
The Director's Apprentice:

Animating Figures in a

Constrained Environment

Garfield John Ridsdale

B.Sc., University of British Columbia, 1974

M.Sc., Queen's University, 1 980

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in the School

of

Computing Science

O Garfield J. Ridsdale 1987

SIMON FRASER UNIVERSITY

June 1987

All rights reserved. This thesis may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Name: Garfield John Ridsdale
Degree: Ph.D.
Title of Thesis: The Director's Apprentice: Animating Figures

in a Constrained Environment
Examining Committee:

Chairperson:

Dr. Thomas W. Calvert Dr. Veronica D&hf
School of Computing Science School of Computing Science
Senior Supervisor Internal External Examiner

Dr. Brian v.' Funt Dr. Norman I. Badler
School of Computing Science Dept. of Computer Science

University of Pennsylvania
External Examiner

Dr. Nick J. Cercone
School of Computing Science

w

School of Computing Science

Date ~ ~ p r o v e a

PARTIAL COPYRIGHT LICENSE

I hereby g ran t t o Simon Fraser U n l v e r s l t y the r i g h t t o lend

my thes is , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f the Simon Fraser U n i v e r s i t y L ib rary , and t o make p a r t i a l o r

s i n g l e copies on ly f o r such users o r i n response t o a request from the

l i b r a r y o f any o the r un ive rs i t y , o r o the r educational I n s t i t u t i o n , on

i t s own behalf o r f o r one o f i t s users. I f u r t h e r agree t h a t permission

f o r m u l t i p l e copying o f t h i s work f o r scho la r l y purposes may be granted

by me o r t h e Dean o f Graduate Studies. I t i s understood t h a t copying

o r p u b l i c a t i o n o f t h i s work f o r f i n a n c i a l ga in s h a l l not be al lowed

wi thout my w r i t t e n permission.

T i t l e o f Thesis/Project/Extended Essay

& Direc+w-'s b r e d i c e :

Author:

(name

(date)
3

Abstract

This thesis describes the "Director's Apprentice", a project for producing computer

graphic films of animated human characters. The application of scene-level constraints

on a figure animation system is discussed, along with extensions to logic programming

techniques for quantitative reasoning. These techniques are applied to the problem of

defining a hierarchy of planning constraints that guide the actions of the characters in

the depicted scene. A prototype implementation of these concepts is described that is

capable of generating character movements including walking, running and climbing

stairs in a cluttered environment.

i i i

Acknowledgements

I would like to express my gratitude to the many people whose help, support and

encouragement have made this thesis possible. First and foremost, thanks go to Dr.

Thomas W. Calvert for his continued support of my research, and of my personal

development as a student and scientist. Without his support, advice, constructive

criticism and fresh viewpoints, I would have had great difficulty completing my work.

Drs. John Dill, Brian Funt and Nick Cercone all provided help and advice on the technical

matters of the thesis. Mr. Ed Bryant also deserves thanks for his help with many day-

to-day problems encountered while developing the prototype animation system.

This research has been largely funded through grants obtained from the Natural Sciences

and Engineering Research Council of Canada, and from the Science Council of British

Columbia.

Special thanks go to my dear wife, Valerie, for her boundless patience and support

during the past five years, and to my parents Reg and Peg for their belief in me.

Table of Contents

. . Approval .. I Abstract I I I
.. Acknowledgements i v

.. List of Figures v i

Chapter 1 -Introduction ... 1 . . . Problem Specif~catlon : ... 1
.. Goals -8

Thesis Plan ... 9

Chapter 2-Relationship to Other Work ... 11
Approaches to Animation .. 11

... Representing Knowledge with Logic 23
.. Conflicting Knowledge 29

Planning ... 32
Chapter 3 . Satisfying Scene Constraints ... 46

Operations on Constraints .. 46
... ThingLab 52
... MOLGEN -53

Constraint Propagation in Scene Animation ... 54
Sources of Constraint in Animated Scenes ... 55
Conflict and Planning ... 57
Constraint Satisfaction in Path Planning ... 63
Summary .. 68

Chapter 4 . Implementing a Scene Representation System .. 70
An Animator's Expert System .. 70

.. Extending Logic Programming for Scene Animation 73
The Scene Constraint Language ... 77
Hierarchical Planning .. 79
Find-Path for Scene Animation .. 84

... Planning Example 90
... Path Animation 95

Summary ... 104

-, . hapter 5 . Conclusions .. 106

4ppendix . Grammar of the Scene Constraint Language .. 115
BNF .. 115

................................. .. Example 1 16

leferences .. 118

List of Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-1 1
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-1 1
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19

Position Strengths .. 4
Strong movements ... 5

... Focus by position .. -6
Actual line focus .. 6
Visual Line Focus .. 7

... Linked Structure 12
Kinematic Paths .. 15
joint angle configurations ... 16

... Reach Hierarchy Approach 18
Zeltzer's Hierarchy .. 20

... Exit Choices 39
... Hierarchical plan organization 40

... Plan solution 41
A find-path solution .. 42

.. Underconstraint Space 9
Fully Constrained Space .. 49
Probability Relaxation ... 52
Character exits to right unobstructed .. 59
Character path now intersects couch .. 59
No Constraints ... 60

.. Nine possible choices 61
... Unacceptable area of transit 62

Obstruction-free area of stage ... 63
Inserted midpoint keyframe ... 64
First subdivision .. 65

... Decision point 66
Insertion of Point 4 .. 66

... Constraint hierarchy for Point 4 67
Insertion of Point 5 .. 67
Hierarchy for point 5 ... 68
Structure of the Director's Apprentice 72
Tendencies to be attracted ... 75
Probability Density Functions ... 76
Net Movement Tendency ... 77
Character C approaches X ... 84

... Bounding Box 85
Two possible routes .. 85

.. Tendencies for Each Position 86
.. Determining Net Tendency 86

... Choose Path 86
Tendencies without an obstacle ... 88
Path subdivided and bent ... 88
Balanced tendencies ... 89

.. Balanced forces resolved -89
.. Tendencies from distance 9 0
... Shorter distance prevails 90

Setting ... 91
.. Black Bart exits 92

Tex exits .. 94

v i

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

.. Miss Kitty exits 95
Gait pattern data .. 96

... Edge-of stage failure 99
Closely-spaced obstacles .. 100
Rendezvous Problem .. 1 00
Tendency function for rate .. 101
Bounding box with poor fit ... 102
Display of Action Plan ... 109

v i i

1

Chapter 1 :

Introduction

Problem Specification

This thesis describes the "Director's Apprentice", a project for animating human

characters in a constrained environment.

Applications of figure animation techniques may be found in entertainment [Calvert

801, education [Calvert 821 and the simulation of complex environments [Badler

851. However, existing figure animation techniques are so cumbersome and labor-

ious that only short high-budget productions, such as a television commercials or

music videos, can justify the labour cost [e.g., Kroyer 861.

Most existing methods of computerized figure animation use some form of keyfram-

ing (e.g., [Sturman 841, [Steketee 851). In keyframing, the animator begins by

specifying a sequence of positions for each of the characters. Once specified, the

2

computer fills in the intervening frames using a numerical technique, typically

parametric keyframe interpolation. Setting up the keyframes is a highly-skilled and

time-consuming operation. For this reason, and despite many potential applications

in science and the arts, computerized figure animation is not widely used.

Parametric interpolation works well if the keyframes are spaced closely together in

time. But, this process would be improved if fewer keyframes were needed, since

this would mean less work for the animator. Fewer keyframes would speed up

revisions, make longer works feasible, and make figure animation techniques

available to less-skilled artists: a fifty percent reduction in keyframes could save

months of work. What is needed is a system which will only generate reasonable

actions, that is, actions that are sensitive to the spatial context of the characters and

to the semantic context of the scene. If a faster and easier method can be developed for

specifying the character actions in a scene, figure animation may potentially become

a common medium of communication, just as still pictures and sketches are today.

This requires scene knowledge. Scene knowledge is the general commonsense know-

ledge of scenes possessed by any competent animator, along with the details found in a

script. Commonsense knowledge includes those things which characters tend to do

(walk quickly when nervous, walk slowly when tired, approach people that they

like), as well as those which characters tend not to do (walk through solid objects or

approach that which they fear).

One of the richest sources of scene knowledge is the experience of theater directors.

These experts in scene action know a repertoire of rules which, if obeyed, can make

the difference between a well-performed scene and one that looks "amateurish".

Most people are familiar with what happens when these rules are ignored: minor

characters stand in front of speaking characters, conversation bounces from one side

of the stage to the other, characters face away from the audience while speaking, and

so on. These principles are well known, and described in theater textbooks (e.g.

,
[Brown 361, [Allensworth 821 and [Benedetti 851).

For example, areas of the stage have different "strengths"; strong areas attract at-

tention. Generally, downstage areas are stronger than upstage areas, and center ar-

eas stronger than either the right or left.

Figure 1-1 Position Strengths
Black circles are in

stronger areas than white circles

It follows that a program animating a scene where one character is more important

than the others should have the main character gravitate to a downstage-central pos-

ition.

Some movements are stronger than others, also. Brown([Brown 361) writes:

Strong movements are foward movements, that is toward the audience. ...

The forward movements, listed with the strongest first, are up center to down
center, up right or up left to down center, the full stage diagonals, ... and the
movements from right or left to center parallel to the curtain line at any level.

These movements are illustrated in Figure 1-2.

1

Figure 1-2 Strong movements
(in descending order)

If a script specifies only vague actions, such as "Miss Kitty exits", when there are

many different exit points, it will be up to the animation program to choose a strong

or weak movement that is appropriate to the character. For example, the lead

character in a scene will typically use strong movements to attract attention to

himself while secondary characters will use weaker movements.

Another important concept in directing is focus, using stage positions to control at-

tention. Focus concerns the use of subtle character action to shift audience attention

from one character to the next, generally one step ahead of the next change of speaker

([Allensworth 821). This is done so that the audience will have time to settle its

"focus" on a character before he begins to speak; otherwise, his first few words or

gestures may be lost to those of the audience who watching someone else.

6

In focus by position, a new main character (who is just about to begin speaking) re-

ceives focus by moving to a stronger stage position, relative to the current main

character (who are about to finish speaking).

Audience

Flgure 1-3 Focus by position

In actual line focus, the new main character receives focus from the supporting

characters by having them line up in a virtual "arrow" pointing at him. In Figure

1-4, note that some of the other characters are in "stronger" locations than the

main character, yet he receives the focus because he is set off from them.

Audience

I Downstage I

I Upstage I
Figure 1-4 Actual line focus

(after [Allensworth 821)

7

In visual line focus, the main character receives focus by having the other charact-

ers turn to face him.

Audience

Downstage

Figure 1-5 Visual Line Focus

Script interpretation is the principal job of a director (whether of a play, film or

cartoon), i.e., filling in enough of the missing details to complete the action. Script

actions include gross body movements such as "Phillip exits stage left", and detailed

actions such as "Mary turns to face Jane". Clues to a character's locomotion or gait

pattern may also be found, as it is affected by personality, weight, strength, mood,

age, anatomy and some diseases. For example, a script reference such as "Ron, a

sick, tired old man, moves downstage" contains several clues that can be used by an

animation program to select an appropriate gait, although this goes beyond conven-

tional keyframe animation techniques.

8

Since one of the goals of this thesis is to develop a framework for describing the

rules of good direction - one that can grow and improve over time - the prototype

implementation is titled the "Director's Apprentice": an "expert systemw for scene

direction (see [Ridsdale 861). The approach taken in developing the Director's

Apprentice is to apply logic-based constraint planning to derive the parameters

needed to animate walking figures in a scene. The scene may have several characters,

and a number of stage props that are treated as obstacles to be navigated. The key

problem is to find a way to easily define and revise the scene constraints.

Goals

The principal goals of the research behind this thesis are as follows:

1. to investigate the significance of scene-level constraints in implementing

a useful figure animation system;

2. to investigate extensions to logic programming for dealing with

quantitative reasoning;

3. to investigate the application of an extended logic programming tool for

defining a hierarchy of constraints on animated figures;

4. to develop a prototype animation system, based on extended logic program-

ming, that can be used to study the use of scene constraints in figure ani-

mation, and to assess whether it is qualitatively better than conventional

(keyframe-based) figure animating systems.

Thesis Plan

Chapter 2 is a review of some projects in graphics, Al and robotics whose themes

share common ground with the research of this thesis. The graphics projects include

research in kinematic animation (e.g., [Calvert 821, [Badler 851, [Girard 86]),

dynamic animation (e.g., [Wilhelms 861) and planning hierarchies (e.g., [Zeltzer

821). Relevant Al research includes that on logic programming (e.g., [Cohen 85]),

conflicting knowledge (e.g., [Shortliffe 761) and planning (e.g., [Fikes 711 and

[Sacerdoti 771). The aims and achievements of these projects are compared to those

of the Director's Apprentice.

Chapter 3 is adiscussion of conflicting knowledge in figure animation and its relation

to constraint satisfaction and planning. Some relevant constraint research (e.g.,

[Stefik 811 and [Borning 791) is described, and some issues in constraint

formulation, propagation and satisfaction are discussed in the context of animating a

scene. Some of the constraint satisfaction techniques applied in the Director's

Apprentice project are described.

Chapter 4 is a discussion of the implementation of the prototype Director's

Apprentice and includes a description of a formal language for defining the discrete

and real-valued constraints on moving figures. The graphics tools used to display the

action as walking three-dimensional figures are also described. These tools are

based on the use of constrained inverse kinematics, which is fast and sufficiently

versatile to handle a wide range of movements in real time.

Chapter 5 discusses the conclusions of this thesis, in relation to the goals set out in

this chapter. The implications of the prototype project are discussed along with

some suggestions for future research.

Finally, the appendix describes the grammar of the Scene Constraint Language.

Chapter 2:

Relationship to Other Work

In this chapter some research in computer graphics and in Al that relates to the aims of

this thesis is reviewed . While none of the projects described have the same goals as the

Director's Apprentice, many of them contain useful ideas for improving the power and

intelligence of a scene animation system.

Approaches to Figure Animation

This first section reviews some previous attempts to animate figure in a flexible,

adaptable way. There has been interest in the problem of animating human figures since

at least the late 1970's ([Burntyk 761, [Badler 781, [Calvert 801, [Dooley 821,

[Girard 861). Since then the dominant approach to describing human animation has been

kinematics. More recently, however, some research has been done in adding constraints

([Zeltzer 821) and dynamics ([Wilhelms 861, [Armstrong 861) to improve the power

of the animation tools.

