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ABSTRACT 

The spin rotation parameter (Q) and vector analyzing power (A,)  have been measured 

for p'+ 20sP b and p"+ wZ r elastic scattering at 200 MeV using the medium resolution 

spectrometer and focal plane polarimeter at TRIUMF. These results together with 

differential cross section data from a previous TRIUMF experiment uniquely determine 

the elastic scattering matrix up to an overall phase. The spin rotation parameter Q 

is more sensitive than A, and a to the differences between N-nucleus reaction models. 

A parameter-free relativistic impulse approximation calculation shows that inclusion of 

Pauli blocking modifies strongly the spin observables, especially Q, in nucleon-nucleus 

reactions. Our results at 200 MeV strongly support the relativistic calculation which 

invokes Pauli blocking. In addition we have calculated a non-relativistic microscopic 

optical potential using a nuclear matter approach. The only input is the Paris potential 

and ground state densities for both protons and neutrons. We find that the experimental 

data are not as well reproduced as in the relativistic approach. 
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Chapter 1 

Introduction 

Studies of elastic proton scattering from nuclei at intermediate energies have received 

much attention during the last decade. There are two motivations. First, one would like 

to quantitatively describe the proton-nucleus scattering observables in terms of nucleon- 

nucleon phenomenology. Second, after having obtained a successful working model of 

the proton-nucleus interaction, one would then proceed to infer new nuclear structure 

information from inelastic scattering data. 

At an early stage, N-nucleus scattering phenomena were handled mainly by means 

of the standard phenomenological optical model involving Woods-Saxon form factors 

for the complex central potential. It has the familiar form: 

with the Woods-Saxon function, 

The standard spin-orbit potential is also a complex potential of the conventional Thomas 

form which involves the derivative of a Woods-Saxon function 



where 

a are the Pauli matrices and L are orbital angular momenta of nucleons inside the 

nucleus. In the conventional optical calculation, these potentials are inserted into the 

Schrodinger equation which at these energies incorporate some minimal relativity, i.e. 

involves at least relativistic kinematics and, in addition, frequently involves a replace- 

ment of the reduced mass by a reduced total energy. 

Then comes the second stage, the proton-nucleus interaction is described from first 

principles-the microscopic model, with a microscopic description of the effective inter- 

action between the projectile nucleon and the target nucleus. Theoretical progress on 

this topic has mainly taken place from 1968 to 1978 [I]. One assumes that the NN 

interaction may be adequately described by a two body potential. All models can be 

divided into two groups, relativistic and nonrelativistic ones. The nucleon-nucleon free 

scattering amplitudes are the most important input quantity needed in proton nucleus 

optical potential calculations. 

Many different approaches successfully describe experimental data at 500 MeV and 

above (for example, relativistic impulse approximation [2] (RIA) and KMT multiple 

scattering theory [35] and non-relativistic impulse approximation (NRIA) etc). As the 

bombarding energy decreases, the discrepancies between theory and data became more 

and more severe. Both these models were explored in an attempt to solve these large 

discrepancies. All these attempts were found to be incapable of explaining the data. It 

. was concluded that medium effects (i.e. Pauli blocking and binding correction effects in 

intermediate states) must be responsible for these difficulties. The first working model 

to include these medium modifications was the Von Geramb model [3]. The effective 

t-matrix in this model depends on the density of the medium, thus the potential is 
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also density dependent. This density dependent effective interaction has been applied 

to proton nucleus scattering by constructing the optical potential through the local 

density folding model [3]. 

This model is more successful than the NRIA and has been used for comparison with 

the present results. 

The interest in the relativistic aspects of the nuclear structure has increased in the 

past few years. The relativistic approach started with the Lorentz invariant scattering 

amplitude of the NN interaction and the Dirac equation with the simplest assump 

tion that the medium corrections for the effective interaction are unimportant(impu1se 

approximation,RIA). The effective interaction was represented by a Love-Raney type 

parameterization of the free two-nucleon t-matrix. This model was highly successful in 

explaining data at energies near E=500 MeV or above and failed to reproduce data at 

lower energy [4]. 

At the AIP conference in 1982, P. Schwandt reviewed all available experimental data 

for nucleon-nucleus elastic scattering in the intermediate energy regime [I]. He pointed 

out that relativistic and standard optical models, although they fit the differential cross 

section (a) and polarization (P) quite well , both fail to reproduce spin rotation pa- 

rameter (Q) data. This suggests that measurements of, Q in addition to a and P data, 

are essential to determine tlie realistic optical model potentials. Thus complete mea- 

. surements of spin observables (a, P, Q) in (p',,p3 elastic scattering have played a major 

role in the development of the optical models of the nucleon-nucleus interaction at in- 

termediate energy region. After that, many experiments have been done to measure 

spin rotation functions[4] [5][6]. Experimental progress has greatly pushed forward the 



studies of optical model potential. 

Recently Horowitz [7] and others solved some difficulties of the relativistic impulse 

approximation (RIA) at low energy by the use of pseudovector coupling instead of pseu- 

doscalar T N  coupling, and the exact treatment of the exchange terms. Pauli blocking 

was used in modifying the final optical potential. Calculations then correctly reproduced 

the available cross sections and spin observables. This was not the case in the nonrela- 

tivistic approach at that time. However the importance of medium effects due to Pauli 

blocking remained an open problem in the RIA. Horowitz and Murdock [7] predicted 

large Pauli blocking effects, while Wallace obtained good description of 40Ca(p',,p3 at 

181 MeV data without involving such an effect[8]. Our choice of energy was motivated 

by the available data from IUCF on 12C, 160, 40Ca, and 48Ca at this energy [8]. Our 

measurement fills the high-A end in this data set to provide a systematic study of the 

dependence of the interaction as a function of target mass. Our 208P b data , together 

with the 290 MeV TRIUMF data [4] where Pauli blocking already shows large effects 

on the spin rotation function, and the 500 MeV and 800 MeV data from LAMPF [ 5 ] ,  

will complete a study of the energy dependence of the N-nucleon interaction. 

This experiment was primarily designed to test Pauli blocking effects in the rela- 

tivistic microscopic optical model. The installation of the focal plane polarimeter (FPP) 

enables the medium resolution spectrometer (MRS) to measure the transverse polariza- 

tion components of scattered protons. These components are necessary to calculate the 

Wolfenstein spin transfer parameters and eventually obtain the spin rotation function Q. 

We measured the spin rotation function for both 208Pb and " Z r  at a projectile energy 

of 200 MeV. These data together with TRIUMF cross section data at the same energy 

[9], completely determine the scattering matrix up to a phase. The scattering angles 

ranged from 3' to 40•‹, where the Pauli blocking effects are expected to be pronounced. 



In the experiment, the target thickness and the running time increased with angle to 

compensate for the decreasing cross section. After we finished data analysis, we per- 

formed the nonrelativistic microscopic model calculation using the density dependent 

Hamburg-Paris NN potential [lo] to generate the optical potential. Spin observables 

were calculated using ECIS87 [Ill. We should stress here that the only other input to 

our calculations are the proton and neutron density parameters which were taken from 

electron scattering data [12][13], no fitting was done in our calculation. The calculations 

reproduce all the observables quite well. The relativistic calculation has been done by 

Horowitz and Murdock [7]. Except where it misses one small structure in the spin rota- . 

tion function, this theory reproduces our data equally well. Since spin observables are 

sensitive to off-shell scattering amplitudes, our measurement also gives some constraint 

on the form of off-shell scattering amplitudes which is very important when choosing 

the T N  coupling. 

We provide a brief introduction to the conventional microscopic nonrelativistic and 

relativistic models in Chapter Two. Chapter Three is dedicated to the description of 

the experimental enviroment and the apparatus. The derivation of spin observables 

and the data analysis is presented in Chapter Four. Finally results and conclusions are 

offered in Chapter Five. 



Chapter 2 

Theoretical Background 

Since we are dealing with the many-body system in terms of elementary two body forces, 

an accurate theoretical calculation is not feasible. Such theoretical problems are usually 

solved by models with reasonable assumptions about nuclear structure. The theoretical 

results are then compared with experimental data, to judge which model most closely 

describes the real nucleus. There are two types of theories which both successfully 

reproduce physical observables at intermediate energies. They are both microscopic 

models based on the fundmental NN interaction. The relativistic approach stresses the 

importance of relativistic effects, assumes very small medium modifications and treats 

target nucleons as quasifree thus allowing the impulse approximation to be used. The 

results of the effective NN interaction (Lorentz covariant represenetation of the NN 

amplitude [7]) is folded with the density of the nucleus calculated from a relativistic 

Hartree method [14] to generate the optical potential. This potential is used in solving 

the Dirac equation to obtain the scattering wavefunction. Finally physical observables 

are calculated by taking expectation values of the proper operators. The nonrelativistic 

theory starts with a calculated fundamental NN interaction matrix(Paris t-matrix) [lo].  

Pauli blocking was included by solving the Bethe-Goldstone integral equation instead 



of the Eippmann-Schwinger equation, which does not contain the Pauli projection op- 

erator. To take the Fermi motion into account, we need to average the free scattering 

amplitude for all target nucleons with different Fermi momentum. Finally binding en- 

ergy corrections are taken into account. Again, in the same way that was employed in 

the relativistic calculation, by solving the Schrodinger equation one can obtain the scat- 

tered waves. Thus these models give theoretical predictions for physical observables. 

