
National Library 1+1 --- - - ofCanada . 
~ i t % l i o t h & ~ u e  nationale 
du Canada - - 

Canadian Theses Service Service des theke-s canadlennes 

aawa- -- 

K I A  ON4 

NOTICE 

' C 

 he quality of this microform is heavily dependent upon ttie La qualltb de cette rn~croforme diipcnd qrmidi?n~~:r~t dc  1,) 
quality of the original thesis submttted for microfilming quakte de la these sournlsea m~crol~lrn,ige. NQM ,~vc)rl<, 
Every effort has been made to ensure the highest quality of tout fart pour assurcr une quai116 superitxm dt: rt:produc 
reproductidn possrbie. tron. 

If pages are miaslng, contact the university which granted 
the degree 

f 

Some pages may have indistinct print espec~ally d the 
orginal pages were typed with a poor typewr~ter r~bbon or 
if the unrversity sent us an inferior photocopy 

- -- - - - - - - - - - 

J 0 

a 

Previously copyrighted rnaterigls (journal articles, p;b- 
lished tests, etc.) are not filmed. 

S'il manque des pages, veu~llez corlin\urllyclur ,IVI:~. 
I'universite qui a conf@rG le grade 
, 

La qualit6 d'~m_eress:on de ceria~nes pages pcul I,II:~~,~~I ,I  
desrrer, surtout SI les pages orlglnales orit 414 d;iclyloqm 

- -  

phrees A I'alde d'un rubm u+se ou SI I'unlvcrs~tc rious n 1,111 
pa weni rrmeemofacop~ Be-eInrC r ie u re 

-- 

Les documents qul font de,a I'objct d'un droll d';lutci~s 
' fartlcles de revue, tests publ~ds, elc ) nt: son1 I ) . I ~ ;  

mkrof~lmes 

Reproduction in full or In part of thts microform is governed La reproduct~on, m4me,partrclle, de cettr? rn~~roform!r: ( ~ ~ ~ 1  
by the CanadIan Copyr~ght Act, R S C 1970, c C-30 soumlse a la Lor canadmine c,ur If: droll d'autt>ur :,I tC 

1 1970, c C-30 
a .  



- 
DISK I/O PERFOR.!VUNCE .OF LINEAR RECURSWE QUZRY PROCESSING 

Simon Hon Ming Mok 

B.A., University of Winnipeg, 1984 

THESIS SUBMITTED IN PARTlAL FULFILLMEhT OF 

THE REQUIREMEhTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the Sckpol 

Compu tine Science 

' Simon Hoi! Ming Mok 1987 

SIMOS FR.4SER L'NIVERSTPr' 

July 1987 

G: rr+?ts reserved. fhls work may not be 
repro-iuced ~ f i  bhole or in p a  by photocopy 

01 DL??: mmx,  whour permission of t5e author. 



- - 
Permission has been granted L'autorisation a &t& accord& 
to the Natmnal Library of h la .~ibliothbque nat ionale - 
Canada to microfilm this 
thesis and to lend or sell 
copies of the film. 

The author ( copyright owner ) 
h a s  r e s e r v e d  o t h e r  
publication rights, qnd 
neither the thesis nor 
extensive extracts  fro^- it 
may be printed or /herwise 
reproduced withouYt 'his/her 
written permissio,d. 

du Canada de microfilmer 
cette thase et de prster ou 
de vendre des exemplai~es du 
film. 
- 

L'auteur (titulaire du droit 
d'auteur) se reserve lee 
autres droits de publication; 
ni la th&se ni de longs 
extraits de celle-ci ne 
doivent 6tre imprim68 o u  
autrement reprodui ts sans son 
autorisation hcrite. 



APPROVAL 

hame :  Simon Hon Mine Mok 

Ikp ree .  Masrer of Science 

TILIL. ol thesis: Disk J/O Performance of Linear ~ecursive Query Processing 

I - 

br. W .  S. L U ~  
Senior Supervisor 

Dr. R. F. Hadley ' 

Committee Member 



PART 1 AL COPYR I  GHT -A I CENSE 

1 hereby g r a n t  t o  Simon Fraser  U n i ~ e f s f t y  the r l q h t  t o  lend 

my t h e s i s ,  proJect  o r  extended essay ( t h e  t i t l e  o f  which i s  shown below) 

t o  users  o f  the Simon Fraser  U n i v e r s i t y  L l b ra ry ,  and t o  make p a r t i a l  o r  

s i n g l e  cop ies o ~ l y  f o r  such users  o r  i n  response t o  a request  from t h e  

l i b r a r y  o f  any o t h e r  u n i v e r s i t y ,  o r  o t h e r  educat ional  I n s t i t u t i o ~ o ,  on 

i t s  own' behal f o r  f o r  one of i t s  users. I f u r t h e r  agree t h a t  permission 

f o r  m u l t i p l e  copy ing  of t h i s  work f o r  s c h o l a r l y  purposes may be granted 

by me o r  t h e  Dean o f  Graduate Stud ies.  I t  i s  understood t h a t  copy ing 

o r  publication o f  t h i s  work for f l n a n c f a l  g a l n  s h a l l  not be, a l lowed 

w i t hou t  my w r i t t e n  permission.  

T i t  l e o f  t h e s  i ? ) ~ r o j e c t / ~ x t e n d e d  Essay 

Author: - 
" ( s i g n a t u r e )  

( da te  



/ 

% 

I 

This thesis presents an empirical' sirnulati6n study of the dirk I/O performance qf three Linem 

Recurs~ve & m y  Processing algorijhms g the cornpilarim approach in Deductive Database 
1.: 

systems. / 

/" 
\ 

The primary objectiy of this research is to aoalyse the 1 /0  behaviour of database query 

/' processing with a new cost metric, the number of disk retrievals (disk UO), in contrast to the 
// 

-_ 
conventiom+cost memc, the number of page accesses (page I/O). Disk I/O g , a  more suitable 

cost ncd because it takes i n t ~  account technological advances in hardware and 

recursive query processing is chosen as a basis for this research because it 

execution of sequences of relational database opiations and repetitive accessing of large amounts 

of data. The secondary objective -of this research is to examine the efficiency of three well-known 

recursive. query processing aliorithms at the disk I/O level. 

The research results demonmate that it is 
-- - 

parameter in the cost formula of a query 

available. Also, a methodology is suggested to 

important to include disk I/Os as an additional a 

processing strategy when a large buffer .space is 

estimate the Maximum Buffer Requirement (MBR) 

of a query processing algorithm. 

The research results also show that in order to minimize disk 

to reference locality. Specifically, an algorithm- can achieve 
- 

I/Os, special attention must be paid 
- 

good disk I/O perfoxmake if the 

processing of one large relation is completed before. the processing of another lage rel&on 

begins. The simple method developed is dso shown to be useful for inspecting the reference 

localir~ of the algorithms. 

Finall), i t  is shown that it is not only important to choose the right algorithm for processing 

recursive queries, i r  is equallv important to chmse the right strategies for implementing low-level 

relational database operations. 
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CHAPTER 1 
\ INTRODUCTlON - 

This thesis presents an empirical simulation study of the disk VO performance of thre Linear P 
Recursive Query Processing algorithms using the compilation apprwch in Deductive Database- - 

systeins. The primary objective of h s  research is to analyse fhe I/O behaviour of database query 

-processing with a new cost memc, the number of disk remevals (disk I/O), in conhast to the 
g, 

conventional cost ' metric, the number of page acksses (page I/O). Disk I/O is 'a. more suitable 

cost memc because it takes into account technological advances in hardware arid software. Linear 

rgxrsive query processing is chosen as a basis f i r  this research because it requires iterative 

execution of sequences of relational database operations and repetitive accessing of large amounts 

of data. The secondary objective of this research is to examine the efficiency of three well-known 

recursive query processing algorithms zt the disk I/O level. 

This chapter discuSes the importance of using disk I/O as the cost metric and introduces the 
' 

e 

general concepts of Deductive Database syste&s and recursive query processing. ChapIer 2 presents 

the five algorithi~s considered in this study, along with related work on the periormance of these -.- 

algorithms. The model in which the 110 behaviour is studied, together with its inplementation, is 

presented in Chapter 3. Chapter 4 contains the analysis and interpretatim of the simulation 

results. Several implementation issues which may affect the simulation h results are discussed in 
\ 

Chapter 5. Finally, Chapter 6 contains a summary of this research and suggestions for further 

research. 

-- - 
1.1 Performance Metrin 

.Along with the theoretical aspects of relational database systems, it is necessary to consider 

performance issues. In particular, the performance of database query processing strategies must be 

studied. Many such studies have been done over the years to identify the factors which affect the 

efficiency of the different methods of evaluating queries. The results o b t h e d  from these studies 

are used to fine tune database systems to improve their overall efficiency. The rnetrics used to 

measure the processing efficiency are the CPU costs and the 1/0 costs. The CPU costs are 

-evaluated in terms of the number of tuples being processed while the 110 costs are 

measured by the number of page accesses needed to answer a query (page I/Os). This thesis will 

- v- 



- 2 
v ,*. 

fw!s on the 110 costs of relat iod database query $bc&ng. -. 

The I/O costs of relational database query processing have been studied by _many researchers in , 
' 

" -- 
various performance studies Ce.2. 1341). However, most OF the studies either ignore 'the cost of 

disk accesses or equate the number 'of page accesses to the number of disk accesses. The latter 

assumption has until *now been accepted as a close approximation to reality. Recently, however, 

some researchers have challenged this assumption because it does not take into account zhrec 

major developmenithe improvement in system software and hardware the proven 

inefficiency of conventional buffering schemes in a database environment and the decrease in costs 
C - e 

of hardware such as main memory @ips. We shall discuss each of these developments in debil. 

It is claimed in [12] that the number of page I/Os is n a  a suitable metric for evaluating t / 0  , 

costs. Instead, the number of disk- I/O pperations (disk I/Os) is proposed to take into account 

developments in system software and hardware. In high. performance file systsms such as the 4.2 

BSD [21], for example, adjacent file pages are often clustered together on the disk. This is in 

contrast with primitive file systems, which allocate adjacent pages to widely separated disk 

addresses. This change, together with the increase in the transfer rate between the disk and the 

processor, means that adjacent file pages can now be accessed iii a single disk J/O operation. 

Thus, the numbkr of disk I/O operations is a more suitable metric than the number of page I/O 

for evaluating the 11% costs of relational query processing. 
7 

Another drawback of using page I/Os to evaluate 110 cosk is that cost formulas based on thc 

conventional model do not t&e into account the ef@icts of system factors such as ;he available 

buffer size and the page replacement policy in us?: For example, the cost fomuta for a 

nested- imp indexed p i n  on two relations is conventiofially formulated as follows [34] : 

110 cost = NumOjPage(mter) + NumOjTrrple (outer) ( w, * 

where outer and inner denote the two relations, j is the pn s e l e c t i v ~ t y , ~ ,  is the probability th<at 
/; 

the index page is not in the buffer and w, is the piobability of having to fetch a data pagc 
*re 

when rna~hing tuples are found. In this cost formula, the size of the buffer and the buffer ' A, 



0 

management schgme are determined by the two probabilitie~ wl and w,. In most performance 
\ 

studies, w ,  and w, either are not specified or are arbitrarily chosen In other words, the- size of 

the buffer and the buffer management scheme are usually assumed to be those of a typ id  

* operating system It is qgued in [36], however, that relational database accesses can bef\classifkd 

~nro a set qf' refhence patterns which may not be well sewed by conventional buffer management 

schemes. A number of other research papers [9,19,27.28,32] have shown'that the pattern of page 

references exhibited 2 relational database acCesses is very regular and predictable. The wnclusion 

drawn from' these studes Is that for an operating system to provide good buffer management, it 

must be able to accept +vice from the Database Management System (DBMS) concerning the 

page replacement stTategy. The DBMS can also use specialized buffer management schemes such 

- as the Hot set' algorithm [32] an d , the DBhfIN algorithm [9] in order to improve -the throughput 

on disB accessme. 
-- 

memory becomes cheaper, it is no longer uncommon to find large 

avahble to database systems. In fact, Main Memory Database 

systems are currently an active research area in the database community (e.g. [a). While there is 

some doubt that main memory will ever be cheap enough to make disk storage redundant, it is 

clear thah in the near fume, there will be plenty of buffer space available to boost the 

performance of complex database processing. As more and more memory becomes available, the 

difference between the disk 110s and the page 110s will be more significant, because a request 
" d r  i' 

fb r  an index or data page of a relation may not acrually require retrieval of the requested page 

from the disk if the page happens to be found in the buffer at that moment Therefore, the size 

of the buff'er space is a very i m p o v t  factor in determining the disk I/Os, and this is why it is 

1 priman. focus of this research project 

The pnmhy objective of this thesis is to study the I 1 0  behaviour of relational database query 

processing with special emphasis on the number of disk I/O operations, and in paiticular, the 

effect of the buffer size on performance. We will also study the relationship between the old 

metric, the number of page I/Os, and the new memc, the number of: disk I/Os, A particular 

me of quen. processmg. Recurwe Query Prcxessing, is chosen to be a case- study in this 

research-because recursive queq processing requires sequences of relational database operations to 

be executed, and large amounts of data to be transferred between the secondary storage, the disk, 

and the processor. Recursive query processing is an advanced query facility used in Deductive 



Dotabase (DDB) systems which apply iogic to conventional relafional databases. A general 
%, -3 

description of the general areas of lo& and dambase research and recursive query procewng in 

L)DB systems is presented in the next section. 

1.2' Logic and Database 

In recent years, there has been growing research interest in the connecuon between l o g ~  and 

d a t a h a ;  its primary goal k i n g  the use of logic as an inference system and a representauon 
? 

language in databases. It has been shown by numerous researchers md summarized in f l l ]  thal - 
mathematical loj& primarily fm20rder logic. provldes a precise framework under w h ~ h  man) 

classical database problems can be formalized and studied in detail. Using log~c as a formal 

theoretical basis, many researchers have studied database topics such as represenbne and cs tcnd~ng  

eusmg query languages, modelling and rnainwning inteen?! cnnstramr\. opurniilng qnrrr 

processing, and representing various. hnds of data dependenaes. 

A conventional database, as first characterized by Nicolas and Gallialr [lo], a n  be consldcrcd 

from the viewpoint of logic to be an interpretatmn of a ,firs(-order theory (also known i t - t h c  

mcdet theoretic view in [31]). Under, such a viewpoint, queries and inteprlty constraint4 arc 
- - 

ueated as formulas whose truth values are to be determined in the interpretation. Other 

researchers have worked -on extending the representation and manipulation capabilities of' databases 

by considering a database to be a firsl- wder theory itself (also known as the prmf rheorerlr vwn. 

4 \ in [31]). From such a viewpin6 queries and integnr! onstraints a r c  secn as rhrorrrn.5 1;) hc 
- - 

proved: this is precisely the concept behind Deductive Darabme (DDH) sysierns. tor a dcutilcd 

and formal description of DDB systems, the reader is referred to [ l l ]  

A DDB is a database in which new facts can be dtrrved frim facts that arc expiic~tly stored 11, 

I 
the database. The primary goals of research into DDB systems are 1 )  ic IncorporaLc the 

- . functionalities of logic, such as deduction, into the relauonal database model and 2 )  LO lncrease 

the expressive power of database systems to handle queries more sophisucated than those thaL 
4 

reqlure only simple dara remerd. From an operational poin~ ofs?ew, as defined i n  [ I  I ] ,  a I)I)H 

consists of the following parts: 

1. a set of axioms which are elementan facts. 

