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ABSTRACT 

Recently, ab-initio four-component relativistic calculations 

for AuH have been reported by Malli and Pyper. It was concluded 

from these and from the relativistic calculations for Au2, Bi2, 

BiH and preliminary relativistic calculations for T1H that 

although the 5d orbitals are substantially involved in the 

bonding of gold compounds these do not participate in the 

bonding of T1H and bismuth compounds. Furthermore, they 

established that the non-relativistic calculation cannot explain 

either qualitatively or quantitatively the features of chemical 

bonding and properties of AuH as compared with the relativistic 

calculation which predicts a shorter bond length, a higher 

vibrational frequency and a doubling of the dissociation energy. 

In order to compare the role of the 5d orbitals in the 

closed-shell compounds of hydrogen with the heavy elements Au to 

Bi, ab-initio relativistic wavefunctions and dissociation 

energies have been calculated for the species H ~ H + ,  T1H and P ~ H +  

using the Relativistic Integrals Programme (RIP) developed at 

Cambridge. For comparison, to study the relativistic effects, 

the non-relativistic wavefunctions for these species and for BiH 

have also been calculated. 

To complement this study, a computer programme developed 

here (using the numerical techniques of RIP) has been used to 

calculate the dipole moments and mass expectation values for the 
+ + 

diatomics AuH, HgH , TlH, PbH and BiH. Moreover, contour maps 

iii 



of relativistic molecular orbitals (RMO) and their densities 

have been generated to present a visual appreciation of the 

electronic charge distributions in these systems. 

It is found that the 5d orbitals also participate in the 

bonding of HgH+ but these are unimportant for T1H and P~H+. It 

is also found that the calculated .relativistic and 

non-relativistic values of the dipole moments for these heavy 

diatomics significantly differ in magnitude and in some cases 

even in sign. 
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1. INTRODUCTION 

During the past decade there has been an increasing interest 

in the study of relativistic effects in atoms, molecules and 

solids [2]. 

In the case of atoms, the state of the art is such that 

accurate fully ab-initio relativistic calculations have been 

performed [ 3 , 4 ] .  In the case of molecules, the first 

relativistic SCF formulation for closed-shell molecules was 

developed by Malli and Oreg [5]. However, all electron ab-initio 

relativistic calculations were only reported for the light 

systems Li2 and Be2 [61 for which the relativistic effects are 

unimportant. This was, in part, due to the fact t.hat at that 

time, fully ab-initio relativistic calculations on molecular 

systems containing heavy atoms were prohibitively expensive in 

computer time. 

In view of this, less rigorous but more practical methods 
b 

have been devised to investigate the electronic structure of 

systems containing heavy atoms. Among them, there are : the 

one-centre expansion (OCE) method which has been applied only 

for hydrides [7,8]; the effective core potential (ECP) method 

which has been applied to diatomics and polyatomics containing 

heavy atoms [9,10,11]; and a perturbation approach that has been 

applied to hydrides and linear molecules containing heavy atoms 

[12,13]. However, it should be noted that the results reported 

from calculations on heavy systems using the last two methods 

are suspicious [14], since it is well known that even the 



valence electrons of a heavy atom are significantly modified by 

relativity [44]. Thus, any molecular calculation treating the 

valence electrons should be based on a Dirac Hamiltonian as 

proposed by Ishikawa and Malli [IS]. Moreover, it has been shown 

by Pyper and Marketos [16] that in a heavy atom, although the 

indirect effects of relativity are well described by first order 

perturbation theory, the direct effects are too large to be 
- 

treated accurately. 

More recently, a computer programme RIP (Relativistic 

Integrals programme) was developed to perform fully relativistic 

calculations [17], using a method based on the Dirac equation 

for a diatomic system. It has been used by ~ a l l i  and Pyper [I] 

to report the first fully relativistic ab-initio calculation for 

gold hydride (AUH). In this calculation the nature of the 

bonding in gold hydride was investigated, and it was found that, 

contrary to the naive concept that the bonding in gold hydride 

is fully described by the participation of only the 6s orbital 

of the gold atom and the 1s orbital of the hydrogen atom, there 

is also a significant participation of the 5d orbitals of gold 

manifested through 5d-6s hybridization in the valence molecular 

orbitals describing the bond. Furthermore, these bonding 

features have been shown to be due to relativity, since the 

non-relativistic limit calculations on AuH do not show 5d 

participation. 

The above mentioned results on gold hydride provided the 

motivation to investigate, by using RIP, the bonding nature and 



relativistic effects in the similar heavy systems HgH+, T ~ H ,  

P ~ H +  and BiH, and compare their 5d-orbital participation in 

bonding. Moreover, to visualize the bonding characteristics and 

the 5d charge density redistribution in these systems, a 

computer programme was developed to perform orbital amplitude 

and charge density contour~plots. Furthermore, to investigate 

the relativistic effects on properties other than the energy, 

another computer programme was developed to evaluate dipole 

moments by using the same numerical techniques as RIP. 



F 

2.  METHOD 

The theoretical methods for relativistic calculations on 

molecules have been fully described elsewhere [5,181. With the 

exception of a detailed description of the methods and 

computational techniques used for the calculation of the dipole 

moment, the mass operator and the generation of contour plots, 

only a brief summary of the theory for calculating the 

wavefunction and total energy of a diatomic [19,20] will be 

given here. In particular, the methods will focus on diatomics 

of the form XH where X is a heavy atom or ion (x=H~', T1, ~ b + ,  

Bi) and H is the hydrogen atom. 

2.1 Wavefunction Construction. 

Using the orbital approximation, i.e., with each electron 

described by a four-component function 4 of only its space and 

spin coordinates called a relativistic molecular orbital (RMO), 

the N-electron approximate wavefunct ion ye is constructed a? 
the Slater determinant (SD) of N RMOs as: 

where 4 is an antisymmetrizer and S is a ' normalization 

constant. For the RMOs, the relativistic analogue of the LCAO 

method [21] is used in which each RMO is expanded in terms of 

Dirac-Fock atomic orbitals (DFAOS) of the constituent species X 

and H. These DFAOs are readily computed using the 

Multi-Configuration Dirac-Fock (MCDF) programme [22], and have 

4 



the standard central field form [23] 

where ($,%,Q() are the spherical coordinates (gee figure 1 )  of 

the electron with respect to centre q (q=A,B). The Pq (r) and 

Q4(r) are the large and the small (purely numerical) radial 

functions of the subshell [43] and (eqJ@) is a vector 
I t m  

coupled space-spin function given by 

where Y (e9~&) is a spherical harmonic (normalized such that P,m-m, 
y s ) , while b?%> are the two component spin functions, - 2 R  

The quantum number m takes half-integer values and is the 
A .  

eigenvalue of the operator corresponding to the z-component a,, 3, 
of the total angular momentum('k+~), The quantum number k ,  a 
which can be a positive or a negative integer, defines both 

eigenvalues d and 1 through 



Figure 1. Diatomic Coordinate System. 





where & = I  (a=-1) for j I R +1/2 ( 't k - 1 / 2 ) .  To simplify the d 
problem of finding the explicit form of all the N &OS, the 

frozen core approximation is used, 

Y1, inner electrons of X will remain 

formation. A core wavefunction & 
where each RMO is uniquely represented 

i.e., it is assumed that 

unaffected upon molecule 

is taken as a SD of RMOs, 

by one inner DFAO of X, 

while for the remaining N-& valence electrons the 

wavefunction $ is taken to be of the form : 

The f,, , describes both those electrons occupying open 

subshells of X and H and those occupying closed subshells of X 

that are significantly affected by the formation of the 

molecule. In this frozen core approximation, the total 

electronic wavefunction ye then takes the form [I 1, 

where c ~ )  is a partial ant i-symmetrizer which only interchanges 
a -L a 

coordinates between the sets ( r, ,.. , and 1 r2+, ,. . ,r, 1 . 
Furthermore, to ensure the strong orthogonality between 

and Q, [ 171, the basis set ([U; >) of valence DFAOs is 



Schmidt-orthogonalized against all the core DFAOs defining a 

core-orthogonal basis { [I& >) with 

In eq. 9, [TI is the expansion coefficient matrix of the new 
basis {[u: >) in terms of the core and the original valence 

orbitals {[u; >), In particular for the systems HX with H 

located at A and X located at B (see figure 11, only the 

hydrogen 1s DFAO gets orthogonalized against the core of X as 

where S,lis a normalization constant. 

