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ABSTRACT
A hypervariety is a class of varieties closed under the formation of equivalent,
product, reduct, and sub-varieties. Hyperidentities are identities which define
hypervarieties, in the same way that ordinary identities define varieties. This thesis
explores the concepts of hypervariety and hyperidentity in relation to varieties of

sernigroups.

Chapters 1 and 2 provide an introduction and background, describing the
relationships between hyperidentities, hypervarieties, and varieties of clones.
Chapter 3 gives the semigroup-theoretic results needed for later chapters; these are
mainly of the form of an equational description cf the joins of various equationally-

defined varieties of semigroups.

Chapter 4 begins the study of hyperidentities satisfied by various varieties of
semigroups, and the properties of two operators, the hypervariety and the closure
operators, on varieties of semigroups. For the lattice of all varieties of bands, we
identify which varieties are closed, and produce hyperidentities to distinguish the
corresponding hypervarieties, giving a countably infinite chain of hypervarieties.
Similar results are obtained for the varieties of k-nilpotent semigroups, and for

joins of these varieties with varieties of bands.

The final two chapters consider the commutative varieties satisfying identities

of the form x® = x®*t™ and other related varieties. We produce several families

of hyperidentities satisfied by such varieties; in particular, we introduce a technique
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for producing a hyperidentity related to any given identity for semigroups. We also
investigate length restrictions on what types of hyperidentities such varieties can
satisfy. These results combine with the join results of Chapter 3 to provide
information about the action of the hypervariety and closure operators on such

varieties.
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Chapter 1

Introduction

Hypervarieties and hyperidentities have been defined by Taylor in [15]. A
hypervariety is a class of varieties closed under the formation of equivalent,
product, reduct, and sub-varieties. Hyperidentities are used to define
hypervarieties, in the same way that ordinary identities define varieties. In this
thesis we explore the concepts of hypervariety and hyperidentity as they relate to

varieties of semigroups.

We begin in Chapter 2 with a general study of hypervarieties and
hyperidentities. Section 1 introduces the concept of a clone, a particular type of
heterogeneous algebra associated witix any variety of algebras. Several theorems
then set up a correspondence between varieties of clones and hypervarieties. This
makes it possible to describe hypervarieties equationally, in terms of identities for
varieties of clones. However such identities are generally very complicated, and we
turn to hyperidentities as an alternate approach. Section 2 presents a theorem
proved by Taylor in [15] that relates hypervarieties and hyperidentities, along with

some terminology for and examples of hyperidentities.



In Section 3 of Chapter 2, we introduce the operator M, which takes any
variety V to the hypervariety ¥(V) it generates, and look at the properties of X
when it is restricted to the lattice of varieties of semigroups. A Galois
correspondence is set up between varieties of semigroups and sets of
hyperidentities, leading to the definition of a closed variety of semigroups and of a
closure operator on varieties of semigroups. This begins the main work of the
thesis, the study of hyperidentities satisfied by various varieties of semigroups, and

of the closure and hypervariety operators.

Chapter 3 presents the semigroup-theoretic results to be used in identifying
the closures of various varieties. The first section gives a brief overview of the
structure of the lattice of all varieties of semigroups, establishing the notation to
be used later. It concludes with a description of the technique to be used in
obtaining closure results. This technique depends heavily on obtaining an
equational description of the join U v V for various equationally-defined varieties
U and V. Thus the remainder of this chapter presents the necessary join results:
in Sections 2, 3, and 4 we look at joins of various varieties V with the varieties of
rectangular bands, of zero semigroups, and of nilpotent semigroups respectively.
Both syntactic and structural proofs are used, and in many cases the identities
obtained for the joins have been suggested by the hyperidentities to be described

in subsequent chapters.

In Chapter 4 we begin looking at hyperidentities satisfied by various varieties

of semigroups. The lattice of varieties of bands is examined in Section 1. Because



its structure is completely known (see [2], [6], or [7]), and because the properties of
idempotence and duality are so strong, we are able to obtain complete
hyperidentity and closure results for the varieties in this lattice. We obtain a
countably infinite chain of hypervarieties of the form X(V) where V is a self-dual
variety of bands, with corresponding bases of hyperidentities to define them. In
Section 2 we consider the varieties of nilpotent semigroups, again with complete
results; and in the final section we combine the band and nilpotent results to
describe the closure of any variety of the form U v V, for U a variety of bands

and V a variety of nilpotent semigroups.

In Chapters 5 and 6 we consider the varieties A~ and An,m, consisting of
commutative semigroups satisfying x™y = y and x" = x™*™ respectively. We begin
with some general remarks about the construction of hyperidentities satisfied by
such varieties. We then present in Section 5.2 a technique which allows us to take
any identity and construct a hyperidentity in some sense based on the given
identity. As well as some hyperidentities for the varieties A and An’m, this
technique yields several interesting results about the closure and hypervariety
operators as they apply to varieties of commutative semigroups and monoids.
Section 5.3 explores a different type of hyperidentity for A~ and An,m. Here we
are led to consider two length parameters depending on m which seem to
determine “how long” a hyperidentity satisfied by one of these varieties has to be.
The final section of Chapter 5 explores further this idea of length restriction, with
several lemmas giving conditions which a hyperidentity must meet in order to be

satisfied by certain varieties A .
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In Chapter 6 we combine the hyperidentity information of Chapter 5 with the

join results of Section 3.4 to discuss the closure of A , An,m, and several related
varieties. The results are divided into two cases, in terms of a length parameter
t(m) discussed in Chapter 5. In the first case, when n is greater than t(m), we
obtain complete closure results for An’m and related varieties. In the second case,
when n is less than or equal to t(m), we obtain results only for certain values of

m, determined again in terms of restrictions on the value of t(m). We conclude

with a conjecture about the closure of A  for the remaining values of n and m.



Chapter 2

Hypervarieties and Hyperidentities

This chapter introduces the concepts of hypervariety and hyperidentity, which
will be studied throughout this thesis. The first section defines and explores the
connections between varieties of clones and hypervarieties. Since the equational
description of these classes quickly becomes very complex, we turn in Section 2 to
an equivalent approach, that of hyperidentities. We then define a closure operator

on varieties of semigroups, in terms of the hyperidentities they satisfy.

2.1. Clones and Hypervarieties

In this section we introduce the concepts of clone and hypervariety. These
structures are considered by W. Taylor in [14] and W.D.Neumann in [9], and the
reader is referred to these papers for a more detailed discussion, including proofs of

the results stated here.

We begin with the definition of a heterogeneous algebra, assuming that the
reader is familiar with ordinary (homogeneous) algebras and varieties, as discussed

in (3], for instance.



In a heterogeneous algebra we allow more than one sort of object, so that

our “universe” 'is a family of non-empty sets (A:: i € I), indexed by some set

1
I. Each fundamental operation then includes not only an arity, but also
information about which sets it acts on. For example, we might have I the set of
natural numbers, and a ternary operation F: A; x A, x A; — A, A zero-ary
operation corresponds to a distinguished element of one of the sets A;. Formally
then a heterogeneous algebra of a given type is a  system

<A; Fi:i € I, t € T>, where each A, is a non-empty set and the type includes

the necessary information about each F,.

Most of the standard results of wuniversal algebra carry over easily to
heterogeneous algebras. In particular, we may define heterogeneous subalgebras,
products, and homomorphic images in the obvious way, as well as free algebras
and equational classes; and a Birkhoff-type theorem then relates the two

approaches.

The heterogeneous algebras we will be considering are called clones. For any
homiogeneous variety V, we define a heterogeneous algebra C(V) in the following
way. For the underlying sets, we use Fn(V), n > 1, the V - free algebra on the n

generators Xy, . . . X Thus the members of the nth universe are the n-ary

-
terms of V. For each n, m > 1, we have a fundamental operation C:; which is
(n + 1)-ary, and maps F (V) x (F_(V))" — F_(V). This is defined by the
rule that if t is in F (V) and t;, . . . ,t, are in F_(V), then C (t,t;, . . . ,t,) is

the m-ary term obtained from t by simultaneous substitution of the tj for the



variables X;5 1 <€ ) < n We also have a set of zero-ary operations or

distinguished objects: for each n > 1 and each 1 < i < n, we distinguish e?,

the ith n-ary projection. Thus

C(V) = < Fy(V); C s e:nm,i € N,1 <i < n>.

This algebra is called the (concrete) clone of V.

It is easily verified that for any variety V, C(V) satisfies the following three

identities:
1. Cfn(z, C;(yl, > ST 39 N ,C;(yp, > ST &)
= C";(Ci(z,yl, .. ,yp),xl, Ce ), m,n, p > 1.
2 Cnm(e?, Xy, v X)) =X, m >1, 1< i<n
3 C:(y,e;, , e:) = vy, n > 1

The last two of these say that the e?’s act as projections, while the first is a
super-associativity law for the C; operators. More generally, the family of all
hetei-ogeneous algebras of the type <A ; C:‘ ; e:.': nm,i € N, 1 < i < n> with

C:‘ A, x (A )" — A_ and e? € A, which satisfy the three identities above
forms a (heterogeneous) variety, K,. The algebras in K, are called abstract

clones. Any concrete clone C(V) is of course an abstract clone; the next theorem

shows that the converse is also true.

Theorem 2.1.1 (Taylor, [14]): For any abstract clone C in K, there is a

homogeneous variety V such that C is isomorphic to C(V).

7



The familiar operations which may be performed on (heterogeneous) algebras
such as clones are related closely to constructions on (homogeneous) varieties.

Two varieties are said to be equivalent if they have isomorphic clones. If

(V;

s 1€ I) is a class of varieties of the same type, their product i@l V, is
defined to be the variety whose clone is iTgIC(Vi)' A more complicated
construction is that of a reduct variety. A reduct of a homogeneous algebra
<A; F,: t € T> is any algebra <A; F:s € S> for S C T. Let V be a variety
~f tvna T and fiv S C T The rednet variety of V determined bv S is the varietv
W of type S generated by the class of all algebras <A; F: s € S> for which

<A; F: t € T> is in V. The next proposition relates reduct varieties and

subvarieties to clones.

Proposition 2.1.2 (Taylor, [14]):

i) f W is a reduct variety of a variety V, then C(W) is a subclone of C(V).
Conversely, if a clone C is a subclone of C(V), then there is a variety V,

equivalent to V and a reduct variety W of V, such that C is isomorphic to C(W).

ii) f W is a subvariety of a variety V, then C(W) is a homomorphic image of
C(V). Conversely, if a clone C is a homomorphic image of C(V), then C is

isomorphic to C(W) for some subvariety W of V.



We now define a hypervariety to be any collection of varieties closed under
the formation of equivalent, product, sub- and reduct varieties. The preceding
comments and Proposition set up a correspondence between hypervarieties and
varieties of clones: equivalent varieties correspond to isomorphic clones, products
of varieties to products of clones, subvarieties to homomorphic image clones, and
reduct varieties to subclones. The next Proposition, whose proof follows easily

from the previous Proposition, expands on this correspondence.

Proposition 2.1.3:

i)  Lei ¥ be a hvoervarietv. Let C{¥} be the class of all clones C isomorphic to

C(V) for some variety V in X. Then C(M) is a variety of clones.

ii) Let C be a variety of clones. Let X(C) be the class of all varieties V whose

clones C(V) are in C. Then ¥(C) is a hypervariety.

iii) Let C be a variety of clones, and let X be a hypervariety. Then
C(H(C)) =C and H(C(X)) = X.

Since the class of all hypervarieties forms a class which is ordered under
inclusion, has a largest member (the hypervariety containing all varieties), and is
closed under intersection, this class forms a complete lattice under inclusion, and
for any variety V there is a smallest hypervariety (V) containing V. This sets up
an operator X from the class of all varieties to the lattice of hypervarieties. The

properties of X as it acts on varieties of semigroups will be studied in subsequent



sections. For the remainder of this section we give some general results about ¥
and a related operator C. C is also defined on the class of all varieties; for any

variety V, C(V) is the variety of clones generated by the clone C(V).

Proposition 2.1.4: C and M are both monotonic operators. Moreover, for any two

varieties V and W, C(V) = C(W) iff X(V) = ¥(W).

More information about M is gained from an alternate approach to the
definition of the product of varieties. Let (A;: i € I) be an indexed family of

algebras, possibly of different types. The non-indexed product of the A/'s is the

®

algebra ;=] A, whose universe is the Cartesian product of the universes of the

A/s, and which has an n-ary fundamental operation p corresponding to each

indexed family (p;

1

: i € I) of n-ary term functions p; of A;; p is defined in the
obvious coordinate-wise way. Now let (V, : i € I) be an indexed family of

varieties, possibly of different types. The product of the varieties V. is the variety
@

i1 V; generated by all non-indexed products i@l A for A in V..

- Since Taylor

proved in [14] that the clone of this product of the V.’s is isomorphic to the
product of the clones C(V.), it follows that this definition of product of varieties is
equivalent to the one given earlier. We make use of this new definition in the

following proposition.

Proposition 2.1.5: Let (V. :

; : 1 € I) be a class of varieties all of the same type.

Then the join of these varieties is a subvariety of a reduct variety of their

product.

10



Proof: Let the fundamental operations of the common type of the varieties be

indexed by the set T. Let (A,

1

: 1 € I) be any collection of algebras with A; in

V,, for all i in I. Then for each t in T, A; has an operation fI so that i@IAi has -

t?
an operation F, = (f: : 1 € I). The algebra B with universe the Cartesian
product of the universes of the A,’s and fundamental operations F, for t in T is
then a reduct of i@l A; to the type T. In fact, B is just the (ordinary) product

iTerI Ai of the Ai’s.

Let W be the reduct variety of 1%’1 V, determined by T. By definition, W is
generated by the class of all reducts of algebras in i%lvi to type T, which
includes the class of all reducts of algebras i%} A, A, € V,, to type T. In
particular, W contains all of the products iE-IAi for A, in V,. From this it follows

® V.

that the join of the V,’s is a subvariety of W, a reduct variety of ;2

Two important corollaries of this result will be used extensively in our later

study of ¥(V) for V a variety of semigroups.

Corollary 2.1.6: Any hypervariety is closed under the operation of taking joins of

varieties of the same type.

Corollary 2.1.7: The operators C and ¥ both preserve joins of varieties of the same

type.

11



Proof: Let (V. : i € I) be a class of varieties all of the same type. By

1
monotonicity of C, we have
g1 C(Vy) c (V)

Conversely, the variety i\e/l C(V;) contains each C(V;), hence contains i—‘(gl C(Vv;),
which is isomorphic to C(icégl V.). By the preceding Proposition, any variety of
clones which contains C(i%\’l V,) must contain C(;¥; V;). Therefore

Cér Vi) ¢ i1 C(Vy)-

A7 NS R 2

FOr X, again ONe 1ICIUslon IOIOWS DY ILOLOLOLICILY. Swce a1 AV
contains all the V.’s, it contains their join too, by the previous Corollary. Hence

the opposite inclusion also holds.

Note that although X preserves joins, we will show by example later that ¥

does not preserve meets.

2.2. Hyperidentities

We have seen that hypervarieties correspond in a very precise way to
varieties of clones. This correspondence allows us to describe hypervarieties
equationally, by the clone equations which define the corresponding varieties of
clones. However, the clone equations are generally very complicated and unwieldy,
so a different approach is needed. In this section we introduce hyperidentities, and

show how they provide this alternate description of hypervarieties.

12



Hyperidentities are used by Taylor in [15], a paper which presents the
thereoms stated without proof below and provides many interesting examples. A
hyperidentity is defined to be formally the same as an identity. We use the letters
X,y,Z,W,X;,X9, . . . , for variables, and F,G,J,K,F|F,, ... for operation symbols.
A variety V is said to satisfy a hyperidentity H if whenever the operation symbols
of H are replaced by terms of V of the appropriate arity, then the identity which
results holds true in V. The identities produced in this way, by a choice of
V-terms for the operation symbols of H, are called (V-)instances of H. For
example, the hyperidentity F(x,x) = x will be satisfied by a variety V iff every
binary term of V is idempotent. So for instance the varieties of bands and of
lattices satisfy this hyperidentity, which is called the idempotent hyperidentity.
Another hyperidentity we will frequently encounter is

F(G(xy), Glzw)) = G(F(xz), F(y,w));
it is easily verified that any variety of commutative groups or semigroups satisfies
this hyperidentity. We will say that a variety V satisfies a set I of

hyperidentities if it satisfies every hyperidentity in I.

Saying that a variety V satisfies a given hyperidentity H says something
about all the terms of V of certain arities; that is, about the free algebras F_(V)
for certain n > 1. Thus such a statement corresponds to a statement about the
clone C(V) of V, which in turn corresponds to a statement about the hypervariety
H(V). In fact, there is a Birkhoff-type theorem relating hyperidentities and

hypervarieties.

13



Theorem 2.2.1 (Taylor, [15]): Every hyperidentity defines a hypervariety, and

conversely every hypervariety is definable by a set of hyperidentities.

Combining this theorem with Proposition 2.1.4 and Corollary 2.1.6, we get

the following Corollaries:

Corollary 2.2.2: Let V and W be varieties. Then C(V) = C(W) iff (V) = X(W)

iff V and W satisfy precisely the same hyperidentities.

Corollary 2.2.3: Let V and W be varieties of the same type, and let H be any

hyperidentity. Then V and W both satisfy H iff V v W satisfies H.

These results are crucial to our study of hyperidentities and hypervarieties.
Corollary 2.2.2. provides a general technique for showing that two varieties
generate different hypervarieties, namely producing a hyperidentity satisfied by one
of the varieties but not by the other. Taylor used this method in [15] to produce
several examples of 2):0 different hypervarieties, and asked whether distinct
varieties of groups always generate distinct hypervarieties. This question has since
been answered in the negative by Bergman [1], who showed that the variety of all
groups satisfies precisely the same hyperidentities as the variety of metabelian
groups. We discuss a similar question for varieties of semigroups in later
Chapters, using the closure operator defined in the next section to examine in

more detail which varieties generate the same hypervariety.

14



One feature of hyperidentities has important repercussions. For any non-
trivial variety V, and any n > 1, the n-ary terms of V include the n
“projections”, x;, ..., x,. If V satisfies a hyperidentity H, it means in
particular that the identity we obtain from H by replacing every operation symbol
F in H by the projection term x; of the appropriate arity must hold in V. It is
easily verified that no matter what form H has, the identity thus obtained is just
x = y, where x is the first variable to appear on the left-hand-side of H, and y is
the first variable to appear on the right-hand-side. For this to hold in a
non-trivial variety V, we must have x and y actually the same variable. Therefore,
anv hvperidentity H satisfied by a non-trivial variety must have the same first
variable on either side. By a dual argument, such an H must also have the same

last variable on each side. The significance of these facts will be seen later, in

Section 1 of Chapter 3.