Relativistic kinematics are used in the nonrelativistic calculation. Differences in the 

predictions thus purely reflect differences in the interaction mechanism. Spin observ- 

ables are especially sensitive to the different flavors of the models and serve as efficient . 

tests of the models. In the first part of this chapter we briefly review the nonrelativistic 

microscopic optical model. In the next section, the relativistic microscopic model is 

presented and finally the differences between these two models are described. 

2.1 Nonrelat ivist ic Microscopic Nuclear Matter Ap- 

proach 

We wish to define a potential which, when inserted into the Schrodinger equation gives, 

in an energy range sufficiently below the meson production theshold, the correct descrip 

tion of elastic scattering. The nucleon-nucleus optical potential is obtained by folding 

the matter density of the finite nucleus with the complex nucleon-nucleon effective inter- 

action, t-matrix, which describes the effective interaction between the incident nucleon 

. and a particular nucleon in the target nucleus. The t-matrix is calculated from a given 

realistic NN potential (Paris NN potential) using a Bethe-Goldstone type integral equa- 

tion (which means it includes a Pauli blocking medium modification) [3]. It determines 

the two-body transition operator in applications to finite nuclei using a local density ap- 



proximation. This approach is commonly referred to as the nuclear matter microscopic 

model. It has been established as a quantitative method to describe nucleon-nuleus 

scattering and constitutes a fundamental step in understanding the nuclear many body 

problem. 

2.1.1 The Paris NN potential 

The Paris potential is a NN interaction derived from xN and xn interactions [17], which 

includes the one pion exchange(OPE), correlated and uncorrelated two pion exchange, 

and w exchange contributions. These theorical contributions give a fairly realistic de- 

scription of long and medium range (LR+MR) NN forces. Since the short range(SR) 

part of interaction is related to exchange of heavier mesons or to effects of subhadronic 

constituents such as quarks and gluons, there is no theoretical reason to believe the 

validity of this potential below the range of internucleon distances (T  5 0.8 f m). No 

reliable calculations of this SR part are available. Thus the SR part should be de- 

termined phenomenologically, with the hope that the accurately determined LR+MR 

interaction will provide strong constraints on this SR part, leaving us only a few degrees 

of freedom. It was proposed to describe the core with a very simple phenomenologi- 

cal model; namely, the long and intermediate range (x + 2n + w )  potential is cut off 

rather sharply at internucleon distances (T - 0.8 fm)  and the short range (T _< 0.8 f m)' 

is described simply by a constant soft core and a linear extension of the LR+MR part 

to the SR part. Experimental data support this assumption. The slope of the energy 

dependence is determined by fitting all the known phase shifts(J 5 6) up to 330 MeV 

and parameters of the deuteron. 

The Paris NN potential was purposely chosen in this simplest form to demonstrate 

that, once the LR+MR forces are accurately determined, the SR force can be described 

8 



by a model with few parameters that does not affect the LR+SR part. This simple 

model in which a definite separation between the theoretical and phenomenologicd 

part is made, is designed to provide a clear physical insight into the problem. 

2.1.2 General Principles 

The optical potential is obtained by the usual Hartree-Fock method [14]. A nucleon 

with energy E and momentum k moving in an infinite system with Fermi momentum 

kF feels an average complex potential U(kF, k ,  E) = -V - iW whose leading term is 

. given by [3] 

In this equation w = E+e(p), where e(p) is the single-particle energy of a bound nucleon 

of momentum p and < pk It (w) lpk > A  are the two body antisymmetrized matrix elements 

of the transition operator t(w) defined by the integral equation 

where V is the nucleon-nucleon effective interaction calculated from the Paris potential 

and G(w) is the Green's function (propagator) for the nucleon pair: 

G(w) = &p(ql, 42) 
e(q1) + e(q2) - w + i& 

where ql and q 2  are the momenta of nucleons in the intermediate states and Qp(ql, q2) 

is the Pauli projection operator 

QP(QI, Q Z ) I Q ~ ,  42 >= I Q I , Q ~  > if q 1 , ~ 2  > k~ 
otherwise. 

This operator is used to include Pauli blocking. The eigenvalue equations indicate 

that only the intermediate states which are above the Fermi sea could contribute, in 

accordance with the Pauli principle. 



The single particle energy e(q)  should be taken self-consistently: 

The t-matrix in the nuclear matter approach is local in coordinate space and depends 

on the energy E and density PNM and has many pieces: 

t(+, PNM, E) = tc(r, PNM, E )  + PNM, E ) Z .  9 + other terms. 

Other terms refers to other components of the t-matrix (for example tensor) which are 

not important for a scattering from a spin zero nucleus at intermediate energies. Each 

t-matrix component creates the corresponding piece of the optical potential. Since spin 

observables are especially sensi tive to the spin-orbit part of the interaction, we pay more 

attention to it. Detailed calculations show that [18] 

where p = pp + p,, p,(,) is the proton (neutron) density and the coeffients Fpp and F p ,  

depend on the spin-orbit t-matrix elements and the local densities. The jg dependence 

gives a peak located at the nucleus surface (See Fig. 2.1). Polarization has been shown 

to be sensitive to the spin orbit potential used. As we reduce the spin-orbit potential by 

a factor of two, the calculated value obviously underestimates the data at small angles. 

This optical potential should be localized to take into account the finite size and 

geometry of the nucleus. The simplest prescription for calculating the radial dependence 

of the optical potential is the local density approxmation. The idea of this approxmation 

is to assume that at each point inside the nucleus the value of the optical potential U 

can be calculated from the value of the density at that point in nuclear matter. 

Three-parameter Gaussian distributions were chosen for neutron and proton densi- 

ties: 



Parameters were taken from electron scattering and proton scattering data (See table 

2.1 ) 

Table 2.1 : Nuclear radius parameters for 3-parameter Gaussian distributions 

We used the computer code MAINX8 which follows the non-relativistic microscopic 

nuclear matter approach to generate the optical potential. This calculation contains 

all three kinds of medium modifications (Fermi motion, binding energy correction and 

Pauli blocking). It was found that this potential, when fed into ECIS87 [Ill, could 

not reproduce the cross sections published in ref. [3]. It turns out that when we use 

relativistic kinematics for non-relativistic calculations, the Schrodinger equation should 

use the reduced mass rather than the reduced total energy as was used in the non- 

relativistic calculation with non-relativistic kinematics. The ratio of reduced mass to 

reduced total energy is 0.827 for 208Pb and 0.830 for 90Zr . Once we included this 

factor in the optical potential, the calculations reproduce the cross section and spin 

observables. Fig. 2.1 shows the separate parts of the optical potential. It should be 

noted that the correction factor (i.e. ratio of reduced energy to the reduced mass) has 

frequently been omitted in the literature. In spite of successfully reproducing the spin 

observables, the ambiguities about this factor still exist. A justification of this factor 

will be given in the last chapter. 
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Figure 2.1: Microscopic optical model potential for 208Pb and 9 0 Z ~  at 200 MeV. Top 
two plots are central real and imaginary parts of the potential. The bottom two are 
spin-orbit real and imaginary parts of the potential. 



2.2 Microscopic Relativistic Description of Nucleon 

Nucleus Scattering 

A number of relativistic approaches to nuclear physics suggests that the optical potential 

or self energy for a nucleon involves very large attractive Lorentz scalar and repulsive 

Lorentz vector contributions. Relativistic mean field calculations relate these potentials 

to large scalar and vector meson couplings and provide a good description of charge 

densities for closed shell nuclei [15]. Dirac optical model fits to elastic proton scattering 

also use strong potentials to reproduce analysing power data. Finally, relativistic im- 

pulse approximation (RIA) calculations find strong potentials coming from large scalar 

and vector pieces of a Lorentz invariant representation of the NN amplitudes. These 

RIA calculations provide an excellent description of elastic scattering at energies of 500 

MeV and above [2]. 

Microscopic relativistic optical potentials have been calculated at energies near 200 

MeV for elastic proton scattering from closed shell nuclei [7]. The 200 MeV energy region 

is interesting as a bridge between high energies, where the simple impulse approximation 

is valid, and between relativistic nuclear matter calculations. At this energy, one can 

ideally examine the medium modifications to the free NN interaction. 

The Dirac optical potential for nucleon-nucleus elastic scattering is calculated in the 

following way. The relativistic Love-Franey parametrization [16] is used to calculate 

direct and exchange NN amplitudes t d (q )  and t,,(Q), and these amplitudes are then 

folded with relativistic Hartree densities using a local density approximation for the 

exchange part to obtain the optical potential. Finally a correction factor is applied to 

include Pauli blocking [7]. 



This theory is essentially a modified RIA. It has three improvements: (a) medium 

modifications due to Pauli blocking are included, (b) pseudovector instead of pseu- 

doscalar is assumed for T N  coupling in the relativistic NN amplitude although both 

are in principle allowed, and (c) the exchange term, which arises from antisymmetrized 

wavefunctions, are explicitly treated in the optical potential. The present experiment 

serves as a good test of the Pauli blocking effect in the relativistic theory at this energy. 

We will not describe this theory in detail, but only roughly outline how the relativistic 

results have been calculated. 

The relativistic model is based on the Dirac equation 

where only two Lorentz invariant potentials are used in the optical potential calculations, 

Us, the scalar potential, and U,, the vector potential. This equation is equivalent to a 

second order Schrodinger type differential equation for the upper component of the four- 

component nucleon-nucleus wave function which is obtained from the Dirac equation 

by standard techniques [19]. The final form of the equation for the upper component 

reads [20]: 

{V2 + k2 - 2E[Ueff(r) - Uso(r)i?. z]}q = 0 

where k and E are proton-nucleus center-of-momentum wave number and total energy, 

respectively. The effective central(Uejl) and spin orbit(Uso) potential can be expressed 

in terms of the Dirac scalar(Us) and vector (U,) potentials. We neglect the unimportant 

tensor term. 



