du Canada

Bibliothéque nationale

Wl Natonallib |
I*I ofaclgggda' rary .

o

‘Canadian Theses Service Servrce des theses canadrennesv .

K1A ON4

The quality of this microformis heavily depen,dent upon the
quality of the original thesis submitted for microfilming.

Every effort has been made to ensure the hrghest quality of '

_ reproduchon possrble

-if. pages are mrasmg oontact the university whrch granted
“the degree 5

Some pages may have indistinct pnnt especrally rf the

original pages were typed with a poor typewriter ribbon or.

i the unrversrty sent us an mferror photocopy

AVIS

«

La qualnté de celle mrcroforme depend grandement de i [
qualité de la these soumise au microfilmage, Nous avons
tout fait pour assurer une qualité superwuro de reproduc:
tion.. .

Sl manque des pages veurllez commurnquer avec
Funiversite qui a conféré le grade. e

“la qualité d'impression de centaines pages peul fasser a
‘desirer, surtout si les pages originales ont 4té daclylogga:

phiées a l'aide d'un ruban.usé ou si l'université nous a tail

& . .
-

Prevrously copyrrghted materrals (Journal articles, pub-
hshed tests, etc.) are not filmed. .

- Reproductron infullorin part of this microformis governed
by the Canadian Copynght Act, R.5.C+ 1970, ¢. C-30.

1N

NL-333 (- 8872

~parvenirune photocopie de quatite inférieure.

Les docurnents qui font de,a objet d'un droit daulrw

" {articles de revue, tests publiés, etc) ne sont pas
mierofilmés. . : : : -

La reprod"uctron méme.partielle, de cette microforme et
soumise a la Loi canadrenne sur le drot dauteur, JHC‘

1970 ¢. C-30.

Canad"‘

DISK 170 PERFO!iMANCE UOF LINEAR RECURSIVE QUERY PROCESSING '
by

Simon Hon Ming Mok

B.A., University of Winnipeg, 1984

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School

| of

Computing Science

€ Simon Hon Ming Mok 1987
SIMON FRASER UNIVERSITY
July 1987
Al nghte reserved. This work may not be.

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or /6therwise
reproduced without ' his/her
written permissiog. '

'
- ISBN

L'autorisation a été accordée
da la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;

ni la thése ni de longs
extraits de celle-ci ne
doivent &tre imprimés ou

autrement reproduits sans son
autorisation écrite.

0-315-42603-9

APPROVAL -

‘ANamc: Simon Hon Ming Mok

Degree: Master of Science

Tite of thesis: Disk 1/0 Performance of Linear Recursive Query Processing

- g

Examining Committee:

Ghaiﬁhan: Dr. B Bhauac};arya

Lo

B WS Luk
Senior Supervisor

Dr. R. F. Hadley -
Committee Member

[-]
Dr. W.Mu S

External Fxaminer

AN

~ N
Date Approved: %ﬂlﬁ{ 2/, 198#

v

'PARTIAL COPYRIGHT L ICENSE

| hereby grant to Simon Fraser Unlversity the right to lend
my thesis, proJecf‘or extended essay (the flfle ot which is shown befow)
to users of the Simon Fraser University lefb}y, and to make partial or
sihg!e copies only for such users'or in response to a_réquesf from the
library ot any other university, or other educational Institution, on
its own behalt or tor one of its users. ¥ turther agree that permission
for muitiple cédylng of this work tor scholarly purposes may be granted
‘by me or fhe Dean of Graduate Studies. It is understood that copying
or publication of this work for flnanclial galn shall not be al!lowed

without my written permission.

Titie of Qiiigigyprojecf/Exfended Essay- .

a e LA /[k’(v'(s j;/ﬁ,(/

: ‘ o ALK, RE RS VE
PISK Lfe PERFORMANCE CF find £lgove

T

Author: __
g (signature)

SiMIors Ao Pt AR

.(?)\‘\{
» LJ’:&/ 27 1787 o

(date)

e
ABsmz{

{

This thesis presents an empirical mmulanén study of. the disk 1/0 performance of three Linear

: VRecurstve Query Processing algon)hms %‘ng the compilation approach in Deductive Database

/
systems. : ~ :
y % _ >

The primary objective” of this resea:ch is to analyse the I/0 behaviour of database query
processing w1Lh a new cost metric, the number of disk retrievals (d1$k I/O) m contrast to the
conventio c/ost metric, the number of page accesses (page I/O) Disk 1/0 xs a more Suitable
cost inefric because it takes intQ account technological advances in hardware and {ftwa.re. LmeaI
recursive query processing is chosen as a basis for this research because it equires i‘terative
execution of sequences of relational database operations and repen'u'vé acéessing of large amounts
of data. The secondary objective of this research is to examine the efficiency of three well-known

Tecursive. query processing alg"orihthms at the disk 170 level.

The research results demonstrate that it is important to 1nc1ude disk 1/0s as an additional
parameter- in t.he cost formula of a query processing strategy when a large buffer -space is
available. Also, a methodology is suggested to estimate the Mammum Buffer Requirement (MBR)

of a query processing algonthm.»

r

The research results also show that in order to minimize disk 1/Os, special aﬁenﬁon must be paid
to reference locality. Specifically, an algorithm can achieve good diék 1/6 perforr‘na.hee'if the
processing of one large relation is completed beforé- the processing of another large relation
begins. The simple method developed is 4lso shown to be useful fof inspecting the reference

localitv of the algorithms.

Finally, it is shown that it is not onl_»" important to choose the right algorithm for prdcessing
recursive queries, it is equallv important to choose the right strategies for implementing low-level

relauonal database operations.

1ii

DEDICATION

To my tate father.

v

ACKNOWLEDGMENTS

This. work could not Mave béen completed without t.h_e éuéport of my senior supervisor' Dr. W. S.
Luk. I am grateful for his motivation and the provision of equipment for this research. I would

-also thapk Dr. R. F. Hadley for his valuable constructive criticism of this work.

-

This research is paru'ally supported by the SFU Open Graduate Scholarship and the Challenge
1987 Funding. o

My sincere thanks to the'supportl from the fellow graduape students in Radandt Hall. Espec1ally
Ms. Sharon Hamilton and Rev. Robert Neville for their loné hours devoted, to editing this thesis.

Finally, my deepest thanks and appreciation to my wife, Marilyn, for her constant support and_

“understanding throughout this entire effort.

4 |
¥ ‘)
- - - TABLE OF CONTENTS

Approval—...... , S resseeeenesenenees evteseuseree bR e s AR bbb e s e enea e e e i
ADSTACE .ccrecrernenreneene ,fﬁ .. it
Dedicationccecereerenee ... L v
Acknowledgments ,,;. et v
List Qf Figurescccvveennennene % S, viii
1. -‘ TIETOQUCHON evteeseeeesreeesesreessosreeers et eseesess oo e sne s e sseossessesssseseeresessss e esess e 1
11 Performance MEMTICS ...oceriunremnesscsenseminnssnscsasesssssssssnssnnns .. 1
12 Logic and Database ... _—— eeeeessesessneee e sere st enesestessseseseseesseesessener s essneres e
20. "A Recursive Query and its Processing STALERIESc.llirssrsnrsssssissssssss st ssessssssssssannas 9
2.1 ¢ A Recursive Query .. 9
. 2.2 Compilation of the Recursive Query u e 10
" 2.3 The AIZOTIAMS .ooovveeveccreeverseesrsssesssenes S oot seanneen SO 12
231 The Henschen-Nagvi AlGOMINI i 13
232 The Magic Set AIGOHAM oo e s
233 The Counting Algorimm .. ettt nee b - 19
24 ~ Accessing Order of Base Relations C .. 22:
2.5 REIAIEA WOTK coovuvivverrreeesesssesnssassssassss i ossssssssssssssassssassssssessssssssssstssssssssnsssssssssssssssangissnsarsssssses 23
3. Axchitecture of the Extensional Database SYSLEM oo R 25
31 GENETAl MOGEL ooiooeooseooooeesoee e eeeeses s seseseresseseese e S eeereremmeenrons 25
3.2 ‘ Impl'eme_mation Cebereebeeebasattaetebatraan b e s st e he s b baa s eb s e e Rn R s A et e R e b et R b eser et b A bt s aseeaateAenenaransnrare e e reaesenes 277

3.21 Test Program Moduleeeonrveevciennins (ﬁ 2F—
322 Relational Data MOGUIE weomvooeroossoseseos oo e 28
3.2.3 File Structure Moduleenenncc e s N 30
3.2.4 Buffer Management Module 32
325 Disk MOGUIE e s s 32
133 THE DAUDESE oot 3
4. Analysis of Results eerersna st tRsesras bR e sn st Res b ses et e s e Ro b SRS r e s R e 35
41 Page 1/O and DK 1/O oo e 35
4.2 Disk I/O Performance)6 .. 40
4.3 Observations and INEIPIEALONSivivoesecvenerrenne st er e s s eeess o evesreerenens e 40

vi

44 Analysis e oo 48
441 Working Set ... v LY

‘ 442 Zi’Kela_tt;‘on Reference Pattern : ' R |

45 Explanation of Experimental Results _— - | RS-
46 Vulnerability of CN .ovovvvr S-S I e 59
461 Sample Database I ... _— » e 59

462 . Sample Database I oo e 62

5. Implementational Issues ... - R l ‘ 65.\
5.1 Constructing and Accessing Index Tables . 65

5.2. Internal Page Fragmématioxi — SR 67

53 Buffer Management : eeseriene 68

54 Sequencing of Relational Operations SO . : - 69

55 . Summary of Implementational Impacts ... ————— 7_ .70

6. Conclusionsczoseeieenenes e et bt ra st s nee s s st s aen it .11
6.1 Page 1/0 and Disk /O ..oooeereseossssmsssssesnis s 1

62 - Linear Recursive Query Processing Algorithms ... | e 71

6.3 Suggestions for Future RESEATCH woveverre s ssses Cenesssersuenesssstsssrenessssensaresssressaes 73
REfETENCES ..ottt acrnsasesessssnsres 74
ADPPENIX A oot ens st sss s s s ss s sasssbasssssssssosssenossesassassosnansssossusens e 77
Appendix Bt s e SRR s bR bR b sttt s SRt 81

" LIST OF FIGURES

Figure
3-1 The General Structure of an 'Extgnsioﬁal Database $ystem vt st
3-2 . The Generf{ STUtae Of the File SIUCUIE MOAUIE oo |
471 The 1/O Activities of the Algorithms: HN, CN and MS v
4~2 Data Page 1/0 Performances of the Algorithms: HN, CN and MS ...
4-3 _ Disk 1/0 Performances of the Algorithms: HN, CN and MS .oooomrrci
4-4 IS = 0001 and Page Size = 20 tples/page ... et
4-5 IS = 0.0005 and Page Size = 20 tuples/page
4-6 JS = 0.0001-and Page Size = 20 tupleS/Pageevemeerervecessesinne oo oo
4-7 JS = 0.001 and. Page Sizg = 40 TUPLES/PARE reevereeserecrresrisasmsmsaecssessmsese e o
48 JS = 0.0005 and I;agé Sizé = 40 [UpIES/PAGE wovvooooeosse s essme et e
.\\4—9- 'JS = 0.0001 and Page Size = 40 TUPIES/PAZE eoverrerrreree et eesie s s essssaeeessone
4-10 Sample Database I fer n = 5 ... e sneses e smsse sttt et rere e
4-11 Disk I/O Performance on Sample Database I e naans
"4-12 Sample Database II fOI N = 5 orereemseesmsssesmmessmsssssssssssssmsssssssssssssssssnesssss e sesssresesens '
4-13 Disk 170 Performarice on Sample Database II .ovoooeeormoeooeomoereseseeesecereeeeseresraees

viil

...................

25

........... e 31

................... 38

................... 4]

| CHAPTER 1
o - INTRODUCTION

o

This thesis presents an empirical simulation study of the disk I/0 performance of thy Linear

Recursive Quefy Proc'essing algorithms using the compilation appraach in Deductive Database ——

-systems The primary objective of this research is to analyse the 1/0 behaviour of database query

conventional cost metric, the number of page accesses (page 1/0). ‘Disk 1/0 is a-more suitable

cost metric because it takes into account technological advances in hardware and software. Linear

Tecursive query processing is chosen as a basis for this research because it requires iterative -

execution of sequences of relational database operations and repétitive accessing" of large amounts
of data, The secondary objective of this research is to examine- the efficiency of three well-known

recursive query processing algorithms at the disk ‘I/Oglevel. :

Tms chapter discusses the 1mportance of usmg disk 170 as the cost metric and introduces the
general concepts of Deducnve Database systems and recursive query processing. Chapj;er 2 presents
the five algorithms considered in this study, along ﬂvm.h related work on the performa.nce of these
algor;thms‘ The model in which the 1/0 behaviour is studied, together with its implementation, ié
presented in Chay;ter 3. JChaptér 4 contains the analysis and interpretation of the simulation
results. Several implementat’ior: issues which may affect the simulation results are disc'uss;d in
Chapter 5. Finally, Chapter 6 contains a summary of this reseagch and suggestior.is for further

research.

1.1 Performance Metrics

— -

—- -processing with a new cost metric, the numbei of disk remevals (d.lSk 170), in contrast to the

Along with the theoretical aspécts of relational database systems, .it is necessary to consider

perfonﬁance issues. In pardcular, the performance of database cjuery processing strategies must be
studied. Mam such studies have been done over the years to identify the factors which affect the
ef‘imencx of the different methods of evaluating queries. The results obt‘émed from these studles
are used to fine tune database systems to improve their overall ef‘ﬁaency The metrics used to
measure the processing efficiency are the CPU costs and the 170 costs. The CPU costs are

generélly -evaluated in terms of the number of tuples beirg processed while the 1/0 costs are

measured by the number of page accesses needed to answer a query (page 1/0s). This Lhesis‘willk :

focus on the 1/0 costs of telational database query p\roces’sing.

The I/O‘;costs of relational database query processing have been studied by many researchers in .
various performance studies (e.g. [34]). -However,!most of the studies either ignore "the cost of |
disk accesses or equate the number of page accesses to the number of disk accesses. The lattér

assumption has until ‘now been adcepted as a close approximation to reality. Recemly, however,

some rtesearchers have challenged this assumption because it does not take into account ‘three
major developmentS' ‘the improvement in system software and hardware performance, the proven
inefficiency of conventmnal buffering schemes in ‘a database environment, and the decrease in costs

- - .

of hardware such as main memory chips. We shall discuss each of these developments in detail. .

It is claimed in [12] that the number of page 1/0s is not a suitable metric for evaluating [/O

costs. Instead, the number of disk- 1/0 pperations (disk 1/0s) is proposed' to 1ake into - accournt
developments in system software and hardware., In high. perforrnance file systéms such as the 4.2
BSD [21], for exarnple adjacent file pages are often clustered together on the disk. This is in
conu'ast with primitive file systems, which allocate adjacent pages to w1dely separated disk
addresses. Th;s change, together with the increase in the transfer rate between the disk and the
processor, means that adjacent file pages can now be accessed in a single disk /0 .operation.
Thus, the mimber of disk I/0 operations is a more suitable metric than the number of page 170

operations for evaluating the 1/0 costs of relational query processing.

-

Another drawback of using page 1/0s to evaluate 170 ’cosfs is that cost formulaé based on the '

conventional model do not tike into account the effécts of system factors such as the available
buffer size and the page replacement policy in use. For example, the cost formula for a

" nested- loop indexed join on two relations is conventionally formulated as follows [34]:

s

/0 cost = NumOﬂ’age(ouzer) + NumO/Tuple(outer) ® (w, *
Depth(Index) + w2 * j* NumOfTuple(inner))) * Page—4/O-cost

. where outer and inner denote the two relations, j is the pin‘ seléctivityr;f;.‘v1 15 the probability that

the index page is not in the buffer and w, is the probability of haviﬁg 0 fetch a data page

when matching rupies'are found. In this cost formula, the size of the buffer. and the buﬁ‘cr‘

g

rhanagement sclfgme are determined by the two prgbabilities w; and w;. In most performapce
studies, w, and w, either are not specified or are arbitrarily choser In other words, the-size of
the buffer and the buffer management scheme are usually assumed to be those of ha typimlr
operating system. It is argued in [36], however, ,thatr rela_tional database accesses can bee\.class'iﬁed;
into a set qf reférence patterns swhich may not be well served by conventional buffer Mgement
schemes. A number of other research pepers 19,19,27,28,32] have shown’that the pattern of page
references exhibited ty relational database aoeesses 1is very regular and predxctable The conclusmn 7‘

drawn from ‘these studies is that for an Operatmg system to provide good buffer management, it -

.must be able 1o accept wgdvice from the Database Management System (DBMS) concerning the

page replacemem sUalegy The DBMS can also use specialized buffer management schemes such
as the Hor ser algonthm (32] and’(the DBMIN algorithm [9] in order to improve the throughput

on dls?_ accessing.

- f-mal)}\ s semxconductor memory becomes cheaper, it is no longer uncormon to t‘md large

" memory ‘bufters bemg made - available to database systems. In fact, Main Memory Database
systems are currenty an acti.ve research atea in the database community (e.g. [6]). While there is
7 some doubt that main hlemory will ever be cheap enough to make disk storage redundant, it is
clear that, in the near fuuue, there will be plenty of buffer space available to boost the
performance of complex database processing. As more and more .memory becomes available, ‘the
difference between the disk 1/0s and the pig;« 170s will be morc} significant, because a request
for an index or data ‘page of a relation rnay not actually require remeval of the requested- page
from the disk if the page happens to be found in the buffer at that moment. Therefore, the size
of the buffer space is a very important factor in determining Lhe disk .1/0s, and this is why it is

primary focus of this research project

The primary objective of this thesis is to study the I1/0 behaviour of relational database query
processing with special emphasis on the number of disk 1/O operations, and in particular, the
effect of the buffer size on performance. We will also study the relationship between the old
metric, the number of page 1/0s, and the new metric, the number of disk 1/0s. A particular
type of query processing, Recursive Query “Processing, is chosen to be a czse;_study in this
research%e_cause Tecursive query processing requires sequences of relational database operations to
be e)gécuted, and large amounts of data to be transferred between the secondary storage, the disk,

and the processor. Recursive query processing is an advanced query facility used in Deductive

-

Database (DDB) systems which apply loglc to conventional relauonal databases A gencral

description of the general area of lo;_nc and database research and recursive query processing in

DDB svstems is presented in the next section.

1.2 Logic and Database - , - v

-3

In recent years, there has been growing research interest in the connection bet\#ecn.l'ogicvand
databases; its primary goal being the use of logic as an infergnce system and a 'represenmu‘(m
language in- databases. It has been shown by numerous reséarchers' and summarized in [11] that
_mathematical logi?: priman'iv first-order lo;gxc provxdes a prec1se framework under which' many
“classical database problems can be formalized and studied in detall Using logic as a formal
theoretical basis, many researchers have studied database topics such as representing and extending
existing query languages, modélling_ and maintaining iqtegﬁ?y constraints, Oplimi{iné quen |

processing, and representing various- kinds of data dependencies.

