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ABSTRACT 

The transmission of 24 GHz microwave radiation through a 

slab of ferromagnetic metal has been numerically evaluated as a 

function of a static magnetic field oriented normal to the plane 

of the slab. The calculations assumed a metal with a spherical 

Fermi surface whose parameters were chosen to simulate Nickel. 

The current density at a point was non-locally related to the 

electric field throughout the metal and the two limiting cases 

of specular and diffuse surface scattering of'the current 

carriers were investigated. 

The transmission was calculated as a function of the 

applied field for mean free paths I ranging from 6/1 >> 1 

(normal skin effect regime) to 6 / 1  << 1 (extreme anomalous skin 

effect regime), where 6 is the rf skin depth. In the anomalous 

skin effect regime (6/1 I 1 )  the transmission was found to 

depend on the type of surface scattering. For slabs of 

thickness d > 6 (typically, 6 - 0.8 pm while d > 1 pm), a strong 

transmission peak appeared when the static magnetic field was at 

a value corresponding to ferromagnetic resonance (FMR) and 

diffuse scattering was used. No such peak appeared using 

specular surface scattering. Further, when 6 <c d 5 1, the 

calculations carried through for diffuse scattering showed a 

transmission maximum at an applied field corresponding to 

cyclotron resonance of the carriers while the calculations 

carried out using specular scattering showed a transmission 

minimum at the same static magnetic field value. 
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1.  I NTRODUCT I ON 

One of the methods used to measure the magnetic properties 

of a ferromagnetic metal is the microwave transmission 

experiment1. In the experiment, a thin slab of the subject 

metal is immersed in a uniform d.c. magnetic field H,, one side 

of the slab irradiated with linearly polarized microwaves, and 

the transmitted signal measured as a function.of H,. Comparison 

between theory and experiment is simplified when H, is oriented 

either parallel to the plane of the slab (parallel 

configuration) or perpendicular to the plane (perpendicular 

configuration). 

For a saturated specimen at room temperature, the variation 

of the transmitted signal with Ho has been well understood using 

a theory that combines the Landau-Lifshitz equation of motion 

with Maxwell's equations in which a local conductivity 

characterized by Ohm's Law is assumed: 

(where a, is the d.c. conductivity, T(F) is the rf current 

density, E(?) is the rf electric field, and both fields are 

assumed to have a suppressed time dependence of exp(-iwt)). The 

theory predicts a maximum in the transmission for a value of H, 

that corresponds to ferromagnetic antiresonance (FMAR) in the 



metal and a minimum when Ho corresponds to ferromagnetic 

resonance (FMR) (a good introduction to the room temperature 

theory can be found in ref. 1). The general variation of the 

transmitted signal with Ho is shown in figure 1. Excellent fits 

of transmission data have been obtained using this theory (see, 

for example, figure 2 in ref. 2). 

However, the theory was unable to account for transmission 

behaviour observed in a series of parallel configuration 

experiments carried out by Dewar, Heinrich, and Cochran at 24 

GHz on pure Nickel specimens 3 - 10 pm thick3. At room 

temperature (300 K), the transmission exhibited a lineshape 

similar to that shown in figure 1 except that a small 

transmission peak was located near the magnetic field value 

corresponding to FMR. Theory predicted a deep minimum at FMR. 

As the specimens were cooled, the FMR peak attenuated until it 

was unobservable at 80 K. Further cooling caused the normally 

dominant FMAR peak to attenuate until a virtually featureless 

transmission was obtained at 40 K. Below 20 K a new peak at FMR 

appeared which increased in strength until it dominated the 

transmission profile at liquid Helium temperature (4.2 K). 

Heinrich and Cochran"emonstrated that the small FMR peak 

at room temperature was due to energy transport across the slab 

by phonons generated in the skin layer by magnetoelastic 

c o ~ p l i n g ~ - ~  between the specimen's resonantly precessing 

magnetization vector and the crystal lattice. 



Fig. - 1 Transmission amplitude versus applied magnetic field H o  

calculated for a 5 bm thick slab of Nickel using room 

temperature theory (see Chapter 4 ) .  Ho was perpendicular to the 

plane of the slab and the incident 24 G H z  microwaves were 

assumed to be negative circularly polarized. The parameters used 

in the calculation are listed in Appendix A. For 

these parameters, FMAR occurs at Ho = 12.1 kOe and FMR occurs at 

H, = 18.5 koe. 



But magnetoelastic coupling could definitely NOT explain 

the FMR peak that occured below 20 K. The strength of an FMR 

transmission peak generated by magnetoelastic effects depends on 

the precessional amplitude of a specimen's magnetization vector7 

and the precessional amplitude is controlled, in part, by the 

magnetic damping: the stronger the damping, the smaller the 

amplitude. In pure Nickel, the magnetic damping increases 

rapidly with decreasing temperature8. This caused the small 

room temperature FMR peak to attenuate and become unobservable 

at temperatures below about 80 K. 

The most likely source of the discrepancy between theory 

and experiment is the theory's tacit assumption that Ohms's Law 

(equation [1.11) relates the rf current density 5(F) to the rf 

electric field E(?) in the metal. Ohms's Law is valid only in 

the normal skin effect (NSE) regime where the electron mean free 

path 1 is much less than the normal rf skin depth 

6 = ~/(2roe~r)"~. While the condition 6/1 >> 1 is satisfied by 

nearly all metals at room temperatures and microwave 

frequencies, 1 is not a constant in pure metals: 1 tends to 

increase with decreasing temperature. In the transmission 

experiments of Dewar, Heinrich, and Cochran, S was the order of 

0.5 pm while residual resistance ratio measurements indicated 

that 1 increased from approximately 0.001 pm at room temperature 

(300 K) to approximately 10 Mm at liquid helium temperatures 

(4.2 K). Hence, 6/1 -500 at 300 K (well within the NSE regime) 

while 6/1 = 0.05 at 4.2 K. 



When 6 / 1  I 1 ,  we encounter the anomalous skin effect (ASE) 

regime and Ohms's Law is no longer validg. The rf current 

density at a point 3 in the metal depends not only on the 

electric field at ? but non-locally on the rf electric field 

distribution throughout a region of mean radius I about 3 .  This 

new relationship can be expressed byt0: 

where Z(i,VI is called the current kernel or c.onductivity tensor 

and the integral extends over the volume 52 of the metal. The 

kernel represents the current density generated at a point 3 in 

the metal due to a delta- function electric field at $. It's 

form depends on the orientation of Ho in the slab, the shape of 

the metal's Fermi surface, and the type of scattering the 

electrons undergo in the bulk and at the surfaces of the metal. 

Owing to a lack of any detailed theory about the way electrons 

scatter at a surface, the surface scattering is usually assumed 

to be specular (the component of the conduction electron's 

velocity normal to the surface is reversed on impact) or diffuse 

(the electron emerges from the collision in thermal equilibrium 

with it's surroundings; ie, the electron loses all previous 

knowledge of it's previous trajectory on impact)11a12. 

Cochran and ~einrichl~ investigated whether or not 

non-local conductivity alone could explain the anomalous 

transmission behaviour in the pure Nickel specimens at 4.2 K. 



They carried through two parallel configuration transmission 

caPculations in the extreme anomalous limit 6 / 1  << 1 using a 

non-local current density similar to equation [ 1 . 2 ]  for a metal 

with a spherical Fermi surface that magnetically resembled 

Nickel. Magnetoelastic coupling was neglected. The slab was 

chosen to be 5.0 pm thick and the mean free path was taken to be. 

10 .8  pm (corresponding to 4 . 2  K in the pure Nickel specimens). 

One calculation was based on specular surface scattering of the 

conduction electrons. In contrast to the results obtained from 

the room temperature, or NSE theory, the non-local calculation 

predi,cted no interesting transmission features at FMAR or FMR. 

The transmission was nearly independent of H,. The second 

calculation employed dif-fuse surface scattering of the electrons 

and it qualitatively reproduced the anomalous, low temperature 

transmission behaviour observed by Dewar, Heinrich, and Cochran: 

a strong peak at FMR and no intresting structure at FMAR. The 

two authors also considered transmission enhancement by phonons 

generated in the slab by magnetoelastic coupling, Bragg forces, 

collision drag forces between the electrons and the lattice1', 

and driving of the lattice at the slab faces by electron 

collisions. These mechanisms were postulated by Dewar, et a13. 

as possible sources of the low temperature FMR peak, but Coehran 

and Heinrich found all the above mechanisms to have a very small 

effect on the transmission lineshape in the 6 / 1  << 1 (extreme 

ASE) limit. Cochran and Heinrich concluded that the enhanced 

FMR transmission seen in pure Nickel at low temperatures was due 



to non-local conduction effects coupled with diffuse surface 

scattering of the conduction electrons. 

In a recent paperI5, Kogan, Turov, and Ustinov continued 

the theoretical investigation of microwave transmission through 

ferromagnetic metals in the anomalous skin effect regime. The 

authors considered the perpendicular configuration, ignored 

curvature of the electron orbits by the magnetic field, and 

assumed specular surface scattering of the conduction electrons. 

They developed an expression for the transmission through a slab 

of thichness d  in terms of an infinite sum. The sum was used to 

derive closed, analytic expressions for the transmission in the 

two cases of extremely thick ( d / l  >> 1 )  and extremely thin 

( d / l  << 1 )  slabs. They-concluded that no transmission maximum 

at FMR could be predicted from their theory in the extreme 

anomalous limit ( 6 / 1  << 1 )  but some structure should occur at 

FMAR. They further expressed the opinion that repeating the 

calculation using diffuse surface scattering of the carriers 

would also fail to predict any transmission maximum at FMR; they 

felt that any enhanced transmission at FMR could not be 

attributed to non-local conductivity. 

In this thesis, microwave transmission calculations for a 

ferromagnetic metal in the perpendicular configuration are 

presented. The calculations are based on numerical transmission 

models valid for any 6 / 1  and slab thickness d. Both cases of 

specular and diffuse surface scattering of the conduction 

electrons were considered. The calculations were carried out 



for two reasons: first, in view of the results of Cochran and 

Heinrich for the parallel configuration, and the conclusions of 

Kogan, Turov, and Ustinov, it was of intrest to see what 

differences, if any, would exist between the transmission curves 

calculated for the cases of specular and diffuse surface 

scattering; second, it would be useful to carry through specular 

scattering calculations in the perpendicular configuration that 

explicitly took orbital effects into account and considered 

experimentally accessible values of 1 and d (ie, 

0.001 5 1 I 100 pm and 1 5 d I 30 pm). The extreme thin slab 

result of Kogan, Turov, and Ustinov cannot be checked 

experimentally - the thin specimens required cannot be 
fabricated. The extreme. thick slab result cannot be checked 

either. When d/l >> 1, and 6/1 << 1, their expression for the 

transmitted microwave power contained the factor exp(-2d/l). 

Taking 1 to be 1 pm (a reasonable value in a pure metal at 

liquid helium temperature), d to be 100 fim (to keep d/l->> I), 

and assuming a 1 Watt incident microwave beam, the thick slab 

expression predicts a transmitted power level well below the 

Watt limit of experimental detectibilityl. 

Our transmission calculations were carried through for a 

model metal with a spherical Fermi surface that magnetically 

resembled Nickel (the same type of metal that Cochran and 

Heinrich considered and the kind of metal for which the Kogan, 

Turov, and Ustinov results were derived). The effective mass 

and Fermi velocity were chosen to correspond to the majority 



carriers in Nickel: mf/m0 = 5 and vF = 2x10' cm/sec, where m, is 

the free electron mass. These values were taken from the low 

temperature cyclotron resonance data for sp band belly orbits 

reported by Goy and Grimesl6. The current kernel Z(?,V) needed 

to calculate the non-local current density (equation [1.2]) was 

derived semi-classically using the Boltzmann transport equation 

in the relaxation time appro xi ma ti or^'^^^^^^^. The relaxation 

time r (the mean time an electron travels before suffering a 

collision) was taken to be a constant throughout the metal and 

related to the electron mean free path by I = vFor. 

The Landau-Lifshitz equation of motion19 was used to 

describe the metal's magnetization vector. Only torques due to 

magnetocrystalline anisotropy, Gilbert damping, and the 

demagnetizing field were included. Torques due to exchange, 

diffusion, and magnetoelastic coupling were ignored, their 

effects being negligible compared to the magnetic damping in 

pure Nickel at low temperatures and 24 GHz incident radiation1. 

Note however, that the methods we present to calculate the 

transmission can be readily extended to include these additional 

torques. 

In the perpendicular configuration, the transmission 

calculations are considerable simplified by the use of 

circularly polarized coodinates to describe the rf 

electromagnetic fields in the slab. Further, we need only 

calculate the transmission of circularly polarized incident 

radiation through a slab surrounded by vacuum. The transmission 



of arbitrarily polarized radiation through a slab surrounded by 

any kind of dielectric may be obtained by linear combination of 

the circularly polarized solutions20. (see chapter 2, section 

2.5). 

Formal solutions for the transmission of circularly 

polarized radiation through finite slabs of non-magnetic metal 

have been known for some time. Platzmann and ~uchsbaum~l solved 

the problem for specular surface scattering in 1963 while 

~ a r a f f ~ *  presented one analytic solution for the case of diffuse 

surface scattering in 1968 and anotherz3 in 1973. These 

solutions have proven to be very useful for examining limiting 

transmission cases (as Kogan, Turov, and UstinovlS did when they 

extended Platzmann and Buchsbaum's method to a ferromagnet) and 

for deriving simple physical arguments to explain the various 

ASE transmission features observed in non-magnetic metals (see, 

for example, Bargff's analysis of his first diffuse scattering 

solution2u and his c.omparison with e~periment~~). Interestingly 

enough, Baraff found that the microwave transmission through a 

non-magnetic metal was strongly dependent on the type of surface 

scattering at the slab This result suggests that 

the calculated transmission through a ferromagnetic metal should 

also depend on whether the surface scattering was specular or 

diffuse. 

However, the formal solutions are not well suited to 

general calculational work. The specular scattering solution of 

Platzmann and Buchsbaum21 for the transmission is expressed as 



an infinite sum. The sum converges very slowly unless d/6 I 1. 

Baraff obtained iterative solutions for the diffuse scattering 

case. The first methodZ2 converges like exp(-d/l) and is very 

difficult to work with if more than one iteration is carried 

out. This makes the method unsuitable for experimentally 

intresting cases where d/l < 1 unless a low accuracy solution is 

acceptable. The second method2' is based on multiple 

reflections of conduction electrons in the slab and requires 

considerable numerical work to repeatedly evaluate several 

complex integrals. Finally, there is the problem that none of 

the three methods are suitable for calculating the rf electric 

field distribution in the slab. These distributions are very 

useful for determining the source of various transmission 

features. 

In order to carry out microwave transmission calculations 

in all skin effect regimes we had to develop several new methods 

for calculating the transmission through the slab and the rf 

field distributions in the slab valid for any 6/1 ratio and slab 

thickness d. The infinite sum solution of Platzmann and 

~uchsbaum~' has been recast into two new forms. One is a much 

faster converging series solution suitable for calculating the 

internal rf field distributions and the transmission through the 

slab. The other is an integral form suitable for very fast 

calculation of the transmission only. See chapter 6 for 

details. 



The complex iterative schemes of ~ a r a f f ~ ~ ~ ~ ~  for diffuse 

scattering have been replaced by a brute-force numerical method 

that simultaneously calculates the electric field distribution 

across the slab and the transmission through the slab. This 

method is easy to implement and valid for any 6/1 ratio and slab 

thickness d. See chapter 5. 

The results of our calculations may be summed up with the 

two diagrams shown in figure 2. The logarithm of the electric 

field amplitude in a 5 pm thick slab is plotted against depth z 

in the slab and against external magnetic field Ho. The mean 

free path 1 was 25 pm, making 6/1 << 1 (well within the extreme 

ASE regime). 24 GHz, negative circularly polarized, microwaves 

were assumed to fall on-the z = 0 slab face at normal incidence. 

One diagram was calculated for specular surface scattering and 

the other was calculated for diffuse surface scattering. 

The front surface skin layersi are clearly visible on the 

two plots and remarkably similar in structure. Note how the rf 

skin depth 6 goes through a maximum near Ho = 12.14 kOe (the 

magnetic field value corresponding to FMAR) and a minimum at a 

value of Ho = 18.55 kOe (the magnetic field value corresponding 

to F M R ) .  This behaviour is also predicted by the room 

temperature theory1 (see chapter 4 ) .  The fields in the bulk and 

at the rear of the slab definitely depend on the type of surface 

' The skin layer and the skin depth 6 both refer to the distance 
into the slab over which the rf electric field has appreciable 
amplitude. In figure 2 we can see that the skin layer in our 
5 pm slab is the order of 1 bm. 



FMR 
I 

FMR 

1 
E = Sam 

Fig. - 2 Logarithm of the negative circularly polarized electric 
field amplitude in a 5 bm thick slab plotted against depth z in 

the slab and applied magnetic field H,. The electron mean free 

path was taken to be I = 25 Dm. The parameters used in the 

calculation are listed in Appendix A. 
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ee that scattering. In figure 2 w the electric field 

distribution calculated for specular surface scattering exhibits 

only a weak dependence on H,, going through a maximum near FMAR 

and a broad minimum at a value of H, = 49.2 kOe corresponding to 

cyclotron resonance of the conduction electrons. One the other 

hand we see that the electric field distribution calculated for 

diffuse surface scattering goes through a minimum at FMAR, a 

maximum at FMR, and yet another, weaker maximum at cyclotron 

resonance. Further, all magnetic field dependent electric field 

features increase in magnitude towards the rear of the slab. 

In figure 2 the electric field at z = d is proportional to 

the transmitted signal amplitude. One can therefore see that 

the transmission for specular scattering will be relatively 

featureless except for a broad FMAR peak and a minimum at 

cyclotron resonance. No interesting features can be seen at 

FMR. This is in general agreement with the predictions of 

Kogan, Turov, and ~ s t i n o v ' ~  (we cannot predict the behaviour at 

cyclotron resonance from their theory because they ignored 

orbital effects). In contrast, the transmission calculated for 

diffuse surface scattering goes through a minimum at FMAR, a 

strong maximum at FMR, and another maximum at cyclotron 

resonance. This is more like the results of ~ochran and 

~einrich'~ in their parallel configuration calculations. 

The general behaviour of the electric field distributions 

shown in figure 2 has a simple physical explanation. In the 

anomalous skin effect regime, the electric fields generated in 



the skin layer are mainly due to shielding electrons that run 

more or less parallel to the z = 0 slab face and therefore the 

electric field distribution near the front of the slab is 

relatively unaffected by the surface scattering conditions. 

However, the electric fields in the bulk are mainly due to 

electrons that enter the skin layer, scatter off the z = 0 face, 

and head back into the slab after picking up energy from the 

driving field. These electrons are indeed affected by the 

surface scattering. We should therefore not be too suprised 

that the electric field distributions in the bulk of the metal 

are different for specular and diffuse surface scattering. In 

fact, ~ a r a f f ~ ~  explicitly demonstrated that the transmission 

peak at cyclotron resonance for diffuse surface scattering, and 

the transmission minimum at cyclotron resonance for specular 

scatteringz4, could be directly attributed to the type of 

surface scattering at the rear of the slab. 

