CMPT 810 next semester?
DB: Nul I .

KB a s s i s t e d : E i t h e r Joe o r A r t i s go ing t o teach t h i s course next semester.

Q : I s Joe teach ing CMPT 810 next semester?
DB: Nul I .

KB a s s i s t e d : E i t h e r Joe o r A r t i s go ing t o teoch t h i s course next semester.

would have better responses from a knowledge-based natural language database

system.

3.1.5. Null answer due to a misconception.

A user's query is usually loaded with assumptions. We have already considered

examples of "loaded" queries in chapter 1 and chapter 2. One such loaded query is:

How many Bloody Marys d i d B i l l d r i n k a t t he banquet?

When one or more assumptions of a loaded query are incorrect, a null answer arises.

While such null answers are correct from a technical point of view, very often they

are unsatisfactory and abstruse. Null answers due to user's misconceptions can arise

under several conditions:

1. a misconception that "fails intensionally" due to

1. a missing relationship (example due to [Webber. Joshi. Mays, and
McKeown 831).

Q : Which graduate s tuden ts have taught CMPT681?
DB: N u l l .

KB a s s i s t e d : CMPT681 i s a graduate course.
On ly f a c u l t y can teach a graduate course.

Turning Null Responses into Quality Responses

Classification of Null Events

2. or a missing attribute field.

Q : I s the k i n g o f France ba ld?
DB: NUI I .

KB a s s i s t e d : There i s no k i n g i n France.

Q : Who i s the dean o f t he computing sc ience department?
DB: N u l l .

KB a s s i s t e d : There i s no dean o f a department, bu t you can
t a l k about t he dean o f a f a c u l t y .

Note that in this subclass of null events, the semantic interpreter
might reject the query initially, because it might not be able to find
any interpretation of "dean of a department" or "king of. France"
from its knowledge base or from the database schema. This kind of
null event can be resolved with the help of. generalization hierarchies
(see chapter 4). (and/or specialized inference rules). in a knowledge
base. This class of null values is similar to not valid for this
individwl [ANSI 751.

2. a misconception that "fails extensionally" due to

1. a missing tuple13

Q : I s CWT107 o f f e r e d t h i s semester?
DB: N u l l . JBecause CMPT107 i s no t an e x i s t i n g course)

KB a s s i s t e d : No, CMPT107 i s no t an e x i s t i n g course.

2. a missing attribute

1. temporal events14

Q : Who i s teach ing CMPT101 next semester?
DB: Nul I .

KB a s s i s t e d : The i n f o r m a t i o n i s no t known as y e t .
A course schedule f o r nex t semester w i l l be
ready by Dec4.

13Kaplan had worked on providing a similar result to the KB assisted response for this category of null
event. A language-driven inference mechanism is used in his approach [Kaplan 781, see chapter 2.

1 4 ~ o t e that, for this category, Mays had developed techniques to monitor possible changes in the
database, and provide relevant information concerning these changes to the users. [~ a y s 821

Turning Null Responses into Quality Responses

CLassi fication of Null Events

Q : What grade d i d John get i n MATHlBB?
DB: Nul I .

KB a s s i s t e d : The grades f o r t h i s semester a r e not i n as y e t .
A l l grades w i l l be i n by Dec 3.

Note that this class of null values is similar to valid, bul does
not yet exist for this individual [ANSI 751.

2. always null

Q : Which t e x t book i s used f o r CMPT898?
DB: N u l l .

KB a s s i s t e d : CMPT898 i s the course number f o r a masters t hes i s .
t h e r e i s no t e x t i nvo l ved he re .

Note that this class of null events is very similar to the
missing attribute field for a misconception that fails
intensionally, as discussed earlier, depending on the structure of
the database.

Figure 3-2 is a diagrammatic version of the different categories described above:

General
Rules

Inf erencmg Misconception
Structure Information

L

Fail Fail
Intensionally extensionally

Missing
Attribute

Relationship Tuple Attribute
field -

Temporal Always

Figure 3-2 A Classification of Null Events

Turning Null Responses into Quality Responses

Classt f ication o f Null Events 3 3

In the next two chapters. we further investigate quality responses to null

answer queries mentioned in this last section, that is null answer queries due to

user's misconceptions. The knowledge base model introduced in chapter 4 provides us

with a general way of capturing information that is necessary and essential for

generating the desired quality responses shown in this section. The two algorithms

found in chapter 5 further explicate the knowledge base model. and demonstrate the

kind of quality responses we can generate from this model.

Turning Null Responses into Quality Responses

The Knowledge Base Model

Chapter 4

The Knowledge Base Model

Given a relational database, we have already seen (in chapter 3) that when a

natural language front-end is introduced, we can only provide limited quality

responses when a null value arises. This is mainly because when data retrieval ends

up with an empty response, the meaning of this empty response is completely

unknown to the user, and might even be inexplicable from the information found in

a traditional relational database system. A knowledge base becomes important, at this

point, in a natural language database system to provide information for the generation

of quality responses to null answer queries. In particular, concept hierarchies,

generalization and aggregation hierarchies need to be added to the relational database

to facilitate the generation of quality responses. In this chapter, we will consider the

structure of the knowledge base.

4.1. Knowledge Base vs Database

A database can be viewed as a repository of facts. Facts that describe some

real world situation at a particular instance. Most of the time, a database is designed

to tolerate changes, and is therefore may evolve over time. Thus, in a database we

can find two types of information: the content of the database informs us of the

way the world is modelled; and the structure of the database, specifically, the

database schema, tells us the way the world can be modelled. We refer to these two

types of information, as extensional facts and intensional facts in chapter 3.

Turning Null Responses into Quality Responses

The Knowledge Base Model 35

Unfortunatly, traditional databases are considered to be quite limited in terms of

expressive power. In a typical natural language database system as the one in Figure

3-1, the intensional facts available in the database are orily used for giving plausible

interpretations to the natural language inputs. There are other facts which are not

present in the database management system, but are useful in informing us how the

world can be modelled.

Hence, for any database management system used in a natural language

database system, we want to add to it a knowledge base which contains more

intensional information about how the world can be modelled, in particular.

information that can help in the interpretation of null values in the database. Thus, a

knowledge base can explicitly incorporate meta-data knowledge: knowledge about the

database structure, such as entity concept hierarchies, generalization and aggregation

hierarchies: knowledge about entity relationships, entity relationship

knowledge about null values existing in the database; knowledge

precedence in the database domain: etc. In the relational knowledge

which I am going to describe in detail later in this chapter, tuples

therefore have the function of informing us of the interrelationships

different attribute fields. entity concepts, etc. present in the database.

constraints:

about event

base model, .
entries will

between the

We assume a relational database model, and that the query language is SQL.

The knowledge base model is similar to the RM/T model15. Codd's extended relational

model [Codd 791. Hence, the knowledge base model is also relational in nature. This

approach has the following advantages:

1 5 ~ ~ / ~ stands for Relational ModeVTasmania, where the ideas embedded .in the model were first
presented.

Turning Null Responses into Quality Responses

The Knowledge Base Model 36

1. For relational database implementat,ions, the required knowledge base is
inexpensive to incorporate with only some additional information required.

2. A relational representation of a knowledge base does .not require special
operators to manipulate the knowledge base; the existing relational
operators (with slight modifications) can be used. This renders our scheme
conceptually simple for the database administrator, and immediately
applicable as an add-on to any existing databases.

3. This approach makes it easy to implement a table-driven scheme, and, as a
result, enhances portability.

4. The knowledge base model captures meta-data information at an intensional
level, with the addition of a considerable static event calendar of the
application domain. This makes the knowledge base independent of the data
values in the database. Database updates will have no effects on the
knowledge base unless there is a change in the database schema.

The RM/T model distinguishes P-relations (property relations) from C-relations

(characteristic relationsi. In a P-relation only single-valued functional dependencies

are considered: and in a C-relation only multi-valued dependencies are considered. Our

model does not distinguish between these relations because we can always obtain all

of the functional dependency Information by consulting the database schema. Also,
L

since we are mostly handling the database intensional facts in the knowledge base, the

model is marginally different from the RM/T model. in which both intensional and

extensional facts are handled.

4.2. The Knowledge Base Model

In this section. the relational knowledge base model is described. The

knowledge base is considered to be a separate component in the natural language

database system, although it is a relational model as is the database. Note that all

examples illustrated in this section are based on the database schema shown in Figure

4-1. A brief overview of the knowledge base model is given first, and the full

Turning Null Responses into Quality Responses

The Knowledge Bare Model

detailed description of each relation in the model is given later.

OFFERING(CNAME. SEMESTER#, CLASS#)
COURSE-PREREQUISITE(CNAME, PREREQUISITE)
COURSE-PREVIOUS-NAME(CNAME, PREVIOUS-NAME)
COURSE-DESCRIPTION(CNAME, DESCRIPTION)
SEMESTER(SEMESTERf, YEAR, SEASON)
CLASS-DEPT(CLASS#, DEPT, UNITS)
TEACH(CLASY. s, INSTRUCTOR#, TEXT)
TAKE(CLASS#, s, STUDENT#, FINAL-GRADE)
CLASS-ROOM(CLASS#, E, TIME. ROOM#)
INSTRUCTOR(INSTRUCTOR~, NAME, OFFICE. SEX, STATUS)
STUDENT(STUDENT#, NAME, MAJOR. MINOR. SEX, STATUS)
DEPT-CHAIRMAN(DEPT~, CHAIRMAN, FACULTY)
DEPT-FACI LITY(DEPT#. FACILITY)
FACULTY-DEPT(INSTRUCT0Rf. DEPT)

Figure 4-1: Database Schema

There are basically two types of entity handled in our knowledge base

model16: simple entities and associative entities. All simple entity types can be

found in the ENT-relation, and the knowledge base is closed under all simple entity

types. that is. we assume that all simple entities' identifiers are known by the world

modelled by the database. For every entity type found in the ENT-relation. we

assume that there exists a relation in the database that contains the list of all

members of that entity type. We called this relation the complete list relation (CLR)

of an entity type. The primary key attribute field, which we assume to not be a

composite primary key, of a complete list relation (CLR) is naturally taken to be the

identifying field of the corresponding simple entity type. Associative entity types are

relations which we called AG-relations. Since we allow an associative entity type to

be any n-ary relation, an AE-relation is introduced to keep track of all associative

entity types that are defined in the domain. Both simple entity types and associative

16~ccording to Ullrnan, in Principles of Database Systems [Ullman 821, there are basically two kinds of
relations: (1) an entity set can be represented by a relation whose relation scheme consists of all the
attributes of the entity set; and (2) a relationship among entity sets El, E2, ..., Ek can be represented by a

relation whose relation scheme consists of the attributes in the keys for each of El, E2, ..., Ek.

Turning Null Responses into Quality Responses

The Knowledge Base Model 38

entity types are allowed to have properties. The PG-relation is introduced to bind

properties to different entity types.

We use a CLASS-relation and a GH-relation to provide generalization and

aggregation hierarchies for entity concepts. The GH-relation allows us to built

hierarchical structures on an entity concept, and we can structure an entity concept

with respect to different categories (classifications) with the CLASS-relation.

Sometimes an entity type, simple or associative, or properties of an entity type might

be time dependent. We use the EG-relation and the E-relation to facilitate event

precedence relationships. An event can be represented by any attribute field defined

in the database, or an E-relation. An E-relation is a relation which stores information

about an event that has some predefined approximate (or exact) dates that are known

to the knowledge base. Exceptional cases can also be modelled using the EXC-relation

where exceptional case(s) can be attached to different concepts. Finally. the V-relation

contains all the view definitions which are defined in the knowledge base model. The

key way to tell whether an attribute concept participates in any of the event

precedence relationships or exceptional facts is to put the corresponding attribute field

as a value in the proper relation.

Our model consists of this package of relations added to the database, as

illustrated in Figure 4-2. These relations' schemes are described in more detail below.

Tuple entries in these knowledge base relations are yet to be handcoded by some

appropriate person, like the system administrator.
s

0 ENT-relation (ENTity relation) is a binary relation which contains all of
the simple entity types of the application domain. The primary key of this
relation is an entity type which will uniquely determine a relation. the
complete list relation(CLR), in the database where we can get a complete
list of the members of the corresponding entity type.