By analogy with the terminology for terms and identities, we will use the
name “hyperterm” for the two expressions equated in a hyperidentity. Following
Taylor [15] , we will frequently present hyperterms by means of tree diagrams.
Each non-leaf node of a tree will correspond to an operation symbol, starting with
the outermost operation symbol of the hyperterm on the root of the tree; and each

leaf will correspond to a variable. For instance,

15



represents the hyperidentity F(x,G(y,yx)) = G(x,y,F(z,x)). By convention, any
unlabelled non-leaf nodes of the same arity in such a tree stand for the same
operation symbol. Thus

3 X
Y / y X

/

/ N /

/ \/

represents F(x,F(y,F(y,x))) = F(x,F(y,x)). A hyperidentity all of whose operation

symbols are n-ary (for some n > 1) will be called an n-ary hyperidentity.

2.3. The Closure Operator

In this section we begin the study of the operator M as it applies to varieties
of semigroups. We introduce a closure operator on varieties of semigroups, and use
this to get information about hypervarieties generated by such varieties. We note
that although our discussion is carried out in terms of varieties of semigroups, we
could in fact consider varieties of any fixed type of algebra. No particular
knoWledge of semigroups is assumed in this section; we use only the fact that the

collection of all varieties of semigroups forms a complete lattice under inclusion.

For any variety W of semigroups, we define HI(W) to be the set of all
hyperidentities satisfied by W. Conversely, for any set ¥ of hyperidentities, we
define V() to be the largest variety of semigroups to satisfy £. By Corollary

2.2.2, V(T) is equal to the join of all the varieties of semigroups which satisfy I.

16



Lemma 2.3.1: Let U and W be any varieties of semigroups, and let ¥ and T be

any sets of hyperidentities. Then

1. If U € W then HI(W) C HI(U).
2. f T C T then V(I) C V().

3. £ C HI(V(Z)) and W C V(HI(W)).

4. V(HI(V(Z))) = V(Z) and HI(V(HI(W))) = HI(W).
Proof: These claims all follow easily from the definitions of V(Z) and HI(W).

From this Lemma we see that there is a Galois correspondence
W — HI(W)
V(E) « &,
between varieties of semigroups and sets of hyperidentities. A variety W of
semigroups will be called closed if V(HI(W)) = W; that is, if W is the largest
variety of semigroups to satisfy all the hyperidentities satisfied by W. It follows
from Lemma 2.3.1 that varieties of the form V(X) and V(HI(W)) are always

closed.

Proposition 2.3.2: The intersection of closed varieties is closed.

Proof: Let (W;: i € I) be any collection of closed varieties. Since
ier W S W,

for all j € I, we have

17



V(HIG2W;) € V(HI(W;) = W,

for all j in I. Therefore
VHI2W)) € ;21W;
The opposite inclusion also holds, by Lemma 2.3.1(3), showing that ir?elwi is

closed.

The variety S of all semigroups is a closed variety, since S is the largest
variety of semigroups to satisfy the trivial hyperidentity x = x. This combined
with Proposition 2.3.2 means that for any variety W of semigroups there is a
smallest closed variety containing it, namely the intersection of all the closed

varieties containing W. We call this variety the closure of W, and denote it by W

Corollary 2.3.3: For any variety W of semigroups, W = V(HI(W)).

Proof: V(HI(W)) is a closed variety containing W, so W C V(HI(W)). For the
opposite direction, suppose that U is any closed variety containing W: then

V(HI(W)) € V(HI(U)) = U. Therefore V(HI(W)) C W

Corollary 2.3.4: Let U and W be any varieties of semigroups. If U C W, then

UCW Also UNWCUNWand UVW CUV W.

Thus the closure operator is a monotone one. We will show later that

U N W may be a proper subvariety of U N W, so that the closure operator does

not preserve intersections. It is not known whether it preserves joins.

18



A set T of hyperidentities will be called closed if HI(V(Z)) = Z. By
dualizing Lemma 2.3.2 and its Corollaries, we may show that any intersection of
closed sets of hyperidentities is closed. This allows us to define for any set ¥ of

hyperidentities its closure T as the smallest closed set of hyperidentities containing

T, and it follows that T = HI(V(E)).

Let £ and T be any sets of hyperidentities, and let H be any hyperidentity.
H is said to be a consequence of £ if H is in £ = HI(V(Z)); that is, if any
variety of semigroups which satisfies ¥ must satisfy H. If every hyperidentity in T
is a consequence of ¥, we say that T is a consequence of ¥, or equivalently that

Y yields T.

Now let W be any variety of semigroups. A set & of hyperidentities is called
a basis for HI(W), or a hyperidentity-basis for W, if T yields HI(W). In this case
every hyperidentity satisfied by W is a consequence of £. We emphasize that this
definition of a basis is for varieties of semigroups only; there would be a similar
notion of basis for varieties of other types, and the most general definition of basis

would encompass varieties of all types of algebras.

Lemma 2.3.5: Let W be a closed variety of semigroups, and let £ be a set of

hyperidentities. Then T is a basis for HI(W) iff the varieties of semigroups

satisfying £ are precisely W and its subvarieties; that is, iff V(Z) = W.

Proof: Let L be a basis for HI(W), so that W C V(I) and also HI(W) C
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HI(V(Z)). Applying V to the second of these inclusions gives V(HI(V(Z)))

N

V(HI(W)), which since W and V(Z) are both closed reduces to V(I) C

W. Therefore W = V(I), as required.

Conversely, suppose that V() = W, so that W is the largest variety of
semigroups to satisfy T. Then certainly HI(W) C HI(V(Z)) = I, so that T is a

basis for HI(W).

Since by Theorem 2.2.1 hyperidentities precisely define hypervarieties, our
correspondence W — HUW) ¥ — V(L) between varieties of semigroups and
sets of hyperidentities can be extended to a correspondence between varieties of
semigroups and hypervarieties. But for any variety W, the hypervariety determined
by HI(W) is just the smallest hypervariety to contain W, which we have been
denoting ¥(W). Thus we are led once again to consider the operator M, this time

restricted to varieties of semigroups.

We will use the notation L(S) for the lattice of varieties of semigroups, and
XV for the collection of all hypervarieties, which we saw in Section 2.1 is also a
complete lattice under inclusion. The closed varieties of semigroups include S
itself, and are closed under intersection, so they too form a complete lattice, which
we will denote by L(CS). It is not known if this lattice is a sublattice of L(S): the
problem of whether or not the join of two closed varieties is closed is equivalent

to the problem mentioned earlier of whether the closure operator preserves joins.
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We have shown in Corollary 2.1.7 that ¥ preserves joins on the two lattices
L(S) and L(CS). Since by definition (V) = ¥(V) for any V in L(S), the images
H(L(S)) and M(L(CS)) are the same. This image is then a join-subsemilattice of
the lattice ¥V of all hypervarieties. It is not known if it is in fact a sublattice,
although it does form a complete lattice. Note also that ¥ is one-to-one on the

lattice L(CS), since ¥(V) = X(W) for V,W closed varieties implies that V and W

satisfy precisely the same hyperidentities, so that V. = V = W= W,
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Chapter 3

Semigroup Results

Having introduced the closure operator in Chapter 2, our goal now is to
identify the closures of various varieties of semigroups. In this chapter we present
some of the semigroup-theoretic results necessary for that goal. @We start by
giving some notation and background on the varieties of semigroups to be
considered, and describing the general technique used to find the closure V of a
variety V. One of the three stages of this technique involves showing that a given
set of identities defines the join of given varieties, motivating us to consider joins
of varieties. In the last three sections of the chapter then we focus on this
ques.tion of joins, looking in particular at some of the joins to be encountered in

later work on hyperidentities.

3.1. Varieties of Semigroups

This section presents some information about the lattice L(S) of varieties of
semigroups, especially about some of the varieties whose closures will be
investigated later. Only enough background for this later investigation is given
here, and all results are stated without proof. A more detailed survey of the lattice

of varieties of semigroups is given in [5].

22



Our interest in varieties of semigroups will be in terms of the identities they
satisfy; that is, we will view them as equational classes. We fix a countably
infinite set of variables, including x,y,z,w,x;Xy, . . . ,¥;¥g, - - - , and use words
from the free semigroup on this set. For any word u, |u| denotes the length of u.
An identity is then an equation u = v where u and v are words. A trivial
identity is one in which u and v are identical words. For any set I of identities,
we use V(I) to denote the class of all semigroups satisfying I. If I contains only
one identity u = v, we simplify this to V(u = v). For example, V(xy = yx) is the
variety A of abelian semigroups. A set I of identities is a basis for a variety V if
V(I) = V, and hence all the identities satisfied by V are consequences of the
identities in I. The terms of a variety V are equivalence classes of terms; we will
identify words with the equivalence classes they represent, and refer to terms such

as Xy, xyx, and so on.

The collection of all varieties of semigroups is a complete lattice under
inclusion. We use L(S) to denote this lattice, and in general for any variety V in
L(S), we use L(V) for the lattice of all subvarieties of V. The largest element of
L(S) is the variety S of all semigroups, and the smallest element is the trivial
variety T of one-element semigroups. Evans [5| has shown that L(S) is uncountably
infinite, and that there are varieties of semigroups which do not have finite bases
of identities. However, Perkins [10] showed that any variety of commutative

semigroups is finitely based, so that L(A) is a countably infinite lattice.
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For convenience we list below the varieties of semigroups to be referred to in

the rest of this thesis:

A = Vxy = yx), the variety of abelian semigroups.
M = V(xyzw = xzyw), the variety of medial semigroups.
B = V(= x), the variety of bands (idempotent semigroups).

SL = V(xy = yx, x2 = x) = A N B, the variety of semilattices.

LZ = V(xy = x), the variety of left-zero semigroups.

RZ = V(xy =), the variety of right-zero semigroups.

RB = V(xyz = xz), the variety of rectangular bands.

LNR — Vivwe — wvoy v2 = vi  the variety of ieft normal hands.

RNB = V(xyz = yxz, x> = x), the variety of right normal bands.
NB = V(xyzw = xzyw, x? = x) = M n B, the variety of normal bands.
Z = V(xy = zw), the variety of zero semigroups.

Ny = V(x; ---%x =y, - -Y¥) the variety of k-nilpotent semigroups.
Note that N, = Z.

ANy = Vixy = yx, x; - - - X = ¥p * - - Yy
the variety of abelian k-nilpotent semigroups.

MN, = V(xyzw = xzyw, X; - - - X, = ¥; - - * ¥}),
the variety of medial k-nilpotent semigroups.

A= V(xy = yx, xy™ = x), the variety of abelian groups of exponent m.
B = V(xy™ = x, y™x = x), the variety of groups of exponent m.

A . = V(xy=yx, x" = x"*™), the variety of commutative semigroups

satisfying x® = x"*™. Note that A, , = SL,
and A, = SL V A_.

B, = V("= x"*tM) the Burnside variety of semigroups satisfying
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x! = x"*M Note that B,, = B.

M, . = V(xyzw = xzyw, x® = x"*™), the variety of medial semigroups
satisfying x® = x*™, Note that M,, = NB.

The atoms of L(S) are the varieties LZ, RZ, SL, Z, and the Ap’s for p prime.
Any variety in L(S) contains one of these atoms as a subvariety. The four
non-group atoms generate a sixteen-element Boolean algebra, with NB V Z as their
join. The join of all the group atoms is A, the variety of commutative semigroups.
The join of all the atoms is the medial variety M (see [5]). In particular, this

implies that
M=AVLZVRZVSLVZ=AVRBVSLVZ=AVRB

The varieties A, with m square-free, form a distributive lattice. For any |
and m both square-free, their greatest common divisor ged(l,m) and their least
common multiple lem(l,m) are also square-free, and we have AN A = Agcd(l,m)
and A; V A = Alcm(l,m)' Similarly, the varieties An,m, with n and m > 1, form
a lattice, with Ak,l N An’m = Amin(k,n),gcd(l,m) and Ak,l \% An’m =
Amax(k,n),lem (I,m)"

The variety RB of rectangular bands plays a significant role in what follows.
It is the join of the two atoms LZ and RZ. Both LZ and RZ have the special
property that their terms are all words of length one; that is, for any n > 1, the
n-ary terms are just the n projections x;, . . . ,x . This means that the clones of

LZ and RZ are the same, and contain only the projections e?, and so they are
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subclones of C(V) for any other non-trivial variety V (of any type, in fact).
Translating this into the language of hypervarieties, we have X(LZ) = X(RZ) C
X(V) for any non-trivial variety V. Hence also RB = LZ v RZ € ¥(V) for any

non-trivial V. This proves the following important result.

Proposition 3.1.1: For any non-trivial variety V of semigroups, ¥(RB) C X(V), and

RB C V.

Although our proof started with clones, we could equally well have established
this result by arguing about hyperidentities instead. Then our observations in
Section 2.2 that any hyperidentity satisfied by a non-trivial variety V has the
same variable appearing first in each of its hyperterms, and the same variabie
appearing last, tell us that any such hyperidentity is satisfied by both LZ and RZ,

and hence by their join RB. This shows again that RB C V.

Proposition 3.1.1 is our first step towards concrete information about closures

of varieties. In fact, it allows us to prove our first non-trivial closure result.

Proposition 3.1.2: A =M.

Proof: We know from Proposition 3.1.1. that A v RB C A. We have also

observed in Section 2.2 that the variety A satisfies the hyperidentity
F(G(x,y),G(z,w)) = G(F(x,2),F(y,w)).

By substituting for both F and G the binary term x;x,, we get as an instance of
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this hyperidentity the medial identity, xyzw = xzyw. Therefore any variety which
satisfies all the hyperidentities that A does must be contained in the medial
variety M, and A C M. But also, as we noted earlier in this section,

M = A VvV RB. Thus we have A V RB C A C M = A v RB, and our conclusion

follows.

The hyperidentity used in this proof has the property that the varieties of
semigroups which satisfy it are precisely the medial variety M and its subvarieties.
Therefore by Lemma 2.3.5, the set consisting of this one hyperidentity forms a
basis for the family HI(M) of hyperidentities satisfied by M. We will refer to this

hyperidentity as the medial hyperidentity.

The proof of Proposition 3.1.2 serves to illustrate, in a simple case, the
method to be used in identifying V for various varieties V. This method involves
three stages. First, we prove that certain varieties are contained in V; these
include at least RB and V itself, perhaps more. Then we produce some
hyperidentities satisfied by V. From these we get some instances, which we use as
defining identities for a variety V, with V C V- Finally, we show that V, is in
fact the join of the varieties found at the first stage. Then we may conclude that
V = V-

The first two of these stages involve hyperidentities and hypervarieties, and
are discussed more fully in Chapters 4 and 5. The third stage however involves
proofs of a purely semigroup-theoretic nature, and the rest of this chapter is

devoted to it.
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The problem of finding the join of two or more semigroup varieties is not in
general an easy one. Specifically, we would like when given equational descriptions
of two varieties to produce a set of identities which will define their join. For
most of the joins to be found in the next three sections, we first obtain such a set
of identities by guess-work (often stimulated by knowledge of what hyperidentity
instances we have been able to obtain for the relevant varieties). We then have
to prove that the conjectured set of identities does indeed define the required join.
For this we have two basic methods, one using a structural approach and one a
syntactic approach. We conclude this section with a discussion of these two

metheds, both of which will be illustrated in the next sections.

Let V = V(I), W = V(J), and U = V(K), where I, J, and K are sets of
identities, and V v W C U. The syntactic approach is to consider the identities
satisfled by V v W. If we can show that any non-trivial identity satisfied by
V vV W is a consequence of the identities in K, then any such identity is also

satisfled by U. From this it follows that U C V v W, giving us U = V v W,

- For the structural approach, we will show that U C V v W by showing that
every semigroup in U is a subdirect product of a semigroup in V and a semigroup

in W. The following Lemma sets up the machinery to be used in proofs of this

type.

Lemma 3.1.3: Let U, V, and W be varieties of semigroups. Let C be a semigroup

in U. Suppose that there is a map ©: C — C which satisfies the following

conditions:
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1. © is a homomorphism;

2. © is a retraction; that is, 82 = O;
3. the image ©(C) is an ideal of C;
4. ©(C) is in V;

5. the Rees quotient C/6(C) is in W.

Then C is a subdirect product of ©(C) and C/O(C), so that C is in V v W.

Proof: Let p be the canonical homomorphism from C to its Rees quotient C/6(C).

The condition that © is a retraction ensures that the intersection of the kernels of
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the images ©(C) of ® and C/O(C) of p. Conditions 4 and 5 then imply that C is

inVvWw,

3.2. Joins with RB

The first type of joins we consider are those of the form V v RB, for certain
varieties V of semigroups. We have seen that the variety RB is contained in v
for any non-trivial variety V, so that V v RB C V, and hence it will be necessary
in identifying closures to have equational descriptions of V v RB. In particular, we

will consider for V the varieties A and A and N;, MN,, and AN;, for n, m

n,m’

> 1 and k > 2. A useful observation is that since A; = SL v A_, and NB

m?

= RB Vv SL, we have A, =V RB equal to An,m V NB for all n and m > 1.

Proposition 3.2.1: Let m > 2. Then A; vV RB =M

I,m"
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Proof: By definition A, VvV RB C M; - For the converse, let C be any
semigroup in Ml,m' By [11, IV.4.6] it suffices to show that C is completely regular
and that its idempotents form a normal band, for then C is in LNB v RNB v
A VSL =NBYV Al,m = Al,m V RB. It follows easily from the medial identity
of Ml,m that the idempotents of C form a normal band. Moreover, for any c¢ in

C, we have ¢ = c™*tl = ¢™1e2 € ¢2C n Cc2, and hence by [11, IV.1.2] C is also

completely regular.

Corollary 3.2.2: Any semigroup in M is a strong semilattice of rectangular

1,m

Proof: This follows from the previous proof, again using [11, IV.4.6].

A slight variation of the preceding proof lets us describe A Vv RB.

Proposition 3.2.3: Let m > 2. Then

A_VRB = V(xyzw = xzyw, x = x™+1, xyMz = xz).

