
Heuristic Bounds for
Automated Logic Synthesis

A Heuristic Method For Evaluating Two Extremal
Implementations for A RT Level Digital System Design

by

Wuyi Wu

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School

of

Computing Science

@ Wuyi Wu 1987

SIMON FRASER UNIVERSITY

January 1987

All rights reserved. This thesis may not be
reproduced in whole or in pare, by photocopy

or other means, without the permission of the author.

Approval

Name: Wuyi Wu

Degree: Master of Science A.

Title of Thesis: Heuristic Bounds for Automated Logic Synthesis

-- -

B. K. Bhattacharya
Chairman

Senior U e r ~ o r

R. F. Hobson
External Examiner

January 26, 1987

Date Approved

PARTIAL COPYRIGHT LICENSE

I hereby grant t o Simon Fraser Univers i ty the r i g h t t o lend

my thesis, p ro jec t o r extended essay (the t i t l e o f which i s shown below)

t o users o f the Simon Fraser Univers i ty Library, and t o make p a r t i a l o r

s ing le copies only f o r such users o r i n response t o 8 request from the

l i b r a r y o f any other un ivers i ty , o r other educational i n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I fu r ther agree t h a t permission

f o r mu l t i p l e copying of t h l s work f o r scholar ly purposes may be granted

by me o r the Dean o f Graduate Studies. I t i s understood t h a t copying

o r pub l i ca t ion o f t h l s work f o r f i nanc ia l gain sha l l not be allowed

withouO my wr i t t en permission.

T i t l e o f Thes i s/Project/Extended Essay
\i

Author: . _ - _ _ .

i/
(s ignature)

/

(date)

ABSTRACT

This thesis addresses an efficiency problem in the logic synthesis method
of [Hafer 811. The approach to the problem is to bound the solution space
by using heuristics to generate extremal implementations from the behavioral
description of a given design. By analyzing the implementations, we can
extract a set of heuristic bounds and guidance information to improve the
speed of the synthesis process.

Algorithms have been implemented to generate two extremal
implementations which minimize the cost and time objectives respectively.
These initial implementations provide bounds on the solution space and
guidance information on design decisions. Based on this information, a
designer can seek out the best solution by purposely exploring a limited set
of candidates rather than searching blindly in a vast solution space. The
guidance information extracted from the hardware allocations for the initial
implementations will guide the synthesis model generator to incorporate only
worthwhile variables into the equation system, thus reducing the synthesis
solving time.

Two examples are examined to demonstrate how to apply heuristics to
narrow the solution space and how to extract guidance information to speed
up the synthesis process.

Acknowledgements

I owe a great debt of gratitude to my supervisor. Prof. Lou Hafer. It was he

who initiated me into the area of "computer aided design" and gave me thoughtful

guidance throughout this research. Without his painstaking efforts in wading through

my initial draft and correcting my grammar, this thesis would not be as polished.

I am very grateful to Prof. Joe Peters for being in my supervisory committee: and

Prof. Rick Hobson for being my external examiner. Constructive comments and

suggestions from both of them have helped to improve the original version of this

thesis.

Thanks are also due to Prof. Tiko Kameda and my colleagues: Shiv Prakash and

Mimi Kao. They have been generous with comments and suggestions which provided

useful ideas while this thesis was forming. Nor can I forget the help provided by

Mr. Ed Bryant with his convenient tool "picit", which saved me a lot of time while

generating the pictures.

I would like to acknowledge financial support from the Chinese government and

from NSERC operating grant A5498 (Lou Hafer, principal investigator).

Finally, I owe equal thanks to my dear parents, who have unfailingly supported

my studies. I wish to dedicate this work to them.

Table of Contents

Approval
ABSTRACT'
Acknowledgements
Table of Contents
List of Tables
List of Figures
1. INTRODU~ION

1.1. Motivation
1.2. Prior Work
1.3. The Problem
1.4. The Approach
1.5. Assumptions about the Underlying Hardware Model
1.6. Outline of the Thesis

2. THE M-OPTIMAL SCHEDULE METHOD AND THE CPA TECHNIQUE

2.1. The M-optimal Schedule Method
2.1.1. Definitions And Lemmas
2.1.2. M-optimal Schedule Algorithm
2.1.3. Example
2.1.4. Construction of an M-optimal schedule for SP graph

2.2. The Critical Path Analysis Method
2.2.1. Construct A Network
2.2.2. CPA Algorithm

3. SERIAL IMPLEMENTATION
3.1. Objectives and Methods

3.1.1. How to Find the Minimum Set of Registers
3.1.2. Hardware Allocation

3.2. The Serial Implementation Algorithm

4. PARALLEL IMPLEMENTATION
4.1. The Hardware Allocation
4.2. Estimate the Execution Time

4.2.1. Build a Network to Represent the Parallel Implementation
4.2.2. Find the Critical Path

4.3. Further Optimization

. .
11

iii

vii

viii

1

1
3
6
7
7
8

5. GUIDANCE INFORMATION FROM THE SERIAL AND PARALLEL
IMPLEMENTATIONS 3 3

5. I. The Estimation Results 33
5.2. The Guidance Information 34

5.2.1. The Guidance Information From the Serial Implementation 34
5.2.2. The Guidance Informatidh From the Parallel Implementation 35
5.2.3. The General Guidance Information From Both Implementations 36

6. EXAMPLES 40
6.1. Generating Extremal Implementations 40

6.1.1. Logic Example 4 1
6.1.2. Criss.Cross Example 48

6.2. Computational Improvement Made by Bounds 52
6.2.1. Effects of Time Bounds 52
6.2.2. Effects of Cost Bounds 55
6.2.3. Computational Result Comparison for Bound Extraction 56

6.3. Computational Improvement Using S Set Guidance 56
6.3.1. How to Minimize the S Set 5 7
6.3.2. Synthesis Time Improvement 6 1

7 . OBSERVATIONS AND CONCLUSIONS 6 3

7.1. Observations 63
7 -2. Contributions 65
7.3. Suggestion for Further Research 66

References 6 7

Table 6-1:
Table 6-2:
Table 6-3:
Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:
Table 6-8:
Table 6-9:

List of Tables

Hardware Elements Available for Logic Example
The Matrix Table For The Storage Element Folding
Hardware Elements Available for Criss.Cross Example
Effect of Tightening Time Bounds
TMAX Experimental Results
Effect of Tightening Cost Bound
Comparison of Different Bound Extraction ways
Model Size Comparison
Model Synthesis Result Comparison

Figure 1-1:
Figure 2-1:
Figure 2-2
Figure 2-3:
Figure 2-4
Figure 5-1:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-2
Figure 6-8:
Figure 6-9:
Figure 6-10:
Figure 6-11:
Figure 6-12:

List of Figures

CMU-DA System Overview
PC Graph and SP Graph
M-rank
Construction of an M-optimal Schedule
Procedure of Scheduling an SP Graph
The Parameter Bound Analysis
Logic ISPS Behavioral Description
Logic Data Flow Representation
The Execution Sequence of Logic Example
The Network For The Data Flow Of Logic
Criss.Cross ISPS Behavioral Description
Criss.Cross Data Flow Representation
The Network For The Data Flow Of Criss.Cross
CPA Result for Criss.Cross
Initial S set Specification For Criss.Cross Example
Revised S set Specification For Criss-Cross Example
Initial S set Specification For Logic Example
Revised S set Specification For Logic Example

viii

Chapter 1

INTRODUCTION

The research reported in this thesis is a case study in the automated synthesis of

digital systems at the Register-Transfer (RT) level. Design automation at this level is -

still in its infancy. Our primary goal is to speed up the logic synthesis process by

introducing heuristics. Heuristic algorithms have been implemented to generate two

extremal implementations for a given design described in the high-level hardware

description language ISPS. We will show how these heuristics can reduce the solution

space and provide useful guidance information for optimal synthesis.

In this chapter, we will briefly introduce some background information and the

outline of the thesis.

1.1. Motivation

Why is it so important to automate the logic synthesis process and minimize

synthesis time? Because of the exponential increase in VLSI scale and complexity.

automatic synthesis systems need to be developed to aid the human designer in

managing this complexity.

Logic synthesis is a time consuming step in conventional digital system design.

Minimizing the time consumed in the synthesis process will effectively reduce the

total design time.

Furthermore, the problem facing the designer in digital system design is a

multiple-criterion optimization (MCO) problem. In general, the criteria imposed on a

design are often in conflict. Therefore, it is impossible to find a unique optimal

solution for a design. Instead, we can find a set of noninferior solutions which

reflect the different tradeoffs among the design objectives. A noninferior solution has

the property that improving the solution with respect to a given criterion requires a

degradation in at least one of the other criteria in the design. To efficiently select

the best solution, a comparison should be made among the noninferior solutions. The

best solution will be the one which embodies the most acceptable tradeoff among the

various criteria. In order to seek out the best solution, it is imperative that the full

range of design tradeoffs be explored within an available design space by generating

noninferior solutions which emphasize different criteria. Manual design cannot afford

this because of its long design cycle and high design cost. Automated logic synthesis

systems, however, are able to provide more alternative implementations for a designer

to evaluate different tradeoffs.