Turning Null Responses into Quality Responses

The Knowledge Base Model

ENTITY

student STUDENT
instructor INSTRUCTOR

semester SEMESTER
class CLASS-DEPT

ENTITY -
course
course
course
course

semester
semester
semester

class
class
class
dept
dept
dept
dept

instructor
instructor
instructor
instructor

student
student

OFFERING
TAKE

CLASSROOM

PROPERTY

DESCRIPTION
PREREQUISITE

PREVIOUS-NAME
CNAME

SEMESTER*
YEAR

SEASON
CLASS#

DEPT
UNITS
DEPT#

CHAIRMAN
FACULTY
FACILITY

INSTRUCTOR#
NAME
DEPT

OFFICE

STUDENT#
NAME

CLASS#
FINAL-GRADE

ROOM#

RELATION

OFFERING
TEACH

(c)

E-relation
finaltwm:

SUP -
coursel
coursel
course2
course2

student
student

final-exam FINAL-GRADE
ROOM# class-begin

E-relation
class-begin:

course course1
course course2

graduate-course
undergraduate-course

art-course
science-course

graduatestudent
undergraduatestudent

thesis-course

L

Figure 4-2: Relations of the Knowledge Base Model except for AG-relations

For example, in the database schema of Figure 4-1, course can be
considered as an entity type. There are four relations that are related to
course: OFFERING, COURSE-PREREQUISITE , COURSE-PREVIOUS-NAME .
and COURSE-DESCRIPTION. A designer might consider that COURSE-
DESCRIPTION is the proper relation where he can get a complete list of
all the known courses because of his knowledge about the database; or it
might because of the fact that CNAME is the sole primary key attribute

Turning Null Responses into Quality Responses

The Knowledge Base Model 40

in COURSE-DESCRIPTION. Thus we get a tuple: (course. COURSE-
DESCRIPTION) in the ENT-relation as shown in Figure 4-2 (a).

. .

PG-relation (Property Graph relation) is a binary relation. The main
function of this relation is to connect properties to each entity type. The
PROPERTY attribute field contains names of those attribute fields in the
database that are considered to be properties of an entity type in the
ENT-relation or properties of an AG-relation.

For example. consider the entity type course and its four related relations;
from COURSE-PREREQUISITE. COURSE-PREVIOUS-NAME and COURSE-
DESCRIPTION. we can tell that every course has a CNAME. some
PREVIOUS-NAMES, some PREREQUISITES, and a DESCRIPTION. Thus all
of these are considered to be properties of the entity type course. The
attribute fields in relation OFFERING serve more of the purpose of an
associate to the other attributes1', thus they do not appear as properties
here, see Figure 4-2 (b).

AE-relation (Associative Entity relation) is an unary relation which
consists of the names of all associative entity types. that is, all AG-
relations, see Figure 4-2 (c).

AG-relations (Association Graph relations) are n-ary relations. This kind
of relations interrelate entities of the ENT-relation. attribute concepts. or.
possibly AG-relations. Each AG-relation is an associative entity type that
appears in the AE-relation. An associative entity type that an AG-relation
represents is allowed to have properties as well. These properties can be
found in the PG-relation. Since we are handling mostly intensional facts b

of the database in the knowledge base, and extensional facts concerning a
particular association can be found in the database already, we associate
tuple entries of an AG-relation to acknowledge the constraints we would
like to assert on the particular association that the AG-relation represents.

For example, assume we have the following AG-relations:

OFFERING (course, semester)
TEACH (instructor, course)
TEXT (course, TEXT)
TA KE(student , course) --

CLASS-SEC (class, SEC#)
CLASS-ROOM (CLASS-SEC , TIME)

TEACH will be an associative entity type which informs us that
instructors teach courses. A tuple entry in the TEACH AG-relation, say

- -

~ " A S we can see they are considered in the AE-relation.

Turning Null Responses into Quality Responses

The Knowledge Base Model 4 1

(graduate-student, undergraduate-course). see Figure 5-2 (a), will inform
us that graduate students are permitted to teach undergraduate courses.
Also. we should t ry to put as high (in the hierarchy of an entity concept),
a generic entity concept in the attribute field of an AG-relation as
possible, so that constraints on the association can be specified as sub-
concepts of those super-concepts. For example, we would have
OFFERING(course, semester) rather than OFFERING(CNAME, semester).
because CNAME is a properties of the concept course.

@ EG-relation (Event Graph relation) is a binary relation which stores the
precedence relationships of different events occurring in the application
domain. There are two attribute fields in the EG-relation: the SUP and the
SUB fields. An event that can appear in these two fields, for the time
being, is just any attribute existing in the database or an E-relation in the
knowledge base. see Figure 4-2 (dl.

For example, FINAL-GRADE is an attribute field in the TAKE relation in
the database, and f ina l exam is an E-relation, see Figure 4-2 (el. So the
tuple (final-exam. FINAL-GRADE) in the EG-relation means that the
value of the FINAL-GRADE of the TAKE relation in the database will be
known only after the final-exam event has happened.

E-relation (Event-relation) is represented as a binary relation. Its primary
key attribute is "seasons of the year", SEASON; and given the primary
key, we can determine an exact date, or an approximate date. for the
event in a particular season, see Figure 4-2 (e,f).

CLASS-relation (CLASSification relation) is a binary relation. This .
relation informs us of the different possible taxomonic classifications we
could have for an entity concept in the application domain. The SUP field
will thus contain entity types. and the SUB field will contain concepts for
the different classification categories, see Figure 4-2 (g). For example,
concept course could be classified in two different ways, therefore we
have two taxomonic classification concepts for course: course1 and
course2. see Figure 4-2 (g). course1 is a classification with respect to
academic levels, where the concept course is split into two subset:
graduatecourse and undergraduate-course; course2 is a classification with
respect to academic fields, where the concept course is split into
art-course and science-course.

GH-relation (Generalization Hierarchy relation) is a binary relation
representing a directed graph. The two attributes of the GH-relation. SUP
and SUB, indicate the superordinate or subordinate (superset/subset) role of
the participating concept. A concept appearing in the GH-relation can either
be an entity type in the ENT-relation, or a view in the V-relation, or a
SUB in the CLASS-relation, see Figure 4-2 (h). For example, the tuple:

Turning Null Responses into Quality Responses

The Knowledge Base Model 42

(student, undergraduate-student) represents that the concept
undergraduate-student is a subset of the superset, student.

EXC-relation (Exception relation) is a binary relation which informs us
all the exceptional facts existing in the application domain. Entries for the
CONCEPT attribute field, see Figure 4-2 (i), can be any attribute concept
existing in the knowledge base/database18; and the entries for the
EXCEPTION attribute field will mainly be either a view in the V-relation
or a concept in the GH-relation or an entity type in the ENT-relation, see
Figure 4-2 6) . For example. using our database schema outlined in Figure
4-1, TEXT is an attribute field of the TEACH relation in the database.
and thesis-course is an entry in the V-relation. These facts inform us that
there will be a text in the TEACH relation except for those courses which
are considered as thesis-course, where thesis-course is defined in <he view
definition in the knowledge base's dictionary.

V-relation (View relation) is an unary relation which contains all the
views that are defined in the knowledge base's dictionary, see Figure 4-2
(j). The definition of a view is very similar to a view definition in
system R. For example, a view definition for graduate-student can be
derived from the base relation STUDENT in Figure 4-1 as follows:

DEFINE VIEW graduate-student
AS SELECT SNAME

FROM STUDENT
WHERE STATUS I. "GRAD"

L

For this model. we need to have all of the necessary hierarchies. information,

rules. etc. to be hand-coded by some appropriate person, for example the database

administrator, into the model.19 The knowledge base will therefore require a

dictionary to store all the view definitions of the V-relation, and to make the

knowledge base adaptable to different environments.

With the introduction of a knowledge base into a natural language database

- - - -- -

18we expect that they will be primarily non-key attributes of some relations.

1 9 ~ 1 s o see comments in chapter 6 regarding the automatic generation of part of the knowledge base
relations.

Turning Null Responses into Quality Responses

The Knowledge Base Model 43

system, the natural language database system illustrated in Figure 3-1 evolves into a

system as depicted in Figurk 4-3. In the natural language database system shown in

Figure 4-3, the knowledge base is interacting only with the database. However, a

well-integrated natural language database system is anticipated which shares

information among the semantic interpreter, the knowledge base, and the query

generator as shown in Figure 4-4. The task of determining how to integrate these

components together requires additional research effort (as discussed in chapter 6.

section 6.1.2).

Figure 4-3: A NLDB system with a Knowledge Base component

quality
DB KB -

response

Figure 4-4: Integrating a knowledge base into a NLDB system

Turning Null Responses into Quality Responses

natural language
)

input

parse

2
formal database query non-null

m -
query interpreter event responsed

parser

I

some internal
%

logical form '

query
generator

formal database

query

semantic

interpreter

-
query

generator

query
interpreter

natural language
input

4 9
I I
I
I

I

I r-y-7

parser

I I - -
L- , - , - - , - - - , a KB W-L

I I

some internal
logical form

parse

DB

semantic
interpreter

L - ~ - J

The Knowledge Base Model

4.3. What if the Knowledge Base has null values?

A natural question to ask at this point is "what if there are null values in the

knowledge base?" To answer this question, we would like to restrict the entries in

the knowledge base to contain no null values for the sake of simplicity of the model.

As a matter of fact, null values can only occur in the ENT-relation, and in the E-

relations in the knowledge base, see Figure 4-2. However, another method to solve

this problem is to have yet another meta-knowledge level of null values of the

knowledge base2', which allow us to know what to do if null values occur in the

knowledge base. This approach will require multi-levels of meta-knowledge which will

stop at some level where there are no more null values. In the worst case.

unfortunately, this will render the system to have infinite meta-knowledge levels.

which in any practical database management system one would try to avoid.

However, these infinite meta-knowledge levels might be conceptually advantageous as

it is similar to that espoused by Brian Smith of Xerox Parc in his work on 3-LISP.

H.
A further extension in the meta-knowledge direction is to interject" the user at some

point in the infinite meta-knowledge levels. When a null value occurs in a knowledge '

base relation. we can have the corresponding attribute field index some table which

contains appropriate instructions to respond to the user, or an index to activate certain

routinek) that will interact with the user.

According to this model, the knowledge base is closed under all simple entities:

thus, all simple entities' identifiers are supposed to be known in the application

domain. Consider the entity course in the academic domain represented by the

database schema in Figure 4-1. It is not unreasonable to assume that all the courses

''say, another relation in the knowledge base that contains entries which are the potential knowledge
base attribute fields that might have null values in there.

Turning Null Responses into Quality Responses

The Knowledge Base Model

offered are known in the application domain. Also, the knowledge base is closed

under all the AG-relations. A tuple in an AG-relation conveys the constraint that is

being asserted to that particular relationship. re his constraint is considered to be a

positive constraint, in which we are informed what the legitimate participants are in

that relationship. The model does not provide the representation of negative

constraints; therefore, we require that all the AG-relations be closed in the knowledge

base.

This relational knowledge base model emphasizes, what Brachman calls the

epistemological (knowledge structuring) level of knowledge of the database [Brachman

791. However. we are not concerning ourselves with giving a complete formalism on

the epistemological level of knowledge representation as Brachman had done in

describing KLONE. A taxonomy can be constructed through the CLASS-relation and

the GH-relation; this is similar to the so-called IS-A hierarchy in the semantic

networks representation, with a set/subset hierarchical structure. Concept hierarchies

seem to be an indispensable element in knowledge structuring, as we can see it has

been emphasized in different ways in the literature. In [Schubert. Goebel, and

Cercone 791, classification of knowledge is done through topic hierarchies, with

generalization and specialization being two of the significant topics. Concept

generalization/specialization is used as a basis for conceptual modeling in TAXIS. this

is done by a methodology called taxonomic specification, which combines the

techniques of abstraction and stepwise refinement [Borgida, Mylopoulos. and Wong 841.