2. a set of axioms which are deductive mles, and 



3. a set of integrity c o ~ ~  \ . 
- 

The elementary facts consist of set of data which is stored in .the database, and 

collectively called the Extensional (&B). The Intemonal Databare (IDB) consists oF - \ - 
set of deducuvk rules and the mtegrity co&nts, and corresponds to general knowledge of 

world modelled by the DDB. There is no definit 

wns~dered a deductive rule or an mtegrity constrain 

limited to dejirute clauses without functions. Functions considered so that finite and 

expliat answers can be found to queries. Deductive rules are to definite clauses so that 

DDR systems will be amistent under the Closed Wwld Assumption o 

/ 

Hecavse of the lirmtations on queries in DDB systems, their inferencing 

hmlted. tn f a c ~  the major objection to DDB systems raised by many researchers, Nrnarily from 
"s 

are % 

the 

the 

~ h u  A1 community [ S ] ,  is that they provide only a very restricted version of inferen& which 

excludes a lot of complex general knowledgeTf the world. Further, they point out tha-t the 

programming language PROLOG is as good as, if not better thsn, DDB systems in 
I 

resolving log~c quenes. The most significant response to this criticism from researchers following 

, the database school of thought [ g  is 
and - a i v L ,  ii &XS not provide 

system, which include efficient query 

of deduced facts. A major advantage 

that they incorporate existing database 

that although the PROLOG language may be very powerful 

the n e c c  features of a general database management 

facilities, functions for integrity constraints, and maintenance 

of DDB systems, despite their current logic limitations, is 

techniques for handling large amounts of data efficiently. 

- 
The description of DDB systems presented here is based-on the perspective of the &base school 

or rhougb~. . .  . , ,  The general direction of research in t6;s perspective is to introduce gradually more 
, . . , _ -  . 
. . : ,(. . '  

md " ~ ~ t , ~ : d e d u c t i v e  capabilities into database systems as efficiency permits. For an interesting list 

of open questions and contemporary views on the general area of logic and databases, the reader 

15 referred to [ll]  and [S]. 

To further the aims of DDB systems, a great deal of research effort has been directed towards 

Cie gxii of resolv~ng queries using not only the explicit facts stored in the database, but also 

impiinr information that car. be derived From the a i c i t  facts. This is known as recursive query 

prcxesang because unlike .the execution of simple queries which require access only to explicit 

facts,' We exeation of recursive queries often requires iterative processing of a sequence of 



operations such as deductive rule resolution and database accesses. 

There are two general approaches to resolving recursive queries: the 

compifation appmch. The interpretive approach [24] works with a 
- 

interpretrve apprwch and the 

problem solver in which thr 

resolution ef deductive rules and the accessing of facts in the extensional database arc inrcrleaved 

during the process of resolving the query. In the cornpilauon approach [29], the problem solver f 
uses only the deductive rules until a point is reached at which either the queq is solved or all 

that remains is to search for facts in the Extensional database. 

Both approaches have advantages and disadvantages. Algorithms using the interpretive appiG& 

are smarter in the sense that decisions about the relevance of facts towards th'e answer of the 

queq  can be made dynamically at run time. However, i t  is expensive to access a large dalabast 

iteratively in a tuple-at-a-time fashion, as currently required by the interpretive approach. Somc 

techniques which explore the idea of obtaining a set of tuples at each database access. rather than 

a single tuple at a time, are currently being developed [7.22,23.25].  

The major advantage of the compilation approach is that access ro the darabase is dclavcd uriul 

the end of the deductive prcxess, allowing global optimization of database accesses P" 
incorporating already-known techniques from c6nventional database theorj. The major drawbach of 

this approach is that the -classes of rules that can be compiled into simple formulas is vcry 

ted. In fact the study presented in [3]' indicates that the largest class of rules that can be(- 

'$ p essed by currently h o r n  compilation-based igorithms is the class of tlorrm- up oduablr  

rules. Any computation using only a set of bottom-up evaluable rules can bc carr~cd out withot11 

materializing infinite intermediate resuls. i h e  bottom-up evaluability criterion ensures thal thc set 

of values for body variables is finite at each step. Hgwever, there may be an i hn i l c  number of' 
. .i 

steps. Expanding the class of compilable rules is another active research area in DIIH systems - 

For formal descriptions ef various known compilation techniques, the reader is rekrrcd rr) 

Two addxional Issues which are beginning to draw the attenuon of man) researchers are t h e o  

performance and ease of implementation of various recursive quely processing suategm. In  thi5 

research we have chosen to study these two issues of recursive queq processing from the datahast 

perspective and using disk 110 operations as r be  performance meuic. Also. i e  focus on rccurslvc 

quen' pxocessing snategies which use the compi'lation approach, because the clear separation of' 



- - 
database accesses from deductjve rule resolution makes lhe approach amenable to_ _implementation 

' 

and analysis with a conventional relational database model. A s  mentioned earlier, a DDB consists - 
of an I ~ B  and an WB.  The IDB contains a search routine and an inference engine which only 

operate on the deductive rules, while the EDB is a conventional relational database. Our research 

1s b u s e d  on the EDB. 

A recent paper by Han [15] identified a set of bve different types of rekursive query rules, which 

can be summarized by the following three canonical forms of recursive rule clusters: 

1. The canonical transitive c l w e  ' cluster, - 

2. The canonical linear recursive cluster, and 

3. The canonical now linear recursive cluster. 

Of these three canonical forms of recursive clusters, the first two can be compiled into simple 

formulas using a sinple step-wise method described in Section 2.2. The last f o m  can r,ot be - 
compiled into simple formulas, and other techniques such as the stack-dir~sied query compilation 

algorithm [14] have been developed for processing queries of this form 

- 
This research uses the linear recursive rule cluster for the study of disk I/O operations for two 

reasons. First, the linear recursive rules require a more complex sequence of relational operations, 

such as Join, select., Project, and Union, than the uansitive closure cluster, which has also been 

stuhed extensively in current research. This will provide an appropriate basis for evaluating the 

disk I/O performance memc. Second, numerous papers [2,3,18.16,17,39] have addressed 

performance issues related to this particular set of recrrsive rules. Although these studies have 

ejther ignored the cost of disk accesses or used the page 110s as the metric for measuring the 

1/0 cosr, their results 'provide us with some fundamental qualitative insights into the design of our 
'4 - - 

e r p e n m h y a n d  the interpretations of ow results. Moreover, this study places a different 

perspective on thecurrent research into recursive query processing. t 

Before we ieave this &scussion, we should caution the reader that what we have described &re is 

d ven superficial view of the general area of logic and databases. Much of the discussion was 

based on the database school of thought As well, since our research only focuses on the veiy 

simple class of linear recurs~ve rules and queries, the descriptions of the various algorithms are all . 
tailored to this class. This section has highlighted some of the interesting questions and 

perspectives of the gene~al area of logic and database research. References are provided to guide 



the interested readers to more detailed and formal discussions bf these issues. To close off this . 

chapter, we recall Wman's reminder in 1381 thatone has to sm with the simplest issuer in 

order to pursue an ultimate ideal in the<uture. 



A RECWFVE QUERY A N D  ITS PfOCESSmG STRATEGIES 

This chapter introduces the recursive rules, the query and the processing strategies that are studied 

in this thesis. Related work on evaluating the performance of recursive query processing strategies 

is also discussed. 

2.1 A Recursive Query 

.This thesis studies a set of linear recursive rules written in function-free Horn Clause form. The 

set contains two Horn clauses. (1) and (2) below, which are generalized forms of the same 

generution example shown in [3]. The terms up and down are two base predicates that represent * 

the ancenor and descendant relarionships of two individuals, while the Pa predicate contains . 
tuples of individuals who are cousins of each other (i.e. they are of the same generation). 

- 
Predate r therefore represents the two ways that two individuals in the database can be cousins 

(i.e. they are of the same generation). In the rest of this thesis, the term relation will be used to 

refer to a preciicats. The two rules aie shown below: 

where up, flat, and down are base relations existing in the relational database, r is a virtual 

relation which involves recursion, and X ,  Y, W, and Z are vectors of variables. 
? The following rule defines the recursive query, 

? :- qa ,  x). - (3) 

where a is a constant vector and X is the vector variable to be remeved from the virtual relation 

r. The answer to the query is an array of integers which is derived either directly or. indirectly 

from rules (1) and (2) .  - 



d 

relational operations involving data relations which will be generated if they arc not already 

explicitly stored ,in the database.- During the second stage, an iterative program is generated based -- 

on the compiled formulas, and the answer to the query is obtained by retrieving facts (data) from 

the database: , 

Three different strategies were impiemented in this project These algorithms are: Henschen-Naqvi 

[la]; Magic Set [2] and Counting [2].l This study focusses primarily on the second stage of 

resolving the query, so only a general description of recursive rulecompi!ation is presented in this 

section. The input to the compilation process is the original set of rules and the query in the 

case of the Henschen-Naqvi algorithm whereas the input is a transformed seL of rules and thc  

query in the cases of the Magic Set and Counting algorithms. The details on how the rules arc 

mnsformed will be described when each of the two strategies are discussed in b e  lollowlnp 
6 

sections of this chapter. 

The following discussion is based on the cornpilatiion method that is described in [17]. hnear 

recursive-ndes (I), (2) and the query fron Section 2.1 are the input to the compilation. The 

general idea is to expand rule (2) recursively. The following sequence of expansions is obhinud 
C 

by using step-wise recursive calls to rule (2). 
4 

: Ln fact, two other algorithms, Semi-kive [l] and Double Wavefront [17], were also 
imglemented. The  disk '110 performance of these two algorithms is significantl:l worse than 
those of the other three algorithm, thus the) are not included in this thesis. 



where Y1. Y, .  ... . Y k  W,.  W,. .... Wk and Z are vectors of variables. 

By calling rule (I) in the above sequence, the solution to the query is obtained by processing the 

following sequence of non-recursive query sets and taking the 'union of the results of each step. 

The expansion of the above sequence terminates when no new solutionsh are found in +the F 
database. The above sequence of query sets can be 

series:. 

where oaup  means a Selection on the corresponding 

represented simply as the following query \ 

attributes of relation up according to the 

constant vector a, + denotes the Jan operation on 

relations, and upk represents performing the Join operation on corresponding join attributes of 

the corresponding join amibutes of two 

relation up k- I times. The range of the index k is from 0 to n where n is the number of 

iterations up to the termination point. In our experiments, because randomly generated data 

relations are used, some databases generate empty relations, and some generate cyclic results for 

some large number of iterations. To avoid the problems of determining the termination points in 

this study, the query is executed for a specific number of iteratioh. n e  format and notation 

used ,o describe the algorithms in * the following sections is adapted from [17]. In the following 

discusxon, the concatenation of relation names denotes the result of joining the individual 

relations. For example, upj9atdmn is the result of joining the up  relation with the jlat relatiori, 

followed by a join of the intermediate result with the down relation. 

: H e  have nor considered tk termination problem in this study; for a detailed treatment of 
i; *e reader is referred to [S,f,7,18,26,35]. 



Before we discuss the three algorithms, a straightforward way to process the query series 

k* oaup jaPdownk is presented to serve as a basis for understanding the other algorithms. 

The simple algorithm, referred to as the Naive algorithm in [35]. executes the series in a 

bottom-up fashion using an iterative loop. The bottom-up approach starts from the base relations 

and keeps assembling them to produce virtual relations until they generate the answer to the 

query. The algorithm starts by selecting the fiq set of results from the relation jar. At the first 

iteration, the three data relations up, pat, and down are @tried on the~r corresponding attributes to 
I 

produce the intern-eaate regtion upflatdown. This intermediate relation. defined as the wavefronr 

relation or the fiontier relation in [lq, serves as the starting point for the other iterations. In - 

general, at the f h  iteration, the execution proceeds as follows: -a 

1. The relation up is joined with the intermediate relation up'- '&tdownh I ,  which is saved 

from the i l l h  iterati&, to yield the relation upijl=~downi- l .  -- 
2. The relation up$atdowntl is joined with the relation down once to produce another 

intermediate relation u&atdowni. 

3. A selection is then performed on the relation up9atdowni to obtain the set of answers u~ 

the query at this iteration. The intermediate relatior#u#&zzdowa1 is then saved as the 

wavefront relation foi the i+lth iteration. 

The execution plan at the f h  iteration can be simply represented as the following sequence: 
- 

o a(up' (upi- 'fitdown'- I )  ' down) 

Since this algorithm proceeds from the center of the query series at each iteration. i t  is also 

known as the Central Wavefiont algorithm in [17]. It terminates when no new solutions are 

found: in the database. The answer to the original query is obtained by taking the union of' the 

entire set of results obtained at each iteration. The general process flow of th~s  algorithm is as 

foliows: 



oQ(up jut down) 

aJup (upflatdown) down) 

.... 1 

o&up .(upk-'jlatdownk-I) down) 

\ 
The total number of @in operations is 2k in this algorithm. In spite of the small number of join 

operatioas, there are two major weaknesses. Firsf there are two joins on three entirely 

unresmcted relations at each iteration. This dould generate very lkge intermediate relations and 

easily cause a combinatorid explosion It could also generate a large number of &pies which are 

irrelevant to the query. These problems occur with the bottom-up approach because the algorithm 
th has no knowledge of what query it is t ryi~g to solve. Secondly, the results produced at the i-1% 

iteration are completely reproduced at the th iteration, lea- to a large number of duplicate 

results. In the remainder of this section each of the three algorithms - Henschen-Naqvi, Magic 

Set and-aunting is described. They will be compared qualitatively wherever it is appropriate. 

2.3.1 The Henscheri- Naqvi  Algorithm 

The Henschen-Naqvi ( H N )  algorithm was &i&tlly presented in [18]. In this study, a 
< 

version which can be directly applied to the linear recursive query is examined The 

method is essentially the Single Wavefiont algorithm described in [ln. 

Unlike the Naive method, the HN algorithm employs a top-down approach. The 

simplified 

simplified 

top-down 

approach is basically the same as &e performing selection first approach described in [17]. In this 

approach, the algorithm starts from the query and keeps expanding it by applying the rules 

denved relations. Algorithms using the top-down approach are, in general, more effxie 

they "know" which query is being solved, but are often more complex. The major a 

this approdch is- that the size of the relations that are joined during the iterations can be 

eiuncap f l y  reduced. This approach has been shown, both analytically and experimentally,- to be 

very efficient in certain situations compared to the bottom-up approach. Similq wnclusions can 

also be drzwn from the simulation results described in chapter 4 of this study. 



The algorithm starts by selecting* the fM set of results from the relation flcu. The intermediate 

wavefront relation that is passed on from iteration to iteration, however. is a restricted partial 

w i t i v e  dosure of the relation up. In general, the execution at the f h  iteration goes as follows: 

1. The relation up is joined with the intermediate relation oaup" to derive the relation 

oaupi. This relation will be saved for the i+lth iteration. 

2. The relation o,upi is then joined with the relation $at to produce the relation o , u $ ~ Y a ~  - 
7 

3. The answer to the query at this iteration is obtained by joining the relation down to the 

relation o,up$& i times. 
- 

The execution plan at the th iteration. is represented as follows: . 
- e* 

(oaupi- up) * pat down down' 
'F6_ -< 

The processing flow bf the HN algorithm is Peplcted as below. 

a $at 

(oaup) J4Llt down - 

(oCIup up) flat down down 

(oauP up) flat down down down 

( u p k -  ' * up) flar down ... down 

Although this algorithm is ,able to reduce considerably the sizes of the relations that are joined ar 

each iteration, it introduces the problem of a large number of repetitive joins on the relation 

down 'ims can be seen at the f h  iteration where the relation down is joined with itself I times. 