The expansion of the valence RMOs is then given in terms of 

the core-orthogonal basis 1 [ U( >) (defined in eq. 91, 

where [ C ]  is the coefficient matrix to be determined by an SCF 

procedure [ 2 1 1. 

2.2 Molecular Energy. 

With a wavefunction ye constructed in terms of DFAOS that 

are "electron-likew solutions (purely numerical) of the 



Dirac-Fock equations for each of the constituent species makes 

unnecessary the use of projection operators onto an 

electron-like subspace [24,25] in evaluating the expectation 

value of the electronic energy Ee . Thus, 

where R is the internuclear separation of the diatomic (see 

figure 1 )  and is the Dirac-Coulomb operator for the 

N-electron diatomic, given in atomic units (4-1, m=l, e=l) by 

5 where p is the operator for linear momentum, c is the velocity 
c 

of light and and are the Dirac 4x4 matrices defined as 

3 
where are the 2x2 Pauli spin matrices and I is a 2x2 

identity matrix. In eq. 13, Zp ( 9 =A,B) is the charge of 
A 

nucleus q and T i  is the vector distance of centre q to electron P 
i (see figure 1 ) .  

From eq. 8 and due to the strong orthogonality between 

& and &,, , the total molecular energy E(R) (including the 

I internuclear repulsion) can be decomposed into core and valence 

1 contributions [17,261 
I 



where Eck) is given by 

A 

In eq. 17, ( )  is a one-electron operator containing all 

the direct and exchange interactions of valence electron i with 

the core of X located at Be 

All the one-centre and two-centre integrals needed for the 

evaluation of L(R) and E,(R) ere readily computed using the 

Relativistic Integrals Programme (RIP) [19,20], The minimization 

of E,,(R) leads to the standard matrix eigenvalue problem [21] 
b 

/ where Is3 is the overlap matrix with elements < X i  I 24; >, I c 3  

is the coefficient matrix defined in eq. 1 1 ,  [ € I  is the 

eigenvalue matrix and [F 'J  is the matrix of the one-electron 

Dirac-Fock operator with elements 



with 

A 

in eq. 19, the coulomb ( 3  ) and exchange ( k ) operators 

are given as follows : [27] 

where $+ stands for the Hermitian conjugate of h . 
Using an SCF procedure [21], eq. 18 is solved for Ev and 

[c] , whence the total molecular energy E(R) and the approximate 
b 

wavefunction %(R) are determined. 

The dissociation energy, De, defined positive for a bound 

system, is given by the difference between the molecular energy 

for R-+& (separated atoms) and that at R=Re (equilibrium 

position of the molecule). By virtue of the energy partition 

given in eq. 15, De is calculated as 



In eq. 23, and EhV are the energies of the valence 

electrons in the isolated atoms A and B, respectively and AE,(R~), 
which includes the nuclear-nuclear repulsion, is the difference 

between the energy of the core in the molecule and that of the 

same core in the isolated atoms [I]. 

2.3 Symmetry Considerations 

The heteronuclear systems under study belong to the 

c o w  double group. 

Refering to the coordinate system of figure I., some of the 

spatial 

The 

and 

A 

operations included in C,,, are [281 : 

C #  , for a rotation by 41 around the z-axis, 

H y s  , for a reflection in the plane y=O 

operators corresponding to 
4 

these are given by [28] : 

where l f i Is  [ 201 is the "Dirac inversion operatorw corresponding 
A 

to the spatial inversion (Ij, ) changing r to -r. 

It can be shown that the Dirac-Pock operator F (eqs. 18 

and 19) is totally symmetric with respect to the symmetry 



operations of the group C,, 1201: 

where the first commutation relation follows from the 

commutation of with & . However, since 6 and 
do not commute with each other, the eigenfunctions 1 +i) of 

? cannot be simultaneous eigenfunctions of , Tp and 
A 

but they can be for and f y  or and . 
Choosing the latter option the eigenfunctions #;) are 

labeled as I $  m ) ,  such that : 

Furthermore, it follows 118,281 that, . 

and thus, the energy levels are doubly degenerate [ 18,281 and 
4 

the ket ( q l $ m )  n)) differs from the ket ( I $ - m )  ) by at most a 

phase factor ei6 [ 18,28 1 



In connection with the evaluation of the matrix elements 

cj of eq. 19, it follows [18,28] from eqs. 28 and 31 that 

Thus, the matrix IF]. is blocked by m-value and only the 

positive m-value blocks need to be calculated. 

2.4 ~ i p o l e  Moment. 

In a coordinate system with origin at centre A and z-axis 

pointing t0wards.centre.B (see figure 11, the expectation value 

of the dipole moment in atomic units (a. u.) is given by [ 4 2 ]  

The first term in eq. 34 is the nuclear contribution to the 

dipole given by centre B of nuclear charge Z B  located at a 

distance RAb from A. The second term is the electronic part of 

the dipole due to the N electrons of the system. 

2 
The vector operator r(i) for the position of electron i with 

A 

respect to centre A can be decomposed into its ;J i 1 ,  $: i ) and 

;~i) components; however, only the z-component will have a 



non-zero contribution to the dipole moment because due to the 

axial symmetry of the diatomic, the contributions from the x and 

y components vanish. 

h 

This can be seen by using the operator GST , defined as 

that corresponds to the N-electron generalization of the 

operator for a rotation by r in the z-axis and satisfies 

Thus, 

Therefore, the electronic contribution to the dipole 

is given only by the expectation value of 



By substituting ye from eq. 8 into the above relation, 

gets the molecular orbital approximation form, 
/": 
with 

contributions from the M, RMOs formed by pure DFAOs of X, each 

having a centroid of charge at R units from A that make up a 

core dipole 

and from the (N-% ) valence RMOs that make up the valence 

dipole 

Thus, 

The valence dipole moment is further simplified by 
A 6 A 

by noting that I LA ,Tp 1.1 & ,% 1.0, then 

symmetry 

( 4 3 )  

where [EFJ'* is the molecular dipole m-submatri j ncn is the 

number of core orbitals having an m-value and Nvn is the number 



of the valence orbitals with that m-value. The elements of these 

submatrices are readily given in terms of the original DFAOs by 

making use of the transformations [T? (eq. 9 )  and LC] (eq. 1 1 )  

as 

where [Z;'*O]* is the m-submatrix of the electric dipole in the 

DFAO basis. 

From eqs. 34, 43 and 44, the total dipole moment is given by 

Clearly, the only quantities needed to evaluate (45) are the 
W M  m 

[t, Jiimatrix elements since the [c] and [TI matrices are 

determined when the total energy E(R) is calculated through thk 
SCF procedure. These matrix elements can be one-centre or 

two-centre integrals having the form 

In the case that the DFAOs are centered on the same centre 

(c(q)=c(q' )=c), each one-centre integral (4 bits in principle) 

is reduced to only one radial integration as (see appendix 1 )  



where di is an angular coefficient [41] and the radial 

integration is done numerically using the methods of the MCDF 

[221 programme. 

When the DFAOs are not centered on the same centre 

(two-centre integrals), unfortunately there is no angular 

simplification for the 8 integration and each two-centre 

integral will produce four overlap type integrals of the form 

Following the numerical methods of RIP [20] (see appendix 

2), each & integral is calculated using a 24x24 Gauss 

quadrature [ 2 9 ] .  