Kinematics

In kinematic animation([Badler 781, [Herbison-Evans 781, [Calvert 801, [Calvert

821, [Dooley 821, [Fetter 821, [Kochanek 821, [Calvert 831, [Sturman 841, [Steketee

851, [Kroyer 861) the motion of the elements in the scene is planned out directly by the

animator, and the computer animation system plays no part to ensure that the action is

reasonable.

lgure 2-1 Linked

-

*
Structure

A linked structure representing
the parts of the human body

In human animation the body is usually represented as a linked structure with the ter-

minal nodes (hands, feet, etc.) referred to as end-effectors, as illustrated in Figure 2-

1. Kinematic figure animation is achieved by varying the joint-angles values, and the

location of the root of the structure in three-dimensional space. (The "root" in Figure

2-1 is the base of the spine.) In forward kinematics, the system works forward from

the joint angles to determine the unique configuration of the end-effectors. For example,

the root location plus the angles of the right leg will uniquely determine the location of

the right foot, but the converse is not true; the location of the right foot does not

uniquely determine the.joint angles of the leg.

A paper by Calvert et a1 ([Calvert 821) discusses the kinematic specification of human

figure animation by the use of a dance notation called "Labanotation". Dance notation

systems have the advantage of being well developed and internationally standardized;

Labanotation, in particular, is well suited to specifying the sequence of Mdy positions

that a dancer executes in performing a piece of choreography. (See also [Singh 831,

[Ryman 831) and Badler and Smoliar ([Badler 791). In contrast to the early ap-

proaches of Badler and Calvert, the Director's Apprentice project is less concerned with

specifying complex movements in a simple environment (for example, a ballerina per-

forming alone on a dance floor) than automatically generating simpler movements in a

complex environment (for example, several people walking and gesturing on a stage

set).

Another popular method of specifying animation kinematically. is to take live data from,

for example, a runner or dancer, and to use the data to drive a graphics display. This is

called rotoscoping, and may use two-dimensional data from a motion-picture film, or

three-dimensional data from goniometers or video scanning equipment. See [Calvert 801

and [Ginsberg 821 for discussions of this technique. Perfectly life-like motion can be

obtained this way, but at the cost of poor flexibility after the data is collected, in the

sense that the animation has been specified at such a detailed level that adapting it for

another sequence may be prohibitively difficult.

One problem with systems based on forward kinematics is that they tend to be laborious.

This is because not even the simplest of environmental constraints (such as "people do

not walk through other peoplen and "neither foot should go through the floor") are dealt

with automatically. Nor can the actual paths of the hands, feet or head be planned in ad-

vance. As a result, repeated corrections to the details of the animation may be required.

In forward kinematics, the path of the end-effector through space is left unconstrained

when the joint angles are interpolated between keyframes. In inverse kinematic anima-

tion([Girard 851, [Zeltzer 82]), the animator specifies the locations of the end-effec-

tors in Cartesian coordinates, and the system determines the corresponding joint angles .

Much of the work in this area comes from robotics research, e.g. [Lozano-PBrez 801,

[Paul 811, [Lee 821, [Duffy 841, and [EIMaraghy 861.

Forward Kinematic Inverse Kinematic

Figure 2-2 Kinematic Paths
(left) curving path swept by end-effector when

(right) straight-line path is required

Figure 2-2 depicts two keyframe positions of a robot or human arm. Since the only pa-

rameter that changes between keyframes K[i] and K[i+l] is the value of the shoulder

joint angle, the end-effector will trace a curving path through space if the keyframes

are interpolated using forward kinematics. However, the desired path of the end-effec-

tor between keyframes might be a straight line which cannot be expressed directly by

forward kinematics. For a second example, if the action consists of a foot moving

through a complex gait pattern (as in walking, running or skipping) then it would be

more convenient to specify the motion of the end-effector directly than to have to ma-

nipulate joint angles. A third example is a hand making a complex gesture such as

scratching or picking up a coffee cup .

If there were a general solution to the inverse kinematics problem, then as long as the

desired path of the end-effector were known, the corresponding joint angles could be

calculated automatically. However, no such general solution exists (nor could exist). -

The problem is that the inverse kinematics problem is underconstrained, since there

may be many sets of joint angles for any end-effector position. As with any undercon-

strained problem, inverse kinematic animation requires a procedure to select the best

solution from among those that satisfy the end-effector constraints. ("Best" here

means satisfying as many as possible of the figure's other constraints as well.)

[U u
Figure 2-3 joint angle configurations
for the same end-effector position

One approach, used by Girard and Maciejewski ([Girard 851) is to generate an "inverse

Jacobian" matrix of linear approximations to the (nonlinear) functions relating joint

position to joint angle. Girard applied this technique to generating complex gait patterns

for four-legged (and many-legged) animals. When combined with a sophisticated in-

terface for describing gait patterns (trotting, galloping, prancing, and others) this

method works well for generating believable films of animal motion.

Solutions for general linkages, such as the inverse Jacobian method, are good for non-

realtime animation of robots, but are too slow for real-time animation of human figures.

This is because general-linkage methods do not use the natural constraints of human

anatomy to make the constraint satisfaction easier; for example, there is no need to try

to compute three degrees of freedom for the elbow since it is a single-degree-of-freedom

hinge. Even joints that do have three degrees of freedom, such as the ankle, have

anatomical limitations that can be exploited. There is certainly no need to deal with four

degrees of freedom (including translation) for each joint in the body as Girard's

technique does, since all adjacent pair of joints are a constant distance apart.

The reach hierarchy of Korein and Badler ([Korein 821) is another inverse kinematic

solution. (See Figure 2-4.) This method applies the rule "move each joint the smallest

amount between keyframes that will allow the end-effector to reach the goal", assigning

angle values to the joints outwardly from the root to the end-effector.

--

Figure 2-4 Reach Hierarchy Approach:
Each step puts the reach area of the

next limb segment within reach of the goal.

The reach hierarchy method is an inverse kinematic solution since the goal (the absolute

position of the last joint) is known, and the joint angles are the result. Since the prob-

lem is constrained by joint limits and circles of reach, it is faster than calculating in-

verse Jacobians. However, it does not account for human constraints of coordinated

movement or habit, and so may be difficult to apply to walking. A more recent paper by

Badler et al ([Badler 851) discusses a system for simulating movements of people in a

complex environment, which includes a reach-hierarchy mechanism for animating arm

movements (as in [Korein 821) and a kinematic animator for the whole body (as in

[Calvert 801). But apart from the ability to reach or not reach certain objects, the

character's environment places no constraints on the animation.

In summary, while kinematic animation is easy to implement and provides the most

flexibility to the animator - in the sense that anything, including impossible actions

can be specified - the labour cost is high. This is because any change to the scene - such

as a re-arran.gement of the furniture - may require reworking all of the animation.

This limits its feasibility to applications where both the time and the expense are

justified.

Dynamics

A dynamic animation system provides the animator with automatic aids for constraining

the figures to obey certain rules of Newtonian mechanics between keyframes. In the

system described by Jane Wilhelms (wilhelms 861) some aspects of human dynamics

can be modelled and simulated, including the force of gravity on a falling figure, the in-

ertia of the arms, and the effects of friction on a foot sliding along a floor. A faster

method of calculating these effects of has been developed by researchers at the Univer-

sity of Alberta ([Armstrong 861). The current thesis research of Armin Bruderlin at

SFU concentrates on the use of a rule-based system (in this case a finite state machine)

to control application of dynamic equations to locomotion. This work is promising but

incomplete.

In all of these systems, the figure is a passive element of the environment. Only the

PODA system of Girard and Maciejewski ([Girard 851) deals directly with the dynamics

of coordinated movements. Although in the long term, some attention to dynamic con-

straints would be a useful addition to the Director's Apprentice project, it is currently

more concerned with the kinematics of intentional, coordinated movements, such as

walking from one place to another in a cluttered environment.

Constraint Hierarchies

In a 1982 paper ([Zeltzer 821) David Zeltzer examines figure animation from several

abstraction levels, and proposes that a goal-directed planning system be built along the

lines suggested by Figure 2-5:

Goals I , . . . I - - - - - - (Task Manager 11
I

Climb - Hop , - Walk 11 Run 1-

Level

Level

F $ ~ J { Right 1 Flight -1 Local ~ o t o r l
Swing Stanc Swing Stanc Level

Figure 2-5 Zeltzer's Hierarchy

The three abstraction levels in Zeltzer's planning hierarchy are, first, the task level,

which determines the sequence of skills to be performed; second, the middle motor level,

which provides the definitions of the skills; and, third, the local motor level, which

drives the figure by breaking down the skills into actual joint movements. Zeltzer's

approach to figure animation is similar to the hierarchical planning approach of

[Sacerdoti 771. Only the local motor level had been fully implemented when this paper

([Zeltzer 821) was published.

The Director's Apprentice is built on a script interpreter and a gait interpreter. To use

Zeltzer's terms, the script interpreter is similar to the task manager, while the gait

interpreter combines the middle and local motor controllers. Both have been imple-

mented in the prototype Director's Apprentice.

A paper by researchers at the University of Toronto ([Drewery 861) discusses some

issues in frame-based goal direction, based on English motion verbs. This work is at a

preliminary level.

Summary of Figure Animation Systems

The forward kinematic approaches of Badler and Calvert both provide the animator with

the ability to specify the arbitrarily complex sequences of figure position keyframes.

What these approaches lack is the ability to constrain what happens between the

keyframes to that which is likely or even humanly possible. (Both systems constrain

joint angles, but this will not prevent one leg from passing through another or through

the floor). The inverse kinematic approaches of Korein or Girard allow the animator to

constrain the positions of end-effectors between keyframes, but these constraints do not

adjust automatically to changes in the character's environment. The dynamic approaches

of Wilhelms or Armstrong address many important constraints on character motion but

not global issues such as coordination or planning. Zeltzer's constraint hierarchy ap-

proach is the only one similar to that of the Director's Apprentice, but this was only a

skeleton of a complete system when published in 1982.

All of these systems have deficiencies regarding the scene animation of human

characters:

1. the inability to deal automatically with changes in the environment;

2. the inability to animate on the basis of the personal characteristics of the

characters; and

3. the inability to resolve multiple, conflicting, time-varying constraints im-

posed on a character by its environment.

This thesis contends that high-level planning is the key to animating characters in a

complex environment, and that a hierarchical refinement of constraints is the most ef-

ficient way to implement a plan. To my knowledge, this has not been done before.

23

Representing Knowledge with Logic Programming

This section discusses some research in the use of logic programming as a tool for

representing knowledge.

The topic of representing knowledge in a computable form has occupied the Al community

for decades, and remains controversial. Papers that survey and compare formal repre-

sentations for knowledge include [Hayes 74],[Barr 801, [Delgrande 861 and [McCalla

831. Proponents of various formalisms, including semantic networks, "framesn and

logic programming, argue their relative merits in terms of representational adequacy,

semantic clarity and other characteristics. Despite the controversy, there are three

points of agreement that exist among knowledge representation researchers as to the

minimum requirements of any efficient knowledge representation scheme: it must have a

formal notation, be semantically clear and be efficiently computable. The central argu-

ment here is that logic programming meets all of these criteria and can be applied

successfully to describing scene constraints; however no claim is made as that it is a

good choice for natural language understanding, vision or story-telling:

A Formal Notation

A formal notation is one where an exact semantic model, or precise meaning, can be as-

signed to any well-formed statement in that notation. For example, the notation of al-

gebraic expressions is formal since the meaning of any legal combination of variables

and operators is clearly defined. Informal notations include English text and pencil

sketches.

Predicate logic is a formal notation and can be used to represent the constraints on mov-

ing figures as described in Chapters 3 and 4. One advantage of logic programming is that

the important characteristic of inconsistency is well-defined. A knowledge base is

inconsistent when there could not be a model of reality that satisfies it. For example, the

following statements are consistent:

1. tlx[(is-onstage(x) A 4s-offstage(x)) v (is-offstage(x) A lis-onstage(x))]l

But with the addition of:

3. is-offstage(John)

Read 'for all substitutions of variable x, character x is either onstage and not offstage,
or he is offstage and not onstage".

the resulting set of statements is inconsistent. Statements 2 and 3 imply that John is

both onstage and offstage, while statement 1 implies that this can never happen.

Efficient techniques exist to detect inconsistencies in a logic programming-based

knowledge representation ([Cohen 851).

Semantic Clarity

Semantic clarity in a knowledge representation scheme implies not only that there is a

well-defined meaning for each representation, but also that the meaning is clear and

unambiguous to human readers. Semantic clarity is one of the most hotly-debated topics

in knowledge representation, particularly with respect to the merits of predicate logic

([Hayes 741, [Hayes 771). Nonetheless, predicate logic has been studied and developed

since the time of Aristotle, and is widely known and understood outside of the computer

science community. The advantage of this for the Director's Apprentice is that the

knowledge base can be understood by those lacking a programming background, provided

that they have a knowledge of logic.

For example, suppose that a scene is to be represented consisting of three individuals,

"Fred", "Mike" and "Mary", and a single predicate "likes". Let "A" represent the

statement "(Fred likes Mary)" and let "B" represent the statement "(Mary likes

Mike)". The meaning of the following statements is clear in terms of the world being

represented:

Predicate I oak F n a l l s h
A A B It is true that Fred likes Mary and that Mary likes Mike
A v B It is either true that Fred likes Mary or that Mary likes Mike.

v X , Y ,Z Transitivity does not hold over the predicate 'likes".
((x likes y) ~ (y likes z))
P (x likes z)

The semantics of any combination of primitive logical operators ("and", "or", "not",

"implies") and quantifiers ("for all", "there exists") can be analyzed and understood

without the use of a computer. This quality of being widely and easily understood is an

important advantage of logic programming as a knowledge representation method.

Efficient Computability

Efficient computability means that a representation can not only describe the knowledge

in the problem domain, but that there exists good implementations to solve the problems

as well. A "good" implementation is defined here as one that can resolve queries to the

knowledge base in a time-efficient manner. Predicate logic itself does not address the

issue of computation, because the semantics of logical expressions are defined in a

purely static, declarative way. Robinson ([Robinson 651) showed that by restricting

the form of logical predicates, logic could not only be computable, but efficiently

computable by reducing the time complexity of a brute-force search. Some efficient

implementation mechanisms are described in the logic programming literature ([Cohen

851)

A logic interpreter is a program that, given a collection of facts and a set of relationships

among those facts (called clauses, statements or rules), determines if another fact or

relationship (the query) can be inferred. The mechanism for performing this task is

based on the resolution principle of Robinson ([Robinson 65]), and a program that im-

plements it is a resolution theorem prover. Resolution theorem proving is a form of

constraint satisfaction where all plan variables to be constrained are defined over a fi-

nite domain, and can (in principle) be solved by exhaustive search. For example, con-

sider the following clauses:

1. VXE characters, onstage(x) A speaking(* 3 main-character(x).

2. onstage(Sonny).
3. onstage(Michea1).
4. onstage(Vit0).
5. speaking(Sonny).