Consequently, the number of join operations, which is (k2+5k) /2  - 1, is much higher than for 

the Naive and Semi-Naive algorithm. This particular aspect of the algorithm was examined In this 

P' study; the results of our observatibns are discussed in c pter 4. 



2.3.2 The MU@C Set Algan'thm . 

The Magic Set (MS) 'algorithm uses both the bottom-up- and 

query. This technique of wmbiniq , the two approaches 

topdown approaches to answer the 

is developed fron the sideways 

~nfwmation parsing strategy in 1331. It uses a hypothetical topdown evaluation of the query to 

transform the original rules into equivalent rules,@at be implemented efficiently using a 

bottom-up m o d .  

The formal descriptions of the Magic Set algorithms is complicated and difficult to understand. 

The essential ideas of this algorithm are described in the context of the simple linear recursive 

query shown in Section 2.1. 

Before we proceed further, we must first define the concept of 

piece of data is relevant if it might, depending on the database, 

of a piece of data that is in the answer to the query. Relevant 

(1) 

i (2) 

- - (3) 
reievant data [2]. htuitively, a 

be essential to the establishment ' 

data can, however, be redundant 

if the re i f  other relevant data which also b 3 s  to the same answer. The set of ;elgvant data is , 

defined to be the magic set in this algorithm. 
-- 

-4" 
The first step in transforming the rules is to derive the magic set, which is used as a filter to 

-- 

reduce the size of the relations which will be involved in the bottdm-up evaluation. This is done .. 
by marking all the up ancestors of the constant vector a and then applying the rules in a 

botron-up fashion only to the marked ancestors. For rules (I), (2) and the query (3x5the magic 
n 

sel consists of two kinds of relevant data: the direa relevant data and the indirect relevant data. - 
The direct relevant datum is the query constant vector a, because a set of answers- %be 

remeved directly from the relation fIat by using she constant vector a The indirect relevant data 

is obtained from relation up of'"ru1e (2). The only set of data in relation up which will 

polenially lead to an answer is the set of data which is reachable directly or indirectly from the 

query constant a ' Therefore, the resmcted transitive dasure of the relation up, starting with the 

~r -ant  vezor a, constitutes the set of indirect relevant data of the magic set 



%,,following two rules defme the magic set for this application; they simply define a restricted 
81 ,- - 

-- 

&*transitive closure of the relation up starting with the constant vector a 
- 

--magic (a). q 

/ The second step in transforming the rules is to apply the magic set to the rules so that the sizes " ,  
%J of the relations to be evaluated are reduced. This is achieved by insisting that the values of the 

fmt  amibute of the virmal relation r W i n  the magic set. %us, rules (1) and (2) are simply 

The four rules (4), (5 ) ,  (6) ,  and (7). are then compiled into a set of non-recursive query series 
' 

which will be evaluated using a basic method. Using the same method of compilation as 

described in' section 2.2, the following two compiled formulas are generated. 

- - 
id *upk 

oQ(magic*up~ (magic'jnt) down k 

where id denotes the initial relation which contains the query constant vector a Formula (8) 
C 

produces the relation magic which is used in the other formulas. Since the magrc rules do not 

refer to the recursive relation r, they are evaluated first. The join operations between thc relations 

magic and up ana beween the relations magic and jat can be extracted from formula (9). The 

complete non-recursive query series which can now be evaluated 'asing a bottom-up method, is 

shown below. 

id up k 

a magic up 

magic * flat 
k o ,(magicupk magicjlaf down ) 



, 

Formula (10) produces the relation magic,'formulas (11) and (12) produce the relation magicup 
%- and magicJaf, and formula J13Tgenerates the answers to the query. Formulas (10) and (13) a& 

evaluated by a bottom-up method called Semi-Naive [I] method. The Semi-Naive method uses .- 

the samt approach as the Naive method except that at each iteration the query series is evaluated - .  
B 

using only the new results which are generated from the previous iteration. This means that 

rather than passing the entire intermediate relation (i.e. the wavefront relation) prcduced at the th 
iteration to the f i l l h  iteration, the difference of the relation produced at the r f h  iteration and the 

relation produced from the i- lth iteration is passed m the filth iteration. The general process 
"p4, 

flow of executing these two query series is described as follows: 
/ 

1 Deriving the magic set (i.e. la1 upk) 

Define the wavefront relation, wi, produced at the fh>teration, as follows: 

w i .+ i=0 

k 2 .  Deriving the answer to the query (i.e. magicupk * rnagicPnf * down ) 

The wavefrom relation produced at the ifh iteration is defined as: 

HI = (magicjot) 
1 i=i) 

H'. = (magicup ,wi-  
I down) - wid , O<i<=k 

The general processing flow is as follows: 



0 a( mngicP4 

oa(magicup ' . w, down - w , )  

a a ( m g i n r p  w ,  down - w , )  

.... 

aa(inagicup wk  down - wk- 
1 -r 

The MS algorithm gives the advantage of binding the processing only to the set of relevant dat;~ 

(the magic set) . - while avoiding the repetitive processing of the down relation. lone by the H N  

algorithm. The performance of these two algorithms is expected to be similar ( s c c  [3j l  bcausc 

6 the duplicate work done by e HN algorithm (in the processing of the down relauon ar each 

iteration) is offset by the fact that the MS algorithm works with brnary relations, whilc H N  uscs 
' \  1, * only u w y  relations for intermediate proceSsing. The authors also claim that when up anti down 

are identical the analytical expressions for the performance of these two algorithms beconlc 
I 

identical. However, our research shows that this is not 'the case when the disk 1/0 pcrfonriancc. 

of the algorithms are considered. The difference is due t o  the fact that the two algorilhm!, lollows 

different patterns an accessing the three base relations. The  accessing order of the base relat.mns 

of the algorithms will be discussed in detail after the next strategy 1s presented. 
- 



i 

2.3.3 The Cwnting Algorithm 
3 

The Counting algorithm 121 is a smart version of the h4agie Set" str?tegy. ~ecall that the magic 

set marks all the up ancesbrs of the constant vector a and then applies the rules in a bokom-up 

fash~on to only the marked kcestors. The major dmwback of the MS strategy is that the entire - G 

maglr set* aff t h r n d m m t  data) is applied to the relation flat and down at each step. Thus 

there is potential redundancy cause$ by using too much relevant data at each iteration. The 

design objective of the Counting aalgorithm~is ro'minimize -the set of relevant data at each step. 

In the Counting strategy, the ancestors of the constant vector a are numbered by their distance 
C 

from i t  The ,magic set, therefore, contains a group of subsets called the canting sets Each of 

these counting sets contains b e  relevant data for a particular level. At each step, instead of using 

the entire magic set, the strategy uses only the appropriate counting set, thus reducing the set of - 
relevant data at that particular level. 

As with the MS algorithm, the counting sets are defined by the following two rules. 

where a is the constant vector and 1, ranges from 1 to k where k is the number of desired 

lterauons or the number of iterations up to the termination point The original rules (1) and (2) 

are transformed by adding the appropnate counung set to the front of the - - bodj of the rules. The 

ncn m!es are : 

and the quep become: . 



- 

It turns out that the first attribute of the virtual relation r is Therefore, the rules can 
\ 

be optimized into: 1 

i 

'\ 

The new set of rules consists of rules (13), (14). (15) and (16). and a n  be transformed into thc \ \  

following set of compiled formulas. The counting set at the ith level is denoted as countmy, and 
I 

the derived -iirmal relations at the fh level are 1; and ri. 

cou;ztingi = countingj- ' up where i<=i<=k 

/; = counting, flat where Dc=i<=k 

r .  = (ri+l down) + 4 where Ck=i<=k-1. and "+" is the relational umon operation. 
I - -- (20) 

The processing of these four formulas is divided into three phases. First, all the counting sets arc 

computed by formula (18) using formula (17) as the starting point Second, formula (19) derives-a 

set of temporq  relations which will be used by formula (20). Third, formula A20), initialed by 

settlng fk to rk derives the parual answer to the queiy at each !evel. The final answer to ~ h c  

quer) 1s contained in relat~on r, after the processing ~ S G v e r .  The proces4 flowr ol thew thrcc 

phases are as follows: 



For simplicity, the result relation of each is denoted by ri .  
- ., 

+ (r ,  down) 

In  spite of its elegance, the Counting algorithm does not work if there is cyclic data (data ' 

d~rectly or uansitively rederived by itself) or if there is asynchronous data (data rederived at 

different iteration levels) in the database. This is because in such cases phase 1 of the algorithm, 

In whlch the counting sets are computed, will not terminate. 



2.4 Acmssinq Order of Base Relations 

There is a fundamental difference among the-three algorithms described here which has not been 

considered in current literature. The difference is the order in which each algorithm accesses the 

base relations. The HN algorithm involve all three base relations at each iteration. The MS and 

CN algorithms, by contiast, operate on each of the base relations in turn. In other words. thr 

execution of the HN algorithm p~oceeds inc a horizontal manner whereas the execution of the MS 

and CN algorithms proceeds in a vertical, manner. Using this distinction, we classifv the first 

group of algorithms as level-$rst .and the second group as srage-first. The effect of this 

difference, which will be discussed in detail in chapter 4, can only be realized when thc 

algorithms are evaluated from the perspective of the disk I/Os. 

For example, the set of relevant data used by the HN. MS. and CN 'algorithms is in each casc 

the set of up ancestors reachable from the query constant a. The processing costs of' this part of 

the three algorithms shodd be the same if the cost metric is either the number of tuples bcinp 

processed or the number of page requests. The processing cost is not the same, however, if thc 
8+ 

eost metric is the number of disk accesses because in HN the accessing of the up relation is 

interleaved with the accessing of the $at and thec down relations whereas in the other two 

algorithms the accessing of the up relation is done all at 'once. The nurnber of disk accesses 

needed depends significantly. on the size of the available buffer space. This feature 01' thc 

algorithms is a d l y  a major factor in determining their disk I/O performance. 

The M.S algorithm is actually not strictly a stage-first algorithm, because although thc up and /la1 

relations are accessed individually, the latter part of the processing involves interleaved accessing ol 

three different relations (magicup, magicflat and down) at each iteration. Thus. the MS algorithm 

can be seen as a combination of a stagefirst and level-first algorithm. This feature of' thc MS 

algorithm further complicates the process of estimating the disk I/Os, as will be shown In chapter - 
4. In the next section, related work on evaluating the processing efficiency of recursive qugries is 

reviewed. - 
'. 



. 2.5 Related Work 

Although the theoretical aspects of recursive query processing have been studied by many 

researchers, there has been relatively little work done on evaluating the performance and 

implementation of recursive query processing strategies which use the compilation approach; In the 

few performance studies in current literature, different pethods and costs metria were used to 

evaluate the strategies. Three such studies [2,3,17] are reviewed in this section. The strengths and 

shortcaxriings of these studies, which have in part motivated this research, will also be discussed 

In [?I, Bancilhon et d. discuss informally the performances of four strategies, NN, MS, CN and 

another strategy, Reverse Counting, not:  considered here. The efficiency of the algorithms is 

examined in terms of their complexity. wh\& is measured by the predicted number of tuples that 

are processed. Their study shows that the performan-ce of different strategies depends greatly on 

the characteristics of the database. More important, they point out that more research is needed 

to better understand the problem of efficient processing of recursive queries. 

A second comprehensive study [3] surveys and compares eleven different algorithms. The 

algorithms are evaluated analyhcally on four different queries, including the linear recursive query 

co~sidered here,' and with three predefined database wnfigurations. The size of the intermediate 

relations ~enerated during execution is used as the cost metric. The results indicate that there are 

three major factors which influence the processing efficiency: the duplication of work, the set of 

relevant data, and the axity of the intermediate relation (more generally, the attributes least 

involved in the intermediate p r~ess ing ) .~  

Although this study presents a general picture of the performances of various strategies, the 

problem' of the efficiency of recursive query processing is not fully explored, for three reasons. 

 firs^ the qualitative results on the processing efficiency of various strategies needs to be validated 

quantitatively. Second, previous analysis of the algorithms was based on predefined configurations 

of data. I t  is not always possible, however, to know exactly what the data set looks like 

beforehand. Thus, the algorithms should be evaluated using randomly generated data. Third, using 

-- T h e  linear recursive query is considered to be the most complicated query in the study, in 
spite of f l m i t a t i o n s  pointed out here in Section 1.2. 

'The first factor, duplication of work, has been studied extensively in [15] 



the size of the intermediate relations as the cost metria gives a stafic picture of the alpori&n. 

which is inaccurate because intermediate relations mn come and go during execution. In our 

research, inteimediate relations are released immediately when they are no longer needed, and 

thus, the space requirements of the different algorithms can be evaluated dynamically 

Nevertheless, this comprehensive study [3] p m d e d  us with many rudimentary ideas concerning 

the implementation and axdysis of recursive query processing. . 
A third performance study, by Han and Lu in 1171, is more closely related to our research. Four 

algorithms (including HN and three other methods not considered here) were examined analytically 

and experimentally on the same linear recursive query we are studying. The database on which -. 

the methods were tested contains randomly generated data. Their evaluation is based on the 

selectivity of the join and select operations on the relations with the CPU and 1/0 costs as the 

cost rnetrics. They conclude that performing s!election first, mahng use of wa~efiont relations, and 

reducing the arity of intermediate rzlations sre important heuristics for efficient rccursive query 

processing. 

The fundamental difference between and the third one described above is that wc 

have chosen to study one particular processing efficiency of recursive queries, namely 

the I/O costs. As well, we consider the 110 costs from the perspective of disk l/Os rather than 
0 

the page I/Os, which are used in [ l l .  Finally, we examink not only the HN algorithm which is 

shown to be efficient in [17], but also two other snategies (MS and CN) which are shown u, bc 

efficien't in [3]. 

T h e  term selectivity will be defined in Section 3.3. 

'A slrnilar conclusion is drawn in [3]. 



-- 

CHAPTER 3 
- -- 

_2-_ 

----- AR- OF THE EXTENSIONAL DATABBE SYSTEM 

The previous chapter described various processing suategies for linear recursive queries. h a t  part 

of the processing can be seen as being mainly carried outkin the IDB of the DDB system. This 

chapter concerns the other part of the DDB system - the Extensional Database (EDB) system. A 

general model of the EDB along with the different levels of I/O activities involved in executing 

the query (expressed in t&rms of relational operations) in the EDB is presented The 

implementation of this model, by means of a simulation program, is also described in this chapter. 

In short, the objective of this chapter is to present the experimental set-up and the" specific 
/ implementation strategies that are used for low-level operations in the simulation 

- / 

3.1 General Model 

The Extensional Database (EDB) system consists of two major components: a Relational Data 
t 

System (RDS) and a Data Storage System (DSS). The l a ~ e r  is further subdivided into two 

software modules and a disk in which the database resides. The twc software modules are a File 

Srmcture System (FSS), whch is the interface between the RDS and the DSS. ,and 'a  Buffer 

Management System (BMS), which mainrains a buffer pool for temporary storage of data relations. 
I 

The peneralmcnue of the model is shown in Fig. 3-1. 