Proof: Inclusion in one direction is clear. If C is a semigroup in the second
variety, then as in the previous proof C is completely regular and its idempotents
form a normal band. Hence C is a subdirect product of some C;, in LZ or LNB,
C, in RZ or RNB, and C; in A or Al,m' But SL does not satisfy the identity

xy™z = xz, so neither do LNB, RNB, or A, . Therefore we must have C, in LZ,
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C, in RZ, and C4 in A . From this we get C € LZ v RZ Vv A = AV RB.

Note that in this proof, the role of the identity xy™z = xz is to force the
semigroup C to be in AV RB rather than Al’m v RB. For this purpose any
identity which is satisfied by A and RB but not by SL will suffice. One such

identity which we will encounter later in investigating hyperidentities is

+1 +1
wxymw2m M2 = w2 -2,
This gives
("'.nv-n“ar:r RV Y. O
+1 +1
A_VRB = V(xyzw = xzyw, x = xm+1 wxy"‘w2m M2 = w2 -2),

For A, = VvV RB when n > 2 the structural approach does not work, and we

turn instead to a syntactic method. Also unlike the n = 1 case, A, =V RB is a

proper subvariety of M__  when n > 2, as indicated by the identity

n-14+m

x™lyx = x yx used in the next result.

Proposition 3.2.5: Let n > 2 and m 2> 1. Then the variety A _ VvV RB is

defined by the identities

xyzw = xzyw, x® = x"tM and x™lyx = x0-l+myy

Proof: Let the variety defined by the three given identities be called W. Clearly

A v RB C W. For the opposite inclusion, suppose that u = v is any

n,m

non-trivial identity satisfied by A = VvV RB. We show that W also satisfies u = v.

m

31



Since RB satisfies u = v, we know that u and v start with the same letter,
x say, and end with the same letter, y say (with x and y possibly the same).
Since An,m satisfies u = v, u and v have the same content, and for each letter z
in this content, either the number of occurrences of z in u is equal to the number
of occurrences of z in v, or these two quantities are both > n and are congruent

modulo m. Using this information we show how to deduce u = v from the

identities defining W.

We first transform u and v into a “standard form” wu and ¥ as follows. Write

1= ¥32%1 . 2%yb and v = x%2°1 . .. 2%pve.
1 P 1 P
where x,z;, . . . z,,y are the distinct (except possibly x = y) letters appearing in
u and v, and if x = y, then b = e = 1. The identities u = uwand v = Vv hold in

W, just by use of the medial identity.

If x # y, then from the above information we may deduce u = ¥ simply by

using the identity x® = x™*t™. Hence in this case, W satisfies u = v.

If x = y, we have b = e = 1 by construction. Again we may deal with the
“interior” letters z, . . . z, using only x® = x"t™ so we may reduce this case to
considering words U = x?wx and V' = x°wx, for some word w. From the
comments above, either a+1 = c+1, or a+1 and c+1 are both > n and are

congruent modulo m. If a = ¢, we are done; otherwise, both a and ¢ are > n-1

and a and c are congruent modulo m, and we have two cases to comnsider.
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If a and ¢ are both > n, with a and ¢ congruent modulo m, then x* = x°
holds in W, and so does u = V. Finally, suppose that a = n-1 and ¢ > n (or
dually). Then c¢ is congruent to n-1 modulo m, and ¢ may be be written as
km+n-1 for some k > 1. But then W = x™lwx and v = xkm+n-lyy and
W = V holds in W by repeated use of the identity x™lyx = x™1+Myx Hence in

either case W satisfies 1 = ¥ and therefore also u = v.

For the remainder of this section we focus on the joins of some nilpotent

varieties with RB.

Proposition 3.2.6: Let k > 3. Then

Nk \Y) RB = V(xl roe . xk = x1y2 e - yk_lxk).

Proof: We will call the right-hand-side variety W,. Clearly it contains N} Vv RB.

To prove the opposite inclusion, let C be any semigroup in W,. Define a map

® :C — C by ©(c) = ¢k, for all ¢ in C. Then
1. © is a homomorphism, since xkyk = (xy)k holds in W;
2.0 is a retraction, since (xk)k = x¥ holds in Wy
3. ©(C) is an ideal of C, since for any ¢ and d in C we have
ckd = ckdk = (cd)k € ©6(C), and similarly dc¥ € ©(C);

4. ©(C) is in RB, since (xK)2 = x%k = xk and xkykzk = (xyz)k = xkyk

both hold in W;

o

. C/©(C) is in N}, since for any c,;, . . . ,¢, in C, we have
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cl...ckzc...ckz(cl...ck)kee(c)_

Therefore by Lemma 3.1.3 we have C € N, v RB.

Proposition 3.2.7: Let k > 3. Then

MN, VRB = V(xyzw = Xzyw, X; + + - X} = X;¥g * * * V1 X)-

Proof: The proof is very similar to the previous one, with the map ©: C — C as
before. But now ©(C) is in RB and C/©(C) is in MNy, so that C is in

MN, Vv RB.

Proposition 3.2.8: Let k > 2. Then AN, v RB = MN; v RB.

Proof: If k = 2, AN, = MN; = N;, and the result is obvious, so we assume that
k > 3. Since AN, v RB C MN, V RB, it suffices to prove that every non-trivial
identity satisfied by AN, V RB is also satisfied by MN, Vv RB. So suppose that
AN, V RB satisfies u = v. Since RB satisfies u = v, u and v have the same
first letters and the same last letters. Thus if both |u| and |v| are > k, then we

are done: we use the identities defining MN, v RB (from the previous Proposition)

to deduce u = v. Otherwise, consider the case where |u| < k or |v|] < k (or
both). Since AN, satisfies u = v, there exists a chain u = yy = vy, = ... =y
= v, with each step u; = u;,;, a consequence of either xy = yx or
Xy +** X, =¥, Y, DBut steps which are consequences of the first of these

identities do not change the length of words involved, while steps which are
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~ consequences of the second identity can only be used on words u; of length > k.
Thus if |u] < k or |[v| < k, then |y < k for all 0 < i < 1, and in fact the
abelian variety A satisfies u = v. Then M = A Vv RB also satisfiess u = v, so

MNk VvV RB does too.

3.3. Joins with Z

In this section we consider joins of the form V v Z, where V ‘is a variety of
semigroups and Z = N, is the variety of zero semigroups. In this special case, the
concept of an inflation of a semigroup proves crucial to the investigation of such
joins. A semigroup C is called an inflation of a semigroup D, where D C C, if
C¢ C D and there is a homomorphism @ of C onto U with the property that ®~
= ®. Notice that this definition implies that D is then an ideal of C, since CD U
DC C C? C D. The importance of inflations is seen in the following result of

Clarke’s:

Proposition 3.3.1(Clarke, [4]): Let V be any variety of semigroups. Then the class

of all inflations of semigroups in V is a variety, which is in fact the variety

Vv Z.

The next lemma is very simple to prove, but is surprisingly useful when

combined with the fact that Z is an atom of L(S).

Lemma 3.3.2: Let C be a semigroup in a variety V, and let C be an inflation of a

semigroup D. Then both D and C/D are also in V; moreover, C/D is in Z N V.
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Proposition 3.3.3: Let V be any variety of semigroups which does not contain the

variety Z. Then V V Z covers V in the lattice L(S).

Proof: Suppose there is a variety U with V. C U C V Vv Z. Since U N Z C Z and
Z is an atom of L(S), U N Z is either the trivial variety T or Z itself. If

UNZ=12Z,then Z CUsothat VVZCUCVVZandU=VyvVv1Z

Otherwise, U N Z = T, and we have V C U but U properly contained in V
VvV Z. If also V is properly contained in U, then there would be a semigroup C in
U-YV. Then C is is V vV Z so that C is an inflation of some D € V; but by
Lemma 3.3.2, C/D is in Z N U = T, so that C = D. This contradicts the fact

that C is in U - V. Thus in this case we must have V = U.

Proposition 3.3.4: Let V and W be varieties of semigroups such that V covers W

in L(S). Then either VV Z = W V Z, or V V Z covers W Vv Z.

Proof: Suppose there is a variety U with W v Z % U C V v Z. Then there
exists a semigroup C in U -(W Vv Z). Then C must be an inflation of some D in
V - W. Let Y be the variety generated by W U {D}. Clearly W g Y C V.
Since V covers W, we get Y = V; that is, W U {D} generates V. Now we have
W C U, and by Lemma 332, D is in U. Thus V C U. Since also

ZCWVZCU, weget VVZCUCVYVIZ forcingU=VyvVvZ
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The next result allows us to describe all the subvarieties of V V Z in terms

of the subvarieties of V, for any V € L(S).

Proposition 3.3.5: Let V be any variety of semigroups. For any variety

UCVVZeither UCVorU=(UNV)VZwithUnVCCYV,

Proof: If Z C V the result is trivial, so we assume that Z g_ V. Suppose that
UngZ,butUgV. If VCU,then VCUCV V Z so by the previous

Proposition either U = Vor U=V v Z = (UnN V)V Z, as required.

Otherwise, neither of V or U contains the other. In this case, U N V is a
proper subvariety of both U and V. Since U C V v Z, any C in U is an inflation
of some D in V, and by Lemma 3.3.2, D is also in U. Thus any such C in U is
in (U n V) v Z, so that U C (U n V) v LI Then
UOV;UQ(UﬂV)VZ,andngmeansZgUﬂV,sobyProposition

3.3.3 we have U = (U N V) Vv Z, as required.

" We next consider the map a on L(S) which takes any variety V to its join
V v Z with Z. The next results describe some properties of a. It is obvious that
a preserves joins on L(S). In general, @ is not one-to-one; for instance, we may

have U vV Z # U, yet of course (UV Z) VZ =TUvV Z

Lemma 3.3.6: Let U and V be varieties, neither of which contain Z. If U # V,

then UV Z # VvV Z
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Proof: Since U # V, there exists a semigroup C in U - V say. Suppose that
UVZ=VVZ Then C € UCUVZ=YVVZ, sothat C is an inflation of
some semigroup D in V. Since C ¢ V, C # D. However, C/D is in U N Z by
Lemma 3.3.2; and when Z g U we have U N Z = T, forcing C = D. This

contradiction shows that U vV Z # V V Z must hold.

Corollary 3.3.7: Let V be a variety of semigroups which does not contain Z. Then

the map a is one-to-one on L(V).

The proof that a preserves meets on L(S), making it a lattice homomorphism,
is broken into two parts. We first consider the action of a on varieties not
containing Z, showing that under certain restrictions o becomes a lattice

isomorphism.

Proposition 3.3.8: Let W and Y be varieties of semigroups, neither of which

contain Z. Then (W N Y) v Z=(WVZn(YVZ). Inparticular, if V is a

variety which does not contain Z, then « preserves meets on L(V).

Proof: By definition, (W N Y) v Z C (W v Z) n (Y Vv Z). For the reverse
inclusion, note that U = (W v Z) n (Y Vv Z) is a subvariety of both W v Z and

Y v Z. From Proposition 3.3.5, we know the form of such subvarieties:

U=U" orU" vV Z, for U° C W,
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and U =U"orU"" Vv Z, for U C Y.

This gives us four cases to consider:

1. fU=U" =U"",then UCWNYC (WnNnY)VL

22U =U"C W,and also U =U""V Z for U’ C Y, then we would
have ZC U v Z =TU C U” C W. This contradicts our assumption
that W does not contain Z.

3. The case U =U" Vv Z =U"" CY, where U" C W, is the dual
of case 2, and similarly leads to a contradiction.

4. ¥U=U"VZ=U"VZIZfor U CWand U"" CY, then by

7= Fenee U =T VZC(WNY VT

Therefore in all possible cases we get (W V Z) n (Y VZI)C WnY)V Z as

required.

Corollary 3.3.9: Let V be any variety of semigroups which does not contain Z. Let

L(V) v Z be the collection of varieties of the form U v Z, U € L(V). Then the
map « is a lattice isomorphism of L(V) onto L(V) Vv Z, which is therefore a

sublattice of L(S).

Proposition 3.3.10: Let V be a variety of semigroups which does not contain

Z. Then L(V V Z) is isomorphic to L(V) x L(Z).

Proof: Since Z is an atom of L(S), L(Z) is just the two-element lattice T C Z.
Define a map 7 from L(V) x L(Z) to L(V v Z) by 4(UW) = U v W, for U in

L(V) and W in L(Z).
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By Proposition 3.3.5, v maps onto L(V Vv Z). It is also very easy to show
that 4 is one-to-one. Since < clearly preserves joins, it suffices to check that «
preserves meets. Let U and U’ be in L(V), and W, W’ be in L(Z): so W and W~
are either T or Z. We need to show that

UNU)vVWNW) = (UvWn(U v W)
If W = W” = T, this equation reduces to a trivial one. If W = W’ = Z it
reduces to (U N U) v Z=(UVZ n (U v Z), which by Proposition 3.3.8
holds for U and U’ in L(V). Finally, suppose that W = T while W’ = Z (or
dually). In this case our equation reduces to
UNnU =UnN (U Vv 1I).

Here the containment from left to right is obvious. For the opposite direction, we
know that U N (U’ Vv Z) is a subvariety of U" VvV Z, so it is either a subvariety
of U’ or of the form U’" v Z for some U"" C U’. The latter would imply that
ZCU " VZI=Un(U v Z CU, which is impossible since by assumption Z
is not contained in U. Therefore we must have U N (U° v Z) C U’ N U, as

required. This shows that 4 preserves intersections, and finishes the proof.

We now return to the study of a as a map applied to the entire lattice L(S).

On this domain « is still a lattice homomorphism.

Proposition 3.3.11: The map o« taking V to V vV Z is a lattice homomorphism on

the lattice L(S) of varieties of semigroups.

Proof: Since a clearly preserves joins, it suffices to prove that it also preserves
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.meets. For this we need to show that for any V and W in L(S),
(VAW)VZI=(VVvZI)n (WV Z). Inclusion from left to right is always true,
so we consider only the reverse inclusion. We examine three cases:

1. If A" and w both contain Z, then we get

(VVI)INn(WVIZ)y=VnW=(Vn W)V Z as required.

2. f neither V nor W contains Z, the desired inclusion holds by

Proposition 3.3.8.

W

If V contains 7Z but W does not, (or dually), we let Y = (V v Z) n
(W v Z). Then Y is contained in both V and W Vv Z; by Proposition
3.3.5, it is either contained in W, or we have Y = (YN W) vV Z. ¥ Y
C W,then Y C VNWC(VNW)V Z as required. Otherwise, we
have Y = (YN W)V Zand Y C V,s0 that YN W C VN W, and

therefore Y = (Y Nn W) vZ C (VN W)v Z again.

The fact that the map V — V VvV Z is a homomorphism on L(S) suggests
that Z is a special type of element in the lattice. In fact we shall show that Z

satisfies the conditions needed to make it a neutral element of L(S).

Definition 3.3.12: An element a in a lattice L is called neutral if

1) if aAx = aAy and aVx = aVy then x = y, for all x and y in L,
2) the map a:xx — xVa is a lattice homomorphism,

and 3) the map f:x — xNa is a lattice homomorphism.
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The importance of neutral elements is reflected in the following proposition.

Proposition 3.3.13: Let a be an element of a lattice L. Then a is a neutral element

of L iff the map § : x — (anx, avx) is an isomorphism of L onto a subdirect

product of {x € L: x < a} and {x € L: x > a}.

For the remainder of this section, we verify that Z is a neutral element of

L(S).

Proposition 3.2.14: Let V and W he varieties of semigrouns. If Vv 2 = W v 7

and VNZ=WnZ, then V=W,

Proof: We know that V N Z is either T, if Z is not contained in V, or Z, if Z is
contained in V, and similarly for W N Z. Thus the assumption that
VNZ=Wn Z implies that either both V and W contain Z, or neither do. In
the first case, we get V. = V v Z = W v Z = W immediately. In the second

case, we get V.= W from V v Z = W v Z by Proposition 3.3.6.

Proposition 3.3.15: The map f :V — V N Z is a lattice homomorphism on L(S).

Proof: Since [ obviously preserves meets, we need only check that
(VvW)NnZ=(VnZ v (WnZ),forany V and W in L(S). If either V or
W contains Z, both sides of this equation become Z. If neither of V or W contain
Z, then it is easily verified (by syntactic arguments) that V v W does not contain

Z either; and then both sides of the equation become T, the trivial variety.
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Corollary 3.3.16: The variety Z of zero semigroups is a neutral element of L(S).

Thus L(S) is isomorphic to a subdirect product of L(Z) and the interval sublattice

(Z,9].

Remark 3.3.17: All of the results in this section depend heavily on the concept of

inflation, as expressed in Proposition 3.3.1 and Lemmma 3.3.2. Unfortunately this
concept does not seem to extend to higher nilpotency indices: no corresponding
construction has been found for describing the varieties V v N, when k > 3. For
this reason the results described in the next section for such varieties are not

nearly so complete.

3.4. Joins with Nk

Volkov [16] has proved that if V is a finitely based variety then so is
V vV Ny, for k > 2, but without giving a method to explicitly produce a finite
basis for V v N, from one for V. Clarke [4] has given a method for converting a
basis of identities for a variety V into a basis of identities for V Vv Z. In this
secfion we try to extend both these results. For certain varieties V we are able to
produce identities which define V v N, for all k > 2. We begin with the variety

B = B11 of all bands.

Proposition 3.4.1: Let k > 2. The variety B vV Ny is defined by the identities

xk = x2k  xby = (xy)¥ = xy¥, and xl---xkz(xl--~xk)k.
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Proof: Let W be the variety determined by the given identities. It is clear that

B v N, € W, and also that W satisfies the additional identity xkyk = (xy)k

Now let C be any semigroup in W. We define a map 6 :C — C by

O(c) = ck, for all ¢ in C. Then it follows from the identities given that

1. © is a homomorphism;

2. 82 = ©, since W satisfies x* = x?*and hence x¥ = xk';
3. ©(C) is an ideal of C;

4. ©(C) is in B, since for any ¢ in C, (c¥)? = c* holds;

o

. C/©(C) is in Ny, since the product of any k elements of C is
in 6(C).

Hence by Lemma 3.1.3, C is in B v N;.

Corollary 3.4.2: Any semigroup in B V N, is a subdirect product of a band and a

k-nilpotent semigroup.

The identities exhibited in Proposition 3.4.1 will be used later in showing
that the varietiess B v Ny, for k > 2, are all closed. For now we proceed to
generalize this result, producing identities for B; =~V Nj, for all m > 1 and all k

> 2, and then considering W v N, for W C B, .