The RT-level logic synthesis system described in [Hafer 811 was developed as part

of the CMU-DA project. It formalizes the data path synthesis problem as an

algebraic-relation model and solves it as a mixed-integer linear programming (MILP)

problem. Varying the emphasis on different criteria by specifying different objective

functions to the system, we can obtain a set of noninferior impIementations.

Even with automated synthesis systems, the synthesis time is still an important

factor to be considered. Since usually there are a very large number of noninferior

solutions for a given MCO problem, it is infeasible to enumerate all implementations.

Solving the synthesis model to generate a single noninferior implementation is itself a

time-consuming task. Therefore, it is desirable that the number of alternative

implementations generated be kept as small as possible.

A methodology must then be devised to narrow the solution space and to reduce

the logic synthesis time. Heuristics are the best candidates. They are adopted in this

research.

1.2. Prior Work

This section introduces two previous research efforts which are important to our

research. One, the CMU-DA project, provides the Value Trace representation and

software, as well as a useful paradigm for the automated design of digital systems.

The other, e data path synthesis algorithm developed by Hafer, provides the

motivation for the thesis research.

The CMU-DA (Carnegie-Mellon University - Design Automation) project is a major

research effort directed at developing a technology-relative structured design aid to

help the designer explore a larger number of alternative implementations for a given

digital system design. The overall structure proposed for the CMU-DA system is

shown in Figure 1-1. The behavioral description of a design is written in the ISPS

hardware description language and translated into a parse tree which is then converted

into a data flow representation called the Value Trace (VT). The nodes of the VT

correspond to operations on data values, and the edges represent the flow of these

values between operations. After the design style selector chooses the most suitable

design style, the partitioner groups operations from the abstract design representation

into control steps. Tradeoffs between the data and control parts are made at this

level. A data/memory allocator decides the number and type of functional modules

(operators, registers, data paths and switching functions) needed to implement the data

part of a design. A control allocator generates a sequential state machine to control

the data part produced by the DM allocator. The module binder then selects the

physical modules from the module set library to implement the data and control

parts. Finally, a physical DA subsystem handles the physical layout for the proposed

implementation and prepares engineering documentation. The interested reader is

referred to [Thomas 831 or [Thomas 861 for additional material and references.

The synthesis algorithm developed by Hafer [~ a f e r 811 uses MILP to solve a RT-

level hardware synthesis model, which formally models digital systems by algebraic

relations. The reiaiions are generated from the V a h e Trace data flow representation.

They explicitly express conditions and timing relations that must be satisfied by any

correct implementation. When this system of relations is solved as a MILP problem.

it generates an optimal data part implementation with respect to the objective

function. In terms of the activities identified in Figure 1-1, solving the synthesis

model performs data/memory allocation and control step partitioning simultaneously.

By applying the MILP algorithm to the synthesis model with different objectives

and constraints, we can obtain a set of noninferior implementations of a data part

design. This offers a great range of implementations to be evaluated by the designer.

Based on these implementations, the designer can make the tradeoff by preferentially

weighting the various objectives and choose the best implementation.

GLOBAL +
1 OPTIMIZATION

I t VALUE TRACE

I DESIGN STYLE I

ALLOCATOR . . .
(BUS)

I ALLOCATOR

\ PATH GRAPH /
MODULE BINDER +

BOUND DATA PART I
CONTROL +

ALLOCATOR L1!
CONTROL GRAPH

MODULE BINDER

BOUND CONTROL PART I
PHYSICAL ?
LAYOUT -

J,
COMPLETED DESIGN

Figure 1-1: CMU-DA System Overview

1.3. The Problem

From the above analysis, we know that it is impossible to find a single optimal

solution for a given design to meet multiple objectives which often compete with one

another. The optimal solution is embodied in a set of noninferior solutions. But if

every candidate solution is generated by solving the synthesis model, even a small

problem needs an infeasible amount of computation time. This will limit the ability

of the system to allow a designer to explore alternative implementations.

The synthesis model requires many relations and variables to formally specify the

constraints and objectives for a design. The system generated for this synthesis model

is a large, sparse system. The branch and bound algorithm used by the BANDBX

package [Martin 781 and applied in [Hafer 811 is not a specialized algorithm for the

solution of the synthesis model, which is the most time-consuming part of the

synthesis procedure. So far, no suitable algorithms are available for efficiently

handling large, sparse, logic synthesis systems with a reasonably low computation

time. But' if we can bound the solution space to effectively eliminate non-best-

candidate alternatives and reduce the variables incorporated in a synthesis model, we

will greatly reduce the computation time.

The research described in this thesis addresses such problems and investigates how

to tighten bounds on the solution space with lower complexity algorithms. It also

studies how to extract guidance information from two extremal implementations to

guide the designer toward noninferior implementations from an early stage in the

design.

1.4. The Approach

In order to reduce the time required to solve the MILP problem, it is mandatory

to estimate the bounds of the solution space from information that is available before

a synthesis model is generated. Improved estimates will aid in pruning the branch-

and-bound tree, reducing the computation time of BANDBX: a bounded solution space

will limit the choices incorporated into a synthesis model and reduce the number of

candidates explored during the design process, again reducing the computation time.

The heuristics introduced in this research intend to accomplish the above goals by

generating two extremal implementations. A set of bounds and guidance information

is derived from these initial implementations. The time and cost bounds narrow the

solution space so that we can generate a noninferior design without a large amount of

search. The guidance information can help a designer to make a better choice of

parameters and design decisions congruent with his objectives, which will, in turn.

guide the synthesis model generator to simplify the equation system.

1.5. Assumptions about the Underlying Hardware Model

The synthesis model uses algebraic relations to model the timing and sequence

properties required for correct behavior, under the assumption that all timing

requirements can be related to transitions of a global clock signal. Due to the

computational complexity of BANDBX, the controller implementation is not considered

in the synthesis model and all relations are applied to the data part alone. To ensure

that hardware resources are shared correctly among behavioral actions, it is assumed

that the timing sequence generated by solving the synthesis model can be implemented

by integral multiples of the clock period of a global clock (or: by phases of a

multiphase clock). In order to limit the size of a synthesis model, data paths and

switching logic are not explicitly modeled. As a result, data paths between RT level

components are considered point-to-point and switching costs and delays do not appear

in the model.

Since the approach for improving the efficiency of solving a synthesis model is to

use heuristics to generate two extremal implementations, the heuristics must match the :

above assumptions. The heuristic module will consider only the data part

implementation and will evaluate the two extremal implementations in accordance

with the model. The cost estimated by the heuristics, thus, will be the cost of

operators and storage elements; and the execution time will be the propagation delay

of operators plus the setup time, hold time and propagation delay of storage elements.

1.6. Outline of the Thesis

The thesis consists of seven chapters. Chapter 2 introduces two methodologies:

M-optimal scheduling, utilized in our research for scheduling the serial execution

sequence, and critical path analysis, used for estimating the parallel execution time.

In Chapter 3 and Chapter 4, we describe the heuristics developed for generating the

serial and parallel implementations. Chapter 5 presents and analyzes the guidance

information extracted from the two extremal implementations. Chapter 6

demonstrates how to generate the extremal implementations for a given design with

two examples and discusses how to utilize the guidance information to reduce the

synthesis time. Finally, Chapter 7 summarizes the results of the thesis and suggests

some directions for further research.

Chapter 2

THE M-OPTIMAL SCHEDULE METHOD
AND THE CPA TECHNIQUE

In this chapter, we will introduce two methodologies that we apply in the

research. One is the M-optimal schedule method developed in [~ b d e l 761. It is

applied while generating the serial implementation to schedule operations in parallel

execution sequences in an optimal serial execution sequence. The other is critical path

analysis. We use this technique to estimate the execution time of the parallel

implementation and analyze the possibility of further optimization for the

implementation.

2.1. The M-optimal Schedule Method

This section describes an algorithm developed to solve one of the scheduling

problems investigated in [Abdel 761. The investigation considers a set of events which

are constrained by precedence relations and represented as a directed graph. Each

event is associated with a cost. The method intends to order the events into a single

sequence, called a schedule, in such a way that the maximum cumulative cost

encountered during the execution of the schedule is the minimum one over all

schedules. Such a minimax-cost schedule is called an M-optimal schedule.

Obtaining an M-optimal schedule for an arbitrary graph is an NP-complete

problem. In [~ b d e l 761, special classes of precedence graphs are studied. for which

polynomial algorithms have been found. In our application, we are interested in

Serial-Parallel (SP) graphs. A polynomial algorithm for finding an M-optimal

schedule for SP graphs is developed in [~ b d e l 761 and is introduced in following

subsections.

2.1.1. Definitions And Lemmas

Definitions of PC graph and SP graph

A precedence graph in the form of parallel chains is called a PC graph G as shown

in Figure 2-l(a). Figure 2-l(b) illustrates a serial-parallel (SP) graph. Defining the

indegree, di(x). (outdegree. do(x).) of a node x as the number of incoming (outgoing)

arss to (from) x, we have the following recursive definition for testing whether a

given graph G is SP or not.

Testing definition for SP graph

G is an SP graph if it can be reduced to a graph consisting of two nodes with an

arc between them by a sequence of the following operations:.

