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Tfie. purpose of this paper is-to present three cumon m d e f s  

of analyzing poly~hotomous (either n~minal or ordinal scal2d) 

response data. These three models,,roughly speaking, can be 

classified as logit models. Each mode'l is illustrated vfth a 
"4. 

k 

common data set and computational methods for obtaining the 

maximum likelihood estimates of the relevant parameters are 

discussed. Finally, ghese three models'are linked to 

discriminant analysis. 
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to represent the prcrbabili'ty of getting a grade of 

for the ith student. Thus, + ( x i P , )  - + ( x j P 2 )  would 

probability of the ith individual getting a B. The- 
.% 

, function for the.B students was formed by 
Q 

less than B . 
be the 

- - 
likelihood 

\ 

ail< maximum likelihood estimation was again used to estimate p 2  
\ * .R 

and h'ence the probabilities. The probability G•’ getting a C was 

'determined in . a - similar manner. 

S M ' S  approach, although clear and simple, did not treat 
1 3 

GRADE as a trinomial outcome, but'rather as three seperate'sets 
. '  

of Bernbulli data, one for each grade. For each level of xi, 

they considered only the marginal data; whether the ith 
t 

4 

individual did-cr did not get an A ,  whether-the ith individual 

did or did not. get a B, whethera the ith individlal did or did 

, . not get a C. since the data were not fitted in their entirety, 

i t  is-impossible to make a goodness-of-fit test of adequaciy, 

. even when the sample size becomes larger or even with grouped 

data. In fact, SM did not mention anything on goodness-of-fit 

abou t  their model nor did the& ive a complete analysis to the 

5 a t a .  They were more concerned about the introduction of 

discrete models for econometric application. 
+ 
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- pp pp - - p- - - - -- 

The rationale behind the development of multinomial probit 

wmdel is bery complex and i n t e r e s t e d  readers are referred to 
I 

~aganzo( 1980). However, it is easy enough to see that we end up 
i 

with trivariate integrals when the number of crategories grows to 
P 

four. Although special techniques are available., the 

computations are almost impractical with four or more 
h 

categdries. Therefore, unless one has strong belief that probit 

model is t h e  appropriate choice, one would normally choose the 
I 

l o g i t  (logistic) models to analyze this type of data. It is the 

intention of this p a p r  to re-analyze SM's data with different 

forms of logit models. 
% 

DATA T Y P E  
\ 

- Perhaps i t  i s  appropriate here to clarify our data types 

b e f o r e  we move to the discussions of our models, By and large, 
& 

we caR categorize classes of multivariate problems by the type 

3 f  response and e x p l a n a ~ o r y  variables involved, as in the 

C r C  bss-czlass i f  i c a t  i o n  of Table 1 presented below. 



categorical continous 

categorical 

mixed I ? I ? 

response 
variables c F t  inous 

mixed 

a 

/--- - 

-, 
As pintedgat by Fienbergi1980). the cells in the bottom 

row of this table all contain question marks in order to 

indicate the lack of g e * % r ~ ~ ~ a c c e p t e d J c l a s s e s  of multivariate 

b 

d 

.- - models and methods'designed to deal with situations involving 

e 

mixtures of-continuous and discrete response variables. The r , 

cells in the middle row rrespond to problems dealt with by 

standard mult'ivariate analysis, involving techniques such 

(d) analysis of variance, 

( e l  regression analysis, 

( f )  analysis of covariance. r 
C L ~  present data fall into cell (c), However, we will also 

+ 

iiiustrate the situation of cell {a) by categorizing the \ 

explanatory variables. In particular, our further discussions 

v l l l  be d i v i d e d  into four chapters as follows: 



considering .the data to have, come from cell (.a). 
Y 

2. In chapter two, multinomial logi't models are fitted by 

considering the data to have come from cell (c). 1 
I 

3 .  In chapter t h w ,  a different losit model is used by 
j 

I 

considering the data not only to have come from cell (c) 

but also incorporating the fact that the response variable 

possesses order. , 

4. In the fourth and final chapter, we will finish the 

discussions after the introduction of some further 

application of these models. 