Stonebraker proposed to use abstract data types for adding semantic knowledge to

relational database system [Stonebraker 841. Reiter also illustrated how to provide a

first order represention of generalization and aggregation hierarchies when he attempted

to give a logical reconstruction of various aspects of the conventional relational

database theory [Reiter 841.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Chapter 5

Algorithms for Detecting
a User's Misconceptions

In this chapter, two algorithms for detecting user's misconceptions and

providing quality responses are described. These algorithms illustrate how to provide

quality responses for null response cases arising from those categories shown on the

subtree of the "misconception" box in Figure 3-2. .According to the classification in

Figure 3-2, user's misconceptions can be classified into misconceptions that fail

intensionally and misconceptions that fail extensionally. Extensional failure of a user's

query occurs when the user has a misconception that there is some non-empty

extension in the database that will satisfy his query description. While an intensional

failure arlses when the user has a misconception about some domain relationships. in
L

particular, misconception about entity(ies) that can participateh) in some relations. The

main routine for detecting a user's misconception will check for both kinds of

misconception when a null event arises.

For an extensional failure, it can be due to the non-existence of a certain

object; or it can be due to the fact that the event which is responsible for the

desired value (or set of values) has not been taken place as yet; or it might also

because of some, exceptional cases present in the domain. Utilising the CLR (complete

list relation), we can, to certain extent, check for the existence of an object. in

particular, the existence of known simple entities. If certain attribute values in the

database are dependent on the occurrence of some other events in the domain, such

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 4 7

information can be conveyed to us by the EG-relation, which tells us the precedence

relationships of different events occurring in the domain. Furthermore. more

informative responses can be supplied to the user if the unknown value 1s related to

an event which is an E-relation, because some appropriate dates can be drawn from

the related E-relation for the user's reference. If the user has specified an exceptional

case in his input query, by checking with the EXC-relation, we can give a more

informative explanation to the user's misconception.

An intensional misconception can be detected by checking all the related AG-

relations that are presented in the user's query. If any constraint of a related AG-

relation is not satisfied by the user's description set2', the incorrect user's specification

will be reported and the proper constraints for the misconceived relationship will also

be reflected to the user.

A high-level description of the basic algorithms is presented, and the algorithms

are further illustrated by a few examples employing specific SQL queries. The

detailed (pseudo-code) algorithms are included at the end of this chapter.

5.1. Extensional Misconception

Procedure Extensional-Misconception provides quality responses to

misconceptions which fail extensionally using the relational knowledge base model

introduced in the last chapter. For this algorithm, we assume that the database will

be able to supply information such as: "x cannot be found" in the case of a user's

misconception that fails extensionally. We also assume that if x is a value then there

2 1 ~ y user's .description set
description.

Turning Null Responses

I mean the set of objects (or individuals) that satisfied the user's query

into Quality Responses

Algorithms for Detecting a User's Misconceptions 48

will be an X which is the corresponding attribute field of the value x that we can

obtain from the Logical form of the input query. 'A null value occurring in the

database is given three possible interpretations by this algorithm: (1) a valid

individual who does not exist: (2) a value that is not valid for an individual: and (3)

a value that is valid but does not yet exist for an individual.

Check-ObjectExistency, Check-Always-Null, and Check-Temporal-Event are

three procedures that test for these interpretations, respectively.

If x is a value, then this null event belongs to the category of extensional

failure because of a missing tuple. In this case, we activate procedure

Check-Object-Existency to ascertain, if possible, whether x is a known existing object

in the database domain. If x is a non-existing object in the application domain.

procedure Check-Object-Existency will generate an appropriate response to signify the

non-existence of x . and no further investigation on any user's intensional

misconception is necessary.

If x is an attribute field, this means that there is a null value in the database '

entry, and this null event belongs to the category of extensional failure because of a

missing attribute. In this case. we call procedure Check-Always-Null and procedure

Check-Temporal-Event. in turn, to attempt an appropriate interpretation of this null

value. Again, no further investigation for intensional failure is necessary because

encountering a n d l in the database is definitely an extensional failure.

Procedure Check-Always-Null ascertains whether the information specified in

the logical form conforms to any exceptional case in the application domain, and gives

an appropriate response if possible.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 49

In procedure Check-Temporal-Event, if x is a temporal event, then relevant

dates related to x will be drawn from the knowledge base in order to account for

the null value which resulted from the database access.

More detailed explanations for each of the above procedures and one related

subroutine are provided together with their algorithms in section 5.6 of this chapter.

5.2. Two Simple Examples of Extensional Misconceptions

We illustrate the algorithm for extensional misconceptions with two examples.

The Logical form depicted in the examples represents the output that will be generated

from the semantic analyzer for the input natural language query, see [Cercone.

Hadley. Martin. McFetridge. and Strzalkowski 841. Subsequently, the logical form is

translated into the SQL query as shown.

Example Query 1: What grade did John Simpson get in CMPTl06?

L o g i c a l Form:

((((((WHICH sg v l) (v l = (g r a d e)))
((EXIST s g v2) (v 2 = (s t u d e n t (s tudentname $John S impson))))
((EXIST sg v3) (v 3 = (c o u r s e (cname $CMPT106))))
((EXIST n i l v4) (v 4 = (t i m e (term=spring)(year=l986))))
(TAKE (s u b j v2) (o b j v l) (l o c a t i v e v3) (t i m e v 4))))))

SOL Query : -
SELECT FINAL-GRADE
FROM TAKE
WHERE STUDENT# I N

SELECT STUDENT#
FROM STUDENT
WHERE NAME = 'JOHN SIMPSON'

AND CLASS# I N
SELECT CLASS#
FROM OFFERING
WHERE CNAMEn 'CMPT106'

AND SEMESTER = 'SPRING86'

If this query fails extensionally, then the possible database responses might be

the following:

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

1 . CMPT106 cannot be found
2 . FINAL-GRADE cannot' be found

In this example we can demonstrate three possible valid interpretations which

we may obtain using the algorithm for extensional misconception.

case -- 1: CMPT106 cannot be found.

x = CMPT106, X = CNAME

In this case. CMPT106 might be a nonexisting course. see Figure 5-1 (a). Since x is

a value: therefore procedure Check-Object-Existency is 'activated. If CMPT106 is not

an existing course, the algorithm finds that CNAME is a property of the entity

course from the P-relation. see Figure 4-2 (b); then it finds that CNAME is the

entity identifier of course, see Figure 4-2 (a) and Figure 4-1. Therefore it checks if

CMPT106 is one of those course identifiers. Since CMPT106 is not in the relation

COURSE-DESCRIPTION, see Figure 5-1 (a), we obtain the response:

"CMPT106 is not an existing object for entity type course."

case - - 2: CMPT106 was not offered in the semester specified.
b

If CMPT106 was not offered in t he ' specified semester, procedure

Check-Object-Existency again finds that CNAME is a property of entity course:

CNAME is the entity identifier of course. However, this time CMPT106 is an existing

course, see Figure 5-1 (b); therefore the algorithm concludes that the relationship

represented by the relation which contains x is false according to the world modelled

by the database:

"CMPT106 is not offered in spring 1986."

case -- 3: FINAL-GRADE cannot be found.

The FINAL-GRADE cannot be found (with x = FINAL-GRADE). Since x is an

attribute field, and x is not in the EXC-relation. procedure Check-Temporal-Event is

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 5 1

activated. This procedure finds that x occurs in the SUB field of the EG-relation, see

Figure 4-2 (dl, the preceding event of FIIVAL-GRADE is finalexam, and the

relevant preceding date is August 22. 1986. see Figure 4-2 (el. When the algorithm

compares the current date with the preceding event date, the current date is smaller

(earlier) than the preceding event date: therefore we obtain the response:

"Information about FINAL-GRADE is not known as yet;
FINAL-GRADE will be known after f inal-exam."

Example Query 2 Which text book is used for CMPT898?

Logica l Form:

((((((WHICH p l /sg v l) (v l = (t e x t)))
((EXIST sg v2) (v 2 = (course (cname $CMPT898) (sec 01))))
((EXIST sg v3) (V3 = (t i m e (t e r m s p r i n g) (y e a r z 1 9 8 6))))
(USE (subj v2) (o b j v l) (t i m e v 3))))))

SOL Query: -

SELECT TEXT
FROM TEACH
WHERE CLASS# I N

SELECT CLASS#
FROM OFFERING
WHERE CNAME = 'CMPT898

AND S E C = '01 '

If this query fails extensionally, one possible response from the database might

be:

TEXT cannot be found.

In this case. x is an attribute field, TEXT, so procedure Check-Always-Null is

first activated. TEXT is found in the EXC-relation, see Figure 4-2 (i). The set of

exceptions of x, except-set, is {thesis-course). Since there is only one element in the

exceptional set of TEXT, thesis-course is the only known exception to TEXT.

thesiscourse is a view in the V-relation, see Figure 4-2 (j) , so the view definition of

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 5 2

thesis-course is evaluated, and variable S has the value { CMPT898, CMPT899 ,.. . 1 , the

result of the evaluation. The attribute field name of the elements in S is CNAME.

Since CNAME is present in the logical form with value CMPT898, and CMPT898 is

in S, the procedure responds:

"CMPT898 is a thesis-course.
The query relationship does not apply to concept of
type thesis-course,
that is, thesis-course does not have TEXT."

COURSE-DESCRIPTION: COURSE-DESCRIPTION:

'CMPTIO~
CMPTlO2
CMPT103
CMPTlO5
CMPTlOS

...

...

CMPTlOl
CMPT102
CMPTlO3
CMPTlOS
CMPTl06
CMPTlOS

(b)

Figure 5-1: Two Alternative Course Descriptions in the Database

5.3. Intensional Misconception
L

In this section, a second algorithm is described for handling intensional

misconceptions. There are two kinds of relations in the knowledge base that are

designed to provide more informative responses when a null answer arises due to a

user's misconception that fails intensionally. These relations include the AE-relation

and the AG-relations. When a query fails extensionally, we have only to look for

relevant extensional facts to provide a quality response. as described in the previous

section. However, when a query fails intensionally, we require the knowledge base to

check the relevant relationships. in particular, any constraints on those relationships

known in the knowledge base.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 53

We begin with the logical form of a null answer query and AG-relations in

the knowledge base. All of the relevant relations found in the logical form are

initially preserved in the stack variable R, among which are those relations that are

of an associated nature to be further examined in order to ascertain which

relationship that the user has misconceived. For each relevant AG-relation, r , procedure

Check~Intensional~Misconception first determines whether all concepts/values specified

in the logical form for this relation are legitimate values. If there exist

concepts/values that do not comply with the constraints specified in the AG-relation.

the user's misconception will be corrected by certain responses. Otherwise,

Check~Intensional~Misconception performs a divide and intersect action to determine

the validity of the relationship in the user's specification, and the algorithm will stop

as soon as the user's first intensional misconception is found. The divide part will be

done by procedure. Match-&-Extract, where for each participating concept. 22

constraints related to it that are found in the AG-relation are extracted from the

relation resulting in a subrelation of r. Hence, if r represents a n-ary relationship,

then we will have n subrelations of r for each participating concept, see Figure 5-3.
L

These n subrelations are then intersected in Perform-Intersection. If there is a non-

empty intersection, all of the participating concepts are valid values for r , and there

is no explanation to the null response in terms of an intensional misconception on r.

Otherwise, the maximal explanation set is acquired by procedure

Check~Intensional~Misconception.

Consider the following hypothetical example: Rh is a hypothetical quaternary

AG-relation, and suppose the logical form output specified an instance (a, b, c, d) of

2 2 ~ y participating concept. I mean the concept specified in the logical form for the relationship
represented by the AG-relation.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Rh:

the relationship Rh. The largest correct combinations of instance i = {a, b, c, d) found

in Rh are {a. b, c} and {b, c, dl. The algorithm will thus generate a set of

explanatory responses for all of these correct combinations, the maximal explanation

set. An explanatory response to a largest correct combination. corn. includes those

tuples from the AG-relation which contains com (these tuples inform us which idare)

the other proper value(s) that can be with corn), and those tuples from the AG-

relation which contain elements of i - corn (these tuples determine which values

should be with those elements in i - corn). So an explanatory response for {a, b, c}

would be Template(Rh, T I) and Template(Rh. T ~) ~ ~ , where relation TI contains the

tuple (a, b, c. d l) , and relation T3 contains the tuple (a3, b, c, dl. Notice that in

some'situations. some instances of the AG-relation might be printed more than once.