1. Replace two arcs (u,v) and (v,w) and the node v by a single arc (u.w) if
di(v) = do(v) = 1.

2. Delete an arc in parallel with another arc.

Construction of an M-optimal schedule for PC graph

For a PC graph G, let H = I 2 ... Z denote an arbitrary chain in G, where

1.2, ..., Z are the nodes of H: let c = u (u+f) ... v, where 1 6 u < v < I , be any

string of consecutive nodes in H; and let a cost (c) associate with each node. We

define the cumulative cost (C) of (T at node k (u 6 k < v) as:

(a>
PC graph

(b)
SP graph

Figure 2-1: PC Graph and SP Graph

To construct an M-optimal schedule S for G, we must determine two things. One

is how to divide H into strings such that the nodes in each string will appear

consecutively in S. The other is how to determine the order of the strings in S such

that S will not violate the precedence relation defined in each chain H and will have

the minimax cumulative cost over all schedules.

Define the Consecutive Nodes

Lemma 1: If cr satisfies the following two conditions :

12

I . C(0.i) 3 O for all i , u 6 i 6 p:

2. C(u , i) k C (u) for all i , p < i < v:

then there exists an M-optimal schedule for G in which the nodes of 0

should appear consecutively.

To find all the subchains in H which satisfy Lemma I , the following notation is

useful.

G(iY,i) = Max (C(H, j) I 0 < j < i 1

i%'(~.i) = Min { C(H, j) I 0 6 j 6 i)

$ (~ . i) = Min { C(H, j) I i < j 6 l)

Tlaete are two special iniiiimizing nodes in H defised as:

vl = Min { i 2 0 I C(H, i) = m(H) 1

v, = Max { i 6 1 I C(H, i) = m (H))

The desired subchains are constructively defined as follows:

I . Level M-hump :
If vl f v2, then (v1+1),(vl+2) v2 is called a level M-hump.

2. Negative M-hump :
If vl > 0, the nodes (u+l).(u+2) v form a negative M-hump according

to the following construction procedure:
I). let v = vl:

2). p = Min (i > 0 I C(H, i) = &(H, v)) and

u = Min { i k 0 I C(H. i) = Z (H , p) 1.
3). If u > 0, there is more than one negative M-hump, Let v = u and
recalculate p and u to find another negative M-hump.

3. Positive M-hump :
If v2 < I , the nodes v , v+l u form a positive M-hump as follows:

1). let v = vZ + 1;

2). p = Max i < L I C(H, i) -= &H, v)) and

u = Max { i < l I C(H, i) = $(H, P)).
3). If u < l , another positive M-hump will be formed by letting v = u + 1
and repeating the above calculations.

Determine t h e h-ecedence Relation of Subchains in S

We use M-rank to determine the precedence relations of subchains in S. The M-

rank of any string U, denoted d u) , is defined as follows:

Figure 2-2: M-rank

The criteria for an M-optimal schedule are specified in Theorem 2:

Theorem 2 A schedule S for G is M-optimal if:

1. The nodes of any M-hump are clustered together in S.

2. r(hl) < r(h2) for any two adjacent M-humps, hl followed by h2. in

S.

2.1.2. M-optimal Schedule Algorithm

Based on Theorem 2, we can define the following algorithm for constructing an

. M-optimal schedule for a PC graph G.

1. Determine the M-humps for all chains of G and calculate their M-ranks.

a. Find vl and v2.

b. Determine the M-humps:

c. Calculate M-rank for each M-hump.

2. Merge the M-humps of all chains in the non-decreasing order of their M-
ranks.

2.1.3. Example

The following is an example for the application of the M-optimal schedule

algorithm. Consider the PC graph in Figure 2-3 which has three chains. The M-

humps of each chain and their M-ranks, as a result of applying step 1, are indicated

on each chain.

Figure 2-3: Construction of an M-optimal Schedule

The result of step 2 is the following M-optimal schedule S for the PC graph:

S = 7 1 2 1 1 1 2 3 4 5 6 1 3 1 4 1 5 8 9 1 0

2.1.4. Construction of an M-optimal schedule for SP graph

It is easy to see that an SP graph G embeds PC subgraph(s). We can decompose

an SP graph into a set of subgraphs recursively, each of which consists of a start

node, followed by two parallel chains, followed by a terminal node. Abdel calls such

a subgraph a simple loop of G .

The approach to find an M-optimal schedule for an SP graph, therefore, is to

apply the M-optimal schedule algorithm introduced in section 2.1.2 to the two parallel

chains of each simple loop and replace them by a single chain. Then we obtain

another simpler SP graph. Repeating this operation as many times as needed, we end

up with a single chain which corres_ponds to the M-optimal schedule for the SP graph.

The procedure of changing the SP graph of Figure 2-l(b) into a single chain is shown

in Figure 2-4.

22. The Critical Path Analysis Method

The standard technique Critical Path Analysis has proved very valuable in

analyzing networks for planning and arranging schedules. If we represent a project as

a network, the minimum time to complete the project is the length of the longest

path (i.e.. the critical path) of the network. In other words, the activities in the

critical path determine the time needed to complete the project. By applying the CPA

technique to identify the critical path in the network, we can estimate the completion

time of the project. In evaluating the parallel implementation we use this technique

to estimate the execution time.

Figure 2-4 Procedure of Scheduling an SP Graph

2.2.1. Construct A Network

To apply CPA, a project must be broken down into its constituent activities. and

the duration of each activity must be estimated. In the network representation, each

activity is represented as a directed arc, linking two nodes. There is only one start

node and one finish node. The finish node indicates the completion of all the

activities in the network. No loop is allowed in a network. The nodes in a network

are numbered in topological order (i.e.. increasing order from the start node to the

finish node according to the rule that a node can be numbered only when all its

preceding activities have a numbered beginning node).

2.2.2. CPA Algorithm

To determine the critical path, the CPA computation procedure performs a forward

pass and a backward pass through the network representing the project. The forward

pass computes the early start and early finish times for each activity, proceeding

from the start node to the finish node. An activity's early start time is the earliest

time when all its preceding activities finish. Its early finish time is its early start

time plus its duration. The backward pass computes the late start and late finish

times for each activity. It starts by setting the late start time of the finish node

equal to its early start time obtained from the forward pass. Other late start and

finish times can then be computed recursively from the finish node back to the start

node. An activity's late start time is the latest time when the activity can start

without delaying its succeeding activities. Its late finish time is its late start time

plus its duration, which should be equal to the early start time of its succeeding

activity.

After completing the two passes, the total float can be computed for each activity

to determine if it is critical. The total float of an activity is equal to its late finish

time minus its early finish time. Obviously, the activities with zero total float are

critical for the project. A path consisting of critical activities from the start node to

the finish node is a critical path.

The above description can be stated as the following algorithm:

The CPA Algorithm

1. Sort the activities so that their beginning nodes are in topological order.

2. CPA computation :

For k = 1 t o n do /* n : the number o f nodes */
ees[k] = 0 /* ees: t he e a r l y s t a r t t ime o f event k */
e l s [k] = 03 /* e l s : t he l a t e s t a r t t ime o f event k */

End
For k = 1 t o m do /* m : t h e number o f a r c s */

i f e e s [j (k)] < e e s [i (k)] + d(k) /* i (k) : s t a r t event o f a c t i v i t y k */
e e s [j (k)] = e e s [i (k)] h d (k) /* j (k) : f i n i s h event o f a c t i v i t y k */

End
e l s [j (n)] = ees [j (n)]
For k = m t o 1 do

i f e l s [i (k)] > e l s [j (k)] - d(k)
e l s [i (k)] = e l s [j (k)] - d(k)

End
For k = 1 t o m do

ES(k) = e e s [i (k)] /* ES : the e a r l y s t a r t t ime o f the a c t i v i t y k */
LF(k) = e l s [j (k)] /* LF: t h e l a t e f i n i s h t ime */
EF(k) = ES(k) + d(k) /* EF: the e a r l y f i n i s h t ime */
TF(k) = LF(k) - EF(k) /* TF: t h e t o t a l f l o w */
i f TF(k) = 0

k i s a c r i t i c a l a c t i v i t y
End

3. Pick up one critical path.

Chapter 3

SERIAL

Since it is impossible to

IMPLEMENTATION

satisfy conflicting objectives (maximum speed and

minimum cost, for example) at the same. time, the module generates two extremal

implementations from the Value Trace specification by optimizing the cost and

performance objectives respectively.

In this chapter, we will describe the serial implementation. Section 3.1 will

discuss the objectives of this implementation and introduce the methodologies used to

achieve the objectives. Section 3.2 will then present the algorithm for constructing

the serial implementation.

3.1. Objectives and Methods

The objectives of the serial implementation for a given design are:

1. Minimize the design cost to provide an estimate of a lower bound on the
design cost.

2. Calculate the execution time to provide an upper bound on the execution
time.

3. Provide useful guidance information to reduce the logic synthesis time.

To achieve these objectives, we apply heuristics to efficiently generate a serial

implementation and extract the solution bounds from it. By adding times for the

serialized execution sequence, we can easily estimate the execution time. A minimum

cost estimation is harder to obtain. To minimize the design cost, we should find the

minimum set of operators and registers for the implementation. By searching the set

of operators available we can find the minimum set of operators for the serial

implementation without much difficulty. But finding the minimum set of registers

involves a scheduling problem, since different schedules of the operator execution

sequence may have a different maximum number of simultaneously existing values.