This thesis is organized as follows. In chapter 2 we 

derive the boundary value problem that describes the electric 

field distribution in the slab when the current density is 

non-locally related the the electric field. In chapter 3 we 

calculate semi-classically the current kernels associated with 

our problem using the method of Cohen, Harrison, and ~ a r r i s o n ~ ~  

to solve the Boltzmann transport equation. In chapter 4 we 

solve the boundary value problem assuming 6 / 1  >> 1 (the NSE 

regime) and review the predictions of the room temperature 

theory. Chapter 5 carries out the numerical solution for the 



boundary value problem assuming diffuse scattering at the slab 

faces. Chapter 6 considers both numerical and analytic 

solutions for the electric field in the slab when the surfaces 

specularly scatter the conduction electrons. In chapter 7 we 

present the results of our calculations and discuss their 

significance. 



2. THE ELECTRIC FIELD IN THE SLAB 

2.1 Introduction - 

Calculating the transmission through a slab of metal 

entails determining the rf electric field distribution E(?) in 

the slab. In this chapter we formulate the perpendicular 

configuration boundary value problem for E(3) when the current 

density T(?) is non-locally related to E ( ? ) .  

In section 2.2 we write down Maxwell's equations for our 

geometry. The consitutive equation linking the induction field 

5tF) to the magnetic field E(i) is considered in section 2.3 

while the constitutive relation between 5(?) and E(3) is 

considered in section 2.4. In section 2.5, Maxwell's equations 

and the consitutive relations are combined to form a second 

order integrodifferential equation for E(?). We impose boundary 

conditions on the solutions that allow us to calculate (i) the 

transmission of circularly polarized radiation through a slab 

surrounded by free space and (ii) the transmission of linearly 

polarized radiation through a slab surrounded by an anisotropic 

space. The latter case corresponding to the experimental 

situation. Finally, in sections 2.6, there is a chapter 

summary. 



We should point out that each part of the problem is 

discussed in considerable detail. A reader who is familiar with 

the transmission boundary value problem may find it useful to 

skip to the chapter summary in section 2.6 and refer back to the 

material in the rest of the chapter for the details. 

2.2 Maxwell's Equations in the Perpendicular Configuration - -- 

We start by writing down Maxwell's equations in Gaussian 

units: .\ 

where a(?,t) is the rf displacement field and p is the free 

charge density. 

The geometry of the perpendicular configuration is shown in 

figure 3. The specimen is located in the space 0 5 z 5 d and a 

d.c. magnetic field H, is directed along the z axis. Microwaves 

of frequency f (circular frequency w = 27rf) fall on the slab at 

normal incidence and give rise to a reflected and a transmitted 
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Fig. - 3 The perpendicular configuration transmission geometry. 

A slab of metal is located between the planes z = 0 and z = d 

and a uniform d.c. magnetic field H, is directed along the z 

axis. Microwave radiation is normally incident on the z = 0 

slab face and a transmitted and a reflected wave are generated. 



wave. 

In this geometry, the rf fields generated in the slab will 

have a spatial variation in the z-direction only. If we take 

the time dependence of all quantities to be exp(-iwt) and 

neglect the displacement current in [2.2] compared with the real 

currents (an excellent approximation at microwave frequencies)12 

then Maxwell's equations r2.11 - [2.2] may be reduced to 

This is all the information we can get out of Maxwell's 

equations. To proceed further we must specify the constitutive 

relations linking 6 to fi and to E. This is done in sections 

2.3 and 2.4. For our problem, the constitutive relations take 

on particularly simple forms in circularly polarized coordinates 

and not cartesian coordinates. In this new coordinate system, 

we decompose a transverse rf field vector into a pair of 

counter-rotating vectors rather than into two orthogonal 



cartesian vectors. For example, if we were to look down the z 

axis (towards z = - 01  at a transverse electric field vector 

L(i,t) = L(z)exp(-iot), instead of saying E(z)exp(-iwt) was made 

up of the two cartesian components Ex(z)exp(-iot)ii and 

E (z)exp(-iot)? we would say that it was composed of a 
Y 
circularly polarized vector E+(z)exp(-iwt)t+ rotating clockwise 

with an angular-velocity of o rad/sec. and a circularly 

polarized vector E-(z)exp(-iwt)Z- rotating counter-clockwise 

with an angular velocity of -o rad/sec. Here, ii and f are 

orthogonal unit vectors in the x and y direct'ions, respectively, 

and Z are orthogonal circularly polarized basis vectors defined 
f 

by: 

I 

I The conversion of x and y cartesian field components to + 
I 



Using the results of Appendix B we write 

- j, - jx k ij 
Y 

12.161 

It's important to note that there are several common ways of 

defining the circularly polarized basis vectors27. Each 

*definition leads to a slightly different set of relations 

between the cartesian and circularly polarized field components. 

Appendix B demonstrates how to arrive at the conversion formulae 

12.131 - 12.161 for our particular choice of Z f' 
' 

Maxwell's equations can be re-expressed in circularly 

polarized form by multiplying 12.61 and 12.81 by fi, adding them 

to 12.51 and 12.71 respectively, and then using E2.131-12.161: 



2.3 The Constitutive Relation Between 6 and 6 -- - - -  

The magnetic properties of the metal enter Maxwell's 

equations through the constitutive relation linking 6(z) to 

6(z). In ferromagnetic metals, this relationship may be 

obtained from the Landau-Lifshitz equation of motionlg for the 

specimen's precessing magnetization vector R. In Nickel, this 

equation can take the form1 

- R r R  + %  
s 

where B is an effective magnetic field composed of the external 

field a,, the demagnetizing field ad, a field aA associated with 
magnetocrystalline anisotropy, and the rf field E. is the 

magnetization vector composed of the saturation magnetization 

As and of the rf magnetization %. The second term on the right 

hand side of [2.20] is a phenomenological damping term due to 

Gilbert33. G is the damping parameter in sec-I and 7 = glel/2mc 

is the spectroscopic splitting factor. 

In general, there are additional effective magnetic fields 

in [2.20] due to exchange and diffusion acting 



on A. However in Nickel, at 24 GHz, the exchange and diffusion 

torques .are negligible and can be ignored1. 

The solution of the Landau-Lifshitz equation [2.20] for i 

in terms of li is rather simple provided we assume that Ho 

saturates the specimen (ie, pulls A parallel to H,), the [100] 

crystal direction lies along H,, and li and i% are small compared 

to H, and Ms. In that case, we may write: 

where 

Heff is the effective internal d.c. magnetic field, Hd is the 

demagnetizing field for a plane specimen unbounded in the x and 

y directions, HA is the effective magnetocrystalline anisotropy 

field29a31 appropriate for a crystal whose [100] direction is 

along the z axis, and K1 is the first anisotropy constant in 

ergs/cc, All fields are expressed in Oersteds. 

Substituting [2.211 and L2.221 into 12.201, and assuming iii 

and l'i have a time dependence of exp(-iwt), gives two equations 



for mx and m in terms of hx and h 
Y Y 

and by [2.21] and r2.221, hZ = O.and mZ = 0 to first order in 

m/~, and h/H,. Equations [2.26] and [2.27] allow us to relate I 

to I5 through I = Z-I5 where Z is the dynamic susceptibility 

tensor. The desired constitutive relation between 6 and I5 is 

determined by 6 = I5 + 4 6  which we may write as 

where Z is the dynamic permeability tensor. 

In the perpendicular configuration, both 2 and Z 

diagonalize in circularly polarized coordinates. To see this, 

multiply [2.27] by fit add it to [2.261, and let m+ = m r im . - X Y 
This results in the two independent equations: 

and the diagonal components of the susceptibilty tensor are 

given by x+ = m,/hf and x,, = 0. - By L2.291, the corresponding 



diagonal components of the permeability tensor are just 

where - - + 4xMs 

is the effective 2.c. induction field in Oersteds. 

The magnetic constitutive equations for our problem are 

theref ore 

and, by I2.191 and l2.321, bZ(z) = hZ(z) = 0. 

A few comments are in order about the circularly polarized 

permeabilities B + .  First of all, the specimen must be saturated - 
for the permeabilities L2.311 to be valid. This requires Heff 

to be positive (ie, to lie along Ho) or, by [2.23], 



Using the parameters listed in Appendix A we find 

4nMS = 6.410 kOe and ~ K , / M ~  = -4.313 kOe. In the perpendicular 

configuration, the saturation condition for Nickel is therefore 

H, > 10.72 kOe. 

Next, from [2.31], we see that only the negative 

polarization is magnetically active. At one value of H, the 

numerator of f i -  becomes small, and hence so does D - ;  this field 

is defined by 

and corresponds to FMAR. At a larger field value the 

denominator of D- becomes small and 1- becomes large; this field 

is defined by 

and corresponds to FMR. In contrast, D+ exhibits only a 

monotonic variation with H,; the positive polarization is 

magnetically inactive. 

Using the definitions for Beff and Hefit the conditions for 



FMAR and FMR in the perpendicular configuration become: 

From Appendix A we see that w/y = 7.827 kOe in Nickel (at 

24 GHz) and since ~ K ~ / M ~  = -4.313 kOe FMAR will occur at 

Ho = 12.1 kOe and FMR will occur at Ho = 18.5 kOe. 

2.4 The Constitutive Relation Between 3 and -- 

The electronic properties of the metal enter through the 

constitutive relation linking j(z) to E(z). According to the 

semi-classical theory of conduction, the current density 

generated at a point ? in a metal is entirely determined by the 

action of the electric field on each electron reaching i since 

it's last collision. This last collision occurs, on average, 

within a distance of one electron mean free path 1  from F. In 

the normal skin effect (NSE) regime, where 6 / 1  >> 1 ,  conduction 

electrons are acted upon by essentially a constant electric 

field between collisons. We may therefore calculate j(i), the 

current density at i, assuming the electric field throughout the 

metal to be equal to E(3); ie, we can relate j(i) to E(3) 

locally through Ohm's Law (equation [1.1]). 

However, in the anomalous skin effect (ASE) regime, 

characterized by 6 / 1  I 1, the electric field is not constant 



over the distance 1 .  Ohms's Law is no longer valid and j(2) now 

depends non-locally on the rf electric field throughout a region 

of mean radius 1 about 3. This more general constitutive 

relation can be written aslo: 

where the integral extends over the volume Q of the metal. As 

mentioned in chapter 1 ,  is called the current kernel. 

Formally, the kernel is a Green's function that gives the rf 

current density at a point 3 in the metal due to a delta 

function rf electric field at f .  Weighting Z(3,x) with the rf 

electric field at T and-then integrating over T yields the net 

current density at 3 .  Physically, the kernel represents all the 

microscopic aspects of our problem, such as the form of the 

electron trajectories and the nature of the electron scattering 

processes. 

The geometry of the perpendicular configuration, and the 

cylindrical symmetry of our metal's spherical Fermi Surface, 

considerably simplifies the non-local current density C1.21. 

Specifically, all rf fields vary spatially in the z direction 

only and the symmetry of the Fermi surface prevents electric 

fields in the x and y directions from contributing to the 

current density in the z direction. Since jZ = 0 by L2.91 then 

it follows that EZ = 0 and the transverse components of j(z) may 



where the Kij(z,[) (i.j = x,y) are the transverse components of 

the cartesian current kernel Z(?,z). This kernel tensor 

diagonalizes in circularly polarized coordinates. Refering to 

figure 4, it's not too hard to see that the Fermi surface's 

symmetry about the z axis leads to the the relationships 

If we use L2.421 in L2.411 and [2.43] in [2.40], then multiply 

[2.411 by +i and add it to [2.40] we get the circularly 

polarized current densities 

where we have defined the circularly polarized current kernels 



Fig. 4 Diagram showing the transverse current response in the - 
slab pictured in figure 3 due to delta-function rf electric 

fields directed along the x and y axes. For a Fermi surface 

with cylindrical symmetry about the z axis we can see that the 

current densities generated by the electric fields will be 

related by Kxx(z,E) = K (z,E) and K (z,E) = -K (z,E). 
YY YX x Y 



The kernels K+(z,E) for our problem are calculated in - 
chapter 3. 

2.5 The Boundary Value Problem -- 

Combining the circularly polarized Maxwell's equations 

E2.171-[2.18] with the constitutive relations 12.341 and [2.44] 

yields two independent, second order, integro-differential 

equations for the rf electric fields E+(z) and E-(2); ie, 

combine to give 

where we have written 4riob+/c2 = [2iM+/(oo6g)l and used a - - 



prime ( ' )  to denote differentiation with respect to z .  The 

quantity So = c/(2?rwuo) is the classical rf skin depth for a 

nonmagnetic metal (p, = 1 ) . The skin depth is a measure of how - 
far an incident electromagnetic wave can propagte into a metal 

before suffering appreciable attenuation. In a good conductor, 

at room temperatures and microwave frequencies, 6, is the order 

of 1 Dm (see chapter 4). 

We now consider what boundary conditions to impose on the 

solutions of 12.461 at the z = 0 and z = d slab faces. In this 

thesis we shall be concerned with calculating the transmission 

through the slab for two important special cases: 

(I) A slab surrounded by free space and irradiated at 
normal incidence by a circularly polarized wave of 
frequency f = o/2a. 

(11) A slab surrounded by an anisotropic space and 
irradiated at normal incidence by a linearly polarized 
wave of frequency f = o/2w. 

In the perpendicular configuration, a positive (negative) 

circularly polarized incident wave will generate only positive 

(negative) circularly polarized transmitted and reflected waves. 

This considerably simplifes the interpretation of transmission 

features, particularly in our case where only the negative 

polarization is magnetically active (see section 2.3). 

However, real transmission experiments are not carried out 

using circularly polarized microwaves propagating in free space. 

The specimen is usually clamped between two microwave cavities 

and rectangular waveguides are used to feed microwaves into one 

cavity and pass the signal transmitted into the other cavity on 



to a detector34. Such cavities and waveguides are designed to 

allow microwaves of only one specific linear polarization at a 

given frequency f to propagate; waves of other polarizations are 

attenuated. While this provides a convenient method of 

delivering microwaves of a specific frequency and linear 

polarization to the front surface surface of the slab it also 

means that we can only measure one linearly polarized component 

of the transmitted and reflected waves (in the perpendicular 

configuration the two waves are, in general, elliptically 

polarized). The transmission calculated for case (11) can be 

made to correspond to this experimental situation. 

The boundary conditions associated with cases (I) and (11) 

are quite different from one another (see sections 2.5.1 and 

2.5.2). Fortunately, we do not have to solve [2.461 for each 

new set of boundary conditions. 

Consider the particularly simple set of boundary conditions 

which are very nearly the same as the boundary conditions 

corresponding to case (I) -- the transmission of a circularly 
polarized wave through a slab surrounded by free space (see 

section 2.5.1 and especially the discussion following equation 

r2.821). Let the solutions of [2.46] that satisfies [2.48] be 

G+(z) and G-(z) or, for brevity, G+(z). These particular - 
solutions have the interesting property that the electric fields 



E+(z) satisfying 12.461 and arbitrary values of h+(O) and h+(d) - - - 
can be written (see Appendix C) 

Hence, the solutions G+(z) can be used to solve any - 
boundary value problem we might care to construct. In 

particular, we can use them to solve the transmission boundary 

value problems associated with the cases (I) and (11) discussed 

above. 

BVP I : -- Circular Polarization, Free - Space 

The boundary value problem we wish to solve is shown in 

figure 5. The slab is surrounded by free space and the z = 0 

face is irradiated at normal incidence by either a positive or a 

negative circularly polarized wave of amplitude 

0 0 R R h+,E+. This gives rise to a reflected wave of amplitude h+,E+ at - - - - 
the z = 0 slab face and a transmitted wave of amplitude 

T T h+,E+ at the z = d face. In the perpendicular configuration, - - 
there is no mixing of modes; that is, a positive (negative) 

circularly polarized wave can only excite positive (negative) 

circularly polarized fields and currents in the slab. 

Therefore, the transmitted and reflected waves will be positive 

(negative) circularly polarized. 
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Fig. 5 The boundary value problem used to calculate the 

transmission of circularly polarized microwaves through a slab 

surrounded by vacuum. A circulary polarized wave is normally 

incident on the z = 0 slab face generating a reflected wave and 

a.transmitted wave. 



Now, from figure 5 we can see that the electric and 

magnetic fields just outside the slab are given by 

We can relate the electric field amplitudes to the magnetic 

field amplitudes. From [2.1]-[2.2], and the relations 

[2.13]-[2.16], we get Maxwell's equations for free space 

where, 

Waves propagating in free space in the +z direction will 



therefore have a harmonic dependence of exp[i(koz - wt)] and 
their electric and magnetic field amplitudes will be related by 

E, = rib, (forward waves) - 

Similarly, waves propagating in the -2  direction will have a 

dependence of exp[-i(koz + wt)] and 

E+ = fih+ (backward waves) - - 

Thus, 

where Zt is the circularly polarized wave impedance in free - 
space. 

Now, experimentally, one measures the transmission 

coefficients T+ and the reflection coefficients R+ defined by - - 



0 R T If we take h+ = 1 then h+ = R+ and h+ = T,. using this - - - - 
convention, and [2.60]-f2.621, we can re-write [2.52]-12.551 in 

terms of the transmission and reflection coefficients: 

Next, according to the general solution [2.51], the 

electric and magnetic fields just inside the slab are given by 

The continuity of the transverse fields E+(z) and h+(z) - - 
across the slab faces allows us to substitute [2.52], [2.66], 

[2.54], and [2.68] into [2.69] and [2.70] to get two 

simultaneous equations for R+ and T+ and two simultaneous 

equations for R- and T- in terms of the known quantities G+(O) - 



The solutions of these equations are 

We can simplify these solutions. Cochran has shownZ0 that 

if our slab is several t-imes thicker than the skin depth 6, and 

if the free space wavelength A of the incident radiation is much 

greater than 6,  then one can, to a good approximation, neglect 

products of two or more of the G+(O) and G+(d) (Our calculations - - 
for Nickel at 2 4  GHz have shown that IG+(O)I 2 and - 
IG+(d) 1 << JG+(O) I as long as d / 6  2 2  or 3 ) .  With this in mind, - - 



the exact solutions L2.731 and L2.741  reduce to 

Since IG+(O) I and IG+(d) 1 are both less than in our - - 
problem, the approximate expressions E2.751 and [ 2 . 7 6 1  are 

accurate to one part in a thousand. 

From [ 2 . 7 6 1  we see that R+ - 1 (ie, the metal surface at - 
z = 0 reflects nearly all of the incident wave). Experimentally 

one measures the difference between R+ and 1. One such - 
measure of this difference is the surface impedance 

defined by z+ 

S 
z+ = E+(O)/h+(O) - - 

Using [ 2 . 6 6 ]  and [ 2 . 6 5 ]  we get 

z z  = ?i(1 - R+)/(I + R+) - - - [ 2 . 7 8 1  

and if we substitute either form of R+ given by [ 2 . 7 6 ]  into - 



12.783 we get: 

This result may also be obtained directly from r2.691 since we 

can ignore the product of h+(d)G+(d) in comparison with - - 
h+(O)G+(O) (see r2.801 and 12.811 below). - - 

The electric field distribution in the slab is found by 

substituting r2.761 into r2.521, 12.751 into 12.541, and then 

inserting the resulting expressions into r2.511: 

We have two comments to make about the results of this 

section. 

