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ABSTRACT 

A hypervariety is a class of varieties closed under the formation of equivalent, 

product, reduct, and sub-varieties. Hyperidentities are identities which define 

hypervarieties, in the same way that ordinary identities define varieties. This thesis 

explores the concepts of hypervariety and hyperidentity in relation to varieties of 

semigroups. 

Chapters 1 and 2 provide an introduction and background, describing the 

relationships between hyperidentities, hypervarieties, and varieties of clones. 

Chapter 3 gives the semigroup-theoretic results needed for later chapters; these are 

mainly of the form of an equational description of the joins of various equationally- 

defined varieties of semigroups. 

Chapter 4 begins the study of hyperidentities satisfied by various varieties of 

semigroups, and the properties of two operators, the hypervariety and the cIosure 

operators, on varieties of semigroups. For the lattice of all varieties of bands, we 

identify which varieties are closed, and produce hyperidentities to distinguish the 

corresponding hypervarieties, giving a countably infinite chain of hypervarieties. 

Similar results are obtained for the varieties of k-nilpotent semigroups, and for 

joins of these varieties with varieties of bands. 

The final two chapters consider the commutative varieties satisfying identities 

of the form xn = x " + ~ ,  and other related varieties. We produce several families 

of hyperidentities satisfied by such varieties; in particular, we introduce a technique 



for producing a hyperidentity related to any given identity for semigroups. We also 

investigate length restrictions on what types of hyperidentities such varieties can 

satisfy. These results combine with the join results of Chapter 3 to provide 

information about the action of the hypervariety and closure operators on such 

varieties. 
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Chapter 1 

Introduction 

Hypervarieties and hyperidentities have been defined by Taylor in [15]. A 

hypervariety is a class of varieties closed under the formation of equivalent, 

product, reduct, and sub-varieties. Hyperidentities are used to define 

hypervarieties, in the same way that ordinary identities define varieties. In this 

thesis we explore the concepts of hypervariety and hyperidentity as they relate to 

varieties of semigroups. 

We begin in Chapter 2 with a general study of hypervarieties and 

hyperidentities. Section 1 introduces the concept of a clone, a particular type of 

heterogeneous algebra associated with any variety of algebras. Several theorems 

then set up a correspondence between varieties of clones and hypervarieties. This 

makes it possible to describe hypervarieties equationally, in terms of identities for 

varieties of clones. However such identities are generally very complicated, and we 

turn to hyperidentities as an alternate approach. Section 2 presents a theorem 

proved by Taylor in [15] that relates hypervarieties and hyperidentities, along with 

some terminology for and examples of hyperidentities. 



In Section 3 of Chapter 2, we introduce the operator U, which takes any 

variety V to the hypervariety U(V) it generates, and look at the properties of U 

when it is restricted to the lattice of varieties of semigroups. A Galois 

correspondence is set up between varieties of semigroups and sets of 

hyperidentities, leading to the definition of a closed variety of semigroups and of a 

closure operator on varieties of semigroups. This begins the main work of the 

thesis, the study of hyperidentities satisfied by various varieties of semigroups, and 

of the closure and hypervariety operators. 

Chapter 3 presents the semigroup-theoretic results to be used in identifying 

the closures of various varieties. The first section gives a brief overview of the 

structure of the lattice of all varieties of semigroups, establishing the notation to 

be used later. It concludes with a description of the technique to be used in 

obtaining closure results. This technique depends heavily on obtaining an 

equational description of the join I! V V for various equationally-defined varieties 

U and V. Thus the remainder of this chapter presents the necessary join results: 

in Sections 2, 3, and 4 we look at joins of various varieties V with the varieties of 

rectangular bands, of zero semigroups, and of nilpotent semigroups respectively. 

Both syntactic and structural proofs are used, and in many cases the identities 

obtained for the joins have been suggested by the hyperidentities to be described 

in subsequent chapters. 

In Chapter 4 we begin looking at hyperidentities satisfied by various varieties 

of semigroups. The lattice of varieties of bands is examined in Section 1. Because 



its structure is completely known (see [2], [6] ,  or [7]), and because the properties of 

idempotence and duality are so strong, we are able to obtain complete 

hyperidentity and closure results for the varieties in this lattice. We obtain a 

countably infinite chain of hypervarieties of the form U(V) where V is a self-dual 

variety of bands, with corresponding bases of hyperidentities to define them. In 

Section 2 we consider the varieties of nilpotent semigroups, again with complete 

results; and in the final section we combine the band and nilpotent results to 

describe the closure of any variety of the form U V V, for U a variety of bands 

and V a variety of nilpotent semigroups. 

In Chapters 5 and 6 we consider the varieties A, and A,,,, consisting of 

commutative semigroups satisfying xmy = y and xn = xn+, respectively. We begin 

with some general remarks about the construction of hyperidentities satisfied by 

such varieties. We then present in Section 5.2 a technique which allows us to take 

any identity and construct a hyperidentity in some sense based on the given 

identity. As well as some hyperidentities for the varieties A, and A,,,, this 

technique yields several interesting results about the closure and hypervariety 

operators as they apply to varieties of commutative semigroups and monoids. 

Section 5.3 explores a different type of hyperidentity for A, and A,,,. Here we 

are led to consider two length parameters depending on m which seem to 

determine "how longn a hyperidentity satisfied by one of these varieties has to be. 

The final section of Chapter 5 explores further this idea of length restriction, with 

several lemmas giving conditions which a hyperidentity must meet in order to be 

satisfied by certain varieties A,,,. 



In Chapter 6 we combine the hyperidentity information of Chapter 5 with the 

join results of Section 3.4 to discuss the closure of A,, A,,,, and several related 

varieties. The results are divided into two cases, in terms of a length parameter 

t(m) discussed in Chapter 5. In the first case, when n is greater than t(m), we 

obtain complete closure results for A,,, and related varieties. In the second case, 

when n is less than or equal to t(m), we obtain results only for certain values of 

m, determined again in terms of restrictions on the value of t(m). We conclude 

with a conjecture about the closure of A,,, for the remaining values of n and m. 



Chapter 2 

Hypervarieties and Hyperidentities 

This chapter introduces the concepts of hypervariety and hyperidentity, which 

will be studied throughout this thesis. The first section defines and explores the 

connections between varieties of clones and hypervarieties. Since the equational 

description of these classes quickly becomes very complex, we turn in Section 2 to 

an equivalent approach, that of hyperidentities. We then define a closure operator 

on varieties of semigroups, in terms of the hyperidentities they satisfy. 

2.1. Clones and  Hypervarieties 

In this section we introduce the concepts of clone and hypervariety. These 

structures are considered by W. Taylor in [14] and W.D.Neumann in [9], and the 

reader is referred to these papers for a more detailed discussion, including proofs of 

the results stated here. 

We begin with the definition of a heterogeneous algebra, assuming that the 

reader is familiar with ordinary (homogeneous) algebras and varieties, as discussed 

in [3], for instance. 



In a heterogeneous algebra we allow more than one sort of object, so that 

our "universe" is a family of non-empty sets (Ai: i E I), indexed by some set 

I. Each fundamental operation then includes not only an arity, but also 

information about which sets it acts on. For example, we might have I the set of 

natural numbers, and a ternary operation F: Al x A2 x A, -, A,. A zero-ary 

operation corresponds to a distinguished element of one of the sets A;. Formally 

then a heterogeneous algebra of a given type is a system 

<Ai; Ft: i E I, t E T>,  where each Ai is a non-empty set and the type includes 

the necessary information about each Ft. 

Most of the standard results of universal algebra carry over easily to 

heterogeileous algebras. In particular, we may define heter~geneous suhalgebra, 

products, and homomorphic images in the obvious way, as well as free algebras 

and equational classes; and a Birkhoff-type theorem then relates the two 

approaches. 

The heterogeneous algebras we will be considering are called clones. For any 

homogeneous variety V, we define a heterogeneous algebra C(V) in the following 

way. For the underlying sets, we use Fn(V), n 2 1, the V - free algebra on the n 

generators xl, . . . ,xn. Thus the members of the nth universe are the n-ary 

terms of V. For each n, m 2 1, we have a fundamental operation C: which is 

(n + 1)-ary, and maps Fn(V) x (F,(V))" + Fm(V). This is defined by the 

n rule that if t is in F,(V) and tl, . . . ' n  t are in Fm(V), then C,(t,tl, . . . ,tn) is 

the m-ary term obtained from t by simultaneous substitution of the tj for the 



variables xj, 1 5 j 5 n. We also have a set of zero-ary operations or 

distinguished objects: for each n 2 1 and each 1 5 i < n, we distinguish e7, 

the ith n-ary projection. Thus 

This algebra is called the (concrete) clone of V. 

It is easily verified that for any variety V, C(V) satisfies the following three 

identities: 

- 
1. C ~ ( Z ,  x17 . . . 7 ~ n l ,  . . . ,"&(Y~, . . JnJ) 

= C:(C~,Y, ,  - - , Y ~ ) , X ~ ,  - . J,) ,  m , n , p  2 1. 

n n - 2. Cm(ei , xl, . . . , x )  - xi , m 21, l < i < n .  

n - 3. ~''(~,e;, . . . , en) - Y , n 2 1. 

The last two of these say that the el's act as projections, while the first is a 

super-associativity law for the C: operators. More generally, the family of all 

n 
heterogeneous algebras of the type <A,; C: ; ei: n,m,i E N, 1 < i < n> with 

n C" : A, x (A,)" - A, and ei r A,, which satisfy the three identities above m 

forms a (heterogeneous) variety, KO. The algebras in KO are called abstract 

clones. Any concrete clone C(V) is of course an abstract clone; the next theorem 

shows that the converse is also true. 

Theorem 2.1.1 (Taylor, [14]): For any abstract clone C in KO, there is a 

homogeneous variety V such that C is isomorphic to C(V). 

7 



The familiar operations which may be performed on (heterogeneous) algebras 

such as clones are related closely to constructions on (homogeneous) varieties. 

Two varieties are said to  be equivalent if they have isomorphic clones. If 

(Vi: i E I) is a class of varieties of the same type, their product igI Vi is 

defined to be the variety whose clone is &c(v~). A more complicated 

construction is that of a reduct variety. A reduct of a homogeneous algebra 

<A; Ft: t E T >  is any algebra <A; F,: s E S> for S C T. Let V be a variety 

nt' +wno T and fiv C r T The reriiirt V R + ~ V  nf -"* dripr.ermjned 'bv is the vari&r 
- d r  - 

W of type S generated by the class of all algebras <A; F,: s E S> for which 

<A; Ft: t E T> is in V. The next proposition relates reduct varieties and 

subvarieties to clones. 

Proposition 2.1.2 (Taylor, [14]) : 

i) If W is a reduct variety of a variety V, then C(W) is a subclone of C(V). 

Conversely, if a clone C is a subclone of C(V), then there is a variety Vo 

equivalent to V and a reduct variety W of Vo such that C is isomorphic to C(W). 

ii) If W is a subvariety of a variety V, then C(W) is a homomorphic image of 

C(V). Conversely, if a clone C is a homomorphic image of C(V), then C is 

isomorphic to C(W) for some subvariety W of V. 



We now define a hypervariety to be any collection of varieties closed under 

the formation of equivalent, product, sub- and reduct varieties. The preceding 

comments and Proposition set up a correspondence between hypewarieties and 

varieties of clones: equivalent varieties correspond to isomorphic clones, products 

of varieties to products of clones, subvarieties to homomorphic image clones, and 

reduct varieties to subclones. The next Proposition, whose proof follows easily 

from the previous Proposition, expands on this correspondence. 

Proposition 2.1.3: 

i) Lei U Le a hvuervuietv. Let CI'U: Lc the L ~ S S  "f a:: ~ h e s  C komo~phic tcj 

C(V) for some variety V in U.  Then C ( U )  is a variety of clones. 

ii) Let C be a variety of clones. Let U ( C )  be the class of all varieties V whose 

clones C(V) are in C. Then U ( C )  is a hypewariety. 

iii) Let C be a variety of clones, and let U be a hypervariety. Then 

C ( U ( C ) )  = C and U ( C ( U ) )  = U. 

Since the class of all hypervarieties forms a class which is ordered under 

inclusion, has a largest member (the hypervariety containing all varieties), and is 

closed under intersection, this class forms a complete lattice under inclusion, and 

for any variety V there is a smallest hypervariety U(V) containing V. This sets up 

an operator U from the class of all varieties to the lattice of hypewarieties. The 

properties of )I as it acts on varieties of semigroups will be studied in subsequent 



sections. For the remainder of this section we give some general results about U 

and a related operator C. C is also defined on the class of all varieties; for any 

variety V, C (V) is the variety of clones generated by the clone C(V). 

Proposition 2.1.4: C and U are both monotonic operators. Moreover, for any two 

varieties V and W, C(V) = C(W) iff U(V) = U(W). 

More information about U is gained from an alternate approach to the 

definition of the product of varieties. Let (Ai: i E I) be an indexed family of 

algebras, possibly of different types. The non-indexed product of the Ai's is the 

Ai whose universe is the Cartesian product of the universes of the algebra I 

Ai's, and which has an n-ary fundamental operation p corresponding to each 

indexed family (pi : i E I) of n-ary term functions pi of Ai; p is defined in the 

obvious coordinate-wise way. Now let (Vi : i E I) be an indexed family of 

varieties, possibly of different types. The product of the varieties Vi is the variety 

0 @ Vi generated by all non-indexed products i E 1  Ai for Ai in Vi. Since Taylor i ~ 1  

proved in [14] that the clone of this product of the Vi's is isomorphic to the 

product of the clones C(Vi), it follows that this definition of product of varieties is 

equivalent to the one given earlier. We make use of this new definition in the 

following proposition. 

Proposition 2.1.5: Let (Vi : i E I) be a class of varieties all of the same type. 

Then the join of these varieties is a subvariety of a reduct variety of their 

product. 



Proof: Let the fundamental operations of the common type of the varieties be 

indexed by the set T. Let (Ai : i E I) be any collection of algebras with Ai in 

Vi, for all i in I. Then for each t in T,  Ai has an operation <, so that i p l A i  has - 

an operation Ft = ( : i E I). The algebra B with universe the Cartesian 

product of the universes of the Ai's and fundamental operations Ft for t in T is 

then a reduct of Ai to the type T. In fact, B is just the (ordinary) product 

Ai of the Ai7s. i E I 

Let W be the reduct variety of iFi Vi determined by T. By definition, W is 

generated by the class of all reducts of algebras in iT I~ i  to type T, which 

(3 includes the class of all reducts of algebras i E I  Ai, Ai E Vi, to type T. In 

particular, W contains all of the products iyI~i  for Ai in Vi. From this it follows 

8 that the join of the Vi's is a subvariety of W, a reduct variety of i E  I Vi. 

Two important corollaries of this result will be used extensively in our later 

study of U(V) for V a variety of semigroups. 

Corollary 2.1.6: Any hypervariety is closed under the operation of taking joins of 

varieties of the same type. 

Corollary 2.1.7: The operators C and U both preserve joins of varieties of the same 

type- 



Proof: Let (Vi : i E I) be a class of varieties all of the same type. By 

monotonicity of C, we have 

- 
Conversely, the variety iXI  C(Vi) contains each C(Vi), hence contains I C(Vi), 

which is isomorphic to  c(~$'~ Vi). By the preceding Proposition, any variety of 

clones which contains ~ ( ~ 0 ~  Vi) must contain C(i& V i )  Therefore 

I E iZ1 '(Vi). 

\ ! ., ,-* , r or , again one inciusion ioiiows by X I I O I ~ O ~ ~ ~ ~ C ~ L Y .  S i x e  i I n\ v i) 

contains all the Vi's, it contains their join too, by the previous Corollary. Hence 

the opposite inclusion also holds. 

Note that although U preserves joins, we will show by example later that U 

does not preserve meets. 

2.2. Hyperidentit ies 

We have seen that hypervarieties correspond in a very precise way to 

varieties of clones. This correspondence allows us to describe hypervarieties 

equationally, by the clone equations which define the corresponding varieties of 

clones. However, the clone equations are generally very complicated and unwieldy, 

so a different approach is needed. In this section we introduce hyperidentities, and 

show how they provide this alternate description of hypervarieties. 



Hyperidentities are used by Taylor in (151, a paper which presents the 

thereoms stated without proof below and provides many interesting examples. A 

hyperidentity is defined to be formally the same as an identity. We use the letters 

x , ~ , z , w , x ~ , x ~ ,  . . . , for variables, and F ,G,J,K,F1,F2, . . . for operation symbols. 

A variety V is said to satisfy a hyperidentity H if whenever the operation symbols 

of H are replaced by terms of V of the appropriate arity, then the identity which 

results holds true in V. The identities produced in this way, by a choice of 

V-terms for the operation symbols of H, are called (V-)instances of H. For 

example, the hyperidentity F(x,x) = x will be satisfied by a variety V iff every 

binary term of V is idempotent. So for instance the varieties of bands and of 

lattices satisfy this hyperidentity , which is called the idempotent hyperidentity . 

Another hyperidentity we will frequently encounter is 

F(G(x,y), G(z7w)) = G(F(x,z), F(y,w)); 

it is easily verified that any variety of commutative groups or semigroups satisfies 

this hyperidentity. We will say that a variety V satisfies a set C of 

hyperidentities if it satisfies every hyperidentity in C .  

Saying that a variety V satisfies a given hyperidentity H says something 

about all the terms of V of certain arities; that is, about the free algebras F,(V) 

for certain n 2 1. Thus such a statement corresponds to a statement about the 

clone C(V) of V, which in turn corresponds to a statement about the hypervariety 

U(V). In fact, there is a Birkhoff-type theorem relating hyperidentities and 

hypervarieties. 



Theorem 2.2.1 (Taylor, [15]): Every hyperidentity defines a hypervariety, and 

conversely every hypervariety is definable by a set of hyperidentities. 

Combining this theorem with Proposition 2.1.4 and Corollary 2.1.6, we get 

the following Corollaries: 

Corollary 2.2.2: Let V and W be varieties. Then C(V) = C(W) iff U(V) = U(W) 

iff V and W satisfy precisely the same hyperidentities. 

Corollary 2.2.3: Lzt V and W be varieties of the same type, and let H be any 

hyperident.ity. Then V and W both satisfy H iff V V W satisfies H. 

These results are crucial to our study of hyperidentities and hypervarieties. 

Corollary 2.2.2. provides a general technique for showing that two varieties 

generate different hypervarieties, namely producing a hyperidentity satisfied by one 

of the varieties but not by the other. Taylor used this method in [15] to produce 

several examples of 2" different hypervarieties, and asked whether distinct 

varieties of groups always generate distinct hypervarieties. This question has since 

been answered in the negative by Bergman [I], who showed that the variety of all 

groups satisfies precisely the same hyperidentities as the variety of metabelian 

groups. We discuss a similar question for varieties of semigroups in later 

Chapters, using the closure operator defined in the next section to examine in 

more detail which varieties generate the same hypervariety. 