These problems will be discussed below and the methodologies developed to overcome

the difficulties will be introduced.

3.1.1. How to Find the Minimum Set of Registers

The minimum number of registers required in a serial sequence is equal to the

maximum number of values simultaneously existing in that sequence. To obtain the

minimum set of registers for the serial implementation. we have to create the optimal

serial execution sequence first. An optimal serial execution sequence is a serial

sequence which has the smallest maximum number of simultaneously existing values

among all the possible serial sequences. In general, this scheduling problem is an NP-

complete problem (proved in [Abdel 761). In the next section, we will show that our

problem can be represented as an SP graph so that we can apply the M-optimal

schedule method to solve the problem in polynomial time.

For now, let us assume that we have the optimal serial execution sequence. How

can we assign a minimum set of registers to store all the values in the sequence?

The serial execution sequence generated from the VT has a one-to-one correspondence

between an operator and the value it generates. To implement the design, we should

assign values to registers so as to reuse a register to store different values generated

during the execution without conflicting register use. The register folding algorithm is

developed for this purpose.

Register Folding Algorithm

We use a matrix to represent the storage element assignment in the execution

sequence. The columns of the table correspond ta the input and output values. The

rows correspond to the lifetimes of inputs and outputs of the operators. The values

are divided into two sets (u set and v set). The u set contains the external input

values, while the v set is the internally generated values. Initially, only the elements

of the u set are put in the table. The storage elements chosen for the u set

represent the initial allocation of storage elements for external input values. The

storage elements chosen for the v set c m either be replaced or combined wit,$ others.

To avoid unnecessary comparisons in the folding process, the elements in the v set are

only compared with the elements in the u set. If an element of the v set cannot be

combined with any element in the u set, it will be added to the u set, forming a

new column of the table. The folding algorithm sorts the elements first and then

does the comparisons and folding. The result generated by Algorithm 1 will be a

valid storage element assignment for the serial execution sequence, using the minimum

number of registers.

%me notation introduced in Algorithm 1 :

fi : the row number to indicate the beginning of the value's lifetime.

li : the row number to indicate the end of the value's lifetime.

The superscript v indicates the v set.

The superscript u indicates the u . set.

Algorithm 1

1. Put the elements with a lifetime beginning at zero into the u set.

2. Sort the elements of the v set into increasing order according to the value

of fy so that no folding chance will be missed if the end of the lifetime

of an element in the u set is less than the beginning of the lifetime of an
element in the v set.

3. Fold the columns.

Beg i n

k = m /* k : the l a s t column i n the tab le */
/+ m : the number of elements i n u set */

For i = 1 t o n /* n : the number of elements i n v set */

x = 0 /* x : the f o l d i n g f l a g */

For j = 1 t o k /* j : column number;
k i s changeable */

Beg i n

w r i t e (j , i);

e x i t loop j

End

Beg i n

End

End

End

The Proof

Lemma 1: The number of storage elements needed in the implementation
of a serial sequence cannot be less than the maximum number of
simultaneously existing values at any time during the execution of the
sequence.

Proof: If the number of storage elements is less than the maximum
number of simultaneously existing values, then some value will be lost when
the number of values needed to be stored at the same time is more than the

number of storage elements. Therefore, the number of storage elements
needed is at least equal to the maximum number of simultaneously existing
values. Q.E.D.

Theorem 2 The storage element folding result generated by Algorithm 1
is an optimal storage assignment for a given serial sequence (w.r.t. the
number of storage elements required).

Proof: By Lemma 1, we have Smin = Max { lv I. 0 d ti 6 n), where Smin
ti

is the minimum number of storage elements required in the serial
implementation, while v,, is the set of values existing at time ti.

I

By showing that the number of storage elements 'used in the storage
assignment generated by Algorithm 1 always equals Smin, the correctness of

Theorem 2 follows.

Algorithm 1 sorts the values of the v set in non-decreasing order
according to the beginning of their lifetimes. When a value's lifetime starts.
the algorithm checks the folding table from the beginning to the end to see
if there is a free storage element to fold this value into. A storage element
is free whenever its old value dies (i.e., reaches the end of its lifetime). If
no storage element is free, that means the present number of assigned storage
elements is less than the number of values needing to be stored at this time.
The algorithm will then assign a new storage element for the value.
Otherwise the value will always be folded into a free storage element.

Since the values are sorted and the columns in the folding table have an
open end (i.e.. the value in a column can be replaced whenever it reaches
the end of its lifetime), it guarantees that no new storage element is needed
as long as there is a free storage element available. In other words, a new
storage element is added into the folding table only when the number of
simultaneously existing values is larger than the number of assigned storage
elements.

After each folding iteration, the relation Iv ti I < S ti < S,, is always true.

where S, is the number of assigned storage elements at time ti. So the
i

number of storage elements required in the storage assignment generated by
Algorithm 1 equals Smin, which is the optimal result with respect to the

number of storage elements needed. Q.E.D.

Optimal Serial Execution Sequence Generation

We say two operations have data dependencies if we can trace a directed path from

an output of one of the two operations to an input of the other. In the Value Trace

representation, only essential orderings (i.e., data dependencies) are specified. It does

not specify the ordering among those operations which do not have data dependencies

(parallel operations, for example). To obtain an optimal serial execution sequence, we

must take this into account and reschedule the data-independent operations.

The optimal serial execution sequence is generated from the VT bodies by

excluding the non-operator operations and rescheduling the parallel operations as

follows:

1. For the serial operations in a VT body, we retain the originaI serial order
for the operator operations to form the serial execution sequence.

2. For a "SELECT" oper~tion. we explore all its branches and select the
longest branch to form the sequence.

3. For a "DIVERGE" operation, we apply the M-optimal schedule method to
reschedule the parallel operations into an optimal serial execution sequence
which contains the minimum number of simultaneously existing values
among all the possible serial sequences for the parallel operations.

A VT is an SP graph. To apply the M-optimal schedule method to the VT, we

have to serialize the operator operations in each branch starting from the deepest

simple loop. For each operator operation in the parallel branches, we assign a cost

C(op) = birth(op) - death(op) to it. The function birth(op) is the number of values

created by op. The function death(op) represents the number of input values reaching

the end of their lifetime at the input of the operator op. The cost C(op) is the net

increase or decrease in the number of storage elements required to hold values due to

executing the operator. It can be negative since the execution may release more

registers than its output values require (i.e.. death > birth). In so doing, we can

apply the M-optimal schedule method to our problem and generate a serial sequence

which has the smallest maximum cumulative cost over all serial sequences of the

parallel operations. In our application, the cumulative cost refers to the number of

new registers needed in the sequence. After obtaining such an optimal serial sequence.

we can guarantee that the minimum set of registers assigned to this sequence is the

minimum set of registers needed in the serial implementation.

3.1.2. Hardware Allocation

Register Allocation

Applying the register folding algorithm to each individual VT body we can

generate the minimum set of registers for ii. Bui from the global viewpoint, it can

be further optimized since the interface between VT bodies contains redundant values

and the registers which do not store external values can be reused by succeeding VT

bodies.

TO optimize the register allocation, we introduce the "dummy register" and "spare

register". A "dummy registerM has zero cost and zero delay time, which is used to

indicate an external input value from the output of another VT body. The spare

registers are those registers storing the internal values. They are collected during the

processing of each VT and can be reused in register allocations for succeeding VT

bodies, where these registers have zero cost.

In our implementation, after folding the registers for a VT, the module assigns

dummy registers for the redundant external input values and searches the spare

register list to reuse the registers for storing the values generated in the sequence. If

the spare register list is empty or no suitable register is found, the module will

explore the register array to allocate new registers.

Operator Allocation

For the operator allocation, we do not know exactly how many and which of the

operators will be used until we process all the VT bodies. Therefore, we have to

postpone the calculation of bounds and keep recording each operator's usage. For each

VT, we search the operator array and find the minimum set of operators to perform

all the operations in that VT. After processing all the VT bodies, we can merge the

operator sets into a minimum set of operators for the implementation and calculate

the ccst as we:! 2s the execution time.

3.2. The Serial Implementation Algorithm

After last section's discussion, we can summarize the serial implementation

algorithm as follows:

Algorithm 2:

1. Generate an optimal serial execution sequence for the given VT.

a. Connect the operator operations according to the precedence sequence
defined in the VT.

b. Select a longest branch among the "SELECT" branches.

c. Apply the M-optimal schedule method to reschedule the parallel
operations.

2. Search the operator array to find the minimum set of candidate operator(s)
for the operations to satisfy functional requirements of the design and
record each operator's usage.

3. Apply Algorithm 1 to the optimal serial execution sequence to find the
minimum set of registers for the VT.

4. Assign the registers and calculate their cost and delay time Tr.

where m is the number of operations, Dss is the setup time at the data

input of a register, and DSp is the propagation delay of a register.

5. Collect spare registers.

6 . If there is a succeeding VT, goto step 1; otherwise step 7.

7. Select the minimum set of operators for the implementation and calculate
their cost and delay time Top.

where n is the number of operators; mi is the number of operations

performed by the operator i in the implementation; and DFp is the

operator propagation delay time.

