
EXAMINING STEM-LOOPS AS A SEQUENCE SIGNAL 

FOR IDENTIFYING STRUCTURAL RNA GENES 

Kirt Noel 

Post Baccalaureate Diploma, Cytogenetics Technology, 

British Columbia Institute of Technology, 1997 

B. Sc., Biology, University of British Columbia, 1995 

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT 

O F  T H E  REQUIREMENTS FOR T H E  DEGREE O F  

Master of Applied Science 

in the School 

of 

Interactive Arts and Technology 

@ Kirt Noel 2005 

SIMON FRASER UNIVERSITY 

Spring 2005 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of project: 

Kirt Noel 

Master of Applied Science 

Examining Stem-loops as a Sequence Signal for Identifying 

Structural RNA Genes 

Examining Committee: 

Dr. Rob Woodbury, Chair, 

Professor, SIAT, SFU 

Date Approved: 

Dr. Kay C. Wiese, Senior Supervisor, 

Assistant Professor, Computing Science, SFU 

Dr. Peter Unrau, Supervisor, 

Assistant Professor, 

Molecular Biology and Biochemistry, SFU 

Dr. Marek Hatala, Supervisor, 

Assistant Professor, SIAT, SFU 

Dr. Holger H. Hoos, External Examiner, 

Assistant Professor, Computing Science, 

University of British Columbia 

March 21, 2005 



SIMON FRASER UNIVERSITY 

PARTIAL COPYRIGHT LICENCE 

The author, whose copyright is declared on the title page of this work, has granted to Simon 
Fraser University the right to lend this thesis, project or extended essay to users of the Simon 
Fraser Un~vers~ty  Library, and to make partial or single copies only for such users or in response 
to a request from the library of any other university, or other educational institution, on its own 
behalf or for one of its users. 

The author has further granted permission to Simon Fraser University to keep or make a digital 
copy for use in its circulating collection. 

The author has further agreed that permission for multiple copying of this work for scholarly 
purposes may be granted by either the author or the Dean of Graduate Studies. 

It is understood that copying or publication of this work for financial gain shall not be allowed 
without the author's written permission.\ 

Permission for public performance, or limited permission for private scholarly use, of any 
multimedia materials forming part of this work, may have been granted by the author. This 
information may be found on the separately catalogued multimedia material and in the signed 
Partial Copyright Licence. 

The orlginal Partial Copyright Licence attesting to these terms, and signed by this author, may be 
found in the original bound copy of this work, retained in the Simon Fraser University Archive. 

W. A .  C. Bennett Library 
Simon Fraser University 

Bumaby, BC, Canada 



Abstract 

This project examines stem-loops as a means to identify structural RNA genes along genomic 

sequences. To undertake this task, an algorithm was developed to scan genomic sequences for 

stem-loops similar to those typically found in ribosomal RNA. Each stem-loop is quantified 

with metrics which measure length and spacing attributes. With the help of annotated 

genomes, we are able to calculate the mean metric values in the various domains which 

make up the genome. This includes coding sequences, non-coding DNA, ribosomal RNAs, 

and transfer RNAs. Subsequently, these values are evaluated for their ability to distinguish 

structural RNAs from their genomic counterparts. Our results indicate that some stem-loop 

metrics are capable of identifying ribosomal RNA genes in genomes across a wide range of 

G+C content levels. These results merit further study into this novel approach. 



To m y  charismatic brother and cherished friend Mayco. 



"Success is the ability to go from failure to failure without losing your enthusiasm." - 

PRIME MINISTER WINSTON CHURCHILL, 1874 - 1965 



Acknowledgments 

First, I would like to thank Dr. Kay Wiese for warmly welcoming me to his lab and helping 

to launch my career in Bioinformatics. Kay took the time to insure I had all the tools 

necessary to complete this project. His insight and curiosity have proven valuable. Kay 

provided the financial support to attend the ISMB 2004 Conference in Glasgow, Scotland 

and the IEEE CSB 2003 and 2004 conferences at Stanford University in California. I am 

very grateful for your patience, guidance, support, and the freedom you afforded me. 

In pursuit of an interesting research project I approached Dr. Peter Unrau for sugges- 

tions. He pointed to the absence of computational tools which are capable of finding RNA 

genes. Our discussion sparked the beginning of this project. Peter also served on my com- 

mittee. Thank-you Peter. 

Alain Deschhes is a fellow graduate student in the Wiese lab. During the course of this 

project Alain patiently answered countless questions - both good and bad. Alain's sug- 

gestions opened my eyes to many unrealized possibilities. His tips helped me to "get the 

computer working for me rather than vice versa." In retrospect, Alain's guidance literally 

shaved months of time off this project and saved me from many needless headaches. Thank- 

you Alain. 

Andrew Hendriks is another fellow graduate student in the Wiese lab. He also made his 

time and his suggestions freely available to me. Andrew and I spent an entire semester dis- 

secting various Bioinformatics algorithms for a graduate course. The time we spent together 

pouring over notes and sketching diagrams turned out to be one of the most challenging, 



rewarding, and enlightening experiences during the course of my studies. Thank-you An- 
drew. 

I would like to thank Dr. Marek Hatala for serving on my committee and Dr. Holger 

H. Hoos for serving as my external examiner. 

Lastly, I would like to thank Edward Glen, Herbert Tsang, Gordon Pritchard, Robin H. 

Johnson, and Pat Lougheed for their support, suggestions, and technical assistance. 

vii 



Contents 

Approval ii 

... 
Abstract 111 

Dedication iv 

Quotation v 

Acknowledgments vi 

Contents viii 

List of Tables xiii 

List of Figures xiv 

1 Introduction 1 

1.1 RNA Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.2 A Glimpse into the RNA World . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.3 RNA Secondary Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.4 The Stem-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.4.1 Stem-loops as Logical Expressions . . . . . . . . . . . . . . . . . . . . 5 

1.4.2 Stem-loop Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

1.5 RNA Genes Conserve Structure Before Sequence . . . . . . . . . . . . . . . . 12 

1.6 Thermodynamic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

1.7 Chapter Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 



2 Background 15 

. . . . . . . . . . . . . . . . .  2.1 A Brief History of Structural RNA Gene-finders 15 

. . . . . . . . . . . . . . . . . . . . . .  2.2 A Novel Stem-loop Centered Approach 20 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Chapter Review 21 

Methods . Building A Stem-loop Finder 2 2 

. . . . . . . . . . . . . . . . . . . . . . . .  3.1 Basic Stem-loop Finding Algorithm 23 

. . . . . . . . . . . . . . . . . . .  3.2 Partial Validation with Random Sequences 26 

. . . . . . . . . . . . . . . . . . .  3.3 Analysis of rRNA Stem-loop Characteristics 27 

. . . . . . . . . . . . . . . . . . . . .  3.4 Extended Stem-loop Finding Algorithm 31 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.5 Computational Complexity 40 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.6 Programming Language 41 

. . . . . . . . . . . . . . . . . . . . . .  3.7 Displaying Stem-loops in Text Format 43 

. . . . . . . . . . . . .  3.8 Testing the Search Algorithm on a Single rRNA Gene 45 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.9 Sequence Maps 46 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.10 Chapter Review 48 

4 Methods . Stem-loop Metrics and Statistics 49 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 Stem-loop Metrics 49 

4.1.1 Number of Base Pairs . bps . . . . . . . . . . . . . . . . . . . . . . . .  49 

4.1.2 Stem-loop Span . span . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

. . . . . . . . . . . . . . .  4.1.3 Stem-loop Center-point Spacing . cSpacing 50 

. . . . . . . . . . . . . . . . . . .  . 4.1.4 Stem-loop Foot Spacing f Spacing 51 

. . . . . . . . . . . . . . . . . .  . 4.1.5 Combined Metric ( c ~ p a c i n ~  x bps) 52 

. . . . . . . . . . . . . . . . . .  . 4.1.6 Combined Metric ( f  spacing x bps) 52 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Statistics 52 

. . . . . . . . . . . . . . .  4.2.1 Mean Metric Values for a Genomic Domain 52 

. . . . . . . . . . . . . . . . . .  4.2.2 Hypothesis Tests Help Identify rRNAs 52 

. . . . . . . . . . . . .  4.3 Displaying the Results Obtained on Bacterial Genomes 53 

4.3.1 Plotting Results with Gnuplot . . . . . . . . . . . . . . . . . . . . . .  54 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.4 ChapterReview 55 

5 Results . Average Stem-loop Metric Values 5 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 Base Composition 56 



. . . . . . . . . . . . . . . . . . . .  5.2 Number of Base Pairs in a Stem-loop . bps 59 
. . . . . . . . . . . . . . . . . . . . . . .  5.2.1 Probability Distribution . bps 61 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.3 Stem-loop Span . span 61 

. . . . . . . . . . . . . . . . . . . . . .  5.3.1 Probability Distribution . span 63 

. . . . . . . . . . . . . . . . . . .  5.4 Stem-loop Center-point Spacing . cSpacing 64 

. . . . . . . . . . . . . . . . . . .  5.4.1 Probability Distribution . cSpacing 66 

. . . . . . . . . . . . . . . . . . . . . . .  5.5 Stem-loop Foot Spacing . f Spacing 69 

. . . . . . . . . . . . . . . . . . .  5.5.1 Probability Distribution . f Spacing 70 

. . . . . . . . . . . . . . . . . . . . . . . . .  5.6 Why rRNAs Outperform tRNAs 72 

. . . . . . . . . . . . . . . . . . . . . . .  5.7 Combined Metric . (cspacing x bps) 73 

5.7.1 Probability Distribution . (c~pacing x hps) . . . . . . . . . . . . . .  75 

. . . . . . . . . . . . . . . . . . . . . .  5.8 Combined Metric . (f spacing x bps) 76 

5.8.1 Probability Distribution . (f spacing x $s) . . . . . . . . . . . . .  78 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.9 Variance in Stem-loop Spacing 79 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.10 Chapter Review 80 

6 Results . Locating Ribosomal RNA genes 81 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 Experimental Design 82 

. . . . . . . . . . . . . . . .  6.2 Using the &pacing Metric to Find rRNA Genes 82 

. . . . . . . . . . .  6.3 Using Combined Stem-loop Metrics to Find rRNA Genes 89 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.4 Chapter Review 98 

7 Suggestions for Future Research 99 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Improve Accuracy 99 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 Improve Efficiency 99 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.3 Parameter Optimization 100 

. . . . . . . . . . . . . . . . . . . . . .  7.4 Improve Portfolio of Stem-loop Metrics 100 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.5 Analyze Both Strands 104 

. . . . . . . . . . . . . . . . . . . . . . . .  7.6 Collaborate With Wet Laboratory 104 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.7 Chapter Review 104 

8 Conclusion 105 

Bibliography 108 



A Stem-loop Metric Data on Genomic Sequences 114 

A.l Test of Initial Stem-loop Search Results . . . . . . . . . . . . . . . . . . . . .  115 

A.2 Stem-loop Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

A.3 Local G+C Content Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 

A.4 Average bps Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

A.5 Average span Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

A.6 Average cSpacing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

A.7 Average f Spacing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

A.8 Average (cspacing x bps) Data . . . . . . . . . . . . . . . . . . . . . . . . .  129 

A.9 Average ( f  spacing x bps) Data . . . . . . . . . . . . . . . . . . . . . . . . .  131 

A.10 Average bps values under alternate search parameters - see caption . . . . . . .  134 

A. l l  Average cSpacing data under alternate search parameters - see caption . . . .  137 

A.12 Average fSpacing under alternate search parameters - see caption . . . . . . .  140 

B Stem-loop Metric Results on Shuffled Genomes 143 

B.l Base Pairs Metric . bps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

B.2 Span Metric . span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 

B.3 Center Point Spacing Metric . cSpacing . . . . . . . . . . . . . . . . . . . . .  147 

B.4 Foot Spacing Metric . f Spacing . . . . . . . . . . . . . . . . . . . . . . . . .  151 

B.5 (cspacing x bps) Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 

B.6 ( f  spacing x bps Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 ) 
B.7 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157 

C Stem-loop Metric Data on Shuffled Genomes 158 

C.l  Average bps in Random Sequences . . . . . . . . . . . . . . . . . . . . . . . .  158 

C.2 Average span in Random Sequences . . . . . . . . . . . . . . . . . . . . . . .  161 

C.3 Average cSpacing in Random Sequences . . . . . . . . . . . . . . . . . . . . .  163 

C.4 Average f Spacing in Random Sequences . . . . . . . . . . . . . . . . . . . . .  166 

C.5 Average (cspacing x bps) in Random Sequences . . . . . . . . . . . . . . . .  168 

C.6 Average fSpacing x bps in Random Sequences . . . . . . . . . . . . . . . .  171 ( ) 
C.7 bps - Z Score Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173 

C.8 span . Z Score Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176 

C.9 cSpacing . Z Score Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C.10 f Spacing . Z Score Data 181 
. . . . . . . . . . . . . . . . . . . . . . . . .  C.11 (cspacing x bps 1 . Z Score Data 183 

. . . . . . . . . . . . . . . . . . . . . . . .  C.12 (f spacing x bps . Z Score Data 186 1 

xii 



List of Tables 

1.1 Tetra-loop probabilities as a function of stem length . . . . . . . . . . . . . .  11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Permitted base pairs 23 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 Stem-loop serach parameters 31 

3.3 Summary of results on E . coli ssu rRNA gene (J01695) . . . . . . . . . . . . .  45 

3.4 An example of a sequence map . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

4.1 A Normal Distribution with a 95% confidence interval . . . . . . . . . . . . .  54 

5.1 Average G+C statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.2 bp Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.3 bps values in B . burgdorferi, NC-001318 . . . . . . . . . . . . . . . . . . . . .  
5.4 span Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.5 span values in B . burgdorferi, NC-001318 . . . . . . . . . . . . . . . . . . . .  
5.6 A sample cSpacing values which are similar between opposing genomic domains . 
5.7 cspacing Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.8 Average cSpacing values in B . burgdorferi, NC-001318 . . . . . . . . . . . . .  
5.9 f Spacing Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5.10 Average f Spacing values in B . burgdorferi, NC-001318 . . . . . . . . . . . . .  
5.11 (cspaeing x bps) Statistics . . . . . . . . . . . . . . . . . . . . . . . .  
5.12 Average cSpacing x bps) values in B . burgdorferi, NC-001318 . . . . . . . .  ( 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.13 ( f  spacing x bps Statistics 1 
5.14 Average ( f s p a c i n g  x bps) values in B . burgdorferi, NC-001318 . . . . . . . .  

... 
Xlll 



List of Figures 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 A basic stem.100~ 5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 A stem-loop with a bulge 6 

. . . . . . . . . . . . . . . . . . . . . . . . .  1.3 A stem-loop with an internal loop 6 

1.4 Annotated stem-loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

1.5 Upstream and downstream segments in a stem-loop . . . . . . . . . . . . . .  8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6 Tetra-loop probabilities 10 

. . . . . . . . . . . . . . . .  1.7 Probability of a GC base pair versus G+C content 10 

1.8 Probability of an AU base pair versus A+U content . . . . . . . . . . . . . . .  11 

. . . . . . . . . . . . . . . . . . . .  2.1 Genomic sequence partitioned into windows 16 

3.1 An indexed nucleotide sequence . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.2 This schematic shows how stem-loops are found by finding base pairs . . . . .  

. . .  3.3 Pseudocode detailing how tetra-loops are located along an input sequence 

3.4 Pseudocode briefly detailing how random sequences are generated . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . .  3.5 Variation observed in hairpin loops 

3.6 Base pairs located immediately after the hairpin loop . . . . . . . . . . . . . .  
3.7 Three base pairs in stem before bulge or internal loop . . . . . . . . . . . . . .  
3.8 Closure - 4 consecutive base pairs distal to this 4 nucleotide bulge . . . . . . .  
3.9 Examples of bulges and symmetical internal loop . . . . . . . . . . . . . . . . .  
3.10 The stem-root refers to the base pairs adjacent to the hairpin loop . . . . . . .  
3.11 Preliminary function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3.12 First nucleotide in a potential stem-loops uptream segment . . . . . . . . . . .  
3.13 First nucleotide in a potential stem-loops downstream segment . . . . . . . . .  
3.14 How consecutive base pairs which comprise stem-loops are pursued . . . . . .  

xiv 



3.15 Checking for base pairs which might close a hairpin loop . . . . . . . . . . . .  34 

3.16 Path traversed by consecutive stretch of nucleotides . . . . . . . . . . . . . . .  35 

3.17 Path traveled by symmetric internal loop 1 nucleotide long . . . . . . . . . . .  35 

. . . . . . . . . . .  3.18 Path traveled by symmetric internal loop 2 nucleotides long 36 

. . . . . . . . . . . . . . . .  3.19 Path traveled by upstream bulge 1 nucleotide long 36 

. . . . . . . . . . . . . . .  3.20 Path traveled by upstream bulge 3 nucleotides long 37 

. . . . . . . . . . . .  3.21 Search space explored after a mismatch in the stem-loop 38 

. . . . . . . . . . . . . . . . . . . .  3.22 Path traveled by asymmetric internal loop 38 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.23 Secondary function diagram 39 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.24 Final function diagram 40 

. . . . . . . . . . . . . . . . . . . . . . .  3.25 A worst case scenario input sequence 41 

. . . . . . . . . . . . .  3.26 The number of steps performed in a worst case scenario 42 

. . . . . . . . . . . . . . . . .  3.27 How stem-loops are represented in 3 lines of text 43 

. . . . . . . . . . . . . . . .  3.28 An example of a stem-loop depicted in text format 44 

. . . . . . . . . . . . . . . . . . . . . . . . . .  4.1 A schematic of the span metric 50 

. . . . . . . . . . . . . . . . . . . . . . .  4.2 A schematic of the &pacing metric 51 

. . . . . . . . . . . . . . . . . . . . . . . .  4.3 A schematic of the f Spacing metric 51 

. . . . . . . . . . . . . . . . . .  5.1 Local G+C content vs . Global G+C content 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Average bps vs . G+C content 

. . . . . . . . . . . . .  5.3 Probability distribution of the bps metric in NC-001318 

. . . . . . . . . . . . . . . . . . . . . . . . . .  5.4 Average span vs . G+C content 

5.5 Probability distribution of the span metric in B . burgdorferi, NC-001318 . . .  
. . . . . . . . . . . . . . . . . . . . . . .  5.6 Average cSpacing vs . G+C content 

5.7 Average cSpacing vs . G+C content - tRNA values omitted . . . . . . . . . .  
5.8 Probability distribution of the cSpacing metric in B . burgdorferi, NC-001318 . 
5.9 Average f Spacing vs . G+C content . . . . . . . . . . . . . . . . . . . . . . .  
5.10 Probability distribution of the f Spacing metric in B . burgdorferi, NC-001318 . 

. . . . . . . . . . . . . . . . . . .  5.11 Average (cspacing x bps) vs . G+C content 

5.12 Probability distribution of the (cspacing x bps) metric in B . burgdorferi, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  NC-001318 

5.13 Average ( f  spacing x bps) vs . G+C content . . . . . . . . . . . . . . . . . .  



5.14 Probability distribution of the ( f s p a e i n g  x bps) metric in B . burgdorferi. 

NC-001318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

6.1 NC-005791: Methanococcus maripaludis S2; metric (cspacing)  . . . . . . . .  
6.2 NC-003909: Bacillus cereus ATCC 10987; metric: (cspacing)  . . . . . . . . .  
6.3 NC-002620, Chlamydia muridarum; metric: (cspacing)  . . . . . . . . . . . .  
6.4 NC-004431. Escherichia coli CFT073; metric: (cspacing)  . . . . . . . . . . .  

. . . . . . . . .  6.5 NC-002935. Corynebacterium diphtheriae; metric: (cspacing)  

6.6 Overlapping Probability Distributions . . . . . . . . . . . . . . . . . . . . . .  
6.7 NC-002932. Chlorobium tepidum TLS; metric: (cspacing)  . . . . . . . . . . .  
6.8 NC-002927. Bordetella bronchiseptica RB50; metric: (cspacing)  . . . . . . .  
6.9 NC-000919. Treponema pallidum; metric: ( f  spacing x bps) . . . . . . . . . .  

. . . . .  6.10 NC-002935. Corynebacterium diphtheriae; metric: cSpacing x bps) ( 
6.11 NC.003197. Salmonella typhimurium LT2; metric: (cspacing x bps . . . . .  ) 
6.12 NC-002932. Chlorobium tepidum TLS; metric: (cspacing x bps . . . . . . .  ) 
6.13 NC.002939. Geobacter sulfuveducens PCA; metric: (cspacing x bps . . . .  ) 
7.1 Average bps vs . G+C with alternate search parameters . . . . . . . . . . . . .  101 

7.2 Average cSpacing vs . G+C with alternate search parameters . . . . . . . . . .  102 

7.3 Average f Spacing vs . G+C with alternate search parameters . . . . . . . . .  103 

A. l  These results document the number of tetra-loops found along random se- 

quences lo5 nucleotides long using the basic stem-loop search algorithm . . . .  115 

B.l Average bps vs . G+C content . including Random Sequences . . . . . . . . .  144 

B.2 bps metric Z Scores relative to random sequences . . . . . . . . . . . . . . . .  146 

B.3 Average span vs . G+C . including Random Sequences . . . . . . . . . . . . .  147 

B.4 span metric Z Scores relative to random sequences . . . . . . . . . . . . . . .  148 

B.5 Average cSpacing vs . G+C content . including Random Sequences . . . . . .  149 

B.6 cSpacing metric Z Scores relative to  random sequences . . . . . . . . . . . .  150 

B.7 Average fSpacing vs . G+C content . including Random Sequences . . . . . .  151 

. . . . . . . . . . . .  B.8 fSpacing metric Z Scores relative to  random sequences 152 

B.9 Average cSpacing x bps vs . G+C content . including Random Sequences . 153 ( ) 
B.10 (cspacing x bps metric Z Scores relative to random sequences . . . . . . . .  154 ) 

xvi 



B.ll  Average (f spacing x bps) vs. G+C content - including Random Sequences . 155 

B.12 ( f s p a c i n g  x bps metric Z Scores relative to random sequences . . . . . . . 156 ) 

xvii 



Chapter 1 

Introduction 

The number of genomes available on public databases has exploded in recent years [3, 41. 

These genomes hold the blueprint for a diversity of gene products. There are a number 

of software programs currently available to locate or find protein-encoding genes within 

these genomes [29, 471. Yet, an effective and efficient software application to locate novel 

structural RNA genes has been elusive. 

This research document introduces and examines an innovative approach for locating 

RNA genes along a genomic sequence. In the most basic terms, it explores whether a 

specific type of structural pattern, which is universally found in structural RNA genes, can 

be exploited to define regions along a sequence where they occur. This pattern or structure 

is known as a stem-loop. 

This document is divided into 8 chapters. Chapter 1 introduces terms and concepts used 

to describe RNA structures. This helps to shed light on the reasons why an effective RNA 

gene-finder has been evasive. Chapter 2 surveys recent efforts by researchers to develop an 

RNA gene-finding algorithm. In this context, stem-loops are introduced as a novel approach 

to help develop a more effective and efficient RNA gene-finder. Chapter 3 describes in de- 

tail the algorithm developed to identify the stem-loop structures along genomic sequences. 

Subsequently, Chapter 4 describes how stem-loop features are quantified into metrics which 

can be used for statistical analysis and inference. Chapter 5 examines the differences in 

the average stem-loop metric values between structural RNAs and their genomic counter- 

parts - protein encoding sequences (CDS) and non-coding DNA (NC). Chapter 6 examines 

stem-loops metrics for their ability to identify structural RNAs along a genomic sequence. 

Chapter 7 outlines areas where future efforts should be directed. Lastly, Chapter 8 concludes 



CHAPTER 1. INTRODUCTION 

with a summary of the project and its accomplishments. 

1.1 RNA Sequences 

Ribonucleic Acid (RNA) and Deoxyribonucleic Acid (DNA) share many similarities [I]. 

Both are comprised of a sequence of nucleotidesl. RNA and DNA sequences have a direc- 

tionality whereby the start is referred to as the 5' terminus and the end is the 3' terminus. 

The values 5' and 3' refer to carbon atoms on the pentose sugar molecule which helps to 

link the bases together. The pentose sugar is one element which distinguishes RNA from 

DNA. In RNA, the pentose sugar is a ribose; in DNA, the pentose sugar is a deoxyribose. 