In the worst case situation we will then have (a lot of) superfluous duplicates. In the

above example, we will print the entire relation Rh with the addition of the two

duplicated tuples. It is, of course, not very informative or cooperative to have

responses such as these. However, the reason for choosing this response strategy is

that we want to generate enough informative responses so as to minimize the number

of iterations that a user has to interact with the system before he/she can obtain any

helpful information. Further investigation on how to build a more sophisticated

responding routine for this purpose is desirable. Presumably, we would need a user

model to achieve this, but this investigation is beyond the scope of this thesis.

23~emplate(r,s) is a template routine which will generate restricted natural language sentences for the
relationship represented by r instantiated by the values found in relation s. It is used in procedure
Respond~Intensional~Misconception to generate natural language responses.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 5 5

Besides Check~Intensional~Misconception, Match-&-Extract, and Perform-

Intersection, there are six other small subroutines or procedures that help provide

quality responses for intensional misconceptions. Documentation for these subroutines

and procedures can be found with the complete algorithm. see section 5.7.

5.4. An Example for Intensional Misconception

We illustrate the handling of null responses due to intensional misconceptions

with the following example. which was used earlier in chapter 3. This query

produces a null response given the database in Figure 5-2. Again the input query is

parsed. and subsequently transformed into SQL query as shown below:

Example Query 3: Which graduate students have taught CMPT861?

Log ica l Form:

((((((WHICH p l v l) (v l = (s tuden t (s t a t u s $grad))))
((EXIST sg v2) (v2 (course (cname $CMPT861))))
((EXIST n i l v3) (v3 = (t ime (be fo re (t e r m s p r i n g) (~ e a r z 1 9 8 6)))))
(TEACH (sub j v l) (o b j v2) (t i m e v3))))))

SOL Query: -
SELECT s tudent . nam'e
FROM student
WHERE s t u d e n t . s t a t u s = ' g r a d '

AND student.name i n
SELECT ins t ruc to r .name
FROM teach
WHERE c l a s s # i n

SELECT c lass#
FROM o f f e r i n g
WHERE cname = 'CMPT861'

AND semester = ' sp r i ng86 '

Procedure Intensional~Misconception is activated. It initially stacks relations

STUDENT. COURSE. TIME, and TEACH found in the logical form onto a stack

R. The stack is processed in a last-in first-out order as usual. so relation TEACH is

processed first. Since TEACH is an AG-relation in the knowledge base, see Figure 5-3

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 56

(a), procedure Check~Intensional~Misconception is thus invoked to see if any

intensional misconception can be found related to this relation. The AG-relation

TEACH is found in the knowledge base, then certain constraints imposed on it are

found, therefore the divide and intersect process is carried out. First, the divide

process is done by procedure Match-&-Extract. There are two attribute fields.

instructor and course, found for the TEACH relation, see Figure 5-3 (a); therefore

Match-&-Extract is called two times resulting in the two subrelations: S1 and S2.

and variables el. e2, vall, and va12 having the values shown in Figure 5-3 (b). el

(graduate-student) and e2 (graduate-course) are both valid values in the irel la ti on

TEACH: therefore Perform-Intersection will find out what idare) the largest possible

combination(s) of el (graduate-student) and e2 (graduate-course) that can be found

among the constraints of TEACH by intersecting the two subrelations S1 and S2.

Since TEACH is only a binary relation, and there is no intersection between the two

subrelations. S1 and S2. see Figure 5-3 (b). the recursive procedure

Perform-Intersection terminates. returning an empty set as the result. The empty set

that results from Perform-Intersection implies that the user's specification f o r TEACH
L

does not meet the associative constraints that the knowledge base knows, so procedure

Respond~Intensional~Misconception responds to the user with the largest possible set

of maximal combinations of the e's, which is {{el]. {e2]] together with the appropriate

values found in the constraints. and with some corrective responses attached as

follows:

"Graduate students teach undergraduate courses.
CMPT681 is a graduate course.
Professors teach graduate courses."

A user's intensional misconception is found, procedure Check-Intensional-

Misconception sets the stop flag to true, and this tells procedure

Intensional-Misconception to terminate.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

OFFERING: TEACH;

INSTRUCTOR:

Figure 5-2:

STUDENT:

STATUS
I I I

A sample database

...

...

...

...

AG-relation

TEACH:

I INSTRUCTOR 1 - COURSE 1

H. Holmes
1. Jones
S. Smith

T. Thomas

professor graduate-course
professor undergraduate-course

INSTRUCTOR I COURSE - e l = graduate-student val l = 0

nraduate-student I undernraduate-course

...

...

...

...

Figure 5-3: An example to illustrate Procedure Intensional~Misconception

...

...

...

...

INSTRUCTOR

professor

Turning Null Responses into Quality Responses

...

...

...

...

('J)

COURSE -
graduate-course

graduate
graduate

undergraduate
undergraduate

e2 = graduate-course va12 - CMPT861

Algorithms for Detecting a User's Misconceptions

5.5. Selection Mechanism

Based on the two algorithms given in the previous sections, the main control

routine for solving user's misconceptions follows:

PROCEDURE Misconception
BEGIN

i n t e n s i o n := t r u e ;
I F (3 database response which suggests i n f o r m a t i o n as t o

which k i n d of f a i l u r e) THEN
Extensional-Misconcaption(intension);

I F (i n t e n s i o n) THEN
Intensional,Misconception;

END misconception^;

In some cases of extensional failure, where the whole tuple is missing;

procedure Check-Object-Existency signals the non-existence of the relationship

representing that tuple by setting the variable intension to be true. This initiates a

further investigation into whether this extensional failure is caused by any intensional

misconception. The main routine, procedure Misconception, is thus very simple.

Called in when null events arise, it calls the two procedures:

Extensional~Misconception and Intensional-Misconception in turn to detect any user's

misconceptions. If the database response can supply certain information as to which

kind of extensional failure, then procedure Extensional~Misconception is activated.

Otherwise, we continue to search for intensional misconception.

The top down, hierarchical program structure for detecting user's misconceptions

is depicted in Figure A-1 in *Appendix A. Knowing the basic structure of the

knowledge base relations, the algorithm described above is able to retrieve knowledge

from the knowledge base independent of the extensional values present. The algorithm

requires: all attribute field names to be unique in the database, and that there are

no duplicated attribute columns in the database relations: all views define only unary

relation in the knowledge base, and views for the concepts that belong to the same

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions 5 9

tree in the GH-relation have the same identifying attribute; and the GH-relation

contains only rooted trees. The algorithm tries to account for extensional failures

which are due to the ones described at the beginning of this chapter, null values that

are due to other reasons, see [ANSI 751, are not covered here. In interpreting the

precedence relationships represented by the tuples of the EG-relation, the algorithm

does not apply any branching time temporal logic. it assumes that the EG-relation

contains only simple paths. The algorithm will detect, at most, one extensional

misconception and one intensional misconception. For queries that imply multiple

misconceptions, the algorithm will not detect all misconceptions.

5.6. Algorithm for Extensional Misconception

In this section, the algorithm for extensional misconception is given. In the

algorithms given below, comments are placed between the delimiters { and 1.

Capitalized words are used to designate reserved words. To avoid ambiguity. all

procedures assume that every attribute field name will be prefixed with the relation

name over which the attribute ranges. For example R a indicates the attribute field a.

of relation R.

Procedure Extensional-Misconception

PROCEDURE Extensional~Misconception(input v a r i a b l e : i n t e n s i o n ;
output v a r i a b l e : i n t e n s i o n) ;

BEGIN

I F (x i s a v a l u e) THEN Check,Object,Existency(intension);

ELSE i x i s an a t t r i b u t e f i e l d)
BEG I N

i n t e n s i o n := f a l s e ;
found := f a l s e ;
Check-Always-Null;
Check-Temporal-Event;
I F (not found) THEN

response: "x cannot be found," ;
"Sorry . I have no e x p l a n a t i o n f o r t h i s ! " ;

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

END ! e l s e) ;

END j p r o c e d u r e) .

Procedure Check-Object-Existency

This procedure determines the existence of a certain object in the database. If

the attribute X is an entity identifier then the knowledge base will have a complete

list of its members by consulting the rel relation^^. In brief, this procedure proceeds

as follows:

1. if X is an entity identifier then the algorithm will determine if x is a
member of the known existing objects.

1. if x is a known existing object (and it is not found in the query
relationship), then the algorithm concludes that the relationship
represented by the relation that contains x is false according to the
"world" modelled by the database. Further investigation into any
user's intensional misconception is necessary.

2. otherwise x is not an existing object2'. This is an extensional failure.
so that no further investigation on intensional failure is necessary.

L

2. if X is not an entity identifier. no information concerning the existence of
this object, x , can be found. There is no proof of any incorrect
assumption about the existence of an object that the user has made.
Further investigation into any intensional failure is necessary.

24~ecause the knowledge base is closed under all entities' identifiers.

2 5 ~ h u s the query relationship is incorrect because of the user's wrong presumption of the existence of x.

Turning Null Responses into Quality Responses

Algorithms for Detecting Q User's Misconceptions

PROCEDURE Check-Object-Existency(input v a r i a b
ou tpu t v a r i a b

Ion ;
ion) ;

BEGIN
i n t e n s i o n := t r u e ;
P-set := [s e l e c t E n t i t y f rom P G r e l a t i o n where P rope r t y = x] ;
'IF (P-set 0 0) THEN
BEGIN

s t o p := FALSE;)Note:

WHILE (-stop AND (P-se
BEGIN

An a t t r i b u t e can be a p r o p e r t y o f more than one
e n t i t y . We t r y t o f i n d the e n t i t y t h a t has t h i s
a t t r i b u t e as the i d e n t i f i e r .)

t 00)) DO

temp := f i r s t element o f P-set;
P-set := P-set - [temp];
c r := [s e l e c t CLR from ENT-relat ion where ENTITY = temp 1;

#Check i f X i s an e n t i t y i d e n t i f i e r i s
I F (t h e pr imary key a t t r i b u t e f i e l d o f CR = X) THEN
BEGIN

s t o p := TRUE;
)Check i f x i s a known ent

I F (x E [s e l e c t X from CR]) THEN
(conclude tha t the r e l a t i o n s h i p represented by the r e l a t
con ta ins x i s f a l s e accord ing t o the w o r l d model led by

ELSE BEGIN
(s i g n a l x i s no t an ex
c l e a r user misconcept

i n t e n s i o n := f a l s e ;
END # e l s e { ;

END $ i f (;
END $ w h i l e (;
I F (-stop) THM

i s t i n g o b j e c t f o r e n t i t y type X t o
i on) ;

i t y i

i o n t h a t
the DB) ;

response: "Sor ry ! The DB doesn
i n r e l a t i o n s h i p R o

)where R i s
END) i f)
ELSE

t know o f any X w i t h va lue x
t h i s p resent t i m e . " ;

the r e l a t i o n f o r X i n the l o g i c a l form.{ .
response : "So r ry ! The DB doesn' t know o f any X w i t h va lue x

i n the r e l a t i o n s h i p R a t t h i s p resent t ime . " ;
END)Check-Object-Exi stency { .

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Procedure CheckAlways-Null

This procedure determines the case where a value is not valid for an individual.

This procedure will ascertain exceptional cases from the EXC-relation, and decide if

those exceptional, cases occur in the information specified in the logical form.

PROCEDURE Check-Always-Null
BEGIN

I F x E [s e l e c t concept f rom EXC-relat ion] THEN
BEG I N

except-set := [s e l e c t EXCEPTION from EXC-relat ion where concept = x];
{Note : here we a l l o w the excep t i ona l s e t t o be more than
one s e t . For example, a l l courses have a t e x t except
thesis-course and some seminar-course.$

WHILE (except-set O 0) DO
BEGIN
s := 0;

excep t i on := f i r s t element o f except-set ;
except-set := [except-set - excep t i on] ;

) I f the excep t i ons a re s p e c i f i e d as a gene r i c concept i n the
GH- re la t i on then sub rou t i ne eva luate-except ion w i l l
r e c u r s i v e l y ga ther a l l the elements t h a t belong t o t ha t
subt ree.)