F 

where B = (E + m + U, - V,)/(E + m); m is the proton mass and the Darwin term 

UDARW is defined by 

We have neglected the relatively small tensor Coulomb terms q2 in our wave equation 

and the term V, in B. The scalar and vector potentials are calculated from the relativistic 

Love-Raney NN interaction model [16]. 

2.2.1 Relativistic Love-F'raney Model 

Figure 2.2: Feynman diagram of the NN interaction with direct (left) plus exchange 
(right) terms 

The relativistic Love-Franey model of the NN interaction considers the exchange of 

a number of "mesons" in the first Born approximation including both the direct and 

exchange NN scattering diagrams (See Fig 2.2). The meson couplings and form factors 

. are complex in order to generate the imaginary amplitude. They are adjusted until the 

relativistic representation of the Arndt amplitudes [23](which have been determined by 

fitting the NN scattering observables ) is reproduced directly without iteration of the 

meson exchanged (Born approximation). This implies the neglect of the contributions 



from mutiple meson exchange. The model assumptions about the relativistic form of 

the NN amplitudes are directly related to the type of meson-nucleon vertices used. Thus 

we can directly study the sensitivity of the resulting RIA optical potential to different 

vertices (e.g. the difference between pseudoscalar and pseudovector T N  coupling). In 

addition, the parameters from the fit are very closely related to couplings of the one- 

boson-exchange potential(OBEP)[21]. Thus they have a direct physical meaning. Each 

of the five independent Lorentz invarant amplitudes (i.e. scalar, vector, pseudoscalar, 

pseudovector and tensor) can be associated with exchange of a different type of mesons 

(i.e. S, B, T ,  p, f ). Different types of mesons being exchanged produce the corresponding 

Lorentz invariant amplitude. The largest contributions come from the r;, o and w. The 

model separation of the NN amplitude into direct and exchange contributions does 

not involve sensitive cancellations in contrast to the non-relativistic results [7]. In the 

following section we will show how these mesons produce the scattering amplitudes. 

The Dirac optical potential is given by [34] 

where plab is the lab momentum of the incident particle, I$ > is the ground state 

wavefunction of the target nucleus, usually constructed by a (Hartree) product of single 

particle wavefunctions (4,)) and F is the relativistic scattering amplitude. 

Each invariant F' can be separated into direct and exchange parts, we get 

where q and Q are the momentum transfers in the direct and exchange diagrams, re- 

spectively. Thus the direct piece of the optical potential is [25] 



The local density approximation in the nuclear matter approach was used to correct the 

finite nucleus optical potentials. This approximation was applied to incident and bound 

nucleon in the nonlocal exchange terms to arrive at the exchange piece of the potential 

At low energy, exchange terms play a more important role in the calculation of the 

optical potential. Exchange terms have nonlocal properties, thus relativistic ampli- 

tudes must have nonlocal pieces which are lacking in the original RIA. A simple model 

with explicit exchange terms fitted to the relativistic amplitudes allows one to examine 

different off-shell extrapolations in the exchange terms. 

Since the NN scattering data only determine the on-shell part of the NN amplitude 

whereas construction of the optical potential requires the full amplitude, one has to 

employ an explicit model of the NN amplitude to learn about its Lorentz structure and 

off-shell behavior. The on shell amplitude should reproduce the NN data. We start with 

relativistic scattering amplitude I' which can be represented by a linear combination of 

five Lorentz invariants [7]. 

where s=scalar, v=vector, p=pseudoscdar, a=axial vector and t=tensor. If the coupling 

constant for the ith meson is g;, the meson propagator has the form l/(q2 + m?), and 

the nucleon form factor is 1/(1 + 9;). The NN interaction vertex from the Feynman 
A1 

rules is 

where i denotes the ith type of meson and I; = (0,l) is the meson's isospin. Adding 

scattering wave symmetry, the contribution of the ith meson to the amplitude, up to 



overall kinematics factors, is [7]: 

From the Feynman rules, it is quite straightforward to write down the direct contri: 

butions. 

where j stands for the type of mesons, fj(q) contains form factors, coupling constants 

where m, is the meson mass and gj ,  Aj are fitted to the data. The imaginary part is also 
- 

fitted to the data to determine the parameters m, ijj, Aj. Similar formula were obtained 

for the exchange terms: 

where C;,j is the Fierz matrix [7] and INN is the isospin of the two nucleon state. Finally 

. the isospin states are combined to get the pp and pn amplitudes. 



The resulting coupling constants are remarkably close to OBEP results and have very 

little energy dependence. The coupling constants show that T exchange provides most 

of the attractive interaction while a gives most of the repulsive interaction [7]. This 

conclusion agrees with OBEP results [21]. 

The T N  vertex can be represented by either 

Pseudoscalar 

This choice does not affect the on-shell amplitudes, but has some effects on-off shell ele- 

ment s. Since NN experimental data only determine the on-shell elements, either choice 

is compatible with the simple RIA [2]. The choice of using pseudoscalar and pseudovec- 

tor T N  couplings affects the exchange contribution. The pseudovector coupling reduces 

the potential by a factor of f Q2/4M2. It is easy to see how this factor arises, since 

a,d = &d and the amplitude is just the square of this factor. This factor is much 

less than one which prevents the optical potential from diverging at low energy in good 

agreement with phenomenological fits. 

The optical potential for proton scattering from spherical nuclei with the impulse 

approximation is given by Lorentz scalar and vector components [7]. 

where p, and p, are scalar and vector density respectively. They are defined by 

OCC 



OCC 

where 4, is the single particle wavefunction for occupied nuclear levels. 

The optical potential can be broken into direct and exchange pieces 

The direct amplitude does not contribute to the optical potential. The scalar and vector 

exchange potentials can then be projected out by taking traces. 

Here the Dirac scalar and vector potentiais are expressed in terms of scalar ( p , )  and 

vector (p , )  densities and the scalar and vector NN invariant amplitudes. The amplitudes 

were obtained by fitting the NN phase shifts [23], the scalar and vector densities were 

provided by relativistic Hartree calculations [15]. 

The potential including the Pauli blocking correction is related to the uncorrected 

potential by 

where p, = 0.1934 f m-3 and the ai are Pauli blocking factors calculated from a nuclear 

matter approach [21]. It turns out that at 200 MeV the imaginary potentials are reduced 

by about 10% while the effect on the real potential is smaller. 



2.3 Differences between non-relativistic and rela- 

t ivist ic models 

XOqPb ot 200 MeV 

'0 

Figure 2.3: Relativistic and Schrodinger potentials for 208Pb at 200 MeV. Relativistic 
calculations are compared with the nonrelativistic (n.r.) results of Von Geramb. Real 
potentials are solid md imagimry dashed curves. 

1 ) The relativistic real central pot ential has a non- Wood-Saxon shape. It is composed 

of two pieces which are much stronger than commonly used nonrelativistic potentials 

and is quantitatively different from the latter (See Fig 2.3). The nonrelativistic real 

central potential also has a non-Wood-Saxon shape. It looks like a superposition of two 

JVoo d- Saxon form factors with different parameters. 

2)In relativistic calculations, the Pauli blocking is included in a simple way, no exact 

. calculation is done and potential is parameterized by a factor. In the nonrelativistic 

case, Pauli blocking is built into the interaction from the very beginning. 

3) The amount of medium modification included is different in the two approaches. 

?;on-relativistic theory includes the Fermi motion, binding energy corrections and Pauli 



blocking, while in the relativistic case only Pauli blocking is so far included. The present 

work provides a good test of whether the relativistic effects or medium modification 

should play an important role in nucleon-nucleus elastic scattering. 



Chapter 3 

Experiment 

In the first part of this chapter, we describe the experimental apparatus and its function 

in the experiment. In the second part we discuss details of the data analysis. 

TRIUMF Site 

The main components of the TRIUMF site are the cyclotron, the beam lines and the 

experiment areas. The TRIUMF six sector cyclotron can produce polarized or unpo- 

larized proton beams with continuously variable energies between 180 and 520 MeV. 

The ion source produces an H- beam for injection into the cyclotron. The polarized 

beam for this experiment was produced by an atomic beam ion source, a 'conventional' 

polarized ion source, utilizing Stern-Gerlach separation of atoms with given electronic 

spin projection, followed by appropriate RF transitions and electron attachment to the 

H atoms by electron bombardment. The direction of the polarization can be reversed 

by selecting different RF transitions. Extraction of the beam from the cyclotron is 

done by passing part or all of the H- beam through a stripper foil, creating protons 

which bend out of the cyclotron into the beam line. The location of the stripper can 
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be adjusted radially to provide a continuously variable beam energy. The beam line 

consists of focusing quadrupoles and bending dipole magnets which transport the beam 

into the experimental area. Our experiment was carried out on beam-line 4 (BL4B) in 

the proton hall. 

3.2 Experimental Apparatus 

Our detection system consists of five main parts (See Fig 3.1): 

1. A superconducting solenoid magnet is used to rotate the vertical polarization of 

the incident beam in the desired sideways direction by setting up a current of the 

required polarity in the solenoid. 

2. An in-beam-polarimeter (IBP) which allows continuous measurement of the beam 

polarization. 