. A conventional- database, as first characterized by Nicolas and Galliair (10], ean be considered
from the viewpoint of logic to be an. interpretation of a ﬁrsl order theory {also known as the.
model theoretic view in [31]). Under- such a vxewpoml, ‘queries and integrity constraints arc
weated as formulas whose truth values are 1o be deterrnmcd in the interpretaton. Other
_ researchers have worked on extending the representation and manipulation capabiliues of databases
by considering a database to be a first- order' theory itself (also kno@n as the proof theoretic view
in [31]). From such a viewpoinL queries and integrity>Tonstraints arc(sccn‘ as theorems to b

proved; Vt.his is precisely the concept behind Deductive ‘Databasef' (DDB) svstems. . For a deuled

and formal description of DDB systems, the reader is referred to [11].

A DDB is a database in which new facts can be derived from facts that are exphicily stored n
the databasej{. The brirnary ‘goals of research "into DDB systems are 1) fc incorporatc the
: . functionalities of logic, such as deduction, into the reléu‘onal database mode! and A'2) 0 Increase
thé<e‘xpressive pawer of database systems to handle queries more sophisticated than those that
require only simple data retrieval. From an operational point of "view, as defined in [11], a DDB
consists of the’following pars:

1 a set of axioms which are elementary facis.

2. a set of axioms which are deductive rules, and

" explicit answers can be found to queries. Deductive rules are

3. aset of integrity co\tang |
The e}ememary facts consist of w set of data which 1s stored in ‘the database and are
collectively czlled zhe Extensional Datab (\EDB) The Jntensmnal Database (1IDB) con515ts of the

set of deductive rules and the mtegrm const\mnts and corresponds w0 general knowledge of the
world modelled by the DDB. There is no deﬁmte dmg line, however, between what might be

considered a deductive rule or an integrity constraint. “~In current research deductxve rules are

limited to definite clauses without functions. Functions are“.not considered so that finite and

i ”(e\d 1o definite clauses so that

the Al commum'ty [‘5], is that they provide only a very restricted vefsion of inferen \
exdudes a lot of complex general knowledge of the world Further, they point out that the
programmmg language PROLOG is as good as, if not better than, DDB systems 1n terms of
resolving logic ‘queries. The most significant response to this criticism from resea:ehers following
the database school of thought [5} is that although the PROLOG language may be very pow‘erful
and —ekpresstve—Tt—goes not provi‘de the necessary features of a general database managemeot
system, which include efﬁcienl query facilities, functions for integrity constraints, and maintenance
of deduced facts. A major adwmtage of DDB systems, despite their current logic limitations, is

that they incorporate existing database techniques for handling large amounts of data efﬁcienr.ly.

The description of DDB systems presented here is based -on the perspecuve of the dzl‘tabase school -

cof moughL The general direction of research in this perspecuve is to introduce gradually more

and - more deducuve capabilities into database systems as efficiency permits. For an mterestmg list
of open questions and contemporary views on the general area of logic and databases, the reader

is referred to [11] and [5).

To further Lhe aims of DDB systems, a great deal of research effort has been directed towards
the goal of resolving queries using not only the explicit facts stored in the database but also
imphcit information that cari be derived from the exphcn facts. This is known as recursive query

processing because unlike -the execution of simple queries which require access only to explicit

facts,"The execution of recursive queries often requires iterative processing of a sequence of

3
¢

(_> 5

operations such as deductive rule Tesolution and database accesses.

There are two general approaches' to reéolving recufsive queries: Lhe: interpretive approach and the
compilation Iappraach. The interpretive approach)' [24] works wiLh a_problem solver in which the
resolution of deductive rules and the accessingw(ﬁ)f facts in the extensional database are interleaved
during the process of:resolving the quelfy.‘ In the compilation -approach [29]. the problem solver
uses only the deductive’rules until a point is.reached at which either the query is solved or all

that remairfs is to search for facts in the Extensional database.

Both approaches have advantages and disadvantages. Algorithms using the interpretive appfoach
are smarter in the semse that decisions about the relevance of facts towards the answer of the
query can be made dynamically at run time. However, it is expensive to access a large database
iteratively in a tuple—at—-a-time fashion;as currentdy required by the interpretive approach. Some
l techniques which éxplore the idea of obtaining a set of tuples at each database access. rather than

a single tuple at a time, are currenty being developear[7,2,2,23,25].

The major advantage of the compilation approach is that access 10 the database is dcla_vcd untl
the end of Lhe deductive process, allowing global optimization of database accesses }Q,
incorporating already-known techniques from conventional database theory. The major drawback of
this approach is that the-classes of rules that can be compiled into simple formulas is very
imited. In fact, the studv presented in [3]" indicates that the largest class of rules that can be -
xessed by currentdy known compilation—based élgorithms is the class of Bottom- up evaluable
rules. Any computation usin-g only a set of bottom-up evaluable rules can be carried out without
materializing infinite intermediate results. 'fhe bottom-up evaluability criterion cnsures that the set
of values for body variables is finite at each step. However, there may be an ir;ﬁm'lc number of
‘stebs. Expanding the class of compilable rules is{ another active rescarch area in DDB systems.
For formal descripudns of wvarious known compilation techniques, the reader 15 referred 10

[8,18,29,37]. s

Two additional issues which are beginning to draw the attention of many researchers arc the-
performance and- ease of implementation of various recursive quely processing strategics. In this
research ‘we have chosen to 'srud_v these two issues of recursive que;'y processing from the . database
perspective -ané using disk 1/0 operations >as the performance metric. Also, we focus On TCCursive

query processing strategies which use the compilation approach, because the clear separaton of

database awgs;es from deductive rule resolution makes the approach amenable to implementation
and analysis with ka conventional relational databaée model. As mentioned earlier, a DDB consists B
of an IDB and an EDB. The IDB contains a search routine and an infetence engine which only
operale on the deducnve rules, while the EDB is a conventional relational database. Ou.r research '

is focused on the EDB.

A recent paper by Han [15] .ideritiﬁed a set of five different types of recursive query rules, which

can be summarized by the following three canonical forms of recursive rule clusters:

1. The canonical transitive closure’ cluster, T) -
2. The canonical linear recursive cluster, and
3. The canonical non-linear recursive cluster.

Of these three canonical forms of recursive clusters, the first two can be compiled into simple
formulas using a simple step-wise method described in Section 2.2. The last form can znot be

compiled into simple formulas, and other techniques such as the stack-diresied query compilation

algorithm [14] have been developed for processing queries of this form.

This research uses the linea‘.r‘r'ecurrsive rule cluster for the study of disk 170 operations for two
reasons. First, the linear recursive tules require a more complex sequence of relational operations,
such as Join, Select, Project, and Union, than the transitive closure cluster, whichb has also been
studied extensively in current research. This will provide an appropriate basis for evaluating the
disk 170 performance metric, Second, numerous papers [2,3,18,16,17,39] have addressed
performance issues relaled to this particular set of recursive rules. Although these - studies have
ejther .ignored the cost of disk accesses or used the page I/Os as the metric for measuring the
170 cost, their results ‘provide us with some fundamental qualitative insights into the design of our
experme and the imerp:r‘etation’s of our results. Moreover, this study places a diffe‘renpt

perspective on the current research into Tecursive query processing. ¢

Before we ieave this discussion, we should caution the reader that what we have described ﬁcre is
& very superficial view qf the general area of logic and databases. Much of the dichssiOn‘ﬂsyas
based on the database school of thought. As well, since our research only focuses on the véry"
simple class of linear recﬁrsive rules and queries, the descriptions of the various aﬁgom’thms are all
tailored to this class. “This section has highlighted some of the interesting questions and

perspectives of the general area of logic and database research. References are provided to guide

the interested readers‘to more detiled and formal discussions of these issues. To.' close off this
chapter, we recall Ullman’s reminder in [38] thal one has to start with the simplest issues in

order to pursue an ultimate ideal in the-{uture. -

CHAPTER 2. -
A RECURSIVE QUERY AND ITS PROCESSING STRATEGIES

This chapter introduces the recursive rules, the query and the processing strategies that are ,studied
“in this thesis. Related work on evaluating the performance of recursive query processing strategies

&

is also discussed.

2.1 A Recursive Query

“This thesis studies a set of linear recursive rules written in function-free Hom Clause form. The
set contains two Hom‘clauses. (1) and (2) beloW, which are generalized forms of fhe same
generation example shown in [3]. The terms up and dowr; are two base predicates that represent
the ancestor and descendan! relationships of two individualé, while the flar predicate contains
tuples of indivi'duals who are cousins of each other (i.eb. they are of the same gcnerau'bn).
Predicate r therefore represents the two ways that two individuals in the\ database can be cousins
(i.e. they are of the same generau’o'n).‘ In the rest of this thesis, the ierm relation will be used to

refer to a predicate. The two rules are shown below:

riX.2) -~ flarX Z). . : o | o , a
rX,Z) -~ upX.Y), r¥ W), downW Z). .)

where up, flatr, and down are base relations existing in the relational database, r is a virtual
" relation which involves recursion, and X, ¥, W, and Z are vectors of variables.

The following rule defines the recursive query,

2 = r(a X) : , G)
where a is a constant vector and X is the vector variable to be retrieved from the virtual relation

r. The answer to the query is an array of integers which is derived either directly or. indirectly

from rules (1) and (2).

2.2 Compilation of the Recursive Querv

As described briefly i,nb_Section 1.2, there are two stages tO resojving a Técursive query usirlg_ the
compilation approach [29]. Inthe first stage, the set of relev rules is processed to obwin one
“or more compiled formulas of the recursive query. TheseA mpiled formulas are -sequénccs of
~ relational operations involving data relau’oﬁs which will be genemtcd if they are not already
expliéitly stored ,in the database- During the second siage, an iterative program is vgcn'eratec.i based
on the compiled formﬁlas, and the answer tobthe query is obtained by retrieving facts (data) from
the database. | . | x

Three different strategies were impiemented in this project. These algorithms ;re: Henschen-Naqvi
[18], Magic Set [2] and Counting [2].! This study focusses prirnzirily on the second stage of
resolving the query, so only a general description of recursive rule compilation is presented in this
section. The input to the compilation process is the original set of rules and the query in the
case of the Henschen—-Naqvi algorithm whereas the input ‘is a transformed set of rules and the
query in the cases of the Magic Set and Counting algorithms. The -details on how the rules arc
.Uansformed will ‘be described when each of the two strategies are discussed in the l‘olJ(zwing

sections of this chapter.

The following discussion is based on the compilation method that is described in {17]. Linear
recursive -Tules (1), (2) and the query from Section 2.1 are the input to the compilation. The
general idea is to expand rule (2) recursively. The following sequence of expan'sions is obtained

by using step-wise recursive calls to rule (2).

L

rX2Z) - up(X,Y,), up(¥..Y), r(¥ W), downW, W,), downW,, Z).
rX.2Z) - up(X,Yk), up(}’k,Yk_ P 40T, r@@ W), downW, W,), ..., downW W)
down(Wk,Z). V

* In fact, two other algorithms, Semi-Naive [1] and Double Wavefront [17], were also
implemented. The disk 170 performance of these two algorithms is significandy worse than
those of the other three algorithm, thus they are not included in this thesis.

10

where Y,, Y,, .., Yk' W, W, .. 'Wk, and Z are vectors of variables.
By calling rule (1) in the above sequence, the solution to the query is obtained by processing the

following sequence of non-recursive query sets and taking the 'union of the results of each step.

- .

flat@aZ).
up@,Y), flaY W), downW Z).
up@\Y,), upY ,,Y), flat(¥ W), downW W), downW,Z).

up(@y k) UP(Y Y i) - MPOVLY), StV), down(W W), .., down(W,_ W), down(W,2).

fhe expansion of the above sequence terminates when no new solutions* are found in - the ’
database. ' The above sequence of query \Ases can be represented simply as the following query
series:
oaﬁpk‘ﬁat‘dbwnk

where 0 up means a Selection on the corresponding attributes of relation up according to the
constant vector a, . denotes the Join operation on the corresponding join attributes of two
relations, and upk represents performing the Join operation on corresponding join atmbutes of
relation up k-7 times. The range of the index k is from 0 to n where n is tt{e number of
iterations up to the termination point. In our 7experimems, because randomly generated data
relations are used, some databases generate empty relations, and some generate cyclic results for
some large number of iterations. To avoid the problems of determini.ng thé termination poinfs in-
this study, the query is executéd for a specific number of iterations. The format and notation
used o describe the algorithms in’ iile following sections is adapted from [17]. In the following
discussion, the concatenation of relation names denotes the result of joining the individual
relauons. For example, upflatdown is the result of joining the up relation with the flat relation,

followed by a joiri of the intermediate result with the down relation.

* We have npt considered the termination problem in this study; for a detailed treatment of
it the reader is referred to [§,13,18,26,35).

11

Before we discuss the three algorithms, a straightforward way to process the .query series

o atzpk‘ﬂat‘dmvnk is presented to serve as a basis for understanding the other algorithms.

V'I'he simple algorithm, referred tt) as ‘the Naive algorithm in [35). executes the series in a
bottom—-up fashion using an iterative loop. The bottorn-—up approach starts from the base relations
and keeps assembling them to produce vn'tual relations until t.hey generate the answer o the
quéry. The algorithm starts by selecting the first set of results from the relauon fat. Al the. first B
iteration, the three data relations up, flat, and down are Joined on thetr corresponding attributes tol
prbduce the intennedia%e reiation upflatdown. This intermediate relation, defined as the wavefront

relation or the frontier relation in [17), serves as the starting point for the other iterations. In

general, at the zih iteration, the execution proceeds as follows: s
1. The relation up is joined with the intermediate relation up”f} Aatdown" ! , ‘'which is saved

from the i—]'h iteration, 1o yield the relation upiﬂazdowni" ! .

2. 'fhe relation upiﬂazdowni'f is joined with the telatjon' down once (0 produce another

intermediate relation up ﬂazdawn

i

3. A selection is then performed on the relation up ﬂatdown to obtain the set of answers 10

{

the query at this iteration. The 1nterrned1ate relanoyup‘ﬁazdawn is then saved as the

wavefront relation for the pith iteration.
The execution plan at the zm 1terat10n can be simply represented as the followmg sequence:

loj (up . (up’ Iﬂatdown’]) down)

Since this algorithm proceeds from the center of the query series at each iteration, it is also
known as the Central Waveﬁ'onz algorithm in [17). It terminates when no new solutions arc
found: in the database. The answer to the original query is obtained by taking the union of the
entire set of results obtained at each iteration. The general process flow of this algorithm is as

follows:

o (up ® flat ® down)
' o (up ® (upflatdown) ® down)

L}

o (up ’ F(upk_ Iﬂatdownlc— 1) ® down)

The. toral-'n_m‘nber of Jjoin Operar_ions_is 2k in this algorithm. In‘ spite of the small number of join
operéﬁow there are two major weaknesses. First, theré are two joins on thrée entirely
ynresm'cted relations at each iteration. This could generate very Iarge imermediate relations and
easily cause a combinatorial explosion. It could also generate a large nurnber of tuples which are
irrelevant to the query. These problems occur with the bottc)rn—up approach because the algorithm

' has no knowledge of what query it is trying to solve. Secondly, the results produced at the i—lz\h

iteration are completely reproduced at the z”’ iteration, leading to a large number. of duplicafe
results. In the remainder of this section each of the three algorithms - Henschen—-Naqvi, AMagic'

Set and-Counting is described. They will be compared ciualitatively wherever. it is appropriate.
2.3.1- The Henschen- Nagvi Algorithm

The Henschen-Naqvi (HN) algorithm was gﬁéinﬂly presented in [18]. In this sfudy, a simplified
version which can be directly applied to the linear recursive query is examined. The simplified

method is essentially the Single Wavefront algorithm described in [17].

Unlike the Naive method, the HN algorithm employs a top~down approach. The top~down
approach is basically the same as the performing selection first approach described in [17]. In this

approach, the algorithm starts from the query and keeps expanding it by applying the rules (0

derived relations. Algorithms using the top-down approach are, in general, more efficient ause

mé)' "know" which query is being solved, but are often more complex. The major adv‘ e of
this approach is, that the size of the relations that are joined during the iterations can be -
signiﬁca.rﬂy reduced. This approach has been shown, both analytically and experimgntally,* to be
very efficient in certain situations compared to the bottom-up approach. Similar conclusions can

also be drawn from the simulation results described in chapter 4 of this study.

4

13

The algorithm starts by selectingthe first set of results from the relation Aat. The intermediate

wavefront relation that is passed on from iteration to iteration, however, is a restricted partial

transitive closure of the relation up. In general, the execution at the llh' iteration goes as follows: ,
1. The relation up is joined with the intermediate relation o aup'-l 10 derive the relation

o aupi. This relation will be saved for the #7°"" iteration, ‘

2. The relation o aup{ is then joined with the relation flar to produce‘the relation o aupiﬂaz.
-3 The answer to the query at this iteration is obtained by joining the relation down 10 the
relation o aupiﬂat i tmes. 4 - ‘ L
The ’executjon‘plan at the " iteration. is repr;ented as folloWs: .

' (oaup’;] ¢ jp) * flar ® down ':K' down’

The processing flow of the HN algorithm is depicted as below.

o Jfat
(0 up) ® flat *® down ' -
(o up ® up) * flat ® down * down

(0 up ® up) ® flar ® down ® down *® down
a

(o upk‘ I » up) ® flat ® down * .. *® down
oyt

—
Although this algorithm is able to teduce considerably the sizes of the relations that are joined at
- each iteration, it introduces the problém of a large number of repeti}jve joins‘ on the relation
down. Thls mn. be seen at the fh iteration where the relation down is joined with iwself Au‘mcs.
Consequently, the number of join operations, which is (k?+5k)/2 - 1, is much hight_zr than for
the Naive and Semi-Naive algoritim. This particular vaspecl of the algorithm was cxamined in this

study; the results of our observations are discussed in chapter 4.

14

2.3.2 The Magic Set Algorithm

Th’clMagic Sct (MS) ‘aigorithm uses Vboth the bottom—ﬁp‘and top—down approaches to _answer the
query. This ‘techm'que of combining the two approaches is ‘déveIOp,ed from the sideways
information passing strateg‘y in {33]. It uses a hypothetical top~down evaluation ‘of the guéry to
‘Lransform' the original rules into equivalent rules.that can be implemented efficiently using a

“bottom-up method.

" The formal descriptions of the Magic Set algorithms is complicated and difficult to. understand.
‘The essential ideas of this algorithm are described in the context of the simple linear recursive

query shown in Section 2.1.

