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ABSTRACT 

In this thesis we have sought solutions of the nonstatic 

spherically symmetric field equations which exhibit non-zero 

shear. The Lorentzian warped product construction is used to 

present the spherically symmetric metric tensor in double-null 

coordinates. The field equations, kinematical quantities, and 

Riemann invariants are computed for a perfect fluid stress- 

energy tensor. For a special observer, one of the field 

equations reduces to a form which admits wave-like solutions. 

Assuming a functional relationship between the metric 

coefficients, the remaining field equation becomes a second 

order nonlinear differential equation which may be reduced to a 

Bernoulli equation. Some special solutions are found which have 

shear and satisfy various weak energy conditions. 

The double null coordinates are also used to study the 

existence of a timelike collineation vector parallel to the 

velocity of an anisotropic fluid. The resulting solutions are 

reducible spherically symmetric spaces. 
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CHAPTER I 

MOTIVATION AND HISTORICAL BACKGROUND OF THE PROBLEM 

Introduction 

In classical general relativity there are several major 

unresolved problems. Many of these problems involve the 

phenomena of gravitational collapse. Gravitational collapse is 

very important, since it simultaneously presents the greatest 

prediction of classical general relativity, and poses the most 

difficult problems of the theory. The most important unresolv- 

ed problem is the cosmic censorship hypothesis which was first 

posed by Penrose [I]. There are several versions of this 

conjecture 123 but they all essentially assert that "realistic" 

gravitational collapse will result in a singular final state in 

which the singularity is enclosed in an event horizon. This 

conjecture is important for several reasons [31: 

(a) singularities cannot appear at random in spacetime 

but are always enclosed in event horizons; 

(b) important results in general relativity, such as the 

Schoen-Yau Positive Mass Theorem [4,5], the Black 

-Hole Area Theorem 161, and several others, assume 

the validity of the cosmic censorship hypothesis; 

(c) in astrophysics, the final states of stars whose mass 

exceeds a certain threshold must be black holes and 



not "naked" singularities. 

There are many papers in the literature documenting the 

attempts to resolve this conjecture. Much of this work has 

been in the production of examples which test various aspects 

of this problem. A common feature of many of these examples is 

that they are physically unrealistic. An example is collapsing, 

radiating dust conjured in a manner so that, as the singularity 

forms, the matter becomes evanescent. This approach, which is 

entirely mathematical, has few advantages from a physical point 

of view. These examples also tend to neglect the effects that 

realistic matter might impose on the collapse. Seifert [2,7] 

has put forward the idea that the shear of a realistic collaps- 

ing fluid, and hence the viscosity due to shear-stresses, may 

be important for excluding naked singularities. Israel [8,9] 

has put forth a weaker conjecture, called the event horizon 

conjecture, for which there are no known counter-examples, The 

event horizon conjecture asserts that, when gravitational 

collapse has proceeded beyond a certain critical point, an 

event horizon forms. The nature of the critical point has been 

left vague. One could take Thorne's hoop conjecture [ l o ]  as an 

indicator of the critical point: "Horizons form when and only 

when a mass M gets compacted into a region whose circumference 

in every direction is 1: S ZZ(~GM/C~)." One might also 

conjecture that the event horizon forms in order to preserve 

the generalized second law of black hole thermodynamics. In 



any case a deeper study of the properties of matter and its 

motion during gravitational collapse will be necessary before 

these issues may be resolved. 

Gravitational collapse has been studied in several 

contexts : 

(a) cosmological studies of galaxy formation; 

(b) astrophysical studies of supernovae; 

(c) study of formation of white dwarf stars and neutron 

stars ; 

(d) study of the possible physical origin of singularities 

of solutions of Einstein's field equations. 

C.W. Misner [ I l l  has distinguished three types of gravitational 

collapse : 

(a) stabilized collapse when matter coagulates to form 

well-known astrophysical objects such as planets, 

stars, and galaxies; 

(b) catastrophic collapse when matter is in near free-fall 

with increasing density and remains in this state; 

(c) dynamical collapse when a catastrophic collapse is 

terminated by the formation of a quasi-static central 

mass such as a white dwarf star or a neutron star. 

As gravitational collapse is associated with matter, we 

should expect that the mathematical properties of the models 

which we use for matter should appear prominently in the study 

of gravitational collapse. It is an unfortunate aspect of the 



Einstein field equations that they are so difficult to solve in 

general. The specification of realistic models for matter 

makes these equations even more intractable. We are forced 

into using idealized matter models which lead to solvable 

systems of partial differential equations. These simpler 

models have their cost however. 

Astrophysical objects are usually modelled in general 

relativity as perfect fluids. Perfect fluids are fluids whose 

internal resistance to flowing is zero. Realistic models of 

astrophysical objects should include viscosity, heat flows, and 

electromagnetic fields. For large classes of applications in 

astrophysics, static perfect fluid models are adequate, but 

recently anisotropic (the pressure is different in different 

directions) fluids and nonstatic perfect fluids motions have 

become topics of active research in general relativity. The 

objective in these lines of research is to produce models for 

the nonstatic interior of stars, compact ultradense objects, 

and to study the evolution of radiating spheres and gravita- 

tional collapse. 

Viscous fluids are a specialization of anisotropic fluids 

to the case where the shear tensor of the fluid velocity is 

proportional to the anisotropic pressure. These fluids are of 

interest since they have been used to model relativistic quasi- 

static dissipative processes near thermodynamic equilibrium. 

Cutler and Lindblom El21 have studied the effect of fluid 



viscosity on neutron star oscillations. Some of their inter- 

esting conclusions are that neutron star matter becomes more 

viscous in the superfluid state and that the dominant energy 

dissipation mechanism in neutron stars is the shear viscosity. 

Exact solutions for viscous fluids are very difficult to 

find directly from'the Einstein field equations. Nonstatic 

exact viscous solutions could be used as realistic models of 

gravitational collapse and might show some insight into the 

problem of cosmic censorship. Some of the technical difficult- 

ies of viscous gravitational collapse have recently been 

discussed by Coley and Tupper [ 1 3 ] .  The problem we propose to 

study is related to, and was partially motivated by, the 

problems pointed out by Coley and Tupper. Coley and Tupper 

point out that that there are very few known viscous-fluid 

solutions of the Einstein field equations and that the problem 

of matching these solutions to a portion of the exterior 

Schwarzschild solution is not possible in general. Coley and 

Tupper also mention the difficulty in the matching problem 

related to the choice of interior and exterior coordinate 

systems. A problem which was not discussed by Coley and Tupper 

is the choice of the thermodynamic theory to be used in these 

studies. Usually the Eckart [I41 model of relativistic 

thermodynamics is used for these studies. However, it suffers 

from a serious defect in that it is an acausal theory in which 

there may be certain signals which propagate with speed larger 



than that of light. Israel 1151, and Niscock and Lindblom [I61 

have extended the Eckart theory in ways that make it causal. 

These new theories are much more complicated than that of 

Eckart. To our knowledge there have been no attempts to use 

these new thermodynamical theories to create realistic models 

of gravitational collapse. 

A large collection of solutions of the viscous Einstein 

field equations is desirable so that the effects of viscosity 

may be better understood. Any method which may either 

reinterpret known metrics or which will help generate new 

solutions will be of interest. Through the work of Tupper 

[17,18,19] and others [20,21,22], it is well-known that a given 

metric tensor does not lead to a unique physical stress-energy 

tensor and thus may have various physical interpretations. 

Tupper has given conditions that allow certain perfect fluid 

solutions to be reinterpreted as viscous magnetohydrodynamic 

fluid with heat conduction. In [18] Tupper shows how under 

certain conditions that a perfect fluid spacetime may be re- 

interpreted as a magnetohydrodynamic fluid. In [I91 Tupper 

shows how to find, under appropriate conditions, a viscous 

magnetohydrodynamic reinterpretation of a given perfect fluid 

solution. Tupper's method depends on finding the fluid 

velocity of the viscous magnetohydrodynamic fluid by equating 

the stress-energy tensor of the perfect fluid solution to the 

viscous magnetohydrodynamic stress-energy tensor. The 



equations needed to find this velocity involve the shear of the 

viscous magnetohydrodynamic fluid. The viscosity introduces 

some freedom of choice for the viscous magnetohydrodynamic 

velocity. Resolution of this problem raises interesting 

questions about the inheritance of the symmetries of the 

perfect fluid solution by the magnetohydrodynamic solution. A 

mathematical description of the possible physical situations 

that may arise through Tupper's method can be made using the 

Raychaudhuri equation (see Chapter 2). Tupper's method has 

also been applied in studies of various cosmological models 

[23,24,25,26]. A large collection of perfect fluid solutions 

will be needed for effective use of Tupper's method in 

modelling realistic gravitational collapse. 

As the collapse of matter is a nonstatic process, we 

should try to find nonstatic perfect fluid solutions. The role 

of shear has appeared repeatedly in the previous discussion 

hence we will look for nonstatic spherically symmetric perfect 

fluids with shear and possibly other nonzero kinematical 

quantities. 

Statement of Problem 

The Einstein field equations inside matter are 

(1.1) G ab = T a b ,  

(we use units with 8nG = c = 1) with reasonable physical side 

conditions on the stress-energy-momentum tensor Tab. The 



system of equations (1.1) is a quasi-linear second order 

coupled system of ten partial differential equations for the 

ten unknown functions of the metric tensor gab.  The reasonable 

side conditions usually imposed on Tab are that it should 

describe macroscopic matter with everywhere non-negative energy 

density, nonspacelike momentum flows, and pressures rather than 

tensions. 

From (1.1) and the differential identity 

we deduce that the stress-energy-momentum tensor must satisfy 

the equations 

In conjunction with these side conditions we may impose 

conditions on the admissible matter motions. If we assume the 

matter is modelled by a fluid we may insist that the flow of 

the fluid has certain specified kinematical properties such as 

nonzero shear, acceleration, vorticity, or expansion. 

From the preceding section we expect that shear will play 

a very important role in the study of realistic gravitational 

collapse. It would be useful to extend the collection of non- 

static spherically symmetric interior solutions with shear and 

other kinematical properties, There are many matter models one 

could choose for the interior of matter. We will concentrate 

on perfect fluids and later discuss some results of recent work 

on anisotropic fluids. 



Kramer et al. 1 2 7 1  have reviewed the known (in 1980) non- 

static spherically symmetric perfect fluid solutions. Later in 

their plenary survey of exact solutions of Einstein's field 

equations Kramer and Stephani [ 2 8 ]  note that only a few 

radially shearing solutions for perfect fluid interiors are 

known. This general class of solutions should be very large. 

Nonstatic perfect solutions can be classified according to 

properties possessed by the fluid flow i.e. shear, acceler- 

ation, vorticity, and expansion. All solutions in a spheric- 

ally symmetric spacetime must have zero vorticity as the 

direction of vorticity would select a preferred direction. 

We shall consider the problem of finding exact nonstatic 

spherically symmetric shearing solutions of the perfect fluid 

field equations and of the anisotropic fluid equations. In 

particular we want solutions that have flows which are shear- 

ing, expanding (or contracting), and which are accelerating. 

The known classes of these solutions with these properties are 

very sparse due to the inordinate difficulty in solving the 

field equations. We will not apply the causal thermodynamic 

theories to our work. 

Methodology 

The physical method for finding exact interior solutions 

in General Relativity has essentially three steps: 

(1) selection of allowable symmetries; 



(2) selection of a matter model; and 

(3) selection of initial (boundary) conditions. 

The selection of allowable symmetries will usually constrain 

the mathematical form of the aetric tensor. Often there is 

more than one system of coordinates which are "adapted" to the 

symmetries, thus a choice of coordinates may be involved in 

this step. The selection of a matter model not only may 

include the type of material (dust, radiation, perfect fluid, 

viscous fluid, anisotropic matter, etc.), but also may include 

an equation of state or a choice of thermodynamical model. We 

will neglect the contributions of other physical fields such as 

the electromagnetic fields and neutrino fields. 

The selection of boundary conditions may involve initial 

conditions on a spacelike hypersurface, junction conditions on 

a timelike hypersurface (this also requires a choice of 

"exterior" spacetime model), or asymptotic conditions on the 

"boundary" of spacetime. 

Even while employing very special choices in the physical 

method we will often encounter intractable systems of partial 

differential equations. The literature abounds with variants 

of the above strategy employed to overcome the practical 

* difficulties encountered. In many cases numerical integration 

is used to find approximate solutions which yield useful 

information about the model. 

An alternate method is to relax the "imposed" physics and 



to adopt mathematical stratagems which will simplify the field 

equations to the extent that exact solutions may be found. We 

will call this strategy the method of mathematical simplicity. 

The physical interpretation of the solutions found in this way 

depends to a large degree on how much of the matter model has 

been retained. Often an explicit equation of state is not 

imposed which leads to the necessity of deriving it (if 

possible) from the field equations and the twice contracted 

Bianchi identities. 

The mathematical conditions imposed usually fall into two 

classes : 

(a) special forms of the metric tensor, and 

(b) invariance of the physical fields under special 

motions or symmetries. 

The two classes are not disjoint as special motions or 

symmetries will in general constrain the form of the metric 

tensor. Often some of the metric tensor components are assumed 

to be separable or have special functional forms of the 

coordinates. The invariance of the physical fields under 

various motions include Killing vector fields, homothetic 

motions, conformal Killing vector fields, affine conformal 

collineations, and others [ 2 9 ] .  

Treatment of perfect fluid models usually involve ad hoe 

simplifications to obtain analytical solutions for the metric 

coefficients, the pressure, and the density, These models are 



only approximations of the real situation in nature. The 

degree of unrealism in a model is a cost of the modelling 

process that is hopefully compensated by simple analytic 

solutions. Often the unrealism appears in the form of unusual 

equations of state. 

A vexing problem in these investigations is that a 

solution which has a very simple appearance in a certain 

coordinate system may have a very complicated appearance in 

another coordinate system. Many times equivalent solutions 

have been rediscovered by various researchers who were either 

unaware of the other solutions or could not see the equi- 

valence. There is an algorithm for determining the equivalence 

of metrics but it is extremely difficult to carry out with hand 

calculations. Recently researchers have claimed that computer 

programs exist which can perform this difficult task. 

The choice of a Lorentzian manifold as a model in which to 

put spacetime physics reflects our desire that spacetime should 

be a continuum (at least at the non-quantum level). A very 

useful tool, when it can be employed, is the concept of 

Lorentzian warped product manifolds. The notion of Lorentzian 

warped product manifold seems to have been first studied in 

General Relativity by Delsarte [301 in the 1930's. In the late 

1960's Bishop and O'Niell [31] independently reintroduced the 

notion when studying manifolds of negative sectional curvature. 

Later O'Niell 1321 and Beem and Ehrlich [33] published books 



which have popularized the notion of Lorentzian warped product 

manifolds. Lorentzian warped product manifolds are extremely 

useful for the study of elementary causality. The Lorentzian 

warped product may be used to represent spherically symmetric 

metrics. 

An important step in the solution of the field equations 

is the choice of coordinates. A suitably chosen system of 

coordinates may greatly assist in the solution of a difficult 

problem. On the other hand, a badly chosen system of coordin- 

ates may render the problem completely intractable. We shall 

employ double null coordinates for the reason that they make 

partial integration of the field equations easier. The idea for 

using double null coordinates comes from their use in the 

Kruskal-Szekeres completion of the Schwarzschild solution. 

Double null coordinates have been used before in the study of 

spherically symmetric interior solutions. Buchdahl [34] uses 

double-null coordinates in a search for the interior source of 

the Kruskal solution. He is motivated in his work by the 

earlier observation made by Synge [35] that by writing the 

spherically symmetric metric in double null coordinates, one is 

lead directly to the Kruskal solution for a vacuum. These two 

papers, particularly that of Synge, have greatly influenced our 

choice of double null coordinates for our investigation of 

perfect fluids. There may be disadvantages for physical inter- 

pretation of any solutions that we may find, but as Stephani 



[36] has noted that there is no overabundance of exact spher- 

ically symmetric perfect fluid solutions. 

Survey of Recent Research 

A literature survey on exact interior solutions in general 

relativity, even when restricted to a particular form of the 

stress-energy-momentum tensor, is a large task. In the survey 

which follows we have tried to present as complete as possible 

listing of the work in the last 20 years which has as its 

primary objective the construction of exact nonstatic spher- 

ically symmetric perfect fluid solutions. In particular we 

have concentrated on those papers that have matter flows with 

nonzero shear and nonzero pressure. The zero pressure "dust" 

solutions are unrealistic in our opinion. Collins [37], 

Collins and Wainwright 1381, and Ellis [39] have extensively 

discussed the role of shear in cosmological and stellar models 

in general relativity. We have included some of the more 

important studies on shear-free solutions as well. There are 

three groupings of papers depending upon whether the shear of 

the nonstatic perfect fluid solution has or has not been 

analyzed. 

First we shall review some of the earlier work on 

nonstatic perfect fluid solutions whose flows were 

unclassified. Secondly we shall review some of the important 

recent work on exact nonstatic perfect fluid solutions with 



shear-free flows. Finally we shall review the recent work done 

on exact nonstatic perfect fluid solutions with shear (and 

perhaps other kinematical properties). 

There are many nonstatic solutions whose perfect fluid 

flows have been unanalyzed. A common technique of finding new 

solutions is to place restrictions on the form of the metric. 

McVittie [40] has found a class of nonstatic spherically sym- 

metric perfect fluid solutions. McVittie assumes a particular 

form of the spherically symmetric metric tensor which allows 

the field equations to be written as a system of three ordinary 

second order differential equations. It has become common to 

call spherically symmetric metrics with the special form "McV- 

metrics". A property of the McV-metrics is that they depend on 

only one function of the timelike coordinate. This property is 

useful for seeing if a given metric belongs to the McV-metrics. 

In a later paper McVittie [41] elaborates on his method and 

relates the work of many researchers to his results. Dyer, 

McVittie, and Oates [42] have examined the connection between 

McVittie's method and the hypothesis that the metric tensor 

admit a conformal Killing vector. Dyer et al. find conditions 

that will force McV-metrics to admit conformal Killing vectors 

but they are not able to resolve the issue of whether this 

symmetry follows from the special form of the metric or the 

assumption of a similarity variable that McVittie uses in 

motivating his form of the metric. The investigations of Dyer 



et al. were motivated by the results of Cahill and Taub 2431 

who found that the existence of a homothetic Killing vector 

implies the existence of a similarity variable. Cahill and 

Taub studied the problem of finding spherically symmetric 

perfect fluid similarity solutions. 

Bonnor and Faulkes 1441 found a class of nonstatic 

spherically symmetric perfect fluid solutions of uniform 

density but nonuniform pressure. McVittie [41] has shown that 

the class of solutions found by Bonnor and Faulkes is a special 

case of a McV-metric. The motion of the fluid was unanalyzed. 

Thompson and Whitrow [45,46] studied nonstatic spherically 

symmetric perfect fluid bodies under the hypothesis that the 

density is uniform. Using a simple mathematical condition on 

the metric and imposing regularity on the solutions, Thompson 

and Whitrow were able to prove a theorem that showed the 

perfect fluid motion must be shear-free. 

Nariai [47] studied gravitational collapse of a perfect 

fluid with a pressure gradient. The solutions found by Nariai 

are a special case of McV-solutions [41]. 

Faulkes [48] investigated nonstatic perfect fluid spheres 

with a pressure gradient. Faulkes solutions are special cases 

of those of Nariai [47] hence are McV-metrics as well. The 

kinematics of the fluid were unanalyzed. 

Eisenstaedt 1491 studied applications of perfect fluids to 

cosmology under the added hypotheses of a barotropic equation 



of state and uniform density. 

In a long series of recent papers Knutsen [50,51,52,53,54, 

55,56,57,58,59] has studied properties of nonstatic perfect 

fluid spheres. In most of his work he uses either the McV-form 

or a "generalized McV-form" of the spherically symmetric 

metric. Knutsen has found nonstatic analytic models of gaseous 

spheres (pressure and density are zero on the boundary). The 

kinematics of the fluid motion are unanalyzed for the solutions 

he finds. 

Most of the known perfect fluid solutions have zero shear. 

The earliest nonstatic spherically symmetric shear-free perfect 

solutions were found by Wyman [60,61] but he did not recognize 

them as such 1371. Many nonstatic spherically symmetric 

shear-free perfect fluid solutions have been found by 

Kustaanheimo and Qvist [62,63]. A general class of solutions 

which are shear-free but expanding are contained in the class 

of Kustaanheimo and Qvist. Many special cases of this general 

class have been rediscovered by other researchers [271. 

Stephani [36] has found a new class of shear-free perfect fluid 

nonstatic solutions. Stephani uses the method of Kustaanheimo 

and Qvist to find solutions that were overlooked in the earlier 

paper. Banerjee and Banerji [64] have studied perfect fluids 

with nonuniform density and pressure distributions under the 

assumption of shear-free radial motion, Glass [65] uses the 

method of Kustaanheimo and Qvist to study shear-free 



gravitational collapse. Glass studied a particular second 

order nonlinear differential equation earlier considered by 

Faulkes [48]. Glass finds several shear-free collapsing 

solutions. McVittie 1411 shows that some of the solutions of 

Glass may be represented as McV-metrics. Glass [65] does 

present solutions which are not McVittie metrics since the 

solutions depend on two arbitrary functions of time. 

Recently, Sussman 1661 has extensively surveyed the 

spherically symmetric shear-free perfect fluid solutions (both 

electrically neutral and electrically charged). Sussman finds 

a large class of "Charged Kustaanheimo-Qvist" solutions 

depending on two arbitrary functions and five parameters. The 

neutral members of this class with special values of the other 

parameters are identical with a class of metrics found by 

McVittie [67]. In a later paper 1681, Sussman continues his 

work on spherically symmetric shear-free perfect fluid to 

examine the equations of state and singularities of these 

solutions. 

Srivastava 1691 has studied the methods of Kustaanheimo 

and Qvist 162,631, McVittie [41], Nariai 1471, and Wyman [601 

in an effort to achieve some degree of unification. Srivastava 

finds that the McV-metric can be viewed as special case of the 

Kustaanheimo and Qvist solution. Srivastava also shows that 

the "generalized McV-metrics" used by Nariai [47] and Knutsen 

1511 are equivalent to McV-metrics. 



For the case when shear is nonzero there are only a few 

solutions known. Recently it has been shown that some of the 

previously known solutions with shear that were thought to be 

distinct are the same. 

Misra and Srivastava [701 has proven a stronger version of 

the theorem of Thompson and Whitrow [45,461. Misra and 

Srivastava showed that the mathematical condition of Thompson 

and Whitrow may be dropped: All regular, nonstatic, uniform 

density, perfect fluid solutions in comoving coordinates are 

shear-free. 

Some solutions with nonzero shear, but with some of the 

other kinematical quantities (expansion, acceleration) equal to 

zero, have been found. McVittie and Wiltshire [71] found a 

special class of nonstatic shearing perfect fluid solutions 

which exhibit no acceleration. McVittie and Wiltshire study 

the use of non-comoving coordinates to find perfect fluid 

solutions. There are also solutions of McVittie and Wiltshire 

that have nonzero acceleration and expansion. Kramer et al, 

[27] assert that Skripkin [72] has found a special class of 

solutions with shear but zero expansion and constant density. 

Under the hypothesis that the heat flux vanishes and 

separability of the metric, Lake [731 found a class of general 

fluid solutions with shear and with vanishing shear-viscosity, 

A special case of his solutions reduces to that of Gutman and 

Bespal'ko [74]. Shaver and Lake [75] have recently extended 



the study of the solutions of Lake. Subject to the vanishing 

of the heat flux they find that all such solutions with shear 

and non-vanishing shear viscosity have a scalar polynomial 

singularity at the origin. They conclude that for their form 

of the metric the only fluid solutions of the field equations 

with vanishing heat flux which satisfies the energy conditions 

and are nonsingular at the origin are the Robertson-Walker 

solutions. 

In Kramer et al. [ 2 7 ] ,  a class of solutions with shear, 

acceleration, and expansion were credited to Gutman and 

Bespal'ko 1741 .  (Note that this reference is in Russian and is 

difficult to obtain). This class of solutions was found in a 

comoving system of coordinates with the condition that one of 

the metric functions was separable. 

Vaidya [ 7 6 ]  found a class df nonstatic solutions for a 

perfect fluid whose streamlines are orthogonal to the isobaric 

surfaces. These solutions have nonzero shear, acceleration, 

and expansion. 

Wesson [ 7 7 ]  found a class of spherically symmetric 

nonstatic solutions with shear with a stiff equation of state. 

Kramer et al. [ 2 7 1  assert that Wesson's solution also has 

acceleration and shear, 

Van Den Bergh and Wils [ 7 8 ]  have found three new classes 

of exact spherically symmetric perfect solutions with shear and 

acceleration and an equation of state. Assuming the ansatz 



metric coefficients were that the 

Wils als 

separable Van Den Bergh and 

o found a generalization of the stiff equation of state 

solution of Wesson. This new solution has shear, acceleration, 

and expansion. 

Hajj-Boutros [79] has obtained several classes of non- 

static, spherically symmetric perfect fluid solutions which 

exhibit shear, acceleration, and expansion. One of the classes 

is expressed in terms of Painleve's third transcendent 

[80,81,82]. 