CHAPTER ONE 

ANALYSIS I 

INTRODUCTION 
?L L 

Casual inspection of the data reveals a high correlation 

P' 
between PSI and GRADE; eight of the 14 students taught by the . 

1 - 
- PSI method earned A's while only three of 1 8  non-PSI students 

received A's. A 2x3 contingency table , shown as ~ a b i e  1 . 1  , is 

produced below to cross-classify each student by GRADE and PSI. 

+ SF? 
TABLE 1.1  : GRADE DISTRIBUTION BY TEACHING METHOD 'i 
'I 

,%T' .I 

- , 

GRADE 
A B C - 

PSI 

I t  is clear that we couid assume we have a multinomial 
C 

2 1 

sample with six possible outcomes on Table 1 . 1 .  One of the ptime- 

- interests in.this table is .to test whether grade and teaching 
C 

w t h o d  are independent. The classical way to do this is via the . '  

Pearson chi-square test. In this case, the Pearson chi-square 



-- -- 

stati-stic is given by 

4 2 
I 

3 
where xi, = Z xij and x = Z xij. Comparing this value with a 

j = l  +j i=1 
table for the x 2  distribution with 2 degree of,freedom, one may 

conclude that the probability of getting each grade is different 

for the two groups. Howevar, it is deceiving to conclude at khis 
-- I 

s t ag&  that PSI is an effective teaching method since PSI in this 

follow-up study is highly confounded with many uncontrolled 

factors. 
/ 

- - 

>f we were to examine the data more closely, we would find 

that TUCE and GPA are also posigively related to GRADE. Students 
0 

earning an A had an average GPA of 3.43, while other students - - 1 
average only 2.95, for example. Apd those taught by PSI method 

had, on average, slightly higher GPAs and TUCE scores. A 

multivariate analysis is required to ascertain whether the 

PSI-GRADE relationship is independent of or ifidaddition to other - -  

factors, or whether the apparent positive relation is spurious. 

I t  is a fundamental proposition of data analysis7hat apparent 

relationships between two variables can disappear completely if 
/b- 

w e  control for the influence of other variabfes. Thus, GPA and 

TUCE should be included in the analysis to control ability and 

bas kground. 
+ 
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The u's (parameters) are usually called the effekts. The 

n,. 
*., log-linear model written above is also called the ~at~urated 

\ 
\ 

model since it has as many parameters as the number of cells. By. 

setting some of the' effects to zero, different unsaturated 

C - 
models are formed. An unsaturated model is said to be 

hierachical model if  a higher order effect c a n n o h e  present - - 

unless all lowe-r-order effects whose indices are subsets of 

higher order effects are also included in the model ; if 

'123(ijk) is included in the model, it means u, ~ ~ ( ~ 1 ,  u2(jlI 
- 0  

"3(k) '12(ij) U13(ik)t '23(jk) must also present in the model. 

The interpretation'of the parameters is well documented in many 

excellent textbooks(e.9. Fienberg1198.0). We do not attempt-to 

duplicate them here. . 

EST1 MATI-QN METHOD 

For our present use, we will assume data coming from a 
- 

multinoqial sample of fixed size N, which is then 
-- 

cross-classif ied in to a four-way tabl*. The log-likelihood is 

given by 





An indirect but generally computational1.y vantageou-s Y- 
approach is first to find the maximum-likelihood estimates of I 
the expected frequencies and, from these, to compute the 

estimates of the model. For example in model ( 1 . 1 ) ~  we would 

have 
- 

- 

etc. ~t is ukortunately the case that for tables with dimension 

three 05 higher, the estimated expected frequencies for certain 
-. d 

log-linear models carnot'be written in closed form. Bishop, 

Fienberg and ~olland (1975) described a general scheme for 
/ 

determining the existence of direct or closed-formed estimates. 

Fienberg (1980,page 75) gives a table showing wheJJqer each 

1,og-ljnear model for four-dimension table would have direct 
I 

estimates or require indirect estimates. There is, fortunately, . 
. - 

an algorithm  know^ as iterative proportio-nal fitting 

fFienberg,1980), which determines the estimated expected 
-= 

frequencies to a prespecif ied degree of accuracy for' any - 

hierachical log-linear model. A typical statistical software 

using this algorithm is program P4F in BMDP. 