One feature of hyperidentities has important repercussions. For any non- 

trivial variety V, and any n 2 1, the n-ary terms of V include the n 

"projections", xl, . . . , x,. If V satisfies a hyperidentity H, it means in 

particular that the identity we obtain from H by replacing every operation symbol 

F in H by the projection term xl of the appropriate arity must hold in V. It is 

easily verified that no matter what form H has, the identity thus obtained is just 

x = y, where x is the first variable to appear on the left-hand-side of H, and y is 

the first variable to appear on the right-hand-side. For this to hold in a 

non-trivial variety V, we must have x and y actually the same variable. Therefore, 

eny hy?~rid~nti ty H satisfied by a non-trivial variety must have the same first 

variable on either side. By a dual argument, such an H must also have the same 

last variable on each side. The significance of these facts will be seen later, in 

Section 1 of Chapter 3. 

By analogy with the terminology for terms and identities, we will use the 

name "hyperterm" for the two expressions equated in a hyperidentity. Following 

Taylor [15] , we will frequently present hyperterms by means of tree diagrams. 

Each non-leaf node of a tree will correspond to an operation symbol, starting with 

the outermost operation symbol of the hyperterm on the root of the tree; and each 

leaf will correspond to a variable. For instance, 



represents the hyperidentity F(x,G(y,y,x)) = G(x,y,F(z,x)). By convention, any 

unlabelled non-leaf nodes of the same arity in such a tree stand for the same 

operation symbol. Thus 

represents F (x,F (Y,F (y ,x) )) = F (x,F (y ,x) ) . A hyperident ity all of whose operation 

symbols are n-ary (for some n 2 1) will be called an n-ary hyperidentity. 

2.3. The Closure Operator 

In this section we begin the study of the operator U as it applies to varieties 

of semigroups. We introduce a closure operator on varieties of semigroups, and use 

this to get information about hypervarieties generated by such varieties. We note 

that although our discussion is carried out in terms of varieties of semigroups, we 

could in fact consider varieties of any fured type of algebra. No particular 

knowledge of semigroups is assumed in this section; we use only the fact that the 

collection of all varieties of semigroups forms a complete lattice under inclusion. 

For any variety W of semigroups, we define HI(W) to be the set of all 

hyperidentities satisfied by W. Conversely, for any set C of hyperidentities, we 

define V(C) to be the largest variety of semigroups to satisfy C. By Corollary 

2.2.2, V(C) is equal to the join of all the varieties of semigroups which satisfy C. 



Lemma 2.3.1: Let U and W be any varieties of semigroups, and let C and I' be 

any sets of hyperidentities. Then 

1. If U c W then HI(W) C HI(U). 

2. If C C r then V ( r )  V(C). 

3. C HI(V(C)) and W C V(HI(W)). 

4. V(HI(V(C))) = V(C) and HI(V(HI(W))) = HI(W). 

Proof: These claims all follow easily from the definitions of V(C) and HI(W). 

From this Lemma we see that there is a Galois correspondence 

W + HI(W) 

V(C) C,  

between varieties of semigroups and sets of hyperidentities. A variety W of 

semigroups will be called closed if V(HI(W)) = W; that is, if W is the largest 

variety of semigroups to satisfy all the hyperidentities satisfied by W. It follows 

from Lemma 2.3.1 that varieties of the form V(C) and V(HI(W)) are always 

closed. 

Proposition 2.3.2: The intersection of closed varieties is closed. 

Proof: Let (Wi: i E I) be any collection of closed varieties. Since 

Wi E Wj i ~ 1  

for all j E I, we have 



V(HI(igIWi)) V(HI(Wj) = Wj, 

for all j in I. Therefore 

C i: 1wi. 

The opposite inclusion also holds, by Lemma 2.3.1(3), showing that CIwi  is 

closed. 

The variety S of all semigroups is a closed variety, since S is the largest 

variety of semigroups to satisfy the trivial hyperidentity x = x. This combined 

with Proposition 2.3.2 means that for any variety W of semigroups there is a 

smallest closed variety containing it, namely the intersection of all the closed 

varieties containing W. We call this variety the closure of W, and denote it by 

Corollary 2.3.3: For any variety W of semigroups, fi = V(HI(W)). 

Proof: V(HI(W)) is a ciosed variety containing W, so W V(HI(W)). For the 

opposite direction, suppose that U is any closed variety containing W: then 

V(HI(W)) E V(HI(U)) = U. Therefore V(HI(W)) C E 

Corollary 2.3.4: Let U and W be any varieties of semigroups. If U E W, then 

Thus the closure operator is a monotone one. We will show later that 

U n W may be a proper subvariety of U n so that the closure operator does 

not preserve intersections. It is not known whether it preserves joins. 



A set C of hyperidentities will be called closed if HI(V(C)) = C.  By 

dualizing Lemma 2.3.2 and its Corollaries, we may show that any intersection of 

closed sets of hyperidentities is closed. This allows us to define for any set C of 

hyperidentities its closure C as the smallest closed set of hyperidentities containing 

C ,  and it follows that F = HI(V(C)). 

Let C and I' be any sets of hyperidentities, and let H be any hyperidentity. 

H is said to be a consequence of C if H is in = HI(V(C)); that is, if any 

variety of semigroups which satisfies C must satisfy H. If every hyperidentity in r 

is a ccneequence of X ,  we say that r is e consequence of C ,  or r?yivalently that 

C yields r. 

Now let W be any variety of semigroups. A set C of hyperidentities is called 

a basis for HI(W), or a hyperidentity-basis for W, if C yields HI(W). In this case 

every hyperidentity satisfied by W is a consequence of C. We emphasize that this 

definition of a basis is for varieties of semigroups only; there would be a similar 

notion of basis for varieties of other types, and the most general definition of basis 

would encompass varieties of all types of algebras. 

Lemma 2.3.5: Let W be a closed variety of semigroups, and let C be a set of 

hyperidentities. Then C is a basis for HI(W) iff the varieties of semigroups 

satisfying C are precisely W and its subvarieties; that is, iff V(C) = W. 

Proof: Let C be a basis for HI(W), so that W s V(C) and also HI(W) 



HI(V(C)). Applying V to the second of these inclusions gives V(HI(V(C))) 

V(HI(W)), which since W and V(C) are both closed reduces to V(C) 

W. Therefore W = V(C), as required. 

Conversely, suppose that V(C) = W, so that W is the largest variety of 
- 

semigroups to satisfy C. Then certainly HI(W) C HI(V(C)) = C, so that C is a 

basis for HI(W). 

Since by Theorem 2.2.1 hyperidentities precisely define hypervarieties, our 

c ~ r r e ~ p ~ ~ d e n r e  W IFI(W), X + V(C) between varieties nf s~mig roqs  z_n,d 

sets of hyperidentities can be extended to a correspondence between varieties of 

sernigroups axxd hypervarieties. But for any variety W, the hypervariety determined 

by HI(W) is just the smallest hypervariety to contain W, which we have been 

denoting U(W). Thus we are led once again to consider the operator U ,  this time 

restricted to varieties of semigroups. 

We will use the notation L(S) for the lattice of varieties of semigroups, and 

U'V- for the collection of all hypervarieties, which we saw in Section 2.1 is also a 

complete lattice under inclusion. The closed varieties of semigroups include S 

itself, and are closed under intersection, so they too form a complete lattice, which 

we will denote by L(CS). It is not known if this lattice is a sublattice of L(S): the 

problem of whether or not the join of two closed varieties is closed is equivalent 

to the problem mentioned earlier of whether the closure operator preserves joins. 



We have shown in Corollary 2.1.7 that U preserves joins on the two lattices 

L(S) and L(CS). Since by definition U(V) = ~ ( v )  for any V in L(S), the images 

U(L(S)) and U(L(CS)) are the same. This image is then a join-subsemilattice of 

the lattice UV of all hypervarieties. It is not known if it is in fact a sublattice, 

although it does form a complete lattice. Note also that U is one-to-one on the 

lattice L(CS), since U(V) = U(W) far V,W closed varieties implies that V and W 
- - 

satisfy precisely the same hypesidentities, so that V = V = W = W. 



Chapter 

Semigroup Results 

Having introduced the closure operator in Chapter 2, our goal now is to 

identify the closures of various varieties of semigroups. In this chapter we present 

some of the semigroup-theoretic results necessary for that goal. We start by 

giving some notation and background on the varieties of semigroups to be 

considered, and describing the general technique used to find the closure 57 of a 

variety V. One of the three stages of this technique involves showing that a given 

set of identities defines the join of given varieties, motivating us to consider joins 

of varieties. In the last three sections of the chapter then we focus on this 

question of joins, looking in particular at some of the joins to be encountered in 

later work on hyperidentities. 

3.1; Varieties of Semigroups 

This section presents some information about the lattice L(S) of varieties of 

semigroups, especially about some of the varieties whose closures will be 

investigated later. Only enough background for this later investigation is given 

here, and all results are stated without proof. A more detailed survey of the lattice 

of varieties of semigroups is given in [5 ] .  



Our interest in varieties of semigroups will be in terms of the identities they 

satisfy; that is, we will view them as equational classes. We fm a countably 

infinite set of variables, including x,y,z,w,xl,x2, . . . ,y1,y2, . . . , and use words 

from the free semigroup on this set. For any word u, lul denotes the length of u. 

An identity is then an equation u = v where u and v are words. A trivial 

identity is one in which u and v are identical words. For any set I of identities, 

we use V(1) to denote the class of all semigroups satisfying I. If I contains only 

one identity u = v, we simplify this to V(u = v). For example, V(xy = yx) is the 

variety A of abelian semigroups. A set I of identities is a basis for a variety V if 

V(I) = V: and hence all the identities satisfied by V are consequences of the 

identities in I. The terms of a variety V are equivalence classes of terms; we will 

identify words with the equivalence classes they represent, and refer to term5 such 

as xy, xyx, and so on. 

The collection of a!! varieties of semigroups is a complete lattice under 

inclusion. We use L(S) to denote this lattice, and in general for any variety V in 

L(S), we use L(V) for the lattice of all subvarieties of V. The largest element of 

L(S) is the variety S of all semigroups, and the smallest element is the trivial 

variety T of one-element semigroups. Evans [5] has shown that L(S) is uncountably 

infinite, and that there are varieties of semigroups which do not have finite bases 

of identities. However, Perkins [lo] showed that any variety of commutative 

semigroups is finitely based, so that L(A) is a countably infinite lattice. 



For convenience we list below the varieties of semigroups to be referred to in 

the rest of this thesis: 

A = V(xy = P), the variety of abelian semigroups. 

M = V(xyzw = xzyw), the variety of medial semigroups. 

B = v(x2 = x), the variety of bands (idempotent semigroups) . 

SL = V(xy = yx, x2 = x) = A n B, the variety of semilattiees. 

L Z =  V ( x y = x ) ,  the variety of left-zero semigroups. 

RZ = V(xy = y), the variety of right-zero semigroups. 

RB = V(xyz = xz), the variety of rectangular bands. 

r) T N E  - ?Tivtrs - v s x r  um - vi the variety ntl i ~ i k  nnrmni hands -- \ .  . , I I 

RNB = V(xyz = yxz, x2 = x), the variety of right normal bands. 

NB = V(xyzw = xzyw, x2 = x) = M n B, the variety of normal bands. 

Z = V ( x y = z w ) ,  the variety of zero semigroups. 

Nk = V(x1 xk = y1 . . yk), the variety of k-nilpotent semigroups. 
Note that N2 = Z. 

ANk = V(xy = yx, xl xk = y1 ykj, 
the variety of abelian k-nilpotent semigroups. 

MNIk = V(xyZw = XZF, Xl . . Xk = yl . yk), 
the variety of medial k-nilpotent semigroups. 

Am = V(xy = yx, xym = x), the variety of abelian groups of exponent m. 

B, = V(xym = x, ymx = x), the variety of groups of exponent m. 

A,,, = V(xy=yx, xn = xn+,), the variety of commutative semigroups 

satisfying xn = xn+,. Note that Al,l = SL, 
and Al,, = SL v A,. 

B,,, = V(xn = x " + ~ ) ,  the Burnside variety of semigroups satisfying 



xn = xn+,. Note that BlV1 = B. 

M,,, = V(xyzw = xzyw, xn = xn+,), the variety of medial semigroups 

satisfying xn = xn+,. Note that MlY1 = NB. 

The atoms of L(S) are the varieties LZ, RZ, SL, Z, and the Ap7s for p prime. 

Any variety in L(S) contains one of these atoms as a subvariety. The four 

non-group atoms generate a sixteen-element Boolean algebra, with NB v Z as their 

join. The join of all the group atoms is A, the variety of commutative semigroups. 

The join of all the atoms is the medial variety M (see [ 5 ] ) .  In particular, this 

implies that 

M = A ~ L Z V R Z V S L ~ Z = A V R B V S L V Z = A V R B .  

The varieties A,, with m square-free, form a distributive lattice. For any 1 

and m both square-free, their greatest common divisor gcd(1,m) and their least 

common multiple lcm(1,m) are also square-free, and we have A1 n A, - - Agcd(!,m) 

and Al V A, = Alcm(l,m). Similarly, the varieties A,,,, with n and m > 1, form 

a lattice, with Ak,l n A,,, - - Amin(k,n),gcd(l,m) and Ak,l %,m - - 

Amax(k,n),lcm(l,m). 

The variety RB of rectangular bands plays a significant role in what follows. 

It is the join of the two atoms LZ and RZ. Both LZ and RZ have the special 

property that their terms are all words of length one; that is, for any n 2 1, the 

n-ary terms are just the n projections xl, . . . ,x,. This means that the clones of 

LZ and RZ are the same, and contain only the projections en, and so they are 



subclones of C(V) for any other non-trivial variety V (of any type, in fact). 

Translating this into the language of hypervarieties, we have U(LZ) = U(RZ) E 

U(V) for any non-trivial variety V. Hence also RB = LZ V RZ E U(V) for any 

non-trivial V. This proves the following important result. 

Proposition 3.1.1: For any non-trivial variety V of semigroups, U(RB) C U(V), and 

RB c v. 

Although our proof started with clones, we could equally well have established 

this resrrlt Eq- argcizg ..hG-&t l..-- --:-I..- rry ~ C L  AUclLtitis instead. Then olir obseavatieiis in 

Section 2.2 that any hyperidentity satisfied by a non-trivial variety V has the 

same variable appearing first in each of its hyperterms, and the same variabie 

appearing last, tell us that any such hyperidentity is satisfied by both LZ and RZ, 

and hence by their join RB. This shows again that RB v. 

Proposition 3.1.1 is our first step towards concrete information about closures 

of varieties. In fact, it allows us to prove our first non-trivial closure result. 

- 
Proposition 3.1.2: A = M. 

Proof: We know from Proposition 3.1.1. that A V RB c A. We have also 

observed in Section 2.2 that the variety A satisfies the hyperidentity 

F(G(x,y) ,G(z,w)) = G(F ( ~ 7 2 )  , F ( Y , ~ ) ) .  

By substituting for both F and G the binary term xlxz, we get as an instance of 



this hyperidentity the medial identity, xyzw = xzyw. Therefore any variety which 

satisfies all the hyperidentities that A does must be contained in the medial 

variety M, and C M. But also, as we noted earlier in this section, 

M = A V RB. Thus we have A V RB C_ A C M = A v RB, and our conclusion 

follows. 

The hyperidentity used in this proof has the property that the varieties of 

semigroups which satisfy it are precisely the medial variety M and its subvarieties. 

Therefore by Lemma 2.3.5, the set consisting of this one hyperidentity forms a 

hasis for t.he family HT!M) of hyperidentities satisfied by M. We will refer to this 

hyperidentity as the medial hyperidentity. 

The proof of Proposition 3.1.2 serves to illustrate, in a simple case, the 

method to be used in identifying V for various varieties V. This method involves 

three stages. First, we prove that certain varieties are contained in 7; these 

include at  least RB and V itself, perhaps more. Then we produce some 

hyperidentities satisfied by V. From these we get some instances, which we use as 

defining identities for a variety V,, with 5 Vo. Finally, we show that Vo is in 

fact the join of the varieties found at  the first stage. Then we may conclude that 
- v = v,. 

The first two of these stages involve hyperidentities and hypervarieties, and 

are discussed more fully in Chapters 4 and 5. The third stage however involves 

proofs of a purely semigroup-theoretic nature, and the rest of this chapter is 

devoted to it. 



The problem of finding the join of two or more semigroup varieties is not in 

general an easy one. Specifically, we would like when given equational descriptions 

of two varieties to produce a set of identities which will define their join. For 

most of the joins to be found in the next three sections, we first obtain such a set 

of identities by guess-work (often stimulated by knowledge of what hyperidentity 

instances we have been able to obtain for the relevant varieties). We then have 

to prove that the conjectured set of identities does indeed define the required join. 

For this we have two basic methods, one using a structural approach and one a 

syntactic approach. We conclude this section with a discussion of these two 

~~?etEods, hnth cf wlZirlh will he illustrated in the next sections. 

Let V = V(I)? W = V(J), and U = V(K), where I, J ,  and K are sets of 

identities, and V v W C U. The syntactic approach is to consider the identities 

satisfied by V v W. If we can show that any non-trivial identity satisfied by 

V v W is a consequence of the identities in K, then any such identity is also 

satisfied by U. From this it follows that U E V v W, giving us U = V V W. 

For the structural approach, we will show that U V v W by showing that 

every semigroup in U is a subdirect product of a semigroup in V and a semigroup 

in W. The following Lemma sets up the machinery to be used in proofs of this 

type. 

Lemma 3.1.3: Let U, V, and W be varieties of semigroups. Let C be a semigroup 

in U. Suppose that there is a map 8: C + C which satisfies the following 

conditions: 



1. 8 is a homomorphism; 

2. 8 is a retraction; that is, e2 = 8 ;  

3. the image 8 ( C )  is an ideal of C; 

4. 8 (C)  is in V; 

5. the Rees quotient C/8(C) is in W. 

Then C is a subdirect product of 8 (C)  and C/8(C), so that C is in V V W. 

Proof: Let p be the canonical homomorphism from C to its Rees quotient C/e(C).  

The condition that 8 is a retraction ensures that the intersection of the kernels of 

the images 8 (C)  of 8 and C/@(C) of p. Conditions 4 and 5 then imply that C is 

3.2. Joins wi th  RB 

The first type of joins we consider are those of the form V b' RB, for certain 

varieties V of semigroups. We have seen that the variety RB is contained in V 

for any non-trivial variety V, so that V v RB C V, and hence it will be necessary 

in identifying closures to have equational descriptions of V v RB. In particular, we 

will consider for V the varieties A, and A,,,, and Nk, MNk, and ANk, for n, m 

2 1 and k 2 2. A useful observation is that since Al,, = SL V A,, and NB 

= RB V SL, we have A,,, v RB equal to A,,, V NB for all n and m 2 1. 

Proposition 3.2.1: Let m 2 2. Then Al,, v RB = MI,,. 



Proof: By definition Al,, v RB MI,,. For the converse, let C be any 

semigroup in MI,,. By [ l l ,  IV.4.61 it suffices to show that C is completely regular 

and that its idempotents form a normal band, for then C is in LNB v RNB V 

A, v SL = NB v All, = Allm V RB. It follows easily from the medial identity 

of MI,, that the idempotents of C form a normal band. Moreover, for any c in 

C, we have c = cm+l = cm-lc2 E c2c n cc2, and hence by [ll, IV.1.21 C is also 

completely regular. 