Chapter 4

PARALLEL IMPLEMENTATION

The other extremal implementation is the parallel implementation. It improves

execution speed by paying the price of increased design cost. The methods used in

generating and analyzing this implementation will be discussed in this chapter.

4.1. The Hardware Allocation

The objectives of the parallel implementation are:

1. Minimize the execution time to provide a lower bound on the execution
time.

2. Calculate the cost to provide an upper bound on the design cost.

3. Provide useful guidance information and analysis results.

To accomplish the objective of minimizing the execution time, we assign each

operator operation an operator to let the operations be executed as concurrently as

possible. The operator elements in the operator array are sorted increasingly according

to the number of functions they perform. The operators with the same functions in

the array are sorted increasingly according to their delay time. Searching this array,

we can easily assign an operator for each operator operation by a one-to-one mapping

function. The register allocation for parallel implementation is much easier than that

for serial implementation. We do not need to place a register between two

operations, since operations are implemented by different operators. The only place

where registers are needed is the interface between two VT bodies. Due to the

redundant specification of the external values in VT bodies' interfaces, we can remove

some redundant registers from the interfaces.

After the initial hardware allocation, the cost can be calculated. Some

opportunities for optimizing the allocation may remain, and these will be explicitly

displayed by the result of the critical path analysis for the parallel implementation.

This will be discussed in section 4.3.

4.2* Estimate the Execution Time

The execution time of the parallel implementation is that of the longest (timewise)

branch. This longest timing path can be found by using the CPA technique

introduced in Chapter 2. Before we can apply CPA to solve our problem, we must

represent the parallel implementation as a network. The problems will be discussed

one by one in the following subsections.

4.2.1. Build a Network to Represent the Parallel Implementation

As introduced in Chapter 2, a network suitable for CPA has only one start node

and one finish node. Its internal arcs and nodes are linked according to their

precedence relations. The precedence relation in our problem is that an event which

produces a value must happen before any event which makes use of the value.

To construct a network representation for the parallel implementation, we use

nodes to represent registers and operators, and arcs to represent the activities of value

3 1

transmission. Usually in a VT, there is more than one external input and more than

one external output. So we cannot specify them as the start node or finish node of

the network. To solve the problem, we introduce two dummy nodes, one for the

start node and one for the finish node, which have zero time duration. The start

node will be linked to all the external inputs, and all the external outputs will be

linked to the finish node. The network of internal activities will be formed based on

the data dependencies.

4.2.2. Find the Critical Path

After checking the correctness of the network, we can apply CPA to find the

critical path in the network. By completing the forward pass and backward pass

computations through the network as described in CPA algorithm, we can find all the

critical activities which have zero total float. These critical activities may form more

than one criticai path. We only meed to pick up one of them tc estimate the

execution time.

Further Optimization

The CPA result explicitly specifies the timing flexibility of each activity by its

total float. There is a slack (i.e., non-zero total float) in each non-critical activity,

which is the amount of time that the activity can be delayed without affecting the

total execution time. This characteristic provides us with room to attempt to trade

fast but expensive hardware elements for slow but cheaper ones for the non-critical

activities. But before we can make the replacement, we must make sure that these

elements are not used in any critical activities and that they will not delay their

activities more than their slack time.

In our implementation, the cost estimation module checks for optimization

possibilities as described above. If an optimization is possible, it will modify the

initial hardware allocation and recalculate the design cost. This optimization reduces

the design cost without delaying the total execution time.

Chapter 5

GUIDANCE I N F O ~ T I O N FROM THE
SERIAL AND PARALLEL IMPLEMENTATIONS

The heuristics for generating the serial and parallel implementations not only give

a useful set of bounds for reducing the solution space but also provide some valuable

guidance information for accelerating the logic synthesis process. This chapter wilI

analyze and summarize the guidance information extracted from these two extremal

implementations.

5.1. The Estimation Results

The estimation parameters that we get from the initial implementations described

in the previous two chapters are shown in Figure 5-1.

Cost Operator

(serial)
I
I
I
I
I *Time

1 rnin Tmax

(parallel)

Figure 5-1: The Parameter Bound Analysis

Ornin
(serial)

8
I
1 - 5torage

Smin L a x

The serial implementation generates estimates for an approximate on the design

cost. Cmin; an upper bound on the execution time. Tmax; a lower bound on the

number of operators required. Omin; and an upper bound on the number of registers.

Smax.

The parallel implementation generates estimates for an upper bound on the design

cost. Cmax: a lower bound on the execution time. Tmin; an upper bound on the

number of operators required. Omax; and an approximate on the number of registers.

Smi,, required by any noninferior implementation.

These parameters bound the solution space and help the MILP algorithm to prune

inferior candidate implementations. They also explicitly specify the boundary of

tradeoffs between the design cost and the execution time, which will help the designer

to make a satisfactory tradeoff to realize the design objectives.

5.2* The Guidance Information

5.2.1. The Guidance Information From' the Serial Implementation

Tmax gives an upper bound for the execution time. Thus the designer can set the

output valid time, TIA(OO), less than or equal to Tmax. rather than an arbitrarily

large value.

Cmin gives a lower bound estimate for the cost. It helps to determine whether

there is a feasible solution to satisfy the cost constraint for a given problem. As we

pointed out that this lower bound is approximate in Chapter 3, we should ease this

bound a little bit in the practical design.

Omin specifies the minimum number of operators needed to implement a given

design.

S,,, provides an upper bound on the number of registers required.

The storage element assignment generated in the serial implementation provides

useful guidance information for reducing the number of registers specified to the

synthesis model generator as alternatives for storing a given value.

5.2.2. The Guidance Information From the Parallel Implementation

Tmin gives a lower bound on the execution time. which helps the designer to

specify TIA(OO) >/ Tmin and rejects infeasible designs which require that the execution

time be less than Tm*.

Cmax gives an upper bound for the cost. If the objective function is to minimize

the execution time, Cmax can be a constraint.

S,,, is an approximate minimum number of registers required by a given design.

Some of the variables representing these registers can be forced to the extreme value

1, pruning the branch-and-bound tree and reducing the number of subproblems to be

explored.

Omax specifies the upper bound on the number of operators for a given design.

The slack times calculated by the CPA timing analysis procedure reveal

possibilities for further refining the design. The network representation for the

36

parallel implementation reveals all possible execution orders. This makes the S set

specification to the synthesis model generator much easier for the designer.

5.2.3. The General Guidance Information From Both Implementations

The guidance information extracted from the two extremal implementations makes

the tradeoffs more predictable and gives the designer a general estimation of the

limits for a given design. Based on this information, the designer can make some

compromise between these two extremal implementations.

By analyzing the guidance information, the designer can more precisely specify the

output valid time, TIA(OO), the cost constraint, the sets of operators. F, and the sets

of registers. S. which are the inputs to the synthesis model generator program

IDDMA.

The equation system generated by IDDMA is partly based on the F and S sets,

which describe what hardware elements are candidates to implement each behavioral

action. Reducing the size of the F and S sets decreases the number of integer

variables required to specify design decisions and constraints, thus reducing the time

required to solve the MILP problem. Note that we cannot delete the elements of the

sets blindly since this might eliminate noninferior implementations. To guarantee

optimality each set of hardware elements should contain all hardware elements which

are capable of performing the behavioral action. But this approach is overly

conservative. It expands the size of the synthesis model and increases the synthesis

process time. It is desirable to obtain guidance information which can lead the

designer to properly specify small sets of registers and operators to limit the freedom

of choice incorporated into a synthesis model without eliminating noninferior solutions.

The register allocation generated from the serial implementation and the network

created for the parallel implementation provide the necessary information for

specifying small sets of registers for a given design. suitable for synthesizing

noninferior implementations with different execution sequences. The storage element

assignment of the serial implementation is a best assignment for the implementation

with respect to the number of registers used and it also satisfies the storage

assignment for the parallel implementation. We can, therefore, use the storage

assignment of the serial implementation as an initial specification of the S sets and

explore all mixed serial/parallel execution orderings to complete the specification. Any

execution sequence which is neither serial nor parallel is called a mixed ordering (or

sequence), i.e.. it contains at least two simultaneously executed operations and is not a

fully parallel sequence. The arcs in the network specify the precedence relations of

the nodes. If two operation nodes do not have any precedence relation (i.e.. no path

connecting them), we call them data-independent nodes. A data-independent set

consists of all operation nodes which are data-independent with one another. For each

two data-independent nodes x and y, there are three possible orderings: x -> y:

y -> x and x.y (parallel). To generate mixed orderings, we can fix one node in each

data-independent set, and then move each one of the other nodes in the same data-

independent set ahead, behind, and parallel with the fixed node. Repeating the same

steps for each data-independent set and excluding fully serial or parallel orderings, we

. end up with all the mixed orderings. (It is not a practical way to generate the

mixed orderings when the number of data-independent nodes is large.) For each

mixed ordering, we number the operation nodes according to their execution order

from 1 to n. The simultaneously executed operations receive identical numbers. By

exploring the network with attached S sets. we can discern potential storage usage

conflicts, which may occur in some mixed execution sequence, and add the necessary

storage elements to the S sets to eliminate any possible conflicts. The procedure for

~. doing this is sketched as follows.