The bases found in DNA include: adenine (A), cytosine (C), guanine (G), and thymine 

(T). In contrast, the bases found in RNA include: adenine (A), cytosine (C), guanine (G), 
and uracil (U). In both DNA and RNA, it is the base in each nucleotide which captures 

all the attention since they are responsible for the patterns or behaviours geneticists aim to 

decipher and explain. 

The vast majority of RNA sequences2 are generated by a process known as transcription. 

In transcription, DNA acts as the template for creating a complementary RNA sequence. 

The Central Dogma of Biology published in the 1950's suggests that DNA is transcribed 

into messenger RNA (mRNA) which is subsequently translated into proteins. Under this 

model, RNA simply acts as a "messenger" helping to direct the production of proteins. 

Proteins, it seemed, acted alone as the biological machinery responsible for catalyzing cel- 

lular activity. However, since the Central Dogma of Biology was published a tremendous 

number of discoveries have been made. Importantly, researchers have identified many genes 

whose RNA transcript is not translated into protein. Instead, these RNA molecules act 

as biological machinery responsible for undertaking catalytic or biological functions. These 

gene products are commonly referred to as noncoding RNAs (ncRNA) or functional RNAs. 

This research project focuses on structural RNAs which are best described as a subclass 

of functional RNAs. RNA genes products have different means of achieving their objectives. 

Structural RNAs, for instance, exploit a specific 3-dimensional structure to accomplish 

 h he term nucleotide encompasses 3 elements - a pentose sugar, a phosphate, and a nitrogen base. 

2 ~ h e r e  are a small number of retroviruses whose genome is comprised of RNA rather than DNA. One 
well known example includes the HIV virus which is responsible for AIDS. This project does not study RNA 
genomes. 
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a specific task. In contrast, small functional RNAs, such as microRNAs (miRNA), take 

advantage of a specific primary sequence to accomplish a given objective. 

1.2 A Glimpse into the RNA World 

Properties unique to the RNA molecule allow them to form biological machinery with ex- 

clusive capabilities [13, 15, 601. They form base pairs and thereby fold into shapes that 

allow them to execute specialized catalytic processes. They mimic the structure of nucleic 

acids to block translation. RNA gene products also interact with proteins to form complex 

structures. 

There are several examples of structural RNAs which are involved in numerous forms 

of gene expression control, protein-binding, and associated activities. E. coli 6S ribosomal 

RNA (rRNA) and human 7SK small nuclear RNA (snRNA) make-up part of the RNA- 

protein complexes responsible for sequence signal recognition which initiate and regulate 

transcription [22, 301. U2 snRNA forms the core of the spliceosome [18]. The Xist  and 

Air  genes [7, 561 are 16,500 and 100,000 nucleotides long, respectively. Xist is involved in 

X-chromosome inactivation. Air  is involved in autosomal gene imprinting. Both of these 

phenomena are a means of controlling gene expression but currently their mechanisms are 

poorly understood. The H I 9  gene is roughly 1700 nucleotides long; it is expressed in a few 

specific tissues [6, 421. However, its function is not well defined either. Telomerase has a core 

which is comprised of RNA; this RNA core acts as the telomere template which interacts with 

DNA sequences 137, 501. The architecture and mechanism underlying RNA gene products 

is a testimony to their ability to form complex biological machinery. The diversity in these 

selected examples suggests a wave of unknown structural RNA gene products may await 

discovery. 

It is important to distinguish structural RNAs from miRNA whose functionality is se- 

quence specific rather than structure specific [32]. Recent findings suggest t hat miRNA 

transcripts measuring roughly 21-25 nucleotides play a role in developmental timing and 

tissue specification [31, 33, 35, 511. Thus far, there are 2 types of miRNA: small temporal 

RNA (stRNA) and small interfering RNA (siRNA). stRNAs control developmental tim- 

ing by mediating sequence-specific repression of mRNA translation [31]. siRNAs mediate 

sequence-specific mRNA degradation in RNA interference. "stRNAs control developmen- 

tal timing by mediating sequence-specific repression of mRNA translation" [31]. stRNAs 
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and siRNAs are transcribed with flanking regions that create a folded-back or stem-loop 

structure. The working RNA molecule - approximately 22 nucleotides long - is cut from the 

double-stranded stem structure by a protein named Dicer [5]. miRNAs have been found to  

occur in clusters and individually along genomic sequences. 

The number of functional RNA genes discoveries is escalating rapidly and as a result the 

number of researchers interested in studying them is also growing. Several functional RNA 

genes identified early on were stumbled upon unexpectedly. Now researchers are designing 

experiments specifically to  find functional RNA genes [31, 33, 351. Quests for miRNAs 

involve isolating and cloning small RNA transcripts from cellular lysate and substantiating 

their existence with expressed sequence tag (EST) methods. Other experiments rely on 

the unusually small size of small nucleolar RNAs [24]. Isolating larger structural RNA 

transcripts requires alternate means since their size does not readily distinguish them from 

the vast pool of RNA transcripts populating the cellular lysate. 

Computer technology, online databases, and numerous genomic sequences have made 

gene recognition algorithms a feasible means for gene discovery. Decades of scientific exper- 

imentation have deciphered characteristic sequence signals (i.e. consensus sequences) found 

in protein-encoding genes [16,41, 581. These characteristics can be exploited by gene-finding 

algorithms to identify protein-encoding genes along a genomic sequence. By comparison, 

the characteristics of structural RNA genes have been sparsely defined [49]. The scarcity of 

experimental data on structural RNA gene structure is partially due to  the fact that they 

tend to conserve secondary structure over primary sequences [59]. This scarcity is also a 

consequence of their relatively recent and unexpected emergence as functional gene products 

and the difficulty in applying Crystallography and NMR to RNA molecules [2, 21, 361. A 

review of Crystallographic and NMR methods is available in So11 et al. [57]. 

1.3 RNA Secondary Structures 

The bases of an RNA molecule have the ability to form Hydrogen bonds with their com- 

plementary counterparts. This akin to the property which allows 2 complementary DNA 

strands to  form a double stranded helix. With respect to a single strand of RNA, this means 

that RNA has an inherent ability to  fold upon itself to  form base pairs and thereby create 

a stable RNA structure [61]. 

Typically, RNA structures are described in terms of 2 dimensions. Biologists refer to  
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4 or more 
unpaired nucleotides 

stem + p~i red  nucleotides 
(1.e. base pairs) 

Figure 1.1: The Stem-loop is comprised of 2 components - a hairpin loop and a stem or 
helix of adjacent base pairs. 

2-dimensional structures as secondary structures. Some RNA secondary structures such as 

ribosomal RNA (rRNA) appear rather complex. Yet these complex structures are simply 

a culmination of numerous substructures all of which are founded on complementary base 

pairs. Importantly, there are a number of recurrent patterns seen in these smaller compo- 

nents or substructures. This document focuses on a recurrent elementary RNA secondary 

structure known as the stem-loop. Stem-loops are universally found in RNA secondary 

structures. 

1.4 The Stem-loop 

A stem-loop arises when an RNA sequence folds back on itself (Figure 1.1). The stem-loop 

can be broken into two components which include a hairpin loop and a stem of base pairs 

(i.e. a helix) which closes or stabilizes the hairpin loop. The stem-loop is unique in that the 

base pairs which comprise its helix are only separated by a hairpin loop. When the adjacent 

base pairs in the stem are interrupted by one or more unpaired bases, the ensuing "bump" 

is known as a bulge (Figure 1.2) [40]. Similarly, an internal loop forms when mismatched 

bases are positioned opposite one another in the stem (Figure 1.3) [25, 44, 541. 

1.4.1 Stem-loops as Logical Expressions 

A more rigorous definition of stem-loops can be formulated with the use of logical expres- 

sions. Suppose an RNA sequence consists of n nucleotides. An indexed sequence can be 

denoted from 5' to 3' as (0,1,2,3, e,i ,  k,p, t ,  n)  where, 0 < e < i < k < p < t < n. 
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i bulge 

Figure 1.2: A bulge occurs in a stem when it is interrupted an unpaired nucleotide. 

internal 
bop 

5' 3' 5' 3' 

asymmetric symmetric 

Figure 1.3: An internal loop is characterized by two or more mismatched nucleotides residing 
in a helix. This figures depicts examples of symmetric and asymmetric internal loops. 
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A 

Figure 1.4: Annotated stem-loops. (A) The (i,p) base pair lies nearest the hairpin loop. 
The (e,t) base pair marks the outer boundary of the stem-loop. (B) A pseudoknot cannot 
be entirely comprised of nucleotides which lie between the (i,p) and (e,t) base pairs. See 
text for a detailed description. 

Consider a stem-loop where the base pair at the end of the stem nearest the hairpin 

loop includes nucleotides i and p; this base pair is denoted as (i,p) (Figure 1.4 A). The base 

pair, (e, t),  is furthest from the hairpin loop; it forms the outer boundary of the stem-loop 

structure. The unpaired nucleotides in the hairpin loop are denoted k; hence, Vk i < k < p. 

For any stem-loop, the nucleotides which lie between e and i cannot base pair with one 

another nor can the nucleotides between p and t pair with one another (Figure 1.4 A). 

This rule can be expressed as follows. Suppose a stem-loop is comprised of the following 

nucleotide sequence: (e, g, h, i ,p,  q, r,  t). If the hairpin is defined by (i, p) and the stem-loop 

is bound by (e, t )  then VgVh ~ ( g ,  h) A VqVr ~ ( q ,  r) .  

Lastly, a pseudoknot3 cannot be comprised entirely of nucleotides between base pairs 

(i,p) and (e, t). Suppose a stem-loop is comprised of the following nucleotide sequence: 

(e, f ,g ,  h, i ,p ,  q, r, s,  t). If (e, t )  A (g, r )  A (i,p): then VfVq ~ ( f ,  q) A VhVs ~ ( h ,  s). See 

Figure 1.4 B. 

'when RNA molecules fold, the stems/helices which stabilize these structures generate loops. Pseu- 
doknots arise when nucleotides within a loop base pair with nucleotides outside of this loop. Consider a 
sequence where: h < i < j < k < 1. Suppose (i, k) form a base pair. Nucleotide j now lies within a "loop". 
A pseudoknot arises when either (h, j) or (j, 1) form a base pair. 
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downstream 
segment segment 

Figure 1.5: The upstream and downstream segments in this stem-loop are labeled. An 
algorithm generates a list of all the possible upstream segments for a stem-loop with a 
specific number of base pairs (e.g. 4). Each entry in this list has one or more corresponding 
downstream segments - i.e. those which are complementary to it. The probabilities of the 
nucleotides and thereby the probabilities of the upstream and downstream segments can 
then be used to calculate stem-loop probabilities. 

1.4.2 Stem-loop Probabilities 

This section discusses stem-loop probabilities and how they are affected by changes to base 

composition. The probability of a stem-loop is denoted: P(stem-loop). The probability for 

each of the possible nucleotides in RNA is denoted: P(A),  P (C) ,  P(G),  P(U) 

The most common base pairs found in RNA secondary structures are AU and GC. Less 

common is the GU base pair. Suppose GU base pairs are not observed. This simplifies the 

task of calculating of P(stem4oop) since each base has only one complementary partner. 

Introducing GU base pairs complicates P(stem4oop) calculations since some nucleotides 

now have more than complementary counterpart. 

An algorithm was devised to calculate P(stem4oop) where GU base pairs are permitted. 

This algorithm calculates the probabilities of stem-loops which do not have bulges or internal 

loops. To accomplish this, the algorithm starts by assembling a list of all the possible 

upstream segments of a specific size (Figure 1.5). If the number of adjacent base pairs in 

the stem is 4, there will be 44, 256, possible upstream entries in the list. Similarly, if the 

stem is comprised of 5 adjacent base pairs there will be 45 or 1024 upstream segment entries 

listed. If the upstream segment is comprised of 4 nucleotides and the GU base pair was not 

permitted, there could only be 256 corresponding downstream segments. Importantly, since 

GU base pairs are permitted, many of the 256 upstream entries will have more than one 

complementary downstream entry or segment. For instance, upstream segment AAGG can 
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pair with 4 different downstream segments: UUCC, UUCU, UUUC, UUUU. To calculate 

the probability of finding any stem-loop with 4 adjacent base pairs one needs to add the 

probabilities for every possible combination - i.e. all the entries in the list. There are 

certainly more efficient methods to perform these calculations, however, this method suffices 

for our purposes. 

Here is an example of how the probability that a given upstream segment forms a stem- 

loop is calculated: 

P(stem1oop) = 

P(stem1oop) = 

P(stem1 oop) = 

P(stem1oop) = 

Assume.. . P ( A )  = P ( C )  = P ( G )  = P ( U )  = 0.25 

~ [ ~ ( u ~ s t r e a m s e ~ m e n t )  x P(downstreamsegment)] 

[ ( ~ ( A A G G )  x P ( U U C C ) )  + ( P ( A A G G )  x P ( U U C U ) )  + 
( P ( A A G G )  x P ( U U U C ) )  + ( P ( A A G G )  x ~ (uuuu ) ) ]  
P ( A A G G )  [P(UUCC) + P(UUCU)  + P ( U U U C )  + ~ ( U U U U ) ]  

(0.25" [0 .25~ + 0 . 2 5 ~  + 0 . 2 5 ~  + 0.25~1 

(0.25') [(4)(0.25')] 

6.10 x 

In these simplified calculations the number of nucleotides which reside in the hairpin 

loop is not considered. We will see shortly how this assumption is not detrimental to our 

P(stem-loop) calculations. 

This algorithm can be run with various nucleotide compositions. However, to maintain a 

palatable Zdimensional probability landscape the base compositions where restricted such 

that P ( G )  = P ( C )  and P ( A )  = P ( U ) .  The probability distribution calculated for stem- 

loops with 4 base pairs over a range of G+C content levels is depicted in Figure 1.6. The 

lowest probability occurs where P ( G  + C )  = 0.50. The highest probability occurs when 

P ( A  + U )  = 1.0 or P ( G  + C )  = 1.0. 

The shape of the probability distribution function shown in Figure 1.6 may be a bit 

perplexing at first glance. The next 2 figures are helpful. For a given nucleotide sequence, 

the probability of finding a GC base-pair increases with increasing G+C content (Figure 1.7). 

Similarly, the probability of finding an AU base pair increases with increasing A+U content 

(Figure 1.8). Take note of the inverted x-axis between Figures 1.7 and 1.8. 
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P(tetraloop) vs. G+C Content 

Figure 1.6: Probability of a tetra-loop versus G+C content. The corresponding data is 
presented in Appendix A.2. 

where P(G) = PIC) 
I 

Figure 1.7: Probability of a GC base pair versus G+C content. 
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Figure 1.8: Probability of an AU base pair versus A+U content. 

Table 1.1: Probabilities of Tetra-loops with various stem lengths where: P(A) = P(C)  = 
P(G) = P(U) = 0.25 

In retrospect, Figure 1.6 is simply a combination of Figures 1.7 and 1.8. The advent of 

GU base pairs does not change the shape of the probability distribution. Instead, it raises 

the probabilities uniformly. 

Another experiment was performed using the aforementioned algorithm to study the 

effect of stem-loop length on probabilities. First, a fixed G+C content level was selected 

(P(A) = P(C)  = P(G) = P(U) = 0.25). The algorithm was repeatedly executed changing 

only the minimum number of base pairs. The results are presented in Table 1.1. They show 

that the probability of finding longer stem-loops (i.e. those with more base pairs) is less 

than the probability of finding shorter stem-loops. 

Given P(stem4oop) and sequence length (n) one can calculate the expected number of 
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stem-loops over a given input sequence: 

E(stem - loop) =   stem - loop) x (n - 11)] 

For long sequences.. . 

E(stem - loop) E P(stem - loop) x n 

Each tetra-loop requires at  total of 12 nucleotides. Consequently, as one encroaches 

the downstream terminus there will be 11 consecutive occasions where a tetra-loop could 

not possibly occur. Hence, the length value must be reduced by 11. For example, in a 

100,000 nucleotide sequence with the above composition the expected number of tetra-loops: 

E ( X )  = 1,978 

These simplified probability landscapes have avoided many complex calculations. Nonethe- 

less, these results demonstrate that stem-loops probabilities are affected by base compo- 

sition. Regions with very high or very low G+C content levels tend to have the most 

stem-loops. Likewise, regions with very high or very low G+C content tend to have longer 

stem-loops. 

Naturally occurring stem-loops favour a higher G+C content since GC base pairs, which 

are stabilized by 3 Hydrogen bonds, are more stable than AU base pairs which, in contrast, 

are stabilized by 2 Hydrogen bonds. Later, the stem-loop search algorithm is described. 

This algorithm uses search parameters to place constraints on the minimum number of 

GC base pairs in a stem-loop. This helps to identify stem-loops more in line with what is 

typically observed in RNA secondary structures. 

1.5 RNA Genes Conserve Structure Before Sequence 

Like proteins, RNA genes conserve functionality by preserving structure. However unlike 

proteins, structural RNA genes are not relegated to conserving their primary sequence (ie. 

the order of their nucleotides) to preserve structure or functionality [49]. Rather, secondary 

structures can be conserved when interactions between nucleotides in the RNA transcript 

are preserved. For instance, assume nucleotides in positions 14 to 20 form base pairs with 

nucleotides 46 to 40 in a given species; these base pairs could be denoted: 
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If the helix formed by these adjacent base pairs is vital to a given RNA structure, we 

would expect to see nucleotides in these relative positions maintain their complementarity 

in the same RNA gene found in other highly evolved species. This tendency to preserve 

structure over primary sequence is described as co-evolution or co-variance [14, 651. The 

result, however, is that structural RNA genes are not well-defined by strongly conserved 

primary sequences. This is why pursuing structural RNA genes computationally is unlike 

pursuing prot,ein-encoding genes. 

Evidently, there are inherent limitations to describing RNA genes and their structures 

by simply relying on primary sequences. Therefore, researchers have pursued alternate 

descriptors. One method used by scientists to quantitatively study, analyze, and describe 

RNA structures relies on the application of thermodynamic models. 

1.6 Thermodynamic Models 

The stability of RNA secondary structures can be measured using Gibbs Free Energy which 

is denoted AG. 

"Gibbs Free Energy (AG) is a thermodynamic property analogous to po- 

tential energy. Free Energy is defined so that its change, AG, is the negative 

of the maximum useful work that can be obtained from a reaction at constant 

temperature and pressure 1461 ." 

A number of thermodynamic models are available to quantify stability in RNA secondary 

structures [39, 52, 55, 67, 701. For a given sequence, the most stable RNA structure is the 

one with the most negative AG value. The thermodynamic models for RNA secondary 

structures assume the sum of the parts equates to the overall AG [20,27, 281. Consequently, 

the AG of the structural subunits (i.e. helices) contributes additively to the overall AG of 

a complex secondary structure. Generally speaking, the most stable structure is one which 

uses the optimal combination of substructures. 

Interestingly, the lowest AG structure is not always the one which is observed in nature. 

This, however, does not imply that nature favors suboptimal structures. The thermody- 

namic models generally restrict themselves to secondary (i.e. 2-dimensional) interactions. 

They do not include tertiary interactions (3-dimensional) or quaternary interactions (be- 

tween opposing RNA molecules). Therefore, the appearance of "suboptimal" secondary 
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structures in nature could be related to the incomplete state of the thermodynamic models 

instead of a natural propensity to favour truly suboptimal structures. 

Numerous RNA folding algorithms are available to calculate the lowest AG structure(s) 

for a given RNA sequence [ll, 19, 38, 43, 48, 62, 69, 681. These types of applications are 

commonly used to predict the secondary structure taken-on by a given RNA transcript. 

In the next chapter we will see how, researchers have attempted to use AG values to 

identify structural RNA genes along a given genome. The line of reasoning is that genomic 

segments which code for RNA genes will be marked by particularly low AG values since 

they have evolved to form stable structures. Concurrently, their genomic counterparts are 

not under the same evolutionary pressures and may therefore have relatively higher AG 
values. If correct, a markedly low AG value could thereby act as a statistical signal to 

identify where RNA genes are located. 

1.7 Chapter Review 

This chapter introduced RNA molecules. Properties unique to structural RNA genes have 

been exploited by nature to create a diversity of RNA gene products with highly specialized 

capabilities. Structural RNA genes preserve structure by maintaining base pair interactions. 

Proteins, in contrast, conserve primary sequence in an effort to conserve structure and 

function. As a result, the task of developing a structural RNA gene-finder is unlike that of 

developing a protein encoding gene-finder. 

The next chapter starts with a survey of previous attempts to develop a computational 

RNA gene-finder. Thereafter, stem-loops are introduced as a possible means to identify 

where structural RNA genes reside along a given genomic sequence. 
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Background 

This chapter describes the work done by a number of research groups to develop a compu- 

tational RNA gene-finder. These approaches follow a similar pattern in that an algorithm 

divides a genomic sequence into segments and then measures their AG values (Figure 2.1). 

After presenting this research, stem-loops are proposed as a means to help identify structural 

RNA genes. 

2.1 A Brief History of Structural RNA Gene-finders 

L e  et al. and C h e n  et al. (who incidentally make-up the same group of researchers) published 

two papers describing how they had used their Z score formula (i.e. Normal Distribution) 

to assess the significance of RNA transcripts [9, 341. See Equation 2.1. 

- 

Z = 
AGsubject - AGrandom 

Srandom 
(2.1) 

For a sequence window of fixed length AGsUbject is the minimum Free Energy is calculated 

with the use of an RNA folding algorithm.  and, is the mean minimum Free Energy 

for a given population of random sequences with the same length and the same nucleotide 

composition. srandom is the standard deviation of mrandom. To calculate the mrandom 
and srandom for a nucleotide sequence of the same length and composition as the sequence 

window. The sequence window was randomly shuffled repeatedly. Each time the AGrand, 

of this random sequence was calculated using an RNA folding algorithm. Over N random 

sequences, a mean mrandm and srandom were calculated. 
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G e n d c  Sequence divided Into windows 

5' 3' 

Figure 2.1: Genomic sequence partitioned into windows. 

This algorithm has a computational complexity of 0(n3) where n is the sequence length [9]. 

The authors report promising results using sample sizes, N, ranging from 120 to 2000 and 

windows (or segments) 30 to 100 nucleotides long. Scanning for structural RNA tran- 

scripts involves repeatedly calculating the AG for various window sizes and moving along 

the sequence one base at  a time. Monte Carlo simulations are used to assess the statisti- 

cal significance of the Z scores to identify potentially significant regions and to estimate 

their optimal (i.e. most probable) size. For this task, the mFOLD dynamic programming 

algorithm was vectorized to run on the Cray X-MP 24 supercomputer. 

The reported findings suggest this approach successfully delineates the statistically sig- 

nificant candidate structural RNA transcripts from a pool of random sequences with the 

same length and base composition. This lends support to the notion that a successful 

structural RNA gene-finder can be constructed by relying on AG values. 

In a subsequent article, C h e n  et al. revealed that when their initial method (described 

above) is carried-out on a supercomputer it is impractical using a window size > 200 nu- 

cleotides on an RNA sequence > 1000 nucleotides long [9]. To reduce the computational 

demands of the algorithm, C h e n  et al. developed a complex formula to estimate mean 

AGrandom for a nucleotide window equal in size and base composition to the subject se- 

quence. Another formula calculates the optimal window size for the sequence at  hand. 

Whereas the previous method required 150 hours to assess an 800 nucleotide segment, 

this updated version requires less than 70 seconds while retaining its ability to recognize 

structured RNA transcripts. While the performance has reportedly improved, the updated 
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version fails to address the 0(n3)  computational complexity brought about by the RNA 
folding algorithm used for the AGsubjed calculation. 

A research article by Rivas and Eddy disputes the findings published by Le et al. and 

Chen et  a1 [9, 34, 491. It  suggests the sequences chosen for analysis misrepresent the ability 

of the aforementioned AG based gene-finder. Rivas and Eddy initially set out to implement 

a structural RNA gene-finder based on a probabilistic model. Yet, their quest led them to 

implement two additional models. The following paragraphs explain why. 

Unlike the previous group, Rivas and Eddy developed an algorithm to scan sequences 

using a Stochastic (probabilistic) Context-Free Grammar (SCFG) for RNA transcripts with 

significant RNA secondary structure. The SCFG model was implemented with a training set 

consisting of tRNA and rRNA genes to generate a structural RNA gene structure model. 

They applied an expected log-odds scoring scheme which compares the likelihood that a 

given sequence has been generated by the structural RNA model or a null model (i.e. 

something that is not a structural RNA gene) [49]. 