2.5 Mass Operator. 

Defining the total mass operator of the N-electron 

system as [30] 

where the rest mass energy of each electron has been subtracted 

such that the zero of energy corresponds to that of the free 

electron, the expectation value of fi is given by 



By virtue of the symmetry of the problem and using the same 

arguments as those given for the dipole moment, the expectation 

value of in terms of the original DFAOs is 

m 
where  is the m-submatrix of the mass operator in terms 

of the original DFAO basis and has elements 

whi,ch can be one-centre (c(i)=c(j)) or two-centre (c(i)#c(j)). 

For the one-centre type integrals, the central field symmetry of 

the DFAOs simplifies the integration to a radial integral [23] b 

of only the small components that is evaluated with the MCDF 

[ 2 2 ]  numerical methods, 

For each two-centre integral, the two overlap-type integrals 

over the small components have the form 



and these are calculated using the same numerical methods as for 

the evaluation of the dipole moment (see appendix 2 ) .  

The expectation value of the total mass operator is 

evaluated in order to check the relativistic virial ratio [30], 

which is satisfied at R=Re for the wavefunction that minimizes 

the total energy E of the system. 

2.6 Contour Plots. 

2.6.1 RMO Contour Plots. 

In the XZ-plane (see figure 1 1 ,  the RMO constant amplitude 

contour line of the ith component of the jth RHO $(F) is given ' 

where A is the amplitude constant value. From eqs. 9 and 1 1 ,  

this expression is given in terms of the original DFAOs U(F) as 
5 



The form of each centered at p (p=A or B) is known and 

is given in general by 

where 6 is a constant (that depends on the quantum numbers of 

DFAO U , f(fp) is a purely numerical radial function 

(calculated with the MCDF programme) and 4 (6~9) is a 

Legendre polynomial. 

2.6.2 Contour Plot. 

The electronic charge density function f derived from the 

wavefunction ye is given in the orbital approximation by 3311 

where 

i*, + h g a ) = L  t * $. ( r )  
is1 2 a 

is the contribution of the four components of the RHO to 
a' 

the density. 

In the plane XZ, where the contour lines are defined, 



Within the frozen-core approximation, according to the core 

size defined for the calculation ( in eq. 61,  different 

wavefunctions will be constructed showing different electronic 

molecular densities. In particular for the XI4 systems under 

study, it is desirable to visualize the change in charge density 

that each system undergoes when the 58 and 5d DFAOs of X are 

included in the core wavefunction or not. This difference can be 

visualized by forming the difference density plot given by 

where 9' and ' , refer to the charge densities obtained 

from the wavefunctions that include or exclude the 5: and 5d 

DFAOs in the core of X, respectively. 



RESULTS AND - DISCUSSION 

The results of the various relativistic and non-relativistic 

calculations of the molecular wavefunctions for the systems 

HgH*, TlH, P ~ H *  and B ~ H '  are presented in this section. 

1n.section 3.1, total molecular energies and dissociation 

energies predicted by these wavefunctions are analyzed and a 
- 
chemical basis is determined for each system. For the chemical 

basis wavefunctions, the calculated expectation values of the 

dipole moment operator and virial ratios are given in section 

3.2. 

3.1 Chemical Basis Wavefunctions. 

To simplify the discussion isoelectronic systems are treated 

together. The results of H9H+ ere presented and compared with 

the results reported for AuH [I]. Next, the results for T1H and 

P ~ H *  are given, followed by the results for BiH. 

For each system several wavefunctions are constructed. Based 

on an energetic criterion and on examination of the expansion 

coefficients of the valence RMOs of these wavefunctions, a 

chemical basis is determined consisting of those DFAOs having 

substantial participation in the formation of the molecule [I]. 

To visualize the participation of the various DFAOs in bonding, 

contour plots of a few representative RMOs are presented. 

Finally, in this section, plots of difference density for the 5d 

'The non-relativistic results for BiH, are reported and compared 
with the relativistic results found by Malli and Pyper [321. 



DFAOs, Ly5& defined in eq. 62, are given for the systems A W ,  

HgH+, TlH, P ~ H +  and BiH, to display the importance in bonding of 

these DFAOs through the series. 

3.1 . 1  HgH+ Molecular Wavef unct ions 

'Eight molecular wavefunctions, four relativistic and their 

corresponding non-relativistic limits2, were calculated for the 

experimental separation of 3.013 a.u. [33], using the following 

DFAO basis sets for the expansion of the valence RMOs: 

BlO = {IS(H): 5 ~ , 5 d , 6 ~ , 6 6 , 6 ~  (Hg+)13, 

B7 = {IS(H); 52,5dt6s (Hg+)l, 

B5 = {ls(H): 6sr6F,6p (H~+)I, 

B2 = {ls(~): 6s (Hg+)), and for the NRMOs: 

BlONR = {IS(H); 5d.6s.6~ (Hg+)]. 
+ 

B7NR = EIS(H); 5dt6s (Hg 1 1 ,  

B5NR = {ls(H): 6s.6~ (H~+)I and 
+ 

B2NR = {ls(H); 6s (Hg 11, 

where j ~ ( f )  is the DFAO withj=l+1/2 (d=1-1/2), and the ' 

notat ion Bn(BnNR), is used to spec i f y a 

relativistic(n0n-relativistic) basis with n DFAOs of positive m. 

The predicted molecular energies and dissociation energies 

given by these wavefunctions are reported in Table 1. For the 
------------------ 
2 ~ 1 1  the non-relativistic (NR) wavefunctions were calculated by 
artificially increasing the velocity of light from c to 1000c. 

3The DFAOs forming each basi are the only DFAOs allowed to form 
the valence wavefunction gV (eq. 7 ) .  In each set, the 1s DFAO 
of hydrogen is one of the members and the others are DFAOs 
belonging to the heavy centre. The occupied DFAOs from the heavy 
centre not present in the basis are taken to form the core 
wavefunction & (eq. 6). 



relativistic wavefunctions, the results show that when the 5d 

and 5d DFAOs are included in the basis (B10 or B7), there is an 

increase in the dissociation energy (De), compared with that 

predicted when the 5; and 5d DFAOs are kept in the core ( ~ 5  or 

~ 2 ) .  This increase amounts to 0.380 eV or 0.429 eV, according to 

whether the 6F and 6p DFAOs are present or absent in the basis. 

Both results are about 13% of the experimental ~ e '  of 3.11 eV 

[33] and although smaller, are comparable to the almost lev 

increase in De using similar bases in AuH [I]. As expected, the 

energy lowering in HgH+ is smaller, because the ST and 5d DFAOs 
of HgC are lower in energy than the hydrogen 1s DFAO by as much 

as half an atomic unit, whereas the 52 and 5d DFAOs in the gold 

atom are nearly degenerate with the hydrogen 1s DFAO. 

The contribution of the 65 and 6p DFAOs to the dissociation 
energy is readily inferred from the 0.159 eV or 0.208 eV 

difference in the predicted De when using the bases B10 and B7 

(which include the 5z and 5d DFAOs) or the bases B5 and B2 (not 

including the 53 and 5d DFAOS) , respectively. These results are 

about 7% of the experimental De, indicating a non-negligible 

participation of the and 6p DFAOs in the bonding of HgH+. The 

calculations on AuH [I] using similar basis sets, yielded about 

3% of its experimental De. The greater participation of the 6z 

and 6p DFAOs in HgH+ is attributed to the fact that these DFAOs 

in ~ g +  are only 3 eV above the hydrogen 1s DFAO, as opposed to 

10 eV in the gold atom. 

a The experimental De value given includes the zero point energy 
of the molecule obtained from ref. 1331 



TABLE 1. H ~ H +  Total Energy E, and Dissociation Energy De, as 
predicted by various wavefunctionsa. Non-relativistic results 
follow the ~elativistic results. 