S set specification procedure

1. Specify the storage element assignment of the serial implementation as the
initial S set specification in the network.

2. Examine each operator node. Xi, in the network and add a storage element

to its S set. Si, if its output uses the same storage element as one of its

inputs and that input value is also used by other operator(s).

3. Explore mixed orderings for storage usage conflicts. (Since the initial S set
is suitable for synthesizing the two extremal implementations, conflicts
will only occur in some mixed orderings.)

a. For each mixed ordering, number the operation nodes according to
their execution order in that ordering.

b. Operation nodes with the same number can not use the same storage
elements for their outputs. If this does happen in the ordering
under the current S set specification, additional storage elernends1
must be added into the corresponding S set(s) to eliminate the
conflict(s).

c. No operator can use the same storage element to store its different
input values. If this conflict occurs in the ordering, a storage
element has to be added to one of its input S sets.

d. An operator with number i can not use the same storage element for
its output as that used for the inputs of data-independent nodes
with a number larger than i if the inputs are from operators with a
number smaller than i. If this conflict occurs in the mixed ordering,
a storage element has to be added into the S set for the output of
the operator.

e. If there are no more mixed orderings to be explored, stop.
Otherwise, check the next mixture ordering from step a.

When adding storage elements to an S set, we should try to use previously assigned

registers first. If no old register can be used, we will assign a new one. To

minimize the number of registers in the S sets, we must keep the number of new

registers as small as possible.

Using the guidance information to optimize the S sets will simplify the synthesis

model and reduce the synthesis solving time of BANDBX. It will be demonstrated

by the examples in the next chapter.

Chapter 6

EXAMPLES

The methodologies and heuristics introduced in previous chapters will be illustrated

with two examples of RT level data path design in this chapter. These examples are

chosen from the examples used in [Hafer 811. The presentation of the Logic example

will emphasize the generation of the two extremal implementations, while the

presentation of the Criss.Cross example will emphasize the extraction of guidance

information. For both examples data comparing solution times for synthesis models

will be presented to show the effects of incorporating information gleaned from the

extreaa! implencntations.

6.1. Generating Extremal Implementations

In the following examples, each design's behavior is described in the ISPS language

and translated into the VT representation. Two extremal implementations are

generated from the VT. The hardware elements available for the implementations of

the two examples are shown in Table 6-1 (Logic) and Table 6-3 (Criss.Cross). The

cost and delay figures are obtained by constructing the required operators and storage

elements from 7400 series SSI/MSI IC's. The delay and cost might differ slightly

from that of actual commercial components. (the basic 7400 series is an aging

technology) but the functionality remains representative of the class of hardware

elements assumed in constructing the synthesis model. The costs for each element are

based on the retail pricing for the component IC's, plus an estimate of manufacturing

overhead cost of $3.00 per IC.

6.1.1. Logic Example

This section demonstrates how to generate two extremal implementations from the

VT representation of a given design.

Logic:=

BEG I N

** Carriers **
A<@ : 63>,
B<0: IS>,
C<0: I S ,

** Activity **

END

Figure 6-1: Logic ISPS Behavioral Description

The ISPS behavioral description for this example is shown in Figure 6-1. The

available hardware elements are shown in Table 6-1, in which the registers are sorted

in non-decreasing order of their bits; the operators are sorted increasingly according to

the number of functions that they can perform. Figure 6-2 presents the data flow

representation of the design which is the input to our heuristic module for generating

the two extremal implementations.

The Serial Implementation

In the serial implementation, the module chooses the operator f6 (ALU) to perform

the operations OR. AND and XOR, and generates the serial execution sequence shown

storage

So
S1

S2

S3

S4

operator

1

f 2

f 3

4

5

6

bits

bits

Table 6-1:

IC's Dss

(11SN74195 20 ns.

(21SN74273 20 ns.

(21SN74273 20 ns.

(21SN74273 20 ns.

(81SN74273 20 ns.

IC's function

(41SN7432 OR
(41SN7432 OR
(41SN7408 AND

(41SN7408 AND
(41SN7486 XOR

0 ns. 27 ns.

0 ns. 27 ns.

0 ns. 27 ns.

0 ns. 27 ns.

0 ns. 27 ns.

27 ns.

27 ns.

18 ns.

18 ns.

30 ns.

cost

$5.00
$8.10
$8.10
$8.10

$32.40

cost

$14-72
$14.72
$14.72
$14.72
$16.08

(41SN74181 ALU 48 ns. $19.00

Hardware Elements Available for Logic Example

in Figure 6-3. In Table 6-2, we use a matrix to express how the register folding

algorithm compacts the input and output values into a minimum set of registers. The

columns of the table correspond to the storage elements chosen for the input and

output values, while the row numbers represent the lifetimes of input and output

values of the operators. Each pair of Xs in a column indicates the beginning and the

end of the lifetime of a value. Whenever a value reaches its end of the lifetime, its

storage element can be released for the use of other values. The Xs enclosed in an

ellipse indicate that a value is compacted into a used register. sI, s4 and s2 represent

the initial allocation of registers for the external inputs. s3 is the new register added

when folding the internally generated values.

Figure 6-2: Logic Data Fiow Representation

After folding the registers, we get following results:

The minimum number of storage elements needed is 4.

The storage elements chosen from Table 6-1 are assigned as follows:

'1 ' for iO,l ' 05,1' O6,1' '7.1
st : for i0,2

s4 : for i0,3

'3 ' O3,1

The serial implementation provides an upper bound on execution time. T,,,, of

522 ns, and a lower bound on cost. Cmi,. of $76.90.

External Output

Table 6-2: The Matrix Table For The Storage Element Folding

Figure 6-3: The Execution Sequence of Logic Example

The Parallel Implementation

In the parallel implementation, the module assigns each operation to an operator by

a one-to-one mapping function. The operator assignment is shown below:

f l : for"x2' f2 : f o r x 5

f3 : for x3, fq : for x6
f5 ' f o r x7

The registers assigned for the external inputs are sl for ioPl. s, for iO,,, and s4 for

To apply CPA to estimate the execution time, the network shown in Figure 6-4 is

created from the data flow of Figure 6-2. We introduce two dummy nodes. 0 and

9, to represent the start node and the finish node of the network. Nodes 1. 2 and 3

refer to the external inputs io,l. iO,Z and iOJ respectively. Nodes 4. 5. 6 . 7 and 8

correspond to the inputs of operators x,, x3, x5, x6 and x,. The arcs represent the

activities of value transmission from register inputs to operator inputs (for external

inputs) or from operator inputs to inputs of other operators (for VT operations).

Thus, the duration of an activity is the propagation delay time of a register or an

operator.

Figure 6-4 The Network For The Data Flow Of Logic

The CPA result is presented below:

*** CRITICAL PATH ANALYSIS FOR VT-5 ***

a c t i v i t y k s t a r t i f i n i s h j dura t ion d op f o r j

0
0
0

47 AND
47 OR
47 OR
47 AND
47
47
27
18 XOR
27
18
30

k i j e a r l y s t a r t e a r l y f i n i s h l a t e f i n i s h t o t a l f l o a t CPM

EXECUTION TIME AND COST OF THE PARALLEL IMPLEMENTATION

COST : $124.3600
TIME : 122 ns

After the timing analysis, the non-critical activities are examined to determine the

possibility of further optimization. From the CPA result we can see that no further

cost optimization can be made since every hardware element is assigned to at least

one critical activity.

48

The parallel implementation provides the lower execution bound. 122ns. and the

upper cost bound, $124.36.

6.1.2. Criss.Cross Example

The two extremal implementations of this example are generated by the same

procedure as demonstrated in the last example. The implementation results are

presented in this subsection. They will be utilized in the next two sections to show

how to extract guidance information from them to simplify the equation system and

how to use the bounds to prune down the solution space.

The ISPS behavioral description for the example is shown in Figure 6-5 and the

hardware elements are shown in Table 6-3.

BEG I N

* * Carr ie rs **
t1<0: Is>,
t2<0: Is>,
0<0: Is>,
b<0: Is>,

** A c t i v i t y **
act ion:=
(t l = a + b next

t 2 = a - b next
a = t l 9 t 2 next
b = t l - t 2)

END

Figure 6-5: Criss.Cross ISPS Behavioral Description

Figure 6-6 is the data flow representation of the design. It has 4 RT level

operations (+, a. -, -1 and 6 values. The results of the two extremal implementations

are show below.

storage bits

operator bits

Table 6-3:

IC'S Dss D s ~

(21SN74273 20 ns. 0 ns.
(21SN74273 20 ns. 0 ns.
(21SN74273 20 ns. 0 ns.

IC's function

(4lSN7483 ADD
(4)SN7483 ADD
(2)81LS96 ALU
(4)SN7483
(2)81LS96 ALU
(41SN7483

(4)SN74181 ALU
(4)SN74181 ALU

DSP

27 ns.
27 ns.
27 ns.

DFP

70 ns.
70 ns.
85 ns.

85 ns.

107 ns.
107 ns.

