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Abstract. 

Natural language interfaces to database systems free the user from the undue 

formalism of learning a query language. However, the more important issue from the 

system's point of view. besides correctly interpreting the natural language query. is to 

respond correctly and cooperatively. In particular, the generation of quality responses 

has proven problematical in situations when null values arise. If a user's query 

cannot be answered by the system because of an incorrect assumption that the user 

has made. i t  would be appropriate for the system to inform the user what has gone 

wrong. The query. "Whut grade did John Doe get in MATHIOO?", might result in a 

null answer because John is. not enrolled in MATH100. It is important for a system 

to realize these kinds of complementary issues in order to be truly "natural". 

Most recent work on cooperative responses has relatively overlooked null value 

events. In this thesis, we present an initial classification of null event problems in 
8 

natural language database systems. and methods for responding with appropriate 

answers to some classes of null events. Assuming that the database is relational and 

that the database query language is SQL, we develop and incorporate a knowledge 

base into the system based on the RM/T model, an extended relational model 

proposed by E. F. Codd, to furnish information for diagnosis of failed queries. The 

knowledge base, which is also in the relational model, consists of meta-level data 

information. This knowledge base provides information such as: entity concept 

hierarchies: generalization and aggregation hierarchies: entity relationships and entity 

relationship constraints;' event precedence in the database domain; and knowledge about 



null values existing in the database. Algorithms which further explicate the function 

of the knowledge base model are given to demonstrate the kind of quality responses 

we can obtain instead of a simple null answer. 
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Introduction 

Chapter 

Introduction 

ru'atural language interfaces were introduced into database management systems 

primarily to relieve users of the necessity to learn a formal query language, for 

example. SQL, in order to access data in the database. In this way, a database 

system could be valuable to non-expert users. 

Initial work on natural language interfaces addressed problems of natural 

language understanding and the linguistic coverage of the query'. Representative 

example systems include the PLANES system [Waltz 781, and the LIFER 

system [Hendrix. Sacerdoti. Sagalowicz, and Slocum 781. The present generation of 

natural language database systems emphasizes portability [ ~ a p l a n  781.  avidso son 

821 and cooperative responses [Webber, Joshi. Mays. and McKeown 831. 

Using natural language to access the database has freed the user from learning 

a specialized formal database language. However, since natural language is less 

restrictive, queries may be rendered to the system less precisely and responses 

generated may be misleading. To illustrate this point. consider the following example: 

01: D i d  anyone get  a grade of  E i n  CMPT 101 l a s t  semester? 
R4: No. 

02: D i d  anyone f a i l  CMPT 101 l a s t  semester? 

lgy linguistic coverage we mean the breadth of natural language expressions that can be "correctly" 
parsed and analysed for meaning content. 
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R2: Yes.  

If the user believes that "EN is the failing grade, then the user might become 

very confused with the two different responses. R1 and R2, he received. Moreover, if 

the second question 'is not asked at all, then the user might be misled into the belief 

that no one failed in CMPT 101 last semester. 

According to Grice's four principles of cooperative human conversation [Grice 

' 751, a conversation is cooperative only if the speaker's responses incorporate: 

1. the maxim of quantity: be as informative as required; 

2. the maxim of quality: contribute only when an adequate 
amount of evidence is present: 

3. the maxim of relation: be relevant; 

4. the maxim of manner: avoid obscurity of expression. 
avoid ambiguity, be brief. 

A natural language database (NLDB) system should not be misleading and 
L 

should also provide responses according to Grice's four maxims of cooperative response. 

Furthermore. we want a natural language database system to be able to answer 

queries concerning the database structure as well. Hence, in our earlier example, the 

system should respond that "Em is not a "known" or "valid" value for grade. 

Research interest in generating cooperative responses has taken different forms. 

Kalita concentrated on giving summary responses of short non-enumerative answers, 

which under certain circumstances are more appealing and more desirable [Kalita 

841, [Kalita, Jones, and McCalla 861. For example. 

03: Which s tudents  have completed l e s s  than  5 courses? 
R 3 :  A i l  f i r s t  year  s t u d e n t s .  

Turning Null Responses into Quality Responses 
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Schank and Lehnert have worked on extended responses when the user's 

question tends to be vague and does not reflect a very clear intention [Schank and 

Lehnert 791. For example. 

Q4: What i s  t h e  p a t t e r n  of w i t h d r a w a l s  from computing sc ience  courses 
over t h e  past  3 years? 

In this example. "pattern of withdrawals" can mean many different things. including: 

the perspective on the reasons why students have chosen to withdraw from a 

computing science course; a description of the trends, showing the increases or 

decreases in the number of withdrawals; a report on the number of withdrawals in 

each computing science course, etc. 

McCoy and McKeown attempted to generate answers to requests on the 

database structure and show how it is possible to automatically generate this kind of 

meta-knowledge2 in a generalization hierarchy from the data itself [ M C C O ~  

821. [McKeown 821 . 

All the systkms mentioned above require a knowledge base of some sort3. 
L 

Kaplan, however, worked on cooperative responses which correct user's misconceptions 

without using an separate knowledge base [Kaplan 781; and. Motro worked on the 

method for interpreting null answers by assuming the existence of necessary 

knowledge in the database [ ~ o t r o  861. It is our contention that the need for a 

general knowledge base to support the generation of a wider variety of cooperative 

responses is essential. 

 eta-level data information is information pertaining to the data in the database. Thus, beside 
information about how the data are organized and related, information concerning what a null value in the 
database mean is also a kind of meta-level data information, see chapter 4. 

3~lease refer to chapter 4 for the distinction between a knqwledge base and a database. 
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A brief survey of appropriate natural language database systems which generate 

cooperative responses is presented in chapter 2; these systems demonstrate the kind of 

problems that are subjected to my investigation in the subsequent chapters (especially 

null value events). Motro's recent approach to interpreting null answers using query 

generalization [ ~ o t r o  861 is also discussed in the last section of chapter 2 together 

with some other related systems. A preliminary classification of null events is 

developed and presented in chapter 3. This classification provides suggested focusses 

for the development of a general knowledge base in natural language database 

systems. In chapter 4, the relational knowledge base model is described for relational 

databases, and the advantages of this approach are discussed. To illustrate the utility 

of the knowledge base model, two algorithms are introduced in chapter 5 along with 

illustrative examples for providing quality responses to user's misconceptions. In 

chapter 6, the concluding chapter, some of the contributions in this research are 

discussed and some directions for future research are outlined. 

Turning Null Responses into Quality Responses 
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Chapter 2 

Natural Language Database Systems 

We introduce several examples of natural language database systems in this 

chapter. These systems include PLANES [Waltz 781 and LADDER [Hendrix, Sacerdoti. 

Sagalowicz, and Slocum 781 in the first group of the early "tout ensemblen systems. 

Summary responses [ ~ a l i t a  841. [ ~ a l i t a .  Jones, and McCalla 861. ENHANCE [MCCOY 

821, TEXT [ ~ c ~ e o w n  821. monitor offers [ ~ a y s  821. and CO-OP [Kaplan 781 make up 

the second group of cooperative response systems. Query generalization [Motro 

861,    an as 791. conceptual coverage [Finin. Goodman. and Tennant 791. discourse 

focus [Davidson 821, and troubleshooting [Dankel 791 are some other related systems. 

From this brief survey, we can observe how research interest in natural language 

database systems has shifted its focus from treating the total natural language 
L 

interface problem to a concentration on a particular aspect of the system, that is. 

towards providing better quality responses. 

2.1. "Tout Ensemble" 

We examine two early natural language database systems that attempt to 

develop an inclusive natural language interface to a database system. These systems do 

not address particular issues in building "complete" systems, but tIJ. to demonstrate 

that workable natural language interfaces can be implemented. As a result, they 

emphasize problems of natural language understanding and the linguistic coverage of 

the query. 
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2.1.1. PLANES 

PLANES which stands for Programmed LANguage-based Enquiry System [Waltz 

781 was developed at the University of Illinois as a natural language interface to a 

large relational database of aircraft flight and maintenance information. It is one of 

several natural language systems that came out in the 1970's. 

The natural language processing portion of PLANES comprises a number of 

augmented transition networks. Each transition network matches phrases for a 

particular meaning along with context registers and concept case frames. Context 

registers are history keepers; they help resolve pronoun reference and ellipsis of future 

requests. Concept case frames enumerate patterns of questions understood by the 

system to infer missing information. So in cases when some useful information is 

missing, matching these concept case frames with the rest of the sentence suggests 

what type of phrase is necessary to complete the concept. The matched patterns. 

which are transformed into unordered sets of semantic constituents with canonical 

phrases substituting for the user's terms, and with pronoun references and ellipsis 

resolved, are then translated into the formal query language. DSL Alpha. 

Other features that PLANES incorporates include: providing a browsing ability; 

tolerating vague and poorly defined questions; handling ungrammatical inputs; 

correcting simple spelling mistakes: and paraphrasing and generating dialogue for 

clarifying partially understood questions. 

To generate meaningful and cooperative responses. PLANES usually returns 

more fields than what are asked for. To decide which data fields to return for an 

answer. PLANES uses a simple rule: all variables and sets of constants are presented 

in the answer. For example. 
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0 5 :  Which p lanes  had 20 o r  more f l i g h t  hours i n  May? 

Here "planes" is considered as a variable and "20 or more flight hours" is a set of 

constants. Therefore PLANES will return a list of flight hours and plane numbers. 

even though only the planes are explicitly requested. For example. 

R5: BUSER TOTHRS 
67 2 1 
68 28 
76 27 
81 24 

Here BUSER stands for Bureau SERial number - a plane identification number, and 

TOTHRS is the total number of flight hours for that plane. 

2.1.2. LADDER 

LADDER, for Language Access to Distributed Data with Error 

Recovery [Hendrix. Sacerdoti. Sagalowicz. and Slocum 781. is a natural language 

system developed at SRI International. It provides an intelligent interface for natural 

language access to a large body of data distributed over a computer network, the 

ARPA net. The user is buffered from the actual database management systems by 

three layers of insulating components: INLAND, IDA and FAM. These layers operate 

in series, converting natural language queries into actual calls to the DBMSs. 

The first component, the natural language component. INLAND, is constructed 

within the framework of a language processing package called LIFER. LIFER uses a 

semantic grammar and makes use of production rules, lexical entries and subgrammars 

to interpret the user's query. It generates a sequence of queries to the VLDB (Very 

Large Data Base) in a LISP internal language. Queries from INLAND are then passed 

to IDA (Intelligent Data Access) which in turn breaks down the queries against the 

entire distributed database into a sequence of queries against individual files. FAM. 

the file access manager, then performs the actual file access, which involves finding 
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the location of generic files and managing the access to them. 

In employing a semantic grammar, domain semantics can be easily embedded 

into the language. For example. semantic grammars use patterns like: 

<present> the  < a t t r i b u t e >  o f  <ship> 

instead of the more general (BNF formal) pattern such as: 

<noun-phrase> < v e r b p h r a s e > .  

Generalization of concepts and meta-knowledge about the data can be easily 

accomplished with production rules in LIFER. Other concerns that LIFER also focusses 

on include spelling correction. general elliptical input processing, redefinition of terms 

and paraphrase handling. However. LIFER still suffers from a limitation on its 

syntactic and semantic coverage: it can only recognize very simple straight .forward 

questions. Resolving relative clauses which contain long distance dependencies, 

conjunctive and disjunctive sentences, and resolving definite noun phrases which 

depend on the context, are problems for LIFER. 

. 
PLANES and LADDER are among the earlier successful natural language 

database systems. In both systems considerable effort has been expended on the 

linguistic coverage and the natural language understanding of the query. These earlier 

systems were mainly directed towards concerns (i) and (ii) stated in [Cercone and 

i. the kinds of language used 
constrained; ways must be 
natural language systems: 

ii. techniques must be evolved 

when interfacing with a database are usually 
found of expanding the linguistic coverage of 

to integrate syntax, semantics, and pragmatics 
so that whatever action is appropriate at a given time can be done. 

iii. the separation of the linguistic component sets up an arbitrary barrier 
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which may have become counterproductive; a means of re-integrating data 
and language must be found; 

iv. traditional (relational) database structures are not necessarily conducive to 
promoting the kind of inferences which need to be made for the query to 
be comprehended or answered properly; more sophisticated structures must 
be devised: 

v. the user's understanding of the capabilities of the linguistic and database 
components is an important aspect of the man-machine communication. 
which must be taken into account: the user cannot be ignored; and 

vi. even in a restricted linguistic domain such as natural language database 
interfacing, many discourse phenomena arise which must be accounted for 
if the natural language system is to behave cooperatively. 

PLANES did attempt to provide more informative responses by returning more fields 

than required. but this methodology does not always give positive results, for 

example. 

Q6: How many p lanes  o f  type  A 7  had 20 o r  more f l i g h t  hours i n  May? 
R 6 :  1000. 

BUSER TOTHRS 
67 21 
68 28 

996 instances  

In subsection 2.2.1 we will see how lengthy enumerative responses could give 

contrapositive results. In the following section, we consider some of the more recent 

natural language database systems which emphasize cooperative responses. 
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2.2. Cooperative Responses 

In this section, we describe several systems that emphasize cooperative 

responses. Each of these systems tries to solve a particular problem. which is 

different from the others, in a natural language database system. However, all of 

them demonstrate the need to go beyond simple data access in a natural language 

database system, and the need to take the next step of cooperative responses. 

2.2.1. Summary Responses 

Kalita's summary response system was developed at the University of 

Saskatchewan [Kalita 841. This system generated non-enumerative summary responses 

which were less verbose and could often avoid any misleading implicatures. 

According to Grice [Grice 751, an important convention of human conversation is to 

ensure that no participant monopolizes the discourse. Hence, a response with a lengthy 

list of data may not convey the salient point of the answer. Under certain 

circumstances, summary responses are more appealing and more desirable. Furthermore. 

extensional responses can sometimes mislead the user by generating false implications . 
whereas summary responses would not. For example [Gallaire, King. Mylopoulos. 

Reiter, and Webber 831. 

Q7 : Which department managers e a r n  over $40,000 per  year?  
R7.1: A b e l ,  Baker .  C h a r l e s ,  Doug. 
R7.2: A l l  o f  them. 

By enumerating all of the managers who earn over $40,000 (R7.1). the system 

would imply that there are still managers who do not earn that much if the user 

does not know that R7.1 implies R7.2. This is called a sccdar implicature according to 

[Grice 751. A cooperative principle of conversation requires a speaker to say as 

much as he can and not say anything that is believed to be false. A responder could 

give R7.1 as the response if he could not say the more inclusive answer R7.2. 
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Kalita's system employs a knowledge base which consists of 

1. frames that are used to store useful information about the relations and 
their attributes in the database and 

2. heuristics that guide the search for "interesting" patterns in the data. 

The system will undertake a heuristic search of the data that satisfies the user's 

query, and try to discover and respond with any underlying patterns or implicatures 

by consulting the information stored in the frames of the knowledge base. One basic 

problem with this approach is that not all underlying patterns are "applicable" or 

relevant. For example, 

08 : Which students a r e  accepted i n t o  the  honors program of the 
School of Computing Science? 

R8.1 : A l l  undergraduate students w i t h  a GPA of 2 . 7  or  h igher .  
R8.2 : A l l  undergraduate students w i t h  a soc ia l  insurance number. 

For query 4 8 ,  response R8.2 is certainly not relevant or suitable, a more relevant 

response might be one such as R8.1. In fact, one of the main reasons for having the 

frames and the significant values defined in them is to try to cut down the 

possibilitv of discovering irrelevant regularities. like R8.2. from the enumerative result. 

2.2.2. University of Pennsylvania Research Efforts 

Research efforts into natural language database systems have been very active 

at the University of Pennsylvania under the supervision of Dr. Bonnie Webber. In 

this section. we examine the work of three of Webber's students. McKeown. McCoy, 

and Mays. 

McKeown and McCoy have developed systems that are able to answer queries 

about the structure of a database [McKeown 821. [McCoy 821. This area of concern is. 

in fact, very important in a natural language database system because answering 

queries about the database structure will mean that some cooperative problem-solving 

interaction can be made available. 
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McKeown's TEXT system [Mc~eown 821 was developed to respond dynamically 

to three types of database structure questions: 

1. requests for definitions. 

2. questions about the kind of information available in the database. 

3. questions about the differences between entities existing in the database. 

TEXT employs a knowledge base that is comprised of taxonomic, functional 

and attributive information about the concepts in the database. It is basically an 

annotated generalization hierarchy on the entities in the database. 

McCoy's ENHANCE system [McCoy 821 generates part of TEXT'S knowledge 

base automatically. The ENHANCE system assumes that the database is static in order 

to generate an annotated generalization hierarchy. This hierarchy defines entities in 

terms of their superordinates and their subclasses: it also contains information such as: 

1. based database attribute lists - these lists indicate the reasons for splitting 
into subclasses. 