Collins and Lang [83] have recently found a class of 

spherically symmetric spacetimes which exhibit shear and 

acceleration. Collins and Lang imposed the condition of self 

similarity on Lorentzian spaces with a perfect fluid. They 

discuss the work of Gutman and Bespal'ko [74], Wesson f771, 

Hajj-Boutros [79], Van den Bergh and Wils 1781, and Herrera and 

Ponce de Leon [84]. Collins and Lang show that the metric of 

Gutman and Bespal'ko [74] is the same as that of Wesson [77]. 

Collins and Lang also show that the metrics of Van den Bergh 

and Wils [78] specialize to those of Wesson [77] and Gutman and 

Bespal'ko [74]. Collins and Lang point out that some of the 

work of Herrera and Ponce de Leon [84] with conformal Killing 

vectors may be specialized to self-similarity and hence arrive 

at the metric of Van den Bergh and Wils [78]. 



Nonstatic Spherically Symmetric Anisotropic Fluids 

Conformal Symmetries 

Spherically symmetric anisotropic fluids admitting 

conformal symmetries have recently been studied. The reason 

for this interest is that a connection between the existence of 

conformal Killing vectors and the equation of state has been 

found 1851 by Herrera et al. The metrics considered were 

static and had a conformal Killing vector orthogonal to the 

fluid velocity. The existence of a conformal Killing vector 

was shown to constrain the pressure and density. It was also 

found that the orthogonality condition together with a special 

conformal Killing vector forced the fluid to have a stiff 

equation of state. In [ 8 5 ]  it is asserted that recent real- 

istic studies of stellar models indicate that an anisotropic 

fluid model may be more appropriate. 

Herrera and Ponce de Leon 186,871 find families of expand- 

ing/contracting fluid anisotropic spheres, and confined non- 

static spheres whose total gravitational mass is zero. The 

problem of matching these spheres to exterior vacuum metrics is 

studied. These results have stimulated work on more general 

classes of symmetries such as collineations [29,88,89]. 

Duggal and Sharma [90] have recently investigated the 

similar dynamic restrictions imposed by a special conformal 

collineation in a class of anisotropic relativistic fluids 

without heat flux, In particular they showed that the stiff 



equation of state is no longer singled out when the collinea- 

tion vector is orthogonal or parallel to the velocity 

vector. 

Shortly thereafter Maartens and Mason [89] extended and 

corrected some of the results of Duggal and Sharma. They 

showed that the assumption, by Duggal and Sharma, that a 

special conformal collineation vector preserves the fluid flow, 

is equivalent to assuming that the velocity vector is an 

eigenvector of the conformal collineation tensor (see Chapter 2 

for the definition of the collineation tensor). Later Duggal 

[91,92] points out that, for fluid spacetimes, conformal 

symmetry plays the role of preserving the continuity of the 

matter flow at critical points of transition during a change of 

state. These ideas may have some use in cosmology. Duggal has 

found a connection between the shear of the fluid and the 

existence of a timelike conformal collineation vector. Duggal 

is able to generalize the theorem of Oliver and Davis 1933 on 

the existence of timelike conformal Killing vectors to the case 

of timelike conformal collineation vectors. In his generaliz- 

ation of the Oliver-Davis theorem, Duggal shows that a fluid 

spacetime admits a timelike conformal Killing vector parallel 

to the fluid velocity if the shear tensor is proportional to 

the collineation tensor. 

Duggal's theorem promises to be an important advance in 

the study of shearing fluids. Duggal points out that it is an 



extremely difficult problem to characterize the collineation 

tensor so that physical examples of conformal collineation 

vectors may be found. In Chapter 5 we shall collect some 

partial results concerning this problem. In Chapter 5 and in 

an appendix we shall calculate the field equations in double 

null coordinates for an anisotropic fluid admitting various 

types of collineation vectors. 

Results gmJ Conclusions 

In chapter 2 we present a summary of the mathematics 

which is used in general relativity. The usefulness of the 

Lorentzian warped product construction is noted, particularly 

in relation to the problem of discussing elementary causality. 

A specialized form of spherically symmetric double null 

coordinates is introduced. These coordinates have the 

advantage that they do not change their causal type when the 

metric coefficient change sign. However they do not cover as 

much of spacetime as the usual double null coordinates. A 

short presentation of the kinematics of an observer concludes 

the chapter. 

In Chapter 3 we give a brief discussion of the 

classification of stress-energy tensors and the energy 

conditions which apply to them. 

In Chapter 4 we use the double null coordinates to look 

for solutions of the perfect fluid field equations which 



exhibit shear. 

The field equations lead to a "wave-like" equation and the 

pressure isotropy equation. Although the wavelike equation 

admits a first integral, it cannot be completely integrated in 

general. The field equations were simplified by assuming a 

functional relationship between the metric coefficients. With a 

a 
functions relationship of the form f = r , was used for several 

cases. In particular a = -2, -1, -1/2, 0, 1/3 lead to reason- 

able solutions which are nonstatic and have shear. Another 

a r case considered was f = e . The functional relationship 

reduces the field equations to a Bernoulli equation. In six of 

the cases, the timelike weak energy conditions were satisfied. 

The dominant energy conditions were verified for four of the 

solutions and the strong energy conditions for four of the 

solutions. Unfortunately only two of the Bernoulli equations 

was integrable in closed form in terms of elementary functions, 

This fact greatly hindered analysis, particularly of the 

causality, which had been planned. In spite of this, some 

useful information was drawn from the mathematical form of the 

Bernoulli equations and the energy conditions. The kinematical 

quantities were computed when possible. Invariants derived 

from the Riemann tensor such as the Ricci scalar and the 

Kretschmann scalar were also computed. For all cases the 

acceleration of the fluid is zero. The shear tensor was always 

nonzero. An interesting observation about the solutions is 



that they all satisfy the condition of being in a T-region 

[ 2 7 1 .  There have been very few studies of T-models, until now 

only two or three solutions for dust, a stiff fluid, and a 

radiation solution. Three of our solutions are not among these 

solutions for the simple reason that they have much more 

complicated equations of state than previously known solutions. 

We found two solutions which have the equation of state 

p = ~ / 3 .  

In Chapter 5 we present some recent results by Duggal 

connecting timelike collineations to the shear of a fluid. 

Calculations for timelike collineations in double null 

coordinates are presented. We state a theorem showing how a 

stress-energy tensor may be used to try to find a coll'ineation. 

A theorem asserting the existence of a timelike collineation 

parallel to the velocity when given a collineation tensor and 

the velocity field. The equations for an anisotropic fluid 

admitting a timelike collineation vector parallel to the 

generalized comoving velocity are written in NN-coordinates. 

The condition that the collineation tensor is covariantly 

constant is investigated in detail for this case. Two 

solutions of the field equations result as a consequence of 

this study. Both of the solutions lead to reducible spaces in 

accordance with recent results of other researchers. 



CHAPTER 

MANIFOLDS, TENSORS, AND LORENTZIAN WARPED PRODUCTS 

Introduction 

In this chapter we shall present several sections summar- 

izing the mathematical tools and notation used in this work. 

This summary is a condensation of the treatments of similar 

material found in the texts of Sachs and Wu [94], Hawking and 

Ellis 1953, Wald [96], Stephani [97], Frankel 1981, O'Niell 

[ 3 2 ] ,  Hicks [99], and Beem and Ehrlich [33]. Relevant comments 

have been added to aid in the assimilation of the large number 

of well-known definitions and concepts. More complete and 

detailed discussions of these topics may be found in the cited 

sources. In some cases there is still some disparity in the 

literature on the use of certain terms and definitions and the 

notation used to describe them. There is also a recognized 

profusion of sign disparities among relativists and differ- 

ential geometers in the basic definitions of the classical 

tensor calculus. The uncertainty that these disparities impart 

leads inexorably to qualitative errors, particularly in 

expressions that involve the use of inequalities. We have 

tried to eliminate the possibility of such errors by system- 

atically classifying the notation systems and conventions used 

by various authors. Appendix A is a summary of a system for 

translating tensorial expressions from one system of tensor 



calculations to another. 

Vector Spaces Tensor Algebra 

Let V denote a vector space over the real field R. We 

shall almost always have dimpZV = 4 but most of the results are 

true as long as dimRV is finite. The dual space of V is 

denoted by v*. The underlying set of V* is the set of all 

R-linear functional9 on V. V* is a real vector space and if 

dimRV is finite then dimRv* = dimRV. If V and W are finite- 

dimensional real vector spaces then V $ W denotes their direct 

sum. V* b W* will denote the vector space of R-bilinear maps 

V x W -----+ R. A standard theorem of linear algebra for finite 

dimensional vector spaces states 

Since dimRV is always assumed to be finite we have 

where vX* is the dual space of v*. Another well-known theorem 

of linear algebra [I001 then states that V st v**. This natural 

isomorphism is used repeatedly in tensor algebra to eliminate 

the unnecessary distinction of V from v**. 

Associated with V are its tensor spaces of type (r,s), 

T'(v), where (r,s) is a pair of non-negative integers. A 
s 

tensor of type (r,s) on is defined to be a real-valued 

multilinear functional on (v*)' x (V) '. A standard theorem of 

tensor algebra asserts that dimR(~:(v) ) = [dimR(V) 1 '+'. 



Tensors of type (r,O) are called contravariant tensors, while 

tensors of type (0,s) are called oovariant tensors. T:(v)  ray 

be viewed as the real vector space of multilinear functionals 

on r+s factors, the first r factors being v*, the remaining s 

factor being V. The tensor algebra on V is the direct sum over 

all pairs of non-negative integers (r,s) of the tensor spaces 

r mOs=O 

If V is a vector space over R, then an inner product on V, 

g : V x V -----, R, is a symmetric, bilinear functional. The 

inner product is the natural generalization of the dot product 

on Rn. The index of g, Ind(g), is defined to be the maximum 

dimension of the subspaces of V on which the restriction of g 

is negative definite i.e. 

(2.4) Ind(g) max{dimRW : W is a subspace of V}. 

The nullity of g, N(g), is defined to be the dimension of the 

subspace N of V on which the restriction of g is identically 

zero i.e. 

(2.5) N = {X E V : g(X,X) = 0 )  

and 

(2-6) N(g) 3 dimRN. 

The signature of g, sig(g), is defined as 

(2.7) sig(g) = dim# - 2Ind(g) - N(g). 
The Lorentzian inner products to be introduced later will have 



signature +2 since dim$ = 4, Ind(g) = 1, and N(g) = 0. 

Differential Manifolds Smooth Maps 

Differential manifolds are the setting for the appropriate 

generalization of calculus on vector spaces. Differential 

manifolds provide a setting in which we may have the notions of 

limit and derivative. Manifolds may be thought of as the 

abstraction of the idea of a surface in Euclidean space. We 

first introduce local objects (charts) on which limits and 

differentiation make sense, and then we patch these objects 

together in a smooth manner. Differential manifolds should not 

be simply viewed as parameterized surfaces since the notion of 

a parameterization involves the notion of an enveloping space. 

The underlying set of a differential manifold is a 

topological manifold. An n-dimensional topolojfical manifold is 

defined as a separable Hausdorff topological M space such that 

every point in M has an open neigbourhood which is homeomorphic 

to an open subset of R", Note that M is a-compact, 

paracompact, and has at most a denumerable number of components 

(101,1021. The paracompactness of M is essential for the 

theory of integration on manifolds. By considering simple 

examples such as the sphere sn, n 2 1, and the torus T", n r 2, 

in R"" we quickly see that it is impossible to coordinatize 

these objects with a single coordinate chart. A similar 

situation holds in many of the models of spacetime that we use 

in general relativity. 



A n-dimensional coordinate chart on M_ is a pair ( % , p a )  

where Ua is an open subset of M and qa is a homeomorphism of Ua 

onto an open subset of R" (a is an arbitrary index in the set 

A; see Appendix B on symbols and notation conventions for the 

rules which indices obey). For each integer i, 0 S is n-1, and 

for each coordinate chart ( U a , p a )  we define the i-th coordinate 

function of pa, xg, so that 

(2.8) i i 
= n o c p a L :  P1 -IR 

a 

where ni  is the i-th canonical projection on I R n .  

- -  

Figure 1 The Coordinate Transition Maps 



Since more that one chart will usually be necessary to 

cover M, we must find a suitable compatibility criterion for 

the overlap of the chart domains. Two charts ((11Q,(p~) and 

(T6,q6) are 8'-compatible (see Figure 1) if the coordinate 

transition maps 

( 2 . 9 )  
C 

elu 'YeO~u : %CUu n 9-lgl 961% n P1,l 

and 

C 
(2.10) i ~P,OV, : n 91,l - 

u 6 (pol% n U61 

are fZr-diffe~mor~hisms (coordinate dif feomorphisms) between 

their domains and ranges in R". (Note that p: denotes the 

inverse mapping of IDQ.) 

An indexed collection 4 = { ( Uu, (pot) : a E A) of charts 

which cover M and satisfy the 8'-compatibility criterion for 

all index pairs (a,#?) E A x A will be called a er-subatlas for 

M. Two fZr- subatlases d and 3 of M are equivalent if d u 3 is 

a 8'-subatlas for M. An equivalence class of 8'-subatlases for 

M will be called a B'-differentiable structure for M. Using 

inclusion as a partial order on a %'-differentiable structure 

we define a 8'-atlas of M as the maximal element in the 

e'-differentiable structure. It is easily shown using Zorn's 

Lemma that a maximal atlas always exists. We shall always 

assume that r 2 3. A 8'-differentiable structure always 

a, 
contains a 8-structure thus we will simply use the adjective 

"smooth" to denote the appropriate degree of differentiability. 

Let M be a manifold endowed with a smooth differentiable 



structure characterized by a subatlas d = { (Ua, cpat) : a E A ) .  

For a coordinate chart (Uu,pa) E d and a function f : M IR, 

a coordinate expression for f in (Uu,cpo), is the function 

(2.11) fu 9 fopu : pu(Uu) c R" - R. 
A function f : M - R is smooth if fu is smooth in the 

usual sense for all charts ( % , ( p ~ )  E d .  We will use 9(M) to 

denote the commutative ring of smooth functions. 

- -- 

Figure 2 A Smooth Map between Manifolds M and N 

Let N be another manifold with a smooth differentiable 

structure given by the subatlas 93 = { (%,ly,) : @ E B) . A 

3 3  



continuous map F : M ----+ N will be called smooth if for each 

index pair (a,p) E A x B the map 
C 

( 2 . 1 2 )  B F a = : P ~ [ u ~  n F-'w$'B,I - VJFWJ n 51 
(see Figure 2 )  is smooth in the usual sense. Y?(M;N) will 

denote the set of smooth maps from M to N. 

Figure 3 Curves in a Manifold 

*, 
An important class of maps is f2 (I;M), where I is an open 

interval in R. These maps are called curves in M. Let 

0 E ~?(I;M) with a ( 0 )  = p, then, for each a E A such that 

p E %, there is a local coordinate representation of U, 
(2.13) 4 3 puoa : (-E,E) c I -- q u ( k )  n R" 



Figure 3) . 
almost never specify the curve a 4 

Note that in practice we 

3irectly. If a chart ( x , ' ~ , )  
is given, we just specify the functions oa directly. 

Figure 4 The Pullback of a Map 
CO 

Each smooth map F € f3 (M;N) determines an algebra homo- 

morphism F* : F(N) --+ 9(M) given by FX(f) = Fof where 

f E S(N). The map F* will be called the pullback E (see 

Figure 4). 

A diffeomorphism F : M ---4 N is a smooth mapping that has 

C 
an inverse mapping F : N ---4 N which is also smooth. The 

theory of differentiable manifolds can simply be described as 

the study of objects preserved by diffeomorphisms. 



The main.step in extending the calculus from vector spaces 

to differentiable manifolds is finding a generalization of 

directional derivatives. The appropriate concept for a differ- 

entiable manifold M is the tangent vector V at a point p € M. 
P 

There are four different ways of viewing the notion of tangent 

vectors on a manifold M [103]. Vectors at p E M may be viewed 

as equivalence classes of curves through p, as equivalence 

classes of n-tuples.of real numbers at p, or as derivations on 

germs of functions defined on a neighbourhood of p. We will 

adopt the view that tangent vectors are derivations on 9(M). A 

tanaent vector of M & E is a linear map V : 9(M) - If? such 
P 

that 

(2.14) v [fgl = v [~IB(P) f (p)vp[gl 
P P- 

for arbitrary functions f, g in F(M). The collection of all 

tangent vectors at a point p E M is denoted T M, the tangent 
P 

space to M E. We can define addition of tangent vectors at 

(2.15) (V t W )[f] = V [f] t Wp[f]. 
P P P 

and we can define scalar multiplication of tangent vectors at p 

by 

(2.16) (cV ) [f] = cVp[f]. 
P 

It can easily be shown, using the operations above, that T M is 
P 

a real vector space and dimR(T M) = dimR(M). For a given 
P 

coordinate chart (flu,%) we can find an induced coordinate 

(holonomic) basis for T M i.e. 
P 



a : 0 * i S 3 . For a function f E 9(M) and a chart 

containing p, U , )  , we define the action of aui 1 on f E +(M) 
P 

4 where the ui are coordinates on R . 
For a smooth mapping F : M -----+ N and for each p E M we 

define the map F  : T M ----+ * P P TF(plN by 

( 2 . 1 8 )  F ( V  )[f] a V p [ F o f ] .  
*P P 

By choosing holonomic bases for both T M, TFcp,N associated 
P 

with chart ( respectively i. e e  

( 2 . 1 9 )  

and 

( 2 . 2 0 )  

we can find a coordinate presentation of F : 
i *P 

( 2 . 2 1 )  eFUxp ( a  u j  I , ; F B O F ) ( P ) ] ~  J i I ~ ( p ) '  

Xu 

The term in the square brackets in ( 2 . 2 1 )  is the Jacobian 

matrix of If 6Fa*p is injective then F  is called an 

immersion. If F  is an injective immersion, with N homeomorphic 

to F ( N ) ,  then F  is an imbedding of N  into M. A submersion 

F  : M - N  is a smooth mapping onto N such that is onto 

for all p E M .  When the charts (Uu,pu) and (r6 , tp6)  are fixed 



in an argument we will dispense with the more complicated 

notation pFuxp and simply write F . This same abuse of 
*P 

notation will hold in other similar notational situations. 

A  submanifold N of M is a topological subspace of M such 

that the inclusion map jN : N - M is smooth and for each 
n E N the induced map jNsn : T N --r TnM is injective (one-to- n 

one). The submanifold N inherits a differentiable structure S N 

related in a natural way to that of M. The notions of imbedding 

and submanifold are closely related: if N is a submanifold of M 

then the inclusion map jN is an imbedding. 

An abstract construction which appears frequently in 

theoretical physics and differential geometry is the fibre 

bundle [lo21 construction. Locally fibre bundles are product 

manifolds but the submersion ll may "twist" the product. Let a 

smooth submersion ll : E ----+ B be given for smooth manifolds E 

and B. The map n has the local product property (see Figure 5 )  

with respect to a smooth manifold F if there is 

(a) an open covering {% : a E A) of B, and 
(b) a family of diffeomorphisms {vu : 11 u x F --r n-'(q)l 

such that Ilovu(b,f) = b for all b E Uu, f E F. (ll-' is 

the usual inverse set function.) 

The collection { (Uu,pu) : a E A )  is called a local 

decomposition of ll. A smooth fibre bundle is a four-tuple 

(E,n,B,F), where E is the bundle manifold, ll : E - B is a 
smooth submersion, B is the base manifold, F is a smooth 



manifold called the typical fibre. 

Figure 5 The Fibre Bundle Construction 

There is a large variety of subtypes of the fibre bundle 

construction, depending on the type of fibre and its internal 

symmetry groups, but the one of interest is the vector bundle 

construction. A vector bundle is simply a fibre bundle that 



attaches vector spaces to each point of the base manifold B. 

Many of the concepts and objects used in general relativity 

have a natural presentation in the setting of vector bundles. 

Let TM = {(p,V) : p € M, V E T M). The tangent bundle on 
P 

PI, TM, is a special case of the vector bundle construction on M 

[102]. TM is a smooth manifold with a smooth surjection 

ll : TM -----, M defined by 

(2.22) Np,V) = p. 

Viewed as a fibre bundle, the base manifold of TM is M and the 

fibre manifold at p € M is the vector space T M. An atlas on M 
P 

induces a differentiable structure on TM in a natural way. If 

((llQ,pa) is a coordinate chart on M then there is a natural 

induced chart (?la x R ~ ,  pa pa*) on TM such that 

where 

(2.24) Il I v : ~ i ~ p  
P 

is the representation of V with respect to the holonomic basis 
P 

induced on T M by the coordinate chart (pa,Ua). The fibre 
P 

Il-l(p) is isomorphic to T M and hence is identified with T M. 
P P 

There are several other bundles of interest on M such as the 

cotangent, tensor, exterior algebra, and frame bundles [102]. 

Of these the most important is the tensor bundle, T'M, of type 
8 

(r,s) tensors over M. 

A vector field on a smooth map F : N -----+ M is a smooth 

mapping V : N - TM such that lloV = F, where ll is the 



projection TM ---+ M (see Figure 6 ) .  There are three cases of 

F that occur repeatedly in general relativity: 

(a) F = a ,  where n : U c R --+ M is a smooth curve in M; 

(b) F = j,, where jN : N -4 M is an imbedding of a smooth 

submanifold N into M; 

( c )  F = ' 
'M ' where in is the identity map on M. 

Figure 6 Vector Field over a Mapping 

A vector field V over iM on a differentiable manifold M 

may also be viewed as a function that assigns to each point 



p E M a tangent vector V E T M. For a smooth function 
P P 

f E 9(M), Vf is a function such that 

(2.25) (Vf )(P) = VpWI 

The vector field V is smooth if Vf is smooth for all f E 9 ( M ) .  

It can be shown that the set of all smooth vector fields on M, 

Z(M), is an S(M)-module [32]. The set of all smooth vector 

fields over in may also be viewed as a vector bundle over in. 

Thus a smooth vector field is a section of a particular vector 

bundle. Let T be a tensor field over F. A derivation of 

tensor fields over F is an assignment of a tensor field DT over 

F such that 

(a) DT is the same type of tensor as T; 

(b) D(aS + /3T) = aDS + BI)T for all a,@ E I?, and all tensor 

fields S, T over F; 

(c) D(SW) = DSW + S@DT for all tensor fields S, T over 

F. 

A connection Q over F is an assignment to each vector field X 

over F of a derivation Dx of tensor fields over F so that 

(a) Dxf = Xf if f is a function over F; 

(b) D*x+gu T = fDxT + gDyT for smooth functions f, g over 

F; 

(c) Dx commutes with contraction. 

If F : N - M is a smooth map and D is a connection on M 
then F*D is the unique connection over F such that 

(2.26) (F*D)~(VOF)(P) = D v(F(~)) 
F*X 



for all vectors X E N and for all V E X(M). The connection 
P 

F*D is called the induced connection. 

The bracket of two vector fields V and W, denoted [V,W], is the 

vector field such that for all p E M and all f E F(M) we have 

The bracket operation on Z(M) has the following properties [32] 

(a) [aV + bW,Xl = a[V,XI + b[W,X] for all a, b E R; 

Vector fields are first order operators on functions in 9(M). 

A surprising fact is that the bracket of two vector fields is 

not a second order operator but is another vector field. 

A smooth curve CJ : (-B,E) c I - M is a local integral 
curve of V E X(M) if a' . a*(ay) = (Voa)(u) for all values 

u E - ,  c I. Occasionally the domain of a local integral 

curve can be extended to the whole real line. If dom a = R and 

a' = V then we say that V is complete. By considering the 

smooth vector field V = ( 1 ,-y2) on IR2 it is easy to see that 

not all smooth vector fields are complete even when dom(V) = M. 

This arises since we have only a local existence and uniqueness 

theorem for differential equations. For each p E M and 

V E X(M) there is a unique maximal inte~ral curve in the sense 

that the domain of a cannot be extended. For a vector field 

V E X(M) we define a local flow as a map @ : U x I -----+ M such 

that $(p,t) = 9 (t) where 9 (t) is the unique maximal integral 
P P 



curve of V through p defined for all p E P1 and all t E I. 

If F : M - N is a smooth mapping of manifolds then F induces 
an associated mapping between each of the tensor bundles T:M 

and T'N. For type (1,O) we denote this map by TF and for type 
s 

(0,l) we denote this map by TF*. 

Differential Geometry 

The setting for differential geometry is a manifold 

endowed with a notion of "inner product" called a metric. We 

wish to study the properties of manifolds and metrics which 

remain invariant under a group of diffeomorphisms which 

preserve some of the local algebraic properties (signature, 

index, nondegeneracy, nullity, symmetry) of the metric. 

Metrics are usually classified by their signature, nullity, and 

index. The most general class of metrics is the class of 

semi-riemannian metrics of arbitrary signature. The Riemannian 

metrics and the Lorentzian metrics may be viewed as subclasses 

of the semi-riemannian metrics. 

A smooth assignment of a symmetric, nondegenerate bilinear 

form g(p) : TpM x T M -- R such that the Ind(g(p)) = 0 and 
P 

N(g(p)) = 0 for all p E M is called a Riemannian metric on M. 

A manifold (M,g) such that g is a Riemannian metric for each 

p E M is called a Riemannian manifold. 