- 
F1g. :-I :n? gcnerd s r , m ~ t  of an Extensional Dazbase System 



Tbe input to the EDB system is a query which is expressed in terms of relational database 

operatiom Each module in the mode1 communicates with its adjacent modules through rt set of 

operations as indicated in the diagram. The primary task of the RDS is to execute the various 

relational operations requested by the query. Data relations are accessed one tuple at a timc 

during the execution of each relational database operation, so each operation is a sequencc of 
-- 

t u p l e  read and tuple- write requests. These requests are the input to the DSS. 

The FSS, which is the top layer of software within the DSS, presents a record-lbvel abstraction to 

the RDS. Sequential and direct data-accessing methods are the primary functions provided by the 

FSS. This rncclule is also responsible for creating and destroying files and maintaining structured 

files such as B-nee index frles. The File Structure System communicates with the Hun'er 

(C Management System in singlepage units. 

The BMS contains a buffer manager and a buffer pool of pages. The three .tasks that thc 

manager is responsible for are: 1) servicing the page requests from FSS, 2) reading pages from 

and wtiting pagcs to the disk, and 3) when the buffer is full, deciding, based on a replacement 
e 

policy, which page in the buffer should be replaced. 

The primary objective of this model is to reflect the different levels of 1/0 activities involved 11.1 
= - 

executing @e query in the EDB system Three different 1/0 activities are ~ o n e i d e r e d ~ f f i ~ r e c o r d  

I/Os, page I/Os, and disk 110s. Record 110s ' measured as the traffic between the RDS and 

the DSS. This memc was used in the testing of the implementation as an approximation of the 

CPU costs and the complexity of various recursive query processing strategies. The cprrecmcss of 

the implementation is ensured simply by comparing the measurement of this metric with the 
- 

known performance results of the strategies in current literature, such as the three examples 

discussed in [2]. 

The second and third I/O activities (the page I/O and the disk I/O) are the primary interest\ in 
0 

t h ~ c  research. The page I/O, as shown in Fig. 3-1, is measured as the number of page read/wrik 

requests issued by the FSS to the DMS. The disk I/O statistics are gathered by keeping track of 
L 

the w f i c  (i.e. the number of pages being read and written) between the the buffer pool of pages 

in BMS and the disk. This model ignores the effect of double paginp that is, the efTect of 
- - 

-For this particular metric, it is assumed that each tuple of a relation is a logical record in 
a Tile. Under t h ~ s  assumption, t h s  memc is simply a measure of h e  number of tuples being 
read and written. 



demand-paging at,the level of 9 operating system is not considered This phenomenon - of 

double paging has been smdicd by a ber of researchers (e.8. 1201). jum 
The above model of an EDBrsystem' is simulated in this study. Each layer of the model is 

9 
implemented as a module which consists of a set of subroutines and a set of primitives. The 

subroutines are written in terms of the primitives defined at that level, and implement the set of . 
n 

primitives of the level' above. That is, the primitives at each level are actually subro 

the modules of the next lower level and they provide the channels of communi 
# 

adjacent modules. The necessary hardware, such as the system buffer pool and the disk, is 
r 

simulated by a set of data stnimes.  In the following sections, the implementation of each 

module in the simulation will be presented. The algorithms that were implemented at each level 

in each module and the sets of operations which operate across the layers. in the mcbel will be 

described next 

This section describes the implementation details of five simulation module# which correspond to 

the levels of the EDB model described' in the 1 st section. For each module, the strategies a 
employed for the various operations and the format of the primitives will be described. In the 

following discussion, a relation is a two dimensional table, the rows of which are the tuples and 

the columns of which are the attribufes. 

3.2.1 Test Program Mcuiule 

The test programs are a collection of prototypical&mplementations of the recursive query 

processing algorithms. These algorithms are Henschen-Navqi, Magic Set, and Counting algorithms. 
-3 

The detaiis of Qese a!;orithrns can be found in Sections 2.3. Appendix A contains the pse 

of these algorithms written in terms of relational database operations. Each of these subroutines \ 
implements the compiled form of the recursive queries (i.e. the object program) defined in Section 

The test program module acts as the starting point of the simulation A subroutine is selected by 

the monitor program to resolve the recursive query. The execution of a subroutine is a sequence 

of relational database operation requests issued to the database operation module. Each of these 



operation r e q u m  speafies & operator, one or two data relations to be operated on, and a data 

relation where the final results wiU be stored The set of operations defined for this module is : 

1. Join(A, B, C). 

2. Select(& C. constant). 

3. Project(A,C).. 
.$ 

4. Diff;(A, B, C). , 

5. Union(& B). 

where A and B are data relations to be operated on, C is the result relation, and constant is the 

query constant These operations are implemented in the Relational Data module. Along _with 
-4- * -D 

these operations,, a test program can also issue -4: FreeSpace command to release the spacc 

occirpied by a relation. 

3.2.2 Relational Data Module 

The Relational Data module contam a set of five subroutines, each of which implements one of 

the relational database operations listed in the previous section. The set of primitives wh~ch 

underlie the implementation are as follows: 

1. Sequential record-read/write. 

a ReadTuple(name). 

b. , WriteTuple(name). 
/' 

2. Direct mrd-read/write. 

a. ReadTupf e(narne, key). 

b. WriteTuple(narne, ke) ). 

where name is the relation to which the readhnte  applies, and key specifies whtch dala ~uplc' 1s 

to be read or mt ten .  

In the r e u n d e r  of this secuon. the implementation of the relanonal operanons IS dwussed. The 

reiarions involved are either unan or binan., and the followmg notabon is used lo speclfy whlcb 
d 

amibute to consider. 

1. attl(A) - denotes the first amibute of the relauon A. 

2 att2(A) - denotes the secmd ambute of relabon A. : 



Join - 

- - P 

A Join operation is expressed as Join(& B, C). A and B are the relations to be 'oined and C is .L 
the result2relation. The Join is implemented using the Nested-bop join method in which one of 

the relations is chosen to be the a e r  relation while the other relation is used as the inner 

relation. ' The algorithm consists of two nested loops. In the outer loop, each tuple from the outer 

relation is retrieved sequentially. The value of the join column from ffie retrieved tuple is used as 

the key to retrieve the matchmg tuples from the inner relation in the inner loop. To facilitate the 

matching of tuples a non-clusfered B-tree index [4] is built on the join column of the inner 

relation. 

In our imgementation, the smaller relation, is always chosen to be the outer relation while the 

larger relation is used as the inner relation. Three cases can occur, depending on the kinds of 

relations used. These three cases are described below. 

Case 1 : A, B and C are all binary relations. 

1. joid amibutes are :- att2(A) and attl(B). 

2. result relation C contains attl(A) and att2(B). 

Case 2 : A is unary, B is binary, and C is unary. 

1. j0inattributesare:-attl(A)anda@(B), - -- - -- 

L 
- - 

2. result relation C contains att2(B). 

Case 3 : A is is binary. and C is binary. 

1. join attribute are :- attl(A), and attl(B). f 
2. result ,,relation C contahs attl(B), att2(B). , 

In case 3 the Join operation is 3qui~alent to a sequence of Select operations, using each of the 

&stincr values from relation '9 as the constant 
.- - 

9kr 
-- - 

- 

The Select operatim is expressed as Select(A, B, constant). A is the relation from which tuples 

are selected. B is the result relauon, and constant is the value by which the selection is applied 

The implementation assumes that anl(A) is the selection column. The result relation can be either 

urn or binar). Two methods of selection are implemented. First, if an index already exists on 



the selection column, all the tuples which have the value of constant are retrieved using the ind'ex 

file. S m d ,  if there is no index, relation A will be scanned sequentially once and all the tuples 
7 - 

. wdich have the value of constant are selected and written to relation C. 

The Project operation is expressed as Project(A, B). A is the relation to be projected and H is - -  - 
the result relation Project is implemented by reading all the tuples from relation A once 

sequentially and then writing all the distinct tuples to relation B. The implementation assumes that 

the removJ of duplicate tuples in relation A is done automatically. and therefore the mu; o'l. i t  

is ignored. 

The Diff operation is expressed as Diff(A. B, C). A. and B are the relations to be operated on 

and C is the result relation. The Diff operation maps each tuple from relation" A onto relation 

and the result relation contains all the tuples in relation A which do not exist in relation H. Each 

tuple in both relations is read once sequentially. Tuples from relation A which also exist in 

relation B are eliminated, and all the remaining tuples from A are written to C. 

h 

Union ,- ---_ - _-- 
"--""---e - Union operation is "expressed as Union(A, B). In this operation, all the tuples from relation 

B arc appended to relation A. The result relation is in A, and relation B is left intac~ In the 

implementation each tuple from relation B is read once sequentially and is wriiten to relation A 

sequentially. This implementation is not a dispnt  unlon (in which all the tuples in H which arc 

already in A would not be written again to the result relation). In other words, the result 

relations of a disjoint union only contains distinct tuples from the two o 

disjoint union. is desired, the Pro!ect operation will have to be applied to 

3.2.3 File Structure Module 

The File Structure module consists of five subrputir~es and two sets of data str %&" ures. Four of 

the subroutines are interrelated. The first set of data structures is a group of three one-page 
-. 

buffers which are used for the Read operations. The other data structure- is a one-page buffer 

used for the Write operations. The five subroutinks are arranged as shown in Fig. 3-2. 
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Fig. 3-2 The General Structure of the File Structure Module. 

The set of primitives used by the module is a sequence of page operations. They are: - - = 

1. PageRead(name, id). 

2. PageWrire(narne, id). 

3. PageRelease(name, id). 

where name is the relation of which a page is required and id denotes the required page. 

. PageRead and Pagewrite read from and write to a single page, respectively. PageRelease is used 

to execute the Freespace operation, in which all the space occupied by a relation either in the 

buffer or in the disk are released. This section describes the five subroutines of the File Smcture 

module. 

The Dcsuoy subroutine is responsible for issuing a sequence of PageRelease commands to the 

Buffer Management module when a FreeSpace is received. The Sequential subroutine is 

responsible for sequential readins and writing of a tuple to a partjcular page of a data relation 

This module interacts only with the Data-Enm routine in order to read or write a tuple. The 

D~recr module is responsible for drect reading and writing of tuples. A B2tree index is 
+7 



implemented for dnect data accessing. Two cases are handled by the Direct module. First if an 

index on the referenced column of the relation exists, the Index-Enm. routine is d i e d  to search 

the index file in' order to locate the required data tuple. Once the tuple is located, thc 

Data-Entry routine is called to read or write the mple. Second. if the index does not esisr. a 

B-tree index is built, by the 1nc;ex-Enh-y routine, on the column which is used for the dtrccr 

accessing. Once the index is built, it is used to read or w i r e  the re data tuplc as 
- - 

described. 
a 

The one-page buffers are used by the Data-entry' and Index-entry routines. If  the required dab- 

tuple or index enuy is in the page which is currently in the one-page buffers, no page iequcsls 

are issued. However, if the required enhy is not in the buffers, either a PageRead or PageWnlc 

request will-be sent to the next module - the Buffer Management module. 

3.2.4 BuACer Management Mcdule 

The Buf'fer Managemene module consists of a subroutine, which implements the bu fl er manager, 

\d a data structure &hi& simulates the system buffer pool of pages. The manager i s  respnnsiblr 
k, . 

for processing all the page requests from the File Structure module and for swapping pages to 

and from the system buffer pool and the disk. when; a ?ageRead or Pagewrite reiiesr is 

received, the manager h ies  to locate the required page in the buffer pool If the page is there, i l  

is sent to the File Structure module in the case of a read, or "its content& modified according LO 

the request sent by the File Structure level in the case of a write. I f  the required page is nor In 

the buffer, the manager decides which page in the buffer can bc replaced and issues a PapcSwap - . 
command to the Dsk  module. The replacement policy implemented' in the simulation is r h c  

1 

Least-Recently-Used (LRU) scheme. If the inQcated page is in the buffer when a I'apeKeleaw 

command 4s received, the page will be ,released; if the page is not ~n thc buf'lcr, ~ h c  

corresponding command will be sent to the Disk module. 

3.2.5 Disk Mcdule 

The implementation of this module is simple. I t  consists of a subroutine which is res-ponsiblc for 

locating and releasing pages of the disk and a large data structure which simulates thc disk. 

Tnere are two rypes of infornlation stored on the dsk, data reiauons and index f i l s  Kelauons o r  

index frles are stored in the page unirs, and i t  15 assumed that no two relauons or ~ndcr .  file5 



share a page. This may lead to internal page fragmentation dwbg a simulation, , a problem which 

wilt be discussed in chapter 5. The sue of a page is characterized by the number of tuples or 

index enuies it mn hold. A page of a unary data relation (i.e. arity = 1) holds twice as many 

tuples as a page of a blnary data relation because the implementation assumes that the length of 

a u n a q  tuple is only half of a binary tuple. Similarly, a page of an index file is assumed .to 

hold ten times as many index enmes as a page of a binary data relation. In other words, the 

rauo of the number of enmes among the binary data relations, unary data relations and index 

files is 1 : 2: 10. This ratio was arbitrarily chosen, and serves the simple purpose of reflecting 

the &fferences in length of the various kinds of data involved in the ?simulation. 

-4 

At  the beginning of the simulation, three data relations are loaded onto the disk Throughout the 

slmulauon, various interrnedlate data relations or index files may a16 be stored on . the disk., and 

ar the end. the final resuir of the recursive query will be stored as a data 

In  the next section, the synthetic database which is used in the simulation is 

relation on the disk. 

described. 

3.3 j& Database 

This 

basic 

1W! 

: 002 

section describes the syxhetic database which is used in the simulation. There are three 

relations, in the synthetic database, referred as up, $a, and down Each relation contains 
- -  

tuples and mch mple has wo intleger amibutes. ln other words, each relation is a table of 

rows, each with two columns of integers. The columns of integers of each relation were 

iandom!! generated and are  uiiformiy distributei over a given range. 

Tnc database can be chaiactenzec b! three parameters: the size of .the relations, the selection 

se ie~uW! of the up relauon. and the joln selectivity between relations. These parameters are 

2eEned as foilows. 

The w e  of a relatior, A, deno~ed Il.41, is defined to be the number of tuples it contains. 
' 

-: selemor; selectivir!- of a relatior; A, as SSa, is defined as the ratio of the size 

of b e  :esuir reiation the xieciion of the ori@ relation A. 

!om selecuvlb bewee:! the reiatiori h and B, denoted as JSa.b, is defined as the ratio 

i?r *e slzs of ke T ~ S L :  yeiauor! afie: 3 e  !om to the product of the size of A and size of 



B. (Note that A and B can be identical, in which case the join amibutes are the two 

columns of the relauoa) 

J s a b  = llfill Q l 4  1141) 
where R is the result relation. 

- 

Four join selectivities (JSup.up, JSup.flat, JSflasdown, adJSdown.down.) between the three basic 
6 

relations anti a selecdon selectivity @Sup or simply SS) on the relation up are used in modellirlp 

the synthetic database in this study. To simplify the task -of controlling the volume of data during 

the simulation, we assume that all four join selectivities take on one single value at any one time. 

Thus, we ,use a single variable, JS, to denote the join selectivity. By restricting the ranges or the 

values of the joincolumn and the selection column, we are able to conuol the join selectivities 

between relations and the selection selectivity on the relation up. The details of how to control 

these selectivities can be 'found in Appendix B. d, 

To eliminate the dependency' of the results on a particular database, a different dabbase was ~lscd 

for each test run in the simulation. The columns of integers in each relation thal make up the 

database were randomly generated using the U N I X  system time, in microseconds. as thc secd. 