Relativistic 
Basis 

a Calculated for Re=3.0lla.u. 
la.u.=27.21 165eV 

c De(exptl)=3.lle~, [33] 

From this analysis of the predicted dissociation energies in 

HgH+, it can be concluded that the chemical basis of H ~ H +  should 

contain the 5z, 5d, 6s. 6p' and 6p DFAOs from Hg+ and the 1 s DFAO 

of hydrogen as given by the basis B10 which predicts a De about 

29% of the experimental value [33] and a total molecular energyb 

of -19653.831 a.u.. On the other hand, the Dirac-Fock one-centre 

calculation of H ~ H +  reported by Pyykko [8] predicted a total 

energy of -19-653.678 a.u., using only 6s, 6z and 6p DFAOs in 

valence. This result is in better agreement with the total 

energy for H ~ H +  of -19653.817 a.u., as predicted using the 

similar basis, B5, shown in Table 1 .  

For the non-relativistic wavefunctions, an important 

observation from Table 1 is their failure to predict any 

binding. Even the calculation for the valence wavefunction with 



twelve electrons, BIONR, predicts an unbound H ~ H +  system by 0.06 

eV, whereas the corresponding relativistic wavefunction predicts 

it bound by 0.66 eV. Furthermore, analysing the relative 

increase obtained for the calculated dissociation energies, it 

is found that the inclusion of the 5d DFAOs in the basis yields 

an increase of 0.19 eV in De, while that of the 6p DFAOs gives 

an increase of 0.22 eV. This indicates a small and nearly equal 

participation of these DFAOs in bonding. In comparison with the 

relativistic results, the increase in De yielded by inclusion of 

the 6p DFAOs is similar. However, that of the 5d DFAOs is 

underestimated by 50%. 

The above conclusions, similar to those reached for AuH [ I ] ,  

are further supported by examining the expansion coefficients of 

the occupied valence RMOs and NRMOs given in Table 2 for the 

chemical basis wavefunctions. 

For the relativistic wavefunction, these coefficients 

indicate a significant mixing of the 5g and 56 DFAOs of Hg+ with 

the hydrogen 1 s DFAO in the three valence RMOs 6 , #$,* and 
- 8 1  
X. 

with m=1/2. In contrast, only the , and NRMOs 
T 

with m=l/2, have substantial mixing of the 5d DFAOs with the 1s 
d R  

DFAO. The other NRMO, $+,Z , is a pure 5d orbital with [a>-spin 
NP 

R. 
that is degenerate with the NRMO +3 which is a 5% orbital 

~ ) 1  
with [@>-spin. 

In comparison with the AuH RMOs [ I ] ,  similar features are 

observed. For this reason, the amplitude of the first component 

of the lowest and highest occupied RMOs of AuH having 



TABLE 2. SCF Relativistic and Non-relativistic Wavefunctions 
for H ~ H +  at R(exptl)=3.013a.u. Computed by using the Chemical 
Basis. 

BASIS R M O S  

BASIS N R M O S  

NR EIR NR NR r ~ a  NU A,, a @+z &,3 #*,I @*,2 +#,I 

a The first subscript denotes the R(NR)MOs m quantum 
numbers and the second subscript is just an index to 
differenciate between R(NR)MOs with same m. 

R(NR)MO eigenvalues in a.u. 

m=1/2, 4 ,  and , are plotted in figure 2. As can be 

1 seen for $+,, , the hydrogen 1s60rbital is in bonding phase 

to the 5dd gold orbital which has its positive lobes in the 

z-axis. Near the gold atom, the observed changes in the 



amplitude sign simply reflect the nodal structure of the 5d 

radial part. 

1 
For $+;3 , the hydrogen 1s orbital which is positive is 

in antibonding phase with the z-lobe of the 5d6 (in H~H*, the 
1 

coefficients of are reversed in sign), but it is in 
2 

bonding phase with the perpend.icular lobes of the 5d6 that are 

positive and broader due to the significant contribution of the 

gold atom 6s6 orbital. Apart from a sign, these plots are 

essentially the same as those reported by Krauss and coworkers 

[34], in their relativistic effective core potential calculation 

for AuH. 

For a further investigation of the 5d-6s-6p hybridization in 

HgH+, the localization procedure used by Malli and Pyper for AuH 

[ I ] ,  with the criterion that the hydrogen 1s DFAO contributes 

only to one localized MO, was applied to the m=1/2 valence 

R(NR)MOs of the chemical basis. The form of the resulting 

localized orbitals clarifies the effective 5d-6s-6p 
L 

hybridization on HgH+ and gives a simpler description of the 

chemical bond in H ~ H *  in terms of only one bonding orbital, as 

would be expected for the interaction of Hg* with one electron 

in hydrogen. The results are given in Table 3 and show that the 

localized R(NR)MOs [loci> and [loc2> are non-bonding orbitals 

(with no participation of the hydrogen 1s) concentrating 

electron density off the internuclear axis, whereas the other 

one [loc3>, concentrates charge along it and is the bonding 

orbital. 



Figure 2. RMO plots for AuH. 

Amplitude orbital plots of the first 
component of the valence RMOs ++-,A and 
3 (m = 1/21 of the chemical basis 
wavefunction for AuH [ I ] ,  at an internuclear 
distance of 2.8794 a.u. The outermost 
contour is fixed at 0.0884 a.u. and the 
ratio between successive inner contours is 
2. 
Solid or dashed lines are positive or 
negative contours, respectively. 





TABLE 3. H ~ H +  Chemical Basis Set Localized Molecular 
Orbitals of m=1/2. 

Localized RMOs Localized NRMOs 

Basis 

[ 1 0 ~  1 > [10~2> [l0~3> [10cl> [10~2> [l0~3> 

Both relativistic and non-relativistic wavefunctions have 

similar characteristics for [loci> and [loc2>. However, there is 
b 

a striking difference for the predicted 5d-6s hybridization in 

the [loc3> bonding NRMO, which fails to predict the substantial 

contribution given by the 5z and 5d DFAOs to the [loc3> bonding 

RMO. Therefore, the proposed hybridization of (n-1)dns given by 

Orgel [37] to explain the two-coordination of Hg in linear 

systems can be understood for a relativistic wavefunction only. 
+ 

Furthermore, the polarity of HgH molecule is overestimated by 

the non-relativistic wavefunction, as judged by the increased 

contribution of the hydrogen 1s DFAO to the bonding orbital 

[loc3> compared with the relativistic case. 



3.1 - 2  T1H and P ~ H +  Molecular Wavaf unct ions 

For each molecule, six molecular wavefunctions (three 

relativistic and the corresponding three non-relativistic . 

limits) were calculated using the following DFAO basis sets for 

the expansion of the. valence RMOs : 

BlO = {IS(H): 5~.5dI6s,6~.6p (T1 of P~+)I, 
+ 

B5 = {ls(H); 6s,6F16p (T1 or Pb )I, 

B4 = {ls(H): 60.6~ ( ~ 1  or ~ b + )  I and the valence 

NRMOs : 

BIONR= {ls(H); 5d16s,6p (T1 or pb*)~, 

B5NR = (ls(H); 65.6~ (T1 or P~+)I and 

B4NR = (IS(H): 6p (T1 or P~+)I. 

These basis sets were chosen to investigate the contribution 

of the 5;. 5d and 6s DFAOs of T1 and Pb+ to the bonding in TlH 

and P ~ H +  respectively. 

For TlH, the wavefunctions were calculated at the 

experimental distance of 3.534 a.u. 1331. Unfortunately, for 

P ~ H +  there is no experimental bond length. Therefore, an 

equilibrium distance was obtained by fitting a polynomial to 

four computed values of the molecular energy, using the basis B5 

for the internuclear separations of 3.250 a.u., 3.450 a.u., 

3.550 a.u. and 3.650 a.u.. The best fit gave 3.5884 a.u. for the 

equilibrium distance. All the other wavefunctions of P~H' were 

calculated for 3.5884 a.u.. 



The predicted molecular energies and dissociation energies 

given by the various wavefunctions are given in Tables 4 and 5, 

for T1H and P~H*, respectively. 