Similarly a smooth assignment of a symmetric, 

nondegenerate bilinear form g(p) : T M x T M ----+ R with 
P P 



arbitrary nullity is called a semi-riemannian metric on M. A 

manifold (M,g) such that g is a semi-riemannian metric for each 

p E M is called a semi-riemannian manifold, 

As general relativity uses an inner product of index 1 and 

nullity 0, we shall restrict our description of differential 

geometry to this case, A smooth assignment of a symmetric, 

nondegenerate bilinear form g(p) : T M x T M ----+ IR with 
P P 

Ind(g) = 1 at each point in M is called a Lorentzian metric on 

M. The pair (T M, g(p)) is a Lorentzian vector space for each 
P 

p E Me The corresponding manifold is called a Lorentzian 

manifold. 

If (M,g) is a semi-riemannian manifold then there is a 

unique connection D over the identity 5 such that for all V, 

D is called the Levi-Civita connection of (M,g). The same 

properties hold for a Riemannian manifold. These properties 

define the interaction of the metric g and the connection D in 

such a way as to render D torsionless, Levi-Civita connections 

may be characterized by the Koszul formula [33]: 

(2.30) Zg(D,W,X) = V[g(W,X)I - g(V,[W,XI) + W[g(X,V)I 

- s(W,CX,Vl) - X[e(V,W)I + g(xtCvtw1). 

A vector field V is parallel with respect to g if DxV = 0 for 



all smooth vector fields X. If V = u x ( d  ) is the tangent 
u 

vector field on a curve a and DVV = fV for some smooth function 

f, then we say that a is a pre-geodesic. If DVV = 0 then u is 

a geodesic. The distinction between a pre-geodesic and a 

geodesic lies in their parameterizations. A pre-geodesic may 

always be reparameterized to be a geodesic. The parameter- 

ization that makes a pre-geodesic a geodesic is not unique. 

Parameters of a geodesic are affinely related to each other. 

A smooth mapping F : (M,g) ----+ (N, h) is called an 

isometry if F is a diffeomorphism and g = FX. 
A submanifold N of (M,g) is nondenenerate if for each 

p E N and nonzero V E T N there is a W E T N so that 
P P P P 

j:g(~ ,W ) # 0, where j> is the pullback of the metric g via 
P P 

jw : N ----r M. If j> is positive definite then N is a 

spacelike submanifold of M; if jig has index 1 on T N for all 
P 

p E N then N is a timelike submanifold of M; if jig is 

degenerate then N is a null submanifold. 

A submanifold N of (M,g) is geodesic at p E N if each 

geodesic y of (M,g) with ~ ( 0 )  = p and y'(0) E T N is contained 
P 

in N for some neighbourhood of P. N is totally geodesic if N 

is geodesic for each p E N. 

A submanifold P of (M,g) with dimension dim$ = dim# - 1 
has a number of distinguished forms defined on it. These forms 

are derived from the unit normal vector N by the following 

formulae : 



Tensor Analysis on Differentiable Manifolds 

For any pair of nonnegative integers (r,s) # (0,O) and a 

ring K, a K-multilinear function R : (v*) ' x V* -----+ K will be 

called a K-tensor of type (r,s) over 1. In general relativity 

there are two cases of interest: 

(a) K = R and V = T M; 
P 

(b) K = F(M) and V = f(M). 

If U c M is an open set in a semi-riemannian manifold 

(M,g) and R : U -----. T:M is a map such that l l o R  = \ then R is 
a type (r,s) tensor field on Q. A tensor field of type (1,O) 

is called a vector field, A tensor field of type (0,l) is 

called a 1-form field. M has a Lorentzian metric g thus there 
1 0 is an associated isomorphism between TOM and TIM given by 

b 1 : TOM - T> 
so that 

a : O S ~ S ~  In terms of components with respect to pa - 
ax: 

i and its dual basis {ot + dxa : 0 i i S 3) we have gaijv: = vai. 
0 1 There is also an isomorphism between TIM and TOM given by 



so that 

In terms of components we have gi'v = 
aj 

just the usual index raising and index 

i # b vu. Thus and are 

lowering isomorphisms of 

classical tensor analysis. We see that the index raising 

(lowering) isomorphisms define an equivalence between 1-forms 

and vector fields. A 1-form o is metrically equivalent to a 

vector field W if o' = W and wb = o. 

It is well-known that tensor analysis can be done with 

respect to arbitrary bases of T M and T*M. As all the tensor 
P P 

analysis that we shall use is done with respect to holonomic 

bases, we shall omit the extension of our notation to this 

case. In many cases there is only one coordinate chart ( U u , ~ )  

in use at one time so we will dispense with the subscript a 

indicating which chart we are using. In situations in which 

more than one chart is being used we will revert to the more 

complex, but mathematically unambiguous, notation. 

The Christoffel symbols of the second kind associated with 

a metric tensor g and coordinates (\,pu) are written as 

where gil is found from the equation 

Covariant differentiation in a chart (U=,(P,) will simply 

be denoted by appending a covariant index preceded by a 



semicolon. Thus the partial covariant derivative of a tensor 

In the formula ( 2 . 3 6 )  above the ";kt '  denotes the partial 

covariant derivative with respect to auk and a comma denotes 

the partial coordinate derivative with respect to xi. 

The failure of partial covariant differentiation to 

commute leads to the Ricci identities which may be taken as the 

definition of the Riemann tensor: 

The components of the Riemann tensor with respect to the 

coordinate basis and the dual basis of the chart ( % , p a )  may be 

written in terms of the Christoffel symbols of the second kind 

as: 

R~ jkl = ri - ri 
jk, jl,k + ri n 1 rnjk - rinkrnjl. 

The Riemann tensor satisfies the following symmetry properties: 



(2.41) - 
(C) Rijkl - Rklijt 

(2.42) (d) R i ~ j k l ~  = 0, 

where indices inclosed in brackets indicate normalized anti- 

symmetrization. Contracting on the first and third indices 

leads us to the expression 

coordinates: 

(2.43) R = Ra 
i j iaj* 

for the Ricci tensor in the same 

The Einstein tensor is defined by 

where R is the curvature scalar given by 

(2.45) R = R = .  
a 

The Riemann tensor also obeys the well-known Bianchi 

differential identities: 

A contraction on the Bianchi identities leads to the first- 

contracted Bianchi identities: 

Ri 
jkl; i + 2RjIk;11 

0. 

Another contraction of the Bianchi identities implies the well- 

known differential identities for the Einstein tensor: 

(2.48) Gij = 0 .  
; j 

The Weyl conformal cu.rvature tensor is defined by 

decomposing the Riemann tensor into products of the metric 

tensor, the Ricci tensor, and the curvature scalar. The Weyl 

conformal curvature tensor can be characterized by the fact 

that it has all the symmetries of the Riemann tensor and is 



traceless with respect to all contractions. Thus 

and Weyl tensor satisfies the same symmetry properties as the 

Riemann tensor. The Weyl tensor also is traceless: 

In terms of the Weyl conformal curvature tensor it can be 

shown [ 3 9 , 1 0 4 ]  that for a 4-dimensional Lorentzian manifold the 

Bianchi differential identities are equivalent to 

( 2 . 5 1 )  C i  j k l  R k C i ;  j l  - k [ i R ;  j l  
( 1 /6  )g . 

; 1 

The Weyl conformal curvature tensor has a decomposition 

for an observer with velocity u i  in terms of its "electric" 

part E  and its "magnetic" part H i j  given by [39]: 
i j 

( 2 . 5 2 )  - 
'i j k l  - ( q i  jpqqklrs  + g i j p q g k l r s  ) upurEqs 

- 
( q i j p q 8 k l r s  + 

where 

( 2 . 5 3 )  j 1 ' ' i j k l U  , 
( 2 . 5 4 )  H i k  a ( 112 ) r ) i p r s ~ r & J P ~ q ,  

and 

( 2 . 5 5 )  
g i k g j l  

- 
g i j k l  ' i l g j k .  

The tensors E and H i j  can be shown to 
i j 

P r qe q  ) U U H  9 'i jpq k l r s  

have the following 

properties which follow from the symmetries of the Weyl 

conformal curvature tensor: 



Elementary Causality on Lorentzian Manifolds 

A Lorentzian metric g for M is a smooth symmetric tensor 

field of type (0,2) on M such that for each p E M, the tensor 

g(p) on TpM is a nondegenerate indefinite inner product of 

signature (-,+,+,+). It is easily shown that a noncompact 

manifold admits a Lorentzian metric. On the other hand for 

compact manifolds it can be shown that a Lorentzian metric 

exists only if the Euler characteristic vanishes i.e, x(M) = 0. 

A spacetime (M,g) is a connected, noncompact, smooth 

Hausdorff manifold'of dimension 4 which has a countable basis, 

a Lorentzian metric of signature (-,+,+,+) and a time 

orientation. We assume noncompactness in the definition of a 

spacetime since it can be shown that a compact spacetime admits 

closed timelike curves, We assume that M is connected since 

disconnected parts of a spacetime should not be able to 

interact. A spacetime (M,g) is time-oriented if M has a 

nowhere zero, continuous timelike vector field. There is a 

large number of inequivalent definitions of spacetime appearing 

in the literature. The definition we have adopted is the 

weakest one which is either consistent with or can easily be 



adapted to the definition used in our major references 

[32,33,94,95]. As Hall [I051 points out, there is still some 

debate among relativists on the nature of the topology of a 

spacetime. The usual manifold topology is a "homogeneous" 

topology i . e .  for any two points p, q E M there is a 

homeomorphism which maps p to q. Thus the usual topology 

reflects the locally lR4 nature of M rather than its Lorentz 

metric structure which in most cases imposes a local sense of 

time-orientation at each point. Gijbel [I061 has studied other 

choices of a topology for spacetime which are more compatible 

with its Lorentzian metric. As constructed above, the under- 

lying manifold of spacetime is a manifold "modelled over IR4".  

There are more abstract definitions of a manifold which allow 

other "model" spaces to be used [103,107]. Perhaps a "model" 

space can be found that intrinsically embraces the notions. 

Two spacetimes (M,g) and (M',g8) are equivalent, written 

as (M,g) * (M8,g'), if there is a space-orientation and time- 

orientation preserving isometry between them. The spacetime 

equivalence class of (M,g) is the set 

(2.58) [(M,g)I = {(M8,g') : (M'&') (M,ef))* 

In general relativity it is the classes [(M,g)] that are 

of interest. In practical terms it is not a trivial task to 

establish that two spacetimes are equivalent. It is much 

easier to establish inequivalence by finding an isometric 

invariant that one spacetime has and which the other spacetime 



does not have. For a fixed manifold M the set of all 

Lorentzian metrics on M is denoted by Lor(M). We write p << q 

if there is a future-directed piecewise smooth timelike curve 

in M from p to q. We write p S q if p = q or there is a 

future-directed piecewise smooth nonspacelike curve in M from p 

to q. If p E M then the chronological future of p is the set 

(2.59) = {q E M : p << q). 

If p E M then the chronological past of p is the set 

(2.60) I-(p) = {q E M : q << p). 

If p E M then the causal future of p is the set 

(2.61) J + ( ~ )  = {q E M : p S q). 

If p E M then the causal past of p is the set 

(2.62) J-(p) = {q E M : q S p). 

A nonzero vector V E T M is called 
P 

(2.63) (a) timelike if g(p)(V,V) < 0; 

(2.64) (b) spacelike if g(p)(V,V) > 0; 

(2.65) (c) null if g(p)(V,V) = 0; 

(2.66) (d) nonspacelike if g(p)(V,V) S 0. 

The causal classification of vectors provides a partial 

classification of curves in spacetime. If V = a' = a*(a ) then 
u 

we say that the curve a is 

(2.67) (a) timelike if g(a(u))(V,V) < 0 for all u E dom(a); 

(b) spacelike if g(a(u))(V,V) > 0 for all 

u E dom(o); 

(2.69) (c) null if g(a(u))(V,V)) = 0 for all u E dom(a); 



(2.70) (d) nonspacelike if g(o(u))(V,V) S 0 for all 

u E dom(a). 

The classification is partial since we do not include curves of 

mixed causal nature i.e. a timelike curve continuously joined 

to a spacelike curve. The partial classification is sufficient 

since we do not observe curves which represent physical 

particles changing their causal type. 

The elementary causality of a spacetime is defined as the 

collection of past and future causal sets and the properties 

they induce. A spacetime is chronological if it does not 

contain any closed timelike curves through p 6 M so that 

p P I+(~). The spacetimes of general relativity are usually 

assumed to be chronological on physical grounds. Since compact 

spacetimes are not chronological, most of the spacetimes-in 

general relativity are non-compact. Note that the term compact 

is often abused in general relativity when it is used to refer 

to cosmological models whose spatial sections are compact i.e. 

Friedmann models. 

A spacetime (M,g) is causal if it contains no closed 

nonspacelike curves. An open set U c M is called causally 

convex if no nonspacelike curve intersects U in a disconnected 

set. A spacetime (M,g) with arbitrarily small causally convex 

neighbourhoods is called strongly causal. A spacetime (M,g) is 

globally hyperbolic if it is strongly causal and J + ( ~ )  n J-(q) 

is compact for all p, q E M. 



The next notion that we need is the idea of stability 

under perturbation of the metric g on M. In order to discuss 

this mathematically we need to topologize Lor(M). Since M is 

paracompact we may find a fixed countable open covering of M 

by coordinate domains 3 = {Ba : a E I) with the property that 

only a finite number of the Ba intersect an given compact 

subset of M. Thus we have a locally finite subatlas of M. Let 

6 : M -----, R+ be a continuous function. Two metrics g and 

h E Lor(M) are &close in the fine er-topology if for each 

p E M all of the coefficients and all the derivatives up to the 

r-th order are 6(p)-close at p when calculated in each of the 

coordinate systems (B,,(P,) which contain p. We write 

to denote 6-closeness in the fine er-topology on Lor(M), The 

sets 

(2.71) N (6) {h E Lor(M) : Ig - hir,% 
9 

< 6) 

with g an arbitrary element of Lor(M) and 6 : M ----, R+ an 

arbitrary continuous function form a basis for the fine 

A spacetime (M,g) is stably causal if there is a fine 

eO-neighbourhood N (6) of g in Lor(M) such that each Lorentzian 
9 

metric h E N (6) is causal. Beem and Ehrlich C331 have shown 
9 

that a Lorentzian manifold (M,g) with M homeomorphic to fR2 is 

stably causal. 

The fine er-topologies on Lor(M) for r = 0, 1, 2 may be 



interpreted as follows: 

0 (a) r = 0 :  if h is &close in the fine E-topology then 

all the coefficients of h are close to g in the 
i j i l 

fixed covering 3 of M. Thus the lightcones of h and 

g are "close". 

1 
(b) r = 1: if h is 6-close in the fine e -topology then 

all the coefficients of hij are close to g and all 
i j 

the partial derivatives hijjk are close to g in 
ijDk 

the fixed covering 3 of M. Thus the Levi-Civita 

connections of h and g are "close" hence the systems 

of geodesics of h and g are "close". 

2 
(c) r = 2: if h is &close in the fine &-topology then 

all the coefficients of h are close to g and all 
i j i l 

h the partial derivatives hi j ,  kl are close to 

gijjk' gijDkl 
respectively in the fixed covering 3 of 

M. Thus the curvature tensors of h and g are 

"close". 

There are many more elementary causal properties [ 3 3 , 1 0 8 ]  

such as the causal simplicity, causal continuity, future and 

past distinguishing properties but the preceding ones are 

easily related to a global decomposition of the Lorentzian 

metric. The causal properties discussed above are suited to 

the Lorentzian warped product construction which we shall 

present in the next section. A large class of interesting 

spacetimes may be written as a Lorentzian warped product. 



The causality relations can be related by a simple 

diagram: 

Causal 

I 
I Strongly Causal 

Stably Causal 

Globally Hyperbolic 

Figure 7 The Strengths of the Elementary Causality Conditions 

Lorentzian Warped Products 

Let (M,g) be a Lorentzian manifold of dimension m and 

(H,h) be a Riemannian manifold of dimension n. Suppose that 

f : M ---- R+ be a smooth function. The Lorentzian warped 

product of the first type 1331, M xf H is the manifold 

( 3 , s )  = (M x H,g @ fh). 

If n : R - M, and r) : fi ----* H are the projections onto 

M and N respectively, then we define the metric 2 by 



(2.72) I(v,w) = g(n*v,n*ww) + f (X(P) )h(r)*v,r)p), 

for v, w E T fi. In a later section we will summarize the 
P 

elementary causality of Lorentzian warped products of the first 

type 

The Lorentzian warped product of the second type on M x H 

is the manifold (fi,g) s (M x H,fg @ h) where f : H ----4 R'. We 

define 2 by 

(2.73) S(V,W) = f (??(PI )~(~*v,x*w) + h(r)*v,r)*w) 

for all v, w E T The elementary causality of warped 
P 

products of the second type has been studied by Kemp [log]. 

All of the warped products in our work will be of the first 

type. As all spacetimes as we have defined them will be 

time-oriented we should find a criterion so that a warped 

product of the first type is time-oriented, Beem and Ehrlich 

1331 have proven the following fact. The warped product M xf H 

of (M,g) and (H,h) may be time oriented if and only if either 

(a) dim M > 2 and (M,g) is time-oriented; or 
2 (b) dim M = 1 and g = -dt . 

Let M xf H be a Lorentzian warped product of the first 

type. The following is a list (a similar list may be found in 

Kemp [log] for warped products of the second type) of useful 

properties for warped products of the first type: 

(a) For each b E H, the restriction n(r)-'(b) : ~-'(b) --r M is 

an isometry of r)-'(b) onto M. 

- 1 
(b) For each m E M, the restriction r))n-'(m) : n (m) --r H is 



a homothetic map of n-'(m) with homothetic factor l/f (m). 

(c) If v E T(M x H), then g(np,n*v) 5 z(v,v). 

Thus nx : T(M x H) - 
Twfp) 

M maps nonspacelike vectors 

to nonspacelike vectors and IE maps nonspacelike curves of 

M xf H to nonspacelike curves of M. 

(d) For each (m,b) E M  x H, the submanifolds n-'(m) and q"(b) 

of M xf H are nondegenerate when given their respective 

induced metrics. 

(e) If 9 : H -----, H is an isometry of H, then the map 

cb=i l ( x $ :  M x f H - M x f H f H  

defined by 

Q(m,b) = (m,@(b)) 

is an isometry of M x H. 
-f 

(f) If p : M - M is an isometry of M such that foq = f then 

the map Y = q x \ .  M xf H - M xf H defined by 
is an isometry of M xf H. If X is a Killing vector field 

on M (Zxg = 0) with X U ]  = 0 then the lift of X to M xf H, 

z, such that = (X(n(p),O,,J is a Killing vector 

field on M xf H. 

( g )  For each b E H, the leaf q-'(b) is a totally geodesic sub- 

manifold of M xf H. 

Note that in (f) we need fop = f so that f is constant on the 

orbits of p otherwise the warping factor is changed. 



Elementary Causality of Lorentzian Warped Product Manifolds of 

the First Type 

Beem and Ehrlich [ 3 3 ]  have proven the several propositions 

concerning the elementary causality of Lorentzian metrics with 

a warped product decomposition of the first type. Let (M,g) be 

a spacetime and let (H,h) be a Riemannian manifold. Then 

(a) (M xf H, g @ fh) is chronological if and only if (M,g) is 

chronological; 

(b) (M xf H, g @ fh) is causal if and only if (M,g) is causal; 

(c) (M xf H, g @ fh) is strongly causal if and only if (M,g) is 

strongly causal; 

(d) (M xf H, g @ fh) is stably causal if and only if (M,g) is 

stably causal and dim# 2 2; 

(e) (M xf H, g @ fh) is globally hyperbolic if and only if 

(M,g) is globally hyperbolic and (H,h) is a complete 

Riemannian manifold. 

There are several more results available in Beem and Ehrlich 

1331 .  Since the warped products we shall consider in Chapter 4 

have Lorentzian factors which are two dimensional, we present 

some facts on two-dimensional Lorentzian manifolds. All these 

facts are found in [ 3 3 ] .  

Let (M,g) be a two dimensional spacetime. Then the 

following facts hold: 

(a) If M is homeomorphic to R', then (M,g) is stably 

causal ; 



(b) If M is simply connected, then (M,g) is causal; 

(c) If M is simply connected then (M,g) is strongly 

causal ; 

(d) The universal covering manifold of (M,g) is 

homeomorphic to R ~ ;  

(e) If M = R ~ ,  then (M,g) is chronological. 

The causal properties of a Lorentzian warped product of 

the first type will enable us to examine the elementary causal- 

ity of spherically symmetric spacetimes with very little 

difficulty provided we can find adequate topological informa- 

tion on the factors. This feature of the warped product 

representation of metric tensors seems not to be widely 

appreciated in the literature. It should be noted that not all 

spherically symmetric spacetimes may be globally written as a 

Lorentzian warped product. Clarke [I101 has recently produced 

an example of a spherically symmetric manifold which cannot be 

written as the direct product of two manifolds of lower 

dimension. Since the Lorentzian warped product construction 

depends on having a direct product decomposition we could not 

put a Lorentzian warped product on Clarke's example. 

Spherically Symmetric Lorentzian Warped Product Manifolds of 

the First Type 

A spacetime is spherically symmetric if its isometry group 

contains a subgroup isomorphic to the group S0(3), and the 



orbits of this group are two-dimensional spheres. The group 

action of SO(3) on the orbits may be interpreted as a rotation. 

A metric tensor which is invariant under rotations is called 

spherically symmetric. A spherically symmetric metric tensor 

induces a metric on the orbits which is a multiple of the 

metric on a unit sphere. There are several types of coordin- 

ates in which it has become customary to represent spherically 

symmetric metrics. We will employ the Lorentzian warped 

product construction to examine them, 

There are two subtypes of Lorentzian warped products of 

the first type so that the resulting Lorentzian manifold is 

four-dimensional, For dim# = 1 and dimWH = 3 we find the 

class of Friedmann-Robertson-Walker-Lemaitre spacetimes if H is 

a space of constant curvature. (The naming of these metrics 

depends on whether the stress-energy tensor is that of a 

perfect fluid or the special case of "dust"). For dimdl = 2 

and dim# = 2 we find a class of Lorentzian warped product 

spacetimes which includes all of the spherically symmetric 

metrics (take H = s') . Let (s2,h) be the standard Riemannian 

differential geometry on the sphere. The coordinates we use on 

the sphere will be denoted (8,G) so that 

(2.74) h = d m 8  + sin28d@d@. 
Since (M,g) is a two-dimensional Lorentzian manifold we have 

four causally different ways of coordinatizing M. If we use 

coordinates (t,r) so that i(at,at) < 0 and s(ar,ar) > 0 then we 



will call these coordinates TS-coordinates (since at and a are r 

timelike and spacelike respectively). In TS-coordinates we can 

write the metric on M as 
- 

(2.75) g = -~~(t,r)dt@dt t B2(t,r)drar. 

If we use coordinates (t,u) so that 

Z(at,at) < 0 

and ii(au,au) = 0, 

then we will call these coordinates TN-coordinates ( since at 

and a are timelike and null respectively). In TN-coordinates 
U 

we can write the metric on M as 
- 

(2.76) p = -~'(t,u)dt@dt + 2B2(t,u)dt@du. 

If we use coordinates (u,r) so that 

then we will call these coordinates NS-coordinates (since aU 

and ar are null and spacelike respectively). In NS-coordinates 

we can write the metric on M as 
- 

( 2 . 7 7 )  g = 2~~(u,r)du@dr + B2(u,r)dr&Ir. 

If we use coordinates (u,v) so that 

Z(au,au) = 0 

and &av,av) = 0, 

then we will call these coordinates NN-coordinates (since a 
u 

and a are both null). In NN-coordinates we can write the 
v 

metric on M as 

(2.78) g = -4~~(u,v)du@dv. 



Synge [35] has shown that using NN-coordinates to formulate the 

vacuum field equations will directly produce the Kruskal- 

Szekeres vacuum solution. As the other coordinate systems have 

been extensively studied [111,112] we will confine our 

attention to NN-coordinate systems. Thus the metric for the 

spacetime which we use can be written in the form 
- 

( 2 . 7 9 )  g = -4f2(u,v)du&iv + ~~(u,v)[dt%de + sin28d+3d+], 

thus the metric is a type 1 warped product metric. 

From a purely formal point of view there is no difference 

between the TN and NS types of coordinates. Goenner and Havas 

[I131 point out that the direct integration of the field 

equations using a single type of coordinates and the corres- 

ponding form of the metric tensor may not produce the optimal 

set of solutions. Any spherically symmetric metric can be 

written in the NN-coordinates or the TS-coordinates [114]. A 

difficulty in working with different canonical forms of the 

spherically symmetric metric tensor lies in the fact that one 

must prove the inequivalence of the solutions found. It is 

well-known in general relativity that this equivalence problem 

is notoriously difficult; often more difficult that the process 

of finding the solutions themselves. There are various 

classification schemes of solutions by which one may prove 

solutions inequivalent. When these methods fail there is not 

much one can do in practical terms. For the NN-coordinates 

there has been little work so this problem is not so pressing 



there. 

The metric form (2.79) is preserved under coordinate 

transformations of the form 

Takeno [I141 has shown that the coordinate transformation 

(2.80) is the most general that preserves the metric form 

Following Beer and Ehrlich [33], we set p = ln(~'), and 

1 2 let D and D denote the Levi-Civita connections over the 

identity on (M,g) and (H,h) respectively. For vector fields 

XI, Y1 E X(M) and X2, Y2 E X(H), we may lift them to vector 

fields X = (X1,O) + (0,X ) and Y E (Y1,O) + (0,Y2) in X(M x H). 
2 - 

Writing D for the Levi-Civita connection of g and using the 

Koszul formula (2.30) we find the following formula for D: 

(2.81) D,Y = D:~Y, + D~ Y + (1/2) [X,(V)Y~+ Y,(Y)x, 
x2 2 

- Z(x2,y2)gradg~. 
We use grad tp for the gradient of y on (M,g). We identify the 

9 
1 vector D y1l, E T M with the vector 
xi m 

E T (M x H). Similar identifications will be (m, b) 

assumed. 