Hardware Elements Available for Criss.Cross Example

cost

$8.10
$8.10
$8.10

cost

$14.20
$14.20
$24.18

$24.18

$19.00
$19.00

Figure 6-43 Criss.Cross Data Flow Representation

The serial implementation results:

I. storage element assignment:

sl : for i0,l' 02.19 O4.1

s2 : for i0,2. o ~ , ~
s3 : for olPl

2. operator assignment:

f5 (ALU) for all operations xl. x2, x, and x4

3. bounds:

The parallel implementation results:

1. storage element assignment:

s1 : for io,l. o, ,~
s2 : for i0,2. o , ,~

2. operator assignment:

f l : for xl. f2 : for x3

f3 : f o r x2. f4 : for x4

3. bounds:

The network generated from the data flow of Figure 6-6 is shown in Figure 6-7

The possibility of further cost optimization is shown in the CPA result of Figure 6-8.

Figure 6-7: The Network For The Data Flow Of Criss.Cross

k i j

1 0 1

2 0 2

3 1 3

4 1 4

5 2 3

6 2 4

7 3 5

8 3 6

9 4 5

10 4 6

I 1 5 7

12 6 7

*** CRITICAL PATH ANALYSIS FOR VT-6 * * *

e a r l y s t a r t e a r l y finish l a t e f i n i s h t o t a l f l o a t CPM

8 0 0 0 c

0 0 0 0 C

0 47 62 15 x

0 47 47 0 C

8 47 62 15 x

0 47 47 0 C

47 117 147 30 x

47 117 132 15 x

47 132 147 15 x

Figure 6-8: CPA Result for Criss.Cross

From the above CPA result, we can see that event 3 (xl) and event 5 (x3) could

be replaced by a cheaper adder with an extra delay time of 15ns (were such a part

available), since they all appear in non-critical activities and the minimum slack is

1511s.

6.2. Computational Improvement Made by Bounds

The two extremal implementations bound the noninferior surface of the solution

space by their cost and execution time bounds. Based on these bounds, the designer

can make some compromise between cost and performance to achieve the global

objective. We have examined different ways to improve the synthesis time by

utilizing the bounds. The experimental results presented in the first two subsections

show the effects of time bounds and cost bounds. In section 6.2.3, we will compare

the computational cost of obtaining the bounds by the heuristic module vs. solving the

synthesis model with BANDBX.

6.2.1. Effects of Time Bounds

When imposing the time constraint into the synthesis model, we set the objective

function to minimize the design cost in order to evaluate the effect of the time

bounds. Three examples are represented to examine the synthesis efficiency

improvement made by the time bounds.

The first example uses the time bounds to reduce the number of solutions to be

explored. By specifying variant values of TIA(OO) between Tmin and T,,, to the

synthesis model generator, a subset of noninferior solutions is generated. The designer

can choose the best one from them without necessarily generating the complete set of

noninferior solutions since the extreme points of the noninferior surface are known.

For example, if the design objective of the Criss.Cross example is to obtain a medium

speed implementation with reasonably low cost, the designer can specify TIA(Oo) less

and equal to 440ns. which is the average time sf Tmin and T,,,. This

implementation costs $49.40. The last output value becomes valid at the time

t = 308ns. If the designer is willing to pay a higher price for a better performance.

he can restrict TIA(OO) < 300"s. A new implementation is then generated by solving

the synthesis model under this higher performance requirement, with an increase in

cost to $54.58 and a decrease in execution time to 269ns.

This example shows that the time bounds narrow the solution space and provide

useful guidance for the designer to make proper design decisions. It speeds up the

process of generating a desired implementation for a given design with respect to the

design objectives.

The second example is an experiment which examines the effect of tightening

TIA(OO) by the upper bound of the execution time. T,,,. extracted from the serial

implementation. Without this upper bound, the designer has to specify an enormous

value of TIA(OO) to avoid the omission of the least cost solution. By replacing the

arbitrarily large time bound with the tighter bound Tmax for both examples, the

synthesis time is improved as shown in Table 6-4.

Example

CrissCross
Criss.Cross

Logic
Logic

Time Constraint Synthesis Time
(TIA(Oo>) (sec.)

1000 338.1
670 331.0
1000 21265.0
250 3896.6

Table 6-4 Effect of Tightening Time Bounds

From Table 6-4, we can see that tightening the time constraint to T,,, reduces

the time for solving the synthesis model to generate the serial implementation.

The third example shows an inconclusive experiment result. The experiment was

conducted to examine how TMAX will affect the synthesis time by varying its value.

TMAX is a large timing variable used in conjunction with the binary variables to

linearize the relations of the synthesis model. It must be greater than the largest

value attained by any other timing variables in the model. On the other hand, it

should be as small as possible in order to minimize the synthesis time used for

linearization. The time bound. T,,,, obtained from the serial implementation seems to

provide the useful guidance to specify such a TMAX to satisfy above two conditions.

If we set TMAX slightly larger than T,,,, ideally the synthesis time should be less

than that required by imposing a larger TMAX. But the experimental data presented

in Table 6-5 display an inconsistent result. At this point, we cannot draw any

conclusion out of it.

Example

Criss-Cross
Criss.Cross
Criss.Cross
Criss. Cross
Criss.Cross

Logic
Logic
Logic
Logic
Logic

TMAX
(sec.1
6 70
1000
2000
3000
4000
600
1000
2000
3000
4000

Synthesis Time
(sec.1

630.8
861.6
1376.8
336.1
1360.5
3403.9
4350.9
3679.9
4002.3
4990.0

Table 6-5 TMAX Experimental Results

6.2.2. Effects of Cost Bounds

To evaluate the effects of cost bounds, we add a cost constraint into the synthesis

model and change the objective function to minimize the execution time. By making

tradeoffs within the cost bounds. Cmin and C,,,. a subset of noninferior

implementations can be generated. The designer can quickly approach the desired

implementation by exploring a smaller set of noninferior solutions.

Using the Criss.Cross example again. by setting the cost constraint to $55 and $50

respectively, we obtain the same implementations as those generated by setting TIA(OO)

to 30011s and 440ns. This experiment displays a surprising improvement in synthesis

time: by imposing cost bounds on the synthesis model, the synthesis time for the

implementations is reduced about 50%. compared with the synthesis time using time

bounds. The synthesis results indicate that the cost constraint allows inferior

solutions to be pruned earlier and thus reduces the synthesis time for solving the

synthesis model by BANDBX.

By setting the cost constraint to C,,, rather than. an arbitrarily large bound, the

synthesis time for generating the parallel implementation is consistently reduced for

both examples as shown in Table 6-6.

Example

Criss.Cross
CrissCross

Logic
Logic

Cost Constraint Synthesis Time
(sec.1

$200 145.2
$95 136.5

$200 11307.8
$70 11289.1

Table 6-6: Effect of Tightening Cost Bound

6.2.3. Computational Result Comparison for Bound Extraction

Instead of deriving the bounds by the heuristic module, the designer can specify

an arbitrarily large output valid time to obtain the minimum cost implementation and

then change the objective function to minimize the execution time to generate the

parallel implementation. But this is an expensive way to extract bounds. As shown

in previous chapters, solving a synthesis model by BANDBX requires considerable

computation time. The synthesis time for generating the two extremal

implementations for the Logic example by these two methods is given in Table 6-7.

Methodology

Heuristics
BANDBX

Syn. Time for the Syn. Time for the
serial implementation parallel implementation

(see.) (sec.)
1.3 1 .O

21265.0 11307.8

Table 6-7: Comparison of Different Bound Extraction ways

Clearly, the heuristic module generates the extremal implementations much faster

than BANDBX does.

6.3. Computational Improvement Using S Set Guidance

The guidance information for the S set specification extracted from the two

extremal implementations makes a significant improvement in synthesis time, since the

size of the synthesis model partly depends on the number of elements in the S set.

In this section, we will demonstrate how to utilize the guidance information to

minimize the S set, and then present the computational results.

6.3.1. How to Minimize the S Set

When specifying the S set without guidance, each set should include all available

registers in order to guarantee optimality for a given design. This will result in a

large synthesis model and long synthesis time, since each element in an S set will be

present as a binary variable in the synthesis model and will appear in several

equations. To improve the synthesis time, we need to minimize the size of each S set

while ensuring that it remains suitable for synthesizing all noninferior

implementations. The two extremal implementations provide useful guidance for this

minimization, using the serial storage element assignment and the network

representation.

S set specification

To ensure an optimal implementation for the Criss.Cross design, an easy way to

specify each S set is to include all available storage elements capable of storing the

value in each set. This introduces more variables than the synthesis process needs for

synthesizing noninferior implementations. In a small design such as Criss.Cross, a

designer's intuition and experience can be used to restrict the S sets to smaller sets.

as, e.g.. shown in Figure 6-9. Even with these improved S set specifications, further

optimization can still be made by utilizing the guidance information.