I F excep t i on i s a SUP i n the GH-relat ion THEN
evaluate-exception(exception. S, a t t r)

ELSE) I f the excep t i ons a re s p e c i f i e d as a V - re la t i on , then we
j u s t eva lua te the v iew d e f i n i t i o n o f t h a t V - re la t i on .)

I F excep t i on i s a V - r e l a t i o n THEN
S := eva lua ted se t o f t he SOL query i n t he view d e f i n i t i o n o f except ion
a t t r := the a t t r i b u t e f i e l d nome o f the s e l e c t statement i n the

v iew d e f i n i t i o n .
ELSE) I f the except ions a r e s p e c i f i e d as an e n t i t y , then a t t r w i l l

be the e n t i t y i d e n t i f i e r , and S w i l l be the element se t o f the
e n t i t y i d e n t i f i e r .)

I F (excep t i on i s an e n t i t y) THEN
BEGIN

c r := [s e l e c t CLR from ENT-relat ion where ENTITY = EXCEPTION];
S := [s e l e c t p r imary key a t t r i b u t e f rom CR];
a t t r := pr imary key a t t r i b u t e f i e l d name o f CR;

END) i f) ;
{Check i f these excep t i ona l cases occur i n the

i n f o r m a t i o n s p a c i f i e d i n t he l o g i c a l form)
I F a t t r i s one o f the a t t r i b u t e f i e l d s s p e c i f i e d i n the l o g i c a l form THEN

I F the re i s a va lue o f a t t r , say v a l , g i ven i n the l o g i c a l form THEN
I F va l E S THEN

response: " va l i s a (an) excep t i on . " ;
response: "The query r e l a t i o n s h i p does not app l y t o concept o f

type except ion . " ;
response: " t h a t i s , excep t i on does not have x." ;
found := TRUE;

END {whi l e) ;
END) i f) ;

END)Check-Always,Null).

Turning Null Responses into Quality Responses

- Algorithms for Detecting a User's Misconceptions

Procedure Check-TemporalEvent

This procedure checks for the case where a value is valid but does not yet exist

for an individual. If x is a temporal event, then there are two relevant facts which

can be extracted from the EG-relation: x's preceding event and its successor event.

There are two cases in which this procedure can specify a definite response to the

user: (1) if x's preceding event has not occurred yet, then x has not occurred either:

and (2) if x's successor event has occurred, but the information is still not known as

yet, then the information is not considered to be available. If neither of the above

cases is true, then the algorithm attempts to respond with respect to relevant dates

(either the preceding date or the successor date or both). This procedure can only

handle events which have at most 1 preceding event, and at most

at this stage.

PROCEDURE Check,Temporal,Event

BEGIN I I f x i s an E - r e l a t i o n then we can get t he da te i n f o r m a t i o n
and g i v e the app rop r i a te response.{

I F x i s an E - r e l a t i o n THEN
BEG I N

found:= TRUE;
da te := [s e l e c t da te from x where season 3 CURRENT-SEASON];
I F c u r r e n t da te < date THEN

response: " I n f o r m a t i o n about x i s no t known as y e t ;
x w i l l be known by da te . "

ELSE response: " I n f o r m a t i o n about X i s not a v a i l a b l e . " ;
END 1 i f)
ELSE
BEGIN

successor-date := 9999999;
preceding-date := -9999999;

1 successor event

f o r x d i r e c t l y

1Get the re levan t p reced ing event i f poss ib le .)
I F x i s a SUB i n t he E G r e l a t i o n THEN
BEGIN

preceding-event := SUP of x;
preceding-date := [s e l e c t da te from preceding-event

where season = current-season];
END I i f 1

#Get the re levan t successor event i f poss ib le .)
I F x i s a SUP i n the E G r e l a t i o n THEN
BEGIN

successor-event := SUB of x;
successor,date := [s e l e c t da te from successor-event

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

where season 3 current-season];
END { i f 1

{ I f t he preced ing event o f x has not occurred, then
x has d e f i n i t e l y no t occur red.]

I F cur rent -date 4 preceding-date THEN
BEGIN

response : " I n f o r m a t i o n about x i s no t known as y e t ;
x w i l l be known a f t e r preceding-data." ;

found := TRUE:
END 3 i f j
ELSE { I f the successor event o f X has occur red a l ready , and the

i n f o r m a t i o n i s s t i l l no t known, then the i n f o r m a t i o n i s
cons idered t o be not a v a i l a b l e f o r x .)

I F cur rent -date >I ~~~~~~~~~~date THEN
BEGIN

response: " I n fo rma t i o n about X i s no t avai l a b l e . ";
found := TRUE;

END { i f)
ELSE jRespond w i t h respect t o bo th the preced ing event da te and the

successor event da te i f they a r e a v a i 1 a b l e . l
I F ((successor,date 0 999999) and (preced i ng-date 0 -999999)) THEN
BEGIN

response: " I n f o r m a t i o n about X i s not known.
shou ld be a v a i l a b l e between preced
successor-date." ;

found := TRUE;
END) i f 1
ELSE)Respond w i t h respect t o the successor

. i n f o r m a t i o n i s a v a i l a b l e . t
I F (successor-date 0 9999999) THEN
BEGIN

response: " I n f o r m a t i o n about X i s no t known
i n f o r m o t i o n i s a v a i l a b l e , i t wou
be fo re successor -dote . " ;

found := t r u e ;
END j i f j

ng-date .and

event date i f

But i f the
d be avo i lab

h i s i n fo rma t i on

the

' l e

E L S E - { R ~ S ~ O ~ ~ w i t h respect t o the preced ing event da te i f the
i n f o r m a t i o n i s a v a i l a b l e .)

I F (preceding-date 0 -9999999) THEN
BEGIN

response: " I n f o r m a t i o n - a b o u t X i s no t known. But i f the
i n f o r m a t i o n i s a v a i l a b l e , i t would be a v a i l a b l e
a f t e r preceding-date.";

found := TRUE;
END) i f #

END) e l s e) ;

END {Check-Temporal,Event$. 26

2 6 ~ e assume that the SUB or SUP of an attribute field in the database has to be an E-relation, that is,
there will be no tuple like (TEACH.instructor#, CLASS-ROOM.room#) in the EG-relation. Also we do not
handle transitivity here.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Subroutine evaluate-exception

This subroutine recursively gathers all of the elements that belong to any

subtree that are in the GH-relation. Evaluate-Exception makes certain assumptions:

0 that there is only one attribute field specified in the select statement of
the view definition.

0 that all views of the children (SUB field) of a parent (SUP field) will
have the same attribute field name in the select statement of their view
definitions because they are all describing (a subset of) one super-concept.

that all the hierarchies present in the GH-relation are trees. that is, no
cycle is allowed. .

SUBROUTINE evaluate- exception(^, S , a)

BEGIN

I F v i s no t t he SUB o f the GH. re la t i on THEN

FOR a l l c h i l d r e n (c) o f v DO
I F c i s no t a SUP i n the GH- re la t i on THEN

s := s U eva luated se t o f the SOL query i n the view d e f i n i t i o n of c ;
ELSE

eva l.uate,except i on(c, 1 , a) ;
ELSE

s := s U eva lua ted se t o f the 9

view d e f i n i t i o n o f V ;

a := the a t t r i b u t e f i e l d name o f
i n the most recent view def

END ~eva luate ,except ion~;

QL query i n the

the s e l e c t statement
i n i t ion ;

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

5.7. Algorithm for Intensional Misconception

Procedure IntensionalMisconception

This procedure checks all the relations in the logical form that can fail

intensionally, that is. all AE-relations that appear in the logical form, and calls

procedure Check~Intensional~Misconception to identified any user's misconception as to

the presence of a non-existing relationship.

PROCEDURE Intensional,Misconception

BEG I N

Get the se t o f r e l a t i o n names f rom the l o g i c a l form
i n t he order they appear and pu t them i n R

#where R i s a s t0ck . f

s t o p := f a l s e ;
WHILE ((R 0 0) AND (-stop)) DO
BEG I N

r := POP(R);
I F (r E AE-re la t ion) THEN

Check,Intensional~Misconception(r,stop);
I f r i s no t an A G r e l a t i o n , see i f t h e r e a re any r e l a t i o n s o f

t he form r . * ' tha t a r e A G r e l a t i o n s and process these
r e l a t i o n s as w e l l . $

I F ((-stop) AND
(r i s a p r e f i x of some r e l a t i o n s i n the A€ - re la t i on)) THEN

PUSH(R, the se t of r e l a t i o n names i n the AE-re la t ion
w i t h r as o p r e f i x) ;

END (whi l e t ;
I F (-stop) THEN

response: "Sor ry , I have no exp lana t i on f o r t h i s n u l l event ! " ;

END iIntensional-Misconceptionf.

Turning Null Responses into Quality Responses

E

! Algorithms for Detecting a User's Misconceptions

Procedure CheckIntensionalMisconception

This procedure tries. to match the information specified in the logical form with

the constraints found in the input AE-relation R. For each attribute field. Ai, of R.. a

relation Si results from selecting those tuples of R with the value of Ai matching the

information specified in the logical form. This procedure then invokes

Perform-Intersection to intersect the Si's to find out where the user's misconceptions

about the non-existing relationships are. and then generates the appropriate response.

Template-Wrong_Arg(r.n.arg) is a template that will give us the appropriate

restricted natural language response if arg is the improper argument for the nth field

of relation r. For example, if TEACH(instructor, course) is a relation that represents

It . Instructor teaches courses", then Template-Wrong-Arg(TEACH, 2, secretary) will

generate a response like: "Secretaries do not teach courses."

PROCEDURE Check~Intensional~Misconception(input v a r i a b l e :
ou tpu t v a r i a b l e :

BEGIN

) I f R has c e r t a i n imposed c o n s t r a i n t s then check which
c o n s t r a i n t s a re v i o l a t e d by the use rs .

s t o p := t r u e ;
I F (Size(R) 0 0) THEN
BEGIN

Num := the # o f a t t r i b u t e f i e l d i n R;

R;
s t o p) ;

I

I F o r each a t t r i b u t e f i e l d , Ai, o f R, check i f i t appears

i n t he l o g i c a l form; i f yes, s e l e c t the t u p l e s i n R w i t h Ai

hav ing the va lue s p e c i f i e d i n t he l o g i c a l form. $ i means the
i t h a t t r i b u t e f i e l d . 1

FOR i := 1 TO Num DO
Match-&-Extract(R,$i,Si,ei,vali);

do- in te rsec t := t r u e ;
FOR i := 1 TO Num DO

I F (a i = 0) THEN

BEGIN
get t h e argument va lue, say arg, t h a t i s supposed t o
be i n t h i s a t t r i b u t e f i e l d o f R f rom the l o g i c a l
form.

Template,Wrong,Arg(R, i, a r g) ;
do - i n te rsec t := f a l s e ;

END l i f t ;
I F (do - i n te rsec t) THEN

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

BEGIN
{Do the i n t e r s e c t i o n o f a l l the r e l a t i o n s r e s u l t i n g f rom
Match-&-Extract, and g i v e the a p p r o p r i a t e response. 1

l e - s e t i s a g l o b a l va r i ab le .1

whole-set := [S, , S p , . . . , SNum];

{who
i n t e r s e c t - s e t := 0;
Perform~Intersection(Num. whole-set
response-se t := 0 ;
I F (i n t e r s e c t - s e t 0 0) THEN
BEGIN

, i n t e r s e c t - s e t) ;

I F (whole-set E i n t e r s e c t - s e t) THEN
s t o p := f a l s e ;

ELSE BEGIN
num := l l a r g e s t element o f i n t e r s e c t - s e t (;
WHILE (i n t e r s e c t - s e t 0 0) DO
BEGIN

temp := f i r s t element o f i n t e r s e c t - s e t ;
i n t e r s e c t - s e t := in te rsec t - se t - [temp];
I F (I tamp1 = num) THEN

I F (temp response-set) THEN
BEGIN

response-set := response-set + [temp];
Respond,Intensional~Misconception(temp);

END { i f $;
END {whi leg ;

END { e l s e) ;
END i i f)
ELSE

Respond,Intensional,Misconception(intersect~set);
END { i f) ;

END { i f) ;
END {Check~Intensional,Misconception).