This SCFG algorithm was executed on a variety of species. They observed that as the 

genomic A+T composition decreased (i.e. G+C content increased) the log-odds score (i.e. 

the signal) for tRNA genes diminished. To further examine their suspicions, several species 

were studied: M. jannaschii (30% G+C rich), C. elegans (34% G+C rich), S. cerevisiae 

(39% G+C rich), and E. coli (50% G+C rich) [49]. Their observations confirmed that their 

SCFG model was less effective in more G+C rich genomes. This led them to assemble a 

base composition algorithm to examine how it compared to the SCFG model. 

The base composition model simply searched for deviations from the expected base 

composition in a given species. No structural features are considered in this approach. A 

log-odds score is calculated for each scanned window. In theory, regions with high G+C 

content are better candidates for structural RNA genes since GC base pairs are more stable 

and thereby better suited than AT base pairs to stabilize RNA secondary structures. In- 

terestingly, the base composition model returned the same hits as the SCFG model for the 

same sequence. 

Rivas and Eddy suspected their probabilistic model was not adequately recognizing se- 

quence characteristics related to the secondary structures of structural RNA transcripts. To 

explore this possibility, tRNA gene sequences were shuffled. If their probabilistic algorithm 

indeed recognized characteristics in structural RNA secondary structures, the shuffled tRNA 

genes would be overlooked. Surprisingly, the probabilistic model maintained its hits on the 
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shuffled tRNA genes. 

Subsequently, Rivas and Eddy [49] implemented a replica of the thermodynamic model 

developed by Le et al. [34]. The objective was to compare the results returned by the AG 

approach to the SCFG model by scanning the same sequences. They found that the Z score 

had a slight bias towards structural RNA transcripts over their shuffled siblings. However, 

like the SCFG and base composition models, the thermodynamic model also tended to 

better identify structural RNA genes in A+T rich genomes. Rivas and Eddy suggest that 

the AG values alone are inadequate for finding structural RNA genes. 

In concluding, Rivas and Eddy suggest that real RNA secondary structures are not 

"significantly distinguishable" from the predicted structures of random sequences by ther- 

modynamic and statistical means. Hence, structural RNA gene-finding algorithms must 

incorporate other factors for gene recognition. The next group to join the pursuit for a 

structural RNA gene-finder seemingly subscribed to this philosophy. 

Carter et al. developed a gene-finder, called RNAGENiE, which implemented a machine 

learning approach known as a neural network [8]. The neural network was trained specifically 

for each species being analyzed. The training set included both positive examples (i.e. 

tRNA, rRNA, and structural RNA genes) and negative examples (i.e. non-coding regions). 

The protocol divides the chromosome sequence into 80 nucleotide segments or windows with 

consecutive windows overlapping by 40 nucleotides. The neural network had three input 

parameters: base composition, sequence motifs (specifically tetra-loop1 motifs), and AG. 

Contrary to Rivas and Eddy, Carter et al. suggest that shuffled structural RNA genes do 

not qualify as non-coding DNA [8, 491. Non-coding DNA, they submit, has evolved to take 

on a deliberate primary sequence. Hence, they constructed a training set of non-coding DNA 

by removing all protein-coding and structural RNA-coding genes the bacterial genomes they 

studied. They further removed 50 nucleotides flanking both the 5' and 3' ends of these genes 

in hope of capturing all the pertinent control elements. The authors acknowledge that the 

non-coding training set could be contaminated with unknown structural RNA genes. 

Carter et al. report the average AG in structural RNAs and non-coding DNA regions for 

several genomes. In structural RNA sequence windows, E. coli averaged -2.70f 0.52 - and 

M.jannaschii averaged -3.68 f 0 . 7 2 E .  In non-coding sequence windows, E.coli averaged 

-2.06 f 0.85- and M.jannaschii averaged -1.34 f 0 . 6 6 E .  These findings suggest that 

'A tetra-loop is a hairpin loop comprised of 4 nucleotides. 
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AG can help to distinguish structural RNA genes2. However, Carter et al. do not report 

the AG averages for protein-encoding genes. This would have been interesting given the 

vast majority (i.e. roughly 2 90%) of bacterial genomes are comprised of protein-encoding 

DNA. The report later suggests that the neural network relies more heavily on signals other 

than AG to distinguish coding sequences from structural RNAs. 

The performance of the RNAGENiE algorithm was evaluated using a correlation co- 

efficient, Qa ("average of the percentage of correctly predicted positive and percentage of 

correctly predicted negative windows") [8]. This provided a means to study the effect of 

modifications to the algorithm. The average Qa attained for various bacterial organisms 

was generally in the high 80s to the low 90s. The hyperthermophilic archaeal bacteria ob- 

tained the highest reported Qa, 99.6%. This exceptional accuracy is related to the high 

G+C content in structural RNA genes in these A+T-rich organisms. Importantly, Qa only 

measures the ability to identify known structural RNA genes and not novel structural RNA 

genes. 

Remarkably, RNAGENiE identified a number of structural RNA genes not included in 

the training set. Publication and database searches revealed that some of these "novel" 

structural RNA genes were previously identified in unrelated laboratory experiments. No- 

tably, the vast majority of these novel genes were not completely recognized. Rather the 

algorithm predicted 1 or 2 of the several windows spanned by these novel genes. 

The results strongly suggest that RNAGENiE outperforms the previous structural RNA 

gene-finders. The improvements can be accredited to several factors. The neural network 

was carefully trained so that the AG parameter was able to better distinguish between 

structural RNA segments and non-coding DNA. The inclusion of base composition and 

motif sequence recognition were specifically shown to further improve performance. Also, 

the diverse training set helped the neural network to distinguish the protein coding sequences 

from the RNA genes. 

Unfortunately, the computational complexity of this approach are not reported. The 

performance hurdles presumably reside in 2 arenas - the BIOPROP neural network and the 

Vienna RNA package used for AG calculations. 

'Carter et al. report the AG results in units of -. It is presumed that this is an abbreviation for 
*. 
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2.2 A Novel Stem-loop Centered Approach 

Previous attempts to develop a structural RNA gene-finder have largely relied on RNA 

folding algorithms to calculate the Free Energy (AG) of sequence segments or windows 

along a given genomic sequence [8, 9, 341. One risk in using this approach is that AG, under 

the current thermodynamic models, typically decreases as the length of the folded segment 

increases. This occurs regardless of whether the RNA segment folds into a functioning 

secondary structure. The culprit is simply that longer nucleotides sequences present more 

opportunities for base pairs to occur when the RNA molecule folds on itself. In addition, 

the size of these segments has no biological relevance. Instead, the segment size is an input 

parameter necessitated by and optimized for an RNA folding algorithm. The logic behind 

this AG based approach dictates that regions along a given genomic sequence which code 

for structural RNAs will foster statistically significant AG values which are indicative of 

a given segments ability to form a remarkably stable RNA secondary structure. However, 

there is little evidence in support of such an approach [8, 491. Furthermore, little attention 

has been paid to the extraneous factors and complications brought about by the anointed 

segments sizes. Lastly, the 0(n3)  computation complexity of RNA folding algorithms is not 

conducive to scanning large genomic sequences [68]. 

There should be convincing evidence to justify including new factors or characteristics 

into an RNA gene-finder. Hence, our goal is to explore the added benefit stem-loop metrics 

may provide in identifying structural RNA genes. 

There are a number of factors which make stem-loops a suitable target or focal point. 

Pairing rules and sequence directionality (5'+3') obligate RNA sequences to form stem- 

loops when they fold upon themselves. One can argue that stem-loops are to RNA structures 

what a-helices and /3-sheets are to proteins. Hence, it is speculated that genomic segments 

which code for structural RNAs may have a higher density of stem-loops than their genomic 

counterparts. It is further postulated that stem-loops found in regions which code for 

structural RNA will tend to be longer than those found in their genomic counterparts. 

Furthermore, searching for stem-loops along a given sequence can be regulated by a set of 

parameters to favour stem-loops which are characteristically found in structural RNAs. This 

element of control is lost when the sequence is partitioned into arbitrarily sized windows 

to calculate the AG. Later, a description of how a set of search parameters is devised is 

presented. Finally, searching for stem-loop structures along a sequence can be accomplished 
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with O(n) time and space complexity where n is the length of the sequence. This will be 

explained in more detail after the stem-loop search algorithm is presented. 

2.3 Chapter Review 

This chapter reviewed previous attempts to develop an RNA gene finder. These approaches 

have tended to rely on AG. The results suggest that more capable sequence signals are 

required to find structural RNA genes in genomic sequences. 

Stem-loops have been proposed as a sequence signal. They make an attractive target 

given that they are universally found in structural RNA gene products. In addition, it is 

possible to search for stem-loops along a given sequence in O(n)  time where n represents 

the length of the sequence. The next chapter provides a detailed account of how genomic 

sequences are scanned for stem-loops. 



Chapter 3 

Methods - Building A Stem-loop 

Finder 

Earlier, two key motivations for studying stem-loops were stated. One, stem-loops may 

occur in higher frequency along genomic segments which code for structural RNAs than 

genomic segments which code for proteins or genomic segments which make up noncoding 

DNA. Two, stem-loops found in genomic segments which code for structural RNAs may be 

longer than those which are found in genomic segments which code for proteins or genomic 

segments which are noncoding DNA. If these notions are true, these differences may be 

useful in identifying where structural RNA genes occur along a given genomic sequence. 

To test these suggestions requires a program capable of identifying stem-loops along an 

RNA sequence. There are several factors and nuances involved in implementing a suitable 

stem-loop search algorithm. Therefore, the reader is gradually introduced to the stem- 

loop search algorithm with a basic search algorithm that has a limited search capacity. 

Thereafter, the more complex logistics and subtleties which allow the algorithm to find 

more complex stem-loops are presented. 

The search for stem-loops is, in large part, aimed towards finding base pairs which occur 

adjacently. It is these base pairs which comprise the stem or helix in our stem-loops. The 

permitted base pairs include AU, GC, and GU (Table 3.1). Note that genomic sequences 

are transcribed into an RNA before embarking on a search for stem-loops. 

Structural RNAs tend to favour stem-loops with a relatively high GC base pair compo- 

sition. Furthermore, the base pairs which make up a stem-loop are commonly interrupted 
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Table 3.1: Base pairs permitted by the stem-loop finder. 

Indexed Nucleotide (nt) Sequence 
nto - ntl - ntz - nt3 - nt4 - nt5 - nt6 - nt7 - nts - ntg - ntlo - ntll - ntla - ntis 

Figure 3.1: An indexed nucleotide sequence. 

by mismatched or unpaired nucleotides. Therefore, it becomes important for the search 

algorithm to accommodate a set of parameters to accommodate these various possibilities. 

This will be described in more detail later. 

3.1 Basic Stem-loop Finding Algorithm 

The basic implementation searches for tetra-loops which are characterized by 4 nucleotides 

in the hairpin loop and at least 4 base pairs in the stem [66]. No mismatched or unpaired 

nucleotides in the stem are permitted. To pursue these stem-loops, this basic algorithm 

increments through the RNA sequence and looks for adjacent upstream nucleotides which 

can base pair to adjacent downstream nucleotides. Stated differently, this basic search 

algorithm searches for stacks of base pairs separated only by a hairpin loop. 

The algorithm starts with the upstream nucleotide (nt) positioned at index 3 (nt3) 

(Figure 3.1). It then checks whether nt3 base pairs with the nts (note this leaves room 

for 4 nucleotides to occupy a hairpin loop). Suppose, the initial upstream nucleotide (nt3) 

and the initial downstream nucleotide (nt8) do not base pair. Consequently, the upstream 

nucleotide is incremented by 1. As a result, the algorithm checks whether nt4 can base 

pair with ntg. Assume they base pair, this could mean that they form the base pair which 

resides nearest the hairpin loop. To check for an adjacent base pair, the upstream index is 

decremented and the downstream index is incremented. The algorithm then checks whether 

nts and ntlo base pair (Figure 3.2). Suppose 4 adjacent base pairs are identified in the 

segment depicted in Figure 3.2. This stem-loop is stored as an ordered list of the tuples: 

((4, g)! ( 3 , m ( 2 7  l l ) ,  (1, 12)). 
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Figure 3.2: The algorithm checks to determine whether complementary nucleotides which 
form stem-loops can be found. Stem-loops are always validated by starting with the base 
pair nearest the hairpin loop. In this figure, this involves the nucleotides at index 4 and 
index 9. 



CHAPTER 3. METHODS - BUILDING A STEM-LOOP FINDER 

-- 

function FindTetraLoop(upstreamNucleotide, downstreamNucleotide) 

{ 
int n = length of sequence 
tuple bp; 

// stores tuple of indices which denote a single base pair 
pairsInStem 

// stores a list of tuples (i.e. base pairs) which comprise the stem 
int stemLength = 0; 

while( upstreamNucleotide 2 3 AND downstreamNucleotide leq n-4 AND 
if (sequence[upstreamNucleotide] pairs with sequence[downstreamNucleotide]) ) 

{ 
bp = (upsteamNucleotide, downstreamNucleotide) 
pairsInStem.append(bp) 

// adds a tuple to the list of detailing the stem 
upsteamNucleotide = upstreamNucleotide - 1 
downstreamNucleotide = downstreamNucleotide+1 
stemLength = stemLength+l 

} end while loop 
if ( stemlength > 4 ) 

{ 
return pairsInStem 

else 
} 

{ 
return NULL; 

} 

Figure 3.3: Pseudocode detailing how tetra-loops are located along an input sequence. 
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In this simple tetra-loop search, the initial upstream nucleotide and downstream nu- 

cleotides are always separated by 4 nucleotides. The subsequent nucleotide pairs in the 

stem are separated by 6 nucleotides, then 8 nucleotides, and so on (Figure 3.2). 

The pseudocode for this basic stem-loop search algorithm is presented in Figure 3.3. 

In pursuing all the possible tetra-loops along an input sequence, this function is called 

for all the possible upstream and downstream nucleotides which might form the base pair 

nearest the hairpin loop. Given a sequence of length n,  we can represent the sequence 

as ntontlntz.. .nt,-l. Since the minimum stem requires 4 base pairs, the lowest index 

for the upstream nucleotide nearest the hairpin loop is 3. The ordered set depicting the 

most upstream stem-loop is as follows: ((3, 8 )  ( 2 ,  ( 1  1 0 ,  0 1 1 ) )  Note, the index val- 

ues start at  0 and end at n - 1 for a sequence of length n. Suppose the input sequence 

has a length of n = 100. In this case, the last possible downstream stem-loop which is 

comprised of the minimum 4 base pairs is defined by the following ordered set of tuples: 

((91,961, (90,971, (89,981, (88,991). 

3.2 Partial Validation with Random Sequences 

To evaluate the correctness of this simple algorithm, it was implemented and tested on ran- 

dom RNA sequences. One can reasonably conclude that this algorithm functions correctly 

when it scans random nucleotide sequences and produces results inline with the expected 

mean given in Table 1.1. To undertake such an evaluation, hundreds of random sequences 

100,000 nucleotides long were generated using a function similar to the pseudocode shown 

in Figure 3.4. 

The RandomlySelectNucleotide ( a ,  c ,  g ,u) function selects one of the 4 nucleotides at 

random with each it.eration (Figure 3.4). The random sequences generated have a base 

composition such that: P(A) = P(C)  = P(G) = P(U) = 0.25 

The tetra-loop algorithm was executed on 360 separate random nucleotide sequences 

each 100,000 nts long. The average number of tetra-loops identified in all of these runs was 

1981.59 f 6.80 (Appendix A.l). 

Using the probability from Table 1.1, the expected number of stem-loops is 1977.54H.96. 

Recall the probability calculation did not account for the distance between the upstream and 

downstream segments; this might in part explain the deviation. Nonetheless, the P-value 

is 0.2676. The fact that these results are statistically close suggests this simple algorithm 
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function GenerateRandomSequence( int length ) 
{ 

for integer from 1 to length 
{ 

randomNucleotide = RandomlySelectNucleotide( A,C,G,U); 
WriteToFile(randomNucleotide); 

1 
return; 

} 

Figure 3.4: Pseudocode briefly detailing how random sequences are generated. 

functions as intended. This is important since this basic algorithm forms the foundation 

upon which the following more complex stem-loop search algorithm is built. 

3.3 Analysis of rRNA Stem-loop Characteristics 

Given this algorithm identifies tetra-loops correctly, the next step is to increase its search 

capacity. This includes the ability to find larger stem-loops and to recognize stem-loops 

with bulges and/or internal loops. First, there are several questions to address. What is the 

largest allowable loop? What is the minimum stem-length qualified to stabilize that loop? 

How big are the largest allowable bulges and internal loops? Are there minimum GC base 

pair content requirements? 

TO find answers to these questions, a number of secondary structures were studied. 

These structures were determined with RNA secondary structure prediction algorithms 

based on comparative sequence analysis. They are available on public databases at the 

Comparative RNA Web Site ' and Ribosomal RNA Database The structures surveyed in- 

clude: Escherichia coli rRNA (Accession Number: J01695), Saccharomyces cerevisiae rRNA 

(V01335), Coprinus cinereus rRNA (M92991), Methanococcus jannaschii rRNA (U67517) 

and Chlamydomonas reinhardtii rRNA (M32703). 

A number of trends were observed. The smallest hairpin loop is comprised of 3 nu- 

cleotides; these structures made-up roughly 10% of all the stem-loops. The largest hairpin 

'Comparative RNA Web Site: http://www.rna.icinb.utexas.edu 

2 r R ~ A  Secondary Structure Models: http://www.psb.ugei~t.be/rRNA/secmodel/index.htnil 
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Figure 3.5: In the cursory analysis done on several structures, the size of the hairpin loop 
ranged from 3 to 20 nucleotides. 

base pairs 
immediately 
after loop 

Figure 3.6: Base pairs located immediately after the hairpin loop. 

loop observed consisted of 20 nucleotides (Figure 3.5). In all 5 structures analyzed (cited 

above) there were a total of 188 stem-loops of which only 6 had more than 15 nucleotides 

in the hairpin loop. 

A tetra-loop typically has at least four adjacent base pairs in its stem occurring im- 

mediately after the loop closure (Figure 3.6). Anywhere from roughly 20% to 60% of the 

stem-loops in the structures studied had less than 4 adjacent base pairs immediately closing 

the hairpin loop. However, virtually all of these stem-loops are further stabilized by base 

pairs which occur after an internal loop or bulge. See Figures 3.7 and 3.8. 

Next, consider the internal loops and bulges (Figure 3.9). Of all the 188 stem-loops 

observed in the analyzed structures only 3 stem-loops had an internal loop with 7 nucleotides 

along the longest side. The remaining internal loops were comprised of no more than 6 
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Figure 3.7: Three base pairs in stem before bulge or internal loop. 

Figure 3.8: Closure - 4 consecutive base pairs distal to this 4 nucleotide bulge. 
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Figure 3.9: Top: Bulges containing 1 to 4 nucleotides. Bottom: Symmetric internal loops 
containing 1 to 7 nucleotides. 

nucleotides. Similarly, there were no instances where a bulge consisted of more than 4 

nucleotides. The analysis also suggests that the typical closure stabilizing a bulge is 3 or 4 

base pairs long (depicted in Figure 3.8). Similarly, internal loops are typically stabilized by 

3 or more adjacent base pairs. 

The percentage of GC base pairs in the stem is typically 3&40% or more. 

These observations were used to formulate a set of search parameters for our stem-loop 

search algorithm. A summary of these parameters is presented in Table 3.2. 

Presumeably, there are valid objections to the parameters cited in Table 3.2. One of 

the primary reasons for chosing a fixed set of parameters is to limit the number of variables 

affecting our results. In the course of this project, several different stem-loop metrics will 

be tested. Additionally, each of these metrics will be tested on numerous bacterial genomes 

which have wide ranging G+C content levels. The search parameters have been fixed to 

make explaining the results more tangible. This does not necessarily deny us the ability to 

examine the merits of using stem-loop metrics to identify structural RNA genes. Efforts to 

optimize parameters are more suited to later stages of development. 
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L - 

Max. internal loop 1 6 nucleotides 
Min. bulge or internal  loo^ closure 1 3 base   airs 

Parameter 
x nucleotides in hairpin loop 

Min. hairpin loop closure 
Max. bulge 

- I 

Min. GC Base Pair Content 30% 

Value 

3 5 x 5 1 5  
3 base pairs 
6 nucleotides 

Table 3.2: Summary of defaultlinitial stem-loop search parameters. Abbreviations: nu- 
cleotides (nts), base pairs (bps) 

Max. GU Base Pair Content 
Overall min. number of base pairs 

3.4 Extended Stem-loop Finding Algorithm 

34% 
4 

The algorithm which follows extends the functionality of the basic algorithm described 

earlier. Recall, it could only find tetra-loops. By adopting the parameters described in the 

previous section, this "extended" algorithm becomes capable of identifying stem-loops with 

a range of hairpin loop sizes. It also identifyies stem-loops which are comprised of bulges 

and internal loops. 

The algorithm has been implemented in an object oriented fashion. In adopting this 

design/implementation approach, the larger goal of finding stem-loops has been broken into 

smaller tasks or functions. Subdividing the overall goal in this manner adds simplicity to 

an otherwise complex task. This section describes in detail several of the key functions used 

to find stem-loops. 

The search is coordinated by a function called FindStems. The base pairs which occur 

immediately adjacent to the hairpin loop are referred to as the stem-root (Figure 3.10). As 

we saw earlier, this is the first section of each stem-loop that is pursued. Hence, the search 

starts by calling the FindStemRoot function. It receives an integer upstrnt corresponding 

to the index of the first nucleotide in the potential stem-loops upstream segment. Refer to 

Figures 3.11 and 3.12. 

As mentioned earlier, the smallest hairpin loop is a tetra-loop (Figure 3.12). Conse- 

quently, the index of the first nucleotide in the downstream segment to check for base 

pairing is always 5 indices greater. See Figure 3.13. If this pair is complementary, the 
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stem mot  

5' 3' 

Figure 3.10: The stem-root refers to the base pairs adjacent to the hairpin loop. 

Figure 3.11: Preliminary function diagram. 

upstr-nt 2 R) 
5' 3' 

stem root 

Figure 3.12: First nucleotide in a potential stem-loops uptream segment. 

downstr-nt 
= upstr-nt + 5 

Figure 3.13: First nucleotide in a potential stem-loops downstream segment. 
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Figure 3.14: After finding a base pair which could mark the beginning of a stem-loop, the 
indices for the upstream and downstream nucleotides are decremented and incremented by 
1, respectively. Using these updated indices the next pair of nucleotides is checked for 
complementarity. 

indices are incrementedldecremented by 1 (Figure 3.14). 

This process of decrementinglincrementing the upstream and downstream indices and 

checking whether the corresponding nucleotides are complementary continues until a pair 

that is not complementary is found. The search parameters dictate at least 3 consecutive 

base pairs are present in the stem-root. Hence, only when 3 or more base pairs are found does 

the FindStemRoot function return the pairs in the root (pairs-instem) to the Findstems 

function (Figure 3.11). The pairs-in-stem variable might hold something like this: 

When less than 3 base pairs are found in the stem-root the variable i is reset to upstrnt 

and j is set to upstrnt + 6. Now the FindStemRoot function looks for a stem-root with 

a hairpin loop comprised of 5 nucleotides (Figures 3.11 and 3.15). Again, the process of 

decrementinglincrementing the upstream and downstream indices and checking whether the 

corresponding nucleotides are complementary ensues. The same rules apply - at  least 3 base 

pairs must be present in the stem-root. 

If the size of the hairpin loop exceeds 15 nucleotides and a stem-root with 3 or more 

base pairs has not been found the FindStemRoot function returns NULL (Figure 3.11). 
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Figure 3.15: First 2 nucleotides to be compared in a potential stem with 5 nucleotides 
comprising the hairpin loop. 

Finding Bulges and Internal Loops 

Suppose the FindStemRoot function returns pairs-in-stems. The next step is to attempt 

to extend this stem. To find the stem-root the pairs-in-stems list was appended until 

a mismatch was encountered. Therefore, to successfully extend the stem-root around this 

mismatch the algorithm must accomodate a bulge or an internal loop into the stem. This 

essentially involves finding a stretch of consecutive base pairs responsible for stabilizing or 

closing this interruption. 