The domain of the constrained variables in this case is {Sonny, Michael, Vito}. If the

query is "speaking(x)", this can be solved immediately since clause 5 fully constrains

x to the value "Sonnyn. If the query is "onstage(x)", x is under-constrained; it is

equally likely to have the values "Sonnyn, "Michael" and "Vito". If the query is

"main-character(x)", no one clause constrains the value of x . Instead, the uncon-

strained problem in clause 1 may be solved by recursively searching for the solutions to

the subproblems "onstage(x)" and "speaking(x)" to arrive at "x = Sonny".

An important issue in the computability of a knowledge representation scheme is mono-

tonicity ([Minsky 751). Non-monotonicity results when a statement is added to a

knowledge base and, as a result, some previously derived conclusions are no longer valid.

To deal with non-monotonicity in a logical system there must be a mechanism to add the

new valid facts to a knowledge base and a means to remove the old invalid ones. These are

usually called "assertn and "retractn.

Summary of Logic Programming Representation

Although the one best formalism for representing all forms of knowledge may never be

found, there are certain minimum requirements that any knowledge representation sys-

tem must meet: it must have a formal notation, it must be semantically clear

(unambigous) and it must be computable without combinatorial complexity. For scene

animation, logic programming meets these requirements.

Pure predicate logic may have many drawbacks in knowledge representation; for

example, it cannot directly represent the concept of property inheritance. But as Hayes

points out ([Hayes 77]), most of these difficulties stem from the conventional syntax of

first-order predicate calculus and not from the limitations of logic per se. Despite the

possible limitations of predicate logic for other purposes, such as natural language

understanding, it is a contention of this thesis that the clarity of meaning inherent in

logic programming makes it a good basis for describing the constraints on the actions of

characters in a scene, particularly if the system is to interact with those lacking a back-

ground in computing. As a result, logic programming is used as the basic

representational scheme of the Director's Apprentice.

Conflicting Knowledge

A great deal of research has been conducted by Al researchers into finding ways to deal

with conflict and its consequence, inconsistency ([Hayes 74,771, [Reiter 78,801,

[Doyle 791, [McCarthy 801, [Zadeh 831, [Borgida 841, [Halpern 851, [Horvitz 861).

Conflict-management techniques in Al are usually concerned with updating a knowledge

base which is initially consistent, but becomes inconsistent when new information is

added. Correcting these inconsistencies is referred to as truth maintenance ([Doyle

79]), and remains a largely unsolved problem, although local corrections can be made

by compromise techniques as discussed in [Borgida 841 and [Horvitz 861.

Having commonsense general knowledge in a system means that the system can assume

facts that are not stated explicitly. Conflict arises when these assumptions are later

contradicted. For example, if the system fails to satisfy the predicate "onstage(x)" ,

then the reasoning system may employ "failure as negationn to assume the converse by

default, i.e. that "70nstage(x)" is true. If "onstage(x)" is later inferred, the conflict

must be resolved. Default reasoning (see [Reiter 801) may also take the form of

"system defaultn clauses, that are assumed true if not proven otherwise; this greatly

reduces the number of explicit rules needed.

Another source of conflict in a knowledge representation comes from the presence of

uncertainty. Conventional predicate logic is boolean in nature, having only the states

true and false. Uncertainty is seldom boolean, requiring a continuous range of values

to represent it ("somewhat sure", "fairly suren, "possible", "doubtful", "unlikely"

and so on). The successful Mycin project ([Shortliffe 761) used certainty factors to

reason about medical diagnosis problems. Certainty factors use arithmetic operations -

based loosely on Bayesian probability - that replace the "and" and "or" of conventional

logic. The ability to reason with continuous uncertainties is important in scene

description, although scalar certainty factors are inadequate.

Rather than adapt predicate logic to deal with continuous domains, some have dispensed

with it entirely, adopting instead an alternate logic having more than the two states

"true" and "false". This is the motivation behind the use of fuzzy logic ([Zadeh 831).

With fuzzy logic, imprecision in the definition of an event is acceptable, as well as un-

certainty as to its occurrence. For example, the statement "John is fairly close to Mary

in Scene Three" is a fuzzy statement since the predicate "fairly closen is not precisely

defined. The statement "the probability is 60% that John is within one foot of Mary in

Scene Threen is not fuzzy reasoning since the predicate "within one footn is precisely

defined. The use of fuzzy logic for representing knowledge is controversial.

Hayes([Hayes 741) maintains that whatever advantages are provided by fuzzy reasoning

are offset by losing the clear semantics of conventional (two-valued) logic.

Planning

Generating only reasonable actions between widely spaced keyframes involves planning.

Thus, much of the Al research in planning and reasoning ([Sutherland 631, [Fikes 711,

[Hewitt 721, [Shank 771, [Sacerdoti 771, [Kahn 791, [Stefik 811, [Kautz 821,

[McDermott 821, [Wilensky 831, [Allen 831, [Dean 851, [Sobek 851, [Stuart 851) is

relevant to animation. Some representations of a plan of action are a set of keyframes,a

play script, a "State Space" and a hierarchy of constraints.

Keyf rames

An animated film can be planned as a sequence of keyframes, but this is inadequate for

generating all but the most trivial sequences because the system has little knowledge of

what should and should not come between the keyframes. As a result, for good animation

the ratio of film frames to keyframes may be as low as ten to one2, and at a film rate of

24 frames per second, over one hundred fully-specified keyframes may be needed to

produce just one minute of animation. This may represent several hours work to the

animator, and the result may be invalidated by making a small change to the scene.

From personal experience.

Play Scripts

A play script may also be the basis of an action plan if it is first transformed into some

machine-understandable form3. Although a script usually specifies enough information

to determine the major actions in the scene, there are details missing that must be filled

in by the imagination and experience of the director. A line of the script may simply

read "Bill exits", but before the action can be animated, some questions must be an-

swered, including:

Which character is Bill?

Where is the exit?

Are there any stage props in Bill's way?

Does Bill walk around the stage props? If so, does he pass downstage or upstage

of them? Does it matter?

Can (and should) Bill walk over any of the stage props?

If there are other characters in the scene, does Bill approach or keep away

from each of them?

How fast does he move? Does he walk, run, hop, skip, jump? Does he have a

limp?

The issue of automating the transformation from natural language into a suitable data
structure will not be addressed in this thesis.

8. Does he make any gestures along the way? If so, what gestures are character-

istic of him (puts hands in his pockets, scratches, swings his arms)?

The answers to these questions and others help to transform the script, as well as gen-

eral constraints on what is reasonable in a scene and what is not, into a detailed plan.

The key problem is to structure this plan for efficient processing and easy modification.

The "State Space" Approach

The assumption in the State Space approach (as in [Fikes 711) is that the solution to any

planning problem in the domain can be achieved by piecing together the correct sequence

of operators taken from a pool of predefined steps. This is essentially an intelligent

sorting problem, where each step in the solution of the plan mates with a unique "best"

piece taken from the operator pool. An analogy can be made to the solution of a jigsaw

puzzle, where every possible step that can be taken to solve the problem is represented

by one of the pieces. A plan then consists of a sequence of correctly matched pieces.

A State Space plan is used in STRIPS ([Fikes 71]), and consists of a model of the present

world (the starting state), a model of the desired world (the goal state), and a pool of

operators which transform one model description into another. Each operator is a list of

conditions to add to the world model, a list of conditions to remove, and a "precondition"

which fires the transformation if it matches the current world state. Each planning step

selects an operator to best reduce the distance (or cost) from the current state to the

goal state. "Costn functions associated with each step are the only constraints on the

plan as it is developed.

Limitations of the State Space Approach

A number of problems make the "State Spacen approach inadequate for the planning

needs of scene animation. The first problem is the need to divide up all possible plans

into a number of discrete steps from which the best sequence is chosen. If the number of

individual steps that may be chosen from is small - of the order of a few dozen - a step-

by-step approach like this may be practical. In scene animation, however, the search

space is large, as there are numerous ways of performing a scene (such as getting from

one place on the stage to another). To have to select each next step from a catalogue of

operators could be very slow. An error in planning at an early stage could also lead to

costly backtracking.

The second problem is that the concept ofahe simultaneous action of a number of inde-

pendent agents cannot be conveniently represented by a linear sequence of operators. If

each operator transforms the world in terms of the action of one agent, then a different

operator is needed for each of all possible combinations of actions of the multiple agents.

The third problem, common to all state-transition-based planners is the frame prob-

lem, which results from the need to establish what is still true after each state transi-

tion. This arises because recent state transitions may have altered the effects of previ-

ous state transitions. For example, suppose the script calls for a character to cross the

stage, and then exit. After this has happened, can we reasonably assume that:

1. the stage props are still in exactly the same locations?

2. the other characters are still in exactly the same locations?

3. the other characters still interact with each other exactly as they did before?

4. the clock on the wall shows exactly the same time?

Ask a human director these questions and she might reply "yes", "maybe", "probably

not", and "no", respectively. However, since State Space planners such as STRIPS are

state-transition based, the answer to all of these questions would have to be "yes", be-

cause every transition is assumed to leave all states of the world unchanged forever un-

less specifically stated otherwise. This is called the "STRIPS Assumption" and it is a

natural consequence of state-based planning.

In contrast to state-based planners, time reasoning in the Director's Apprentice is in-

terval-based (like [McDermott 82) and [Allen 831). That is, events are declared as

being true between pairs of keyframes, and these intervals can be independently speci-

fied for different characters. As a result, the frame problem does not arise, as we can

always state explicitly over what span of time any fact is true. A further consequence of

explicit time representation is the ability to infer such time-based qualities as velocity

and acceleration.

The "Hierarchical Planning" Approach

Each element in a plan hierarchy may represent an entire sequence of operations. Other

elements may represent entire classes of sequences. These elements form a hierarchy of

abstraction levels from the most abstract (such as "plan next scene") to the most de-

tailed (such as "increase right hip angle by ten degrees"). In comparing hierarchical

planning to the State Space approach, Sacerdoti writes ([Sacerdoti 741, p. 11 7):

A superior approach to problem solving would be to search first through an abstraction
space, a simplifying representation of the problem space in which unimportant details
are ignored.

This is the approach favoured in the Director's Apprentice and in Zeltzer's Task -

Manager. Conventional planners search the tree of plan choices by fully exploring the

first piece of the solution path before going on to the next step in that sequence. If it

turns out that the next step is impossible or inappropriate, the time spent expanding the

steps leading up to it have been wasted. With a strict depth-first search, such as is used

in STRIPS ([Fikes 71), PLANNER ([Hewitt 721) or PROLOG ([Clocksin 81]), the result

can be a combinatorial explosion of time, making plan calculation impractically slow. In

contrast, a hierarchical planner such as NOAH ([Sacerdoti 77]), MOLGEN ([Stefik 811)

- or the Director's Apprentice - roughs out the entire plan from start to finish before

filling in any details of how that plan is to be achieved. Sacerdoti writes ([Sacerdoti 741,

p. 121):

This search strategy might be termed a 'length-first" search. It pushes the planning
process in each abstraction space all the way to the original goal state before beginning
to plan in a lower space.

A hierarchical planning approach defers constraint decisions until after the broad gen-

eralities of the plan have been worked out. This prevents early decisions from commit-

ting the plan prematurely to a dead-end course . As Dean ([Dean 851) describes:

Given that there exists no strong warrant for choosing one plan over another why
should a planner make a choice at all? In certain situations it would seem that procras-
tination is appropriate. The problem was that by committing early (and arbitrarily) the
planner might have to explore a large number of alternative orderings before finding
one that worked.

This process of solving high-level goals before detail goals, comparable to "top-down"

programming techniques, continues until all of the constraints are solved. Sacerdoti

([Sacerdoti 741 p. 133) describes the process:

It is desired that the system's planning efforts focus on reasoning about states of the
work that are likely to be traversed in the course of robot execution. Thus, the overall
planning should be roughed out in an abstraction space that ignores enough levels of de-
tail so that the rough plan is fairly certain to succeed.

The process of alternatively adding detailed steps to the plan and then actually execut-
ing some steps can continue until the goal is achieved.

Example of Hierarchical Scene Planning

In Figure 2-6, characters A and B are to leave the scene via one of two exits.

Exit

- -- -

~ i ~ u r e 2-6 Exit Choices -

Characters A and B
are to leave by one of the two exits.

I Some of the constraints on Character A as he exits include having to choose the best exit,

not colliding with the couch and not interfering with character B. A partial plan hierar-

chy that might be generated for this scene is shown in Figure 2-7.

I Plan the Scene I

) ~ x i t to Loc /I 1 h Exit to Loc 2

Walks around couch)

/ [gait to reach exit)
(Apply "fast walk") /

gait to reach couch

[gait around couch)

Figure 2-7 Hierarchical plan organization:
each deeper level represents a new constralnt

(In this diagram, a single arc indicates a sequence of actions, while a double arc suggests

possible parallel actions. All other child-nodes are 'or'-selections. Dotted lines indi-

cate other solution paths not explored. Terminal nodes, with rounded corners, indicate

1 primitive actions).

As the tree of choices is traversed, new constraints are added to the plan. The result for

character A is shown in Figure 2-8.

-

Figure 2-8 Plan solution
Solution to problem in Figure 2-6 for character

Improvements to Hierarchical Planners

Hierarchical planning can be strengthened by providing an explicit representation of
I

the plan structure as a "procedural net" ([Sacerdoti 771). Such a network description

contains both the procedural and declarative knowledge in the plan. The procedural

knowledge expands higher abstraction goals into more detailed subgoals. The declarative

knowledge consists of critics (rather like demons) that checks for, and corrects, any

conflicts that result from subgoal expansion.

A paper by Christopher Stuart ([Stuart 851) describes a system that extends the idea of

hierarchical planning to multiple agents, using synchronizing primitives similar to

those found in operating systems for resource sharing.