Proposition 3.4.3: Let m> 1 and k > 2. Let a be the first number > k which
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is congruent to 1 modulo m. Then the variety B, =~V N, is defined by the
identities

Xy = xy* = (xy)2, x*=x(mta and x .. .x o= (x, - - x)x

Proof: Let W be the variety defined by the given identities. First, since a is
congruent to 1 modulo m, x* = x holds in Bl’,m’ and so clearly Bl’m v N, C
W. Conversely, let C be any semigoup in W. Define ® :C — C by ©(c) = ¢ for
all ¢ in C. Then

1. © is a homomorphism, since x*y? = (xy)'12 = (xy)® holds in W

because a’ and a are congruent modulo m;
2. © is a retraction, since x'12 = x® holds in W;
3. ©(C) is an ideal of C, since for any ¢ and d in C we have

c®d = (c®d)®* € ©(C), and similarly dc? is in ©(C);

4. ©(C) is in B, _, since x® = (x®)™*! holds in W;
5. C/©(C) is in Ny, since for any c;, . . . ,¢, in C,
cl . e . ck — (cl e e ck)a € e(C),

Therefore by Lemma 3.1.3 Cis in B, VvV Ny

Proposition 3.4.4: Let W C B, ~for m> 1. Let k > 2, and let a be the first

number > k which is congruent to 1 modulo m. Let £ be a basis for W, with x

= x™*! jn T. Write T = T, U £, U I; where T; = {x = x™1},
T, = {u =v € Z: |u, |v/] > k}, and £4 = T - (Z; U Z,). Let
2; = {u* =v:iu=v € L4}, where u  is obtained from u by replacing each
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_letter x in u by x*, each time it occurs. Then W Vv N, is defined by the identities

%x
in £, U I, plus the additional identities x%y = xy* = (xy)?,
xl P xk — (xl P xk)a” a_nd xl e e . xk — (xl e . . xk)u.

Proof: Note that since x* = x holds in W, W Vv N, satisfies all of these identities.
The proof then follows exactly that of the previous proposition, using ©, up to
part 4. This time we have ©(C) in W, since by construction ©(C) satisfies all the

identities in ¥ . The conclusion follows.

" o s P T L N O o3 1ae YRT L. T ind 3
Courvilasy 3.4.00 Lav & = 2, and et W Lo o cubvericty of B - for some m > 1
’

Then any semigroup in W VvV N, is a subdirect product of a semigroup in W and

a k-nilpotent semigroup.

In investigating closures of varieties later we will be interested in the

following special cases:

Corollary 3.4.6:

i) Let W = V(x = x%, u = v) be a variety of bands. For k > 2, W VvV N, is

defined by the identities x¥y = xyk = (xy)k, Xp oo X = (% - -xk)k,

k —

xk — x2Zk

, and either u = v, if both |u| and |v|] are > k, or u = v, otherwise,

where u’ and v’ are formed from u and v respectively by replacing each letter x

by xk,

i) For m > 1 and k > 2, it follows from the proof of Proposition 3.4.3 that
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V Ny) N M, so this variety is defined by the identities

‘M, V MN, = (B

,m 1,m

x%y = xy® = (xy)?, x* = x(m+1)a X, 00X = (% -+ - %)% and xyzw = xzyw,

where a is the first integer > k and congruent to 1 modulo m.

The variety Ml,m V MN, turns out to be significant, since under certain
restrictions on m and k it corresponds to the closure of Al,m' Thus we now give a
different set of identities for Ml,m V. MN,. These identities will correspond to
hyperidentities; and they have the additional advantage that they can be

generalized to deal with Mn,m V MN, for n > 2 as well.

Notation 3.4.7: Let m>1 and k > 2. We use I, for the set of identities

_ _m+l
xl...xk_xl x2...xk,
_ m+1
X; C Xy = XX C X,
e - -m+1 r v — id
Xp oot Xy = Xp s Xy X and Xyzw = Xzyw.

Proposition 3.4.8: For any m > 1 and any k > 2, M; =V MN, = V(T, ).

Proof: Clearly M, vV MN; C V(El,m i) Conversely, let C be any semigroup in

V(Z, .k Note that C satisfies the additional identities xk = xktm apd
1
Xpr X = xlln"'lx;n"'1 - x:H' = (x; + - - x)™L Define a map

®: C — Cby®6() = c™ 1 for all ¢ in C. Then

1. ©® is a homomorphism, because of the medial identity;
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2. © is a retraction, since C satisfies (xMk+1)mk+l —

xmk+1+mk(mk+1) xmk+1;

3. ©(C) is an ideal of C, since C satisfies xy™k+! = ymk+lymk+l

mk+1 mk+1 mk+1.
b

(xy) , and dually x y = (xy)

(N

- ©(C) is in M, , since C satisfies both the medial identity and

(xmk+1)m+1 — ymk+1+m(mk+1) — xmk+1;

[J1]

. C/©(C) is in MN,, since C satisfies x; - - - % = (x, - - - x)™*!

— (xl s xk)mk+1;

Thus C is in M vV MN,, as required, by Lemma 3.1.3.

1,m

Corollary 3.4.9: Any semigroup in M; =~V MN, is a subdirect product of a
k-nilpotent semigroup and a strong semilattice of rectangular groups of exponent

m.

Proof: This follows from the proof of Proposition 3.4.8 and Corollary 3.2.2.

The argument in the proof of Proposition 3.4.8 can be modified slightly to
deal with the join AV RB Vv MN,;, rather than Al,m V. RB v MN,. Let

£ 3
El,m,k be the set of identities formed from El,m,k by adding the identity

m+1
wxymw m2 — yxw? -2,

(This new identity will appear later in our investigation of hyperidentities.)

Proposition 3.4.10: For any m > 2 and any 2 < k < 2m+l

*

A, VRB vV MN = V(T )
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Proof: Since k < 2™+l it is clear that AV RB v MN; is contained in

*

V(Zlmk). For the opposite inclusion, we repeat the proof of Proposition 3.4.8

exactly, except for part 4. There we still have 6(C) in M but now by

1,m’

Corollary 3.2.4, ©(C) is also in A VvV RB, as required.

The identities in T, , can be extended to deal with Mn’m V MN, for n >
2. Note that when n > k we have MN, C M _, and hence

Mn’m vV MN, = Mn’m, so we now consider the case where n < k.

Notation 3.4.11: Let k > 2 and n, m > 1, with n < k. Set s = k-n+1. We use

Zn,m,k for the set of identities

n+m
XIX2 . Xs — Xl 2 Xs,
n _ n+m
X1XoXs Xs = XX, 3 Xg»
n _ n+m
xl xs_lxs xl )(5_1)(‘s ’

and

XyZW = XZyW.

Note that this includes the previous definition of L, ,. However when
n > 1 we can no longer give a structural proof that the identities in ¥ |
define the variety M, =~V MN;: our previous proof method breaks down since

©(C) will no longer be an ideal of C. Instead we give a syntactic proof.
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 Proposition 3.4.12: Let m 2> 1, k > 2, and 1 < n < k. Then

M, V MN, = V(S

n,m n,m,k)'

Proof: Since M, ., v MNy C V(En,m,k)’ it will suffice to prove that any identity

m

V MN, is also satisfied by V(Z

m

satisfied by Mn,

n,m,k)'

Let u = v be a non-trivial identity satisfied by M = Vv MN,, and hence by

m

both M . and MN,. "Then either u = v is a consequence of medial, and so is

m

certainly satisfied by V(Z, i), or both |u| and |v| are > k. So we will now

assumne that ¥ < lul £ |vl. We will provc that there is 2 sequence v = v, =
u; = ... = u = v such that each move u; = u; , is a consequence of the
medial identity or the identity x" = x"*™ and such that |y > k for all

0 < i £ r. From this it will follow that V(I ) also satisfies u = v.

We now describe how to produce such a sequence. First, by repeated use of
the medial identity, we may write any word w in a “standard form” Wwas follows.

Cc

Rewrite any string (w,; - - - w;)° in w as w.we « - - w;. Then as in the proof of
1 1 12 1 P

Proposition 3.2.5, express the rewritten string as
x?yl . .. yleyb,
1 p
where x,y;, . . . Ypy are the distinct (except possibly x = y) letters occurring in
the word w; y, occurs a, times in w for 1 < t < p; and x and y occur a and b

times respectively in w, except that if x = y then b = 1 and x occurs a+1 times

in w.
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Now by construction M_ satisfies u = 1 and v = ¥ and in fact there are

m
deductions of these two identities involving only words of length > k. Since M _
satisfies u = v, it also satisfies 1= % Also, Ju| = |4 and |v| = |¥. Thus it will

suffice to produce a deduction of u = ¥ in M, in which the length of any

intermediate word is > k.

Consider first the case where x and y are distinct letters. Then we can write

- a a
= Xyl .-yl
1 P
- c ¢
and v=x%1...y%yd
1 P
Suwce M o osausiles 0 = v, we st have @) — () ur q) and ¢ Lol 4 and
b

congruent modulo m, for each 1 < 1 < p, and similarly for a and ¢ and b and
d. For any variable z in u the net change in power on z as we go from uto Vv
can then be accomplished as a series of moves of the form z® = 2°%™ (an increase)
or z¢t™M = 28 (a decrease), for some e > n. It is clear that having grouped
together all occurrences of each such variable z, the moves done to one variable
are independent of those done to another, and such moves can be done in any
order. Therefore we can arrange to move from u to Vv in such a way that all
increases are done first, and then any decreases. Since |u| and |v| are > k, this
guarantees that any intermediate word in the sequence of moves also has length

> k, as required.

The case x = y is handled in much the same way. This time we have

u= xayal L yan and v = xcycl-, .. yCPx,
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- which we will simplify a bit and write as 1 = x®wx and v = x°Ww’x, where w and
w’ are words not involving the letter x. As in the x # y case, we can always
change w to w’ using only Mn,m identities by doing all the necessary increases
first, then all the decreases, so that the greatest possible length is maintained. So
we concentrate now on the letter x. If a = ¢, we are done. Otherwise, we must
have a and ¢ both > n, and congruent modulo m. So again the net change in
power on X is either an increase or a decrease, by a multiple of m. If this net
change is an increase, we do it first, then change w to w’ as previously described;
if the net change is a decrease, we do it after the change from w to w’ is made.
In either case we move from u = x*wx to Vv = x°w’x, maintaining at each stage a
word-length > k. This completes the proof of the proposition.

We will conclude this chapter with the join A =~V RB vV MN,, which will

m
appear later in Chapter 6 as the closure of A _~ for certain n, m, and k

combinations. The syntactic proof given below combines the arguments used for

A vV RB in Proposition 3.2.5 and for M, =V MN, in Proposition 3.4.12.

n,m

Prdposition 3.4.13: Let k¥ >2, 2 < n < k, and m > 1. The variety

A ., V RB V MN, is defined by the following identities:

n,

XyZwW = XZyW

n _ _n+m
X0 X+l T X * " XgentDd
n _ n+m
X1Xg 7 0 Xppy1 T XXg © o X1
n _ n+m
X1 Xk—n+1 =% Xk—n+1’

and
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n-1

“.. = x-1+m
XN YpnX = X

yl . e yk_nx_

Proof: Let U be the variety defined by the given identities. Then certainly A =V
RB v MN;, C U. Conversely, we show that any non-trivial identity u = v

satisfied by A RB, and MN, is also satisfied by U.

n,m’

When MN,; satisfies u = v, either M and hence U satisfies u = v, and we
are done, or |u| and |v| are both > k. Since RB satisfies u = v, u and v have
the same first letter, x say, and the same last letter, y say, with x and y possibly
equal. Since An’m satisfles u = v, u and v contamn exactly the same letters, and
for any letter z in u or v, either the number of occurrences of z in u is equal to
the number of occurrences of z in v, or these two quantities are > n and are
congruent modulo m. Therefore we will transform u and v into the standard form

1 and V of Propositions 3.2.5 and 3.4.12. As before, A

m

and Mn,m still satisfy

u = uand v = V and |u| = |4 and |v| = |¥.

The case where x and y are distinct variables is dealt with exactly as in the
proof of Proposition 3.4.12: we ensure a sequence of moves from 1 to Vv in which
all intermediate words have length > k, by performing all necessary increases
first, and then any necessary decreases. The first four of the five defining

identities for U are sufficient for this.

In the case where x = y we consider 1 = x*wx and Vv = x°w’'x, where w and

w’ are words not containing the letter x. As before, we are able to change w to
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w’ in such a way as to maintain maximum length of words. If a = c, therefore,
we are done. -Otherwise, we have a and ¢ > n-1, and a congruent to ¢ modulo

m. In this case we use the identity x“'ly1 C o YypX = x-1+m

Y1 * ° * YygpX from
U to make the change from x® to x°. As in the x = y case in Proposition 3.4.12,
there are two possibilities: if a > ¢, we first transform w to w’, then x® to x°, to
get a deduction of 1 = ¥ while if a < ¢ we change x* to x® first, then change w

to w’. In either situation we produce a deduction of u = ¥ in which all words

have length > k, as required.
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Chapter 4

Some Closure Results

In this chapter we investigate closure properties for some interesting classes of
varieties. The varieties of bands studied in Section 4.1 have the special features of
idempotence and duality, and by exploiting these features we produce a complete
description of how the closure operator and the hypervariety operator X act on
such varieties. The nilpotent varieties are also examined, and finally varieties
obtained by taking the joins of varieties of bands with nilpotent varieties. The

results obtained are incorporated into a picture of part of the lattice ¥(L(CS)).

4.1. Varieties of Bands

The variety B of all bands is easily seen to be closed. It satisfies the
idempotent hyperidentity F(x,x) = x, since all the instances of this hyperidentity

are of the form x* = x for some a 2> 1. In particular, the binary term x;x, gives

the instance x2 = x, so B C B C V(x? = x), and B is closed. Moreover any
variety which satisfies the idempotent hyperidentity is a variety of bands, so by
Lemma 2.3.5 we have a basis of size one for the set HI{B) of hyperidentities

satisfied by B.
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In this section we present closure and hypervariety results for subvarieties of
B. The completeness of these results is due to two reasons: the structure of the
lattice L(B) of all varieties of bands is known, with equational descriptions of the
varieties; and the special properties of idempotence and duality make possible the

construction of useful hyperidentities.

The structure of the lattice L(B) has been described independently by
Birjukov {2|, Fennemore [6], and Gerhard [7]. We will use the notation of
Fennemore, whose diagram of the lattice is shown in Figure 4.1. Each variety of
bands is defined by the idempotent identity x2 = x and one additional identity; it
is these additional identities which label the various varieties in Figure 4.1. The
words R, Q,, and S, for n 2> 3, are defined inductively on the alphabet
{xl, RN xn}. For our purposes, it will suffice to know that for any n > 3,
R,, Q,, and S_ all have length > n, all begin with the same variable, and also
all end with the same variable. For any word w, we use wd for the dual word.
Duality is an important feature of L(B): the lattice is symmetric about its centre
column, with mirror-image varieties V = V(x2 = X, u = v) and
vd = V(x2 =x, uwd = vd), the dual variety of V. The self-dual varieties are those
in the centre column, which are equal to their own duals. The next proposition

shows how duality enters into the study of hyperidentities and hypervarieties.

Proposition 4.1.1: Let V be any variety of bands which is not self-dual. Then the

clones C(V) and C(V9) are isomorphic, so that C(V) = C(Vd) and ¥(V) = #(V9).
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Figure 4-1: The Lattice L(B) of Varieties of Bands
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Proof: For any n-ary term t = t(x;, . . . ,x,) in the clone of V, let td be the
term defined by the dual word (t(x,, . . . xn))d. Then td is in the clone of V4.
This sets up a mapping 6: C(V) — C(Vd). Clearly 6 is a bijection which maps
the n-ary projection terms x;, 1<i<n, of V to. the n-ary projection terms x; .of

Vd, and it is easily verified that 6§ is compatible with the composition of terms.

The claims then follow from this and Proposition 2.1.4.

Corollary 4.1.2: For any variety V of bands which is not self-dual, ¥(V Vv Vd) =

(V) v H(VY) = H(V) = ¥(VY), and V v VI C V.

This tells us that the closure operator and the operator ¥ both induce a
certain amount of collapsing on L(B). By applying ¥ to the known structure of
L(B) we produce a chain of hypervarieties, as shown in Figure 4.2. In particular,

note that by Proposition 3.1.1, ¥{NB) = ¥(RB v SL) = }(RB) v ¥%(SL) = ¥(SL).

Our goal now is to show that there is no further collapsing of L(B) under ¥,
so that all the hypervarieties ¥(V) shown in Figure 4.2 are distinct. We do this
by producing, for each such self-dual V, a hyperidentity satisfied by V but not by
the next variety in the chain. The hyperidentities produced will also allow us to

identify the closure V of any variety V of bands.
All the hyperidentities to be used in this section involve only a single binary
operation symbol. The advantage of this is that any variety of bands has at most

six binary terms, namely Xx;, X5, X;Xg, X9X;, X;X9X;, and X,X;X,. Thus it will be
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¢ WV(E2=1x R wR, = S:WS4))
s  X(V(x? = x, R:WR4 = Q:WQ4))
¢ A(V(x? = x, RywRE = $,ws?))
¢ H(V(x* = x, K3w1{; = stl,z;))

¢ WV(x? = x, xyzx = xyvzx))

{ ¥%(NB) = }(LN) = ¥(RN) = ¥(SL)

+ X(RB)

U(LZ) = %(RZ)

e X(T)
Figure 4-2: The Lattice X(L(B))
easy to verify that a given variety of bands does indeed satisfy a given

hyperidentity: we produce the corresponding six instances, and check that each one

is an identity of the given variety.
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When dealing with a hyperidentity involving only one binary operation
symbol, we often focus on the particular instance we get from substitution of the
term x,x,. We will say that the hyperidentity is based on this instance. Note that
this instance can be easily obtained by reading off the list of variables in the

hyperidentity, in order of occurrence from left to right.

Proposition 4.1.3:

i) The variety T of trivial semigroups satisfies the hyperidentity
F(x,y) = x, while no other variety of semigroups does.
ii) The variety RB satisfies the hyperidentity F(x.F(y.x)) = x,
while the variety NB does not.
iii) The variety NB satisfies the hyperidentity
F(x,F(F(v,z).x)) = F(xF(F(zy)x))
while the variety V(x? = x, xyzx = xyxzx) does not.
iv) The variety V(x? = x, xyzx = xyxzx) satisfies the hyperidentity

F(x,F(F(y.2z).x)) = F(F(F(y.,F(x,2))x)),

while the variety V(x2 = X, stRg = stQ:) does not.