First, we see that the values of G+(O) and G+(d) completely - - 
specify the experimentally measureable surface impedances 

= G+(O) and transmission coefficients T+ = +2iG+(d). It z+ - - - 
should be noted that it is also common to discuss the results of 

a transmission calculation in terms of the "transmission 

T impedancew, z , ,  defined in a manner analagous to the surface 

impedance: 



which, by (2.821 and (2.801, is just G+(d). - 
Second, we see from 12.801 and (2.811 that the boundary 

conditions appropriate for transmission into free space are very 

nearly equal to h+(O) = 2 and h+(d) = 0. This is the reason the - - 
functions G+(z), which satisfy the boundary conditions - 
h+(O) = 1, h+(d) = 0 come so close to describing the actual - - 
electric fields [2.82] in the slab. The rapid variation of 

h+(z) across the slab is due to the tremendous mismatch between - 
the impedance of free space and the impedance in the metal. In 

free space, 

lE+/h+l = 1 (see (2.601) while in the metal, IE+/h+l <c 1. When - - - - 
a wave of unit amplitude is normally incident on the front of 

the slab, nearly all.of the wave is reflected. By 12.661 and 

(2.651, this leads to h+(O) 2 and E+(O) << 1. A small portion - - 
of the incident wave propagates through the slab and transmits 

out into free space at z = d. This requires I~+(d)/h+(d)l = 1. - - 
Since E+(O) << 1 , we must have E+(d) << 1 and h+(d) << 1. This - - - 
leads directly to the approximate boundary conditions h+(O) = 2 - 
and h+(d) = 0. - 



2.5.2 BVP 11: Linear Polarization, Anisotropic Space --- 

We now wish to solve the boundary value problem shown in 

figure 6. The slab is surrounded by an anisotropic medium and 

irradiated at normal incidence by a linearly polarized wave of 

0 0 amplitude hy, Ex. In general, there will be two orthogonal, 

linearly polarized transmitted waves and, similarly, two 

reflected waves (ie, the net transmitted and reflected waves are 

elliptically polarized). See figure 6. 

In an anisotropic medium the impedance of' a given wave 

depends on the wave's polarization. For our case, we shall 

assume that in the medium occupying the half space -a < z I 0, 

the wave impedances of waves propagating in the +z direction, 

and corresponding to the orthogonal polarizations shown in 

figure 6, are given by 

(forward propagating waves in the space -- < z I 0) 

where 2, and 2, are, in general, complex numbers. Similarly, in 

the space d I z < a, we shall assume that the wave impedances of 

the waves propagating in the +z direction, and corresponding to 

the orthogonal polarizations shown in figure 6, are given by 



Fig. - 6 The boundary value problem used to calculate the 
transmission of linearly polarized microwaves through a slab 

surrounded by an anisotropic medium. A Linearly polarized wave 

is normally incident on the z = 0 slab face generating a pair of 

orthogonal reflected G v e s  and a pair of orthogonal 

transmitted waves. 



(forward propagating waves in the space d I z < -)  

where Po and 6, are also, in general, complex numbers. 

We have written the wave impedances in this form for two 

reasons. First, we can recover the case of a slab surrounded by 

free space simply by setting Zo = Z1 = 1 and Po = D l  = 1. 

Second, to model an actual transmission experiment (where the 

waves propagate in rectangular waveguides) we need only replace 

Zo with the impedence of the waveguide's propagating 

polarizatiop and 2, with the impedance of the waveguide's 

non-propagating polarization. Also, in order to account for 

transmission into a resonant microwave cavity, we equate Po and 

0, with the cavity amplitude factors. Cochran, Heinrich, and 

~ e w a r l ~  have discussed how to calculate the values of Zo, Z 1 ,  

po l  and 0,. These authors found that a set-up that measures the 

the transmission of 24 GHz radiation through thin slabs used to 

form a common end wall between two microwave cavities could be 

described by Zo = 1.23, Z1 = -5i, Po = 2.32 x 1 0 - ~ ,  and 0, = 1. 

To solve the linearly polarized boundary value problem 

posed in figure 6 we proceed in much the same way as we did in 

section 2.5.1. We start by defining the experimentally 

measurable reflection and transmission coefficients 



R, r, T, and t: 

We then assume ho = 1 and write down the net electric and 
Y 

magnetic fields just outside the slab faces in terms of the 

reflection and transmission coefficients and the wave 

impedances. Refering t~ figure 6 we find: 

Ex(d) = BoZoT: Ey(d) = -61Ztt l2.91 I 
Next, using 12.131 and [2.15], we convert [2.88]-[2.91] to 



circularly polarized form: 

h+(O) = - 

To obtain exact expressions for R, r, 

L 2.92 I 
L2.931 

[2.941 

l2.951 

T, and t in terms of 

the known quantities G+(O) and ~+(d) we substitute (2.921-[2.951 - - 
into the general sblutions 

E+(O) = h+(O)G+(O) - h+(d)G+(d) - - - - - L2.691 

E+(d) = h+(O)G+(d) - h+(d)G+(O) - . - - - - i2.701 

This results in four simultaneous equations for the four 

reflection and transmission coefficients. The solutions are 

extremely complicated and contain many terms. However, the 

solutions may be considerably simplified if we assume, as in 

section 2.5.1, that IG+(d)l S IG+(O)I cc 1. - - 
The simplification process is tedious and error prone. 

Fortunately, there is a much easier way to derive simplified 

forms for the reflection and transmission coefficients. 



Equations [2.93] and [2.95] can be used to express the 

transmission and reflection coefficients in terms of the 

circularly polarized electric fields at z = 0 and z = d: 

Now, the electric fields E+(z) generated in the slab shown - 
in figure 6 are due to a linearly polarized incident wave of 

0 unit magnetic field amplitude h = 1. 
Y 

By h+ = hx + ih we see - Y 
that this is equivalent to saying that the electric fields E+(z) 

- .  

were generated in the slab by two circularly polarized incident 

0 waves of magnetic field amplitudes h+ = +i. .But we know from - 
section 2.5.1 that circularly polarized incident waves of 

amplitude hy = 1 generate electric fields 2G+(z) (see E2.821). - - 
Hence, the electric fields generated by incident waves of 

amplitude ho = &i are just E+(z) = f2iG+(z). Using these + - - 
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results in the approximate expressions E2.961-[2.99] yields 

and these are the same expressions that we worked out by 

simplifying the bulky exact expressions for R I  r, TI and t (we 

will not be presenting the details of the tedious simplification 

process). 

We can go even further. From equations [2.75] and [2.761 

we have the circularly p-olarized transmission and reflection 

coefficients defined by 

using these to elliminate G+(O) and G+(d) from [2.1001-[2.103] - - 
allows us to express the linearly polarized reflection and 

transmission coefficients in terms of the circularly polarized 



coefficients: 

R (1 - 1/20) + [R+ + R-]/(2Zo) 

2.6 Chapter Summary - 

A lot of material has been covered in this chapter and it's 

worthwhile to collect all the results in one place. 

We have a metal with a spherical Fermi surface that 

magnetically resembles ~ickel. We wish to calculate the 

microwave transmission through a slab of the material for the 

case where a d.c. magnetic field Ho is normal to the plane of 

the slab (the perpendicular configuration) and the electron mean 

free path I in the metal is much greater than the rf skin depth 

6. This requires us to calculate the rf electric field in the 

slab and to solve an appropriate transmission boundary value 

problem. The boundary value problem was formulated as follows: 



Maxwell's Equations 

In section 2.2 we found that the geometry of the 

perpendicular configuration reduced Maxwell's equations to 

where we have expressed the equations in circularly polarized 

coordinates (see Appendix B). 

The Constitutive Relation between 5 and 

In section 2.3, the material equation linking b+ to h+ was - - 
derived from the Landau-Lifshitz equation of motion for the 

specimen's precessing magnetization vector R .  In Nickel, at 

24 GHz, only torques due to H,, the demagnetizing field, 

magnetocrystalline anisotropy, and magnetic damping need to be 

included in the equation of motion. Torques due to exchange and 

diffusion are negligible and can be ignored. Assuming H, 

saturates the specimen, we found that the desired constitutive 



relation between b+ and h+ could be written as - - 

where, 

- 5 Q/Y - i(Q/y)(G/yMs) 
- 

P~ 
L2.311 

+ Q/Y - - i (u/y) (G/yMs) 

(all quantities in L2.311 are defined in section 2.3 and in 

Appendix A). 

The Constitutive Relation between 7 and 

When the electron mean free path I exceeds the rf skin 

depth 6, the rf current-density 5 depends on the electric field 
distribution throughout the slab. If we assume that the metal's 

Fermi surface is cylindrically symmetric about the normal to the 

plane of the slab we found in section 2.4 that we could write 

the material equation linking j to E+ as 
2 - 

where the K+(z,t) are the circularly polarized kernels defined - 



where the Kij(z,E) (i,j = x,y) represent the rf current density 

generated in the jth directian at a depth z in the slab due to a 

delta function rf electric field sheet in the ith direction at a 

depth E in the slab. The form that the kernels K+(z,[) take in - 
our problem are discussed in chapter 3. 

The Boundary Value Problem for $ 

In section 2.5 we combined Maxwell's equations with the 

constitutive relations to arrive at the following boundary value 

problem for E+(z): - 

where So = c/(2moo) is the classical rf skin depth for a 

nonmagnetic metal ( P +  = 1 ) - 
We imposed the boundary conditions [2.48] because 

G+(z), the solutions of L2.461 which satisfy these boundary - 
conditions, can be superposed to generate the electric field 

distributions E+(z) that satisfy arbitrary h+(O) and h+(d) (see - - - 
Appendix C ) ;  viz, 



BVP I: Transmission of Circularly Polarized Radiation into Free -- - -- 
S ~ a c e  

In section 2.5.1 we solved the boundary value problem 

corresponding to the transmission of a circularly polarized wave 

through a slab surrounded by free space (see figure 5). The 

circularly polarized transmisson and reflection coefficients 

were found to 'be 

R 0 
R, = h,/h, * 1 ? 2iG+(O) - L2.761 

(provided that the slab was 2 or 3 times thicker than the rf 

skin depth 6 -- see section 2.5.1, after equation L2.741). 

BVP 11: Transmission of Linearly Polarized Radiation - 
into an Anisotropic Space 

In section 2.5.2 we solved the boundary value problem 

corresponding to the transmission of a linearly polarized wave 

through a slab surrounded by an anisotropic space 



(see figure 6). This corresponds to the experimental situation 

where the microwaves are contained in rectangular waveguides. 

The linearly polarized transmission and reflection coefficients 

were found to be 

(where, again, the slab must be two or three times thicker than 

the rf skin depth for the expressions to be valid). 

In [2.100]-[2.1031, Z0 is the wave impedance of the 

propagating mode in the waveguide, Z 1  is the wave impedance of - 
the non-propagating mode, P o  is the cavity amplitude factor 

associate with the propagating mode, and P 1  is the amplitude 

factor associated with the non-propagating mode. ( P o  and P 1  

were included to account for transmission into a resonant 

microwave cavity -- see section 2.5.2 for details). For a 

system designed to measure the transmission of 24 GHz microwave 

radiation3u, Zo = 1.23, Z1 = -5i. P o  = 2.32 x 1 0 - ~ ,  and 0,  = 1. 



3. CALCULATING THE CIRCULARLY POLARIZED KERNELS 

3.1 Introduction - 

In section 2.4 of chapter 2 we found that the non-local 

constitutive relation between j(z) and E(z) in our slab could be 

written as 

where K+(z,C) are the circularly polarized current kernels. For - 
a metal having a Fermi surface that's cylindrically symmetric 

about the z-axis, the kernels can be defined by 

where Kxx(z.C) and K ( z , E )  are the current densities generated 
YX 

in the x and y directions, respectivly, at a point z due to a 

delta function rf electric field in the x direction at a point 

4. (see fig 4 on p. 31). 

Using the current density expression [2.44], we were able 

to construct a general boundary value problem for the electric 
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fields E+(z) in the slab (see section 2.6 in chapter 2). - 
However, we cannot solve the boundary value problem until we 

know the precise form of the kernels K+(z,t). - 
As mentioned in section 2.4, the kernels contain all the 

microscopic aspects of a given problem. In particular, they 

depend on the type of scattering the conduction electrons 

undergo at the surfaces of the slab. In this thesis, we wish to 

solve the boundary value problem for E+(z) in a metal with a - 
spherical Fermi surface and for the two cases of specular and 

diffuse surface scattering. For diffuse surface scattering we 

can to show that the kernels K,(z,[) are identical to the - 

kernels ~Y(2.t) calculated for an infinite metal with a d.c. - 
magnetic field directed along the z axis (see section 5.2 of 

chapter 5). For specular scattering we can show, using 

arguments similar to those of Platzmann and Buchsbaum2', that 

the current densities j+(z) can be correctly calculated using - 
the expression 

provided j+(z) and E+(z) are made even functions of z and - - 
periodic with period 2d. (see section 6.2 of chapter 6). This 

makes the specular scattering problem amenable to solution by 

fourier transform methods(see section 6.3). 

Both of our problems can therefore be solved using the 

kernels for an infinite medium. In the present work we 



calculate the kernels semi-classically using the method of 

Cohen, Harrision, and Harrison26 to solve the Boltzmann 

transport equation. Our approach is different from those 

previously publishedloa 22  in that the kernels ~ y ( z , t )  are - 
calculated directly from the definition r2 .451 ;  ie, we determine 

the current response in the x and y directions at a general 

point z in the slab due to a delta function electric field in 

the x direction at a point 5 .  

Usually, the kernels associated with a given problem are 

calculated indirectly, using one of two techniques. The first, 

due originally to Reuter and SondheimerlO, assumes that the 

metal contains arbitrary electric fields E+(z) and determines - 
the general current gesponse j+(z) using, for example. Chamber's - 
methodla to solve the Boltzmann transport equation. The 

resulting expression for j+(z) is then manipulated until it - 
resembles l 2 . 4 4 1  and the kernels are obtained by inspection. 

The second effectively calculates the space and time 

fourier transform of the kernels by determining the current 

response when the electric field in the metal varies as 

exp(ikz - iot). The fourier transform of K:(Z,I) is commonly - 
labelled o+(k,o) and is refered go as the frequency and - 
wavenumber dependent conductivity tensor. The tensor plays a 

central role in the solution of problems involving specularly 

scattering surfaces10415J21 

We present our simple, direct solution for the kernels in 

section 3.2. In section 3.3 we derive a sum rule that enables 



us to check if the kernels have been calculated correctly. 

Finally, in section 3.4 we fourier transform the kernels and 

recover the frequency and wavenumber dependent conductivity 

tensor o+(k,o) for a metal having a spherical Fermi - 

It should be noted that the direct solution can be readily 

adapted to handle any Fermi surface that has cylindrical 

symmetry about the z axis. 

3.2 The Kernels in an Infinite Medium -- -- 

Consider an infinite conducting medium having a d.c. 

magnetic field H dircted along the z axis. According to the 

definition [2.45], the kernels K:(z,~) in this medium will be - 
given by 

OD 
where K~,(Z,~) and KO (z,E) are the current densities jx(z) and 

YX 
j (z) due to the delta function electric field E(z) = 6(z - 
Y 
(the time dependence is assumed to be exp(-iwt)). Our problem, 

therefore, is to determine the curtent responses jx(z) and j (2) 
Y 

due to the electric field E(z). 

Two properties of the kernels substantially reduce the 

amount of work we must do. First, the current response at a 

point z only depends on the distance between z and 5; ie, the 



kernels in this medium are translationally invariant: 

w 
~:(z,t) - = K+(z-t) - [ 3 . 2 1  

We may therefore put the delta function electric field at z = 0 

instead of z = 5 with no loss of generality. 

Second, when calculating the kernels we found that the only 

difference between the kernels calculated for H = 0 (ie, no 

magnetic field along the z axis) and the kernels calculated for 

H # 0 is that everywhere the frequency o of the electric field 

appears in the H = 0 kernels, the factor o f oc appears in the 

H # 0 kernels. Here, oc is the cyclotron frequency defined by 

where oc is in rad/sec, e = l e i  is the charge on the conduction 

electrons in esu, H is the d.c. field in Oersteds, m* is the 

effective mass of the conduction electrons in gm, and c is the 

speed of light in cm/sec. We can therefore calculate the 

kernels for the simpler case of H = 0 and then generalize the 

result to H f 0. 

With this in mind, we consider the problem shown in 

figure 7 where an infinite conducting medium contains only the 

delta function electric field 



Fig. - 7 The ~nfinite Medium Problem used to calculate the 
kernels K;(Z,E). The metal has a delta function rf electric - 
field in the x direction at z = 0. We wish to calculate the 

current response at a general point 2 , .  



Now, the current response at the point z, at time t is 

given by the semi-classical expression32 

where g(z,E,t) is the deviation of the electron distribution 

function f(?,E,t) from the equilibrium Fermi-Dirac distribution 

function fo for electrons of wave-vector I?, velocity G I  and 

position z at time t. The integral in T(z,t) is over all 

k-space. 

The distribution fuction g(z,E,t) is obtained from the 

Boltzmann transport equation, in the relaxation time 

approximation", using the method of Cohen, Harrison, and. 

~ a r r i s o n ~ ~  (see Appendix Dl: 

where 7 is the relaxation time (the mean time a conduction 

electron can travel before suffering a collision) and d[Ae(t')l 

is the energy picked up by an electron in the infinitessimal 

time interval [t',t1+dt'] as it travels along the unperturbed 

trajectory To that passes through the phase space point (z,E) at 

time t. The trajectory To is the path that electrons would take 

to reach (z,E) at time t if E(z,t) = 0. In [3.7], (z',E1) is 



the position of an electron on To at a time t' < t. 

To calculate ?(z,t) at a point z, we must first define the 

unperturbed trajectory To. Note that we need only consider 6 

values on the Fermi surface because the term (afo/ae) in 

g(2.E.t) is very nearly -6(e-eF) where eF is the Fermi energy. 

This restricts the k-space integral in T(z,t) to an integral 

over the Fermi surface. 

Now, our metal has a spherical Fermi surface. When 

E(z,t) = O, both the wave-vector E and the velocity 3 of an 

electron on the Fermi surface will be constant' in time (ie, the 

electrons will travel along straight line trajectories in the 

slab). The E and ? vectors are related by 

m*? = KE 

and their magnitudes are = vF and [El = kF where 

and n is the number density of the conduction electrons 

(typically, n 1 10" cm-3 so kF = 10' cm-8 and vF 

l o 7  cm/sec.). We shall write the E vector of an electron 

passing though (z,,t) as 



where 8 is the angle E makes with the z axis and Q is the angle 

that the projection of onto the x-y plane makes with the x 

axis (see fig 7). The associated velocity vector is just 

The expression for vZ gives us the particular straight line 

trajectory To that passes through (zl,t): 

where z' is the position of the electron along To at any time 

tl. 