Recall the two rules and the query from Section 2.1. | |
rX2) = faX2). - o

rX.2) = upX.Y), (¥ W), downW 2). | . @
f =~ r@X). : 3)

Before we proceéd further, ‘we must first define the concept of ‘relevant data [2]. Intuitively, a
piece of data is relevant if it might, depending on the database, be essential td the establishment
of a piece of data that is iﬁ the answer to the query. Relevant data can, however, be redundant
if there—is- other relev:int data which also leads to &1e same answer. The set of felg“vantv data is

defined to be the magic set in this algorithm.

S
The first step in transforming the rules is to derive the magic set, which is used as a filter to

reduce the size of the relations which will be involved in the bottém-up evaluation. This is done |,

bv marking all the up ancestors of the constant vector a and then applying the rules @n a
bottorn-up fashion only to the marked ancestors. For rules D, @ and the query (37%the magic
“sel consists of two kinds of relevant data: the direct Televant data and the indirect relevant data.
The direct relevant datum is the query constant vector g, because a set of answers can_be
retrieved directy from the relation flat by using the constant vector a. The indirect relevant data
is obtained from relaion up of ‘rule (2). The only set of data in relation up which will
" potenually lead to an answer is the set of data which is reachable directly or indirectly from the
query constant a. Therefore, the restricted transitive closure of the relation up, starting with the

or ~ant vecior a, constitutes the set of indirect relevant data of the magic set

15

o

& transitive closure of the relauon up stamng thh the constant vector a

o

Ttm _following two rules define the maglc set for thxs apphcnuon they snnply deﬁne a resmcted ‘

o

z{;qgtc(cz) « ‘ ‘ o ‘)
magic(Y) = magic(X), up(X.Y). , 6

The second step in transforming the rules is to apply the magic set to the rules so that the sizes
of the relations to be evaluated are reduced. This is achieved by insisting that the values of the

first attribute of the virmal relation r b€~in the magic set. Thus, rules (1) and (2) are simply

Tewritten as follows by adding the magic set to the _frofn of the body of the rules.
rX.2) - magic(X), flat(X.Z) |)

rX.Z) = magic(X), uXY), (¥ W), down¥,2. .)

The four rules (4), (5), (6), and (7)., are then compiled into a set of non-recursive query series
which will be evaluated using a basic method. Using the same method of compilation as
described in' section 2.2, the following two compiled formulas are generated.

@*upt ~ Cs

o a(magic‘up)k ®* (magic*flat) ® down® ®)

where {@ denotes the initial relation which contains the query constant vector a. Formula (8)
produces the relation magic which is used in the other formulas. Since the magic tules do not

refer to the recursive relation s, they are evaluated first. The join operations between the relations

magic and up ana between the relations magic and ﬂat’can be e{xuacted from formula (9). Thcﬁ -

complete non-recursive query series which can now be evaluated “using a bottom-up method, is

shown below.

g * upk (10)
mégic e up ’ - - ‘ (11)
magic * flat - ‘ o | | (12)
0 a(magicupk ® magicflat *® downk) ' | (13)

16

[

Formula (10) prodﬁces the relation magic, “formulas (11) and (12) produce the relation magicup
and magicﬂat,‘ émd formula J(lﬁ}eﬁerﬂes the answers to the query. Formulas (10) and (13) are
evaluated by a boftom-up method called Semi-Naive [1] method. The SenﬁiNag'jIe method uses
the samc 'approach as the Naive method except that at each iteration the;quéry series is evaluated

.‘/‘ .
using only the new results which are generated from the previous iteration. This means that

rather than passing the entire intermediate relation (i.e. the wavefront relation) produced at the it

1”’ iteration, the difference of the relation produced at the z‘h jteration and the

Itk

iteration to the i
relation produced from the i—l?h iteration is passed to the iteration. The general process

flow of executing these two query series is described as follows:
/- ‘

1. Deriving the magic set (i.e. fa} * upk)

5 -
Define the wavefront relation, Wi produced at the zlh iteration, as follows:

wi('E/Lalf-“/ i=0
wpEwigptup s owy O<i<=k
The processing flow is as follows:
' tal -
(wo * up) - w

(wi *-up) - w -

Wy " ¥P) = Wy

ky

2. Deriving the answer to the query (i.e. magicup™ * magicflat * down

The wavefront relation produced at the #h iteration is defined as:
w; = (magicflat) =0
w, = (magicup ® w,_; ® down) - w,_, o O<ix=k - :

The general processing flow is as follows:

17

o {magicflar) - | v ,'
o fmagicup *-w;, © down ~ w,) . S
. aa(magicup ®w *® down - wy)

.....

: oa(magicup . Wi} ® down - Wi ‘1)

= . -

Thé MS algorithm giveg the advantage of binding the processing only to the set of relevant data
(the magic set) while avoiding the repetitive processing of the down relation, done by the ‘:\VHN
algorithm. The performance of these two algorithms is expected to be similar (sec. [3]) becausc
the duplicate work done by rge HN algoﬁthm (in the processing of the down relauon at each
iteration)vis offset by the fact that the MS algorithm worlks with binary relations, while HN uses:
o only unar):\ relations for intermediate processing. The authors also claim that when up and down
are {identiml the ' analytical expressions for the performance of these two algorithms become
identical. However, our research shows that this is not ‘the case when the disk I/O pcrf"orméncc
of the algorithms are considered. The differencé is due to the fact that the two algorithms follows
different patterns in accessing the three base relations. The accessing order of the base relations

of the algorithms will be discussed in detail after the next strategy 1s presented.

2.3.3 The Counting Algorithm

The Counting algorithm [2] is a smart version of the Maglc Set” strategy. Recall that the ‘magic
set marks all the up ancesLors of the constant vector a and then applies the rules in a bottom—up
fashion to only the marked ancestors The major drawback of the MS strategy is that the enure
magic set-{er ﬁmt data) is apphed to the relation flat and down at each step. Thus -
there Vi's potential redundancy caused by using too much relevant datayat each iteration. The
design objective of the Counting -algorithm_is to‘_mim'mize ‘the set of televant data at each step.

'In ‘Lhe Counting strategy, the ancestors of the ‘oonstant Vector a are ;;umbered Gby their distanc‘e-
~ from it The lmagic set, therefore, contains a group of ;;b_sets called t.tie cauﬁting _.§ets. Each of
these counting éets céntains the relevant data for a particular level. At each step, instead of - using
the entire magic set,- the strategy uses only the appropnate counting. set, thus reducmg the set of

relevant data at that particular level.

As with the MS algon‘thm, the counting sets are defined by the following two rules.

counting(a,0). : : _ ' ‘ : . (3)
countz’ng(YJ) = counting(X J), up(X,Y), EH1. o (14)

where g is the constant vector and / ranges from 1 to k& where k& is the number of desired
iterations or the number of 1terauons up to the terrnmauon point. The original rules {1) and (2)
are cransformed by addmg the appropriate ccuntmg set to the front of the body of the rules. The

new rules are

‘rX Z.1) - counting(X 1), flat(X Z).
r(X.Z21) - counting(X J), up(X.Y), r(¥ WD), downW 2Z), FF1.
and the query becomes:

? - r(q)r'.O),

19

It turns out that the first atribute of the virtual relation r is redundak\'l‘herefore. the rules can

be optimized into: o . \\
\
\
_ \ . .
. . \\
r(Z,b\:— counting(X 1), flat(X,Z). , _ N - (15)
, | N
rZl) ~ rWw), downW Z), EF1. : : \ (16)
. : \
and the query becomes: | : ' N

7~ orx0: N

The new set of rules consists of rules (13), (14), (15) and (16), and can be Lrar_lsformed into the

N\ -

\
\\

following set of compiled formulas. The counting set at ihe i evel is denoted as counting; and -

the derived virtual relations at the #” level are fand r.

‘counting, = {(a,0) ‘) : ~ 7)
couhzihgi = caunzingz:_ ;™ up where I<=i<=k ‘ (18)
| fi = cauniingi-” flat where O<=i<=k | . a9
= (ri_,,1 » dowri: j; where O<=i<=k-, and "+" is the Telational wunion operalion. (20)

The processing of these four formulas is divided into three phases. First, all the counting scis are

computed by formula (18) using foimu_la (17) as the starting point. Second, formula (19) derives_a

set of temporary relations which will be used by formula (20). Third, formula (20), initiated byﬁ_

setting fk o . derives the partial answer to the query at each level. The final answer to the
query is contained in relation r, after the processing 1S over. The process flows of these three

phases are as follows:

phase 1
{{a,0)
{(a0)} * up

{(a,0)up “ up

{(a,0) upk_ 1 up

20

\
X

. | - phase 2 .
/ ' cwntiﬁg}, * fat T
counting,_ ; * Sflat

cauntingk_ 5" flat
counting, * flat

, phase 3 ,
For simplicity, the result relation of each\lg{el is denoted by rl
" | Je =7y |
fk—] + (rk * down)
i3 ¥ (r_q * down)

fo + (r, ® down)

In spite of its elegance, the Counting algorithm does not work if there is cyclic data (data °
directly or wansitively rederived by itself) or if there is asynchronous data (data rederived at
different iteration levels) in the database. This is because in such cases phase 1 of the algorithm,

in which the counting sets are computed, will not terminate.

2]

2.4 Accessing Order of Base Relations

b

There is a fundamental difference‘ among Lhe’three algorithms described hereAwhich has not been
.considered in current literature. The difference is the order in which each algorithm accesses the
base relatons. The HN algorithm involve all three base ;elauons at each iteration. The MS and
CN algorithms, by contrast, operate on each of the base relations in.turn. In other words, the
execution of the HN algorithm proceeds in‘ a horizontal manner whereas the execution of tfme MS
and CN algorithms proceeds in a vertical/ manner. Using this distjnctioh, we classify the first
group of algorithms as .level—/ﬁrst -and the second group as stage- first. The effect of Athis
difference, which will be discussed in detail in chapter 4, can only be realized when the

_algorithms are evaluated from the perspective of the disk 1/0s.

For example, the set of relevant data used by the HN, MS, and CN .algorithms is m each casc
the set of up ancestors reachable from the query constant-a. The processing costs of this part of
the three algorithms should be the same if the cost metric is either the number of tuples -being
processed or the pumber of page Tequests. The processing cost is not the samc; however, il the

cost metric is the number of disk accesses because in HN the accessing of the up relation is

2
interleaved with the accessing of the flar and the down relations whereas in the other two
algorithms the accessing of the up relation is done all at once. The number of disk accesses
needed depends significantly on the size of the available buffer space. This feature of the

algorithms is actually a major factor in determining their disk 1/0 performance.

The MS algorithm is actually not strictly a stage—first algorithm, because although the up and flar
relations are accessed individually, the latter part of the processing involves interleaved accessing ol
three different relations (magicup, magicflat and down) at each iteration. Thus, the M5 algorithm
can be seen as a combination of a stage-first and level-first algorithm. This feature of the MS
algorithm further complicates the process' of estimating the disk 1/0s, as will be shown in.chaplcr\

4. In the next section, related work on evaluating the processing efficiency of recursive qugries is

Teviewed. - —

~

22

2.5 Related Work

Although the theoretical aspects of recursive query processing have been studied by many

researchers, there has been relatively little work done on evaluating the performance and

implementation of récursive query processing strategies which use the compilation approach; In the

few performance studies in current literature, different pethods and costs metrics were used to
evaluate the strategies. Three such studies [2,3,17] are reviewed in this section. The strengths and

shortcomiings of these studies, which have in part motivated this research, will also be discussed.

In (2], Bancilhon et al. discuss informally the performances of four strategies; HN, MS, CN and

another strategy, Reverse Counting, not: considered here. The efficiency of the algorithms is
examined in terms of their complexity, wh\ie?h is measured by the predicted number of tuples that
are processed. Their study shows that the performance of different strategies depends greatly} on

the characteristics of the database. More important, they point out that more research is needed

" 1o better understand the problem of efficient processing -of recursive queries.

A second comprehensive study [3] surifeys and compares eleven different algorithms. The
algorithms are evaluated anﬁlytically on four different queries, including the. linear recursive query

corsidered here,’ and with three pfedeﬁned database configurations. The “size of the intermediate

- relations generated during execution is used as the cost metric. The results indicate that there are

three major factors which influence the processing efficiency: the duplication of work, the set of
relevant 'data, and the arity of the intermediate relation (more generally, the attributes least

involved in the intermediate processing).*

Although_this study presents a general picture of the performances of various strategies, the -
problem of the efficiency of recursive query processing is not fully explored, for three reasons.
First, the qualitative results on the processing efﬁciency\of various strategies needs to be validated
quantitatively. Second, previous analysis of the algorithms was based on predefined configurations
of data. It is not always possible, however, to know éxactly what the data set looks like
beforehand. Thus, the algorithms should be evaJuated using randomly generated data. Third, using

‘The linear recursive query is considered to be the most complicated query in the study, in
spite of the limitations pointed out here in Section 1.2. ‘

‘The first factor, duplication of work, has been studied extensively in [15].

-~

23 \\

the size of the intermediate relations as the cost metrics gives a static picture, of the algorithm,
which is inaccurate because intermediate relations can come and go during ‘execution. In our
-research, intermediate relations are released immediately when th:y are no longer needed, and
thus, the space requirements of : tliev different algorithms can be evaluated dynamically.
Nevertheless, this comprehensive studv [3] provided us with many rudimentary ideas concerning

the implementation and a,nalysis of recursive query processing.

»

A third performance snidy, by Han and Lu in [17], is more closely related to our }eseafch. Four
algorithms (including HN and three other methods not considered here) were examined analytically
a;ld experimentally on the same linear recursive quefy we are studying. The database oh which
the methods were tested econtains I_andomly generated data. Their evaluation is based on the
selectivity * of the join and select operations on the relations with the CPU and 1/0 costs as the
cost metrics. They conclude that performing selection first, making use of wavefront relations, and
reducing the arity of intermediate relations ® are important heuristics for efficient recursive query

processing.

The fundamental difference between our fesearch and the third one described above is that we
have chosen to study one particular aspect\of the processing efficiency of recursive queries, namely
the I/0 costs. As well, we consider the 1/0O costs from the perspective of disk 1/0s rather than
theopage I/0s, which are used in [17]. Finally, we examine not only the HN algorithm which is
shown to be efficient in [17], but also two other strategies (MS and CN) which are shownl 10 be |

efficient in [3].

—

‘The term selectivity will be defined in Section 3.3.

*A similar conclusion is drawn in [3].

2

C’HAPTER3

————— ARCHITECTURE OF THE EXTENSIONAL DATABASE SYSTEM

The previous chapter descn'bed various processing stiategies for linear recursive queries. Thai part
of the processmg can be seen as being ‘mainly carried out in the IDB of the DDB system This |
chapter concerns the other part of the DDB system - the Extensional Database (EDB) system. A
general model of the EDB along with the different levels of 170 activities involved in executing
the query (expressed in térms of relational ,operatibns) in the EDB is presented. The
implementation of this model, by means of a simulation program, is also described in this chapter.
In short, the Nobjecn'v'e of this chapfer is w present the experimental set-up and th€ specific
implementation strategies that are used for low-level gpefgtions in the simulation.

.f -

3.1 General Model

The Extensional Database (EDB) systerﬁ consists of two major components: a Relational Data
System (RDS) and ; Data Swrége System (DSS). The latter is further sub-divided into two
software modules and a disk in which the database resides. The twe software modules are a File
Structure System (FSS), which is the interface between the RDS and the DSS, .and ‘a Buffer
Management System (BMS), which maintains a buffer poo] for temporary Storage of data relations.

The general.sxructure of the model is shown in Fig. 3 L

Comped (uenes

=

i .
{Reasocal Deu Symem
I {FD5)

- _@

Aeeord Reod/Wrie

¢

i | 1 .

; ‘

' i Dan Swng: Svsiem
: (D85

. lf:\‘: Serurnire Svstam
{F35)

.V Baa Mamagsmen: >Sy-s::r:
IBMS)

] :
i

i

| ;

| l

| Dat Reat/Wrie \
i

i

*

Fig. 3-1 The general smucture of an Extensional Datzbase Svstem

U%

2

n

The input to the EDB system" is a query which is expressed in terms of relational database

operations. Each module in the model communicates with its adjacent modules through a setof
operations as indicated in the diagram. The primary task of the RDS is 10 exgcme the various: ‘7
relauonal operations requested by the query. Dﬁta relations are accessed one fuple at a tume.
during the execution of each relational database operation, so each operation is a sequence of

tuple- read and tuple- write requests. These requests are the input to the DSS.

"The FSS, which is the top layer of software within the DSS, presents a record-lsvel abstraction 1o
the RDS. Sequential and direct data-accessing methods are the primary functions provided by the
FSS. This medule is also responsible for creating and destroying files and maintaining structured
files such as B-tree indéx files. The File Structure System communicates with ‘the Buffer

Management System in single-page units.

The BMS contains a buffer manager and a buffer pool of pages. The threc sasks that the
manager is responsible for are: 1) servicing the page requests from FSS, 2) reading pages from
and writing pages to the disk, and 3) when the buffer is full, decidiﬁg, based on a replacement

policy, which page in the buffer should be replaced.

The primary objective of this mode! is to reflect the different levels of 1/0 activities involﬁed in
executing the query in Lh;, EDB system. Three different I/0 activities are considered;/—/ﬂié/record
1/0s, page I/0s, and disk I/0s. Record 1/0s 7 are measured as the traffic bctweén/ the RDS and
the DSS. This metric was used in the testing of the implementation as an approximation of" the
CPU costs and the complexity of various recursive query prgcessiﬁé stratégics. The correctness of .
. Tthe implementation is ensured simply by comparing the /measuremhem of this metric with the
known performance results of the strategies in current literature, such as the three examples’

discussed in [2].

The second and third 1/0 activities (the pagé 170 and the disk 1/0) are the primary interests in
this research. The’page 170, as shown in Fig. 3-1, is measurbed as the number of page read/wrilc
requests issued by the FSS to the DMS. The disk 1/0 statistics are gamered by keeping track of
the waffic (i.e. the number of pages being read and written) between tCBE the buffer pool of pages
in BMS and the disk. This model ignores the effect of double paging that is, the ecffect of

"For this particular metric, it is assumed that each tuple of a relation is a logical record in
a file. Under this assumption, this metric is simply a measure of the number of tuples bcing
read and written. '

26

demand—pagmg at_ {he level of operating system is mnot oonside_:eci This phenomenon of .

double pagmg has been studled by a tumber of researchers (e.g. [20]).

The above mbdel of an EDB;system is simulated in this study. ‘Each.’layer of the model is-
implemented as a module which 'cons_ists of a set of subroutines. and a set of primitives. The
subroutines are _;wrinen-' in terms of the primitives defined at that level, and iinplement the set of.