A useful way to describe pursuing bulges and internal loops involves a matrix depicted 

in Figure 3.16. The upstream segment is anchored along the left side and the downstream 

segment is anchored along the top side. Note how the consecutive base pairs comprising 

the stem-root are denoted with cells containing '1'. The cell containing a '0' indicates a 

mismatch. If the goal is to find a string of consecutive base pairs distal to a bulge or an 

internal loop, the algorithm needs to look for a string of consecutive base pairs (represented 

by cells labeled '1') occurring somewhere after the mismatch (represented by cells labeled 

'0'). If there is a symmetric internal loop of length 1, then we would expect to find a 

diagonal of base pairs (or cells labeled '1') interrupted by a mismatch (or cell labeled '0') 

(Figure 3.17). Likewise, if there is a symmetric internal loop of length 2 then we should see 

2 mismatches (or cells labeled '0') interrupting the diagonal of base pairs (i.e. cells labeled 

1). This is depicted in Figure 3.18. 

Let us consider bulges. Suppose, there is a bulge with 1 nucleotide occurring in the 

upstream segment. The start of the subsequent stretch of consecutive base pairs (those 

which close the bulge) would start with the cell below the first mismatch (Figure 3.19). 

Similarly, suppose there is a bulge with 3 nucleotides. Then the subsequent diagonal of base 

pairs begins 3 cells below the mismatch (Figure 3.20). 
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upstr-nt 

upstr-nt 

stem root 

n + m a b m m p = ~ n  
0 0 0 0 0 ~ 0  
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3' 

5' 

Figure 3.16: Path traversed by consecutive stretch of nucleotides. 

3' 
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201 

upstr-nt + ZGU 
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5' 

Figure 3.17: Path traveled by symmetric internal loop 1 nucleotide long. 
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stem root 

5' 

Figure 3.18: Path traveled by symmetric internal loop 2 nucleotides long. 

stem root 

5' 

Figure 3.19: Path traveled by upstream bulge 1 nucleotide long. 
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upstr 
stem 

Figure 3.20: Path traveled by upstream bulge 3 nucleotides long. 

To reiterate, the diagonal stretch of cells labeled '1' blocks occurring after a mismatch 

or mismatches represents consecutive base pairs which act to "close" or stabilize bulges and 

internal loops. 

In the previous section, a set of search parameters was outlined (Table 3.2). They limit 

the maximum number of nucleotides in a bulge or along one side of an internal loop to 6 

nucleotides. They also specify that at least 3 base pairs are required to stabilize a bulge or 

an internal loop. This means that a string of consecutive base pairs must be not less than 

3 cells measured diagonally and this diagonal must begin within the 7 cells below or to the 

right of the mismatch (Figure 3.21). 

The examples described above dealt only with bulges and symmetric internal loops. The 

gray region shown in Figure 3.21 encapsulates all the allowable paths that can be traversed 

by an asymmetric internal loop. For instance, a diagonal string of base pairs starting one 

cell to the right and 2 cells below the mismatch (labeled '0') depicts an asymmetric internal 

loop with 2 nucleotides in its upstream segment and 1 nucleotide in its downstream segment 

(Figure 3.22). 

We now return to the algorithm to see how these tables are useful in describing the 
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Figure 3.21: This table depicts the search space or the possible starting points for a stretch 
of consecutive base pairs which close or stabilize an internal loop or bulge. 

Figure 3.22: Path traveled by asymmetric internal loop. 
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I FindStems I 
for (upstr-nt = 0 to 

seq. length) 

I 
pairs-in-stem 

*' pairs-in-stem 
> I 

I FindBulgePath (pairain-stem)/ 

pairs-in-stem 
/NULL 

Figure 3.23: Secondary function diagram. 

pairs-in-stem I 

stem-loop search algorithm. 

Once the algorithm finds a stem-root it tries to extend the stem either by adopting a 

bulge or an internal loop. To do this, the FindStems function calls the ExtendStemRoot 

function to find the longest possible stem (Figure 3.23). 

The ExtendStemRoot function calls the FindBulgePath function to look for consec- 

utive base pairs which we earlier represented as diagonal paths. When such a path is 

returned, it is appended to the pairs-in-stem variable. ExtendStemRoot continues calling 

the FindBulgePath function until it returns NULL. In this way, the algorithm seeks out the 

longest possible stems. 

Lastly, two elements need to be added to function diagram (Figure 3.24). For each 

cell in the block of possible diagonal starting points the FindBulgePath function calls the 

CheckFor3PlusConsecBPs function to check whether there are 3 or more consecutive base 

pairs. The first path with 3 or more consecutive base pairs is not immediately returned. 

Rather, the first path is stored as a candidate path while the FindBulgePath function 

explores all the (i, j )  paths. When a second path is found, the 2 paths are compared by 

calling the SelectlPathFrom2 function which returns the longest path (ie. the one with the 

most base pairs). 
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for (upstr-nt = 0 to 
seq. length) 

upstr-nt 

pairs-ipstem/NULL 

pairs-in-stem pairs-in-stem I I 

pairxin-stem pairs-in-stem) 

Figure 3.24: Final function diagram. 

In summary, at each index along the sequence this stem-loop search algorithm attempts 

to find the longest possible stack of base pairs with the smallest hairpin loop which satisfies 

the search parameters. 

Earlier, the stem-loop definition presented in Section 1.4.1 explicity stated that stem- 

loops do not have pseudoknots within their boundaries. It is important to note that this 

search algorithm does not explicity rule-out this possibility. It is presumed that nucleotides 

interacting to form a pseudoknot would not reshape or completely destabilize the stem-loops 

as the algorithm has identified them. 

3.5 Computational Complexity 

The algorithm scans along a genomic sequence and in doing so it constructs the longest 

possible stem-loop within the search parameters. It is possible to construct pathological 

artificial sequences which could lead to a scan time of 0(n2)  with a maximum stem-loop size 

of ;n (Figures 3.25 and 3.26). However, it seems virtually impossible that such sequences 
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length = n 
5' 3' 

Figure 3.25: In the worst case scenario, a stem-loop is found by the search algorithm at  each 
iteration along the sequence. The longest possible stem-loop would occur at the center of 
the input sequence. Here approximately i n  nucleotides in the upstream segment will pair 
with approximately i n  nucleotides in the downstream segment. 

would occur in nature. For real sequences, the length of the largest possible stem-loop is 

typically negligible compared to the length of the sequence. For all practical purposes, the 

average length of a stem-loop can be considered constant and depends more on the G+C 

content than the length of the input sequence (for large enough sequences). As a result, we 

can assume that to scan a sequence of length n takes linear or O(n) time. This was also 

confirmed in practical experiments where the doubling of the length of an input sequence 

led to  roughly doubling the CPU time to scan the sequence assuming that the G+C content 

of both sequences was the same. 

3.6 Programming Language 

The stem-loop search algorithm was initially implemented in python4 - an interpreted lan- 

guage. Python was selected early on because it allows for rapid prototyping. However, 

the downside is that its execution is slower than most compiled languages. In Python, the 

stem-loop search algorithm required approximately 7 minutes to scan through a sequence 

roughly 1 x lo6 nucleotides long (Intel Pentium 4 0  2.8 GHz processor, 1.4 GB RAM). 

Given that this project would require scanning many sequences - some comprised of over 

4~ython  Programming Language: http://www.python.org 
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s, = number of steps for a sequence of length n 

s, = num. steps in first half + num. steps in second half 

s, = 2 x xi ... simplified since both halfs require the same num. of steps 
(i:4 ) 

s, = 2 x - (a1 + a f) ... substitute in a summation series formula (i ) 
a1 is the first value, af is the final value, t is the total number of values. 

n 
Since, al = 4, af = -, and t = 

2 
(: - 3) , we have.. . 

Figure 3.26: In the event that a stem-loop is found at  each iteration along the sequence the 
number of steps (s,) required to find all these stem-loops is a function of n2 where n is the 
length of the sequence. 
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Figure 3.27: Stem-loops are depicted with simple text. The stem-loop on the left is rendered 
in text format on the right. 

5 x lo6 nucleotides, these long processing times became an impediment. One of our goals 

was to design a tool that would give the user a rapid response. Consequently, the algorithm 

was implemented in the C++ programming language [45]. The performance improvement 

was substantial. To scan a 1 x lo6 nucleotide sequence required less than 6 seconds on the 

same desktop computer cited above. Simply shifting from Python to C++ appears to have 

improved time performance by about 70 times. This clearly makes scanning many bacterial 

genomes much more feasible. 

3.7 Displaying Stem-loops in Text Format 

The ability to render stem-loops visually is important for inspecting what the stem-loop 

search algorithm is finding. Consequently, a means to display the stem-loops identified by 

the search algorithm was devised and implemented. 

A simple means to render stem-loops uses 3 lines of text (Figure 3.27). The upstream 

segment and the nucleotides comprising the hairpin loop are placed on the top line. The 

bottom line depicts the nucleotides residing in the downstream segment. The vertical bars 

( ' I 1 )  located on the centerline signify a base pair between the nucleotides above and below it 

(Figure 3.28). Mismatched nucleotides do not have a vertical bar between them. Unpaired 

nucleotides are denoted opposite a '*' character. 

Recall that the stem-loops are represented in memory as an ordered set of tuples: 

All the information necessary to describe a stem-loop is present in this ordered set. To 

display the proper nucleotides this algorithm uses the integer values in the tuples to access 
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A G  C  U G C A U C  C G A U U C A U G C  
I I I I  I I I I I  

U C  G A n A A A G G U U  

FFFF ' ' FFFF. 
FFFF 1 1 1 O O O O F  
m P W N F F F a m u m O  
VVVVV F F V V V V m  

F O  v 
VV 

Figure 3.28: A stem-loop depicted using 3 lines of text. Note the mismatched and unpaired 
nucleotides. The base pair tuples are not included in the output. They are included here 
for illustration purposes. 

the correct locations in the sequence array (e.g. sequence [loo] = A ). 

In the interest of memory conservation and efficiency the unpaired or mismatch nu- 

cleotides are not stored in the ordered set. Therefore, to include these nucleotides in the 

stem-loop printout the original ordered set of tuples needs to be modified. However, it is im- 

portant to clearly convey which tuples represent base pairs and which represent mismatches 

or unpaired nucleotides. This is accomplished by denoting mismatched nucleotide indices 

with negative values (e.g. (-95, -110)). Similarly, the index of an unpaired nucleotide is 

paired with a -1 (e.g. (93, -1)). This still allows for the proper nucleotides to be retrieved 

by simply taking the absolute values when both integers in the tuple are negative. If only 

one of the integers is negative, it will be the -1. This signals a mismatch and instructs the 

algorithm to print a '*' rather than a nucleotide (Figure 3.28). Additionally, one or two 

negative integers in a given tuple indicates that the center line in the display should not 

include a ' 1 ' .  The ordered set shown above is processed into the following ordered set to 

generate the correct text display: 
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Accession 

Table 3.3: This table presents a summary of the findings when the algorithm is executed on 
a E. coli ssu rRNA gene (501695). Many more stem-loops are identified than are present in 
the final RNA secondary structure. 

Number of Stem-loops 
Present in Secondary I Identified by I Partially I Fully 

Number 

J01695 

3.8 Testing the Search Algorithm on a Single rRNA Gene 

The stem-loop finder program was tested on numerous short sequences to insure it was 

finding the stem-loops as intended. In another evaluation, the stem-loops identified in the E. 

coli ssu rRNA (501695) gene were compared to the stem-loops depicted in its corresponding 

RNA secondary structure. The results confirmed previously anticipated output patterns. 

The algorithm finds many stem-loops; yet it also overlooks others. This commonly occurs 

when a particular stem-loop fails to meet the search parameters (e.g. 2 30% GC base pairs). 

There are 32 stem-loops in the 501695 rRNA secondary structure; the algorithm correctly 

identified 19 of their locations. This means that the hairpin loop was correctly identified. 

Identification errors most commonly occur after the algorithm encounters a bulge or an 

internal loop. At these junctures, the algorithm commonly settles on an incorrect stack 

of base pairs which closes this bulge or internal loop (Figure 3.21). Recall, the search 

parameters require 3 consecutive base pairs immediately after an internal loop or a bulge, 

in some stem-loops there are only 2 adjacent base pairs at  these junctures. As a result, the 

distal segment of several stem-loops were not recorded correctly. The algorithm also misses 

stem-loops with less than 3 consecutive base pairs in the stem-root. 

Clearly, the algorithm has not been optimized to identify every stem-loop in a given 

rRNA structure. However, in this instance, it correctly identify 9 of the 32 stem-loops. 

Adjustments to the search parameters could help to improve the ability to uncover more 

"correct" stem-loops. At this juncture, it is too early to determine how such changes would 

affect the ability to observe differences between structural RNA genes and their genomic 

counterparts. 

Interestingly, the stem-loop search algorithm identifies 177 stem-loops along the 501695 

sequence. However, the published secondary structure only depicts 32 stem-loops. This 

Structure 

32 

Algorithm 

177 

Correct 

19 
Correct 

9 
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could suggest that every possible stem-loop within a given structural RNA gene is not 

necessarily present in its final structure. Admittedly, many of these supplementary stem- 

loops may never have a real possibility of competing - thermodynamically speaking - for a 

position in the final structure. This, however, does not necessarily preclude the possibility 

that they may play a role in fostering an environment which favors assembly of the final 

structure. 

The results generated by the stem-loop search algorithm are confined by the search 

parameters. In addition, the results are also confined by the nature of the search algorithm 

itself. For instance, the algorithm is designed to take the first LLqualified" stem-loop with 

the smallest hairpin loop. It is important to keep in perspective that the forces at play in 

determining which stem-loops are present in a final RNA structure are vastly more complex 

than parameters such as minimum closures, maximum bulge size, or minimum GC base pair 

content. Hence, it is not surprising that the algorithms findings do not exactly match what 

is seen in the final secondary structure. 

It is postulated that in nature numerous stem-loops in an RNA transcript are competing 

with one another to play a role in the final structure. Our aim is not to precisely define 

all the stem-loops that would be found in the final RNA secondary structure. Such a 

task could only be accomplished with an RNA folding algorithm - the problems with that 

approach were described previously. The questions we hope to answer include the following: 

Is the average stem-loop longer in regions which code for structural RNAs compared to their 

genomic counterparts? Do stem-loops occur at a higher frequency in regions which code for 

structural RNAs compared to their genomic counterparts? The accuracy limitations of the 

stem-loop search algorithm do not necessarily prevent us from answering these questions. 

3.9 Sequence Maps 

The motivation for pursuing stem-loops is the notion that stem-loops may occur more 

frequently in regions which code for structural RNAs relative to the frequency with which 

they occur in their genomic counterparts. In addition, it is believed that the average stem- 

loop present in regions which code for structural RNA genes will be longer than the average 

stem-loop found in their genomic counterparts. To investigate these suggestions requires 

the ability to compare stein-loops found in the various genomic regions. 
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Nucleot ide Sequence: 
Ao U1 C2 C3 G4 A5 C6 G7 U8 (39 

Corresponding Sequence Map: 
NCo NC1 NC2 rRNA3 rRNA4 rRNA5 CDS6 CDS7 CDS8 tRNAg 

Table 3.4: Annotated sequences are used to create a one-dimensional map. This map depicts 
the genomic domain a given nucleotide or a stem-loop falls into - ribosomal RNA (rRNA), 
transfer RNA (tRNA), protein-coding sequence (CDS), non-coding DNA (NC). 

Annotated sequences are publicly available at the NCB13 website. More specifically, 

the annotated bacterial sequences used in this study are available at the NCBI Entrez 

Microbial Genome website4. The information conveyed in these annotated genomes is used 

to generate a one dimensional map for each genome. This sequence map divides the genomic 

segments into four broad categories - protein coding sequences (CDS), non-coding DNA 

(NC), ribosomal RNAs (rRNA), and transfer RNAs (tRNA). 

For a given annotated genome, two arrays equal in length are created. One holds the 

nucleotide sequence. The second array serves as a map by storing one of the 4 labels at each 

index - CDS, NC, rRNA, or tRNA (Table 3.4). This allows the program to determine which 

domain a specific nucleotide or a stem-loop falls into. For instance, in Table 3.4, the first 

nucleotide - adenine - falls into a NC region. Similarly, the seventh nucleotide - cytosine - 
falls into a CDS region. 

The information stored in these one dimensional maps is important for comparing stem- 

loops between opposing regions. Ultimately, this information will help us to determine 

whether stem-loops can effectively differentiate structural RNA genes from their genomic 

counterparts. 
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3.10 Chapter Review 

This chapter provided a detailed description of the stem-loop search algorithm. To identify 

stem-loops similar to those typically observed in RNA secondary structures, a set of search 

parameters was devised. At each iteration along the input sequence, the algorithm identifies 

the stem-loop with the smallest hairpin loop and the longest stem which satisfies the search 

parameters. 

Our goal is to determine whether stem-loops can be used to distinguish structural RNAs 

from their genomic counterparts. To investigate this, the algorithm is used to scan numerous 

annotated bacterial genomes. From each annotated genome a sequence map is generated. 

This map divides the genome into 4 broad categories. Subsequently, these maps are used to 

compare stem-loops identified in structural RNAs (rRNA and tRNA) with those identified 

in their genomic counterparts (CDS and NC). 

The next chapter describes the stem-loop characteristics or metrics which are used to 

compare stem-loops found in opposing genomic segments. These comparisons involve the 

use of statistics. 



Chapter 4 

Methods - Stem-loop Metrics and 

Statistics 

Our goal is to determine whether stem-loops can help to identify structural RNA genes 

along a given genome. To investigate this requires quantifiable metrics so that statistics can 

be used to compare stem-loops found in opposing genomic regions. This chapter presents 

6 stem-loop metrics. Each metric will be studied to examine its ability to differentiate 

structural RNAs from their genomic counterparts. This involves comparing the average 

metric values from structural RNAs (rRNA and tRNA) with the average values measured 

in their genomic counterparts (CDS and NC). 

4.1 Stem-loop Metrics 

4.1.1 Number of Base Pairs - bps 

The bps metric is simply the number of base pairs comprising a given stem-loop. 

4.1.2 Stem-loop Span - span 

The span metric is measured as the distance in nucleotides from the first upstream nu- 

cleotide to the last downstream nucleotide which comprise a stem-loop (Figure 4.1). Stated 

differently, it is the distance between the 2 nucleotides which makeup the base pair which 

lies furtherest from the hairpin loop. 
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Figure 4.1: The stem-loop span is measured as the total distance between the nucleotides 
which comprise the base pair which is most distal to the hairpin loop. 

span = j - i + 1 

With reference to Figure 4.1 ... 

span = 123- 100+ 1 

span = 24 nucleotides 

4.1.3 Stem-loop Center-point Spacing - cSpacing 

The center-point for a given stem-loop is the position in the middle of the hairpin loop. The 

cSpacing metric gauges the distance between stem-loops by calculating the average distance 

in nucleotides from the center-point of a given stem-loop to the center-points of its nearest 

non-overlapping upstream and downstream neighbours (Figure 4.2). For instance, if the 

base pair nearest the hairpin loop is (100,105) the halfway or center-point in the hairpin 

loop is 102.5. Similarly, if the base pair nearest hairpin loop is (100,106) the center-point 

is 103. The center point does not need to correspond to a single nucleotide since it is being 

used to gauge distance and not to denote which nucleotide lies at the center of a given 

hairpin loop. 
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Center-point Spachg 

.cm 

spacing = (19+19)/2 = 19 

Figure 4.2: The &pacing metric is measured from the center point of each stem-loop 
indicated by the arrows. 

8 nts. 0 nts. 

Figure 4.3: The fSpacing metric is measured as the average distance in nucleotides from 
the foot of one stem-loop to the footings of its nearest non-overlapping upstream and down- 
stream stem-loops - as indicated by the blue arrows. 

4.1.4 Stem-loop Foot Spacing - f Spac ing  

The "foot" of a stem-loop is the base pair most distant to the hairpin loop (Figure 4.3). 

The fSpacing metric is the average distance to the foot of its nearest non-overlapping 

upstream and downstream stem-loops. The fSpacing metric is similar to the &pacing 

metric, however, it excludes factors related to the size of the stem-loop itself by measuring 

from the outer boundaries. 

The final metrics simply group 2 metrics together. Multiplication, it was postulated, 

would help to amplify differences that might exist between structural RNAs and their ge- 

nomic counterparts. In contrast, simply adding 2 metrics together would not significantly 

amplify differences between the various genomic regions. 
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4.1.5 Combined Metric - ( c ~ p a c i n g  x bps)  

The ( c s p a c i n g  x bps)  metric combines the c S p a c i n g  and the bps metrics by multiplying 

them. 

4.1.6 Combined Metric - ( f ~ p a c i n g  x bps) 

The f S p a c i n g  x bps metric combines the f S p a c i n g  and the bps metrics by multiplying ( 
them. 

) 

4.2 Statistics 

4.2.1 Mean Metric Values for a Genomic Domain 

The sequence maps are used to calculate the mean stem-loop metric values for each of the 

genomic domains - rRNA, tRNA, CDS, and NC (Equation 4.1). 

- Cr.,xi xi refers to the metric value for stem i x=- 
n n is the number of stems found in a region (eg. CDS) 

( 4 4  

It is conceivable that a stem-loop will sit atop a boundary between 2 genomic domains. 

However, it is assumed that any given stem-loop can belong to only 1 genomic domain. The 

genomic domain for a given stem-loop is determined by rounding the center-point value to 

the nearest integer or index and looking up that index in the sequence map. 

The mean stem-loop metric values are calculated for all 58 genomes in our test set. 

These results are plotted and compared to study differences and trends. This information 

helps to determine whether mean stem-loop metric values may be capable of distinguishing 

structural RNAs from their genomic counterparts. The next section describes a more rigor- 

ous statistical examination. Given the average stem-loop metric value in structural RNAs, 

can they be identified along the sequence without using the sequence map? 

4.2.2 Hypothesis Tests Help Identify rRNAs 

A statistical inference is commonly referred to as a hypothesis test by statisticians. In this 

project, hypothesis testing is used to determine whether a given region along the genomic 

sequence potentially codes for a structural RNA. These statistical inferences are based on 
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the Central Limit Theorem (CLT). According to the CLT, sample means are approximately 

Normally Distributed about the population mean, p (see figure in Table 4.1) [12]. This 

makes it possible to determine whether a given sample mean, Z, may have been obtained 

from a population with a mean value, p. This test is commonly based on a 95% confidence 

interval. Consequently, 2.5% of the extremely low sample means and 2.5% of the extremely 

high sample means are discarded (Table 4.1). Theoretically, if a 100% confidence interval 

was desired the thresholds or cut offs would have to extend to negative and positive infinity. 

The stem-loop search algorithm identifies the stems in the genome sequence. The sample 

mean for a given stem-loop metric is calculated over N adjacent stem-loops. This sampling 

process is repeated over the entire length of the input sequence. For each sample along the 

sequence, a hypothesis test is performed. If the sample mean lies within the 95% confidence 

interval of the population mean, ~ , . R N A ,  the sample is suspected to have come from an 

rRNA gene. Note that the classification of each sample is thereby reduced to a true or false 

answer. 

The sample size - N - used in our experiments ranges from approximately 30 to 500 

stem-loops. Increases to sample size are accompanied by decreased variance in the sample 

mean probability distribution (i.e. the Normal Distribution of sample means takes on a 

more narrow shape) 1121. 

This project does not apply a strict mathematical method to evaluate false positive 

rates. It was decided that graphical depiction of the algorithms finding would suffice for our 

purposes. The next section describes how graphical illustration of the results are generated 

for each of the input sequences. 

4.3 Displaying the Results Obtained on Bacterial Genomes 

Once a genome is scanned for stem-loops and the statistical analysis is performed the results 

are summarized in a figure. To see an example the reader may jump ahead to Figure 6.1 on 

page 84. This figure is divided into 2 graphs. The top graph shows a map of the annotated 

genomic sequence with reference to the indexed sequence (i.e. nucleotide location). It also 

depicts where the "hits" determined by the statistical analysis occur. The ideal result shows 

a strong correlation between the location of the rRNAs/tRNAs and the "hits". The bottom 

graph shows local GC content plotted against the same index values. 

The results are depicted in 500,000 nucleotide segments. This allows for these graphics 
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NORMAL DISTRIBUTION 

Table 4.1: Normal distributions are symmetrical. The CLT states that sample means ap- 
proximate a Normal Distribution which is centered over the population mean, p. A 95% 
confidence interval encompasses 95% of the possible sample means could arise from this 
population, p. The remaining 5% covers the outlying sample means which have a much 
smaller probability of occurring. 

or graphs to be easily presented on paper. In the interest of space, the results reported in 

this document on any particular genome have been restricted to 1 of these 500,000 nucleotide 

segments. 