Let us now apply the method of Cohen, Harrison, and 

Harrison to calculate the current response at 2 , .  Note that in 

fig 7 we have explicitly chosen z 1  > 0. The derivation we are 



about to give is valid for any value of z, (positive or 

negative) up until the final stages of calculation. Using the 

electric field expression [3.41 in [3.7] yields: 

d[Ae(tV)l = -evx(%')6(z1)e -iot' dt' 

The k-vector is a constant along the trajectory so 

vx(E') = vx = vFsin8cos# and 

The delta function 6(z1) must now be written in terms of t'. 

Using the definition of z' (equation [3.171) and the delta 

function property 

we get 

where 

t, = t - z,/(v~cos~) f3.211 

is the only root of z'. Inserting [3.20] in d[Ac(tV)] yields 



The distribution function g(z,E,t) is obtained by inserting 

[3.22] into C3.61 and carrying out the t' integration. The 

result is 

where 

Sine cosm e - [  1-i~~lzl/(lcos~) 
g(z13) = e(afo/ad -pq L3.241 

and we have defined the electron mean free path 1 by 

The current response in the x and y directions at z, are 

now given by L3.51, 

Where we have suppressed the common exp(-iwt) time dependence of 
-. 
j(z,,t) and g(zl,E,t). 



w 
In our case. jx(z) = Kxx(z,E) and j (z) = Ka (r.E). 

Y YX 
CEI a a 

Since K+(z,[) = Kxx(z,E) k iK (2.t) we can write down the - YX 

circularly polarized kernels as 

where v = v 2 iv . Using the definitons of vx and v given by 2 X Y Y 

[3.14] and [3.15], 

The circularly polarized kernels are therefore 

where we have written (af,/as) as -6(e-eF). We evaluate the 

integral in spherical polar coordinates (dE = k2sin9dkd9dd). 

For a metal with a spherical Fermi surface, 

( E  - eF) = (K2/2m*)(k2 - kF2) 

so; by [3.19], 



and K:(z,) becomes 

where we have used the relations vF = (K/m*)kF, kF3 = 3azn, 

1 = vFe7, and the definition of the d.c. conductivity o,, 

to re-write the leading coefficient in the form shown. The 

integral over 4 in L3.311 is equal to a. One must be careful 

with the integral over 8 because the limits depend on the value 

of z,. When z, > 0, only electrons with vZ > 0 will cross the 

delta function electric field and contribute to the current 

response at-z, (see fig-7). Thus, when z, > 0, 0 i 8 I r/2 and 

) C O S ~  1 = cose. When z ,  < 0, a/2 2 e I x and lcose 1 = -cose. 

Consider the case where z, > 0, 

0 

Changing variable to y = l/cose (sinede = dy/y2) yields 

I 

On the other hand, when z, < 0, 



and changing variable to y = -l/cose (sinede = -dy/y2) yields 

Hence, for all z, we can define the circularly polarized 

kernels as 

The kernels are even functions of z. This is to be expected 

because of the symmetry-of the spherical Fermi surface (the 

distribution of electrons with vZ > 0 that generate currents in 

the space z > 0 looks the same at the distribution of electrons 

with vZ < 0 that contribute to the currents in the space z < 0 ) .  

Now, by translational invariance, if the delta function 

electric field is at z = E ,  the kernels are given by 

I 

and we may account for a d.c. magnetic field H along the z axis 

simply by replacing o by o 2 wc 

Hence, the circularly polarized kernels K;(Z, [) are - 



3.2.1 A Closed Form for the Kernels - -  --- 

We can write K:(Z,~) in closed form with very little - 
effort. Define a variable x as 

(where the + subscript on x is suppressed). We write the 

kernels in terms of this new variable: 

Integrating the second term twice by parts yields 

where E,(x) is the exponential integral for a complex argument: 

The exponential integral is discussed in appendix E. The 

integral exists and is analytic for all x except when ~e[xl < 0 

(E,(x) goes to infinity at x = 0). From the form of x we see 



that R ~ [ x ]  = Iz-EI/l which is never negative and zero only when 

z = t .  The kernels K;(z,[) are therefore well defined for all - 
( z , E )  and infinite at z = t .  

3.3 A Sum Rule to Check the Kernels ------- 

There is a simple way to check if we have obtained the 

correct form of the kernels K:(z,[). I f  we assume that our - 
infinite medium contains arbitrary electric fields E+(z) then - 
the current response throughout the metal would be given by 

However, if the amplitude of E+(z) were a constant throughout - 

0 all space (ie, E+(z) = E,) then j+(z) would be. locally related - - - 
to E+(z) by the a.c. conductivity o(wfoc) defined by - 

and we could write 

Results [3.40] and r3.411 are derived, for example, in chapter 1 

of the solid state text of Ashcoft and M e r m i ~ ~ ~ ~ .  We can also 

derive it using the methods presented in section 3.2 (we need 



only replace the delta function electric field used in section 

3.2 with the spatially constant electric field 

E(z,t) = E,%exp(-iot)). 

0 But the current response generated by E+ should also be - 
given by 

~quating [3.41] and L3.421 gives the sum rule: 

Let us evaluate the integral in L3.431. The easiest way to 

do this is to use the integral form [3.35] of the kernels 

~;(z,f), change variable from f to s = f - z ,  and do the - 
integral over s before the integral over y: 

CO a0 
S 

, L A X r Y  

- - -=Ji;dq Lt -Q (i-+) I Jds e 
1 0 



and our kernels do indeed satisfy the sum rule. 

3.4 The -- Conductivity Tensor 

When we are solving for the rf electric fields in our slab 

under specular surface scattering conditions we will need to 

calculate the frequency and wavenumber dependent conductivity 

tensor o+(k,w) which can be defined as the fourier transform of - 

K~(IZI); - ie, 

The form of o+(k,w) is well knownz5 and can be obtained, - 
for example, by calculating the current response in an infinite 

metal due to an electric field that varies in time and space as 

exp(ikz - iwt). We re-derive o+(k,o) here for completeness. - 
Taking into account the absolute value sign in the kenrel 

argument we write: 

If we use the integral form 13.351 of the kernels in [3.46] and 

carry out the integration over z first. The result is 



where v+ = ikl/[l-i(okwc)r]. If we now let x = 1/y then [3.47] - 
becomes 

The integrands in L3.481 may be simplified using long division. 

The resulting integrands can be easily integrated out to get: 

where 

and this is precisely the same form of u+(k,w) obtained by other - 
authors. 

3.4.1 Limiting Forms of k(y) -- 

The function k(y) takes on particularly simple forms in the 



two limits y << 1 and y >> 1 .  

Limit: y 2 

The logarithm in k(y) can be expanded in the Taylor series: 

hence, as y -f 0, we can write 

Substituting this into [ 3 . 5 0 ]  yields 



Limit: y 2 1 

When y >> 1 we can write 

Substituting this into L3.501 and keeping terms to first order 

in l / y  yields: 



4. SOLUTION IN THE NORMAL SKIN EFFECT REGIME 

4.1 Introduction - 

In this chapter we solve for the electric fields in the 

slab in the normal skin effect (NSE) regime where 6/1 >> 1 and 

the current densities j+(z) are locally related to the electric - 
fields E+(z) by Ohm's Law: - 

While this problem has been considered in detail by several 

a ~ t h o r s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ >  there are two useful reasons for solving 

it again in our notation. First, the NSE solutions provide a 

valuable check on the electric fields found by solving the 

boundary value problem of chapter 2 for specular and diffuse 

surface scattering. (the latter solutions, which are valid for 

any 6/1 ratio, must reduce to the simpler NSE results when we 

set 6/1 >> 1). Second, it's a good idea to review the behaviour 

of the transmission coefficients T+ and surface impedances zs in - f 

- the NSE regime for the benefit of readers unfamiliar with the 

usual microwave transmission theory. 

The electric field solution is covered in section 4.2 while 

the NSE transmission theory is reviewed in section 4.3. 



4 . 2  The NSE Solutions --- 

In chapter 2  we found that the electric fields in our slab 

could be described by the boundary value problem: 

where differentiaton with respect to z is denoted by a prime ( ' 1  

and the magnetic fields h+(z) are related to the electric fields - 

Replacing the non-local current density [ 2 . 4 4 ]  with Ohms's Law 

i 4 . 1 1  yields a second order differential equation for E+(z): - 

(for simplicity, the f subscripts have been suppressed on E+(z) - 



The solutions of [4.3] are 

where A and B are constants and 

The corresponding magnetic fields in the slab are given by 

14-21, 

(again, + supscripts are 'omitted for simplicity). 
The boundary conditions h+(O) = 1 ;  h+(d) = 0, and equation - - 

14.61, determine A and B; that is 

gives us 



Following the notation of chapter 2, we shall refer to the 

electric field solutions that satisfy the boundary conditons 

[2.48] as G+(z). Substituting L4.71 and [4.8] into [4.4] shows - 

or, since 

we can write G+(z) as - 

(all + subscripts restored). 
The circularly polarized transmission coefficients T+ and - 

surface impedances zS are now calculated using equations [2.75] 
2 

and L2.791 (see section 2.5.1): 



4.3 Predictions of the NSE Transmission Theory - --- 

Microwave transmission experiments are usually carried out 

in the thick slab limit where d/6 >> 1 (in Nickel, at 24 GHz, 

6, 5 0.8 pm while d is the order of 5 pm or more -- thinner 

slabs are very difficult to fabricate). When d/6 >> 1 ,  the NSE 

expresions for T+ and zS become - ?r 

(for large x, sinh(x) = exp(x)/2 and coth(x) * 1) 

Only the permeabilities P+ vary with the d.c. magnetic - 
field Ho; p+ exhibits a monotonic variation with Ho (see 

figure 8) while p- goes through a minimum when Ho corresponds to 

FMAR and a maximum when Ho corresponds to FMR+ (see figure 9). 

4.3.1 Variation -- of NSE Surface Impedance with Magnetic Field 

The surface impedances zs vary as the square root of the 
k 

permeabilities p,. Since p+ varies monotonically with H,, so - 
S will z: (see figure 10). In contrast, z- (which depends on the 

magnetically active permeability 

'1n Nickel, at 24 GHz, 1-(FMAR) = 0.03i while p_(FMR) - 32i. 



Fig. - 8 Variation of the positive circularly polarized 

permeability p+ with Ho in Nickel at 24 GHz. The plot was made 

using equation [2.31] from section 2.3 and the Nickel parameters 

of ~ppendix A. Note that p+ exhibits only a slow, 

monotonic variation with Ho. 



Fig. - 9 Variation of the negative circularly polarized 

permeability p- with Ho in Nickel at 24 GHz. The plot was made 

using equation L2.311 from section 2.3 and the Nickel parameters 

of Appendix A. Note that p- goes through a minimum when 

Ho corresponds to FMAR and a maximum when H, corresponds to FMR. 



M - )  goes through a minimum at FMAR and a maximum at FMR (see 

figure 11). 

4.3.2 Variation of NSE Transmission -- 
Field 

The permeabilities p+ directly - 
microwave radiation into the slab. 

Coefficient 

control the 

with Maqnetic - 

penetration of 

If we let d/6, become very 

large then the electric fields G+(z) near the z = 0 face of the - 
slab can be written as 

Hence, in a very thick slab the electric fields G+(z) decay - 
exponentially near the front surface with a characteristic decay 

length 

which we identify as the effective NSE skin depth 6 in a 

ferromagnetic metal .. 
Since p+ decreases slowly and monotonically, with Ho then 

6 ,  will slowly increase with Ho; the penetration of positive 

circularly polarized radiation into the slab will tend to 

increase with Ho. However p- has a strong Ho dependence. Near 

FMAR (where p- is small and imaginary) 6- goes through a 



Fig. - 10 Variation of the positive circularly polarized surface 

S impedance lz+l with H,. The plot was make using the thick slab 

expression [ 4 . 1 4 ]  and the parameters of Appendix A. The 

amplitude of 2: exhibits only a slow, monotonic variation with 

Ho 



Fig. - 1 1  Variation of the negative circularly polarized surface 

impedance lz:l with H,. The plot was make using the thick slab 

expression [ 4 . 1 4 ]  and the parameters of Appendix A. The 

amplitude of zf goes through a minimum at FMAR and a maximum at 

FMR . 



maximum, becoming several times larger than 60. Hence, negative 

circularly polarized radiation penetrates much deeper into a 

ferromagnetic metal at FMAR than into a non-magnetic metal. On 

the other hand, at FMR (where p- is large and imaginary) 6- goes 

through a minimum, becoming several times smaller than 60. At 

FMR, negative circularly polarized radiation is virtually 

excluded from a ferromagnetic metal. In Nickel, at 24 GHz, 

6, * 0.8 fim while 6-(FMAR)/60 * 4 and G-(FMR)/S, * 0.125 

The depth to which incident radiation can penetrate into a 

metal slab before suffering appreciable attenuation has a direct 

bearing on the transmitted signal. In figure 12, we plot I T + ]  
against Ho for a 5 pm thick slab of Nickel using [4.15] and the 

parameters of Appendix A. As the effective rf skin depth 6, 

increases monotonically with Ho, so does the transmission. In 

figure 13, we plot IT-I against Ho for a 5 pm thick slab. The 

curve goes through a strong maximum at FMAR (where the skin 

depth 6- is a maximum) and a deep minimum at FMR (where the skin 

depth is a minimum). 



Fig. - 12 Variation of the positive circularly polarized 

transmission coefficient I T + I  with H,. The plot was make using 

the thick slab expression [ 4 . 1 5 ]  and the parameters of ~ppendix 

A. The slab was assumed to be 5 km thick. The amplitude of T+ 

exhibits only a slow, monotonic variation with H,. 



Fig. - 13 Variation of the negative circularly polarized 

transmission coefficient I T - 1  with Ho. The plot was make using 

the thick slab expression [4.15] and the parameters of Appendix 

A. The slab was assumed to be 5 um thick. The amplitude of T- 

goes through a strong maximum at FMAR and a deep minimum at FMR. 



5. ELECTRIC FIELD SOLUTION FOR DIFFUSE SURFACE SCATTERING 

Introduction 

The general solution of the boundary value problem 

satisfied by the rf electric fields E+(z) in our slab has - 
already been worked out in detail by Baraff 2 2 J 2 3  and 

others40a4' for the case of diffuse surface scattering of the 

conduction electrons. However, the methods of solution are 

extremely complex and generally involve some sort of iterative 

process that converges like exp(-d/l). While the solutions have 

proven useful for determining various properties of the electric 

fields in the d/I >> 1 limit, they are unsuitable for 

calculating the electric field distribution across the slab for 

t arbitrary 6/1 and slab thickness d . 
In view of this, we present an alternate method of 

solution. We solve the boundary value problem numerically, 

calculating the electric fields E+(z) approximately over a - 
uniform grid of N+l equally spaced points across the slab. In 

contrast to the analytic solutions, the numerical solution is 

easy to implement, valid for any 6/1 ratio and slab thickness d, 

t~erhaps the best way to appreciate the difficulties involved in 
trying to implement one of the analytic solutions is to work 
through one of the papers of Baraff22a23 



and readily extendable to include, for example, the effects of 

exchange or a different Fermi surface. 

Our numerical solution is carried out in several steps. We 

begin in section 5.2 by writing out the boundary value problem 

for E+(z) that was derived in chapter 2. We then show that the - 
kernels K+(z,t) appropriate for a slab with diffusely scattering - 

faces are identical to the infinite medium kernels KT( lz-ti ) - 
discussed in chapter 3. 

In section 5.3 we reduce the second order, integro- 

differential equations for E+(z) into a set of simultaneous - 
equations for the electric field points across the slab. 

The boundary conditions are incorporated into the equations in 

section 5.4. We show how a change in the boundary conditions 

from h+(O) = 1 ,  h+(d) = 0 to E+(O) = 1 ,  h+(d) = 0 reduces the - - - - 
number of equations we must solve. 

The coefficients of the simultaneous equations consist 

mainly of terms involving the integral of KT( Iz-tI) over z and - 
t. Symmetry relations amongst the integral terms are considered 

in section 5.5 while the various integrals are worked out in 

section 5.6. In section 5.7 we check to make sure we can 

recover the NSE solutions of chapter 4 from our numerical 

solution when the mean free path 1 and relaxation time T go to 

zero. In section 5.8 we consider how to calculate the magnetic 

fields h+(z) and curre.nt densities j+(z) in the slab. Finally, - - 
in section 5.9, we consider the implementation of the numerical 

solution on a computer and discuss the convergence properties of 



the solution. 

5.1.1 Summation Convention 

When we are developing the numerical solution to the 

boundary value problem we will frequently be writing equations 

that contain sums of the form 

which we can write in the short notation 

An even shorter notation is to simply write the sum as 

where we have adopted the convention that whenever an index is 

repeated in a given product we are to sum over the index. For 

example, the product I E. is summed over j from 0 to N. This 
ij J 

is called the Einstein summation convention. Whenever we write 

an expression using the summation convention we shall explicitly 

state the limits on the sum. 



5.2 The Boundary Value Problem for Diffuse Scatterinq -- - 

We wish to solve the following boundary value problem for 

the rf electric fields E+(z) in our slab: - 

where the prime denotes differentiation with respect to z and 

K+(z,t) are the current kernels discussed in section 2.3 of - 
chapter 2. 

Before we can begin the solution., we need to know the form 

of the kernels. When the faces of the slab scatter electrons 

diffusely, the kernels K+(z,[) in 12.441 are just KT( lz-g~), the - - 
kernels we calculated in chapter 3 for an infinite medium. To 

see this, we refer to figure 14 where an infinite conducting 

medium is shown with a d.c. magnetic field Ho directed along the 

z axis (note that for simplicity we have ignored curvature of 

the electron trajectories due to Ho in figure 14). 

In the absence of any electric fields and thermal 

gradients, the electrons in the infinite medium will be in 

thermal equilibrium with their surroundings; ie, their phase 

space distribution. function f(3,E,t) is just the Fermi-Dirac 

dis trubut ion function f,. 



Del ta  Function 
E lec t r i c  Fie1 

I n f i n i t e  
Medium z = 0 

Electron T r a j e c t o r y  
X 

+- Di f fuse  
Surf  ace 
Sca t te r ing  

z 

F i n i t e  
Slab 

Fig. - 14 The equivalence of a slab with diffusely scattering 

faces and an infinite medium. Inserting diffusely scattering 

boundaries at z = 0 and z = d in an infinite medium leaves the 

current response K:( l z - t l )  invariant in the region 0 S z S d - 
provided 0 S E S d. This correspondence only occurs in the 

- perpendicular configuration where H, does not affect the motion 

of electrons in the z direction 



Suppose we place a delta function electric field sheet at a 

point z = . 5  (0 S 5 S d) and calculate the current response 
OD 

K+(Iz1-[l) at a point z1 > 5 (0 5 z1 I d l .  Only electrons from - 
the region z < 5 with vZ > 0 can pass through the electric field 

sheet and contribute to the current response at z,. All other 

electrons that pass through z1 wiil remain in thermal 

equilibrium with their surroundings, continue to obey the 

Fermi-Dirac distribution function, and not contribute 

to K;(~Z~-E~). - 
If we now insert diffusely scattering boundaries at z = 0 

and z = d, the current response at z, will remain unchanged. By 

definition, any electron that collides with a diffusely 

scattering boundary emerges from the collision in thermal 

equilibrium with it's surroundings11a22. We therefore conclude 

that K+(z,() = K;( lz-51) in a finite slab with diffusely - - 
scattering surfaces. 