2. Distinguishing Descriptive Attributes (DDA) - attribute-value pairs whose 
values will distinguish one subclass from others. 

3. database attribute lists - names and values of all attributes which are 
constant within a subclass. 

McCoy also employs several world knowledge axioms in order to generate the 

hierarchy. 

Mays worked on a system that has the ability to take the initiative and 

produce monitor .offers of additional information that are both competent and relevant 

to the user's query [ ~ a y s  821. For example. 
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09: D i d  John pass C W T l B l ?  
R9: No, the  semester hasn ' t  ended, so he hasn ' t  r ece i ved  a grade y e t  

S h a l l  I l e t  you know then when he passes the  course? 

This system deals with a dynamic database because it is able to reason about 

possible future states. To provide answers such as R9,  a system must be able to 

recognize what events are actually possible, what additional information is relevant, 

and when it is appropriate to perform such services. Mays uses a branching-time 

temporal logic to achieve these goals. The system employs six composite temporal 

operators: 

(Ex)P - ho lds  i f f  P i s  t r u e  a t  some immediate f u t u r e .  
(Ax)P - ho lds  i f f  P i s  t r u e  a t  every immediate f u t u r e .  
(EF)P - ho lds  i f f  P i s  t r u e  a t  some t ime o f  some f u t u r e .  
(AF)P - ho lds  i f f  P i s  t r u e  a t  some t ime o f  every  f u t u r e .  
(EG)P - ho lds  i f f  P i s  t r u e  a t  every  t ime of some f u t u r e .  
(AG)P - ho lds  i f f  P i s  t r u e  a t  every  t ime o f  every  f u t u r e .  

To illustrate how these operators are used to specify the system's view about the 

possibility of change in a dynamic database contents, consider the following example: 

Let  P stands f o r  the  p r e d i c a t e  "s tudent  has passed course" and 
R s tands f o r  the  p r e d i c a t e  "s tudent  i s  r e g i s t e r e d  f o r  course" ,  

then 

(AG)[R + (EX)P] means i f  a s tudent  i s  r e g i s t e r e d  f o r  a course then 
i t  i s  nex t  p o s s i b l e  t h a t  he/she has passed i t .  

(AG)[P - + - R ]  means i f  a s tudent  has passed a course,  then he/she 
i s  no t  r e g i s t e r e d  f o r  i t .  

Axioms such as the above would specify the relationship of the current state of the 

database to possible future states, and hence govern how the system views the 

possibility of whether the database contents may or may not be changed. 
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CO-OP [Kaplan 781, developed at the University of Pennsylvania by Jerrold 

Kaplan, is a natural language database system that specializes in the generation of 

cooperative responses. The motivation behind the development of such a cooperative 

response system is that if a natural language database system is capable of only 

providing direct responses to questions. then it will often result in some inappropriate 

or meaningless responses. Especially in the case of a null answer query, the 

appropriate response is rarely the direct answer to the question, but: rather is an 

indirect answer. For example in [ ~ a ~ l a n  78, pg 21, 

010: Which s tudents  got a grade o f  F i n  CMPT100 l a s t  semester? 
R10: N i  l [empty s e t ] .  

011: D i d  anyone f a i l  CMPT100 l a s t  semester? 
R11: No. 

012: How many s tudents  passed CMPT100 l a s t  semester? 
R12: N i  I .  

013: Was CMPT100 o f f e r e d  l a s t  semester? 
R13: No. 

In these examples, it is inappropriate or uncooperative to give an answer such ' 

as R10. In the following example [Kaplan 78, pg12], an answer such as R14 will be 

meaningless if Bill was not at the banquet at all. 

014: How many Bloody Marys d i d  B i l l  d r i n k  a t  the  banquet? 
R14: 0 .  

The cooperative responses that CO-OP can offer include: corrective indirect 

responses, suggestive indirect responses and supportive indirect responses. The 

mechanism that CO-OP employs to produce cooperative responses is domain 

transparent. The only domain specific knowledge that CO-OP needs can be derived 

from the information present in the database system if a suitably encoded lexicon is 

present. The cooperative response mechanism relies on language-driven inferences; that 
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is, inferences concerning the user's presuppositions are driven from the particular 

phrasing of the user's input. Thus for Q14. inferences that can be made about the 

user's presuppositions are: 

1. there is a Bill. 

2. there is a banquet, 

3. there is a liquor called Bloody Mary, 

4. the liquor was available at the banquet, 

5. Bill was at the banquet, etc.. 

To accomplish this. CO-OP transforms the user's query into an intermediate 

representation called Meta-Query Language (MQL). 

The MQL is a graph structure that encodes some of the syntactic relationships 

between entity sets present in the natural language query. Nodes in the graph 

represent entity sets, and edges represent binary relations defined on the connecting 

nodes. Each connected subgraph of the original graph corresponds to an assumption 

the user has made about the domain of discourse. Thus. if the initial query returns a 

null response, the system will check the user's assumptions by passing each connected 

subgraph. in turn, to be compared against the database to check for its non-emptiness. 

An empty set result for any one of the subgraphs will prove the falsity of the 

corresponding assumption, and thus an appropriate indirect response can be generated. 

For example, if the subgraph of inference 5 of 414 returns a null answer, then the 

more appropriate response will be: 

Bill was not at the banquet. 

Kaplan's work on cooperative responses is closely related to my work, except 
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that Kaplan's language-driven inference mechanism is very domain independent. This 

language-driven inference mechanism of CO-OP only enables it to handle requests for 

data retrieval, it cannot handle queries concerning the database structure or queries 

that require substantial inferences or comparisons of the data for generating an 

appropriate answer. 4 

2.3. Some Other Systems 

2.3.1. Query Generalization - 

Motro has presented another approach to interpreting null answers using a 

technique called query generalization [Motro 861. When a query returns with a null 

answer, an attempt is made to generalize the query, that is, to modify the query 

such that the answer set of the generalized query is a superset of that of the original 

query. This can be done by removing or substituting a condition in the search criteria. 

For example, consider the query to list all beer lovers: 

O ( X )  = ( x ,  E , PERSON) and ( x ;  LOVES~BEER) , 

if this query results in a null answer, and there exists the fact: 

then the query generalizer will produce the following query: 

a, ( x )  = ( x .  E , PERSON) and ( x ,  LOVES, ALCOHOLIC-BEVERAGE) 

The answer to this query results in a response to the user with a list of all persons 

that love alcoholic beverages. When the queries produced by the query generalizer 

4~ also believe that there are misconceptions that cannot be detected just from the surface language 
structure of the user's queries; this concern requires further investigation. 

5 <  is a special entity that expresses the generalization relationship between 2 types. A concept described 
by the second type is more general than the concept described by the first type. 
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fail, the generalization process is applied again until it finds one query with a set of 

all successful generalized subqueries. 

This approach is demonstrated with the author's Loose Structure Data Model. 

which overlays the underlying database. However, depending on the underlying 

database. the amount of necessary information for cooperative responses available in a 

traditional database system is questionable, especially meta-level data information. 

This process of query generalization for interpreting null answer from the database is 

similar to Kaplan's technique of passing each connected subgraph of the original graph, 

in turn. to be compared against the database to check for user's misconceptions. 

Janas also took an approach similar to Motro and Kaplan to generate indirect 

answers to failed queries in database management systems  a an as 791. From the formal 

representation of the user's failed query,6. the .system recursively substitutes the failed 

query by their failing predecessors until no more failed queries are found. This 

process results in a more informative answer than the user's original null response. A 

predecessor of a query is obtained by simply removing one term from the query 

expression without ended up with an unconnected expression, and which may have 

predecessors itself. For example, consider a relational database model: 

EMP(N&, SAL. AGE) 
CAR(=, OWN, COL) 

Q3 is a predecessor of Q2. 

Q2: j x  I ((x.AGE < 3 0 )  a d  3 y ( ( y . 0 ~ ~  = x.NAM) m d  
(y.COL = ' r e d 1 ) ) ) {  

a3: j x  ( ( (x .AGE < 3 0 )  and 3 y ( ( y . o w ~  = x.NAM))# 

6~ predicate calculus based query language. 
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Janas restricted his problem to query expressions which are connected. Q2 is 

an exaplple of a connected expression where variables x and y are connected by 

(y.OWN = x.NAM). A set of rules which specify how to obtain predecessors from a 

well formed query, and an algorithm using these rules to provide appropriate answers 

is also provided in  anas as 791. 

2.3.2. PIQUE 

In a natural language environment, a user will very often phrase his input 

with respect to the current perceived focus of the dialogue. Therefore. retaining a 

model of the user's current focus will assist the system to behave more appropriately 

and less erroneously. 

Davidson has worked on modelling the user's focus during hidher interaction 

with the database [Davidson 821. The user's focus is modelled by the segment of the 

database that the user's is currently accessing. The focus representation is just a DML 

(Data Manipulation Language) expression which can be viewed as an intensional 

description of that particular database segment that are on focus. The focus space 

determined by the DML might then provide the referent in subsequent dialogue. 

Interpretation-in-context is done via query modification. For example. consider the 

following two queries: 

Q4: "Who a r e  t h e  programmers?" 

Q5: "What i s  Jones' s a l a r y ? "  

a DML expression for Qq could be: 

jx.name : x  E emps I x .occupat ion  =   programmer'^ 

and for Q5. the DML interpretation without context could be: 

[ x . s a l  : x  E emps I x.name = ' J o n e s ' )  

but interpreting Q5 in context of Q4 using query modification could result in: 
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1 x . s o l  : x E emps 1 x.name = ' J o n e s '  afld x . o c c u p a t  ion = ' p r o g r a m m e r a $  

Although there could be an inappropriate effect when evaluating the query 

with respect to a restricted focus space when the user didn't intend this restriction. 

Davidson tries to minimize this misuse of focus by restricting the use of focus to 

monotonic queries7, and by employing several heuristic rules to determine whether a 

context-directed interpretation is appropriate. 

2.3.3. JETS 

JETS is a sequel of PLANES which was developed in the University of 

Illinois [Finin, Goodman, and Tennant 791. JETS is centered on improving the 

- conceptual coverage in natural language database systems. Often. users refer to 

concepts that are related to the activities in the domain. but are not actually 

represented in the database. Conceptual coverage of a system refers to the set of 

concepts that the system can deal with: concepts which are consistent with the 

domain, but which may not have been specifically forseem8 
. 

a The architecture of JETS is a network of frames. The generality/specificity 

links found in the system enables us to view the conceptual system as a directed tree 

of frames rooted at the most general concept with property inheritance. Interpretation 

of the conceptual frames is done by using a set of rules which are also frames 

themselves. The rules 

solving frames which 

are basically pattern matchers. There are also a set of problem 

help in the development of plans to extract required information 

7 ~ o u g h l y  speaking, monotonic queries are those which contain neither universial quatification, nor (certain 
forms of) negation [Davidson 821. 

' ~ c c o r d i n ~  to the definition of closure in the manipulation of concepts by Woods [Woods 771. 
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from the database, and also generate dialogue with the user when ambiguous 

terminologies arise in the user's input. 

In order to achieve closure in terms of semantic interpretation. JETS 

concentrates on conceptual modification. For example, to give an interpretation to the 

phrase "engine damage", where the ENGINE concept modifies the DAMAGE concept. 

JETS fill the damage-object slot in the DAMAGE concept with the ENGINE concept. 

However, solving the problem of conceptual modification in JETS does not imply that 

the system should be able to handle the concept in terms of answering questions 

about the concept in the database. 

2.3.4. BROWSER 

BROWSER is an automated system which searches a database for interesting 

patterns or configurations primarily for troubleshooting the database system [Dankel 

791. BROWSER explores the database using some special data models and a collection 

of data-dependent and data-independent heuristics. Interesting patterns occurring in 

the database are identified by using simple statistical techniques. 

Representation of knowledge about the database is done via data-models and 

some data-dependent heuristics. There are five different types of models. Data Base 

Models contain descriptions of data fields in data files. Data Specific Models provide 

information on how the various data fields are related to each other. The Specific 

Models and the Typical Models provide the generalization and aggregation organisation, 

and the G e w a l  Models provide information on typical data structures used within the 

data. 

The controlled execution of tasks is done by using an agenda, which is an 
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ordered list of tasks. The tasks are all weighted according to various considerations, 

for example, certain tasks must be executed before others. and certain tasks appear 

more important to perform than others because of the results of pervious tasks. The 

whole system is designed in a modified production system architecture. [Davis and 

King 7.51 

The system begins with a small basic set of concepts which describe the 

database. The execution of the agenda will allow the system to identify and define 

new significant subsets of data and explore them; thus, supplying a plausible 

explanation to certain outcomes in order to achieve troubleshooting. 
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Chapter 3 

Classification of Null Events 

In chapter 2. we briefly surveyed some previous work on natural language 

database systems. Natural language database systems have advanced beyond the stage 

of simple data access. There are systems that emphasize cooperative responses: [McCoy 

821. [McKeown 821. [Kaplan 781. and [Mays 821; summary responses: [Kalita. Jones, 

and McCalla 861; system that keeps track of the focus of a discourse: [Davidson 821; 

system that emphasizes conceptual coverage: [Finin. Goodman, and Tennant 791; and 

system for troubleshooting: [ ~ a n k e l  791. However, most of these systems have 

overlooked the issue of null answers to queries. Kaplan, Janas, and Motro have 

worked on giving some treatment to null values. In particular, Kaplan considered the 

to avoid an? proper treatment of null answers to queries as 

misleading implicatures. 

very important 

Database systems rarely contain all of the information necessary to model their 

domain, hence null values arise in many database accesses. The ANSVSPARC interim 

report [ANSI 751 lists 14 different manifestations of null values. for example: 

1. not valid for this individual (for example, spouse of a bachelor) 

2. valid, but does not yet exist for this individual (for example, a final 
grade of a course for a student before the final exarninat i~n);~ etc. 

' ~ o t i c e  that Mays [Mays 821 has developed techniques to o'ffer monitor responses whenever there is a 
null value of this type arises, see chapter 2. 
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Much research has attempted to give a proper semantic treatment to null values. I 

propose an initial classification of null events occurring in natural language database 

systems. 

A typical natural language database system consists primarily of four major 

components as shown in the Figure 3-1. 

Figure 3-1: A typical NLDB system 

We assume that the semantic interpreter is a very general semantic interpreter . 
which can capture semantic information from the given database schema, and has its 

own knowledge about the linguistic aspect of natural language. Assume further that 

the semantic interpreter is as domain independent as possible, and does not carry 

detailed pragmatic concerns of the domain. An example of such a semantic interpreter 

can be found in [Cercone. Hadley. Martin. McFetridge, and Strzalkowski 841. where 

the natural language database system architecture is also similar to the one in Figure 

3-1. 
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Before classifying null events, it is important to draw a clear distinction 

between a "No" and a "Null" answer to a database query. For a "closed" query, such 

as: 
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" I s  John Doe a computing sc ience  s tudent?"  

which involves a "Yes/No" answer, a "Null" answer response should be interyreted as 

"I don't know whether John Doe is a computing science student" instead d being 

confused with the answer "No, John Doe is not a computing science student". In an 

"open" query, such as: 

"Who i s  t a k i n g  CMPT107 t h i s  semester?" 

a "Null" answer should be interpreted as "I don't know who is taking CMPTl07 this 

semester" instead of being confused with the empty set, (01, which means that "no 

one is taking CMPT107 this semester". 

3.1. A Classification of Null Events 

The classification scheme outlined below is very general and details five 

categories of null events. Not all categories may arise in every database and the 

extent to which domain information is incorporated into a semantic interpreter often 

will obviate some categories from further consideration. In the examples given below. 

Q represents the query, DB stands for a response from a system such as the one in 

Figure 3-1 where the response is the result of consulting only the knowledge that is 

available in the content of the database. KB assisted stands for a response that results 

from adding a knowledge base component to the system in Figure 3-1 which aids in 

providing more informative responses, and Null represents a null value response from 

the database. 

Natural language database systems are designed to accommodate naive users. 

The more informal the query language is, the more sophisticated the system needs to 

be in order to comprehend and answer queries properly. Traditional database 

structures (for example, relational databases), however, are not conducive to providing 

the kind of inferences that are required. This gives rise to the first two classes of 
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null event problems. 

3.1.1. Null answer due to the need for general rules. 

In this section, null responses due to the need for general rules will be 

discussed. Consider the following example: 

Q : Does every  graduate  student  have o f f i c e  apace i n  the  computing 
sc ience  department? 

DB: N u l l .  

KB a s s i s t e d  : Yes/No. 

In this example, we require access to a general rule such as: "Every 

has an office space" in order to provide some definite answers to the 

graduate student 

given query. 