3. A beam twister, consisting of six quadrupoles, was used to rotate the beam dis- 

persion direction from the horizontal to the vertical direction for the purpose of 

dispersion matching. 

4. A target chamber (4BT2) which contains the primary target foils. 

5. The medium resolution spectrometer (MRS). This is the central part of the de- 

tection system. It measures momentum spectra of the scattered particles. 

6. The focal plane polarimeter(FPP) which measures the transverse polarization 

components of the scattered protons after the focal plane of the MRS. 

Here I briefly describe each part of the experimental system and its function. The 

superconducting solenoid function has already been discussed above. 



SPIN ROTATION PARAMETERS 

Q =W sinp 

POLARMETER 

SU PERCONDUCTING 

L 

AOLARIZED BEAM 
FROM CYCLOTRON 

Figure 3.1: Experimental layout and principle of measurement 



The IBP was used to monitor beam polarization [22]. It consists of four detector 

telescopes which detect both particles from pp scattering in a CH2 target at - 17'". 

At 200 MeV the proton beam polarization was measured with an effective CH2 analyzing 

power of 0.234. One of the two detector systems determines the top-bottom asymmetry, 

the other two yield the left-right asymmetry. 

The function of the twister, a unit section of six quadrupoles, is to rotate the beam 

dispersion direction by 90•‹, so that the beam becomes vertically dispersed (originally 

horizontally dispersed) for the purpose of dispersion matching. Calculations of the 

dispersed beam tune for 4BT2 must take into account the precession solenoid which 

also rotates the phase space of the beam. This has the effect that the twister rotation 

angle changes from 45" to either 37" or 53" (depending on solenoid polarity) to achieve 

vertical dispersion at T2. 

The target ladder contained the target foils of interest (208Pb , 90Zr , CH2) and a 

ZnS scintillator screen. Target changes can be made remotely. 

The MRS is located at target station T2 of beam line 4B. It consists of a focusing 

quadrupole, a 60' vertical-bend dipole magnet and a detector system. The front-end 

wire chambers(FEC) and two vertical drift chambers near the focal plane are used to 

determine particle trajectories. A set of plastic scintillators measures the energy loss 

of particles, and serves together with the counters at the entrance of the MRS as a 

trigger and also provides time of flight information for particle identification. Another 

function of these trigger paddles is to define the effective momentum acceptance of the 

spectrometer. We turned off trigger paddles and used a veto scintillator to eliminate 

the continuous part of the spectrum. The FECs allow us to ray-trace protons back to 

the target and to define the spectrometer solid angle. Solid angles of the MRS of the 

order 0.5 to 2 msr were used. The momentum acceptance of the MRS is about f 7% for 



particle momenta up to 1.5 GeV/c. Scattering angles range from -12' to $135'. 

The most important part of the detector system is the FPP [24]. It consists of (1) four 

wire chambers (Dl-D4), and (2) as many as four carbon slabs,(3) a trigger scintillator 

in front of the scatterer and a large trigger scintillator at end of the FPP cage. The FPP 

uses inclusive scattering from carbon slabs which are mounted after the focal plane of 

the MRS. Particle trajectories were determined by means of the wire chambers. Both 

independent components of polarization normal to the particle trajectory are measured. 

A high efficiency for nuclear scattering is achieved by using carbon scatterers as thick 

as possible, subject to multiple scattering limitations. The four drift chambers measure 

scattering angles at all azimuthal angles out to polar angles of 20' over a spectrometer 

momentum acceptance of f 5%. A microprocessor rejects events with small scattering 

angles. 

The requirement that the polarimenter not interfere with normal high resolution 

operation of spectrometer implies that the polarimeter had to be placed after the focal 

plane detectors (vertical drift chamber and trigger scintillators). Usually the focal plane 

is located just below VDC1; it is oriented at 45' to the optical axis, parallel to the VDC's. 

Particles are tracked through the polarimeter using position information from the 

four multi-wire chambers, each consisting of a "x" and a "y" plane with delay-line 

readout to identify the cell number. Alternate anode and cathode wires form drift cells 

8.13 mm wide. The anode wires are connected directly to a low loss delay line having 

a signal propagation speed of 0.4cm/ns. Each cathode wire is connected to one of two 

. buss lines depending upon whether it is an "odd" or "even" wire. The difference in 

times at which signals reach two ends of the delay line determines the cell number, 

while their average depends on the drift time and hence on the distance of a particle 

track from the nearest anode wire. The ambiguity in the direction of drift was solved by 
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observing the charge induced in "odd" and "even" cathode sense wires [26]. We encode 

three timing signals: TDC time for each end (left and right) of the delay line (TI,  T,), 

as well as T,, the cathode timing signal. Also encoded are the ADC amplitudes of the 

two cathode signals, Eodd and E,,,,. From these data we generate: 

1. The anode wire position, - T,. 

2. The drift time Td from the anode timing, r + T, = 2Td + T where T, the total 

drift time through the whole delay line, is a constant 

4. A normalized cathode difference spectrum, (Eodd - Eeven) / (Eodd  + Eeven).  

The polarimeter trigger system consisted of two plastic scintillators, one after the 

first drift chamber but before the carbon scatterer (Sl), and the other after the three 

chambers following the carbon (S2). Signals from S1 and S2 coincidences provide a local 

trigger for the polarimeter, as well as the time reference for drift chambers. Events 

of interest in a polarimeter are those in which the normal spectrometer coincidence 

condition("MRS") is met, as well as the coincidence in the polarimeter trigger ("FPP"). 

The checksum spectrum contains a sharp peak for 'good' events and is used for 

rejection of multiple events in a wire plane. Two nearly coincident avalanches in a wire 

plane can cause the and T, stop signals to come from different avalanches. This can 

look like a single event in a third position but appears outside the peak in the checksum 

spectrum. 

A event microprocessor is used to reject large fractions of small angle scatterings 

occuring in the carbon analyser. Fewer than one particle in ten are scattered in the 

polarimeter through a polar angle large enough to be useful, whereas the majority of 
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small angle multiple scattering events have an analyzing power of essentially zero. To 

eliminate the overhead of transfering useless data dong the CAMAC branch, a small 

rngle test is performed by the microprocessor. It reads the data from the TDC's and 

tests whether the event is "good" or "bad". "Good" data are passed to the MRS data 

acquisition computer, while for "bad" events a "fast clear" .signal is issued to the FPP 

and MRS electronics. 

"Good" events are (1) pulse generated test events, (2) software prescaler test events 

to accumulate 1 of n events unconditionally, or (3)events which have passed tests for 

scattering angle and collinearity, plus check-sum tests for each plane. The combination 

XI - 2.X2 +X4 (where X,, is the bend plane coordinate in wire chamber n, and similarly 

for the y direction) is zero if no scattering occured in the carbon, and is used as crude 

measure of the scattering angle. If the sum of squares of deviations in the x and y 

direction is less than a specified amount the event is rejected as "bad" (small-angle 

scattering). The checksum test is applied to each plane to eliminate multiple-track 

events. Finally a straight line test is applied to the x and y coordinates for chambers 

2, 3 and 4. It is intended to eliminate events for which a large-angle scattering occured 

between chambers and also events in which a false multiple track passed the checksum 

test. This can happen if the "false" track had a much shorter drift time than the true 

track, so that its signal reached both ends of the delay line first. The most common 

cause of an event being rejected is that the scattering angle is too small. 

For good events the FPP data are buffered in microprocessor memory, and the MRS 

VDC data in the memory of its CAMAC interface unit. While these buffered data 

are being read by the MRS data acquisition computer the system is free to respond to 

subsequent triggers and reject or accept events. 



Pulser-generated events were used to monitor the deadtime of the computer. Triggers 

were derived from random coincidences between a pulser and the signal from the IBP to 

ensure that the pulser event rate is proportional to the beam current. This procedure 

is essential for a correct sampling of the deadtime. We note that deadtime and beam 

normalization are of secondq importance in the FPP experiment since the crucial 

information is derived from the azimuthal variation in the yield as observed with the 

FPP. 

Since spectrum resolution was not important in the present experiment, we omit the 

discussion of the dispersion matching. 

We note that two distinctly different mechanical modes exist depending on whether 

small angles (SAC range from 3' 15') or large angles (LAC 16' - 135') are to be 

measured. 



Chapter 4 

Data Reduction 

In this chapter we describe the definition and measurement of Q, the procedures used 

for online data acquisition and for off-line analysis of taped events. Computer programs 

used to extract the spin observables are also discussed. 

4.1 Definition and Measurements of Q 

In this section, I briefly explain the principle of our experiment and how spin observables 

were measured. 

We first define coordinate systems in which the scattering process can be easily and 

completely described. There are three coordinate systems in our analysis. The first ( 

is the beam line system labeled as (;,A, i). This frame is used to define the beam 

polarization. Since the MRS front end chamber is in the horizontal plane, it only takes 

the events that have I?j in this plane. Thus i? = (I?, x I?j)/lh', x zjl is always in the 

vertical directon. i is chosen along the momentum direction of the incident beam, that is 

l?t/l~?, 1. 6 is defined to form a right hand system with A and i. This frame is also called 

the incident helicity frame. The second system is the scattered particle frame given by 
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(st, At, p) with fi' = A, i' dong K f  and 2 = A' x i'. The actual scattering process is 

defined in terms of this frame. The final frame employed describes the polarization at 
17 

the second scattering in the FPP. This focal plane frame is denoted by (B", A', ?') with 

6" = fit, ?' along the momentum direction of the protons after their bending in MRS 

magnet and 2" is chosen to form a right hand frame. The two transverse components 

of polarization, P,,I and P,II are measured in this frame. 