The Find-Path Problem

"Find-path" is a problem from robotics research ([Brooks 831, [Lozano-Perez 83]),

where an autonomous robot must find the shortest route from one place to another across

a cluttered work area. Brooks' solution ([Brooks 831, p. 190), is to "shrink the object

to a point while at the same time expanding the obstacles to the shape of the moving ob-

ject".

I
Figure 2-9 A find-path solution

As illustrated in Figure 2-9, a character (typically a mobile robot, but could also be

human) is moving from the starting location "S" to a goal "G" past obstacles 1, 2 and

3. By effectively expanding the obstacles by the radius of the character, the worst-case

size of the obstacles can be determined, and, by reducing the character to its centre point

(marked with a cross), any route4 to the goal that does not intersect these expanded

obstacles is a find-path solution. Some algorithms for dealing with rotatable (non-

circular) characters have also been proposed ([Brooks 831 and [Lozano-Perez 83]),

but tend to be much slower. In scene animation, rotation is not an important issue, as

humans are fairly circular when viewed from above.

The find-path problem occurs in most scene animation situations, and is sufficiently

critical that it should be placed at the top of any planning hierarchy. But, the nature of

find-path in scenes is different from that found in robotics problems; in robotics, typi-

cally the only constraint on the action of the robot (apart from collision avoidance) is to

minimize the distance travelled so as to minimize time. When humans move from place b

to place on a stage set, there are many other subtle influences on their actions, and find-

path is only one level of a large hierarchy of constraints that must be accommodated and

compromised.

A route is a sequence of connected straight lines joining the start to the goal.

Temporal Logics

Many Al workers in natural-language rese,arch have studied the concept of time as found

in stories. Key papers include [Allen 831 and [McDermott 821. The basic intent of such

research appears to be story understanding; a system is expected to digest a natural-

language version of a story containing references to time (such as "before", "after",

"later", "sooner" and so on), and then to be able to answer questions of the form "who

did what, when?".

While this research may be helpful in the future, particularly for transforming script

text into machine-understandable form, it appears, at this time, to be too preliminary

to be useful in scene animation.

Chapter Summary

Of the attempts that have been made to improve the power of figure animation systems,

the work of David Zeltzer is closest in its aims to the Director's Apprentice, although the

high-level task manager was not completely implemented. And while systems like that

of Girard, and Korein and Badler are well suited to animating generalized limb

structures, they need to be adapted to the particular constraints of human figures.

A good representation for knowledge should be formal and semantically clear. Predicate

logic has these qualities. A good representation for scene animation also needs to be able

to deal with the continuous-valued world of distances and forces for which logic pro-

gramming requires extensions.

Planning methods designed for blocks-assembly tasks, such as STRIPS, are not powerful

enough in themselves for scene animation purposes. Hierarchical designs are more use-

ful, since the scene planning space, that is, the range of options available to the charac-

ter, is large.

Bringing these elements together into a cohesive whole was one of the aims of the Direc-

tor's Apprentice project. The extent to which this has been achieved is discussed in

Chapter 4.

Chapter 3:

Satisfying Scene Constraints

Many statements present in the knowledge base provide constraints on how the charac-

ters are expected to behave. Not all constraints are applicable to every character in

every scene; so they are defined conditionally, requiring an inference procedure to solve

them. Also, since the statements are entered independently, they may conflict, and

cannot all be satisfied simultaneously.

In scene-level animation, the system develops a plan for each of the characters, and the

current state of the simulated world (locations, sizes, relationships, etc.) is expressed

by the values of a set of plan variables. A constraint associates with each plan variable

a set of acceptable values, which may change over time.

Operations on Constraints

A paper by Mark Stefik ([Stefik 811) identifies three fundamental operations performed

on a constraint : it is formulated, then it is propagated, and finally it is satisfied.

Constraint Formulation

Constraints are formulated when new commitments about the characters are made by the

system. In scene animation these commitments may be to keep characters on the stage, to

prevent characters from walking into props, to maintain certain gait patterns for each

character and to keep antagonistic characters away from each other. Some constraints

are of a general nature, and they are applicable to many situations; for example, "keep

all characters on the stage floor". Other constraints are more situation-specific, such as

"character x walks around couches but climbs over fences. Solving general constraints

first may save time: how to climb a fence is not an issue if the character never comes

near one.

In conventional constraint satisfaction systems ([Sutherland 631, [Borning 791, [Seidel

81]), the number and kind of constraints are all fixed and known at the outset. For ex-

ample, a paper by Raimund Seidel ([Seidel 811) describes a systematic method for

solving binary (two variable) constraints. While this method may be quite efficient,

having all constraints fixed unconditionally at the outset is too limiting for a scene hav-

ing many characters.

Constraint Propagation

Constraints are not all alike: some are more general than others, some easier to satisfy

than others. Putting the constraints in order and using the solution of each to help solve

others is constraint propagation. Usually the narrowest range (fewest options) are

solved first. For example, the constraint "the character is onstage" has a narrow range

since it is either true or false. Harder (wider range) subproblems such as "the

character is in a position of strength" are either solved - or skipped - by using the

results of the easier subproblems to limit their range. (If he is not onstage, "strength"

is meaningless.)

For another example, the constraint:

(C1) "the character is downstage from the couch"

does not constrain the character's location to any particular place; its range is infinite.

In Figure 3-1, any location that falls outside of the shaded area will satisfy constraint

C-1.

49

Downstage

Figure 3-1 Underconstraint Space
Any location within the shaded

area is a solution for Constraint C1

If a narrower range subproblem is found in the knowledge base and solved first, such as:

(C2) "the character is standing in the doorway of one of the three exits"

large branches of the decision space for C1 can be pruned away, as shown in Figure 3-2.

Downstage

Figure 3-2 Fully Constrained Space
Constraint C1 Is fully constrained
after propagating Constraint C2

If Constraint C1 had been solved before solving C2, the system would be forced to test

every location in the unshaded area (i.e., the set of locations that satisfy C1) to see if it

also satisfied C2. By solving C2 first, and propagating its result to C1, there are only

three places that must be tested for satisfaction (by C1). In Figure 3-2, only one of the

exits lies within the acceptable area for C1 at downstage left, so it is the solution.

Constraint Satisfaction

Constraint satisfaction is the process of finding values for the plan variables that si-

multaneously solve all of the constraint conditions. By organizing the constraints into

categories from most general to the most detailed, and from the narrowest range to the

widest range within each category, an efficient scheme of constraint satisfaction results.

The generality hierarchy (called an "abstraction hierarchy" by Stefik [Stefik 811)

minimizes backtracking over needless details while the range hierarchy forces rela-

tively easy subproblems to be solved first.

A problem occurs when there are loops in the constraint hierarchy; this commonly

arises when solving systems of equations which are sometimes solved by numerical tech-

niques such as relaxation. This is an iterative technique involving a guess, the estima-

tion of the error, and a new guess based on whether the error is improving or getting

worse. This process continues until the error is acceptably small, or the relaxation

fails to converge. One common implementation of relaxation between interacting con-

straints is to only solve each conflicting constraint partly (make a small incremental

change), to minimize the interactions between the changes. These incremental changes

are repeated until stability is reached.

Continuous-valued constraints involving inequalities are particularly hard to solve,

since satisfying the inequality conditions is generally inadequate. Suppose a scene to be

animated includes a race between a hare and a tortoise. A constraint that may be found in

the knowledge base is:

(1) speed(hare) > speed(tortoise)

When this problem is solved using relaxation, a first guess at the constraint solution

may be

(1) speed(hare) = 1 01•‹ m.p.h.; and

(2) speed(tortoise) = 0 m.p.h.

At this point, the inequality has already been satisfied, but this solution is clearly un-

acceptable. The problem is to determine what to make for a second guess, since the first

guess already satisfies the constraint. One approach is to provide a probability density

function associating a likelihood with each speed value, as illustrated in Figure 3-3. By

stepping away from the expected value (point of maximum probability) in small steps, a

sequence of decreasingly likely values for the speed of each character is obtained. Thus

it is the likelihood of a speed value that is relaxed, rather than the speed itself.

Hare

I Speed

I Speed

Flgure 3-3 Probabillty Relaxation
Probablllty associated with each speed

value for the hare and the tortolse

ThingLab

In 1979 Alan Borning published a description of a constraint-based simulation labora-

tory called "ThingLab" ([Borning 791). This SmallTalk-based system allowed the user

to specify (for each constraint) an invocation rule, an error measurement test and ex-

plicit methods for reducing the error.

ThingLab has a number of powerful features. It has both propagated and relaxed con-

straints; it has hierarchically-defined data types allowing for inheritance classes of

constraints; and it has the convenient graphical user interface common to all SmallTalk-

based systems. However, ThingLab has no facility for performing general inference, so

there is no means of saying "under these circumstances, use these constraints"; as a

result, all constraint satisfaction methods defined in the system must always work under

all circumstances. Since inference is essential for implementing conditional constraints

set, the ThingLab design is of limited use in animation.

MOLGEN

Another paper ([Stefik 811) describes a system for constraint satisfaction that, like

Borning's ThingLab, grew out of the author's Ph.D. research. Stefik's system, called

"MOLGEN", is designed for planning a sequence of operations to construct an experiment

in molecular biology known as "gene splicing". The constraints defined on these opera-

tions consist of a set of elimination rules. Genetic selections that do not meet the current

set of criteria are pared down until a set of bacterial organisms is left that meets the

requirements of the experiment. MOLGEN uses a form of hierarchical planning where

easier problems (those with few constraints) are solved first, and the partial results

produced are used to solve the harder problems. This bottom-up propagation continues

until all of the hardest problems are solved (are fully constrained).

The concept of propagating the results of easier problems to help solve harder ones is

formalized in a paper by Dechter and Pearl ([Dechter 851). It shows how such propaga-

tion can be used to reduce backtracking, by preventing the attempted solution of prob-

lems whose results are not needed.

Constraint Propagation in Scene Animation

The wider the range of values that could satisfy a constraint, the harder will be the

constraint satisfaction problem. For example,

C1: "a is true"

is relatively easy to satisfy since there are only two possible values to be tested for

boolean variable a.

C2: "3 ne {1,2,3,4} p(n)"

is harder, since p(n) may have to be tested for all four values of n. Still harder is

C3: " 3 x , -1 .o < x <+1 .o, q(x)"

where x is a continuous (real) variable, since there are an infinite number of test val-

ues for q(x).

In the Director's Apprentice, a form of logic programming ([Clocksin 811) - which can

be thought of as constraint satisfaction restricted to finite sets as in C1 and C2 above -

is used to guide the process of problem reduction, preventing the attempted satisfaction

of constraints that are irrelevant to the scene at hand. This is essential since the total

number of constraints that could be applied to a scene is enormous. Only those continu-

ous-valued constraint problems that are needed in any given scene are, in fact, solved.

This contrasts with conventional constraint systems in which all continuous-valued

constraints are solved. Discrete-valued constraints are propagated and satisfied by the

efficient mechanism of resolution, and the results decide which (harder) continuous-

valued subproblems will be attempted. Constraint solving systems that lack general in-

ference cannot conveniently do this.

In summary, constraint satisfaction in scenes is complicated by the need for both dis-

crete and continuous-valued constraint satisfaction in the same system. The former can

be handled efficiently by logic programming, but the latter requires numerical tech-

niques, since exhaustive search cannot be applied over an infinite domain. The challenge

is to integrate these two approaches into a hierarchical system of satisfaction techniques.

Sources of Constraint in Animated Scenes

The script states or implies goals for each character, and many conflicts arise because of

inconsistencies between the influences on the way a character should move between

keyframes. For example, interpersonal relations (x loves y, z is afraid of w, etc.) can

be consistent with some goals but can conflict with others. Characters can also interact

with stage props, avoiding dangerous objects and drawing close to attractive ones. These

tendencies are often emotional in nature.

Aaron Sloman's paper ([Sloman 81]), entitled "Why Robots Will Have Emotions", dis-

cusses what is required to represent the motivation of a robot imitating human behavior.

While the feasibility - or the need - of robots behaving like people is questionable,

animated figures that represent people have to display convincing human-like behavior,

and as a result, some of his observations are relevant here.

First, a character's environment may change unexpectedly, and the simulator should al-

low for this. -Sloman writes:

The environment is not static: opportunities and dangers, may all vary from time to
time. Changes will need to be perceived or predicted. Predictions will not always be re-

liable. This implies a need for constant monitoring, and ability to notice and deal with
the unexpected.

Second, some of a character's motivations may be at odds with his plans. Should the

character follow a spur-of-the-moment impulse, or stick to his major goal? Sloman

writes:

There may be intense, though less important, motives which conflict with a long term
goal. It is necessary to be able to interleave pursuit of different intentions.

Third, it may not be possible to satisfy all of a character's goals simultaneously~ In Slo-

man's words:

Different motives in the same individual may be inconsistent. Mechanisms and strate-
gies for dealing with inconsistencies will be needed.

Conflict and Planning

The Director's Apprentice is not intended as a stand-alone animation system that inter-

prets scenes automatically, as this would limit it to trivial or highly abstract scenes as

in the work of Kahn [Kahn 791. Instead, its aim is to allow an animator to spread manu-

ally entered keyframes further apart while the system continues to generate believable

action. The "scriptn used contains the original action of the play1 but may also contain

any interactively-added annotations and alterations that the director feels are needed to

achieve the desired effect.

Thus the user, while specifying as few keyframes as possible, is a partner in the anima-

tion process. The computer system serves as a planner that fills in the gaps left by the

animator. As in any planning problem there is an initial state (the starting keyframe),

a final state (some later keyframe) and a set of constraints that limit the space of

choices available for transforming the initial state to the final. It is the nature and han-

dling of these constraints that is of interest here.

Constraint Satisfaction Examples

Suppose the script called for the character (Character 1) to exit the scene from Up-

stage-Left through a doorway Downstage-Right. Figure 3-4 illustrates this. If this

were the only constraint on the character, any figure animation system capable of gen-

The play script is assumed to have been translated into some machine-understandable
form.

erating a straight walk could handle it.

Downstage

UPMO.
Figure 3-4 Character exits to right unobstructed

Suppose now that the animation director wishes to experiment with the furniture place-

ment. She moves the couch downstage in such a way that the character's straight-line

path intersects it. (This may happen accidentally.)

\ Upstage I
Figure 3-5 Character path now intersects couch

In order to animate this scene in a reasonable way, the system's general knowledge must

contain the discrete constraint

vt sframes,
vc E characters,
Vp E stage-props:

which says that for every character and stage prop in the scene, the space occupied must

not intersect that of any other character or prop in any frame.