It is important to note that this correspondence only 

occurs in the perpendicular configuration where the d.c. 

magnetic field Ho does not affect the motion of the conduction 

electrons in the z direction. 

Having determined the form of the kernels, we can write the 



boundary value problem as 

where (see page 70) 

and, for convenience, we-have dropped all + subscripts, the = 

superscript on the kernels K:( 1 z-[ 1 ) , and written - 
[I-i(o+oc)r] = LAX. 

5.3 Reduction to a Set of Simultaneous Equations - -- - -  

The electric field distributions E+(z) will be calculated - 
approximately on a uniform grid of N+l equally spaced points z i  

defined by 

where A = d / ~  (see figure 1 5 ) .  



Fig. - 15 The diffuse scattering problem is solved numerically by 

subdividing the slab up into a series of strips and calculating 

tha approximate electric field and current density in each strip 



We begin by dividing the slab up into N+1 strips such that 

each of the interior points zl to z ~ - ~  are at the midpoint of 

strips of width A and the endpoints z0 and zN are at the edges 

of half strips of width A/2. The strip containing the ith point 

zi shall be refered to as Si. 

Integrating [5.1] over each strip Si yields: 

where ji (i.0,~) is the average current density in strip Si; ie, 

Equations [5.6]-i5.81 express the average current density 

in the strip Si in terms of a difference between electric field 



derivatives at the edges of the strip. Refering to figure 15 we 

see that the electric field derivatives at the edges of each 

strip may be approximated using the electric field values 

E(zi) = Ei and the usual central difference formulae for 

numerical differentiati~n~~: 

Using [5.12]-[5.13] we can re-write [5.6]-[5.8] as 

The average current densities ji can be expressed in terms 

of the electric fields Ei. If we assume that the electric field 

E(z) in a strip $ is constant, and equal to E then the 
j jr 



current density j ( z )  defined by equation 1 5 - 2 1  can be written as 

or, more compactly, 

j ( z )  = K . ( Z ) E  
j 

[ 5 . 1 7 1  
7 

where the double index j is summed from 0 to N and we have 

defined 

as the integral of the kernel over the the strip 3 Physically, 
j *  

K . ( z )  is just the current response at a point z due to a unit 
3 

amplitude electric present in the strip $ 
j 

Inserting [ 5 . 1 7 ]  into the expressions [ 5 . 9 ] - [ 5 . 1 1 ]  for the 

average current density in a strip ii gives us 



where, again, the double index j is summed from 0 to N. The 

quantities Iij are defined as 

and shall be refered to as integrated current elements. 

Physically, Iij is the net current response in the strip Ji due 

to a unit amplitude electric field in the strip J The Iij are 
j 

evaulated in section 5.4. 

We obtain a set of simultaneous equations for the N+1 

electric field points by substituting [5.19]-[5.21] into 



where j is summed from 0 to N. The equations are written out in 

matrix notation in figure 16. 

5 . 4  Incorporation of Boundary Conditions - - 

The boundary conditons h(0) = 1 and h(d) = 0 are 

incorporated into the simultaneous equations through the 

electric field derivates at the front and the rear of the slab. 

using equation 1 4 . 2 1  we find 

This leads to a set of N+l simultaneous equations for the 

N+1 electric field values Ei. Once the integrated current 

elements Iij have been calculated, the equations can be solved 



Fiq. - 16 Matrix equation for the N+1 electric field values Ei 

across the slab. 



by Gaussian ellimination or by some other numerical method. 

However, the speed and accuracy of any algorithm used t'o solve 

simultaneous equations depends on the number of equations. In 

general, the more equations to solve, the longer the solution 

takes, and the more chance there is of accumulated round-off 

and/or trucation error spoiling the results. It is therefore 

desirable to keep the number of equations to solve as small as 

possible. 

In our case, we may reduce the number of equations by one 

if we change the front surface boundary condition from h(0) = 1 

to ~ ( 0 )  = 1. In that case, Eo = 1 and the simultaneous 

equations r5.231-[5.251 become 

where i runs from 2 to N-1 in [5.30] and the double index k is 

summed over from 1 to N in all four equations. Equations 

[5.29]-[5.31] uniquely determine the electric field values El to 

EN. The equations are written out in matrix form in figure 17. 

The remaining equation [5.28] will give us E'(0) once the ' 



Fig. 17 Modified Matrix Equation for the N electric field - 
values El to EN when the boundary conditions are changed to 

~ ( 0 )  = 1 and h ( d )  = 0. 



equations have been solved for El to EN. This can be used in 

equation [4.2] to determine the value of h(0) corresponding to 

~ ( 0 )  = 1. To recover the electric fields associated with the 

original boundary conditons h(0) = 1, h(d) = 0 we simply divide 

the solutions Ei (i=l,N) by h(O), and define Eo as l/h(O). 

5.5 The Integrated Current Elements -- 

All that remains is to define the (N+1I2 integrated current 

elements Iij (i=o,~;j=O,N) defined in section.5.3 as 

where J J i  represents an integration over z in the strip Ji and 

J'Sj respresents an integration over 6 in the strip 5 The 
j 

translational invariance of the kernel considerably reduces the 

number of elements Iij we must calculate. For a slab divided up 

as shown in figure 15, we will find that all (N+1I2 elements can 

be obtained by symmetry from only 2N elements. 

Consider the total integrated current matrix [Iij] shown in 

figure 18 for N = 5. Since z and [ enter the kernel only 

through the 12-51 then 

and the matrix is symmetric. This reduces the number of 



Zone 4 

Zone 2 
1 

Zone 4 

- Zone 3 

Zone 5 

Fig. - 18 The Total Integrated Current ~ a t r i x  for N = 5. The 

matrix is divided into 5 zones. The elements within each zone 

are related to one another by symmetry . Using symmetry, all 
(N+1I2 elements may be obtained from only 2N of the elements. 



elements to calculate by roughly one half. We may further 

reduce this number by subdividing [ I ~ ~ ]  into the 5 zones shown 

in figure 18 and considering what symmetry relationships exist 

amongst the various Iij in each zone. 

Zone 1: Both Strips Have Width A 

This is the largest zone with a total of (N-1)2 elements 

given by 

where i and j can take on values from 1 to N-1. 

The translational invariance of the kernel causes the Iij 

to depend only on the absolute distance between the strips Ji  

and 5 This gives the symmetry relationship 
j 

and we can see that all (N-112 elements may be found by by 

calculating only the (N-1) elements I l l ,  IZ1. Ijl. .... IN-1,l 
and then applying l5.341. The symmetry relationship says that 

all elements along a diagonal in zone 1 of [ I ~ ~ ]  are identical; 

ie. I l l  - - IZ2 = 133 - - ... - - - - 
IN-I,N-I~ 5 2  = I~~ = I~~ ... 

- etc. - IN-2,~-1 
The proof of [5.34] is simple. We change variables in 

15.331 from (z,t) to (z',[') where I '  = zi+l - z and 



which is just I l i - j l + l , l  (we write lzi-z. 1 instead of (zi-z . )  in 
3 3 

the integration limits because [5.32] demands Iij = Iji). 

Note that while [5.35] proves the symmetry relation [5.341, 

calculation of the Iij is made easier if we employ translational 

invariance once more to write [5.35] as 

(we can also obtain E5.361 directly from 15.331 by the 

transformation z 1  = zi - { and { I  = zi - 2). 
Hence the (N-1) elements I l l ,  121, Ijl, ..., IN-1,l needed 

to calculate all (N-1)' elements Iij of zone 1 are given by 

I = 
; 1 

K( lz-E 1 )dEdz [5.371 

Zones 2 and 3: One Strip has Width A, the Other has Width A/2 

There are 2(N-1) elements IiO = Ioi (i=l,N-1) in zone 2 and 

2(N-1) elements INi = IiN (i=l,N-1) in zone 3 (see figure 1 8 ) .  

By definition 



and the translational invariance of the kernel may be used to 

relate the elements of zones 2 and 3 by 

and only the (N-1) elements 110, ..., need be 

calculated to find all 4!N-1) elements. The proof of [5.40] 

requires a change of variable in 15.391 from (z,f) to (z' , t l )  

using z '  = d - f and f' = d - z. 

Zones 4 and 5: Both strips have width A/2 

There are the four elements IO0, ION, INO, and INN. Again, 

by the translational invariance of the kernel, 



and only two of the four elements need to be calculated. 

5.6 Evaluation of the Integrated Current Elements - -- 

In total, only 2N elements must be calculated in order to 

fill the entire ( N + ~ ) x ( N + I )  integrated current matrix of figure 

18 (N-1 elements for zone 1, N-1 elements for zones 2 and 3, and 

2 elements for zones 4 and 5). In figure 19 we show how to fill 

the N = 5 current matrix of figure 18 using the symmetry 

relationships. 

The 2N elements are found by evaluating [5.37], [5.38], 

[5.41], and [5.421 using the kernel K(lz-tl) defined by [5.4]. 

We consider the integrated current elements of each zone in 

turn: 

Zone 1 :  (N-1) elements Iil: i = 1, N-1 

The current elements Iil are given by equation [5.37]. 

When i # 1 the electric field strip does not coincide with the 

integrated current strip and we may set K(lz-(l) = ~ ( z - [ )  in 

15.371. The integrals over z and [ are then easily carried out 



Zone 5 Zone 2 
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Zone 4 
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Fig. - 20 The Total Integrated Current Matrix for N = 5. The 

matrix is filled according to the symmetry relationships derived 

in section 5.5 Only 2N of the (N+1)2 elements are needed to 

fill the matrix 



to get 

or, defining the function G(x) as 

we can write 

where 

A ,  =  LAX+^)/[ 

A ,  = LAX (zi-2A)/l 

The function G ( x )  is discussed in section 5.6.2. Note that this 

function is not the same as the electric field functions G+(z) - 



defined in chapter 2. 

When i = 0 the two strips overlap and we must break up the 

integral over t in [5.37] into two parts depending on whether 

z - > 0 or z - t < 0. The result is 

where G(X) is defined by [5.43] and we have used the fact 

G(0) = 1/4. 

Zones 2 and 3: (N-1) elements IiO; i = 1, N-1 

The current elements IiO are given by [5.381 and evaluated 

exactly like the Iil (i # 1 ) :  ie, we set K(lz-tl) = K(z-El and 

integrate. 

- 
Iio - 

where 

The result is 

A4 = LAX (zi + A/2)/1 



A, = LAX (zi - A)// 

A, = LAX (zi - A/2)/1 

Zones 4  and 5: 2 elements I O 0  and I N O  

I 0 0  is given by L5 .411  and INO is given by [ 5 . 4 2 1 .  We 

evaluate I O 0  in the same way we evaluated I l l  (see equation 

where 

A, = LAX (d/l) 

A9 = LAX ( d  - A/2)/1 

A l o  = LAX ( d  - A)// 



5.6.1 Summary - of Inteqrated Current Elements 

Zone 1: (N-1) elements I i l ;  i = 1, N-1 

where 

A l  = LAX*(zi)/l 

A, = LAX (zi-2A)/l 

- Symmetry Relations: Iij - (i,j=l,N-1) * ~ i - j ~ + 1 , 1 ~  



Zones 2 and 3: (N-1) elements IiO; i = 1 ,  N-1 

where 

A, = LAX (zi + A/2)/1 

A S  LAX (zi)/1 

A. = LAX (zi - A)/[ 

A7 = LAX (zi - A/2)/1 

- Symmetry Relations: IiO - Ioi; INi - - 
INi - - IiN 



Zones 4 and 5: 2 elements I O 0  and I N O  

where 

A ,  = LAX ( d / l  ) 

Ag = LAX ( d  - A / 2 ) / 1  

A l o  = LAX ( d  - A ) / !  

- - Symmetry Relations: I O 0  - INN: I N O  - 1 0 ~  



5.6.2 - The Function G(x) 

The function G(X) was defined as 

repeatedly integrating [ 5 . 5 0 ]  by parts yields: 

where 

is the exponential integral for a complex argument. A numerical 

procedure for evaluating E,(x) is discussed in Appendix E. 

The exponential integral has a branch cut along the 

negative real axis and goes to infinity as x goes to zero. It's 



analytic everywhere else. In equations [ 5 . 4 6 1 - r 5 . 4 9 1  for the 

integrated current elements, all the arguments for G ( x )  had 

positive real parts. Hence, Re[xI is always greater than zero, 

the G functions needed for the evaluation of the Iij will be 

analytic, and the Iij will be well defined quantities free from 

any singularities. 

Recovery of the -- NSE - results 

In the limit 6 / 1  >> 1 ,  the non-local current density 

expression for a slab with diffusely scattering faces 

( 2  subscripts supressed) must reduce to the a.c. form of Ohm's 

Law: 

where 

Formally, this is the same as requiring that the kernels 

~((z-ti) reduce to o(ofoc)6(z-t), where 6(z-5) is the Dirac 

delta function. This gives us a way of checking if our 

numerical solution will properly reproduce the NSE regime 



results. In the NSE regime, the integrated current elements 

would be defined by 

ie, the net current response in the strip Si is zero unless the 

unit amplitude electric field is also located in the strip Si. 

All off-diagonal elements of the integrated current matrix [Iij] 

will therefore be zero and the diagonal elements will be given 

From the definitions [5.46]-15.491 we see that if we let 1 

go to zero then all the off-diagonal elements will indeed go to 

zero and the diagonal elements properly reduce to the forms 

given by [5.54] and [5.55]. The numerical solution will 

therefore reduce to the NSE solutions of chapter 4 as the mean 

free path 1 becomes small. 



5.8 The Maqnetic Field and Current Density in the Slab -- - --- 
Once the rf electric field distribution has been 

determined, the rf current densities j(zi) = ji at the grid 

points zi can be obtained at once from the average current 

density expressions [5.19] - L5.211.  The rf magnetic fields 

h(zi) = hi at each interior grid point zi may be obtained by 

combining the central difference formula for numerical 

differentiation with the relation between E'(z) and h(z); viz, 

( k  subscripts on hiand ~jsuppressed) . 
If the magnetic field points do not have to be on the same grid 

as the electric field points, we can calculate the magnetic 

fields at the edges of each strip Si using the differentiation 

formula [5.13]: 

(see figure 15). 



5.9 Implementation on a Computer - - - 

A computer program was written in FORTRAN IV to set-up and 

solve the modified matrix equation shown in figure 17. When run 

on an IBM 3081GX, under the Michigan Terminal System (MTS), the 

program took approximately 2.5 minutes of CPU time to calculate 

and write out the electric field distributions G+(z) - 
corresponding to d = 5 pm, I = 25 pm, and N = 100. Doubling the 

number of electric field points to N = 200 increased the 

execution time to 4 minutes while setting N = 700, increased 

execution time to 40 minutes. 

The program spent the bulk of it's time calculating the 2N 

integrated current elements needed to fill the NxN equation 

matrix. For example, when N = 100 the program took about 2 

minutes out of it's 2.5 minute running time to evaluate the 

integrated current elements. Only 15 seconds were needed to 

set-up and solve the matrix equations for G+(z) and another 15 - 
seconds were needed for I / O .  The main bottleneck is the 

numerical evaluation of the exponential integral El(x). (see 

Appendix E for details of our algorithm). A more efficient 

algorithm for calculating E1(x) could substantially reduce 

execution time. 

In contrast to the evaluation of the integrated current 

elements, the solution of the NxN matrix equation for the 

electric fields El to EN in the slab is very fast and efficient 

because the matrix is diagonally dominant (ie, the diagonal 



elements of the matrix are much greater than the off diagonal 

elements). Matricies of this form can be solved by 

straightforward Gaussian ellimination with backward 

substitution, the solutions being stable against growth of 

rounding and truncation errors42. 

5.9.1 Converqence of the Numerical Solution -- 

Since the execution time of the diffuse scattering program 

depends on N, it's important to determine how large N must be to 

accurately calculate the transmission coefficients T+. To this - 
end, we used the program to evaluate G+(z) and T+ for various - - 
slab thicknesses d, conduction mean free paths I ,  and electric 

field points N when H, = 18.55 kOe (corresponding to FMR in 

Nickel at 24 GHZ). Based on the results of these calculations 

we concluded that our numerical method will calculate T+ to - 
within 2 or 3 percent provided N is just large enough to resolve 

the electric field distribution in the slab. Roughly speaking, 

this requires A, the spacing between successive electric field 

points in the slab, to be comprable to the rf skin depth 6 (ie, 

A = d/N I 6). In practice, we have found a good estimate of the 

minimum value of N to use for a given slab thickness d is given 

by 



where 

is the effective NSE skin depth for a ferromagnetic metal (see 

section 4.3.2 in chapter 4). 

The convergence of T+ is illustrated in figures 20 to 22. - 
In figure 20 we plot IT+(  vs. N for d = 5 um, 1 = 25 pm, and - 
13 I N 5 200. In figure 21 we plot log,,(G-(z)l vs. z for 

d = 5 pm, 1 = 25 pm, and N = 25, 50, 100, and 200. In figure 22 

we plot log,,(G+(z)l vs. z for d = 5 pm, I =. 25 pm, and N = 13, 

25, 50, and 200. 

In Nickel, at 24 GHz, I ~ - ( F M R ) ~  = 0.1 pm while 

(~+(FMR)( = 0.4 pm. Thus, equation [5.58] predicts that we will 

need N = 100 to get a good estimate of T- and N = 25 to get a 

good estimate of T,. 

From figure 20 we see that T- indeed converges to a fixed 

value near N = 100 while T+ converges to a fixed value near 

N = 25. Refering to figures 21 and 22 we see that the values of 

N that cause the transmission coefficients to stabilize 

correspond to the values of N that just start to resolve the 

electric fieid distributions G+(z) in the slab. - 
In practice, we tended to use N = 100 when carrying out 

transmission calculations on slabs of thickness d I 5 pm and 

N = 200 for calculations on slabs of thickenss 5 5 d I 10 pm. 

For thicker slabs we used N = 2 d / 1 6 - 1 .  



Fig. 20 Plot of I T + I  vs. N calculated for diffuse surface - - 
scattering, d = 5 pm, I = 25 urn, and the Nickel parameters of 

Appendix A. Here N is the number of electric field points 

calculated across the slab. 



Fig. - 21 Plot of log,,lG_(z) 1 vs. z calculated for diffuse 

surface scattering, d = 5 pm, 1 = 25 pm, the Nickel parameters 

of Appendix A and N = 25, 50, 100, and 200. 



Fig. - 22 Plot of log,,lG+(z)l vs. z calculated for diffuse 

surface scattering, d = 5 urn, 1 = 25 um, the Nickel parameters 

of ~ppendix A and N = 13, 25, 50, and 200. 



6. ELECTRIC FIELD SOLUTION FOR SPECULAR SURFACE SCATTERING 

6.1 Introduction - 

When the surfaces of our slab specularly sc atter c 

electrons, Platzmann and ~ushcbaum~' have shown that we 

onduc t i 

can 

solve the boundary value problem of chapter 2.using fourier 

transforms methods: the resulting electric field solutions E + ( z )  - 
being expressed as fourier cosine series. Unfortunately, the 

series solutions tend to converge VERY slowly, making them 

unsuitable for calculating the electric fields in the slab, and 

for calculating the microwave transmission through the slab, for 

arbitrary values of 6 / 1  and d. In order to get around this 

problem we have re-cast the series solutions into two new forms. 