ANALYSIS OF RESULTS 

This chapter presents the simulation results regarding the disk 1 /0  performance of the various 

recursive query processing suategies. The effects of four parameters on the disk I/O pzrforanance 
\ 

of the algorithms are examined. The first two parameters, Selection Selectivity (SS) and Jaie 

Selectivity (JS), are related to the volume of data that is processed. The other two parameters, ,, 
Buffer Size and Page Size, are related to the system configuration on which the recursive query '\ 

strategm were executed. The values of the four parameters used in the simulation were varied as 

follows: 

1. Selection Selectivity (SS) : 0.001, 0.035, 0.05, 0.1, 0.3, 0.5, 

2. Join Selectivity (JS) : 0.001, 0.3005, and 0.0001, 

3. Buffer Size : 1f& 25,  50, 75, 150 (pages). 

4. Page Size : 20. tuples/page and 40 tupleslpage. 

For each distinct ombination of values for the four parameters, the simulation program was 

executed five times, each time with a different set of base relations generated using a different = 

seed for the random number ienerator. All five algorithms were run against the database, and the 

page I/& and the disk 110s were recorded. Then the average values of each cost metric over 

the five runs was calculated. The algorithms were also run against some specific databases which 

were designed to magnify the differences among the three algorithms. 

1.1 Pape I/O and Disk !/O 

In  this section, the relationship between the two cost memcs - the page I/O and disk I/O is 

discussed. The observed differences betweeri &k I/O and page I/O is mainly due to the effect 

of buffering. A request for an index or data page will require a retrieval of the requested page 

frorr, the dIsk only i f  this page happens not to be in the buffer at that moment In the fcllowing 

Awssori, we make a distinction between access and retrieval. By retrieval, we mean the page is 

-.=-- . L u L e v e d  from ui" bsk, while access simply refers to a page request from the program. The size 

$5 buffer is a v e n  imponant factor in determining the number of retrievals compared to the 

n m k :  of accesses, If the  buffer is very iarge in comparison to the data processed, then the 



necessary disk-based 'data pages need to the fetched into the buffer only once. If on the other 
- - - - - - pp 

hand, the buffer can hold only one page of data (or indices) at any one time, the number of 

disk remevals is almost the same as the nuinher of page accesses. 
- 

The relationships between the page 110s and disk 110s of the three algorithms are summaritcd in 

Fig. 4-1. The values of JS and SS are fixed at 0.001 and 0.005, respectiv.ely. and the page sire is 

20 tuples per page. Each graph shows the changes in disk I/O, data page 1/0, and total pagc 

I/O for one algorithm as the buffer size is .increased. Tduf poge I/O is the total number of 

pages accessed, including all the data and index pages, while data page I/O is the number of 

page accesses to data relations, and disk I/O is the total number of disk retrievals incurred by 

both data and index pages. The behaviour of the three I/O activities is very similar in all threc 

algorithms and the follo 'ng obsen;ations can be made. b 
1. The two page I/O curves o n  each -plot* relatively flat ,compared to the disk 110 curves. 

This supports the simple fact that the effects of the buffer size are not reflected in the cost 

metric of page 1/0s. While page I/Oys remain constam the disk I /05s decrease 'as thc- 

buffer inc~eases in size. 

2. The number of total page I/Oys is much greqter than the number of disk VO's in every 

plot In contrast, the number of data page I /05s is much cloSer to the number of disk 

I/Oys. This is because a large number of the page accesses required during the execution 

are to index pages, which are likely to be found in the buffer. This particular aspect of the 
I h 

page I lO metric will further be discussed in the next chapter. More important. thc p lo~!  

show that the number of data page accesses is closely related to the number of disk 

retrievals in all three algorithms. This fundamental observation will be used' in a later 

section of this chapter to help estimate the number or disk retrievals of each algorithm. 

Also, notice that when the buffer size is small, (i.e. < 50 pages) the data page I/O curves 

are closer to the disk I/O cwves. As buffer size increases, the two curves become further 

aparL This implies that when the buffer is not large enough to hold all thk necessary data 

pages, the disk I/O of the_algorithms can be estimated roughly by their page 1/0's. As 

buffer size increases, the correspondence between the data page 1/0 and disk I/O of the 

algorithms becomes less apparent 



- 

We now consider the differences between page 110s and disk I/Os of the three -- algorithms - - - - - - - in - 

1 

terms of their performance. For the same set of parameters as before, the performance of the 

three algorithms, measured by the number of data page accesses. and disk retrievals is shown in 

Fig. 4-2 and Fig. 4-3, respectively. The I/O behaviour of the three algorithms is  quite different 

in these two plots. When measured by data page I/O (Fig. 4-2), the three curves are strictly 

ordered and never cross. This is to be expected, as the page I/Os of the algorithm should not be 

affected by changes in buffer size. CN and HN ha;e relatively low data page 1/03 while MS 
fl 

incurred more. When measured by disk I/O, on the other hand (Fig. 4-3), the HN and US * 

curves cross when the buffer size is between 50 and 75 pages. Also, when the buffer is small, 
3 

the HN q m e  is) similar to the CN curve, while when the buffer is large, the MS curve is similar , 

to that of CN. These- two graphs clearly indicate that the performance of the algorithms can 
\ 

appear to be quite different when different cost metrics are used. Also, different algorithms react 

differently to inc~eases in the buffer size. For most of the' simulation experiments conducted in 
e 

this study, the data page I/O curves of the Pree algorithms never cross, as  in Fig 4-2. When 
/ 

the disk I/Os are considered, the HN and MS curves *sometimes cross over as in Fig 4-3. In thi: 

reminder of this chapter, we will concentrate on the disk I/O performance of the three algo@fhms 

under various data volume and system configurations. 
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4.2 Disk I/Q Berformance 

- - - - - --- 

In general, for small SS values and small buffer sizes, the simulation results show great vafiation 

so that the average disk 110 for each distinct set of parameter values may not present an 

accurate picture of behaviour. This shows up quite clearly in' the plots. where for small buffer 

sizes, the number of disk I/Os sometimes increases as the buffer increases in size. In retrospect, 

we should have used. the same database to obtain readings for small b a e r  sizes and small SS 

values. In this way, the apparent inconsistency could have been eliminated. 

The remainder of this chapter is organized as follows. The next section -- - presents and interprets the 

experimental -results obtained from the simulation. Section 4.4 discusses in detail two 

algorithm-sptyific factors which may affect the disk 110 performance of the three algorithms. 

These two factors along with some otherless obvious ones are used in Section 4.5 to explain Lhr 

differences between' the dtsk L/O performance of the three algorithms. The ,$sk 110 performance 

of the three algorihuns are evaluated on two anifinally constructed databases adapted from [2] i n  

Section 4.6. 

4.3 Observations pJ Internretations 

This section presents and discusses observations about the disk 110 perf~rmance of 

algorithms HN, CN, and MS with respect to the four parameters described earlier. The 

are compared by showing the disk 110s performance curve of each algorithm as 1 1  

innease in buffer size. As in the previously described figures, the X-axis represents 

size, and the Y-axis represents the disk 110s (in pages) incurred by the algorithm. Six 

the three 

algorithms 

relates to 

the buffer 

sets of six 

. - 
graphs each are presentzd in Fig. 4-4 ro Fig. 4-9. The first three sets (Fig. 4-4 to Fig. 4-6) .arc 

for simulations in which the page size is 20 nrples/page, while the last three sets (Fig. 4-7 to 

Fig 4-9) are .for sitnulations with a page size of 40 tuples/page. Each graph cgntains one curve 

for each'algorithn,. Each set of six shows what' happens when the JS is held constant and the SS 

is varied. For each, page size, three JS and and s ix  SS values are tested. 
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Let US first c~nsider the curves when the page size is '20 tuples per page, and the three base 
- ---  - -  

relations up, $a, and dawn are thus each 50 pages i~ size. The following observations are made . -%, 

, 1. ' The C% curve is always below the other two curves for all buffer sizes, showing that the 

CN algorithm outperformed the other two algorithms in all the situations that were 

t considered in the experiments. 

2. The HN and MS curves cross over in all plots except for two plots in Fig. 4-4 with high 

JS and SS values. ?fie MS &we starts high, and moves below the HN curyes as the 

buffer size increases. - . 

3. For each JS value, the MS and HN curves cross over at higher buffer 'sizes as the SS 

value increases. Whez JS is 0.001 (Fig. 4 4  the highest value) the two curves never cross 

for the two highest SS v&es (i.e. 0.300 and 0.500 ). 

4. For graphs with low SS values, MS -and CN have similar curves even though MS starts at 

a hgher mint on the left As SS values increase, HN and CN curves become sMar ,  and 
a 

In sane cases, parallel to each other. 

These observations lead to the @llowing interpretations: ' - 
pl 

1. The MS algorihn has gdod disk I/O 2erforrnances (in the sense of being close to the CN 

algorithm) when the buffer size is large and the SS values are low. When ?he data volume 

handled by the algorithm increases .(the combined effect of high SS and JS values), the disk 

I/O performance of the MS algorithm deteriorates rapidly. 

2 The dsk I/O performance of the HK algorithm does not respond to large buffer size 

increases as drastically as the other two algorithms. With a" high data volume, the 

subopund HN performance barely improves when the already large buffer size (i.e. 75 

pages in the buffer compared to 50 pages for each base relation.) Is doubled to 150 pages. 

T 3 e  alponthrns behave in much the same way when the page size is increased to 40 tuples per 

p q e  (Fig 4-7 to Fig- d-9). In fact hey behave as if the page size were only 20 tuples per 

page artd L!!  buffer size were hdved. The only difference is that dl three c w  txtnverge EO the 

smr jnnt  when the buffer is 150 pages and the page size is 40 tuples. This is because, for 

tiwe b ~ f f e r  and page sizes, the buffer is la-e enough to hold all' the data and index pages- 



of disk IIO's; that is the numbet required to bring the three haw relations into the buffer. 

page size as a constant value' of 20 tuples per page, unless stated otherwise. 

4.4 Analysis 

The simulation ~esul ts  showed that the disk 110 performance of all the algorithms imp;oves as 

the buffer size increases. Tnis result is not surprising, as conventional wrsdom tells us that the 

, larger the buffer is, the less disk traffic there wll be. The interestmg question, however, is haw 

does each of the three algorithms react to the size of the buffer? I t  is obvious from the graphs 

that not all the algorithms Tact in the sam? way to the increase in buffer six. To answer th~s 

auestion, we identify two ' fac tm that ma) affect the disk I/O p e r f o m c e  of each atgorithm 

These two factors are related to W a m o u n t  of data that the algori*rn has to handle and how ., 

this data is processed To t h s  end, we examine the worhng set and the relat~on reference parrem 
! 

of each algorithm. These rwo famrs are described in the following two subsecuons. 
$ 

4.4.1 Wwking Set 

W e  define two different mcepts of working set: global wwbng set (WS-G) and local w w h n g  

set (WS-L). The global working set includes all index and data pages of all base and 

intermedate relations generated throughoui ihe whole execution process. 'A  buffer sire as largc a\ 

or larger rhm the WS-G will never cause an! addl~onal dlsk 1 / 0 5  over and above the mlnlrntrrn. 

slnce each relation needs to be read once. The local workirig set refers to the index and data 
v 

pages of the base and intermediate relations that are requlred for processing a cerram pan ol thc 

aigorithm. As described in Section 2.5. each of rhe three alponthms proceeds In lrerauons (stages), 

which may be s tage j r s t  iterations as in CY or level-first iterations as tn Hh'. or a combtnabon 
d 

of the two as in MS. Thus, the WS-2. for each algorithm will be different The size of WS-I. 1s 

i m p o m :  bemuse it indizates, rough?, the buffer requirement for each iterauon In each algorithm 

?he Maximmi Buffer Req&ement (MBR) is defined to be the opt i r~d  size of the buffer such 

an! i n c r m  m Ir  u~ l !  no: >leld better disk I/O performance 7he  MBR of an algorirhm may 

be i s  than the sue of 1s WS--G. For example, if each relatlon 15 acreued on]? once In 

TWXSSIOR. tl3e MBR for thrs a@x&r~ IS m&i) 5b pages (plus space for rnkmechate and Index 
li 



elations) while the WS-G siLe will exceed 150 pages. On the other hand, if all three relatiqns r 
I -- - - - - - - - 

are accessed once in each itqratiun, the MBR is roughly equivalent to the WS-G size. Therefore, 
I 

/ MBR is more suitable for the purpose of allocating buffer space for the algorithms, and WS-G is 
I 

1 not analysed. We will now amsider the WS-L for each algorithm. Recall that intermediate 

1 
relauons that are no longer required for further processing are released immediately. 

1 / 

"/ 6 

/ 1. CN 

There are three iterations: Upstage. Flat-stage and Downstage, in the CN algorithm. Each 
1,- 

stage involves the Sase relation bm5ng the same name and a number of intermediate 

relations. In the Up-stage and Flat-stage iterations, one set of intermediate relations is 

non-disposable be-cause i t  is required for the next stage of processing. In the final 

Down-stage, each of the intermediate relations is released immediately after being processed. 

The size of the intermediate relations (i.e. the Counting sets) created during the Up-stage 

depends on the SS values. The size of the htennediare relations created during the 

FIat-srage depends on the size of the counting sets a d  the JS values. These intermediate 

relauons are utilized during the Downstage. Thus the WS-L at each stage contains one of 

the base "relations and a number of intermdate relations. This means that the maximum 

buffer requirement for each snge is roughly the size of the base relation (which is 50 

pages when the page size 1s 20 tuplesipage and 25 pages when the page size is 40 

, t ~ ~ i e & ~ a g e )  plus the size of the intermediate relations. The index tables for the various 

= o m  and select operations also take up some-buffer space, but for 50 or 25 pages of the 

base relations. the mdex tables take up only about 2 to 6 pages, and hence will be ignored. 

i - H\ 

The WS-L in the HN dgonihn is qulte different from that of the CN algorithm, because 

o! h e  different su-ucruxe of the two algorithms. Unlike the CN algorithm, the HN 

dipondm employs 2 ieve!-rm: lreration ?his means that all three base relations are either 

e m r e l y  or pamall!. invoived dunng each itektion. In our specific implementation, the 

W - L  of HX car. ever. k differeni at the different iterations. In the frtst iteration, the 

WS-L mvolves the  three tnme base reiauons. This is implementation-specific, as we 

--I A+xrec  index tabftts ro be bui:: for each join operation. and the constnrction of an index 



table for a relation requires all the data pages of that relation to be brought into the 

buffer. Since all three base relations will. be joined in turn during the first iteration, the 

WS-L for this iteration contains at least the three entire base relations. The impacts of this 

particular aspect of the implementation will be discussed in chapter 5. On top of this. the 

WS-L of the first iteration includes all the intermediate relations generated dump the 

various operations plus the wavefront relation (created by joining a selection of the relation 

up with itself) that is needed for the next level of processing. For the subsequent iterations. 

it is diEcuIt to predict the WS-L because it depends on the number of data pages&pbinted 

to by tbe index tables during each join operation. The maximum WS-L is Of course all 

three base relations plus some intermediate relations, but the actual buffer space requirement 

at each of the second to the fifth levels depends significantly on the SS and JS values. 

which determine the number of &ta pages of each base relation which will be needed and' 

the size of the intermediate relations generated. 