For TlH, the increase in the calculated De when the 52 and 

5d DFAOs are included to enlarge the B5 basis (see Table 4) is 

0.060 eV and 0.041 eV for the relativistic and non-relativistic 

wavefunctions, respectively. These results represent only about 

3% of the experimental De of 2.06 eV [33], indicating an 

insignificant role of the 5 z  and 5d DFAOs of T1 in the bonding 

of TlH. However, the role of the 6s DFAO of T1 is more 

important, as judged from the increase in De of 0.416 eV or 

0.600 eV between the predictions of B5 or B5NR and that of the 

wavefunctions B4 or B4NR, respectively. These results represent 

20% or 29% of the experimental De, for the relativistic and 

non-relativistic cases, respectively. 

From the above calculations it is clear that the 

non-relativistic wavefunctions predict similar results for the 

importance of the 5d and 6s DFAOs of T1 in the bonding of TlH. 

However, there is a marked difference between the predicted 

dissociation energies for the non-relativistic and relativistic 

wavefunctions. For example, the non-relativistic De predicted 

for the wavefunction B5NR is 0.61 eV larger than that predicted 

for the relativistic wavefunction B5. 

Pitzer [10], has pointed out that since the single valence 

electron in the thallium atom occupying a 6 5  DFAO is (1/3)0 

bonding and (2/3) n ant ibonding, the 6Pb 
combination 



TABLE 4 .  T1H Total Energy E, and Dissociation Energy De, as 
predicted by various wavefunctionsa. Non-relativistic results 
follow the Relativistic Results. 

Relativistic 
Basis 

-- - - - -  -- 

Non-Relativistic -(E + 18962 a.u.1 De(eV) 
Basis 

a Calculated for Re(exptl)=3.534 a.u. [33] 
b 1 a.u.=27.21165 eV 
De(exptl)=2.06 eV [33] 

TABLE 5 .  P ~ H +  Total Energy E, and Dissociation Energy De, as 
predicted by various wavefunctionsa.~on-~elativistic Results 
follow the Relativistic Results. 

~elativistic 
Basis 

 on-Relativistic -(E + 18962 a.u.) De(eV) 
Basis 

a Calculated for Re=3.588 a.u. 
b 1 a.u.=27.21165 eV 



f i ( 6 ~ )  +12/3(6p) is needed to form a o-bond with the hydrogen 

1s DFAO. For the relativistic calculation, this requires 0.63 eV 

of promotion energy, corresponding to 2/3 of the calculated 

splitting between the 6i5 DFAO and the unoccupied 6p DFAO, 

whereas no promotion energy is required for the non-relativistic 

case, since both 65 and 6p DFAOs a.re degenerate. 

From Table 5 it is clear that similar results are obtained 

for P~H+. For the relativistic wavefunctions there is an 

increase of 0.277 eV when, in addition to the 65 and 6p DFAOs, 

the 6s DFAO of Pb+ is included in the basis. This increase is 

only 0.021 eV more, if the 5z and 5d DFAOs are also included. 

For the P ~ H +  non-relativistic limit wavef unctions the 

corresponding contribution of 6s DFAO and 5d DFAOs to De are 

0.391 eV and 0.031 eV, respectively. 

Moreover, larger non-relativistic predictions for De are 
+ 

also found in PbH , viz. the non-relativistic wavefunction B5NR . 
predicts a De that is 0.99 eV larger than that of the 

relativistic wavefunction B5. This can also be explained in 

terms of the promotion energy, because 2/3 of the calculated 

splitting between the 6E and 6p DFAOs in ~ b +  amounts to 1.17 eV. 

It can be concluded from the above results that the chemical 

basis for T1H and P ~ H + ,  should include the 65, 6a and 6p DFAOs 

in addition to the hydrogen 1s DFAO. This basis predicts for T1H 

a total molecular energy of -20280.661 a . u .  and a dissociation 

energy of 0.662 eV (32% of ~e(expt1)). In contrast, the 



I TABLE 6. SCF Relativistic and Non-relativistic Wavefunctions 
for T1H at R(exptl)=3.534 a.u. Computed by using the Chemical 1 Basis. 

BASIS R M O s  N R M O s  

a See Table 2. 
MO eigenvalues in a.u. 

TABLE 7. SCF Relativistic and Non-relativistic Wavefunctions 
for P ~ H +  at R=3.5884 a.u. Computed by using the Chemical Basis. 

R M O s  
- - 

N R M O s  

a See Table 2. 
b MO eigenvalues in a.u. 

Dirac-Fock one-centre calculation for T1H [7] predicts a total 

energy of -20280.374 a.u. using a basis with only the 6Fand 6p 

DFAOs, which yields an unbound molecule of T1H by 7.leV. 



The coefficients of expansion of the valence RMOs for the 

chemical basis of T1H and P~H' are given in Tables 6 and 7, 

respectively. As can be noted, the valence RMOs of T1H and P ~ H +  

have similar features. In both cases the RMO is a 

bonding orbital formed mostly by the 6s DFAO and the 1s DFAO of 

hydrogen, but with'mixing coefficients reflecting the fact that 

the relative energy difference between the 1s DFAO of hydrogen 

and the 6s DFAO of Pb+ is larger than that of the 6s DFAO of T1 

in the isolated atoms. 

The other RMO, &,2 , which is the HOMO, shows significant 

6s-6p hybridization such that the hydrogen 1s DFAO is in 

antibonding phase with the 6s DFAO and in bonding phase with the 

6 5  and 6p DFAOs. By analysing only the large components of the 
1 

HOMO of TlH, it is found that the [.>-spin component ++,a , is 
the combination -0.58(1s HI-0.78(6sbT1)+0.50(6p6T1) and the 

2 
u 

[P>-spin component #+t , is -O.l4(6p TI), which shows the 
F 

character of the spin-orbit mixing as a small n-nonbonding 

orbital centered on thallium. Similarly, in P ~ H +  the 

n-nonbonding orbital-component is -0.22 (6 Pb*), and has a % 
larger coefficient due to the larger splitting of the 65 and 6p 

DFAOs in Pb+ than in T1. The two componerits of the HOMO #+,z 
of T1H are plotted in figure 3. 

In contrast, none of the valence NRMOs has any n-character 

because, as can be noted from Table 6 and 7, the coefficients 

for the 6: and 6p DFAOs are in the ratio - 1  :F , respectively, 
which yields a 6p orbital with [a>-spin. 

6 



Figure 3. RMO plots for TlH. 

Amplitude orbital plots of the first and 
second components, and c$& of 
the HOMO of the chemical basis wavefunction 
for T1H at an internuclear separation of 
3.534 a.u. The outermost contour is fixed at 
0.0112 a.u. and the ratio between successive 
inner contours is (1.9)~. 
Solid or dashed lines are positive or 
negative contours, respectively. 





3.1.3 BiH Molecular Wavefunctions 

Using similar DFAO basis sets as those used in T1H and P ~ H +  

for the expansion of the valence RMOs, Malli and Pyper [32] 

found that the chemical basis of BiH should consist of the 6s, 

6F and 6p DFAOs of bismuth and the Is DFAO of hydrogen. In this 

section the corresponding non-relativistic limit (c+1000c) 

wavefuntions are reported. 

These wavefunctions were calculated for the experimental 

internuclear separation of 3.411 a.u. Their predicted molecular 

energies and dissociation energies are given in Table 8, which 

also includes the relativistic results [32]. As can be seen from 

this table, the relativistic and non-relativistic wavefunctions 

predict a similar dissociation energy in.crease on enlarging the 

basis that contains the 65 and 6p DFAOs of bismuth. When the 6s 

DFAO of Bi is included, this increase yields 0.228 eV for the 

relativistic case and 0.359 eV for the non-relativistic case and 

when the 5; and 5d DFAOs also enter the basis, there is a 
b 

similar increase of 0.259 eV and 0.376 eV, respectively. 

This justifies the use of only the 6s, 65 and 6p DFAOs of 

bismuth in the chemical basis. However, the noticeable 

difference between the relativistic and non-relativistic 

wavefunctions is that the latter fail to predict a bound 

molecule of BiH. By using the chemical basis, BiH is predicted 

to be bound by 0.428 eV in the relativistic case, which is about 

14% of the experimental De of 3.00 eV [33], while it is 

predicted to be unbound by 0.305 eV in the non-relativistic 



TABLE 8. BiH Total Energy E, and Dissociation Energy De, as 
predicted by various wavefunctionsa Non-relativistic results 
follow the   el at ivist icb results. 