One is a much faster converging series suitable for calculating 

the electic fields in the slab and the other is an integral 

solution suitable for very fast calculation of the transmission 

coefficients only. 

We describe the solution to our boundary value problem in 

section 6.2. In section 6.3 we discuss how to transform the 

series solution into a faster converging form In section 6.4 we 

show how to convert the series solutions for G+(d) into an - 
integral form that can be used to calculate the transmission 



coefficients T+. An algorithm for calculating the transmission - 
using the integral form is discussed in section 6.5. The 

integral form was suggested by the technique used by Kogan, 

Turov, and ustinov15 to derive an analytic expression for G+(d) - 
in the thick slab limit (d/6 >> 1 ,  d/l >> 1 ) .  In section 6.6 we 

derive an analytic closed form for the transmission coefficients 

of a thick (d/l >> 1 )  slab. This form will prove to be very 

useful when analyzing the calculated results for specular and 

diffuse scattering (see chapter 7 ) .  

6.2 Solution of the Boundary Value Problem - -- 

The boundary value problem we wish to solve was defined on 

page 54 as 

with the magnetic fields related to the electric fields by 



When the surfaces of the slab specularly scatter conduction 

electrons, Platzmann and ~ushcbaum~' have shown that the 

non-local current density expression L2 .441  can be replaced by 

provided we make j+(z) and E+(z) even, periodic functions of z - - 
with period 2d and h+(z) an odd, periodic function of z with - 
period 2d. With the rf fields and currents in this form we can 

easily solve the boundary value problem via fourier transform 

methods. 

The proof of [6.2] is simple enough. When the surfaces of 

our slab specularly scatter electrons, the current response at a 

point z, in our finite slab, due to a delta function rf electric 

field at a point 4, is identical to the current response at z ,  

in an infinite medium filled with an array of delta function 

electric field sheets placed symmetrically about the planes 

z = +2nd (n = O,l,2,3, ...I at the points E ' .  

To see this we note that any possible path a conduction 

electron can follow to get from to ? in the finite slab 

corresponds to a unique direct path in the infinite medium that 

connects z, to one or more of the electric field sheets. (see 

figure 23). We therefore conclude that if arbitrary electric 

fields E+(z) generate current densities j+(z) in the finite slab - - 
then the even extension of E+(z) throughout an infinite - 
conducting medium, plus the condition E+(z 2 2d) = E+(z), - - 



Fig. 23 The current response at 2 in a finite slab, due to a - 
delta function electric field at a point $, is identical to the 

current response in an infinte medium filled with a periodic, 

symmetric array of delta function electric fields provided the 

surfaces of the finite slab specularly scatter conduction 

electrons and the d.c. magnetic field is perpendicular to the 

plane of the slab. Only then is there a one to one 

correspondence between an electron trajectory connecting F to 

in the finite slab and some direct path in the infinite 

medium connecting F to one of the electric field points. 



generates an identical current response in the region 0 5 z 5 d 

(see figure 24). Result [6.2] follows immediately because the 

current response in an infinte medium due to any kind of 

electric field E+(z) is just - 

where K:( 12-5 1 )  are the kernels for an infinite medium (see - 
chapter 3). 

The solution of the boundary value probl.em for E+(z) is - 
easily carried out using the periodic rf fields and the 

non-local current density L6.21. Since E+(z) and j+(z) are even - - 
functions of z and periodic with period 2d, we can represent 

them by the fourier cosine series: 

where, 
. - 

qn = (nn)/d; n = integer 

and the fourier coefficients are defined by 



Fig. - 24 The current density generated in the finite slab due to 

an arbitrary electic field is identical to the current response 

in the region 0 S z 5 d of an infinte medium filled with the 

even, periodic extension of the electric field. The period 

being 2d. 



where tion is the kronecker delta (tion = I i f  n = 0, otherwise 

tion = 0 1. 

~ultiply [2.46] by cos(qnz) and integrate by parts from 

z = O t o z = d :  

But the boundary conditons [2.481 demand E+'(O) = fo~+/c and - - 
~+'(d) = 0 so E6.81 becomes - 

The fourier coefficients jn are obtained in a rather f 



devious way. First, we substitute [6.3] into E6.21 to get: 

then we re-arrange the integral over 5 using 

and a 

. 
Hence, 

and we identify the fourier coefficients jn as f 



where o+(q,w) is the frequency and wavenumber dependent - 
conductivity tensor defined by 

The integral [ 6 . 1 2 ]  was evaluated in section 3.4 (pp. 74-75) for 

the infinite medium current kernels K:( Iz-EI) appropriate for a - 
metal with a spherical ~ e r m i  surface. The result was 

where 

and 

(we assume ln(t) = lnltl + ~rg(t); -n < ~rg(t) I n). 

Hence, 



where, 

and substituting [ 6 . 1 1 ]  into [ 6 . 9 ]  gives 

2 - s o n  

- - 3 i A A i  
=L LAX- S: 

Finally then, the electric fields G+(z) that satisfy the - 
boundary value problem r 2 . 461  - E2.481 are 

S The transmission coefficients T+ and the surface impedances z+ - - 
are given by F2.751 and [ 2 . 7 9 ] ,  

S 
z+ = G+(O) - 

Thus, for specular surf ace scatter.ing, 



6.3 Evaluation of the Series Solutions - -- 

The series solutions for G+(z) are easier to work wi - 
we express them directly in terms of the summation index n and 

pack-up as much of the series as we can into constants that are 

idependent of n. A little manipulation of [6.16] yields: 

60 cos (@ 

n=l nZ - p k  k (33 I 
where 

- ,&-- 2 L A X  

3: - in-rr 
L A X  - - ( A )  

and we have separated the n = 0 term from the infinite sum and 

simplified it using the fact k(0) = 4/3  (see section 3 . 4 . 1  on 

page 75). 



The series solution L6.191 converges very slowly. For 

example, when we tried to evaluate G-(d) at FMR for d = 5 pm, 

1 = 1 pm, and the Nickel parameters of appendix A, we had to sum 

over 80,000 terms to obtain an answer stable to just three 

digits! Obviously, this makes the series solutions unsuitable 

for calculating the electric fields in the slab: not only would 

the amount of computer time be prohibitive but the chance of 

round-off and/or truncation error spoiling the results becomes a 

very big problem when one must sum a great many terms. 

Fortunately, we can convert the in•’ inte series 

representation for G+(z) into a form suitable for numerical - 
evaluation by means of a simple trick. 

Consider what happens to the denominator of the infinte sum 

in [6.19] as the summation index n is increased. Since yn is 

directly proportional to n, increasing n increases yn. 

Eventually, we will reach a point where yn >> 1 and, using the 

results of section 3.4 (p.751, k(yn) will reduce to in/yn. In 

that case, the numerator of the summand in 16.191 becomes 

Hence, if we let n get large enough, the denominator will 

eventually reduce to n2. If we assume that this happens when 

n = p, where p is some large integer that satisfies the 

condition, 



we can write the infinite series in [ 6 . 1 9 ]  as 

But the second sum on the RHS of [6.26] is just the known 

So, with x = n(z/d) (ie, nx = qnz), we can write 

Substituting this result in [6.26] yields 



and the solutions for G+(z) take on the form - 

6.3.1 - An Estimation --- of the Sum Limit 2 

It is a relatively simple matter to obtain a value for the 

sum limit p, defined by [6.25] as 

( +  subscripts suppressed). We write the expression for p as 



where m is an integer equal to 2 or more. Solving for p yields 

which shows that the number of terms we will have to add 

together to obtain a good estimate of the sum depends on the 

permeability through ]e+I - and on the slab thickness d. 

However, the estimate of p DOES NOT depend on the rf skin depth 

6, or conduction mean free path I because the product (6iI) is a 

constant in a metal as long as the microwave •’requency o is 

fixed: 

and 

Let's evaluate p for the case of Nickel at 2 4  GHz. Using 

the parameters of Appendix A we find (6g1) - 4.2 x em3. 

Taking the slab thickness to be d = 5 pm and p = e-(FMR) = 32i 

(the maximum value that e+ will take on), we get - 

Being very conservative, and taking m = 4, we find p = 1138. 



Using [6.30] with p = 1138, we evaluated G - ( d )  at FMR for 

d = 5 pm, 1 = 1 Bm, and for the Nickel parameters of appendix A. 

The answer we obtained was stable to over 4 decimal places (ie, 

summing more terms in the series did not change the answer in 

the fourth place). 

The new series [6.301 is a big improvement over the 

original series [6.191. Remember, to evaluate G-(dl to only 3 

places using L6.191 we had to sum over 80,000 terms. 

6.3.2 - -  A More Formal Way - of Evaluating the Series - 

It is interesting to note that we can arrive at nearly the 

same expression for G+(z) that we developed in the last section - 
by another, more formal, route. 

When confronted with a slowly converging series, one can 

increase the convergence by means of the "comparison method", a 

standard technique from numerical analysis that's analagous to 

evaluating a singular integral by subtracting off the singular 

part and treating it ~eparately~~. 

The comparison method involves introducing a known series 

with the same rate of convergence as the series one wishes to 

accelerate. For our case we have, by [6.19], a slowly 

converging series of the form 
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which looks very much like the known series 

To increase the convergence of [6.34] we therefore add and 

subtract L6.351 from [6.34] to get: 

The known series [6.35] is just 

so that the accelerated form of G+(z) becomes - 

which is exactly the same as the approximate form 16.301 we 

developed in section 6.3 except that the sum limit p has been 



replaced by =. 

Therefore, what we did in sections 6.3-6.3.1 was to 

accelerate the convergence of the original series solution 

L6.191 using the comparison method and put an upper bound p on 

the number of terms needed to obtain a good estimate of G+(z). - 

6.4 Inteqral Form for the Transmission Coefficient - --- 

If we only want to calculate the transmission coefficients 

T, = +2iG+(d), we can dispense with the series solution for - 
G+(d) altogether and use the techniqes of complex variable to - 
re-cast the original series solution [6.17] for T+ into an - 
integral form which can be easily, and accurately, evaluated on 

a computer. The integral form is valid for any 6/1 ratio and 

slab thickness d and is much faster to calculate than the series 

solutions. The integral form was suggested by the method used 

by Kogan, Turov, and us ti no^'^ to derive an analytic expression 

for G+(d) in the thick slab limit (d/6 >> 1, d/l >> 1). - 
One begins the conversion by writing the original series 

solution L6.171 for T+ in terms of the variable y: defined by - - 
[6.14]; ie, 

is re-written as 



where 

(all f subscripts suppressed) Note that the sum over n in [6.38] 

has been adjusted to run from n = -- to n = m. This is 

permissible because k(y) is an even function of y. We have also 

redefined y, from iqnl/LAX to qnl/(iLAX) so we don't have to 

carry an extra minus sign around later on (see p. 150). This 

change in yn does not alter the form of the sum. 

Now, suppose now that we had some complex valued function 

f(y) with infinitely many simple poles at the yn required for 

the evaluation of the sum in [6.38]. If we chose a suitable 

contour that enclosed all these simple poles, and required that 

the residue of f(y) at any of the points yn be 



then we could use Cauchy's Residue Theorem to write, 

where the residue term on the RHS is due to any additional poles 

contained in f ( y ) .  

A suitable choice for f(y) is something like 

where A and B are parameters to be determined. The function 

f(y), as defined by [6.421, has simple poles at By = na and 

additional poles at the roots of y2+ak(y) (we discuss these 

roots later). 

Assuming that the roots of y2+ak(y) do not coincide with 

any of the roots of sin(By), we can evaluate the residue R- at 

By = na using: 



 hospital's Rule gives 

and in order to make Rn equal to the nth term of the sum in 

[6.38] we define 

and 

The function f ( y )  is therefore: 

(where we have used sin(ix) = isinh(x)). The infinite sum 

required to evaluate T+ can thus be written as - 



where C Res[f(y)] is the sum of residues associated with the 

roots of y2+ak(y). 

6.4.1 Evaluation of The Contour Inteqral 
7- 

In order to define a suitable integration contour, we must 

consider the location of all the simple poles at the points yn, 

the roots of y2+ak(y), and the location of any branch points 

associated with f(y). The simple poles at yn = nsl/(itAxd) will 

all lie along a straight line inclined at an angle 

8 = Arctan([okoc]r) to the imaginary axis. Any roots yi of 

y2+ok(y) must occur in pairs (yi,-yi) because k(y) is an even 

function of y. Further, the roots yi cannot lie along the real 

axis because a is, in general, complex. Finally, the function 

f(y) has branch points at y = - 1  and y = 1 owing to the presence 

of the complex logarithm term 

in k(y). We shall assume ln(t) = lnltl + Arg(t), where 

-r  < Arg(t) < s, so ln(t) will have a branch cut along the 

negative real axis (see figure 25). Using the bilinear 

transformation t = (l+y)/(l-y) it's a simple matter to convince 

oneself that the single branch cut in the complex t plane 



Fig.  - 25 If  we 'define l n ( t )  = l n l t l  + A r g ( t ) ;  - R  < ~ r g ( t )  I T ,  

then l n ( t )  has a  branch c u t  a long the  negat ive  r e a l  a x i s  and 

l n ( ( l + y ) / ( l - y ) )  has  two branch c u t s :  one along t h e  l i n e  

( - = , - I  I ,  t h e  o ther  along t h e  l i n e  [ l , = ~ ) .  The va lues  t h a t  l n ( t )  

and l n ( ( l + y ) / ( l - y ) )  take  on along t h e i r  r e spec t ive  branch c u t s  

is shown above. 



assoc ia ted  with l n ( t )  l eads  t o  two branch c u t s  i n  t h e  complex y 

plane assoc ia ted  with l n ( ( l + y ) / ( l - y ) ) .  See f i g u r e  25.  

Therefore,  a  s u i t a b l e  contour t h a t  avoids the  branch c u t s ,  but 

enc loses  a l l  t he  simple poles  a t  the  yn ,  and a l l  t h e  r o o t s  of 

y 2 + a k ( y ) ,  i s  shown i n  f i g u r e  26 .  

From t h e  form of f ( y )  we can see t h a t  t h e  contour i n t e g r a l  

goes t o  zero  along t h e  ou te r  c i r c u l a r  a r c s  of t h e  contour and 

around the  vanishingly small  c i r c l e s  about t h e  branch p o i n t s  

and bearing i n  mind the  l i m i t i n g  va lues  t h a t  l n ( ( l + y ) / ( l - y ) )  



Line o.f simple poles I 
for  infinite sum 

k(y) Branch Cut 

Roots of ( yZ  + olk(y)) 

F i g .  - 26 The contour used t o  e v a l u a t e  t h e  contour i n t e g r a l  



takes on along the branch cuts, 

where y is now real and k(y) is redefined as the real function 

t(y): 

If we adjust all integrals in L6.491 to run from y = 1 to y = = 



or, combining the terms in the square brackets and simplifying, 

where we have defined O(y) as 

6.4.2 Residue Evaluation 

The roots of y2+ak(y) contribute a sum of residues 

Z Res[f(y)] to the infinite sum L6.481. Using the argument 

principleu5, Reuter and S ~ n d h e i m e r ~ ~ ,  and later ~araff~', were 

able to establish that the even function y2+ak(y) had at most 

four roots occuring in the two pairs y,, -y, and y,, -y2. When 

la1 is below some limiting value there will be one pair of 

roots, when la1 is above the limiting value there will be two 

pairs of roots (the precise value of la1 at the change over is 



unimportant -- the algorithm we have developed to extract the 
roots can distinguish between the two cases). 

The residue of f(y) associated with the root y, is just 

where 

The residues associated with -yl is found by replacing y, in 

f6.541 with -yl. We find, Res(f(y,)) = Res(f(-yl)) so that the 

residues associated with the root pair (yl,-y,) are given by 

 LAX.($) 
~ts[f(y J] + Res [T(-~J] = [6.561 

sinh ( L A X $ J $ ~ Z ~ ,  + k ' ( y d 1  
Similarly, the residues associated with the root pair (y,,-y,) 



are 

d 2 -  LAY. (7) 
Res [~[y~ly.)] + Res lf(-yZ.1 = [ 6.57 I 

sinh (LAX fy,)  ~2 y. + kYyzrJ 
Hence, 

where i runs from 1 to 2, depending on the number of root pairs 

we extract from y2+ak(y) 

6.4.3 -- The Net Inteqral Solution 

Refering to equation [6.48] we see that the infinite sum 

needed to evaluate T+ is given by - 

Using equation [6.521 for the contour integral, and equation 



[6.581 for the sum of residues, we get 

so that, by equation 16.381. the transmission coefficients T+ - 
are given by 

6.5 Implementation of The Integral Solution - -- 

In order to evaluate T+ using the integral form 16.601 we - 
must numerically evaluate the integral from 1 to = and extract 

the roots of y2+ak(y). 



6.5.1 Numerical Evaluation of the Inteqral -- 

A fast and.accurate way of evaluating the integral in 

16.601 is to use Gauss-Laguerre quadrature4' (see ~ppendix F) 

which approximates real integrals over a semi-infinite interval 

using a finite sum: 

(x and F(x) are real valued and the xi are a set of unequally 

spaced points along the x axis). The integral in 16.601 is cast 

in a form similar to 16.611 as follows: 

First, change variable from y to v using y = v + 1 ,  

then re-write the csch term as 

d 
2 e-'-"'zV 

d L A X - z  

csch(~m $CV+O) = - 1- LAX.^ I+V) e 1 - e  d 

Next, let (d/l)y = x and LAX = [l-i(ofoc)r] to get 

e i (u, MJJC)Z. X 

P(x) = @ ( $ x + l )  
I - e  -ZLAX(X + d/l) 



which allows us to write 

and the integral on the RHS of [ 6 . 6 2 ]  can be evaluated by 

splitting P(x) into real and imaginary parts: 

and applying Gauss-Laguerre quadrature4' to the resulting pair 

of real valued integrals: Note that Gauss-Laguerre quadrature 

is not the only method available for evaluating our integrals. 

We chose this quadrature method because it is both fast and 

accurate. Often, the contour integral could be evaluated to 

more than 8 significant digits using a 32 point quadrature; ie, 

we could get an accurate answer knowing the value of the 

integrand at just 32 unequally spaced points along the 

semi-infinite interval [O,=). 

6.5.2 Numerical Extraction of the Roots of y2+ak(y) -- - 

The roots of y2+ak(y) can be easily extracted in the NSE 

and extreme ASE regimes. 



In the NSE regime, where I is small, y = ~I/(~LAx) is small 

and k(y) = 4/3 (see section 3.4). Thus, 

and the NSE roots are given by 

(in the NSE regime there are no second pair of roots (y, ,-y,)). 

In the extreme ASE regime, I is large, y = ~I/(~LAx) is 

large, and k(y) = ir/y (see section 3.4). ~ h u s ,  

y: = -ina; (extreme ASE) i6.661 

(Note that only one or two of the three possible ASE roots 

actually satisfy i6.651 -- see Baraff24). 