4.3.1 Plotting Results with Gnuplot 

These graphs along with several others were created using a text based program called Gnu- 

plot. Gnuplot is advantageous when thousands of data items need to be plotted. Loading 

a text file in Excel or a Statistics Program is generally workable. However, their graphical 

interfaces crash when one attempts to open a data file several megabytes in size. Gnuplot 

easily handles large quantities of data. Furthermore, if one is graphing the same data format 

for numerous different files (ie. sequences) a script can be written to undertake this repet- 

itive task in a hands-free manner. For a detailed description on Gnuplot see their website: 

http://www.gnuplot.info 
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4.4 Chapter Review 

This chapter described several stem-loop metrics used to study differences between struc- 

tural RNAs and their genomic counterparts. To distinguish between the various domains 

our approach relies on stem-loop metrics and their statistics. The aim is to find a set of 

stem-loop metrics where the average values observed in structural RNAs differ significantly 

from the average values found in their genomic counterparts. These metrics have been 

devised to measure the length and spacing attributes of stem-loops. 

After scanning the genomes in our training set, average values for each of the stem-loop 

metrics are established. These average values are used to compare and contrast the various 

genomic domains - CDS, NC, rRNA, and tRNA. Our final experiments examine whether an 

average structural RNA metric value is capable of identifying where structural RNAs occur 

along a given genome without the use of the sequence map. 

It is important to test stem-loop metrics on many genomes over a wide range of G+C 

content levels. This provides a more realistic guage on their effectiveness across a wide 

diversity of genomes. Consequently, the next chapter describes how the stem-loop metrics 

are tested on numerous bacterial genomes to study how changes to G+C content affect their 

performance. 



Chapter 5 

Results - Average Stem-loop 

Metric Values 

This chapter examines differences between the genomic domains in our set of annotated 

bacterial genomes. First, the base composition in CDS, NC, rRNA, tRNA regions are com- 

pared. This information is useful in understanding the subsequent sections which describe 

the differences in the stem-loop metrics between the opposing genomic domains. 

5.1 Base Composition 

The base composition approach studies the frequency of nucleotides along a given genomic 

sequence. Research has shown that RNA genes tend to be G+C rich (i.e. they have a 

relatively high makeup of guanine and cytosine nucleotides) 110, 17, 23, 26, 631. In A+T 

rich genomes, the average G+C content in RNA genes is considerably higher than the 

average G+C content found in their genomic counterparts. This disparity can be exploited 

to uncover where structural RNA genes are located [8, 23, 17, 49, 53, 641. By simply 

measuring local G+C content (i.e. over a region spanning roughly 100-200 nucleotides) one 

can identify where RNA genes occur in an A+T rich genome. Importantly however, this 

base composition approach is considerably less effective when the difference in the global 

G+C content and the structural RNA G+C content decreases. 

In the paragraphs which follow, the term "global" is used repeatedly. It refers to the 
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rRNA 0.043 
t RNA 0.58 0.048 

Genomic 
Domain 

Table 5.1: Summary statistics for the average G+C content for each genomic domain across 
the global G+C content spectrum. Original data presented in Appendix A.3. 

entire genomic sequence. For instance, the global G+C content describes the base composi- 

Mean 
G+C Content 

tion over an entire genomic sequence. Conversely, the term local loosely describes a regional 

characteristic. 

The first experiment examines the differences in local G+C content between various 

genomic domains over 58 different bacterial genomes. The results depict interesting trends 

which emerge in genomes over a wide range of global G+C content levels. Figure 5.1 shows 

the mean local G+C content level for each of the genomic domains - CDS, NC, rRNA, and 

tRNA. Each genome contributes 4 points to the graph - one for each of its genomic domains. 

It should be clear that the 4 points from any given bacterial genome are aligned vertically 

since they all arise from the same genome sequence which has only one global G+C content 

value. 

There are a couple of noteworthy features in Figure 5.1. The G+C content levels in rRNA 

and tRNA regions are notably more stable than those found in the CDS and NC regions 

(Table 5.1). Furthermore, the G+C content levels in CDS and NC strongly correlate with 

the global G+C content levels. 

The G+C content level in structural RNAs appears relatively steady a t  roughly 50-60%. 

Importantly, when the global G+C content reaches 50-60% distinguishing between structural 

RNAs and their counterparts using differences in base composition becomes infeasible. This 

conclusion can be made merely by studying Figure 5.1. The plots for rRNA and tRNA 

intersect with the CDS and NC plots in genomes when the global G+C content level reaches 

50-60%. This collision illustrates why the base composition method is not effective a t  finding 

structural RNAs in G+C rich sequences. 

The sections which follow describe the pursuit of a set of stem-loop metrics which are 

Standard 
Deviation 
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Local GC Content vs. Global G+C Content 
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Figure 5.1: Local G+C content vs. Global G+C content. This graph depicts the differences 
in local G+C between the various genomic domains. As global G+C content increases the 
disparity between the local G+C content levels in structural RNAs (rRNA and tRNA) and 
their counterparts (CDS and NC) diminishes. Where these plots collide, the values for the 
respective plots are equivalent. The corresponding data is located in Appendix A.3 
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Average Number of Base Pairs vs. G+C Content 
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Figure 5.2: Average bps found in stems-loops in CDS, NC, rRNA, and tRNA regions. The 
data is presented in Appendix A.4 

capable of identifying regions where structural RNA genes occur. These metrics are tested 

on many genomes in an effort to evaluate and predict their performance across the global 

G+C content spectrum. The observations in Figure 5.1 convey the value in finding a set 

of stem-loop metrics where the average values in structural RNAs differ significantly from 

their genomic counterparts across the entire G+C content spectrum. 

5.2 Number of Base Pairs in a Stem-loop - bps 

The stem-loop base pairs metric, bps, is intuitive. It is simply the total number of base pairs 

in a given stem-loop. Our initial expectations were that the average bps in stem-loops which 

reside in rRNA and tRNA genes would be greater than the average bps observed in their 

genomic counterparts. The results over the same set of 58 bacterial genomes are shown in 

Figure 5.2. 

There are a couple of noteworthy observations. First, the results contradict our initial 
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Table 5.2: Summary statistics for the average bps in a stem-loop for each genomic domain 
across the G+C content spectrum. The corresponding data is presented in Appendix A.4. 

Genomic 
Domain 

suspicions. The average length of a stem-loop in rRNA and tRNA regions is not  consistently 

greater than the average in CDS and NC domains. Furthermore, there does not  appear to 

be a significant difference in the average number of base pairs found in structural rRNA 

compared to their counterparts. The only exception to this may be in G+C rich genomes. 

Compared to the previously described base composition approach, the bps metric does not 

appear to provide an advantage in demarcating structural RNAs at any point along the G+C 

content spectrum. Stated differently, the average bps value in rRNA domains compared to  

the average in its counterparts do not appear to  differ significantly in the genomes examined. 

Figure 5.1 suggests that increases to global G+C content coincide with increases to  local 

G+C content in CDS and NC domains. This makes sense given the vast majority of bacterial 

genomes are comprised of CDS sequences. Recall, the local G+C content level in rRNA and 

tRNA genes are relatively stable by comparison (Table 5.1 and Figure 5.1). A similar trend 

emerges in Figure 5.2. As the global G+C content increases from one genome to  the next, 

the average bps in the CDS and NC domains also increases. These results suggest that the 

increase in average bps in CDS and NC regions is strongly related to the concurrent increase 

in local G+C content level in these domains. Likewise, the relatively stable bps valuations 

in rRNA and tRNA domains is presumably related to the relatively stable G+C content 

levels in these domains (Tables 5.1 and 5.2). 

Recall the stem-loop search parameters; they require a minimum 30% of the base pairs 

are GC base pairs. The higher the G+C content the more likely one will find longer stems 

with a sufficient number of GC base pairs (Figure 1.6 on page 10). Conversely, in AT 

rich genomes, the longest possible stems will tend to have more AU base pairs. However, 

the longest stems in AT rich genomes are less likely to meet the minimum GC base pair 

rRNA 9.44 1.27 
tRNA 

Average 
bps 

Standard 
Deviation 
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I CDS 6.17 f 2.21 

Table 5.3: Mean values for bps metric in Borrelia burgdorferi, NC-001318, which has a global 
G+C content of 29%. 

NC-001318 bps metric 

requirement. Given the stem-loop search algorithm only continues to extend a stem as long 

as the minimum parameters are met, the average bps value in AT rich genomes is bound to 

be lower. 

NC 6.58 f 3.06 
rRNA 7.88 f 3.52 

5.2.1 Probability Distribution - bps  

For a given sequence, a probability distribution can be created for the bps metric. In the 

interest of space, the distribution of only 1 genome - Borrelia burgdorferi - will be presented 

here (Figure 5.3). The 4 genomic domains are plotted separately. The shape of the distri- 

butions among the various domains appears to follow a similar pattern. The mean values 

occur at slightly different positions (Table 5.3 and Figure 5.3). The relatively high standard 

deviations in these mean values is attributable to the shape of their probability distributions. 

An analysis of the results obtained for the bps metric in randomized or shuffled genomic 

sequences is presented in Appendix B. 

5.3 Stem-loop Span - span 

The span is measured as the distance from the first upstream nucleotide to the last down- 

stream nucleotide comprising the stem-loop structure (Section 4.1.2). Using the same set of 

58 genomes, a graph was generated by plotting the average s p a n  versus the global G+C con- 

tent is remarkably similar to the earlier graph depicting the bps metric (compare Figures 5.2 

and 5.4). The similarity in the graphs corresponds to their likeness; the bps and s p a n  met- 

rics both relate to the length of the stem-loop. The difference being that the bps metric 

does not account for the unpaired nucleotides which reside in the hairpin loop, the bulges, 
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Figure 5.3: Probability distribution of the bps metric in Borrelia burgdorferi, NC-001318. 
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Average Span vs. G+C Content 
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Figure 5.4: Average Stem-loop span vs. G+C content. The corresponding data is located 
in Appendix A.5 

and/or the internal loops. Recall that the parameters which guide the search for the stem- 

loops restrict the size of the hairpin loops, bulges, and internal loops (Table 3.2). Therefore, 

the inherent nature of the stem-loop search largely precludes significant differences from 

emerging between the bps and span metrics. 

Like the bps metric, there do not appear to be significant differences between the average 

span value in structural RNAs and those measured in their genomic counterparts to indicate 

this metric may act a s  a useful distinguishing feature. The span metric appears more stable 

in the rRNA and tRNA domains relative to their genomic counterparts (Table 5.4 and 

Figure 5.4). This is presumably attributable to the relatively stable G+C content levels in 

rRNA and tRNA. 

5.3.1 Probability Distribution - span 

The probability distribution for the span metric in Borrelia burgdorferi, NC-001318, is 

shown in Figure 5.5.  The pattern displayed by these probability distributions explains the 
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rRNA 1 33.54 1 4.02 
tRNA 1 33.48 1 3.15 

Genomic 
Domain 

CDS 
NC 

Table 5.4: Summary statistics for the average span for each genomic domain across the 
G+C content spectrum. The corresponding data is in Appendix A.5. 

I CDS 22.84 f 7.58 

Average 
span 

33.94 
31.05 

Standard 
Deviation 

12.34 
8.55 

Table 5.5: Mean values for span metric in Borrelia burgdorferi, NC-001318, which has a 
global G+C content of 29%. 

NC-001318 span metric 

relatively high standard deviation listed in Table 5.5. 

NC 23.97 f 9.72 
rRNA 28.32 f 11.79 

An analysis of the results obtained for the span metric in randomized or shuffled genomic 

sequences is presented in Appendix B. 

5.4 Stem-loop Center-point Spacing - cSpacing 

The cSpacing metric gauges the distance between stem-loops by measuring the average 

distance in nucleotides from the center-point of a given stem-loop to the center-points of its 

nearest non-overlapping upstream and downstream neighbours (Section 4.1.3). The average 

cSpacing values found in the genomic domains have been plotted against the global G+C 

content for each of the genomes in our working set. Figure 5.6 reveals some encouraging 

trends which are a remarkable improvement over the previous metrics. 

In A+T rich genomes, the difference between rRNAs and its counterparts - CDS and 

NC - is quite significant (Figure 5.6). This discrepancy diminishes in more G+C rich 

genomes (Table 5.6). Yet, in all the previously described metrics, the difference between the 

average rRNA metric and the average of its counterparts decreases to zero with increasing 
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Figure 5.5: Probability distribution of the span metric in B. burgdorferi, NC-001318. 
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( Accession 1 G+C I CDS I NC ] rRNA I 
I Number I content I cspacing I cspacinq I cSpacinq I 

Table 5.6: The results presented depicted the diminishing discrepancy in the cSpacing 
metric as more G+C rich genomes are studied. This table is a short excerpt of the results 
presented in Appendix A.6 

global G+C content - i.e. the rRNA plot intersects with those of its genomic counterparts 

(Figures 5.1, 5.2, and 5.4). In contrast, the rRNA cSpacing metric does not intersect with 

its counterparts - NC and CDS (Figure 5.6). Removing the tRNA values from Figure 5.6 

helps to make this more clear - see Figure 5.7. 

Another noteworthy feature regarding Figure 5.7 relates to variance. Relative to the 

CDS and NC regions, there is less variance in the average rRNA cSpacing metric across the 

entire G+C content spectrum (Table 5.7). The stability in cSpacing seems more striking 

than observed in the bps or span metrics. The low degree of variance is presumably related 

to conserved G+C content levels. More discussion on variability is found below in the 

description of the cSpacing probability distribution and later in Section 5.9. 

Earlier, it was postulated that stem-loops might occur with higher frequency (i.e. lower 

average cspacing) in regions which code for structural RNAs compared to their genomic 

counterparts. The results depicted in Figurc 5.7 suggest that this may be true for rRNAs. 

However, when the G+C content in rRNAs and their counterparts is essentially equivalent 

(i.e. 50-55%), the difference in the cSpacing values between these groups is negligible 

(Table 5.6 and Appendix A.6). 

5.4.1 Probability Distribution - cSpacing 

Above, the cSpacing metric values measured in 58 genomic sequences was found to be sig- 

nificantly more stable in the rRNA domains in comparison to their counterparts - including 

tRNAs. This suggests that in just one of these genomes the standard deviation in the rRNA 

cSpacing metric could also be lower than that observed in its genomic counterparts. This 
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Average cSpacing vs. G+C Content 
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Figure 5.6: Stem-loop cSpacing vs. G+C content. The corresponding data is presented in 
Appendix A.6. 

- I 

r CDS I 62.81 I 21.05 

Genomic 
Domain 

Table 5.7: Summary statistics for the average cSpacing for each genomic domain across the 
G+C content spectrum. The corresponding data is presented in Appendix A.6. 

Average 
cSpacina 

Standard 
Deviation 
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Average cSpacing vs. G+C Content 
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Figure 5.7: Stem-loop cSpacing vs. G+C content - tRNA values omitted. The correspond- 
ing data is presented in Appendix A.6. 
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Figure 5.8: Probability distribution of the cSpacing metric in B. burgdorferi, NC-001318. 

is indeed seen in the probability distribution and statistics on B. burgdorferi, NC-001318, 

shown in Figure 5.8 and Table 5.8. 

An analysis of the results obtained for the cSpacing metric in shuffled genomic sequences 

is presented in Appendix B. 

5.5 Stem-loop Foot Spacing - f Spacing 

The foot spacing metric (fspacing) is measured as the average distance to the foot of 

the nearest non-overlapping upstream and downstream stem-loops (Section 4.1.4). Trends 

evident in the fSpacing metric are similar to those described for the cSpacing metric. 

There is a remarkably low degree of fSpacing variance in the rRNA genes compared to 

their counterparts. There are some important differences between these metrics, however. 

Unlike cspacing, the f Spacing rRNA plot intersects the CDS plot at roughly 50-55% G+C 

content (Figure 5.9). This rRNA plot also intersects the NC plot at roughly 60% G+C 
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I CDS 111.04 f 72.92 

Table 5.8: Mean values for cSpacing metric in B. burgdorferi, NC-001318, which has a 
global G+C content of 29%. 

NC-001318 &pacing metric 
NC 134.73 f 107.06 

rRNA 47.94 f 20.63 

Table 5.9: Summary statistics for the average f Spacing for each genomic domain across the 
G+C content spectrum. The corresponding data is located in Appendix A.7. 

Genomic 
Domain 

CDS 
NC 

rRNA 
tRNA 

content. A statistical summary is presented in Table 5.9. 

These results suggest the cSpacing metric has an advantage over the fSpacing metric 

since the rRNA cSpacing values do not intersect with their genomic counterparts (Fig- 

ures 5.6 and 5.9). Why does this difference exist between two similar metrics? Recall, 

the cSpacing metric includes size or length attributes while the fSpacing metric excludes 

them. The bps and span metrics - both of which relate to the stem-loop size - revealed that 

the average values in the rRNAs domain display a tendency to diverge from the CDS and 

NC values at  high G+C content levels (Figures 5.2 and 5.4). Therefore, by excluding the 

length attribute, the average f Spacing metric values in the CDS and NC domains lose their 

propensity to diverge from the average rRNA fSpacing value at these high G+C content 

levels. This likely explains why the differences between rRNA and its counterparts decreases 

to zero in the fSpacing metric but not in the cSpacing metric. 

5.5.1 Probability Distribution - f Spacing 

Average 
f Spacing 

34.84 
46.33 
16.39 
25.95 

The probability distribution and statistics for B. burgdorferi, NC-001318, are depicted in 

Figure 5.10 and Table 5.10. The variance in the rRNA genes is considerably lower than its 

Standard 
Deviation 

25.30 
31.98 
3.16 
16.45 
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Figure 5.9: Average fSpacing vs. G+C content. The corresponding data is presented in 
Appendix A.7. 
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Figure 5.10: Probability distribution of the f Spacing metric in B. burgdorferi, NC-001318. 

counterparts - including tRNAs. This may help to explain why the degree of variance seen 

in rRNA f Spacing across all 58 bacterial genomes is remarkably lower than the levels of 

variance seen in their genomic counterparts (Figure 5.9). 

An analysis of the results obtained for the f Spacing metric in shuffled genomic sequences 

is presented in Appendix B. 

5.6 Why rRNAs Outperform tRNAs 

In these experiments, our goal is to evaluate the effectiveness of several stem-loop metrics 

in identifying structural RNAs along a genomic sequence. Interestingly, the cSpacing and 

fspacing metrics perform significantly better on rRNAs than they do on tRNAs. Instinc- 

tively, one is prompted to ask why? The stem-loop search parameters are the likely reason. 

They were devised through cursory study of rRNA secondary structures. It seems the stem- 

loops which form in tRNAs are less likely to meet these search constraints. The results lend 
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I CDS 89.88 f 73.08 

I tRNA 65.07f 62.29 

NC-001318 f Spacing metric 

Table 5.10: Mean values for fSpacing metric in B. burgdorferi, NC-001318, which has a 
global G+C content of 29%. 

NC 112.74 f 107.37 
rRNA 22.74 f 19.90 

support of this line of reasoning. Consider that tRNAs are typically 70 to 90 nucleotides 

long [I]. Yet, the probability distribution for the f Spacing and &pacing metrics in tRNAs 

depict stem-loops which are more than 200 nucleotides apart (Figures 5.8 and 5.10). These 

results may seem perplexing until one considers that tRNAs are commonly positioned side- 

by-side in a genomic sequence. The presence of tandem tRNAs explains why stem-loops in 

tRNA regions are sometimes divided by over 200 nucleotides. This suggests that the search 

parameters are not tailored to find the stem-loops which comprise tRNA structures. 

The next section describes how metrics were combined in hopes of finding a set of metrics 

where the average rRNA metric is significantly divergent from its genomic counterparts 

across the entire G+C content spectrum. 

5.7 Combined Metric - ( c s p a c i n g  x bps)  

The first combined metric takes the cSpacing and bps values for each stem-loop and multi- 

plies them: (cspacing x bps).  The results are shown in Figure 5.11. They might be fairly 

described as unsteady or mixed. On the negative side, the rRNA plot intersects multiple 

times with the CDS and NC plots between 35-50% G+C content. This likely results from 

the proximity of their mean values and the high standard deviations associated with them 

(Table 5.11 and Appendix A.8). This is also supported by the probability distribution shown 

in Figure 5.12. On a positive note, the average (cspacing x bps) values in rRNA appear 

markedly discrepant from their counterparts at approximately 50-55% global G+C. Such 

a strong discrepancy at this G+C content level has not been observed in any of the other 

metrics nor in the base composition method described previously. Another noteworthy fea- 

ture regarding Figure 5.11 is the strong tendency for the average &pacing x bps) values ( 
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CDS .......... 

-. . 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
G+C Content 

Figure 5.11: Avg. (cspacing x bps) vs. G+C content. The corresponding data is presented 
in Appendix A.8. 

to diverge from rRNA values in G+C rich genomes. Earlier, this same trend was noted in 

the bps and span metrics (Figures 5.2 and 5.4). Although less profound, this trend was also 

seen between the rRNA cSpacing metric and its counterparts (Figure 5.7). In retrospect, it 

appears that combining these metrics amplified several trends - both positive and negative 

- which were identified in their individual constituents. 

Table 5.11: Summary statistics for the average cSpacing x bps) for each genomic domain ( 
across the G+C content spectrum. The corresponding data is presented in Appendix A.8. 

Genomic 

Domain 

591.81 231.68 
612.14 176.68 
437.05 70.17 
537.42 158.74 

Average 

cSpacing x bps 

Standard 

Deviation 
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Figure 5.12: Probability distribution of the cSpacing x bps) metric in B. burgdorferi, 
NC-001318. 

( 

5.7.1 Probability Distribution - ( c spac ing  x bps) 

The probability distributions for the cSpacing x bps) metric in B. burgdorferi, NC-001318, ( 
cover a wide range of values (Figure 5.12). They illustrate the high degree of variance 

in this metric. The statistics on B. burgdorferi are shown in Table 5.12. As with previ- 

ous metrics, the degree of variance in rRNA is less than what is observed in its counterparts. 

An analysis of the results obtained for the (cspacing x bps metric in shuffled genomic 

sequences is presented in Appendix B. 
1 
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I CDS 684.36 f 525.65 

NC-001318 ( c ~ ~ a c i n g  x bps metric 1 NC 1066.61 f 782.05 
rRNA 438.89 f 318.80 

Table 5.12: Mean values for cSpacing x bps) metric in B. burgdorfen, NC-001318 which ( 
has a global G+C content of 29%. 

I Genomic I Average I Standard I 

Table 5.13: Summary statistics for the average f Spacing x bps for each genomic domain ( 1 
across the G+C content spectrum. The corresponding data is located in Appendix A.9. 

Domain 

5.8 Combined Metric - (f Spacing x bps) 

The final metric that was tested combines the f Spacing and the bps metrics by multiplying 

them - fSpacing x bps . The average for each of the respective genomic domains is ( 1 
plotted in Figure 5.13. The results are encouraging. The lines of fit for respective genomic 

domains suggest that the rRNA plot does not intersect its counterparts - CDS and NC. 

However, there is one instance where the average fSpacing x bps) in rRNA regions is ( 
greater than the CDS and NC values. This lone culprit, NC-002935, has a G+C content 

of 53% (Appendix A.9). Nonetheless, these results suggest that this combined metric may 

be more apt a t  identifying rRNAs than either of their constituents acting alone - especially 

when the global G+C content approaches 50-55% (Figures 5.2 and 5.9). In Chapter 6, 

the limited benefits attained by using the ( f s p a c i n g  x bps) metric over the fSpacing 

metric are further documented. In addition, the degree of variance observed in the rRNA 

( f  spacing x bps) values over the 58 genomes is remarkably lower than those of its genomic 

counterparts (Figure 5.13 and Table 5.13). 

266.63 121.85 
349.57 208.05 
150.45 22.15 
258.82 221.23 

f Spacing x bps Deviation 
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Average (fspacing * bps) vs. G+C Content 
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Figure 5.13: Average fSpacing n bps) vs. G+C content. The corresponding data is ( 
presented in Appendix A.9. 
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Figure 5.14: Probability distribution of the ( f ~ p a c i n g  x bps metric in B. burgdorferi, 
NC-001318. 