Corollary 3.2.2: Any semigroup in Mllm is a strong semilattice of rectangular 

i;;ct;ps 3f cxpcccrnt rn. 

Proof: This follows f r ~ m  the previous proof, again using jil, IV.4.61. 

A slight variation of the preceding proof lets us describe A, v RB. 

Proposition 3.2.3: Let m 2 2. Then 

A, v RB = V(xyzw = xzyw, x = xm+', xymz = xz). 

Proof: Inclusion in one direction is clear. If C is a semigroup in the second 

variety, then as in the previous proof C is completely regular and its idempotents 

form a normal band. Hence C is a subdirect product of some C1 in LZ or LNB, 

C2 in RZ or RNB, and CS in A, or All,. But SL does not satisfy the identity 

xymz = xz, so neither do LNB, RNB, or All,. Therefore we must have C1 in LZ, 



C2 in RZ, and Cj  in A,. From this we get C E LZ V RZ V A, = A, V RB. 

Note that in this proof, the role of the identity xymz = xz is to force the 

semigroup C to be in A, v RB rather than Al,, V RB. For this purpose any 

identity which is satisfied by A, and RB but not by SL will suffice. One such 

identity which we will encounter later in investigating hyperidentities is 

m 2,+l-rn-2 - - WXW 
2m+L2 

wxy w 

This gives 

For A,,, Y RB when n 2 2 the structural approach does not work, and we 

turn instead to a syntactic method. Also unlike the n = 1 case, A,,, v RB is a 

proper subvariety of M,,, when n 2 2, as indicated by the identity 

xn-lyx = xn-l+,yx used in the next result. 

Proposition 3.2.5: Let n 2 2 and m 2 1. Then the variety A,,, V RB is 

defined by the identities 

X ~ Z W  = X Z ~ W ,  xn = xn+,, and xn'lyx = x n-l+m YX - 

Proof: Let the variety defined by the three given identities be called W. Clearly 

A v RB W. For the opposite inclusion, suppose that u = v is any 

non-trivial identity satisfied by A,,, v RB. We show that W also satisfies u = v. 



Since RB satisfies u = v, we know that u and v start with the same letter, 

x say, and end with the same letter, y say (with x and y possibly the same). 

Since A,,, satisfies u = v, u and v have the same content, and for each letter z 

in this content, either the number of occurrences of z in u is equal to the number 

of occurrences of z in v, or these two quantities are both _> n and are congruent 

modulo m. Using this information we show how to deduce u = v from the 

identities defining W. 

We first transform u and v into a "standard formn a and t as follows. Write 

a a -  I. c 
ii = a31. 1 . . . z rvd and t = xczC: . . . z PV". 

1 P 1 P 

where x,zl, . . . z ,y are the distinct (except possibly x = y) letters appearing in 
P 

u and v, and if x = y, then b = e = 1. The identities u = and v = t hold in 

W, just by use of the medial identity. 

If x # y, then from the above information we may deduce a = t simply by 

using the identity xn = x " + ~ .  Hence in this case, W satisfies u = v. 

If x = y, we have b = e = 1 by construction. Again we may deal with the 

"interior" letters zl, . . . z using only xn = x ' + ~ ,  so we may reduce this case to 
P 

considering words a' = x&wx and B' = xCwx, for some word w. From the 

comments above, either a+ l  = c+1, or a+l  and c+l  are both 2 n and are 

congruent modulo m. If a = c, we are done; otherwise, both a and c are 2 n-1 

and a and c are congruent modulo m, and we have two cases to consider. 



If a and c are both 2 n, with a and c congruent modulo m, then xa = xC 

holds in W, and so does 3 = % Finally, suppose that a = n-1 and c > n (or 

dually). Then c is congruent to n-1 modulo m, and c may be be written as 

km+n-1 for some k 2 1. But then 3' = xn-lwx and 7' = X ~ ~ + " - ~ W X ,  and 

3' = V' holds in W by repeated use of the identity xn'lyx = X"-~+"~X.  Hence in 

either case W satisfies k = V and therefore also u = v. 

For the remainder of this section we focus on the joins of some nilpotent 

varieties with RB. 

Proposition 3.2.6: Let k > 3. Then 

Nk V RB = V(xl - . xk = x1y2 . Y ~ - I x ~ ) .  

Proof: We will call the right-hand-side variety Wk. Clearly it contains Nk v RB. 

To prove the opposite inclusion, let C be any semigroup in Wk. Define a map 

8 :C + C by 8(c)  = ck, for all c in C. Then 

1. 8 is a homomorphism, since xkyk = (xYlk holds in Wk; 

2. 0 is a retraction, since ( x ~ ) ~  = xk holds in Wk; 

3. 8 ( C )  is an ideal of C, since for any c and d in C we have 

ckd = ckdk = ( ~ d ) ~  E B(C), and similarly dck E 8(C) ;  

k k  4. e ( C )  is in RB, since ( x ~ ) ~  = xfk = xk and xkykzk = ( X ~ Z ) ~  = x y 

both hold in Wk; 

5. C/8(C) is in Nk, since for any cl, . . . ,ck in C, we have 



k k c 1 . . . C k = c l . . . c k = ( c 1 . . .  c ~ ) ~  E 8(C) .  

Therefore by Lemma 3.1.3 we have C E Nk V RB. 

Proposition 3.2.7: Let k > 3. Then 

MNk v RB = V(xyzw = xzyw, xl . . xk = xlyZ . 

Proof: The proof is very similar to the previous one, with the map 8: C -+ C as 

before. But now 8 ( C )  is in RB and C/8(C) is in MNk, so that C is in 

MN, v RB. 

Propositiop 3.2.8: Let k 2 2. Then ANk v RB = MNk V RB. 

Proof: If k = 2, ANk = MNk = Nk, and the result is obvious, so we assume that 

k 2 3. Since ANk V RB MNk V RB, it suffices to prove that every non-trivial 

identity satisfied by ANk V RB is also satisfied by MNk V RB. So suppose that 

ANk V RB satisfies u = v. Since RB satisfies u = v, u and v have the same 

first letters and the same last letters. Thus if both lul and Ivl are > k, then we 

are done: we use the identities defining MNk v RB (from the previous Proposition) 

to deduce u = v. Otherwise, consider the case where lul < k or Ivl < k (or 

- both). Since ANk satisfies u = v, there exists a chain u = uo = ul - . . .  = u l  

- - - v, with each step ui - ui+l a consequence of either xy = yx or 

x l . . . x k  = y l . . .  yk. But steps which are consequences of the first of these 

identities do not change the length of words involved, while steps which are 



consequences of the second identity can only be used on words ui of length 2 k. 

Thus if lul < k or Ivl < k, then luil < k for all 0 5 i 5 1, and in fact the 

abelian variety A satisfies u = v. Then M = A v RB also satisfies u = v, so 

MNk V RB does too. 

3.3. Joins wi th  Z 

In this section we consider joins of the form V v Z, where V is a variety of 

semigroups and Z = N2 is the variety of zero semigroups. In this special case, the 

concept of an inflation of a semigroup proves crucial to the investigation of such 

joins. A semigroup C is called an inflation of a semigroup D, where D C C, if 

C' C D and there is a homomorphism Q of U onto IJ with the property that Q' 

= . Notice that this definition implies that D is then an ideal of C, since CD U 

DC c2 D. The importance of inflations is seen in the following result of 

Clarke's: 

Proposition 3.3.1(Clarke, [4]): Let V be any variety of semigroups. Then the class 

of all inflations of semigroups in V is a variety, which is in fact the variety 

v v z. 

The next lemma is very simple to prove, but is surprisingly useful when 

combined with the fact that Z is an atom of L(S). 

Lemma 3.3.2: Let C be a semigroup in a variety V, and let C be an inflation of a 

semigroup D. Then both D and C/D are also in V; moreover, C/D is in Z n V. 



Proposition 3.3.3: Let V be any variety of semigroups which does not contain the 

variety Z. Then V v Z covers V in the lattice L(S). 

Proof: Suppose there is a variety U with V C_ U c V V Z. Since U n Z c Z and 

Z is an atom of L(S), U n Z is either the trivial variety T or Z itself. If 

U n Z = Z , t h e n Z c U s o t h a t V v Z E U c V v Z a n d U = V V Z .  

Otherwise, U n Z = T, and we have V E U but U properly contained in V 

v Z. If also V is properly contained in U, then there would be a semigroup C in 

U - V. Then C is is V v Z so that C is an inflation of some D E V; but by 

Lemma 3.3.2, C/D is in Z n U = T, so that C = D. This contradicts the fact 

that C is in U - V. Thus in this case we must have V = U. 

Proposition 3.3.4: Let V and W be varieties of semigroups such that V covers W 

in L(S). Then either V V Z = W V Z, or V V Z covers W V Z. 

Proof: Suppose there is a variety U with W V Z C, U c V V Z. Then there + 
exists a semigroup C in U -(W V Z). Then C must be an inflation of some D in 

V - W. Let Y be the variety generated by W U {D). Clearly W $ Y C_ V. 

Since V covers W, we get Y = V; that is, W U {D) generates V. Now we have 

W c U, and by Lemma 3.3.2, D is in U. Thus V C U. Since also 

Z c W v Z c U, we get V V Z E U V V Z, forcing U = V V Z. 



The next result allows us to describe all the subvarieties of V v Z in terms 

of the subvarieties of V, for any V E L(S). 

Proposition 3.3.5: Let V be any variety of semigroups. For any variety 

U c V v Z, either U c V or U = (U n V) v Z with U n V C V. 

Proof: If Z s V the result is trivial, so we assume that Z $ V. Suppose that 

U C V v Z, but U $ V. If V C U, then V s U C V v Z, so by the previous 

Proposition either U = V or U = V V Z = (U n V) v Z, as required. 

Otherwise, neither of V or U contains the other. In this case, U n V is a 

proper subvariety of both U and V. Since U C V V Z, any C in U is an inflation 

of some D in V, and by Lemma 3.3.2, D is also in U. Thus any such C in U is 

in (U n V) v Z, so that U (U n V) v Z. Then 

U n V cf U c (U n V) v Z, and Z $ V means Z $ U n V, so by Proposition 

3.3.3 we have U = (U n V) V Z, as required. 

We next consider the map cr on L(S) which takes any variety V to its join 

V V Z with Z. The next results describe some properties of a.  It is obvious that 

cr preserves joins on L(S). In general, a is not one-to-one; for instance, we may 

have U v Z # U, yet of course (U V Z) V Z = U v Z. 

Lemma 3.3.6: Let U and V be varieties, neither of which contain Z. If U # V, 

then U V Z # V V Z. 



Proof: Since U # V, there exists a semigroup C in U - V say. Suppose that 

U v Z = V v Z. Then C E U U v Z = V v Z,  so that C is an inflation of 

some semigroup D in V. Since C 6 V, C # D. However, C/D is in U n Z by 

Lemma 3.3.2; and when Z 9 U we have U n Z = T, forcing C = D. This 

contradiction shows that U V Z # V V Z must hold. 

Corollary 3.3.7: Let V be a variety of semigroups which does not contain Z. Then 

the map a is one-to-one on L(V). 

The proof that a preserves meets on L(S), making it a lattice homomorphism, 

is broken into two parts. We first consider the action of a on varieties not 

containing Z, showing that under certain restrictions a becomes a lattice 

isomorphism. 

Proposition 3.3.8: Let W and Y be varieties of semigroups, neither of which 

contain Z. Then (W n Y) v Z = (W v Z) n (Y V Z). In particular, if V is a 

variety which does not contain Z, then a preserves meets on L(V). 

Proof: By definition, (W n Y) V Z (W V Z) n (Y V 2). For the reverse 

inclusion, note that U = (W v Z) n (Y v Z) is a subvariety of both W v Z and 

Y v Z. From Proposition 3.3.5, we know the form of such subvarieties: 

U = U '  or U '  v Z, for U '  W, 



and U = U" or U" v Z , for U" E Y. 

This gives us four cases to consider: 

1. If U = U' = U", then U E W n Y C (W n Y) V Z. 

2. If U = U' c W, and also U = U" V Z for U" C Y, then we would 

have Z s U" V Z = U C U' c W. This contradicts our assumption 

that W does not contain Z. 

3. The case U = U'  v Z = U" Y, where U' s W, is the dual 

of case 2, and similarly leads to a contradiction. 

4. If U = U '  v Z = U" v Z, for U' E W and U" Y, then by 

T . ~ m r n n  3 R A T i '  = T i '  ' Rmre  T i  = T i '  v Z C - ,  (W f~ Y\ ii Z. 

Therefore in all possible cases we get (W V Z) n (Y V Z) 5 (W T! Y) V Z, as 

required. 

Corollary 3.3.9: Let V be any variety of semigroups which does not contain Z. Let 

L(V) v Z be the collection of varieties of the form U V Z, U E L(V). Then the 

map a is a lattice isomorphism of L(V) onto L(V) v Z, which is therefore a 

sublattice of L (S) . 

Proposition 3.3.10: Let V be a variety of semigroups which does not contain 

Z. Then L(V V Z) is isomorphic to L(V) x L(Z). 

Proof: Since Z is an atom of L(S), L(Z) is just the two-element lattice T C Z. 

Define a map 7 from L(V) x L(Z) to L(V V Z) by 7(U,W) = U V W, for U in 

L(V) and W in L(Z). 



By Proposition 3.3.5, 7 maps onto L(V V 2). It is also very easy to show 

that 7 is one-twone. Since 7 clearly preserves joins, it suffices to check that 7 

preserves meets. Let U and U '  be in L(V), and W, W' be in L(Z): so W and W' 

are either T or Z. We need to show that 

( U n  U')  v (W n W') = ( U v  W) n ( U ' v  W'). 

If W = W' = T, this equation reduces to a trivial one. If W = W' = Z, it 

reduces to (U n U') V Z = (U V Z) n (U' V Z), which by Proposition 3.3.8 

holds for U and U' in L(V). Finally, suppose that W = T while W' = Z (or 

dually). In this case our equation reduces to 

U n U' = U n (U' v Z). 

Here the containment from left to right is obvious. For the opposite direction, we 

know that U n (U' v Z) is a subvariety of U' v Z, so it is either a subvariety 

of U' or of the form U" v Z for some U' ' & U '. The latter would imply that 

Z U" v Z = U n (U'  v Z) E U, which is impossible since by assumption Z 

is not contained in U. Therefore we must have U n (U' v Z) E U '  n U, as 

required. This shows that 7 preserves intersect ions, and finishes the proof. 

We now return to the study of a as a map applied to the entire lattice L(S). 

On this domain a is still a lattice homomorphism. 

Proposition 3.3.11: The map a taking V to V V Z is a lattice homomorphism on 

the lattice L(S) of varieties of semigroups. 

Proof: Since a clearly preserves joins, it suffices to prove that it also preserves 



meets. For this we need to show that for any V and W in L(S), 

(V n W) v Z = (V v Z) n (W v Z). Inclusion from left to right is always true, 

so we consider only the reverse inclusion. We examine three cases: 

1 . I f  V and W both contain Z, then we get 

(V v Z) n (W v Z) = V n W = (V n W) v Z, as required. 

2. If neither V nor W contains Z, the desired inclusion holds by 

Proposition 3.3.8. 

3. If V conta.ins Z hut W does not, (or dually), we let Y = (V v Z) n 

(W v Z). Then Y is contained in both V and W v Z; by Proposition 

3.3.5, it is either contained in W, or we have Y = (Y n W) v Z. If Y 

s W, then Y c V n W E (V n W) v Z, as required. Otherwise, we 

have Y = (Y n W) v Z and Y 5 V, so that Y n W E V n W, and 

therefore Y = (Y n W) v Z (V n W) v Z again. 

The fact that the map V --+ V V Z is a homomorphism on L(S) suggests 

that Z is a special type of element in the lattice. In fact we shall show that Z 

satisfies the conditions needed to make it a neutral element of L(S). 

Definition 3.3.12: An element a in a lattice L is called neutral if 

1) if aA x = a ~y and avx = avy then x = y, for all x and y in L, 

2) the map a:x + xva is a lattice homomorphism, 

and 3) the map p:x -, x A a is a lattice homomorphism. 



The importance of neutral elements is reflected in the following proposition. 

Proposition 3.3.13: Let a be an element of a lattice L. Then a is a neutral element 

of L iff the map 6 : x + ( an  x, a ~ x )  is an isomorphism of L onto a subdirect 

product of {x E L: x 5 a) and {x E L: x 2 a). 

For the remainder of this section, we verify that Z is a neutral element of 

L(S). 

Proposition 3.3.14: Let V and W Sre va.riet.iea of semigroup. If V V Z = W V 3 

and V n Z = W n Z, then V = W. 

Proof: We know that V n Z is either T, if Z is not contained in V, or Z, if Z is 

contained in V, and similarly for W n Z. Thys the assumption that 

V n Z = W n Z implies that either both V and W contain Z, or neither do. In 

the first case, we get V = V V Z = W V Z = W immediately. In the second 

case, we get V = W from V V Z = W V Z by Proposition 3.3.6. 

Proposition 3.3.15: The map P :V -+ V n Z is a lattice homomorphism on L(S). 

Proof: Since p obviously preserves meets, we need only check that 

(V v W) n Z = (V n Z) v (W n Z), for any V and W in L(S). If either V or 

W contains Z, both sides of this equation become Z. If neither of V or W contain 

Z, then it is easily verified (by syntactic arguments) that V v W does not contain 

Z either; and then both sides of the equation become T, the trivial variety. 
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Corollary 3.3.16: The variety Z of zero semigroups is a neutral element of L(S). 

Thus L(S) is isomorphic to a subdirect product of L(Z) and the interval sublattice 

[Z,SI. 

Remark 3.3.17: All of the results in this section depend heavily on the concept of 

inflation, as expressed in Proposition 3.3.1 and Lemmma 3.3.2. Unfortunately this 

concept does not seem to extend to higher nilpotency indices: no corresponding 

construction has been found for describing the varieties V V Nk when k > 3. For 

this reason the results described in the next section for such varieties are not 

nearly so complete. 

3.4. Joins with Nk 

Volkov [16] has proved that if V is a finitely based variety then so is 

V v Nk, for k > 2, but without giving a method to explicitly produce a finite 

basis for V v Nk from one for V. Clarke 141 has given a method for converting a 

basis of identities for a variety V into a basis of identities for V V Z. In this 

section we try to extend both these results. For certain varieties V we are able to 

produce identities which define V v Nk, for all k > 2. We begin with the variety 

B = B1,l of all bands. 

Proposition 3.4.1: Let k > 2. The variety B v Nk is defined by the identities 

xk = x2k , x k y = (xy) k = xy k , and xl . . xk = (xl . . x ~ ) ~ .  



Proof: Let W be the variety determined by the given identities. It is clear that 

B v Nk c W, and also that W satisfies the additional identity xkyk = ( X Y ) ~ .  