For intermediate values of 6 / 1  we can estimate y l  using the 

interpolation formula due to S ~ u t h g a t e ' ~ ~ ~ ~  that correctly 

reproduces the NSE roots and the extreme ASE roots and 

approximates y, in the intermediate 6 / 1  regime. In terms of our 



notation, the interpolation formula is: 

Noting that a << 1 in the NSE regime, and a >> 1 in the extreme 

ASE regime, shows that 16.671 reduces to [ 6 . 6 4 ]  and [ 6 . 6 6 ]  in 

the appropriate regimes. 

After an extensive, empirical studyt of the number and 

location of the roots pairs (yl,-yl), (y2,-y2) for arbitrary 

values of a we have developed an algorithm that correctly 

extracts y, and y, for any value of a. 

Basically, we use the Southgate formula [ 6 . 6 7 ]  to get an 

approximate value of yl. A better value for y l  is found by 

applying Newtons root extraction method to y2+ak(y) with the y l  

guess as the starting value. For a complex valued function, 

Newton's method becomes 

where the additional factor of 1/~e[y,] is needed to insure 

stability of the algorithm when y is complex. Once y 1  is found, 

a good starting value for y2, when it existed, was found to be 

 h he study consisted of plotting three dimensional surface 
diagrams of Il/(y2+ak(y)) 1 vs ~e(y) and 1m(y) for various values 
of a. The roots showed up as sharp spikes on the 3-d surfaces. 



given by 

(where 7, denotes the complex con jugate of y, ) . The starting 

value for y2 was then used in Newton's formula and iterated 

until it either resulted in a stable for y2 (if y, existed) or 

the value of -y, (if y, did not exist). 

6.6 Closed Forms for the Transmission Coefficients in the Thick - -- -- 
Slab Limit ( d / l  >> I )  --- 

When d / l  >> 1 we can considerably simplify the integral 

expressions derived for T+ in section 6.4. The thick slab forms - 
of T+ prove very useful for explaining the transmission - 
behaviour as a function of 6 / 1  and slab thickness d (see chapter 

7). 

From section 6.4.3 (p. 159) we had: 

where the sum over i runs from i=l to 1 or i=l to 2 depending on 



whether we e x t r a c t  1 o r  2 r o o t s  from y 2 + a k ( y )  ( s e e  s e c t i o n  6 .5 .2  

pp. 161-164). 

I f  we assume a  very  t h i c k  s l a b  (d/ l  >> 1 )  then  t h e  c sch  

terms reduce t o  

Consider t h e  i n t e g r a l  term i n  [6 .68] .  I f  we change 

v a r i a b l e  from y t o  v  u s ing  y = 1 + v  then t h e  i n t e g r a l  becomes 

where q ( v )  = @ ( l + v ) .  

In  t h e  d/l  >> I l i m i t ,  t h e  exponent exp(- LAX(^/^ ) v )  r a p i d l y  

goes t o  z e r o  a s  v  i n c r e a s e s  from ze ro .  I f  we were doing t h e  



integral numerically, we would find that most of the 

contribution to the integral would occur for small values of v. 

We can therefore approximate the integral when d / l  >> 1 by 

replacing q(v) with it's expansion for small v .  From [ 6 . 5 3 ]  we 

had 

where 

If we let (1+vIn = 1+nv and keep terms only to the lowest order 

in v. we get: 



and the integral [ 6 . 6 9 ]  is given by 

Thus, when d/l >> 1 , 

d - LAX - 
Q2 e s. 

or, using the definition 16.391 of a, 



we can re-write T + ( d / E  >> 1 )  in the simple form: - 
d - L A X  r y i  e ( )  = - 

c L A X  i 23i + dk'(3;) 

d 
e - LAX - R 



7. RESULTS AND DISCUSSION 

7.1 Introduction - 

The numerical procedures described in chapters 5 and 6 have 

been used to calculate the transmission of 24 GHz radiation 

through our model Nickel ferromagnet for the two cases of 

specular and diffuse surface scattering. The transmission 

coefficients T+, -the surface impedances z5 and the electric - f' 

field distributions G+(z) were calculated as functions of H, for - 
a wide range of experimentally accessible slab thicknesses d and 

conduction mean free paths I tie, 1 5 d 5 50 pm and 

0.006 5 1 5 50 pm). 

S Section 7.2 contains representative plots of T+ and z+ vs - - 
H, for d = 2, 5, and 10 pm and 0.006 5 I 5 25 pm. The plots 

serve to demonstrate how T+ and T- vary with H,, d, and I for 

specular and diffuse surface scattering. 

In section 7.3 we discuss the variation of T+ with I' using - 
the forms of T+ calculated in section 6.6 for the case of - 

- specular surface scattering and a thick slab (d/l >> 1 ) .  

In section 7.4 we again use the thick slab expressions for 

T+ to understand how the transmission scales with d and I in the - 
ASE regime. 



In section 7.5 the experimentally measurable, linearly 

polarized, transmission coefficient T is plotted as a function 

of H, for d = 2, 5, and 10 bm and 1 2 1 Dm. When 6 / 1  5 1 (the 

ASE regime) T exhibits amplitude oscillations as a function of 

Ho. We identify the oscillations as Gantmakher-Kaner 

oscillations47 or GKO. The GKO are superimposed over 

transmission features associated with the metal's magnetic 

response but do not, in general, obscure the latter transmission 

features. Section 7.5 concludes with a short discussion on the 

feasability of experimental verification of our calculated 

results. 



7.2 Calculated Results - 

7.2.1 Variation -- of the Surface Impedance with go and 1 - - -  

S In figure 27 we plot l z + l  vs H, for d = 5 pm and - 
0.006 2 1  2 25 pm. 

We note three major features: 

(i) Regardless of the value of 1 ,  the magnetically active 

surface impedance, z:, goes through a minimum at PMAR and a 

maximum at FMR. The magnetically inactive surface impedance, 

2 5 ,  exhibits a slow monotonic decrease with H,. 

(i i) Both 1 2'1 and 1 z: I vary with 1 only when 6/1 > 1 .  

When 6/1 S 1 (the ASE regime), the surface impedances are 

virtually independent of the mean free path. 

(iii) Neither ( z f  1 nor (=:I depend strongly on the type of 

surface scattering. The curves calculated for specular and 

diffuse scattering are identical in the NSE regime and differ by 

a factor of 1.13 in the ASE regime. 

The variation of 2: with H, and I has been investigated in - 
detail by a number of a ~ t h o r s ~ - ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~  for both specular and 

diffuse surface scattering in the the NSE regime (6/1 >> 1 )  and 

the extreme ASE regime ( 6 / f  << 1 ) . 



Fiq. - 27 Plots of vs H, for d = 5 rm and for both specular - 
and diffuse surface scattering. The calculations were carried 

out using the Nickel parameters of Appendix A. In Nickel, at 

24 GHz, the cross over between the normal and anomalous skin 

effect regimes occurs when I = 0.8 pm. 



In the NSE regime, the suface impedances in a thick slab 

(d/6 >> 1 )  can be written as 

(see chapter 4). In the extreme ASE regime, the surface 

impedances for the case of a thick slab and specular surface 

scattering are given byu8 

while the corresponding surface impedances for diffuse surface 

scattering are given bygau8 

In both the NSE regime and the extreme ASE regime, our 

calculated values of zS agree with the z: predicted by the thick 
k - 

slab expressions [4.14], [7.11, and 17.21 whenever d/6 > 3 or 4. 

In fact, the closed forms for z: provided a useful check on the - 
computer programs written to implement the numerical solutions 

or our boundary value problem. 

Although integral expressions existuB that can be used to 

calculate zS for any mean free path 1, to our knowledge we are 
k 

the first to explicitly calculate the variation of z: with H, in - 
a ferromagnetic metal when 6/1 = 1 (the NSE-ASE transition 



region). In doing so we have come across two interesting 

results. First, the surface impedances are predicted to stop 

changing with I when 6/1 4 1 (see figure 27). This implies that 

the rf electric fields in the skin layer (which govern 2 : )  are - 
s essentially constant when I exceeds 6. Second, since z+ are - 

insensitive to changes in I in the ASE regime, it might be 

possible to analyze surface impedance data obtained in the ASE 

regime (6/1 5 1) using existing developed for the 

limiting case of 6/1 << 1 (extreme ASE regime). The latter 

theory is much easier to work with mathematically than the 

general theory required to treat the case of 6/1 5 1 directly. 

7.2.2 Variation - of -- T with Elo, 1 and d - -  

In figure 28 we plot logl0lT-I vs. Ho for 

0.006 Mm 5 1 I 25 pm and slab thicknesses d = 2 pm (fig. 281, 

d = 5 Mm (fig. 291, and d = 10 Hm (fig. 30). 

The variation of T- with 1 is qualitatively the same for 

all three slab thicknesses. Basically, we can see that when 

6/1 > 1 ,  the transmission is nearly independent of the type of 

surface scattering. When 1 = 0.006 pm (roughly corresponding to 

the mean free path in Nickel at room temperature) the calculated 

transmission curves agree with the transmission calculated using 

the NSE transmission coefficients 14.131 derived in chapter 4. 

A transmission maximum occurs at a value of Ho corresponding to 

FMAR and a deep minimum occurs at a value of H, corresponding to 



Fig. - 28 Plots of logIol~-I VS Ho for d = 2 pm and various mean 

free paths I .  The calculations were carried out using the Nickel 

parameters of Appendix A. 



Fig. - 29 Plots of log,,l~-I vs H, for d = 5 urn and various mean 

free paths I .  The calculations were carried out using the Nickel 

parameters of Appendix A. 



Fig. 30 Plots of log,,l~-I vs H, for d = 10 pm and various mean - 
free paths 1. The calculations were carried out using the ~ i c k e l  

parameters of Appendix A. 



FMR. The effect of increasing 1  is to cause the FMAR peak to 

narrow and attenuate while the FMR minimum increases and 

broadens. In the NSE-ASE transition regime, where 6 / 1  1 1 ,  the 

T- curves go through an overall minimum and then increase with 

1 .  In the ASE regime ( 6 / 1  I 1 )  the magnitude of T-, for a given 

slab thickness d, varies with 1  but is essentially independent 

of the type of surface scattering. However, the surface 

scattering definitely has an effect on the transmission 

lineshape. Refering to figures 28-30, we see that the T- curves 

calculated for 1  = 0.6 pm develop complicated structure at FMAR 

for both specular and diffuse surface scattering but only the 

T- curve calculated for diffuse scattering develops a peak at 

FMR. .No such FMR peak is predicted by the specular scattering 

calculation. 

As 1  is increased further, the transmission curves 

calculated for specular surface scattering predict that the 

complicated structure at FMAR will give way to a broad maximum 

while a broad minimum will develop at a value of H, 

corresponding to cyclotron resonance (see the T- curves 

calculated for 1  = 10 pm in figures 28-30). No interesting 

features are predicted to develop at FMR. In contrast, the T- 

curves calculated for diffuse surface scattering develop a 

minimum at FMAR, a maximum at FMR, and a broad maximum at 

cyclotron resonance when d / l  < 1. 



7.2.3 Variation - of -+ T - with, Ho and 1 - - -  

In figure 28 we plot logtolT+I vs. Ho for 

0.006 bm I 1 I 25 brn and for slab thicknesses d = 2 hm 

(fig. 31), d = 5 pm (fig. 32), and d = 10 pm (fig. 33). 

Similar to the results found for T-, we can see that when 

6/1 > 1, the transmission is essentially independent of the type 

of surface scattering. When I = 0.006 bm the calculated 

transmission curves agree with the transmission calculated using 

the NSE transmission coefficients L4.131 derived in chapter 4: 

the T+ curves exhibit a monotonic increase with Ho. The effect 

of increasing 1 is to cause an overall decrease in the 

transmission amplitude. The curves go through a minimum in the 

NSE-ASE transition region and then begin to increase in 

amplitude. In the ASE regime (6/1 I I), the surface scattering 

once again affects the transmission lineshape. In figure 31 we 

see that the curves calculated for diffuse scattering now 

decrease monotonically with Ho while the T+ curves calculated 

for specular surface scattering increase monotonically with Ho. 

7.3 Discussion of the Transmission Behaviour - -- 

An understanding of the variation of T+ with I ,  and how T+ - - 
depends on the surface scattering, can be obtained from a study 

of the integral form of T+ derived in section 6.6 for specular - 



Fig. - 31 Plots of loglolT+I vs Ho for d = 2 pm and various mean 

free paths 1. The calculations were carried out using the Nickel 

parameters of Appendix A. 



io I 

40 i-le (hoe) 

Fig. - 32 Plots of loglolT+I vs Ho for d = 5 pm and various mean 

free paths I. The calculations were carried out using the Nickel 

parameters of Appendix A. 



Fig. - 33 Plots of log,,lT+I vs Ho for d = 10 pm and various mean 

free paths I .  The calculations were carried out using the Nickel 

parameters of Appendix A. 



surface scattering and a thick slab (d/l >> 1). We had: 

The integral form was derived by replacing the infinte sum 

solution of T+ by a sum of residues (the first term of [6.70]) - 
and a contour integral (the second term of [6.70]). 

By plotting both terms of [6.701 vs. H, and 1 one can 

readily determine that the residue term governs the behaviour of 

T+ in the NSE regime (6/1 > 1 )  while the integral term governs - 
the behaviour of T+ in the ASE regime (6/1 < 1). This is - 
illustrated in figures 34 and 35 where we plot the two terms 

making up T- as functions of H, for d = 5 pm, 1 = 0.03 pm (NSE 

regime - fig. 34) and 1 =-2.0 fim (ASE regime - fig. 35). In the 

NSE regime, d/l was so large that the integral term was 

effectively zero. The residue term is entirely responsible for 

the transmission behaviour when 6/1 > 1. When 6/1 >> 1, the 

residue term reduces to the NSE transmission coefficient [4.13]. 

As 1 is increased, the real parts of the roots y, and y 2  

steadily increase with i ,  leading to the attenuation of the T+ 

and T- curves when 6/1 > 1. (see figure 29, for example). When 

6 / 1  S 1 ,  the residue term virtually stops changing with 1. The 

integral term is a steadily increasing function of I. When 

6/1 =L 1 (the NSE-ASE 

becomes comprable to 

interference effects 

1 = 0.6 lm and shown 

transition region), the integral term 

the residue term leading to the 

noted on the T- curves calculated for 

in figures 28 to 30. Further increases in 



Fiq. - 34 Plots of the residue and integral terms that make up 

. T- for the case of specular surface scattering, d = 5 um and 

I = 0.03 um. The residue term dominates the transmission in the 

NSE regime. 



Fiq. 35 Plots of the residue and integral terms that make up - 
T -  for the case of specular surface scattering, d = 5 Dm and 

I = 2 fim. The integral term dominates the transmission in the 

ASE regime. 



1 cause the integral term to increase in amplitude and become 

the dominant contribution to T+ in the ASE regime (see figure - 
35). 

Physically, we associate the residue term in T+ with the - 
transport of electromagnetic wave energy across the slab; the 

integral term is associated with energy transport across the 

slab by conduction electrons that enter the front surface skin 

layer, collide with the z = 0 slab face, and head back out into 

the slab carrying away energy picked up from the electric fields 

in the skin layer. 

In the NSE regime, where 6/1 >> 1 ,  1 'is so small that most 

of the conduction electrons cannot carry energy out of the skin 

layer and across the slab.. Hence, the electric fields at the 

rear of the slab (which govern T,) are primarily due to the - 
propagation of microwave radiation across the slab and, 

therefore, are not seriously affected by the type of surface 

scattering. 

However, since uo/i  is a constant in our metal then 

increasing I will increase u o .  Since the skin depth 6 is 

proportional to a. -'I2 the transmission associated with the 

propagation of microwave radiation across the slab must decrease 

with increasing I .  This is precisely the behaviour exhibited by 

the residue term in T+ and in the plots of T+ vs. Ho calculated - - 
for 6/1 > 1 in figures 28-33. 

When I increases enough to make S/I = 1 (the NSE-ASE 

transition region), the conduction electrons can begin to carry 



energy picked up in the skin layer out into the slab and 

contribute to the electric field distribution. The longer i 

becomes, the larger this contribution to the electric field will 

be. Since the conduction electrons generating the additional 

fields in the slab had to collide with the front surface skin 

layer before they could head back into bulk of the slab we 

should expect the electric fields in the slab, and therefore T,, - 
to be affected by the surface scattering. Our calculated 

results shown in figures 28 to 33 seem to confirm this. 

The effect of surface scattering on the conduction 

electrons that generate the electric fields in the slab when 

6 / 1  < 1 is explicitly illustrated in figure 36  where we have 

plotted 1njG-(z) 1 vs both Ho ( 6  I Ho S 60 kOe) and 

z ( 0  S z I 5 wm) for d = 5 Bm and i = 25 wm. Comparing the two 

plots in figure 36 we can clearly see that the electric fields 

generated in the skin layer by the incident microwaves for 

specular and diffuse scattering are remarkably similar. 

However, outside the skin layer, the electric fields definitely 

depend on the type of surface scattering. The electric field 

distribution for specular scattering is remarkable devoid of any 

interesting Ho dependent features except near FMAR. In 

contrast, the electric field distribution generated for the case 

of diffuse surface scattering seems to "image" the electric 

fields in the skin layer all the way across the slab. 

The electric field plots of figure 36 also make clear the 

role played by surface scattering at the rear of the slab. For 



Fig. 36 1nlG-(2) 1 plotted against depth z and the applied 

magnetic field H, for a 5 Bm thick slab of Nickel. The electron 

mean free path was taken to be I = 25 fim. The parameters used in 

the calculation are listed in Appendix A. 



specular scattering, the electric fields at z = d are nearly the 

same at the electric fields in the bulk. In contrast, 

~ a r a f f ~ " ~ ~  has shown that the presence of a diffusely 

scattering boundary at the rear of the slab enhances the 

electric field distributions near z = d. Further, diffuse 

scattering at the z = d slab face is directly responsible for 

the transmission peak at cyclotron resonancez3. Both the 

sharpening of the field distribution and the generation of the 

cyclotron resonance peak near the rear of the slab are clearly 

evident in figure 36. 

7.4 Scaling Properties of the Transmission Coefficients - -- 

In section 6.6 we derived an expression for the 

transmission coefficients T+ for a thick slab ( d / l  >> 1 )  and - 
specular surface scattering (see equation [6.70]). In the ASE 

regime, the residue term in the thick slab expression is 

negligible and the transmission is given by the integral term: 

. - d - LAX - a 
3 c dz 

We have found that the thick slab expression E7.31 has the 

useful property that it can predict the magnitude of T+ within a - 
factor of 2 or 3 when 6 / 1  S 1 and d / 6  > 3 or 4.   his is 

illustrated in figures 37 and 38 where we have plotted the 



Fig. - 37 Plots of IT-/T-(d/l >> 1 ) 1  vs H, for I = 10 pm and 

d = 2, 5, and 10 Dm. Specular surface scattering was assumed. 

The plots clearly show that the magnitude of T- is given to 

within a factor of 2 by the thick slab, specular scattering 

expression. 



Fig. 38 Plots of I T - / T - ( ~ / ~  >> 1) 1 vs H, for I  = 10 fim and - 
d = 2, 5, and 10 bm. Diffuse surface scattering was assumed. 