Proof: In each case it is easy to verify that the given variety V does satisfy the
given hyperidentity: we omit the details. In i), use of the projection term x, yields
the identity y = x, so that only the trivial variety satisfies the given
hyperidentity. In the remaining cases, note that we have given for each variety
V = V(x2 = x, u = v) a hyperidentity based on the identity u = v. Thus no
variety above V in the lattice L(B) satisfies the hyperidentity.
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Corollary 4.14: ¥(T) ¢ ¥(RB) - H(NB) g H(V X, XyzX = XyXzX))

- X(V(xé = x, stR: = stQg)).

Corollary 4.1.5: Each of the varieties T, RB, NB, and V(x? = x, xyzx = xyxzx) is

closed.

Proof: From the proof of Proposition 4.1.3 we have T C V(x = y) = T, so that

T =T Each of the remaining varieties mentioned may be expressed as

V = V(x2, u = v) for some self-dual identity u = v. Again from the proof of

Proposition 4.1.3, we have V C V(u = v). But also any variety of bands satisfies
2

the idempotent hyperidentity based on x* = x, so that in fact we have

VvV C V(x2 = x, u = v) = V. This proves that V = V and V is closed.

Corollary 4.1.4 allows us to prove some remarks made in Sections 2.1 and 2.3
about the closure operator and the operator X. From this Corollary and
Proposition 4.1.1, we get

H(T) = ¥(LZ n RZ) (;_ H(LZ) n ¥(RZ) = %(RB) n ¥(RB) = X(RB).
Thus we know that ¥ does not preserve intersections, so is not a homomorphism

on the lattice L(S). Similarly,

T=T=LINnRL ¢ LZ N RZ = RB n RB = RB,

so the closure operator also does not preserve intersections.
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We have now reached the inductively-defined part of the chain in Figure 4.2.

Here we must consider the varieties V(x*! = x, Rani = anQi) and
V(x? = x, Rani = Sani) for n > 3 and n odd, and their duals for n > 4
and n even. Each of these varieties may be written as V(x2 = x, u = v), where

u = v is a self-dual identity, and u and v begin with the same variable and end
with the same variable. Our technique is the one used in the previous
proposition: we produce a hyperidentity HB(u =v) which is based on u = v and

satisfied by the variety V(x2 = x, u = v).

From our assumptions about each such identity u = v, we may write it in
the form
ayag * * v BAy 48 ¢ 898y = byby - o - bbby - boby,
where k and | are > 3, the a’s and b;’s are variables from our standard

alphabet, and a, = b,. We define the hyperidentity HB(u = v) to be
1 1

Qe Ox LJH:\. L\g
by

The left-hand tree diagram represents the hyperterm
F(a),F(F(ag,F(F(ag, . . . F(F(a,F(agy1:2))s2i1))s - - - 29))s2y))s
and similarly for the right-hand tree.
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Proposition 4.1.6: Let V = V(x2 = x, u = v) be a self-dual variety of bands

properly containing the variety V(x2 = x, xyzx = xyxzx). Then V satisfies the
hyperidentity HB(u = v) as constructed above; and the only varieties of bands to

do so are subvarieties of V.

Proof: Substitution of either of the projection terms x, or x, into HB(u = v)
yields the identity a;, = b,, which is known to be trivial. Use of the term x;x,
gives precisely the identity u = v. This of course holds in V and any of its
subvarieties, but not in any other variety of bands, which establishes the second

claim. Use of the term x,x, also gives u = v, since u = v is self-dual.

For the term x;X,x,, we will show by induction on k that the hyperterm just
before the statement of Proposition 4.1.6 when evaluated using x;x,x; produces
exactly the word a; - - - aja; 3, - - - a;. From this it will follow that under

this choice of term, the hyperidentity HB(u = v) again yields the identity u =v.

For the induction base k=3, it is easy to show that
F(a),F(F(ay,F(F(ag,F(ag23)),a9)),a;)) evaluates under x;x,x; to a;a5azaazaza,;
(making repeated use of the band identity x2 = x). Then for k> 3, evaluating
with x,x,x, yields

F(al,F(F(a2,F(F(a3, e .. F(F(ak+1,F(ak+2,ak+1)),a.k)), ... 2ag)),a)),a,))

= F(ajF(agag - - ap 13y 08148 © - - agady, a,))
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- = F(ay, agag - + - ap 18y 08y 13y * * * BgBjAgAg - ¢ -+ Ay 8y g8) g8y ¢ ¢ - a,)
= 2jagag * v v Ay 18 08y 113K " ¢ ° 39843985 - - ¢ Ay L 18) 108 113y ¢ 893y

= 8q8gag - ¢ v Ay, 8y 08p 113 T 893

The remaining term, x,X;X,, may be shown in a very similar way to also

produce only u = v as an instance.

Corollary 4.1.7: The hypervarieties ¥(V), for V a self-dual variety of bands other

than SL, form a countably infinite chain, as shown in Figure 4.2.

Proof: From Propositions 4.1.3 and 4.1.6 it follows that the hypervarieties shown

in Figure 4.2 are all distinct.

Propositions 4.1.3 and 4.1.6 also allow us to completely describe the closure
operator as it acts on varieties of bands. For any self-dual variety

V = V(x2 = x, u = v) except SL, we have shown that V satisfies hyperidentities

based on x2 = x and u = v. ThusV_C_VgV(x2=x,u=v),a.ndsoV=V
and V is closed. If V is not self-dual, then by Corollary 4.1.2,

vvvicCcVc (Vv Vd) = V v V94 since V v VY4 is self-dual and hence closed;

therefore V. = V v V9 in this case. In the special case of SL, we saw in the
comments following Corollary 4.1.2 that X(SL) = ¥(NB), so that

NB =SL vRB C SL C NB, and SL = NB. We summarize this in:

Corollary 4.1.8: For any variety V of bands except SL, V=Vyv Vd; and

SL = NB.
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Our hyperidentity results also give us information about bases for HI(V),
when V is a non-trivial closed variety of bands. Let V = V(x2 = x, u = v) be
closed. We have seen that only subvarieties of V satisfy both HB(u = v) and the
idempotent hyperidentity F(x,x) = x. Therefore by Lemma 2.3.5, the set I
containing these two hyperidentities is a basis for HI(V). In fact, it is an
irredundant basis, in the sense that neither hyperidentity is a consequence of the
other. We show this by finding for each of the two hyperidentities a variety
which satisfies it, but not the other one. The variety B of all bands certainly
satisfies the idempotent hyperidentity, but does not satisfy HB(u = v) when u = v
is non-trivial. Conversely, since all instances of HB(u = v) involve words of length
> 2, the variety Z of zero semigroups satisfies HB(u = v) too, and hence by
Corollary 2.2.3 so does V vV Z. But V VvV Z does not satisfy F(x,x) = x, since its

2 _

subvariety Z does not satisfy the base instance x* = x. This proves the following

result.

Proposition 4.1.9: For any non-trivial closed variety V of bands, there is an

irredundant basis of size two for HI(V).

4.2. Nilpotent Varieties

The next varieties whose closures we investigate are the nilpotent varieties N,

=V(x - x =y, - ¥i), for k > 2. We have seen that RB C T\&, so N is
at least N} Vv RB, and we know immediately that N, is not closed. In
hyperidentity terms, the RB condition translates into a requirement that any
hyperidentity satisfied by N, must have the same first variable in each hyperterm,

and the same last variable. This suggests some hyperidentities we might try.
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As in the previous section, all hyperidentities to be used here involve only a
single binary operation. We note that for any k > 2, the binary terms of N, are
all possible words of length < k on the variables x; and x,, plus the word xllc; all
words of length > k are identified in N,. This also means that a non-trivial
identity u = v holds in Ny iff both |u| and |v| are > k. We begin with the

variety Ny = Z.

Proposition 4.2.1: The variety Z satisfies the following hyperidentities:
F(x,F(y,x)) = F(x,x), F(x,F(x,y)) = F(xy),
and F(x,F(y,y)) = F(xy).

Proof: In each case the projection terms x; and x, lead to trivial identities x = x
or y = y. For any other binary terms all three hyperidentities yield only instances

u = v in which |u] and |v| are both > 2.

Corollary 4.2.2: Z = Z v RB.

Proof: From the hyperidentities in the previous Proposition, we have

Zv RBC ZC V(xyx = x2%, x’y = xy, xy? = xy).
This latter variety is clearly contained in the variety

Vil = xy? = xy, 1y = ()% x? = x4, 2y = o),

which by Corollary 3.4.6 is precisely Z v RB.

Proposition 4.2.3: Let k > 3. The variety N, satisfies the hyperidentity
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based on x;x, - - ¢ X} = X;¥g * ¢ ¢ VX

i

Proof: Substituting terms of the form X;5 for i > 1, into this hyperidentity

produces only trivial identities x; = x:. Using terms of the form x;, for j > 1,
also produces only trivial instances. But from any term described by a term
involving both x, and x, we get an identity u = v where both |u| and |v| are >

k. Hence for any choice of term, the resulting identity is satisfied by N, as

required.

We are now in a position to use some of the join results from Section 3.2.
We saw in  Proposition 3.2.5 that for k > 3, the identity
X;Xg * * * X} = XY * * * ¥p.Xi defines the variety N, v RB, which together with
the previous proposition proves that T\& = Ny V RB for k > 3. With only slight
modifications we can also identify the closures of MN, and AN,, the varieties of
medial and abelian k-nilpotent semigroups. Both varieties satisfy the hyperidentity

given in Proposition 4.2.3, and also the medial hyperidentity. Hence we have

MN, VRB C _Ml—\Ik C V(xyzw = xzyw, X Xg © X = Xp¥g ¢ ¢ - yk_lxk).
But by Proposition 3.2.7, this latter variety is in fact MN; vV RB , and we have

m = MN; Vv RB for k > 3. Furthermore, we have
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AN, V RB C AN, € MN, = MN, v RB = AN, V RB,

the last equality from Proposition 3.2.8, so that F\Ik = AN, V RB = Iv_INk for k

> 3. This proves the following result.

Proposition 4.2.4: For k> 2, N = N, VvV RB. For k

v
o

MN, = MN, v RB = AN,

Proposition 4.2.5: For k > 2, the hypervarieties ¥(N, V RB) form a countably

. -, 1 . . (YY)
LI111Le Cuialll 3k »n v,

Proof: The hyperidentities in Proposition 4.2.1 are satisttied by Z V RB, but not
by N,, showing that ¥(Z v RB) is properly contained in X(N; Vv RB). For
k > 3, N, vV RB satisfies the hyperidentity in Proposition 4.2.3, based on an
identity which is not satisfied by Ny, so that (N, VvV RB) is properly contained

in X(N, b Vv RB). This gives a countably infinite chain of hypervarieties.
Note that the hyperidentity exhibited in Proposition 4.2.3 for N, forms a

basis of size one for the family of hyperidentities satisfied by N, (or N, Vv RB),

since its base instance defines the closure Nk Vv RB.
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4.3. Combining Band and Nilpotent Results

In this section we show that varieties of the form V V Ny, for V a
non-trivial closed variety of bands, are also closed. We begin with B v N;, and
then extend to subvarieties of B. Recall from Proposition 3.4.1 that for k > 2,
the variety B vV N, is defined by the identities xk = x2k xky = (xy)k = xyX, and
Xp 0o X = (% - xk)k. Our first goal is to produce hyperidentities based on

these identities. Note that they all at least are satisfied by RB.

Proposition 4.3.1: Let k > 2. The variety B v N, satisfies the hyperidentity

A X

k

based on xk = x2k

Proof: Since any choice of semigroup term to be substituted for the binary
operation symbol of this hyperidentity leads to an identity of the form x® = xP for
some a and b > 1, it is clear that B satisfies the hyperidentity. Moreover, it is
also clear that either a = b (terms xi for i>1), or a and b are both > k (terms
x;' for j>1 or xixg for i+j>1). Hence N, satisfies the hyperidentity too, and so

does the join B v N, by Corollary 2.2.3.

Proposition 4.3.2: Let k > 2. The variety B v N, satisfies the hyperidentity
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based on x%ky = (xy)k, and its dual.

v

Proof: By construction, using a projection term x; or x, in this hyperidentity
yields an identity of the form x* = xP, with either a = b or both a and b > k,
or of the form y¢ = y° Using any other semigroup term gives an identity u = v

with both |u| and |v| > k. Hence N, satisfies the given hyperidentity.

To see that B also satisfies the hyperidentity, it suffices to check the four

refnaining binary band terms. Clearly the term x,x, gives the base instance

2k

xZky = (xy)k

, which holds in B, while x,x; gives a dual result. For the term
XXXy, it is easily verified that from either hyperterm we obtain a word which
begins and ends with the letter x, and contains only the letters x and y. In B any
two such words are equal, since they both reduce to the word xyx. Thus the
identity obtained by using the term x;X,x; holds in B. A dual argument holds for

the term XoX Xg.
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Proposition 4.3.3: Let k > 2. The variety B v N, satisfies the hyperidentity

N2 - X, N . /
\ \ . Xi /
. \ .
N } /
k /
based on x, - - - Xp-
Proof: As in the previous two proofs, any non-trivial instances u = v of this

hyperidentity have both |u| and |v| > k, so that N satisfies the hyperidentity.
For B, the two projection terms give trivial instances x; = x; or x, = x;. The

terms x;X, and Xx,x,; yield the base instance and its dual, both of which hold in B.

For the term x,;X,X,, a simple induction argument based on the shape of the

two hyperterms shows that this choice of term leads to the identity
k k
Xp 0ot XXyt XoXp = XX © XgX,.

This too holds in B.

Finally, we consider what effect the term x,x;x, has in the evaluation of the
hyperidentity. In the right-hand hyperterm, evaluation starts at the top of the tree

diagram, with k occurrences of x;: using X,x,x, produces some power of x;, which
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~in B is just x, again. At subsequent stages, evaluation involves expressions of the

form F(z,F(z,y)). But such an expression gives
F(z,yzy) = yzyzyzy = yzy = F(zy),

so by induction an expression

F(z,F(z, . .. ,F(z,F(zy)), . . . ),
with k occurrences of z, gives the same result as F(z,y) alone. From this it
follows that the given hyperidentity yields under the substitution of the term

X,X;X, an identity which holds in B.

Propoosition 4.3.4: For k > 2, the variety B vV N, is closed.

Proof- Always B v N, C B Vv N,. Starting with the hase instances of the

hyperidentities of the three previous propositions, we get

k k
BV N, C ViEk=x¥ x¥}y=(xy)k=xy2k x - - x =x---x)
C Vixk = x2k  xky = k _ ook _ K k
C V(x* = x** |, xy = (xy)* = xy*, xl---xk—xl---xk)
k
- V(xk =x2ka xky = (XY)k =xyk, X4 X = xl ‘ xka (xy)k =xkyk)
C V(xk = x%k, xky = (xy)k = xyk, Xy x = (% xk)k)

by manipulation of identities and then using Proposition 3.4.1. Therefore B V N,

= B vV Ny, and this variety is closed.

The hyperidentities given in Propositions 4.3.1 and 4.3.3 are based on

instances which involve words of length k. Thus these hyperidentities, although
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satisfied by B vV N;, are not satisfied by N, , or by B Vv N, ;. This establishes

that these closed varieties generate distinct hypervarieties.

Corollary 4.3.5: The hypervarieties ¥(B) and ¥(B Vv N,), for k > 2, form a

countably infinite chain of hypervarieties.

The preceding results for B v N; extend easily to subvarieties of B. Let
V = V(x2 = x, u = v) be a non-trivial closed (hence self-dual) variety of bands.

For the join V vV N,, we must distinguish whether or not |u| and |v| are > k.

Suppose that k < |u| < |v|. From Corollary 3.4.6 we know that V v N is

then defined by the four identities xk = x2k xky = (xy)k = xyk, Xy st X =

b

(x; - - - xk)k

,and u = v. Since V.V N, € BV N}, V VvV N, also satisfies the
hyperidentities of Propositions 4.3.1 - 4.3.3, and so we may obtain the first three
of these identities as hyperidentity (base) instances. Now recall from Section 4.1
that V satisfies the hyperidentity HB(u = v), based on u = v. For that

hyperidentity, terms such as xi or x‘;, for i and j > 1, yield only trivial instances,
while any term represented by a word involving both x; and x, leads to an
identity in which both words have length > |u| > k. Hence N, also satisfies
HB(u = v), and so does V V N,. Combining this information, we get V. v N, C

V v N, so that V v N, is closed.

Now suppose that |u| or |v|] is < k. Again Corollary 3.4.6 provides us with

defining identities for V. v N;: besides the three usual ones for B v N,, we need
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* * * * . .
u = v, where u and v are formed from u and v by replacing each variable x

k

by x*. As in ‘the first case we have hyperidentity instances for the first three

identities. However, the hyperidentity HB(u = v) is no longer satisfied by N,, and
our problem now is to find a hyperidentity based on u' = v' instead. We do this
by suitably modifying HB(u = v). Starting with HB(u = v) as described in
Section 4.1, replace each variable x occurring in the hyperidentity by
F(x,F(x, . . . F(x,x)) . . . ), an expression with k occurrences of x. This ensures
that the new hyperidentity is based on o= v It is obvious that this
hyperidentity is satisfied by V: under any choice of term, wherever we previously
had x we now have x? for some 2a>1, but such a change makes no difference
J

within B. It is also clear that N satisfies the hyperidentity, since x; or x, terms

give trivial instances and all other terms give instances of sufficient length.

%

Therefore V v N, satisfies the hyperidentity, and we are able to obtain o= v

as a hyperidentity instance. Putting all this together in the usual way, we obtain

Vv N, € Vv N in this case too.

Finally, if V is a variety of bands which is not closed, we have V v vi =V

by' Corollary 4.1.8, and it is easy to see that V. v N, = V v vd v Ny. All of

this proves the following result.

Proposition 4.3.6: If V is a non-trivial closed variety of bands, then V v N is

also closed. If V is a variety of bands which is not closed, then V v N, =

Vv Vvdv N
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Figure 4.3 shows a part of the image X(L(CS)) of hypervarieties generated by

closed varieties of semigroups.