1 

5.8.1 Probability Distribution - ( f s p a c i n g  x bps)  

The probability distribution and statistics for the ( f  spacing x bps) metric in B. burgdor- 

feri, NC-001318, are shown in Figure 5.14 and Table 5.14, respectively. The results above 

suggest that multiplying the f Spacing and bps metrics helps to amplify differences in rRNA 

and its counterparts. The caveat, however, is that there is a high degree of variance in the 

( f  spacing x bps values for each genomic domains in a given sequence (Table 5.13). Inter- ) 
estingly, the mean ( f  spacing x bps values in rRNA over the 58 sequences in our test set 

display a relatively low degree of variance. 

An analysis of the results obtained for the ( f  spacing x bps metric in shuffled genomic 

sequences is presented in Appendix B. 
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I CDS 546.68 f 493.65 

Table 5.14: Mean values for ( f  spacing x bps) metric in B. burgdorferi, NC-001318 which 
has a global G+C content of 29%. 

NC-001318 (f spacing x bps metric ) 

5.9 Variance in Stem-loop Spacing 

NC 725.77 f 769.67 
rRNA 176.38f 182.06 

One of the intriguing observations reported here is the remarkable stability in the cSpacing 

and f Spacing metrics in rRNA genes over the genomes in our test set which, incidentally, 

have a wide range of G+C content levels. These observations support the notion that struc- 

tural RNA genes conserve structural information. Remarkably, this seems to be manifested 

in our admittedly simple stem-loop metrics. 

It is interesting to speculate on the reasons behind the stability observed in the spacing 

metrics especially given the rRNA genes are located in 58 different bacterial genomes. One 

explanation is that the stability in the spacing metrics merely results from the stability in 

the G+C content in the rRNA genes. However, why do these rRNA genes tend to favour a 

specific base composition? This is likely related to the structural integrity provided by GC 

base pairs. Importantly, research by Wang et al. indicates that regions which are unpaired 

in the final RNA structure also tend to conserve base composition [64]. 

It is possible that rRNA transcripts favor an equilibrium of sorts. Such an equilibrium, it 

is postulated, might foster an environment conducive to attaining the final RNA structure. 

Presumably, an overabundance of stem-loops would increase the fraction of those which have 

to be dismantled to allow certain segments to "properly" pair-up for the final structure. 

This situation would seemingly impede an RNA transcript's natural propensity to form the 

intended final structure. Likewise, a resistance to forming stable stem-loops might prevent 

distant segments of the transcript from coming into close proximity. This, in turn, could 

create an environment unbecoming of the intended or final structure. Finding a balance 

between being too resistant to folding and being overtly folded may improve the ability 

of an rRNA transcript to efficiently reach its intended final structure. The consistency 

observed in rRNA G+C content and in rRNA spacing metrics lend support to this theory. 
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5.10 Chapter Review 

Up to this point, several different stem-loop metrics have been proposed and examined. 

Initially, our suspicions were that stem-loops would occur on average with higher frequency 

and tend to be longer in structural RNAs when compared to their genomic counterparts. 

Our suggestions, however, have only proven to be partially correct. The results attained 

using the f Spacing metric suggest that stem-loops occur at  a higher frequency in rRNA 

domains, generally, only when the structural RNA G+C content is greater than the global 

G+C content. Similarly, the average bps and span metric values of stem-loops in structural 

RNAs are longer, generally, only when the structural RNA G+C content is greater than 

the global G+C content. Hence, over the entire global G+C content spectrum, the bps, 

span, and f Spacing metrics each present a juncture where the values observed in structural 

RNAs and in their counterparts are equal. The cSpacing metric improves upon this in 

that the average rRNA cSpacing values are less than those of their genomic counterparts 

across the entire G+C content spectrum. However, when the G+C content level in rRNAs 

and its counter parts is roughly equal, there is little disparity in the cSpacing values for 

structural RNAs and their genomic counterparts. Various metrics were combined in an 

effort to amplify the disparity between structural RNAs and their genomic counterparts. 

This resulted in a limited degree of success. 

Interestingly, the average stem-loop metric values recorded in structural RNA regions 

was marked by a relatively low degree of variance in genomes across the entire G+C content 

spectrum. This stability is presumably related to the resilient G+C content levels which 

are characteristic of structural RNAs. It is postulated that RNA transcripts may foster an 

equilibrium which is favourable to the intended RNA structure and to folding efficiently. 

Chapter 6 reports the observations made when stem-loop metrics are used to locate 

regions which code for rRNA genes in various genomes without the help of a sequence map. 



Chapter 6 

Results - Locating Ribosomal RNA 
genes 

This chapter extends the findings described in Chapter 5 by more closely examining the 

ability of chosen stem-loop metrics to locate rRNAs along a genomic sequence. The task 

in the experiments which follow is to identify rRNA genes along a genomic sequence by 

using stem-loop metrics and applying a statistical hypothesis test. A brief description of 

statistical inference and hypothesis testing is located in Section 4.2.2 on page 52. 

There are a few key reasons for choosing to pursue rRNA genes along the sequence rather 

than tRNA genes. These reasons relate to the observations recently presented in Chapter 5 

and to the inherent nature of the hypothesis test. Figures 5.6, 5.9, and 5.13 suggest that the 

discrepancy between the average stem-loop metrics in rRNA regions and their counterparts 

(i.e. CDS and NC) is greater than the discrepancy observed between tRNAs and their 

counterparts. The search parameters were tailored with rRNA genes in mind; this seems to 

explain why stem-loop metrics work less well on tRNAs (Section 5.6). Also, it is common 

practice to apply the CLT to sample sizes, N, of 30 or more [12]. tRNAs typically have 3-4 

stem-loops in their final structure. Hence, samples which include no less than 30 adjacent 

stem-loops along the sequence would presumably overshoot the boundaries of a tRNA genes 

unless numerous tRNA genes occur in tandem. For these reasons, the experiments which 

follow examine the ability to uncover rRNAs rather than tRNAs. 
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6.1 Experimental Design 

To find rRNA genes, the experiments which follow apply the average rRNA metric values 

reported in Tables 5.7, 5.11, and 5.13. Essentially, samples of adjacent stem-loops are taken 

along the entire length of the sequence. The mean or average metric value in these samples 

is compared to the rRNA values in the aforementioned tables using the hypothesis test. If 

the sample mean falls within the 95% confidence interval, the stem-loop at the center of the 

sample is classified as "structural R N A  . 
The first step involves finding the stem-loops along the input sequence. The average 

metric value is calculated by sampling the area around each stem-loop along the sequence. 

For instance, suppose the sample size is set to 51 stem-loops. The sample encompasses 25 

stem-loops upstream plus 25 stem-loops downstream to the current stem-loop (25 +25 + 1 = 

51). Then, this sample mean is tested against the average rRNA metric value from one of 

the aforementioned tables. When numerous adjacent stem-loops fall inside the confidence 

interval this is manifested as a block of hits or LLstructural R N A  on the graphs which follow. 

In later experiments, the sample sizes have been modified to improve the performance 

of the statistical test. Granted that increases to sample size can improve the results under 

some conditions, such modifications to the statistical test come with pitfalls. A larger 

sample spans a larger region of the sequence. The risk is that the sampled region may be 

larger than the targeted structural RNA genes. As a result, smaller structural RNAs may 

be overlooked and the periphery of large structural RNAs may not be included in the "hit". 

These concepts will become more clear as the results which follow are presented. 

6.2 Using the cSpacing Metric to Find rRNA Genes 

What follows are several examples where the cSpacing metric is used to find rRNA genes in 

the bacterial genomes. Note that the global G+C content level increases with each successive 

genome. Consequently, the task in finding the rRNA genes becomes progressively more 

difficult. 

In the figures which follow, the aim is to correctly classify rRNAs as "structural RNA". 

Graphically, we are looking for the "hits" (labeled "S" for candidate structural RNA) to 

coincide with the positions where the rRNA genes (labeled "W). What we are looking to 

avoid is a rampant number of "hits" where rRNA genes are not located. As sequences 
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with a global G+C content approaching 50% are tested, the limited effectiveness of the 

stem-loop cSpacing metric emerges. This is manifested by an increasing number of false 

positives. False positives are regarded as a preponderance of hits or "structural RNAs" in 

the results graphs. The assumption is that structural RNAs are not likely to make-up more 

than 10-15% of any given genome. 

Methanococcus maripaludis S2, NC-005791, has a global G+C content of 33%. The 

average G+C content in the rRNA genes is 54%. In Figure 6.1, there are two rRNA genes 

which reside in the genomic segment which is presented. Recall, junctures where the average 

cSpacing metric falls inside the 95% confidence interval are classified as "structural RNA" 

(see the caption in Figure 6.1). The bottom graph in Figure 6.1 is noteworthy since it depicts 

a sharp rise in local G+C content where the rRNAs reside. The correspondence between 

the hits and the rRNAs indicates that their locations have been correctly identified. 

Compared to M. maripaludis, Bacillus cereus ATCC 10987, NC-003909, has a slightly 

higher global G+C content which measures 36%; the rRNA genes have an average G+C 

content of 52%. Figure 6.2 shows that the statistical test successfully delineates the rRNA 

genes. This is attributable to the relatively large difference in the average stem-loop spacing 

between the rRNA domains and its counterparts and to the sharp difference in local G+C 

content between the rRNA genes and its genomic counterparts. 

Chlamydia muridarum, NC-002620, has a global G+C content of 40%; the average G+C 

content in rRNA genes is 49%. The results of its analysis are depicted in Figure 6.3. 

Although some false positives appear, the rRNAs are reasonably well delineated from their 

counterparts. 

Figure 6.4 depicts the results for Escherichia coli, NC-004431, which has a global G+C 

content of 50%. The average G+C content in the rRNA genes is 53%. Similarly, Figure 6.5 

depicts the results for Corynebacterium diphtheriae, NC-002935. It has a global G+C con- 

tent of 53% and an average G+C content in the rRNA genes is 54%. The abundance of 

false positives seen in these genomes is attributable to the proximity of the mean rRNA 

cSpacing metric and the mean values of its counterparts (Table 5.6 and Figure 5.7). One 

can view this problematic scenario as opposing probability distributions which overlap with 

one another (Figure 6.6). Note that the sample size was increased in these genomes to nar- 

row the probability distributions of the sample means. However, there is too much overlap 

between the opposing domains to make this work effectively. 

Recall from Figure 5.7 that as the global G+C content level surpasses roughly 54% the 



CHAPTER 6. RESULTS - LOCATING RIBOSOMAL R N A  GENES 

Sequence Product vs. Sequence Location 

1 . 1  ! I  I l i l l l  I I '  I -. I 
- 1 

I 
I I i I 

G+C Content vs. Sequence Location 

0.75 - 

Index 

Figure 6.1: NC-005791: Methanococcus maripaludis S 2  [0 .. 500,0001, Sample size 51 stems; 
Global G+C = 33%; Threshold setting = 95%; Metric: cSpacing; This graph depicts the 
ability of the &pacing metric to delineate rRNA genes in the bacterial genome. The top 
graph depicts a map of the sequence which divides it into 4 broad categories. They include 
coding sequences (C), noncoding DNA (N), tRNA (T), and rRNA (R). In addition, the 
segments classified as candidate structural RNA by the statistical test are labeled "S". An 
ideal result is marked by a strong correlation between the candidate structural RNAs - i.e. 
the "hits" - and the location of the rRNA genes. The bottom graphs displays variations 
in G+C content along the sequence. In the interest of space, the sequences are graphed in 
500,000 nucleotide segments. 
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Figure 6.2: NC-003909 (Bacillus cereus ATCC 10987) [0 .. 500,000], Sample size 51 stems; 
Global G+C content= 36%; Threshold setting = 95%; Metric: (cspacing); This graph 
depicts the ability of the cSpacing metric to delineate rRNA genes in the bacterial genome. 
The top graph depicts a map of the sequence which divides it into 4 broad categories. They 
include coding sequences (C), noncoding DNA (N), tRNA (T), and rRNA (R). In addition, 
the segments classified as candidate structural RNA by the statistical test are labeled "S". 
An ideal result is marked by a strong correlation between the candidate structural RNAs - 
i.e. the "hits" - and the location of the rRNA genes. The bottom graphs displays variations 
in G+C content along the sequence. In the interest of space, the sequences are graphed in 
500,000 nucleotide segments. 
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Figure 6.3: NC-002620, Chlamydia muridarum, [0 .. 500,0001, Sample size 121 stems; global 
G+C = 40%; Threshold setting = 95%; Metric: (cspacing). A detailed description of the 
information conveyed in these graphs can be found in Figure 6.2. 
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Figure 6.4: NC-004431, Escherichia coli CFT073, [0 .. 500,0001 , Sample size 501 stems; 
global G+C = 50%; Threshold setting = 95%; Metric: (cspacing).  A detailed description 
of the information conveyed in these graphs can be found in Figure 6.2. 
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Figure 6.5: NC-002935, Corynebacterium dzphtheriae, [500,000 .. 1,000,000], Sample size 
301 stems; global G+C = 53%; Threshold setting = 95%; Metric: (&pacing). A detailed 
description of the information conveyed in these graphs can be found in Figure 6.2. 
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Figure 6.6: Overlapping Probability Distributions of Normally Distributed sample means. 
As the G+C content approaches 0.50 the population means of the cSpacing metric move 
into close proximity. This results in overlapping probability distributions as depicted above. 
Consequently, a given threshold in one probability distribution may no longer exclude sample 
means which have arisen from an overlapping counterpart. More false positives emerge as 
a result. 

mean rRNA cSpacing value and that of its genomic counterparts begin to diverge. This is 

manifested in the decreasing number of false positives in genomes where the global G+C 

content is greater than 54%. Chlorobium tepidum, NC-002932, has a global G+C content 

of 57%; its rRNA genes have an average G+C content of 52%. Notably, it has fewer false 

positives than NC-002935 (Figure 6.7). Similarly, Bordetella bronchiseptica, NC-002927, 

has a global G+C content of 68% compared to an average 54% G+C content level in its 

rRNA genes. Its results are depicted in Figure 6.8. 

6.3 Using Combined Stem-loop Metrics to Find rRNA Genes 

The results presented suggest the largest hurdle to the stem-loop cSpacing metric occurs 

when the global G+C content approaches the average G+C content found in rRNA genes 

- roughly 50-54%. In Sections 5.7 and 5.8, stem-loop metrics where combined in hopes of 

distancing the average rRNA metric value from the average metric values found in their 

genomic counterparts. As mentioned earlier in Section 5.7, the plots resulting from these 

combinations have both positive and negative aspects (Figures 5.11 and 5.13). The following 

examples shed more light on the ability of these "combined" metrics to identify rRNA genes 
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Figure 6.7: NC-002932, Chlorobium tepidum TLS, [0 .. 500,000], Sample size 501 stems; 
global G+C = 57%; Threshold setting = 95%; Metric: (cspacing). A detailed description 
of the information conveyed in these graphs can be found in Figure 6.2. 
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G+C Content vs. Sequence Location 

Figure 6.8: NC-002927, Bordetella bronchiseptica RB50, [3,500,000 .. 4,000,0001, Sample 
size 151 stems; global G+C = 68%; Threshold setting = 95%; Metric: (&pacing). A 
detailed description of the information conveyed in these graphs can be found in Figure 6.2. 
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when there is a negligible difference between the global G+C content and the G+C content 

in rRNA genes. 

In Deponema pallidum, NC-000919, both the global G+C content and rRNA G+C 

content is 53%. Using the (f spacing x bps) metric, the regions which code for rRNA genes 

are identified, however, there are too many false positives (Figure 6.9). 

In Corynebacterium diphtheriae, NC-002935, the global G+C content is 53% and the 

G+C content in the rRNA genes is 54%. The results for the (&pacing x bps) metric are 

shown in Figure 6.10. Although there are several false positives, their frequency has notably 

decreased in comparison to the cSpacing metric analysis on the same genome (Figure 6.5). 

In Salmonella typhimurium LT2, NC-003197, the global G+C content is 52%. The rRNA 

genes have an average G+C content of 54%. The ( c ~ p a c i n g  x bps) identifies the rRNA 

genes yet too many false positives are present (Figure 6.11). 

In Chlorobium tepidum TLS, NC-002932, the global G+C content is 57%; the G+C 

content in the rRNA genes is 52%. The (cspacing x bps) metric identifies the rRNA 

genes in the segment depicted (Figure 6.12). The results are encouraging, however, several 

false positives persist. It appears that the difference in G+C content levels has helped to 

reduce the false positive frequency. A similar situation emerges in Bifidobacterium longum, 

NC-002939. The global G+C content is 61%; the average G+C content in the rRNA genes 

is 55% (Figure 6.13). The ( c ~ p a c i n g  x bps metric locates the rRNA genes with fewer false 1 
positives in comparison to previous examples. 

The results clearly document that negligible differences in global G+C content and rRNA 

G+C content tend to obscure rRNA genes. This is problematic for our stem-loop metric 

approach and for the base composition method. However, the results presented for the stem- 

loop method are quite encouraging - especially considering it is in its infancy. When the 

difference between the global G+C content and the rRNA G+C content is merely 1-2%, the 

( c ~ p a c i n g  x bps metric correctly - in large part - eliminates roughly half of the sequence 1 
as being rRNA material (Figures 6.10 and 6.11). It seems unlikely that strictly adhering 

to a base composition method could accomplish this feat. A direct comparison would be 

helpful in lending support to this suggestion. 
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Figure 6.9: NC-000919, Treponema pallidum, [0 .. 500,000], Sample size 501 stems; global 
G+C = 53%; Threshold setting = 95% (2hided test). Metric: (f spacing x bps). A detailed 
description of the information conveyed in these graphs can be found in Figure 6.2. 
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Sequence Product vs. Sequence Location 

G+C Content vs. Sequence Location 

Figure 6.10: NC-002935, Coynebacterium dzphtheriae, [500,000 .. 1,000,000], Sample size 
601 stems; global G+C = 53%; Threshold setting = 95% (2-sided test). Metric: (cspacingx 

bps). A detailed description of the information conveyed in these graphs can be found in 
Figure 6.2. 
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Figure 6.11: NC-003197, Salmonella typhimurium LT2 , [0 .. 500,000], Sample size 301 
stems; global G+C = 52%; Threshold setting = 95% (2-sided test); Metric: (cspacing x 

bps).  A detailed description of the information conveyed in these graphs can be found in 
Figure 6.2. 
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Sequence Product vs. Sequence Location 

G+C Content vs. Sequence Location 

Figure 6.12: NC-002932, Chlorobium tepidum TLS, [0 .. 500,000], Sample size 251 stems; 
global G+C = 57%; Threshold setting = 95%; Metric: (&pacing x bps). A detailed 

\ / 

description of the information conveyed in these graphs can be found in Figure 6.2. 
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Figure 6.13: NC-002939, Geobacter sulful-reducens PCA, [500,000 .. 1,000,000], Sample size 
201 stems; global G+C = 61%; Threshold setting = 95% (2-sided test); Metric: (cspacing x 

b p s )  A detailed description of the information conveyed in these graphs can be found in 
Figure 6.2. 
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6.4 Chapter Review 

Several stem-loop metrics were tested on 58 different bacterial genomes. The search pa- 

rameters were tailored to rRNA secondary structures. As a result, the metrics were more 

studied for their ability to identify rRNA genes rather than tRNA genes. 

The results indicate that the most difficult hurdle in identifying rRNA genes occurs 

when there is a negligible difference between global G+C content and rRNA G+C content. 

Stem-loop metrics were combined in an effort to overcome this hurdle. This was met with 

limited success. In many cases, a high incidence of false positives could not be overcome. 

Nonetheless, in sequences where the difference in G+C content levels between rRNA genes 

and their counterparts is 1-2%, this approach eliminates roughly half of the genome as 

structural RNA material with a promising degree of accuracy. The results reported here 

are encouraging especially considering this stem-loop based approach is one which has not 

been studied before. 

Chapter 7 presents a number of possible avenues to proceed with further research. 



Chapter 7 

Suggestions for Future Research 

Our observations show that stem-loop metrics can be used to identify rRNA genes across a 

wide range of G+C content levels. They also point to some of the key hurdles which need 

to be overcome. Nonetheless, the results suggest further study is warranted. This chapter 

presents some possible directions for future research. 

7.1 Improve Accuracy 

The stem-loop finding algorithm could be improved to include all the stem-loops which meet 

the search parameters. The current implementation does not store all of the qualifying 

stem-loops. One culprit is the SelectlPathFrom2 which is described in Section 3.4 on 

page 31. Inherently, this function discards variants of stems which meet the parameters but 

are tossed aside in favour of larger runs of consecutive base pairs. It would be prudent to 

keep all stem-loops which meet the search parameters. This would presumably improve the 

ability to identify stem-loops which are observed in secondary structure diagrams. 

7.2 Improve Efficiency 

Refinements could be made to improve the efficiency of the search algorithm. This includes 

eliminating redundancy in exploring the search space where bulges and internal loops are 

identified. Currently, the algorithm looks for a stretch of base pairs starting from each of 

the cells in the table depicted in Figure 3.21. The algorithm moves through the table from 

left to right and top to bottom finding stretches of base pairs along the way. When the 
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algorithm shifts down to a lower row, it diligently considers every possible cell to look for 
a stretch of base pairs. Suppose a path of adjacent base pairs has already been located 

starting from a higher row in the table. In this situation, the algorithm (working through 

a lower row of cells) may unnecessarily evaluate previously discovered base pairs along a 

given diagonal (or path). This redundancy can be addressed by applying a map to indicate 

which cells have already been checked. Alternatively, this search space could be examined 

by using dynamic programming. 

7.3 Parameter Optimization 

Earlier, the ramifications of using search parameters tailored to rRNA genes were discussed. 

It would be interesting to explore how varying the search parameters affects the results. 

For illustration, the minimum GC base pair constraint and the maximum GU base pair 

constraint were eliminated (Table 3.2). Hence, the minimum fraction of GC base pairs is 

2 0.0 and the maximum fraction of GU base pairs is 5 1.0. The results for the bps, cspacing, 

and fSpacing metrics under these new constraints are shown in Figures 7.1, 7.2, and 7.3 

respectively. Generally, the average spacing in rRNA and tRNAs is less than their genomic 

counterparts. However, the discrepancy between rRNAs and their genomic counterparts 

appears less than seen earlier under the initial set of search parameters. Hence, it seems the 

averages are not sufficiently distinct to identify rRNA genes without being overrun by false 

positives. Nonet heless, experimentation with various search parameters could be fruitful. 

7.4 Improve Portfolio of Stem-loop Metrics 

More study is required to devise new and improved stem-loop metrics which better distin- 

guish rRNAs from their genomic counterparts. As mentioned previously, a stem-loop metric 

which is characterized by a low degree of variance in rRNA genes is advantageous. These 

advantages would be further extended if a set of stem-loop metrics were stable through not 

only rRNA genes but also through other unrelated structural RNA genes. This could help 

to uncover more intriguing structural RNA genes such as XIST and H19. 

Also, it would be interesting to study improvements garnered by adopting motif se- 

quences found in tetra-loops into the search engine. 
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Figure 7.2: The average cSpacing vs. G+C content when the minimum GC base pair content 
is set to 0.0% and the maximum GU base pair content is set to 1.0. The corresponding data 
is located in Appendix A.ll.  
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Average fSpacing vs. G+C Content 
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Figure 7.3: The average f Spacing vs. G+C content when the minimum GC base pair con- 
tent is set to 0.0% and the maximum GU base pair content is set to 1.0. The corresponding 
data is located in Appendix A.12. 
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7.5 Analyze Both Strands 

The current implementation of the search algorithm scans only 1 strand of the double- 

stranded DNA sequence. However, all the CDS, NC, rRNAs, and tRNAs are not necessarily 

located on this strand. Given this entire body of work is based on average valuations, it 

was assumed that the difference between the 2 strands would not be sufficient to invalidate 

our results. It is important to keep in mind that CDS and NC domains change from one 

sequence to the next. Likewise, rRNAs of various size of all pooled together to tabulate 

the average rRNA metric value. Hence, there is an inherent lack of precision when working 

with averages. Our interest is not in the absolute values for each of the respective genomic 

domains but more in the differences between them. 

A more accurate and precise definition of the annotated genomes can be attained with 

the use of two 1-dimensional maps (i.e. 1 for each strand). It is anticipated the precision 

provided by such a map would not overcome the shortcomings of the stem-loop metrics. 

However, the results of such experiments would be interesting. 

7.6 Collaborate With Wet Laboratory 

Lastly, it would be interesting to pair-up with a wet lab to determine whether some of the 

"hits" uncovered by using stem-loops metrics are indeed novel structural RNA genes. 