Let us take a closer look at this problem. If the semantic -interpreter can 

interpret the above query as: 

"Do t h e r e  e x i s t  graduate  s tudents  t h a t  do not  have o f f i c e  space?" 

and respond to the original query by interpreting the answer it receives from the 

modified query, then we will not have a null value problem at all. However, if the 

semantic interpreter does not know how to interpret the original query because it does 

not know how to handle the universal quantifier. "every", then the selhantic 

interpreter might reject the original query altogether. In this case, where we do not 

get any response from the system, we considered it as a null event1' because the 

original query might have received an answer from the system with the help of a 

knowledge base. So, a null value problem is also a null event. 

8 

Notice here that separating the extensional facts and the intensional facts in our 

case (see chapter 4) can provide means to handle exceptional cases. For example: 

'O~o t i ce  the slight difference between null value probht and nuU event as used here. 
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KB a s s i s t e d :  Every graduate  student  has an o f f i c e  space i n  LB7602 except 
J . S m i t h  who i s  on leave  t h i s  semester .  He can be contacted  
through h i s  m a i l  box. 

By- extensional facts, we basically mean the content of the database. Extensional facts 

are explicit information concerning the entities and relationships that exist at the 

current instant, they may change at relatively short intervals. Intensional facts are 

general facts about the world. constraints on how the world can be; for example, 

information about the structure of the database such as the database schema, is 

considered as intensional fact. 

The following two examples further demonstrate the need for a knowledge base 

with general rules in order for the semantic interpreter and the database system to 

produce answers to the queries appropriately. 

Q : W i l l  Mark Johnson get  an o f f i c e  space i n  the  Computing Science 
department i f  he get  accepted i n t o  the  graduate  program? 

DB : N u l l .  

This query could be appropriately answered if we have again the general rule: "Every 

graduate student has an office space". 

. 
Assuming the existence of the following two tuples in a STUDENT relation of 

(name, id. major, address): 

(Joe,  111111111, Math,  1 F i r s t  Ave Burnaby BC) 
(John, 999999999, CMPT, 1 F i r s t  Ave Burnaby BC) 

then the question "Does Joe know John?" would produce "Null". However, we might 

be able to give an answer to this query with a general rule like: 

VxVy(address(x)=address(y) + know(x.y)) 
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3.1.2. Null answer due to the lack of inferencing. 

Assume the following relation: 

w:j black 

The question: 

Q : Does carA have a l i g h t e r  c o l o r  than carB? 
DB: N u l l .  

results in a null answer since we require an inference rule which states what "lighter" 

means, in terms of color. 

In the following example, 

Q : Can I t a k e  Math102 next  semester? 
DB: Null. JBecause Math102 i s  not  an e x i s t i n g  c o u r s e . 1  

KB a s s i s t e d :  No, Math102 i s  not  an e x i s t i n g  course.  
o r  . 

KB a s s i s t e d :  No, Math102 i s  not  o f f e r e d  next  semester .  

note that the knowledge base might have an inference rule which states: taking a 

course means that the course is in existence, and is offered next semester. Thus a 

knowledge based natural language database system is able to give an answer to the 

above question instead of "I don't know". However, some databases might be able to 

respond with something like: "Math102 cannot be found" possibly with only a very 

slight modification in the retrieval routine. In chapters 4 and 5 ,  we develop a 

knowledge base system to give quality responses to null events due to a user's 

misconceptions. The knowledge base system is made general enough that it is actually 

able to provide the more appropriate knowledge base responses seen in this example. 

However, to completely solve the problem in this category requires further research 

efforts. 
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Consider another example, assuming the existence of the above relation: and 

assuming that the first tuple is the only tuple in the relation with Cercone as the 

recipient. Then. to answer the question "Is Kao doing any research work for NsERC?" 

correctly, we will need an inference rule like: 

3.13. Null answer due to the lack of knowledge about the database structure 

Most existing formal query languages generally require the user to know what 

kind of information is stored in the database. In particular, considerable knowledge 

about how the database is actually structured is essential to construct the query. . 
However, it is not essential in a natural language database system that the user need 

to have this pre-knowledge in order to pose some well-formed queries. Furthermore, it 

is not unusual for the user to want to know how the database is structured when he 

is engaged in solving problems related to the domain of discourse. The two examples 

below illustrate null responses due to a lack of knowledge about the database 

structure and suggest more appropriate knowledge base responses. 

" ~ o t e  the similarity between the methods for handling null responses due to the lack of general rules 
and those due to the lack of inferencing. By general rules, we mean to include the universal quantifier. 
Thus, depending on which kind of inference mechanism we have, the class of null event due to the need 
for general rules might be seen as a subclass of null events due to the lack of inferencing. 
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0 : What i s  the  number of the phone i n  Rm1234? 
DB: Nul I  

KB a s s i s t e d :  Rm1234 i s  a  t h e a t r e .  
No phone i s  present  i n  a  t h e a t r e  i n  Simon F r a s e r  U n i v e r s i t y .  

0 : How many d i f f e r e n t  job c l a s s i f i c a t i o n s  do we have i n  SFU? 
D8: N u l l  

KB a s s i s t e d :  There a r e  14 d i f f e r e n t  academic job c l a s s i f i c a t i o n s  i n  
Simon F r a s e r  U n i v e r s i t y .  

For the second query, if we have. separate employee records for different 

departments in the university, then we will not be able to provide an appropriate 

answer to the query without knowing how the university is structured. unless, of 

course. the information about the different academic job classifications is explicitly 

expressed in a particular relation in the database. Thus, both of the above queries 

require some kind of hierarchies concerning the database structure in order to be able 

to give the equivalent kind of knowledge base assisted responses as shown above. For 

example, a facilities hierarchy, which tells us that theatre (including its location) is a 

kind of facility in the university, and which aiso tells us what kind of facilities are . 
present in a theatre, is needed for the first query: and an employee's hierarchy is 

needed for the second query. ' 

3.1.4. Null answer due to the lack of ability to handle partial information. 

Having partial information is not an uncommon real world situation. However, 

partial information has typically not been represented in traditional databases. If the 

partial information "teach(Joe. CMPT810) V teach(Art. CMPT810)" is known. this 

information may only be approximated in the database (say, relational database) as: 

12~ot ice  that, on the other hand, hierarchies can be expressed as inference rules too. 
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In this case, we have information that either Joe or Art is teaching CMPT 810 next 

semester, but we don't know which. Then the questions 

Q : Who i s  t each ing  CMPT 810 next  semester? 
DB: Nul I .  

KB a s s i s t e d :  E i t h e r  Joe o r  A r t  i s  go ing t o  teach t h i s  course next  semester. 

Q : I s  Joe teach ing  CMPT 810 next  semester? 
DB: Nul I .  

KB a s s i s t e d :  E i t h e r  Joe o r  A r t  i s  go ing  t o  teoch t h i s  course next  semester. 

would have better responses from a knowledge-based natural language database 

system. 

3.1.5. Null answer due to a misconception. 

A user's query is usually loaded with assumptions. We have already considered 

examples of "loaded" queries in chapter 1 and chapter 2. One such loaded query is: 

How many Bloody Marys d i d  B i l l  d r i n k  a t  t he  banquet? 

When one or more assumptions of a loaded query are incorrect, a null answer arises. 

While such null answers are correct from a technical point of view, very often they 

are unsatisfactory and abstruse. Null answers due to user's misconceptions can arise 

under several conditions: 

1. a misconception that "fails intensionally" due to 

1. a missing relationship (example due to [Webber. Joshi. Mays, and 
McKeown 831). 

Q : Which graduate s tuden ts  have taught  CMPT681? 
DB: N u l l .  

KB a s s i s t e d :  CMPT681 i s  a graduate course.  
On ly  f a c u l t y  can teach a graduate  course.  
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2. or a missing attribute field. 

Q : I s  the  k i n g  o f  France ba ld? 
DB: NUI I .  

KB a s s i s t e d :  There i s  no k i n g  i n  France.  

Q : Who i s  the  dean o f  t he  computing sc ience  department? 
DB: N u l l .  

KB a s s i s t e d :  There i s  no dean o f  a department,  bu t  you can 
t a l k  about t he  dean o f  a f a c u l t y .  

Note that in this subclass of null events, the semantic interpreter 
might reject the query initially, because it might not be able to find 
any interpretation of "dean of a department" or "king of. France" 
from its knowledge base or from the database schema. This kind of 
null event can be resolved with the help of. generalization hierarchies 
(see chapter 4). (and/or specialized inference rules). in a knowledge 
base. This class of null values is similar to not valid for this 
individwl [ANSI 751. 

2. a misconception that "fails extensionally" due to 

1. a missing tuple13 

Q : I s  CWT107 o f f e r e d  t h i s  semester? 
DB: N u l l .  JBecause CMPT107 i s  no t  an e x i s t i n g  course)  

KB a s s i s t e d :  No, CMPT107 i s  no t  an e x i s t i n g  course.  

2. a missing attribute 

1. temporal events14 

Q : Who i s  teach ing CMPT101 next  semester? 
DB: Nul I .  

KB a s s i s t e d :  The i n f o r m a t i o n  i s  no t  known as y e t .  
A course schedule f o r  nex t  semester w i l l  be 
ready by Dec4. 

13Kaplan had worked on providing a similar result to the KB assisted response for this category of null 
event. A language-driven inference mechanism is used in his approach [Kaplan 781, see chapter 2. 

1 4 ~ o t e  that, for this category, Mays had developed techniques to monitor possible changes in the 
database, and provide relevant information concerning these changes to the users. [ ~ a y s  821 
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Q : What grade d i d  John get  i n  MATHlBB? 
DB: Nul I .  

KB a s s i s t e d :  The grades f o r  t h i s  semester a r e  not  i n  as y e t .  
A l l  grades w i l l  be i n  by Dec 3. 

Note that this class of null values is similar to valid, bul does 
not yet exist for this individual [ANSI 751. 

2. always null 

Q : Which t e x t  book i s  used f o r  CMPT898? 
DB: N u l l .  

KB a s s i s t e d :  CMPT898 i s  the  course number f o r  a  masters t hes i s .  
t h e r e  i s  no t e x t  i nvo l ved  he re .  

Note that this class of null events is very similar to the 
missing attribute field for a misconception that fails 
intensionally, as discussed earlier, depending on the structure of 
the database. 

Figure 3-2 is a diagrammatic version of the different categories described above: 

General 
Rules 

Inf erencmg Misconception 
Structure Information 

L 

Fail Fail 
Intensionally extensionally 

Missing 
Attribute 

Relationship Tuple Attribute 
field - 

Temporal Always 

Figure 3-2 A Classification of Null Events 
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In the next two chapters. we further investigate quality responses to null 

answer queries mentioned in this last section, that is null answer queries due to 

user's misconceptions. The knowledge base model introduced in chapter 4 provides us 

with a general way of capturing information that is necessary and essential for 

generating the desired quality responses shown in this section. The two algorithms 

found in chapter 5 further explicate the knowledge base model. and demonstrate the 

kind of quality responses we can generate from this model. 
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Chapter 4 

The Knowledge Base Model 

Given a relational database, we have already seen (in chapter 3) that when a 

natural language front-end is introduced, we can only provide limited quality 

responses when a null value arises. This is mainly because when data retrieval ends 

up with an empty response, the meaning of this empty response is completely 

unknown to the user, and might even be inexplicable from the information found in 

a traditional relational database system. A knowledge base becomes important, at  this 

point, in a natural language database system to provide information for the generation 

of quality responses to null answer queries. In particular, concept hierarchies, 

generalization and aggregation hierarchies need to be added to the relational database 

to facilitate the generation of quality responses. In this chapter, we will consider the 

structure of the knowledge base. 

4.1. Knowledge Base vs Database 

A database can be viewed as a repository of facts. Facts that describe some 

real world situation at a particular instance. Most of the time, a database is designed 

to tolerate changes, and is therefore may evolve over time. Thus, in a database we 

can find two types of information: the content of the database informs us of the 

way the world is modelled; and the structure of the database, specifically, the 

database schema, tells us the way the world can be modelled. We refer to these two 

types of information, as extensional facts and intensional facts in chapter 3. 
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Unfortunatly, traditional databases are considered to be quite limited in terms of 

expressive power. In a typical natural language database system as the one in Figure 

3-1, the intensional facts available in the database are orily used for giving plausible 

interpretations to the natural language inputs. There are other facts which are not 

present in the database management system, but are useful in informing us how the 

world can be modelled. 

Hence, for any database management system used in a natural language 

database system, we want to add to it a knowledge base which contains more 

intensional information about how the world can be modelled, in particular. 

information that can help in the interpretation of null values in the database. Thus, a 

knowledge base can explicitly incorporate meta-data knowledge: knowledge about the 

database structure, such as entity concept hierarchies, generalization and aggregation 

hierarchies: knowledge about entity relationships, entity relationship 

knowledge about null values existing in the database; knowledge 

precedence in the database domain: etc. In the relational knowledge 

which I am going to describe in detail later in this chapter, tuples 

therefore have the function of informing us of the interrelationships 

different attribute fields. entity concepts, etc. present in the database. 

constraints: 

about event 

base model, . 
entries will 

between the 

We assume a relational database model, and that the query language is SQL. 

The knowledge base model is similar to the RM/T model15. Codd's extended relational 

model [Codd 791. Hence, the knowledge base model is also relational in nature. This 

approach has the following advantages: 

1 5 ~ ~ / ~  stands for Relational ModeVTasmania, where the ideas embedded .in the model were first 
presented. 
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1. For relational database implementat,ions, the required knowledge base is 
inexpensive to incorporate with only some additional information required. 

2. A relational representation of a knowledge base does .not require special 
operators to manipulate the knowledge base; the existing relational 
operators (with slight modifications) can be used. This renders our scheme 
conceptually simple for the database administrator, and immediately 
applicable as an add-on to any existing databases. 

3. This approach makes it easy to implement a table-driven scheme, and, as a 
result, enhances portability. 

4. The knowledge base model captures meta-data information at an intensional 
level, with the addition of a considerable static event calendar of the 
application domain. This makes the knowledge base independent of the data 
values in the database. Database updates will have no effects on the 
knowledge base unless there is a change in the database schema. 

The RM/T model distinguishes P-relations (property relations) from C-relations 

(characteristic relationsi. In a P-relation only single-valued functional dependencies 

are considered: and in a C-relation only multi-valued dependencies are considered. Our 

model does not distinguish between these relations because we can always obtain all 

of the functional dependency Information by consulting the database schema. Also, 
L 

since we are mostly handling the database intensional facts in the knowledge base, the 

model is marginally different from the RM/T model. in which both intensional and 

extensional facts are handled. 

4.2. The Knowledge Base Model 

In this section. the relational knowledge base model is described. The 

knowledge base is considered to be a separate component in the natural language 

database system, although it is a relational model as is the database. Note that all 

examples illustrated in this section are based on the database schema shown in Figure 

4-1. A brief overview of the knowledge base model is given first, and the full  
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detailed description of each relation in the model is given later. 

OFFERING(CNAME. SEMESTER#, CLASS#) 
COURSE-PREREQUISITE(CNAME, PREREQUISITE) 
COURSE-PREVIOUS-NAME(CNAME, PREVIOUS-NAME) 
COURSE-DESCRIPTION(CNAME, DESCRIPTION) 
SEMESTER(SEMESTERf, YEAR, SEASON) 
CLASS-DEPT(CLASS#, DEPT, UNITS) 
TEACH(CLASY. s, INSTRUCTOR#, TEXT) 
TAKE(CLASS#, s, STUDENT#, FINAL-GRADE) 
CLASS-ROOM(CLASS#, E, TIME. ROOM#) 
INSTRUCTOR(INSTRUCTOR~, NAME, OFFICE. SEX, STATUS) 
STUDENT(STUDENT#, NAME, MAJOR. MINOR. SEX, STATUS) 
DEPT-CHAIRMAN(DEPT~, CHAIRMAN, FACULTY) 
DEPT-FACI LITY(DEPT#. FACILITY)  
FACULTY-DEPT(INSTRUCT0Rf. DEPT) 

Figure 4-1: Database Schema 

There are basically two types of entity handled in our knowledge base 

model16: simple entities and associative entities. All simple entity types can be 

found in the ENT-relation, and the knowledge base is closed under all simple entity 

types. that is. we assume that all simple entities' identifiers are known by the world 

modelled by the database. For every entity type found in the ENT-relation. we 

assume that there exists a relation in the database that contains the list of all 

members of that entity type. We called this relation the complete list relation (CLR) 

of an entity type. The primary key attribute field, which we assume to not be a 

composite primary key, of a complete list relation (CLR) is naturally taken to be the 

identifying field of the corresponding simple entity type. Associative entity types are 

relations which we called AG-relations. Since we allow an associative entity type to 

be any n-ary relation, an AE-relation is introduced to keep track of all associative 

entity types that are defined in the domain. Both simple entity types and associative 

16~ccording to Ullrnan, in Principles of Database Systems [Ullman 821, there are basically two kinds of 
relations: (1) an entity set can be represented by a relation whose relation scheme consists of all the 
attributes of the entity set; and (2) a relationship among entity sets El, E2, ..., Ek can be represented by a 

relation whose relation scheme consists of the attributes in the keys for each of El, E2, ..., Ek. 
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entity types are allowed to have properties. The PG-relation is introduced to bind 

properties to different entity types. 