AB VN
A(B v Ny ‘
AB VN, A
W e
| .
l | [ —
N(V x2 = X, XYyZX— X {VN2)

_JM(RBVN

Figure 4-3: A Portion of the Lattice X(L(CS))
Our previous results prove that the hypervarieties shown in Figure 4.3 are all

distinct. For convenience of notation, we will use N; for the trivial variety, with
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V v N, = V for any variety V. Then any two hypervarieties in the diagram can
be represented as X(V v N,) and ¥(W v N,) for some V and W in L(B) and
some k and | > 1, with either V. # Wor k # I. fV # W, we may use a
hyperidentity HB(u = v) to distinguish the two hypervarieties; if k # 1, we use

the hyperidentity of Proposition 4.3.1.

We know from Proposition 3.1.1 that ¥(RB) is an atom of the lattice XV.
Other results from Chapter 3 allow us to show that between the hypervarieties
shown in the first two columns of Figure 4.3, no other intermediate hypervarieties
of the form X(V), for V in L(S), are possible. First, since ¥ preserves joins, the
join of any two hypervarieties in the first two columns is again one of these
hypervarieties. Now suppose that X(V Vv N,) is one of the hypervarieties in the
diagram, with V a closed variety of bands and k = 1 or 2, and that

H(W) € ¥(V v Np) for some variety W of semigroups. Then WC Vv N, =

<

v N €V VN, =V Vv Z By Proposition 3.3.5 then, either WC V or

W= (Wn V) v Z I WC V, then Wis a closed variety of bands, and
(W) = X(W is one of the hypervarieties below ¥(V) in the first column of the
diégram. Otherwise, if W= (WN V) v Z, then (W) = ¥(W = X(Wn V) v Z),
with W N V a closed subvariety of V, so it is one of the hypervarieties below
H(V v N,) in the second column of the diagram. We conclude therefore that no
other hypervarieties of the form X(V), for V in L(S), are possible in the first two

columns of Figure 4.3.
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Chapter 5

Hyperidentities for the A  ’s

In order to obtain any results about closures of commutative varieties, we
must first produce some hyperidentities which they satisfy. @ The problem of
constructing hyperidentities which are satisfied by a given variety and in some
sense “define” that variety is not in general an easy one. For varieties of bands,
for instance, the task was made much simpler by the presence of idempotence and
duality, both very strong properties. In this chapter we construct some families of
hyperidentities satisfied by the commutative varieties A and An’m, n, m 2> 1.
These hyperidentities provide us with information about the hypervariety operator
U, as well as with instances which will be used in Chapter 6 to determine the

closures of some of these varieties.

In Section 1 we illustrate some general discussion about the construction of
hyperidentities with a specific example, the Kp family. Section 2 gives a new
construction technique for building a hyperidentity corresponding to a given
semigroup identity, subject to certain restrictions. This technique is then used to
obtain several results about the behaviour of ¥ on L(A) and other lattices; for

instance, we show that ¥ is injective on the lattice of varieties of commutative
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monoids. A different family of hyperidentities is examined in Section 3, this time
depending on a “length parameter” t. In the final section this length parameter is
used to give restrictions on what types of hyperidentities some of the A__’s can

satisfy.

5.1. Construction of Hyperidentities

The hyperidentities to be considered in this Chapter will all involve only one
operation symbol F, which is binary. This, plus the fact that we consider only
commutative or medial varieties, will be strongly exploited. In particular, we note
that for commutative varieties, any binary term t(x,,) can be expressed as xix;

for some i, j 2 0, i+) 2> 1.

Once again using Taylor’s method of representing hyperidentities by trees, we
now want to consider (not necessarily complete) binary trees. In a binary tree of
height 1, we may associate with each leaf of the tree an I-tuple of i’s and j’s,
corresponding to the path taken from the root of the tree to that leaf: an i in the
kth position indicates a left branch taken at node k, while a j indicates a right
branch (1 < k < 1). Since we will be considering commutative varieties, we may
abbreviate such an l-tuple as itjl't, where 1 < t < |l. In a complete binary tree,

1 . . ote
for example, there are (t) leaves with associated l-tuple 1t_]l‘t, for0 <t £ 1L

The importance of this method of associating to each leaf in a binary tree an

index i‘j"t comes when we consider the tree as representing a hyperterm. Suppose

we label the leaves of the tree with the r distinct variables x;, ..., x, (r >
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1). If we now replace the binary operation symbol of the tree by the binary term

x'lx; for i, j > 0, and evaluate, we get an expression of the form
xalxaz . . e xar’
1 2 r

where each exponent a, is precisely the sum of all the l-tuples itj*t associated with
the leaves labelled x,. Here we are using a commutativity assumption to group
together all occurrences of each variable x,. In this chapter such an assumption
will usually be justified; if it is not, we assume at least the presence of mediality,

and then keep track of the first and last letters in our expressions.

Our firet hyneridentity constriuction iliusirates these ideas.

Construciion:

Let p > 2 be a prime. Form a complete binary tree of height p, and to each of
its 2P leaves associate an index ikjp'k, as described above. We will label two leaves
with the same variable name if their associated indices are the same. In particular,
there is exactly one leaf (the left-most one) with index iPj’: label this leaf x. There
is exactly one leaf (the right-most one) with index i%P: label it y. In between, for
1 < k < p-1, there are (:) leaves corresponding to iXjP¥: label each such leaf

p

z,- Note that for each such k, the number (k

) of leaves labelled x; is divisible by

p- Call this labelled tree Sp. Finally, let Kp be the hyperidentity formed by

equating Sp and the binary tree representing F(x,y).

Example: For p = 3, we get the hyperidentity K,
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or

The hyperidentity Kg is given in [15] as a hyperidentity satisfied by the
variety of rings of characteristic 3, with the suggestion that it can be generalized

to rings of characteristic p.

Proposition 5.1.1: Let p > 2 be a prime. Then the variety Ap satisfies the

hyperidentity Kp, while the varieties Al,p’ A, and Aq do not, for any prime

qQ # p-

Proof: Any binary term of the variety Ap is of the form x;x; for some

0 <1ij) < p,i+j > 1. We must examine the identity which is obtained
from evaluation of Kp under the substitution of such a term. Making use of the

comments above, we obtain an identity involving the letters x,z,, . . and y;

© Zp1
x appears to the power iP on the left-hand-side and to the power i on the

right-hand-side; y appears to the power jP on one side and to the power j on the

other; and any other variable z, appears to the power (:)ip'kjk on one side and
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not at all on the other. Since iP is congruent to i modulo p, jP is congruent to j

modulo p, and (p

k) is congruent to 0 modulo p for any 1 < k < p-1, it follows

that this identity does hold in Ap. Thus Ap satisfies Kp.

Since K_ is based on the identity
" € (3 ()

XZ) 2y 2,y Y = Xy,

which does not hold in A or A nor in any Aq, for q a prime different from p,

1,p’

the remaining claims of the proposition hold.

Ve B 1 0, ML L ncernmintin~an MIA V Ffrwe v e A anwn all Alrdinat and ana ~F
- b Y A Aa (ST S T W Ry S T ‘n - anra 4 & -\ - N ~bh s b GAEAN - s & T e -
J v p/’ Y v b £

them are equal to M(A).

The Kp hyperidentity can also be used to answer a question posed by Taylor
in [15] about varieties of groups. For any prime p, the variety Gp of abelian
groups which satisfy xP = 1 satisfies the hyperidentity Kp: the proof of Proposition
5.1.1 still holds if we allow binary terms xixg where now i and j may be < O.
Since the base identity (described in the proof above) does not hold in G, for any
prime q # p. we are able to distinguish by hyperidentities the various varieties
Gp. p > 2. p prime.

The basic hyperidentity Kp can be modified in several ways. For instance, if
we identify all those variables z, in Kp whose associated indices i¥jP¥ have
k < p/2 with x, and all remaining z,’s with y, we get a hyperidentity based on

the instance

81



p-1 op-1
x? y2 = Xxy.

This hyperidentity is satisfied by A17p but not by Az,p, showing that these
varieties generate different hypervarieties when p is prime. However, the general
construction introduced in the next section will imply this result, along with many

others.

5.2. The H(u = v) Construction

In order to distinguish between the hypervarieties determined by two distinct
varieties of semigroups, we need to produce a hyperidentity satisfied by one which
has as an instance an identity not satisfied by the other. Ideally, we would like a
method which given an identity u = v produces a hyperidentity, preferably omne
based on u = v, which is satisfied by V(u = v) or at least by
V(xy = yx, u = v). With varieties of bands we were able to do this. but for the
A, s we usually cannot do so. For one thing, since X(RB) C (V) for any
variety V, we must at least modify u = v into something that is satisfied by RB.
Other “length” factors are also involved, as we will see in later sections. In this
section we present a modified version of the ideal method described above: given
any u = v, we produce a hyperidentity based on a rectangularized and padded
version of u = v, which is satisfied by V(xy = yx, u = v). We then examine

some uses of this construction method for particular identities u = v.

Construction: Let u = v be a semigroup identity, with k = fu| < |v|] = L

Let w be any variable not occurring in either u or v. The hyperidentity H{u = v)

will consist of two complete binary trees, each of height 1, labelled as follows. Each
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tree will have 1 leaves with associated index i"!j. On the first tree, label k of
these leaves with the k letters of the word u,in order, and label all remaining
leaves with the letter w. On the second tree, label the | leaves with this index
with the letters of the word v, and all remaining letters with w. Note that the
left-most. and right-most letter on each tree is w, and that these four occurrences
of w are all at height |; this ensures that projection terms of the form xi or xg

always give only trivial identities.

Proposition 5.2.1: Let u = v be any non-trivial semigroup identity. Then both the

varietioe Vivy = v¥ n = v) and V(xyvzw = x7zyw, u = v) satisfv the hvperideniitv

Proof: Upon substitution of the term x;x; in H(u = v), we obtain the identity

SER ST

1 1.
wia w2 = wlvl JwP,

where b = Zi=2 (i)il"‘j" and a = b + (1 - k)i*!j. (This assumes of course that

we use the medial identity to collect all the letters in the words u and v together,

vet leaving the first and last letters (w) alone.)

If k = 1, then it is clear that V(xyzw = xzyw, u = v) satisfies this identity
for any choice of i and j > 0. f k < 1, then V(xyzw = x2yw, u = v) also

satisfies the identity x¥ = xl

Hence w® = wP holds, since b > kand a - b is
divisible by 1 - k. So in this case too V(xyzw = xzyw, u = v) satisfies the
required identity. Therefore this variety and its subvariety V(xy = yx, u = v)

both satisfy the given hyperidentity.

83



Using i = j = 1 in the identity of the proof above, we see that H(u = v) is
based on the identity
2lk-1 211 *
wuw = wWYwW . (*)
Thus we have rectangularized and “padded out” the original identity u = v. But
although this falls short of our ideal, it nevertheless has many interesting

consequences.

One of these involves looking at varieties of commutative monoids. When an
identity element 1 is available, it follows that a variety satisfies the padded version
of uw = v iff it satisfles u = v. Thus for any two distinct varicties of
commutative monoids, we can use an identity satisfied by one and not the other

to produce a hyperidentity satisfled by one and not the other.

Corollary 5.2.2: The operator ¥H 1is injective on the lattice of varieties of

commutative monoids.

X is not injective on the lattice of varieties of commutative semigroups, since

we will show in Section 5.4 that H(A,) = X(A, V Z).

An important special case of the H(u = v) construction is obtained when we
take u = v to be xy™ = x or x® = x™™, This gives us hyperidentities satisfied

by the varieties A and A . Instances of these hyperidentities will be valuable

when we consider Tim and 7\nm in Chapter 6. For now they also allow us to show

that ¥ distinguishes various subvarieties of the A ’s and A | ’s.
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The relationships between the varieties A~ and An,m for m, n > 1 are
discussed in [5]. The subvarieties of A are precisely the varieties A), for 1 a
divisor of m. For m > 2, the subvarieties of Al,m are the A, and Al,l’ for 1 a
divisor of m; the lattice of such subvarieties is in fact isomorphic to the product of
the lattice of subvarieties of A;, = SL and the lattice (under divisibility) of
divisors of m. Thus for any m 2> 2, A C Al,m’ and if | divides m then

A, C A and Al,l - Al,m' Also Ak,l - An, if k < n and 1 divides m, for k, 1,

m

n, and m all > 1. Each such inclusion gives us a corresponding one when we

apply ¥. Using the H(u = v) construction we get the following results.

Proposition 5.2.3:

i) Form 2> 1, %(A

ii) For m > 1, ¥(A ) < KA )

iii) For m > 2 and | a proper divisor of m,

H(A) € H(Ap) and H(A)) G H(A, L)

m)

Proof: All of these results are handled by applying the H(u = v) technique to the

relevant identity. We illustrate only one case, ¥(A

) € X(A for n and m

n,m n+l,m)’

both > 1. By Proposition 5.2.1, A _ satisfies the hyperidentity H(x" = x"*+m).
By the remarks following the proof of that Proposition, this hyperidentity is based
on the identity

wxw? =  wx"tmyb,

where a - b = m and b > n. Since this identity is not satisfied by A we

n+1,m>

have produced a hyperidentity satisfied by A _ but not by A

n+1lm-*
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It is known (see [5]) that if V is a variety of commutative monoids, then
either V = An'1 for some m > 1, or V is the variety of monoids defined by the
identities xy = yx and x® = x"™™ for some n and m > 1. In fact the natural
map between the A _’s and An,m’s and the lattice of varieties of commutative
monoids is a lattice isomorphism. Thus Proposition 5.2.3 extends to a second proof

that ¥ is injective on the lattice of varieties of commutative monoids.

A different approach to the study of the varieties of commutative semigroups

has been used by Nelson [8], who defined the varieties A; m" For r > 0 and n

b

— — n — n+ —
Aim = Vixy = yx, x" = xMTm xTyt = xf+myn)
r
It iz clear from thic definiticn that A . C A, for any 7 > 0, and that
b b
r . r r
A = A for r > n. Nelson has shown that the interval [A | A ]
n,m n,m n,l nm

consists of all the varieties A; ; Where 1 divides m; and that the interval

b

0
n,m’ An,m}

(A consists of all the varieties A;m where 0 < r < n. Our

1

hyperidentity construction technique then shows that all the corresponding

X-inclusions are proper ones.

Proposition 5.2.4: For any n and m > 1, any 1 < r < n,and 1 > 1 a proper
divisor of m,

) (A

r
n,l) F

i) %(A

iii) X(Ai,m) C
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We may also use the H(u = v) hyperidentity technique to show that the
lattice ¥(L(A)) is not modular. It is known that the lattice L(A) of varieties of
commutative semigroups is not modular (although the A _’s and A  ’s form a

large distributive sublattice). Schwabauer [13] gives the following example. Let

vV, = Vi = yx, xy? = x%8, x¥ = x40,
V2 = V(xy = ¥X, x2y8 = x3y7s x4y6 = x5y5),
and V; = V(xy = yx, xy° = x%8, x%7 = x%5, ¥ = x%°).

Then V, C V., but (V,NV,} v V, satisfies xy? = x°y® while V. n (V,VvV,) does
3 1 1 2 3 1 2 3

not. So (V,NV,) V V, is properly contained in V, N (V,VV,), and L(A) is not

modular. Since V, N V, C V,, in fact (V,nV,} Vv V, = V,. When we apply X

to the various varieties involved, we get the sublattice of ¥(L(A)) shown in Figure

5.1 below.

H(Vy) v X(V,)

\ .

H(V,) N X(Vy)

Figure 5-1: A Non-Modular Sublattice of ¥(L(A)).
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We now show that these five hypervarieties are all distinct. First, consider
X(V,) and ¥}(V,). The hyperidentity H(x2y8 = x3y7) is satisfied by V,; but the
padded version of x%y® = x3y7 is not satisfied by Vg, so neither is this
hyperidentity. This shows that ¥(V;) is not contained in }(V,). Analogously, we
use H(xy® = x%®) to show that X(V,) is not contained in }(Vg). From this it
follows that ¥(V,) N M(V,) is properly contained in each of ¥(V,) and ¥(V,). It
also follows that X(V,) is properly contained in the join H(V,) Vv ¥(V,).
Similarly, since V, satisfies H(xy® = x%y5) while the variety V; N (VyavV,) does
not, we have ¥(V3) properly contained in ¥(V, N (V,vVy)). Finally, suppose that

X(V,; N (VavVy)) = X(VavV,). Then we would have
H(Vy) vV X(Vg) = H(V, v V)

XV, n (Vy v V)

IN

(V) N X(V, Vv V)

C X(Vy),

so that ¥(V,) € ¥(V,). But this is false, since V, satisfies H(x37 = x%y®) while
V, does not. So we must after all have ¥(V, n (V,vV,)) properly contained in

H(V,VV,). This proves the following:

Proposition 5.2.5: The lattice ¥(L(A)) is not modular.

5.3. The Parameters t(m) and d(m)

The hyperidentities discussed in the previous section involved a process of
padding identities. The padded identities will be used in determining closure

results, but they alone are not sufficient. We now consider a new family of
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hyperidentities, while examining the question of how much, if any, padding is
unavoidable. © The hyperidentities to be considered here all involve binary trees of
the same shape, which we we will refer to throughout this section as the basic

(binary) shape:

We are also still interested mainly in abelian or medial varieties, so we will make
use again of the comments of Section 5.1.) One of the simplest hyperidentities of
this shape which we might try is Hn,k’ based on the identity x* = x"tX Our first

investigations of this hyperidentity reveal the following:

Proposition 5.3.1: Let n > 2. The variety A, satisfies the hyperidentity H for

k =1 and k = 2, but not for k = 3.

Proof: Any identity produced from H | has the form x* = xP for some a and
b > 1. For k = 1 and k = 2, it is a matter of routine verification that for any
such identity, we have either a = b, or b > a > n and b-a congruent to 0
modulo k. For k = 3 and n = 2, however, evaluation under the substitution of

the term xg yields the identity x?2 = x18 which does not hold in A, .
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Note that this proves again, in the limited case k = 1 or 2, the result of
Proposition 5.2.3(i). But since the hyperidentity here involves only one variable x,

we may also extend to the non-commutative case, with
A(Byy) & H(Bs i) & H(Byy) R for k = 1 or 2.

But for k > 2, even in the commutative case, we must look further.

When we examine one-variable hyperidentities of this shape further, an
interesting pattern emerges. We discover two parameters associated with each
natural number m, whose relationship with n seems to determine which of these

hyperidentities are satisfied by which A varieties. For any m > 2, write

m = P
as a product of distinct primes. We define

t(m) = max{a;, ..., a,},
the highest power of a prime to divide m. This parameter t(m) seems to measure

“how long” hyperidentities have to be, in a sense to be made more precise later.