Relativistic 
Basis 

- - -  - 

Non-relativistic(NR1 -(E+20096 a.u.1 ~e(eV) 
Basis 

a Calculated for ~e(exptl)=3.411 a.u. [33] 
b The results for B10, B5 and B4 are from ref.1161 
c 1 a.u.=27.21165 eV 
d De(exptl)=3.00 eV [33] 
e Basis B4(lc) and B3(lc) were constructed using a 

one configuration wavefunction for Bi and differ 
from all the other calculations that used a 
5-configuration wavefunction for Bi. 

case. 

The energy shift of the non-relativistic De predictions with 

respect to the relativistic ones is almost the same and is about 

0.78 eV on the average. For this reason two more calculations 

were performed to investigate the importance of the 65 DFAO in 

the relativistic case, because there is already 2.1 eV 

difference in energy for this DFAO with respect to the 6p DFAO 

in the bismuth atom. The basis sets for these calculations were: 

and 



TABLE 9. SCF Relativistica and Non-relativistic 
Wavefunctions for BiH at R(exptl)=3.411 a.u. 
Computed by using the Chemical Basis. 

Basis R M O s  N R M O s  

a From Reference [16] 
b See Table 2. 
R(NR)MO eigenvalues in a.u. 

where 1c indicates that the wavefunction of bismuth was 

constructed from one configuration only, namely the one having 2 

electrons occupying the 6p'DFAO and 1 electron in the 6p DFAO, 

and is to be distinguished from the previous calculations where 

the bismuth wavefunction was built from five configurations. 

The difference in the predicted dissociation energy for B4 b 

and B4(lc) is 0.42 eV, and this is just the 0.46 eV that the 

total bismuth atomic energy predicted by the one-configuration 

wavefunction is above that predicted by the five-configuration 

wavefunction. However, from the predicted energy difference 

between B4(lc) and B3(lc), which is about 0.72 eV, it can be 

concluded that the energy difference in De predicted for the 

relativistic and non-relativistic wavefunctions is, in part, due 

to the removal of the degeneracy of the three 6p electrons of 

the bismuth atom. 



The coefficients of expansion of the valence RMOs and NRMOs 

of the chemical basis wavefunctions B4 and B4NR are reported in 

Table 9. Clearly, the first molecular orbital or 
, rJR 

, is a bonding orbital of the 6s DFAO of bismuth and the 

1 s DFAO of hydrogen. The second one #L, 2 , which 
% 

is higher in energy, is the antibonding c.ombination of the 6s 

and the 1s DFAOs, but is bonding for the a-part of the 65 and 6p 
- 

DFAOs of bismuth with the 1s DFAO of hydrogen. 

The highest occupied orbital, however, shows a marked 

difference in form for the relativistic and non-relativistic 
E/R 

wavefunctions. The NRMO, viz. QL,3 , is a pure 6~~nonbonding 
2, 

orbital with [P>-spin, whereas the 4+,) RMO is only 90% in 

r-character and has a spin-orbit mixing component with [a>-spin 

as an antibonding combination of the hydrogen is DFAO and the 6s 

DFAO of bismuth. The two components of the RMO #+,j are 

plotted in figure 4 to illustrate these features. 

Difference density plots Ah6 (eg. 62) highlighting the 

importance in bonding of the 5d and 5d DFAOs were generated for 

the relativistic wavefunctions of AuH, HgH+, TlH, P~H' and BiH 

and are shown in figure 5. For each plot the outermost positive 

contour line (solid) is fixed at 0.02 a.u. and the succesive 

inner lines increase in value by a factor of 2 to a maximum 

value of 0.32 a.u.. 



Figure 4 .  RMO plots for  BiH. 

Amplitude orbital plots of the first and 
second components. &?a and &+f3 . of 
the highest occupied RMO of the chemical 
basis wavefunction for B i H  at an 
internuclear separation of 3.411 a.u, The 
outermost contour is fixed at 0.02 a,u. and 
the ratio between succesive inner contours 
is 2. 
Solid or dashed lines are positive or 
negative contours, respectively. 





The more pronounced 5d charge density redistribution is for 

AuH and HgH+ in comparison with that for TlH. P~H' or BiH, as 

jugded by the number and size of the contour lines shown. 

Specifically, the form of the positive contour lines in AuH or 

H ~ H *  indicates that near the heavy center, part of a d8-type 

density has been shifted 'to outer regions, off the internuclear 

axis and near the hydrogen atom, which is shown by the negative 

contours. However, for the systems TlH, P ~ H +  and BiH, the plots 

show that the off-axis lobes of the d6-type density have 

disappeared. Furthermore, the charge redistributions for these 

three systems are minute and only located on the heavy nuclear 

charge and not on the H, which indicates that there is no 

significant mixing between the 1s DFAO of hydrogen and the 5a 

and 5d DFAOs of the heavy centre. 

These plots pictorially confirm that the 53 and 5d DFAOs are 

important in the bonding of AuH or H~H*, but they cease 

participating in the bonding of TlH, P ~ H +  or BiH. 



Figure 5 .  A956 Difference density contour 
plots for AuH, H~H', TlH, P ~ H +  and BiH. 

A&, = 3' - ,pa' , where .?' is the 
total charge density when the 53 and 5d 
DFAOs of the heavy centre are part of the 
core, and Q" is the charge density when 
they are part of the valence. 
The outermost contour is fixed at 0.02 a.u. 
and successive inner contours increase in a 
ratio of 2. Solid or dashed lines are 
positive or negative contours, respectively. 





3.2 Dipole Moments and Virial Ratios. 

In this subsection the dipole moment results of the systems 

under study are presented. For testing the dipole moment 

programme, the total dipole moment of LiH was calculated and is 

given in the test cases part. Next, the dipole moment 

calculations of AuH using the various accuracy wavefunctions 

reported by Malli and Pyper [ I ]  are given. Finally, the dipole 

moments and virial ratios of the systems H ~ H + ,  TlH, P ~ H +  and BiH 

are calculated using the chemical basis wavefunctions reported 

in section 3.1. 

3.2.1 Test Cases. 

For testing the one-centre and two-centre atomic dipole 

moment integrals, a series of calculations were performed using 

an atomic basis consisting of s, p and d-type Gaussian functions 

centered on H and on He at an internuclear separation of 2 a.u. 

Some of the results are given in Table 10 and are compared with, 

the results produced by the HONDO programme with the same basis. 

As can be seen, the calculated values of these atomic dipole 

moment integrals are almost identical. 

To test for the molecular dipole integrals and the total 

dipole moment evaluation, the LiH wavefunction reported by Cade 

and Huo 1351 was used. The Slater functions forming the basis 

set of this wavefunction were transformed into numerical 

tabulated functions to be processed by the numerical integration 

routines of the programme. A total dipole of 2.3613 a.u. was 



TABLE 10. One-centre and Two-centre Atomic Dipole Moment 
Integrals for HeH. 

Present Programme H 0 N D 0 

One-Centre 

<s (HI 
<&(HI 
<pn(H) 
<s (He) 
<pu(He) 
<pn(He) 

Two-Centre 

a Values are in a.u. and refer to a coordinate system 
centered at the midpoint between He and H and with 
positive z-axis pointing towards H. 

found in comparison with 2.3614 a.u. of Cade and Huo [35]. This . 
result proves again the well functioning of the programme, 

because the small difference of 0.0001 a.u. between the two 

values can be attributed to the truncation errors incurred in 

the numerical integrations. 

To test the correct calculation of a molecular dipole 

integral with symmetry other than o, the r-type molecular dipole 

integral for CO was calculated using the r-type molecular 

orbital of the CO wavefunction of Huo 1361. In agreement with 

Huo's result, a value of -2.2888 a.u. was found for this 

integral. 