We use a CLASS-relation and a GH-relation to provide generalization and 

aggregation hierarchies for entity concepts. The GH-relation allows us to built 

hierarchical structures on an entity concept, and we can structure an entity concept 

with respect to different categories (classifications) with the CLASS-relation. 

Sometimes an entity type, simple or associative, or properties of an entity type might 

be time dependent. We use the EG-relation and the E-relation to facilitate event 

precedence relationships. An event can be represented by any attribute field defined 

in the database, or an E-relation. An E-relation is a relation which stores information 

about an event that has some predefined approximate (or exact) dates that are known 

to the knowledge base. Exceptional cases can also be modelled using the EXC-relation 

where exceptional case(s) can be attached to different concepts. Finally. the V-relation 

contains all the view definitions which are defined in the knowledge base model. The 

key way to tell whether an attribute concept participates in any of the event 

precedence relationships or exceptional facts is to put the corresponding attribute field 

as a value in the proper relation. 

Our model consists of this package of relations added to the database, as 

illustrated in Figure 4-2. These relations' schemes are described in more detail below. 

Tuple entries in these knowledge base relations are yet to be handcoded by some 

appropriate person, like the system administrator. 
s 

0 ENT-relation (ENTity relation) is a binary relation which contains all of 
the simple entity types of the application domain. The primary key of this 
relation is an entity type which will uniquely determine a relation. the 
complete list relation(CLR), in the database where we can get a complete 
list of the members of the corresponding entity type. 
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ENTITY 

student STUDENT 
instructor INSTRUCTOR 

semester SEMESTER 
class CLASS-DEPT 

ENTITY - 
course 
course 
course 
course 

semester 
semester 
semester 

class 
class 
class 
dept 
dept 
dept 
dept 

instructor 
instructor 
instructor 
instructor 

student 
student 

OFFERING 
TAKE 

CLASSROOM 

PROPERTY 

DESCRIPTION 
PREREQUISITE 

PREVIOUS-NAME 
CNAME 

SEMESTER* 
YEAR 

SEASON 
CLASS# 

DEPT 
UNITS 
DEPT# 

CHAIRMAN 
FACULTY 
FACILITY 

INSTRUCTOR# 
NAME 
DEPT 

OFFICE 

STUDENT# 
NAME 

CLASS# 
FINAL-GRADE 

ROOM# 

RELATION 

OFFERING 
TEACH 

(c) 

E-relation 
finaltwm: 

SUP - 
coursel 
coursel 
course2 
course2 

student 
student 

final-exam FINAL-GRADE 
ROOM# class-begin 

E-relation 
class-begin: 

course course1 
course course2 

graduate-course 
undergraduate-course 

art-course 
science-course 

graduatestudent 
undergraduatestudent 

thesis-course 

L 

Figure 4-2: Relations of the Knowledge Base Model except for AG-relations 

For example, in the database schema of Figure 4-1, course can be 
considered as an entity type. There are four relations that are related to 
course: OFFERING, COURSE-PREREQUISITE , COURSE-PREVIOUS-NAME . 
and COURSE-DESCRIPTION. A designer might consider that COURSE- 
DESCRIPTION is the proper relation where he can get a complete list of 
all the known courses because of his knowledge about the database; or it 
might because of the fact that CNAME is the sole primary key attribute 
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in COURSE-DESCRIPTION. Thus we get a tuple: (course. COURSE- 
DESCRIPTION) in the ENT-relation as shown in Figure 4-2 (a). 

. . 

PG-relation (Property Graph relation) is a binary relation. The main 
function of this relation is to connect properties to each entity type. The 
PROPERTY attribute field contains names of those attribute fields in the 
database that are considered to be properties of an entity type in the 
ENT-relation or properties of an AG-relation. 

For example. consider the entity type course and its four related relations; 
from COURSE-PREREQUISITE. COURSE-PREVIOUS-NAME and COURSE- 
DESCRIPTION. we can tell that every course has a CNAME. some 
PREVIOUS-NAMES, some PREREQUISITES, and a DESCRIPTION. Thus all 
of these are considered to be properties of the entity type course. The 
attribute fields in relation OFFERING serve more of the purpose of an 
associate to the other attributes1', thus they do not appear as properties 
here, see Figure 4-2 (b). 

AE-relation (Associative Entity relation) is an unary relation which 
consists of the names of all associative entity types. that is, all AG- 
relations, see Figure 4-2 (c). 

AG-relations (Association Graph relations) are n-ary relations. This kind 
of relations interrelate entities of the ENT-relation. attribute concepts. or. 
possibly AG-relations. Each AG-relation is an associative entity type that 
appears in the AE-relation. An associative entity type that an AG-relation 
represents is allowed to have properties as well. These properties can be 
found in the PG-relation. Since we are handling mostly intensional facts b 

of the database in the knowledge base, and extensional facts concerning a 
particular association can be found in the database already, we associate 
tuple entries of an AG-relation to acknowledge the constraints we would 
like to assert on the particular association that the AG-relation represents. 

For example, assume we have the following AG-relations: 

OFFERING (course, semester) 
TEACH (instructor,  course) 
TEXT (course, TEXT) 
TA KE(student , course) -- 

CLASS-SEC (class, SEC#) 
CLASS-ROOM (CLASS-SEC , TIME) 

TEACH will be an associative entity type which informs us that 
instructors teach courses. A tuple entry in the TEACH AG-relation, say 

- -  

~ " A S  we can see they are considered in the AE-relation. 
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(graduate-student, undergraduate-course). see Figure 5-2 (a), will inform 
us that graduate students are permitted to teach undergraduate courses. 
Also. we should t ry to put as high (in the hierarchy of an entity concept), 
a generic entity concept in the attribute field of an AG-relation as 
possible, so that constraints on the association can be specified as sub- 
concepts of those super-concepts. For example, we would have 
OFFERING(course, semester) rather than OFFERING(CNAME, semester). 
because CNAME is a properties of the concept course. 

@ EG-relation (Event Graph relation) is a binary relation which stores the 
precedence relationships of different events occurring in the application 
domain. There are two attribute fields in the EG-relation: the SUP and the 
SUB fields. An event that can appear in these two fields, for the time 
being, is just any attribute existing in the database or an E-relation in the 
knowledge base. see Figure 4-2 (dl. 

For example, FINAL-GRADE is an attribute field in the TAKE relation in 
the database, and f ina l exam is an E-relation, see Figure 4-2 (el. So the 
tuple (final-exam. FINAL-GRADE) in the EG-relation means that the 
value of the FINAL-GRADE of the TAKE relation in the database will be 
known only after the final-exam event has happened. 

E-relation (Event-relation) is represented as a binary relation. Its primary 
key attribute is "seasons of the year", SEASON; and given the primary 
key, we can determine an exact date, or an approximate date. for the 
event in a particular season, see Figure 4-2 (e,f). 

CLASS-relation (CLASSification relation) is a binary relation. This . 
relation informs us of the different possible taxomonic classifications we 
could have for an entity concept in the application domain. The SUP field 
will thus contain entity types. and the SUB field will contain concepts for 
the different classification categories, see Figure 4-2 (g). For example, 
concept course could be classified in two different ways, therefore we 
have two taxomonic classification concepts for course: course1 and 
course2. see Figure 4-2 (g). course1 is a classification with respect to 
academic levels, where the concept course is split into two subset: 
graduatecourse and undergraduate-course; course2 is a classification with 
respect to academic fields, where the concept course is split into 
art-course and science-course. 

GH-relation (Generalization Hierarchy relation) is a binary relation 
representing a directed graph. The two attributes of the GH-relation. SUP 
and SUB, indicate the superordinate or subordinate (superset/subset) role of 
the participating concept. A concept appearing in the GH-relation can either 
be an entity type in the ENT-relation, or a view in the V-relation, or a 
SUB in the CLASS-relation, see Figure 4-2 (h). For example, the tuple: 
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(student, undergraduate-student) represents that the concept 
undergraduate-student is a subset of the superset, student. 

EXC-relation (Exception relation) is a binary relation which informs us 
all the exceptional facts existing in the application domain. Entries for the 
CONCEPT attribute field, see Figure 4-2 (i), can be any attribute concept 
existing in the knowledge base/database18; and the entries for the 
EXCEPTION attribute field will mainly be either a view in the V-relation 
or a concept in the GH-relation or an entity type in the ENT-relation, see 
Figure 4-2 6) .  For example. using our database schema outlined in Figure 
4-1, TEXT is an attribute field of the TEACH relation in the database. 
and thesis-course is an entry in the V-relation. These facts inform us that 
there will be a text in the TEACH relation except for those courses which 
are considered as thesis-course, where thesis-course is defined in <he view 
definition in the knowledge base's dictionary. 

V-relation (View relation) is an unary relation which contains all the 
views that are defined in the knowledge base's dictionary, see Figure 4-2 
(j). The definition of a view is very similar to a view definition in 
system R. For example, a view definition for graduate-student can be 
derived from the base relation STUDENT in Figure 4-1 as follows: 

DEFINE VIEW graduate-student 
AS SELECT SNAME 

FROM STUDENT 
WHERE STATUS I. "GRAD" 

L 

For this model. we need to have all of the necessary hierarchies. information, 

rules. etc. to be hand-coded by some appropriate person, for example the database 

administrator, into the model.19 The knowledge base will therefore require a 

dictionary to store all the view definitions of the V-relation, and to make the 

knowledge base adaptable to different environments. 

With the introduction of a knowledge base into a natural language database 

- - - -- - 

18we expect that they will be primarily non-key attributes of some relations. 

1 9 ~ 1 s o  see comments in chapter 6 regarding the automatic generation of part of the knowledge base 
relations. 
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system, the natural language database system illustrated in Figure 3-1 evolves into a 

system as depicted in Figurk 4-3. In the natural language database system shown in 

Figure 4-3, the knowledge base is interacting only with the database. However, a 

well-integrated natural language database system is anticipated which shares 

information among the semantic interpreter, the knowledge base, and the query 

generator as shown in Figure 4-4. The task of determining how to integrate these 

components together requires additional research effort (as discussed in chapter 6. 

section 6.1.2). 

Figure 4-3: A NLDB system with a Knowledge Base component 

quality 
DB KB - 

response 

Figure 4-4: Integrating a knowledge base into a NLDB system 
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4.3. What if the Knowledge Base has null values? 

A natural question to ask at this  point is "what if there are null values in the 

knowledge base?" To answer this question, we would like to restrict the entries in 

the knowledge base to contain no null values for the sake of simplicity of the model. 

As a matter of fact, null values can only occur in the ENT-relation, and in the E- 

relations in the knowledge base, see Figure 4-2. However, another method to solve 

this problem is to have yet another meta-knowledge level of null values of the 

knowledge base2', which allow us to know what to do if null values occur in the 

knowledge base. This approach will require multi-levels of meta-knowledge which will 

stop at some level where there are no more null values. In the worst case. 

unfortunately, this will render the system to have infinite meta-knowledge levels. 

which in any practical database management system one would try to avoid. 

However, these infinite meta-knowledge levels might be conceptually advantageous as 

it is similar to that espoused by Brian Smith of Xerox Parc in his work on 3-LISP. 

H. 
A further extension in the meta-knowledge direction is to interject" the user at  some 

point in the infinite meta-knowledge levels. When a null value occurs in a knowledge ' 

base relation. we can have the corresponding attribute field index some table which 

contains appropriate instructions to respond to the user, or an index to activate certain 

routinek) that will interact with the user. 

According to this model, the knowledge base is closed under all simple entities: 

thus, all simple entities' identifiers are supposed to be known in the application 

domain. Consider the entity course in the academic domain represented by the 

database schema in Figure 4-1. It is not unreasonable to assume that all the courses 

''say, another relation in the knowledge base that contains entries which are the potential knowledge 
base attribute fields that might have null values in there. 
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offered are known in the application domain. Also, the knowledge base is closed 

under all the AG-relations. A tuple in an AG-relation conveys the constraint that is 

being asserted to that particular relationship. re his constraint is considered to be a 

positive constraint, in which we are informed what the legitimate participants are in 

that relationship. The model does not provide the representation of negative 

constraints; therefore, we require that all the AG-relations be closed in the knowledge 

base. 

This relational knowledge base model emphasizes, what Brachman calls the 

epistemological (knowledge structuring) level of knowledge of the database [Brachman 

791. However. we are not concerning ourselves with giving a complete formalism on 

the epistemological level of knowledge representation as Brachman had done in 

describing KLONE. A taxonomy can be constructed through the CLASS-relation and 

the GH-relation; this is similar to the so-called IS-A hierarchy in the semantic 

networks representation, with a set/subset hierarchical structure. Concept hierarchies 

seem to be an indispensable element in knowledge structuring, as we can see it has 

been emphasized in different ways in the literature. In [Schubert. Goebel, and 

Cercone 791, classification of knowledge is done through topic hierarchies, with 

generalization and specialization being two of the significant topics. Concept 

generalization/specialization is used as a basis for conceptual modeling in TAXIS. this 

is done by a methodology called taxonomic specification, which combines the 

techniques of abstraction and stepwise refinement [Borgida, Mylopoulos. and Wong 841. 

Stonebraker proposed to use abstract data types for adding semantic knowledge to 

relational database system [Stonebraker 841. Reiter also illustrated how to provide a 

first order represention of generalization and aggregation hierarchies when he attempted 

to give a logical reconstruction of various aspects of the conventional relational 

database theory [Reiter 841. 
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Chapter 5 

Algorithms for Detecting 
a User's Misconceptions 

In this chapter, two algorithms for detecting user's misconceptions and 

providing quality responses are described. These algorithms illustrate how to provide 

quality responses for null response cases arising from those categories shown on the 

subtree of the "misconception" box in Figure 3-2. .According to the classification in 

Figure 3-2, user's misconceptions can be classified into misconceptions that fail 

intensionally and misconceptions that fail extensionally. Extensional failure of a user's 

query occurs when the user has a misconception that there is some non-empty 

extension in the database that will satisfy his query description. While an intensional 

failure arlses when the user has a misconception about some domain relationships. in 
L 

particular, misconception about entity(ies) that can participateh) in some relations. The 

main routine for detecting a user's misconception will check for both kinds of 

misconception when a null event arises. 

For an extensional failure, it can be due to the non-existence of a certain 

object; or it can be due to the fact that the event which is responsible for the 

desired value (or set of values) has not been taken place as yet; or it might also 

because of some, exceptional cases present in the domain. Utilising the CLR (complete 

list relation), we can, to certain extent, check for the existence of an object. in 

particular, the existence of known simple entities. If certain attribute values in the 

database are dependent on the occurrence of some other events in the domain, such 
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information can be conveyed to us by the EG-relation, which tells us the precedence 

relationships of different events occurring in the domain. Furthermore. more 

informative responses can be supplied to the user if the unknown value 1s related to 

an event which is an E-relation, because some appropriate dates can be drawn from 

the related E-relation for the user's reference. If the user has specified an exceptional 

case in his input query, by checking with the EXC-relation, we can give a more 

informative explanation to the user's misconception. 

An intensional misconception can be detected by checking all the related AG- 

relations that are presented in the user's query. If any constraint of a related AG- 

relation is not satisfied by the user's description set2', the incorrect user's specification 

will be reported and the proper constraints for the misconceived relationship will also 

be reflected to the user. 

A high-level description of the basic algorithms is presented, and the algorithms 

are further illustrated by a few examples employing specific SQL queries. The 

detailed (pseudo-code) algorithms are included at the end of this chapter. 

5.1. Extensional Misconception 

Procedure Extensional-Misconception provides quality responses to 

misconceptions which fail extensionally using the relational knowledge base model 

introduced in the last chapter. For this algorithm, we assume that the database will 

be able to supply information such as: "x  cannot be found" in the case of a user's 

misconception that fails extensionally. We also assume that if x is a value then there 

2 1 ~ y  user's .description set 
description. 
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will be an X which is the corresponding attribute field of the value x that we can 

obtain from the Logical form of the input query. 'A null value occurring in the 

database is given three possible interpretations by this algorithm: (1) a valid 

individual who does not exist: (2) a value that is not valid for an individual: and ( 3 )  

a value that is valid but does not yet exist for an individual. 

Check-ObjectExistency, Check-Always-Null, and Check-Temporal-Event are 

three procedures that test for these interpretations, respectively. 