Decompose tangent vectors X E T (M x H) as X = (X1,X2) and 
P 

define the tensors Hv and hv by 

(2.82) Hv(Xl) 3 D1 (gradgV), 
xi 

and 



Define the symbol llgradgvll: = g(gradgY,gradgv). Let R, R', and 

2 R be the curvature tensors on (M xf H, g @ RZh) , (M,g) , and 
(H,h). For vector fields X, Y, Z E Z(M x H) we have 

(2.84) R(X,Y)Z = DxDyZ - D D Z - D t x , y ,  Z. 
Y X  

Using (2.83) , the decompositions of vector fields, and (2.84) 
we find the following formula for the Riemann tensor on the 

spherically warped product manifold of type 1: 

+ ( 1/4) [yI(v)Z(xz,z2) - X~(~)Z(Y,,Z~) lgradglp. 

Similar formulae may be developed for the Ricci tensor [ 3 3 ]  and 

the Einstein tensor, however these formulae depend explicitly 

on the nature of the basis chosen for the tangent spaces 

(orthonormal, non-null vectors). For pseudo-orthonormal bases 

which include null vectors, one must be careful when writing 

the above formulae. 

Observers and the Kinematics of their Motion 

In this section we formalize the notion of observer and 

congruences of observers. We also discuss the well known 



Raychaudhuri decomposition of a timelike congruence of 

observers. The presentation we follow is a combination of that 

of Ellis [39,115], Frankel [98], Szekeres [116], and Greenberg 

[lly]. 

An observer is a time-like curve y : I c R ----+ M such 

that g(U,U) = -1, where U = y*(a ) is future-pointing and u is 
u 

the parameter of y called proper time. The vector U determines 

a (3+1)-decomposition of TyIu1M = R7 cB R along 7, where we call 

R7 the rest space of at y(u). The image y(1) is called the 

world line of 7. The timelike unit vector U = y*(a ) is the 
u 

4-velocity of 7. An instantaneous observer is an ordered pair 

(p,U) where p E M and U is a future-pointing timelike unit 

vector in T M. One can always find a local observer whose 
P 

tangent at p is U. 

A reference frame Q on a spacetime (M,g) is a tetrad of 

orthonormal vector fields one of which is timelike and whose 

integral curves is an observer. A reference frame Q is 

geodesic if DTT = 0 where T is the timelike unit 

future-pointing vector field in Q. Given an observer 7, we 

call a vector field X over y a relative position vector if 

x07(u) E RYfu) for all u E dom y and X is invariant under the 

flow induced by y. The relative spatial velocity vector along 

y is the vector 

(2.86) V(X) = FuX 

= DUX - g(X,DUU)U, 



where U = ~ ~ ( 3 ~ ) .  

Let (M,g) be a Lorentzian manifold. For a given open set 

'11 s M, we define a congruence in '11 as a family of curves such 

that for each point p E 91 there is exactly one curve in the 

family which passes through p .  Let U be a timelike unit vector 

field on (M,g). The acceleration vector of 11 U-observer is the 
j spacelike vector field A = D,,U i.e. Ai = U .U . For curves in 

i ; ~  

the congruence of the U-observer the acceleration vector 

represents the non-gravitational forces acting on the observer. 

Computing the divergence of A we have 

By the Ricci identities 

and a contraction we find that 

We can decompose the "acceleration" tensor Ui with respect to 
; j 

Uiand h so that C391 
i j 

where 

( 2 . 8 9 )  V a hk h1 U 
i j i j k;l 

is called the relative velocity tensor. The tensor V 
i .i 

represents the relative velocities of particles in the rest 

k 
3-space of the observer U . 
We now decompose Vij into symmetric and antisymmetric parts as 



follows : 

( 2 . 9 0 )  V = eij + oijt 
i j 

where 

is called the strain-rate tensor, and where 

( 2 . 9 2 )  0 i j Ulij19 

is called the vorticity tensor. Since V is the result of a 
i j 

projection into the rest-space of a U-observer we see that 

and 

The strain-rate tensor 8 can be further decomposed into its 
i j 

trace and its trace-free parts: 

( 2 . 9 5 )  8 = o + (1/3)8hij, 
i J i j 

where a 
ij' 

the shear-rate tensor, satisfies 

and 8 ,  the volume expansion scalar, is given by 

( 2 . 9 7 )  
i e = u  . 
; i 

The vorticity tensor oil may be viewed as taking a sphere 

of particles in the rest-space of the U-observer into a rotated 

sphere of the same volume. A vector oi, called the vorticity 

vector, may be associated with oil by the equation 

( 2 . 9 8 )  
i j k l  



i From a knowledge of w we can recover the vorticity tensor by 

(2.99) w -  
ij - 'ijkl ok~'. 

The vorticity vector satisfies the following properties: 

(2.100) oiui = 0, 

and 

(2.101) i 
Oi = 0. 

The magnitude of the vorticity is defined by 

The shear tensor may be viewed as taking a sphere of 

particles in the rest-space of the U-o bserver into an ellipsoid 

of the same volume. The direction of any principal axis of the 

shear tensor is unchanged but all other directions are changed. 

The magnitude o of a is defined by 
i j 

(2.103) oZ (1/2)oiJaij 

2 0. 

The effect of the volume expansion scalar 9 is to change a 

sphere of particles in the rest-space of the U-observer into a 

larger sphere so that the logarithmic derivative of the radius 

of the sphere is 8 / 3 .  

Using the Ricci identity Uiik1 - i l k =  
j ikl and 

multiplying by uk we find 

U u k - U  u ~ - R '  U u k = O .  
i;kl i; lk ikl j 

Using the definition of the relative velocity tensor V and 
i j  



using the projection hij we find the propagation equation for 

V along the integral curve of U: 
i j 

Since (2.105) is a propagation equation for V it also 
i j 

contains the propagation equation of 8, u 
ij' 

and o , We will 
i j 

not find the propagation equation for 61 as we will deal 
i j 

exclusively with spherically symmetric spaces in which the 

vorticity tensor o = 0. 
i j 

The propagation equation equation for the expansion scalar 8 is 

found from (2.105) by contracting on i and j: 

where we have 

together with 

d8 9 - where dz 

used the field equations for a perfect fluid 

the definitions above. We have used the notation 

T is the proper time along the integral curve of 

Equation (2.106) can be written as 

(2,107) 
2 9' + (1/3)e2 = -20 t A' - (1/2)(p + 3p). 

; i 

In cosmology it is common practice to define a length scale L 

by the equation 

(2.108) 8 = 3(lnL)'. 

In terms of the length scale L, which we may view as the 

distance from our fiducial timelike U-trajectory to a 

neighbouring U trajectory (L being measured in R I c r , ) ,  we have 

(2.109) 3La'/L = -20' + A '  - (1/2)(p + 3p). 
; i 



From this equation we see that shear induces a contraction of 

the flow; the divergence of the acceleration shows the tendency 

of pressure gradients to cause expansion; the terms from the 

trace of the stress-energy tensor show that pressure causes 

contraction, 

The symmetric trace-free part of (2.105) is the shear 

propagation equation. From Ellis [39] we have (neglecting 

terms with vorticity) 

(2.110) 
k 1 k 

h i  hj a i m u *  - A f k i l )  ) - A . A  1 j + o i k ~  

+ (2/3)Bo + h (-(2/3)02 + (1/3)Ai ) + E = 0. 
i j ij ; i i j 

From this equation we see that the shear is controlled by the 

electric part E of the Weyl tensor. Since E represents the 
i j i j 

free gravitational field due to distant matter, these equations 

describe the "tidal forces" felt by a congruence of 

For spherically symmetric metrics and distributions of 

matter we should observe a distortion in the flow of 

U-observers as we move toward larger concentrations of matter, 

For a spherical fluid element in the rest space of a U-observer 

the cross-section of the fluid element orthogonal to the radial 

direction should decrease while the radial cross-section should 

elongate. The elongation in the radial direction is due to two 

effects - the acceleration of the congruence and the tidal 
forces. 



Motions on a Lorentzian Swacetime 

The use of symmetries to classify vacuum solutions of the 

field equations is well-known in general relativity. 

Symmetries may also be used to partially classify interior 

solutions, The stress-energy tensor is sometimes assumed to be 

invariant under the action of a symmetry i.e. isometric motion. 

The problem of how these symmetries effect the individual 

matter fields that contribute to the stress-energy tensor is 

probably difficult since a given stress-energy tensor may have 

several interpretations. We will briefly discuss some of the 

symmetries that have been used (a more complete list of 

symmetries is in Katzin et al. [29]. In Chapter 5 we will 

compute the field equations and other quantities for the case 

of nonstatic spherically symmetric anisotropic fluids in 

A motion is generated by a Killing vector field X on (M,g) 

such that 

(2.111) zxgil = 0 .  

A conformal motion is generated by a vector field X (conformal 

Killing vector field) such that 

(2.112) 4gij = 2 W i j  9 

where is the scalar conformal factor. 

A homothetic motion is generated by an vector field X (homo- 

thetic Killing vector field) such that 

(2.113) 4 g i j  = 2gij* 



A special conformal motion is generated by an conformal 

vector field X such that 

(2.114) xxgij = 2Wij, 

y, ij 
= 0. 

where t# is the scalar conformal factor. A conformal collineat- 

ion is generated by an affine conformal vector field X such - 
that 

where the collineation tensor H (one could also call H a 
i j i j 

conformal Killing tensor) satisfies 

and where I# is the scalar conformal factor. It is still a 

difficult open problem to characterize the collineation tensor 

Hi Only a few conditions are known which will produce H in 
i j 

such a way as to guarantee the existence of the vector X and 

the scalar y.  It has proven difficult to find examples of 

proper affine conformal vectors (do not reduce of conformal 

Killing vectors) until recently when Sharma and Duggal [I181 

have provided an abstract example. 

An affine conformal vector field is a generalization of a 

conformal Killing field. An affine conformal vector field 

reduces to a conformal Killing vector field if and only if 

Hij 
z Xgij where X is a constant. We may view the symmetric 

tensor Hi, as a measure of how much X fails to be a conformal 



Killing vector. 

A  special conformal collineation is generated by an affine 

conformal vector field X such that 

(2,119) X 
i;j 

t x  
j; i = 2Wij + Hij, 

where y is the scalar conformal factor and H is the symmetric 
i j 

parallel tensor associated with X and obeys the following 

equations 

The interest in these more general types of motions is a 

consequence of the following theorems. The first is due to 

Oliver and Davis [93]. 

Theorem: Let xi = XU', U'U = -1 and X > 0. A  spacetime (M,g) 
i 

admits a timelike conformal motion with symmetry vector xi if 

and only if 

and a 
ij' 

8, and A i  are, respectively, the shear tensor, the 

expansion scalar, and the acceleration vector of the timelike 

flow generated by Ui. 



The second theorem is due to Duggal [91]. 

Theorem: Let xi = Au', U'U = -1 and X > 0. A spacetime (M,g) 
i 

admits a timelike conformal collineation with symmetry vector 

xi if and only if 

(a) okl = - (~/3)8~h,,], and 
(b) = X-'[A t A .u'u. t H ukhji], 

D i D J  1 J k 

where 

= ( ~ e  - eX)/3, 
8* = (1/2) [Hii t HijUiuJ], 

and oij, 8, and Ai are, respectively, the shear tensor, the 

expansion scalar, and the acceleration vector of the timelike 

flow generated by Ui. 

Duggal's theorem is very important for the study of 

shearing fluids since it relates the shear of the fluid to a 

symmetry i . e .  the existence of a timelike affine collineation 

vector X and the "affine collineation tensor1' Hij. We conclude 

this section with some of the properties of collineations. 

An affine conformal vector field is special if and only if 

it leaves the curvature tensor R' jkl invariant. A special 

affine conformal vector field X is a special case of a Ricci 

collineation vector field [29], 

(2.123) SeR = O .  
X ij 

The Lie derivative with respect to an affine conformal 

vector field X of a non-null unit vector Z is given by C891, 

(2.124) XxZ = -(I t ( ~ / ~ ) H ~ ~ Z ~ Z ~ ) Z ' + Y ~ ,  



(2.125) qZ i = (I - ( E / ~ ) H ~ ~ Z ' Z ~ ) Z .  1 t H. 1~ . z J t  Yi, 
where Y' is orthogonal to Z '  and s is the indicator of z' .  

If v is the flow generated by an affine conformal vector 

field X then [I181 

(a) a null vector field N will be transformed by v into a 

null vector field if and only if H(N,N) = 0; 

(b) a non-null vector field V retains is causal character 

under q;  

(c) two orthogonal vector fields U, and V, will be 

transformed into orthogonal vector fields under if 

and only if H(U,V) = 0. 

There are many more properties of collineations which we shall 

omit. These generalized symmetries seem sure to play a very 

important role in future studies of realistic fluids. In 

Chapter 5 we shall compute the field equations with a conformal 

collineation in NN-coordinates for an anisotropic stress-energy 

tensor. 



CHAPTER III 

THE MATHEMATICS OF THE STRESS-ENERGY-MOMENTUM TENSOR - 

Classification af the Stress-Energy Tensor 

In this section we present a brief summary of the 

algebraic classification of the stress-energy-momentum tensor. 

The techniques used will be applicable to any second order 

symmetric tensor. There are several classification schemes 

[27,119,120, 1211 which have been developed in the last twenty 

years. The simplest of these is the Segre classification which 

uses the eigenvalues and eigenvectors of the Rij with respect 

to gij. When working with indefinite metrics one must 

prescribe the field over which the Segrb classification takes 

place. It is customary to use R, the real field, for the Segre 

classification. In general the Segr6 class of R over W 
i j 

will be different from that over C.  From the field equations 

(1.1) and the definition of the Einstein tensor we see that any 

classification of Rij is also a classification of T . In fact 
i j 

an alternative way of writing the field equations is 

(3.1) R = T  
i j 

i j - W 2 m i j f  

where T I T'~. There is a shift of eigenvalues in passing from 

a classification of R to that of T but, as long as it is 
i j i j 

.kept in mind, it poses no obstacle. 

Hall [122,124] has proven that in a spacetime (M,g) if 

p E M so that Tij 0 at p then there always exists a real null 



tetrad {L.,Ni,Xi,Yi} such that T assumes one of the following 
i j 

canonical forms: 

where po, pl, p2, p3 E R, and in ( 3.5 ) pl # 0. The first form 

(3.2) can be written with respect to a pseudo-orthonormal 

tetrad {Ti,Z.,Xi,Yi} where fl~' = L' - N ,  mi = L' + N' as 
1 

The forms (3.1) and (3.5) correspond to Segre type 

{1;1,1,1) where the numbers inside the braces refer to the 

degree of the elementary divisor corresponding to an 

eigenvalue. Each elementary divisor corresponds to at least 

one eigenvector. If an eigenvalue is algebraically degenerate 

(repeated eigenvalue) but the number of eigenvectors equals 

the multiplicity of the eigenvalue, then the elementary 

divisors for that eigenvalue are of degree 1. The Segre symbol 

indicates the algebraic degeneracy by enclosing the degrees of 

the elementary divisors corresponding to the degenerate 

eigenvalue in parentheses. If the degree of the elementary 

divisor exceeds the number of eigenvectors then the degree of 

the elementary divisors sum to the multiplicity of the 

eigenvalue. In this case at least one of the degrees of the 

elementary divisors of the degenerate eigenvalue is greater 



than 1. The degree of the elementary divisor corresponding to 

a timelike eigenspace is separated from the other degrees by a 

semicolon, the others by a comma. 

The form (3.3) corresponds to Segre class {2;1,1) which 

has a unique null eigenvector in the L' direction. The form 

(3.4) corresponds to Segre class (3;l) which has a unique null 

i 
eigenvector in the L direction. In (3.5) complex eigenvalues 

occur and x i ,  and Y' are the only real eigenvectors, thus the 

Segre class is written {zS;l,l). For this Tij is 

diagonalizable over C but not over R. 

We see that T always admits at least two eigenvectors. 
i j 

The Segre class {1;1,1,1) and its algebraic degenerate subcases 

is the only class which admits a timelike eigenvector. If 

there is no timelike eigenvalue degeneracy (timelike eigenvalue 

is distinct from the spacelike eigenvalues) then the timelike 

eigenvector is unique. 

Energy Conditions 

The Einstein field equations (1.1) are usually solved 

subject to side conditions. These side conditions will reflect 

physical properties of the physical situation we are trying to 

model. As we are interested in exact interior solutions, the 

"energy conditions" will be applied. There are several types of 

distinct energy conditions mentioned in the literature [33,95, 

961. Unfortunately not all these energy conditions have 



distinct names [96]. The role of all the energy conditions is 

to exclude unrealistic models of macroscopic matter. 

There is a general consensus among researchers in general 

relativity that the energy density of classical macroscopic 

i matter as measured by an observer with 4-velocity U is 

nonnegative i . e., 
(3.7) T. uiuJ r O. 1 1  

Since we do not admit the existence of privileged observers, 

this relation must hold for all timelike vectors ui. These 

inequalities are called the timelike weak energy conditions. 

Tipler [I231 has shown that the timelike weak energy condi- 

tions are the weakest energy conditions that can be locally 

defined which use the entire set of timelike vectors in T M. 
P 

If we write the stress-energy tensor T as 
a i l 

where {e } is an orthonormal eigenbasis with e(o, timelike, 
( a  

then the timelike weak energy conditions for a stress-energy 

tensor of Segre class {1,111), and its algebraic degeneracies, 

are equivalent [94] to the following system of inequalities on 

the eigenvalues X 
(a) ' 

(3.9) lo " 0, 
lo t Xi 2 0, i E {1,2,3}. 

The null weak energy condition is 

(3.10) r o 
i for all null vectors K . 



The strong energs condition is 

(3.11) T .uiuJ t (1/2)T 2 0 
i~ 

for all unit timelike vectors ui. This condition ensures that 

the matter stresses will not become so large that R uiuj S 0 ,  
i j 

The dominant energy condition assert that T satisfies the the 
i j 

following conditions for each timelike future pointing vector 

ui: 

(3.12) T uiuJ 2 0, and 
i j 

(3.13) i j T U is nonspacelike. 
j 

This energy condition states that the speed of energy flow of 

matter is always less that the speed of light. The dominant 

energy condition implies the timelike weak energy condition. 

The dominant energy condition excludes stress-energy-momentum 

tensors of Segre types {zz;l,l) or {3;1) and their algebraic 

degeneracies. It also severely restricts the possible 

eigenvalues of Segre classes {1;1,1,1) and {2;1,1) and their 

algebraic degeneracies. In particular for Segre class 

{1;1,1,1) we must have the eigenvalues satisfying [I241 

(3.14) lo L 0, and 

(3.15) lXil 5 Xo for i E {1,2,3). 

The strong energy condition implies the null weak energy condi- 

tions, but does not imply the timelike weak energy condition 

* 1961. 

A stress-energy-momentum tensor is normal at p € M if 

T' .x' is timelike for all nonspacelike vectors X € T M [94]. 
J P 



T is normal if it is normal for every p E M. It can be shown 
i j 

that a normal stress-energy-momentum tensor has a unique unit 

future pointing timelike eigenvector [94]. 

Stress-Energy-Momentum Tensors 

The material content of a spacetime is represented by the 

stress-energy-momentum tensor T which appears on the right- 
i j 

hand side of the field equations (1.1). 
T i j  

depends on the 

fields representing the matter, the covariant derivatives of 

these fields, and the metric tensor. Note that T = 0 on an 
i j 

open set U in M means that there are no matter fields on U. By 

the field equations we see that the twice contracted Bianchi 

identities of the Einstein tensor 

(3.16) G ' ~  0, 
; 1  

imply that the stress-energy-momentum tensor satisfies a set of 

differential identities 

It has become common practice in general relativity to 

call these identities "the conservation equations" or, for the 

case of dust, "the equations of motion". As Wald [96] notes, 

the notion of (3.17) as conservation equations is only true in 

the differential sense. A better descriptive term for (3.17) 

is the "equations of hydrodynamical support". 

For a fluid moving through spacetime with a unit-speed 

timelike tangent vector U, the flow lines are the integral 



curves of the vector field U. We say that the fluid is a 

perfect fluid if the stress-energy-momentum tensor has the form 

(3.18) Tij = (P+P)U~U~ + Pgij, 

where p is the energy density measured by an observer with 

velocity U, p is the pressure common to all 2-planes in the 

rest-space of the observer. 

A viscous fluid with coefficient of dynamic viscosity 
i 

2 0, bulk viscosity E 2 0 ,  flow vector U , energy density 
p, isotropic pressure p, shear tensor uij, expansion scalar 0 ,  

and heat flow vector Q', has a stress-energy-momentum tensor 

given by 11251 

(3.19) 

where 

uiui = -1, 

viai = 0 ,  

and 

i Q1 = 0. 

Hall 11191 and Hall and Negm El261 have shown that this 

form of the stress-energy-momentum tensor, without any energy 

condition imposed, does not restrict the Segr4 class. By using 

the projection tensor onto the 3-space orthogonal to ui, i . e .  

h I gij + UiUj, we can write the stress-energy-momentum 
i j 

tensor in the form: 



Equation (3.20) has the same form as (3.19) if we set 

and 

with other obvious identifications. From (3.19) it is clear 

that setting Qi = 0 forces T to be Segre type {I; 1,1,1) or 
i J 

one of its degeneracies. A stress-energy-momentum tensor for 

a viscous fluid without heat flow is easily seen to be normal. 

Setting E, q to zero and leaving Qi # 0, we have a 

i 
nonviscous fluid with heat flow. The vector U is not a 

timelike eigenvector in this case. Hall and Negm [I261 have 

shown that the dominant energy conditions imply that two 

physical Segre classes arise from this specialization, namely 

2,(11) and {l,l(ll). Only in the last case is the 

stress-energy-momentum tensor normal, 

Setting the viscosity coefficients 5, q and the heat flow 

vector Q' to zero leads to the Segre type (1; (1,1,1)) of a 

perfect fluid. It is clear that the stress-energy-momentum 

tensor of a perfect fluid is normal. 

Hall and Negm [I241 give several combinations of matter 

fields and discuss their algebraic structure. The combinations 

include two non-zero interacting radiation fields, a perfect 



fluid and a radiation field, and two noninteracting perfect 

fluids. All of these combinations have stress-energy-momentum 

tensors of Segre class { 1 , 1 ( 1 1 ) )  hence are all anisotropic. 

For a perfect fluid the timelike weak energy conditions 

1961 become 

( 3 . 2 1 )  P 2 0, 

p + p r o .  

For a perfect fluid the strong energy conditions are 

( 3 . 2 2 )  P + 3~ 2 0, 

p t p r o .  

For a perfect fluid the dominant energy conditions are 

( 3 . 2 3 )  P 2 !PI 2 0, 

For anisotropic stress-energy tensors the situation is more 

complicated depending on the composition of the stress-energy 

tensor. Hall and Negm [ I 2 4 1  have written the dominant energy 

conditions for several cases. 



CHAPTER 

SHEARING PERFECT FLUID SOLUTIONS IN SPHERICALLY WARPED PRODUCT 

MANIFOLDS OF THE FIRST TYPE 

The Field Equations in NN-Coordinates - 
In this chapter we shall write the field equations for a 

perfect fluid in NN-coordinates and find some special solutions 

which exhibit nonzero shear. From Chapter 2 we know that a 

spherically symmetric metric may be written in a variety of 

ways when represented by a Lorentzian warped product of the 

first type. The advantage of using this representation is that 

one can immediately deduce certain aspects of elementary 

causality solely from this representation and an analysis of 

the causality of the two dimensional Lorentzian factor 

manifold. 

The metric for the spacetime which we use can be written 

in the form 
- 

(4*1) g = -4fz(u,v)du@dv + rz(u,v) [d8@d8 + sinz8d@3d@l. 

This metric is a type 1 warped product metric. The coordinates 

u and v are null coordinates. There are few papers in the 

literature which use double null coordinates [35,1271. The 

papers [35,127] have similar calculations which were used to 

cross-check the calculations as far as possible. 

The metric form (4.1) is not quite the same as that in 

[35,127]. In those papers the metric is presented with the 



term -4fL(u,v)du@dv replaced by -2f(u,v)duWv. The second 

choice allows the possibility that when f changes sign the 

coordinates u and v are interchanged. 

Beem and Ehrlich [ 3 3 ]  have proven the several propositions 

concerning the elementary causality of Lorentzian metrics with 

a warped product decomposition of the first type. Let (M,g) be 

a spacetime and let (H,h) be a Riemannian manifold. Then 

(a) (M xf H, g @ fh) is chronological if and only if (M,g) is 

chronological; 

(b) (M xf H, g @ fh) is causal if and only if (M,g) is causal; 

(c) (M xf H, g @ fh) is strongly causal if and only if (M,g) is 

strongly causal; 

(d) (M xf H, g CB fh) is stably causal if and only if (M,g) is 

stably causal and dim# 2 2. 