The plots clearly show that the magnitude of T- is given to 

within a factor of 2 by the thick slab, specular scattering 

expression. 



transmission ratios lT-/~-(d/l >> 1 )  1 for both specular and 

diffuse surface scattering when 1 = 10 pm and d = 2, 5, and 

10 pm. In all cases, the transmission ratio is of the order of 

0.5 to 1.5. One also finds that for fixed I ,  the variation of 

IT-/T-(d/l >> 1 )  1 with Ho is approximately constant. The 

scaling law can prove useful for the common situation where one 

has calculated T+ as a function of Ho and 1 for one particular - 
value of d and then must compare the calculations to 

experimental data obtained using a slab of a slightly different 

thickness. 

7.5 The Linearly Polarized Transmission Coefficient -- 

Although our analysis of the transmission behaviour has 

been most conveniently carried out in terms of the circularly 

polarized transmission coefficients T+, we do not measure T+ or - 
T- in an actual microwave transmission experiment. Rather, we 

measure TI the linearly polarized transmission coefficient which 

we defined in section 2.5 as 

where /3, is the cavity amplitude factor and Z, is the 

propagating waveguide impedance. 

For a system designed to measure the transmission of 24 GHz 

microwave radiation34, 0, = 2.32 x and Zo = 1.23. Using 



the published values of Po and Zo we have calculated and plotted 

loglol~l as a function of Ho for 1 = 1 ,  2, 5, and 10 pm and 

d = 2 pm (figs. 39-40), d  = 5 pm (figs. 41-42), and d = 10 pm 

(figs. 43-44). 

Perhaps the most striking feature of the T vs. Ho curves 

are the amplitude oscillations whose period varies with the slab 

thickness d  and whose amplitude varies with I .  The amplitude 

oscillations are called Gantmakher-Kaner  oscillation^^^ (or 

GKO). The GKO are have been observed in perpendicular 

configuration transmission experiments carried out on alkali 

metals at low temperatures5'. The GKO are due to interference 

between the positive and negative circularly polarized 

transmission coefficients-that combine to form T (see equation 

[2.106] above). To see this we consider the simplest case sf a 

thick slab ( d / I  >> 1 )  and specular surface scattering. When 

8 / 1  I 1 then the circularly polarized transmission coefficients 

are given by [7.3]. Using [6.70] in [2.106] gives 

Since oc varies with Ho through 

then [7.4] says that I T I  will vary cosinusoidally with Ho. The 



Fig. 9 Plots of loglolTJ vs Ho for a 2 micron thick slab of 

Nickel with specular surface Scattering. The calculations were 

carried out using the Nickel parameters of Appendix A. The 

mean free path varies from 1 um to 10 um. 



Fig. - 40 Plots of 10g,~lTl vs H, for a 2 micron thick slab of 

Nickel with diffuse surface scattering. The calculations were 

carried out using the Nickel parameters of Appendix A. The 

mean free path varies from 1 Dm to 10 Mm. 



Fig. - 41 Plots of 1 0 g , ~ l ~ l  vs Ho for a 5 micron thick slab of 

Nickel with specular surface scattering. The calculations were 

carried out using the Nickel parameters of Appendix A. The 

mean free path varies from 1 Hm to 10 Bm. 



Fig. 42 Plots of log,,lTI vs Ho for a 5 micron thick slab of - 
Nickel with diffuse surface scattering. The calculations were 

carried out using the Nickel parameters of ~ppendix A. The 

mean free path varies from 1 fim to 10 fim. 



Fig. - 43 Plots of logIolTl vs H, for a 10 micron thick slab of 

Nickel with specular surface scattering. The calculations were 

carried out using the Nickel parameters of Appendix A. The 

mean free path varies from 1 um to 10 pm. 



Fig. 44 Plots of log,,lTI vs H, for a 10 micron thick slab of - 
Nickel with diffuse surface scattering. The calculations were 

carried out using the Nickel parameters of ~ppendix A. The 

mean free path varies from 1 bm to 10 bm. 



spacing of the oscillations depends upon the Fermi surface 

parameters vF and m* and upon the slab thickness d. Not 

suprisingly, the period of the oscillations have been used to 

extract information about the curvature of the Fermi surface of 

several non-magnetic metalsu7J51. 

In our case, the GKO will be superimposed over any 

transmission features associated with the magnetic response of 

our metal. One can see that the transmission features 

associated with the magnetic response of the metal cause 

considerable distortion of the GKO, the distortion being much 

stronger for the case of diffuse scattering than for specular 

scattering (compare figures 41 and 42, for example). 

The distortion of the GKO should be readily observable in a 

transmission experiment. 24 GHz transmission systems have been 

described3' that can measure transmitted signals down to 

Watt. Such a system could therfore measure transmission 

features as small as I T I  = 10-lo if the specimen were irradiated 
t with a 1 Watt microwave beam . Refering to figures 39-44 we can 

see that the ASE transmission features predicted by our 

transmission calculations should be observable in slabs of 

Nickel 2 to 10 km thick when the mean free path is over 1 Dm. 

Such long mean free paths can be easily obtained at 4.2 K 

(liquid Helium temperature) if we use Nickel specimens with 

residual resistance ratios in excess of 1000 (for an RRR of 

 h he ratio of the incident to the transmitted microwave power is 
just 1 ~ 1 ~  
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Appendix - A: Nickel Parameters 

Parameter 
Name 

Value for Nickel 

r room 

Definition 

Saturation 

~agnetization'~. 

Saturation Field. 

Precessional Field3. 

First Anisotropy 
constant53 in Nickel 

Gilbert Damping 
Parameter3. 

Fermi Velocity16. 

Effective Mass Ratio 
of Conduction 
Electronst6 
(m, = free electron 
mass). 

Room temperature 
resistivitys4. 



O o  (room) 1.498 x 1017 esu 

l r 6.516 x microns 

Relation between 
d.c. conductivity 
and resistivity (00 

in esu, r in 
ohm-cm) . 
d.c. conductivity at 
room temperature 

Estimated conduction 
mean free path at 
room temperature3'* 

Ratio of d.c. 
conductivity to mean 
free path. 



Appendix - B: Linear - and Circular Polarization 

Consider a transverse electric field vecto: t) that 

varies spatially in the z direction only and has a time 

dependence of exp(-iwt): 

Such a field vector is usually represented by a pair of 

orthogona.1, linearly polarized, vectors Ex(z,t) and E (z,t) 
Y 

defined by 

Ey(z,t) = E (z)pexp(-iwt) 
Y EB.31 

where Ex(z) and E (z) are, in general, complex valued functions 
Y 

of z and 2 and p are unit vectors in the x and y directions, 

respectively. In terms of [B.2] and LB.31, E(z,t) can be 

written as 



However, this is not the only way of expressing E(z,t). 

Another, equally valid, representation of E(z,t) is in terms of 

orthogonal, circularly polarized, field vectors E+(z,t) and 

E-(z,t) defined by 

where E+(z) and E-(z) are also, in general, complex valued 

functions of z and 2, are circularly polarized basis vectors - 
defined by 

In terms of these new vectors, E(z,t) can be written as 

In contrast to the linearly polarized field components 

Ex(z,t) and E (2.t) which always lie along the x and y 
Y 

directions, the circularly polarized field components E+(z,t) - 
rotate about the z axis with an angular velocity of w rad/sec. 



To see this, we use [B.7] to write: 

E+(z,t) - = E+(z)exp(-iwt); - 
2 

The components of the actual electric fields are obtained 

by taking the real part of LB.91. Assuming, for simplicity, 

that the amplitudes E+(z,t) are real we get: - 

Hence, if we were to look down the z axis (towards z = -0) 

the positive circularly polarized component E+(z,t) will rotate 

clockwise about the z axis with an angular velocity of w 

rad/sec. while the negative circularly polarized component 

E-(z,t) will rotate counterclockwise about the z axis with an 

angular velocity of w rad/sec. 

Converting from the linear to the circularly polarized 

representations of g(z,t) is quite simple. Equating EB.41 to 



[ B . 8 ] ,  and using f B . 7 1  gives 

Equating x and y components in L B . 1 2 1  yields 

and inverting [ B . 1 3 1  and L B . 1 4 1  gives the simple relations 



Appendix Generalized Boundary Conditions 

In this appendix we show how an electric field distribution 

satisfying arbitrary boundary conditions can be constructed by 

superposing two electric field distributions that satisfy 

particularly simple sets of boundary conditions. 

In sections 2.2 to 2.5 of chapter 2 we found that the 

circularly polarized rf electric fields E+(z) - present in a 

ferromagnetic metal slab that occupied the space 0 I z I d and 

had a d.c. magnetic field applied along the z axis, satisfied 

the two independent, second order, integro-dif-ferential 

equations 

where a, = [2i~+/(o,6~)] - [C.21 

and K+(z,() is the circularly polarized kernel as defined in - 
section 2.4. 

The solutions of equations [C.1] will each contain two 

arbitrary constants which we may take to be proportional to the 

electric field derivatives at the z = 0 and z = d slab faces. 

Specifically, since the magnetic fields h+(z) are related to the - 



electric field derivatives by the circularly polarized Maxwell's 

equation 

then we may fix the form of the solutions E+(z) - by specifying 

the values of h+(O) and h+(d); that is, E+(z) is uniquely - - 
determined by h+(O) and h+(d) while E-(z) is uniquely determined 

by h-(0) and h-(dl. 

Consider the solutions of ic.11 that satisfy the particular 

choices 

Label the solutions as G-+(z) and G-(z) or, for brevity, G+(z). - 
Now consider the solutions of [c.I] satisfying 

If we label these new solutions as F+(z), then the electric - 
field solutions E+(z) - satisfying arbitrary values of h+(O) - and 

h+(d) may be written as - 



~ u t ,  F+(z) = -G+(d - z). To see this we take the boundary - - 
value problem satisfied by G+(z) and change variable from (z,,$) - 
to ( ~ ' ~ 5 ' )  where 

Thus, we go from 

h+(O) = 0; h+(d) = - 1  - - 

(the boundary conditions were transformed using [C.3] and the 

fact E;(z) = -~;(d - 2')). - - 
Now, under an inversion of space about the point z = d/2, 

the kernel remains invariant20J37; ie, 



Using this in the integro-differential equation for G+(d - 2') - 
shows that if G+(z) is a solution of [C.1] that satisfies - 
h+(O) = 1;  h+(d) = 0 then G+(d - 2 )  is a'solution of [C.11 that - - - 
satisfies h+(O) = 0; h+(d) = -1. The result - - 
F+(z) = -G+(d - z) follows immediately and [~.6] can be - - 

L 

re-written as 

The solutions of [C.1] that satisfy arbitrary values of 

h+(O) and h+(d) may therefore be expressed in .terms of the - - 
particular solutions G+(z) that satisfy the simple boundary - 
conditions h+(O) = 1; h+(d) = 0. As shown in section 2.5, this - - 
allows us to express experimentally observable quantities like 

the surface impedance and the transmission coefficient solely in 

terms of G+(O) and G+(d). - - 



Appendix 5 Semi-Classical Current Density Calculation 

In this appendix we review how to use the Boltzmann 

transport equation to calculate semi-classically the current 

response in a metal due to applied electric and magnetic fields. 

We consider linear response (ie, the current density in the 
* 

metal is linearly related to the applied electric field) and use 

the method of Cohen, Harrison, and Harrison26 to solve the 

Boltzmann transport equation. The resulting expressions for the 

current density are particularly useful for calculating the 

current response in and infinite conducting medium due to 

applied delta function electric fields (see chapter 3). 

The current density '5(3,t) generated in a metal due to 

arbitrary electric and magnetic fields can be calculated 

semi-classically using the 

T(3,t) = -2e/(2nI3 f Gf(i,E,t)dE 
E 

where the volume integral extends over all k-space and f(?,E,t) 

is the phase space distribution function for electrons of 

wavevector E and velocity G at position 2 at time t. In the 

absence of all electric and magnetic fields, f(?,E,t) reduces to 

for the equilibrium Fermi-Dirac distribution function 

fo(r(E)) = [ I  + exp((efE)-eF)/kg~)1-' 



When electric and magnetic fields are present, the 

conduction electrons move through the metal and suffer 

collisions with impurities, lattice defects, phonons, and other 

electrons. In a steady state, the rate of change of f(?,E,t) 

due to the applied fields is just balanced by [f/t]coll, the 

rate of change of f due to collisions. This may be expressed by 

the Boltzmann Transport equation: 

where E and ? are determined by the semi-classical equations of 

motion 

E and B are the net electric and magnetic fields in the metal. 

In order to solve the Boltzmann equation for f(F,E,t) in 

closed form, one usually assumes that the collision term 

[ af/~tlcoll is given by the relaxation time appro xi ma ti or^'^'^^: 

The meaning of the collision term [D.6] is that f(i,E,t)/~ 

electrons scatter out of a unit volume of phase space (i,E) in a 



unit time while f,,(e(E))/r electrons scatter in. If we were to 

suddenly remove all applied and fi fields, and if f were 

independent of 3, f would decay exponentially into f o  with a 

characteristic relaxation time T which is assumed to be a 

constant throughout the metal. To see this, insert ED.61 into 

[~.3] and set af/a3 and I? to zero before solving for f(Z,E,t). 

It can also be shown that the collision term [D.6] 

corresponds to elastic scattering of the conduction electrons. 

In a pure metal, at low temperatures (the case we are interested 

in), the conduction electrons mainly scatter dff randomly placed 

massive impurity ions and point lattice defects: such scattering 

events arc elastic. 

There are several ways of solving the Boltzmann equation 

for f(?,E,t). We shall consider the method due to Cohen, 

Harrison, and ~arrison'~ which is similar to the Chambers 

solution18 but easier to work with. 

Solution of the Boltzmann Equation: - The Method of Cohen, 
Harrison, - and Harrison 

An electron will contribute to f(?,E,t) only if it is at 

the phase space point (?,El at time t. The only way an electron 

could get to (3,E) at t is if it had scattered on to the unique 

phase space trajectory T, that runs through (Z,E), at some point 

(3',E') at time t' < t (see figure 45). According to the 

relaxation time approximation, the number of electrons which 



Fig. - 45 The trajectory T of an electron in phase space when 

electric and magnetic fields are present.' An electron which 

contributes to the distribution function f(3,EIt) must have been 

scattered onto T at a time t' in the past at the 

corresponding point (3',E1) and have followed T without 

scattering until it arrives at the point (3,E) at the time t. In 

the absence of the electric field, the electron follows the 

unperturbed trajectory To. 



scatter onto T in dt' at (?',El) is just fO(e(E'))dt1/~, and t h e  

probability that an electron will stay on T until it reaches 

(3,E) at time t is just e -(t-t' )IT. The distribution function 

f(?,E,t) is obtained by summing over all times t' in the past. 

The result is 

Now, during the time interval [tl,t] that an electron 

follows the trajectory T it will pick up energy 

Ae(tl) = e(E)-e(E1) from the electric field E. Thus, at time 

t', fo(e(E1)) = fo(e(E)-~e(t')) and we may re-write f(TIEIt) as 

To proceed further we assume that Ae/e << 1 (ie, the 

applied electric field is weak) and the electron density is a 

constant (ie, the Fermi energy is independent of position) so we 

can expand fo(e(E)-Ae(tl)) about e(E), 

where 



and Ae(t'), the energy picked up by the electron in the time 

interval [t',t], is given by 

where E" and 3" are chosen to lie on the unperturbed trajectory 

To followed by the electron if the electric field E were absent. 

This is permissable because we are only concerned with linear 

response (ie, a cur.rent response linear in the electric field). 

Cohen, Harrison, and Harrison simplified [~.10] using 

integration by parts 

Judv = uv - Jvdu 

- 
with u = Ae(tl) and dv = (dtV/r)e (t-t')/r. Since Ae(t) = 0, 

g(?,E,t) becomes: 

where 

is the energy picked up by an electron during the infinitessimal 



time interval [t1,t'+dt']. Again, 3'  and E' lie along the 

. unperturbed trajectory To and correspond to the position of the 

electron in phase space at time t'. 

The calculation of the current density due to 

arbitrary, weak, electric and magnetic fields is now relatively 

straightforward. First,'one uses the semi-classical equations 

of motion ED.41 and [D.5] to determine the unperturbed electron 

trajectory that runs through the phase space point (FIE) at time 

t. One then calculates d[Ae(tT)] from [D.13], inserts the 

result in [D.12], and does the integral over t i  to get g(Z,E,t). 

The distribution function f(?,E,t) is then given by f = fo + g 

(see CD.91). The current density is obtained using 

[D.1]. Only g, the deviation of f from fo, will contribute to 

the current density. We may therefore write the current density 

expression as 

Note that at room temperatures and below, the term (afo/ae) 

in g(?,E,t) is very nearly equal to -6(e-eF) where 6(x) is the 

Dirac delta function and eF is the Fermi energy. This restricts 

the integral over k-space in ?(F,t) to an integral over the 

fermi surface. It also means that when we are working out the 

unperturbed phase space trajectory To, we need only consider E 

values on the Fermi surface. 



Appendix E: The Exponential Integral 

In this appendix we consider a numerical proceedure for 

evaluating the exponential integral E,(z) for a complex 

argument. This function is needed to carry opt the numerical 

solution to the electric field boundary value problem for the 

case of diffuse surface scattering (see chapter 5). 

The exponential integral for a complex argument z can be 

defined by57 

L 

The function is analytic over the entire complex t plane except 

for a branch cut along the negative real axis that's associated 

with the 1/t term in the integrand. The function goes to 

infinity at z = 0. 

Now, scientific subroutines exist that evaluate the 

function 

to 13 or so digits when the argument x is a real, positive 

number (see, for example, the IMSL subroutine MMREI). However, 



there seems to be no routines available for evaluating E,(z). 

To evaluate the latter function we make use of the fact that the 

integral from z to in E,(z) is path independent as long as we 

do not cross the branch cut along the negative real axis. If we 

write z = a + ib, and assume that a > 0,  then we can split the 

integral for E,(z) into two pa,rts: 

where the integral from a + ib to a is along the vertical line 

t = a and the integral from a to infinity is along the positive 

real axis. The second integral in [E.3] can be evaluated with 

an existing scientific subroutine. The first integral can be 

split up into real and imaginary parts. 
I 



Each part can be easily evaluated with some kind of numerical 

integration package like DCADRE (available from the IMSL 

scientific subroutine library). 



Appendix - F: Gauss-Laguerre Quadrature 

Gauss-Laguerre quadratureu4 can be used to evaluate real 

valued integrals of the form 

by a finite sum: 

where the arguments x i  are the zeros of the nth Laguerre 

polynomial 

and the Ai are given by 



The maximum difference between the true integral a ~ d  the 

approximation does not exceedbu 

where 8 is chosen to maximize F (2n)(x) on the interval 

O I x c = ,  

The n-point Gauss-Laguerre quadrature formula gives exact 

results when F(x) is a polynomial of degree 2n-1 or less. 

Tables of xi and Ai for values of n ranging from 10 to 20 can be 

found in numerical analysis textsuu. 

Several mathematical subroutine libraries contain routines 

for evaluating integrals using the Gauss-Laguerre method. For 

example, the NAG library contains a function DOIBAF (option 

DO1BAX) that allows one to use up to n = 64 points. 
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