The &IS algorithm is dfferent from. the other two a$grithms in that i t  uses both thc 

stage-first and level-first iteration methods. The stagefirst iteration requires the following 

preprocessing: v . 

a. generation of the magic set, 

b. join of the magic set with the up arelation, (i.e. magicupj and 

c. j W o f  the magic 4et with the flat relation (i.e. magicflat). 

We classify (a) and (b) as Upstage processing and (cj  as part of the Flat-stage processmg 

. After (a) and (b), the up abd flat relations are no longer needed as they are replaced h j  -- 
magzcup and magicftat, respectively. The WS-L for h e  Upstage ponion involves the up 

relation and the magic set, w h c h  is the intermediate relation created and passed on to thc 

Flat-stage portion. The size of the m g i c  ser is determined entirely by the SS values. 

Afrer the pre-processing, there are five iteratibns (levels) of processmg inklvine two 

intermediate relations, magicup at all levels and magicflat at the first iteration, and the base 

relation down The size of the two intermediate relations is determined by the JS and SS 
' *  



values. At each level i. there is one join betwan magicup and magic$ati (mugi~&Uo is 
- - - -- - - - - - - -- 

magicflat); which varies in size from one level to another Due to our implementation 

idiagnnasies, one index table may have to be built at each iteration as the varying 

intermediate relation may shrink in size from being larger than the fixed intermediate 

relation (magicup} to being smaller than i t  The same thing is m e  also for the joiun 

between, the join result of these. two intermediate relations and the down relation. For a 

large magic set (i.e. high SS and JS values), the intermediate relations can be larger than 

the base relations. Thus, it is very dificult to predict even the maximum buffer 

requirement Of the iteration when the JS and. SS values are "high. For small data volumes, 
/ 

the buffet requirement at iteration i is approximately equal to the size of the two 

intermediate relations (magicup and magicjafi) and the dawn relation plus some of the 

other inkmediate relations generated along the way. 

In this section, we have defined the concepts of the global working set and the local working set 

The d5!ivation of the local working set of the three algorithms has provided us with some 
I 

intuitive, although not precise, indications of the buffer requirement of the three algorithms. The 

local working set of all three algorithms depends, to a certain extent, on the values of SS and JS. ~" 

In order to gain a better understanding of the buffer requirements of the algorithms, these two 

variables JS and SS are considered in the next section 

4.4.2 Relation Refirence Pattern 

The working set analysis described in the last section deals' with how each of the algorithms 
P 

handles the data it has to process. We now consider the amount of data that each algorithm has 

to handle during the execution. It is obvious that we are dealing with quite complex algorithms. 

Ho*ever, a simplified model of execution of each algorithm is sufficient to show the effects of 

data volume on 'its &sk I/O performance. Thus, a simplified model was developed to show the 

relation reference pattern of 'each algorithm. Using this model, we are able to show the sequence' 
t 

of different relations being accessed in various relational database operations throughout the - 
execution of an algorithm. We are also able to quantify the number of data pages that may be 

accessed from each relatioa A m d i n g  to the results of some pre lhhq test nus, we fwnd that 

most of the disk VOs are incurred by three relational operations: p i n ,  select, and 'd i f l  Thus, only 

these three operations are considered in the model. Notice that the diff operation is only used in 



the MS algorithm. The objective of this model is to estimate the MBR of the three algorit!!m. 

Our simple model has the fouowiag chmcteristics. - - - - -  -- 

Only data pages of base relations are considered. The index pages are nor considered 

because while they a m u n t  for a large percentage of the page U0s.  they only generate 5% 

to 3W0 of disk I/Os, as shown in Fig 4-1. Thus, the probability that a request for an 

index page will muse a disk 110 is very low ill comparison to a request for a data page.' 

Intermediate relations which are small because they are only single column relations (i.e. 

arity = 1). are y t  considered The only intermediate relations that are considered are thus 

magicup and magicpat, which are created during the execution of the MS algorithm. 

When a 'select is performed on a relation, it is assumed Lhat the entire relation is read. 

This means that all the data pages of a relation will be processed at least once. In  our 

notation, the select operztion is represented by R, where R is the relauon in quesuon., 

When a pln is performed, if an index does not already eust for the larger relawn, ttnc 
i 

will be built for i t  The index construction operation is represented by R. where R 1s I h c  

relation in question Like the select operation, this operation requires all the data pages ol 

the relation to be'read once. 

%'hen a pin is performed using an index 

requests is equal to the number of tuples 

number of page accesses is represented by 

requests for data pages of R. 
' 

When a d i f f  is performed on relatiw A and 

to the larger relation, the number of' page 

in the smaller relauon. In our notahon, the 

x(R) where x is the (maximum) number of 

B, relation A is usuallk qum small T h u ~  Lhe 

number of page requests for this operation is assumed to be the number of data pages of 

the second relation B and it is denoted as B. 

Based on the above model, we now show for each algorithm the reference panern of tht bast ' . 

and mtermediate relations. For simplicity, we assume that JS = 0.001. Wlth t h~s  joln selechvlty. 
- 

the size of the domain for the join athibzltes of the two relations is lOOO.' I f  one of the t w o  

relations involved in the join operation has 1000 tuples (i.e. as do all the base relat~ons in h i s  

smdy), .and there index for this then for each tuple in the other relation, there 
-- 
'This as&~ of the page I/O and disk 1/0 is discussed in chapter 5 .  

9The rehtionshij) between the join selectivity an$ the domain of the joln atuibutes 1s 

ciescribed in detail in Appendx 3. 



will be on the average one matching tuple in the base 'relation. Thus, if the smaller relation has 
-,----------- n tuples, there will be, on average, n pages of the base reiation requested in the ~ o m  aperahon, 

The extension of the above result ,to different JS values should be straightforward, although the 

' expression may be much more mmplicatkd The value of variable SS multiplied by 1000 is 

represented by ttl= symbol ss. After the select operation of 'the constant vector a applied to the 

base relation up, the result relation has ss tuples. Given the join selectivity of 0,001, when the 

result relation from the select operation is joined with any base relation, the resulting relation will . 

% again have ss tuples. The constant 5 will appear frequently m a relation reference pattern since 

there are 5 iterations to consider. The maximum bf ler  requirement (MBR) is estimated by the 

maximum number of page requests between two occurrences of the same relation in the relation 

reference pattern The reference pattern and the MBR of the three algorithms are shown in the 

following. ' , 

, u p - >  u p - > S s s ( u p ) - >  Upstage . 
jrat -> 5ss@a)  -> Flat-stag e 

down -> Sss(down) Dawn-stage 

. The upstage processing 'starts with a select operation on the relation up, followed by an 
4 

index mstruction on the same relation and then 5 join operations. This axresponds to the 

derivation of the counting sets at all 5 levels. In the Flat-stage, there is the index 

construction on the fIat relation and 5 join operations with the same relations. Similarly, the 

Down-stage consists of an index construction on the' down relation and 5 join operations. 

The marimurn number of data page requests between two occurrences of the same relation 

in the akove reference pattern is 50 pages, which is the size of each base relation, 

Therefore. the MBR of CN is 50 pages. With this buffer size. each page of the three base 

relations is read once and only once. 



up -> flat -> ss'flat) -> down -> ss(down) -> up -r ss(upl First level 

Second level 

Third level 

Fourth level 

Fifth level 

The sequence of operations in the first level is: a select operation on relation up, an index 

congnmion on relation juf, a join operation on relation jar. an index construction on 

relation dmn, a join operation with relation dmn, an index consuuction on relauon up, and 

then a join operation with relation up. Each of the second to the fiith levels lnvolvcs a 

join operation with reiation pol. a number of join operauons with down. and a Jolh 

b operation with rela n up. In order to provide enough 6uffer memory so th;t! all th~ec ' 
/ 

- 

base rel$ons need to be remeved into the buffer only once, the buffer must bc large 

enough to hold all pages requested berween two occurrences of any of the three base 

relations. sinceo each base rela~ion conrains 50 pag& the MBR of HN is as leas1 150 pager. , 

,/ Additional buffer requirements for hdex pages and other intermediate relauons are lpnored 

in this model. 

3. MS 

/ 

In the following reference pattern, the derived ~ntermedtate .relation a1 level r IS rcprcscntcd 
> . 

as magicjati (where magicJIat, is magic$at) and its size is r e p r e ~ ~ t e d  as I,. 

up -> up -> Sss(up) -> Upstage 

J ~ f k ~ j  -> compute magrcup 



The first three steps conespond to 'the preprocessing part of the MS algorithm described in 
- - - -- 

W o n  4.1 of this chapter. In the Upsrage p a  the ma& set is derived by fm 

performing a select operation on up, then building an index for the same relation a@ tben 

performing 5 join operations w i i  up. In the next two steps, the magicup and magicflat 

relations are derived In the above reference pattern we assume that the magic set contains 

Sss elements, with a maximum value of 1000 (i.e. the maximum size of the up relation). 

For tractability, we also assume -cup is larger than the intermediate relation mugic$azi 

so that the index for the join between the two relation is on magicup. However, in the 

actual implementation the index may not always be .built on the magicup relation. This 

aspect of the MS algorithm is discussed in the next chapter. 

The fmt level starts with a n k d e x  mnstruction on the relation mgicup. pThe join owation 

between magicup and magic$atc is represented by the terms mugicjlat, -> &(magicup) in 

the first level, &ie the join operations in HN and CN. Both of the relations involved in 

this join are shown in the pattern. This is because, as described earlier as a characterishc 

of the model, these two intermediate relations are both binary relations. Thus, data page 

requests on these two relations are comparable to the page requests on bw relations. In - 
the rest of the first level, there is an index construction 'on relation down, a join with this 

relation, and then a d i g  operation involving magicmo at the end. In each of the second to 

the fifth levels, there is a join operation of 

with dawn, and a difference operation with 

relatior! at level i is the result of the previous 

e 
The reference panern of MS is more complex 

of all the intermediate relations at each level. 

mugicjkti_ with magicup, a join operation 

m a g i c f l ~ t ~  at the end The magcjlati- a 

level of processing. C 

than that of HN and CN, primarily because 

As mentioned earlier, since the page requests 

of these mtermelate reiatim cannot be ignored, it is more difficult to eslimate the MBR 

of the MS algorithm. .4 oonservative estimate of the MBR, based on the above reference 

panem. Is the toul size of m a g ~ u p ,  magrcflal, ma.gi~Jat~+~ and down While the maximum - 

w e  of magtcup and magic&?, (i.e. magicflat) is 50 pages, the maximum size of the other 

magtc~%~,  ( I  > 0) is difficult to estimate. For small sr values, in general, the MBRLis not 

much more than 50 pages, since magicup. magicJati, and mngic~&~$+~ will be quite small. 

and ~e siLe of down is the dominant factor. For large SS values, however, the MBR could 



4.5 Emlanation of Exr>erimental Results 

We are now rat$ EO explain the di%rences in rhe disk If0 p e r m n a s  of& thKe 

algorithms based on &e analysis of. the working set and the relation reference pattern from the -i 

last section. In general, CN has a much smaller MBR than the other two- algorithms. The MBK 

of HN is larger than that' of CN, but it is more predictable than that of the MS algorithm. 

When the actual buf'fer size is large enough (e.g.; 150 pages in the buffer when the page size is 

40 tuples), the disk 1 /0  performance of ali three algorithms is the same. (see Fig. 4-7. Fig. 4-8 + 

and Fig. 4-9) The disk I/O performance is quitedifferent when the buffer is not large enough 

for all three relations. Ln the following discussion. we will examine pairs of algorithms to explain 

the psons for the differences in their I/O performanLe. i 

ex vs HN - 
CN has a much smaller MBR than HN, which makes it outperform HN by a wide rnarpm 

when the actual buffer sue is greater than the MBR of CN but less than that of HN. Thls 

explains why HN always performs poorly in comparison with CN when the buffer si7.e is 
5 

either 75 pages or 150 pages (20 tuples/page). It should be noted that although we have 

predicted that the MBR of CN is 50 pages. it does not reach its minimal dtsk I/O unhi' 

the buffer is 75 pages. This is because -the reference-partern prnodz does not consider the 

space occupied by index pages and some other intermediate relations. In the actual 

simulation, therefore, more than 50 pages ue actually requlred b) the CN algorithm. When 

the buffer is 75 pages or 150 pages, the disk I/Os of CN are not seribusly affecled becausc 

these buffer sizes are well beyond the MBR of CN. 

When the buffer is smaller than the MBR of both CN and HE, the two algorithms should 

perform quite similarly bemuse the two algorithms have about the same number of page 

requests if the difference in the reference pattern is g o r e d .  They do not perform 

identidy, however, and ths is due to three minor differences between the two algorithms 

which do not show up in the reference 

a- removal of duplicates during the 

b. refereace locali~,  n 



c, the number intermediate relations. 

of CN and HN (e.g. [23]). Howevq, the difference persists even for small SS values which 

produce few duplicates from one level to the next. For larger SS values, it is difficult to 

attribute the large performance differences iq the Down-stage entirely to the duplicate 

removal. Our experiments show that (b) and (c) also contribute to the difference in the ' 

actual number'of page quests between the twa algorithms. CN has an edge over HN with 

regard to reference locality since the accesses to the base relations are localized in CN. 

Also, our present implementation of HN requires a larger number of intermediate relations 

than CN. HN employs roughly O(n2) intermediate relations in conlparison to O(n) for CN, 

where n is the depth of recursion (i.e. ' 5  in thi case). Since each intermediate relations P 
incurs ema page requests, the difference b e d e n  the disk I/Os of the two algorithms 

i 
becomes more apparent when the buffer size is~small. 

As mentioned earlier, the MBR of MS is more difficult 'to predict than that of the other 

two algorithms. The MBR of MS depends very much on the JS and SS values, whereas the 

MBR of HN is always close to the total size of the three base relations. For low JS 

and/or SS values, magicup and mugicflari will be quite small in size, so the MBR of MS 

will be quite small. This explains why MS has good performance, compared to HN, for low 

values of IS and SS when the For larger IS and SS values (i.5 when 

the data volume is h'gh), MS MBR than HN, which explains why their 

performance curve+& when JS = 0.001 and SS = 0.300 and 0.500. The shifting 

f~om left to right (i.e. in the direction of increased buffer size) is a 

clear indication of the change in the MBR of MS. When the data volme is very low, the 
*f 

// 
. . 

," 
,' MBR of MS is very close to that of CN. Thus, MS outperforms HN at a small buffer size 

because the MBR of HN is much larger than that of MS. As the dsta volume increases, 

the MI33 of MS mmes but it my. well s&l be &kr than the M3R of HN. 

Therefore, MS o rms HN at a larger buffer size. Finally, when the data volume is 

) very high, the h~ of MS will exceed the MBR of .HN, and the two curves never cross 

under these c i r c u m s m  b 



We now consider the performance 

smaller than the MBR of either. 

algorithms more or less determine 

pattern that MS generates more page 110s then either HN and CN for all values of JS . 
and SS. Thus, it is expected that HN should outperform MS when the buffer size is small. 