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Procedure Match-&Extract

This procedure tries to match certain information in the logical form with a

concept in the given attribute column, attr, of a relation, r. If a concept. e, is

identified to be present in the logical form, this procedure will select the tuples of r

that have value e in the attribute column attr and return them in S. The concept e

is returned to the calling procedure, and if e has a value, val, specified in the logical

form, this value is also returned in variable val, or a 0 is returned in val otherwise.

PROCEDURE Match-&-Extract (i n p u t v a r i a b l e s : r , a t t r ;
ou tpu t v a r i a b l e s : S, e, V a l) ;

BEGIN
S := [s e l e c t unique a t t r from r] ;
e := 0;
va l := 0;
Match-&-Extract-stop := f a l s e ;
WHILE ((S 0 0) AND (-Match,&-Ext rac t -s top)) DO
BEG I N

e l := f i r s t element o f S;
S := S - [e l] ;
concept-stack := 0;
Push,Sub,In,Stack(concept-stack. e l , CLASS-relation);
Push-Sub,In,Stack(concept-stack, e l , G l t r e l a t i o n) ;
I F (concept-stack = 0) THEN

PUSH(concept-stack, e l) ;
WHILE ((concept-stack <> 0) AND (-Match-k-Extract-stop))DO
BEGIN

e l := POP(concept-stack);
I F (In-V-Relation(e1)) THEN
BEG I N

{Match concept appear ing i n the l o g i c a l fo rm. {
Match~Logical,Form(el.val,match);
I F (match) THEN
BEGIN

Match,&-Extract-stop := t r u e ;
) E x t r a c t t he t u p l e s o f r w i t h concept, e, i n a t t r i b u t e
f i e l d , a t t r .)

S := [s e l e c t from r where a t t r = ' e l '] ;
e := e l ;

END) i f { ;
END # i f)
ELSE BEGIN

Push,Sub,In~Stack(concept,stack, e l , CLASS-relation);
Push-Sub,In,Stack(concept-stack, e l , GH-relat ion);

END) e l s e) ;
END {whi l a) ;

END) w h i l e (;
END)Match-&-Extract).

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Procedure Match-Logical-Form

In this procedure, e is an input concept that is defined in a view definition.

This procedure will match if this concept is being specified in the logical form or not;

if yes, match will have the value true, and false otherwise. A value, v, is also

returned if e has a value specified in the logical form, or v has value 0 otherwise.

PROCEDURE Match-Logical-Form (I n p u t v a r i a b l e s : e;
Output v a r i a b l e s : v, match);

L e t Re be the r e l a t i o n i n the from statement o f t he v iew

d e f i n i t i o n o f e . i

BEG I N
match := f a l s e ;
v := 0;
I F (Re i s i n the l o g i c a l form) THEN

BEGIN
I F (3 c o n d i t i o n s i n bo th the l o g i c a l form and the

v iew d e f i n i t i o n o f e, say cLF and ce

. r e s p e c t i v e l y , f o r Re) THEN

I F (ce matches e x a c t l y as cLF) THEN
-

match := t r u e
ELSE

I F (t h e eva lua ted se t o f e ' s view d e f i n i t i o n
c o n t a i n s the va lue(s) i n cLF) THEN

match := t r u e ;
I F (one o f the va lues i n cLF i s a pr imary key

va lue of R) THEN
v := the p r imary key va lue i n cLF;

END # i f 1
END {Match-Logical-Form);

Push-Sub-In-Stack

This procedure checks if concept, c, is in the SUP field of relation, in-relation.

If yes, it will push concepts that are SUB of c onto stack, in-stack.

PROCEDURE Push-Sub-In-Stack(input v a r i a b l e s : in -s tack , c , i n - r e l a t i o n ;
ou tput v a r i a b l e : in -s tack) ;

BEGIN

I F (c E [s e l e c t SUP from i n - r e l a t i o n]) THEN
PUSH(in,instack, [s e l e c t SUB from i n - r e l a t i o n where SUB = c]) ;

END #Push-Sub-In-Stack$.

Turning Null Responses into Quality Responses

Algorithms for Detecting Q User's Misconceptions

Procedure Perf orm-Intersection

This procedure does an intersection on the n relations given in the inset. In the

first call to this routine inset will contains the n subrelations resulted from procedure

Match-&-Extract. If there is no intersection between these relations in the first call.

then the implication is that there is a missing relationship. In such case, this

procedure will recursively handles the intersection of n relations, and returns all

possible non-empty intersections of the n relations in outset. The join operator used

in this procedure is the natural join operator.

PROCEDURE Perform,~ntersect ion(input v a r i a b l e s : num, i n s e t ;
ou tput v a r i a b l e : o u t s e t) ;

BEGIN

inse t , j o i n i n s e t * j o i n j o i n insetnum over a l l

a t t r i b u t e f i e l d s g i v i n g i n t e r s e c t ;
ou tse t := 0;
I I f t h e r e i s no i n t e r s e c t i o n i n t he r e l a t i o n s i n i n s e t , then

f i n d ou t wh ich i s (a r e) t he r e l a t i o n (s) t h a t i s (a r e) no t
w i t h t he o t h e r r e l a t i o n s .)

I F (S i z e (i n t e r s e c t) = 0) THEN
BEGIN

I F (num > 2) THEN
BEGIN

Choose(num-1, i n s e t , choose-set);
WHILE (choose-set 0 0) DO
BEGIN

nex tcho i ce := f i r s t element o f choose-set;
choose-set := choose-set - nex tcho i ce ;
Perform~Intersection(num-l, nex tcho i ce , o u t s e t) ;

END) w h i l e { ;
END i i f) ;

END 1 i f)
ELSE

o u t s e t := o u t s e t U [i n s e t] ;
END)Perform,Intersection).

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Procedure Choose

This is a recursive procedure which chooses all the possible n number of

elements from inset and puts the result in outset.

PROCEDURE Choose(input v a r i a b l e s : n, i n s e t ;
ou tpu t v a r i a b l e : o u t s e t) ;

BEGIN

o u t s e t := 0;
I F ((i n s e t 0 0) AND (n O 0)) THEN
BEG I N

tempset := 0;
WHILE ([i n s e t 1 > n-1) DO
BEGIN

temp := f i r s t element o f i n s e t ;
i n s e t := i n s e t - [temp];
Choose(n-1, i n s e t , chooseset) ;
tempset := tempset U

Distribute,~nion([temp]. chooseset) ;
END jwhi l eg ;
ou tse t := tempset;

END l i f t ;
END jChoose) .

Function Distribute-Union

This function performs a union of x to each element of inset, and returns the

resulting set as the function value.

Func t i on D is t r i bu te -Un ion (x , i n s e t) : s e t ;

BEGIN

du := 0;
I F (i n s e t = a) THEN

du := [x] ;
WHILE (i n s e t 0 0) DO
BEGIN

temp := f i r s t element o f i n s e t ;
i n s e t := i n s e t - [temp];
du := du U [x U temp];

END) w h i l e {
D i s t r i bu te -Un ion := du;

END I D i s t r i b u t e - U n i o n (.

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

RespondIntensional-Misconception

This procedure generates responses for the misconceptions found. It also

generates the corrective information found in inset. For this procedure, all Si's, vali's,

and ei's resulting from Match-&-Extract are made accessible to it. Templatek. s) is

a template routine that will generate restricted natural language responses with the

relationship represented by r instantiated by the values found in relation s. For

example, if TEACH(instructor, course) represents the relationship: "instructors teach

courses", then Template(TEACH. S1), see S1 in Figure 5t3. will generate a response

like: "Graduate students teach undergraduate courses". The join operator used in this

procedure is again the natural join operator

PROCEDURE Respond-Intensional,Misconception(insat);

BEGIN

IF (inset = 0) THEN
BEGIN

FOR i := 1 TO Iwhole-set1 DO
BEGIN

IF (val 0-0) THEN
response: "val. is a/an ei.";

Template(R,Si);

END)for);
END)if)
ELSE BEGIN

inset, join inset2 . . . join insetlinsatl
over all attribute fields giving intersect;

Template(R,intersect);
inset := whole-set - inset;
WHILE (inset 0 0) DO
BEGIN

Si := first element of inset
inset := inset - [Si];
i := the subscript found in the name of relation Si;
IF (vali 0 0) THEN

response: "val. is a/an ei.";
I

Template(R,Si);
END {whilej;

END {else);
END ~Respond,Intensional,MisconcspPion).

Turning Null Responses into Quality Responses

Algorithms for Detecting a User's Misconceptions

Function In-VRelation

This is a boolean function that tests if . e is in the V-relation or not.

FUNCTION In,V,Relation(e) : boolean;
BEGIN

IF (e E [select v i e w from V-relat ion]) THEN
In-V-relat ion := true

ELSE
In-V-relation := false;

END)In-V-Relation$.

Turning Null Responses into Quality Responses

Concluding Remarks

Chapter 6

Concluding Remarks

When a query submitted by the user fails to elicit any answer, the user often

finds the situation unsatisfactory and frustrating. The problem is more aggravating

for database systems with a natural language front-end as users are not expected to

have much knowledge about the database structure. Earlier research efforts in

natural language database systems has concentrated mostly on natural language

interfaces; more recent work in this area has concentrated on cooperative responses.

In particular, Kaplan, Janas, and Motro (see chapter 2) have worked to provide

quality responses for null answer queries [~ a ~ l a n 781. a an as 791. [~ o t r o 861.

However, domain specific knowledge is still indispensable for providing quality

responses in a natural language database system. In this thesis. I have introduced an
b

init ial classification of null event problems in natural language database systems;

this initial classification provides a structured way of approaching the problem of

turning null responses into quality responses. As a partial solution to the complex

problem of quality (cooperative) responses in natural language database systems, we

constructed a relational knowledge base model which supplies information for

diagnosis of failed queries. It provides meta-level data information to facilitate

quality responses for correcting user's misconceptions. Algorithms which provide

quality responses to null events arising from user's misconceptions (see Figure 3-2)

further demonstrate the kind of quality responses we can obtain from the information

supplied by the relational knowledge base model. Although, currently, the knowledge

Turning Null Responses in to Quality Responses

Concluding Remarks 76

base model has .to be hand-coded by the database administrator (or the system

designer), the algorithms manipulating the knowledge base are domain independent.

Extensional values in the knowledge base are all transparent to the algorithms, and

thus enhance portibility.

We have examined the feasibility of providing correct interpretations of certain

null values occurring in a database, and providing cooperative responses using the

relational knowledge base model. This knowledge base model provides us a general

scheme2' for representing and organizing knowledge in a natural language database

system without rendering the system ad-hoc, and, in principle, this model is

transformable to other database models as well. Furthermore, the relational

knowledge base model offers the following advantages:

1. inexpensive to incorporate into the database;

2. conceptually simple for database administrator to understand and design:

3. immediately -applicable as an add-on to an existing databases:

4. portable;

5. independent of updates to the database.

There are, of course, disadvantages associated with this relational knowledge

base. wi th a relational model. procedural and heuristic knowledge is difficult to

represent. Also, the relational knowledge base model is good for representing

homogeneous knowledge. but it will be cumbersome in representing heterogeneous

knowledge, in particlar, inference rules cannot be easily put into a relational

27~eneral , but possibly not complete. Realization of a complete general scheme requires further
investigation into the other classes of null event problems as well. ~

Turning Null Responses into Quality Responses

Concluding R e w k s 77

representation. The relational knowledge base model will not be able to provide a

visual immediacy of interrelationships between concepts. A cycle in the GH-relation

will not be as easily detected as if the GH-relation is represented in a semantic

network.