I Downstage I

I I

Figure 3-8 No Constraints
Figure walks from Point S to Point G,

Ignoring constralnts

The system will generate a new keyframe between S and G such that the resulting two-

part path satisfies all of the character's constraints. The location of the new point will

be equidistant between Point S and Point G, although any other subdivision scheme would

work just as well. Figure 3-7 illustrates a selection of the possible locations for the

new intermediate keyframe point.

\ I, Downstage I

I

Figure 3-7 Nine possible choices
for the new keypoint

The next issue to be resolved is which set of constraints will influence the movement of

the character as he walks from Point S to Point G. Specific facts taken from the script

are combined logically with general principles in the knowledge base to produce a con-

straint profile that is appropriate to the character in this scene. Table 2-1 lists five.

Constraint

1 If Frame = n then character is speaking
2 If character is speaking then pass downstage of obstacle
3 If object is couch then obstacle is present
4 If obstruction is present then avoid obstacle
5 if walking then take shortest path around obstacle

Table 2-1
Five interacting constraints

on Figure 3-7

TY pe

Discrete
Continuous
Discrete
Continuous
Continuous

of Solutions

Here there are two discrete constraints on the action of the character (1 -and 3), each

having one solution (either true or false). At the same time there are three continu-

ous-valued constraints, each having an infinite number of solutions (2,4 and 5). Since

the discrete constraints have only two possible values each, they divide the total solution

space into four regions. Picking the right combination may cut off much of the work

needed to satisfy the continuous-valued problems. For instance, if the value of con-

straint 3 is false, then dealing with obstructions (constraints 2,4 and 5) is eliminated.

For the purpose of this example, assume that the value of constraints 1 and 3 are true.

Next, the continuous-valued subproblems are addressed. Each one effectively delimits

areas of the stage that conform to the rule involved. Rule 2 (which is only used since the

value of Rule 3 is true) delimits the stage as in Figure 3-8. This effectively eliminates

Paths 6, 7, 8 and 9 from consideration.

1 L, Downstage I

Figure 3-8 Unacceptable area of transit
Is shaded

Rule 4 delimits the stage as in Figure 3-9, eliminating Paths 4, 5 and 6 from consider-

ation. This leaves us with Rule 5 to resolve Paths 1, 2 and 3. It is used last, as its range

is the entire floor and it is thus the least constrained.

I I, Downstage I

I I
Figure 3-9 Obstruction-free area of stage

Rule 5 is special. Rather than specifying an acceptable area of the stage, Rule 5 ranks all

locations with a "goodness" measure corresponding to the total path length between S and

G through the new keypoint. Since the total distance for Path 3 is less than Path 2 which
b

is less than Path 1, Path 3 is the clear winner.

Constraint Satisfaction in Path Planning

In the current implementation of the Director's Apprentice, the principal application of

constraint satisfaction is in path planning, that is, deciding how a line such as "Bill

walks to the bookcase" or "Mary exits stage right" should be interpreted. Some aspects

of this problem, such as obstacle avoidance, are discussed in Chapter 4. What follows is

a discussion of the satisfaction of tendency constraints, which influence the path of a

character between two keyframe positions. In Figure 3-10, the script calls for the

character to moves from key position 1 to key position 2. A new keyframe position (3)

is generated between them. Figure 3-10 suggests that there are four other objects in

the scene ("a", "b", "c", "d"), that are attracting the character away from the normal

straight path. Since these tendencies conflict with each other, conventional monotonic

logic cannot resolve the character's correct position.

Figure 3-10 Inserted midpoint keyframe
displaced by tendencies

Furthermore, since the tendency forces are time and character dependency, considerable

complex inference may be required to determine the appropriate displacement functions

to use. As a conclusion regarding a tendency force is reached, that value is added to the

compromise list associated with that character and time.

Figures 3-11 through 3-16 illustrate how hierarchical planning with tendencies is im-

plemented. In Figure 3-1 1, the script supplies the locations of keypoint 1 and 2 in Fig-

ure 3-10.

The constraint hierarchy (illustrated at right) represents the assertion that the location

of keypoint 3 is:

'(Distance(l,2) >MinDist) 3 Cornprornise(midpoint(1 ,2),a,b,c,d); NULL"

or, if the distance between points 1 and 2 is above threshold (preventing endless subdi-

vision) then locate new keypoint 3 by finding a compromise between the midpoint of line

between points 1 and 2 and the four tendencies acting on it.

Keypoint Location
X Y

1
2
3
4
5

h

Figure 3-1 1 First subdivision
Constraint satisfaction

hierarchy

66

In Figures 3-11, 3-14 and 3 ~ 1 6 this symbol represents a decision (backtrack) point:

Figure 3-12 Decision point

Note that if the "minimum distance" constraint fails, the (more difficult) compromise

constraint will be skipped. Figure 3-13 though 3-16 show similar constraints for two

more subdivisions.

C

Figure 3-13 Insertion of Point 4

Key point Location
X Y

1
2
3
4
5

Figure 3-14 Constraint hierarchy for Point 4

I

Figure 3-15 Insertion of Point 5

68

Figure 3-16 Hierarchy for point 5

In practise, a new keypoint for a particular character is only perturbed by a small

amount from its central position. The whole process is repeated for each character. At

each correction, the forces are calculated on the basis of where the fixed objects are, and

where each character will be at that time, including the new keypoints. This series of

incremental changes for each character is repeated until all of the tendencies are satis-

fied.

Summary

In representing knowledge for scene animation, being able to handle knowledge that dis-

agrees is very important since so many of the influences on human motion conflict. Also,

while a lot of work has been done in Al toward developing systems that tolerate inconsis-

tency, the needs of an animation system are different from those of the typical Al appli-

cation. In this chapter it was argued that animation of scenes is fundamentally a con-

straint-satisfaction problem, and some characteristics of an effective planner for scenes

were described.

Chapter 4:

Implementing a Scene Representation System

This chapter discusses the design and implementation of the Director's Apprentice.

The first section examines the role of the Director's Apprentice as an animation "expert

system". The second section discusses how logic programming is extended for this pur-

pose in the Scene Constraint Language. The third section describes the mechanisms be-

hind the hierarchical planner and the scene constraint interpreter. The fourth section

describes how clear paths for character action may be generated, and the fifth section

gives an example of how a scene may be animated by the Director's Apprentice. The final

section describes some details and some limitations of the current implementation.

An Animator's Expert System

One long-term aim of the Director's Apprentice project is to produce an "expert sys-

tem" to aid animators, much as rule-based expert systems are beginning to be used as

decision-support tools in machine maintenance and financial management ([Duda 841,

[Winston 841). Of the many programs referred to by the term "expert systemn, some

are concerned with the diagnosis of disease([Shortliffe 761, [Buchanan 84]), with

mineral identification from geologic data([Duda 84]), with computer system configura-

tion([McDermott 811) and many other applications (see reviews in [Nau 821, [Barr

811, [Hayes-Roth 831). Despite the fact that the term "expert systemn has no widely-

agreed-upon definition, all of these projects have one aim in common: to amplify human

skills in areas that normally involve the judgement of experienced people. In the

Director's Apprentice, these experienced people are animators and theater directors.

Existing expert systems have widely different implementations, including backward-

chaining inference with certainty factors([Shortliffe 76]), forward chaining production

rules([Forgy 771) and multiple communicating knowledge sources([Erman 801). In

each case, declarative knowledge is strictly separated from procedural knowledge.

Declarative knowledge in an expert system consists of two sets of facts: general princi-

ples common to all problems in the domain, and specific facts for the solution of a par-

ticular problem. The first consists of rules for commonsense "default reasoningn (such

as "no character in any scene should walk through any solid object"), while the second

set of facts comes directly from the script (such as "the character Carlo prefers to avoid

the character Sonnyn). Note that "script" is used here to mean the written text of a

play, rather than a template for common action sequences (in the Al sense of [Shank

The scene-specific "Script Fact Collection" is entered and maintained by the animators.

The commonsense General Knowledge Library is maintained partly by animators and .

partly by logic programmers. Together, the two sets of knowledge, general and scene-

specific, make up the system knowledge base.

Director's
Apprentice

Procedural
Knowledge LTJ
inference

Special Functions I General /
Knowledge
Library

Standard Actions
Standard Shapes and Sizes

Planning Strategy
Path Finding

Tendency Relaxation
Gait Patterns

Script

Character Names
Relationships
Script Action

Figure 4-1 Structure of the Director's Apprentice

The procedural knowledge in the Director's Apprentice includes a backward-chaining

resolution theorem prover with extensions that enable it to reason about continuous-

valued constraints. This is kept strictly separate from a declarative knowledge-base of

commonsense defaults and scene-specific facts. The result is only the nucleus of an ex-

Pert system for human scene animation since a true expert system requires a user in-

terface that not only hides the procedural knowledge (implemented), but also obscures

from the user the details of the general knowledge (not implemented).

Procedural knowledge consists of the knowledge needed to infer one set of facts from an-

I

other Set of facts. In the Director's Apprentice, most of the procedural knowledge is in-

corporated into a logic interpreter.

Extending Logic Programming for Scene Animation

I

Conventional constraint satisfaction systems are concerned only with satisfying a single

type of constraint: e.g., PROLOG([Clocksin 811) with discrete variables, SETCHPAD

([Sutherland 631) with continuous variables. A contribution of the Director's

I
Apprentice is to integrate both into a hierarchical planning environment.

Constraint satisfaction for continuous-valued variables within a logic programming

framework may be provided by clause types that automatically resolve conflicting con-

tinuous-valued assertions. For example, the clause:

expression2 (assert "Sonny" "location-is" (10.2 20.7) 6).

adds to the (scene-specific) knowledge base a fact constraining character "Sonny" to

location "(10.2 20.7)" on the stage at keyframe 6 (if expression=true). If followed

by the clause

expression 3 (assert "Sonny" "location-is" (20.1 30.5) 6 "revise")

the constraint on the location of character "Sonny" is changed to be "(20.1 30.5)".

However, if the second clause instead reads:

expression 2 (assert "Sonny" ulocation-is" (20.1 30.5) 6

"compromise")

then the value "(20.1 30.5)" is added to the compromise list associated with the

" l ~ ~ a t i ~ n " for Sonny in the current context list. The compromise list is processed only

when all of the other influences on Sonny's location have been accounted for.

Continuous-valued assertions such as these are treated as any other in the knowledge

base, and may be freely combined with ordinary clauses. This allows complex condi-

tional constraints to be defined.

For example, tendencies that alter the path of a character between keyframes may be

likened to forces that conditionally constrain a character 'c" to move in a particular

direction. Figure 4-2 shows three tendency vectors, each one attracting the character to

object 1, 2 or 3. Since these vectors represent three conflicting tendencies, a compro-

mise must be found to combine them into one displacement vector representing the

character's net movement tendency,

Figure 4-2 Tendencies to be attracted
to three objects at different distances

Each tendency is defined as a probability density function relating the distance (between

the character and the source) to the expected displacement of the character. Figure 4-4

shows a possible displacement function for the tendency vectors in Figure 4-2. (Each

tendency may have a separate function).

f 5 10 15 20 25 30 35 40
Displacement

Figure 4-3 Probability Density Functions
For Various Distances

Between Character and Source

To determine the figureps net movement, the value (highest peak) of the ap-

propriate density function for each tendency is taken. This returns a displacement value

Which is used as the length of each tendency vector. (In Figure 4-3, a character-to

source distance of 60 returns an expected value of 25 for the magnitude of the second

tendency in Figure 4-2.) Once a likely displacement value (length) has been selected

for each tendency, the tendency vectors are added geometrically. If the Sum turns out to

conflict unacceptably with the other scene constraints, a StxXnd tfY can be mad@ using a

lower-probability displacement.

The result is shown in Figure 4-4 where the character is displaced towards upstage-

right by the sum of the three tendency vectors.

Figure 4-4 Net Movement Tendency

The Scene Constraint Language

b

This section gives an overview of the the Scene Constraint Language ("SCL") developed

for writing knowledge bases in the Director's Apprentice. A detailed specification of its

syntax is given in the Appendix.

Each SCL knowledge base is divided into general (default) knowledge, applicable to all

scenes, and specific knowledge derived from a particular script. Each of these consists of

a collection of data definitions, followed by a list of rules. The following table lists some

representative examples.

TvDe

General Defaults

Scene-Specific

definitions of relationships,
definitions of personality-

types,
sizes of standard props,
area of stage

names of characters,
names of relationships,
locations of props,
locations of characters at

particular times,
personality-types

for each character

plan hierarchy, find-path techniques,
tendency relaxation,
gait patterns for

personalities,
gesture patterns for

personalities

any special actions that overrule
general defaults

Each rule consists of a name, a list of local variables, a sequence of conjunctive clauses

and a conclusion. For example, these clauses define the stage rule "don't pass downstage

of the main character":

onstage(c,tl ,t2) A speaking(c,tl ,t2) 3 main-character(c,tl ,t2).

main-character(c1 , t l ,t2) A (c2 # c l) 3 should-pass-upstage-of(c2,cl).

and are written in Scene Constraint Language:
"is-maincharacter-over-interval "[c t l t2]
...
>> determines if character c is the main character
>> over time interval [t l ,t2]
..
IF c is-onstage-over-interval [t l t2]

AND c is-speaking-over-interval [t l t2]
MEN c is-maincharacter-over-interval [t l 121.
"should-pass-upstage-of "[cl c2 t l t2]
..
>> determines if character c2 should pass upstage of
>> character c l by the theater rule "don't pass
>> downstage of the main character in the scene"
..
IF c l is-maincharacter-over-interval [t l 121
AND c l o c2
MEN c2 should-pass-upstage-of c l .

So, the query:
Michael should-pass-upstage-of [y [t l t2]].

with facts:
LIST Characters Vito, Michael, Sonny.
FACT Sonny is-onstage-over-interval [I 31.
FACT Michael is-onstage-over-interval [2 81.
FACT Vito is-onstage-over-inte~al [4 61.
FACT Sonny is-speaking-over-interval [2 31.

will be resolved to:
Michael should-pass-upstage-of [Sonny [2 311.

Hierarchical Planning

Part of the general knowledge used to animate a scene in the Director's Apprentice is a

"divide-and-conquer" planning strategy. This is based on planning-space subdivision,

whereby a large problem space (e.g. all of the actions that a character might perform) is

divided into loosely-coupled subproblems, so that a planning decision affecting one will

only minimally affect the others. (For example, in walking across a room, around a table

and through a door, the subproblems "which side of the table to pass onhnd "which

hand to open the door with" are loosely coupled, while the subproblems "which door to

exit through" and "what obstacles to avoid along the way" are closely coupled). The

subproblems are organized into an abstraction hierarchy, so that the most general sub-

problems are solved before any of the details.