”

primitives of the level"abbve. ‘That is, the pﬁrm'u’ves at each level are actually subro

r.he modules of the ‘n’ext lower level and they provide the channels of communicad -.-:." among
adJacent modules. The necessary hardware, such as the system buffer pool and the disk, is
simulated by a set ‘of data structures. In the following sections, the 1mp1ementat10n of each ’
module in the siipulation will be. présented. The algorithms that were implemented at each level
in each module and the Asets, of Opératjoﬁs which operate across}v the - layers, in the médel will be

described next. -
3.2 lmplementation . e '

This section describes the implementation detajis "of ﬁve simulation moduled which correspond to
the levels of the EDB model descnbed in the lgst secnon For each module, the SIIategles
employed for the various operatxons and the format of the pnmmves will be described. In the
following discussion, a relation is a two dimensional table, the rows of which are the tuples and

the columns of which are the attrzbutes
3.2.1 Test Program Module

The 1test ,programé, are a collection of protbtypicél@mplementhdons of the recursive query
processing algorithms. These algorithms are Henschen—Navq1 Magic Set, and Countmg algorithms.
The details of these alzorithms can be found in Sections 2.3. Appendix A contains the pse e
of these algorithms written in terms of relational database operations. Each of these sub::?ﬁi&
implements "the -éompiled form of the recursive queries (i.e. the object program) defined in Section

2.1.

The test program module acts as the starting point of the simulation. A subroutine is selected by
the monitor program to resolve the recursive query. The execution of a subroutine is a sequence

of relational database operaton requests issued to the database operation module. Each of these

I

operation requests specifies‘a"n operator, one or two data relations to be bpcrated on, and a data
relation where the final results will be stored. The set of operations defined for this module is :
1 Join(A, B, C).

Secht(A, C, constant).
Project(A, C).: i
Diff{A, B, C).
Union(A, B).

A S

where A and B are data relations to be operated on, C is the result relation, and constans is the
query constant These operations are implemented in the Relational Data module.- Along with
' ' . e e D

these operations, a test program can also issue 2. ,FreeS'paczé command to release the spact

occﬁpiéd by a relation.
3.2.2 Relational Data Module

The Relationél Data module contains a set of five subroutines, each of which implements one of
the relational database operations listed in the previous secLion.\ The set of primitives whith
underlie the implémentation are as follows:
1. Sequential record-read/write.
a. ReadTuple(name).
b WrifeTuple(name).
2.~ Direct record-read/write.
a. ReadTuple(name, keyv).
7 bb. WriteTuple(n.ame,‘ke)‘).
where name is the relation to which the read/write applies, and ke specifies which data pl¢ is

10 be read or written.

In the remainder df this section, the implementation of the relational operatons is discussed. The
reiatons involved are either unaxly oI -binary, ’ar;d the following notation is used 1o specify which
atéibute to consider.

1. attl(A) - denotes the first attribute of the relation A.

2. ant2(A) - denotes the second anmibute of relation A.

28

A Join operation is expressed as Join(A, B, C). A and B are the relations to be 'bined 'an‘d C 1s
the resultJ relaﬁon. The Join is implemented using the Nested- Loop joinvmethod in which one of
the relations is_chosen to be the outer relation while the other relation is use;d‘as‘the inner
relation. The algorithm consists of two nested loops. In. the outer loop, each rﬁple from the 6ﬁter
relation is retrieved sequentially. The value of the join column from the retrieved tuple is used as
the key Lo.retrié\?e the matching tuples from the inner relation in thg im;er loop. To facilitate the
;maLching of tuples a non-clustered B-tree index [4] is built- on the join colu'mn: of the inner

relation.

In our implementation, the smaller relation. is always chosen to be the outer relatien while t_he
larger relation is used as the inner relation. Three cases can occur, depending on the kinds of

relations used. These three cases are described below.

Case 1 : A, B and ‘C are all binary relgtions.

1. join;'attributes are :- att2(A) and attl(B).

2. result relation C contains attl(A) ana att2(B).

Case 2 : A is unary, B is binary, and C is unary.

L. join atributes are :- attl(A) and a1(B). e L

2 result relation C contains att2(B).

Case 3 : A is y, B is binary, and C is binary.
1. join attribute§ are :- attl(A), and arttl(B).
2. result _relation C contains attl(B), att2(B).

In case 3 the Join operation is =quivalent to a sequence of Select operations, using each of the

distinct values from relation A as the constant

Select | | R
The Select /Eperau'on is expressed as Select(A, B, constant). A is the relation from which tuples
are selected, B is the result relation, and constant is the value by which the selection is applied.
The implementation assumes that attl(A) is the selection column. The result relaton can be either

wnary or binary. Two methods of selection are implemented. First, if an index already exists on

“the selecnon column, all the tuples which have the value of constant are retrieved usmg the mdc\'
file. Second, if there is no index, relation A will be scanned sequentmlly once and all the tupleq

. which have the value of constant are selected and -written to relatmn C

Project

The Project operatidn is expressed as Projec{A, B). A is the relation to be projected and B 1s
the result relation. Project is implemented by reading all the tuples ‘rom relgﬁon _A" once
sequentially and then writing all the distinct tuples to relation B. Thé implementation assumes that
the removal of duplicate tuples in relation A is done automatically, and therefore the costs of it
is ignored. ‘

Diff ‘
The Diff operaﬁon is expressed as Diff(A. B, C). A and B are the relations tol be operated on"
and C is the result relation. The Diff operaﬁon maps each tuple from relation A onto relation -B
and the result relation contains all the tuples in relann A which do not exist in- relauon B. Each
tuple in both relations is read once sequentially. Tuples from relann A Whlch also exist in

relation B are eliminated, and all the remaining tuples from A are written to C.

Union

“;::"fw%ﬁ'"he Union operation is expressed as Union(A, B). In this operation, all the tuples from relation
B are appended to relation A. The result relation is in"A, and relation B is left intacL In the
- implementation each tuple from relation B is read once sequentially and is wrilten 1o relation A
sequentially. This implementation is not a disjoint union (in which all the tuples in B.which afc
already in A yould not be written again to the result relation). In other words, the rcsul.l

relations of a disjoint union only contains distinct tuples from the two ogiginal relations

disjoint union.is desired, the Proiect operation will have to be applied to the felationA.
3.2.3 File Structure Module

The File Structure module consists of five subr_ouu'nes and two sets of data strifttires. Four of
the subroutines are interrelated. The first set of data structures is a group of three one-page
buffers which are used for the Read operations. The other data structure is a one-page buffer

used for the Write operations. The five subroutines are arranged as shown in Fig. 3-2.

30

Record Requests,- FreeSpace Commar;d

. ‘ /

Sequential Dirept
Ri)qu(inc Routine
Destroy
Routne
- data data index ‘ ' ’
/ V l / A ;“i B -
-) ata-Entry ‘Index-Entry S
goudne Routint - ‘

- 3
. A
Page Read/Write Page Release
T :
Fig. 3-2 The General Stucture of the File Structure Module.

, '
The set of primitives used by the module is a sequence of page operations. They are: .
1. PageRead(name, id). : ‘ Q,
2. PageWriLe(ﬁame, id). ' ')
3. PageRelease(name, id).

where name is the relation of which a page is required and id denotes the. reqmred page.
Page Read and PageWrite 1ead from and write to a smgle page, respecuvely PageRelease is used
to execute the FreeSpace operation, in which all the space occupied by a relation either in the

buffer or in the disk are released. This section describes the five subroutines of the File Structure

~

module. \

hY

-The Destroy subroutine is responsible for issuing a sequence of PageRelease commands to the
Buffer Management module when a FreeSpacé is received. The Sequential subroutine is
responsible for sequential reading and writing of a tuple to a particular page of a data relation.
This module interacts only with the Data-Entry rouune in order to read or write a tuple. The

Direct module is responsible for direct reading and writing of tuples. A B-tree index is

implemented for direct data accessing. Two cases are handled by the Direct module. First, if-an
index on the referenced column of the relation exists, the Index-FEntry routine is called to search
the' index file in~ order to locate the required data tuple. Once the tuple is located, the
Data-Entry routine is called to read or write the wple. Second, if the index does not exist, a
B-tree ipdex is built, by the Index-Entry routine, on the column which is used l:or the direct
accessing. Once the -index is built, it is used to read or write the regx'rgdd data vluplc as

described.

Ed

The one—page buffers are used by the Data—entry and Index-entry Toutines. If the required data™

tuple or index entry is in the page which is currently in the one-page buffers, nc page Ir'equcsus

~are issued. However, if the required entry is not in the buffers, either a PageRecad or PageWrite

request will "be sent to the next module - the Buffer Management module.
3.2.4 Buffer Management Module

The Buffer Managemens module consists of a subroutine, which implements the buffer manager,

\%d‘gm structure ¥hich simulates the system buffer pool of pages. The manager iis.rcsponsiblc

SE

for processing all the page requests from the File Structure module and for swapping pages 1o
and from the system buffer poo! and the disk. When a PageRead or PageWrite request is
IeceiQed, the manager tries to locate the required page in the buffer pool. If the page is there, it
is sent to the File Structure module in the case of a read, or its content-# modified éccording 18]
the request sent by the File Structure level in the case of a write. If the required page is not in
the buffer, the manager decides which page' in the buffer can bc replaced and issues a PageSwap
command' to .the Disk module. The replacement policy implemented in the s;imulalion 1s the
Least-Recently-Used (LRU) scheme. If the indicated page is in the buffer when a PageRelease
command -is received, the page will be released; if the page 1s not in the buffer, the

corresponding command will be sent 1o the Disk module.
3.2.5 Disk Module

The implementation of this module is simple. It consists of & subroutine which is responsible for
locatng and releasing pages of the disk and a large data structure which simulates the disk.
There are two types of information stored on the disk, .data reiations and index files. Relauvons or

index files are stored in the page units, and it is assumed that no two relatons or index files

32

share a page. This may lead to internal page fragn{éntaﬁon during a simulation,‘ a‘problem which
will be discussed in chépter 5. The size of a page is characterized by the number of tuples or
index entries it can hoid. A page of a unary data relation (i.e. arity = 1) holds twice as many
tuples as a page of a bipary data relation because the implementation assumes that the length of
a unary tuple is onvly half of a binary tuple. __ Similarly, a page of an gﬁdex file is assumed .to
hold ten tmes as many index entries as a page of a binary data relation. In other words, the
ratio of the number' of entries among the binary data relations, unary data relations and index
files is 1 : 2: 10. This ratio was'arbitrarily chosen, and serves the simple purpose of reflecting
the difTerenceslin‘ length of the various kinds of data involved in the 'siinulatjon,

-~ -

At the beginning of the simulation, three data relations are loaded onto the disk. Throughout the
simu]aﬁon, various intermediate data relations or index files may also be stored on the disk, and
at the end, the final result of the recursive quefy will be stored as a data relation on the disk.

In the next section, the synthetic database which is used in the simulation is described.

(2

.3 The Database

This section descﬁbes the synthetic database which is use:d in the simulation. There are three
basic relations, in theé synthetic database, referred as up, flat, and down. Each relation contains
1000 wples and each twple has two integer atributes. In other wbrds, each relation is a table of
1000 rows, each with two columns of integers. The columns of fnteg'ers of each relation were

randomly generaled and are uniformlyv distributed over a given range.

The database can be characterized by three parameters: the size of the relations, the selection
. selecuvity éf the up relation, and the join selectivity between relations. These parameters are
defined as foilows. |
The size of a relation A, denoted |[Al], is defined to be the number of tuples it contains.
. Th= selection selectivity of a relation A, denoted as SSa, is defined as the ratio of the size

of the result relation after the selection to the gize of the original relation A.

For example. SSa = {{Rji / |} Al] -

where R 15 the result relatorn. , ,

The join selecuvity betwezen the relation A and B, denoted as JSa.b, is defined as the ratio

of the size of the resui: relation after the join to the product of the size of A and size of

(¥
(WS)

B. (Note that A and B can be idenu‘ml‘, in which case the join attributes are the two
columns of the relation.) 4)

Isab = ||Rl| 7 (All x{|B])

where R is the result'relatjon. :

Four join selectivities (JSup.up, JSup.flat, JSflavdown. and”JSdown.down.) between the three basic
 relations anu a selecuon selectivity (SSup or simply SS) on the relation up are used in modélling
the synthetic database in this study. To simplify the task -of controlling the volume of data during
the simulation, we assume that all four join selectivities take on one single value at any one time.
Thus, we use a single variable, JS, to denote the join selectivity. By restricting the ranges of the -
values of the join'?él’u;nn and the selection colurn, we are able to control the join selectivities -
between relations and the selection selectivity on the‘rc}atjon up. The details of how to control

these selectivities can be found in Appendix B. ¢

To eliminate the dependency' of the results on a particular database, a different database was used
for each test run in the simulation. The columns of integers in each relation thal make up the

database were randomly 'generated using the UNIX system time, in microseconds, as the seed.

CHAPTER 4
ANALYSIS OF RESULTS

This chapter presem_s ‘the simulation results regarding the CllSk 170 performance of the various
recursive query processing strategies. The effects of four parameters on the disk I/O p°rformance
of the algorithms are examined. The first two parameters, Selection Selectivity (SS) and JOm

Selectivity (JS), are related to the volume of data tha‘t is processed. The ot,her» two parameters,

Buffer Size and Page Size, are telated to the system configuration on which the Tecursive query =

strategies were executed. The values of the four parameters used in the simulation were varied as

follows:
1 Selection Selectivity (SS) : 0.001, 0.005, 0.05, 0.1, 0.3, 0.5, »
2 Join Selectivity (JS) : 0.001, 0.0005, and 0.0001, _ ,

3. Buffer Size : 10,-25, 50, 75, 150 (pages).
4, Page Size : 20 tuples/page and 40 tuples/page.

~

For each- distinct combination of values for the four parameters, the .simula'r.ion program was
executed five times, each time with a different set of base relations generated using a different
seed for the random number generator. All five algorithms were run against the database, and the
page 1/0s and the disk 170s were rtecorded. Then the average values of each cost metric over
the five runs was calculated. The algorithms were also Tun against some specific databases which

were designed to magnify the differences among the three algorithms.

+.1 Page 1/O and Disk 170

In this section, the relationship between the two cost metrics - the page 170 and disk 170 is
discussed. The observed differences between disk 1/0 and page 1/O is mainly due to the effect
of buffering: A request for an index or data page will require a retrieval of the requested paée
from the disk only if this page happens not to be in the buffer at that moment In the fellowing
discussion, we make a distinction between access and retrieyal. By retrieval, we mean the page is
reteved from whe disk, while access simply refers to a page request from the program. The size
of the buffer is a very imporant factor in determining the number of retrievals compared to the

number of accesses. 17 the buffer is very large in comparison to the data processed, then the

necessary disk-based data pages need to the fetched inio the buffer only once. If on the other

hand, the buffer can hold only one page of “data (or indices) at any ‘one time, tlric”h{xmber of
disk Tetrievals is almost the same as the number of page accesses.

The relationships between the‘page‘ 1/0s and disk 1/0s of the three a'lgon'th,ms' are summarized in
Fig. 4-1. The values of JS and SS are fixed at 0.001 and 0.00S, respectiv‘el.y’,' and the. pégc size is
20 tuples per page. Each graph shows the changes in disk 170, data page 1/0, and total page
I/0 for one algorithm as the buffei size is .increased. Total page'vI/O is the total number of
pages accessed, including all the data and index pages, while data page I/0 is the numbef of
page accesses to data relations, and disk /0 is the total number of disk retrievals incurred by
bothrdata‘ and iqdex pages. The behaviour of the three 1/0 activities is very sirrﬁlar in all threc

algorithms and the follo}dng observations can be made.

1. The two page 1/0 curves on each /plotﬂefrelatively flat compared to the disk 170 curves.-

This supports the sxmple fact that the effects of the buffer size are not reflected in the cost

metric of page I/Os While page 1/0’s temain constant, the disk - l/Os decrease “as the——
buffer increases in size.) .

2 The number of total page 1/0’s is much greater than the number of disk 1/0’s in every
plot In contrast, the number of data page I/0’ is much closer to the number of disk
1/0’s. This is because a large number of the page accesses required duﬁﬁg the .'exeéution.
are to index pages, which are likely to be found in the buffer. This particular aspect of the
page I/,O metric bwill further be discussed in the next chapter. More important, the plots
show. that the' number of data page accesses is closely' related 10 the number of disk
retrievals in all three algorithms. This _fundamemal observation will be uéed' iﬁ a -later
section of this chapter to help estimate the number of disk retrievals of each algbriLhm.
Also“ﬁotice that when the buffer size is small, (i.e. < S0 pages) the data page 170 curves .
are closer to the disk I/O curves. As buffer size increases, the two curves become further
apan. This implies that when the buffer is not large enough to hold all Lhe necessary data

| pages, the disk 1/0 of the algonthms can be estimated roughly by Lhelr page 1/0’s. As
buffer size increases, the correspondence between the data page 1/0 and disk 1/0 of the

algorithms becomes less apparent

36

We now consider the differences between page 1/0s and disk 1/0s of the three algonthms m

terms of their performance. For the same set of para.meters as before, the performance of t.he
three algorithms, measured by the number of data page accesses. and disk remevals is shown m-
Fig. 4-2 and Fig. 4-3, respecuvely The 1/0 behaviour of the three algonthms is qmte different
in these two plots When measured by data page 170 (Fxg 4-2),- the three curves are stnctly‘
ordered and never cross. This is to be expected, as Lhe page 1/0s of the algonthm should not be
affected by changes in buf‘fer size. CN and HN have relatively low data page I/O’s whrle MS
incurred more. When. measured by disk I/O, on the other hand (Fig. 4-3), the HN and MS
curves cross when the buffer size is between 50 and 75 pages. Also, when the buffer is small,
the HN curve is similar to the CN curve, while when the buffer is large, the MS curve is similar

‘to that of CN. These’ two graphs clearly indicate ﬂrat' the per}.formance of the algorithms, can |
appear to be quite different when different cost meuicsja;: used. Also, different algorithms react
dxfferently to increases in the buffer s1ze For most of the* simulation expenments conducted in
this study, the data page I/0O curves of’ the }hree algonthms never cross, as in Fig 4-2. When
the disk 1/0s are consrdered the HN and MS curves sometimes CTOSs Over as in Flg 4-3, In the
reminder of this chapter, we will concentrate on the drsk 1/0 performance of the three algon‘fhms

under various data volume and system configurations.