In elastic scattering, the proton polarization vector does not change amplitude, in- 

stead it changes orientation. Q is related to the rotation angle P, which is defined as 

the angle between the projection of the incoming proton spin and outgoing proton spin 

in the scattering plane, by the expression Q = d-sinp. We can not measure Q 

directly, instead we measure the Wolfenstein parameters which are also related to the 

spin rotation through Q = -D,,t cos + D,,! sin eras. The Wolfenstein parameters can 

be calculated from the polarization components after scattering. In the experiment a 

sideways polarized beam is used and polarization components P,I and Pp are deter- 

mined by measuring the azimuthal asymmetry in the focal plane polarimeter(FPP)[24]. 

Although we can't measure the longitudinal polarization component directly, the pre- 

cession of the proton spin in the magnetic field of the MRS dipole makes this possible. 

It converts about 76% of the longitudinal component into the normal direction. Thus 

the longitudinal polarization of the scattered protons can be measured. Separation of 

the Pit and P,I components is achieved by flipping the spin of the incident beam, P1t 

will change sign while P,I will not. 

This method is capable of determining the unknown longitudinal components which 

may exist in the incident beam. By using different combinations of spin of the incident 

beam (up and down) and solenoid currents (+ and -), we can extract the longitudinal 

polarization in the incident beam. A fifth independent measurement uses the unpolar- 



ixed beam. From a total of ten independent measurements (combination of spin up , 

down, and off with solenoid polarity +, -) of P,u and P,.p combined with transverse 

polarization results measured by the IBP, we derive four independent quantities: the 

polarization of the scattered protons, the spin transfer coefficients D,,, and D,p and the 

longitudinal polarization component of the incident beam (PI). In the following section 

I give a detailed derivation of these quantities. 

This experiment is a double scattering experiment. The first scattering occurs at 

the target of our interest, whereas the second scattering in the FPP serves to analyse 

the polarization of protons scattered from the primary target. A carbon analyser was 

used for the analysis of the polarization after scattering. Nuclear scattering is the 

only method available for measuring the polarization of a beam of particles in the 

intermediate energy regime. 

4.1.1 Description of Polarization 

A spin 112 particle can be represented by a Zcomponent spinor: 

It is convenient to define the density matrix as 

Then any physical observables measured in this state (expectation value) would be 

simply [27] 



The state of polarization is specified by the Pauli spin operators a,, a,, a,, the corre- 

sponding expectation values are 

p, =< ax >= 2Re(al a*,) 

p, =< a, >= 2Im(al a;) 

The set of operators I, a,, a,, a, form a complete set of Hermitian matrices for the 2 x 2 

space. Any operator in this space must be a linear combination of these operators. If 

we define a. = I ,  a1 = a,, 02 = a,, a3 = a,, then we have (orthogonality relation) 

where i, j=0,1,2,3. The density matrix is one of the operators in this space and can be 

writ ten as 

Using the orthogonality relation, it can be shown that 

The outgoing particle spinor can be related linearly to the incoming particle spinor by 

where M is a 2 x 2 matrix whose elements are functions of energy and angle, and i 

and f denote 'initial' and 'final', respectively. X; and x j  may be defined in different 

coordinate systems. For most of the present discussion we will use the incident helicity 

frame and the scattered particle frame. 
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Using the definition of the density matrix and the relation between the initial state 

and the find state, it is easy to show that 

where M  is the scattering matrix. If p; is normalized, then the differential cross section 

for a polarized beam is given by 

where 

is the analysing power of the reaction for the j'th initial polarization component and 

I, = i T r ( M M t )  is the differential cross section for a unpolarized incident beam. Con- 

cept,ually the analysing power is a function of energy and angle for a particular target. 

To calculate the polarization of the scattered particle, we must use a normalized 

density for the final state so that 

where 

T T ( M M + U ~ O  T r ( M a j M t a k , )  
Pkt = 

T r ( M M t )  K:'(') = T ~ ( M M ~ )  

Pkt is the k'th component of polarization which would be produced by an unpolarized 

beam, and K f  is the polarization transfer coefficient that relates the jth initial com- 
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ponent to k'th final polarization component. All of the polarization observables vary 

between +1 and -1. The quantities P,t,P,t and P,, are of a similar character to the 

analysing power, and for an unpolarized beam the equality holds 

For a polarized beam Pp is not separately associated with the properties of the system. 

The quanlities K!' are identical to the Wolfenstein D parameters and , if the st, y', z' 

coordinate system is specified to be the scattered particle frame, 

The remaining K are zero if parity is conserved. 

It can be shown that when parity conservation and time reversal invariance are 

applied to the elastic scattering of a nucleon from a spin zero target, we obtain the 

following relations [27]: 

A: + D:,, + 02. = 1 

where P is the induced polarization or simply polarization. The scattering matrix can 

be written 

where y is the direction normal to the scattering plane. There are three independent 

quantities in this matrix. The overall phase factor has no physical significance. The 

cross section and analyzing power determine two of these quantities, 



It is natural to define the third parameter as 

We now introduce the spin rotation angle as follows: 

When a polarized spin 1/2 particle is scattered from a spin 0 target, the component 

of polarization in the scattering plane will be rotated through some angle ( P )  called the 

spin rotation angle P. 

A detailed calculation shows that Q is directly related to this angle through J-sin ,L? 

where P is the induced polarization (see below). Here I give a simple derivation of the 

spin rotation parameter Q showing how this parameter is related to the spin rotation 

angle ( P ) .  For elastic scattering, we may use one frame of reference to describe the 

incoming and outgoing particle (beam line frame) or we may use the outgoing scattered 

particle frame for scattered protons. In both cases, the 2, vector is defined to be in the 

normal direction of the scattering plane. It has been shown that in both frames the 

final polarization is related to the initial polarization (in the beam line system) by [28] 

One notices that the normal polarization component does not transfer to other direction. 

Thus as long as the $ direction of a new frame coincides with that of the scattering plane, 

this relation also holds for that frame except that the D coefficients will be transformed 

by a rotation. For example, for the final polarization measured in the scattered particle 

frame we have: 

Dm! c o d  sine D,, 
[ D l , t ]  = [ -s in8 cosR] [ D l , ]  



The components of polarization in the scattering plane for incident particle and outgoing 

particle are 

4, = pa;, + fie, 3 = palea. + p,.e,. 

The tangent angle of these vectors with respect to l ( z )  axis are simply 

The spin rotation angle can now be expressed in terms of these two tangents 

Substituting for P I  in terms of P, we obtain 

A detailed calculation shows [27] that 

which is just the spin rotation parameter. Since we have the quadratic relation: 

We can rewrite sin f l  as 

Dl, 1 sin p = , /FF=JiTF (DSst sin 8 - DSp cos 8) 

. The last factor is our spin rotation parameter, thus 

In our experiment we measure DSp and D,,I, which allows us to derive Q. 
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4.2 Beam Polarization 

In our experiment we have four modes of running. Two with beam polarization up 

and down, two with opposite current polarities of the superconducting solenoid magnet 

positive and negative (denoted P and M). The solenoid precesses the proton spin by 90" 

clockwise or counterclockwise depending on the direction of the current in the magnet. 

The beam delivered to beam line 4B is essentially polarized in the normal (vertical) 

direction, i.e. Pn >> PI, Pa. 

We will see that only the relative sign between different modes of beam polarization 

is important. Let PA be the beam polarization after the solenoid with the initial beam 

spin up and the solenoid polarity negative. If we assign its form as 

Then in the other cases, (with spin up, the solenoid positive and spin down, the solenoid 

negative and positive ) the relative signs of the polarizations would be: 

- PS 

-9 -4 
where Ps >> P,, PI. 

The beam polarization was primarily monitored by an in-beam polarimeter(1BP) 
-, 

[22]. The average beam polarization during our experiment runs was fairly stable ( I  PI 

0.76) for all 4 different conditions. During a few runs, depolarization occured due to 

cyclotron detuning. However since our analysis is based on a run-by-run basis, the 

variations in polarization of the incident beam polarization do not affect the final results. 

If the incident proton beam has polarization p', the cross section for scattering from 

a H nucleus in the IBP can be written as 

0(6,$) = a,( l+ A,(6)6. n') 
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where I. is the cross section for scattering of an unpolarized beam into the scattering 

angle 8, A(8) is the analysing power of the reaction, and n' is the unit vector of the 

scattering plane defined by the cross product of the incident momentum and outgoing 
-. - 

momentum (kin x kWt). In the beam line frame n" = (- sin 4, cos 4,O) thus 

a(@,$) = ao(l - B,A, (0) sin 4 + P,A, (8) cos 4) 

It follows that 

a, = - P,A,(8) En = PnAy(8) 

If we define left (right) cross section uL(aR) measured by the left (right) detector tele- 

scope arm in the IBP as 

UL = ~ ( 4  = 0") = c0(1 + P,) (aR = u(4 = 180") = a,(l - P,)) 

Then the normal components of the beam polarization can be derived from above two 

equations 

In a similar way, we derive the sideways component of the beam polarization as: 

1 UT - ag pa= -- 
A,@) OT + UB 

where we assume that the top (bottom) cross section is defined by 

OT = a(+ = 90") = ~ ~ ( 1 -  P,) (aB = a(4 = 180") = a0(l + P,)) 

We assume there can be some inherent asymmetry in the IBP, (this may be caused by 

improper beam centering on the CH2 target of the IBP, for example). With unpolarized 

beam, we measure only 



where E, is the inherent asymmetry of the IBP. &om this we can determine the asym- 

metry of the IBP. 