We also define

d(m) — ¢(pa1+1 ... pav+1)’
1 v
where ¢ is the Euler-¢-function. By common properties of this function, it follows
that for each prime divisor p of m, if p® divides m but p®*! does not, then d(m)

is divisible by p%(p - 1). This also implies that m divides d(m). For the special

case m = 1, we set t(m) = d(m) = 1.

Before proceeding with an examination of hyperidentities, we give two

technical lemmas. These embody some congruence properties which will be used

90



repeatedly in our hyperidentity proofs. We will also make use of Euler’s Theorem,
which states that if j is a number relatively prime to m, then jd’(m) is congruent

to 1 modulo m.

Lemma 5.3.2: Let p be a prime, ¢ > 1, and 2 < j < p%-1, and let j and p® be

relatively prime. Let d > 2 be any number divisible by p*(p - 1). Then

(69 - 1)/(j - 1) is congruent to 0 modulo p°.

afnat+ly .
Proof: By Euler’s Theorem, _]‘Mp ) is congruent to 1 modulo p®*l, and since
¢{pa*tl) = p%(p - 1) divides d, we have j9 - 1 comgruent to O module potl.
Thus if j is not congruent to 1 modulo p, or if j is congruent to 1 modulo p but

2 the desired congruence will hold. So we now

is not congruent to 1 modulo p
assume that j is congruent to 1 modulo pﬂ, but j is not congruent to 1 modulo
pP+l where 2 < B < a - 1. In this case, we need to show that jd-1is
divisible by p""*‘ﬂ. By assumption we may write j = kpP+1 for some k > 1, and

therefore

i

4 -1 (kpP + 1) - 1

= Ty, (‘f) (kpP)L.
>

Any terms of this sum for which gl o« + B are divisible by p® * A. Thus it

suffices to prove that for those 1 for which Al < a + f, the coefficient (‘:) is
divisible by p®t#Al For 1 = 1 this is easy, since (‘:) = d is divisible by p® by

assumption. For | > 2, we write
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We first examine quotients of the form (d-w)/w, where 1 < w < I-1. There are
three cases. If w is not divisible by p, such quotients may be ignored. If w is
divisible by p? for some v > «, then w > p? > p% so 1 > p% therefore

Bl > Bp* > Ba > B + a, so in this case ((li)(kpﬂ)l is already divisible by pA+e

anyway. If however w is divisible by p? for some 1 < v < a, then d - w 15
divisible by p? too. Hence in any case the quotients (d-w)/w remove no powers of

p from our total.

Finally, consider the quotient d/l. Again if p does not divide 1, we have no
problem, since p* divides d. Suppose then that | = bp? for some v > 1 and
some b relatively prime to p. As before we need only consider v < a. Then
v < 1,50 v € -1 < J(I-1); therefore a-y > a-B(I-1). Since d/1 is divisible by

p% 7, it is thus divisible by at least p®-B-1) This means that (‘:) (kpﬂ)l is divisible

by pa-ﬂ(l-l)+ﬂl = pa+ﬂ’ as I'eq'IJil'ed-

Lemma 5.3.3: Let p be a prime, and a, f, j, and d be natural numbers such that

B > a 2 < j < p%l, and p%p-1) divides d. Then both @8 - 1) and

jA(Gd - 1)/( - 1) are congruent to 0 modulo p®.
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Proof: If j is not relatively prime to p, then p divides j, and jP is certainly
divisible by p®, proving both claims. If j is relatively prime to p, then by Euler’s
Theorem plus the fact that ¢(p®) divides p%*(p-1) which in turn divides d, we have
j3-1 congruent to 0 modulo p®. This proves the first claim in this case. The
second claim, in the case where j is relatively prime to p, is proved by the

preceding Lemma.

Corollary 5.3.4: Let n and m be > 1,2 < j < n+m-1, and 1 £ i < n+m-1.

Let d = d(m) and let 8 > t(m). Then j#(j4-1) and ij”(j9-1)/(j-1) are congruent

to 0 modulo m.

Proof: The congruence modulo m reduces to a series of congruences modulo p%,
one for each primec p for which p® divides m but p®*! does not. We have seen
that for each such p, p*(p-1) divides the parameter d(m). The result then follows

from the previous Lemma.

We are now ready to consider some hyperidentities for the variety A . First
we use the shape referred to earlier as H 4, where d = d(m). With the right
conditions on n, this is successful. Note that this next result includes the two cases

already seen in Proposition 5.3.1

Proposition 5.3.5: Let m > 1, and let t = t(m) and d = d(m). Let n > t+1.
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Then the variety A _ satisfies the basic shape hyperidentity based on the identity

xt = xntd,

Proof: The case m = d= 1 was already handled in Proposition 5.3.1, so we may
assume that m and d are > 2. Since the hyperidentity involves only the one
variable x, checking whether An’m satisfies the hyperidentity reduces to comparing
two exponents on X. From any binary term xixg, we obtain the two exponents
i+ 44+ ... + i 4 ol
and i+ i+ ... + iptd? 4 gerdl

for 0 £ 1, j £ n+m-1.

If j = 0, orif i = 0 and j = 1, these exponents are equal; otherwise we
must show that they are both > n and congruent modulo m. It is clear that
any other choice of i and j values does make both exponents > n. Ifi = 0 and
j > 1, the exponents become j™! and j®*d-! and since n-1 > t the difference

jri(ge

- 1) is congruent to 0 modulo m by Corollary 5.3.4.
Now assume that i > 0. If j = 1, we get only (n-1)i+1 and (n+d-1)i+1,
which are congruent modulo m since m divides d. For j > 1, the difference in the

exponents becomes

i+ i+ ... 4 intd2 4 jntdd
S U | SRR S | Lo T L )
= ™4+ - 4 ) 4+ G-

= ™ d-0/6-1) + G-,
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Again by Corollafy 5.3.4 this last quantity is congruent to 0 modulo m, since

n-1 > t.

A close examination of this last proof, along with the proofs of the preceding
technical lemmas, reveals some of the significance of the two parameters t and d.

are

[

Each plays a role in assuring that our congruences work when terms xix
substituted into the hyperidentity formula. When j is relatively prime to some
prime p dividing m, we need to use d(m) rather than just m to ensure the
presence of enough powers of p, as in Lemma 5.3.2. When j is not relatively

prime to such a p, we need n-1 > t, or n > t+1, again to provide enough

powers of p.

In the situation where 1 < n < t, we would like a hyperidentity based on

xn

= x"M or even on x® = x4 which is satisfied by An,m. Using the Kn,d
shape this is impossible. (We will discuss in the next section the question of
whether it is possible using a different shape of hyperidentity.) However, we can
use the same shape if we again pad out our base identity to a suitable length,

namely length t+1. Notice in the following proof how once again we have

contrived a factor of jt.

Proposition 5.3.6: Let m> 2, t = t(m) and d = d(m), and 1 < n < t+1. The

variety A . satisfies the basic shape hyperidentity based on the identity

Yy oy Xt =y, ysxn+d, where s = t+1-n.
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Proof: Once again we reduce to a comparison of exponents, this time for each of
the variables y,, . . . ,y, and x in turn. For each variable y, 1 < I < s, we
clearly have the same exponent on each side of the hyperidentity. So we need
only examine the exponents on the variable x. For any 0 < i, j £ n+m-1,
i+j > 1, these exponents are
i + ijs+l 4+ -+ ijs+n-2 + js+n-l
and i + ijs+l + ... 4+ ijs+n+d-2 + js+n+d-l.
If j =0,0orif j =1 and i = 0, these are equal; otherwise, (even if i = 0,) they
are both > n. We check whether their difference is congruent to 0 modulo m.

This difference is

- js+n-l

ijs+n-l + ijs+“ 4+ .+ ijs+n+d-2 + js+n+d-l
= jptnl (1+j+ -+ + jd-l) + js+n-l(jd_1)
= gt (41)/G-1) o+ Fmigd -
= gadn/6-1n + BfG4-)
using the fact that t = s+n-1. By Corollary 5.3.4, this difference is congruent to

0 modulo m for any 1 < j < m+n-1.

By dualizing the preceding arguments (including the technical lemmas,) we

obtain the following similar results.

Proposition 5.3.7: Let m > 2, and t = t{m) and d = d(m). Let 1 < n < t+l,

and s = t+1-n. Then the variety A _  satisfies hyperidentities based on the

following instances:

1. xnyl o o ys = xn+dyl « o ys;
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2.y, Y, X =Y R ;
n n+d
3. Xy, ¥ Ys = Xy, Yo Y
Proof:

1. This is just the dual of the hyperidentity seen in Proposition 5.3.6. The proof

is therefore obtained by interchanging the roles of i and j in the previous proof.

2. The exponents obtained for the variable y,, . . .,y _; are the same on either

side of the hyperidentity. For x we have exponents j*+71

and j5+“+d’1, whose
difference jt™1(jd-1) = j*(G9-1) is congruent to 0 modulo m. Finally for the
variable y_ the difference in exponents is easily shown (as in the proof of

Proposition 5.3.6,) to be ijt(j4-1)/(j-1), which by Corollary 5.3.4 again is also

congruent to 0 modulo m.

3. This is proved similarly to 2.

The next two propositions involve a similar construction of a hyperidentity
corresponding to the identity x™lyx = xt-1+myy  As before, we cannot use such

an identity itself as a base instance for a hyperidentity: to begin with we must use

n-14d

d(m) instead of m. When n > t(m)+1 we are able to use x™lyx = x yX as

a base; but for 1 < n < t(m) we once again resort to padding the desired

instance out to length t-+1.

Proposition 5.3.8: Let m > 1, t = t(m), and d = d(m), and let n > t+1. Then
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the variety A _  satisfies the basic shape hyperidentity based on the identity

xn-lyx = xt-1+dyy

Proof: Let 0 < i, j € n+m-1, and i+j > 1. For the exponents on the variable
y, we need ij™! and ij"+d-1 to be either equal, or both > n and congruent
modulo m. If i = 0, j = 0, or j = 1, these quantities are equal. For all other i
and j values, both are > n, and their difference is ij“’l(jd-l). Since we have
n-1 > t(m), this difference is congruent to 0 modulo m by Corollary 5.3.4, for

d > 2. (The case d = 1 = m is trivial.)

For the exponents on x, we must consider the quantities

R I R
and i+ i+ --- + ijotd2 4 gatd
If i = 0 we have jntdjn = j“(jd - 1), which as usual is congruent to 0 modulo m
for all possible values of j. For i > 0 and j = 1, we have (n-1)i + 1 and
(n+d-1)i + 1; again these are congruent modulo m since m divides d. So assume
that i > 0 and j > 1, and consider the difference

™l 4 ... 4 gjrtd2 4 ojad _gn
As usual, this simplifies to ij™1(jd - 1)/(G - 1) + j*(§d - 1), which we know by

Corollary 5.3.4 is congruent to 0 modulo m when n-1 > t.

Proposition 5.3.9: Let m > 2, t = t(m), and d = d(m), and let 2 < n < t. Set

satisfies the basic shape hyperidentity based on

m

s = t+1-n. Then the variety A/

n-1 xn+d-1

xy, + - -y X" = xy; - - -y , and its dual.
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Proof: Clearly the exponents on any variable y), for 1 < | < s, are the same on
either side of the hyperidentity. For exponents on x we have

LS ST 1
and i+ gt 4+ .. 4 st jstn+d-1
As in the previous proofs, the difference of these exponents reduces to
gt - /G - 1) + j*Gd - 1), which we know is congruent to 0 modulo m, as

required.

It should be apparent from the construction of the hyperidentities in the last
four propositions that we did not need the full strength of commutativity. In fact

in each case the hyperidentity is also satisfied by the medial variety M, for the

appropriate n and m values. This will be useful in determining Mm in Chapter 6.

5.4. The Length Restriction Lemmas

It appeared in Section 5.3 that, at least for the particular shape of
hyperidentity being considered there, we could not find a hyperidentity satisfied by
A, n Wwhich is based on a non-trivial identity u = v with luj and |v| < t(m)+1.
Thus the parameter t(m) seemed to measure “how long” a hyperidentity had to be
in order to be satisfied by An,m. We now examine Qhether this is true about all

possible hyperidentities satisfied by A . The results obtained are quite limited,

and we conclude the section with a conjecture involving the parameter t.

Lemma 5.4.1: Let m > 2. The variety A__ cannot satisfy any hyperidentity H for

m
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which a choice of A_-terms gives a non-trivial instance u = v with ju] = 1. In

particular, A -satisfies no non-trivial hyperidentities of the form
x = F( ... )

where x is a single variable and F( ) is any hyperterm.

Proof: Suppose that A satisfies a non-trivial hyperidentity H, and there is a
choice of A _-terms giving as an instance the identity u = v, with ju| = 1. If
|[v| = 1 also, we must have u = v trivial. So we suppose that |v| > 1. This
means that while only projection terms are involved on the left-hand-side of H in
the evaluation to get u, at least one non-projection term must have been used on
the right-hand-side to produce v. Form a new hyperidentity H’ from H by
substituting into H the projection terms in our initial choice of A _-terms, and
identifying all variables as x. Then H" is still satisfied by A_, and it has the

form

X = G( ... ),
for some operation symbol G, where G is not just a variable. Now make the

following choice of terms to use in H’: each k-ary operation symbol will be

e

replaced by the k-ary term x.. This yields an identity of the form x = x™

[

(where e > 1 corresponds to the number of operation symbols encountered before
the first x on the right-hand-side of H’). But such an identity cannot hold in A_,
since m® is not congruent to 1 modulo m. This contradiction establishes the

claim.
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Note that exactly the same proof can be used for the same statement about

A for m > 2. The significance of this result is that it tells us that any

1,m’
instances of a hyperidentity satisified by A or A, = are either trivial or of length
> 2. This means that the variety Z of zero semigroups satisfies all the

hyperidentities satisified by A_. Hence we have:

cinsmre: we now have AV RB vV Z C A for m > 2. and similarly for A ...
These ideas will be expanded upon in the next chapter. For now, we continue

with general results about what kind of hyperidentities A, can satisfy.

Lemma 5.4.3: Let m = p?a, where p is prime, so that t(m) > 2. Suppose that

A satisfies a hyperidentity of the form
| G N R G( --- ),
with the ith component of F consisting of a single variable x,

1 ‘S i < arity of F. Then F = G, and the ith entry of G is also x.

Proof: If F and G were different operation symbols, then we could substitute the
ith projection term for F in the hyperidentity, to obtain a new hyperidentity of
the form

x = G( ... )

still satisfied by A_. But this contradicts Lemma 5.4.1, so we must have F = G.
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Again replacing F by the ith projection term, we obtain x from the
left-hand-side of the hyperidentity. On the right-hand-side, we project down the ith
component until we reach either a variable (which must be x), or another
operation symbol K # F. This latter situation leads to a hyperidentity
x = K(...), again contradicting Lemma 5.4.1. Thus we must eventually reach
an x, having encountered only F’s as we project down the ith component. Let e be
the number of such F’s encountered; that is, the depth at which the x is nested in

its hyperterm. Now consider evaluating the hyperidentity with F replaced by the

P

;- The identity which results is precisely xP = xP°.  Unless e = 1, this

term x
identity will not hold in A_, since p? divides m. Thus the hyperidentity must

have the specified form.

Lemma 5.4.4: Let m > 2, with t(m) > 2. If A_ satisfies a hyperidentity H and

m

some choice of A -terms for H yields an instance u = v from H where |u| = 2,

then u = v is trivial.

Proof: Suppose that A satisfies H as described. Since projection operations do not
chénge the lengths of words, we may assume that H has been modified by
carrying out any projections specified in our choice of terms. Thus we are
assuming that only non-projection terms are used to produce u = v from H. The
only way to produce a word of length two without using projections is from a
hyperterm such as F(___,x, .y, ), using the term X;X; (of appropriate arity)
for F, or such as F(__ ,x, ), using x? for F, in each case with appropriate
values for i and j. In either case, Lemma 5.4.3 guarantees that the instance u = v

will be trivial.
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Corollary 54.5: Let m > 2, t(m)

N3 c Am c TAl,m c %,m'

v

2, and n > 2. Then

Lemma 5.4.6: Let m = p3a where p is prime, so that t(m) > 3. If A_ satisfies a
hyperidentity H and some choice of A -terms yields an instance u = v from H

where |u| = 3, then u = v is trivial.

Proof: As in the proof of Lemma 5.4.4, we may assume that no projection terms
are used in obtaining the instance u = v from H. We consider how a word of
length three may be obtained from the hyperterm, say F( ), on the right-hand-

side of H. There are only four possibilities:

1. F is replaced by the term XXXy for some indices
1 <i#j# k < arity of I, and in the hyperterm F has singie

variables only in its ith, jth, and kth components.

2. F is replaced by the term x?, for some 1 < i < arity of F,

and in the hyperterm F has a single variable in its ith component.

3. F is replaced by the term x?xj, for some 1 < i#j < arity of F,
and F has single variables only in its ith and jth components.
4. F is replaced by the term X;X;, for some 1 < i # j < arity of F,

and F has a single variable x say in its ith component, and a hyperterm

G( ) in its jth component; and under our choice of terms, G( ) also
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gives a word of length two.

Now Lemma 5.4.3 tells us immediately that the first three of these cases lead
to trivial identities. In the fourth case the argument is more complicated. Here

again Lemma 5.4.3 shows that we may represent H by

F(__’x’__’G(____)’____) = F(___,X,__,J(_____),______),

where the x’s are in the ith component on either side, G and J are in the jth
components, and G and J are operation symbols, possibly equal to F or to each

other.

If F # G, then any variable x at depth one in G 1is accessible by
projections, that is, by replacing F by x; and G by x, for the appropriate index k.
But in order to produce the word u of length three, any variable x inside G which
enters into u must indeed be at depth one in G. Thus this particular choice of
terms for F and G will result in an identity of the form x = J( ... ) which
by Lemma 5.4.1 is impossible, unless J is equal to one of F or G. The case
J = F is quickly ruled out, since it allows us to produce an identity of the form

P

2
xP- = xP by replacing F by X; and G by x,, for the appropriate k; such an

identity cannot hold in A_ when p® divides m. So we must have J = G.