This is indeed the case. The curves show that when the buffer size is smaller than rhc 

comparison between MS q d  when the buffer size is ' 

ppp-pp - - - - 

general, for small buffer size, the page I f @  of the 

the disk 110 p e r f o w c e .  It is clear frrm the refereax 
\ 

MBK3 of both MS and HN, the MS curve is always above the HN curves. The poor 

performance of MS when the buffer size is smaller than its MBR is also due to the fact 

that it has a much larger WS-L than .HN in the 2nd to the 5th iteration levels. This 

means that when the data volume is high, the difference in disk 110s between HN and MS 

is proportionally much larger than the difference in page I/Ck. ,- 

.There are some situations in which HN does not perform as well as MS when the bufr'cr 

size is smaller than the MBR of either of them. Notice that the cross over poinr in the 
\ 

curves of SS = 0.001 and 0.005 (Fig. 4-4) occurs bef& the buffer size reaches 25 pagea. 

which is smaller than the Ml3R of MS at that configuration. This means that MS is better 

than HN for these SS values and a buffer size of 25 pages, because when SS is very small. 

the disk I/Os of both algorithms are generated mainly at the beginning of the execution 

(i.e. the fmt level in HN and the preprocessing parts of MS.) since the relations involved 
4 

. during the hner parts of the execution (i.e. form the 2nd to the 5th levels) are quite small. 

In swh situations, MS will have a better-reference locality than HN because the accesses to 

the base relations are localized. This can be seen by comparing the' relation referencx 

pattern of HN at the first level with that of MS during preprocessing. As a result of' t h ~ s  

localization of accesses. the disk 1/0s geierated by MS will then be less than that of' the 

HN algorithm. 
'I 

k 
The above analysis shows that the CN algorithm is generally the best algorihm with respect to 

disk I/O performance because it has tbe 'smallest and most predictable MBR of' the thrcc 

algorithms. While the performance of HN is not as g ~ o d  as that of CN, it is more stable than 

MS because the MBR of MS varies significantly according to the data volume. An interesting 

question that remains is "Is CN always better than any other algorithm, with respect to disk I/O 

performance?" In the next section, this question is addressed with two artificially constructed 

databases adapted from [2]. 



4.6 Vulnerability ef QJ 
- - - -- 

% 

This section addresses the question of whether CN always p e r f m  beuer than the other two 

- algorithms with .respect to disk I/&. It is shown in [2] that for some specific databases, ( 3 4 .  does 
&, 

perform worse than HN and MS in terms of time complexity. We suspect that for some specific 

databases, CN may well have poorer disk I/O performance than MS and HN, but for different 
( 

reasons. As we have shown, CN and HN access the three base relations with very different 

patterns, with MS somewhat in bebeen CN accesses each relation in turn. one at each level 

(stage). In contrast, HN access all three relations at each level. Our implementation, while it . 

limits the number of iterations to 5 seems to benefit CN more than the other algorithms, no 

f significant change in the performance was observed when the depth was increased to 7. It is 

difficult to generate a database randody that can make CN perform poorly, so we have adapted 

two sample databases from (23 to enable us to focus on particular aspects of the performance of 

the three algorithms. The two sample databases and the simulation results are described in the 

following sections. 

4.6.1 Sample Database I 

The first sample database contains the following data in the three base relations. up, $at and 
I 
i 

down, with n proportional to the number of tuples in the, up and dawn relations. 

In the following diagrm, it  helps to see up as "goi@ up": if uptab), theq we place b above a 

and draw an arc from a to b. We see jat as going sideways, if jlat(a,b), we place b to the right 

of a and draw the arc a -> 6. FinalLy, down represents ucs that go down: when down@&), we 

place b below a and have an arc a --> b. For the case of n = 5, the sample database can be 

represented as shown in Fig. 4-10. The dashed lines illustrate facts that will eventually be 

m i m e d .  ,' 



Fig. 4-10 Sample datibase I for n = 5. 

ln the simulation, n is 25, which means that the processing will continue to deplh 25.  T h u  Ilncnr 

recursive rules in Section 2.1 are applied to this database with the query 

? :- r(al $1. 
In this and the next sample database, each page contains 20 .tuples. 

C 

It if shown in [2] that MS runs in q n )  time against this database while both CN and H N  run 

in O(n2) time because in computing the transitive dosure of the up refatton, both CN and H N  

re-derive .a large number of common data at each *iteration. 

The outcome 'of our simulation of the three algorithms against this database, measured in  r e r m  of 

disk I/Os, is shown in Fig. 4-11. As with the randomly generated database, H N  and MS do nor 

perform as well as CN for the small buffer size. As the buffer size increases, MS ouqxrforms 

the other two for the same reason as stated above. The most interesting observation is that as thc 
I 

buffer size increases to approximately 11 pages, HE, which suffers from the same problem as CN, 

reaches its optimal performance. This is the point at which all base relations being accessed ar 
6 

each iteration can be accommodated by the buffer. CN, on ther har~d, has to swrc all 

temporary relations derived at all 25 levels, so its maximum requ~rement 1s much larger 

than 11 pages. As a result, CN will not respond to the increase in  buffer size until i t ;  MHK,  

which is much larger than that of XN or MS in this case, is reached. 
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Fig 4-11 Dlsk 1/0 performance on Sample Database I 
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The second sample database is similar to the first one. The dala in the three b s e  relauons up. 1 
$at and down is defined as follows "" 

Using the same notation for the tuples in the base relations this sample darabasc is represented 

in Fig. 4-12 for n = 5. 

Fig. 4-12 Sample database I1 for n = 5 .  

The linear recunive rules and the quen  of the last sample database are appl~ed LO thl\ databast 

It is shown in [2 ]  that agama this sample database, both CN and MS run in an) Umt while 

HX runs in q n 2 )  time. This is due to the removaj of duplicated tuples b~ CN and MS durlng 

the processing of the down relation. 

Ii  EEITE out from our slmulanon that MS IS the best algorithm of the three to use in rhls 

d a ~ k e  (see Fig. 4-13]. On fact, the ~ t i r n a l  algorithm for this database is Seml-Na~vc w h ~ h  

reminates after the first iterauon) The perfarrnances of HN a;ld CN seem to be ~denhral to that 

for sample database I. This, however. n due lo h e  fan t h a ~  in our irnpiemenlatlon. the ... 



intermedrate relation generated by CN at each iteration is stored in a separate page to maintain 
- - - - - - - - 

tts unary anv. In this sample database, each intermediate relation generaid by C?R a t  each level 

consists of only one tuple, and all of these partially fdied pages, accumulated from 25 levels of 

iteratlon have to be stored. Thus - it is internal page jrizgmentatiorr that causes the poor 

performance of' CN in this sample database. If all the iniermediate relations are compacted 

together to produce a single relation of arity 2 (an exna column is needed to record the level 
\ 

number of each tuple), CN (called the Compacted CN in Fig. 4-13) outpe?.fmhs HN as it no 

longer suffers from internal fragmentation l k s  technique does not imprsve the performance of 

CN in sample database 1, because @e poor performance of CN there is due to the large number 
, 

of data re-derived at each level. 
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. IMPLEMENTATIONAL ISSUES 

W 

Since this research concerns measurement of low-level disk I/Os, we must rely on specific 

' implementations to produce performance data. It is important to consider how our specific 

implementations affect the disk I/O measurements so that we can assess the degree of dependence \ 
of our measurements on the sirnulati& itself. As well, an implementor of such a database may 

learn useful implementation m b i q u e s  that will lead to better disk I/O performance. In this 

chapter, we will discuss, retrospectively, what we have learned from the implementation of the 

simulation, and alternative methods 'are suggested for future work. Four gene& issues will be 
h 

addressed: the costs of strategies of consacting and accessing index tables of data relaiions, the 

Impacts of ~nternal page fragmentation, the management of the buffer pages, and the sequencing 

of relational operations. 

5.1 Constructing Accming Index fables 
1 

Most performance studies of relational query processing assume the availability of index tables of 

the relations to be joined, and ignore the costs of building the index tables. This assumption may 

not be justified in rmve query processing for two reasons. First, several relations must typically 

be joined in processing a recursive query, and the costs of building the index tables f o ~  those 

relattons can be a major part of the final I/O cost Second, some of the' index' tables are for 

~nterrne&ate relations which are generated during processing of the query, and it is not reasonable 

to assume that the! already exist 1n our implementation, the index tables are not p u m e d  to be 

readily available, and the costs of building them are included, in the measurement of the final I/O 

Tn construct an index table a certain number of page accesses are required to read the data pages 

of the relabon on which the index table is built In general, it is dificult to predict how many 

of those page accesses will generate disk remevals without considering the size of the buffer. 

However, in the worst case (the data relation is not in the buffer), the number of disk retrievals' 

would De the number of I/O operations required to bring all the data pages of the relatim into 

the buffer. In the algorithms of CN and HN, since index tables are required only for the three 



base relations up, pat, and down, the extra disk 110s incurred, in the worst case, are the number 
- - - - - - - - - - - - - 

of disk retrievals required. to bring all the data pages of the three relations into the buffer. 

page in one disk I/O operation directly. Rather, the size of a page is varied to simulate the 

effect of different vo!urnes of data to be uansfened between the bufrer and the disk. As 

discussed in SeeSon 4.2, this pafbcular aspect of the system does not affect the disk 1/0 

ce of the three algorithms significantly. 

Construc.ting\ index tables with the MS algorithm, however, is more camplex, bemuse index tables 
I 

are required r intermediate relations which are generated at various points dunng the execuucrn, Y 
as well as for base relations The fact that some of the intermediare relations may reside In '"4 
the buffer while may be swapped out and be residing on the disk makes it  ever. ' 

of dlsk retrievals required to construct index tables fbr the 
. 

MS algorithm. We can expect, in general, that if the intermediate relauons arc small, ( L C .  .IS and 

SS are low), they will remain in the buffer and the required nurnber of disk retrievals, in the 

worst case, will be close to the total number of data pages of the three base relauons, as In thc 

cases of HN and CN. If the intermediate relations are luge or num&ous, however, chances a r t  

th'at some of €he intermediate relations will be swapped out from the buffer, making ~t d~fficult lo 

estimate the required number of disk retrievals. 

Another reason for the difficulty of estimating the &sk I/O activities needed for the MS. 

algorithm comes from the ,fact that our implementation adopted the conventional method of' Away\  , 

budding an index rable for the larger bf two relations to be jo~ned. creaung an unpredlctabk 
F 

pattern of index table constructions. As described in Section 4.4.2, one of the two intermcd~a~c 
- 

relations to be joined at each iteralion varies in size. If  i t  is t!!e larger one that changes, a 

different index bole may have to be built at each Iteratrm. This can tngger a cons~dcrablc 

number of disk I/Os when the intermediate relations consume a large portion of the buner. 

Choosing to construct an index table on the intermedme relation which does not vary in s1zc at 

each iteration would avoid the problem of creating different index tables from iteration to 

iteration. This was not, done because this particular effect of index construction lor the MS 

; dgonthm was not reahzed until the ;rn@ementation of the sirnulation has been completed. Thc 

problem of estimating the costs of constructing the index tables for the MS algorithm is beyond 

the scope of this thesis and future wor;k is required. However: in the model of relation reference 



pattern d & ~  Q W o n  4.4.2. it 

particular intermediate relation which is 

Another interesting observation is that 

is assumed that the index table is m n s t r u ~  - - - - -- on - the -- - - 

stable in size. -. 

there is a noti= le difference between the numbers of B 
page I/@ and disk I/Os dining the creation and accessing of the index tables For every tuple 

of the relation, an index enay is created and inserted into the cones page of the index table. 

The pmcess of insertion, which involves the traversal of the partially built index tables and the 
4 

wnting of the new entry to a pptxular index page, can trigger a large number of page I/Os, 

bemuse sever2 PageRead operations and a Pagewrite operation are required. Even if an entry 

happens to be ~nserted in the same index page as the previous one, another PageRead is required 

because that particular index page was changed by the previous insertion. On the other hand, 

while the page I K k  incurred in this proms can be very high, the disk 110s are comparatively 

low because the prwess of inserting entries into the index table is localized, and the chances are 

that most, if not all, of th: index pages arc still- in the buffer. This observation further confirms 

the belief that there is indeed a difference between the cost metric of page I/Os and the cost 

metric of disk I/&. 

, 
In the current implementation, when a set of tuples having the same key is required, as when 

remeying matching tuples for a join operation, the index entry of each individual tuple is 

remeved from the index table, and the data page which is pointed to by thg index entry is then 

fetched. This method has the drawback that two tuples which are on the same data page but 

whose index enuies were remeved separately will require two separate data page fetches. A 

feasible soluuon ro this, as briefly mentioned in [12] is to retrieve all the necessary index entries, 
.> 

group hem together and son them in the, order of the data page accesses. This will ensure that 

each requlred data page will be fetched only once. 

r 
d 

5 .2  Intern1 Page Fragmentation 
1 

lntemal page fragmentation occurs when a data page is occupisd by a small number of tuples and 

mosr of the space on that page is wasted. This will muse extra &sk I/& if the partially filled 

pages have to be uansfened back and forth between the buffer and the disk. The effect of 

fragmentation was &scussed with respect to the (3 algorithm in Section 4.6. Fragmentation occurs 

in this algorithm when only a small number of tuples is produced at each level-e number 



of iterations is 

by compacting 

except the last 
h 

I 

high. As described in the same Section of Chapter 4, h e  prahlcm m n k  mtiEid---- -- 

all the data on the partially filled pages into fewer pages. Then all the pages 

one are W, and the number of pages that have to' be m s f e r r e d  back and forth 

is reduced However, compaction as a Lm:utton is not without extra. problems. First. the level - 

number or each tuple must be kept somewhere, which will result in more storage and more 

complicated processing. Second, compaction itself is mtly. Third, it is difficult to predict In 

adknce whether compaction cost is justified because it is not possible to predict the seriousness of 

the internal fragmentation problem. 

Internal page fragmentation can also occur in the implementatio e Union ope&on. ln thc 

current implementation, the union of two relations, A and B, is done by appending all the tuples 

' of relation B to relation A. This method has the drawback that each tuple in relation I3 has rd 

be read and Gritten once and there may be duplicate copies of 
- 

the disk. One way to get around this is simply to establish 

relaDons A and B, without actually physically joining the tables. 

read and write operations and seems to be quite elegant, but it 
b 

internal page fragmentation, which occws when the union of 

. required, as when building the  magic set in the MS algorithm. 

thew tuples in thc buffer or on 

a logical link between the two 

This method eliminates thc cirlra 

also suffers from the problem of 

a large number of relabons 1s 

If each of the relauons coxains 

only a small number of tuples, then' simply creating logical links between the relabons will cause 

a problem similar to that described a h e  for t h e  CN algorithm. There musL be a uadc-off 

between the two methods of implementing the Union operaaon, and the relative merit\ of each 

method deserve further investlgatmn. 

5.3 Buffer Mananement . 

It is shown in [36]  that i t  is important for the DBMS and the operating system to cornmunicatc 

because the DBMS knows which data pages are required and whlch can be destroyed, whcrca\ 

the operatmg system uses onl) a general replacement scheme. In the currenr implementabon, wc 

have adopted a very slmple form of cornrnhication between the recursive ~lgonthms and h e  

buffer manager: the Freespace command allows the query algorithms to inform the buffer 

manager whenever a data relation is no longer needed. The buffer manager can 'then proceed to 

free up the space mupied by thar relation. While this is a very simple form of cornmumation, 



performance with various algorithms. This is mainly because when the space occupied by a useless 

relation is released, not only does that felation not have to be wrimn back to disk, but it also 

Provides space in the buffer for new incoming pages. Tlus technique of allowing the algorithms to 
.,* 

have hrect control over releasing useless relations has facilitated the derivation of the working set 

of the algorithms i~ Seaon 4.4.1. 