Now let C be any semigroup in W. We define a map 8 :C + C by 

B(C) = ck, for all c in C. Then it follows from the identities given that 

1. 8 is a homomorphism; 

k2 2. e2 = e ,  since W satisfies xk = xlkand hence xk = x ; 

3. 8 (C)  is an ideal of C; 

4. 8 (C)  is in B, since for any c in C, ( c " ) ~  = cK holds; 

5. C/e(C) is in Nk, since the product of any k elements of C is 

in 8(C) .  

Hence by Lemma 3.1.3, C is in B v Nk. 

Corollary 3.4.2: Any semigroup in B v Nk is a subdirect product of a band and a 

k-nilpotent semigroup. 

The identities exhibited in Proposition 3.4.1 will be used later in showing 

that the varieties B V Nk, for k 2 2, are all closed. For now we proceed to 

generalize this result, producing identities for B1,, V Nk, for all m 2 1 and all k 

> 2, and then considering W V Nk for W C B1,,. 

Proposition 3.4.3: Let m 2 1 and k 2 2. Let a be the first number 2 k which 



is congruent to 1 modulo m. Then the variety B17, V Nk is defined by the 

identities 

x&y = xya = (xy)', xa = x(m+l)a, and xl . xk = (xl . Y C ~ ) ~ .  

Proof: Let W be the variety defined by the given identities. First, since a is 

congruent to 1 modulo m, xa = x holds in B17,, and so clearly B1,, v Nk C 

W. Conversely, let C be any semigoup in W. Define 8 :C + C by 8 (c )  = ca for 

all c in C. Then 

2 
1. 8 is a homomorphism, since x&ya = (xy)& = ( ~ y ) ~  holds in W 

because a k d  a are congruent modulo m; 

2 
2. 8 is a retraction, since xa = xa holds in W; 

3. 8 (C)  is an ideal of C, since for any c and d in C we have 

cad = E 8 (C) ,  and similarly dca is in 8 (C) ;  

4. 8 (C)  is in B17,, since xa - - ' \x 5 1 01 'd s in 1%'; 

5. C/8(C) is in Nk, since for any cl, . . . ,ck in C, 

C1 ' . Ck = (c1 ' ' ' ck)l E 8(C) ;  

Therefore by Lemma 3.1.3 C is in BlYm V Nk. 

Proposition 3.4.4: Let W B1,, for m t  1. Let k 2 2, and let a be the first 

number 2 k which is congruent to 1 modulo m. Let C be a basis for W, with x 

- - xm+l in C .  Write C = C1 u C2 u C3, where Cl = {x = xrn+'}, 

C 2  = {u = v E C: 1111, I v I  2 k), and C 3  = C - (E l  U C2). Let 

- * 
Cf = {u* - v*: u = v E ES}, where u is obtained from u by replacing each 



letter x in u by xa, each time it occurs. Then W v Nk is defined by the identities 
* 

in X2 U Zs plus the additional identities x v  = xya = (xy)l, 

X 1 " ' X k -  - (xi ' ' ' xk)', "nd X1 ' ' ' Xk = (xl . . . x ~ ) ~ .  

Proof: Note that since xa = x holds in W, W V Nk satisfies all of these identities. 

The proof then follows exactly that of the previous proposition, using 8 ,  up to 

part 4. This time we have 8 (C)  in W, since by construction 8 (C)  satisfies all the 

identities in C. The conclusion follows. 

a k-nilpotent semigroup. 

In investigating closures of varieties later we will be interested in the 

following special cases: 

Corollary 3.4.6: 

i) Let W = V(x = x2, u = v) be a variety of bands. For k > 2, W v Nk is 

defined by the identities xky = xyk = ( x ~ ) ~ ,  xl xk = (xl xklk, 

xk = xzk, and either u = v, if both 11.11 and lvl are 2 k, or u* = v*, otherwise, 

where u* and v* are formed from u and v respectively by replacing each letter x 

by xk. 

ii) For m 2 1 and k > 2, it follows from the proof of Proposition 3.4.3 that 



M1lm MNk = ('I,, V Nk) n M, SO this variety is defined by the identities 

xp, = q a  = (xy)a, xa = x(m+l)a , x l + - -  xk = (xl . . xk)(l, and xyzw = xzyw, 

where a is the first integer 2 k and congruent to 1 modulo m. 

The variety MI,, V MNk turns out to be significant, since under certain 

restrictions on m and k it corresponds to the closure of Al,,. Thus we now give a 

different set of identities for MI,, v MNk. These identities will correspond to 

hyperidentities; and they have the additional advantage that they can be 

generalized to deal with M,, v MNk for n > 2 as well. 

Notation 3.4.7: Let m >  1 and k 2 2. We use Cllmlk for the set of identities 

xm+l, and xyzw = xzyr. X1 ' ' ' Xk = X1 ' ' ' xk-1 k 

Proposition 3.4.8: For any m 2 1 and any k 2 2, Mllm V MNk = V(Cl,mlk). 

Proof: Clearly Mllm v MNk V(C l,,lk). Conversely, let C be any semigroup in 

V(Ellmlk). Note that C satisfies the additional identities xk = t+m and 

- m+l m + l  m+l  
X 1 " ' X k  - X1 X2 - x k  = (xi . . x ~ ) ~ + ' .  Define a map 

€3 : C -+ C by 8(c )  = cmk+l, for all c in C. Then 

1. 8 is a homomorphism, because of the medial identity; 



2. 9 is a retraction, since C satisfies (xxnk+l)mk+l = 

xmk+l+mk(mk+l) = xmk+l. 
9 

Y - 3. 9 ( C )  is an ideal of C, since C satisfies xymk+l = xmk+l mk+l - 

(xy)mkfl, and dually xmk+ly = (xy)mk+l; 

4. 8 ( C )  is in MI,,, since C satisfies both the medial identity and 

(xmk+l)m+l = xmk+l+m(mk+l) = xmk+l. 
7 

5. C/8(C)  is in MNk, since C satisfies xl . xk = (xl x ~ ) ~ + ~  

= . . . xk)mk+l; 

Thus C is in MI,, V MNk, as required, by Lemma 3.1.3. 

Corollary 3.4.9: Any semigroup in Ml,m V MNk is a subdirect product of a 

k-nilpotent semigroup and a strong semilattice of rectangular groups of exponent 

m. 

Proof: This follows from the proof of Proposition 3.4.8 and Corollary 3.2.2. 

The argument in the proof of Proposition 3.4.8 can be modified slightly to 

deal with the join Am v RB V MNk, rather than Al,, v RB v M N k  Let 
* ' 1,m.k be the set of identities formed from E l,m,k by adding the identity 

(This new identity will appear later in our investigation of hyperidentities.) 

Proposition 3.4.10: For any m 2 2 and any 2 5 k 5 2m+l 9 

Am v RB v MNk = V(E:,,,~). 
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Proof: Since k < 2,+', it is clear that A, V RB v MNk is contained in 
* 

V(Bl,m,k). For the opposite inclusion, we repeat the proof of Proposition 3.4.8 

exactly, except for part 4. There we still have 8 ( C )  in MI,,, but now by 

Corollary 3.2.4, 8 ( C )  is also in A, V RB, as required. 

The identities in can be extended to deal with M,,, V MNk for n 2 

2. Note that when n 2 k we have MNk M,,,, and hence 

I%9, v MNk = M,,,, so we now consider the case where n < k. 

Notation 3.4.11: Let k 2 2 and n, m 2 1, with n < k. Set s = k-n+l. We use 

'n,m,k for the set of identities 

and 

xyzw = xzyw. 

Note that this includes the previous definition of B However when 

n > 1 we can no longer give a structural proof that the identities in 

define the variety M,,, v MNk: our previous proof method breaks down since 

8(C) will no longer be an ideal of C. Instead we give a syntactic proof. 



Proposition 3.4.12: Let m > 1, k 2 2, and 1 5 n < k. Then 

Proof: Since M,,, v MNk V(Cn,m,k), it will suffice to prove that any identity 

satisfied by M,,, V MNk is also satisfied by V(C n,m,k). 

Let u = v be a non-trivial identity satisfied by M,,, v MNk, and hence by 

both M,,, and MNk. Then either u = v is a consequence of medial, and so is 

certainly satisfied by V(C n,m,k), or both lul and Ivl are > k. So we will now 

- - 
u1 - . . . - u, = v such that each move ui = ui+l is a consequence of the 

medial identity or the identity xn = x " + ~ ,  and such that iuil 2 k for all 

0 5 i r. From this it will follow that V(Cn,m,k) also satisfies u = v. 

We now describe how to produce such a sequence. First, by repeated use of 

the medial identity, we may write any word w in a "standard formn Was follows. 

C C C 
Rewrite any string (wl . . wJC in w as wlw2 . . wl. Then as in the proof of 

Proposition 3.2.5, express the rewritten string as 

where x,yl, . . . yp,y are the distinct (except possibly x = y) letters occurring in 

the word w; yt occurs at times in w for 1 5 t 5 p; and x and y occur a and b 

times respectively in w, except that if x = y then b = 1 and x occurs a + l  times 



Now by construction Mnlm satisfies u = h and v = ir, and in fact there are 

deductions of these two identities involving only words of length > k. Since Mnlm 

satisfies u = v, it also satisfies iI = a Also, lul = Iq and Ivl = 14. Thus it will 

suffice to produce a deduction of i~ = W in M,,, in which the length of any 

intermediate word is 2 k. 

Consider first the case where x and y are distinct letters. Then we can write 

a b  h = x$'1 . . y Py , 
1 P 

and j r =  X ~ C l . .  . y C ~ y d .  
1 P 

. - -- - 
Since lvi  * * .  

"'1m 
5&blSLlt!S u 2 V, w e  U U ~ L  Lave a 1 - ~1 UL a1 ULU ~1 ~ulrll < 11 allu 

congruent modulo m, for each 1 5 1 5 p, and similarly for a and c and b and 

d. For any variable z in 4 the net change in power on z as we go from h to 3 

can then be accomplished as a series of moves of the form ze = z ~ + ~  (an increase) 

or z ~ + ~  = ze (a decrease), for some e > n. It is clear that having grouped 

together all occurrences of each such variable z, the moves done to one variable 

are independent of those done to another, and such moves can be done in any 

order. Therefore we can arrange to move from u to t in such a way that all 

increases are done first, and then any decreases. Since lul and Ivl are 2 k, this 

guarantees that any intermediate word in the sequence of moves also has length 

2 k,  as required. 

The case x = y is handled in much the same way. This time we have 



which we will simplify a bit and write as 5 = x9vx and f = xCw'x, where w and 

w' are words not involving the letter x. As in the x # y case, we can always 

change w to w' using only M,,, identities by doing all the necessary increases 

first, then all the decreases, so that the greatest possible length is maintained. So 

we concentrate now on the letter x. If a = c, we are done. Otherwise, we must 

have a and c both 2 n, and congruent modulo m. So again the net change in 

power on x is either an increase or a decrease, by a multiple of m. If this net 

change is an increase, we do it first, then change w to w' as previously described; 

if the net change is a decrease, we do it after the change from w to w' is made. 

In either case we move from b = x4vx to f = xCw'x, maintaining at each stage a 

word-length 2 k. This completes the proof of the proposition. 

We will conclude this chapter with the join A,,, v RB V MNk, which will 

appear later in Chapter 6 as the closure of A,,, for certain n, m, and k 

combinations. The syntactic proof given below combines the arguments used for 

A,,, V RB in Proposition 3.2.5 and for M,,, v MNk in Proposition 3.4.12. 

Proposition 3.4.13: Let k > 2, 2 5 n < k, and m 2 1. The variety 

A,,, V RB V MNk is defined by the following identities: 

Xyzw = xzyw 

and 



Proof: Let U be the variety defined by the given identities. Then certainly A,,, v 

RB v MNk U. Conversely, we show that any non-trivial identity u = v 

satisfied by A,,,, RB, and MNk is also satisfied by U. 

When MNk satisfies u = v, either M and hence U satisfies u = v, and we 

are done, or lul and Ivl are both 2 k. Since RB satisfies u = v, u and v have 

the same first letter, x say, and the same last letter, y say, with x and y possibly 

equal. Since A,,, satisfies u = v, u and v contain exactly the same letters, ana 

for any letter z in u or v, either the number of occurrences of z in u is equal to 

the number of occurrences of z in v, or these two quantities are 2 n and are 

congruent modulo m. Therefore we will transform u and v into the standard form 

it and v of Propositions 3.2.5 and 3.4.12. As before, A,., and M,,, still satisfy 

u = -and v = 7 and lul = Iq and Ivl = I?. 

The case where x and y are distinct variables is dealt with exactly as in the 

proof of Proposition 3.4.12: we ensure a sequence of moves from 3 to v in which 

all intermediate words have length > k, by performing all necessary increases 

first, and then any necessary decreases. The first four of the five defining 

identities for U are suficient for this. 

In the case where x = y we consider a = xawx and V = xCw'x, where w and 

w' are words not containing the letter x. As before, we are able to change w to 



w' in such a way as to maintain maximum length of words. If a = c, therefore, 

we are done. Otherwise, we have a and c 2 n-1, and a congruent to c modulo 

m. In this case we use the identity xn-lYl - . yk-,x = x n-l+m yl . . yk-nx from 

U to make the change from xa to xC. As in the x = y case in Proposition 3.4.12, 

there are two possibilities: if a > c, we first transform w to w' ,  then xa to xC, to 

get a deduction of = while if a < c we change xa to xC first, then change w 

to w'. In either situation we produce a deduction of a = V in which all words 

have length 2 k, as required. 



Chapter 4 

Some Closure Results 

In this chapter we investigate closure properties for some interesting classes of 

varieties. The varieties of bands studied in Section 4.1 have the special features of 

idempotence and duality, and by exploiting these features we produce a complete 

description of how the closure operator and the hypervariety operator H act on 

such varieties. The nilpotent varieties are also examined, and finally varieties 

obtained by taking the joins of varieties of bands with nilpotent varieties. The 

results obtained are incorporated into a picture of part of the lattice U(L(CS)). 

4.1. Varieties of Bands 

The variety B of all bands is easily seen to be closed. It satisfies the 

idempotent hyperidentity F(x,x) = x, since all the instances of this hyperidentity 

are of the form xa = x for some a 2 1. In particular, the binary term xlx2 gives 

the instance x2 = x, so B v(x2 = x), and B is closed. Moreover any 

variety which satisfies the idempotent hyperidentity is a variety of bands, so by 

Lemma 2.3.5 we have a basis of size one for the set HI(B) of hyperidentities 

satisfied by B. 



In this section we present closure and hypervariety results for subvarieties of 

B. The completeness of these results is due to two reasons: the structure of the 

lattice L(B) of all varieties of bands is known, with equational descriptions of the 

varieties; and the special properties of idempotence and duality make possible the 

construction of useful hyperidentities. 

The structure of the lattice L(B) has been described independently by 

Birjukov [2], Fennemore [6] ,  and Gerhard [7]. We will use the notation of 

Fennemore, whose diagram of the lattice is shown in Figure 4.1. Each variety of 

bands is defined by the idempotent identity x2 = x and one additional identity; it 

is these additional identities which label the various varieties in Figure 4.1. The 

words R,, Q,, and S,, for n > 3, are defined inductively on the alphabet 

{xl, - . , x } .  For our purposes, it will suffice to know that for any n > 3, 

R,, Q,, and Sn all have length 2 n, all begin with the same variable, and also 

a!l end with the sane variab!e. For any word w, we use wd for the dual word. 

Duality is an important feature of L(B): the lattice is symmetric about its centre 

column, with mirror-image varieties V = v(x2 = X, u = V) and 

vd = v(x2 = x, ud = vd), the dual variety of V. The self-dual varieties are those 

in the centre column, which are equal to their own duals. The next proposition 

shows how duality enters into the study of hyperidentities and hypervarieties. 

Proposition 4.1.1: Let V be any variety of bands which is not self-dual. Then the 

clones C(V) and c(vd) are isomorphic, so that C(V) = c(vd) and W(V) = I4(vd). 



Figure 4-1: The Lattice L(B) of Varieties of Bands 



Proof: For any n-ary term t = t(xl, . . . ,x,) in the clone of V, let td be the 

term defined by the dual word (t(xl, . . . YC,))~. Then td is in the clone of vd. 

This sets up a mapping 6: C(V) + c(vd). Clearly 6 is a bijection which maps 

the n-ary projection terms xi, 1 5 i 5 n, of V to the n-ary projection terms xi of 

vd, and it is easily verified that 6 is compatible with the composition of terms. 

The claims then follow from this and Proposition 2.1.4. 

Corollary 4.1.2: For any variety V of bands which is not self-dual, U(V v vd) = 

U(V) v U(vd) = W (V) = U(vd), and V v vd v. 

This tells us that the closure operator and the operator U both induce a 

certain amount of collapsing on L(B). By applying Y. to the known structure cf 

L(B) we produce a chain of hypervarieties, as shown in Figure 4.2. In particular, 

note that by Proposition 3.1.1, U(NB) = U(RB V SL) = U(RB) V U(SL) = U(SL). 

Our goal now is to show that there is no further collapsing of L(B) under U, 

so that all the hypervarieties U(V) shown in Figure 4.2 are distinct. We do this 

by producing, for each such self-dual V, a hyperidentity satisfied by V but not by 

the next variety in the chain. The hyperidentities produced will also allow us to 

identify the closure 7 of any variety V of bands. 

All the hyperidentities to be used in this section involve only a single binary 

operation symbol. The advantage of this is that any variety of bands has at most 

six binary terms, namely xl, x2, xlx2, x2xl, x1x2x1, and x2x1x2. Thus it will be 



d d y(v(x2 = x, R4wR4 = S4wS4)) 

d d 
U(v(x2 = x, R4wR4 = Q4wQ4)) 

d d 
U(v(x2 = X, R3wR3 = S3wS3)) 

,i A. . 
M ( V ( X '  = x, K3wK3 = q3wq3)j 

w (v(x? = x, xyzx = xyxzx)) 

U(NB) = U(LN) = U(RN) = U(SL) 

U(RB) = U(LZ) = U(RZ) 

(T) 

Figure 4-2: The Lattice U(L(B)) 

easy to verify that a given variety of bands does indeed satisfy a given 

hyperidentity: we produce the corresponding six instances, and check that each one 

is an identity of the given variety. 



When dealing with a hyperidentity involving only one binary operation 

symbol, we often focus on the particular instance we get from substitution of the 

term xlx2. We will say that the hyperidentity is based on this instance. Note that 

this instance can be easily obtained by reading off the list of variables in the 

hyperidentity, in order of occurrence from left to right. 

Proposition 4.1.3: 

i) The variety T of trivial semigroups satisfies the hyperidentity 

F(x,y) = x, while no other variety of semigroups does. 

ii) The variety RB satisfies the hvperidentity F[x,F(y,x)) = x, 

while the variety NB does not. 

iii) The variety NB satisfies the hyperidentity 

F(x,F(F(y,z) ,x)) = F(x,F(F(z,y) ,x)) 

while the variety v(x2 = x, xyzx = xyxzx) does not. 

iv) The variety v (x2  = x, xyzx = xyxzx) satisfies the hyperidentity 

F (x,F (F (Y 4) ,x)) = F (x,F (F (Y ,F (w)) ,x)), 

d d 
while the variety v(x2 = x, R3wR3 = Q3wQ3) does not. 