6.1. Future Research

6.1.1. Short term research directions

The initial classification is not complete and requires extension. Further research

into other classes of null events problems, for example, null events due to the lack

of knowledge about the database structure. null events due to the lack of ability to

handle partial information, etc.. will certainly amalgamate more detailed classification

categories and eventually result in a more comprehensive classification.

The knowledge base model introduced in chapter 4 is designed specifically to

incorporate information necessary to provide quality responses to null value problems.

All of the information in the model is hand-coded at present. Automatic generation

of the entire knowledge base model appears difficult because domain-specific

knowledge needs to be acquired in some way. Automatic generation of some of the

relations in the knowledge base model is possible nonetheless. Given a relational

database. one can proceed to automatically generate the knowledge base model, to a

certain degree, as follows:

step 1. locate major concepts28 and their properties existing in the DB. (the
ENT-relation and the PG-relation)

2 8 ~ y major, we mean the concepts that occur in the database, and only those concepts.

Turning Null Responses into Quality Responses

Concluding Remarks

step 2. identify any association/relationship existing between concepts. (the AE-
relation and the AG-relations)

step 3. generate hierarchies for all major concepts. (the CLASS-relation and the
GH-relation)

I have developed a preliminary algorithm which performs steps 1 & 2 listed above.

We will explain more about how to carry out these steps later.

In the relational database model:

0 entities have properties - their attributes;

8 each entity set has a key that uniquely identifies each entity in an entity
set;

8 there are also cases in which the entities of an entity set are not
distinguished by their attributes (properties) but rather by their
relationship to entities of another type.

Assuming that we have a database that is in 4th normal and based on

the relational model outlined above, we make the following two observations:

.
1. relations which share some common attribute fields in their primary key

are considered to be related to each other, and they are meant to describe
certain concepts that those common attribute fields comprise. For example.
relations like: OFFERING. COURSE-PREREQUISITE. COURSE-PREVIOUS-
NAME, COURSE-DESCRIPTION, in Figure 4-1, are all related to the
concept course, and course is made up of CNAME.

2. if a concept is made up of only one attribute field, a complete list of
all3' their members can be obtained from a relation whose primary key
are the corresponding attribute field of that concept. For example, since

2 9 ~ e t R be a relation scheme and D the set of dependencies applicable to R. We say R is in fourth
normal form if whenever there is a multivalued dependency X - r -+Y, where Y is not empty or a subset
of X, and XY does not include all the attributes of R, then X is a superkey of R, where a superkey is
any superset of a key. [Ullman 821

30~ccording to the closed world assumption that most databases adopt.

Turning Null Responses into Quality Responses

Concluding Remarks 79

course is made up of CNAME only, COURSE-DESCRIPTION is assumed to
contain the complete list of all the courses.

A high level description for part of the process for automatic hierarchy

construction is outlined in Appendix B. The algorithm is illustrated using the sample

database schema in Figure 4-1. The algorithm is incomplete and it requires some

deeper analysis.

For the database schema illustrated

automatically generate the following:

PG-relation:

ENTITY -
course
course
course
course

semester
semester
semester

class
class
class
class
dept
dept
dept
dept

instructor
instructor
instructor
instructor

student
student

0FFERZNG.l
TAKE.1

CL.ASSROOM.1

PREREQUITE
PREVIOUS-NAME

CNAME
SEMESTER*

YEAR
SEASON
CLASS#
DEPT
UNITS

SEC
DEPZ*

CHAIRMAN
FACULTY
FACILITY

INSTRUCTOR*
NAME
DEPT

OFFICE

STUDENT#
NAME

CLASS#
FINAL-GRADE

ROOM*

in Figure 4-1, this algorithm will

ENT-relation:

ENTITY - CLR

course 1 COURSE-DESC
student STUDENT

instructor INSTRUCTOR I dep I DEPT
semester SEMESTER

class CLASS-DEPT

(b)

OFFERING.l(course, semester)

TEACH.l(class, instructor, TEXT)

TAKE.l(class, student)

CLASS-ROOM.l(class, TIME)

(d)

Notice that this algorithm cannot generate constraints for the AG-relations, as

Turning Null Responses into Quality Responses

Concluding Remarks 80

in Figure 5-3. This domain specific knowledge needs to be obtained from an external

source. To automatically generate concept hierarchies, generalization and aggregation

hierarchies from the database is more complicated. McCoy's ENHANCE

system [McCoy 821 introduced in chapter 2 automatically generates an annotated

generalization hierarchy on the entities in the database. This enables ENHANCE to

provide responses to certain kinds of queries regarding the database structure. The

knowledge base model introduced in this thesis also provides concept hierarchies.

generalization and aggregation hierarchies. Combining these two techniques might

provide a good basis for solving the null event problem due to the lack of knowledge

about the database structure, and hence quality responses for this category of null

event would follow. Also. performing a preprocessing of the database to discover

exceptional cases3' will also suggest some way of partitioning a hierarchy.

Partial information such as that illustrated in section 3.1.4 is not unusual in

the real world; our ability to handle this kind of partial information is useful in an

information system. As discussed in chapter 3 . partial information such as: "Joe will

teach CMPT810 next semester or Art will teach CMPT810 next semester" can only b i

approximated in the database as:

teach(CMPT810-fall, sectel, null).

This is, in fact, a kind of extensional failure. if we t ry to find out "Who is teaching

CMPT810 next semester?" If a system is able to handle partial information, then in

the case of an extensional failure, the system should also check for the existence of

any partial information, and the selection mechanism has to be further modified.

One possible way to handle this kind of partial information is to extend the

3'that is, those entities that

Turning Null Responses

have null value all the time for a particular attribute field.

into Quality Responses

Concluding Remarks 8 1

knowledge base model to incorporate one more relation. say the DIS-relation

(DISjunction relation), to store partial information. This DIS-relation can be a binary

relation where the CONCEPT field contains an index to any entry in the database.

The index can be in the form: attribute field name-primary key value32, see Figure

6-1. A POSS field contains the possible value for the corresponding value in the field

CONCEPT. Elements in the POSS field, therefore, should have the same attribute

domain as the attribute field domain for the corresponding elements in the CONCEPT

field.

TEACH:

...

...

Figure 6-1: Suggested DIS-relation

I CONCEPT POSS -
I

to capture disjunctive information.

In this way, when there is an extensional failure, we can have some

mechanism to index into the DIS-relation to find out whether there idare) any

possible value(s) known in the domain for the corresponding null value. However.

this renders the knowledge base dependent on the data values in the database. The

knowledge base will no longer be independent of updates to the database; whenever

there are database updates, the knowledge base has to be updated as well. An input

routine for this kind of partial information has to interact with the database. This

320r attribute field name concatenated with primary key values for composite primary key. Notice the
concatenation of the composite primary key values has to follow some strict ordering; otherwise we cannot
maintain the uniqueness of the index key.

Turning Null Responses into Quality Responses

Concluding Remarks 82

reduces portability. Furthermore. disjunctive information such as: P(a) or Qlbl cannot

be handled by the above DIS-relation. Further research is required on this issue.

In the knowledge base model, the database is not considered to be closed.

Only simple entities are closed in the knowledge base, and all AG-relations are closed

in the knowledge base. So far, the knowledge base model has only been used for the

purpose of providing information which would be useful to correct any user's

misconceptions.

It will be very interesting to determine how to extend the knowledge base

model to incorporate negative facts concerning the database. Incorporating negative

extensional facts again involves existing data values in the database. Nevertheless, an

investigation on extending the knowledge base model to incorporate negative intensional

facts of the database might prove fruitful.

The algorithms given in chapter 5 assume that there is no cycle in the CLASS-

relation, and in the GH-relation. This is because they are considered to representb

hierarchies in the application domain. Also for the EG-relation, the algorithm only

handles events that have at most one preceding event and at most one successor

event. Extending the algorithms to allow cycles and multiple events would be

3 3 ~ o t i c e how Mays can handle this kind of problem by using the branching time temporal logic
technique. [~ a y s 821

Turning Null Responses into Quality Responses

Concluding Remarks

6.1.2. Long term research directions

In chapter 4. I discussed the problem of null values in the knowledge base. We

can basically incorporate another meta-knowledge level of information regarding null

values in the knowledge base. However. this results in infinite meta-levels of

information in the worst case situation. The approach of having infinite meta-levels

of information about the knowledge base's null values is another direction for future

research since it might be conceptually advantageous as suggested by Brain Smith's

work on 3-LISP.

One important missing component in a natural language database system is the

query generator which transforms the logical form from a semantic interpreter into a

formal database query, say SQL. A lot of information in the knowledge base can be

shared with the semantic interpreter and the query generator. Future research which

bridges the gap between the semantic interpreter output and the actual database query

might aid the knowledge base performance.

'
Finally, solving null event problems due to the lack of general rules and

inferencing is, without doubt, essential to a natural language database system. When

we must be concerned about computational complexity in a natural language database

system, the problem becomes more difficult. I can imagine that it is possible to attach

general rules to the entity concepts in the knowledge base model; however, this is not

a ''quality responseN to such a profound question. More research effort is required.

4

It appears that the ideal natural language database system may still not be

realized in the near proximity. Research work in this area has been incremental and

approaching this ultimate goal. In essense, this thesis has partially demonstrated how

a knowledge base can be represented in a relational model, which is homogeneous to

Turning Null Responses into Quality Responses

Concluding Remarks 84

the relational database model, and how this knowledge base can be utilized to give

better quality responses to null event problem.

Turning Null Responses into Quality Responses

Control Flow Diagram of the algorithm for Detecting a User's Misconceptions

Appendix A

Control Flow Diagram of the Algorithm
for

Detecting a User's Misconception

Misconception

Extensional-
Misconception

Procedure A
Intensional-

Misconception

Figure A-1: Top Down Hierarchical Program Structure of Misconception Algorithm

Procedure
Procedure Procedure Procedure Check-
Check- Check- Check- Intensional-
Object- Always- Temporal- Misconcept~on

Existency Null Event

1
I

Turning Null Responses into Quality Responses

Procedure
Evaluate-
Exception

Procedure
Match-&-

Extract

Procedure Procedure
Perform- Respond-

Misconception

V 1 Procedure

Choose Procedure
Push-Sub-

In-Stack

Function
Distribute-

Union

Function
In-V-
Relation

Procedure
Match-
Logical- - Form

Preliminary Algorithm for Hierarchy Construction

Appendix B

Preliminary Algorithm for
Hierarchy Construction

PHASE 1

Initially let C = (01, where C is a set of lists. Each list in C is in turn a
list of two lists: the second list contains names of those relations that
have some attribute field(s) in common; and the first list contains those
common attribute fields' names. This set of lists in C contains information
that will help in the identification of major concepts and their properties
in the database.

Names of those relations that share common attribute fields in their
primary keys are grouped together as members of a list, and a list of the
common attribute fields as members of a second list. These two lists are
then grouped together to be members of another list. say ci. ci is then

added to C. This procedure is repeated until no new list can be formed.
As a result C will become a set of lists, where each list in C is in turn a L

list of two lists as described in the first step. From Figure 4-1. C will
appear as follows:

C = l((CNAME)(OFFERING COURSE-PREREQUISITE
COURSE-PREVIOUS-NAME COURSE-DESCRIPTION)).

((SEMESTER#) (OFFERING SEMESTER)) ,
((CLASS#) (CLASS-DEPT TEACH TAKE CLASSROOM)) .
((INSTRUCTOR#)(INSTRUCTOR TEACH FACULTY-DEPT)),
((STUDENT#)(STUDENT TAKE)),
((DEPT#) (DEPT-CHAIRMAN DEPT-FACI LITY))

Notice that a relation can be a member of more than 1 list, like TEACH;
and we want a minimal list of attribute fields to identify a concept
(object). So in the case of:

CLASS-DEPT (CLASS, D E W , UNITS)
TEACH(CLASS, E, INSTRUCTOR, TEXT)

we want to have only

Turning Null Responses into Quality Responses

j
Relintnary Algorithm for Hierarchy Construction

((CLASS)(CLASS-DEPT TEACH . . .))

instead of

((CLASS)(CLASS-DEPT TEACH . . . 1)
and

((CLASS SEC) (TEACH TAKE . . .))