7.7 Chapter Review 

A number of possible avenues for future efforts have been proposed. One of the key hurdles 

to overcome is compromised effectiveness of stem-loop metrics when the base composition 

in structural W A S  and their genomic counterparts is essentially uniform. 



Chapter 8 

Conclusion 

This research project has introduced and examined a novel approach to locate regions which 

code for structural RNA genes along a genomic sequence. This approach is founded on the 

stem-loop - a recurrent substructure or component universally found in naturally occurring 

RNA secondary structures. The objective of this project was to study whether stem-loops 

could be useful in finding structural RNA genes. To meet this objective a multitude of 

programs and scripts had to be designed and implemented. 

The primary algorithm searches a nucleotide sequence for stem-loops. Importantly, a set 

of search parameters was devised to identify stem-loops similar to those found in rRNA sec- 

ondary structures. As the algorithm was being tested, 2 performance related issues emerged. 

First, the program, which was initially implemented in Python, took approximately 7 min- 

utes to scan a lo6 nucleotide sequence with a Intel Pentium 4 0  2.6 GHz processor. To 

overcome this limitation, the algorithm was implemented in C++. As a result, the time to 

scan lo6 nucleotide had been reduced to about 6 seconds. 

Further testing revealed that the C++ implementation would virtually grind to a halt 

on sequences longer than roughly 8 x lo6 nucleotides. The problem, it turned out, was 

memory related; the program was consuming all 1.4 GB of RAM memory and the 500 

MB of disk swap too. This problem was rectified by dynamically monitoring the memory 

consumption and disposing of data which was no longer needed as the algorithm continued 

along the sequence. As a result, the C++ implementation typically uses less that 300 MB 

of RAM and the CPU runs at  virtually full capacity though the duration of the scan. At 

this juncture, a program required to scan numerous genomic sequences was in place. 
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To study the efficacy of stem-loops in pursuing structural RNA genes, a number of stem- 
loop metrics were devised. With the help of annotated sequences downloaded from the NCBI 

public databases, the average values for these metrics could be calculated over the various 

genomic domains along the sequences. These domains include protein-coding sequences 

(CDS), non-coding DNA (NC), rRNAs, and tRNAs. The goal was to determine whether 

the average metric values in these genomic regions were significantly discrepant. Significant 

differences in these averages would suggest regions of interest could be delineated along a 

genomic sequence. In scanning each of the annotated genomes, the average stem-loop metric 

for each of the respective genomic domains was recorded. 

A total of 58 bacterial genomes were arbitrarily selected. They represented a diversity 

of global G+C content levels ranging from 25% to 68%. After scanning each of the genomes, 

the data was analyzed for trends related to changes in global G+C content. This was done 

with the use of graphs. In doing so, each metric had its own graph. The global G+C 

content was plotted along the x-axis, the metric value was plotted along the y-axis. The 

metric values recorded in the CDS, NC, rRNA, and tRNA domains for each genome are 

positioned vertically to one another since they are all derived from a single genome with a 

single global G+C content value. The vertical distance between the metric values for the 

various genomic domains provides an indication of how discrepant they are at a given global 

G+C content level. This allowed us to study how changes in global G+C content levels 

affect the metric values. Importantly, it also revealed how discrepant the structural RNAs 

are from their genomic counterparts in terms of stem-loop metrics. Our goal was to find a 

set of stem-loop metrics where the average value in the structural RNAs differ significantly 

from their genomic counterparts across the entire G+C content spectrum. 

Several stem-loop metrics were evaluated. They included: bps, span, cspacing, and 

fspacing. The search parameters were devised to target stem-loops occurring in rRNA 

structures. This was manifested in the results. The stem-loop metrics were more apt 

at  distinguishing rRNA genes than tRNA genes. Neither the bps nor the span metric 

appeared capable of distinguishing rRNAs from their genomic counterparts. The cSpacing 

and fSpacing metrics showed more promise. However, when global G+C content and 

rRNA G+C content is roughly equivalent, there is little disparity in their spacing metric 

values. This did not bode well for distinguishing structural RNAs from their genomic 

counterparts. In an effort to overcome this obstacle, combined metrics were devised. They 

include: (f spacing x bps) and (cspacing x bps). There was a slight improvement in the 
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results. However, the discrepancy between the rRNA domain values and those of their 

counterparts was not consistently significant. 

The final set of experiments more closely examined the ability of stem-loop metrics to 

identify structural RNAs occurring along a genomic sequence. The question at  this juncture 

was: Given the average stem-loop metric value in the rRNA genes, can they be identified 

without referring to a sequence map? The cSpacing metric successfully identified rRNA 

genes in genomic sequences with less than roughly 42% global G+C content and more than 

roughly 62% global G+C content. The f Spacing metric performed well in genomes with 

less than roughly 42% global G+C content. The previous experiments foreshadowed this 

outcome. These metrics are not able to adequately delineate rRNA genes when their base 

composition and that of their genomic counterparts is essentially uniform. There was a 

small improvement when metrics were combined. In some sequences where G+C content is 

fairly uniform, the (cspocing x bps) metric correctly cast aside roughly half of the genome. 

More study is required to find a set of metrics that performs well across the entire G+C 

content spectrum. 

In several bacterial genomes which span several millions of nucleotides, this novel ap- 

proach accurately identifies rRNAs. Hopefully, this stem-loop centered approach will mature 

to find not only rRNA genes but to find previously undiscovered structural RNAs as well. 
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This data represents the number of tetra-loop found""along random1 

Average of means: 1981 59 
Std Dev. Of means: 6 80 

Pop'n variance:' 3 66 
E(tetra-loops): 1977 32 * 1 96 

Z value: 0 63 

generated nudeotide sequena 

'op'n 6 Pop'n 7 Pop'n 3 

2087 1924 1968 
2015 1949 1978 
21% 1972 1942 
1899 , ZadO 2057 
2042 2076 1457 
2012 1984 2033 
2008 1900 1359 
1904 2051 1990 
1951 1930 1975 
2057 2043 2031 
2020 1941 1457 
2032 2035 1915 
1920 2080 2014 
1977 1925 1976 
1961 ZCL94 1952 
2035 1985 1982 
1992 1982 1963 
2036 1961 317 
1923 1951 1990 
M05 1948 1946 
1917 2323 1%7 
2038 1938 156 
1980 2022 2025 
1983 1965 2064 
1951 1960 1952 
1922 1916 
2044 2076 1914 
1937 1q1 1990 
1996 1951 1911 
2009 1994 1976 

lW8.63 196623 1978.4 

s long. 

Figure A.l: These results document the number of tetra-loops found along random sequences 
lo5 nucleotides long using the basic stem-loop search algorithm. 

A.l  Test of Initial Stem-loop Search Results 

Refer to the spreadsheet presented in Figure A.1. 



APPENDIX A. STEM-LOOP METEWC DATA ON GENOMIC SEQUENCES 

A.2 Stem-loop Probabilities 

I P(G + C) I P ( A  + U) 11  tetra-loop) I 

Table A.l:  These probabilites were calculated for tetra-loops with 4 base pairs in the 

stem. No unpaired or mismatched nucleotides were permitted. These values where 

calculated by using a short program implemented in Python. The algorithm is described 

in Section 1.4.2. The goal is to convey the shifting stem-loop probabilities which emerge 

as G+C content levels drift. This data is plotted in Figure 1.6. 
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A.3 Local G+C Content Levels Across Genomic Domains 

I Accession Global CDS I NC 

I Number 

riiGiG5 

Continues on next page. 
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Continues on next page. 

Local GtC Content continued.. . 
Accession 

Number 

NC 

G+C 

Global 

G+C 

CDS 

G+C 

rRNA 

G+C 

tRNA 

G+C 
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deviations in the various genomic domains of the genomes in our test set. The values 

Local G+C Content continued. . . 

in this table are graphed in Figure 5.1 on page 58. 

Accession 

Number 

NC-002927 

NC-002928 

NC-002929 

A.4 Average bps Across Genomic Domains 

Table A.2: This table presents the average Local G+C content values and their standard 

Global 

G+C 

0.68 

0.68 

0.68 

Continues on next page. 

Accession 

Number 

NC-002162 

tRNA 

G+C 

0 .60f0 .05  

0 .60f0 .04  

0.60f 0.05 

CDS 

G+C 

0 .69f0 .05  

0 .69f0.05 

0.68 f 0.05 

Global 

G+C 

0.25 

NC 

G+C 

0 .63f0 .07  

0 .63f0.07 

0.62 f 0.07 

CDS 

bps 

6.04f2.05 

rRNA 

G+C 

0.54f0.03 

0 .54f0.03 

0.54 f 0.03 

NC 

bps 

6 .99f2 .78  

rRNA 

bps 

7.20f3.06 

tRNA 

bps 

8 .94f4 .92  
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Average bps continued. 

Continues on next page. 

Accession 

Number 

NC-004350 

Global 

G+C 

0.37 

CDS 

bps 

7 .03f3 .12  

NC 

bps 

7 .03f3 .29  

rRNA 

bps 

8 . 9 4 f 4 . 7 5  

tRNA 

bps 

8 . 5 2 f 4 . 1 0  



APPENDIX A. STEM-LOOP METRIC DATA ON GENOME SEQUENCES 

Average bps continued.. . 

Table A.3: This table presents the average bps values and their standard deviations 

measured in the various genomic domains of the genomes in our test set. The search 

parameters applied by the stem-loop search algorithm to generate these values are cited 

in Table 3.2 on page 31. The values in this table are graphed in Figures 5.2 and B . l  on 

pages 59 and 144, respectively. 

Accession 

Number 

Global 

G+C 

CDS 

bps 

NC 

bps 

rRNA 

bps 

tRNA 

bps 
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A.5 Average span Across Genomic Domains 

Continues on next page. 

Accession 

Number 

NC-002162 

Global 

G+C 

0.25 

CDS 

span 

22.27 f 7.01 

NC 

span 

23.5 f 7.48 

rRNA 

span 

26.35 f 10.22 

tRNA 

span 

31.47 f 15.21 
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Average span continued. . . 
Accession Global CDS NC rRNA tRNA 

Number G+C span span span span 

NC-002179 0.41 26.53 f 10.94 25.74 f 9.86 31.79 f 15.89 28.98 f 12.32 

Continues on next page. 
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Average span continued. . . 
I Accession I Global 1 CDS / NC / rRNA 1 tRNA I 

Table A.4: This table presents the average span values and their standard deviations 

measured in the various genomic domains of the genomes in our test set. The search 

parameters applied by the stem-loop search algorithm to generate these values are cited 

in Table 3.2 on page 31. The values in this table are graphed in Figures 5.4 and B.3 on 

pages 63 and 147, respectively. 

Number 

NC-002927 

NC-002928 

A.6 Average cSpacing Across Genomic Domains 

G+C 

0.68 

0.68 

Accession ( Global 1 CDS 

Continues on next page. 

span 

64.28 f 49.67 

64.06 f 49.46 

Number 

NC-002162 

NC-002528 

NC-001318 

NC 

span 

51.09 f 37.47 

51.10 f 37.28 

G+C 

0.25 

0.26 

0.29 

rRNA 

span 

34.43 f 17.15 

33.50 f 16.19 

tRNA 

cSpacing 

140.24 f 103.78 

121.30 f 87.14 

111.04 f 72.92 

span 

34.28 f 19.77 

34.93 f 20.43 

cSpacing 

161.60 f 113.84 

162.80 f 107.30 

134.73 f 107.06 

cSpacing 

49.12 f 21.30 

46.44 f 13.46 

47.94 f 20.63 

cSpacing 

74.68 f 62.10 

120.93 f 79.43 

89.45 f 63.12 
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Average cSvacinu continued.. . 

Number G+C cSpacing cSpacing cSpacing cSpacing 

NC-004368 0.36 68.18 f 36.56 85.56 f 48.68 43.49 f 13.84 45.99 f 21.51 

- - 

Continues on next page. 

I Accession I Global 1 CDS NC rRNA tRNA 
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Average cSpacing continued. . . 

Table A.5: This table presents the average &pacing values and their standard devi- 

Number  

NC-003197 

ations measured in the various genomic domains of the genomes in our test set. The 

t R N A  Accession 

search parameters applied by the stem-loop search algorithm to generate these values 

G + C  

0.52 

are cited in Table 3.2 on page 31. The values in this table are graphed in Figures 5.6, 

Global 

5.7 and B.5 on pages 67, 68, and 149, respectively. 

cSpacing 

46.48 f 15.91 

C D S  

&pacing 

50.36 f 20.07 

N C  r R N A  

&pacing 

44.98 f 13.00 

cSpacing 

43.24 f 14.32 



OE'EE 7 81'9E 

Z9'EZ 7 84.92 

ET'ZT 7 9'LT 

89.02 7 TP'6T 

E9'OZ 7 LL'TZ 

E8'6 7 9E'PT 

9L'ZI 7 88-61 

9P.81 7 6E'PZ 

91.81 7 TZ'OZ 

L C  7 9 

TL'OZ 7 89'OZ 

99'6Z 7 EO'EZ OS'TT 7 96'LT I T0'9L 7 EO'TOT I OL'T9 7 ZL'EL I TE'O I OEOEOO-3N 

PZ'8 7 ZT'ET 

61'6 7 E6'PI 

Z9'ZZ 7 E0'6T 

Z6'LT 7 OP'8T 

FOX9 7 EE'E9 

L9'OP 7 68'LP 

96'LZ 7 99'OP 

9L39E 7 OT'OP 

Z9'0T 7 99.91 
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6 7 L 

EZ'ZP 7 ZT'8P 

ET'ZP 7 82.69 
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ST'ZZ 7 P6'TE 

P6'ZZ 7 EL'6Z 

69'EP F Z0'99 

69'TP 7 ZP'69 

E8'8P 7 EZ'E9 

9L.09 F 60'8P 

6 u p v d s J  

TT'9E 7 LL'ZP 

ET'OE 7 8L'8E 
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OP'O 
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8E'O 

TP'6E 7 00'8P 

89'8E 7 69'LP 

EZ'PP 7 Z9'E9 

9G'ZL F ZG'9L 

22.98 7 EE'ZOT 

698E00-3N 

OTZEOO-3N 

LE'O 

LE'O 

9E'O 

90'PTT 7 66'6ET 
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Average f Spacing  continued. . 

Accession 

Number 

NC-002179 

NC-003901 

NC-005043 

NC-000918 

NC-004663 

NC-000964 

NC-000853 

NC-003143 

NC-004088 

NC-000917 

NC-000916 

NC-004431 

NC-000913 

NC-002695 

NC-004741 

NC-003197 

NC-003198 

NC-004556 

NC-000919 

NC-002488 

NC-002935 

NC-002932 

NC-004307 

NC-002939 

NC-004369 

NC-003919 

NC-005085 

NC-002696 
L 

Global 

G+C 

0.41 

0.41 

0.41 

0.43 

0.43 

0.44 

0.46 

0.48 

0.48 

0.49 

0.50 

0.50 

0.51 

0.51 

0.51 

0.52 

0.52 

0.52 

0.53 

0.53 

0.53 

0.57 

0.60 

0.61 

0.63 

0.65 

0.65 

0.67 

CDS 

f Spacing  

31.06 f 22.37 

24.63 f 21.02 

31.22 f 22.86 

27.67 f 21.29 

25.52 f 21.10 

24.73 f 19.57 

22.45 f 16.23 

18.57 f 13.84 

18.58 f 13.71 

21.31 f 15.74 

17.86 f 13.33 

16.34 f 11.60 

15.91f10.96 

16.06 f 11.60 

15.79 f 10.58 

14.99 f 10.28 

15.12 f 10.46 

17.01 f 12.21 

16.83 f 11.36 

16.69 f 12.17 

15.20f9.85 

13.40f8.91 

12.27 f 7.17 

12.22 f 7.34 

11.68 f 6.60 

11.25 f 5.97 

11.51 f 6.55 

10.95 f 5.64 

NC 

f Spacing  

42.87 f 31.44 

49.45 f 41.76 

45.50 f 33.01 

36.96 f 28.71 

44.59 f 34.59 

40.17 f 30.94 

28.48 f 23.35 

28.81 f 24.18 

27.08 f 23.36 

27.87 f 22.52 

30.53 f 24.04 

20.33 f 17.49 

24.42f19.98 

24.02 f 20.47 

20.35 f 16.65 

22.18 f 18.34 

23.48 f 18.88 

24.54 f 20.97 

17.18 f 11.77 

23.31 f 20.86 

20.14f13.74 

19.83f15.04 

14.56 f 9.65 

16.07 f 11.51 

14.65 f 9.38 

12.26 f 7.17 

14.32 f 10.05 

12.14 f 6.93 

rRNA 

f Spacing  

18.98 f 14.81 

15.87 f 14.74 

23.19 f 16.96 

10.62 f 5.04 

17.97 f 11.36 

13.71 f 8.93 

11.12 f 5.66 

17.23 f 12.02 

17.56 f 12.93 

14.07 f 6.95 

14.97 f 10.07 

16.09 f 10.09 

16.22f9.94 

16.33 f 10.10 

15.01 f 10.10 

16.43 f 10.69 

14.61 f 8.94 

15.65 f 9.47 

16.55 f 11.25 

16.31 f 9.36 

16.97f11.81 

16.73f10.99 

13.22 f 7.26 

15.65 f 9.10 

14.41 f 8.80 

13.65 f 9.06 

16.02 f 10.40 

13.21 f 6.87 

Continues 

tRNA 

f Spacing  

27.3 f 19.77 

32.64 f 33.34 

25.49 f 19.28 

32.56 f 26.08 

25.16 f 22.74 

16.69 f 13.70 

19.35 f 17.26 

17.47 f 13.21 

18.84 f 14.03 

25.59 f 15.40 

23.58 f 18.09 

19.21 f 14.23 

18.74f13.99 

17.92 f 12.82 

16.07 f 12.73 

16.04 f 11.36 

16.60 f 13.46 

19.35 f 15.35 

15.16 f 11.76 

17.82 f 12.05 

12.88f8.39 

16.73f12.42 

13.19 f 9.77 

14.92 f 10.00 

12.60 f 7.07 

11.70 f 7.44 

14.10 f 9.57 

10.84 f 5.80 

on next page. 
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Average f Spacing continued. . . 
Accession I Global 1 CDS I N C  1 rRNA I tRNA 

Number G+C f Spacing f Spacing f Spacing f Spacing 

NC-002927 0.68 11.09 f 5.84 13.24 f 8.34 13.69 f 8.02 13.40 f 7.51 

Table A.6: This table presents the average fSpacing values and their standard devi- 

ations measured in the various genomic domains of the genomes in our test set. The 

search parameters applied by the stem-loop search algorithm to generate these values 

are cited in Table 3.2 on page 31. The values in this table are graphed in Figures 5.9 

and B.7 on pages 71 and 151, respectively. 

A.8 Average (cspacing x bps) Across Genomic Domains 

I Accession I Global 1 (cspacing x bps )  I 

Continues on next page. 

Number 

NC-002162 

G+C 

0.25 

tRNA 

736.82 f 1005.09 

CDS 

835.12 f 662.96 

NC 

1132.59 f 945.46 

rRNA 

367.16 f 242.48 
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Average ( c ~ p a c i n g  x bps) continued. . . 

Accession I Global 1 (csPacing x hps ) I 
Number 

NC-004350 

NC-000919 

NC-002488 

NC-002935 

G+C 

0.37 

Continues on next page. 

0.53 

0.53 

0.53 

CDS 

454.34 f 338.52 

561.45 f 660.15 

656.83 f 1072.27 

632.89 f 830.89 

NC 

563.32 f 459.33 

595.82 f 683.54 

562.35 f 724.70 

530.69 f 575.54 

rRNA 

412.46 f 339.07 

tRNA 

431.41 f 356.72 

386.79 f 260.06 

408.73 f 374.86 

509.31 f 518.65 

718.63 f 951.61 

499.13 f 453.64 

504.71 f 520.54 
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Average ( c ~ ~ a c i n g  x bps) continued.. . 
I Accession I Global 1 (cspacing x bps) I 

Table A.7: This table presents the average cspacingx bps values and their standard deviations ( ) 
measured in the various genomic domains of the genomes in our test set. The search parameters 

applied by the stem-loop search algorithm to generate these values are cited in Table 3.2 on 

page 31. The values in this table are graphed in Figures 5.11 and B.9 on pages 74 and 153, 

respectively. 

Number 

NC-002932 

A.9 Average (f Spacing x bps) Across Genomic Domains 

I Accession I Global 1 (fspacing x bps ) I 

G + C  

0.57 

Continues on next page. 

C D S  

837.17 f 1196.41 

Number 

NC-002162 

NC-002528 

N C  

594.27 f 714.97 

G + C  

0.25 

0.26 

r R N A  

441.80 f 368.61 

C D S  

703.80 f 643.35 

598.56 f 562.68 

t R N A  

457.80 f 437.30 

N C  

973.46 f 909.66 

907.36 f 747.29 

r R N  A 

181.23 f 162.98 

162.87 f 130.05 

t R N A  

463.64 f 838.97 

848.51 f 954.76 
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Average (f spacing x bps) continued.. . 
I Accession I Global 1 ( f spacing x bps ) I 

NC-004741 1 0.51 1 165.73 f 158.42 / 187.97 f 187.38 1 142.46 f 134.75 1 170.05 f 215.68 

Continues on next page. 

Number 

NC-005791 

G+C 

0.33 

CDS 

348.11 f 325.43 

NC 

515.10 f 430.13 

rRNA 

162.76 f 152.73 

tRNA 

548.70 f 677.34 
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Average (f spac ing  x bps)  continued. . . 

Accession 

Number 

Global 

G+C 

NC-003919 

NC-005085 

NC-002696 

NC-002927 

NC-002928 

NC-002929 

( f ~ p a c i n g  x bps 

CDS 

Table A.8: This table presents the average f S p a c i n g x  bps values and their standard deviations 

measured in the various genomic domains of the genomes in our test set. The search parameters 

applied by the stem-loop search algorithm to generate these values are cited in Table 3.2 on 

page 31. The values in this table are graphed in Figures 5.13 and B.l l  on pages 77 and 155, 

respectively. 

0.65 

0.65 

0.67 

0.68 

0.68 

0.68 

) 
NC 

206.92 f 219.64 

203.55 f 220.21 

203.38 f 209.98 

214.89 f 230.34 

214.26 f 231.59 

216.88 f 232.95 

rRNA 

202.19 f 217.64 

194.23 f 198.62 

181.83 f 192.16 

196.17 f 204.85 

195.30 f 203.26 

197.65 f 196.94 

tRNA 

136.22 f 119.85 

144.57 * 132.13 

141.98 f 125.77 

130.26 f 105.38 

134.99 f 118.88 

129.09 f 104.60 

125.94 f 120.28 

144.49 f 139.86 

136.40 f 150.71 

134.18 * 122.07 

138.86 f 131.00 

153.12 * 144.81 
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A.10 Average bps values under alternate search parameters - 
see caption. 

Accession T Global ( CDS 7 NC I ~ R N A  I tRNA 

Number G+C bps bps bps bps 

NC-002162 0.25 18.01 f 14.44 19.55 f 15.34 11.73 f 8.07 15.18 f 10.94 

Continues on next page. 
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Average bps continued. . 

I Accession I Global 1 CDS I NC I rRNA I tRNA I 

Continues on next page. 

Number 

NC-000922 

NC-002179 

G+C 

0.41 

0.41 

bps 

14.57 f 11.17 

14.38 f 10.95 

bps 

15.47 f 11.78 

14.43 f 10.81 

bps 

11.36 f 7.23 

14.39 f 10.43 

bps 

13.79 f 10.27 

14.64 f 10.46 
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Average bps continued. . . 

I Accession / Global / CDS I NC I rRNA I tRNA I 

Table A.9: This table presents the average bps values and their standard deviations 

measured in the various genomic domains of the genomes in our test set. The search 

parameters applied by the stem-loop search algorithm to generate these values are cited 

in Table 3.2 on page 31. The only exceptions are that the minimum GC base pair 

content is set to 0% and the maximum GU base pair content is set to 100%. The values 

in this table are graphed in Figure 7.1 on page 101. 

Number 

NC-002696 

G+C 

0.67 

bps 

19.21 f 15.88 

bps 

16.47 f 13.32 

bps 

14.22 f 10.27 

bps 

14.13 f 9.90 
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A.11 Average cSpacing data under alternate search parame- 
ters - see caption. 

Accession I Global 1 CDS 1 NC 1 rRNA I tRNA 

Continues on next page. 