If x is a value, then this null event belongs to the category of extensional 

failure because of a missing tuple. In this case, we activate procedure 

Check-Object-Existency to ascertain, if possible, whether x is a known existing object 

in the database domain. If x is a non-existing object in the application domain. 

procedure Check-Object-Existency will generate an appropriate response to signify the 

non-existence of x .  and no further investigation on any user's intensional 

misconception is necessary. 

If x is an attribute field, this means that there is a null value in the database ' 

entry, and this null event belongs to the category of extensional failure because of a 

missing attribute. In this case. we call procedure Check-Always-Null and procedure 

Check-Temporal-Event. in turn, to attempt an appropriate interpretation of this null 

value. Again, no further investigation for intensional failure is necessary because 

encountering a n d l  in the database is definitely an extensional failure. 

Procedure Check-Always-Null ascertains whether the information specified in 

the logical form conforms to any exceptional case in the application domain, and gives 

an appropriate response if possible. 
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In procedure Check-Temporal-Event, if x is a temporal event, then relevant 

dates related to x will be drawn from the knowledge base in order to account for 

the null value which resulted from the database access. 

More detailed explanations for each of the above procedures and one related 

subroutine are provided together with their algorithms in section 5.6 of this chapter. 

5.2. Two Simple Examples of Extensional Misconceptions 

We illustrate the algorithm for extensional misconceptions with two examples. 

The Logical form depicted in the examples represents the output that will be generated 

from the semantic analyzer for the input natural language query, see [Cercone. 

Hadley. Martin. McFetridge. and Strzalkowski 841. Subsequently, the logical form is 

translated into the SQL query as shown. 

Example Query 1: What grade did John Simpson get in CMPTl06? 

L o g i c a l  Form: 

( ( ( ( ( (WHICH sg  v l )  ( v l  = ( g r a d e ) ) )  
( (EXIST s g  v2) ( v 2  = ( s t u d e n t  (s tudentname $John S impson) ) ) )  
((EXIST sg  v3)  ( v 3  = ( c o u r s e  (cname $CMPT106)))) 
((EXIST n i l  v4 )  ( v 4  = ( t i m e  (term=spring)(year=l986)))) 
(TAKE ( s u b j  v2)  ( o b j  v l )  ( l o c a t i v e  v3) ( t i m e  v 4 ) ) ) ) ) )  

SOL Query :  - 
SELECT FINAL-GRADE 
FROM TAKE 
WHERE STUDENT# I N  

SELECT STUDENT# 
FROM STUDENT 
WHERE NAME = 'JOHN SIMPSON' 

AND CLASS# I N  
SELECT CLASS# 
FROM OFFERING 
WHERE CNAMEn 'CMPT106' 

AND SEMESTER = 'SPRING86' 

If this query fails extensionally, then the possible database responses might be 

the following: 
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1 .  CMPT106 cannot be found 
2 .  FINAL-GRADE cannot' be found 

In this example we can demonstrate three possible valid interpretations which 

we may obtain using the algorithm for extensional misconception. 

case --  1: CMPT106 cannot be found. 

x = CMPT106, X = CNAME 

In this case. CMPT106 might be a nonexisting course. see Figure 5-1 (a). Since x is 

a value: therefore procedure Check-Object-Existency is 'activated. If CMPT106 is not 

an existing course, the algorithm finds that CNAME is a property of the entity 

course from the P-relation. see Figure 4-2 (b); then it finds that CNAME is the 

entity identifier of course, see Figure 4-2 (a) and Figure 4-1. Therefore it checks if 

CMPT106 is one of those course identifiers. Since CMPT106 is not in the relation 

COURSE-DESCRIPTION, see Figure 5-1 (a), we obtain the response: 

"CMPT106 is not an existing object for entity type course." 

case - -  2: CMPT106 was not offered in the semester specified. 
b 

If CMPT106 was not offered in t he '  specified semester, procedure 

Check-Object-Existency again finds that CNAME is a property of entity course: 

CNAME is the entity identifier of course. However, this time CMPT106 is an existing 

course, see Figure 5-1 (b); therefore the algorithm concludes that the relationship 

represented by the relation which contains x is false according to the world modelled 

by the database: 

"CMPT106 is not offered in spring 1986." 

case --  3: FINAL-GRADE cannot be found. 

The FINAL-GRADE cannot be found (with x = FINAL-GRADE). Since x is an 

attribute field, and x is not in the EXC-relation. procedure Check-Temporal-Event is 
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activated. This procedure finds that x occurs in the SUB field of the EG-relation, see 

Figure 4-2 (dl, the preceding event of FIIVAL-GRADE is finalexam, and the 

relevant preceding date is August 22. 1986. see Figure 4-2 (el. When the algorithm 

compares the current date with the preceding event date, the current date is smaller 

(earlier) than the preceding event date: therefore we obtain the response: 

"Information about FINAL-GRADE is not known as yet; 
FINAL-GRADE will be known after f inal-exam." 

Example Query 2 Which text book is used for CMPT898? 

Logica l  Form: 

( ( ( ( ( (WHICH p l /sg  v l )  ( v l  = ( t e x t ) ) )  
( (EXIST sg v2)  ( v 2  = (course (cname $CMPT898) (sec 01) ) ) )  
( (EXIST sg v3) (V3 = ( t i m e  ( t e r m s p r i n g )  ( y e a r z 1 9 8 6 ) ) ) )  
(USE (subj  v2) ( o b j  v l )  ( t i m e  v 3 ) ) ) ) ) )  

SOL Query:  - 

SELECT TEXT 
FROM TEACH 
WHERE CLASS# I N  

SELECT CLASS# 
FROM OFFERING 
WHERE CNAME = 'CMPT898 

AND S E C =  '01 '  

If this query fails extensionally, one possible response from the database might 

be: 

TEXT cannot be found. 

In this case. x is an attribute field, TEXT, so procedure Check-Always-Null is 

first activated. TEXT is found in the EXC-relation, see Figure 4-2 (i). The set of 

exceptions of x, except-set, is {thesis-course). Since there is only one element in the 

exceptional set of TEXT, thesis-course is the only known exception to TEXT. 

thesiscourse is a view in the V-relation, see Figure 4-2 (j) ,  so the view definition of 
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thesis-course is evaluated, and variable S has the value { CMPT898, CMPT899 ,.. . 1 , the 

result of the evaluation. The attribute field name of the elements in S is CNAME. 

Since CNAME is present in the logical form with value CMPT898, and CMPT898 is 

in S, the procedure responds: 

"CMPT898 is a thesis-course. 
The query relationship does not apply to concept of 
type thesis-course, 
that is, thesis-course does not have TEXT." 

COURSE-DESCRIPTION: COURSE-DESCRIPTION: 

'CMPTIO~ 
CMPTlO2 
CMPT103 
CMPTlO5 
CMPTlOS 

... 

... 

CMPTlOl 
CMPT102 
CMPTlO3 
CMPTlOS 
CMPTl06 
CMPTlOS 

(b) 

Figure 5-1: Two Alternative Course Descriptions in the Database 

5.3. Intensional Misconception 
L 

In this section, a second algorithm is described for handling intensional 

misconceptions. There are two kinds of relations in the knowledge base that are 

designed to provide more informative responses when a null answer arises due to a 

user's misconception that fails intensionally. These relations include the AE-relation 

and the AG-relations. When a query fails extensionally, we have only to look for 

relevant extensional facts to provide a quality response. as described in the previous 

section. However, when a query fails intensionally, we require the knowledge base to 

check the relevant relationships. in particular, any constraints on those relationships 

known in the knowledge base. 
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We begin with the logical form of a null answer query and AG-relations in 

the knowledge base. All of the relevant relations found in the logical form are 

initially preserved in the stack variable R, among which are those relations that are 

of an associated nature to be further examined in order to ascertain which 

relationship that the user has misconceived. For each relevant AG-relation, r ,  procedure 

Check~Intensional~Misconception first determines whether all concepts/values specified 

in the logical form for this relation are legitimate values. If there exist 

concepts/values that do not comply with the constraints specified in the AG-relation. 

the user's misconception will be corrected by certain responses. Otherwise, 

Check~Intensional~Misconception performs a divide and intersect action to determine 

the validity of the relationship in the user's specification, and the algorithm will stop 

as soon as the user's first intensional misconception is found. The divide part will be 

done by procedure. Match-&-Extract, where for each participating concept. 22 

constraints related to it that are found in the AG-relation are extracted from the 

relation resulting in a subrelation of r. Hence, if r represents a n-ary relationship, 

then we will have n subrelations of r for each participating concept, see Figure 5-3. 
L 

These n subrelations are then intersected in Perform-Intersection. If there is a non- 

empty intersection, all of the participating concepts are valid values for r ,  and there 

is no explanation to the null response in terms of an intensional misconception on r. 

Otherwise, the maximal explanation set is acquired by procedure 

Check~Intensional~Misconception. 

Consider the following hypothetical example: Rh is a hypothetical quaternary 

AG-relation, and suppose the logical form output specified an instance (a, b, c, d) of 

2 2 ~ y  participating concept. I mean the concept specified in the logical form for the relationship 
represented by the AG-relation. 
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Rh: 

the relationship Rh. The largest correct combinations of instance i = {a, b, c, d) found 

in Rh are {a. b, c} and {b, c, dl. The algorithm will thus generate a set of 

explanatory responses for all of these correct combinations, the maximal explanation 

set. An explanatory response to a largest correct combination. corn. includes those 

tuples from the AG-relation which contains com (these tuples inform us which idare) 

the other proper value(s) that can be with corn), and those tuples from the AG- 

relation which contain elements of i - corn (these tuples determine which values 

should be with those elements in i - corn). So an explanatory response for {a, b, c} 

would be Template(Rh, T I )  and Template(Rh. T ~ ) ~ ~ ,  where relation TI contains the 

tuple (a, b, c. d l ) ,  and relation T3 contains the tuple (a3, b, c, dl. Notice that in 

some'situations. some instances of the AG-relation might be printed more than once. 

In the worst case situation we will then have (a lot of) superfluous duplicates. In the 

above example, we will print the entire relation Rh with the addition of the two 

duplicated tuples. It is, of course, not very informative or cooperative to have 

responses such as these. However, the reason for choosing this response strategy is 

that we want to generate enough informative responses so as to minimize the number 

of iterations that a user has to interact with the system before he/she can obtain any 

helpful information. Further investigation on how to build a more sophisticated 

responding routine for this purpose is desirable. Presumably, we would need a user 

model to achieve this, but this investigation is beyond the scope of this thesis. 

23~emplate(r,s) is a template routine which will generate restricted natural language sentences for the 
relationship represented by r instantiated by the values found in relation s. It is used in procedure 
Respond~Intensional~Misconception to generate natural language responses. 
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Besides Check~Intensional~Misconception, Match-&-Extract, and Perform- 

Intersection, there are six other small subroutines or procedures that help provide 

quality responses for intensional misconceptions. Documentation for these subroutines 

and procedures can be found with the complete algorithm. see section 5.7. 

5.4. An Example for Intensional Misconception 

We illustrate the handling of null responses due to intensional misconceptions 

with the following example. which was used earlier in chapter 3. This query 

produces a null response given the database in Figure 5-2. Again the input query is 

parsed. and subsequently transformed into SQL query as shown below: 

Example Query 3: Which graduate students have taught CMPT861? 

Log ica l  Form: 

((((((WHICH p l  v l )  ( v l  = ( s tuden t  ( s t a t u s  $grad) ) ) )  
((EXIST sg v2) ( v2  (course (cname $CMPT861)))) 
((EXIST n i l  v3) ( v3  = ( t ime  (be fo re  ( t e r m s p r i n g )  ( ~ e a r z 1 9 8 6 ) ) ) ) )  
(TEACH (sub j  v l )  ( o b j  v2) ( t i m e  v3) ) ) ) ) )  

SOL Query:  - 
SELECT s tudent  . nam'e 
FROM student  
WHERE s t u d e n t . s t a t u s  = ' g r a d '  

AND student.name i n  
SELECT ins t ruc to r .name 
FROM teach 
WHERE c l a s s #  i n  

SELECT c  lass# 
FROM o f f e r i n g  
WHERE cname = 'CMPT861' 

AND semester = ' sp r i ng86 '  

Procedure Intensional~Misconception is activated. It initially stacks relations 

STUDENT. COURSE. TIME, and TEACH found in the logical form onto a stack 

R. The stack is processed in a last-in first-out order as usual. so relation TEACH is 

processed first. Since TEACH is an AG-relation in the knowledge base, see Figure 5-3 
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(a), procedure Check~Intensional~Misconception is thus invoked to see if any 

intensional misconception can be found related to this relation. The AG-relation 

TEACH is found in the knowledge base, then certain constraints imposed on it are 

found, therefore the divide and intersect process is carried out. First, the divide 

process is done by procedure Match-&-Extract. There are two attribute fields. 

instructor and course, found for the TEACH relation, see Figure 5-3 (a); therefore 

Match-&-Extract is called two times resulting in the two subrelations: S1 and S2. 

and variables el. e2, vall, and va12 having the values shown in Figure 5-3 (b). el 

(graduate-student) and e2 (graduate-course) are both valid values in the   irel la ti on 

TEACH: therefore Perform-Intersection will find out what idare) the largest possible 

combination(s) of el (graduate-student) and e2 (graduate-course) that can be found 

among the constraints of TEACH by intersecting the two subrelations S1 and S2. 

Since TEACH is only a binary relation, and there is no intersection between the two 

subrelations. S1 and S2. see Figure 5-3 (b). the recursive procedure 

Perform-Intersection terminates. returning an empty set as the result. The empty set 

that results from Perform-Intersection implies that the user's specification f o r  TEACH 
L 

does not meet the associative constraints that the knowledge base knows, so procedure 

Respond~Intensional~Misconception responds to the user with the largest possible set 

of maximal combinations of the e's, which is {{el]. {e2]] together with the appropriate 

values found in the constraints. and with some corrective responses attached as 

follows: 

"Graduate students teach undergraduate courses. 
CMPT681 is a graduate course. 
Professors teach graduate courses." 

A user's intensional misconception is found, procedure Check-Intensional- 

Misconception sets the stop flag to true, and this tells procedure 

Intensional-Misconception to terminate. 
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OFFERING: TEACH; 

INSTRUCTOR: 

Figure 5-2: 

STUDENT: 

STATUS 
I I I 

A sample database 

... 

... 

... 

... 

AG-relation 

TEACH: 

I INSTRUCTOR 1 - COURSE 1 

H. Holmes 
1. Jones 
S. Smith 

T. Thomas 

professor graduate-course 
professor undergraduate-course 

INSTRUCTOR I COURSE - e l  = graduate-student val l  = 0 

nraduate-student I undernraduate-course 

... 

... 

... 

... 

Figure 5-3: An example to illustrate Procedure Intensional~Misconception 

... 

... 

... 

... 

INSTRUCTOR 

professor 
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5.5. Selection Mechanism 

Based on the two algorithms given in the previous sections, the main control 

routine for solving user's misconceptions follows: 

PROCEDURE Misconception 
BEGIN 

i n t e n s i o n  := t r u e ;  
I F  (3 database response which suggests i n f o r m a t i o n  as t o  

which k i n d  of  f a i l u r e )  THEN 
Extensional-Misconcaption(intension); 

I F  ( i n t e n s i o n )  THEN 
Intensional,Misconception; 

END  misconception^; 

In some cases of extensional failure, where the whole tuple is missing; 

procedure Check-Object-Existency signals the non-existence of the relationship 

representing that tuple by setting the variable intension to be true. This initiates a 

further investigation into whether this extensional failure is caused by any intensional 

misconception. The main routine, procedure Misconception, is thus very simple. 

Called in when null events arise, it calls the two procedures: 

Extensional~Misconception and Intensional-Misconception in turn to detect any user's 

misconceptions. If the database response can supply certain information as to which 

kind of extensional failure, then procedure Extensional~Misconception is activated. 

Otherwise, we continue to search for intensional misconception. 

The top down, hierarchical program structure for detecting user's misconceptions 

is depicted in Figure A-1 in *Appendix A. Knowing the basic structure of the 

knowledge base relations, the algorithm described above is able to retrieve knowledge 

from the knowledge base independent of the extensional values present. The algorithm 

requires: all attribute field names to be unique in the database, and that there are 

no duplicated attribute columns in the database relations: all views define only unary 

relation in the knowledge base, and views for the concepts that belong to the same 
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tree in the GH-relation have the same identifying attribute; and the GH-relation 

contains only rooted trees. The algorithm tries to account for extensional failures 

which are due to the ones described at the beginning of this chapter, null values that 

are due to other reasons, see [ANSI 751, are not covered here. In interpreting the 

precedence relationships represented by the tuples of the EG-relation, the algorithm 

does not apply any branching time temporal logic. it assumes that the EG-relation 

contains only simple paths. The algorithm will detect, at most, one extensional 

misconception and one intensional misconception. For queries that imply multiple 

misconceptions, the algorithm will not detect all misconceptions. 