At this point. we can clearly identify 6 concepts (objects), see Figure B-1.

Naming of Concepts
Concepts are named according to the domain name(s) of the attribute
field(s) of each element of C. If there are more than one common
attribute field, names of the domains are concatenated together to form the
concept's name.

Figwe B-1: 6 simple entities identified.

CLR relations
Each concept will have a CLR (Complete List Relation) name attach to it
to indicate where we can get a complete list of the members of the
concept. To determine which relation should be the CLR of a concept, we
pick the relation for which the concept's identifying attribute field(s)
idare) the relation's only primary key(s).

The concepts' names together with the corresponding CLR relation are then
insert into the ENT-relation.

Properties Attachment and Relationship Linking
From the previous step, we know that for each concept, ci, there is a set

of relations. Ri, that are related to the concept. and a set of identifying

attribute fields. Ai, of the concept. Let R be a relation in the set of

relation Ri. This algorithm will distinguish associative entity types from

simple entity types, and will attach properties to these two entity types in
the following way: If Ai contains all the primary attribute fields of R.

Turning Null Responses into Quality Responses

Preliminary Algorithm for Hierarchy Construction

then R is considerd to consist of property attributes of the concept ci.

therefore all the non-key attribute fields of R will be taken as properties
of the concept. ci. Otherwise. R represents a relationship among entity
sets represented by its primary keys attribute fileds. This relationship is
taken as an AG-relation, and the non-key attribute fields of R will
become properties of this relationship in the P-relation.

n o t a t i o n : l e t ELEMENTi be the i t h element o f t he se t C;

l e t Ai be the a t t r i b u t e f i e l d s i n the f i r s t l i s t o f ELEMENT,;

FOR i FROM

e t c i be the concept o f ELEMENTi i d e n t i f i e d by

Ai as descr ibed i n t he p rev ious s tep;

e t E be the se t o f concepts i d e n t i f i e d i n the p rev ious s t e p
e t concept(x) be a f u n c t i o n which w i l l r e t u r n the concept

cor respond ing t o x, i f x i s a concept i d e n t i f i e r . Otherw
i t w i l l j u s t r e t u r n x .

1 TO IC) DO

i s e ,

FOR (every r e l a t i o n , R, i n the 2nd l i s t o f ELEMENTi) DO

BEG I N
I F (Ai i s no t the whole p r imary key f o r R) THEN

I F (t h e r e e x i s t non-key a t t r i b u t e f i e l d s i n R) THEN
I F (t h e r e e x i s t concept (pr imary key f i e l d (s) o f R) which a re

not i n E. o r p r o p e r t i e s o f t he cor respond ing concepts
i n E) THEN

BEGIN
- c r e a t e an AG-relat ion w i t h a name p r e f i x e d by R,

and w i t h a t t r i b u t e f i e l d s wh ich a r e concept(Ai)

and the concept (the non-key a t t r i b u t e f i e l d s o f R);
- i n s e r t t h i s AG-re la t ion 's name i n t o t he AE-relat ion; - i n s e r t t u p l e (c i , d i r -p rop.) i n t o t he

J
P- re la t i on , where d i r -p rop , i s a key a t t r i b u t e o f R

J

except A i , f o r a l l non-key a t t r i b u t e s of R except A i ;

END
ELSE BEGIN

- c r e a t e an AG-relat ion w i t h a name p r e f i x e d by R, say R.*,
and w i t h a t t r i b u t e f i e l d s which o r e same as
the concept(pr imary key a t t r i b u t e f i e l d (s) o f R) -
those a t t r i b u t e f i e l d (s) t h a t a r e p r o p e r t i e s o f any
concept i n E.

- i n s e r t t h i s AG-relat ion 's name i n t o t he AE-relat ion;
- i n s e r t t u p l e (I?.*, non-key.) i n t o the P - re la t i on ,

J
where non-key i s a non-key a t t r i b u t e f i e l d i n R,

j
f o r a l l non-key a t t r i b u t e s i n R;

END
ELSE

) A t t a c h the r e s t o f the pr imary key a t t r i b u t e f i e l d (s) /
concept(s) as p r o p e r t y (i e s) o f c i i f t h i s does not

c r e a t e d u p l i c a t e p r o p e r t i e s .)
- i n s e r t t u p l e (c i . prop.) i n t o t he P - re la t i on , where prop

J j
i s a pr imary key a t t r i b u t e f i e l d o f R t h a t i s no t found
i n Ai . f o r a l l p r imary key a t t r i b u t e s o f R tha t a re not

i n Ai ;

I F (t h e r e e x i s t f o r e i g n key(s) , say f , i n the pr imary key) THEN

Turning Null Responses into Quality Responses

Preliminary Algorithm for Hierarchy Construction

-Remove R from the r e l a t i o n l i s t o f t he o t h e r elements
o f C which have o n l y f i n i t s

ELSE
] A t t a c h the non-key a t t r i b u t e f i e

as p r o p e r t i e s . 1
- i n s e r t t he t u p l e (c i . non-key.) 1

whe

f o r
)A t t a c h

o f C i

- i n s e r t

a t t r i b u t e l i s t .

d(s) /concept(s) t o c i

n t o t he P - r e l a t i o n ,

bu te f i e l d o f R . r e non-key i s a non-key a i t r i
j

a l l non-key a t t r i b u t e o f R ;
t h e a t t r i b u t e f i e l d (s) of ELEMENTi t o be p r o p e r t y (i e s)

i f i t does not c r e a t e d u p l i c a t e p r o p e r t i e 3 . j

t he t u p l e (c i , key.) i n t o t he P - re la t i on , where
J

i s an element i n Ai, f o r a l l elements i n A i ;

Turning Null Responses into Quality Responses

References

[ANSI 751 Study Group on Data Base Management Systems.
Interim Report.
ANSI. New York, 1975.

[Borgida. Mylopoulos. and Wong 841
Borgida, A., Mylopoulos, J., Wong, H. K. T. .
Generalization/Specialization as a Basis for Software Specification.
On Conceptual Modelling.
Springer-Verlag. New York, 1984. pages 87-1 17.

[Brachman 791 Brachman. R.
On the Epistemological Status of Semantic Networks.
Associative Networks: The Representation and Use of Knowledge by

Machine.
Academic Press, New York, 1979, pages 3-50.

[Cercone and McCalla 861
Cercone, N.. and ~ c ~ a l l a . G .
Accessing Knowledge through Natural Language.
Advances in Computers, 25th Anniversary Issue .

Academic Press. New York. 1986. pages 1-99.

[Cercone. Hadley. Martin. McFetridge. and Strzalkowski 841
Cercone. N., Hadley. R.. Martin. F.. McFetridge. P.. and Strzalkowski.
T.
Designing and Automating the Quality Assessment of a Knowledge-

Based System: The Initial Automated Academic Advisor
Experience.

In IEEE, Proceedings of the Workshop on Principles of Kmledge -
Based Systems. pages 193-204. Denver, Colorado. 1984.

[Codd 793 Codd. E.
Extending the Database Relational Model to Capture More Meaning.
ACM Transactions on Database Systems 4(4):pages 397-434, 1979.

[Dankel 791 Dankel. D.D.
Browsing in Large Data Base.
In IJCAI83, Roceedings of the 6th International Joint Conference on

Artificial InteUigence, pages 188-190. Tokyo. Japan. 1979.

[Davidson 821 Davidson, J.
Natural Language Access to a Database: User Modelling and Focus.
In Proceedings of the 4th National Conference of the CSCSI/SCEIO.

pages 204-21 1. Saskatoon, 1982.

[Davis and King 751
Davis. R.. King. J.
A n Overview of Production Systems.
Technical Report STAN-CS-75-524. Computer Science Department.

Stanford University. Stanford. 1975.

[Finin. Goodman, and Tennant 791
Finin, T.. Goodman. B., Tennant. H.
JETS: Achieving Completeness Through Coverage and Closure.
In IJCAI79, Proceedings of the 6 th International Joint Conference on

Artificial Intelligence, pages 275-281. Tokyo. Japan. 1979.

[Gallaire. King, Mylopoulos. Reiter, and Webber 831
Gallaire. H.. King. J.J.. Mylopoulos. J.. Reiter. R.. Webber. B.L.
A Panel on A.I. and Databases.
In IJCAI83, Proceedings of the 8th International Joint Conference on

Artificial Intelligence. pages 1 199-1206. Karlsruhe. West
Germany, 1983.

[Grice 751 Grice. H.P.
Logic and Conversation.
Syntax and Semantics.
Academic Press, New York. 1975.

L

[Hendrix, Sacerdoti, Sagalowicz, and Slocum 781
Hendrix. G.. Sacerdoti. E.. Sagalowicz. D.. and Slocum. J.
Developing a Satural Language Interface to Complex Data (LIFER).
ACM Transactions on Database Systems 3(2):pages 105-147. 1978.

[Janas 791 Janas, J.M.
How to not say 'NIL'.
In IJCAI79, Proceedings of the 6 th International Joint Conference on

Artificial Intelligence, pages 429-434. Tokyo. Japan. 1979.

[Kalita 841 Kalita. J.
Generating S u m m q Responses to Natural Language Database Queries.
Technical Report TR 84-9, Department of Computational Science.

University of Saskatchewan. Saskatoon. 1984.

[Kalita. Jones, and McCalla 861
Kalita. J. K.. Jones. M. L., McCalla. G. I.
Summarizing Natural Language Database Responses.
Journal of Computational Linguistics 12:pages 107-124, 1986-

[~ a p l a n 781

[Mays 821

[McCoy 821

[McKeown 821

[Motro 863

[Reiter 841

Kaplan, J.
Cooperative Responses from a Portable Natural Language D a a Base

Query System.
PhD thesis. University of Pennsylvania, 1978.

Mays. E.
Monitors as responses to questions: determining competence.
In Proceedings of the 1982 National Conference on Artificial

Intelligence. 1982.

McCoy, K.
Augmenting a Database Knowledge Representation for Natural

Language Generation.
In Proceedings of the 20th ACL. pages 121-128. Toronto. Ontario.

1982.

McKeown. K.
The TEXT System for Natural Language Generation: An Overview.
In Proceedings of the 20th ACL. pages 113-120. Toronto. Ontario.

1982.

Motro. A.
Query Generalization: A Method or Interpreting Null Answers.
In IEEE Proceedings of the Workshop on Expert Database Systems,

L. Kerschberg editor. pages 5 97-6 16. The Ben jamidcummings
Publishing Co., Columbia. South Carolina, 1986.

Reiter. R.
Towards a Logical ~econstruciion of Relational Database Theory. ,
On Conceptual Modelling.
Springer-Verlag. New York. 1984. pages 191-238.

[Schank and Lehnert 791
Schank. R., and Lehnert. W.
The Conceptual Content of Conversation.
In IJCA179, Proceedings of the 6 th In terna t iod Joint Conference on

Artificial Intelligence, pages 769-771. Tokyo. Japan. 1979.

[Schubert, Goebel. and Cercone 791
Schubert. L.. Goebel, R.. and Cercone. N.
The Structure and Organization of a Semantic Network for

Comprehension and Inference.
Associative Networks: The Representation culd Use of Knowledge by

Machine. , .

Academic Press. New York. 1979. pages 121-175.

[Stonebraker 841 Stonebraker. M.
Adding Semantic Knowledge to a Relational Database System.
On Conceptual Modelling.
Springer-Verlag. New York. 1984. pages 333-353.

[Ullman 821 Ullman. J. D.
Principles of Database Systems.
Computer Science Press, Inc., Mary land, 1982.

[Waltz 781 Waltz. D.
PLANES: An English Language Question-Answering System for a

Large Relational Database.
CACM 21(7):pages 105-147. 1978.

[Webber, Joshi, Mays, and McKeown 831
Webber. B.. Joshi. A., Mays. E.. and McKeown, K.
Extended Natural Language Database Interactions.
Computers and Mathematics Special Issue on Computational Linguistics.
Pergamon Press. London. 1983. pages 233-244.

[Woods 771 Woods. W. C.
A Personal View of Natural Language Understanding.
SIGA RT Newsletter :pages 17-20. February, 1977.