37

LI

1/0 Activity (pages)

1/0 Activity (pages)

16000 + :
-
/\ﬁ— 2 —aA
14000
12000 . ‘ 4
- Total Page 1/0 A—B
10000 K
4 _ . Data Page 1/0 X x
8000 ‘
q i -
§000 Disk 170 E—mx
4000+
2000 =
e ¥ x
0 - r r - T -1 N
H 25 50 75 100 125 130
Buffer Size (pages)
) C O MS
16000+ 23000 N
A/A\ﬁ—— r —A ' -
o004 - » .
; 20000 -) =
12000 4 ' T
—
10000 4 H
2 13000
Q.
S
2000 o =z
3 .
g
5000. . o 10000
>~
4000+
5000 - '
2000
b J— V2 AV vy
BQ\;\Q; i
0 T T o T T ﬂ [} 7 T T T ==
0 25 75 100 125 150 o LY 50 75 100 - us 10

50
Buffer Size (poges) !

Bulfer Size (pages)

“Fig. 4-1 The 170 activities of the algorithms: HN, CN and MS

38

3

3000

25004 .
. 2000
"
o
o
o
[« 8 i — -
Z o0 e
R s pt—
5
<
o L
— 1000
500 4
0- T —T T T T]
0 25 50 75 100 125 150

Buffer Size (pages)

Fig. -2 Data page [/O performances of the aloom.hms HN, CN and MS
»

2500+

2000+ &(‘

“»
>
S 1500 \
4 .
p
® =
C 2
©
; 1000 -
>
500
0 T I T T 1 -
0 25 75 100 125 150

Buffer Size (pages)

Fig. 4-3 Disk 170 performanct:s of the algorithms: HN, CN and MS
" 39

4.2 Disk 1/0 Performance

~

In general, for small SS values and small buffer sizes, the mmulauon tesults show - -great vahahon
so that the average chsk 170 for each chsunct set of parameter vaiues may not presem an
accurate picturé of behavmur This shows up qmte clearly in the plots where for small - buf‘fcr
sizes, the number of disk 170s someumes_ incteases -as the buffer increases in size. In reuospecL
we should have used‘r the same database to obtain readings for small buffer sizes and small SS

valuves;,ln this w'ay,'the apparent inconsistency could have »been eliminated.

The remainder of this chapter is organized as follows. The next éegﬁon presents and»interprewr the
experimentaj «results obtained from the simulation. Section 4.4 discusses in detail two
algorithm-specific factors which may affect the disk 170 performance of the three algorithms.
These two factors along with some otherless obvious ones are used in‘ Section 4.5 1o explain Lhe
differences befweénf the disk 1/0 performance of ihe Lhree_algorithms,' The disk 170 performance
of the three algorihtms are evaluated on two artificially constfucted detabases adapted from {2} in
Section 4.6. | | |

-

4.3 Observations and Interpretations

This section presents and cliscusses observations about the dis}; 170 performance of the. three
algorithms HN, CN, and MS with respect to-the four parameters deécribed earlier. The a'lgorithms
are compared by showing the disk 1/Os performance curve of “each algorithm as it relates 10
increase in buffer size. As in the previously described figures, the X-axis represents the buffer
size, and the Y-axis represents the disk 1/Os (in pages) incurred by the algorithm. Six sets of six
graphs each are presented in Fig. 4-4 to Fig. 4-9. The first three sets (Fig. 4-4 to Fig. 4-6) arc -
for simulations in which the page size is 20 tuples/page, while the last three- sets (Fig. 4-7 10
Fig. 4-9) are for simulations with a page size of 40 tuples/page. ;Each graph coniains one curve
for each “algorithn. Each set of six shows what happens when the JS: is held constant and the 55 '

is varied. For each. page size, three JS and and six SS values are Lested

3204 .
SS = 0.001
o 4304
780 -
4004 -
2804
o .
. 0
g mod >
g 2 350+
g a
Q p
= 220 4 ”g ’
. = 300-
<) »
: a
2004
_ k I L2s04 -
- \ .
0 - \ 2004
wtyr———-yr— — - T T TTT T 150 T T ﬂ
- T
o 23 Bs;:f 5.75 (100 125 150) o 25 50 75 wo 125 150
] uffer Size {pages) i Buffer Size (pages)
2500 - -
E 4500 1
5\ 1SS =.0.05
: " 4000
70004 \ .
: 3500
Lol
: 13004) ‘JOD.DV-
g A
= S 2300
g d
2 &
W 1000 -| >~ J
i} =~ 2000-
a . X
o .
1500~
200 .
< 16001 -
. [500- \
L} T T T T T 1 . hd Y -
[23 50 75 100 s 150 i :
.] T T 1
Buffer Size (poges) ° 25 %0 7'5 © e 125 150
v - Buffer Size (poges)
- 8000+ 14000
70004 SS=03 o ' : SS = Q.F
\ e . 12000 : 05
8000
< 3066
s 2
o L]
2 53
e 1000+ £
: s
3 000 =
1 5]
2000 4
1008 4
. —r ' r T \
' 7 -] :
B] 23 ™ 0o s =0

CN ¥—x HN A+—8 Ms o©—a

3‘0 n e
Buffer Size (pogas) a.?ms:-(poé-s)
Fig 4-4 JS = 0.00] and Page-Size = 20 tuples/page
4]

280+

2004-

180

-Disk 1/0 (poges)

» 160

1404

SS = 0.001

HN

6004
$50 4

360

w

[

o
1

Disk 1/0 (pages)
§ &
/ o

300

200+

T T T

25 30 bt

T
0o 123

Buffer Size (pcges)

SS =005

150

800+

¥00 -

1400

B 3]
] o
]]
1 I

Dixk I/O (pages)
2

6004 -

400+

2004

T T ,
25 7%

50
Buffer Size (pages)

T
00

SS =03

T
hv3]

150,

]

s s
Butter Sizs

{poges)

Disk 1/0 (pogep)

Disk 1/0 (poges)

700 X

 Disk 1/0 (pages)

2204

MS @—a

SS=0005

\.

wl

~
500 4 \

T T - LS
50 .75 wo
Buffer Size (poges)

SS =01

r
423

1 r
130

\
4004 \s\ \\
\ ~
1 \ S~
j \k =
200 \Q
100 - T - T T T
0 5 s0 78 W0 s %0
Buffer Size (pages)
2500~
SS =05
2000+

1500
\
\}
000+
" %004
e ~
\‘\\\E
0- T T T T L .
-l 3] L uas

Fig. 4-5 JS = 00005 and Page Size

42

30
Butter Size (pages)

20 tuples/page

Disk 1/0 (pages)

Disk 1/0 (pages)

Disk 1/0 (’pagu)

- CN

L1 E

150 4

140 +4

13014

No p————y—

a

b—b

220

)(—4-—‘—-):' ‘, HN
>

SS = 0.001

200

_
. 180
o
)
o
S
o
-S>
4
IR '
o
o
—_— T T T 3 ne
23 50 75 100 12s 150 B

Butfer Size (poges)
’ 350+

25

—T T T
0 75 1o -
Buffer Size (pages)

SS=0.1

T
23

U T Y T
30 75 00° s

_ Buffer Size (pages)

SS = 0.5

- 300+
280 r\ SS = 0.05
\ » :
2604 \.\ : ' 300
\ .
N |
404 . V .
\\ >
B (=]
. o
2204 \\ S 2350
B 4
[}
200 a
\.
180 \‘ 200
%0 7 l\\é
140 T - T T _ 1 150
° 23 0 5 0o 125 180 H
Buffer Size (pages)
t00 - , '
800+
130+
SS =03 - o
$004
$00
430
3
400 @ s00-
&
e
330 L
: = 400
=
JD_G- o
300
230 4
1004 700
== Y T i
. 23 L) 73 °0 D3 me m.
Buffer Size (pages)

Fig. 4-6 JS = 0.0001 and Page Size
43

L e

10 7 %o
Buffer Size (pages)

20 tuples/page

- Disk 1/0 (pages)

Disk 1/0 (pages)

CN *—x HN 4—a _MS ©G—a

Disk 1/0 (pages)

220- . 306
200
_ 2304
wo4.
“‘o-— -
e 2004
o
Q
N
140+ P
>
3
= 1504
120 - o
100
A
wo-
80 —
60 T L LN T .r =} 50 ¥ r —_ + - Y
0 25 0. 75 100 125 150 0. 25 50 735 w0 123 130
Buffer Size (pages) o Buffer Size (poges) .
1600+ ’ 2300
woo] SS = 0.05 sS=01
R A 2000+ .
200
000 -
1000 . ® 13004
o
o
(=9
800 °
>
2
¥ 1000+
00 a
4004
5004
200+
o .] T T T T 1
0 23 30 75 wo 5 10 - o 23 50 73 w0 us 150
Buffer Size (poges) o Buffer Size (pages)
$000- #0007
-SS_OS‘ 7000+ SS=05
3000)
000
4000
3 50004
L J
a_
‘\ 9
- (=9
>~ 40004
000 o
30004 L
4
]
\ !\ 3 3000
2000+ \
2000 \9\
000 N '
. ’_—\?2\
y : e
o T p [23 30 7 w23 B0
7 wa ps 180
o 23 : Buffer Size (poges)

Buffer Size (poges)
Fig. 4-7 JS = 0.001 and Page Size = 40 tuples/page
44

¥

'CN;7K~—7<

Disk 1/0 (poges)

e -
1 ss=o00
w00 4 }\ ’
w v \‘
g. 30 \
o
&
o
g
X~ \
E’Vg 80 + \
\\
01 T~
0 T Y T T ¥)
[23 50 73 0o 123 150
: Butfer Size (pages)
. 300+
N SS=0.05
230 . \
? 200 \l
=
g \ .
— \
o
} +
_';,150 \'. \
27
AN
~
100 \
o T IS
SDL. T T T T T 7
[23 30 78 00 125 150
Butfer Size (poges)
1200~
10004 SS=0.3"
800
400
‘001‘
240
"0 2 s 8 w uws mo
: Butfer Size (poges)

Fig. 4-8 JS = 0.0005 and Page Size

Disk 1,/0 (pag_e:) ‘

Disk 1/0 (pages)

W00~

1400

1200 +

Disk /0 (pages)

1004

1000~

ho+

90~

804

400

350

300

250

ZDDT

150

100 -

Asn‘L

T T L T 1
56 7s. 00" 125 150
Buffer Size (poges)

T
5

SS =01

800

= T T
30 s wo
Buffer Size (pages)

—
28

$S=05

¥ T T
ke

Buffer Sizs (pages)

ik

40 tuples/page
45 ‘

Disk /0 (pages)

L

Dlsk 1/0 (pages) ‘,

. ﬁlsk 1/0 (pages) . ?

CN P — VHN

90 ~
804
o iy
-
e]
o
<
<
$0- =
=)
504
47 T T T : T .
e 23 30 75 wo 125 150
: Buffer Size (paghs)
1501)
. 7
L SS = 005
10
70 * -
L)
. -
[=]
Q,
. £
_g
=
100 a
0
50
70 T T] v S .
0 23 %0 s w0 2y 130
Butfer Size {pcges)
300) -
SS =03
250 -
200 ’ \ -
»
[]
o
o
=
o
ol >
=
=
\! \&\
m-
~__.
354 T T T T T 3
s »» 3 B we DY B
. Butfer Size {poges)

Fig. 4-9 JS = 0.0001 and Page

00

&80

55 = 0.005

[14]

20~

180~ -

120 -

80~

T - T T L T
25 30 73 100 123 150
Buffer Size (pages)

SS =041

-

(1]

400

3504

3604

E ‘

2004

150

T T T T T
28 sn 7% wo ws 1m0
Buffer Size (poges)

., S$=05

73 0 3 =e

3 0
Buffer Size (pogss) -

= 40 tuples/page

Let us first consider the curves when the page size ‘is 20 uples per page andi the three base

- relations up, flat, and down are thus each 50 pages i1 size. The following observations are made

_based on the plots of Fig. 4-4, Fig. 45, and Fig 4-6.

I. © The CN eurve is always below the other two curves for all buffer sizes, showing that thex'
CN algorithm outperformed the other two algorid.rms‘ in all the situations that were
considered in the experiments. |

2. The HN and MS curves cross over in all plots except for two plots in Fig. 4-4 with mgh
IJS and SS values. The MS curve starts high, and moves below the HN curyes as the
buffer size mcreases '

3. For each JS value, ‘the MS 4nd HN curves cross over at higher buffer ‘sizes as the SS -

" value increases. Whea JS is 0.001‘ (Fig. 4~4 the highest value) the two curves never Cross
for the two highest SS vaiues (i.e.-0.300 and 0.50G).

4. For graphs with‘ low SS values, MS -and CN have similar curves even though MS starts at
“a higher point on the left As SS values increase, HN and CN curves become similar, -and
in some caées. parallel to each other. a |

These observations lead to the following interpretations: ° . . —

1. The MS algorithm has gdod disk 1/O performances (in the sense of being close to the CN
algorithm) when the buffer size is llarge arrd the SS values are low. When the data volume

..handled by the algorithm .increases .(the combined effect of high SS and JS values), the disk‘
170 performance of the MS algorithm deteriorates rapidlv

2. The drsk 170 performance of the HN algorithm does not respond to large buffer size
increases as drastically as the other two algorithms. With a° hlgh data volume the
sub—-optimal HN performance barely improves when the already large buffer size (i.e. 75

pages in the buffer compared to 50 pages for each base relation.) is doubled to 150 oages.

The aléorithms behave in much the same way when'the page size is increased w0 40 tuples per '
page {Fig. 4-7 1o Fig. 4-9). In fact they behave as if the page size were only 720 tuples per
page and the buffer size were halved. The only difference is that all three curves converge to the
same point when the buffer is 150 pages and the page size is 40 tupleé. This is because, for

these buffer and page sizes, the buffer is large enough to hold all the data and index pages:

required for the entire, execuhon In this case, all* three algomhms requue 1he nnmnlgn”nmnbcr
of disk 1/0s; that is the numbet required 0 bring the three base relations into the buffer.
Consequently, we will xgnoxe the page size parameter for the rest of this discussion, and treat the

page size as a constant value' of 20 tuples per page, unless stated othermse
44 Analysis | 7 '

The simulation results showed that the disk 17O performance of all the algorithms improves aé
the buffer size increases. This result is not surprising, as conventional wisdom tells us that the
larger the buffer is, the less disk taffic there will be. The interesting question, how_evcr; is how

doé each of the three algorithms react tb the size of the buffer? It is obvious from the graphs

that not all the algorithms react in the samé way to the increase in buffer size. To ansv&cr this

question, we identify two factors thal may affect the disk 1/0 performance of cach algorithm.
These two factors are related to ti€ amount of data that the algorithm has to handle and how
this data is processed. To this end, we examine the working set and the relation reference patterr

of each algorithm. These two factors are described in the following two subsections.

5 - * +

44.1 Working Set

We define two different concepts’ of working set: global working set (WS-G) and local workm’g
set (WS-L). The global working set includes all index and dawa pages of all basc and

. . . g) . » .
intermediate relations generated throughout the whole execution process. A buffer size as large as

or larger than the WS-G will never cause anv additional disk 1/0s over and above the minimum,

since each relation needs to be read once. The local working set refers LO the index and data
pages of the base and mwrmedlate relauons that are required for processing a certain part ol the
algorithm. As described in Secuon 2.5, each of the three algorithms proceeds In iterations (stages),
which may be stage- first nerauom as in CN or level- first uerauons as in HN, or.a combination
of the two as in MS. Thus, the WS~1. for each algorithm will be dlfferem_ The size of WS-1.

'1mp0rram because it indicates, roughiy, the buffer requirement for each 1Lerau0n m each algorithm.
The Maximum Buffer Requirement (MBR) is defined to be the ‘op!.ima} size of the buffer such
that anv increass in it will not §tie1'd"bener disk 170 perforrnanée. The MBR of an algorithm may
be less than the size of us WS~G. For example, if each relanon 1s accessed only once in

succession, the MBR for this aigorithm is roughiy 50 pages (pius space for intermediate and index

%

/

/. ‘ , \
elations) while the WS-G size will exceed 150 pages. On the other hand, if all three relations -
/are accessed once in each iteration, the MBR is roughly eqmvalent to the WS-G size. 7T71er7e?oire o
/ MBR is more suxnable for the purpose of allomung buffer space for the algonthms and WS-G is
// not analysed We will now consider the WS-L for each algonthm Recall that intermediate

/ relauons that are no longer requn'ed for further processing are released Immedmtely

/ 7 L CN

/ : There are three iterations: Up-stage, »-P’lat—stage and Down-stage, in the CN algorithm. Each
stage involves the base Telation bearing the same name. and a number of intermediate
~relatons. In the Up-stage and Flat-stage iterations, one set of intermediate r_elations is
non—dispbsable because it is required for the mnext stage of processing. In the final
Down—stage each of the intermediate relations is released immediately after being processed.
The size of the intermediate relatmns (i.e. the Counung sets) created during the Up—stage
A depends onrthe SS values. The size of the intermediate relations created during the
Hat——smge»depeﬁds on the size of the counting sets and the JS values. These imermediate
relations are utilized during the Down—stage. Thus the WS-L at_each stage contains one of |
the base Telations and a number of intermediate relatons. This means that the maximum -
buffer requirement for each stage is roughly the size of the base relation (which is 50
pages when t,he page sileA is 20 tuples/page and 25 pages when the page size is 40
‘tupleSL/page) plué the size of the intermediate relations. The index tables for the various
join and select operau'oﬁs also take up some—buffer space, but for 50 or 25 pages of the

base relations, the index tables take up only about 2 to 6 pages, and hence will be ignored.

2 HN

The WS-L in the HN algorithm is quite different from that of the CN algorithm, because
of the different stucture of the wo algorithms. Unlike the CN algorithm, the HN
aigorithm employs 2 level-first iteration. This means that all three base relations are either
entirely or paniajiybinvolved during each iteration. In oﬁ specivﬁc implementation,,the
WS-L of HN an even "¢ diﬁereht at the diffoereﬁt iteratons. In the first iteration, the
WS-L 'mvolveé the three enure base relations. This is implememation—speciﬁc. as we

guited index tables 1w be bduilt for each join operation, and the construction of an index

45

v

table for a relaton requires all the data pages of that relation w0 be brought into the

buffer. Since all three base relations will: be joined in tum during the first iteration, the
WS-L for this iteration contains at least the three entir; base relétjons. The ‘impacts of this
particular aspect of the implementation will be discussed in ‘chapter .S. On top of this. thé
'WS‘—L of the first iteration includes all Vthe intermediate r_elau'ohs ’generatéd‘ during the
various operations plus the wavefront relation (created by joining a selection of the réléuon
up with itself) that is needed for the mnext level of processing. For ‘the éubscquem iterations,
it is difficuit to predict the WS—L because it depends on the number of data pages pointed
to by the index tables during each join operation. The ma)umum WS-L is of course all
three base relations pius'some intermediate relations, but the acfual buffer space requ.irement
at each of the second to the fifth levels depends significantly on the SS and JS valucS;
’whlich determine the number of data pages of each base relaton which will be needed and-

the size of the intermediate relations generated.

MS

The MS algorithm is different from the other two algorithms .in. that it uses both the
stage—first and level-first iteration methods. The ‘stag‘e—ﬂrst iteration Trequires the following

pre—processing: - .

a. generation of the magic set,
b. join of the magic set with the up -relation, (i.e. magicup) and

C. joir of the magic set with the flar relation (i.e. magicflat).

"We classify (a) and (b) as :Up—’sya,ge processing an'd_ (c) as part of the Fla&stagc processing.
. After (a) and (b), the . up and flat relations are no longer Ineedédr as they are replaced by
magicu:and magicfiat, respectively. The WS-L for the Up-stage porLiqn /involves' the up
relation and the magic set, which is the intermediate relation .« created and passed on to the.