5.6. Algorithm for Extensional Misconception 

In this section, the algorithm for extensional misconception is given. In the 

algorithms given below, comments are placed between the delimiters { and 1. 

Capitalized words are used to designate reserved words. To avoid ambiguity. all 

procedures assume that every attribute field name will be prefixed with the relation 

name over which the attribute ranges. For example R a  indicates the attribute field a. 

of relation R. 

Procedure Extensional-Misconception 

PROCEDURE Extensional~Misconception(input v a r i a b l e  : i n t e n s i o n ;  
output  v a r i a b l e  : i n t e n s i o n ) ;  

BEGIN 

I F  (x  i s  a v a l u e )  THEN Check,Object,Existency(intension); 

ELSE i x  i s  an a t t r i b u t e  f i e l d )  
BEG I N 

i n t e n s i o n  := f a l s e ;  
found := f a l s e ;  
Check-Always-Null; 
Check-Temporal-Event; 
I F  (not  found) THEN 

response: "x cannot be found," ;  
"Sorry .  I have no e x p l a n a t i o n  f o r  t h i s ! " ;  
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END ! e l s e ) ;  

END j p r o c e d u r e ) .  

Procedure Check-Object-Existency 

This procedure determines the existence of a certain object in the database. If 

the attribute X is an entity identifier then the knowledge base will have a complete 

list of its members by consulting the  rel relation^^. In brief, this procedure proceeds 

as follows: 

1. if X is an entity identifier then the algorithm will determine if x is a 
member of the known existing objects. 

1. if x is a known existing object (and it is not found in the query 
relationship), then the algorithm concludes that the relationship 
represented by the relation that contains x is false according to the 
"world" modelled by the database. Further investigation into any 
user's intensional misconception is necessary. 

2. otherwise x is not an existing object2'. This is an extensional failure. 
so that no further investigation on intensional failure is necessary. 

L 

2. if X is not an entity identifier. no information concerning the existence of 
this object, x ,  can be found. There is no proof of any incorrect 
assumption about the existence of an object that the user has made. 
Further investigation into any intensional failure is necessary. 

24~ecause the knowledge base is closed under all entities' identifiers. 

2 5 ~ h u s  the query relationship is incorrect because of the user's wrong presumption of the existence of x. 
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PROCEDURE Check-Object-Existency(input v a r i a b  
ou tpu t  v a r i a b  

Ion ;  
ion)  ; 

BEGIN 
i n t e n s i o n  := t r u e ;  
P-set := [ s e l e c t  E n t i t y  f rom P G r e l a t i o n  where P rope r t y  = x] ;  
'IF (P-set 0 0) THEN 
BEGIN 

s t o p  := FALSE; )Note:  

WHILE (-stop AND (P-se 
BEGIN 

An a t t r i b u t e  can be a  p r o p e r t y  o f  more than one 
e n t i t y .  We t r y  t o  f i n d  the  e n t i t y  t h a t  has t h i s  
a t t r i b u t e  as the  i d e n t i f i e r . )  

t  00)) DO 

temp := f i r s t  element o f  P-set; 
P-set := P-set - [temp]; 
c r  := [ s e l e c t  CLR from ENT-relat ion where ENTITY = temp 1; 

#Check i f  X i s  an e n t i t y  i d e n t i f i e r i s  
I F  ( t h e  pr imary  key a t t r i b u t e  f i e l d  o f  CR = X )  THEN 
BEGIN 

s t o p  := TRUE; 
)Check i f  x i s  a  known ent  

I F  ( x  E [ s e l e c t  X from CR]) THEN 
(conclude tha t  the  r e l a t i o n s h i p  represented by the  r e l a t  
con ta ins  x i s  f a l s e  accord ing t o  the  w o r l d  model led by 

ELSE BEGIN 
( s i g n a l  x i s  no t  an ex 
c l e a r  user misconcept 

i n t e n s i o n  := f a l s e ;  
END # e l s e { ;  

END $ i f ( ;  
END $ w h i l e ( ;  
I F  (-stop) THM 

i s t i n g  o b j e c t  f o r  e n t i t y  type X t o  
i on ) ;  

i t y i  

i o n  t h a t  
the  DB) ; 

response: "Sor ry !  The DB doesn 
i n  r e l a t i o n s h i p  R o  

)where R i s  
END ) i f  ) 
ELSE 

t know o f  any X w i t h  va lue x 
t h i s  p resent  t i m e . " ;  

the r e l a t i o n  f o r  X i n  the l o g i c a l  form.{  . 
response : "So r ry !  The DB doesn' t  know o f  any X w i t h  va lue x 

i n  the  r e l a t i o n s h i p  R a t  t h i s  p resent  t ime . " ;  
END )Check-Object-Exi stency { . 
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Procedure CheckAlways-Null 

This procedure determines the case where a value is not valid for an individual. 

This procedure will ascertain exceptional cases from the EXC-relation, and decide if 

those exceptional, cases occur in the information specified in the logical form. 

PROCEDURE Check-Always-Null 
BEGIN 

I F  x  E [ s e l e c t  concept f rom EXC-relat ion]  THEN 
BEG I N 

except-set := [ s e l e c t  EXCEPTION from EXC-relat ion where concept = x]; 
{Note :  here we a l l o w  the  excep t i ona l  s e t  t o  be more than 
one s e t .  For example, a l l  courses have a  t e x t  except 
thesis-course and some seminar-course.$ 

WHILE (except-set  O 0) DO 
BEGIN 
s := 0; 

excep t i on  := f i r s t  element o f  except-set ;  
except-set := [except-set  - excep t i on ] ;  

) I f  the  excep t i ons  a re  s p e c i f i e d  as a  gene r i c  concept i n  the 
GH- re la t i on  then sub rou t i ne  eva luate-except ion  w i l l  
r e c u r s i v e l y  ga ther  a l l  the  elements t h a t  belong t o  t ha t  
subt  ree. ) 

I F  excep t i on  i s  a  SUP i n  the  GH-relat ion THEN 
evaluate-exception(exception. S, a t t r )  

ELSE ) I f  the  excep t i ons  a re  s p e c i f i e d  as a  V - re la t i on ,  then we 
j u s t  eva lua te  the  v iew d e f i n i t i o n  o f  t h a t  V - re la t i on . )  

I F  excep t i on  i s  a  V - r e l a t i o n  THEN 
S := eva lua ted  se t  o f  t he  SOL query i n  t he  view d e f i n i t i o n  o f  except ion  
a t t r  := the a t t r i b u t e  f i e l d  nome o f  the  s e l e c t  statement i n  the 

v iew d e f i n i t i o n .  
ELSE ) I f  the  except ions  a r e  s p e c i f i e d  as an e n t i t y ,  then a t t r  w i l l  

be the  e n t i t y  i d e n t i f i e r ,  and S w i l l  be the  element se t  o f  the 
e n t i t y  i d e n t i f i e r . )  

I F  (excep t i on  i s  an e n t i t y )  THEN 
BEGIN 

c r  := [ s e l e c t  CLR from ENT-relat ion where ENTITY = EXCEPTION]; 
S := [ s e l e c t  p r imary  key a t t r i b u t e  f rom CR]; 
a t t r  := pr imary  key a t t r i b u t e  f i e l d  name o f  CR; 

END ) i f ) ;  
{Check i f  these excep t i ona l  cases occur i n  the 

i n f o r m a t i o n  s p a c i f i e d  i n  t he  l o g i c a l  form) 
I F  a t t r  i s  one o f  the  a t t r i b u t e  f i e l d s  s p e c i f i e d  i n  the  l o g i c a l  form THEN 

I F  the re  i s  a  va lue o f  a t t r ,  say v a l ,  g i ven  i n  the  l o g i c a l  form THEN 
I F  va l  E S THEN 

response: " va l  i s  a  (an) excep t i on . " ;  
response: "The query r e l a t i o n s h i p  does not  app l y  t o  concept o f  

type except ion . " ;  
response: " t h a t  i s ,  excep t i on  does not  have x." ;  
found := TRUE; 

END {whi  l e ) ;  
END ) i f ) ;  

END )Check-Always,Null). 
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Procedure Check-TemporalEvent 

This procedure checks for the case where a value is valid but does not yet exist 

for an individual. If x is a temporal event, then there are two relevant facts which 

can be extracted from the EG-relation: x's preceding event and its successor event. 

There are two cases in which this procedure can specify a definite response to the 

user: (1) if x's preceding event has not occurred yet, then x has not occurred either: 

and (2) if x's successor event has occurred, but the information is still not known as 

yet, then the information is not considered to be available. If neither of the above 

cases is true, then the algorithm attempts to respond with respect to relevant dates 

(either the preceding date or the successor date or both). This procedure can only 

handle events which have at most 1 preceding event, and at most 

at this stage. 

PROCEDURE Check,Temporal,Event 

BEGIN I I f  x i s  an E - r e l a t i o n  then we can get  t he  da te  i n f o r m a t i o n  
and g i v e  the  app rop r i a te  response.{  

I F  x i s  an E - r e l a t i o n  THEN 
BEG I N 

found:= TRUE; 
da te  := [ s e l e c t  da te  from x where season 3 CURRENT-SEASON]; 
I F  c u r r e n t  da te  < date THEN 

response: " I n f o r m a t i o n  about x i s  no t  known as y e t ;  
x w i l l  be known by da te . "  

ELSE response: " I n f o r m a t i o n  about X i s  not  a v a i l a b l e . " ;  
END 1 i f ) 
ELSE 
BEGIN 

successor-date := 9999999; 
preceding-date := -9999999; 

1 successor event 

f o r  x d i r e c t l y  

1Get the  re levan t  p reced ing event i f  poss ib le . )  
I F  x i s  a SUB i n  t he  E G r e l a t i o n  THEN 
BEGIN 

preceding-event := SUP of  x; 
preceding-date := [ s e l e c t  da te  from preceding-event 

where season = current-season];  
END I i f  1 

#Get the  re levan t  successor event i f  poss ib le . )  
I F  x i s  a SUP i n  the  E G r e l a t i o n  THEN 
BEGIN 

successor-event := SUB of  x; 
successor,date := [ s e l e c t  da te  from successor-event 
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where season 3 current-season];  
END { i f  1 

{ I f  t he  preced ing event o f  x has not  occurred,  then 
x has d e f i n i t e l y  no t  occur red. ]  

I F  cur rent -date  4 preceding-date THEN 
BEGIN 

response : " I n f o r m a t i o n  about x i s  no t  known as y e t ;  
x w i l l  be known a f t e r  preceding-data." ;  

found := TRUE: 
END 3 i f  j 
ELSE { I f  the  successor event  o f  X has occur red a l ready ,  and the 

i n f o r m a t i o n  i s  s t i l l  no t  known, then the  i n f o r m a t i o n  i s  
cons idered t o  be not  a v a i l a b l e  f o r  x . )  

I F  cur rent -date  >I ~~~~~~~~~~date THEN 
BEGIN 

response: " I n fo rma t  i o n  about X i s  no t  avai  l a b l e .  "; 
found := TRUE; 

END { i f  ) 
ELSE jRespond w i t h  respect  t o  bo th  the  preced ing event da te  and the 

successor event da te  i f  they a r e  a v a i 1 a b l e . l  
I F  ((successor,date 0 999999) and (preced i ng-date 0 -999999)) THEN 
BEGIN 

response: " I n f o r m a t i o n  about X i s  not  known. 
shou ld  be a v a i l a b l e  between preced 
successor-date." ;  

found := TRUE; 
END ) i f 1  
ELSE )Respond w i t h  respect  t o  the  successor 

. i n f o r m a t i o n  i s  a v a i l a b l e . t  
I F  (successor-date 0 9999999) THEN 
BEGIN 

response: " I n f o r m a t i o n  about X i s  no t  known 
i n f o r m o t i o n  i s  a v a i l a b l e ,  i t  wou 
be fo re  successor -dote . " ;  

found := t r u e ;  
END j i f  j 

ng-date .and 

event date i f  

But  i f  the 
d be avo i lab  

h i s  i n fo rma t i on  

the 

' l e  

E L S E - { R ~ S ~ O ~ ~  w i t h  respect  t o  the  preced ing event da te  i f  the 
i n f o r m a t i o n  i s  a v a i l a b l e . )  

I F  (preceding-date 0 -9999999) THEN 
BEGIN 

response: " I n f o r m a t i o n - a b o u t  X i s  no t  known. But  i f  the 
i n f o r m a t i o n  i s  a v a i l a b l e ,  i t  would be a v a i l a b l e  
a f t e r  preceding-date."; 

found := TRUE; 
END ) i f #  

END ) e l s e ) ;  

END {Check-Temporal,Event$. 26 

2 6 ~ e  assume that the SUB or SUP of an attribute field in the database has to be an E-relation, that is, 
there will be no tuple like (TEACH.instructor#, CLASS-ROOM.room#) in the EG-relation. Also we do not 
handle transitivity here. 
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Subroutine evaluate-exception 

This subroutine recursively gathers all of the elements that belong to any 

subtree that are in the GH-relation. Evaluate-Exception makes certain assumptions: 

0 that there is only one attribute field specified in the select statement of 
the view definition. 

0 that all views of the children (SUB field) of a parent (SUP field) will 
have the same attribute field name in the select statement of their view 
definitions because they are all describing (a subset of) one super-concept. 

that all the hierarchies present in the GH-relation are trees. that is, no 
cycle is allowed. . 

SUBROUTINE evaluate- exception(^, S ,  a )  

BEGIN 

I F  v i s  no t  t he  SUB o f  the  GH. re la t i on  THEN 

FOR a l  l c h i  l d r e n  ( c )  o f  v DO 
I F  c  i s  no t  a  SUP i n  the GH- re la t i on  THEN 

s := s U eva luated se t  o f  the  SOL query i n  the  view d e f i n i t i o n  of c ;  
ELSE 

eva l.uate,except i on(c, 1 ,  a )  ; 
ELSE 

s := s U eva lua ted  se t  o f  the  9 

view d e f i n i t i o n  o f  V ;  

a  := the  a t t r i b u t e  f i e l d  name o f  
i n  the  most recent  view def 

END ~eva luate ,except ion~;  

QL query i n  the  

the  s e l e c t  statement 
i n i t  ion ;  
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5.7. Algorithm for Intensional Misconception 

Procedure IntensionalMisconception 

This procedure checks all the relations in the logical form that can fail 

intensionally, that is. all AE-relations that appear in the logical form, and calls 

procedure Check~Intensional~Misconception to identified any user's misconception as to 

the presence of a non-existing relationship. 

PROCEDURE Intensional,Misconception 

BEG I N 

Get the  se t  o f  r e l a t i o n  names f rom the l o g i c a l  form 
i n  t he  order  they appear and pu t  them i n  R  

#where R i s  a  s t0ck . f  

s t o p  := f a l s e ;  
WHILE ((R 0 0) AND (-stop)) DO 
BEG I N  

r  := POP(R); 
I F  ( r  E AE-re la t ion)  THEN 

Check,Intensional~Misconception(r,stop); 
# I f  r  i s  no t  an A G r e l a t i o n ,  see i f  t h e r e  a re  any r e l a t i o n s  o f  

t he  form r . *  ' tha t  a r e  A G  r e l a t i o n s  and process these 
r e l a t i o n s  as w e l l . $  

I F  ( ( -stop) AND 
( r  i s  a  p r e f i x  of some r e l a t i o n s  i n  the A€ - re la t i on ) )  THEN 

PUSH(R, the se t  of r e l a t i o n  names i n  the AE-re la t ion  
w i t h  r  as o  p r e f i x ) ;  

END (whi  l e t ;  
I F  (-stop) THEN 

response: "Sor ry ,  I have no exp lana t i on  f o r  t h i s  n u l l  event ! " ;  

END iIntensional-Misconceptionf. 
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Procedure CheckIntensionalMisconception 

This procedure tries. to match the information specified in the logical form with 

the constraints found in the input AE-relation R. For each attribute field. Ai, of R.. a 

relation Si results from selecting those tuples of R with the value of Ai matching the 

information specified in the logical form. This procedure then invokes 

Perform-Intersection to intersect the Si's to find out where the user's misconceptions 

about the non-existing relationships are. and then generates the appropriate response. 

Template-Wrong_Arg(r.n.arg) is a template that will give us the appropriate 

restricted natural language response if arg is the improper argument for the nth field 

of relation r. For example, if TEACH(instructor, course) is a relation that represents 

It . Instructor teaches courses", then Template-Wrong-Arg(TEACH, 2, secretary) will 

generate a response like: "Secretaries do not teach courses." 