Now if we have a polarized beam, the left(right) detector will measure cross sections as 

OL = ao[l + PA,] [I + e,] (OR = a,[l - PA,] [I - &,I) 

where P is the beam polarization and A, is the effective analysing power of the IBP 

target. 

We can now calculate the normal beam polarization. (A similar expression holds for 

sideways polarization.) 

In the analysis, we calculated the beam polarization in two ways. The first uses an 

effective analysing power of CX2 for the IBP target A,. The second uses the II arralysing 

power and corrects for the carbon content in the IBP target (carbon subtraction). Both 

methods give the same result as would be expected. The average polarization of the 

&type incident beam on the target was 0.763. 

4.3 The Scattering Process 

Assume that the polarization of the incident beam in the beam line system (also in the 

incident helicity frame ) ( 5 , + i ,  1) is given by a vector 



After scattering from the primary target, the polarization in the scattering particle 

system (2, A', ?) is given by 

where P(0) is the polarization function of the target, A, is the vector analyzing power 

for the reaction and the D coefficients are spin transfer coefficients (often referred to as 

the Wolfenstein parameters). The precession in the MRS dipole takes place about the 

5" axis, the polarization at the focal plane after spin precession in the magnetic field of 

the dipole is 
0 

where x is the Thomas precession angle of the proton spin and is given by 

where y is the Lorentz factor; p is the proton magnetic moment and cu is the bend angle 

of the MRS (60" f 3'). 

The measurements of the focal plane polarizations are explained in the next section. 

Here we assume they are known and see how to calculate Q in terms of these quantities. 

P," = Das' Pl - Ds11 sin x + Pn + P 
cos x 

1 + PnAy 1 + PnAy 

First we look at the case in which unpolarized incident beam was used. The solenoid 
+ 

polarities have no effect here. Thus we omit the label for polarities. By setting Pb = 0: 

the above equations give 

P,9# = 0 P,Olt = P O  cos x 



P,$ 
P,9, = 0 p0 = - 

cos x 

where Po is the induced polarization when using unpolarized bearn(labe10). In the data 

analysis two independent measurements of PS1(m), P,$(p) have been used to calculate 

the Po. The final result was obtained by averaging these two Po values in order to get 

better statistics. 

Measurement of Pat, with various incident beam polarizations (spin up, T ,  and down, 

4, of the beam polarization before the solenoid positive, p, and negative, m, solenoid 

polarities) determine D,,:. ' 

Solving these equations gives 



Adding all four equations gives A, 

A, = Eij f'nll(i,j) 
4 cos x 

where i = {m,p) and j = { T , J . ) .  Here I should point out that the A,'s are basically 

induced polarizations which one could obtain with unpolarized beam. Thus we obtain 

the first check relation: 

Other linear combinations give the longitudinal component of the beam polarization 

It can be shown that the statistical errors for these quantities are [33] 

I 
AD,p = 

4 sin x P,2 JP:(AA,)~ + A;(AF8)2 

where 

The longitudinal component of beam polarization should be always close to zero ac- 

cording to our assumption. From previouse experiment, we found that this component 

is very small. 



4.4 Polarization of Scattered Protons 

In this section, the method of measuring the polarization of scattered protons at the 

FPP is presented. 

The azimuthal distribution of particles scattered in the focal plane polarimeter(FPP) 

is given by [28] 

where A(BC, 4,) is the acceptance function of the the polarimeter ; 8, and 4, are the 

polar and azimuthal angles in the scattering from the carbon analyzer; is the 

asymmetry in the G(2) direction. 

One requires that for a given 8, all the azimithal angles 4, must be possible in the 

acceptance function, i.e. 

A(@,, 4,) = A(&), 

The condition imposed by this equation is checked by the "cone test". The detailed 

application of this condition is described in the vertex reconstruction section. Tjnder 

this assumption and using the following the identity, 

2n 

F(4) sinm 4 cosn $dm = 0 if F (4  + n) = F(s ) ,  rn + n = odd 

and letting 

one can prove the following equations, 

1 1 L2T I(o,, 4,) sin dCd4 = -N(@c)~Bu(@c) 12= I(B,, 4,) cos $,d$ = - ~ ( o ~ ) ~ ~ l t ( 6 ' ~ )  
2 2 

Asymmetry and polarizations are related by: 



where A,(&) is the analysing power of the carbon scatterer and Pn1t, P,,: are polarizations 

of the scattered particles at the focal plane after their precessions in the dipole. Then 

we may use the sum over all events for a probability integration, i.e. 1;" I(0,, 4,) - Ceu) 

e,t1(8;) = 2 C e v  COS $C 

W C  

= Ay(6;)P,p 

e,tI(6;) = 2 C e v  sin $c 

N(0c 
= -Ay (6;) PSI! 

Where enqS11)(0;) is the asymmetry for the i'th 8, bin in the h"(dU) direction. All sums 

are evaluated for all events in the i'th bin. The statistical error in E can be shown to be 

Putting the asymmetries from above into the distribution function, we get 

It is obvious that we apply the same technique as was used before to obtain, 

or finally 

Substituting the event sum for the integrals, we have 

Pnll = 2 Ceu Ay (0c) cos 4 c  

Ceu A2,(6c) 

A similar equation holds for P,II, 



The statistical error for P is given by [28]: 

b2(Pn11) = b2(p,tt) = 
2 

C e v  A;(@,) 

During the event-by-event replay, the quantities Cev A,(@,) cos 6, , Ce, A,(B,) sin 4, 

,Cev are accumulated and stored as focal plane coordinate spectra to allow ex- 

traction of transverse polarizations Pnt, and P,II. 

It should be noted that the proton energy loss in the carbon slabs need to be accu- 

rately evaluated, since A, for carbon depends strongly on the proton energy below 200 

MeV. Our carbon slabs have a surface density p = 10.64g/cm2. Fkom the range plots, 

we calculate an energy loss of about 50 MeV. We assume the scatterings to taken place 

at the half thickness and an average energy of 175MeV. A, values have been calculated 

from the empirical formula [32]. 

4.5 Data stream 

For the online data taking, the MRS default event structure was used which accomodates 

variable length events with a fixed length part for TDC's and ADC's and a variable 

length part containing the TDC information from the MRS drift chambers. The drift 

chamber information from FEC and VDC's is in the form of wire numbers and drift 

times for the wires that were struck. All the IBP information is recorded by scalers 

periodically written onto tape without any condition checks. From these scalers the 

beam polarization was calculated on playback. 

Data were analysed using the LISA computer code 1291. LISA is a general purpose 

and interactive data analysis program designed to process large amounts of event-mode 

data as they are commonly generated in nuclear physics experiments. The user can 

include special routines in the LISA eventloop (INSERT and EVBEV routines). 
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The data words for each event are the first checked by the drift routine. The function 

of this routine is to convert the TDC and ADC information to a position in each cham- 

ber. These positions are then tested whether they fall within predefined windows before 

storing them in an event buffer. Multiple hits are eliminated at this stage. The wire 

chamber positions are used in the INSERT routine to calculate focal plane coordinate, 

scattering angles, vertex position in the FPP and to perform the cone test. Focal plane 

and the FEC quantities are used to cdculate the target quantities of interest (exita- 

tion energy, scattering angle, target projection) using a semi-empirical transformation 

matrix. This matrix is determined in first order by the MRS optics. Condition checks 

are applied to calculated quantities, events which pass through all condition checks are 

used to update five spectra which are necessary to evaluate the focal plane polarization: 

C P = C,, Ac(8) cos # -;<#<; 

C M = ~ e v A c ( B ) c o s #  f < $ < t  
SP = Cev A,(B) sin d 0 < $ < .rr 

SM = C,, A,(@) sin # n < + < 2 ~  

AY = C e v  A%) 

From the formula derived in the previous section, we obtain: 

P,u = -2 (CP  - CM) 
AY 

P,p = 2  
( S P  - SM) 

AY 

The spectra (CP, CM, SP, SM) are binned in focal plane position to select the elastic 

events, and are also used to derive statistical errors. 

Several cuts were applied to our data analysis. We only discuss the most impor- 

tant ones, the MRS acceptance and the proton identification. The MRS acceptance is 

determined essentially by the front end chamber which is mounted close to the target 



chamber. Two gates together determine the overall MRS acceptance (X, ,  Yo). For a 

dispersed beam tune giving a narrow vertical beam illumination on target, the total 

acceptance of the spectrometer is determined by software cuts placed on X,and Yo, the 

FEC coordinates, so that data are accepted only in that range of 8 and cp ( which define 

the solid angle subtended by the FEC) over which the spectrometer acceptance is flat. 

The acceptance of the spectrometer is then computed as the solid angle of a simple 

square aperture. Typical solid angles are about 2.5 msr at large angles (> 16') and 

about 0.75 msr at small angles (< 16'). The distance from the target to the middle of 

FEC was 64 cm at large angle and 133 cm at small angles. 

The principle of charged particle identification is to measure the time of flight from 

the FEC to the focal plane(TTB) (linearly related to particle mass) and it's differential 

energy loss (ESUM) in any one of the trigger paddles (related to the square of particle 

charge). The pulse height in the trigger scintillator is proportional to the energy loss 

of the proton in the scintillator. Thus particles with similar mass but different charge 

or of the same charge but different mass will be separated in a two dimensional plot of 

T T B  versus ESUM. This gives a clean separation of particle types. 