The hierarchical planner currently implemented in the General Knowledge Library

generates a plan for each pair of key positions. In each plan, four major abstraction

levels are defined:

Level
First

Second

Third

Fourth

..
goal
Reach next position

Have Clear path

Satisfy Tendencies on Path

Animate gait pattern

C o n s t r a i n t s
Use key positions given in script

Avoid obstacles
Stay on stage

Approach attractive objects
Avoid repellent objects
Conform to rules of theater direction

Apply appropriate gait pattern for terrain
Apply appropriate gait pattern for personality

A plan consists of a world model (general scene knowledge), the script, and a set of op-

erator descriptions. One operator is add-new-keypoint, which inserts a new key posi-

tion for a character between two existing key positions. This operator is activated when

the straight-line path between two key positions can be improved, such as when an ob-

stacle is in the path or when a significant tendency force is present to influence the

character's movement. Another operator is assign-gait. This assigns gait patterns to

the characters in the scene depending on such attributes as age, height and terrain.

Each rule in the Scene Constraint Language consists of a set of antecedent clauses followed

by a number of consequent clauses. Each clause is either a function call (such as an ex-

pression evaluation), or an object-~ttribute-Value triple (such as "Vita

is-grandfather-of Anthony").

The interpretation process is initiated by specifying a query that matches the consequent

clause of some rule "r". When rule "r is activated, the following actions take place:

1. If "r" is a function call, evaluate the function and return success;

2. Otherwise, rule "r" is (Or Ar Vr):

search for another rule "jn with consequent clause "c"(Oc Ac Vc) such

that the Attribute of "cn matches the Attribute of "in, (e.g. " C ~ X son-of

Y) ;

bind Oc t Oi and Vc + Vi, (e.g. 3 c "Michaeln, fi c 'Vita");

with these bindings in place, recursively solve each antecedent clause in

rule "jn;

if any clause in "j" fails (is unsolvable), fail rule "j":

(a) unbind the variables of "j", e.g. xj + NULL, Yj t NULL;

(b) retract any partial conclusions recorded for rule "jw;

- (c) try again to solve clause "in in rule "r", starting with the next rule

after "jn;

b. if all antecedent clauses in rule "r" are solved, return success and record the

consequent clause of "r" in the context list; otherwise, return failure.

Function-call clauses include display functions, memory management functions, list

manipulation functions and the "assert" function for real-valued constraints. The

"assert" function takes the form

(assert clause update-strategy)

where clause is an 0-A-V triple, and update-strategy is one of "conserve", "revise" or

"compromise". When an assertion is made, the current context list is searched for an

already-accepted fact whose Object and Attribute match that of clause. If none are found,

clause is added to the current context. If one is found, and its Value contradicts the Value

of clause , then one of three actions are taken:

1. if update-strategy is "conserve", do nothing;

2. if update-strategy is "revise", retract the conflicting fact in the context list

and replace it with clause ;

3. if update-strategy is "compromise", link clause to the "compromise list"

associated with the conflicting fact. When this fact is later extracted, the

compromise list will be processed and its net value (e.g. net tendency) re-

turned.

Find-Path for Scene Animation

The robotics approach to finding a path between two locations in a room was discussed in

Chapter 2 ([Lozano-Perez 831, [Brooks 831). The main constraint on an autonomous

robot is that a clear path must be found automatically. The Director's Apprentice is in-

tended to reduce animation effort by 80-90%, not 100%, so instead of a method that

guarantees success in all situations, a fast, simple algorithm that works in an unclut-
L

tered stage environment is employed. The method is illustrated in the following example.

Character "c" must reach point X past an obstacle (Figure 4-5 through 4-10).

Figure 4-5 Character C approaches X.

Step 1: Construct a bounding box around the obstacle, aligned along the path.

2

I..:.

X
::
3
j;

Flgure 4-6 Bounding Box

Step 2: Locate four possible key positions on the outside corners of the bounding

box. This defines two possible clear paths around the object, (C-C1 1-

C 12-X) and (C-Czl 422-X).

Figure 4-7 TWO possible routes.

Step 3: Determine the net tendency vector for each new key position, using the

appropriate displacement functions.

Step 4:

Figure 4-8. Tendencies for E a c h Position.

Form the vector sum of the tendency vectors to determine the net tendency

with respect to the perimeter of the obstacle.

Figure 4-9 Determining Net Tendency

Step 5: Select path on the basis of the direction of the net tendency. In this case,

the net tendency vector pointed towards the path 2. The tendency vector

for each key position displaces the path around the obstacle. The grey line

is the final solution.

I I

Figure 4-10 Choose Path

Expressed in scene constraint logicl:

wt has-path[c x]"
{

[c xJ forms-path 'p.

3 0 ~ objects

(p intersects o) 2

This is a simplified outline of the algorithm. An outer shell must be provided to recur-

sively check all resulting paths for new obstructions, and there are some situations that

this approach will not handle without extensions. These include:

(1) A straight-line path with strong tendencies, but no obstacles (Figure 4-11).

Here an asterisk indicates a result variable, and the semicolon represents an 'else"
choice. Scene Constraint Language substitutes 'existsn for "3".

Figure 4-1 1 Tendencies without an obstacle

Here the character has a strong tendency to avoid the hot stove, even though it is

by tendency

This can be handled by subdividing the path, and deviating the midpoint according

to its net tendency. In general, all paths (including ones generated by higher-

level steps) should be subdivided this way, until some minimum threshold dis-

tance for each step is reached.

89

(2) Two repellent forces on either side, causing a net force vector which does not lie

to either side of the original path. (Figure 4-13).

Figure 4-13 Balanced tendencies

This can be handled by enlarging the repellent objects to an area that includes

their significant force areas. The total area now constitutes an obstacle.

(3) An obstacle with no significant tendencies. In this case, a tendency to take the

shorter path is generated by generating two tendency vectors proportional to the

perpendicular distance from the path to the edge of the obstacle.

Figure 4-15 lendencles f r ~ ~ d l s t a n c e

When inverted, a tendency to take the shorter path is produced.

Figure 4-16 Shorter distance prevails

Planning Example

To illustrate the use of the planning routines in the General Knowledge Library, suppose

the following script were to be animated.

t Fact Collection lincludesl:
Characters: Tex(T), Black Bart(B) and Miss Kitty(K).
Setting: as in Figure 4-17.

Exit
Outdoors

T

Stove 8 Exit To
Kitchen

Figure 4-17 Settlng

Relatlonshlps:
(1) Tex likes Miss Kitty.
(2) Black Bart desires Miss Kitty.
(3) Miss Kitty desires Tex.
(4) Miss Kitty is afraid of Black Bart.
(5) Black Bart hates Tex.
(6) Tex hates Black Bart.

Action (director's annotations In Italics):
(1) Tex says,'Bart, you dirty pole-cat. You'd better be goin'."
(2) Black Bart grunts and exits outside.

Black Bart is bowlegged. Black Bart is angry.
(3) Miss Kitty says 'Going to stay awhile, Tex?"
(4) Tex says 'No, ma'am. Got some dogies to corral. See ya'll."
(5) Tex exits outside.

Tex is shy.
(6) Miss Kitty sighs and exits to the kitchen.

Miss Kitty is sad.

Knowledae I ibrarv fincludesl;

(1 Hot stoves are obstacles.
(2) Holes in the floor are obstacles.
(3) Characters tend to avoid hot stoves.
(4) Characters tend to avoid holes in the floor.
(5) People who are angry tend to use gait "stampn.

People who are shy tend to use gait "walk-quickly".
People who are sad tend to use gait 'shuffle".

Each line of the script represents a snapshot of the action in the scene, and translates

directly into a set of key positions for the characters, together with suggestions for the

constraints on their actions to the next position (next line).

Figure 4-18 depicts the plan of Black Bart exiting.

I

Exit To
Kitchen

--

Figure 4-18 ~ l a c k Bart exits

General Knowledge library statements (1) to (4) are used to activate operator insert-

keypoint to go around the obstacles Each of the new candidate keypoints has a tendency

pointing away from the stove and the hole, since they are obstacles that should be given a

wide berth. The facts that Bart desires Miss Kitty and hates Tex also affect the tendencies

from each position. Since the sum-vector for the four key positions ("nn) points up-

stage-left, the upstage path (path 2) around the tendency displacements away from Tex

and towards Miss Kitty is chosen. The gait pattern for Black Bart's walk is chosen as a

compromise between "bowlegged-gaitn and "stamping-gaitn.

Figure 4-19 depicts Tex exiting. Since Black Bart is gone, only the repulsion of the

stove and the attraction to Miss Kitty affect the tendency vectors as Tex goes around the

hole. Since the stove is much closer to Tex than Miss Kitty is (and his attraction for her

is weak anyway), she does not affect the net tendency downstage (path 1). The director's
b

annotation "Tex is shy" along with general knowledge entry (6) is used to assign a quick

gait to Tex.

Figure 4-20 shows the route planned for Miss Kitty. Since neither Tex nor Black Bart

are in the scene, her path is influenced only by taking the shorter of the two paths (path

2). Since the director annotated the fact that she was sad in this scene, the General

Knowledge Library statement:

(7) People who are sad tend to use gait 'shuffle".

is used to assign "shuffle-gait" to her walk.

Figure 4-20 Miss Kitty exits

Path Animation

The actual animation of human characters walking, running , climbing and descending

stairs, and so on, is achieved by associating with each planned path a gait sequence de-

rived from statements in the the Script Fact Collection (one character may run, another

may limp) and from statements in the General Knowledge Library (people generally hop

up each step in climbing stairs, but drop down each step when descending). A gait se-

quence is composed of standard gait patterns taken from the GKL, each one consisting of a

set of functions defining the motion of some part of the body through space relative to a

frame of reference. The walking gait, for example, has three functions: an up-and-down

pattern for the center of mass (relative to the floor), a forward motion of the un-

weighted foot (relative to the weighted foot) and a pattern of angles for the unweighted

ankle as it moves through space. Figure 4-21 shows these three patterns.

Figure 4-21 Gait pattern data
for walking

All other angles and positions (the knee-joint angles, the hip-joint angles, the waist

location) are determined by propagating the gait pattern data and the known constraints

on bodies. This data drives an inverse kinematic walking program that displays the
b

characters in real time on the screen of an IRIS 2400 workstation. The gait patterns are

inverse kinematic motion descriptions of the path since the Cartesian coordinates of the

joint positions are known, and joint angles are calculated from trigonometric

relationships. Since simplifying assumptions based on human anatomy are used (e.g., the

knee joint has only one degree of freedom, and only a limited range of movement) this

calculation proceeds in real time. Note that the general inverse kinematic methods of

Girard ([Girard 861) permit more complex body models at the cost of slower

processing.

Other character movements (such as arm gestures), can be specified similarly, although

these are not part of the current implementation.

Implementation ~ e t a i l s

The Scene Constraint Interpreter is currently implemented in "C" on a SUN worksta-

tion. A graphical interface allows interaction via pop-up menus that choose the script

file and the goal, and to interact with various debugging features. The Script Fact

Collection and General Knowledge Library are written as Script Constraint Language

statements, and entered using an ordinary text editor. The result of a scene analysis is a

1

disk file that, for each character, gives a sequence of path segments and a gait pattern for

each segment. This file is transferred via Ethernet to the IRIS 2400 which displays the

characters in action on the stage set.

A number of problems and limitations exist in the current implementation. Some of

these are listed below with suggestions for improvements.

1. The user interface, described above, is too hard for non-"computer literaten

directors and animators to use.

(a) Incorporate a structured rule editor for constraint writing, having an

icon-driven interface that allows the user to build up constraint rules in-

teractively. The Scene Constraint Language now effectively becomes a

"machine-languagen for implementing scene constraints, much as high-

I level expert system shells such as OPS([Forgy 771) shield users from

LISP.

(b) Improve the debugging facilities. Currently, stepping through the rule

firings and interrogating the values of plan variables is all that is avail-

able.

I 2. The General Knowledge Library contains no constraints to handle the following

stage, and the net tendency would lead the character over the edge.

Figure 4-22 Edge-of stage failure

Instead of choosing a second-choice route, the tendency constraint will return

failure.

le solutiqn: Assign strong repulsion tendencies to the edge of the stage,

so that the other route around the obstacle will be preferred. Alternately, in-

clude a special rule that prevents the generation of off-stage candidate key-

points.

(b) An obstacle has two other obstacles on either side of the path, so that neither

path can be taken. System returns failure.

Coalesce obstacles that are closer to each other than the diameter of the char-

acter into one large obstacle.

(c) If two character paths intersect, there is no direct control over whether they

will meet or miss. This is the "rendezvous problem".

I I I

Figure 4-24 Rendezvous Problem

For exampie, in Figure 4-24, characters "a" and "b" must meet at the in-

tersection of their paths, that is, the transit time for segment "al" must be

the same as segment "bl" (assuming that they start at the same time).

possib-

Associate with each gait pattern a tendency (probability density function) to

move at a certain rate.

I speed
-- - -- - - -

Figure 4-25 Tendency function for rate

Initially, assign to each gait pattern segment the expected value for the rate of

locomotion. Then, determine if the first meet/miss goal is attained, and if not,

pick the 90% peak probability rate for one character (some should be made

faster than the expected value, some slower). If that does not work, try the

90% peak probability rate for another character, and so on. Each step alters

the rate of some character, but only in small steps away from the most prob-

able (most reasonable) rate for that character. Eventually the first

meetlmiss goal will be achieved (if at all possible), and the next goal can be

solved in the same manner.

A bounding box is too crude for some odd-shaped objects, causing a failure to find

a path in some cases.

Instead of a bounding box, the convex hull of the object may be used, and a new

keyposition associated with each vertex. This is much more computationally ex-

pensive.

4. The figures are assumed to be circular when seen from above, and are of a fixed

diameter for each character. While this does allow for different-diameter char-

acters, it does not allow for variations in the effective diameter, such as when the

arms are extended at the sides.

Allow for a different diameter at each keyframe, which may be interpolated. Even

more flexible would be the use of ellipses to represent the characters, whose

principle axis could be oriented by the animator at each keyframe.

5. The rendering of the animated figures, while fast, is crude (all figures are drawn

in wire frame, and have no head or arms).

Possible Solution:

Use solid shading with spherical joints to produce more life-like renderings of

the figures.