Number 

NC-002162 

G+C 

0.25 

cSpacing 

51.58 f 23.35 

cSpacing  

53.63 f 24.49 

cSpacing  

41.62 f 14.79 

cSpacing  

46.77 f 17.98 



PP'ZZ 7 EP'OS E9'0 69EP00-3N 

ZZ'OZ 7 Z1'8P 19'0 6E6Z00-3N 

Z8'PZ 7 OP'ZS 1 09'0 1 LOEPOO-3N 

E1'81 7 1Z.97 PL'E1 7 SL'1P 91'9Z 7 28'02 

69'OZ F 11'6P 91T1 F 11'ZP ZE'61 7 ZZ'LP 08'61 F 96'9P E2'O 616000-3N 

TZ'6Z 7 ZP'PS ZS'O 999P00-3N 

Z6'91 f OP'EP 8P'PT 7 88'ZP EI'L.1 7 E1'E;P 

P1'91 7 EO'PP PL'91 7 8E'ZP E9'L.T 7 1 8 9  
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Average &pacing continued.. . 

Table A.lO: This table presents the average cSpacing values and their standard devi- 

Number 

NC-002696 

ations measured in the various genomic domains of the genomes in our test set. The 

Accession I Global 1 CDS 

search parameters applied by the stem-loop search algorithm to generate these values 

NC rRNA 

G+C 

0.67 

are cited in Table 3.2 on page 31. The only exceptions are that the minimum GC base 

tRNA 

pair content is set to 0% and the maximum GU base pair content is set to 100%. The 

cSpacing 

54.02 f 25.61 

values in this table are graphed in Figure 7.2 on page 102. 

cSpacing 

49.57 f 21.80 

cSpacing 

46.21 f 17.95 

cSpacing 

45.50 f 17.35 
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A.12 Average fSpacing under alternate search parameters - 
see caption. 

I Accession I Global 1 CDS 

Number G+C fSpacing 

NC-002162 0.25 10.31 f 5.04 

f Spacing f Spacing f Spacing 

10.28 f 5.28 9.89 f 4.91 9.51 f 4.43 

10.35 * 5.39 / 10.50 f 4.99 9.94 f 4.84 

Continues on next page. 
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Average f Spacing  continued. . 
Accession Global 

Number 1 C+C 

NC-000922 1 0.41 

CDS 

f Spacing  

10.41 f 5.55 

NC 

f Spacing  f Spacing  I f tRNA Spacing  I 

Continues on next page. 
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Average f Spacing continued. . . 
Accession 

Number 

NC-002696 

Table A . l l :  This table presents the average f Spacing values and their standard devi- 

f Spacing 

10.41 f 5.33 

ations measured in the various genomic domains of the genomes in our test set. The 

Global 

G+C 

0.67 

search parameters applied by the stem-loop search algorithm to generate these values 

are cited in Table 3.2 on page 31. The only exceptions are that the minimum GC base 

pair content is set to 0% and the maximum GU base pair content is set to 100%. The 

CDS 

f Spacing 

10.14 f 4.48 

fSpacing 

10.30 f 5.06 

values in this table are graphed in Figure 7.3 on page 103. 

f Spacing 

9.89 f 4.78 



Appendix B 

Stem-loop Metric Results on 

Shuffled Genomes 

This appendix presents the results obtained when the various stem-loop metrics were mea- 

sured on random sequences. The random sequences were generated by shuffling each of 

the 58 genomes in our working set. To s h d e  a genome, a nucleotide within the sequence 

is randomly selected. This nucleotide is appended onto the end of another string (call it 

shuf f led-str ing,  for instance). This is repeated until each nucleotide has been randomly 

purged from the genomic sequence and appended onto the shuf f l e d s t r i n g .  

The graphs presented in Chapter 5 were generated by plotting four points for each of 

the genomes. One for each of the genomic domains - CDS, NC, rRNA, and tRNA. Now 

in addition to the CDS, NC, rRNA, and tRNA points for each genome, there is a 5th data 

point. It depicts the results obtained after randomly shuffling the genome. 

B.l  Base Pairs Metric - bps 

The plot for the average bps in randomly shuffled sequences is included in Figure B.1. The 

random values appear to roughly correspond with the NC plot more than the CDS, rRNA, 

or tRNA plots. The random bps plot intersects with the rRNA plot at roughly 52% global 

G+C content. This is the most significant observation in Figure B.1. 

Recall, the genomic sequence and its shuffled or randomized counterpart have the same 

global G+C content. In Chapter 5, Figure 5.1 showed that the G+C content levels are not 



APPENDIX B. STEM-LOOP METRIC RESULTS ON SHUFFLED GENOMES 144 

Average Number of Base Pairs vs. G+C Content 

I I I I I I I 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
G+C Content 

Figure B.l: Average number bps in stems-loops arising from various genomic domains. 
In addition to the plots in Figure 5.2 this graph shows the average bps found in random 
sequences across the G+C content spectrum. The corresponding data is presented in Ap- 
pendices A.4 and C.1. 
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uniform across the genomic domains - CDS, NC, rRNA, and tRNA - within most genomic 

sequences. This is especially true of A+T rich and G+C rich sequences. The CDS domains 

comprise the vast majority of the bacterial genomes (roughly 90% or more). Therefore, the 

G+C content in the randomized genomic sequences will more closely resemble CDS. The 

differences observed in metric values between the genomic domains and the randomized 

genomic sequences is in large part related to differences in G+C content levels. This caveat 

is important to remember when studying the following figures. 

The average G+C content in structural RNA genes is approximately 53% (Table 5.1). 

When the G+C content in random sequences and the genomic domains is roughly equivalent, 

the difference in their respective bps values diminishes greatly (Figure B.l). Interestingly, at  

50-55% G+C, the bpscDs values deviate more from bpsTand,, then ~ P S ~ R N A .  This suggests 

that the bps metric is more apt at distinguishing CDS regions from random sequences than 

it is at distinguishing structural RNAs from random sequences when the G+C content is 

50-55%. 

A more rigorous statistical comparison between random sequences and genomic se- 

quences can be based on the Normal Standard Distribution. This involves calculating the Z 

Score for each genomic domain. The Z Score indicates how many standard deviations the 

mean (e.g. EcDs) deviates from the random mean, ETandm. Suppose Z N C  = 1.0, this indi- 

cates its average value for the NC domain is 1 standard deviation greater than the random 

sequence mean. Likewise, suppose ZTRNA = -2.0, this indicates the average rRNA value is 

2 standard deviations less than the random sequence average. Generally, a "significant" Z 

Score occurs when Z 5 -3.0 or Z 2 3.0. 

Figure B.2 depicts the Z Scores for the genomic domains with respect to random se- 

quences. As depicted in the earlier figure, the G+C content is equivalent, there is less 

disparity between the respective bps values with the exception of CDS (Figure B.2 and 

Appendix C.7). In most cases when the global G+C content is 50-55%, the Z T R ~ ~  values 

are significant (Appendix C.7). However, the ZTandm and ZcDs or Z N C  are typically more 

significant. 

B.2 Span Metric - span 

The results attained using the span metric on the randomly shuffled genomes are shown in 

Figure B.3. The Normal Standardized Z Scores are depicted in Figure B.4. These graphs 
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Z Score (Base pairs) vs. G+C Content 

w 

-1 00 I I I I I I I I 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
G+C Content 

Figure B.2: bps Z Scores relative to random sequences. Random sequences were generated 
by randomly shuffling the genomic sequences in our working set. The corresponding data is 
presented in Appendix C.7. 
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Average Span vs. G+C Content 

tRNA ... ... ... ... . 
Random Seq - 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.3: Average Stem-loop span vs. G+C content including random sequences. The 
corresponding data is presented in Appendices A.5 and C.2. 

and their trends mirror those of the bps metric. Rather than repeating the explanation let's 

look at the next metric. 

B.3 Center Point Spacing Metric - cSpacing 

The average cSpacing values observed in the randomly shuffled sequences are depicted in 

Figure B.5. These values appear to loosely coincide with those for the CDS and NC domains. 

The rRNA cSpacing values are lower than the random sequence cSpacing values with 

only one exception - NC-002935, which has a global G+C content of 53% (Appendix A.6). 

Figure B.6 conveys the same information in terms of Normal Standardized Z Scores. Note, 

the cSpacingrRNA values continue to differ significantly from the random sequences when 

their G+C content levels are similar (Appendix C.9). Interestingly, a t  50-55% G+C, the 

Z c ~ s  and ZNC values are typically more significant than the ZrRNA values. 
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Z Score (span) vs. G+C Content 

Y 

-1 00 I 
I I I , I 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.4: span Z Scores relative to random sequences. The corresponding data is pre- 
sented in Appendix C.8. 
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Average cSpacing vs. G+C Content 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.5: Average stem-loop cSpacing vs. G+C content - including random sequences. 
The corresponding data is presented in Appendices A.6 and C.3 
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Z Score (cspacing) vs. G+C Content 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.6: cSpacing Z Scores relative to random sequences. The corresponding data is 
presented in Appendix C.9. 
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Average fSpacing vs. G+C Content 

Random Seq - 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.7: Average f Spacing vs. G+C content - including random sequences. The corre- 
sponding data is presented in Appendices A.7 and C.4. 

B.4 Foot Spacing Metric - f Spacing 

The average f Spacing values for randomly shuffled sequences are plotted in Figure B.7. The 

Normal Standardized Z Scores for the f Spacing metric are plotted in Figure B.8. When the 

G+C content is 50-55%, the fSpacingrRNA values are usually significant (Appendix C.lO). 

At the same G+C content levels, the Z Scores for the CDS and NC domains are typically 

more significant. 

B.5 (cspacing x bps) Metric 

The average (cspacing x bps values in random sequences are shown in Figure B.9. The 1 
Normalized Z Scores are plotted in Figure B.lO. The ZrRNA values are significantly negative 

when the difference in G+C content between rRNA and the random sequence is negligible 

(Appendix C.l l) .  Conversely, the ZcDs values are significantly positive under the same 
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Z Score (fspacing) vs. G+C Content 

G+C Content 

Figure B.8: fSpacing Z Scores relative to random sequences. The corresponding data is 
presented in Appendix C.lO. 
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Average (cspacing * bps) vs. G+C Content 

G+C Content 

Figure B.9: Average ( c ~ p a c i n g  x bps) vs. G+C content - including random sequences 

circumstances. 

B.6 (f Spacing x bps)  Metric 

The average (f spacing x bps) values observed in randomly shuffled sequences over the G+C 

content spectrum is depicted in Figure B . l l .  The Normalized Z Scores are plotted in Fig- 

ure B.lO. The results are similar to the previous metric. The ZrRNA values are significantly 

negative when the difference in G+C content between rRNA and the random sequence is 

negligible (Appendix C. 11). Conversely, the ZcDs values are significantly positive under 

the same circumstances. 
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Z Score (cspacing * bps) vs. G+C Content 
I I , I I I I 

CDS - 
NC --------. 

rRNA .......... + + 
t RNA .................... 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.lO: (cspacing x bps Z Scores relative to random sequences. The corresponding ) 
data is presented in Appendix C.l l .  
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Average (fspacing * bps) vs. G+C Content 

Random Seq - 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 
G+C Content 

Figure B.ll: Average f Spacing x bps vs. G+C content - including random sequences. ( 1 
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Z Score (fspacing * bps) vs. G+C Content 

X X 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

G+C Content 

Figure B.12: (fspacing x bps Z Scores relative to random sequences. The corresponding 1 
data is presented in Appendix C.12. 
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B.7 Review 

Z Scores for various metrics have been tabulated to study stem-loop metrics as they occur 

in random sequences. The point of interest occurs where the base composition is equivalent 

between naturally occurring sequences and their randomized counterparts. Here we know 

that differences seen in their metric values cannot be attributed to dicrepancies in base 

composition. 

Typically, metric values found in rRNAs differ significantly from random sequences with 

the same base composition. Interestingly, the CDS and NC values commonly deviated more 

significantly from the random sequences than the rRNAs. This could indicate an importance 

in secondary structure along protein-encoding genes or transcripts. More study is required 

to understand the meaning or significance of these observations. 



Appendix C 

Stem-loop Metric Data on Shuffled 

Genomes 

C.l  Average bps in Random Sequences Across G+C Content 

Spectrum 

6.51 f 2.52 

6.52 f 2.53 

Continues on next page. 

GlobalG+C Average bps 

5.75 f 1.72 

5.79 f 1.78 

0.29 5.93 f 1.93 
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Average bps continued. . . 
Global G+C Average bps 

0.36 6.53 f 2.54 

9.21 f 5.40 

9.27 f 5.46 

Continues on next page. 
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Table C.l:  This table presents the average bps values and their standard deviations 

measured when the genomes in our test set are randomly shuffled. The search param- 

eters applied by the stem-loop search algorithm to generate these values are cited in 

Table 3.2 on page 31. The values in this table are graphed in Figure B. l  on page 144. 

Average bps continued. . . 
Global G+C Average bps 

9.43 f 5.62 

9.56 f 5.76 
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C.2 Average span in Random Sequences 
tent Spectrum 

Across G+C Con- 

GlobalG+C Average span 

0.25 21.51 f 6.25 

Continues on next page. 
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Continues on next page. 

Average span continued.. . 

Global G+C 

0.41 

Average span 

26.14 f 10.62 
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Table C.2: This table presents the average span values and their standard deviations 

measured when the genomes in our test set are randomly shuffled. The search param- 

eters applied by the stem-loop search algorithm to generate these values are cited in 

Table 3.2 on page 31. The values in this table are graphed in Figure B.3 on page 147. 

Average span continued.. . 

C.3 Average cSpacing in Random Sequences Across G+C 

Global G+C 

0.68 

Content Spectrum 

Average span 

52.25 f 36.35 

Continues on next page. 

GlobalG+C 

0.25 

0.26 

Average cSpacing 

154.50 f 95.30 

142.23 f 83.77 
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Average cSpacing continued. . 

Continues on next page. 

Global G+C Average cSpacing 
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Table C.3: This table presents the average cSpacing  values and their standard devi- 

ations measured when the genomes in our test set are randomly shuffled. The search 

parameters applied by the stem-loop search algorithm to generate these values are cited 

in Table 3.2 on page 31. The values in this table are graphed in Figure B.5 on page 149. 

Average &pacing continued.. . 

Global G + C  

0.53 

Average cSpacing 

44.29 f 14.05 
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C.4 Average fSpacing in Random Sequences Across G+C 
Content Spectrum 

Continues on next page. 

GlobalG+C 

0.25 

Average f Spacing 

134.27 f 95.18 
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Average f Spacing continued. 

Global G+C Average f Spacing 

0.41 31.65 f 21.59 

Continues on next page. 
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Average f S p a c i n g  continued. . . 

Table C.4: This table presents the average f S p a c i n g  values and their standard devi- 

ations measured when the genomes in our test set are randomly shuffled. The search 

parameters applied by the stem-loop search algorithm to generate these values are cited 

in Table 3.2 on page 31. The values in this table are graphed in Figure B.7 on page 151. 

Global G+C 

0.68 

C.5 Average ( c s p a c i n g  x bps)  in Random Sequences Across 

Average f S p a c i n g  

10.69 f 5.44 

G+C Content Spectrum 

GlobalG+C Average c S p a c i n g  x bps 

0.25 893.11 f 650.73 

Continues on next page. 
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Average (cspacing x bps) continued. 

Continues on next page. 

Global G+C 

0.38 

0.38 

Average ~ S p a c i n g  x bps 

427.49 f 298.04 

427.67 f 300.55 
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Average ( c spac ing  x bps) continued.. . 

Table C.5: This table presents the average cSpacing x bps values and their standard ( ) 
deviations measured when the genomes in our test set are randomly shuffled. The search 

parameters applied by the stem-loop search algorithm to generate these values are cited 

in Table 3.2 on page 31. The values in this table are graphed in Figure B.9 on page 153. 

Global G+C 

0.53 

Average cSpacing x bps 

484.40 f 495.35 
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C.6 Average ( fspacing x bps) in Random Sequences Across 
G+C Content Spectrum 

Continues on next page. 

GlobalG+C 

0.25 

Average f Spacing x bps 

772.59 f 627.85 
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Average (f spacing x bps) continued. . . 

Continues on next page. 

Global G+C 

0.41 

Average f Spacing x bps 

225.64 f 194.09 
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deviations measured when the genomes in our test set are randomly shuffled. The search 

Average f Spacing x bps continued. . . 

parameters applied by the stem-loop search algorithm to generate these values are cited 

Global G+C 

0.68 

0.68 

in Table 3.2 on page 31. The values in this table are graphed in Figure B . l l  on page 155. 

Average f Spacing x bps 

163.71 f 159.57 

164.35 f 160.43 

C.7 bps - Z Score Data 

Table C.6: This table presents the average (f spacing x bps) values and their standard 

I Number I G+C I Z Score / Z Score I Z Score I Z Score 

Accession 

Continues on next page. 

Global CDS NC rRNA tRNA 
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bps Z Scores continued.. . 

I Accession I Global 1 CDS I NC I rRNA 

Continues on next page. 

tRNA 

Number 

NC-000907 

G+C 

0.38 

Z Score 

16.74 

Z Score 

7.35 

Z Score 

17.88 

Z Score 

9.44 
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Table C.7: This table presents the Z scores of the average bps values in the various 

bps Z Scores continued. . . 

genomic domains of the genomes in our test set. These values were calculated using the 

tables in Appendices A.4 and C.1. The values in this table are graphed in Figure B.2 

Accession 

Number 

on page 146. 

tRNA 

Z Score 

Global 

G+C 

NC-002696 0.67 174.89 -21.58 -26.60 -12.96 

NC-002927 0.68 242.60 -22.81 -48.73 -26.82 

NC-002928 

NC-002929 

CDS 

Z Score 

0.68 

0.68 

NC 

Z Score 

rRNA 

Z Score 

230.51 

216.39 

-19.95 

-23.67 

-52.65 

-48.60 

-25.53 

-18.56 
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C.8 span - Z Score Data 

Accession I Global 1 CDS I NC I rRNA 

Number G+C Z Score Z Score Z Score 

NC-002162 0.25 6.12 4.25 10.59 

Z Score 

10.28 

Continues on next page. 
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man Z Scores continued. . . 

I Accession Global I 
Number G+C 

NC-002179 0.41 

CDS 

Z Score 

NC 

Z Score 

Continues on next page. 
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span Z Scores continued.. . 
Accession Global CDS NC rRNA tRNA 1 Number / G+C 1 Z Score 1 Z Score 1 Z Score 1 Z Score 

Table C.8: This table presents the Z scores of the average span values in the various 

genomic domains of the genomes in our test set. These values were calculated using the 

tables in Appendices A.5 and C.2. The values in this table are graphed in Figure B.4 

on page 148. 

C.9 &pacing - Z Score Data 

Accession 

- -  

Continues on next page. 

Number 

NC-002162 

Global 

G+C 

0.25 

CDS 

Z Score 

-21.40 

NC 

Z Score 

-0.82 

rRNA tRNA 

Z Score 

-127.92 

Z Score 

-24.15 
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cSpacing Z Scores continued.. . 

NC-002695 

NC-004741 

NC-003197 

tRNA 

Z Score 

-19.71 

-26.22 

-4.86 

Accession 

Number 

NC-003212 

NC-004350 

NC-000907 

Continues on next page. 

0.51 

0.51 

0.52 

Global 

G+C 

0.37 

0.37 

0.38 

-76.89 

-87.25 

-54.47 

CDS 

Z Score 

-40.30 

-52.40 

-77.05 

37.58 

13.44 

30.50 

NC 

Z Score 

29.54 

17.07 

6.71 

rRNA 

Z Score 

-111.32 

-105.26 

-62.03 

-15.30 

-21.03 

-10.30 

-5.51 

-8.29 

-9.73 
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cSpacing Z Scores continued.. . 

genomic domains of the genomes in our test set. These values were calculated using the 

NC-002928 

NC-002929 

tables in Appendices A.6 and (2.3. The values in this table are graphed in Figure B.6 

Accession 

Number 

NC-003198 

on page 150. 

NC 

Z Score 

31.13 

Table C.9: This table presents the Z scores of the average cSpacing values in the various 

0.68 

0.68 

Global 

G+C 

0.52 

rRNA 

Z Score 

-22.64 

CDS 

Z Score 

-55.91 

200.36 

190.20 

tRNA 

Z Score 

-8.96 

-2.49 

-2.40 

-25.73 

-28.18 

-17.49 

-12.99 
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C.10 fSpacing - Z Score Data 

Continues on next page. 

Accession 

Number 

NC-002162 

rRNA tRNA Global 

G+C 

0.25 

CDS 

Z Score 

-21.56 

NC 

Z Score 

-1.01 

Z Score 

-133.91 

Z Score 

-26.13 
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f Spacing Z Scores continued.. . 
Accession 

Number 

NC-002179 

NC-003901 

NC-005043 

NC-005085 

NC-002696 

Global 

G+C 

0.41 

0.41 

0.41 

Continues on next page. 

0.65 

0.67 

CDS 

Z Score 

-37.10 

-176.98 

-35.80 

-5.02 

-21.14 

NC 

Z Score 

18.35 

69.07 

19.72 

79.73 

41.27 

rRNA 

Z Score 

-21.83 

-47.36 

-12.23 

tRNA 

Z Score 

-5.53 

-0.57 

-9.32 

26.71 

9.05 

9.39 

-1.27 
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f Spacing Z Scores continued. . . 

Table C.lO: This table presents the Z scores of the average fSpacing values in the 

Accession 

Number  

NC-002927 

NC-002928 

various genomic domains of the genomes in our test set. These values were calculated 

using the tables in Appendices A.7 and C.4. The values in this table are graphed in 

Figure B.8 on page 152. 

Global  

G + C  

0.68 

0.68 

C.11 (cspacing x bps) - Z Score Data 

Accession Global  C D S  N C  r R N A  t R N A  

N u m b e r  G + C  Z Score Z Score Z Score Z Score 

Continues on next page. 

C D S  

Z Score 

15.29 

19.49 

N C  

Z Score 

75.42 

72.16 

r R N A  

Z Score 

14.12 

15.24 

t R N A  

Z Score 

7.81 

8.31 
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( c ~ p a c i q  x bps) Z Scores continued.. 

/ Accession I Global 1 CDS I NC I rRNA I tRNA I 

Continues on next page. 

Number 

NC-003212 

G+C 

0.37 

Z Score 

-19.36 

Z Score 

25.28 

Z Score 

-8.68 

Z Score 

1.83 
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(cspacing x bps) Z Scores continued.. 

I ~cces i ion l  Global ~ C D S  I N C  I rRNA ( tRNA I 

Table C.ll: This table presents the Z scores of the average (cspacing x bps values ) 
in the various genomic domains of the genomes in our test set. These values were 

calculated using the tables in Appendices A.8 and C.5. The values in this table are 

graphed in Figure B.10 on page 154. 

Number 

NC-003198 

NC-004556 

G+C 

0.52 

0.52 

Z Score 

78.53 

52.65 

Z Score 

-16.91 

0.26 

Z Score 

-12.00 

-9.37 

Z Score 

-6.10 

-0.62 
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C. 12 (f Spaczng x bps) - Z Score Data 

tRNA Accession 

Number 

NC-002162 

NC-002689 

NC-000922 

Global 

G+C 

0.25 

Continues on next page. 

0.40 

0.41 

CDS 

Z Score 

-16.98 

-18.24 

-26.65 

NC 

Z Score 

2.96 

rRNA 

5.19 

5.43 

Z Score 

-57.76 

Z Score 

-3.88 

1.77 

-3.24 

8.28 

-0.56 
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(f spacing x bps) Z Scores continued 

Accession Global CDS NC rRNA tRNA 

Number G+C Z Score Z Score Z Score Z Score 

Continues on next page. 
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(f spacing x bps) Z Scores continued.. . 
I Accession I Global 1 CDS I NC I rRNA I tRNA I 

Table C.12: This table presents the Z scores of the average (f spacing x bps) values 

in the various genomic domains of the genomes in our test set. These values were 

calculated using the tables in Appendices A.9 and C.6. The values in this table are 

graphed in Figure B.12 on page 156. 

Number 

NC-002927 

NC-002928 

NC-002929 

G+C 

0.68 

0.68 

0.68 

Z Score 

211.95 

199.95 

190.15 

Z Score 

-8.49 

-7.37 

-11.87 

Z Score 

-57.64 

-61.78 

-57.62 

Z Score 

-28.92 

-27.82 

-18.18 