Hal—éiage portion. The size of the magic set is determined entrely by the SS values.

After the pre-processing, there are five iterations (levels) of processing invblving two
intermediate relations, magicup at all levels and magicflar at the first iteration, and the base

relau‘onr down. The size of the two intermediate relations isv determined by the JS and SS
. -

‘valucs At each levcl i, there is one join between magzcup a.nd magzcﬂal (magzcﬂato is

| magicflat), whxch varies in size from one level to another. Due to our 1mp1ementauon
idiosyncrasies, one index table may have to be bmlt at each ueraﬁon as the varymg,
intermediate relaﬁon ‘may - shrink in size from being larger than t.he fixed mtermedlate
relation (magicup) 10 bemg smaller than it The same thing is true also for the join
between, the join result of these: two mtermedlate relations and the down relation. For a
large magic set (i.e. high SS and JS values) the intermediate relations can be larger than
the base relauons Thus, it is very difficult to predict even the maximum buffcr
requirement 6f the iteration when the JS and SS values are ;high. For small data volumes,
. the buffey/ requirement at iteration i is approximately equél to the size of the two
imennedféte relations (magicup and magicﬂatl-) and the down relation plus some of the

other intermediate relations generated along the way.
//’

In this seéﬁon, we have defined the concepts of the global working set and the Jocal working set
The dC}{]ZYV;T.iOH of the local working set of the three algorithms has provided us with some
mmu,v’é, although not precise, indications of the buffer requirement of the three algorithms. The
locaJ working set of all three algorithms depends, to a certain extent, on the values of SS and 1S.
In order to gain a better understanding of the buffer requirements of the algorithms, these two

variables JS and SS are considered in the next section.
4.4.2 Relation Reference Pattern

The working set analysis described in the last ‘section deals” with how each of the algorithms
hendles the ‘_da_la it has ‘;o process. We now consider the amount of data that each al‘gdrithm has
to handle during the execution. It is obvious ihat we are dealing with ‘quite cdmplex algoritl{ms.
However, a simplified model of execution of each aigorithm is sufficient to show the effects of
daia volume on its disk 1/O performance. Thus, a simplified model was developed to show the
relation reference pattern of each’ algonthm Usmg this model, we are able to show the sequence”‘
of different relations bemg accessed in various relauonal database Operanons _throughout the °
execution of an algorithm. We are also able to quanufy the number of data pages that may be
accessed from each relation. According to the results of some p;eliminafy test runs, we found that
most of the disk 1/0s are incurred by three relational operations: jin, select, and dsz Thus, only

these three operau‘oyns are considered in the model. Notice that the dzﬁ' Opefation is only used in

+*

the MS aigorithm. The obJecuvc of this model is to estimate the MBR of the three algonthms
Our simple model has the followmg charactensues ') : S e """';"7_'7

1. Only dam pages of base relations are considered. The index pagcsA aré not considered
because while they account for a lﬁ:ge percentage of the page 1/0s, they only generate 5%
to 30% of disk I/Os, as shown in Fig 4-1. Thus the probability that a request for an .
index page will cause a disk 1/0 is very low _iﬁ comparison 10 a iequest for a data page.’
Imermediate relations which are smgn because they are only single column -Telations (i.e.
arity = 1), are ao% considered. The only intennediéié relations that are considered ére thus
magicup and magicflat, which are created during the execution of the MS algorithm. »
2. When a 'Select is performed on a relation, it is aséumed that the entire relation is read.
This means that all the data pages of a relation will be-processéd at least once.- In ouf
“ notation, the select operation is represented by R, where R is the relation in question,
3. When é joiri is performed, if an index does not already exist for the larger relation, onc
.will be built for it. The in&ex construction operation is represented by R, where R is the
- relation in question. Like the select operation, this operation fcquires all ihc data pagés of
the relation to be read once. | ‘ |
4, When a join is'performed- using- an index to the larger relation, the number of page
Tequests ig equal to the number of tuples in the smaller rélau‘on. In our notation, the
number of page accesses is tepresented by x(R) where x is the (maximum) number of
requests for data pages of R. |
5. When a diff is performed on relangn A and B, relauon A is usually quite Smd“ Thﬁ.s, the
Anumber of page requests for this operation is assumed to be the number of data pages of

the second relation B and it is denoted as B.

Based on the above model, we now show for each algorithm the reference paﬁe-rn of the basc
and mtermedlate relations. For sunphc;ty we assume ‘that JS = 0.001. With mis Jjoin selchVi)ly
Lhe size of the domain for the join- artnbmes of the two relations is 1000.° If one of the Wwo
relauons involved in the join operation has 1000 tuples (i.e. as dp all the base l‘rclauons ‘in this

study), -and there exists an index for this 1elation, then for each tuple in the other relation, there

'This aspect of the page 1/0 and disk 1/0 is discussed in chapter S.

"The relatonship between the join selecuvity and. the domam of the join attributes is
described in detwil in Appenchx B.

52

e

will be on the average one matching tuple in the base Telation. Thus, if the smaller relation has -

n tuples, there will be, on average n pages of the base reIation requested in the join operation.
The extension of the above result to different JS va]ues should be straightforward, a]though the -
expressmn may be much more comphmtecL The value of v_anable SS multiplied by 1000 is
represented by the symbol ss. After the select operation of the constant VECIOT a. ap_pﬁed to the -
base relation up, the result Telation has ss‘tuples. Given the join selectivity of 0.001, ‘when the
result relation’v from the select eperation is j'oined wu.h any base relation, the resulting reletion Will
- again have ss tuples. The constant 5 will appear frequently inva relation referehee pattern since
there are 5 iterations to consider. The maximum buffer requirement (MBR) is estimated by the
maximum number of page requests between two occurrences of the same relation in the relation

reference pattern. The reference patiern and the MBR of the three ajgorithms are shown in the

following.
L CN
up —=> up -> 5ss(up) —> ‘ 7 Up-stage
flat —> Sss(flat) > , ' : Flat—stage
down —> Sss(down) ‘ Down-stage

. The up-stage processing.’stans with a select operation on the relatiox} up, folloveed by -an
index construction on the same relation and then 5 join operations. 'I:his corresponds to the
derivation of -the counting sets at all 5 levels. In the Flat-stage, there is the 'index
construction on the far relation and 5 join operations with the same relations. Similarly, the
Down-stage consists of an index conmstruction on the ‘down relation and 5 join operations.
.Tne maximum number of data page requests berweenl‘two occurrences of Lhe same Trelation
in the atove reference pattern is 50 pages, which is the size of eaeh base relation.
Therefore, the MBR of CN is 50 pages. With this buffer size, each page of the three base

relations is read once and only once.

"

N

up —> flat -> ss(flat) > down —> ss(down) -> up ~> ssfup) First level
ssfar) ~> 2ss@own) ~> ssfup) —> ' | | - Second level
ss(faz} => 3ss@own) > ss(up) -> ‘ » o " Third level
ss(flar) > 4ss@down) => ss(p) ~> ' Fourth level
ss(flat) —> Sss@own) . | S Fifih level

i

, ’I'he sequence of operauons in the ﬁrst level is: a select operation on relation up, an index

constructxon on. relation ﬂat a join operation on relation faf, an index construction on

~ relation down, a join operation with relation down, an index construction on relaton up, and

then a join. operation with relation up. Each of the second w Lhe filth levels involves &
join operation with: relauon flat, a number of join operations wuh down, and a Jom
operation W1th rela\hbn up ‘In order to provide enough buffer memory so Lha!. all LhR:L 7
base relg(tions need o be Ietneved into the buffer only once, the buffer must be large
enou/gh o hold all pages requeste;d berween two occurrences of any of the three base

rg}%’iﬁons. Since each base relation contains 50 pagés, the MBR of HN is as least 150 pages.

“Additional buffer requirements for index pages and other intermediate relations are ignored

in ‘this model.

In the following reference pattern, the derived intermediate Telation at level i is represented

- as magz'cﬂati (where magicflat, is magicflat) and its size is Tepresented as l;

up > up -> Sssup) —> ' - Up-stage
Sssfup) —> compule magicup
flat —> Sss(flat) —> ’ ' compute magicflal

magicup —-> ‘mdgicﬂato ~> I, (magicup) —l\ﬁ,down -> Sss(down) -> magicflat, -> First level

magicflat, -> I (magicup) -> Sss(down) i magicflat, -> ‘ ‘ Second level
magicfla, -> I,(magicup) ->'5ss(down) -> magicflal, —> Third tevel
magicflat, -> I fmagicup) —> Sssdown) -> magicflat, —> Popnh level
magicflat, -> I (magicup) -> Sss(down) —> magicflat, —> magicflat, - Fifth ievel

&

The first three steps correspond 10’ t.he pre-processing part of t.he MS algonthm described in -

section 4.1 of this chapter In the Up—stage part, the magtc set is derived by first. -
pcrformmg a se]m operation on up, then building an index for the same relation and then
performing 5 join operations with up. In the next two steps, the magicup and magicflat
relations are derived. In the above reference ﬁattem we assume that the magic set contains |
3ss elerﬁems, with a maximum value of 1000 (ie. the maximum size of the up relation).
For tractability, we also assume magicup is larger than the intermediate relation magi(:ﬂati,
S0 t.hat thev index for the join between 't.he twWo felation_ is on magicup. However, in the
“actual implementation the index may not aJw;ys be built on the magicup relation. This
aspect of the MS algorithm is discussed in the next chapter.

'The first level starts with an\i/ndex construétion on the relation magicup. The join operation
between magicup and magicflat, is reﬁresented by the terms mag»icﬂatov -> Io(magicup) in
the first level, u}ﬂme the join operations in HN and CN Both of the relations involved in
this join are shown in the pattem This is béczuse, as described earlier as a charz;cten‘sﬁc
of the model these two intermediate relations are both binary relations. Thus, data pag'e
requests on these two relations are comparable to the page requests on base relanons In
- the rest of the first level, there is an index construction on -relation down, a join - w1th this
relation, and. then a dzjf operation involving magicfiat, at the end. In each of the second to

the ﬁfth levels, there is a Jom operation of magzcﬂat] w1th magzcup a join operauon_

with down, and a dlfference operauon with magzcﬂat at the end. The magzcﬂatl-_] .

relation al level i is the result of the previous level of processing.

: L : :
The reference pattern of MS is more complex than that of HN and CN, primarily because

of all the intermediate relations at each level. As mentoned earlier, since the page reduests
- of these mtermedlate relauons cannot be 1gnored it is more dlfﬁcult to estimate the MBR
of the MS anomhrn A conservative estimate of the MBR, “based on the above reference
pauem is the total size of magicup, magzcﬂaz magzcﬂat +] and down. While the maxxmum
size ‘of magicup and magicflat, (i.e. magicflat) is 50 pages, the maximum size of the other
magicflat; (i > 0) is difficult w0 estimate. For small ss values, in general, the MBR"is not
much more than 50 pages, since magicup, magicflat;, and mag:cﬂatlﬂ will be quite- small
and the size of down is the dominant factor. For large SS values, however, the MBR oould'

well exceed 150 pages.

55

4.5 Explanation of Experi 'gggg;k;g Its

We -are now.'reag? 10 explain the differences in the disk 1/0 performances of the three > -

- algorithms based on the analysié of+- the working set and the relation reference pattc:ﬁ from the
last section. In genéral CN has a much smaller MBR than the other wo- algorithms. The MBR

of HN is larger than that’ of CN, but it is more predxctable than that of the MS algorithm. - ‘

When the actual buffer sue ‘is large enough (e.g:; 150 pages in the buffcr when the page size 1§
40 “tuples), the disk I/O performance of all three algorithms is the same. (see an 4-7, Fig. 4—8
.and Flg 4-9) The disk I/0 performance is quite-different when the buffer is not large enough '

fOI all three relauons In the followmg d1scuss1on we w1ll examine palrs of algomhms 10 explam

the reasons for the differences in- r.hcu 170 performance s

1. CN s HN

N

CN has a much smaller MBR r.h_an'HN,’ which mak'é?il outperform HN by a wide margin
when the actual buffer size is greater than the MBR of CN but less than that of HN. This

~ explains why HN always performs poorly in companson wnh CN when Lhe buffer size is
either 75 pages or 150 pages (20 tuples/page) It should be noted that a.lthough we have

. predicted that the MBR of CN is 50 pages, it does not reach. its Tinimal disk 170 untl
the buffer is 75 pages. This is because -the referemmel does not consider the
space occupied by index pages and some other intermediate relations. 1n the actual
simulation, therefore, more than 50 pages are actuall‘\y required by the CN algorithm. Whéh
the buffer is 75 pages or 150 pages,. the disk 1/0s of CN are not _;eribusly affected becausc
these buffer sizes are well. beyond the MBR of CN.

e

When the buffer is smaller than the('MBR of both CN and HN, the two algorithms should
perform quite similarly because the two algorithms have about the same -number of page
requests if the difference in the reference pattern is ignored. They do not perform
identically, however, and this is due to three minor differences between the two algorithms

which dé not show up in the reference pagern. They are:

a. removal of duph'cates during the down-stage by CN,

b. reference locality, .

56

[

c. the numbcr"gr intermediate relations., R

(a) has been cited by a few researchers as the main reason for the performance dlfference
of CN and HN (e.g [23]) Howeve;r, the d1fference persists even for small SS values wmch
produce few duplicates from one level to- the next. For larger SS values, it is difficult to,
attribute the large performance differences in the Down-stage entirely to the . duplimte
removal. Our experiments show that (b) and (c) also contribute to the difference in the
actual number of page requests between the two algo;imms. CN has an edge over HN with
regard to reference loeelity since the accesses. to ;he base relations are lomlized in CN.
Also, our present implementation of HN recjuires a larger number of- intermediate relations
than CN. HN employs roughly O(?*) intermediate relatjonvs; in ‘comparison io O() for CN,
where n is the depth of recursion (ie. 5 in thig/case). Since “each intermediate relations
incurs extra page requests, the difference betwéen the ‘disk 1/0s of the two algonthms

becomes more apparent when the buffer size is,small.

MS vs HN

As mentioned earlier, the MBR of MS is more difﬁcult"to;predict than that of the other
two algorithms. The: MBR of MS depends very ‘much on the JS and SS values, whereas the
MBR of HN is always close to the total size of the three base relations. For low JS .

and/or SS values, magicup and magzcﬂaz will be quite ‘small in size, so the MBR of MS
will be quite small. This explains why MS has good performance, compared to HN, for low
values of JS and SS when the bWe. For laxger JS and SvS values (i.e when
the data volume is hgh), MS o ave a larger MBR than HN, which explains why their
performance curveWoss when JS = 0001' ahd SS = 0.300 and 0.500. The. shifting

"ng/mms from left to right (i.e. in the direction of mcreased buffer size) is a

R clear indication of the change in the MBR of MS. When the data volume is very low, the

MBR of MS is very close 1o that of CN. Thus, MS ourperfonns HN at a small buffer size
because the MBR of HN'is much larger than that of MS. As the data volume .increases,
the MBR of MS increases but it may. well stil be smaller than the MBR of HN.
Therefore, MS owfperforms HN at a larger buffer size. Fina.lly, when the data volume is
very high, the MBR of MS will exceed the MBR of HN, and the two curves never cTosS

under these circumstances. .

57

We now. consider the performance comparison between MS and HN when the buffer size is

smaller than the MBR of eu:her In general for small buffer size, the page 170s of the

algorithms more or less detenmne the d1sk 170 perforrnance It is clear from the Lc(cmnc{ o

pattem that MS generates more page I/Os then either HN and CN for all values of IS .
and SS. Thus, it is expected that HN should outperform MS when the buffer size is small.
This is indeed the case. The curves show that when the buffer size is smaller than the
MBR- of both MS and HN, the ‘MS curve is always above the HN curves. The poor -
performance of MS when the buffer size i$ smaller than its MBR is also due to the fact
that it- has a much larger WS-L than HN in the 2nd to the 5th iteratj(;h levels. This
means that when the data volume is high, the difference in disk 1/0s between HN and MS
is proportionally much larger tl}an the difference in page 1/0s. —~

There are some situations in which HN does not perform as well as MS when the buﬂ'c.rv
size is smaller than thé MBR of either of them. Notice that the cross over point in the
curves of SS = 0.001 and 0.005 (Fig. 4-4) occurs befére the buffer size reaches 25 pages,
which is smaller than the MBR of MS at that mhﬁgmaﬁon. This means that MS is better
| than HN for these SS values and a buffer size of 25 pages,'because when SS is very small,
the disk 1I70s of both algorithms are generated mainly at the beginning of the execution
(i.e. the first level in HN and the pre-processing parts of MS.) since the relations involved
.dunng the latter parts of the cxecutxon (i.e. form the 2nd to the 5th levels) are quite small.
In sych situations, MS will haye a better,re_fereqce locality than HN because the accesses to
the base relaﬁons are localized. This can be seen by comparing thé relation’ reference
pattern of HN at the first level with that of MS during pie—processing. As a result of Lhis
localization of accesses, the disk 1/0s _gef)eratéd by MS will then be less than that of the
HN algorithm. _ .

.

¢

‘ The. above analysis shows that the CN algorithm is generally the best algorithm with . respect to

disk I/0 performance because it has the ‘smallest and most predictable MBR of the three

- algorithms. While the performance of HN is not as geod as that of CN, it is more stable than

MS because the MBR of MS varies significandy according to the data volume. An interesting

question that remains is "Is CN always better than any other algorithm, with respect to disk 170

performance?” In the next section, this question is addressed with two artifically. constructed

databases adapted from [2).

58

’

46 Vylnerability of CN

This section addresses the unestion of whether CN always performs better than the other two
algorithms with ‘Tespect to disk 1/0s. It is shown in [2] that for some specific databases, CN' does
perform wo;se than HN and MS in terms of time complexity. We suspect that for Some specific
databases CN may well have poorer ‘disk 170 performance than MS and HN, but. for dtfferent
reasons As we have shown, CN and HN gccess the tluee base relations with very different
patterns, Wwith MS somewhat in between. CN accesses each relation in turn, one at each level
(stage) In contrast, HN access all three relations at each level. Our implementation,” while it
llrmts the number of 1terauons o 5 seems to benefit CN more than the other algorithms, no

51gmﬁcant change 1n the performance was observed when the depth was increased L It is
difficult - to generate a database randomly that can make CN perform poorly, so we have adapted
wo sample databases from [2] to enable us to focus on parucular aspects of the performance of .
the three algorithms. The two sample datahases and the simulation results are described in the

following sections.
4.6.1 Sample Database I

The first sample database contains the following data in the three base relations up, flat and |

down, with n proportional to the number of tuples in the up and down relations.

up | _(ai’ai-'-l)’ I<=i<n,
(al.ai), 3<=i<=n.
_ Sflat (an,b n')

down (beFl)’ 2<=i<-=!L

In the following diagram, it helps to see up as "going up": if up(ab) then we place b above a .
and draw an arc from a to b. We see flar as going sideways, if flaz(a,b), we place b to the right
of a and draw the arc a —> b. Finally, down Iepresents arcs that go down: when down(a,b), we
place ‘b below a and have an arc @ —> b. For the case of n=S5, the sample database can be
represented as shown in Fig. 4-10. The dashed lines illustrate facts that will eventually be&»
i mferred : . ' , /

v/

59

-<

Fig. 4-10 Sample datibase 1 for n = 5.

e
-

In the simulation, n is 25, which means that Lhé processing will continue to depth 25. The lincar
recursive rules in Section 2.1 are applied to this database with the query
? — r@,X)

In this and the next sample database, each page contains. 20 -tuples.