Thus we now consider

F(__»x__GL__)___) = Fl__x__,GL__)___)

On the left-hand-side the components of G which are used to form the word u are

single variables, each accessible at depth two by a choice of projection terms for F
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and G. By Lemma 5.4.1, these projections must reach the same variable on the

right-hand-side of H, and the variable must be at the same depth to avoid an
b

identity of the form xP = xP* for b # c and b < 2. This establishes that only

trivial identities u = v can be obtained from H in the case F # G.

When F = G, we consider

F(__,x,__,F(__,y,__,Z,__),___) = F(_.._’x’__’J(___)’_.__._)’

where x occurs in the ith component of the first F on each side, the second F on
the left-hand-side and the J on the right-hand-side occur in the jth components of
the outermost F’s, and y and z occur in the ith and jth components respectively
of the inner F on the left-hand-side. =Now the variable z is accessible on the
left-hand-side by the choice of the projection term X; for F, so it must be
accessible, using only this term, on the right-hand-side too. This forces J = F.
Also we must have z at the same depth, depth two, on both sides: replacing F
by xj. produces zp2 — 2P° where e is the depth of nesting of z on the
right-hand-side. So the right-hand-side of H must look like
F__x_ _F(__K(___)__2___)

for some hyperterm K(__ ) in the ith place in the second F. We will show that
in fact this hyperterm must be a single variable w. Then since u = v is produced
by the choice of X;X; for F, it has the form xyz = xwz, and for this to hold in

A we must have y = w, so that u = v is indeed trivial.

Suppose that K(__ ) is not just a single variable, but involves an

P

operation symbol K of arity > 1. Make the following choice of terms: xij for
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F, and x'; - xi for any other n-ary operation symbol, n > 1. We will also
simplify by identifying all the variables in H as x. Note that A must still satisfy
the resulting simplified identity. Under this evaluation, K(__ ) will produce xT
for some r > 1, with r divisible by p. With further calculations we get the
identity
xr>+2r>2 = xp+rp2+p2.

Thus we need to have p + 2p? congruent to p + rp? + p? modulo m. This
reduces to the requirement that p2(r - 1) be congruent to 0 modulo m. Since p°
divides m, this is only possible if r - 1 is congruent to 0 modulo p. But p divides
r, and r > i =sa this is impossinie. This contradiction shows that K{ )

must after all be a single variable, and finishes the proof.

Corollary 54.7 Let m > 2, tim) 2> 3, and n > 2. Then

Ng & Ay & Ap & A

These results about the significance of the parameter t(m) for length of
instances of hyperidentities satisfied by the variety A are as good as possible for
t(m) = 1, 2, or 3. At length four however the situation becomes more complicated.
There are hyperidentities satisfied by A_, for any m, which have non-trivial
instances u = v with |u| = 4: the medial hyperidentity is an obvious example,
with its base instance xyzw = xzyw. Thus we cannot hope to produce lemmas
such as 5.4.4 and 5.4.6 for higher values of t(m), without at least modifying our
statements to include the medial identity and its consequences. Since the only
“too short” hyperidentities we have found are ones based on consequences of the

medial identity, we present the following conjecture.
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Conjecture 5.4.8: Let m = pfa, with p a prime and a and r > 1, so that

t(m) > r. If A satisfies a hyperidentity H, and some choice of A -terms yields
an instance u = v from H where |u| = r, then u = v is either trivial or a

consequence of the medial identity. Therefore for t(m) > r, MN, e —f‘&n - _Klm'

Note that since MN. = N_for 1 < r < 3, Corollaries 5.4.2, 5.4.5, and 5.4.7
say precisely that this conjecture is true for r = 1, 2, or 3. We have been unable
to obtain a proof for r > 4. It seems difficult to prove anything about all the
hyperidentities satisfied by A _ for t(m) > 4. Kven for t(m) = 4, if we attempt
a proof using the approach of the previous lemmas, analyzing all possible ways to
produce an instance u = v with |u| = 4, we find that a large number of cases
and sub-cases is needed. We have managed, by a very lengthy argument, to
eliminate all but one possible case, which can only arise when the prime p in
question is 2. Obviously, this method is not fruitful, and a different approach is

needed.
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Chapter 6

Closure Results for the A _’s

The previous chapter presented some hyperidentities satisfied by the varieties
An,m under appropriate conditions on n and m. These hyperidentities give us some
instances which _Kn.m must satisfy. In this chapter we combine this information
with the join results from Chapter 3, to identify —An,m in some cases. Since the
hyperidentity results depended so strongly on the interaction of n and the
parameter t(m), we distinguish two cases: n > t(m) + 1, and 1 < n < t(m).
Throughout this chapter we let t = t(m) and d = d(m), and when t + 1 > n,
s = s(n,m) = t{m)+1-n. We conclude with closure results for the rclated varieties
M, and B, and a brief discussion of how the hypervarieties ){(Ap) and

,m
(A, p) for m square-free fit into the lattice X(L(CS)).

6.1. The Case n > t(m)+1

In this section we consider varieties A = for which n is larger than the
length index t(m). We begin with the special case m = 1, requiring then that
n > 2 = t(m)+1. Although this is the simplest case, the same method will be

used throughout this and the next section.
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From Propositions 5.3.5 and 5.3.8, we know that A , satisfies hyperidentities
based on x® = x"! and x™lyx = x"yx. We also obtain the medial identity as a
hyperidentity instance for A_,, since any commutative variety satisfies the medial

hyperidentity. Therefore we have

n+1 n

y X

1\,1 C V(xyzw = xzyw, x" = x lyx = x%yx).

By Proposition 3.2.5, this latter variety is precisely A ; V RB. Since by

Proposition 3.1.1 RB C —An 1» we have proved the following result.

Proposition 6.1.1: Let n> 2. Then T&n L= An’1 v RB.

We note that in this case, we were able to produce a hyperidentity based on
one of the two defining identities of the variety, x® = x™1; it is the abelian
identity xy = yx which must be “rectangularized” into the medial identity to
include RB in the closure. However, if we consider for the moment non-
commutative varieties, we can easiiy determine —n,l and —Ml,l for n > 2 as well.

n+1

The hyperidentity based on x" = x involved only the single variable x, so it is

of course also satisfied by B, ; and M ;. From this it is immediate that B, , is

closed for n > 2: B - _Bnl C V(" = x"'H) = B Similarly for M, ;, we

n,l1 n,l°

obtain both x" = x"™t! and the medial identity as hyperidentity instances, so that
M, too is closed for n > 2. (The cases B, ; = B and M, ; = NB are already

known.)

Proposition 6.1.2: For n > 1, B, and M| ; are closed varieties.
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The situation for m > 2, still with n > t(m)+1, is only slightly more
complicated than for m = 1. As we saw in Section 5.3, we are unable in general
to produce a hyperidentity based on x® = x"™*™ but must use x" = x+d, By

Propositions 5.3.5 and 5.3.8 again, we obtain instances x" = x4 and

xMlyx = x“’l+dyx. But also, by the construction method of Section 5.2 (see

equation (*) after the proof of Proposition 5.2.1), we know that A satisfies a
n,m

hyperidentity based on

w2n+m-n-m-1

.

n-+m
wxnw2 -n-1 — Wxn+m

We will show that this additional instance enables us to get x® = x™*™ after all

hough not directly from a hyperidentity). In particular, let W__  be the

variety defined by the identities xyzw = xzyw, x" = xi+d yi-lyy — x“'1+dyx, and

n _2n+m

n+m
wxw -n-1 - wxn+mw2

--m-1  We have just shown that AAnmCEW L

when n > t+1.

Lemma 6.1.3: Le¢ m > 2 and n 2> t+1. Then W __ satisfles the identities

x? = x"*tM apd x™lyx = xl+myyx

M If m = d the claim is trivial, so we assume that m < d. Since W
satisfies x" = x4, it satisfies x* = x®*+b for some minimal a < n and b dividing
d. Then for any semigroup C in Wn’m and any c¢ in C, the subsemigroup
{ct,catl | .. ,ca+b'1} is a subgroup of C of order b. But from the fourth of the
defining identities for Wn’m we know that any group in Wn’m satisfies x" = x°tm
(by taking w = 1 in the identity) and hence also x™ = 1; that is, the order of
any such group divides m. But now it follows that Wn’m satisfies x* = x2*t™ and

hence also x" = x"+m,
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Using this, and using the fact that m divides d to write d = km for some

k > 1, we get

lyx = xn-1+dyx = xn-1+kmyx
— xn-1+(k-1)m+myx — xn-1+m+(k-1)myx
— xn-1+myx,

giving the required identity for W_ .

Corollary 6.1.4: For m > 2 and n > t+1, _An,m cCw CA Vv RB.

= n,m

Proof: By Proposition 3.2.5, the variety A V KRB 1s detined by the 1dentities

n,m

xyzw = xzyw, x® = x"t™ and x™lyx = x™1tmyx,

Corollary 6.1.5: For m > 2 and n > t+1, 7&nm = A v RB.

n,m

A very similar argument can be used for M . As we saw in Proposition
b

5.2.1, the hyperidentity H(x® = x"™*™) is also satisfied by M_ _, as is the

hyperidentity based on x" = xntd, Thus Mm satisfles the identities

+ + .
Xyzw = Xzyw, X" = x4 and wxhw2 el wxhtmy 2" enem-l Ag g
Lemma 6.1.3, these last two identities imply x® = x*™ as well Then

Mn’m C M’m - Mn’m, and Mn7m is closed when m > 2 and n > t+1. For

B however, we can only say that Bn’m C B C V(" = x“+d) = Bn,d'

n,m’ n,m

Proposition 6.1.6: Let m > 2 and n > t(m)+1. Then Mnm is closed.
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6.2. The Case 1 < n < t(m)

In this section we consider varieties A . for which 1 < n < t(m). This
includes the special case m = 1: then t(m) = 1 = n, and we have only the
variety A;; = SL, whose closure is already known to be NB. Hence we will

assume that m > 2.

When 1 < n < t(m) the length considerations of Sections 5.3 and 5.4 are

involved. In this situation we have the hyperidentities for A _ given In

Propositions 5.3.6 and 5.3.7, giving us the base instances

2y, - - - ye = XMy -y
n n+d

xyl ._._.,ys = xyl ce s o ys,

n n+d

and xyl e ses ys = xyl . .. ys ,
where s = t+1-n. We also know that A, satisfies the hyperidentity
H(x®* = x""™M) as constructed in Section 5.2, with the base instance

+ n+m .

wxlw2' el = gy nmy 20T L Let the variety defined by these four

instances and the medial identity be called U so that Enm cUu in this

n,m’ - n,m

case.

Lemma 6.2.1: Let m > 2 and 1 < n < t. Then U _ satisfies the identities

m

xt+l = yt+i+m

xnyl v e e ys = xn+my1 se se o ys,
n n4+m
xyl « e ys - xyl ss se oo ys,
n n+m
and xyl o s = y s = xyl « o . y s
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Proof: The claim is trivial if m = d, so we assume that m < d. We show first

that U satisfies xt+1 = xtt1+m  From the defining identities for U we know
n, g n,m

m

that it satisfies xt*!1 = xt+1*d, Hence U satisfies x* = x®*P for some minimal
n,m

a and b, with a < t+1 and b dividing d. Now as in the proof of Lemma 6.1.3,

we can produce a semigroup in U__  which is a group of order b, and use the

m
. . n+m n+m
identity wx"w? = 1 = wxttmy2'7-n-m-l 45 show that the order of any such
group must divide m. Therefore b divides m, so that U _ satisfies x* = x®*+m
and xt.+1 — Xt'+1+m.

Next we show that x'*1 = x'*1+m and the given identity x"y, - - - y, =
x“"““y1 « -y, imply x"y; -~y = x“"'my1 “o o Yo The other identities
required may be deduced similarly. Since by construction m > t and n > 1, we

have n+m > t+1; and we may write d = cm for some ¢ > 1. Then

xn+myl ceey, = xn-1+m-t;+t.+1yl - ¥,
- xn-1+m-t.xt;+1y1 - ¥,
— xn-1+m-txt.+1+(c-1)myl ey,
- xn-1+m-t+t.+1+(c-1)my1 -y,
= xn+m+(°'1)my1 .Y
— xn+cmyl A
— xn+dyl Ceeyy
= x"y; -y

Corollary 6.2.2: If m > 2, then —Alm C A, VRBVMN,,.
113




Proof: From Lemma 6.2.1 and Proposition 3.4.8, we know that

A CU C M, _VMN, .. Since by Proposition 3.2.1 M = A, VRB, the
,m 1,m 1,m t+1 1,m 1,m

claim follows.

The case n > 1 is slightly more complicated, since we must introduce
another identity. For 1<n<t and m>2, A _ also satisfies the hyperidentity

given in Proposition 5.3.9, and based on the instance xy, - - --ysx“'1 =

Xy, = - ysxn-l+d-

We will use Y _ for the subvariety of U  _~ which satisfies

this additional identity.

Lemma 6.2.3: Let m > 2 and 1 < n < t. Then the variety Y satisfies the

identity xy, - - - ysx"‘1 = Xy; - - ysxn'1+m, and its left-right dual.

Proof: By Lemma 6.2.1, both U, and its subvariety Yn, satisfy x® = x"*t™, As

m m
before, we assume that d > m, and write d = mc for some ¢ > 1. Then we
have
Xy; c oot ysxn-l = xy, - - - ysxn-1+d
= Xy;--- ysxn-l+cm
= xy, - ysxn+m-l+(c-l)m
= Xy, * - ysxn-l+m_

The dual case is handled similarly.
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Corollary 6.24: Let m > 1 and 1 < n <X t. Then 1”“ C

A, . VRBV MN,_,,

n,
Proof: The claim follows from Lemmas 6.2.1 and 6.2.3 and Proposition 3.4.13.

We know of course that A, =~V RB is always contained in Knm' For the

MN factor, we turn to the length restrictions lemmas of Section 5.4. For

t+1

1 < t(m) < 3, we know from Corollaries 5.4.2, 5.4.5, and 5.4.7 that

MN,,, C€ An’m; for larger values of t(m), we have only the conjecture that

MN,., € An,m' Thus we have the following results.

Proposition 6.2.5: Let m > 2. If 1 < n < t(m) < 3, then

A= An,m V. RB vV MN,_,.

,m
1< < t(m) and t(m) > 4, then

A, VRBVMN,CA_CA _VRBVMN

n,m n,m t+1°

Conjecture 6.2.6: Let m > 2, with t(m) > 4, and let¢ 1 < n < t(m) . Then

Aim=A,. VRBVMN, .

Some slight variations on the proofs of this section allow us to identify V for

some related varieties V. We consider first the varieties A _, for m > 2. Since

A, C Zl,m’ we have the same instances for A as we had for Al,m‘ We also

have the instance
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m 2m+1-m-2 —_

WXy w = WXwW )

upon which H(xym = x) is based. Then as before we argue that

— 1 +1
A, € U, n V(wxymw2m+ R -2)

= A, VRBVMN_,,
where we have used Proposition 3.4.10 to verify that the identities we have do

indeed define A, vV RB v MN,_,. Combining this with the length restriction

information gives the following.

Proposition 6.2.7: Let m > 2. If t(m) < 3, then

A, = A, VRBV MN,,,.

If t(m) > 4, then

A_ V RB v MN, C A, CA,VRBVMN,,

The case for M, |, when 1 < n < t(m), is much the same. We remarked

at the end of Section 5.3 that M, =~ also satisfies the hyperidentities of

Propositions 5.3.6 and 5.3.7; and in Section 5.2 that M satisfies the

n,m
hyperidentity H(x® = x™*t™). From Proposition 3.4.12, the base instances of these

three hyperidentities plus the medial hyperidentity are precisely the identities which

define M, . vV MN

m t+1> Which proves the following.

Proposition 6.2.8: Let m > 2 and 1

IA

n < t(m). I t(m) < 3, then

f tm) > 4, then M Vv MN, C Mm

,m n,m t+1-

Mmnm = M, v MN
-

Mn,m v MNt+1'
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The situation for B, [ is not so straightforward. Without mediality, B,
does not satisfy any of the hyperidentities of Chapter 5, except those involving

only one variable Thus when 1 < n < t(m), all we can say is that

Bnm C V(xt+l — xt+l+d)‘

¥

For example, when n = 1 and m = 2, we have t(m) = 1 and

2

d(m) = m = 2, so B, , satisfies the hyperidentity based on x* = x%. In fact, we

have been unable to produce any hyperidentities satisfied by B,, which are not

also satisfied by B2,2, leading to the conjecture that T31’2 = B2,2. Since B1,2 vV Z
is a proper subvariety of B,,, this suggests that in the non-commutative case
there is more involved in the closure operation than just rectangularizing and

lengthening appropriately.

When m is square-free, the parameter t(m) is 1, and it follows from

Propositions 6.1.5, 6.2.6 and 6.2.8 that

A = A, VvV RB vV MN,

m

A VvV RB v Z

and 7&1 = A

,m 1,m

VRB V MN, = A, _ V RB VLI

,m

We combine this information with a result of Petrich’s to study how ¥ acts

on the varieties A and A, =~ when m is square-free.
b

Proposition 6.2.9 (Petrich [12]:) Let m > 2. Any subvariety V of the variety

A V RB V Z can be uniquely expressed as

1,m
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V = V, vV V, vV V,

where V, C A_, V, C SL, and V;, C RB v Z.

Proposition 6.2.10: Let p be prime. The closed variety -Klp has thirty-two

subvarieties, of which seven are closed, and the inclusions shown in Figure 6.1 are

all coverings in the image lattice ¥(L(CS)).

X (TA[,p)

M%)

| #(RB)

Figure 6-1: A Portion of the Lattice ¥(L(CS))

Proof: Suppose that (V) C W(A; ), and V. C A = A,V RB Vv Z. By
Proposition 6.3.1, V can be expressed as the join of some V, C Ap, V, C SL, and
Vs € RB v Z. Since Aj and SL are atoms of L(S), there are only two
possibilities each for V; and V,; by Proposition 3.3.10, L(RB Vv Z) is isomorphic

to the product of the lattices L(RB) and L(Z), and consists of the eight
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subvarieties T, LZ, RZ, RB, Z, LZ v Z, RZ v Z, and RB Vv Z. Altogether we
have thirty-two different subvarieties of 7-\1p. Examining each of these in turn, we
find that under the closure operator these thirty-two varieties collapse to seven

closed varieties: T, RB, E, NB, NB v Z, Kp, and _Alp' Then V is one of these

seven, and X(V) = X(V) is one of the seven hypervarieties shown in Figure 6.1.
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