2 
For the metric (4.1) we take M to be some open subset of lR 

2 with metric g = -4f (u,v)du@dv where (u,v) are the coordinates 
2 2 

on lR ; for H we take S , the standard sphere with coordinates 

($,a), with metric h = d m 6  t sin28d4@d$. With these identi- 

fications the all four of the propositions hold when the 

appropriate conditions hold on the two-dimensional Lorentzian 

manifold (M,g). Recall that sL is complete. The elementary 

causality of any perfect fluid solution determined from (4.1) 

(as far as the preceding four propositions are concerned) is 

determined by simply examining the properties of the (u,v) 

coordinates on an appropriate domain, Since the metrics 



2 
g = -4f (u,v)duMv are all conformal to g = -2duMv on R ~ ,  the 

spaces (M,g) have similar causal properties as 2-dimensional 

Minkowski space. If global topological identifications are 

made, then great care must be used in trying to use the 

preceding theorems. Not all spherically symmetric metrics have 

these properties since they cannot all be written as a Lorentz- 

ian warped product. 

We compute the standard quantities for the metric (4.1) 

next. All quantities are computed in the sign conventions of 

Chapter 2 (also see Appendix A for notation). The Christoffel 

0 1 2 3  
symbols of the second kind are (with (x ,x ,x ,x ) = (u,v,8,@)) 

(4.2) r0 U r O 22 2 

00 
= 2f /f, = rr /(2f ) ,  

v 

2 r0 = r O  sine, r1 2 

33 =  sin 8, 33 22 - 
2 2 = rr sin 8/(2f ) ,  

v 
= rr sin28/ (2f ') , 

U 

r1 2 

2 2 
= rr /(2f ) ,  

u 
r1 

11 
= 2fv/f, 

r2 02 = ru/r, r2 12 = rv/r, 

r2 
33 

= -cos8sin8, r3 = ru/r, 
03 

r 
13 = rv/r, r3 = cote. 

23 

Applying the Christoffel symbols we find the geodesic equations 



where the prime represents differentiation with respect to an 

affine parameter. In the paper of Synge 1 3 5 3 ,  the Lagrangian 

defined from the metric ( 4 . 1 )  is used to discuss radial null 

and timelike geodesics for a vacuum in NN-coordinates. 

The Killing equations corresponding to the metric ( 4 . 1 )  

are 

The spherical symmetry implies the existence of at least three 

a 
Killing vectors: E t l )  = W, E ( t )  

a a and = sin% + cot8cos~ - a v  

a a 
E ( 3 )  

= cos* - cot8sinO - a+* Other Killing vectors may occur 

if special assumptions are made on the metric functions f and 

r. In the following section we will see that assumptions that 

we make in order to render the field equations tractable will 

generate an "accidental" Killing vector, 



The Riemann tensor has components given by 

- 
R0212 - -rruv, 

- 2 

R0303 - R0202 sin 8, 

R1,12 
= 2rr fv/f - rr 

v vv ' 
- 2 

R1313 - R1212 sin 8, 
2 2 2 

R2323 
= r sin 8(rurv/f + 1). 

We will write the tetrad components of the Riemann tensor 

i 
for a pseudo-orthonormal tetrad { A A  1 chosen as follows: 

The independent tetrad-components of the Riemann tensor are 



The Ricci tensor components are 

The tetrad components of the Ricci tensor are 

(4.10) R(oo, = 2r f /(rf3) - rvv 
v v /(rf2), 

R(ol, 
= -r /(rf2) + f f /f4 - f /f3, 

uv u v VU 

R ( ~ ~ )  = 2r u f u /(rf3) - ruu/(rf2), 
2 

R(221 
= l/r + r /(rf2) + rurv/(r2f2), 

uv 
2 

R(33, 
= l/r + r /(rf2) + rurv/(r2f2). 

uv 

The Ricci scalar (curvature scalar) is 

Other invariants constructed from the Riemann tensor are 



and the Kretschmann scalar 

~~j~~ 
4 4 4 2 

(4.13) R i j k L  = 4(r u r v )2/(r f ) + 8r u r v /(r f ) 

2 6 2 5 + 16r r f f /(r f ) - 8r r f /(r f ) 
U V U V  U vv u 

2 5 2 4 - 8r r f /(r f ) + 4(ruv)2/(r f ) 
UU v v 

2 4 r /(r f ) + 4(f f )2/f8 + 4rUu vv u v 

- 8f f f /f7 + 4(f )2/f6 + 4/r4 
U V v u  v u  

= 4[2r f /f-r ][2r f /f-r l/(r2f4) 
v v v v u u uu 

2 2  4 + 4(r )2/(r2f4) + 4[1+r r /f 1 /r 
uv U v 

+ 4[f f -ff 12/fB . 
u v vu 

The components of the Einstein tensor are 

(4.14) = 4r f /(rf) - 2ruu/r, 
u U 

2 2 2 

Go 1 
= 2f /r + 2r r /r + 2r /r, 

u v uv 

1 
= 4r f /(rf) - 2rvv/r, 

v v 

G22 
= -rr /f2 + r2f f /f4 - r2f /f3, 

uv U v v u  
2 

G33 
= Gz2sin 8. 

We are interested in finding shearing solutions for the 

case when the stress-energy tensor is that of a perfect fluid. 

Whenever interior solutions are considered one must decide on 

the reference frame of the observer. In NN-coordinates we 

shall use an observer who is "generalized comoving". This is 

a special choice of observer who shares some of the mathematic- 

al advantages of comoving observers in TS-coordinates. From a 

mathematical point of view, the choice of a comoving observer 

does not introduce new unknown functions into whatever problem 



is being analyzed. This property is shared by the notion of a 

"generalized comoving" observer. A generalized comoving 

observer has a velocity vector orthogonal to the orbits of a 

symmetry group. For spherically symmetric metrics this means 

that the velocity is orthogonal to the two-dimensional orbits 

of SO(3). In contrast, a comoving observer is defined to have 

velocity vector orthogonal to a hypersurface. In NN-coordin- 

ates for the metric (4.1), the velocity vector of a generalized 

comoving observer is given by 

From now on all the problems to be analyzed will use this 

frame. In NN-coordinates an observer who is not comoving in 

the generalized sense, but still has velocity orthogonal to the 

orbits of S0(3), has velocity given by U i  = (a,b,O,O) where 

Associated with any velocity vector is a spatial project- 

ion tensor hij which completes the (3+1)-decomposition of 

spacetime. The components of h for the generalized comoving 
i j 

velocity are 

2 2 2 

h22 
= r ,  

h33 
= r sin 8 .  

Kinematical quantities such as the acceleration vector, 

shear tensor, and expansion scalar are computed next. The 

nonzero components of the acceleration vector of the 

generalized comoving velocity are 



(4.17) A, = (fu - f )/(2f), v 

*1 
= (-f + f )/(2f), 

U v 

The nonzero components of the shear tensor determined by Ui are 

(4.18) (7 
0 0  

= f(ru + r )/(3r) - (f + fV)/3, v U 

(7 
0 1 

= -f(ru + r )/(3r) + (fu + f )/3, 
v v 

(7 
11 

= f(ru + rv)/(3r) - (fu + fv)/3, 

O2 2 
= ( r  + r )/(6f) + r2(fu + f )/(6f2), 

u v v 
2 

(7 
33 

= az2sin 8 .  

The expansion scalar 8 is found to be 

(4.19) 8 -(ru + r v ( f  - f u + f v )/(2f2). 

Using the stress-energy tensor for a perfect fluid with 

energy density p and pressure p, T ij = (p+p)UiUj + pg,,, 
p+p # 0, we find the independent field equations to be 

The conservation equations are written in the following form: 



Notice that the second conservation equation is identically 

satisfied if f and r (hence p and p) are functions of u+v. 

Solutions of the Field Equations &J-Coordinates 

In this section we seek solutions of the field equations 

(4.20) to (4.23) which exhibit shear. We rewrite the equations 

(4.20) to (4.23) as follows: to find p we add (4.20), 

( 4.22 ) , and twice ( 4.21 ) then divide by 4f to get 

3 + (r f + r f )/(rf ) - (ruu+ rVV 
U u v v )/(2rf2) 

To find p we add (4.20), (4,22), and subtract twice (4.21) then 

divide by 4f2 to get 

Taking the difference of (4.20) and 

(4.28) fhuu - rVV) = 2r f - 
U U 

Equation (4.28) can also be written 

(4.29) 2 
(ru/f l U  = (rv/f2)vo 

Taking the difference of (4.23) and 

(4.22) leads to 

in the form 

(4.27) leads to 

(4.30) 2 2 (-f f + ff )/f4 - rurv/(r f ) - (ruu + rvv u v uv / ( 2rf2) 
2 + f + r f f 3  - 1 = 0. 

v v 

Equation (4.30) is the pressure isotropy equation. The 

pressure isotropy equation may be written in the form 

Using equation (4.29), equation (4.30) can be written as 



There are many ways which one may attempt to solve (4.28) 

and (4.30) for f and r. Equation (4.29) has a particularly 

interesting structure so we shall examine it first. The first 

integral of the equation (4.29) is r /fZ = xV, and r /f2 = xu, 
U v 

2 where is a &-function on a contractible domain. If r is a 

2 8 -function then we can write (as a consequence of ruv = r ) v u 

Defining new variables p = u-v, and t = u+v, we find (4.33) 

becomes 

We now make the ad hoc hypothesis that f = l?(t). The second of 

equations (4.34) can be integrated to find that 

Using this in the first of (4.34) and integrating the resulting 

linear equation we find 

where g and h are arbitrary smooth functions of one variable 

and P is given by P(t) ( 1 / 2 ) S L [ g '  (C)/F(S)I~F. Using the 

definitions of t and p we have 



There is a dual case for the ad hoc hypothesis that f = F(p) 

which leads to 

(4.38) r(u,v) = g(u-V) - F(u-v)[P(u-V) + h(u+v)]. 

In both of these cases, use of (4.37) or (4.38) in the 

pressure isotropy equation (4.30) leads to an i n t r a c t a b l e  

equat ion  in general. Thus we have to look for another method 

of solving (4.28) and (4.30). 

2 
For a vacuum one can show that 2f = (1 - 2m/r)U8(u)V'(v) 

which leads to Schwarzschild's solution. By a coordinate 

change the dependence on functions of u and v can be removed so 

that we have f = F(r) = (1 - 2m/r). This motivates us to 

assume that for a class of solutions a  func t i ona l  r e l a t i o n s h i p  

e x i s t s  between t h e  metric c o e f f i c i e n t s  f and r even i n  t h e  c a s e  

o f  a  p e r f e c t  f l u i d .  

The method that we shall use to study the field equations 

is to find a general solution of equation (4.28) under the 

hypothesis that a functional relationship f = F(r) exists 

between the metric coefficients f and r. Once we have found a 

solution to equation (4.28) we shall use it in the pressure 

isotropy equation (4.30) to find a mathematical solution to 

the field equations. The mathematical solutions will then be 

tested to see that appropriate energy conditions are satisfied, 

that the shear tensor is nonzero, and that the resulting 

solution is nonstatic, 

We will define several auxiliary functions which Figure 8 



illustrates. For clarity in Figure 8 we have used distinct 

symbols for the value of a function and the function itself. 

It is a common abuse of notation in applied mathematics to use 

the same symbol for both. Thus f = 9(u,v) = FoX(u,v) and 

r = R(u,v) as a consequence of assuming that f = F(r). When 

convenient we shall employ the usual abuse of notation, 

2 Figure 8 Functions related to (ru/f )u = (rv/f2)v. 



Let V,(r) = ~'[F(~)l-~dt. Then V,' (r) = [~(r)]-~ > 0 hence 
4- 

yl exists and is smooth. The value of V, is s = ~(r). We also 

define the function.y(s) s $(s) = r. By abuse of notation we 

2 2 have sU = r /f and sV = r /f . Thus equation (4.29) leads to 
U V 

(4.39) s - S  = o .  
u u v v 

Equation (4.39) has the general solution 

2 
where g and h are arbitrary & -functions. We find r to be 

given by 

Using (4.41) we find the following formulae for the partial 

derivatives of r and f (we use h' i d(u-v) dh and g' d(u+v) dg ) 

(4.42) r = f2(g' + h'), 
u 

2 
rv 

= f (a '  - h'), 
df 2 

r = fZ[(g" + h") + 2f=(ga + h' ) I ,  
u u 

df - f 2[ (g" + h") + 2fz(gS - h' ) 21, 
rvv - 

2df f = f =(g' + h'), 
u 

ad f f = f =(g. - h'), 
v 

Putting these into (4.30) we get 

adf 



Thus, if we find 3 functions f, g, and h so that (4.43) is 

satisfied, then we can use (4.41) to define r. This solution 

will be a mathematical solution of the field equations only-it 

still needs to have the nonstaticity, shear tensor, and energy 

conditions checked. Nonstaticity will follow automatically if 

g' # 0. 

The first case that we shall study is the simple case when 

f = 1. By absorbing the constant of integration in (4.41), we 

can write 

(4.44) r = g(u+v) + h(u-v). 

Equation (4.43) reduces to 

(4.45) go2 - hJ2 + (g + h)(g.. + h") + 1 = 0. 

Differentiating with respect to t = u + v, we find 
(4.46) g' (g" + h") + (g + h)g"' + 2g'g" = 0. 

Differentiating with respect to p = u - v, we find 
(4.47) hl(g" + h") + (g + h)h"' - 2h'h" = 0. 

Differentiating (4.47) with respect to t .gives 

(4.48) $' b"' + g"' h' = 0. 

If g' # 0 and h' # 0, then h"'/hl = -g"'/g' = -1, where 1 is a 

constant of separation. There are three subcases: 

(i) X = 0, 

(ii ) X > 0, 

(iii) X < 0. 

For the case X = 0, we have g"' = 0 and h"' = 0 so that we 

formally find 



Using these solutions in (4.46) and (4.47), we see that 

(4.45) becomes 

(4.50) 2 2 
g' - h 8  + 1 = 0 .  

Thus the formal solutions (4.50) have the form 

(4.51) g(u+v) = ko + (u+v)sinha, 

h(u-v) = c t (u-v)cosha, 
0 

where a is a real parameter. Using (4.51) we find that r is 

given by 

(4.52) r(u,v) = co t ko + (u+v)sinha + (u-v)cosha. 

Unfortunately, together with f = 1, (4.52) leads to the 

unreasonable result that p = 0 and p = 0. Thus case X = 0 does 

not lead to a solution. 

The case X > 0 leads to the system of equations 

(4.53) 
2 g"' = a g' , 
2 h"' = -a h' , 
2 where we have set X = a , a # 0 .  This system of equations has 

the formal solution 

(4.54) U(U+V)  -a( u+v g(utv) = ko + kle - k2e 9 

2 2 
Using (4.54) we can show g" + h" = a (g - h) + a (co - kO). 
Putting this into (4.46) and (4.47), noting that g"' = aLg' 

and g' # 0, we find that g(utv) = (3ko - co)/4 for all values 
U(u+v )  -Q(u+v)  

of u+v. Since the set of functions 11, e 9 e ) is 



linearly independent when a # 0 we see that kl = k2 = 0 thus 

g = 0 which contradicts the hypothesis g' # 0. Similarly we 

can show that h' = 0, contradicting the hypothesis that h' # 0. 

Thus there is no solution for the case 1 > 0 when g' # 0 and 

h' # 0. 

The case X < 0 leads to the system of equations 

(4.55) 
2 .  g"' = -a g , 

h"' = a2h' , 
2 where we have set X = -a , a # 0. This system of equations has 

a formal solution similar to (4.54) and the same methods may 

be used to show that this case has no solution. 

If we assume that g' # 0, h' = 0, then we find that 

(4.45) reduces to 

(4.56) gg" + g. + 1 = 0 

where we have absorbed the constant value of h into g. 

We set B = g. so that g.' = and (4.56) becomes 

(4.57) gpB' + p2 + 1 = 0, 

where the prime means differentiation with respect to g .  This 

equation reduces to the Bernoulli equation 

(4.58) B' = -p/g - 8-'/g0 
Applying the method in [801 we arrive at the solution 

(4.59) 
- 2 p 2 = C g  - 1 ,  

. where C > 0 is an integration constant. This equation leads to 

(4,60) 
- 2 g S 2 = c g  - 1. 

This equation can be completely integrated to give the 



2 
solution g2 .= C - K2 T 2K(u+v) - (u+v) where K is a constant 
of integration. The metric has the form 

- 
(4.61) g = -4duMv + [C - K2 F 2K(u+v) - (u+v)~]~wB 

Since C > 0, there are two values of u+v for which g would 

be zero. Constraining u+v to lie strictly between these values 

2 2 
guarantees that g > 0. The region g > 0 is an open strip in 

2 
the (u,v) coordinate plane hence is homeomorphic to R and thus 

this solution is stably causal, hence strongly causal, causal, 

and chronological. 

We now want to check the timelike weak energy conditions. 

For f = 1, and r = g(u+v) we find the energy conditions to be 

(4.62) p = (1 + g* 2)g-2 2 0, 

which will hold for any g # 0, and 

'(4.63) ,Y + p = -2g7g r 0. 
2 

Taking g2 = C - K' T 2K(u+v) - (u+v) and differentiating 
twice with respect to u+v we find 

(4.64) 
2 

2g' + 2gg" = -2. 

Thus 

(4.65) 2 
gg" = -(1 + g' ) < 0, 

and the timelike weak energy conditions hold for the solution 

If we apply the dominant energy condition we just have to 

check the inequalities 

(4.66) ,Y 2 I P ~  2 0, 



which is equivalent to the three inequalities 

The first two are satisfied for the timelike weak energy 

conditions. All that remains is to check (4.69). We find 

that 

(4.70) 
2 2 

p - p = 2/g2 + 2gS2/g + 2gS'/8 

= 2(1 t s S 2  + s..)/e2 

= 0 

from (4.65). Thus the dominant energy conditions hold on the 

same region as the timelike weak energy conditions. 

If we apply the strong energy condition we must check the 

inequalities 

Using (4.65) we can show that p + 3p 2 0 on the region where 

the solution is defined, thus the strong energy conditions hold 



on this region as well. 

The energy conditions, (4.67), and (4.70) show that the 

stiff equation of state p = p holds. The expansion scalar is 

8 = -2ga/g. The acceleration vector A is identically zero. 

The shear tensor a is nonzero since a = 2gm/(3g) # 0. By a 
i j  0 0 

transformation to the coordinates t and p it is clear that this 

solution is nonstatic since g' # 0. 

a a Since f = 1 and r = g(u+v) we see that 5 ( 4 ,  = - - - au av is 

also a Killing vector. E t r )  is orthogonal to the surfaces u t v 

constant hence this solution, which is not a dust solution, has 

the same symmetry as the Kantowski-Sachs 1271 dust metrics. 

The radial (8 = constant, 9 = constant) geodesic equations 

can be easily integrated for both the null and timelike cases. 

The radial null geodesics are 

(4.73) u = b, 

V = d, 

where b and d are arbitrary constants. The radial timelike 

geodesics are given by 

(4.74) u(X) = aX + b, 

v(X) = cX t d, 

where 4ac = 1 and b and d are arbitrary constants. 

The scalar invariants are found next. The curvature scalar is 

2 2 2 where g = C - K T 2K(u+v) - (u+v) . Other invariants 

constructed from the Riemann tensor are 



and 

= 3 ~ ~ ,  

2 2 2 where g = C - K T 2K(u+v) - (utv) , and we have used (4.65) 
repeatedly. 

1/2 For the next example we take f = r . With this 

assumption we find that s = lnlrl~ + c, where c is a constant of 

integration. Absorbing c into g where s = g(u+v) + h(u-v) we 

find from (4.40) that r is given by 

where C is a nonzero constant. Using (4.78) in (4.43) we find 

after some simplification 

(4.79) g " -  h'" + g t hU)/2 + e - ( g + h )  /C = 0. 

Consecutively differentiating with respect to utv and u-v we 

find that either g' = 0 or h' = 0 for all values of u+v and 

u-v. This shows that we cannot have both functions g and h to 

be nonconstant. If g' = 0 it is easily seen that any solution 

which might be derived from (4.79) will be static hence not of 

interest in our study. Taking h' = 0, we find the equation 

(4.80) g" + 2g. t z ~ - ~ / c  = 0. 

Setting p(g) = g' and setting U(p) = p L  we find the 

differential equation 



(4.81) dU - + 4U + 4e-g/~ = 0. 

Thus pZ = -4e-g/( 3 ~ )  - hence C < 0. There are three 

cases: K < 0, K = 0, K > 0. 

If K < 0 we can perform a quadrature to implicitly 

determine g and hence r. Thus 

2 2 where D is an integration constant. Since p = g' 2 0, we see 

that K < 0 imposes a restriction on the domain of the solution. 
1/2 

Using f = r and (4.80) in (4.67), we find that 

p 2 0 if 1 + Cg' 'eg 2 0. However the condition p + p 2 0 

2 0, hence the timelike cannot be satisfied when 1 + Cg' e 

weak energy conditions are not satisfied for the case for any 

constant C < 0. Since this argument may be applied for the 

cases K = 0, and K < 0, we see that no reasonable solutions 
1 / 2 arise from f = r . 

1 / 3  1 / 3  Another case is given by f = r . We find that s = 3r 

+ c, where c is a constant of integration. Absorbing c into 

g(u+v) we find 

(4.83) 
3 

r(u,v) = [g(u+v) + h(u-v)] /27. 

Using this in (4.43) and simplifying gives 

Let q = h/3, r = g/3, so that f = r + q. Then (4.84) will 

reduce to 

(4.85) 2 2 + ) + 20") + o r  + q)z(2 - q' ) + 1 = 0. 

This equation is difficult to solve, so it will be simplified 



by putting q .= 0  to get 

( 4 . 8 6 )  2r3r-  + ior2r. + 1 = 0 ,  

where we use the dot to denote differentiation with respect 

da to u+v. Let a = r so that r" = w, where a = a ( T ) .  Thus 

( 4 . 8 6 )  is reduced to 

where we use the prime to denote differentiation with 

respect to I'. Dividing by a we find 

which we recognize as a Bernoulli equation if we write it as 

From [ 8 0 ]  we find the solution 

where 

where K is an integration constant. 

Thus we have 

so that 

( 4 . 9 6 )  a2(r) = cr-lo - 1 / ( 8 r 2 ) ,  

where C  is a constant of integration. In fact C must be 



greater than zero so that a L ( r )  2 0 .  The definition of a shows 

that 

( 4 . 9 7 )  2 = Cr-lo - 1 / ( 8 r 2 ) .  

Let H(r;C) 3 cr-lo - 1 / ( 8 r 2 )  so that H(r;C) 2 0 .  We can 

write a solution to ( 4 . 8 6 )  as 

Thus f = I' and r = r3 give the solution of the field equations 
where I' is determined by the quadrature ( 4 . 9 8 ) .  The integral 

in ( 4 . 9 8 )  is non-elementary when C # 0 .  

In terms of I' the mass-energy density p and the pressure p 

are given by 

( 4 . 9 9 )  p = i /r6 t i 5 r 2 / r 4 ,  

and 

( 4 . 1 0 0 )  p = - 1  - 1 5 r  2/r4 - 6 r / r 3 .  

From ( 4 . 9 9 )  and ( 4 . 1 0 0 )  we see there is no simple equation of 

state for this solution. 

The timelike weak energy condition p 2 0  is satisfied by 

any solution r # 0  of ( 4 . 8 6 ) .  The energy condition p + p 2 0  

holds if IT'" s 0 .  Thus the timelike weak energy conditions 

are satisfied for a solution of ( 4 . 8 6 )  if C > 0 and IT" S 0 .  

From ( 4 . 8 6 )  we see that r satisfies = - 5 r  - 1 / ( 2 r 2 )  < 0  

thus the timelike weak energy condition p + p 2 0  holds. 

For the dominant energy condition we have just to check 

the inequality (since the timelike weak energy conditions hold) 



2 0. 

Using f = r, r = r3, and (4.86) in (4.101) we find that 

(4.101) cannot be satisfied since p - p = -r-= < 0. 

For the strong energy condition we just have to check 

(4.102) 
2 2 2 p +  3p = -2/r - 2 r r f )  - 2 /(rf2) 

u  v  u v  

since p + p 2 0 from the timelike weak energy conditions. 

Using f = r, r = r3, and (4.86) in (4.102), we find that 

(4,103) p + 3~ 7r6 + GOT 2r-4 

2 0, 

thus the strong energy condition holds. 

Any solution of (4.86) with C > 0 will satisfy the 

timelike weak energy conditions and the strong energy 

conditions. This solution has shear since ooo = (4/3)r', 

nonzero expansion since the expansion scalar is 6 = -7T /r2, 

and zero acceleration since r is a function of u+v. Writing 

the metric in terms of r we have 
- 

(4.104) g = -4r2(u+v)du&iv + r6(u+v) [d6&i6 + sin2t3d~cb]. 

This metric is clearly nonstatic since r' # 0. As the metric 
a a 

coefficients are functions of u+v we see that t t r ,  = - is 

an additional Killing vector. On each subregion of the (u,v)- 

plane where r # 0 the metric (4.104) is stably causal, hence 

strongly causal, causal, and chronological. 



The Ricei scalar is found, using (4.11) and (4.86), to be 

(4.105) R = -301- 2 ~ - 4  - 5r-6. 
Other invariants constructed from the Riemann tensor are 

complicated nonzero expressions of I', r', and I'" which we shall 

omit. 

a r We next study the case when f = F(r) = e with a # 0. 