Proof: In each case it is easy to verify that the given variety V does satisfy the 

given hyperidentity: we omit the details. In i), use of the projection term x2 yields 

the identity y = x, so that only the trivial variety satisfies the given 

hyperidentity. In the remaining cases, note that we have given for each variety 

V = v(x2 = x, u = v) a hyperidentity based on the identity u = v. Thus no 

variety above V in the lattice L(B) satisfies the hyperidentity. 
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Corollary 4.1.4: W(T) 5 W(RB) $ X(NB) W(v(x2 = x, xyzx = xyxzx)) 

d d 
W(v(x2 = x, R3wR3 = Q,WQ,)). 

f 

Corollary 4.1.5: Each of the varieties T, RB, NB, and v(x2 = X, X ~ Z X  = xyx~x) is 

closed. 

Proof: From the proof of Proposition 4.1.3 we have V(x = y) = T, so that 
- 

T . Each of the remaining varieties mentioned may be expressed as 

V = v(x2,  u = v) for some self-dual identity u = v. Again from the proof of 

Proposition 4.1.3, we have V(u = v). 9u t  also any variety of bands satisfies 

the idempotent hyperidentity based on x2 = x, so that in fact we have 
- 
V v(x2 = x, u = v) = V. This proves that V = and V is closed. 

Corollary 4.1.4 allows us to prove some remarks made in Sections 2.1 and 2.3 

about the closure operator and the operator W .  From this Corollary and 

Proposition 4.1.1, we get 

U(T) = X(LZ n RZ) $ W(LZ) n X(RZ) = U(RB) n X(RB) = W (RB). 

Thus we know that U does not preserve intersections, so is not a homomorphism 

on the lattice L(S). Similarly, 

- - - 
T = T = LZ n RZ LZ n RZ = RB n RB = RB, 

so the closure operator also does not preserve intersections. 



We have now reached the inductively-defined part of the chain in Figure 4.2. 

Here we must consider the varieties v(x2 = 
d x, R,WR, = Q,WQ~)  and 

d d 
v(x2 = x, R,wR, = SnwSn) for n 2 3 and n odd, and their duals for n 2 4 

and n even. Each of these varieties may be written as v(x2 = X, u = v), where 

u = v is a self-dual identity, and u and v begin with the same variable and end 

with the same variable. Our technique is the one used in the previous 

proposition: we produce a hyperidentity HB(u =v) which is based on u = v and 

satisfied by the variety v(x2 = X, u = v). 

From our assumptions about each such identity u = v, we may write it in 

the form 

ala2 akak+1ak . . . a2al = blb2 . . . blbl+lbl . . . b2bl, 

where k and 1 are 2 3, the ai's and hi's are variables from our standard 

alphabet, and al = bl. We define the hyperidentity HB(u = v) to be 

The left-hand tree diagram represents the hyperterm 

F(al,F(F(a2,F(F(a3, - F(F(ak,F(ak+l,ak))~ak-~))~ a2)),81)), 

and similarly for the right-hand tree. 
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Proposition 4.1.6: Let V = v(x2  = x, u = v) be a self-dual variety of bands 

properly containing the variety v(x2 = x, xyzx = xyxzx). Then V satisfies the 

hyperidentity HB(u = v) as constructed above; and the only varieties of bands to 

do so are subvarieties of V. 

Proof: Substitution of either of the projection terms x, or x2 into HB(u = v) 

yields the identity al = b,, which is known to be trivial. Use of the term x1x2 

gives precisely the identity u = v. This of course holds in V and any of its 

subvarieties, but not in any other variety of bands, which establishes the second 

claim. Use of the term x2x1 also gives u = v, since u = v is self-dual. 

For the term xlx2xl, we will show by induction on k that the hyperterm just 

before the statement of Proposition 4.1.6 when evaluated using xlx2xl produces 

exactly the word a, . akak+,ak . al. From this it will follow that under 

this choice of term, the hyperidentity HB(u = v) again yields the identity u =v. 

For the induction base k=3, it is easy to show that 

F (a, ,F (F (a2,F (F (a3,F (a4,a3)) ,a2)) ,al)) evaluates under xlx2xl to ala2a3a4a3a2al 

(making repeated use of the band identity x2 = x). Then for k 2 3, evaluating 



The remaining term, x2x1x2, may be shown in a very similar way to also 

produce only u = v as an instance. 

Corollary 4.1.7: The hypervarieties U(V), for V a self-dual variety of bands other 

than SL, form a countably infinite chain, as shown in Figure 4.2. 

Proof: From Propositions 4.1.3 and 4.1.6 it follows that the hypervarieties shown 

in Figure 4.2 are all distinct. 

Propositions 4.1.3 and 4.1.6 also allow us to completely describe the closure 

operator as it acts on varieties of bands. For any self-dual variety 

V = v(x2 = x, u = v) except SL, we have shown that V satisfies hyperidentities 

2 
- 

based on x = x and u = v. Thus V c V v(x2 = x, u = v), and so V = V 

and V is closed. If V is not self-dual, then by Corollary 4.1.2, 

V v vd c ti (V V vd) = V V vd ,  since V V vd is self-dual and hence closed; 

therefore = V v vd in this case. In the special case of SL, we saw in the 

comments following Corollary 4.1.2 that U(SL) = U(NB), so that 
- - 

NB = SL v RB c S L 2 NB, and SL = NB. We summarize this in: 

Corollary 4.1.8: For any variety V of bands except SL, V = V V vd; and 
- 
SL = NB. 
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Our hyperidentity results also give us information about bases for HI(V), 

when V is a non-trivial closed variety of bands. Let V = v(x2 = x, u = v) be 

closed. We have seen that only subvarieties of V satisfy both HB(u = v) and the 

idempotent hyperidentity F(x,x) = x. Therefore by Lemma 2.3.5, the set C 

containing these two hyperidentities is a basis for HI(V). In fact, it is an 

irredundant basis, in the sense that neither hyperidentity is a consequence of the 

other. We show this by finding for each of the two hyperidentities a variety 

which satisfies it, but not the other one. The variety B of all bands certainly 

satisfies the idempotent hyperidentity, but does not satisfy HB(u = v) when u = v 

is non-trivial. Conversely, since all instances of HB(u = v) involve words of length 

2 2, the variety Z of zero semigroups satisfies HB(u = v) too, and hence by 

Corollary 2.2.3 so does V V Z. But V V Z does not satisfy F(x,x) = x, since its 

subvariety Z does not satisfy the base instance x2 = x. This proves the following 

result. 

Proposition 4.1.9: For any non-trivial closed variety V of bands, there is an 

irredundant basis of size two for HI(V). 

4.2. Nilpotent Varieties 

The next varieties whose closures we investigate are the nilpotent varieties Nk 

= V(xl . . . xk = yl . . . yk), for k > 2. We have seen that RB E $, so 3 is 
at least Nk v RB, and we know immediately that Nk is not closed. In 

hyperidentity terms, the RB condition translates into a requirement that any 

hyperidentity satisfied by Nk must have the same first variable in each hyperterm, 

and the same last variable. This suggests some hyperidentities we might try. 



As in the previous section, all hyperidentities to be used here involve only a 

single binary operation. We note that for any k > 2, the binary terms of Nk are 

k 
all possible words of length < k on the variables xl and x2, plus the word xl; all 

words of length > k are identified in Nk. This also means that a non-trivial 

identity u = v holds in Nk iff both lul and Ivl are > k. We begin with the 

variety N2 = Z. 

Proposition 4.2.1: The variety Z satisfies the following hyperidentities: 

F (x,F (Y ,x)) = F (x,x), F(x,F (X,Y)) = F (X,Y), 

and F(x,F(y,y)) = F ( ~ , Y ) .  

Proof: In each case the projection terms xl and x2 lead to trivial identities x = x 

or y = y. For any other binary terms all three hyperidentities yield only instances 

u = v in which lul and Ivl are both 2 2. 

- 
Corollary 4.2.2: Z = Z V RB. 

Proof: From the hyperidentities in the previous Proposition, we have 

Z v RB c 3 c V(xyx = x2, x2y = xy, xy2 = xy). 

This latter variety is clearly contained in the variety 

2 V(x y = xy2 = xy, xy = (xy)2, x2 = x4, x2y2x2 = x2), 

which by Corollary 3.4.6 is precisely Z V RB. 

Proposition 4.2.3: Let k 2 3. The variety Nk satisfies the hyperidentity 
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based on xlx2 xk = xly2 ~ k , ~ x k .  

Proof: Substituting terms of the form xi, for i > 1, into this hyperidentity 

a' t. 
produces only trivial identities xl = xi. Using terms of the form xi, for j > 1, 

also produces only trivial instances. But from any term described by a term 

involving both xl and x2 we get an identity u = v where both )u] and Jvl are > 
k. Hence for any choice of term, the resulting identity is satisfied by Nk, as 

required. 

We are now in a position to use some of the join results from Section 3.2. 

We saw in Proposition 3.2.5 that for k > 3, the identity 

x1x2 . . . xk = x1y2 . . yk-lxk defines the variety Nk V RB, which together with 

the previous proposition proves that 3 = Nk v RB for k 2 3. With only slight 

modifications we can also identify the closures of MNk and ANk, the varieties of 

medial and abelian k-nilpotent semigroups. Both varieties satisfy the hyperidentity 

given in Proposition 4.2.3, and also the medial hyperidentity. Hence we have 

- 
MNk V RB E q V ( X ~ Z W  = X Z ~ W ,  xlx2 ' ' . ~k = x1y2 ' . . Y ~ - ~ x ~ ) .  

But by Proposition 3.2.7, this latter variety is in fact MNk V RB , and we have 

- 
MIY, = MNk v RB for k 2 3. Furthermore, we have 

67 



- 
ANk V RB E AN, C = MNk v RB = ANk V RB, 

- - 
the last equality from Proposition 3.2.8, so that AN, = ANk V RB = MN, for k  

2 3. This proves the following result. 

- 
Proposition 4.2.4: For k >  2, % = Nk v RB. For k > 3, 

- - 
= MNk v RB = A&. 

Proposition 4.2.5: For k  2 2, the hypervarieties M(Nk V RB) form a countably 

. C .. . . . \,-, 
ulllllllre ~ l m ~ l l  111 n v .  

Proof: The hyperidentities in Proposition 4.2.i are satistied by 2 V RB, but not 

by N3, showing that M(Z V RB) is properly contained in N(N3 v RB). For 

k  2 3, Nk v RB satisfies the hyperidentity in Proposition 4.2.3, based on an 

identity which is not satisfied by Nk+l, SO that M(Nk v RB) is properly contained 

in M(Nk+l V RB). This gives a countably infinite chain of hypervarieties. 

Note that the hyperidentity exhibited in Proposition 4.2.3 for Nk forms a 

basis of size one for the family of hyperidentities satisfied by Nk (or Nk V RB), 

since its base instance defines the closure Nk V RB. 



4.3. Combining Band  and  Nilpotent Results 

In this section we show that varieties of the form V V Nk, for V a 

non-trivial closed variety of bands, are also closed. We begin with B V Nk, and 

then extend to subvarieties of B. Recall from Proposition 3.4.1 that for k 2 2, 

k the variety B v Nk is defined by the identities xk = x2k, xky = ( Y C ~ ) ~  = xy , and 

x l - - -  xk = (xl x ~ ) ~ .  Our first goal is to produce hyperidentities based on 

these identities. Note that they all at least are satisfied by RB. 

Proposition 4.3.1: Let k > 2. The variety B V Nk satisfies the hyperidentity 

k 2k based on x = x . 

Proof: Since any choice of semigroup term to be substituted for the binary 

operation symbol of this hyperidentity leads to an identity of the form xa = xb for 

some a and b 2 1, it is clear that B satisfies the hyperidentity. Moreover, it is 

i 
also clear that either a = b (terms xl for i 2 1), or a and b are both > k (terms 

xi for j > 1 or x;xi for i+j 2 1). Hence Nk satisfies the hyperidentity too, and so 

does the join B V Nk by Corollary 2.2.3. 

Proposition 4.3.2: Let k > 2. The variety B v Nk satisfies the hyperidentity 



S a d  CP xZky = (xy)lr; and its dual. 

Proof: By construction, using a projectior, term xl or x2 in this hyperidentity --- 

b yields an identity of the form xa = x , with either a = b or both a and b 2 k, 

or of the form yC = yC. Using any other semigroup term gives an identity u = v 

with both lul and Ivl 2 k. Hence Nk satisfies the given hyperidentity. 

To see that B also satisfies the hyperidentity, it suffices to check the four 

remaining binary band terms. Clearly the term xlx2 gives the base instance 

xZky = ( x ~ ) ~ ,  which holds in B, while xZxl gives a dual result. For the term 

x1x2x1, it is easily verified that from either hyperterm we obtain a word which 

begins and ends with the letter x, and contains only the letters x and y. In B any 

two such words are equal, since they both reduce to the word xyx. Thus the 

identity obtained by using the term x1x2x1 holds in B. A dual argument holds for 

the term x2x1x2. 



Proposition 4.3.3: Let k 2 2. The variety B V Nk satisfies the hyperidentity 

A & 

k k  k 
based on xl + . xk = xlx2 . xk. 

Proof: As in the previous two proofs, any non-trivial instances u = v of this 

hyperidentity have both lul and Ivl > k, so that Nk satisfies the hyperidentity. 

For B, the two projection terms give trivial instances xl = xl or xk = xk. The 

terms xlx2 and x2xl yield the base iastance a d  its dua!, both of which hold in B, 

For the term xlx2xl, a simple induction argument based on the shape of the 

two hyperterms shows that this choice of term leads to the identity 

This too holds in B. 

Finally, we consider what effect the term x2x1x2 has in the evaluation of the 

hyperidentity. In the right-hand hyperterm, evaluation starts at the top of the tree 

diagram, with k occurrences of xk: using x2xlx2 produces some power of xk, which 



in B is just xk again. At subsequent stages, evaluation involves expressions of the 

form F(z,F(z,y)). But such an expression gives 

F(z,yzy) = YZYZYZY = YZY = F ( ~ , Y ) ,  

so by induction an expression 

F(z,F(z, - . ,F(z,F(z,y)), . . . ,), 

with k occurrences of z, gives the same result as F(z,y) ,alone. From this it 

follows that the given hyperidentity yields under the substitution of the term 

x2x1x2 an identity which holds in B. 

Proposition 4.3.4: For k > 2, the variety B v Nk is closed. 

Proof. Always B v Nn C_ R V Nh. Starting with the hase inst,an_res of the 

hyperidentities of the three previous propositions, we get 

k -  k k k k k  g ~ ( x k  = xZk, xky = (xy) - xy , x1 . . . Xk = X1 . . . Xk, ( x ~ ) ~  = x y ) 

k v(xk = xZk, xky = ( x ~ ) ~  = xy , X1 . ' Xk = (x1 ' . x ~ ) ~  ) 

= B v N k  

by manipulation of identities and then using Proposition 3.4.1. Therefore B V Nk 

= B v Nk, and this variety is closed. 

The hyperidentities given in Propositions 4.3.1 and 4.3.3 are based on 

instances which involve words of length k. Thus these hyperidentities, although 



satisfied by B V Nk, are not satisfied by Nk+, or by B V Nk+,. This establishes 

that these closed varieties generate distinct hypervarieties. 

Corollary 4.3.5: The hypervarieties U(B) and U(B V Nk), for k 2 2, form a 

countably infinite chain of hypervarieties. 

The preceding results for B v Nk extend easily to subvarieties of B. Let 

V = v(x2 = x, u = v) be a non-trivial closed (hence self-dual) variety of bands. 

For the join V V Nk, we must distinguish whether or not lul and Ivl are 2 k. 

Suppose that k 5 lul 5 Ivl. From Corollary 3.4.6 we know that V v Nk is 

k - then defined bv the four identities xk = xZk, xky = (xy)k = xy , x, . . . xk - 

(x, - x ~ ) ~ ,  and u = V. Since V V Nk B v Nk, V V Nk also satisfies the 

hyperidentities of Propositions 4.3.1 - 4.3.3, and so we may obtain the first three 

of these identities as hyperidentity (base) instances. Now recall from Section 4.1 

that V satisfies the hyperidentity HB(u = v), based on u = v. For that 

hyperidentity, terms such as xf or xi, for i and j 2 1, yield only trivial instances, 

while any term represented by a word involving both xl and x2 leads to an 

identity in which both words have length 2 lul 2 k. Hence Nk also satisfies 

HB(u = v), and so does V v Nk. Combining this information, we get V V Nk 5 

V v Nk, SO that V v Nk is closed. 

Now suppose that lul or Ivl is < k. Again Corollary 3.4.6 provides us with 

defining identities for V v Nk: besides the three usual ones for B v Nk, we need 



U* = v*, where u* and v* are formed from u and v by replacing each variable x 

by xk. As in the first case we have hyperidentity instances for the first three 

identities. However, the hyperidentity HB(u = v) is no longer satisfied by Nk, and 

our problem now is to  find a hyperidentity based on u* = v* instead. We do this 

by suitably modifying HB(u = v). Starting with HB(u = v) as described in 

Section 4.1, replace each variable x occurring in the hyperidentity by 

F(x,F(x, . . . F(x,x)) . . . ), an expression with k occurrences of x. This ensures 

that the new hyperidentity is based on u* = v*. It is obvious that this 

hyperidentity is satisfied by V: under any choice of term, wherever we previously 

Esd x we nov: have xa f ~ r  some a 2 1, h ~ t  scch e change makes nn CjiffPrence 

i within B. It is also clear that Nk satisfies the hyperidentity, since xf or x,, terms 

give trivial instances and all other terms give instances of suftkient length. 

Therefore V v Nk satisfies the hyperidentity, and we are able to obtain u* = v * 

as a hyperidentity instance. Putting all this together in the usual way, we obtain 

V v Nk & V v Nk in this case too. 

- 
Finally, if V is a variety of bands which is not closed, we have V v vd = V 

by Corollary 4.1.8, and it is easy to see that V v Nk = V V vd V Nk. All of 

this proves the following result. 

Proposition 4.3.6: If V is a non-trivial closed variety of bands, then V v Nk is 

also closed. If V is a variety of bands which is not closed, then V V Nk = 

V V vd V Nk. 



Figure 4.3 shows a part of the image U(L(CS)) of hypervarieties generated by 

closed varieties of semigroups. 

Figure 4-3: A Portion of the Lattice U(L(CS)) 

Our previous results prove that the hypervarieties shown in Figure 4.3 are all 

distinct. For convenience of notation, we will use N1 for the trivial variety, with 



V v N1 = V for any variety V. Then any two hypervarieties in the diagram can 

be represented as U(V V Nk) and U(W v N1) for some V and W in L(B) and 

some k and 1 2 1, with either V # W or k # 1. If V # W, we may use a 

hyperidentity HB(u = v) to distinguish the two hypervarieties; if k # 1, we use 

the hyperidentity of Proposition 4.3.1. 