It i€ shown in [2] that MS runs in O(n) time against this database while both CN and HN Tun
in ((n’) time because in computing the transitive closure of the up'relatjon, both CN and HN

re—derive a large number of common data at each -iteration.

The outcome of our simulation of the three algorithms against this database, measured in terms of

disk 170s, is shown. in Fig. 4-11. As with the randomly generated databasc, HN and MS. do not
perform as well as CN for the small buffer size. As the buffer size increases, MS ouipcrf‘orms
the other two for the same reason as siated above. The most interesting observation is thal as the
buffe_r size increases to approximately 11 pages(, HN which suffers from the samec proble‘m‘as CN,
reaches its optimal perfonnance.v This ‘is the point at which all base relations being accessed at
gach iteration canebe accommodated by the buffer. CN, on the pther hand, has 1o storc all
lemporary relations derived at all 25 levels, so its ma)umum buﬂép requirement is much larger
than 11 pages. As a resul, CN will ndt respbnd to the increase in buffer size unul it MBR,

which is much larger than that of HN or MS in this case, is reached.

400
3505&
L
3004\
[1
& 2501 i
o ~ \T
(9]
o]
Z
o 200
~
X
Kz
5 150
100 . v
i Legend
A HN
50 - X CN
< 0 MS
B ComEociqd CN
04—--—-
4

Buffer Size (pcges)

Fig 4-11 Disk 170 performance on Sample Database I

61

4.6.2 Sample Database I — | | | / :
The second sampie database\is similar to the ﬁrsbeone. The daw in the three b%c relations up:
flat and down is defined as follows. ™ ' = ,

up @;A54)]<=i<r_1:
JSlat (ai,bt-) X=j<=n,)
down (bybyy) XK=i<=n -

Using the same notation for the tuples in the base relations, this sample database‘ is rcprésemcd '

in Fig. 4-12 for n = 5.

T —‘*——-) bs
< & - b,

a —h‘)bl

A l

a *;bl

& -

2, l

Fig. 4-12 Sample database Il for n = S

-

The linear recursive rules and the query of the last sample database ‘ are appltcd 10 this databasc,
It is shown in [2] that against this sample database, both CN and MS run in Xn) time¢ while
HN runs in Xn’) ume. This is due to the removal of duplicated tuples by CN and MS during

the processing of the down relation.

It tums out from our simulaton that MS is the best algorithm of the three o use in this
database (see Fig. 4-13). (In fact, the optimal algorithm for.this database is Semi~Naive which
terminates after the first iteration.) The performances of HNV and CN seem 10 be identical to that

“~

" for sample database 1. This, however, is due o the fact that inv our impiementation, the

62

intermediate relation generated by CN at each iteration is stored. in a séparat& page 10 maintain

@ts'unary' arity. In this sample datgbase, each intermediate relation generated by CI¥ at each level
cénsist.s of only one tuple, and all of these partially filled pages accumulated from 25 levels of.
iteration lhave to _'belr stOred. ~Thus -it is internal page jragmentation tﬁat muses' the poor
performance of CN in this :@arrip;e ‘ dambase. If all the intermediate relations are compacted
together 10 produce a single relat.iqn of antv 2 (an extra column is needed o record the level
.Vnumbcr, of each wple), CN (called the Compacted CN in Fig. 4-13) outpe:foi‘ins HN as it no
longer suffers from internal fragméntation _This technique does mot imprsve the bcﬁo@m@ of
CN in sample database I, because the poor performance of CN there is due to the large number

of data re—derived at each level. ’ ' . ~

7

300
- 4
250
3
200
Fovn
vi
Qv
o
o
a.
" 150
(@) .
>~
&
(o) %«LX_‘ SV
1004 ™
Legend
A HN
50+ “,
XeN_
oM
i ® Compacted CN.
o T T 5 S v
‘4 6 8 10 12
Buffer Size (pages)
™~

Fig. 4-13 Disk [/O performance on Sample Database II

. " CHAPTER 5
. IMPLEMENTATIONAL ISSUES
Since this research concerns measurement of /low—level' disk 1/0s, we must rely on rspecific
implementau'ons to produce performance data. It is 1mportant to consider how our specific
» _1mp1ementauons afTect the disk 170 measurements so that we can assess the degree of dependence \
of our measurements on the srmulatron 1tself As well, an 1mplementor ‘of such a database may
learn useful xmplementauon techniques that will lead to better disk 1/0 performance. In - this
'chapter, we will discuss, retrospectively, ‘what we have learned from the implementation of the '
simulation, and alternative methods "are suggested for future work. Four general iss,uesh will kbe,'
addressed: the costs of strategies of constructing and accessing’innex tables of data reiai'ions, the
impacts of internal page fragmentauon',- the management of the buffer pages, and the sequencing

of relatuonal operations.

5.1 Constructing and Accessing Index 'Iimles

Mosr perfennance studies of relational query processing assume the availability of index ral_)les of
the relations to be joined, and ignore the costs of building Lrthe index tables. This assumption may
not be jusu‘ﬁed in recursive query processing for two”feasonsr’ First, several relations must typically
ke joined in processing a recursi\{e query, and the costs of building the index tables for those
relaions can be a major part of the final I/0 cost. Second, some of the index tables. are for‘
intermediate relations which are generated during processing of the query, and it iS not reasonable
‘to assume that they already exist In our implernentation, the index tables are not assumed to be
readily available, and the c'ostsv of building.mem are included in the measurement of the final 1/0

cosls.

To construct an: mdex lable a cerain number of page accesses are requrred to read the data pages
of the relahon on which the index table is built In general, it is difficult to predict how many
of those page accesses will generate disk retrievals- without considering the size of the buffer.
However, in the worst case (the data relation is not in the buffer), the number of disk retrievals’
would pe the number of 1/Q operaticns required to bring all the data pages of the relatipn into

the buffer. In the algorithms of CN and HN, since index tables are required only for the three

65

base relations up, flat, and down, the extra disk I/Os incurred. in the worst case, are the number
of diek retrievals required- o bring all the data pages of‘lthe three relatioﬁs- into the butTer.'
Notice that in”opr implementation we have not imp%ememed‘ the reading/writing of more -than one
pége in one disk 'I/Q operation direci_ly. Rather, the size of a page is va}icd to‘,simula‘te the .
effect of diffeiem volumes of data 1o be ransferred between the buffer and the disk. As
discussed in Secdon 4.2, this paruculaJ aspect of the system does not affect the dlak 170
pe ce of the three algorithms sagmﬁmntly ‘

Construcungi index tables with the MS algomhm however, is more complex because index tables

are reqmred' T intermediate relations which are generated at varnous pomls during the execution,

as well as for the base relations. The fact that some of the intermediate relations may reside in

the buffer whil‘e e of them may be swapped out and be residing on the disk makes it ever °
more difﬁc%predxct the number of disk retrievals required to construct mdex lables for the
MS algorithm. We can expect, in general, that if the intermediate relations are small, (ie. JS and
SS are low), they will remain in the buffer and the requirea number of disk retrievals, in the
worst case, will be close to the total number of data pages of the three base relations, as in the -
cases of HN and CN If the intermedjate relations are large or numérous, however, chances are

that some of the intermediate relations will be swapped out from the buffer, making it difficult 16

estimate the requiredl number of disk retrievals.

Another reason for the difficulty of esu‘mating‘ the disk [/0 activiies needed for the MS.
algorithm comes from the fact that our imp.lementafjon adopted the conventional m‘e[hod of always
building an mdex table for the larger of two relatons 10 be joined, creatmg an unpredictable
pattern of index table constructions. As described in Secuon 442, one of the wwo mtermedxau
relauons to be joined at each iteration varies in-size. If it is the larger onc that ehahg.'e:,"‘a
different index table may have to be built at each iteration. This can trigger a considerablc
humber of disk 1/0s when the intermediate relations cdnsume_a large poru'ori of the buffer,
Chooeing to. construct an index table on the intermediate relation which does not vary in size at
each iteration would avoid the problem of creating different index tables from iteration to
iteration. This was nc;t' done because this pareicular effect of index construction for the MS
algorithm was not realized until the !implementau'on of the simulation has been completed. The
problem of_ estimating .the costs of constructing the index tables for the MS algorithm is beyond

the scope of this thesis and future work is required. However, in the mode! of relation reference

66 /

~

pattern described ip Section 44.2, it is assumed that the index table is constructed on the

particular intermediate relation which is stable in size. ' o ' \ .

Another bimere'sting observation is that there is a noﬁceggle difference between the numbers of
page 1/70s and disk 1/0s during the creation and accessing of the index tables. For every tuple
of the relation, an index entry is created and inserted into the‘correel page of the index table
The p‘ocess of insertion, which involves the Uaversal of the . partially bu11t mdex tables and the ‘
writing of the new entry to a particular index page, can trigger a large number of page 1/0s,
because several PageRead operations and a PageWnte operauon are reqmred Even if an entry
happens 10 .be inserted in the same index page as the previous one, another. PageRead is required
because that particular index -page was changed by the previous insertion. On the \other ha.nd,
while the page 1/Os incurred in this process can be Very high, the disk 1/0Os are comparatively
low because the process of inserting entries into the index table is localized, and the chances are
that . most, if not all, of ‘the index pages are stilk in the buffer. This observation further confirms
the belief thét there is indeed a difference between the cost metric of page 1/0s and the cost'

metric of disk 1/0s.

In the current implementap‘on, when a set of tuples hairing the same key is required, as when
retrieving matching tuples for a join operation, the index enn_'y_ of eéch individual tuple ‘.is
retrieved from the index table, and the dawa page which is pointed 1o by the index entry is then
fetched. This method has the drawback that two tuples which are on the same data page- but
whose index enm'es were retrieved separatelv will require two separate data page fetches. A
t’easrble soluuon to this, as briefly mentioned in {12] ‘is to retrieve all the necessary index entries,

me

group mem together and sor them in the: order of the data page " accesses. This will ensure that

5.2 Ilnternal Page Fragmeniation ' | .

each required data page will be fetched only once.

Internal page fragnientat_ion occurs when a data page is occupied by a small number ef tuples and
most of the space on that pageis wasted. - This will cause extra disk 1/Os if the partially filled
;Sages have 10 be wansferred back and forth berween the buffer and the disk. The effect of
fragmentation was discussed with respect 1o the CN algorithm in Section 4.6. Fragmentatjoh occurs

in this algorithm when only a small number of fuples is produced at each leveme number

of iterations is high. As described in the same Secti,oﬁ of Chapter 4, the problem can be rectified — —
by coiﬁpacting all the data on the partially ﬁlledl pages into fewer pages. Then all the pages
~except the last one are full, and the number of pages‘tha_t have tO: be gransferred back and forth
- is reduced. However, cbmpaction as a solutlon is not without }cxtra"- problems. First, the level
number of each tuple must be kept sbmewhere, ‘which will result in more slorage and more
complicated processing. Second, compaction itself is costly. Third, it is difficult to predicl(m.
advance whether compaction cost is justified because it is not possible to predict the ’seriousnéss of

_ the internal fragmentation problem.

Internal page frégrhentaﬁon can also occur in the impleméntation“b&mhe Union opeéﬁon. In ‘Lhc
current implementation, the union of two relatjons, A -and B, is done by appending‘ all the wples
of relation B to relation A. This method has the drawback that each tuple in relation B has 10 ‘
be read and written once and there may be duplicate cdpies of these tuples in the buffer or on
the disk. One way to get around this is simply to establish é logical link between Lhé two
relations A anc; B, without actually physically joining the tables. This method eliminates the cktra
read and write operations and seems io be qui»Lev elegant, but it also suffers from the problem of
intemgl page fragmentation, which occurs when the union of a large number of relations s
required, as when building the magic set in the MS algorithm. If each of the relations contains
only a srﬁall numbe'r of wples, then simply creaﬁng logical links between the relatuons will’ cause
a problem similar w0 that described above for the CN algorithm. There . must be a trade-ofl
between the two mer.hods of implementing the Union operat‘jon,v~ and the relative merits of each

method deserve further investigation.

5.3 Buffer Management

It is shown in [36] that it is ‘imponant for the DBMS and the operaung S)}stem 0 communicate
because the DBMS knows which data pages are required and which can be destroyed, whereas
the ope;ating system uses only a general replacement scheme. In the current implementauon, we
have adopted a very sirﬁple form of communication betu)een the recursive lgorithms and ihe
buffer manager: the FreeSpace command allows the query \algon'thms to inform the buffer
manager whenever a data relation is no longer needed. The buffer manager can then proceed o

free up the space occupied by that relation. While this is a very simple form of communicauon,

6&

some of the prehmmary test Tuns have shown that this command does- ieadtolmprovedﬁhslﬁ 7o
performance with various algorithms. This is mainly because when the space occupied by a uséless
re}aﬁdﬁ is released, ﬁot only does that r"e‘lation not have to be written back © ‘disk.r but it alsor '
v ﬁéovideﬁ space in the buffer for né‘w incoming péges. This technique: of allowing the algorithms tp»
 have direct control over releasing useless relations has facilitated the derivation of the working set

of the algorithms in Section 4.4.1.

Anothcr related issue rega:dmg Lhc man%gement of the. buffer pages is the efﬁc:ency of the
rcplacement policy used by, the buffer manager. The current implementation uses the LRU (Least -
Reccxmy used) strategy. However, as pointed out in [36], the LRU method does not always |
provide good buffer management in a database gnvironment. For example, in the case of
“sequential accesses to pages which will be cydical‘ly referenced, such as ac‘re'ference patterri of‘
page numbers 1,2,3..nl1.23.n, the LRU sn:étegy i1s clearly the worst possible replacement '
algorithm if the buffer is not large enotxgh to hold all n pages. Several researchers are actively
working to formulate better buffer rnanagement techniques (e.g. [9]) in a database environment A
good replacemem policy will not only Drowde berter disk I/O performa.nce but will also reduce

the necessary buffer space of a query processing algonthm

5.4 Sequencine of Relational Qperations o | -

For the sake of simplicity we have not paid much attention to im_provipg 'the disk 1/0Os ;by‘\
arranging’ the execution of relational operations in an op;ima] sequence. To 'optimjze the effects of
locality of reference, relational operation$” which access the same relation should be grouped
together. Let us consider as an example the first level of execution of the HN algorithm, found
in Section 44.2. The current sequence of relational operations ié a selection on the relationup,
followed by a join with the relauon fas, a join with _Lhe relation down, and finally the join with
the relauon up. In this sequence, if the buffer size is not large enough to hold all three of the
relations, the final join will require Lhé swapping in of the relation up after it was ah'eady
swapped out. This problem can be avoxded simply by performing.the join operation with up right
after the selection on it S0 that even 1f the buffer is not large enough to hold all the pages of
the three relations, up will still be in Lhe buffer, and the join operauon with it will not trigger

extra disk 17Os. This usage of relation reference ordering is recommended for practical
I' V - ?

69

implementation of recursive query processing 'algoﬁtllms;, R T

5.5 Summary of Implementational Impacts

- Having discussed the adi/antages and disadvané)ges of . van‘ous irriplememau'on techniques used in
rtl:us study, we now consider their unpacxs on the overall results of ths research For all three
algonthms analysed, indices are built for the three base relations at. various points m time. ThuS‘
our mplementauon decision of creation of indices does not afTect, in general, Lhc comparative
performance of the three algorithms. Of course, in a subtle way, the disk 1/0 performance of an
indjvidual algoritim may be affected because its relation reference pattern may be. altered due to
the creation of indices. In fact, this i:c, one of- the reasons that the ‘pe'rformance of MS has a
-greater variance than those of €N and HN. Index creation ahd accessing _de, however, generatc-a
large number of page 1/0O5 that do not lead tb much disk 1/0 acti/\«i\y./d'ljﬂs i$ one reason why
we segregate indi.ces from base relations in calculating the page IO and disk i/O costs. In fact,
for high dataz~Volumes, different methods of performing join operations, e.g. sorf- merge, would

probably pfove to be more appropriate than indexed join, and further investigation is necessary.

The issue of“internal page\fr_ag.méntation is an example of the importance of properly storing the
intermediate rtelations. This phenomenon, however, only occurs in rare instances and, .therefore, it .
does not affect sigﬁiﬁcanﬂy the comparative performances of the algorithms. For the buffer
management issue, it is clear from the Vdiscussion in Section 3 above, that LRU does not providé
the best buffer managem'ent for the index-nested loop join method. In fact, the ﬁrimiu’vc scheme
of First- In- First~ Out can do as well as the LRU schgrpe in those situatons. However, as all
.three al'gorithrns are executed using the same join ‘met.‘hod and the same buffer replacement policy,
it may be concluded that the overall relative performance of the three aigorithms would not be

changed substanually if a different buffer management policy is used.

Finally, on the issue of optimal sequenciﬁg of relational operauons, it seems thatl il is‘ rather -
algorithmic specific. It is difficult to generalize this idea to all the ezlgorithms. Thus this issue
sh not be a concern of the designers of the algorithm, but rather a system—fine—tuning

cond¢mn of the implementors.

70

7. - CHAPTER 6

- o CONCLUSIONS

a

'I“ms chapter contams a summary of the results of thls study, and presents some suggesuons for)

future research. Recall. that this research presented two objectwes to study the relauonsh1ps

between page 1/0 and disk I/O using some linear recursive query processmg ajgorithms as

examples, and 'to compare the performances of some promising linear ‘recursive query processing »

algorithms at the .disk 1/0 level,

In this research, we have examined the similarities and differences of the two 1/0 cost metrics in

relational database query processing: page 1/0 and disk I/0. The relationships of these two

melrics are Ixsted as follows.

1. While the number of page I/0 requests generally corresponds to the amount of disk traffic,

this correspondence becomes less when the buffer size increases. When large buffer space is
available, it is important to include the disk 1/0 as an additional parameter in the cost
formula of a query processing strategy. Algorithms that behave very similarly when
measured by their page 1/0 activiies may have very different disk i/O performance as
shown in Section 4.1 | |

2. It is important to estimate the maximum buffer requirement (MB‘R) of a query processing

algorithm in order to allocate the proper amount of buffer‘ space to ensure good disk 170

performance of the algorithm. This also ensures that buffer space rtequired for other .

simultaneous acuvmes is not wasted.

T

processing algorithm,, This methodology has at least in this case study proven to be useful.