The optimization is based on the serial storage element assignment. In Figure

6-10, the leftmost element in each set represents this assignment. With this guidance.

we only need to add storage elements to the S sets at the places where a storage

usage conflict may occur in some mixed serial/parallel execution sequence. Following

Figure 6-9: Initial S set Specification For Criss.Cross Example

Figure 6-10: Revised S set Specification For Criss.Cross Example

the S set specification procedure described in last chapter, we can examine the

operator nodes to find all potential input storage usage conflicts. One conflict is

found when examining x2, as the output of x2 uses the same storage element, sl, as

one of its inputs, and this input value is also used by xl. So we add s3 to the S

set for x2. SZ,l. Now we need to explore all mixture orderings to find the rest of

the conflicts. In Figure 6-10, there are four possible mixed orderings for operator

nodes: a) xl -> x2 -> xY x4; b) x2 -> xl -> x3, x4: C) xl, x2 -> x3 -> x4;

d) xl . xz -> x4 -> x3- Applying case c of step 3 in the S set specification

procedure to the second mixed ordering, we find a conflict since the same storage

element. s3. is used for both inputs of of x4. SO an additional register s2 has to be

added to the set S1,l. It is obvious that if we add sl instead, the assignment will

violate the rule stated in case b of step 3 of the procedure under the last two

mixture orderings c) and dl. In the current S set specification, as presented in Figure

6-10, no conflict will occur in any mixed ordering.

By specifying the S sets of Figure 6-10 to the synthesis model generator, we can

avoid the dilemma of either supplying too large a set of registers, expanding the

equation system by unnecessary variables and extending the synthesis time, or

eliminating the elements of each S set blindly, potentially sacrificing optimality. This

specification uses 2 elements less than the S set specified in Figure 6-9.

Similarly, applying the S set specification procedure to the network and serial S

set specification for the Logic example. we obtain the S sets shown in Figure 6-12.

This specification uses 3 elements less than the initial S set specification shown in

Figure 6-11.

Effect on the size of the synthesis model

By specifying the revised S sets as shown above, we can simplify 14 equations and

delete 4 from the hand-written synthesis model for the Criss.Cross example based on

the initial S set specification of Figure 6-9: for the Logic example we can simplify 8

equations and delete 18 from the synthesis model based on Figure 6-11. The

reduction in size for each model is summarized in Table 6-8.

{sg) {s1,s3J b1,s2,s3)

Figure 6-11: Initial S set Specification For Logic Example

Is31 {s1,s3.s4I {s1,s21

Figure 6-12: Revised S set Specification For Logic Example

Model Equations Variables Model Generation
Criss.Cross 124 87 IDDMA
Criss.Cross 112 72 hand-written
Criss.Cross 108 70 guided

Logic 148 96 IDDMA
Logic 150 85 hand-written
Logic 132 83 guided

Table 6-8: Model Size Comparison

6.3.2. Synthesis Time Improvement

In our experiment, we: use BANDBX to solve the equations generated with

guidance and without guidance, respectively, and use the timing routine available in

the Unix system to measure the synthesis time for each example. To obtain a

representative timing measure, each example is run 10 times to obtain an average

synthesis time. The synthesis results in Table 6-9 indicate that with guidance the

number of subproblems solved during the solution of a problem is less than that

without guidance, and hence the optimal soliliiorr is found much ear!ier.

On average, the synthesis time for generating implementations using the guided

model is reduced 21% for Criss.Cross, and 79% for Logic, comparing with the

synthesis time for solving the hand-written models. Since the Logic example has

more options for storage elements. the guidance information is more effective in

improving the synthesis time for it than for the Criss.Cross example.

Model T ~ ~ (" o)
(specified)

Criss.Cross 440
~riss.Cross(G.) 440

Criss.Cross 300
Criss.Cross(G.) 300

Logic 500
Logic(G. 500

Optimal Solution
Found at Node

163
70

243
5 3

2930
163

Number of
Subproblems

201
159
260
225
3208
772

Synthesis
Time (sec.)

1041.91
745.42
1105.41
902.35

21265.0
4426.3

Table 6-9 Model Synthesis Result Comparison

Chapter

OBSERVATIONS AND

7

CONCLUSIONS

This chapter characterizes the heuristic module described in previous chapters and

summarizes the work done in this. thesis research. During the implementation of the

module and the testing of some synthesis examples, several ideas for improving the

synthesis time have been tried and a number of experiments have been done to search

for promising approaches. The observations are described in section 7.1. Section 7.2

outlines the contributions of the research and its remaining shortcomings. Two

directions for further research are suggested in section 7.3.

7.1. Observations

In our experiment. we evaluated the synthesis process for two simple examples

(described in last chapter) using hand-written equations. The experimental results

reveal that the heuristic module plays an important role in simplifying the equation

system and improving the synthesis time. Due to the absence of an automated

synthesis model generator in our system, we are unable to complete more complicated

design examples. though we can use our heuristic module to generate extremal

implementations for them.

The bounds and guidance information extracted from the two extremal

implementations improve the synthesis time in two different ways as we have shown.

63

The bounds limit the solution space and reduce the number of alternative noninferior

solutions to be explored, while the guidance information simplifies the synthesis model

and reduces the synthesis time for obtaining each noninferior solution. Tightening the

cost or time constraints by bounds extracted from the extremal implementations also

reduces the synthesis time. The cost constraints seem to have more effect in

fathoming subproblems and guiding BANDBX toward the optimal solution.

However, we have to point out that the cost bounds are not precise if the VT

representation of a given design consists of more than one VT body. In this case, the

registers used for the outputs of a VT body are not used by any other VT bodies

since the end of their lifetime is unpredictable due to the isolation of the data

relations among VT bodies. When specifying S sets, the number of possible orderings

of the nodes grows combinatorially as the number of independent nodes increases.

How to apply the guidance iocaiiy to restrict the size of data-independent sets is a

subject for further study.

The flexibility of the heuristic module can be easily improved by providing

different sets of hardware elements (with different cost and speed features) as options

to accommodate different logic technologies. This will provide more choices for the

designer to decide which technology is best suited to the design.

Contributions

We have developed and implemented a heuristic module to quickly generate two

extremal implementations. Since the module is integrated into the VT translator, no

additional data translation is needed to derive the extremal implementations from the

initial behavioral specification.

In the research, we have examined different approaches to improve the synthesis

time. The major result is that the extremal implementations appear to give a useful

set of bounds for the solution space and guidance information for simplifying the

synthesis model. The bounds constitute a rather close estimate of the boundary of

the noninfesior solution space and therefore we can quickly approach the desired

solution without generating every point of the solution space. Tightening constraints

with the bounds also reduces the synthesis model solution time for generating

implementations. The guidance for the S set specification helps a designer to specify

a smaller set of storage elements which, in turn, leads the synthesis model generator

to simplify the equation system. As a result, the number of subproblems explored

by the BANDBX program is reduced and the synthesis time is significantly decreased.

compared with the synthesis model solving time without guidance.

There are still some limitations in our module. The storage element assignment

has been restricted to local allocation. The cost bound is, therefore, not precise if

there is more than one VT body in a design. To obtain more accurate bounds. global

data flow analysis is required. In the serial implementation, every value is forced to

be stored, while in a practical design interface values might not be stored, This

problem can be solved by taking interface timing constraints into account, i.e..

checking the time the inputs will remain available when assigning storage elements for

these values.

7.3. Suggestion for Further Research

There are two directions for further improving the synthesis time. The first is to

consider global optimization to generate better bounds for the solution space. By

global data flow analysis, we can explore all: VT bodies to determine the end of the

lifetime of every value such that all redundant storage elements can be eliminated.

Since most difficulties in synthesizing large designs stem from the large number of

variables, constraints and objective functions required for constructing synthesis

models, the second direction should steer toward developing more intelligent heuristics

to guide the synthesis model generator to efficiently generate a minimum set of

equations. In our research we have only dealt with ihe rni~iixiizaticr. ef storage

elements for small examples. We believe that guidance for operator allocation can

also be extracted to improve the synthesis time.

References

Abdel-Wahab, M.
Scheduling with Application to Register Allocation and Deadlock

Problems.
PhD thesis. Dept. of Electrical Engineering. Waterloo University,

Waterloo. Ontaric. 1976.

[Christofides 791 Christofides, N.. Mingozzi, A., 7'0th. P.. Sandi. C.. eds.
Combinatorid Optimization.
John Wiley & Sons. New York, N.Y., 1979.

[Darriqer 801 Darringer. J.. Joyner. W.
A New Look at Logic Synthesis.
In 17th Design Automation Conference Proceedings. pages 543-549.

ACM SIGDA. IEEE Computer Society-DATC. June. 1980.

[Hafer 811 Hafer. L.
Automated Data-Memory Synthesis : A F o r d Method for the

Specification , Arwlysis , aid Desigr. of Register-Trans fer Level
Digital Logic.

PhD thesis, Dept. of Electrical Engineering, Carnegie-Mellon
University. Pittsburgh. Pa., May. 198 1.

Also available from the Design Research Center, Carnegie-Mellon
University, as Technical Report DRC-02-05-81.

[Martin 781 Martin, C.
BANDBX: An Enumeration Code for Pure and Mixed 2eroOn.e

Programming Problems
Industrial and Systems Engineering Dept., Ohio State University.

1978.

[Smith 821 Smith. D.K.
Network Optimisation Practice.
Ellis Horwood Limited. West Sussex. England. 1982.

[Thomas 831 Thomas. D.. Hitchcock. C., Kowalski, T., Rajan, J.. Walker, R.
Automatic Data Path Synthesis.
Computer 16(12):59-70. December. 1983.

['Thomas 861 Thomas. D.
Automatic Data Path Synthesis.
Advances in CAD for VLSI. Volume 6.Design Methodologies.
North-Holland. Amsterdam, 1986, Chapter 13.