We know from Proposition 3.1.1 that U(RB) is an atom of the lattice UV. 

Other results from Chapter 3 allow us to show that between the hypervarieties 

shown in the first two columns of Figure 4.3, no other intermediate hypervarieties 

of the for= N(V), fcr V in L(S), are possible. First. since U preserves joins, the 

join of any two hypervarieties in the first two columns is again one of these 

hypervaiieties. NGW scppose that, U(V v Nk) is one of the hypervarieties in the 

diagram, with V a closed variety of bands and k = 1 or 2, and that 

U(W) E Y(V v Nk) for some variety W of semigroups. Then W C V v Nk = 

V V Nk V V N2 = V V Z. By Proposition 3.3.5 then, either % & V or 

- 
W = (w n V) v Z. If t V, then fi is a closed variety of bands, and 

Y(W) = U ( q  is one of the hypervarieties below U(V) in the first column of the 

diagram. Otherwise, if E= ( E n  V) V Z, then Y(W) = U(%j = ~((6 '  n V) v Z), 

with W n V a closed subvariety of V, so it is one of the hypervarieties below 

U(V v NZ) in the second column of the diagram. We conclude therefore that no 

other hypervarieties of the form U(V), for V in L(S), are possible in the first two 

columns of Figure 4.3. 



Chapter 5 

9 Hyperidentities for the A n,m s 

In order to obtain any results about closures of commutative varieties, we 

must first produce some hyperidentities which they satisfy. The problem of 

constructing hyperidentities which are satisfied by a given variety and in some 

sense "definen that variety is not in general an easy one. For varieties of bands, 

for instance, the task was made much simpler by the presence of idempotence and 

duality, both very strong properties. In this chapter we construct some families of 

hyperidentities satisfied by the commutative varieties A, and A,,,, n, m 2 1. 

These hyperidentities provide us with information a b o ~ t  the hypervariety operator 

M, as well as with instances which will be used in Chapter 6 to determine the 

closures of some of these varieties. 

In Section 1 we illustrate some general discussion about the construction of 

hyperidentities with a specific example, the Kp family. Section 2 gives a new 

construction technique for building a hyperidentity corresponding to a given 

semigroup identity, subject to certain restrictions. This technique is then used to 

obtain several results about the behaviour of M on L(A) and other lattices; for 

instance, we show that M is injective on the lattice of varieties of commutative 



monoids. A different family of hyperidentities is examined in Section 3, this time 

depending on a "length parametern t. In the final section this length parameter is 

used to give restrictions on what types of hyperidentities some of the A,,,'s can 

satisfy. 

5.1. Construction of Hyperidentities 

The hyperidentities to be considered in this Chapter will all involve only one 

operation symbol F, which is binary. This, plus the fact that we consider only 

commutative or medial varieties, will be strongly exploited. In particular, we note 

that for commutative varieties, any binary term t(xl,x2) can be expressed as x;xi 

for some i, j > 0, i+j > 1. 

Once again using Taylor's method of representing hyperidentities by trees, we 

now want to consider (not necessarily complete) binary trees. In a binary tree of 

height 1? we may associate with each leaf of the tree an 1-tuple of i's and j's, 

corresponding to the path taken from the root of the tree to that leaf: an i in the 

kth position indicates a left branch taken at node k, while a j indicates a right 

branch (1 5 k < 1). Since we will be considering commutative varieties, we may 

abbreviate such an 1-tuple as itjl't, where 1 5 t 5 1. In a complete binary tree, 

for example, there are (:) leaves with associated 1-tuple itjl-t, for 0 j t j 1. 

The importance of this method of associating to each leaf in a binary tree an 

index itjl-t comes when we consider the tree as representing a hyperterm. Suppose 

we label the leaves of the tree with the r distinct variables xl, . . . , xr, (r 2 



1). If we now replace the binary operation symbol of the tree by the binary term 

i j xtx2 for i, j 2' 0, and evaluate, we get an expression of the form 

where each exponent ak is precisely the sum of all the 1-tuples itjl't associated with 

the leaves labelled xk. Here we are using a commutativity assumption to group 

together all occurrences of each variable xk. In this chapter such an assumption 

will usually be justified; if it is not, we assume at least the presence of mediality, 

and then keep track of the first and last letters in our expressions. 

Construction: 

Let p 2 2 be a prime. Form a complete binary tree of height p, and to each of 

its 2P leaves associate an index ikjpk, as described above. We will label two leaves 

with the same variable name if their associated indices are the same. In particular, 

there is exactly one leaf (the left-most one) with index ipjo: label this leaf x. There 

is exactly one leaf (the right-most one) with index iojp: label it y. In between, for 

1 5 k 5 p-1, there are (f;) leaves corresponding to ikjpk: label each such leaf 

zk. Note that for each such k, the number (f;) of leaves labelled xk is divisible by 

p. Call this labelled tree Sp. Finally, let Kp be the hyperidentity formed by 

equating S and the binary tree representing F(x,Y). 
P 

Example: For p = 3, we get the hyperidentity K j  



The hyperidentity K3 is given in [15] as a hyperidentity satisfied by the 

variety of rings of characteristic 3, with the suggestion that it can be generalized 

to rings of characteristic p. 

Proposition 5.1.1: Let p 2 2 be a prime. Then the variety Ap satisfies the 

hyperidentity Kp, while the varieties Al,p, A, and Aq do not, for any prime 

s # P- 

i j 
Proof: Any binary term of the variety Ap is of the form xlx2 for some 

0 5 i, j 5 p, i + j > 1. We must examine the identity which is obtained 

from evaluation of Kp under the substitution of such a term. Making use of the 

comments above, we obtain an identity involving the letters x,zl, . . . ,zpl, and y; 

x appears to the power ip on the left-hand-side and to the power i on the 

right-hand-side; y appears to the power jp on one side and to the power j on the 

other; and any other variable zk appears to the power (:)ipkjk on one side and 



not at  all on the other. Since iP is congruent to i modulo p, jp is congruent to j 

modulo p, and (:) is congruent to 0 modulo p for any 1 < k < p-1, it follows 

that this identity does hold in Ap. Thus Ap satisfies Kp. 

Since Kp is based on the id ntity 
(9 (3  

XZ1 z2 ' ' ' z Y = XY 7 

( ,! 1 )  

which does not hold in A or Al,p, nor in any Aq7 for q a prime different from p, 

the remaining claims of the proposition hold. 

The K hyperidentity can also be used to answer a question posed by Taylor 
P 

in 1151 about varieties of groups. For any prime p, the variety Gp of abelian 

groups which satisfy xp = 1 satisfies the hyperidentity Kp: the proof of Proposition 

i j 
5.1.1 still holds if we allow binary terms xlx2 where now i and j may be < 0. 

Since the base identity (described in the proof above) does not hold in Gq for any 

prime q # p. we are able to distinguish by hyperidentities the various varieties 

G , p > 2. p prime. 
P 

The basic hyperidentity Kp can be modified in several ways. For instance, if 

we identify all those variables zk in Kp whose associated indices ikjpk have 

k < p/2 with x, and all remaining zk's with y, we get a hyperidentity based on 

the instance 



x2P-1y2P-1 = xy. 

This hyperidentity is satisfied by AlYp but not by AZjp, showing that these 

varieties generate different hypervarieties when p is prime. However, the general 

construction introduced in the next section will imply this result, along with many 

others. 

5.2. The H(u = v) Construction 

In order to distinguish between the hypervarieties determined by two distinct 

varieties of semigroups, we need to produce a hyperidentity satisfied by one which 

has as an instance an identity not satisfied by the other. Ideally, we would like a 

method which given an identity u = v produces a hyperidentity, preferably one 

based on u = v, which is satisfied by V(u = v) or at least by 

V(xy = yx, u = v). With varieties of bands we were able to do this. but for the 

A,,,'s we usually cannot do so. For one thing, since )I(RB) U(\') for any 

variety V, we must at ieast modify u = v into something that is satisfied by RB. 

Other "lengthn factors are also involved, as we will see in later sections. In this 

section we present a modified version of the ideal method described above: given 

any u = v, we produce a hyperidentity based on a rectangularized and padded 

version of u = v, which is satisfied by V(xy = yx, u = v). We then examine 

some uses of this construction method for particular identities u = v. 

Construction: Let u = v be a semigroup identity, with k = 11.11 5 Ivl = 1. 

Let w be any variable not occurring in either u or v. The hyperidentity H(u = v) 

will consist of two complete binary trees, each of height 1, labelled as follows. Each 



tree will have 1 leaves with associated index il-lj. On the first tree, label k of 

these leaves with the k letters of the word u,in order, and label all remaining 

leaves with the letter w. On the second tree, label the 1 leaves with this index 

with the letters of the word v, and all remaining letters with w. Note that the 

left-most and right-most letter on each tree is w, and that these four occurrences 

3 of w are all at height 1; this ensures that projection terms of the form x: or x2 

always give only trivial identities. 

Proposition 5.2.1: Let u = v be any non-trivial semigroup identity. Then both the 

-.., 
v-r*o+ra~ . . V I ~ I  = VY 11 = vi a n d  V[xyzw = X X ~ .  11 = V\  satisfv the hvperideniitv 

\ - - * 

H(u = v). 

Proof: Upon substitution of the term xixi in H(u = v), we obtain the identity 

.1 .Llj a - .1 .Llj , wlul W - w1 v1 W , 

where b = ~ f = ~  (:)ibtjt and a = b + (1 - k)il-lj. (This assumes of course that 

we use the medial identity to collect all the letters in the words u and v together, 

yet leaving the first and last letters (w) alone.) 

If k = 1, then it is clear that V(xyzw = xzyw, u = v) satisfies this identity 

for any choice of i and j 0. If k < 1, then V(xyzw = xzyw, u = v) also 

satisfies the identity xk = xl. Hence wa = wb holds, since b 2 k and a - b is 

divisible by 1 - k. So in this case too V(xyzw = xzyw, u = v) satisfies the 

required identity. Therefore this variety and its subvariety V(xy = yx, u = v) 

both satisfy the given hyperidentity. 



Using i = j = 1 in the identity of the proof above, we see that H(u = v) is 

based on the identity 

wuw 2l-k-1 - - wvw21-1- 1 (*I 
Thus we have rectangularized and "padded out" the original identity u = v. But 

although this falls short of our ideal, it nevertheless has many interesting 

consequences. 

One of these involves looking at varieties of commutative monoids. When an 

identity element 1 is available, it follows that a variety satisfies the padded version 

:*) of ii = :- iiff it satisfies a = v. Thus fcr my two distirct varirtics of 

commutative monoids, we can use an identity satisfied by one and not the other 

to produce a hyperidentity satisfied by one and not the other. 

Corollary 5.2.2: The operator U is injective on the lattice of varieties of 

commutative monoids. 

U is not injective on the lattice of varieties of commutative semigroups, since 

we will show in Section 5.4 that U(Am) = U(Am v Z). 

An important special case of the H(u = v) construction is obtained when we 

take u = v to be xym = x or xn = x " + ~ .  This gives us hyperidentities satisfied 

by the varieties A, and A,,,. Instances of these hyperidentities will be valuable 

when we consider and x,, in Chapter 6. For now they also allow us to show 

that U distinguishes various subvarieties of the Am's and An,,'s. 



The relationships between the varieties A, and A,,, for m, n > 1 are 

discussed in [5]. The subvarieties of A, are precisely the varieties A1, for 1 a 

divisor of m. For m 2 2, the subvarieties of Al,, are the Al and Aljl, for 1 a 

divisor of m; the lattice of such subvarieties is in fact isomorphic to the product of 

the lattice of subvarieties of AlYl = SL and the lattice (under divisibility) of 

divisors of m. Thus for any m 2 2, A, C Al,,, and if 1 divides m then 

Al C A, and Algl C Al,,. Also Ak,1 E A,,, if k 5 n and 1 divides m, for k, 1, 

n, and m all 2 1. Each such inclusion gives us a corresponding one when we 

apply U.  Using the H(u = v) construction we get the following results. 

Proposition 5.2.3: 

i) F o r m  2 1, U(ALm) -t C: U(A2,,) U(A3,,) , . . 

ii) For m 2 1, U(Am) $ U(A1,,). 

iii) For m > 2 and 1 a proper divisor of m, 

Proof: All of these results are handled by applying the H(u = v) technique to the 

relevant identity. We illustrate only one case, U(A,,,) C Y(An+l,m), for n and m 

both > 1. By Proposition 5.2.1, A,,, satisfies the hyperidentity H(xn = xn+,). 

By the remarks following the proof of that Proposition, this hyperidentity is based 

on the identity 

-nWa = -n+mWb 

where a - b = m and b 2 n. Since this identity is not satisfied by we 

have produced a hyperidentity satisfied by A,,, but not by 



It is known (see [s]) that if V is a variety of commutative monoids, then 

either V = Am for some m 1 1, or V is the variety of monoids defined by the 

identities xy = yx and xn = x " + ~  for some n and m 2 1. In fact the natural 

map between the Am's and A,,,'s and the lattice of varieties of commutative 

monoids is a lattice isomorphism. Thus Proposition 5.2.3 extends to a second proof 

that U is injective on the lattice of varieties of commutative monoids. 

-4 different approach to the study of the varieties of commutative semigroups 

has been used by Nelson [8], who defined the varieties A:,"'. For r 2 0 and n 

E d  P- 2 let, 

Ar = V ( q  = yx, xn = x " + ~ ,  xryn = xr+m 
"9"' Y 1- 

It 12 f r ~ ~ ? ,  +his 2a5itis:: thst A' n ,m *n,m, for ezy r 2 O: 2nd that 

A' - - %,m for r 2 n. Nelson has shown that the interval A' ] 
n,"' n,"' 

consists of all the varieties A:,, where 1 divides m; and that the interval 

0 An ] consists of all the varieties A' [*n,m, n,m n,m 
where 0 5 r 5 n. Our 

hyperidentity construction technique then shows that all the corresponding 

N-inclusions are proper ones. 

Proposition 5.2.4: For any n and m 2 1, any 1 5 r 5 n, and 1 > 1 a proper 

divisor of m, 



We may also use the H(u = v) hyperidentity technique to show that the 

lattice U(L(A)) is not modular. It is known that the lattice L(A) of varieties of 

commutative semigroups is not modular (although the Am's and A,,,'s form a 

large distributive sublattice). Schwabauer [13] gives the following example. Let 

V1 = V(xy = yY, xy9 = xZy8, x3y7 = x4y6), 

v2 = V(xy = yx, x2y8 = x3y7, x4y6 = x5y5), 

and V3 = V(xy = yx, xy9 = x2y8, x3y7 = x4y$ xy9 = x5y5). 

Then V3 E V1, but (VlnV2) v V3 satisfies xy9 = x5y5 while V1 n (V2vV3) does 

not. So (V,nV,) V V3 is properly contained in V1 n (V2vV3), and L(A) is not 

modular. Since V, - T: V, C V,, in fzct (V,flIr,) 'J V, = V,. %%en we apply ).! 

to the various varieties involved, we get the sublattice of U(L(A)) shown in Figure 

Figure 5-1: A Non-Modular Sublattice of U (L(A)). 



We now show that these five hypervarieties are all distinct. First, consider 

Y(V2) and N(V3). The hyperidentity ~ ( x ~ ~ ~  = xSy7) is satisfied by V2; but the 

padded version of x2y8 = x3y7 is not satisfied by V3, so neither is this 

hyperidentity. This shows that N(V3) is not contained in N(V2). Analogously, we 

use H(xyg = xZy8) to show that U(V2) is not contained in W(V3). From this it 

follows that N(V2) n N(V3) is properly contained in each of U(V2) and U(V3). It 

also follows that U(V2) is properly contained in the join U(V2) v U(V3). 

Similarly, since V3 satisfies ~ ( x y ~  = x5y5) while the variety V1 n (V2vV,) does 

not, we have N(V3) properly contained in N(Vl n (V2vV3)). Finally, suppose that 

c N(V,), 

so that N(V2) E N(Vl). But this is false, since Vl satisfies H(xJyi = x4y6) while 

V2 does not. So we must after all have N(V1 n (V2vV3)) properly contained in 

U (V2vV3). This proves the following: 

Proposition 5.2.5: The lattice N(L(A)) is not modular. 

5.3. T h e  Parameters  t ( m )  a n d  d ( m )  

The hyperidentities discussed in the previous section involved a process of 

padding identities. The padded identities will be used in determining closure 

results, but they alone are not sufficient. We now consider a new family of 



hyperidentities, while examining the question of how much, if any, padding is 

unavoidable. The hyperidentities to be considered here all involve binary trees of 

the same shape, which we we will refer to throughout this section as the basic 

(binary) shape: 

We are also still interested mainly in abelian or medial varieties, so we will make 

use again of the comments of Section 5.1.) One of the simplest hyperidentities of 

this shape which we might try is Hn,k, based on the identity xi' = xni' , Our first 

investigations of this hyperidentity reveal the following: 

Proposition 5.3.1: Let n 2 2. The variety An,k satisfies the hyperidentity HnYk for 

k = 1 and k = 2, but not for k = 3. 

Proof: Any identity produced from HnYk has the form xa = xb for some a and 

b 2 1. For k = 1 and k = 2, it is a matter of routine verification that for any 

such identity, we have either a = b, or b 2 a > n and b-a congruent to 0 

modulo k. For k = 3 and n = 2, however, evaluation under the substitution of 

2 the term x2 yields the identity x2 = x16, which does not hold in A2,? 



Note that this proves again, in the limited case k = 1 or 2, the result of 

Proposition 5.2.3(i). But since the hyperidentity here involves only one variable x, 

we may also extend to the non-commutative case, with 

(B2,k) $ (B3,k) $ W(B4,k) $ - - . for k = 1 or 2. 

But for k > 2, even in the commutative case, we must look further. 

When we examine one-variable hyperidentities of this shape further, an 

interesting pattern emerges. We discover two parameters associated with each 

natural number m, whose relationship with n seems to determine which of these 

hyperidentities are satisfied by which A,?, varieties. For any m 2 2, write 

m = 
v p ?  p a v  

as a prodiict of distinct primes. We define 

t(m) = max{al, . . . , a v } ,  

the highest power of a prime to divide m. This parameter t(m) seems to measure 

"how long" hyperidentities have to 'be, in a sense to be made more precise iater. 

We also define 

d(m) = ~ ( ~ ; l + '  . . . p%+l), v 

where 4 is the Euler-$-function. By common properties of this function, it follows 

that for each prime divisor p of m, if pa divides m but pa+1 does not, then d(m) 

is divisible by pa(p - 1). This also implies that m divides d(m). For the special 

case m = 1, we set t(m) = d(m) = 1. 

Before proceeding with an examination of hyperidentities, we give two 

technical lemmas. These embody some congruence properties which will be used 



repeatedly in our hyperidentity proofs. We will also make use of Euler's Theorem, 

which states that if j is a number relatively prime to m, then j91rn) is congruent 

to 1 modulo m. 