Finally we need to mention the MRS resolution though it was not crucial to our 

measurement of spin observables. The optimum resolution of the MRS in dispersion 

matching mode is typically 100 keV at large angles and 140 keV at small angles. The 

difference in resolution is due mainly to multiple scattering in the wire chamber windows 

and is not dependent on energy. The resolution for this experiment was typically 270 

KeV. 



4.6 Vertex Reconstruction in the Focal Plane Po- 

lar irnet er 
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Figure 4.1: Vertex reconstruction in the FPP. Left is the FPP cage side view, right is 
the vector relation diagram 

The FPP cage and relevant quantities are shown schematically in Fig 4.1. The drift 

decoding routine gives the positions of the in all wire chambers, we can use this 

information to obtain the scattering angle and azimuthal angle at the FPP and thus 

determine the angular distribution of the scattered protons at the carbon analyser. The 

focal plane polarization components can be extracted from this distribution according 

to the formulas given in the first section of this chapter. The following calculations are 

carried out in the focal plane frame. 

The incoming particle trajectory toward the carbon slabs is determined by two sets 

of position coordinates measured by VDCl and Dl which is just below the carbon 

analyser. The coordinates form an incoming vector (we choose normalized unit rector, 

so that the components of this vector are just the direction cosine to each axis.) 



where RI = J(x1 - + (yl  - ya)' + ( z l  - z . ) ~ ,  (xi , i = 1 , 2 , 3 , 4 )  are the position 

coordinates measured by the corresponding D chambers and ( x , ,  y,, 2 , )  are the position 

measured by V D C l  (also in the focal plane frame). c, can simply be written as 

-. 
where a ,  j3, +y are direction cosines of Kn. 

Similarly, we construct the outgoing vector using the position information measured 

by D2 and D4 chambers which are after the carbon scatterer. 

Then the scattering angle can be represented by: 

-. --, 
cos Oc = - Vout = oaf + + yy' 

The azimuthal scattering angle is calculated in the following way. We construct an 
-. -. 

intermediate vector which is perpendicular to both V,, and Vout. 

fi = Gn x Pout = (By' - ply, yo' - y'o,  apt - alp) 

-. 
Then we project this vector into the x,y plane to obtain a new vector No 

R = (By' - P'y,  yo' - y'a , 0) 

From the right side of the figure 4.1, we get 

No, 
COS 4' = - 

l@'ol 

N O Y  sin QS = - 1m 



Since the azimuthal scattering angle is related to 4' through 

Thus 

No!, 
COS g5c = -- 

l f l o l  

N o ,  sin 4, = - 
l fo l  

The closest approach distance between c, and gut can also be calculated. We set 

up a spectrum (ZO) to display the distribution of the closest approach distance and 

set a narrow gate on it. The events with the approach distance greater than 6mm are 

believed to result from multiple scattering and were rejected. we believe the q, and 

Gout do not come from single event in such case. 

Finally the cone test (to ensure that the acceptance function is independent of az- 

imuthal scattering angle 4,) has been applied. We use the scattering angle and vertex 

point in the carbon to construct a cone, with its axis parallel to t:. If any part of 

this cone is outside of the FPP wire chambers, the event is also rejected since it would 

produce a false asymmetry which is not from scattering, but from the lack of detection 

in the FPP. 

4.7 Angle Ca librat ion 

Determination of the exact scattering angle in scattering experiment is important be- 

cause of sharp angular variation in the spin observables. The front end chamber in the 

MRS defines the solid angle for the scattering process and determines the scattering 

angle 9. It is difficult to mount the FEC in a position such that the center of the FEC 

matches exactly the measured angle. 

From a kinematics graph ( see Fig 4.2), one finds that protons scattering from differ- 



ent targets have different outgoing momenta versus angle due to different target nucleus 

recoils. For light nuclei the momentum decreases rapidly with increasing scattering an- 

gle while for heavy nuclei the momenta of the scattered protons are nearly independent 

- 
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635 - - p+*~(2+) E , = 4 . 4 4 M e V  * 
2 6 3 0  - - 
&" p + * ~ ( ~ + )  E,=?.65MeV 
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of angle. The kinematic curve for a heavy nucleus excited state will intercept that for a 

light nuclear groud state as shown in the figure. This crossing can serve as a calibration 

6 15 

point. Since the crossing point is a purely kinematic effect determined by the mass of 

I I I I I I 

the target and the exitation energy of the target nucleus, it can be accurately calculated. 
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Figure 4.2: Kinematics diagram for proton-nucleus scattering at 200 MeV 

In this experiment, data taken with a CH2 target were used for the angle calibration. 

The crossing point for H ground state with the 4.44 MeV 2+ state of 12C was observed 

in a two-dimensional spectrum of Yo versus XF (see Fig. 4.3). Calculating the angle 

of the crossing point from the spectrum and comparing with the theoretical value, the 

scattering angle at the center of the FEC is determined. This angle offset will be taken 



Figure 4.3: The focal plane spectrum at the crossing point. 

into account in later analysis. 

In large angle configuration, we have employed the kinematic crossing of H ground 

state and the 18 MeV 4', T=l state in 160. For this purpose a "waterfall" target was 

used. Another method in which kinematic crossing between different states were forced 

by changing the magnetic field of the dipole proved unreliabe, probably because of 

differential effect in the magnet. We have determined the angle offset to be -0.17f 0.11 

at small angles and - 1.08 f 0.10 for large angles. 

Finally the polarization at the focal plane P,p and PSI# were calculated from the 

areas of the elastic peaks in the 15 spectra ( CM CP SM SP AY for spin up, down 

and off). Three pairs of these polarization components were subsequently fed into 

another program to calculate P,, D,,t, D,,I and Q using the formula provided earlier in 

this chapter 



Chapter 5 

Results 

In this chapter, we present our final results and conclusions. The first section contains a 

discussions of the reliability of the data and sources of error. The next section presents 

the comparison of the data with theories. The last section gives the conclusions drawn 

from this experiment. 

5.1 Finite Bin-Size Effect 

All physical detectors have a finite geometrical size which corresponds to a finite solid 

angle. The physical observables measured by these detectors are just weighted aver- 

ages of their values at different angles. The weighting factor is the cross section since 

the detectors measure the number of particles. The distribution is determined by the 

properties of the spin observables. This detector size effect is pronounced when the ob- 

servable~ fluctuate very rapidly with respect to the scattering angle and will attenuate 

the amplitude. This effect was first observed in the quadratic unitary check relation 

which is more sensitive then the spin observables to the finite bin-size effect. Thus 



quadratic check holds only approximately. 

D:,, + dg,, + P2 < 1. 

In our experiment the angle bins were approximatly lo wide. By calculating the weighted 

average of the theoretical predictions for the above quadratic relation, we find a similar 

structure that appears in our experimental data. (see Fig. 5.2). This suggests that the 

comparison between theory and experimental data is valid only after the same average 

is performed for the theoretical curves. 

Suppose we have a spin observable 0, then the average is defined by 

where and O2 are the bin angle limits. The theoretical calculations shown in the 

following were all obtained with this procedure. 

5.2 Consistency Checks and Systematic Errors 

This experiment was run with the beam polarization in ten modes to perform a number 

of independent consistency checks. The basis for these checks was discussed in the 

previous chapter and the results are summarized here: 

Pl - 0 P,9, = 0 

where polarization P(8) was derived from the measurements in the spin mode. while 

P0(8) was obtained from unpolarized measurements. Fig 5.3 and Fig 5.4 shows polar- 

izations measured in spin-on and spin-off modes. The spin-on data have better statis- 

tics because of longer running times compared to the spin-off data. One notices good 
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agreement between these two sets of data. The agreement with previous A, data from 

TRIUMF [9] is generally good although the latter exhibits slightly larger amplitudes at 

the large angles. The origin for these small discrepancies is not understood. 

The quadratic consistency condition is very sensitive to false asymmetries present 

in the induced polarization and also to systematic errors.. The results of this check 

are displayed in Fig 5.2. The average deviation of the plotted quantily from unity is a 

direct measure of the net systematic error of the P .  It should be noted that the largest 

deviations from unity occur exactly where the analyzing power is changing extremely 

rapidly. The cause of this deviation , besides the finite bin size effect, are not known. 

The measurement of the net value of the focal plane sideways polarization (P$)  when 

using unpolarized beam dso provides a way of checking the false sideways asymmetry 

in the FPP. The average value of PSI in 208Pb measurement is 0.0068 f 0.0082 and 

0.011 f 0.0084 in gOZr measurement (Fig. 5.1). 

One source of systematic error in extracting the spin rotation parameter arises from 

the uncertainty in the determination of the beam polarization. Another possible source 

of systematic error is uncertainty in the analyzing power of the FPP analyzer. This 

analyzing power function was taken in an empirical form from reference [32]. Most of 

the systematic errors were canceled by reversing the spin of the incident beam. As we 

showed in the previous chapter, the inherent asymmetries of the beam polarization can 

be corrected in off line analysis. The average beam polarization for spin up incident 

beam is 0.778 and 0.793 for spin down incident beam. 