PROCEDURE Check~Intensional~Misconception(input v a r i a b l e :  
ou tpu t  v a r i a b l e :  

BEGIN 

) I f  R has c e r t a i n  imposed c o n s t r a i n t s  then check which 
c o n s t r a i n t s  a re  v i o l a t e d  by the use rs .  

s t o p  := t r u e ;  
I F  (Size(R) 0 0) THEN 
BEGIN 

Num := the # o f  a t t r i b u t e  f i e l d  i n  R;  

R; 
s t o p ) ;  

I 

I F o r  each a t t r i b u t e  f i e l d ,  Ai, o f  R, check i f  i t  appears 

i n  t he  l o g i c a l  form; i f  yes, s e l e c t  the  t u p l e s  i n  R  w i t h  Ai 

hav ing the  va lue  s p e c i f i e d  i n  t he  l o g i c a l  form. $ i  means the 
i t h  a t t r i b u t e  f i e l d .  1 

FOR i := 1 TO Num DO 
Match-&-Extract(R,$i,Si,ei,vali); 

do- in te rsec t  := t r u e ;  
FOR i := 1 TO Num DO 

I F  (a i  = 0) THEN 

BEGIN 
get  t h e  argument va lue,  say arg,  t h a t  i s  supposed t o  
be i n  t h i s  a t t r i b u t e  f i e l d  o f  R  f rom the  l o g i c a l  
form. 

Template,Wrong,Arg(R, i, a r g ) ;  
do - i n te rsec t  := f a l s e ;  

END l i f t ;  
I F  (do - i n te rsec t )  THEN 
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BEGIN 
{Do the  i n t e r s e c t i o n  o f  a l l  the  r e l a t i o n s  r e s u l t i n g  f rom 
Match-&-Extract, and g i v e  the  a p p r o p r i a t e  response. 1 

l e - s e t  i s  a  g l o b a l  va r i ab le .1  

whole-set := [S,  , S p ,  . . . , SNum]; 

{who 
i n t e r s e c t - s e t  := 0; 
Perform~Intersection(Num. whole-set 
response-se t := 0 ; 
I F  ( i n t e r s e c t - s e t  0 0) THEN 
BEGIN 

, i n t e r s e c t - s e t ) ;  

I F  (whole-set E i n t e r s e c t - s e t )  THEN 
s t o p  := f a l s e ;  

ELSE BEGIN 
num := l l a r g e s t  element o f  i n t e r s e c t - s e t ( ;  
WHILE ( i n t e r s e c t - s e t  0 0 )  DO 
BEGIN 

temp := f i r s t  element o f  i n t e r s e c t - s e t ;  
i n t e r s e c t - s e t  := in te rsec t - se t  - [temp]; 
I F  ( I tamp1 = num) THEN 

I F  (temp response-set) THEN 
BEGIN 

response-set := response-set + [temp]; 
Respond,Intensional~Misconception(temp); 

END { i f $ ;  
END {whi  leg ;  

END { e l s e ) ;  
END i i f )  
ELSE 

Respond,Intensional,Misconception(intersect~set); 
END { i f ) ;  

END { i f ) ;  
END {Check~Intensional,Misconception). 
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Procedure Match-&Extract 

This procedure tries to match certain information in the logical form with a 

concept in the given attribute column, attr, of a relation, r. If a concept. e, is 

identified to be present in the logical form, this procedure will select the tuples of r 

that have value e in the attribute column attr and return them in S. The concept e 

is returned to the calling procedure, and if e has a value, val, specified in the logical 

form, this value is also returned in variable val, or a 0 is returned in val otherwise. 

PROCEDURE Match-&-Extract ( i n p u t  v a r i a b l e s :  r ,  a t t r ;  
ou tpu t  v a r i a b l e s :  S, e, V a l ) ;  

BEGIN 
S := [ s e l e c t  unique a t t r  from r ] ;  
e := 0; 
va l  := 0; 
Match-&-Extract-stop := f a l s e ;  
WHILE ( (S 0 0) AND (-Match,&-Ext rac t -s top) )  DO 
BEG I N 

e l  := f i r s t  element o f  S; 
S := S - [ e l ] ;  
concept-stack := 0; 
Push,Sub,In,Stack(concept-stack. e l ,  CLASS-relation); 
Push-Sub,In,Stack(concept-stack, e l ,  G l t r e l a t i o n ) ;  
I F  (concept-stack = 0) THEN 

PUSH(concept-stack, e l ) ;  
WHILE ((concept-stack <> 0) AND (-Match-k-Extract-stop))DO 
BEGIN 

e l  := POP(concept-stack); 
I F  (In-V-Relation(e1)) THEN 
BEG I N 

{Match concept appear ing  i n  the l o g i c a l  fo rm. {  
Match~Logical,Form(el.val,match); 
I F  (match) THEN 
BEGIN 

Match,&-Extract-stop := t r u e ;  
) E x t r a c t  t he  t u p l e s  o f  r w i t h  concept,  e, i n  a t t r i b u t e  
f i e l d ,  a t t r . )  

S := [ s e l e c t  from r where a t t r  = ' e l ' ] ;  
e := e l ;  

END ) i f { ;  
END # i f )  
ELSE BEGIN 

Push,Sub,In~Stack(concept,stack, e l ,  CLASS-relation); 
Push-Sub,In,Stack(concept-stack, e l ,  GH-relat ion);  

END ) e l s e ) ;  
END {whi  l a ) ;  

END ) w h i l e ( ;  
END )Match-&-Extract). 
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Procedure Match-Logical-Form 

In this procedure, e is an input concept that is defined in a view definition. 

This procedure will match if this concept is being specified in the logical form or not; 

if yes, match will have the value true, and false otherwise. A value, v, is also 

returned if e has a value specified in the logical form, or v has value 0 otherwise. 

PROCEDURE Match-Logical-Form ( I n p u t  v a r i a b l e s :  e; 
Output  v a r i a b l e s :  v, match);  

# L e t  Re be the  r e l a t i o n  i n  the  from statement o f  t he  v iew 

d e f i n i t i o n  o f  e . i  

BEG I N  
match := f a l s e ;  
v  := 0; 
I F  (Re i s  i n  the l o g i c a l  form) THEN 

BEGIN 
I F  ( 3  c o n d i t i o n s  i n  bo th  the  l o g i c a l  form and the  

v iew d e f i n i t i o n  o f  e, say cLF and ce 

. r e s p e c t i v e l y ,  f o r  Re) THEN 

I F  (ce  matches e x a c t l y  as cLF) THEN 
- 

match := t r u e  
ELSE 

I F  ( t h e  eva lua ted  se t  o f  e ' s  view d e f i n i t i o n  
c o n t a i n s  the  va lue(s)  i n  cLF) THEN 

match := t r u e ;  
I F  (one o f  the  va lues  i n  cLF i s  a  pr imary  key 

va lue  of R)  THEN 
v  := the p r imary  key va lue  i n  cLF; 

END # i f  1 
END {Match-Logical-Form); 

Push-Sub-In-Stack 

This procedure checks if concept, c, is in the SUP field of relation, in-relation. 

If yes, it will push concepts that are SUB of c onto stack, in-stack. 

PROCEDURE Push-Sub-In-Stack(input v a r i a b l e s :  in -s tack ,  c ,  i n - r e l a t i o n ;  
ou tput  v a r i a b l e  : in -s tack) ;  

BEGIN 

I F  (c  E [ s e l e c t  SUP from i n - r e l a t i o n ] )  THEN 
PUSH(in,instack, [ s e l e c t  SUB from i n - r e l a t i o n  where SUB = c ] ) ;  

END #Push-Sub-In-Stack$. 
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Procedure Perf orm-Intersection 

This procedure does an intersection on the n relations given in the inset. In the 

first call to this routine inset will contains the n subrelations resulted from procedure 

Match-&-Extract. If there is no intersection between these relations in the first call. 

then the implication is that there is a missing relationship. In such case, this 

procedure will recursively handles the intersection of n relations, and returns all 

possible non-empty intersections of the n relations in outset. The join operator used 

in this procedure is the natural join operator. 

PROCEDURE Perform,~ntersect ion( input  v a r i a b l e s  : num, i n s e t ;  
ou tput  v a r i a b l e  : o u t s e t ) ;  

BEGIN 

inse t ,  j o i n  i n s e t *  j o i n  . . . .  j o i n  insetnum over a l l  

a t t r i b u t e  f i e l d s  g i v i n g  i n t e r s e c t ;  
ou tse t  := 0; 
I I f  t h e r e  i s  no i n t e r s e c t i o n  i n  t he  r e l a t i o n s  i n  i n s e t ,  then 

f i n d  ou t  wh ich  i s ( a r e )  t he  r e l a t i o n ( s )  t h a t  i s ( a r e )  no t  
w i t h  t he  o t h e r  r e l a t i o n s . )  

I F  ( S i z e ( i n t e r s e c t )  = 0) THEN 
BEGIN 

I F  (num > 2) THEN 
BEGIN 

Choose(num-1, i n s e t ,  choose-set); 
WHILE (choose-set 0 0) DO 
BEGIN 

nex tcho i ce  := f i r s t  element o f  choose-set; 
choose-set := choose-set - nex tcho i ce ;  
Perform~Intersection(num-l, nex tcho i ce ,  o u t s e t ) ;  

END ) w h i l e { ;  
END i i f ) ;  

END 1 i f  ) 
ELSE 

o u t s e t  := o u t s e t  U [ i n s e t ] ;  
END )Perform,Intersection). 
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Procedure Choose 

This is a recursive procedure which chooses all the possible n number of 

elements from inset and puts the result in outset. 

PROCEDURE Choose( input  v a r i a b l e s :  n, i n s e t ;  
ou tpu t  v a r i a b l e :  o u t s e t ) ;  

BEGIN 

o u t s e t  := 0; 
I F  ( ( i n s e t  0 0) AND ( n  O 0 ) )  THEN 
BEG I N 

tempset := 0; 
WHILE ( [ i n s e t 1  > n-1) DO 
BEGIN 

temp := f i r s t  element o f  i n s e t ;  
i n s e t  := i n s e t  - [temp]; 
Choose(n-1, i n s e t ,  chooseset) ;  
tempset := tempset U 

Distribute,~nion([temp]. chooseset) ;  
END jwhi  l eg ;  
ou tse t  := tempset; 

END l i f t ;  
END jChoose) . 

Function Distribute-Union 

This function performs a union of x to each element of inset, and returns the 

resulting set as the function value. 

Func t i on  D is t r i bu te -Un ion (x ,  i n s e t )  : s e t ;  

BEGIN 

du := 0; 
I F  ( i n s e t  = a )  THEN 

du := [ x ] ;  
WHILE ( i n s e t  0 0 )  DO 
BEGIN 

temp := f i r s t  element o f  i n s e t ;  
i n s e t  := i n s e t  - [temp]; 
du := du U [x U temp]; 

END ) w h i l e {  
D i s t r i bu te -Un ion  := du; 

END I D i s t r i b u t e - U n i o n ( .  
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RespondIntensional-Misconception 

This procedure generates responses for the misconceptions found. It also 

generates the corrective information found in inset. For this procedure, all Si's, vali's, 

and ei's resulting from Match-&-Extract are made accessible to it. Templatek. s) is 

a template routine that will generate restricted natural language responses with the 

relationship represented by r instantiated by the values found in relation s. For 

example, if TEACH(instructor, course) represents the relationship: "instructors teach 

courses", then Template(TEACH. S1), see S1 in Figure 5t3. will generate a response 

like: "Graduate students teach undergraduate courses". The join operator used in this 

procedure is again the natural join operator 

PROCEDURE Respond-Intensional,Misconception(insat); 

BEGIN 

IF (inset = 0) THEN 
BEGIN 

FOR i := 1 TO Iwhole-set1 DO 
BEGIN 

IF (val 0-0) THEN 
response: "val. is a/an ei."; 

Template(R,Si); 

END )for); 
END )if) 
ELSE BEGIN 

inset, join inset2 . . .  join insetlinsatl 
over all attribute fields giving intersect; 

Template(R,intersect); 
inset := whole-set - inset; 
WHILE (inset 0 0) DO 
BEGIN 

Si := first element of inset 
inset := inset - [Si]; 
i := the subscript found in the name of relation Si; 
IF (vali 0 0 )  THEN 

response: "val. is a/an ei."; 
I 

Template(R,Si); 
END {whilej; 

END {else); 
END ~Respond,Intensional,MisconcspPion). 
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Function In-VRelation 

This is a boolean function that tests if . e  is in the V-relation or not. 

FUNCTION In,V,Relation(e) : boolean; 
BEGIN 

IF (e E [select v i e w  from V-relat ion]) THEN 
In-V-relat ion := true 

ELSE 
In-V-relation := false; 

END )In-V-Relation$. 

Turning Null Responses into Quality Responses 



Concluding Remarks 

Chapter 6 

Concluding Remarks 

When a query submitted by the user fails to elicit any answer, the user often 

finds the situation unsatisfactory and frustrating. The problem is more aggravating 

for database systems with a natural language front-end as users are not expected to 

have much knowledge about the database structure. Earlier research efforts in 

natural language database systems has concentrated mostly on natural language 

interfaces; more recent work in this area has concentrated on cooperative responses. 

In particular, Kaplan, Janas, and Motro (see chapter 2) have worked to provide 

quality responses for null answer queries [ ~ a ~ l a n  781.  a an as 791. [ ~ o t r o  861. 

However, domain specific knowledge is still indispensable for providing quality 

responses in a natural language database system. In this thesis. I have introduced an 
b 

init ial  classification of null event problems in natural language database systems; 

this initial classification provides a structured way of approaching the problem of 

turning null responses into quality responses. As a partial solution to the complex 

problem of quality (cooperative) responses in natural language database systems, we 

constructed a relational knowledge base model which supplies information for 

diagnosis of failed queries. It provides meta-level data information to facilitate 

quality responses for correcting user's misconceptions. Algorithms which provide 

quality responses to null events arising from user's misconceptions (see Figure 3-2) 

further demonstrate the kind of quality responses we can obtain from the information 

supplied by the relational knowledge base model. Although, currently, the knowledge 
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base model has .to be hand-coded by the database administrator (or the system 

designer), the algorithms manipulating the knowledge base are domain independent. 

Extensional values in the knowledge base are all transparent to the algorithms, and 

thus enhance portibility. 

We have examined the feasibility of providing correct interpretations of certain 

null values occurring in a database, and providing cooperative responses using the 

relational knowledge base model. This knowledge base model provides us a general 

scheme2' for representing and organizing knowledge in a natural language database 

system without rendering the system ad-hoc, and, in principle, this model is 

transformable to other database models as well. Furthermore, the relational 

knowledge base model offers the following advantages: 

1. inexpensive to incorporate into the database; 

2. conceptually simple for database administrator to understand and design: 

3. immediately -applicable as an add-on to an existing databases: 

4. portable; 

5. independent of updates to the database. 

There are, of course, disadvantages associated with this relational knowledge 

base. wi th  a relational model. procedural and heuristic knowledge is difficult to 

represent. Also, the relational knowledge base model is good for representing 

homogeneous knowledge. but it will be cumbersome in representing heterogeneous 

knowledge, in particlar, inference rules cannot be easily put into a relational 

27~eneral ,  but possibly not complete. Realization of a complete general scheme requires further 
investigation into the other classes of null event problems as well. ~ 
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representation. The relational knowledge base model will not be able to provide a 

visual immediacy of interrelationships between concepts. A cycle in the GH-relation 

will not be as easily detected as if the GH-relation is represented in a semantic 

network. 

6.1. Future Research 

6.1.1. Short term research directions 

The initial classification is not complete and requires extension. Further research 

into other classes of null events problems, for example, null events due to the lack 

of knowledge about the database structure. null events due to the lack of ability to 

handle partial information, etc.. will certainly amalgamate more detailed classification 

categories and eventually result in a more comprehensive classification. 

The knowledge base model introduced in chapter 4 is designed specifically to 

incorporate information necessary to provide quality responses to null value problems. 

All of the information in the model is hand-coded at present. Automatic generation 

of the entire knowledge base model appears difficult because domain-specific 

knowledge needs to be acquired in some way. Automatic generation of some of the 

relations in the knowledge base model is possible nonetheless. Given a relational 

database. one can proceed to automatically generate the knowledge base model, to a 

certain degree, as follows: 

step 1. locate major concepts28 and their properties existing in the DB. (the 
ENT-relation and the PG-relation) 

2 8 ~ y  major, we mean the concepts that occur in the database, and only those concepts. 
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step 2. identify any association/relationship existing between concepts. (the AE- 
relation and the AG-relations) 

step 3. generate hierarchies for all major concepts. (the CLASS-relation and the 
GH-relation) 

I have developed a preliminary algorithm which performs steps 1 & 2 listed above. 

We will explain more about how to carry out these steps later. 