Lemma 5.3.2: Let p be a prime, cu 2 1, and 2 5 j 5 pa-1, and let j and pa be 

relatively prime. Let d 2 2 be any number divisible by pQ(p - 1). Then 

(jd - 1 - 1) is congruent to 0 modulo pa. 

a+l)  
Proof: By Euler's Theorem, j9(p is congruent to 1 modulo pa+1, and since 

$(pa+1) = pa(p - 1) dk-ides d, we haw jd - 1 caigiiimt tc; O mcd.;!c Fa+1. 

Thus if j is not congruent to 1 modulo p, or if j is congruent to 1 modulo p but 

is not congruent to 1 modulo p2, the desired congruence wil! hold. So we now 

assume that j is congruent to 1 modulo pP, but j is not congruent to 1 modulo 

pp+l, where 2 5 p 5 cu - 1. In this case, we need to show that jd - 1 is 

divisible by pa+p. By assumption we may write j = kp@+l for some k 2 1, and 

therefore 

jd - 1 = (kpp + I ) ~  - 1 

Any terms of this sum for which Dl 2 a + P are divisible by pa + p. Thus it 

suffices to prove that for those 1 for which pl < a + P, the coefficient ( is 

divisible by pa+pfl. For 1 = 1 this is easy, since ( )  = d is divisible by pa by 

assumption. For 1 2 2, we write 



We first examine quotients of the form (d-w)/w, where 1 5 w 5 1-1. There are 

three cases. If w is not divisible by p, such quotients may be ignored. If w is 

divisible by p? for some 7 > a ,  then w 2 p7 > pa, so 1 > pa; therefore 

PI 2 Ppa 2 Pa 2 ,f3 + a, so in this case (kpb)l is already divisible by pp+a 

anyway. If however w is divisible by p7 for some 1 < -y 5 a, then d - w IS 

divisible by p7 too. Hence in any case the quotients (d-w)/w remove no powers of 

p from our total. 

Finally, consider the quotient d/l. Again if p does not divide 1, we have no 

problem, since pa divides d. Suppose then that 1 = bp7 for some 7 > 1 and 

some b relatively prime to p. As before we need only consider 7 5 a. Then 

-y < 1, so 7 5 1-1 5 P(1-1); therefore a-7 2 a-P(1-1). Since d/l is divisible by 

pa-?, it is thus divisible by at least pa-p(l-l). This means that (:) (kpp)l is divisible 

Lemma 5.3.3: Let p be a prime, and a ,  P, j, and d be natural numbers such that 

@ 2 a ,  2 < - j 5 pa-1, and pa(p-1) divides d. Then both jp(jd - 1) and 

jp(jd - l ) / ( j  - 1) are congruent to 0 modulo pa. 



Proof: If j is not relatively prime to p, then p divides j, and j P  is certainly 

divisible by pa, proving both claims. If j is relatively prime to p, then by Euler's 

Theorem plus the fact that $(pa) divides pa(p-1) which in turn divides d, we have 

jd-1 congruent to 0 modulo pa. This proves the first claim in this case. The 

second claim, in the case where j is relatively prime to p, is proved by the 

preceding Lemma. 

Corollary 5.3.4: Let n and m be 2 1, 2 5 j 5 n+m-1, and 1 5 i 5 n+m-1. 

Let d = d(m) and let p 2 t(m'). Then jp(jd-1) and ijP(jd-l)/(j-1) are congruent 

to 0 modulo m. 

Proof: The congruence modulo m reduces to a series of congruences modulo pa, 

one for each primc p for which pa divides m blrt pa+1 does not. We have seen 

that for each such p, pQ(p-1) divides the parameter d(m). The result then follows 

from the previous Lemma. 

We are now ready to consider some hyperidentities for the variety A,?,. First 

we use the shape referred to earlier as Hold, where d = d(m). With the right 

conditions on n, this is successful. Note that this next result includes the two cases 

already seen in Proposition 5.3.1 

Proposition 5.3.5: Let m > 1, and let t = t(m) and d = d(m). Let n > t+ l .  



Then the variety A satisfies the basic shape hyperidentity based on the identity 

Xn = xn+d 

Proof: The case m = d= 1 was already handled in Proposition 5.3.1, so we may 

assume that m and d are > 2. Since the hyperidentity involves only the one 

variable x, checking whether An,, satisfies the hyperidentity reduces to comparing 

i j 
two exponents on x. From any binary term x1x2, we obtain the two exponents 

i + i j +  . . .  + ijn-2 + jn-1 

and i + i j +  . . .  + ijn+d-2 + jn+d-1 , 

fm 0 5 i, j 5 nSm-1. 

If j = 0, or if i = 0 and j = 1, these exponents are equal; otherwise we 

must show that they are both > n and congruent modulo m. It is clear that 

any other choice of i and j values does make both exponents > n. If i = 0 and 

j > 1, the exponents become jn-' and jn+d-l, and since n-1 > t the difference 

jn-l(jd - 1) is congruent to 0 modulo m by Corollary 5.3.4. 

Now assume that i > 0. If j = 1, we get only (n-l)i+l and (n+d-l)i+l, 

which are congruent modulo m since m divides d. For j > 1, the difference in the 

exponents becomes 

i + i j +  . . .  + ijn+d-2 + jn+d-1 

- ( i + i j +  . . .  + ijn-2 + jn-l) 

- - ijn-l(l + j + . . . + jd-1) + jn-l(jd - 1) 

- - i n  (jd - 1 - 1 + jn-l(jd - 1). 



Again by Corollary 5.3.4 this last quantity is congruent to 0 modulo m, since 

n-1 3 t. 

A close examination of this last proof, along with the proofs of the preceding 

technical lemmas, reveals some of the significance of the two parameters t and d. 

Each plays a role in assuring that our congruences work when terms x;xi are 

substituted into the hyperidentity formula. When j is relatively prime to some 

prime p dividing m, we need to use d(m) rather than just m to ensure the 

presence of enough powers of p, as in Lemma 5.3.2. When j is not relatively 

prime to such a p, we need n-1 > t. or n > t+ l ,  again to provide enough 

powers of p. 

In the situation where 1 5 n 5 t ,  we would like a hyperidentity based on 

xn = xn+,, or even on xn = which is satisfied by A,,,. Using the KnYd 

shape this is impossible. (We will discuss in the next section the question of 

whether it is possible using a different shape of hyperidentity.) However, we can 

use the same shape if we again pad out our base identity to a suitable length, 

namely length t+l .  Notice in the following proof how once again we have 

contrived a factor of jt. 

Proposition 5.3.6: Let m 2  2, t = t(m) and d = d(m), and 1 5 n 5 t+l .  The 

variety A,,, satisfies the basic shape hyperidentity based on the identity 

y1 . . y,xn = y1 . y,xn+d, where s = t+l-n. 



Proof: Once again we reduce to a comparison of exponents, this time for each of 

the variables yl, . . . ,ys and x in turn. For each variable yl, 1 5 1 5 s, we 

clearly have the same exponent on each side of the hyperidentity. So we need 

only examine the exponents on the variable x. For any 0 5 i, j 5 n+m-1, 

i+j 2 1, these exponents are 

ijs + ijs+l + . . . + ijs+n-2 + js+n-1 

and ijS + ijs+l + . . . + ijs+n+d-2 + js+n+d-1 

If j = 0, or if j = 1 and i = 0, these are equal; otherwise, (even if i = 0,) they 

are both 2 n. We check whether their difference is congruent to 0 modulo m. 

This diflerence is 

ijs+n-1 + ijs+n + . . . + ijs+n+d-2 + js+n+d-1 - js+n-1 

- - ijs+n-1 ( 1 + j +  + jd-1) + js+n-l(jd-l\ 

- - j ( 1 )  / (j - 1) + js+"l(jd - I> 

= i j t ( j d - ( j  - 1) + jt(jd - 1) 

using the fact that t = s+n-1. By Corollary 5.3.4, this difference is congruent to 

0 modulo m for any 1 5 j 5 m+n-1. 

By dualizing the preceding arguments (including the technical lemmas,) we 

obtain the following similar results. 

Proposition 5.3.7: Let m 2 2, and t = t(m) and d = d(m). Let 1 5 n 5 t + l ,  

and s = t+l-n. Then the variety An,, satisfies hyperidentities based on the 

following instances: 

1. xnyl . . Ys = X n+d Yl . . Ys; 



n 
3. xy, y2 . . . n + d  

Y, = xy, Y2 ' ' ' Y,. 

Proof: 

1. This is just the dual of the hyperidentity seen in Proposition 5.3.6. The proof 

is therefore obtained by interchanging the roles of i and j in the previous proof. 

2. The exponents obtained for the variable y,, . . . ,Y,_~ are the same on either 

side of the hyperidentity. For x we have exponents jS+"' and whose 

difference js+"-'(jd-1) = jt(jd-1) is congruent to 0 modulo m. Finally for the 

variable y, the difference in exponents is easily shown (as in the proof of 

Proposition 5.3.6,) to be ijt(jd-l)/(j-1), which by Corollary 5.3.4 again is also 

congruent to 0 modulo m. 

3. This is proved similarly to 2. 

The next two propositions involve a similar construction of a hyperidentity 

corresponding to the identity xn-lyx = x"-'+~ yx. As before, we cannot use such 

an identity itself as a base instance for a hyperidentity: to begin with we must use 

d(m) instead of m. When n 2 t (m)+l  we are able to use xn-lyx = x n-l+d Yx as 

a base; but for 1 5 n t(m) we once again resort to padding the desired 

instance out to length t+ l .  

Proposition 5.3.8: Let m 2 1, t = t(m), and d = d(m), and let n > t+l .  Then 
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the variety A,,, satisfies the basic shape hyperidentity based on the identity 

Xn-lyx = x n-l+d Yx 

Proof: Let 0 5 i, j 5 n+m-1, and i+j > 1. For the exponents on the variable 

y, we need ijn-l and ijn+d-l to be either equal, or both > n and congruent 

modulo m. If i = 0, j = 0, or j = 1, these quantities are equal. For all other i 

and j values, both are > n, and their difference is ijn-'(jd-1). Since we have 

n-1 > t(m), this difference is congruent to 0 modulo m by Corollary 5.3.4, for 

d > 2. (The case d = 1 = m is trivial.) 

For the exponents on x, we must consider the quantities 

i + ij + . . . .+ ijn-2 4 jn 

and i + ij + . . - + ijn+d-2 + jn+d. 

If i = 0 we have jn+d-jn = jn(jd - l ) ,  which as usual is congruent to 0 modulo m 

for all possible values of j. For i > 0 and j = 1, we have (n-1)i + 1 and 

(n+d-1)i + 1; again these are congruent modulo m since m divides d. So assume 

that i > 0 and j > 1, and consider the difference 

ijn-1 + . . . + ijn+d-2 + jn+d - jn. 

n -d - As usual, this simplifies to ijn-l(jd - 1 - 1) + j (J I), which we know by 

Corollary 5.3.4 is congruent to 0 modulo m when n-1 > t .  

Proposition 5.3.9: Let m > 2, t = t(m), and d = d(m), and let 2 5 n 5 t. Set 

s = t+l-n. Then the variety A,,, satisfies the basic shape hyperidentity based on 

xyl . . . ysxn-l = xyl - ysxn+d-l, and its dual. 



Proof: Clearly the exponents on any variable yl, for 1 5 1 5 s, are the same on 

either side of the hyperidentity. For exponents on x we have 

i + ijs+l + . . . + ijs+n-2 + js+n-1 

and i + ijs+l + . . . + ijs+n+d-2 + js+n+d-l 

As in the previous proofs, the difference of these exponents reduces to 

ijt(jd - 1 )  - 1 + jt(jd - l ) ,  which we know is congruent to 0 modulo m, as 

required. 

It should be apparent from the construction of the hyperidentities in the last 

four propositions that we did not need the full strength of commutativity. In fact 

in each case the hyperidentity is also satisfied by the medial variety M,,,, for the 

appropriate n and m values. This will be useful in determining q,, in Chapter 6. 

5.4. The Length Restriction Lemmas 

It appeared in Section 5.3 that, at least for the particular shape of 

hyperidentity being considered there, we could not find a hyperidentity satisfied by 

A,,, which is based on a non-trivial identity u = v with lul and iv( < t (m)+l .  

Thus the parameter t(m) seemed to measure "how long" a hyperidentity had to be 

in order to be satisfied by A,,,. We now examine whether this is true about all 

possible hyperidentities satisfied by A,,,. The results obtained are quite limited, 

and we conclude the section with a conjecture involving the parameter t .  

Lemma 5.4.1: Let m > 2. The variety A, cannot satisfy any hyperidentity H for 
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which a choice of A,-terms gives a non-trivial instance u = v with [ul = 1. In 

particular, A, satisfies no non-trivial hyperidentities of the form 

X - - F (  . . .  ) 3 

where x is a single variable and F (  ) is any hyperterm. 

Proof: Suppose that A, satisfies a non-trivial hyperidentity H, and there is a 

choice of A,-terms giving as an instance the identity u = v, with 11-11 = 1. If 

I v I  = 1 also, we must have u = v trivial. So we suppose that Ivl > 1. This 

means that while only projection terms are involved on the left-hand-side of H in 

the evaluation to get u, at least one non-projection term must have been used on 

the right-hand-side to produce v. Form a new hyperidentity H '  from H by 

substituting into H the projection terms in our initial choice of A,-terms, and 

identifying all variables as x. Then H '  is still satisfied by A,, and it has the 

for some operation symbol G, where G is not just a variable. Now make the 

following choice of terms to use in H': each k-ary operation symbol will be 

replaced by the k-ary term x;. This yields an identity of the form x = xme 

(where e 2 1 corresponds to the number of operation symbols encountered before 

the first x on the right-hand-side of H') .  But such an identity cannot hold in A,, 

since me is not congruent to 1 modulo m. This contradiction establishes the 

claim. 



Note that exactly the same proof can be used for the same statement about 

A1,m, for m 2 2. The significance of this result is that it tells us that any 

instances of a hyperidentity satisified by A, or Al,, are either trivial or of length 

2 2. This means that the variety Z of zero semigroups satisfies all the 

hyperidentities satisified by A,. Hence we have: 

Corollary 5.4.2: For any m 2 2 and n 2 2, Z E C 4,, E %,,. 

This is our first indication of any varieties other than RB entering into a 
- - 

rinwre. we nnw have A V RB V Z C fof XU > 2. i i  i d  f A 
111 --,-- 

These ideas will be expanded upon in the next chapter. For now, we continue 

with general results ahout what, kind of hyperidentities ,4, --- can satisfv. 

Lemma 5.4.3: Let m = p2a, where p is prime, so that t(m) 2 2. Suppose that 

A, satisfies a hyperidentity of the form 

( 9  . - - - G( . . .  ,--,x,--, - - 7 - -1  - ) 7 

with the ith component of F consisting of a single variable x, 

1 5 i < arity of F. Then F = G, and the ith entry of G is also x. 

Proof: If F and G were different operation symbols, then we could substitute the 

ith projection term for F in the hyperidentity, to obtain a new hyperidentity of 

the form 

X - - G( . . .  ) 

still satisfied by A,. But this contradicts Lemma 5.4.1, so we must have F = G. 



Again replacing F by the ith projection term, we obtain x from the 

left-hand-side of the hyperidentity. On the right-hand-side, we project down the ith 

component until we reach either a variable (which must be x), or another 

operation symbol K # F. This latter situation leads to a hyperidentity 

x = K( . . . ), again contradicting Lemma 5.4.1. Thus we must eventually reach 

an x, having encountered only F's as we project down the ith component. Let e be 

the number of such F's encountered; that is, the depth at which the x is nested in 

its hyperterm. Now consider evaluating the hyperidentity with F replaced by the 

e 
term x;. The identity which results is precisely xP = xP . Unless e = 1, this 

identity will not hold in A,, since p2 divides m. Thus the hvperidentity must 

have the specified form. 

Lemma 5.4.4: Let m 2 2, with t(m) 2 2. If A, satisfies a hyperidentity H and 

some choice of Am-terms for H yields an instance u = v from H where lul = 2, 

then u = v is trivial. 

Proof: Suppose that Am satisfies H as described. Since projection operations do not 

change the lengths of words, we may assume that H has been modified by 

carrying out any projections specified in our choice of terms. Thus we are 

assuming that only non-projection terms are used to produce u = v from H. The 

only way to produce a word of length two without using projections is from a 

hyperterm such as F(--,x,--,y,--), using the term xixj (of appropriate arity) 

for F, or such as F(--,x,--), using xf for F, in each case with appropriate 

values for i and j. In either case, Lemma 5.4.3 guarantees that the instance u = v 

will be trivial. 



Corollary 5.4.5: Let m 2 2, t(m) 2 2, and n 2 2. Then 

N~ E 4, E A,, E A,,. 

Lemma 5.4.6: Let m = p3a where p is prime, so that t(m) 2 3. If A, satisfies a 

hyperidentity H and some choice of A,-terms yields an instance u = v from H 

where lul = 3, then u = v is trivial. 

Proof: As in the proof of Lemma 5 4.4, w e  map assnme that, n o  prnjection terms 

are used in obtaining the instance u = v from H. We consider how a word of 

length three may be obt.ained from the hyperterm, say F( ), on the right-hand- 

side of H. There are only four possibilities: 

1. F is replaced by the term xixjxk for some indices 

I < i # j # k < arity of F, and in the hyperterm F has singie 

variables only in its ith, jth, and kth components. 

3 
2. F is replaced by the term xi, for some 1 < i 5 arity of F, 

and in the hyperterm F has a single variable in its ith component. 

2 
3. F is replaced by the term xixj, for some 1 < i # j  < arity of F, 

and F has single variables only in its ith and jth components. 

4. F is replaced by the term xixj, for some 1 < i # j 5 arity of F, 

and F has a single variable x say in its ith component, and a hyperterm 

G( ) in its jth component; and under our choice of terms, G (  ) also 



gives a word of length two. 

Now Lemma 5.4.3 tells us immediately that the first three of these cases lead 

to trivial identities. In the fourth case the argument is more complicated. Here 

again Lemma 5.4.3 shows that we may represent H by 

F L - J L -  , G L - -  ,--- ) = F(--,x,--,J(---),---), 

where the x's are in the ith component on either side, G and J are in the jth 

components, and G and J are operation symbols, possibly equal to F or to each 

other. 

If F # G, then any variable x at depth one in G is accessible by 

projections, that is, by replacing F by xi and G by xk for the appropriate index k. 

But in order to produce the word u of length three, any variable x inside G which 

enters into u must indeed be at depth one in G. Thus this particular choice of 

terms for F and G wi!! result in a:: identity of the form x = J( . . . ) which 

by Lemma 5.4.1 is impossible, unless J is equal to one of F or G. The case 

J = F is quickly ruled out, since it allows us to produce an identity of the form 

2 
xp = XP by replacing F by xp and G by xk7 for the appropriate k; such an 

identity cannot hold in A, when p3 divides m. So we must have J = G. 

On the left-hand-side the components of G which are used to form the word u are 

single variables, each accessible at depth two by a choice of projection terms for F 



and G .  By Lemma 5.4.1, these projections must reach the same variable on the 

right-hand-side. of H, and the variable must be at the same depth to avoid an 

b 
identity of the form xp = xpC for b # c and b 5 2. This establishes that only 

trivial identities u = v can be obtained from H in the case F # G. 