6. The action, although physically reasonable, may be aesthetically lacking.

Many differences between aesthetically "good" action and aesthetically "poor"

action derive from how well the scene adheres to the established principles of

theater direction, as described in Chapter 1. By encoding some of these principles

in Scene Constraint Language, and using them to generate tendencies for the fig-

ures, better quality action may result. For example, if the system derived the

fact that a character is the main character in the scene, tendencies could be estab-

lished to draw him or her to a "strong" stage position, or to move in a "strong"

way (see [Brown 361 or [Allensworth 821).

Summary

Three main points may be concluded from my experience in implementing the Director's
b

Apprentice:

1. Although the Director's Apprentice is not a completely implemented expert

system at present, it conforms to one of the most critical aspects of an expert

system: the strict separation of procedural and problem-specific knowledge.

Lacking is a sophisticated user interface that would allow non computer-literate

animators access to the rule bases.

2. While most logic-based systems cannot deal directly with conflicting continuous-

valued constraints, the Director's Apprentice uses tendency compromise to im-

plement a path finding algorithm that is fast and character-specific.

3. The current implementation, while incomplete, may be expandable into a useful

scene animation tool by incorporating the improvements described in the previous

section.

Chapter 5:

Conclusions

This chapter discusses some conclusions resulting from the research in this thesis,

particularly its implications for animators, directors, and for graphics and Al re-

searchers. Also discussed are some problems with the current approach and some future

extensions.

Four original goals of this thesis were described in Chapter 1. The first goal was to in-

vestigate some kinds of scene-level constraints that may be useful in implementing a

figure animation system. The conclusion is that scene-level constraints are most

b

important for relieving the animator from concern about unlikely or impossible actions,

such as following an unreasonable path, that may occur between keyframes. Even simple

constraints, preventing the path of a character from intersecting with other objects in

the scene, are an important addition to a figure animation system.

The second goal was to investigate extensions to logic programming for dealing with

quantitative reasoning. This is provided in the Scene Constraint Language by a consistent

mechanism to relax conflicting continuous-valued assertions. This mechanism has been

incorporated into a resolution theorem prover to provide both discrete (logical) and

continuous (quantitative) reasoning in one system.

The third goal was to investigate the application of an extended logic programming tool

for defining a hierarchy of constraints on animated figures. This was achieved in the

Director's Apprentice by defining a series of goals, each one representing one level of

the planning hierarchy. These goals are satisfied by using a combination of discrete and

continuous reasoning.

The fourth goal was to assess if the prototype figure animation system developed in the

Director's Apprentice project has qualitative advantages over conventional animation

systems. One qualitative advantage displayed by the.prototype system is the ability to

automatically alter the action of the figures in the scene to suit changing settings, even

after the figure animation has been specified. This implies a new type of flexibility in

"what-if" style testing for different settings and scenes.

The implications for potential users of the system are several. Time pressure is a part

of every animator's job. An animation system that will save time by automatically taking

care of character movement constrained by physical limitations and good scene direction

- regardless of revisions to the setting or the action - would be an important asset. An

interface must also be provided that will allow the animator to develop the artistic as-

pects of the scene, while shielding her from logic programming and gait pattern design.

Theater directors and set designers could also make good use of a system that can generate

animated ustory-boardsl' of a script, maintaining reasonable action as set designs are

revised. Since computer graphics easily provides multiple viewpoints (including that of

the director, the audience, each actor, and so on) and, with appropriate rendering soft-

ware, different lighting and colours, the ability to try out many different scenes quickly

and with minimal knowledge of animation could provide a significant design tool for the

theater.

To use the system, the animator (or director, designer) starts by describing the cate-

gory of the setting (type of room or area). A character list is added, including details of

personality types that might affect the interpretation. Next, actions in the script are

added, describing character movements across the stage together with any gestures to be

displayed. Character positions are established using drag-to-place on the graphics

screen. Annotations, describing goals, inter-character feelings, and tendencies are added

next, followed by any setting details needed to form a crude story-board. These story-

boards become keyframes for the system to interpolate. With preparations complete,

the scene interpreter is executed, producing a 2-D plan view of one interpretation of the

scene, using script annotations and General Knowledge Library constraints to produce

only reasonable actions. The action plan displays the character paths and tendency vec-

tors as illustrated in Figure 5-1 (from 4-15).

Figure 5-1 Display of Action Plan

At this point, the animator may disagree with the interpretation and will decide to revise

the action by adding more key positions. However, this will not improve the competence

of the scene interpreter - which is the long-term goal - so instead, the user may trace

the flow of decisions made by the logic interpreter to determine why the scene was gen-

erated the way it was. Once the cause of the undesired action has been determined, script

annotations and tendency constraints may be edited to provide a revised interpretation.

These edited characteristics may then be archived for later reference.

The path that a character follows in performing an action from the script determines

much about more detailed actions, such as the gestures that he makes as he walks. For

example, two characters may shake hands or fight only if their paths happen to cross.

The prototype Director's Apprentice has addressed only path problems so far since they

are at the highest level in the planning hierarchy and must be dealt with first . Planning

rules for lower-level actions in the hierarchy, such as gestures, will be addressed later.

The rule base currently implemented contains approximately thirty rules of, on

average, five clauses each. These rules implement the planning constraints of the "Tex

and Miss Kitty" scene of Chapter 4. With them, several different scenes have been

generated by altering the locations of the characters, the locations of the props, and the

relationships between the characters. Characters who are speaking do not have other

characters pass in front of them, but apart from that, no theater direction rules have yet

been implemented. The number of rules in a knowledge base is limited only by

processing time. Currently, each new scene requires about ten minutes of processing on

a SUN9 workstation, but is expected to be faster in an improved version of the logic

interpreter. Experiments involving really large rule bases (hundreds of rules) will

establish the practical limitations of the system.

Once the plan view of the action is accepted, gait patterns based on scene constraints

(such as terrain or rendezvous requirements) and on script annotations (sad walks,

nervous walks) are generated by the interpreter and transferred to the rendering sys-

tem, where they can be viewed in wire-frame at real time speeds. A solid rendering may

also be generated if it is needed.

In computer graphics research, major progress has been made in the past decade toward

perfecting the rendering of still scenes; further progress being largely dependant on

improvements in hardware performance. The implication of this thesis for computer

graphics research is that computerized figure animation - only barely practical today -

may emerge as a new area of research and development if the laborious nature of action

specification can be reduced. Existing specification methods - working at a 'machine
I

language' level - are only practical when a small number of parameters (five or six)

change in each frame. Hundreds of parameters are required to animate a group of people

who interact in a scene. With high-level action specifications, made possible through

constraint satisfaction techniques, the generation of complex animated scenes involving

human and animal characters may become common.

Al research into knowledge-based systems has, for the most part, treated continuous-

valued (quantitative) reasoning separately from inference (discrete reasoning), partly

because exhaustive search (commonly used in discrete reasoning), is impractical with

quantitative problems. An approach to integrating continuous and discrete reasoning in
b

figure animation was explored in this thesis, and may have other applications. For ex-

ample, knowledge-based systems are being increasingly applied to problems in process

control; these also involve continuous measurements (of temperature, flow, power, and

so on), that must be reasoned with to determine optimum control strategies.

This thesis has also taken the Al field of knowledge engineering into a new area. One of

the key problems in any knowledge engineering situation is the acquisition of knowledge.

Currently, all general scene knowledge in the Director's Apprentice derives either from

textbooks on theater direction,.or from common sense. However, future improvements

to the competence of the interpreter will have to come from human experts (animators

or theater directors) who can say "This looks wrong, because character ' x ' would not

behave like that in this scene. Instead, he would probably do this ... ". A knowledge en-

gineer, conversant with logic programming, would then formulate new constraints (and

edit old ones) to satisfy and generalize the new advice.

A number of extensions and improvement will be found in future versions of the Direc-

tor's Apprentice. One improvement would be to provide meta-logical functions in the

Scene Constraint Language for propetiy inheritance, allowing assertions to be made

about whole classes of attributes, which may subsume other classes, and so on. For ex-

ample, the following lines illustrate how the system could reason about a character

classes:

class villains has-property hates(heroes).
Black-Bart E bad-guys.
Tex E good-guys.
bad-guys 3 villains.
good-guys 3 heroes.

* Black-Bart hates(heroes).

Black-Bart hates(Tex).

Currently, gait patterns are designed manually, and entered as coordinate triples. An-

other useful extension, then, would be a graphical tool for designing and naming new

patterns, to be incorporated into a gait pattern library. A facility for specifying upper-

body gestures would also be useful, possibly employing a reach-hierarchy mechanism

for grasping tasks.

One important part of the General Knowledge Library is the planning hierarchy which

guides the problem-solving tasks in selecting appropriate paths for the characters. The

planning hierarchy is currently specified by a sequence of logic (Scene Constraint Lan-

guage) clauses. Sacerdoti employed an explicit plan hierarchy([Sacerdoti 771) called a

"procedural net* for solving blocks-world assembly problems. A similar planning

structure, developed with the aid of a graphical editor, might make plan design and vi-

sualization easier for animation problems.

b

One definite improvement that should be made to subsequent versions of the Director's

Apprentice is to re-implement it in another high-level language. 'C' was chosen for the

current version since it is the standard language of graphics systems and is portable

across most graphic workstations. However, the difficulties involved in implementing

complex, transformable data structures in 'C', and the lack of automatic storage man-

agement, made the inference engine very complex to develop and difficult to extend. It is

expected that subsequent versions will likely be written in LISP. LISP has excellent

structuring facilities, while still providing reasonable portability and greater flexibil-

ity than pure-logic systems like PROLOG.

In the future, the Director's Apprentice is envisioned as a complete expert system,

containing a user interface tailored to the needs of animation directors. Instead of re-

formulating rules in Scene Constraint Language every time a new situation arises, the

user may define scenes and characters by choosing from a set of "stock types". These

stock characters, sets and scenes will be modified interactively until the desired effect is

achieved. More ambitious users may want to alter the knowledge base directly to see the

effect of adding new constraints to the planning hierarchy. Very complex actions, such

as dancing or sword-fighting may not be generated fully automatically, but rather will

be treated as details that the animator can touch up by hand once the general flow of the

scene is established.

In summary, the Director's Apprentice project has demonstrated the need for con-

straint-based mechanisms for specifying human animation. In opinion of the author, no
b

specification method can be truly useful for animating characters in a scene unless the

environment of the characters is accounted for automatically. A logic-language based

planning system, having extensions for quantitative reasoning, appears to be a promis-

ing approach.

Appendix:
Grammar of the Scene Constraint Language

A set of constraints in the Scene Constraint language is called a rule base. The BNF

grammar of a rule base is as follows. Each grammatical unit is separated by a non-zero

length whitespace string. Comment lines begin with I>>'.

<list-definition>::=
'LIST' <list-name> <list-elementxlist-element>* '.I

<rule-body>::=
cantecedant-list> 'THEN' <consequent-list>

<if-clause>::=
'IF' <clause>

<and-clause>::=
'AND' <clause>

<function-clause>::=
'(' function-name <arglist> ')' I
{ expression relop expression }

<expression>::=
arithmetic expression I
string expression

<function-arg>::=
variable-name I
is-goal

<list> ::=
'(' list-element* ')'

Example

The following fragment from a Scene Constraint Language text illustrates all of these

constructs.

..
>> List describing each character, and for each, its starting position in
>> key-frame 1 and its goal position in key-frame 2.
..
LlST character-list (Tex (3.0 2.4) (3.6 4.1)) (MissKitty (2.1 4.2)(6.1 5.0))
(BlackBart (3.2 5.5) (7.1 6.0)).

...
>> List describing each stage prop, and for each, its location and
>> size.
..
LIST props-list (couch (5.5 7.1) (4.0 2.0)) (table (1.0 2.0) (2.5 2.5))
(chair (3.1 2.2) (0.8 0.8)).

..
>> Rule that, for each character, subdivides the path by trying to determine
>> if a clear path from start to goal exists. If so, an assertion to that effect
>> is added to the current context.
..
"subdivide pathn[c]
IF (exists character-list "c")
>> "exists" is a function that generates each element of the list in argument 1,
>> assigning it to argument 2. The loop is terminated by "end~exists".
AND (c.1 c.2) has-no-obstacle-on props-list
AND (assert c has-clear-path (c.1 c.2))
AND (end-exists)
THEN path-subdivided is true.

References and Bibliography

[Allen 831

James F. Allen, "Maintaining Knowledge about Temporal Intervalsw, CACU 26
(1 I) , 1983, pp. 823-843

[Allensworth 821

Carl Allensworth, The Complete Play Production Handbook (Rev. Ed.), Harper
and Row, Inc., 1982.