5.3 Data and Theory 

The general features of spin observables are their oscillatory behaviour. This behaviour 

arises from the diffraction phenomenon (Fraunhofer diffraction). The 90Zr curves show 

fewer oscillations than 208P b , since its size is smaller than that of 208P b . The oscillation 

in polarization is related to the cross sections for spin-up and spin-down which both 

oscillate strongly, but have different periods. This leads to relatively smooth angular 

distributions of the unpolarized differential cross section (the sum of these two quan- 

tities), and a strongly oscillating polarization (the normalized difference of these two 

quantities). In terms of the optical potential, the reason for this behavior is that the 

spin-orbit force is comparable to the central force. This means that a spin-up proton 

feels a potential of larger radial range than a spin-down proton. The difference of size 

gives rise to the shift in the corresponding diffraction patterns. The amplitude of these 

observables depends on the nuclear structure and the effective NN interactions. The 

foiiowing section explains some of the features of these spin o?xervaS!es. Relativistic 

and nonrelativistic predictions are also provided to compare with our data. 

In Fig 5.5 and Fig 5.6, we display the MOMP prediction for the Wolfenstein param- 

eters. There is always a small angle shift at large angles but the amplitude agree with 

the data. The D,,I starts from 1 at 0•‹, since there is almost no interaction between 

the projectile and the target nucleus. No spin associated transitions occur here, thus 

D,,! = 1 and D,p = 0. The small-angle D,,, data confirm that the empirical analysing 

power used for the carbon analyser [32] is correct. 

The angular dependence of the vector analysing power P and the spin rotation 

function Q are shown in Fig. 5.7 and Fig 5.8. These results together with TRIUMF 

cross section data at 200MeV [9] (see Fig. 5.14) completely specify the scattering matrix 



for elastic scattering. The dashed curves were calculated nonrelativistically using Van 

Geramb7s density-dependent interaction derived from the Paris NN t-matrix [lo]. The 

solid curves represent relativistic calculations carried out by Horowitz and Murdock [7]. 

They use pseudovector T N  coupling and include Pauli blcoking. 

The main aim of this experiment is to investigate the Pauli blocking effect in the 

nucleon-nucleus interaction. Fig 5.9 and Fig 5.10 display the RIA calculations with 

(solid) or without (dashed) Pauli blocking together with our data. The agreement of 

the full calculation with experiment is impressive. 

One notices that Pauli blocking is a very large effect which is crucial to obtain an 

agreement between experiment and theory at this energy. The RIA calculation without 

Pauli blocking is out of phase at large angles and misses the structure at small angles. 

It also misses a structure observed in the polarization at small angle (- 1. fm-', Fig 5.9 

and Fig 5.10) for both nuclei. At the same angle, the prediction for Q has the opposite 

sign to our data. It should be pointed out that Pauli blocking in the present RIA only 

modifies the imaginary optical potential by at most 10% m d  leaves the red potentid 

almost unchanged. It implies that the imaginary optical potential plays an important 

role in the relativistic model. We conclude that Pauli blocking is an important medium 

effect at 200 MeV 

We also compare the present RIA calculation with the MOMP calculation, (see Fig. , 

5.7 and Fig 5.8). Both RIA and MOMP predictions are in phase with the experimental 

data. Amplitude discrepancies are within 20%. The RIA calculations for Q are ciose 

to the data while the MOMP calculations predict the polarization better. Both theory 

curves tend to go out of phase with data at very large angles. In 90Zr , the RI.4 

predictions agree well with our data. The MOMP shows a small angle shift in Q at 

large angles but not in polarization. The discrepancy may be due to inaccurately known 



parameters of the neutron density. Calculations show spin observables to be sensitive 

to different neutron densities [3]. The MOMP slightly underestimates the data around 

0.62 f m". In 208Pb , the RIA calculation almost misses one Q structure at about 

1 .Of m-', while the MOMP gives the right values at this point. Both theories give good 

descriptions at other angles. We also show cross sections together with two theoretical 

curves, see Fig 5.14 and Fig 5.4. The 208Pb cross section data were taken from [9]. No 

90Zr data are available, so only the two theoretical curves are presented. The RIA and 

MOMP have no major disagreements until very large angles. The RIA calculation gives 

more structure at about 35' than the data. 

5.4 Relativistic Effect in Von Geramb's Model 

It was discovered a long time ago that the non-relativistic potential could not reproduce 

the cross section and the spin observables at the same time. It was found empirically 

(311[3] that if the optical poteiltia! is reduced by 20% (ie. use 0.8UOpt), then t,he cal- 

culations do reproduce these observables (See Fig. 5.11, 5.12 and 5.13). Later, it was 

believed that this factor is EIM where E is the total reduced energy and M is the re- 

duced mass. But why does the non-relativistic theory need this factor which previously 

has only been justified empirically? Here I give a simple derivation. 

The non-relativistic Schrodinger equation is 

where k2 = 2mT, T is the total kinetic energy, m is the reduced mass, VOpt is the optical 

potential. 

Now I use the Klein-Gordon equation as 
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a starting point. In the c.0.m. frame, 



, 

(where the vector part of the optical potential vanishes.), the equation of motion reads: 

[p2 + m2 - ( E  - V,t(r))2]$(r) = 0 

where E is the total energy in the c.o.m., Vqt is the scalar part of the optical potential. 

After the expansion, this equation becomes 

(p2 + m2 - E2)$(r) = [-2EVopt(r) + v;t(.)lw 

Using the Einstein mass-energy relation k2 = E2 - m2, we substitute the momentum 

by its operator and omit the l(,g,(r) term since E > > l/,t, then 

(V2 + k2)$(r) = 2EV,,t$(r) 

E 
= -(2mKpt(r))+(~) m 

Thus solving the Schrbdinger equation with relativistic kinematics and 5 factor is equiv- 

alent to solving the first-order Klein-Gordon equation which is the relativistic equation 

of motion. 

5.5 Conclusions 

We have performed Q and A, measurements for both 208Pb and "Zr at 200MeV. 

The predictions of the microscopic optical model derived from both relativistic (RIA) 

and non-relativistic (MOMP) theories have been compared to our data. Since non- 

relativistic theory depends on the correction factor introduced in the relativistic equation 

of motion, relativity is also a crucial factor in 'non-relativistic' calculations. Without 

this factor, the MOMP will fail to reproduce the reaction cross section and lead to po- 

larizations which are out of phase and of too small amplitude at relatively small angles 

(Fig. 5.11, 5.12 and 5.13). Both models include medium modifications which turn out 



to cause very large effects in the spin observables. Systematic theoretical studies of the 

energy and mass dependence of Q axe now possible. However, our data alone cannot 

provide clear evidence of the importance of relativistic effects. More experimental data 

involving inelastic and quasielastic scattering may shed some light on this problem. 
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Figure 5.1: Pp when using unpolarized beam. Top is for '"Pb and bottom is for % Z r  
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Figure 5.2: The quadratic unity check for 208Pb (top) and ''Zr (bottom). The solid 
curves are bined theoretical predictions from MOMP. Notice the similar structures be- 
tweeh the data and the curves. 
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Figure 5.3: *08Pb polarization plots (top), circular data points were taken with the spin 
mode crossed data points were taken with unpolarized incident beam. The comparison 
between TRIUMF A, data and the P data from this experiment is shown at the bottom. 
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90 
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Figure 5.4: 90Zr polarization plots (top), circular data points were taken with the spin 
mode crossed data points were taken with unpolarized incident beam. The comparison 
of cross sedidns calculated. from .RIA.and MOMP is,shown a t  the bottom. 
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Figure 5.5: Wolfenstein parameters with MOMP predictions for proton scattering from 
20sP2,. 



Figure 5.6: Wolfenstein parameters with MOMP predictions for proton scattering from 
9 0 Z r .  
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Figure 5.7: Spin rotation parameter Q and polarization P for 208Pb (p,p). The solid 
curves correspond to the RIA including Pauli blocking and the dashed curve is the 
nonielativistic density dependent calculations 
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Figure 5.8: Spin rotation parameter Q and polarization P for 90Zr (p,p). The solid 
curves correspond to the RIA including Pauli blocking and the dashed curve is the 
nonrelativistic density .dependent  calculation^ 
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Pb(p,p) at 200 M e V  
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Figure 5.9: Spin rotation parameter Q and polarization P for 20BPb (p,p). The solid 
curves correspond to the MRIA including Pauli blocking and the dashed curve is the 
sarrie model without Fauli blocking 
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90 
Zr (p, p) at 200 M e V  

- RIA w i t h  P.B. I ' , 

-0.8 - -RIA w i t h o u t  P.B. ,\! 

Figure 5.10: Spin rotation parameter Q and polarization P for " Z r  (p,p). The solid 
curves correspond to the MRIA including Pauli blocking and the dashed curve is the 
same model without Pauli blocking 
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- - -wi thou t  t h e  f a c t o r  V 1 
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w i t h  the f a c to r  

Figure 5.11: Q plots for MOMP calculations with and without the factor. Solid curves 
are calculated with the factor, the dashed curves are calculated without the factor. 
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208 Pb(p,p) at 200 M e V  
I I I I I 1 

\ 

0 D. Hutcheon et  al. 

- with the  factor 

- - without the  factor 

Figure 5.12: P and o plots for 2wPb from MOMP calculations with and without the 
factor. Solid curves are calculated with the factor, the dashed curves are calculated 
without the factor. 

' 74 



I I I I 

\ - - with  t h e  factor 
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Figure 5.13: P and o plots for "Zr from MOMP cdculations with and without the 
factor. Solid curves are calculated with the factor, the dashed curves are calculated 
without the factor. 
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RIA w i th  Pauli Blocking 

- - - - - MOMP Calculation 

Figure 5.14: Cross section for 200 MeV proton scattering from 208Pb . The solid curves 
represent calculations with RIA, the dashed curves are those with the MOMP. 
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