Unfortunately, for the systems under study (AUH, H~H', TlH, 

PbH and BiH) no experimental dipole moment values are known. 

Therefore, as a test of the validity of using wavefunctions of 

chemical basis level to calculate their dipole moments, the 

dipole moments of some systems with known experimental values 

were calculated. The dipole moments for T1I and PbTe were 

evaluated by using the chemical basis functions calculated by 

Malli [381. 

In addition, the dipole moment of LiH was calculated by 

using the chemical and the extended (including polarization 

functions) basis wavefunctions reported by Malli and Pyper [I]. 

The results are shown in Table 1 1  and comparison with their 

experimental values indicates a better than qualitative 

agreement. For LiH, for example, the chemical basis has a 

relative error of 1 1 %  with respect to the experimental value of 

2.3142 a.u. [33], whereas the extended basis has a relative 

error of only 2%. For TlI, a very good agreement with the b 

experimental value is found with a relative error of 5%, and for 

PbTe the relative error is 19%. 

3.2.2 AuH Dipole Moment Calculation. 

Dipole moment calculations were performed using the gold 

hydride wavefunctions of varying basis size calculated by Malli 

and Pyper [I]. The results of these calculations are shown in 

Table 12. The predicted dipole moment curves for the two 

extended basis wavefunctions EB27 (chemical basis plus 



TABLE 1 1 .  Dipole Moments for LiH, T1I and PbTe calculated by 
using Chemical Basis ~avefunctions. 

LiH 
T1I 
PbTe 

a All values indicate A+B- polarity. 
' 

b 1. a.u.=2.54177 D 
Experimental values from reference [33] 

d Using extended basis functions from reference [I 1. 

TABLE 1 2 .  AuH Dipole Moment ~ u r v e s . ~  

a Calculated by using the wavefunctions from reference 
[I]; Chemical Basis (CB), extended basis with 20 
basis (EB20) not including 5f polarization orbitals, 
extended basis including 5f polarization orbitals 
(EB27) and relativistic configuration interaction 
(RCI) wavefunction. 

1 a.u.=2.54177 D. 
c Effective core potential (ECP) results for the AREP 

wavefunction [34]. 
All values indicate AU'H- polarity. 
Experimental Re [33]. 

polarization functions up to Sf' orbitals [I]) and EB20 (not 

including Sf' orbitals), and the relativistic configuration 



interaction (RCI) wavefunction (obtained by including all the 

derived single and double excitations from the ground state EB27 

SCF wavefunction [I]) show the same trend of increasing dipole 

moment upon increasing the AuH internuclear separation. The'se 

results are very similar to the ECP-ARREP calculations 1341 also 

reported in Table 12. On the other hand, for the chemical basis 

(CB) wavefunction the predicted dipole moment values remain 

nearly constant upon increase of the distance R, which simply 

shows that the CB wavefunction is too poor to describe a 

smoothly varying curve for the dipole moment. However, it should 

be noted that for the experimental R=2.8794, the CB wavefunction 

predicted dipole moment value is 22% off the corresponding RCI 

value and only 8% of the corresponding EB27 value. 

The non-relativistic dipole moment values for the CB, EB20 

and EB27 non-relativistic limit wavefunctions, predicted at the 

experimental separation R=2.8794 a.u. [33], are reported and 

compared with the corresponding relativistic values in table 13. 

The results show that the non-relativistic dipole moment 

values are larger in magnitude than the relativistic values. For 

example, for the EB27 wavefunction the non-relativistic 

predicted dipole moment is 50% larger than the corresponding 

relativistic dipole moment value of 0.901 a.u. These results 

confirm the prediction of a more polar AuH molecule in the 

non-relativistic case than in the relativistic one, as judged by 

comparing the 1s hydrogen orbital participation in the 

relativistic localized bonding orbital of the CB wavefunction 



TABLE 13. AuH Non-Relativistic and Relativistic Dipole 
Moment and Energy Sensitivity. Calculated at 
~e(exptl)=2.8794a.u. 

Basis w(a.u. 1 E ~ ( ~ v )  

NRe 1 Re 1 NRe 1 Re1 

a Energy lowering in eV with respect to the predicted 
total energy for the CB wavefuzction. 

Chemical Basis CB consisting of 5d, 5d and 6s DFAOs 
of gold and the hydrogen 1s DFAO [I]. 

CB plus 6p Slater type function with an exponent 
5-2.75 centered on gold. 

CB plus 6p DFAO as obtained from the MCDF 
calculation for the gold atom [I]. 

and its non-relativistic limit [I]. 

+ - 
Furthermore, the less polar Au H relativistic prediction is 

also in agreement with the Mulliken population analyses of the 

relativistic and non-relativistic ECP wavefunctions of Hay et 

al. [11]. Again, it is interesting to note (see Table 13) the 

similarity in the predicted dipole moment values for the small 

basis set CB and the extended basis set EB27 wavefunctions. 

In relation to the dipole moment sensitivity to the 

non-relativistic 5f polarization functions on gold (correlating 

the 5d gold orbitals), it is found that upon including these 

functions the dipole moment is lowered by 0.07 a.u. (see Table 

13). This result is very similar to the 0.11 a.u. lowering found 

by McLean 1391 in a conventional non-relativistic ab-initio AuH 



calculation. 

However, there is a marked difference for the 

non-relativistic dipole moment magnitudes predicted, because at 

R=3.0 a.u. McLean's wavefunction predicts 1=1.839 a.u. [39] 

whereas EB20, which is formed with a comparable basis set, 

predicts 1-1.434 a.u. at Re. 

This discrepancy can be understood by analysing the nature 

of the extended bases construction process for the wavefunction 

of AuH of Malli and Pyper 1 1 1  : Starting from a CB set found to 

contain the 5z, 5d and 6s DFAOs of gold plus the 1s DFAO of 

hydrogen [I], a series of calculations were performed for each 

ST0 polarization function added (52'. 5d, 6s'. 65'. 6pV, 51'. 

5f' on gold and Is' , 2 ,  2p' on hydrogen), by varying its 

exponent to find an optimal molecular energy value. 

In particular, the energy optimization for the relativistic 

6i1 and 6p' polarization functions showed that the best 6p STOs . 
(6pSL) should have an exponent of 2.75 [ I ]  (which gives very 

contracted 6p orbitals with mean radius of 2.4 a.u.1 and that 

these were also energetically better than the 6 5  and 6p DFAOs 

(6pDF) of gold (with mean radii of 4.7 a.u. for 6 5  and 5.5 a.u. 

for 6p). This is clearly shown in Table 13, where the energy 

lowerings (with respect to the predicted CB wavefunction energy) 

predicted by the extended basis wavefunctions using the CB 

orbital set plus the 6pSL or the 6pDF orbitals are 0.18 eV or 

0.10 eV [I], respectively. 



In this manner different extended bases were optimized, 

generating various AuH relativistic wavefunctions of differing 

accuracy. Then, the AuH non-relativistic extended basis 

wavefunctions were constructed as the non-relativistic limits of 

the corresponding relativistic wavefunctions. Thereby, the 6pSL 

orbital was used in the extended bases. 

However it can be seen from Table 13 that the 6pSL ($=2.75, 

<r>-2.4 a.u.1 is not the best non-relativistic 6p' polarization 

function, since the lowering in energy yield by enlarging the 

non-relativistic CB set with 6pDF (<r>=5,5 a.u.) is 0.19 eV and 

only 0.15 eV when using 6pSL. This implies that instead of the 

contracted 6p STOs (<r>=2.4 a.u.), the more extended 6p DFAOs 

(<r>=5.5 a.u.) should be included in the non-relativistic 

extended basis calculations, in agreement with the conventional 

AuH non-relativistic wavefunction of McLean 1391, which.included 

two diffuse 6p STOs of exponents 5=1.69 (<r=3.8a.u.) and $=1.02 

(~~~6.4a.u.). 