Another related issue regarding the m T e m e n t  of the buffer pages is the efficiency of the 

replacement policy used by% the buffer manager. The w e n t  implementation uses the LRU (Least 

Recently used) smtegy. However, as pointed out in f3q ,  the LRU method does not h a y s  

provide good buffer management in a database environment For example, in the case of 

sequential accefws to pages which will be cyclically referend, such as a' reference pattern of 

page numbers 1,2,3,..,n.13,3.~, the LRU smtegy is dearly the worst possible replacement 

algorithm if the buffer 1s not large enough to hold all n pages. Several researchers are actively 

working to fornulate better buffer management techniques (e.g. [9]) in a database environment. A 

good replacement policy will not only provide better disk I/O performance, but will also reduce 

the necessary buffer space of a querj processing algorithm. 

For the sake of slmpllcin we have not paid much attention to improving the disk 110s by 

arranging the exaution of relational operauons In an optimal sequence. To optimize the effects of 

locallh of reference, relauonal operauon? which access the same relation should be grouped 

together. Let us consider as an example the first level of execution of the HN algorithm, found 

HI Sewon 4.'4.2. The. current sequence of relauonal operations is a selection on the relation up, 

followed b! a join with the relauon pat. a join2 with the relation down, and finally the join %th 

the relauon up In this sequence, if the buffer size is not large enough to hold all three of the 

relations, the final join will requre the swapping in of the relation up after it was already 

swapped out This problem can be avoided simply by performing the join operation with up right 
* 

after the selection on i~ so that even if the buffer is nos large enough to hold all the pages of 

the rhree relations, up will still be in the buffer, and the join operation with it will not mgger 

e x m  cksk 110s. This usage of relation reference ordering is recommended for practical 



f 

implementation of recusive query processing algorithms. - - - - - - 

Havin~ discussed the advantages and disadvan & es of various implementation techniques used in 

this study, we now consider their impacts on the overall results of this research. For all three 

algorithms analysed, indices are b a t  for the three base relations at various points in time. ~ h k  

our implqntation decision of creation of indices does not affecf in general, thc comparative 

performance of the three algorithms. Of course, in a subtle way, the disk 110 performance of an 

individual algorithm may be affected because its relation reference pattern may be altered doe to 

the creation of indices. Ln fact this is one of the reasons that the performance of MS has a 

greater variance than those of CN and HN. Index creation and . however, generatc.a 

large number of page I/OS that do not lead to much disk 110 i ione  reas& why 

we segregate indices from base relations in calculating the page 1/0 and &sk I/O costs. In fact, 

for high & p l u m e s ,  different methods of performing join operetions. e.p s a t -  merge. would 

to be more appropriate than indexed join, and further invesugauon IS necessary Q 

X, The issue o ternal page f~agmentation is'an example of the importance of properly storing thc 

intermediate relations. This phenomenon, however, only occurs in rare instances and. therefore. i~ 

does not affect sigdimntly the comparative performances of the algorithms. For the  buffer 

. management issue, it is c l m  from the discussion in Section 3'above. that LRLT does nor prov~dr 

rhebest buffer management for the index-nested loop join rneqod. In fact, thb prirnitivc schcrnc 

of First- IR- First-Out can do as well as the LRU scheme in those sltuauons. However, a\  all 

three al'gorithrns are executed ,zing the same join method and the same buffer replacement pplicy, 

lit may be concluded that the overall relative performance of the three aieortthms would nor be 

changed substantially if  a different buffer management policy is used. 

Fmallv, on the issue of optimal sequencing of relational operauons. I r  seems that I [  1s rather 

algorithmic specific. It is difficult to generahze this Idea to all the Agonthm. Thus this issue 

i con m of the implementors. 
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CONCLUSIONS 

Th~s chapter contains a s u h r y  of the results of this study, and presents some suggestions for 
- .  

future research. Recall. that this research presented two objectives: to study the relationships 
Ir 

between page I/O and disk I/O using some linear recursive query processing ajgorithrns as  

examples, and to compare the performances of some promising linear \recursive query processing 

algorithms at the disk I/O level. ' 

In this research, we have examined the similarities and differences of the two I/O mt metrics in 

relational database query processing: page I/O and disk I/O. The relationships of these two 

memcs are llsted as follows. 

1. While the number of page I/O requests generdiy corresponds to the amount of disk traffic, 

this correspondence becomes less when the buffer size increases. When large buffer space is 

available, it is important to include the disk I/O as an additional parameter in the cost 

formula of a query processing strategy. Algorithms that behave very similarly when 

measured by their page I/O activities may have very different disk I/O performance as 

shown in Section 4.1. 

2. I t  1s important to estimate the maximum buffer requirement (MBR) of a query processing 

algonthm in order to allocate the proper amount of buffer space to ensure good disk I/O 

performance f the algonthm. This also ensures that buffer space required for other 1 
s~multaneous acuvities is not wasted 

3. A s~mple methodology IS developed to estimate the maximum buffer requirement of a query 

processing algorithm., This methodology has at least in thls case study proven to be useful. 

6.7 Llnear Rermive process in^ Algorithms 

The effiaenc) of three recursive query processing suategies were evaluated with a set a f  linear 

rules from the perspective of the~r relative &sk 110 performance. A number of interesting 
f' 

charactenstics of the three algorithms were discovered in this study. 
L 

4 



There is a fundamental difference in processing be&een CN and HN. CN proneds by 
- 

stages (Up. Flat and Down) and, for each stage, only one base relation is aaessed and all 

necessary relations are derived aiid passed on to the next ln m~gast W pcwxis 

by iterations (5 iterations altogether and for each iteration, all three base 

relations (up, jut  and down) are aspects of both approaches. 

Largely because of the above differences. CN has much superior disk l/O perlbrmaecr 

because it has a much smaller maximum buffer requirement (MBR) compared to the other - 
a, 
two algorithms. However, if the relations involved are relatively small and the 'number of 

iterations is relatively large, it may have the worst performance. For HN and MS. the cfisk 

I/O performance of HN is more predictable than that of MS in me sense that the MBK of 

HN does not depend on the data volume as much as the MS algorithm does. 

If the size of the query constant (as a vector) is small, any of the three algorithms has 

similar disk and page 110 performances (in absolute terms since the charts & be decelumg 

as the Y-axis representing the performance does not always starts from 0). This 15 true lor 

all buffer sizes and join selectivities. 

If the size of the query constant is large, not only is it important to choose the r ~ g h t  

recursive query algorithm, but it is equally essential to choose the right strategy for 

implementing low-level operations such as relational database operations. 
C 

To decide on the buffer allocation scheme, one has to have a good estimate of the slze of 

intermediate relations. This has shown to be a difficult task. Also. most of the relevam 

works in the literature are concerned with estimation of the sue of a sinplc join of' two 
C r 

relations. However, it was found- that in recursive query processing, the esumabon of h c  4 
sizes of intermediate relations resultiw from successive joins of relauons 15 equ,ill\ 

important 

l' A dose analogy exists in the way a 2-dimensional array i s  intemalljF stored in a linear 
may. Fortran compilers adopt a column-first approach while PL/1 compilers~ adopt a 7 

row-fmt approach. A 

4 7 - 



6.3 %mestions & Future Research 
4 

- -- - - - - - - 

* 4 .  In this research we presented the importance of the disk I/O performance in query 

processing. The ultimate goal is to develop a r,e% iiS cost analysis modei in which not 

only the page if0 is considered, but disk 110 and buffer management schemes are also 

evaluated. Along the -same line, developing a better communication interface betwe& the 

DBMS and the opera& system is also an area which should be studied. 
j. 

As was pointed out in this study, the creation and &wing of index tables can be , ' 

problematic in the index-nested loop join method. Otker join methods such as the 

son- merge and hashed- based join method should also 'be examined from the perspective of 
, 

disk UOs. 

b 
For recursive query processing strategies, .&though the CN algorithm has the best disk I/O 

performance, its application domain is limited to linear recursive rules and non-cyclic - .  
database. Other. similar strategies such as the Level- Cycle Merging algorithms [la have 

been developep to overcome this drawback of the CN algorithm. These algorithms should 
L 

be tested to determine wheiher they preserve the elegance of the CN in accessing the base 

relations while the application domain is expanded. For the MS qgorithm, the great 

variance in its disk I/O berformance is partly due to the underlying basic method - the 

Semi-Naive method. Other methods sh&d be tested with the MS d g o r i t h  to determine 

if the disk 110 performance of it would improve. 

In order to predict the MBR of a recursive query processing algorithm more accurately, 

analytical methods, should be derived to calculate the' size 'of the intermediate relations 

produced from sutcessive  join^ operations rather than simply estim;bng the size of the result 

of m e  single jom operation. Finally, the disk I/O performance of non-link or, more 

complex recursive query algorithms should be investigated. - 
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This appendix contains the pseudocude of the three algorithm: Hewhen-Naqvi, Magic W, and 

Counting. The pseudocode of each algorithm is written in terms of relational operations. ,These 

, operations are pln, select, project, union, and difl The notation used to denote these operations 

arc described as follows. 

where A and B are relations to be operated on., For each algorithm there is a particular set of 

intermediate relations which will be specified with the description of the algorithm. In general, a 

concatenation of two relation names, AB for example, denotes an intermediate relation which is 

the result of the join of %the two 'relations A and B. A relation name with a superscript, R' 
means the result of joining the relation R with' itself, kl' times. The result relation of any of the 

operations is a relation. 'Therefore, it can be an operand of another operation. For example, 

n(o A) represents the select operation on the relation A followed by a project operation on the 

result. The parenthesis indicate the imposed precedence of the operations. The n&.ber of " 

iterations in each algnrithm is fixed at 5. D e 



1. Wi - the wavefront relation at iteration i. (i.e, o u d )  

2. Ri - an inremediate relation at iteration r obtained by joining the W, relation with the .par 

relation. (i.e. (o  upi)jat) - 

3. TiJ - an intermediate relation at iteration i obtained by joining the R, relation with the 
a 

down relation j times. (i.e. oup$afdmvd) 

4. A - the relation contains the final answer to the query, it is initially an empty idation. 

- - The Blnorithm 

1) S e t W , = n ( o u p ) .  C 

2) For i=l .  2, ... ,5 do 

begin 
1 

3) Ri - j a t )  

4) Set TiPo = Ri 

5 )  For j= 1, 2, ... ,i do 

begin 

6) T. = T ( T ~ , ~ - ~  down) 
1J 

end 

7) Set A = A + T.. 
1.1 

8) Set Wi = T ( W ~ - ~  up) 
8 

end. 



Magic Set 

Notatiou 

1. magic- therelation magicset . ,  - 

2. Mi - the intermediate relation contains, a partial magic set at iieration i. 

3. rnagicup - the 'intermediate relation obtained by joining magic and up. 

4. magicflat - the intermediate xela@n obtained by joining magic and Jnt. 
a 

5.  Ri - the derived intermediate relation at iteration i. 

6. A - the relation contains tke final answer to the query. it is initially an empfy relafirm. 

\ 

algorithm 

1) Set magic = M, = n(aup).  

begin 

3) Mi = (Mi-l up) - Mi-l 

4) magic 7 magic + Mi. 

end. 

5 )  Set magicup = n((magic up) + oup). 

6) Set magicflat =  magic jlat). 

7) Set R, = magice :  

8) For i 7 I ,  2, ... ,5 do 

begin 

Ri = ~(((rnapicup + Ri-l) + down) - 

end. 

11) Set A = oA. 



Notation: 
. * 

1. Ci - the carnri.qg set at iteration i. 

2. Fi - the intermediate relation at iteration i obtained by joining C, and par. (i.e. C$anurl 

' 3. Di - the-intermediate relation at iteration t obtained by joining the relation Dfil and th'c 

relation down then unioned with Fi (i.e. (Di+lduwn) + FJ 

4. A - the relation contains the final answer to the query. it is initially an empty rel&or, 

The alnorithm - 

Set C, = ~ ( u u p )  

For i = 2, 3, ... ,5 do 

begin 

Ci = n(Ci-l up). 

end. 

For i = 5, 4, ... ,1 do 

' begin 

r;. = n(Ci * pat). 
1 

end. 

6) Set D, = F,. 

7) For i = 4, 3, 2, 1 do 

begin 

8 > Di = R ( ( D ~ + ~  down) + Fi). 

end. 

9) Set A = (Dl * down). 



4 C 

n APPENDIX B . 
Thls appendit derives the expected values of the @in selectivity (JS) of two- xlations R and S, 

@ 
and the expected values of the selection selectiv~ty (SS) of a relation R Let us first consider the 

b JS o[ R and S, and the join amibutes are A an B of R and S respectively. R d  that JS is 

defined as the ratio of the size of the result relation after the join operation to the produci d: - 

the size of the two o r i w  relations. .The following assumptions are made for the derivation. 

I 

a The qize of the relation R (S) is IR/ a q ) .  (i.e. there is 1q a q )  tuples in the relation R 
--+ 

w.1 Z 

b The values of the atuibutes A and B of R and S respectively are chosen randordy from a ' . . 
domain D of positive integers and the size of the domain is lq. (i.e. if D contains the 

integers 1, 2, ..., 1000, then its size is 1000.) 

c The values of A (B)  are uniformly dismbuted over the IR/ (Iq) tuples& R (3. 

The derivation of the expected JS is as.follows. 

For each tuple r of R, the probabilipj that the attribute A of r (denoted as r.A) is eqr7J . 

to a random value a from D (i.e. r.A = a) is 1/I Df . ,4 
Therefore. the number of tuples in R such that r. A = ,,L/ is I R/ 11 D( . i 
For a tuple s in S and s.B = u, the numbi: tuples in R (i.e. r.A = s.B) is 

equal to ( RI /I q . _- 
* 

Therefore, the total nurnber of tuples obtained from .!! and S such'that r.A = sB is equal 

to (IS(*(R/)/ID(. In other words, the size of the result relation of joining R and S is 
i 

4 SI *I Rl )/I q . - CI 

lased on (1) and, (21, the expected JS is then equal to ((I +(R/)/I Dl)/( St *I q)  which is 
3 

simplified to 1/I q. 
, 

Therefore, the expected JS of joining two relations which satisfy"e assumptions (a), (b), 

and (c) is equal to the reciprocal of the domain from which the values of the two' join 

' attributes gre chosen fim E 



For the three JS values used In this research. 0.001. 0.0005. and 0.0001. t h e  size of the dornain of 

the join attributes 

The derivation of 

to the size of the 
I 

above. Using the 

follows: 

- - - - - - - - - - - - 

are 1000. 2000, q d  10000. r&tively. 

the SS, defined as the ratio of the size of the result relation after the selection 

original relation, of a relation R is similar to the derivation of the JS as s h o w  

same assumptions, the expected value of SS of a wlation R can be dcrivcd as 

For each tupie r of R, the probability that the zmibute A of' r is less ~ h a n  or equal to a random 

value 4 from D' is a/lI>I. The number of tuples in R such that r .A <= a is a/JUi. Therefore. 

the SS of the relation R on the attribute A is ((qq)/(q)/tRl which is simplified to a/lI3.  
f 

Therefore, the SS of a relation R is equal to the reciprocal of the size of the domain of' thc 

selection attribute multiplied by a selected value from the same domain. In other words, the SS 

of a relation can be controlled by choosing a domain of certain size and a particular value ffattt 

this domain. For example, if the domain size is 1000, choosing the value of 100 y~elds a SS ol 

0.1. For this SS value, it means that all the tuples in R of which the value of attrib~~tc A is less 

than or eqmi to 100 will be selected. 