[Armstrong 861

W.W. Armstrong, M. Green and R.Lake, "Near-Real-Time Control of Human
Figure Models", in Proceedinas pf GraDhrcs bterface Conference. 1986, pp.
147-151

[Badler 781

N. Badler, R. Bajcsy, "Three-Dimensional Representations for Computer
Graphics and Computer Vision", -, Vol 12, 1978, pp. 153-
160

[Badler 791

N. Badler and S. Smoliar, "Digital representations of human movement", ACM
ma Survev~, Vol. 11, pp. 19-38

[Badler 801

N. Badler, J. O'Rourke and B. Kaufman, "Special problems in human
movement simulation", W u t e r Gr- Vol 14, pp. 189-1 97

[Badler 821

N. Badler, "Modelling the Human Body for Animation", jl-
d AT- . . , (Special Issue), Vo1.2, November 1982

[Badler 851

N.I. Badler, J.D. Korein, J.U. Korein, G.M. Radack, L.S. Brotman, "Positioning
and animation human figures in a task-oriented environmment", V i s d
ComputerL Vol. 1 (I), Springer-Verlag, 1985, pp. 212-220

[Badler 861

N. Badler, "Animating Human Figures: Perspectives and Directions", in
Proceedinas GraDhics Interface Conference, 1986, pp. 11 5-1 20

[Badler 871

N. Badler, K. Manoocherhri, G. Walters, "Articulated Figure Positioning by . .
Multiple Constraints", JFFF Cowuter Grapjlics and A - m , (Special
Issue), Vo1.7(6), June 1987

I [Barr 801

A. Barr and J. Davidson, "Representation of Knowledge", MemoJ-IPP-80-3,
Stanford University, 1980

I [Barr 811

A. Barr, P. Cohen and E. Feigenbaum (eds.), The Handbook of Artificial
Intelligence, William Kaufman Inc., 1981

I [Benedetti 851

I R. Benedetti, The Director at Work, Prentice-Hall, 1 985

I [Borgida 841

A Borgida and T. Imielinski, "Decision Making In Commitees", in Proceedinas
pf Conference rn N o n - M o n o m p e a s m , New Paltz NY, October 1984

I [Borning 791

Alan Borning, "ThingLab:A Constraint-Oriented Simulation Laboratory",
rox PARC Re~0rt SSI - 79 - 5 Xerox Corporation, 1979

I [Brachman 851

I R. J. Brachman, "I Lied about the Trees, Or, Defaults and Definitions in
Knowledge Representationn, Al -, Fall 1985

I [Brooks 831

Rodney A. Brooks, "Solving the Find-Path Problem by Good Representation of
Free Spacen, LFFF Tranmons on S v s t e m s . and C v b e r m , Vol SMC-
13, No. 3, MarchiApril 1983, pp. 190-196

I [Brown 361

G. Brown and A. Gawood, General Principles of Play Direction, Samuel French
Ltd., 1936

I [Buchanan 841

B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project, Addison- Wesl y,
1984

[Burtnyk 761

N. Burtnyk and M. Wein, "Interactive skeleton tehcniques for enhancing
motion dynamics in key frame animationn, CACM Vol. 19 (10) (Oct 1976),
00. 564-569

[Calvert 801

T. Calvert, J. Chapman, A. Patla, "The integration of subjective and objective
data in the animation of human movementn, m-p-, Vol. 14,
1980, pp.198-203

[Calvert 821

T. Calvert, J. Chapman, A. Patla, "Aspects of the kinematic simulation of . .
human movementn, lFFF Coriuter Gr- and m, Vol. 2, pp.41-
50

[Calvert 831

T.W. Calvert, "Computer assisted filmmaking: A review", In P r o c e e d i n u
hics Interface Conference, 1983, 263-270

[Clocksin 811

W. Clocksin, C. Mellish, Programming in Prolog, Springer-Verlag 1981

[Cohen 851

J. Cohen, "Describing PROLOG by its Interpretation and Compilation", CACM
(28). December 1985

[Davis 821

R. Davis and D. Lenat, Knowledge-Based Systems in Artificial Intelligence,
McGraw-Hill 1982

[Davis 82b]

R. Davis, "Expert Systems: Where are We? And Where Do We Go From
Here?", PI M- (2), 1982

[Dean 851

Thomas Dean, "Temporal Reasoning Involving Counterfactuals and
Disjunctions", in Proceedinas of IJCAl-Bfi 1985, pp.1060-1062

Rina Dechter and Judea Pearl, "The Anatomy of Easy Problems: A Constraint-
Satisfaction Formulation", in P r o c e m of IJCAI-8% 1985, pp.1066-
1072

[Delgrande 861

James P. Delgrande and John Mylopoulos, "Knowledge Representation:
Features of Knowledge", in Fundamentals of Man-Machine Communication:
Speech, Vision and Natural Language, Cambridge University Press, 1986.

[Dooley 821

M. Dooley, "Anthropometric modeling Programs- A Survey",
hics and Ap- . . , VOI. 2, pp. 17-25

[Doyle 793

J. Doyle, "A Truth Maintenance System", Artificall- , Vo112,
1979, pp. 231-272

[Drewery 861

K. Drewery and J. Tsotsos, " Goal Directed Animation using English Motion
Verbs", in Proceedings of Gr-ce-88, 1986

[Duda 841

R. Duda and R.Reboh, "Al and Decision Making:The PROSPECTOR Experience",
in Artificial Intelligence Applications for Business, W. Rei tman ed., Ablex
Publishing Corp., 1984

[Duffy 841

J. Duffy, Analysis of Mechanisms and Robot Manipulators, Edward Arnold Co.,
1984

[EIMaraghy 861

H. EIMaraghy, "Kinematic and Geometric Modelling and Animation of Robots",
in proceernas of Gra~hics Interface-86. pp. 15-1 9

[Errnan 801

L. Erman, et al., "The Hearsay4 speech understanding system: integerating
knowledge to resolve uncertainty, " m a Survevs.Vol 2, June 1980, pp.
21 3-254

[Fetter 821

W. Fetter, "A progression of human figures simulated by computer graphics",
IF'=€ Co~rlputer Graphics and APPllcatlons

. . , Vol. 2, pp. 9-13

[Fikes 711

R. Fikes, "STRIPS: a new approach to the application of theorem proving to
problem solving", ArtificwJntelliaence, Vol 2 (3), pp. 189-208

[Fleischer 841

K. Fleisher, M. Vickers, A. Marion, J. Davis, "Towards Expressive Animation
for Interactive Characters", in Proceedinas Graphics Interface-84, 1984

C. Forgy and J. McDermott, "OPS: A Domain-Independent Production System
Language", Proceedings of IJCAI-77, 1977, pp. 933-939

[Ginsberg 821

C. Ginsberg and D. Maxwell, "Graphical Marionette: A Modern-Day
Pinocchio", Technical Report, Architecture Machine Group, MIT 1982

[Girard 851

M. Girard and A. Maciejewski, "Computational Modeling For the Computer
Animation of Legged Figures", m u t e r Gr- , Vo119:3 (1985), pp.
263-270

[Girard 871

M. Girard, "Interactive Design of 3-0 Computer-Animated Legged Animal
Motion", JFFF Computer Graphics and . .

(Special Issue),
Vo1.7(6), June 1987

[Halpern 851

J. Halpern and Y. Moses, "A Guide to the Modal Logics of Knowledge and Belief',
in Proceedinas of IJCAI-85, 1985

[Harmon 851

J. Harmon and D. King, Expert Systems: Artificial Intelligence in Business,
John Wiley&Sons, 1985

[Hayes 741

Patrick H. Hayes, "Some Problems and Non-Problems in Representation
Theory", proceed in^^ A m . m m e r Conferenck University of Sussex, 1974

[Hayes 771

Patrick H. Hayes, "In Defence of Logic", P r o c e e a j J C A I - 7 7 , 1977, pp.
559-565

[Herbison-Evans 781

D. Herbison-Evans, "NUDES2: A Numeric Utility Displaying Ellipsoid Solids",
uter m, Vo1.12, pp. 354-356

[Hewitt 721

C . Hew itt , Description and theoretical analysis (using schemata) of PLANNER:
A language for proving theorems and manipulating models in a robot, Ph.D.
Thesis, Dept. of Mathematics, MIT, 1972

[Horvitz 861

Eric J. Howitz, David E. Heckerman, Curtis P. Langlotz, "A Framework for
Comparing Alternative Formalisms for Plausible Reasoning", in proce-gs
pf AAAI-86, 1986

[Kahn 791

Kenneth M. Kahn, Creation of Computer Animation from Story Descriptions,
Ph.D. Thesis, Dept. of Computer Science, M.I.T. 1979

[Kautz 821

Henry A. Kautz, "Planning Within First-Order Dynamic Logic", in
Proceeding~pf CSCSI- 8 2 1 982

[Kroyer 861

B. Kroyer, "Animating with a Hierarchy", in Seminar on Advanced &uua&l
Animatiot Proceedings SIGGRAPH-86, pp. 266-288

[Hayes-Roth 831

F. Hayes-Roth, D.B. Lenat, D.A. Waterman (eds.), Building Expert Systems,
Addison-Wesley 1983

[Kochanek 821

D. Kochanek, R. Bartels, K. Booth, "A Computer System for Smooth Keyframe
Animation", Tech. Report, University of Waterloo, December 1982

[Korein 821

James U. Korein and Norman I. Badler, "Techniques for Generating the Goal-
Directed Motion of Articulated Structures", lEEE - - & . . m, NOV. 1982, V01.2 (9), pp. 71-81

[Lee 821

C.S. Lee, "Robot Arm Kinematics, Dynamics and Control", JEEE Tran-
gn C o m ~ u m , Vol. 15 (12), pp. 62-80

[Lindsay 801

R. Lindsay, B. Buchanan, E. Feigenbaum, J. Lederberg, Applications of
Artificial Intelligence for Chemical Inference: The DENDRAL Project,
McGraw-Hill, 1980

[Lozano-Perez 801

T. Lozano-Pdrez, "Automatic Planning of Manipulator Transfer Movements",
Tech. Report Al Memo 606, MIT 1980

[Lozano-Perez 831

T. Lozano-Pdrez, "Spatial Planning:A Configuration Space Approach", m,
ns on C m , Vol. 32 (2), February 1983, pp. 108-1 17

[McCalla 831

G. McCalla and N. Cercone (eds.), IEEE Computer: Special Issue on Knowledge
Representation, Vo1.16 (1 O), October 1983

[McCarthy 801

John McCarthy, "Circumscription-A Form on Non-Monotonic Reasoning", . . .
I~I- , V01.13, 1980, pp. 27-39

[McDermott 811

J. McDermott, "R1: The Formative Years", AI w i n e . Vol 2 (2), 1981

[McDermott 821

D. McDermott, "A temporal Logic for reasoning about processes and plans",
m i t i v e s c i e n c e . Vol. 6, 1982, pp. 101-155

[Minsky]

M. Minsky, "A Framework for Representing Knowledge", in The Psychology of b

Computer Vision, P.H. Winston (ed.), McGraw-Hill 1 975, pp. 21 1 -277

[Nau 821

Dana S. Nau, " Expert Computer Systems: A Tutorial", Jech-l Report TR-
1 701 , Computer Science Dept., University of Maryland, College Park,
Maryland, August 1982.

[O'Connor 841

D.E. O'Connor, "Using Expert Systems to Manage Change and Complexity in
Manufacturing", in Artificial Intelligence Applications for Business, W.
Reitman (ed.), Ablex Publishing Corp., 1984

[Paul 811

R. Paul, Robot Manipulators: Mathematics, Programming and Control, MIT
Press 1981

[Reiter 781

R. Reiter, "On Closed World Data Bases", in Logic and Databases, H. Gallaire
and J. Minker eds., Plenum Press, 1978

[Reiter 801

R. Reiter, "A Logic For Default Reasoning", Artificial l n t e w , Vo1.13,
1980, pp. 81-132

[Ridsdale 861

G. Ridsdale, S. Hewitt and T. Calvert, "The Interactive Specification of Human
Animation", in P r o c e w of Graphics m a c e - & pp. 121-130

[Robinson 651

J. Robinson, "A machine-oriented logic based on the resolution principle",
J A C U Vo1.23 (2), January 1965, pp. 23-41

[Ryman 831

R. Ryman, A. Patla and T. Calvert, "Use of Labanotion for clincal analysis of
movementn, in Confernce of the International Congress Kinetography Laban,
August 1983

[Sacerdoti 741

Earl D. Sacerdoti, "Planning in a Hierarchy of Abstraction Spaces", P r t i f i a
m, Vol. 5, 1974, pp. 1 15-1 35

[Sacerdoti 771

Earl D. Sacerdoti, A Structure for Plans and Behaviour, Elsevier North-
Holland Inc., 1977

[Seidel 811

Raimund Seidel, "A New Method For Solving Constraint Satisfaction
Problems", in bceed inas of IJCAI-81, 1981, pp.338-342

[Singh 831

B. Singh, "A Computerized editor for Benesh movement notationn, Master's
Thesis, University of Waterloo, 1983

[Shank 771

R. Shank and R. Abelson, Scripts, Plans, Goals and Understanding, John Wiley
& Sons, 1977

[Shapiro 791

Stuart C. Shapiro, "Numerical Quantifiers and Their Use in Reasoning with
Negative Informationn, in P r o c e m a s IJCAI-73, 1979, pp.791-796

E.H. Shortliffe, Computer-Based Medical Consultation: MYCIN, American
Elsevier, 1976

[Sloman 811

Aaron Sloman and Monica Croucher, "Why Robots Will Have Emotions", in
Proceedinas of I JCAI-81, 1981, pp. 197-202

[Sobek 851

Ralph Sobek, "A Robot Planning Structure Using Production Rules", in
Proceedings of IJCAI-a, (1 985) pp. 1 103-1 105

[Stefik 811

Mark Stefik, "Planning With Constraints (MOLGEN: Part l)", Artificial
nce 16 (19813, pp. 11 1-140

[Steketee 851

S. Steketee and N. Badler, "Parametric keyframe interpolation incorporating
kinetic adhustment and phrasing control", m r G r a m , Vol. 19, pp.
255-262

[Stuart 851

C. Stuart, "An Implementation of a Multi-Agent Plan Synchronizer", in
Proceedinas of IJCAI-85, 1985

[Sturman 841

D. Sturman, "Interactive key frame animation of 3-D articulated models", in
Interface-84 1984, pp. 35-40

[Sutherland 631

I. Sutherland, "SKETCHPAD: A man-machine graphical communication
system", in pro cedtngs d IFIPS SDrina (=onference, 1963

[Thomas 811

Frank Thomas and Ollie Johnston, Disney Animation-The Illusion of Life,
Abbeville Press, New York 1981

[Weber 781

L. Weber, S. Smoliar, N. Badler, " An architecture for the simulation of
human movementn, in proceediw ACM Anual Conferem, 1978, pp. 737-
745

[Wilensky 831

R. Wilensky, Planning and Understanding: A Computational Approach to Human
Reasoning, Addsion-Wesly 1 983

[Wilhelms 861

J. Wilhelms, "Virya - A Motion Control Editor for Kinematic and Dynamic
Animationn, in Proceedinas of Grwhics Interface-86. 1986, pp 141 -1 46

[Wilhelms 871

J. Wilhelms, "Using Dynamic Analysis for Realistic Animation of Articulated
Bodiesn, l E E Computer G r m i c s and

. . , (Special Issue), Vo1.7(6),
June 1987

[Winston 811

Patrick H. Winston , "Learning New Principles from Precedents and
Exercises: The Detailsn, T e c w a l Re~or t Al W o No.6%, MIT Al Lab, 1981.

[Winston 841

P.H. Winston and K.A. Prendergast (eds.), The A1 Business: The Commercial
Uses of Artificial Intelligence, M IT Press, 1 984

[Woods 751

W.A. Woods, "What's in a Link:Foundations for Semantic Networks,
Representation and Understanding", in Studies in Cognitive Science, Academic
Press, 1975

[Zadeh 831

L.A. Zadeh, "Commonsense Knowledge Representation Based on Fuzzy Logic",
lEEE Com~uter, Vol. 16 (lo), October 1983, pp. 61-66

[Zeltzer 821

D. Zeltzer, "Motor control techniques for figure animation", JF,FF Computer
& a p h i c s ~ ~ o n s , Vol 2 (9), November 1982, pp. 53-59