Equation (4.30) becomes 

(4.106) 2ar 2 2 -e /r - rurv/r + arUV + a(r2 u + r:)/r 

- (%u + rvv)/(2r) = 0. 
Simplifying (4.106) we find (assuming that r = R(u+v)) 

(4.107) 2ar .2 . 2  -e - r + ar2r*. + 2arr - r = 0, 

which we rewrite as 

We set P = r. so that re. = @ and (4.108) becomes 
(4.109) r(ar-l)Pr + (2ar-1)p2 - e 2a r = 0, 

where the prime means differentiation with respect to r. 

Dividing by p and rewriting we get 

(4.110) fl' = (1-2ar)P/r(ar-1) + e2av-'/[r(ar-1)] 

which is a Bernoulli equation. Equation (4.110) can be written 

k = -1. If we set 

(4.112) X(r) = (1 - k)[g(r)dr, 
then the solution of (4.108) is 



Thus we are left with the first integral 

Evaluating the integral for X(R) we find the following first 

integral 

.2 - 2 2ar 2 2  (4.115) r = ~r-'(ar-l) t e /(a r ) .  

2ar 2 2  Let K(r;a,D) I ~r-'(ar-l)-~ + e /(a r ) .  We can write 

implicitly a solution r to (4.115) as 

(4.116) -1/2 
E * (u+v) = S[~(r;a,D)l dr, 

where E is a constant of integration. The timelike weak energy 

conditions become 

(4.117) 2 -2ar 2 -4 
p = ~r-4(1+2ar)(ar-l) e + a r (l+ar)' 

2 0, 

anp, using (4.108) and (4,115) 

.2 2 2ar (4.118) p t p = (4arr - 2rra*)/(r e ) 

2 2 4 3 = 2(ar+l)/(a2r4) t 2D(2a r -l)/[r (ar-1) I 

r 0, 

These inequalities are very complicated depending on the signs 

-1/2 
of a, D, r. If we choose D 2 0, then 0 < ar < 2 will 

satisfy both (4.117) and (4.118). Thus there is an open strip in 

the (u,v)-coordinate plane on which the timelike weak energy 

conditions are satisfied. The metric form of this solution is 
- 

(4.119) 2ar(u,v) g = -4e duwv + r2(u,v)[dW9 + sin28d~@], 

where r(u,v) is the function implicitly defined by (4.116). 

The mass-energy density is given by (4.117). The pressure is 



given by 

(4.120) 2 -2ar . 2 .2 2 p = -l/r - e [r - 2rr" - 2arr ]/r . 
2 

Since the open strip is homeomorphic to R we see that the 

solution is stably causal hence strongly causal, causal, and 

chronological. The shear tensor ail is nonzero since 

a = 2earr'/(3r) - 2aearr'/3. The expansion scalar is found 
00 

-ar to be 8 = -r'emar/r - ae . The metric (4.119) is nonstatic 

since both f and r depend on u+v. As the metric coefficients 

a a 
are functions of u+v we see that cf4, = - - - au av is an 

additional Killing vector. 

The Ricci scalar is given by 

(4.121) -2ar .2 R = 2e [r(2+ar)rS* + r + r21/rZ. 

Another scalar constructed from the Riemann tensor is 

(4.122) -4ar [2ara 2-r'.] 2/r2 + 2e -4ar ..2 2 R ~ ~ R ~ ~  = 2e r [a-l/r] 

.. -2ar 2 4 + 2 [ 1 + r " + r r e  ] / r .  

The scalar R IR jkl is 

(4.123) R~~~~ -4ar .2 .. 2 2 2 ..2 
R i  jkl 

= 4 e  [(2arr - r r  ) + r r  

2 4 ..2 2 a r 2  4 + 4a r r + (rm2 + e ) ]/re 

From the previous examples we have seen that setting h = 0 

(or g = 0) will allow integration of the field equations for 

some specific cases. Now we investigate (4.30) more generally 

under this hypothesis. Using h = 0 in (4.43), as this will 

generate nonstatic solutions, we find the equation 



Equation (4.41) yields s = g(u+v) and r = y(s) = y(g). From 

dY (4.41) and the Implicit Function Theorem we find a = [F(r)12. 

Putting this into (4.124), we get 

(4.125) 

d where we evaluate - at y(g). If we prescribe F arbitrarily 
dr 

and use (4.41) to find r we see that solving the field 

equations reduces to solving the second order autonomous 

differential equation (4.125) for g. If we define 

(4.126) P " g' = P($) 1 

(4.129) C(g) r F(Y(~) 9 

(4.125) becomes the Bernoulli equation (for P): 

(4.129) d 
A ~ ~ [ P ( ~ ) I ~  + B(~)[P(P)I~ + c(g) = 0. 

We shall analyze (4.129) in two cases: A(g) = 0, and A($) # 0. 

dF If we assume that A($) = 0, then F(r) - r- = 0, thus we 
dr 

have F(r) = cr, where c is a constant of integration. Using 

this in (4.128) we find B(g) 0, thus (4.129) becomes 

(4.130) C(g) = 0. 



From (4.130) we must have c = 0 which produces a singular 

metric. Thus A(g) a 0 leads to no solutions. 

If we assume that A(g) $ 0, and let U(p) = [p(8)12, we 

have 

This equation is linear an can be integrate to find 

- 
Since U(g) see 

that (4.131) imposes some conditions determined by A(g) and 

C(g) on the domain of g. Supposing that the domain of g is 

nonempty we can find g by a further quadrature. Thus 

where D is a constant of integration. We conclude that 

assuming that either g or h is identically zero will always 

lead to a differential equation of the Bernoulli type 

(neglecting the degenerate case when A(g) = 0). 

We will apply the above discussion to the study of the 

u 
case f = r , where a is a real number. Equation (4.125) becomes 
(4.134) (1 - a)rg" + (1 t a - 2a2)r 2u g . 2 t 1 = 0. 

I-2a We find s = r /(I-2a) and thus 

Putting r into (4.134), yields 

where a # 1, 1/2. The exceptional case a = 1/2 has already 



been considered and has been shown to lead to no reasonable 

solutions. The exceptional case a = 1 has no solutions since 

putting f = r in (4.30) directly leads to r 2  = 0. 
- 1 

Now we consider the case when a = -1. Using f = r leads 

3 to s = r / 3  + c, where c is a constant of integration. Thus, 

absorbing c into the definition of g and letting h n 0, we find 

from (4.41) that 

Putting this into (4.125) leads to 

where we use the dot to denote differentiation with respect 

dP to u+v. Setting B = r' so that r" = &, we get 
(4.139) 2r3@r + 5r2p2 + 1 = 0, 

where now the prime represents differentiation with respect to 

r. ~ividing by p and rearranging terms we find the Bernoulli 

equation 

From [80] we find the solution of (4.140) to be 

(4.141) p2(r) = yl(r) + y2(r) 

where 

and l(r) is given by 



with C a constant of integration. Thus we find 

(4.145) 
-5r Yl(r) = De , 

(4.146) 
5 r 

Y2(r) = -e-5rJ[e /r21dr 

Thus the'solution of (4.140) is 

(4.147) f12(r) = Y,(r) + Y 2 W  
-5r = De - e-5rJ[e5r/r2]dr. 

A first integral of (4.38) is 

where D > 0 so that (4.148) makes sense on some subregion of 

the (u,v)-plane. Let K(r;D) 3 ~e'~' - e-5rl[e5r/r2]dr so that 
K(r;D) 2 0. We can write a solution to (4.138) as 

This integral cannot be evaluated to find r explicitly in terms 

of utv, E, and D, The metric form of this solution in terms of 

the implicit function r is 

The mass-energy density p is found to be 

and the pressure is 

so the equation of state p = p/3 holds. 

Using (4.138) in (4.67) and (4.68) shows that the 

. timelike weak energy conditions hold. The dominant energy 

condition holds since 



= 2 ( 2r' - rr") 

For the strong energy condition we just show that 

holds since we have shown that p + p 2 0 for the timelike weak 

energy conditions. Thus the strong energy conditions hold on 

the region where the solution in defined. 

The acceleration vector is zero since r = R(u+v) and hence 
2 f = F(u+v). Since aoo = 4ra/(3r ) this solution has a nonzero 

shear tensor oil. The expansion scalar is 6 = -r'. The 

solution is nonstatic since both f and r depend on u+v. As the 

a a 
metric coefficients are functions of u+v we see 5 = - - - 

( 4 )  au av 
is an additional Killing vector. 

The Ricci scalar is 

where we have used (4.138). 

Another invariant constructed from the Riemann tensor is 

2 4 
(4.156) RijRiJ = 2[2rS2 + rr'.] + 2r. + 2[l/rZ + rr.' + rm212 

r 0. 

R'jkl The invariant R i  jkl is found to be 

(4.157) Rijrl ~ ' j ~ l  = 20[2rm2 + rrm.12 + 4r2rmS2 + 4[rra- - r' '1' 



r O. 

Since the solution is defined only where r' > 0 we see 

that the solution is stably causal. From the discussion of 

elementary causality in Chapter 2 we see that the solution is 

strongly causal, causal, and chronological. 

- 2 
Now we consider the case when a = -2. Using f = r we 

find that 

where c is a constant of integration. Solving (4.158) for r, 

setting h 0, and absorbing c into the definition of g we find 

(4.159) 
1/5 

r(u,v) = [5g(u+v)l . 
- 2 

Instead of using (4.159) in (4.125), we shall put f = r 

directly into (4.30) to get 

(4.160) 
4 . 2  3r5r" + 3r r + 1 = 0, 

where we use the dot to denote differentiation with respect 

dB to u+v. Setting fl = r' so that r" = &, we get 
(4.161) 3r5pv + 3r4f + 1 = 0, 

where now the prime represents differentiation with respect to 

r. Dividing by f3 and rearranging terms we find the Bernoulli 

equation 

(4.162) p' = -p/r - 8-'/(3r5). 
From [80] we find the solution of (4.162) to be 

(4.163) pZ(r) = yl(r) + yZ(r) 

where 

(4.164) 
A ( r )  

Yl(r) = De 9 



and X(r) is given by 

(4.166) 

= -21n(r( + C, 

where C is a constant of integration. Thus we find 

Thus the solution of (4.162) is 

A first integral of (4.160) is 

(4.170) - 2  r = ~ r - ~  + (1/3)r-~. 

Let K(r;D) s ~ r - ~  + (1/3)re4 so that K(r;D) 2 0. We can write 

a solution to (4.160) as 

(4.170) C * (u+v) = S[~(r;~)]-"~dr, 

where C is an integration constant. This integral can be 

evaluated to find r implicitly in terms of u+v, C, and D. The 

metric form of this solution in terms o,f the implicit function 

The mass-energy density p is found to be 

(4.173) 2 
p = -3r r + 2r' '), 

- and the pressure is 

(4.174) 2 - 2  p = r (rr" - 2r ) .  

The timelike weak energy inequalities (4.67) and (4.68) become 



(using (4.16'0) ) 

(4.175) 2 .2 l/r223rr L O ,  

(4,176) 2 2 8 r - 2r3r.. L 0, 
These two inequalities imply that 

(4,177) 4 2 1 r 3r r' r 0, 

and 

(4.178) . 2  rr" s -4r S 0. 

The inequality (4.177) shows that as r grows in magnitude that 

r' tends to zero. The analysis of the timelike weak energy 

conditions may be broken into three cases depending on the sign 

of the integration constant D. For the case when the 

integration constant D = 0, the mathematical solution does not 

satisfy the weak energy conditions even for the special subcase 

when C = 0. Using D > 0 in (4.170) shows that (4.177) cannot be 

satisfied thus D < 0 is the only case left. Using D < 0 in 

(4.170) and (4.178) we find that the weak energy conditions will 

-1/2 hold on the region defined by 0 < jrl S (-3D) . To check 

the dominant energy condition we have to check the inequality 

(4,179) 2 2 p - p = 2/r2 + 2r u r v /(r f ) + 2ruv/(rf2) 

= 4/(3r2) 

2 09 

when D < 0 and we have used (4.173) and (4.174)..For the strong 

energy conditions it is straightforward to show that (4.173) 

2 . 2  and (4.174) imply p + 3p = -6r r < 0 when D < 0. 

This solution has nonzero shear tensor a i l  on this region 



since goo = 2fre3. The acceleration vector is zero since f is 

a function of u+v. The expansion scalar 8 = 0. 

The Ricci scalar is found to be 

(4.180) 
2 

R = 6 D  + 4/r . 
The scalar R Ri is given by 

i J 

(4.181) R, j ~ i J  = 2[r3r + 4r2r. '1 + Z[r3r.+ - Zr 2 r .2 1 2 
+ 2[l/r2 + r3r.. + r2r. '1 

r 0. 

The scalar R, jkl RiJkl is found to be 

R~~~~ 4 
(4.182) Rijk1 

.2 2 = 4r [rr" + 4r 1 + 4r4[3rr" - 2r'2]2 
.2 2 6 ..2 + r 4 r  - r 1 + 4r r 

The final case we shall consider is the case when a = -1/2. 

Note that when a = -1/2 that the second term in (4.134) is 
-1/2 eliminated. Using f = r we find that 

(4.183) s = r2/2 + c, 

where c is a constant of integration. Solving (4.183) for r, 

setting h 31 0, and absorbing c into the definition of g we find 

(4.184) r(u,v) = [2g(u+v) l1j2. 
2 

Since (4.184) implies that r = 2g we must have g > 0. When we 

find r we will have to consider the possible branches of this 

relation. From (4.134) we get 

(4.185) 3rgm'/2 + 1 = 0, 

where we use the dot to denote differentiation with respect 

2 
to u+v. Since r = 2g we have 



(4.186) rr' g', 

- 2  g" = r + rr", 

thus (4.185) becomes 

(4.187) 3r2r.. + 3rra2 + 2 = 0, 

where we use the branch r+ = m, thus r+ > 0. Note that we 

shall only use the subscript "+"  on r for clarity. Setting 

fl = r' SO that r" = &-, we get 

(4.188) 3r2pp' + 3rp2 + 2 = 0, 

where now the prime represents differentiation with respect to 

2 r. Dividing by 3r fl and rearranging terms we find the Bernoulli 

equation 

(4.189) p' = -p/r - 2p-'/ ( 3r2). 

From [80] we find the solution of (4.189) to be 

(4.190) p2(r) = yl(r) + y2(r) 

where 

(4.191) A ( r )  Y1(r) = De 9 

and X(r) is given by 

where C is a constant of integration. Thus we find 

(4.194) - 2 Yi(r) = Dr , 

(4.195) Y2(r) = -4/(3r). 

Thus the solution of (4.189) is 



A first integral of (4.187) is 

where we must choose D > 0. Let K(r;D) - ~ r - ~  - (4/3r) so that 
K(r;D) 2 0 defines a region of the (u,v)-plane.. We can write a 

solution to (4.187) as 

where C is an integration constant. This integral can be 

evaluated to find r+ implicitly in terms of u+v, C, and D. The 

metric form of this solution in terms of the implicit function 

The timelike weak energy inequalities (4.67) and (4.68) become 

and 

(4.201) p + p = 4/(3r2) 

2 0, 

using (4.185), (4.186), and the fact that r > 0. The pressure 

is 

(4.202) p = 1/(3r2) 

so we see that the equation of state p = p/3 holds. From 

(4.200) and (4.201) we see that the timelike weak energy 

conditions hold for the branch r+ = m. For the dominant 
energy conditions we must check that p - p 2 00 



Using (4.187.) we find that 

Thus the dominant energy conditions hold for the r = m. 
Checking the strong energy condition p + 3p 2 0 we find 

The Ricci scalar for the branch r = is 

The invariant R. .RiJ for the branch r = is 
1 J 

The invariant Ri jkl Rijkl for the branch r = is 

2 (4.207) 
R i  jkl 

Rijkl = 4rm2 + 4r"2 + 8(r2r'. + 1/3) 

The solution r+ has nonzero shear tensor a on this region 
iJ  

-3/2 since a = r'r 
00 

. The acceleration vector is zero since f is 
-1/2 

a function of u+v. The expansion scalar 8 = -(3/2)rmr 

Since the solution is defined only where rs2 > 0 we see 

that the solution is stably causal. From the discussion of 

elementary causality in Chapter 2 we see that the solution is 

strongly causal, causal, and chronological. The metric (4.199) 

is nonstatic since both f and r depend on u+v. As the metric 

a a coefficients are functions of u+v we see that 5(,, = - is 



an additional Killing vector to those imposed by spherical 

symmetry. 

2 Now we consider the other branch of r = 2g thus r- = -m 
and we see that r- < 0. Using r, in (4.134) we get 

(4.208) - 3 m g "  + 2 = 0. 

Using (4.186) we find (4.208) becomes 

(4.209) .2 
-3r2r*' - 3rr + 2 = 0 .  

Setting p(r) = r' so that r" = &--, we get 
(4.210) -3r2pp' - 3rp2 + 2 = 0 ,  

where now the prime represents differentiation with respect to 

2 r. Dividing by -3r f? and rearranging terms we find the 

Bernoulli equation 

(4.211) = -p/r + 2@-'/ ( 3r2) . 
From [80] we find the solution of (4.211) to be 

(4.212) p2(r) = Yl(r) + Y2(r) 

where 

and X(r) is given by 

where C is a constant of integration. Thus we find 

(4.217) Y2(r) = 4/(3r). 

Thus the solution of (4.211) is 



(4.218) ~ ~ ( r )  = y2(r) + y2(r) 
- 2 = Dr + (4/3r). 

A first integral of (4.209) is 

(4.219) 
.2 - 2 
r = D r  + (4/3r) 

where we must choose D > 0 since r < 0. 

Let K(r;D) 1 Dre2 - (4/3r) so that K(r;D) 2 0 defines a region 

of the (u,v)-plane.. We can write a solution to (4.209) as 

(4,220) 
- 1 / 2  c + (u+v) = J[K(~;D)I dl, 

where C is an integration constant. This integral can be 

evaluated to find r- implicitly in terms of u+v, C, and D. 

The timelike weak energy inequalities (4.67) and (4.68) 

become 

(4.221) 2 
p = l/r 

2 0, 

and 

(4.222) 2 
p + p = -4/(3r ) 

< 0, 

using (4.185), (4.186), and the fact that r < 0, Thus the 

timelike weak energy conditions do not hold for r- = -m. 
The dominant energy conditions cannot hold since (4.222) is not 

positive. Similarly the strong energy conditions do not hold 

for r- = -m, We will no longer consider r- = -me 
We have looked at several cases of the field equations for 

a perfect fluid in NN-coordinates. In each case we see that 

the field equations may be reduced to a Bernoulli equation by 



prescribing a functional relationship between f and r, If we 

make assumptions which force f and r to be functions of u+v, we 

are able in some cases to find reasonable solutions of the 

field equations which were nonstatic and which have nonzero 

shear tensors. In all of the acceptable cases the timelike 

weak energy conditions were satisfied. The dominant and strong 

energy conditions were applied where possible. In all cases 

the shear tensor a was nonzero and the acceleration was is 
i j 

zero. The expansion scalar 8 was computed for all solutions. 

For several of the cases some of the scalar invariants such as 

R, RijRij and Rijrl R~~~~ derived from the Riemann tensor were 

computed. 

An interesting observation about all the solutions is that 

they all satisfy the condition of being in a T-region [27] 

2 since r r i  = - r f < 0 when r = R(u+v). This is the , i u v 

result of insisting that f and r are functions of u+v so that 

the solutions are nonstatic. The known perfect fluid solutions 

in a T-region are those of McVittie and Wiltshire 11281 and 

Ruban [129,130]. The solution of [I281 has an equation of 

state p = (1/3)p. The solution of El291 was a dust solution 

p 0, and that of [I301 had a stiff equation of state p = p. 

These solutions and the one found here share the property of 

having the same symmetries as the Kantowski-Sachs dust 

a 
solutions. The solutions found here corresponding to f = r , 
a = -2, 1/3 do not have simple equations of state. Ruban has 



made several interesting observations about T-regions. 

The use of NN-coordinates seems to have some advantage in 

the reduction of the field equations. All the calculations 

were made with a "generalized comoving" observer. An interest- 

ing problem for future work will be to try to use the scheme of 

Tupper [18,19] in NN-coordinates to try to find viscous fluid 

solutions. A "tilting" observer in NN-coordinates could be 

2 taken to be U i  = (a,b,O,O) where ab = f . 



CHAPTER V_ 

SPHERICALLY SYMMETRIC ANISOTROPIC FLUIDS NN-COORDINATES 

Anisotropic Stress-Energy Tensors Conformal Collineations 

In this chapter we shall calculate the field equations for 

a spherically symmetric anisotropic fluid in NN-coordinates. 

In particular, we shall compute the equations for the case when 

the metric tensor admits a timelike conformal collineation 

vector parallel to a "generalized comoving" velocity vector. 

From Chapter 2 we recall that the equations which 

determine a collineation vector X are 

where tp is the scalar conformal factor. Hij is the synimetric 

covariantly constant tensor associated with X and obeys the 

following conditions 

If we have the additional condition on the conformal factor 

then the collineation vector is "special". 

There are different methods in which conformal 

collineations may be used to study the problem of finding 

interior solutions. The first method is to prescribe the 

collineation tensor Hij, assume that the metric admits a 

collineation vector x i  with collineation tensor Hi j, and then 



I 

applying this symmetry to the field equations. This is the 

method used in [89,90,91,92]. This method assumes that the 

matter fields constituting the stress-energy tensor partake in 

the symmetry and hence leads to difficult problems of "inherit- 

ance of symmetry". A second method is to follow the first 

method except for the last step of applying the symmetry to the 

field equations. In both of these methods the conformal 

collineation tensor is chosen in an ad hoc way. A third method 

is suggested by a theorem that we will prove later. Suppose 

one were able to construct a collineation tensor H from the 
i j 

stress-energy tensor Tij. Then applying the first or second 

methods above, we could seek solutions of the field equations 

as before. This third method seems to have the advantage of 

eliminating the ad hoc choice of the collineation tensor. It 

is clear that the third method will available only for very 

special stress-energy tensors since H = 0 is a very 
iJ;k 

restrictive condition on the metric g i j  and T . 
i j 

Duggal [91] notes that the existence of a physical 

solution of the field equations which admits a proper conformal 

collineation vector (not a conformal motion) is a very diffi- 

cult problem. Hall [I311 asserts that a proper conformal 

collineation exists in a perfect fluid spacetime only for a 

stiff equation of state. 

The existence of a conformal collineation vector depends 

on the existence of a covariantly constant symmetric tensor H 
i j 



other than gij. Katzin et al. [I321 show that if a space 

admits a covariantly constant vector field which is the grad- 

ient of a nonconstant scalar field a, and F € g3 so that 

p' 
n 0 ,  then we have 

(5.5) X i  s P8(a)a , i 
is a conformal collineation vector with collineation tensor 

( 5 . 6 )  H i j % 2F0(a)a ia , , , J  

and conformal factor = 0. 

It is well-known [27] that reducible spacetimes may admit 

a covariantly constant second order symmetric tensor other than 

the metric tensor, but the spherical spacetimes we are using 

are not reducible. This follows from the fact that the 

Lorentzian warped product is not reducible unless the warping 
- 

factor is trivial. 

In the remainder of this section we present some facts 

concerning the third method of using collineations. In 

interior spacetimes one is motivated to look for a relationship 

between the stress-energy tensor and the collineation tensor. 

For a nonsingular anisotropic stress-energy tensor such a 

relationship may exist if the stress-energy tensor is 

recurrent (Ti j; = T. .Vk for some vector Vk). 
1 J 

Walker 11331 and Patterson [I341 have studied the exist- 

ence of covariantly constant second order symmetric tensors on 

a semi-riemannian manifold. (Eisenhart [I353 studied the case 

of riemannian manifolds). Walker [I331 proved the following 



Theorem: If (M,g) is a semi-piemannian manifold and if T is 
i l 

(a) symmetric, 

(b) not a constant multiple of gij, 

(c) nonsingular ( d e t [ ~ ~  1 # O ) ,  
1 

(d) recurrent, 

then H a(Tij - Xg ) is a symmetric covariantly constant 
i l i .i 

second order tensor where a is a scalar and X is one of the 

nonzero g-eigenvalues of Tij. 

If T is an anisotropic stress-energy tensor we know that 
i j 

T has Segre class {1,1(11)), hence has three distinct eigen- 
i j 

values. Not all Segre class {1,1(11)) tensors satisfy the 

condition (c) in Walker's theorem. A radiating dust is of 

Segre class {1,1(11)) but has two zero eigenvalues, hence is 
- 

singular. Furthermore, most stress-energy tensors are not 

recurrent, hence condition (d) is violated in Walker's theorem 

in general. For nonsingular recurrent anisotropic stress- 

energy tensors we are led to the following theorem. 

Theorem: A nonsingular recurrent anisotropic stress-energy 

tensor T in a Lorentzian manifold (M,g) may be used to 
i l 

construct three covariantly constant second order symmetric 

tensors of the form 

(5.7) HAij = a p i ,  - A A g ij ) 
where the XA is one of the three nonzero g-eigenvalues of 

Till and aA are certain scalars. 