On the other hand, it is clear from the non-relativistic 

dipole moment results in Table 13 that inclusion of the 6p DFAOs 

in the extended basis wavefunctions will predict larger dipole 

moments, since already the predicted dipole moment value by the 

non-relativistic {cB+~~DF) wavefunction at Re is 1.925 a.u., 

which is 0.552 a.u. larger than that predicted by the 

non-relativistic CB wavefunction. Moreover, this result is in 

better agreement with the AuH conventional dipole moment value 

of 1.839 a.u. predicted by Mclean's non-relativistic 



wavefunction [39]. 

3.2.3 Dipole Moments and Virial Ratios for the Chemical 

Basis Wavefunctions of H ~ H + ,  TlH, P ~ H +  and BiH. 

The relativistic and non-relativistic expectation values for 

the dipole operator aqd for the mass operator were calculated 

for the systems HgH+, TlH, P ~ H +  and BiH, by using the chemical 

basis (CB) wavefunctions found in section 3.1. The virial ratios 

were computed according to eq. 55 using the total energies 

reported in section 3.1 and the corresponding mass operator 

values. The results are presented in Table 14, which also 

includes the dipole moment results of the CB wavefunctions of 

AuH given in the previous subsection. 

As can be seen for the calculated dipole moment results for 

each species in the series, there is a clear difference between 

the relativistic and the non-relativistic limit predicted 

magnitudes. . 
For AuH and H~H*, the predicted relativistic dipole moment 

values are smaller than the non-relativistic limit ones, whereas 

for TlH, P ~ H +  and BiH they are larger. The relativistic dipole 

moment values indicate a polarity X+H- for all the species, 

however, the non-relativistic limit calculation on T1H shows the 
- + 

opposite polarity T1 H . 

Moreover, for the series of molecules AuH, T1H and BiH, both 

relativistic and non-relativistic dipole moment predictions show 

the same trend. However, the non-relativistic predictions show 



AuH 
Bas 

TABLE 14. Dipole Moments and Virial Ratios for the Systems 
, HgH', TlH, P ~ H +  and BiH calculated by using the Chemical 
is Wavefunctions at R=Re(exptlIa. 1 

I 

Re 1 NRe 1 Re1 NRe 1 
- 

AuH 0.976 1.372 1 .000104 1 .000411 
H ~ H +  3.799 4.555 1 .000058 1.000056 
T1H 0.323 -0.O5OC 1.000002 1 .000034 
P ~ H +  3.675 3.580 1.000010 1 .000057 
BiH 0.371 0.019 0.999988 1.000054 

-- 

a All dipoles were calculated at the experimental 
separation of each system except for P ~ H +  where 
R~3.5884a.u.. 

la.u.=2.54177D 
c Negative value indicates an A'B+ polarity. 

more drastic changes on going from the rr=1.372 a.u. of AuH to an 

almost non-polar BiH molecule with ~ = 0 . 0 1 9  a,u. Nevertheless, it 

should be noted that the above assertions for T1H and BiH must 

be taken carefully, since their predicted dipole moments are 

small and it may well be that their experimental values are of 

opposite sign, as was found in the calculation of the dipole 

moment of the CO molecule [361. 

From the calculated virial ratios shown in Table 14, it is 

clear that the relativistic wavefunction for each system and its 

corresponding non-relativistic limit . have nearly the same 

accuracy. 

However, the most interesting result is that for AuH the 

non-relativistic virial ratio has the larger deviation from 

unity. Because of this, and in connection with the dipole moment 

discussion (see 3.2.3)), indicating that the chemical basis 



should include the non-relativistic 6p DFAOs of Au, the virial 

ratio of the wavefunction {CB+~~DF) was calculated and a value 

of 1.000049 a.u. was found. This result, which gives a smaller 

deviation from unity and is in better agreement with the other 

virial ratios, confirms the importance of the 6p DFAOs for the 

'non-relativistic AuH wavefunction. 

- In contrast, the virial ratio of the relativistic 

wavefunction with an enlarged CB set including the 6F and 6p 

DFAOs, {cB+~~DF), was found to be 1.000083 a.u., which is not 

different from the 1.000104 a.u. already calculated using the CB 

wavefunction, whence the minor role of the 65 and 6p DFAOs in 

the bonding of AuH [ I ]  is also confirmed. 



4. CONCLUSIONS 

In conclusion, the results presented in section 3 for the 

chemical basis set (CB) wavefunctions indicate that the 5 x  and 

5d DFAOs are involved in the bonding of HgH+, whereas they do 

not play a significant role in T1H and P~H+. The 6b and 6p 

DFAOs, unoccupied in the isolated Hg+ ion, play a more important 

role in the bonding of H ~ H +  than the corresponding 6F and 6p 

DFAOs of gold in the gold hydride molecule. 

Moreover, the relativistic CB wavefunctions predict HgH*, 

T1H and P ~ H +  to be bound. In contrast, the non-relativistic 

limit CB wavefunctions predict HgH+ and BiH to be unbound and 

T1H and P ~ H +  bound. However, the predicted dissociation energies 

for T ~ H +  and P ~ H +  are almost 1 eV larger than those predicted by 

the corresponding relativistic CB wavefunctions. 

Finally, the predicted relativistic dipole moments for the 

CB wavefunctions of AuH and HgH+ are about 2 debyes smaller than . 
the corresponding non-relativistic limit values. However, for 

TlH, P ~ H +  and BiH, the predicted relativistic values are larger. 

In particular for TlH, the relativistic and non-relativistic 

limit CB wavefunctions predict dipole moments differing in sign 

and for BiH, altough the non-relativistic CB wavefunction 

predicted dipole moment indicates an almost non-polar system, 
+ - 

the corresponding relativistic value indicates a polar Bi H 

system. 



APPENDIX - 1. One Centre Dipole Moment Integrals. 

a) Centred at A. 

The dipole moment integral has the form: 

e \ <&*a)+ i* I C,. ~(~'+i) d'm*)jr,a~'d% 

Applying the Wigner-Eckart theorem: 

f i  
However, the tensor C, acts only on the orbital part of the 

composite system orbit-spin, therefore the reduced matrix 

element has to be expanded in the uncoupled representation [ 4 0 1  

(A. 3 )  

which is independent of R a n d  L', therefore 



where dl  is an angular coefficient introduced by Grant [ 4 1 ]  and 

has the parity selection rule [23]: 

even if aia' 
I. d (m,m: j ,a') = 0 d e 5 5  t j t + 4 )  is i (  a=@' ( A . 5 )  

(b) Centred at B. 

For DFAOs centred at 8 ,  using v & + R  gives the form: 



APPENDIX 2. Dipole Moment and Mass Operator Two-centre - 
integrals. 

The radial part of the large and small component functions 

of the central field orbitals (eq. 2 )  are computed numerically 

by the MCDF programme which tabulates these functions at a 

finite number of points (about 3501, equally spaced on a 

logarithmic grid of step size h e  

Introducing the logarithmic coordinates on which r and rg 
A 

(see fig 1 )  are based: 

where r o  is the first value of r (usually 10'~a.u~) at which the 

radial functions are computed and t is an integral parameter 

(1stS350), the two-centre dipole moment integrals Id (eq. 48) 

and mass operator integrals I, (eq. 5 4 )  are given by 

where 

and 



Unfortunately, the integral A.8  is not symmetrical in the 

coordinates tA and tB and using this form as basis for numerical 

integration would give unreliable results for regions near 

centre A [20]. This problem is solved by splitting the 

L z L 1  h YZ (L) Zl(b 

is the point corresponding to rA=rg=R/2 and 

The integrals ( A . 1 1 )  are solved numerically using a 24x24 

Gauss Quadrature [ 2 9 ]  and to simplify the integrations, the 

symmetric pairs are calculated simultaneously by noting that 

where 

(A .  1 5 )  

and 



The phase factor appears because the change of variable 

t,jtB in log-space accounts for the inversion z + - z  in 

cartesian coordinates that transforms eA* K-% and viceversa. 
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