In the relational database model: 

0 entities have properties - their attributes; 

8 each entity set has a key that uniquely identifies each entity in an entity 
set; 

8 there are also cases in which the entities of an entity set are not 
distinguished by their attributes (properties) but rather by their 
relationship to entities of another type. 

Assuming that we have a database that is in 4th normal and based on 

the relational model outlined above, we make the following two observations: 

. 
1. relations which share some common attribute fields in their primary key 

are considered to be related to each other, and they are meant to describe 
certain concepts that those common attribute fields comprise. For example. 
relations like: OFFERING. COURSE-PREREQUISITE. COURSE-PREVIOUS- 
NAME, COURSE-DESCRIPTION, in Figure 4-1, are all related to the 
concept course, and course is made up of CNAME. 

2. if a concept is made up of only one attribute field, a complete list of 
all3' their members can be obtained from a relation whose primary key 
are the corresponding attribute field of that concept. For example, since 

2 9 ~ e t  R be a relation scheme and D the set of dependencies applicable to R. We say R is in fourth 
normal form if whenever there is a multivalued dependency X - r  -+Y, where Y is not empty or a subset 
of X, and XY does not include all the attributes of R, then X is a superkey of R, where a superkey is 
any superset of a key. [Ullman 821 

30~ccording to the closed world assumption that most databases adopt. 
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course is made up of CNAME only, COURSE-DESCRIPTION is assumed to 
contain the complete list of all the courses. 

A high level description for part of the process for automatic hierarchy 

construction is outlined in Appendix B. The algorithm is illustrated using the sample 

database schema in Figure 4-1. The algorithm is incomplete and it requires some 

deeper analysis. 

For the database schema illustrated 

automatically generate the following: 

PG-relation: 

ENTITY - 
course 
course 
course 
course 

semester 
semester 
semester 

class 
class 
class 
class 
dept 
dept 
dept 
dept 

instructor 
instructor 
instructor 
instructor 

student 
student 

0FFERZNG.l 
TAKE.1 

CL.ASSROOM.1 

PREREQUITE 
PREVIOUS-NAME 

CNAME 
SEMESTER* 

YEAR 
SEASON 
CLASS# 
DEPT 
UNITS 

SEC 
DEPZ* 

CHAIRMAN 
FACULTY 
FACILITY 

INSTRUCTOR* 
NAME 
DEPT 

OFFICE 

STUDENT# 
NAME 

CLASS# 
FINAL-GRADE 

ROOM* 

in Figure 4-1,  this algorithm will 

ENT-relation: 

ENTITY - CLR 

course 1 COURSE-DESC 
student STUDENT 

instructor INSTRUCTOR I dep  I DEPT 
semester SEMESTER 

class CLASS-DEPT 

(b) 

OFFERING.l(course, semester) 

TEACH.l(class, instructor, TEXT) 

TAKE.l(class, student) 

CLASS-ROOM.l(class, TIME) 

(d) 

Notice that this algorithm cannot generate constraints for the AG-relations, as 
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in Figure 5-3. This domain specific knowledge needs to be obtained from an external 

source. To automatically generate concept hierarchies, generalization and aggregation 

hierarchies from the database is more complicated. McCoy's ENHANCE 

system [McCoy 821 introduced in chapter 2 automatically generates an annotated 

generalization hierarchy on the entities in the database. This enables ENHANCE to 

provide responses to certain kinds of queries regarding the database structure. The 

knowledge base model introduced in this thesis also provides concept hierarchies. 

generalization and aggregation hierarchies. Combining these two techniques might 

provide a good basis for solving the null event problem due to the lack of knowledge 

about the database structure, and hence quality responses for this category of null 

event would follow. Also. performing a preprocessing of the database to discover 

exceptional cases3' will also suggest some way of partitioning a hierarchy. 

Partial information such as that illustrated in section 3.1.4 is not unusual in 

the real world; our ability to handle this kind of partial information is useful in an 

information system. As discussed in chapter 3 .  partial information such as: "Joe will 

teach CMPT810 next semester or Art will teach CMPT810 next semester" can only b i  

approximated in the database as: 

teach(CMPT810-fall, sectel, null). 

This is, in fact, a kind of extensional failure. if we t ry to find out "Who is teaching 

CMPT810 next semester?" If a system is able to handle partial information, then in 

the case of an extensional failure, the system should also check for the existence of 

any partial information, and the selection mechanism has to be further modified. 

One possible way to handle this kind of partial information is to extend the 

3'that is, those entities that 
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knowledge base model to incorporate one more relation. say the DIS-relation 

(DISjunction relation), to store partial information. This DIS-relation can be a binary 

relation where the CONCEPT field contains an index to any entry in the database. 

The index can be in the form: attribute field name-primary key value32, see Figure 

6-1. A POSS field contains the possible value for the corresponding value in the field 

CONCEPT. Elements in the POSS field, therefore, should have the same attribute 

domain as the attribute field domain for the corresponding elements in the CONCEPT 

field. 

TEACH: 

... ... ... ... 

... ... ... ... 

Figure 6-1: Suggested DIS-relation 

I CONCEPT POSS - 
I 

to capture disjunctive information. 

In this way, when there is an extensional failure, we can have some 

mechanism to index into the DIS-relation to find out whether there idare) any 

possible value(s) known in the domain for the corresponding null value. However. 

this renders the knowledge base dependent on the data values in the database. The 

knowledge base will no longer be independent of updates to the database; whenever 

there are database updates, the knowledge base has to be updated as well. An input 

routine for this kind of partial information has to interact with the database. This 

320r attribute field name concatenated with primary key values for composite primary key. Notice the 
concatenation of the composite primary key values has to follow some strict ordering; otherwise we cannot 
maintain the uniqueness of the index key. 
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reduces portability. Furthermore. disjunctive information such as: P(a) or  Qlbl cannot 

be handled by the above DIS-relation. Further research is required on this issue. 

In the knowledge base model, the database is not considered to be closed. 

Only simple entities are closed in the knowledge base, and all AG-relations are closed 

in the knowledge base. So far, the knowledge base model has only been used for the 

purpose of providing information which would be useful to correct any user's 

misconceptions. 

It will be very interesting to determine how to extend the knowledge base 

model to incorporate negative facts concerning the database. Incorporating negative 

extensional facts again involves existing data values in the database. Nevertheless, an 

investigation on extending the knowledge base model to incorporate negative intensional 

facts of the database might prove fruitful. 

The algorithms given in chapter 5 assume that there is no cycle in the CLASS- 

relation, and in the GH-relation. This is because they are considered to representb 

hierarchies in the application domain. Also for the EG-relation, the algorithm only 

handles events that have at most one preceding event and at most one successor 

event. Extending the algorithms to allow cycles and multiple events would be 

3 3 ~ o t i c e  how Mays can handle this kind of problem by using the branching time temporal logic 
technique. [ ~ a y s  821 
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6.1.2. Long term research directions 

In chapter 4. I discussed the problem of null values in the knowledge base. We 

can basically incorporate another meta-knowledge level of information regarding null 

values in the knowledge base. However. this results in infinite meta-levels of 

information in the worst case situation. The approach of having infinite meta-levels 

of information about the knowledge base's null values is another direction for future 

research since it might be conceptually advantageous as suggested by Brain Smith's 

work on 3-LISP. 

One important missing component in a natural language database system is the 

query generator which transforms the logical form from a semantic interpreter into a 

formal database query, say SQL. A lot of information in the knowledge base can be 

shared with the semantic interpreter and the query generator. Future research which 

bridges the gap between the semantic interpreter output and the actual database query 

might aid the knowledge base performance. 

' 
Finally, solving null event problems due to the lack of general rules and 

inferencing is, without doubt, essential to a natural language database system. When 

we must be concerned about computational complexity in a natural language database 

system, the problem becomes more difficult. I can imagine that it is possible to  attach 

general rules to the entity concepts in the knowledge base model; however, this is not 

a ''quality responseN to such a profound question. More research effort is required. 

4 

It appears that the ideal natural language database system may still not be 

realized in the near proximity. Research work in this area has been incremental and 

approaching this ultimate goal. In essense, this thesis has partially demonstrated how 

a knowledge base can be represented in a relational model, which is homogeneous to 
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the relational database model, and how this knowledge base can be utilized to give 

better quality responses to null event problem. 
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Appendix A 

Control Flow Diagram of the Algorithm 
for 

Detecting a User's Misconception 

Misconception 

Extensional- 
Misconception 

Procedure A 
Intensional- 

Misconception 

Figure A-1: Top Down Hierarchical Program Structure of Misconception Algorithm 

Procedure 
Procedure Procedure Procedure Check- 
Check- Check- Check- Intensional- 
Object- Always- Temporal- Misconcept~on 

Existency Null Event 

1 
I 
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Preliminary Algorithm for Hierarchy Construction 

Appendix B 

Preliminary Algorithm for 
Hierarchy Construction 

PHASE 1 

Initially let C = (01, where C is a set of lists. Each list in C is in turn a 
list of two lists: the second list contains names of those relations that 
have some attribute field(s) in common; and the first list contains those 
common attribute fields' names. This set of lists in C contains information 
that will help in the identification of major concepts and their properties 
in the database. 

Names of those relations that share common attribute fields in their 
primary keys are grouped together as members of a list, and a list of the 
common attribute fields as members of a second list. These two lists are 
then grouped together to be members of another list. say ci. ci is then 

added to C. This procedure is repeated until no new list can be formed. 
As a result C will become a set of lists, where each list in C is in turn a L 

list of two lists as described in the first step. From Figure 4-1. C will 
appear as follows: 

C = l((CNAME)(OFFERING COURSE-PREREQUISITE 
COURSE-PREVIOUS-NAME COURSE-DESCRIPTION)). 

( (SEMESTER#) (OFFERING SEMESTER)) , 
( (CLASS#) (CLASS-DEPT TEACH TAKE CLASSROOM) ) . 
((INSTRUCTOR#)(INSTRUCTOR TEACH FACULTY-DEPT)), 
((STUDENT#)(STUDENT TAKE)), 
( (DEPT#) (DEPT-CHAIRMAN DEPT-FACI LITY)  ) 

Notice that a relation can be a member of more than 1 list, like TEACH; 
and we want a minimal list of attribute fields to identify a concept 
(object). So in the case of: 

CLASS-DEPT (CLASS, D E W ,  UNITS) 
TEACH(CLASS, E, INSTRUCTOR, TEXT) 

we want to have only 
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((CLASS)(CLASS-DEPT TEACH . . .  ) )  

instead of 

((CLASS)(CLASS-DEPT TEACH . . .  1) 
and 

((CLASS SEC) (TEACH TAKE . . . ) ) 

At this point. we can clearly identify 6 concepts (objects), see Figure B-1. 

*Naming of Concepts* 
Concepts are named according to the domain name(s) of the attribute 
field(s) of each element of C. If there are more than one common 
attribute field, names of the domains are concatenated together to form the 
concept's name. 

Figwe B-1: 6 simple entities identified. 

*CLR relations* 
Each concept will have a CLR (Complete List Relation) name attach to it 
to indicate where we can get a complete list of the members of the 
concept. To determine which relation should be the CLR of a concept, we 
pick the relation for which the concept's identifying attribute field(s) 
idare) the relation's only primary key(s). 

The concepts' names together with the corresponding CLR relation are then 
insert into the ENT-relation. 

*Properties Attachment and Relationship Linking* 
From the previous step, we know that for each concept, ci, there is a set 

of relations. Ri, that are related to the concept. and a set of identifying 

attribute fields. Ai, of the concept. Let R be a relation in the set of 

relation Ri. This algorithm will distinguish associative entity types from 

simple entity types, and will attach properties to these two entity types in 
the following way: If Ai contains all the primary attribute fields of R. 
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then R is considerd to consist of property attributes of the concept ci. 

therefore all the non-key attribute fields of R will be taken as properties 
of the concept. ci. Otherwise. R represents a relationship among entity 
sets represented by its primary keys attribute fileds. This relationship is 
taken as an AG-relation, and the non-key attribute fields of R will 
become properties of this relationship in the P-relation. 

n o t a t i o n :  l e t  ELEMENTi be the  i t h  element o f  t he  se t  C; 

l e t  Ai be the  a t t r i b u t e  f i e l d s  i n  the f i r s t  l i s t  o f  ELEMENT,; 

FOR i FROM 

e t  c i  be the  concept o f  ELEMENTi i d e n t i f i e d  by 

Ai as descr ibed i n  t he  p rev ious  s tep;  

e t  E  be the se t  o f  concepts i d e n t i f i e d  i n  the  p rev ious  s t e p  
e t  concept(x)  be a  f u n c t i o n  which w i l l  r e t u r n  the  concept 

cor respond ing t o  x, i f  x i s  a  concept i d e n t i f i e r .  Otherw 
i t  w i l l  j u s t  r e t u r n  x .  

1 TO IC)  DO 

i s e ,  

FOR (every  r e l a t i o n ,  R, i n  the  2nd l i s t  o f  ELEMENTi) DO 

BEG I N 
I F  (Ai i s  no t  the  whole p r imary  key f o r  R) THEN 

I F  ( t h e r e  e x i s t  non-key a t t r i b u t e  f i e l d s  i n  R) THEN 
I F  ( t h e r e  e x i s t  concept (pr imary  key f i e l d ( s )  o f  R) which a re  

not  i n  E. o r  p r o p e r t i e s  o f  t he  cor respond ing concepts 
i n  E) THEN 

BEGIN 
- c r e a t e  an AG-relat ion w i t h  a  name p r e f i x e d  by R, 

and w i t h  a t t r i b u t e  f i e l d s  wh ich  a r e  concept(Ai) 

and the  concept ( the  non-key a t t r i b u t e  f i e l d s  o f  R); 
- i n s e r t  t h i s  AG-re la t ion 's  name i n t o  t he  AE-relat ion;  - i n s e r t  t u p l e  ( c i ,  d i r -p rop. )  i n t o  t he  

J 
P- re la t i on ,  where d i r -p rop ,  i s  a  key a t t r i b u t e  o f  R  

J 

except A i ,  f o r  a l l  non-key a t t r i b u t e s  of R except A i ;  

END 
ELSE BEGIN 

- c r e a t e  an AG-relat ion w i t h  a  name p r e f i x e d  by R, say R.*, 
and w i t h  a t t r i b u t e  f i e l d s  which o r e  same as 
the  concept(pr imary key a t t r i b u t e  f i e l d ( s )  o f  R) - 
those a t t r i b u t e  f i e l d ( s )  t h a t  a r e  p r o p e r t i e s  o f  any 
concept i n  E. 

- i n s e r t  t h i s  AG-relat ion 's name i n t o  t he  AE-relat ion;  
- i n s e r t  t u p l e  (I?.*, non-key.) i n t o  the  P - re la t i on ,  

J 
where non-key i s  a  non-key a t t r i b u t e  f i e l d  i n  R, 

j 
f o r  a l l  non-key a t t r i b u t e s  i n  R; 

END 
ELSE 

) A t t a c h  the r e s t  o f  the  pr imary  key a t t r i b u t e  f i e l d ( s ) /  
concept(s)  as p r o p e r t y ( i e s )  o f  c i  i f  t h i s  does not  

c r e a t e  d u p l i c a t e  p r o p e r t i e s . )  
- i n s e r t  t u p l e  ( c i .  prop.)  i n t o  t he  P - re la t i on ,  where prop 

J j 
i s  a  pr imary  key a t t r i b u t e  f i e l d  o f  R t h a t  i s  no t  found 
i n  Ai .  f o r  a l l  p r imary  key a t t r i b u t e s  o f  R  tha t  a re  not  

i n  Ai ;  

I F  ( t h e r e  e x i s t  f o r e i g n  key(s) ,  say f ,  i n  the  pr imary  key) THEN 
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-Remove R from the r e l a t i o n  l i s t  o f  t he  o t h e r  elements 
o f  C which have o n l y  f i n  i t s  

ELSE 
] A t t a c h  the non-key a t t r i b u t e  f i e  

as p r o p e r t i e s .  1 
- i n s e r t  t he  t u p l e  ( c i .  non-key.) 1 

whe 

f o r  
)A t  t a c h  

o f  C i  

- i n s e r t  

a t t r i b u t e  l i s t .  

d(s) /concept(s)  t o  c i  

n t o  t he  P - r e l a t i o n ,  

bu te  f i e l d  o f  R .  r e  non-key i s  a  non-key a i t  r  i 
j 

a l l  non-key a t t r i b u t e  o f  R ;  
t h e  a t t r i b u t e  f i e l d ( s )  of ELEMENTi t o  be p r o p e r t y ( i e s )  

i f  i t  does not  c r e a t e  d u p l i c a t e  p r o p e r t i e 3 . j  

t he  t u p l e  ( c i ,  key.)  i n t o  t he  P - re la t i on ,  where 
J 

i s  an element i n  Ai, f o r  a l l  elements i n  A i ;  
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