6.2 Linear Recursive Query Processing Algorithms
The efficiency of three recursive qu’cry processing strategies were evaluated with a s'm of linear
rules from the perspective of their relaﬁve disk 1/0 perfo;mance. A number of interesting

characteristics of the three algorithms were discovered m this study.

11

A simple methodologx 1s developed to estimate the maximum buffer requirement of a query

= NG
e

1. There is a fundamental difference in prooesmg between CN and HN. CN proceeds by

stages (Up Flat and Down) and, for each stage, only one base relauon is accessed and all
necessary relauons are derived and passed on to the next stage. In oonnast. HN ‘proceéds-

relations (up, flat and down) are process combines aspects of both approaches

by iterations (5 iterations altogetherin this study) and for each uerauon all three - base
m
2, Largely because of the above differences, CN has much superior disk 1/0 pertbnnanc(\
because it has a much smaller maximum buffer requirement (MBR) compared to the other -
‘tWo algorithms. . However, if the relations involved are relaﬁve}y ‘small and the 'numb’ét of -
iterations is relatively largve, it‘inay have the worst performance. For HN and MS, the disk
I/0 performance of HN is more prediétable than. Lhat of MS in the sense that the MBR of
HN does not depend on the data volume as much as the MS algomhm does. A
3. - If the size of the query constant (as a vector) is small any of the three algorithms hd\\ '
| smnla: dlSk and page 170 performances (in absolute terms since the charts can be deceiving
as the Y-axis representing the performance does not always starts from 0). This is true for
all buffer sizes and join selectivities. ' 7
4. If the size of the query constant is large, not only'is it important 10 choose th'c right
recursive query algorithm, but it is equally esseritial 10 AchooseA the right strategy for
_ 1mplement1ng low-level operatlons such as relational database operations. | A
5. To decide on the buffer allocation scheme, one has to have a good estimate of the size of
intermediate relations. This has shown to be a difficult task. Also, most of the relevant
works in the literature are conferqed‘ with estimation of the size of a single join of (wo
 relations. However, it wﬁs found- that in recursive queryi processing, the estimation of‘,é\}\u-
. sizes ~of intermediate relations resulting from successive joins of relations is equally

important.

1A close analogy exists in the way a 2-dimensional array is internally® stored in a linear

array. Fortran compilers adopt a column~-first approach while PL/1 compilers adopt a -
row-first approach. ¢ -~
. Y

72

6.3 Suggestions for Futre Research
) & - .
L. In this research we presented the importance of the disk 1/0 'performance in qu’ery'
processing. The ultimate ‘goal is to de"elop new 170 cost analysls ‘'model . in whrch not
only the p_dge i70-is considered, but disk I/O and buffer management schemes are also
evaluated. Along. the same.lme, developing a better communication, 1nterfacer between the

DBMS and the gperatin'g system is also an area _which should be studied.

2. As was pointed out in this study, the creaﬁon)and accessing of index tables can be
problematic in. the in‘dex—nested loop join method. Othker join methods such as the
sort- merge and hashed— based Jom method should also ‘be examined from the perspective of

dlsk 1/0s.

')
3. For recurs1ve query processmg strategles calthough the CN algorlthm has the best disk 1/0

performance its appllcanon domam is limited to linear recursive rules and non-cyclic

¢ database. Other similar strategies such as the Level-Cycle Merging algorithms [16] have

been developep to overcome thls drawback of the CN algonthm These algorithms should
be tested to determme whether they preserve the elegance of the CN in accessing the base
" relations while the application domain is expanded. For the MS algorithm, the great
variance in its disk 170 c'perfo'rrnance is partly due to the underlying basic method - ‘the
Semi-Naive method. Other methods should be tested with the MS algorithm tc determine

if the disk 1/0 performance of it would improve.

4 In order to predict the MBR of a recurs{ve query processing algcrithm more accurately,
analyueal ‘methods- should be denved to calculate the size of the intermediate relatlons
produced from successive join operanons rather than simply estimating the size of the result
of -one single join operation. Finally, thé disk 1/0 performance of non-linear or more

R

compler recursive query algorithms: should be investigated.

.73

10.
11

12.
13.
14.
15.

16.

Bitton, D., "The Effect of Large Main Memory on Database Systems", Proceedmga of

Bancilhon. F., "Naive Evaluation. of Recursxveli Defined Relations” On knowledge Base
York 1986
Bancﬂ.hon, F., Majer D, Saglv Y, and Ullman J. Magxc Sets and Other Strange Ways lo-

Management Systems, Brodies and M)zp opoulos, Eds., SpnngerVerlag Rerlin, New -

Implemem Programs”, Proceedings of the Sth ACM S, ysmposlum on Prmctpal)

of Database yszems ACM—SIGACT GMOD; March, 1986

‘Ba.nmﬁaon, F., and Ramaknshnan, R., "An Amateur’s lntroducuon LO Recursive Query

~Processing Strate g Proceedzngs of SIGMOD 1986 International Conference on
Management of ata, ACM, May, 1986.

Bayer, R., and McCreight, E, "Or%amzauon and Management of Large Ordered Indexes",
, Acta Informatica, Volume Number 3, 1972, pp. 173-189. o

Brodie, M. L. and Mylopoulos, J., On knowledge Base Management Systems - Integraung

Database and AI Systems, Springer-Verlag, Berlin and New York, 1986.

EZ

.ISS{SGGMOD 1986 Internatlonal Conference on Management of Data. ACM, Md\n

Chakravarthy uU. S, Mmker J., and Tran, D. Imerfacmg Predicate Logic Lan;uage% and

Relational Databases”, Proceddmgs of the 1st conference on LOglC rogrammg
Marseille, ‘France, September 1982, pp. 91-88.

Chang, C., "On the Evaluation of Queries Containing Derived RelaUOns in a Relational
“Data Base”, Advances in Data Base Theory, Volume 1, H. Gallaxre 1. Minker,
and J. Nicolas, Eds Plenum Press, New York, 1981.- . ‘

. Chou, H., and DeWitt, D., "An Evaluation of Buffer Managemem Strategies for Relational

Database Systems”, Proceedings of the 1ith International Conference of Very Large
Datq Bases, Stockholm, August, 1985, pp. 127-141. _

Gallaire, H., #ad Mngker J., Logic and Databases, Plenum Press New York, 1978.

Gallaire, H,, Mmker J., and Nicolas, J., "Logic and Database : ‘A Deductive Appro(mh
ACM Computmg Survey, Volume 16, Number 2, 1984, pp. 153-195.

3

Hagmann, R. B., "An Observation on Database Buffering Performance Metrics", Proceedings
of the 12th International conference on Very Large Data Bases, Kyoto, August,
1986, pp. 289-293. '

"~ Han, ~J., "Pattern-Based and Knowledge Directed Query Compilation in Recursive Data
' Bases", Technical Report No. 629, Computer Science DepanmenL University - of.

Wlsonsm—Machson January, 1986.

Han,], and Henschen L. J., "Stack-Directed Com l1zmon of Complex Recursive Rules in
Deductive Databases”, Technical Report 86— 04- Al— 01, Northwestern Umversny
Department of EE/CS April, 1986.

Han, J., and Henschen, L. J, "Handling Redundancy in the Processing oF Recursive
Database Queries”, Proceedings of 1987 ACM-SIGMOD Conference on
Management of Data, May, 1987. '

" Han, J., and Henschen, L. J., "Processing Linear Recursive Database Queries by Level and

Cycle Merging", ‘Technical KReport 87-05- DBM-0/, Northwestern University, =

Department of EE/CS, May, 1987,

74

17.
18.
19.
20.

- 21

22.

23.

2.
2.
27,

28.

Han, J., and 'Lu H., "Some Performance Results on Recursive Query Processmg , Proc
International Conference on Data Engineering, IEEE, February 1986. ‘

Henschen L. J., and N S., "On compiling Queries in Recursive First-Order Databases

.Iow'nal of ACi Volume 31, Number 1, 1984.

Kaplan J., "Buffer Management Polices in a Database Envrronment MdstferfReport, UC
Berkeley 1980.

Lang, T., Wood, C, and Fernandez E B "Database Buffet Pagmg Virtual Storage
Systems ACM Transactions on Database Systems Volume 2, Number 4,

December 1977.

 Mckusick, M., Joy, W., Leffer, S. and Fabry, R, "A Fast File Sysem for UNIX". ACM

{{fnfg?mm on Coumputer System, Volume 2, Number 3, August, 1984 PD-

Mmker 1, Perfornung Inferences Over Relational Database”, ACM SIGMOD Intemauonal
Canference on Management of Data, San Jose, Cahf May, 1975, pp. 79-91.

, Minker, 1, | "Sel Operations and Inferences Qver Relational Database”, Proceedings o the

4th Texas Conference on Computing Systems Austln Texas November 97
5A1.1-5A1.10. » .

Minker, J., "Search Strategy and Selecnon Function for an Inferennal Relanonal System",
ACM Transactions on Database Systems, Volume 3, Number 1, 1978.

. -JMink’er, J, "An Experimental Relational Database System based on Logic”, Logic and

Database, H. Gallaire and J. Minker, Eds., Plenum, New York, 1978, pp. 107-147.

Minker, J., Nicolas, J. M. "On Recursive Axioms in Deductive Databases”, Informaton
- System, volume 8§, Numberl January 1982, pp. -1-13. , ,

]

Nyberg, C, "Disk Scheduhng and Cache Replacement for a Database Systemn”, Master
Lo : Report, UC Berkeley, 1984

Reiter, A., "A Study of Buffer Management Polxces for Data Management Systems”,
Technical ‘Summay. Report No. 1619, University of 1sconsm—Madrson,
Mathernancs Research Center, March, 1976. .-

Reiter, R., "Deductive Question-Answering on Relational - Databases Logic and Data Bases
'H. Gallaire and J. Minker, Eds.., Plenum, New York, 1978 pp. 149-178.

Reiter, R, "On Closed World Database”,” Logic and ‘Data Bases, H. Gallaite and J.
Minker, Eds., Plenum, New York, 1978, pp. 56-76.

Reiter, R., "Towards a Logical Reconstrucnon of Relational Database Theory", On
- Conceptual Modelling, M. Brodie, J.. Mylopoulos, and J. W. Schmidt, Eds.,
Springer-Verlag, Berlin and New York 1984. .

.Saleco. -G., and Schkolnick, M., "A Mechanism for Management the Buffe: Pool in a -

Relational Database Systern Using the Hot Set Model", Proceedings of the 8th
Interznq]trargél Conference of Very Large Data Base, Mexrco Crty September 1982,
pp. 257-2

éagiv, Y., and Ullman J. D., "Complexity of a Top—Down Capture Rule", Technical Report
ST AN-CS- 84- 1009, Standford University, Department of Computer Sc1ence 1984.

Selinger P, Astranhan, M., Chamberlin, D., Lorie, R., and Pice, T., "Access Path Selection

in a Relational Database Management System”, Tecnnical Report No. RJ2429,
IBM san Jose, 1979. . o

75

3.
36.
3.

38.

39.

~ |

Shapiro, S. E., and McKay D. P "Inference with Recursxve Rules”, aneedang lh Is:
Annual National Conference on Artifical Intellzgence AAAl, Palo Alto, Cahf 1

Stonebraker, M., erating S uﬁ for Database Mana emenr C‘ommumcauon oj\‘
the ACM olume 24, er 7, July, 1981, pp. 412-418. : :

Ullman, J. D. “Implementation of Logical Query Languages for Databases”, ACM
Transactions on Daiabase Systems, Volume 10, Number 3, 1985,

Ullman, J. D. "Logic® and Database System”, On Knowledge Base Management Systems -
’ Integratmg Databases and Al S yste . Brodie and I ylopoulos, Eds.,
Springer-Verlag, Berlin and New York, 19@6

Yu, C. T, and Zhang, Ww., "Eﬁdent Recursf{ﬁ “Query Processing Using Wavefrom
ethodlg"b Proceedzn_/gs af the 3rd International Conference on Data’” Engineering,
ebruary,

Z

76

S - 'APPENDK A B

This appendix contains the pseudocode of the three algorithms: Henschen-Naqvi, Magic Set, and .
Counting. The pseudocode of each algonthm is written in terms of relational operanons "hese

operations are join, selecz Pproject, union, and diff The notation used 0 denote these operanons

are described as follows.

1 .

AN S YU N

At B
gA —>
TA —>

A+ B

" A-'B

-> join(A, B), S

select(A), .

project(A), _

~> union(A,B), - o | o
-> diff(AB). o |

where A4 and ‘B are relanons to be operate¢ on.. For each. algom.hm there 1s a parucular set of

intermediate relations which will be specrﬁed with the description of the algonthm In general, a

concatendtion of two relation names, AB for example, denotes an "intermediate relation which is

the result of the join of .the two relations A and B A relation name with a SUperscript, R

means the result of joining the relation R wrth itself 1—1 times. The result relanon of any of the

operations is a relation. Therefore it can be an operand of another operation. For example

iterations in each algorithm is fixed at 5.

‘1r(a A) represents the select operanon on the relation A4 followed by a project operation on the

:result_ The parenthesis indicate the imposed precedence of the operanons The number of -

® '3

77

Henschen—Nagvi

- L

P

g

end.

.8

78

Notation: |
W, - the wavefront relation at iteration i (ie. oupi) ‘
2. R - an mtennedmte relauon at iteration i obvamed by Jommg the W‘ relation wuh the Aar
relalmn (ie. (oup)jlat) -
3. 'F'Tl- - an intermediate relation at iteration / obtained by joining - the R relation with the
down telation j times. (i.. oup'flatdown) ‘
A the relation contains the final answer to the query it is 1mnally an empty relation.
The ‘algorithm
1) Set W, = n(oup).
2) For i=l, 2, .. .5 do
begin
3 Rif- ﬂ(wi',l ® flat)
4) Set Ti,O = ,Ri
5) Forj=1, 2, .. ,i do
begin
6) Ti ; = "(Ti’j—l * down)
end
Set w1 = ﬂ(wl_l . up) ‘

1. magic - the relation magic set. = - - T -

2 M; - the intermediate relation contains a partial magic set at iteraﬁon i

3. magicup - the intermediate relation obtained -by joining magic and up.

4. magicflat - the intermediate :elaﬁpn obtained by joining magic and ﬂat

5. R, - the derived intermediate relation’ at iteration i. _)

6. A - the relation contains the final answer to the query, it is initially an empty relauon.’ ;

The algorithm

1) Set magic = M, = w(oup).
2)

~For i-=2 3, .. 5 do
\ " begin R
3 My=M_ *up) - M.
4) magic = magic + Mi'
end.

5) Set magiéup = w((magic ® up) + oup). | ‘
6) Set magicflat = w(magic ® Aat).
7 Set R, = magic&t; ‘ - , .
8§) Fori=1 2 . .,5do
| begin
9) Ri = w(((ﬁmgicup * Ri—l) * down) - Ri-—l)
10) A=A+R.
end. .

11) Sel A = gA.

(J:ouytiné

~:'Notat10n | . ; . o ;

L C - the caunmg set at iteration i.
2. F - the mtcrmedlate relauon at iteration i obtained by joining C and ﬂat (ie. C rﬂat)
3. D - the” 1ntermed1ate relation at iteration / obtained by Jommg ‘the relation Dr+l and the

relation down then unioned with Fi (i.e. (Di +1down) + Fi)

P

A - the relation contains the final answer to the query, it is im‘ﬁally an empty reléu‘on.
The algorithm -

1) Set C, = w{oup).
2) Fori=23 . .5 do
begin
3) C.=mCp_y * up. *
end.
4) Fori=354 ..,1do
" begin |
5) Fo=a(C, * fla).
end.
6) Set D, = F..
7) Fori=4 3, 2,' 1 do
f begin }
® down) + Fi)'

8) = 1r((D

i i+1
end.

9) Set A = (D, * down).

80

.- APPENDIX B

This appendiz derives Lhe expected values of the pn selectlwty (JS) -of WO rclanons R and S,
and the cxpected values of the selectlon selectlwty (SS) of a relation K Let us ﬁrst oonsrder the
‘JS of R and S, and the Jom attributes are 4 and B of R and S respecnvely ‘Recall that JS IS
deﬁned as the ratio of the size of - the Tesult relation after the join operation to the product d"

the size of the two ongmal relauons The following assumptmns are made for the denvauon,

a The size of the rtelation R (.S’) is |R| (]Sl) (ie. there is |R]. (]Sl) tuples in the relation R

’ (5)) | . ~ REE

b The values of the artributes A and B of R and S respectively are chosen randomly from a \
“domain D of positive mtegers and the size of the domain is |D|. (1e if D contams the

integers 1, 2, ..., 1000, then its size is 1000.) ; s
¢ The values of 4 (B) are uniformly distributed- over the IR} (s ruples« in R (S).

The derivation of the expected JS is ars_,_follows. .

1. For each tuple r of R, the probability that the attribute A of r (denoted as r.A) is eq.2l
to a random value a from D (ie. .4 = a) is 1//D]. -] ' o
Therefore, the number of tples in R such that r.4 = Z is |R|/]D]. ' Q‘
2. For.a tuple s in S .eurd 5.B = a, the numucr of tching tuples in R (ie. .4 = s.B) is
equal to |R|/|D| | o 7_,#,. - |
Therefore “the totat number of tuples obtained from R and S such that r.4 = s.B ié equal
10 (|S| *{RN/|D]. In other words, the size of the result relation of joining R and- S is
IS/ R/D}. " - - - : -
3. Eased on (1) and: (2), the expected JS is then equal to ((|S|'|R1)/|D|)/(]S|'|Rj) which is
srmplrﬁed o I/|D). , ‘
Therefore, the expected JS of joiyning two relations which satisfy’ the assumptions (a;) (b),

' and (<) is equal to the reciprocal of the domain from wmch the values of the two' join

2 atmbutes -are chosen from. .

81

For the three JS values used in this research, 0001 00005 and 0.000], the size of the domain of .

the join attributes are 1000 2000, and 10000 respectJvely

The derivation of the SS, defined as the ratio of the size of the result relation after ‘the selection . :

10 the size of the original relation, of a relation R .is similar to the derivation of the JS as shown
above. Using the same assumptons, the expected value of SS of a relaton R can be derived as -

follows:

For each tuple r of R, the probability that the attribute 4 of r is less than or equal to a random
value @ from D is a/|D|. The number of wples in R such that r.4 <= a is a/| D). - Therefore,
the SS of the relaion R on the attribute A is ((a*|R])/D{)/|R| which is simplified 10 aAT).

/
Therefore, the SS of a relation R is equal to the reciprocal of the size of the domain of the
-selection attribute raultiplied by a'selected vahie from the same domain. In other words ¢SS
of a relation can be controlled bv choosmg a domain of certain size and a particular value from
this domain. For example, 1f Lhe domain size is 1000, choosing the value of 100 yields a 8§ of
0.1. For this SS value, it means that all the tuples in R of which' the value of auribute A is less

than or equzi to 100 will be selected.

82