When F = G, we consider 

where x occurs in the ith component of the first F on each side, the second F on 

the left-hand-side and the J on the right-hand-side occur in the jth components of 

the outermost F's, and y and z occur in the ith and jth components respectively 

of the inner F on the left-hand-side. Now the variable z is accessible on the 

left-hand-side by the choice of the projection term xj for F, so it must be 

accessible, using only this term, on the right-hand-side too. This forces J = F. 

Also we must have z at the same depth, depth two, on both sides: replacing F 

P 2 
by x .  produces zP = zpe where e is the depth of nesting of z on the 

3 

right-hand-side. So the right-hand-side of H must look like 

for some hyperterm K (  ) in the ith place in the second F. We will show that 

in fact this hyperterm must be a single variable w. Then since u = v is produced 

by the choice of xixj for F, it has the form xyz = xwz, and for this to hold in 

A, we must have y = w, so that u = v is indeed trivial. 

Suppose that K (  --- ) is not just a single variable, but involves an 

operation symbol K of arity 2 1. Make the following choice of terms: xPxP for 
8 i 



F, and x; . . . X: for any other n-ary operation symbol, n 2 1. We will also 

simplify by identifying all the variables in H as x. Note that A, must still satisfy 

the resulting simplified identity. Under this evaluation, K( ) will produce xr 

for some r > 1, with r divisible by p. With further calculations we get the 

identity 

Thus we need to have p + 2p2 congruent to p + rp2 + p2 modulo m. This 

reduces to the requirement that p2(r - 1) be congruent to 0 modulo m. Since p3 

divides m, this is only possible if r - 1 is congruent to 0 modulo p. But p divides 

r,  r i ,  sn t.hin is  imnossi'nie. This contradiction shows that K( I .---, 

must after all be a single variable, and finishes the proof. 

Corollary 5.4.7: Let m 2 2, t(m) 2 3, and n 2 2. Then 

These results about the significance of the parameter t(m) for length of 

instances of hyperidentities satisfied by the variety A, are as good as possible for 

t(m) = 1, 2, or 3. At length four however the situation becomes more complicated. 

There are hyperidentities satisfied by A,, for any m, which have non-trivial 

instances u = v with lul = 4: the medial hyperidentity is an obvious example, 

with its base instance xyzw = xzyw. Thus we cannot hope to produce lemmas 

such as 5.4.4 and 5.4.6 for higher values of t(m), without at least modifying our 

statements to include the medial identity and its consequences. Since the only 

Ktoo short" hyperidentities we have found are ones based on consequences of the 

medial identity, we present the following conjecture. 
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Conjecture 5.4.8: Let m = pra, with p a prime and a and r 2 1, so that 

t(m) 2 r. If Am satisfies a hyperidentity H, and some choice of Am-terms yields 

an instance u = v from H where 11.11 = r, then u = v is either trivial or a 
- - 

consequence of the medial identity. Therefore for t(m) 2 r, MN,+I %, 4,,. 

Note that since MN, = N, for 1 5 r 5 3, Corollaries 5.4.2, 5.4.5, and 5.4.7 

say precisely that this conjecture is true for r = 1, 2, or 3. We have been unable 

to obtain a proof for r 2 4. It seems difficult to prove anything about all the 

hyperidentities satisfied by A, for t(m) 2 4. Even ibr t(m) = 4, ~f we attempt 

a proof using the approach of the previous lemmas, analyzing all possible ways to 

produce an instance u = v with lul = 4, we tind that a large number of cases 

and sub-cases is needed. We have managed, by a very lengthy argument, to 

eliminate all but one possible case, which can only arise when the prime p in 

question is 2. Obviously, this method is not fruitful, and a different approach is 

needed. 



Chapter 6 

1) Closure Results for the A,, s 

The previous chapter presented some hyperidentities satisfied by the varieties 

A,,, under appropriate conditions on n and m. These hyperidentities give us some 

instances which %,, must satisfy. In this chapter we combine this information 

with the join results from Chapter 3, to identify %,, in some cases. Since the 

hyperidentity results depended so strongly on the interaction of n and the 

parameter t(m), we distinguish two cases: n 2 t(m) + 1, and 1 5 n 5 t(m). 

Throughout this chapter we let t = t(m) and d = d(m), and when t + 1 2 n, 

s = s(n,m) = t(m)+l-n. We conclude with closure results for the d a t e d  varieties 

%,rn and B,,,, and a brief discussion of how the hypervarieties Y(Ap) and 

N(Al,p) for m square-free fit into the lattice N(L(CS)). 

6.1. The Case n 2 t(m)+l 

In this section we consider 

length index t(m). We begin wit 

varieties A,,, for which 

,h the special case m = 

n is larger than the 

1, requiring then that 

n 2 2 = t (m)+l .  Although this is the simplest case, the same method will be 

used throughout this and the next section. 



From Propositions 5.3.5 and 5.3.8, we know that AnY1 satisfies hyperidentities 

based on xn = xn+l and xn-lyx = Pyx .  We also obtain the medial identity as a 

hyperidentity instance for AnY1, since any commutative variety satisfies the medial 

hyperidentity. Therefore we have 

- 
C V(xyzw = xzyw, xn = xn+l, xh-lyx = xnm) 

By Proposition 3.2.5, this latter variety is precisely A V RB. Since by 

Proposition 3.1.1 RB C & we have proved the following result. 

Proposition 6.1.1: Let n >  2. Then XY1 = AnY1 v RB. 

We note that in this case, we were able to produce a hyperidentity based on 

one of the two defining identities of the variety, xn = xn+l- , it is the abelian 

identity xy = yx which must be "rectangularized" into the medial identity to 

include RB in the closure. However. if we consider for the moment non- 
- 

commutative varieties, we can easily determine BnY1 and I for n 2 2 as well. 

The hyperidentity based on xn = xn+l involved only the single variable x, so it is 

of course also satisfied by BnYl and MnYl. From this it is immediate that BnY1 is 

- 
closed for n > 2: BnY1 C BnTl C V(xn = xn+') = B , .  Similarly for MnY1 we 

obtain both xn = xn+l and the medial identity as hyperidentity instances, so that 

MnY1 too is closed for n > 2. (The cases BIY1 = B and MIY1 = NB are already 

known.) 

Proposition 6.1.2: For n 2 1, Bn,l and MnY1 are closed varieties. 



The situation for m 2 2, still with n 2 t (m)+l ,  is only slightly more 

complicated than for m = 1. As we saw in Section 5.3, we are unable in general 

to produce a hyperidentity based on xn = xn+,, but must use xn = x"+~.  By 

Propositions 5.3.5 and 5.3.8 again, we obtain instances xn = x " + ~  and 

xn-lyx = xn-l+d yx. But also, by the construction method of Section 5.2 (see 

equation (*) after the proof of Proposition 5.2.1), we know that A,,, satisfies a 

hyperidentity based on 

n 2n+m-n-l - - wxn+,w2 n+m-n-m,l WX W 

We will show that this additional instance enables us to get xn = xn+, after all 

{dtf . ,xgh cot direct!y fron a hyperidenthy). In part . i~ i l1a~~~ let Wnem be the 

variety defined by the identities xyzw = xzyw, xn = x " + ~ ,  xn-lyx = yx, and 

n 2n+m-n-1 - wx w - wxn+mw2n+m-n-m-1. We have just shown that A,,, WnYn, 

when n > t+l .  

Lemma 6.1.3: Let m > 2 and n 2 t+ l .  Then W,,, satisfies the identities 

Xn = Xn+m and xn-lyx = *n-l+rn YX - 

Proof: If m = d the claim is trivial, so we assume that m < d. Since W,,, 

satisfies xn = x"+~ ,  it satisfies xa = xa+b for some minimal a 5 n and b dividing 

d. Then for any semigroup C in W,,, and any c in C, the subsemigroup 

a a+l 
{c ,C , . . . ,c is a subgroup of C of order b. But from the fourth of the 

defining identities for W,,, we know that any group in W,,, satisfies xn = xn+, 

(by taking w = 1 in the identity) and hence also xm = 1; that is, the order of 

any such group divides m. But now it follows that W,,, satisfies xa = xa+, and 

hence also xn = xn+,. 

110 



Using this, and using the fact that m divides d to write d = km for some 

k > 1, we get 

Xn-lYX = xn-l+d Yx = ,n-l+km Yx 

- - xn-l+(k-l)m+m - xn-l+m+(k-l)m yx - YX 

- - xn-l+m YX, 

giving the required identity for Wnlm. 

Corollary 6.1.4: For m 2 2 and n 2 t+ l ,  x , ,  c Wnlm & Anlm v RB. 

Proof: By Proposition 3.2.5, the variety A,,, V KB is detined by the identities 

X ~ Z W  = XZYW, xn = x " + ~ ,  and xn-lyx = x n-l+m S'x - 

Corollary 6.1.5: For m 2 2 and n > t+ l ,  Ahym = Anlm v RB. 

A very similar argument can be used for x,,. As we saw in Proposition 

5.2.1, the hyperidentity H(xn = x " + ~ )  is also satisfied by M,,,, as is the 

- 
hyperidentity based on xn = ,n+d Thus ha,, satisfies the identities 

n 2n+m-n-1 - XYZW = X Z ~ W ,  xn = x"+~ ,  and wx w - wxn+mw2n+m-n-m-l. in 

Lemma 6.1.3, these last two identities imply xn = x " + ~  as well. Then 
- 

M ,  ha,, 5 Mnlm, and Mnlm is closed when m 2 2 and n > t+ l .  For 

- 
Bnlm, however, we can only say that B,,, C Bn,, 5 V(xn = xn+d) = B n,d' 

Proposition 6.1.6: Let m > 2 and n 2 t(m)+l.  Then M,,, is closed. 



6.2. The Case 1 5 n 5 t(m) 

In this section we consider varieties A,,, for which 1 5 n 5 t(m). This 

includes the special case m = 1: then t(m) = 1 = n, and we have only the 

variety AlYl = SL, whose closure is already known to be NB. Hence we will 

assume that m 2 2. 

When 1 5 n 5 t(m) the length considerations of Sections 5.3 and 5.4 are 

involved. In this situation we have the hyperidentities for AnYm given in 

Propositions 5.3.6 and 5.3.7, giving us the base instances 

pY1 . . . - Xn+d;rl . . . xr Y, - J 0 7  

n n + d  
XY, Y, = XY, ' ' Y,, 

n n t d  
and x y l S  - y s  = x y 1 . - -  Y S  

where s = t+l-n. We also know that AnYm satisfies the hyperident ity 

H(xn = x " + ~ )  as constructed in Section 5.2, with the base instance 

n 2n+m-n-l - W X " + ~ W ~  n+m-n-m-l wx w - . Let the variety defined by these four 

instances and the medial identity be called U,,,, so that A,, Un,, in this 

case. 

Lemma 6.2.1: Let m 2 2 and 1 5 n 5 t. Then U,,, satisfies the identities 

Xt+l - - Xt+l+m 
7 

- xn+m xnyl . . y, - Y l  . Y,, 

n n + m  
xyl Y, = xy, Y,, 

n 
and n + m  

x y l - - Y ,  = x y l . . . y s  



Proof: The claim is trivial if m = d, so we assume that m < d. We show first 

that Un,, satisfies xt+' = From the defining identities for U,,, we know 

that it satisfies xt+l = x ~ + ' + ~ .  Hence U,,, satisfies xa = xa+b for some minimal 

a and b, with a 5 t + l  and b dividing d. Now as in the proof of Lemma 6.1.3, 

we can produce a semigroup in U,,, which is a group of order b, and use the 

n+m_ - identity w ~ ~ w ~ ~ ~ ~ - ~ - ~  - W X " + ~ W ~  n-m-l to show that the order of any such 

group must divide m. Therefore b divides m, so that U,,, satisfies xa = xa+m 

and xt+l = xt+l+m 

- Next we show that xt+' = xtcl+m and the given identity xnyl . - . y, - 

xn+ayl . . . yS imply xnyl y, - - xn+m Y 1  Y,. The other iaentities 

required may be deduced similarly. Since by construction m > t and n 2 1, we 

have n+m 2 t+ l ;  and we may write d = cm for some c > 1. Then 

xn+m - Xn-l+m-t+t+l Y l * . * Y ,  - Y 1  - . Y, 

- - Xn-l+m-txt+l Y 1  . Y, 

- - xn-l+m-txt+l+(c-l)m 
Y 1  . ' Y, 

- - Xn-l+m-t+t+l+(c-l)m 
Y1 Y, 

- - Xn+m+(c-l)m Y 1  . Y, 

- - Xn+~m Y 1  . . Y, 

- - xn+d Y 1 * - *  Ys 

= x n y l . - . y , .  

Corollary 6.2.2: If m > 2, then T,, C Al,, v RB v MNt+,. 
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Proof: From Lemma 6.2.1 and Proposition 3.4.8, we know that 
- 
q,, C Ul,, E M1,m~MN,+l. Since by Proposition 3.2.1 Ml,, = A1,,VRB, the 

claim follows. 

The case n > 1 is slightly more complicated, since we must introduce 

another identity. For 1 < n <  t and m >  2, A,,, also satisfies the hyperidentity 

given in Proposition 5.3.9, and based on the instance xyl . . ysxn-l = 

XY1 YsX n-l+d. We will use Y,,, for the subvariety of U,,, which satisfies 

this additional identity. 

Lemma 6.2.3: Let m > 2 and 1 5 n 5 t. Then the variety Y,,, satisfies the 

identity xyl . . . ysxn-l = xyl - ysxn-l+m, and its left-right dual. 

Proof: By Lemma 6.2.1, both U,,, and its subvariety Y,,, satisfy xn = xn+,. As 

before, we assume that d > m, and write d = mc for some c > 1. Then we 

have 

xyl . . ysxn-l = xyl . . . ysx n-l+d 

- - xyl . . . ysx"-l+~m 

- - xY1 ' ' ' Ysx n+m-l+(c-l)m 

- - xyl . . . ysx"-l+m. 

The dual case is handled similarly. 



- 
Corollary 6.2.4: Let m 2 1 and 1 < n 5 t .  Then h,, c 
A,,, v RB V MN,,,. 

Proof: The claim follows from Lemmas 6.2.1 and 6.2.3 and Proposition 3.4.13. 

We know of course that A,,, V RB is always contained in ,,. For the 

MNt+l factor, we turn to the length restrictions lemmas of Section 5.4. For 

1 5 t(m) 5 3, we know from Corollaries 5.4.2, 5.4.5, and 5.4.7 that 

MNtcl E A,,; for larger values of t(m), we have only the conjecture that 

MNt+, C A,,. Thus we have the following results. 

Proposition 6.2.5: Let m > 2. If 1 5 n _< t(m) 5 3, then 

- - 
4 , m  - An,, RB MNt+l. 

If 1 5  n 5 t(m) and t(m) 2 4, then 

Conjecture 6.2.6: Let m > 2, with t(m) > 4, and let 1 5 n 5 t(m) . Then 
- - 
&,m - An,m RB M N t + ~ .  

Some slight variations on the proofs of this section allow us to identify V for 

some related varieties V. We consider first the varieties A,, for m > 2. Since 

- 
C A,,, we have the same instances for A, as we had for Al,,. We also 

have the instance 
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m 2m+1-m-2 - wxy W - wxw 2m+L2 
9 

upon which H(xym = x) is based. Then as before we argue that 

- m 2m+l-,, G u,,, . V(WY w 2Wxw2m+1-2) 

= A , v R B V M N t + l ,  

where we have used Proposition 3.4.10 to verify that the identities we have do 

indeed define A, v RB V MNt+l. Combining this with the length restriction 

information gives the following. 

Proposition 6.2.7: Let m > 2. If t(m) 5 3, then 

- 
& = A, v RB v MNt+,. 

If t(m) 2 4, then 

A, v RB v MN, -& c A, v RB v MNt+,. 

The case for M,,,, when 1 < n < t(m),  is much the same. We remarked 

at the end of Section 5.3 that MnYm also satisfies the hyperidentities of 

Propositions 5.3.6 and 5.3.7; and in Section 5.2 that MnYm satisfies the 

hyperidentity H(xn = xn+,). From Proposition 3.4.12, the base instances of these 

three hyperidentities plus the medial hyperidentity are precisely the identities which 

define M,,, v MNt+l, which proves the following. 

Proposition 6.2.8: Let m 2 2 and 1 2 n < t(m).  If t(m) < 3, then 
- 
m = %,m V MNt+l. If t(m) > 4, then Mn,, V MN4 c q,, 
2 Mn,m MNt+l. 



The situation for B is not so straightforward. Without mediality, Bn,, 

does not satisfy any of the hyperidentities of Chapter 5, except those involving 

only one variable. Thus when 1 5 n 5 t(m), all we can say is that 
- 
Bn,, & v(xt+' = xt+'+d). 

For example, when n = 1 and m = 2, we have t(m) = 1 and 

d(m) = m = 2, so BlY2 satisfies the hyperidentity based on x2 = x4. In fact, we 

have been unable to produce any hyperidentities satisfied by B1,2 which are not 

also satisfied by B2,2, leading to the conjecture that 3 ,  = B2,,. Since B1,2 V Z 

is a proper subvariety of B2.2, t h i s  sirggests that in the non-commutative case 

there is more involved in the closure operation than just rectangularizing and 

lengthening appropriately. 

When m is square-free, the parameter t(m) is 1, and it follows from 

Propositions 6.1.5, 6.2.6 and 6.2.8 that 

and 

We combine this information with a result of Petrich's to study how )I acts 

on the varieties A, and A',, when m is square-free. 

Proposition 6.2.9 (Petrich [12]:) Let m 2 2. Any subvariety V of the variety 

A1,, v RB v Z can be uniquely expressed as 



v = v1 v v2 v v,, 

where V1 A,, V2 C SL, and V3 C RB V 2. 

Proposition 6.2.10: Let p be prime. The closed variety has thirty-two 

subvarieties, of which seven are closed, and the inclusions shown in Figure 6.1 are 

all coverings in the image lattice U(L(CS)). 

Figure 6-1: A Portion of the Lattice W(L(CS)) 

Proof: Suppose that W(V) c W(AYp), and ti C 4 , P = Al,p v RB v Z. By 

Proposition 6.3.1, 7 can be expressed as the join of some Vl Ap, V2 C SL, and 

V3 C_ RB v Z. Since Ap and SL are atoms of L(S), there are only two 

possibilities each for V1 and V2; by Proposition 3.3.10, L(RB V Z) is isomorphic 

to the product of the lattices L(RB) and L(Z), and consists of the eight 



subvarieties T, LZ, RZ, RB, Z, LZ V Z, RZ V Z, and RB V Z. Altogether we 

have thirty-two different subvarieties of A,p. Examining each of these in turn, we 

find that under the closure operator these thirty-two varieties collapse to seven 

closed varieties: T ,  RB, 2, NB, NB V 2, 3, and Then ii is one of these 

seven, and W(V) = N(V) is one of the seven hypervarieties shown in Figure 6.1. 
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