Proof: Following Walker [I331 we define 4 a det[Till/det[g..l. 
1 J 



Since spacetime is assumed to be four-dimensional we see that 

@ is a fourth degree homogeneous polynomial in the components 

T i  j 
with coefficients which are functions of the components of 

the metric tensor. Since T and gij are nonsingular we have 
i j 

4 # 0. Since T is recurrent, we have Ti j;k = T. .Vk for some 
i l 1 J  

vector Vk. Taking the gradient of O we find that O 4@Vk, 
; k 

thus V, = ln(01'4) and hence is a gradient. 
; k 

Define S @-'I4 
Tij 

. We claim S 
ij;k 

= 0. Taking the 

covariant derivative of S we have 
i j 

Thus S is nonsingular, Sij is not proportional to g and 
i j il' 

s 
ij;k 

= 0. Consider now the tensor Hij S - pgij. Each 
i 9 

coefficient zA, A = 1,2,3,4, of the polynomial 

is a sum of products of components of S and gij. Since S 
i j i j 

and g are covariantly constant we see that each rA is 
i l 

constant. Thus every root of F(p) ,= 0 is constant and nonzero 

since Sij is nonsingular. Now define HAij s S - PAgij, where 
i j 

pA is a root of F ( p ) .  It is clear that HAij,, = 0 for each 

root pA of F(p )  = 0. T is an anisotropic stress-energy 
i j 

tensor with three distinct nonzero eigenvalues XA SO setting 

We are interested in solutions with shear so we should 



look for a relationship between the shear tensor and the 

existence of a conformal collineation. Duggal [91] has found 

such a relation between the collineation tensor of a collinea- 

tion vector (parallel to the velocity) and the shear tensor of 

the velocity. Duggal's results are summarized in the following 

theorem. 

Theorem: Let xi = XU', U'U = -1 and X > 0 .  A spacetime (M,g) 
i 

admits a timelike conformal collineation with symmetry vector 

xi, conformal scalar y, and collineation tensor Hij if and only 

(a) okl = (2~)-'[h~~h',~~~ - (2/3)8*hkl] 
(b) A, = 1-'(1 t X .uJul t Hjkukhji] , i D J  

where 

and uij, 8 ,  and Ai are respectively, the shear tensor, the 

expansion scalar, and the acceleration vector of the timelike 

flow generated by Ui. 

From Mason and Maartens [89] we find that condition (a) in 

Duggal's theorem is more transparently written as 

(a' ) or, = (2~)-'[h',h'~ - (1/3)hi'hk1l~, ,. 
The condition (a') clearly shows the close relationship between 

the shear of ui and the collineation tensor. Loosely speaking, 

(a') expresses the relationship that akl is proportional to a 

projection of the collineation tensor H . Thus to force a 
i j 



solution of the field equations have have shear it is 

sufficient to assume the existence of a proper conformal 

collineation parallel to the velocity. Next we consider the 

problem of the existence of a timelike collineation vector X 

parallel to the velocity U when we are given Hij, the 

collineation tensor. 

Given a second order symmetric tensor H which is covar- 
i .i 

iantly constant, and a velocity field u', we can determine the 

expansion scalar 0 from the kinematics of the congruence of U. 

If we seek a timelike collineation vector X = XU we must 

determine the scaling factor X. The solution of this problem 

is the content of the following theorem. 

Theorem: Let (M,g) be a spacetime and suppose that a second 
- 

order symmetric covariantly constant tensor H and a unit 
i j 

timelike vector field U' is given. Then there is a scalar X 

so that xi = XUi is an affine collineation vector with 

collineation tensor Hi,. 

Proof: In 1891 it is shown that under the hypotheses above that 

the conformal factor can be expressed as 

y = X .u' + (1/2)H u'u', 
; 1 i j 

and 

9 = 3v/X + (1/2X)hij~ . 
i j 

Substituting the expression for tp into the expression for 8 we 

have 

kg I 3C + (1/2)hij~ i j  = 31-.Ui + (3/2)HijUi~' + (1/2)hiJ~ a 

J 1 ij 



This last expression is a linear partial differential equation 

for X: -1 .ui t 8X/3 = (1/2)H. .Uiuj + (1/6)hij~ . Linear 
; 1 1 J  i j 

partial differential equations can, in principle, always be 

solved [136,137]. Thus we have shown that given a covariantly 

constant symmetric tensor H and a velocity vector field, u', 
i J 

i 
we can determine a timelike collineation vector X parallel to 

the velocity ui with collineation tensor Hij. 

The two theorems just proved show that the third method of 

using collineations may be useful. A key question which will 

temper the application of this method is the characterization 

of recurrent stress-energy tensors. 

The Anisotropic Field Equations in NN-Coordinates - 
In this section we shall write the field equations for a 

spherically symmetric anisotropic fluid in NN-coordinates. We 

shall assume that the velocity of the fluid has a special form 

in NN-coordinates is generalized comoving. We shall also 

compute the equations for a timelike collineation vector 

parallel to the velocity. We will assume that the stress- 

energy tensor is that of an anisotropic fluid whose anisotropy 

vector S is orthogonal to U and orthogonal to the two- 

dimensional pressure isotropy surfaces. Since Ui = (f,f,O,O) 

and the metric is spherically symmetric we have Si= (f,-f,O,O). 

Thus the stress-energy tensor has the form 

(5.8) T ij = (P+q)UiUj t qgij + (p-q)SiSj, 



i 
where SiSi = 1, IJ iu i  = -1 and S i U  = 0. The eigenvalues of Tij 

are X = -p, XI = p, X 
0 

= q. 
2,3 

The form of the metric tensor we use is: 

which we recognize as a spherically symmetric metric in 

NN-coordinates. Since the metric is a Type 1 Lorentzian warped 

product, the comments of Chapter 4 on elementary causality still 

hold. In these coordinates the anisotropic field equations 

become (independent equations only) 

(5.10) 
2 2 2 p -  p = 2r r /(r f ) t 2ruv/(rf2) + 2/r , 

U v 

(5.11) 
3 2 p t p  = 4r f /(rf ) - 2r /(rf ) ,  

v v vv 

(5.12) 
3 2 p t p  = 4r f /(rf ) - 2r /(rf ) ,  

u U uu 

(5.13) q = -  
ruv 

/(rfZ) t f f /f4 - f /f3. 
u v VU 

The conservation equations are 

(5.14) 

If we assume a timelike collineation vector X = XU with 

a collineation tensor H i j ,  then we find the equations 



Note that we have not specified what H is, but are just 
i j 

writing the right-hand side of H = X i; j + X i l j ;  i - WgiJ- 
From the condition H = 0 in the definition of a conformal ij;k 

collineation vector we find the following equations 

(5.20) Hoo;o = 2fX uu - 2Xf + 8X(f )'/f - 8f X 
uu u u u Y  

(5.21) H 
00; 1 

=2fX -2Xf - 2 f X  + 2 f  X 
uv uv u v v u y  

(5.22) Hol;o f X  u u + f X  vu + Xf uu + X f  vu -2X(fu)2/f 

- 2Xf f /f + 4f2vu - f X + fvXu, 
\I v U v 

(5.23) 5 fX- uv + fX vv + Xf uv + Xf vv - 2X(fv)2/f 
-2Xf f /f +4f2Tp + f  X - f  X 

u v v u v v u p  

(5.24) H 
02; 2 

= -rXr f /(2f2) - rXr f /(2f2) + rXrvfu/f2 
U u u v 

- rr X/(2f) - rr X /(2f) - rr X /f 
U u u v v U 

+ X(r )'/f + Xr r /f, 
U u v 

2 
H03; 3 = sin 6H02;2, 

H1l;O 
= 2fX - 2Af t 2f X - 2fVAU, 

vu VU u v 

H 
l1;l 

= 2fX - 2Xf + 8X(f )'/f - 8f X 
vv vv v v v *  

2 

H1Z;2 
= rXr f /f - rXr f /(2f2) - rXr f /(2f2) 

u v v u v v 

- rr X /f - rr X /(2f) - rr X /(2f) 
u v v U v v 

+ X( r ) '/f + Xrurv/f, 
v 

2 

H13;3 
= sin 6H12;2, 



(5.30) 
2 

H22;0 
= rXr f /f t rXrvf /f2 - rXruu/f 

U U u 

- rXr /f 
V U 

- rr X /f - rrvXu/f 
u u 

- 2r2vu + X(r u )2/f + Xrurv/f, 

H 
2 

22; 1 = rXr u f v /f + rXrvfv/f2 - rXruv/f 
- rXrvv/f - rruXv/f - rr X /f v v 

- 2rZIv t X(r )2/f + Xr r /f. 
v U v 

(5.32) 
2 

H33;o = sin BH,,;,, 
(5.33) H 

2 = sin BH22,1. 
33; 1 , 

These equations, when combined with the field equations, 

form a formidable system of partial differential equations. 

The equations (5.20) to (5.33) show the severe constraints that 

the existence of a conformal collineation place on the 

metric. 
- 

The kinematic quantities of the timelike congruence 

determined by U are calculated next. The shear tensor of U is 

(5.34) 
0 

= f(ru t rv)/(3r) - (fU + f 
v 

u = -f(ru + r )/(3r) + (fU + f 
0 1 v v 

u = f(ru t r 3 - f + fV)/39 
1 1 v u 

2 

O22 
= -r(r 

U 
+ r )/(6f) t r2(fu + f )/(6f ) ,  

v V 

2 a =  sin 8, 
33 

The acceleration vector of U is 

(5.35) = (fu - f )/(2f), v 

A1 = (f" - f )/(2f). 
U 

The expansion scalar of the congruence determined by U is 



It is customary to impose some energy conditions on an 

interior solution in order to give some physically plausible 

properties to the solution. As pointed out in Chapter 3, there 

are several alternatives available. We shall write the time- 

like weak energy conditions as they are the most straight- 

forward to apply. The timelike weak energy conditions for the 

field equations (5.10) to (5.13) are 

(5.37) 2 2 3 
0 s  p = r r /(r f ) + (rufu + r f )/(rf ) 

u v v v 

+ ruv /(rf2) + l/r2 - (r uu + rvv)/(2rf2), 
3 

0 i p + p = 2r f /(rf3) + 2rvfv/(rf ) - r /(rf2) 
u u U U 

- rvv/(rf2), 
2 2 3 0 s p  + q = r r /(r f ) + rufu/(rf ) - r /(2rfz) 

U v U u 

+ l/r2+ r f /(rf3) - rvv/(2rf2) + f f /f4 
v v U v - 

- f /f3. 
vu 

The dominant energy conditions are given by the five 

The strong energy conditions are given by the inequalities 

(5.41) P + P r O ,  

P + S r : O ,  

p + 2 p + q r o .  



A Study of the Conformal Collineation Equations 

In the first section we defined a conformal collineation 

by equations (5.1) and wrote the condition H = 0 in 
i j ; k  

NN-coordinates in equations (5.20) to (5.33). In this section 

we will study the system (5.20) to (5.33) with a view to 

finding nonstatic shearing anisotropic solutions of the field 

equations (5.10) to (5.13) which admit a conformal collineation 

vector parallel to the generalized comoving velocity. Our 

approach is to study (5.20) to (5.33) and find candidate cases 

with nonzero shear tensor. These candidate cases will be used 

in the field equations and appropriate energy conditions. 

If we subtract (5.26) from (5.21) we find that 

- 

This equation can have solutions in only five possible ways 

depending on the number of partial derivatives of f-and X which 

are zero. We will use (5.42) to systematically attempt to 

solve (5.20) to (5.33). With the understanding that c and k 

represent nonzero real numbers we define several cases for 

solving (5.42) as follows: 

case A: f = c # 0, X = k # 0, c,k E W; 

case B1: f = c # 0, and X = 0, X # 0; 
u v 

case B2: f = c # 0, and X # 0, X = 0; 
u v 

case C1: X = k # 0, f = 0, f # 0; 
U v 

case C2: X = k # 0, f # 0, f = 0; 
u v 

case Dl: X = k # 0, f # 0 ,  f # 0; 
u v 



case D2: f = c # 0, XU # 0, 'h # 0; 
V 

case D3: fV = X = 0 ,  fU # 0, X # 0; 
v u 

case D4: fU = X = 0, f # 0, X # 0; 
u v v 

case El: f # 0, X # 0, f # 0, X # 0, fA - A' = 0; 
U u v v 

case E2: f # 0, Xu # 0, f # 0, X # 0, fA - A' # 0. 
U v v 

We will consider Case A first. As a consequence of the 

hypothesis for case A, (5.20), (5.21), (5.26), and (5.27) are 

satisfied. Equations (5.22) and (5.23) imply that is a 

constant. Equations (5.24) and (5.28)imply that r satisfies 

the following system of equations: 

At this point case A can be broken into four subcases depending 
- 

on r: 

subcase (1): ru = 0, rV = 0; 

subcase (2): ru # 0, r = 0; 
v 

subcase (3): ru = 0, r # 0 ;  
v 

subcase (4): r 0 r $ 0 ,  r + rv = 0. 
u v u 

For subcage (I), r is a constant. From (5.34) we see that 

a = 0, thus this subcase is discarded. 
i S 

For subcase (2), equation (5.43) produces ru = 0 which 

contradicts the hypothesis of subcase (2). A similar conclusion 

holds for subcase (3), 

The hypothesis of subcase (4), together with (5.43), implies 

that r = p(u-v). Equations (5.30) and (5.31) are satisfied by 



r = p(u-v), but (5.34) shows that we have a i j  = 0, hence we 

discard this subcase. 

The preceding four subcases show that case A does not 

admit any solutions which lead to nonstatic shearing solutions 

of the field equations. 

Next we consider Case B1. Since 1 = 0 and XV # 0 we see 
u 

that X = A(v). Equations (5.20), (5.21), and (5.26) are 

satisfied. Equations (5.22) and (5.23) imply 

(5.44) ~ ( v )  = -A'/(4f). 

Equation (5.27) shows that A(v) = av + b, a# 0. Equation 

(5.24) reduces to 

(5.45) r [-a/(av + b) + 2(r + r )/r] = 0. 
U U v 

Equation (5.28) becomes 
- 

(5.46) (av + b)r I-a/(av + b) + 2(r + r )/r] = 2aru. 
v u v 

Now case B1 can be broken into four subcases depending on r: 

subcase (1): r = 0, rV = 0; 
U 

subcase (2): ru # 0, r = 0; 
v 

subcase (3): ru = 0 ,  rv # 0; 

subcase (4): ru # 0, rV # 0. 

For subcase (I), r is a constant (which we may assume is 

nonzero) and thus (5.45) and (5.46) are satisfied. Equation 

(5.31) implies that % = 0 thus -AJ/(4f) = 0 and a = 0 which 

contradicts the hypothesis Xv # 0 of case B1. Thus subcase (1) 

is discarded. 

For subcase (2), using ru # 0 and r = 0 in (5.45) and 
v 



(5.46), immediately leads to a contradiction hence this case is 

discarded. 

For subcase (3), equation (5.45) is satisfied and (5.46) 

has the solution 

where K # 0. Equation (5.31) is reduced to 2a/(av t b) + 1 = 0 

which cannot hold for arbitrary values of v. Thus subcase (3) 

is discarded. 

For subcase (4), equation (5.45) reduces to 

If (5.48) holds, then from (5.46), 2aru = 0 which either 

contradicts a # 0 or the hypothesis that rU # 0. Thus we 

discard subcase (4). The case B1 does not lead to any 

solutions. 

Case B2 is entirely dual to case B1 so we conclude that 

case B2 leads to no solutions. 

We now consider case C1. Since f = 0, f is a function of 
U 

v alone. By a coordinate transformation we can reduce this 

case to the case when f is a constant. Since X is a constant, 

we see that case C1 reduces to the case A which has no 

acceptable solutions. We thus discard case C1. As case C2 

is dual to C1 we discard it as well. 

Now we consider case Dl. Equations (5.20) implies that 

for some function G. Similarly (5.27) implies that 



(5.50) (f-3)v = H(u), 

for some function H. The integrability of (5.49) and (5.50) 

implies that 

where K i s  aconstant, Thus G(v) = Kv + a, H(u) = Ku + b so 

(5.51) may be integrated to find 

(5.52) 
-113 

f(u,v) = EKuv + au + bv + c] 9 

where a, b, c are constants of integration. Equation (5.21) 

implies that fUv = 0. Using (5.52) we find K = 0 and ab = 0. 

If a = 0, then f = 0 contradicts the hypothesis that fU # 0. 
u 

A similar result holds for b = 0. Thus case Dl is discarded, 

For case D2 we have (5.20), (5.21), (5.26), and (5.27) 

leading to 

2 
where a, b, c are constants of integration and a2 + b > 0. 

Equations (5.22) and (5.23) imply that is a constant. 

Equation (5.24) reduces to 

Equation (5.28) reduces to 

At this point case D2 can be broken into four subcases depending 

subcase (2): rU # 0, r = 0; 
V 

subcase (3): rU = 0, r # 0; 
v 



subcase (4): ru # 0, rv # 0. 

For subcase (I), r is a constant (which we take to be 

nonzero). Equations (5.30) and (5.31) imply that q is a 

constant. Equation (5.34) implies that the shear tensor a is 
i j 

zero so we discard this subcase. 

For subcase (2), equation (5.55) implies b = 0 so that 

(5.53) gives A(u,v) = au + c. Equation (5.54) can be 

integrated to find 

(5.56) 
1 /2  

r(u,v) = A(au + C) , 

where A # 0. Equation (5.31) is satisfied and (5.30) can be 

integrated to find 

(5.57) 
k 

r(u,v) = B(au + C) , 
where B is a nonzero constant of integration. Comparing (5.56) 

and (5.57) we see that if A = B and k = 1/2 then we have a 

solution of (5.20) to (5.33). However we have seen that 

X(u,v) = au + c, thus A = 0, which contradicts the hypothesis 
v 

of case D2. Since subcase (3) is dual to subcase (2), we will 

not discuss it further. 

For subcase ( 4 ) ,  equation (5.30) implies 

(5.58) (ru + rvIu + dr,, + rv)/l - rub,, + rv)/r = 0. 

Similarly equation (5.31) implies 

(5.59) (ru + rv)v + b(r + r )/A - rv(ru + rv)/r = 0. 
u v 

Consider the case when rU + rv = 0. Then (5,58) and (5.59) are 

satisfied. Equation (5.54) becomes 

(5.60) -ru(a + b)/2 = ar 
v ' 



and equation (5.55) becomes 

(5.61) -r (a + b)/2 = br . 
v U 

We can solve this linear system of equations for rU and rV only 

if a = b. This leads to r(u,v) = p(u-v). From (5.34), we find 

the shear tensor o is zero since f is a constant. 
i 3 

Now consider the case when rU + rV # 0 .  Equation 

implies 

(5.62) ('U + r )  /(rU + r )  + a/l - ru/r = 0, 
v U v 

which may be rewritten as 

(5.63) [lnlru + rVllU = [lnlr/~I~ u . 
Similarly equation (5.59) reduces to 

(5.64) [lnlr,, + rVllV = [lnlr/~l~,,. 

The integrability of (5.63) and (5.64) is clear so we obtain 

where K # 0 is a constant of integration. 

Using (5.65) in (5.54) and (5.55) gives 

(5.66) ru[-(a + b)/2 + K] = arv. 

and 

(5.67) r [-(a + b)/2 + K] = br . 
v U 

Equations (5.66) and (5.67) are linear in rU and rV and can be 

solved for ru and rv only if 

(5.68) K = (a + b f m ) / 2 .  

Using K in (5.65) leads to 

(5.69) r(u,v) = p(au + w) ,  

where a K - (a + b)/2. Thus (5.69) leads to a solution of 



(5.20) to (5.33) which gives nonzero shear in general. 

All that remains is to check the field equations and energy 

conditions. 

Now we consider case D3. Since fU = 0 we see that f is a 

function of v alone. By a coordinate transformation we can 

reduce this case to the case when f is a constant. Since X is 

a constant we see that case D3 reduces to the case A which has 

no acceptable solutions. We thus discard case D3. Since case 

D4 is dual to D3 we discard it as well. 

Consider case El. From (5.42) that f X - f X = 0, and 
U v v u 

f # 0, f # 0, X # 0, and X # 0. The solution of (5.42) 
U v U v 

under these conditions is X = A(f). Equations (5.21) and (5.26) 

imply that 

(5.70) fX - Xf = 0. 
uv uv 

Using X.= A(f) in (5.70) yields 

(5.71) (fA' - A)fuv + A"ff f = 0, 
U v 

where the prime represents differentiation with respect to f. 

The case El is characterized by 

(5.72) fA' - A = 0. 

Solving (5.72) we find that A(f) = af, a # 0. Thus A" e 0 so 

equations (5.21) and (5.26) are satisfied. Equations (5.20) 

and (5.27) are also satisfied. Equation (5.22) implies 

(5.73) Vu = -(a/2)r(f u + f v ) ~ f ~ u ,  

and equation (5.23) produces 

(5.74) % = -(a/Z)[(f u + f V ) / f ~ v o  



The integrability of (5.73) and (5.74) is satisfied and we find 

(5.75) Y(U,V) = -(a/2)C(fu + fv)/fl + c, 

where C is a constant of integration. Equation (5.24) reduces 

Equation (5.28) reduces to 

(5.77) rv[-(fu + f v )/f + (rU + r v )/rl = 0. 

Equation (5.30) becomes 

and equation (5.31) becomes 

(5.79) y~ = -(a/2)C(rU + r v )/rlV. 

The integrability of (5.78) and (5.79) is satisfied and the 

solution is 

(5.80) Y(U,V) = -(a/2)C(ru + rv)/rl + K 

where K is a constant of integration. Equations (5.75) and 

(5.80) imply , 

At this point case El can be broken into four subcases depending 

subcase (2): ru # 0, r = 0; 
v 

subcase (3): ru = 0, rV # 0; 

subcase (4): ru # 0, rV # 0. 

For subcase (I), r is a nonzero constant, and equations 

(5.24) and (5.28) are satisfied. Equation (5.81) implies 



(5.82) 
(C-K)(u+v)/a f(u,v) = G(u-v)e f 

where G is an arbitrary c2-function. From (5.34) we find that 

Ooo 
= -(fU + fV)/3 # 0 in general. We still have to check the 

field equations and energy inequalities for this subcase. 

For subcase (2), equation (5.76) implies that K = C and 

(5.83) ru/r - (fU + f v )/f = 0. 

Since r = p(u) we see (5.83) has the solution 

(5.84) f(u,v) = H(u-v)P(u), 
2 where H is an arbitrary f3 -function. From (5.80) we see that 

From (5.34) we have Goo = 0. Thus we discard this case. 

Subcase (3) is dual to the subcase (2) so we shall 

consider it only in the sense that arbitrary functions of u are 
- 

replaced with arbitrary functions of v etc. 

For subcase (4), equations (5.76) and (5. -77) imply that 

K = C. From (5.76), (5.77), and (5.34) we see that oil = 0 
/' 

hence we discard this case. 

Finally we consider case E2. The condition fh' - A # 0 

lead to three subcases: 

subcase (1): A" = 0; 

subcase (2): A" # 0, f2h" + 4(A - h'f) = 0; 

subcase (3): A" # 0, fLh" + 4(A - h'f) # 0. 

For subcase (1) we find A(f) = af + b, where both a and b 
are nonzero. Equations (5.21) and (5.26) imply fuV = 0 which 

has the solution 



Equation (5.20) and (5.86) lead to 

where c, and dl are constants of integration. 

Similarly, (5.27) and (5.86) lead to 

-1/3 
(5.88) h(v) = (C,V + d2) 8 

where c2 and d2 are constants of integration. Now we define a 

coordinate transformation by 

(5.89) U = clu + dl 
? 

V = C V + d2, 
2 

and redefine f and r as functions of U and V. From (5.87) and 

(5.88) we have 

(5.90) f (U,V) = k[u-'j3 + v-lI3] , 
- 

where k2 = c,c2 > 0 .  From equation (5.22) we find 

3 (5.91) Vu = -(a/2)[fu/fl, - (b/4)[fu/f21u + (af + b)fufv/f a 

From equation (5.23) we find 

3 (5.92) % = -(a/2)[fv/fly - (b/4)[fv/f21v + (af + b)fufv/f . 
The integrability of the (5.91) and (5.92) cannot be satisfied 

by a function of the form (5.90), Thus this subcase is 

discarded. 

Subcase (2) assumes A" # 0 and the equation 

(5 93 f2h" + 4(A - A'f) = 0 

which has the solution 

4 (5.94) A(f) = af + bf , 
where a # 0 and b # 0 are constants of integration. Equations 



(5.20) and (5.27) imply that 

(5.95) f(u,v) = cuv + du + klv + k2, 

where c, d, kl, k2 are constants of integration. Equations 

(5.21) and (5.26) imply 

Using (5.95) in (5.96), equation (5.96) has no solutions. Thus 

we discard this case. 

Finally for subcase (3) we define a function X so that 

(5.97) x"/x' fA1'/(fA' - A )  - 4/f. 
Equation (5.97) has a solution given by 

Viewing x as a function of u and v we see that by abuse of 
notation, and (5.20), we may write ~ ( u , v )  = A(v)u + B(v). - 

Equation (5.27) implies 

At this point we consider two subcases: 

subcase (1): AU(v) f 0; 

subcase (2): A"(v) = 0. 

For subcase (1) we see u = -BU(v)/A"(v) which is 

impossible, so we discard this subcase. 

For subcase (2) we have A(v) = cv + d, and B(v) = klv + k2. 

Since X is locally invertible we may write 

(5.100) f (u,v) = xC(~(v)u. + B(v)) 

= xC(cuv + du + klv + kz). 

If c = 0 we can show using (5.21), (5.26), and (5.20) that 



fh' - A = 0 which contradicts hypothesis. When c # 0, we 

define a new variable 

(5.101) 5 3 cuv + du + kjv + k2. 

Using (5.20), (5.21), and (5.26), we can show by a complicated 

argument that 

(5.102) f(u,v) = KF-"', 

where K is a constant. From (5.102), f may be written as 

where a, B ,  7, and 6 are constants, Defining new variables 

(5103) reduces to the case when f is a constant, which is a 

case already discussed. 

Now we shall examine the field equations and the energy 

conditions for the few cases above which might admit a conformal 
- 

collineation vector parallel to the comoving velocity, We 

shall rewrite the field equations in a more convenient fashion. 

Subtracting (5.11) from (5.12) we find after simplification 

( 5.10d~) f(ruu - r~~ ) = 2 r f  - 2 r f .  
U U v v 

Equations (5.10), (5.11), and (5.12) determine p, 

(5.11) plus (5.12) minus twice (5.10) determines p, 

and (5.13) determines q, 

(5.107) 
3 

q = - r /(rf2) + f f /f4 - fvu/f , 
uv u v 



conditions. 

We return to subcase (4) of case D2, we have 

where a n K - (a + b)/2. Using (5.106), and the fact that f is 

constant, in (5.104), we find that a = fat. BY a coordinate 

transformation we can take a = 1. If a = -1, (5.104) is 

satisfied, but the solution is static and the shear tensor is 

zero. If a = 1, equation (5.104) is satisfied and the shear 

tensor a will be nonzero. The solution is nonstatic since r 
i j 

is a function of u+v. The energy conditions will be examined 

later. 

For subcase (1) of case El, we have r is a nonzero 

(C-K)(u+v)/a 
constant, and from (5.82), f(u,v) = G(u-v)e , where 

2 
G is an arbitrary &-function. Equation (5.104) is satisfied. 

and the shear tensor a is nonzero. The energy conditions 
i j 

will be examined later. 

For subcase (2) of case El, r = p(u) and from equation 

(5.84), f(u,v) = H(u-v)p(u), where H is an arbitrary 
2 

& -function. Using r and f in (5.104), we find 

where the prime denotes differentiation with respect to u-v, 

and the dot denotes differentiation with respect to u. 

Equation (5.108) is separated in terms of the variables p u-v 

and u. Equation (5.108) may be integrated to find r and f such 



that a transformation of variables leaves r = constant and f as 

a function of p. Any such solutions will be static, so. we 

discard this case. Since subcase (3) of case El is dual to 

subcase (2) of case El, we also discard it. 

The only cases which remain to apply the energy conditions 

to are: 

(a) subcase (4) of case D2 with a = a = 1 ;  

(b) subcase (1) of case El. 

Consider subcase (4) of case D2 with a = a 1. We have f 

is a constant and from (5.69), r(u,v) = p(u + v). We shall 

take f = 1 (we can always do this by a coordinate 

transformation). The timelike weak energy conditions with f = 1 

and r(u,v) = p(u+v) in (5.37), (5.38), and (5.39) 
- 

produces 

We see that any function which satisfies pp" S 0 will 

satisfy the timelike weak energy conditions. For the dominant 

energy conditions we just have to satisfy the inequalities 

(5.112) 2 2 
p - p = 2r r /(r f ) + 2ruv/(rf2) + 2/i2 

u v 

2 0, 



Using f = 1 and r(u,v) = p(u+v) in (5.112) and (5.113) yields 

(5.114) p - p = 2(1 + p%$ + 2pm/p 

The dominant energy conditions will hold if 

For the strong energy conditions we just have to check the 

inequality 

Using f = 1 and r(u,v) = p(u+v) in (5.117) yields 

The strong energy condition will hold if 

The form of the metric for the solutions defined by the energy 

inequalities is 



This metric i s  nonstatic and has an extra Killing vector given 

a a = - - -  
by 5 4 ,  avo The Ricci scalar is given by 

The scalar R R" is given by 
i f  

The Kretschmann scalar is 

The nonzero components of the shear tensor a are 
i j 

(5.124) a 
00 = 2p8/(3p), 

a o 1 = -2~'/(3~), 

O t  I = 2p1/(3p), - 

0 
2 2  = -PP'/~, 

a 2 

33 
= 0 sin 8 .  

22 

The acceleration is identically zero. The expansion scalar is 

e = -2pf/p. 

Now we consider subcase (1) o'f case El. For this case we 

may take r = 1 as the simplest case of a constant r, and 
(C-K)(u+v)/a f(u,v) = G(u-v)e , where G is an arbitrary 

2 ?%-function and a # 0. If we define a constant 

u(u+v) 
a = (C - K)/a, then we have f(u,v) = G(u-v)e 

The field equation (5.102) is identically satisfied by r = 1 
Q(u+v) and f(u,v) = G(u-v)e . The timelike weak energy 

conditions become 



The pressures are 

The dominant energy condition give 

The class of functions G which satisfy dominant energy 

a(u-v) 
conditions is nonempty since G(u-v) = e is in it. The 

Ricci scalar is 

-2a(u+v) 
(5.132) R = 211 t e (GG" - G' ')/G~] 

- 
= 2 ( ~  + 9). 

Other invariants constructed from the Riemann tensor are 

(5.133) 
-4a(u+v) 

R ~ ~ R ~ ~  = 2e (GO" - GJ 2, 2 / ~ 8  

2 = 2q , 
and 

~~j~~ = 4 + 4e -4a(u+~) (5.134) R i ~ ~ ~  (GG" - G' 2)2/~8 
= 4(l t q2). 

The nonzero components of the shear tensor oil are 

(5.135) - - - 2 a G e ~ ( ~ + ~ )  /3, 
Oo 0 

a(u+v) u 
0 1 

= 2aGe / 3 ,  

a( u+v) u = -2aGe 
11 /3, 



O 
2 

33 
= o sin 8. 

22 

The nonzero components of the acceleration are 

The expansion scalar is 

The two cases, which lead to mathematically reasonable 

solutions of the field equations and which admit a timelike 

collineation vector parallel to the velocity, produce reducible 

spaces. This result is in agreement with recent unpublished 

(as yet) results of Hall and da Costa 11441  who have shown that 

a collineation tensor H with H 
i j;k 

= 0 exists on a spacetime 
i j 

if and only if it is reducible. The result of Hall and da 
- 

Costa shows that the usefulness of collineations will be fairly 

limited. 

\, The recent advance made by Duggal in relating the 

existence of a timelike conformal collineation vector to the 

shear of the fluid velocity may be useful in future studies of 

shearing solutions in reducible spaces. The ability to make a 

mathematical hypothesis, about the symmetries to be imposed 

upon a problem, which leads to a nonzero shear tensor, should 

eliminate many ad hoc hypotheses which have been used to find 

solutions with shear. 

Since the propagation of the shear tensor is closely 

connected with the electric part of the Weyl tensor Eij, 



Duggal's theorem shows that when a timelike collineation vector 

parallel to the velocity exists, the electric part of the Weyl 

tensor E i j  is partially determined by H i , .  Penrose [I381 has 

also conjectured that there is a relation between gravitational 

entropy and the Weyl tensor. Since the magnitude of the Weyl 

tensor is a rough measure of the "clumping of matter", further 

studies of shearing solutions may lead to results related to 

the conjectures mentioned in Chapter 1. 



APPENDIX A_ 

TRANSFORMING SYSTEMS OF NOTATION IN GENERAL RELATIVITY 

A frequently frustrating problem in general relativity is 

the nonstandardization of notation. There are hundreds of 

different notation systems available depending on the selection 

of a few parameters. It is a common piece of folklore in 

general relativity that it is "just a matter of fiddling to get 

the signs right". Any survey of the literature will reveal 

that many authors do not supply adequate information to 

decipher their results. In recent years, the influential text 

11251 has had a remarkable standardizing effect on this problem. 

The use of computers to perform calculations of evermore 

increasing complexity has also stimulated standardization. The 

system we have created here is not the most extensive possible 

- it would take 4 or 5 more "switches" to even approach a 
reasonable degree of completeness. The system presented in the 

following is a minimal system that will work for all the 

"standard calculations". 

In this appendix the work of Ernst 11391 and Misner et 

al.[125] is generalized and unified in a manner similar to that 

in Biech [140]. The advantage of this unified "translation 

formalism" is that computer programs can be written which are 

"independent" of notation conventions. In [I401 it was noted that 

almost all systems of notation in current use in general 



relativity can be classified by six parameters el, i = I,.. .,6. 

These parameters take the values 1 or -1 depending on the 

notation convention. The five parameters ci, i=1,2,3,5,6 are 

independent and deal only with mathematical definitions. The 

parameter c4 is used as an auxiliary parameter in order to 

unify this classification with that of Ernst C1391. The three 

parameters defined in Misner et al. [I251 are denoted by Wi, 

i = 1,2,3. 

The sets of parameters {cl, E ~ ~ E ~ ~ E ~ )  and {W1, W2,W31 are 

sufficient to transform any tensor expression which does not 

involve the Levi-Civita tensor density. Transformations of 

tensor expressions involving the Levi-Civita tensor density use 

the parameters c5, E ~ .  The definitions of the Ei, i = 1,...,6 

are as follows: 

'4'i 
= - €  s c -8nT ; 

1 2 3  i j 

f+ 1 if spacetime indices run over {0,1,2,3), 

if spacetime indices run over {1,2.3.4);. 

1/2 
'6"i jkl 

= [-g] sign(ijkl), 

where g m det[g..] and (ijkl) is a permutation in S4. 
1 J 

The parameters W1, W2, W3 of [I251 are defined by 

W1.signature(g) = +2; ~ 2 ~ i ~ f  jkl = v j; kl - v j; lky 

W3Gij = amij; W~w3Ri j = llm . im j 



From these definitions it is straightforward 

relations relating these two sets of parameters: 

E: = wl; 
1 

€ = -w,; 
2 

€ = w2w,; 
3 

E4 = W1, 

to find the 

To transform tensor equations in one notation system 

(barred system) to another system (unbarred) it is necessary to 

calculate the six transformation parameters a i = 1 , . . . , 6  by 
i ' 

the relation 

a = E 2 i = 1 , . . . , 6 .  
i i i 

With the parameters ai we can convert tensor equations from one 

notation system to the other by the use of the following - 

equations: 

- 
g = g, (g is the determinant of g ) 

i .I 

R i j r l  
a a R  

1 2 i j k l '  
(insert one factor a for each index to 

1 

be raised) 
- 
R = a a R  

i j  2 3 i j '  
(insert one factor a% for each index to be 

raised) 



- 
R = a a a R ,  (R is the curvature scalar) 

1 2 3  - 
G  = a a G  (insert one factor a for each index to be 

i j 2 3 i j '  1 

raised) 

The conformal curvature tensor C i j k l  and the projective 

curvature tensor W transform in the same way as the Riemann 

curvature tensor R, j k l  under changes in and c2  but it 

misbehaves under changes in E3. 

For equations which involve the duals of tensor we use the 

transformation format - 

All tensor expressions not involving the conformal curvature 

tensor or the projective curvature tensor should be transform- 

able from one notation system - to another by the above rules, 

The transformation scheme just outlined can also be extended to 

the tetrad equivalents of the above expressions. 

For expressions employing the Cartan differential algebra 

we must add another indicator for the possible choices of the 
\ 

wedge product. Unfortunately since the different choices of 

wedge product are related by the "cocyle identity" 11411 the 

indicator does not take just two values. We will omit further 

discussion on this and refer the reader to the literature 

[141,142]. 



APPENDIX B 

SYMBOLS AND NOTATION 

The general naming conventions and usage of symbols 

employed in this thesis are listed below. Lower case Greek 

indices take their values in a specified index set, They will 

always be used as labels, usually linking coordinate functions 

to their associated coordinate chart. They will never be used 

as tensorial indices. Lower case Roman indices have range 

{0,1,2,3) and are used to indicate spacetime components in a 

holonomic basis. Upper case Roman indices have range {0,1,2,3) 

and are used to indicate tetrad components for an anholonomic 

basis. We also follow the rules: 

(a) The Einstein summation convention holds for the following 

index types: 

(i)-\lower case Roman indices have range {0,1,2,3); 

(ii) upper case Roman indices have range {0,1,2,3); 

(b) covariant derivatives are indicated by a semi-colon: Xi;k; 

(c) partial derivatives are indicated by a comma: Xi,k. 

The following list describes most of the symbols used in 

this work: 

A i  
acceleration 4-vector 

I3 velocity parameter (v/c) 
b abstract index lowering operator (vectors to forms) 



abstract index raising operator (forms to vectors) 

space of smooth curves in M 

space of n-fold differentiable mappings from M to N 

space of smooth mappings from M to N 

conformal curvature tensor 

covariant derivative with respect to X 

Kronecker tensor 

i-th coordinate basis vector for the chart (9kat'p,) 

frame vectors i = 0, 1, 2, 3. 

indicator of ei i.e. ciei8ei = 1 

pull-back by f 

push-forward by f when f is a local diffeomorphism 

components of the - metric tensor in a holonomic basis 

detg j t  the determinant of gij 

components of G in a holonomic basis 

Christoffel symbol of the second kind 

projection tensor associated with g and ui 
i j 

conformal collineation tensor 

coefficient of shear viscosity 

Levi-Civita twisted 4-form 

coordinate transition map from ( UQ, q B )  to ( U=,cp,) 

identity map on a manifold M 

chronological future set of p 

chronological past set of p 

index of the metric tensor g (1) 



j N inclusion map for a submanifold N 

J+(P) causal future set of p 

J-(PI causal past set of p 

Lor(M) space of Lorentz metrics on M 

4 Lie derivative with respect to X 

space-time manifold 

type 1 Lorentzian warped product of M, H 

Minkowski space-time 

energy density 

the nullity of the metric tensor ( 0 )  

6-neighbourhood of g in fine 6-topology on Lor(M) 

thermodynamic pressure 

momentum 4-vector - 

scalar curvature , 

components of Riemann curvature in a holonomic basis 

components of Ricci curvature in a holonomic basis 

the signature of the metric tensor g ( + 2 )  

shear scalar 

shear tensor 

stress-energy-momentum tensor 

the space of type (r,s) tensors on the vector space V 

tangent bundle of M 

cotangent space of M at p 

tangent space of M at p 

spatial expansion rate 



8 rate of strain tensor 
i j  

U unit velocity 4-vector 
i 

r coefficient of bulk viscosity 

O i j  
vorticity tensor 

[x,yl bracket of vector fields X, Y 



APPENDIX C 

CALCULATIONS IN NN-COORDINATES 

This appendix contains some of the calculations which 

were not used directly in the text. They are all computed in 

NN-coordinates with metric given by ( 4 . 1 ) .  Unless otherwise 

noted all velocity dependent calculations used a generalized 

comoving velocity as defined in Chapter 4 .  The geodesic 

equations are 

rrV# zsinz8/(2fz) + rr v 8'z/(2fz) + 2u8'fu/f + u" = 0, 

where the prime indicate differentiation with respect to an 

affine parameter. The conservation equations for a perfect 

fluid with a generalized comoving velocity in NN-coordinates 

may be written 

We now calculate equations for a spacelike collineation 

vector in NN-coordinates. We assume that the velocity is 

generalized comoving and the collineation vector is parallel to 



the spacelike anisotropy vector S .  The direction of anisotropy 

is assumed orthogonal to the comoving velocity thus has 

nonzero components S o  = f, S 1  = -f. The spacelike conformal 

collineation vector has nonzero components 5 o = fX, = -fl, 

where X is the scaling factor. The equations for a conformal 

collineation with H i j  as collineation tensor are 

where V is the conformal factor. Note we set H i j i k  = 0 as the 

condition for the existence - of a conformal collineation vector. 



2 

H 2 2 ; 0  
= - r X r  f  / f  + rXr f  / f 2  + rXr / f  - r h r  / f  + rr X / f  

U U v u U U  v u  u U 

- rr X / f  - 2r2yu - X ( r  I 2 / f  + X r  r / f ,  
v U U U v 

H 
2 2 ;  1 

= -rlr f  / f 2  + rXr f / f 2  + rXruv/f  - rlr / f  + rr A / f  
U v v v v v u v 

- rr X / f  - 2 r Z y  + X ( r  ) '/f - X r  r / f ,  
v V v v U v 

H 
33; 0 

= - r l s in28r  f  / f 2  + rXsin28r f  / f 2  + rks in28ruu/ f  
U u v U 

2 - r l s i n  8 r v u / f  + r s in28r  A / f  - r s in28r  X / f  
U u v u 

- 2rZsin2€hp u - Xsin28(r - ) ' / f  t Xsin28rurv/ f ,  
u 

H 
2 

33; 1 
= -rXsin20r f v / f  + rXsin28r f  / f 2  + rXsin20ruv/f 

u v v 
2 - r l s i n  8 rvv / f  + r s in28r  A '/f - r s in20r  A / f  u v v v 

- 2 r 2 s i n 2 ~  v + Xsin28(r ) 2 / f  - Xsin28rUrV/f .  v 

We</'set y  = 0 as t h e  cond i t ion  f o r  a s p e c i a l  conformal , ; i j  

c o l l i n e a t i o n  v e c t o r .  

Now we w r i t e  t h e  equat ions  f o r  a " t i l t i n g "  t i m e l i k e  



collineation vector. We assume 5  has nonzero components given 

by co = a, E l  = b. 

The tilting conformal collineation tensor equations are 

We set H i j i r  = 0 as the condition for the existence of a 

conformal timelike tilting collineation vector, 



3 

H22;o 
= 2arr fu/f - arrvu 

v 
/f2 + arurv/f2 + 2brr u fu/f3 

2 - brr uu /f + b(rUl2/f2 - raurv/f2 - rb u r u /f2 
2 - 2r tVu, 

H22; 1 
= 2arr f /f3 - arrvv 

v v 
/f2 + a(rVl2/f2 + 2brr u f v /f3 

2 - brr /f2 + br r /f2 - ravrv/f - rb r /f2 - 2r2vV, 
uv U v v u 

3 
H33;0 = 2arsin28 rvfu/f - arsin28rvu/f2 + asin28 rurv/f 

2 + 2brsinz8 rufu/f3 - brsin Bruu/f + bsin28(r u 1 '/f 

3 2 
H33; 1 = 2arsin28r v fv/f - arsin 8rvv/f + asin28(r v ) '/f 

2 + 2brsin28r u f v /f3 - brsin 8ruv/f + bbsin2€J r u r v /f2 
2 - rsin2e avrv/f - rsin28bvru/f2 - 2r2sin2w v . 

The nonzero components - of a timelike conformal 

collineation vector parallel to the generalized comoving 

velocity are 5, = fl, El = fX. The equations for a timelike 

conformal collineation vector parallel to the comoving velocity 

We set = 0 as the condition for the existence of a 

conformal collineation vector. 



H l l ; o  = 2fX - 2Xf t 2f X - 2f X , 
v u  V U  U v v U 

H 
11 ; l  

= 2fX - 2Af t 8X(f ) '/f - 8f X 
v v  v v  v v v 9  

H 
2 

1 2 ;  2 
= r h r  f  / f  - rXr f  / ( 2 f 2 )  - r X r  f  / ( 2 f 2 )  - rr X / f  

U v v U -  v v u v 

- rr X / ( 2 f )  - rr X / ( 2 f )  t X ( r  ) 2 / f  t X r  r / f ,  
v U v v v u v 

H 
2 

13; 3 = rXsin28r u f  v / f  - rXsin28r v f  u / ( 2 f 2 )  - rXsin28r v f v / ( 2 f 2 )  

2 - r s i n  8r  A / f  - r s i n 2 8 r  X / (  2 f )  - rs in28r  X / (  2 f )  
U v v U v v 

, t Xsin28(r ) '/f t Xsin28rurv/ f ,  
v 

2 
H 2 2 ; 0  

= r X r  f  / f  t r h r  f  / f 2  - r X r  f  - r r  / f  - rr X / f  
u u v u U U  V U  u U 

- rr X / f  - 2 r Z y U  t A ( r  )'/f t Xrr / f ,  
v u u U V 

H 2 

2 2 ;  1 
= r h r  f  / f  + rXr f  / f 2  - rXr / f  - r X r  / f  - rr X / f  

u v v v u v  v v  u v 

- rr A / f  - 2 r Z v V  t X ( r  ) 2 / f  t Xrr / f ,  
v v v U v 

2 

H,,;o = rXsinZ8r u f u / f  t rXsin28rvfu/f  - r l s i n  8 r u u / f  
2 - rXsin 8 rvu / f  - rs in28r  X / f  - r s in28r  X / f  

u u V u 

- 2 r 2 s i n 2 w  u t Xsin28(r u 12 / f  t Xsin28rurv/ f ,  





APPENDIX D 

A MUTENSOR PROGRAM FOR A PERFECT FLUID IN NN-COORDINATES 

The following is a MuTensor script file listing which 

computes many of the quantities used for General Relativity. 

The following program listing was used, together with 

variants, to produce many of the calculations used in this 

thesis. The programs were developed for the MuTensor computer 

algebra system version 3.75 C1431. 

%COMMENT 

TITLE: PERFSTAN.NNC 

STATUS: working LAST UPDATE: 16:50/21/3/88 

NOTATION: W=(+,+,+) E=(+,-,+,+,+,+) 

This muTensor script computes the field equations in double 

null coordinates for a spherically symmetric metric with a 

perfect fluid stress-energy tensor the velocity vector is 

assumed to be "COMOVING." 

A = acceleration vector 

G = Einstein tensor (from RIC) W(3)=-1 

M = conservation vector from twice contracted Bianchi identity 

NG = Einstein tensor (from NRIC) W(3)=+1 

NRIC = Ricci tensor (R contracted on 1-3 positions) 

P = projection tensor onto 3-space orthogonal to U 

R = Riemann tensor E(2)=-1 W(2)=+1 

RIC = Ricci tensor (R contracted on 1-4 positions) E(3)=-1 



T = stress-energy tensor of type (0,2) 

TUP = stress-energy tensor of type (2,O) 

U = 4-velocity of fluid 

V relative acceleration tensor for 3-space orthogonal to U 

W = vorticity tensor of the relative velocity in 3-space 

orthogonal to U 

VFE = field equation tensor (identically zero) (W(3)=+1) 

f = metric component function 

m = density of rest mass 

p = pressure 

r = metric component function 

Th = expansion tensor 

Units are chosen so that c=h=kappa*G=l. 

% 

RECLAIM(); 

DE&NUM:NUMNUM:DENDEN:EXPBAS:BASEXP:~~$ 

NUMDEN: O$ 

TRGSQ: 4$ 

COORDS : '(u v th ph)$ 

ds: -4*fn2*d(u)*d(v) + rn2*d(th)"2 + rA2*SIN(th)"2*d(ph)"2; 

DEPENDS (f(u,v))$ 

DEPENDS (r(u,v))$ 

METRIC(ds); 

%COMMENT 

We compute the Christoffel symbols and read in the velocity 



vector so that we can later compute the stress-energy tensor 

after we compute the shear tensor etc. 

% 

CHRISTOFFELl()$ 

CHRISTOFFELB()$ 

MKTNSR ('U, '(-I), ' ( ) ) $  

U[O] :: f$ 

U[1] :: f$ 

U[21 :: O$ 

U[3] :: O$ 

%COMMENT 

Here we are going to compute the acceleration 4-vector 

% 

MKTNSR ('A, ( - 1  ' 0 ) s  

%COMMENT Here we are going to define the projection tensor 
\ 

related to metric and the 4-velocity. 

MKTNSR ('P, '(-1 -11, '((1 1 2)))$ 

%COMMENT Here we define the relative acceleration tensor which 

is defined to be the covariant derivative of the 4-velocity 

corrected for acceleration orthogonal to the 3-space defined by 

the 4-velocity. 

% 

MKTNSR ('V, '(-1 -1)' '((1 1 2 ) ) ) $  



V[a,b] :: U[a,: :b] + A[a]*U[b]$ 
%COMMENT 

Here we decompose the covariant derivative of the 4-velocity 

into its symmetric and anti-symmetric parts. 

% 

MKTNSR ('W, '(-1 -I), '((-1 1 2)))$ 

Here we are going to compute the shear rate tensor 

We also compute the expansion "e". 

MKTNSR ('E, '(-1 -1)' '((1 1 2 ) ) ) $  

DEPENDS (e(u,v))$ 

Here we compute the stress-energy momentum tensor. 

MKTNSR ('T, '(-1 -I), '((1 1 2)))$ 

MKTNSR ('TUP, '(1 I ) ,  '((1 1 2)))$ 

DEPENDS (p(u,v))$ 

DEPENDS (m(u,v))$ 

SHIFT (TKAa,bl); 



MKTNSR ('M, '(I), ' ( ) ) $  

TUP[a,b] :: T[̂ a,̂ b]$ 

MCa] :: TUP[a,b,::b]$ 

RIEMANNO; 

WEYL( ) ; 

RICCI ( ) ; 

MKTNSR ('NRIC, '(-1 '((1 1 2)))s 

NRIC[a,bl :: -RIC[a,b]$ 

%COMMENT 

Here we program around a bug in the MuTensor program. It does 

not compute the Ricci scalar or the Einstein tensor properly. 

% 

RR :: NRICCAa,a]; 

DEPENDS (RR(u,v))$ 

MKTNSR ('N, '(I), ' ( ) ) $  

MKTNSR ('NUP, ( 1  1 '((1 1 2)))$ 

The vector N should be identically 0 so that G ~ '  a 0. For the 
; j 

code above this identity is true. 

% 

N[l; 

MKTNSR ('VFE, 1 - 1 )  '((1 1 2)))$ 



VFE[a,b] :: NG[a,b] - T[a,bl$ 
SHIFT (VFECAa,b]); 

RECLAIM 0;  

Several lines for printing output omitted here. 
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