B 
HYPOTHESIS TEST1 NG AND WQLWESS-QF"f FT - -- 

- s \ 

The standard goodness-of-fit test in log-linear modelling is 
, 

the likelihood-ratio approach (analysis of deviance), 

contrasting an unsaturated model to the saturated (maximal) 
i 

model. Let L,represent the likelihood under the unsaturated 

model and L, for the saturated model, Then, the log-likelihood 
j - 

ratio statistic has the form 

where o and e denote the observed. and estimated expected ( i  .e. 

fitted) cell frequencies, respectively, and summation is over 

all cells inrthe table. Although in small samples the 

distribution of G2 is very c o m p l i c a t ~ ~ ,  in large samples G2 is 

approximately distributed as chi-square with degrees of freedom 

given by the number of ceIllr. minus the numbe; of independene, 

non-zero parameters in the unsaturated rnode'l. 

The likelihood-ratio test may also be used to test any 

hypotheses about the model, for example, the hypothesis of 

independence. In general, the likelihood ratio, h ,  is the ratio 

of the value of the likelihood function maximized under whatever 

constraints are embodied in the hypothesis being tested t o A h e  

value maximized under no constraints except, of course, those 



- - - - -- - - - --- 

implicit in the general model. The quantity -21nX is distributed 

as Chi square with as many degrees of freedom as there are 

independent restricticns embodied in the hypothesis being . 

tested, relative to its alternative. 

APPLICATION OF LOG-LINEAR MDELS~TO PRESENT DATA 

4 

I n  our present data, GRADE and PSI are true categorical 

variables but GPA and TUCE are continuous variables. Therefore, 
t 

we have t~ categorize the latter two variables to form a 

four-way contingency table. One way to form the table is shown 

in Table 1.2A For both variables GPA and TUCE, we form two 

categories representing their high and low~alues. Prior to * 

fitting any model to the data, it is worth noting the existerice 

of zeros in the table. They occur because the sample size, 32, 

is not sufficiently large to provide an estimate other than zero 

of the unknown, but possibly small, positive theoretical 

frequency'of these cells-. Sampling zeros present technical . 
difficulties in estimating th/ expected frequencies (or 

parameters). In this parkieular case, the presence of zeros" 

makes -it impossible to estimate the parameters of the saturated 
1 

model (see above section) since they are functions of in nijkl 

and ln(0) = =. Fienberg (1980) and Reynold ( b 7 7 )  in their. 

respective books both discussed possible problems under sampling 

zeros situaf_ions. Interested readers are referred to these books 
*- 3 

and many other papers to understand the problem. However, the O 

general remedies to the problem could be summarized as: 
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But as expected, veicoufd not get any conchsi've evidences 
I 

from'~ab1e 1.2 since here are,too many sampling zeros. One way e '. 
to eliminate the sampling zeros in our. presnt situation is to 

collapse the table over either variable GPA o f  variable TUCE, We 
L 

shall pick the latter one and form a new three-way Contingency 

table which is shown in Table 1.3. The feason for this choice - 
will become evident after reading the next section and chapter 

P 

two. 

Table 1 . 4  exhibits the G2 statistics for various log-linear 
. - 

model fits to Table 1.3. In the symbols fat the models, G 

represents student's GPA, P represents student's assigned class, 

and F represents student-'s-final GRADE. The G2 statistics and 
a. I 

associated p-valueskin Table 1.4 indicate all displayed mo'dels 
- 

give adequate fit to the data. To select an appropriate model in 

this case, we will follow the idea of partitioning chi-square 

, (see Fienberg, chapter 4, •’.or details). At each stage of 

* partitioning we sbuld-look at two things: the value of the 

appropriate component, and the cumulative value of the 

components examined. For our present data, we begin by looking 

at the component due to model ( 1 1 ) ,  whose value. 1.12  has a very 

high descriptive level of significance when referred to a table 

sf the x 2  distribution with 2 d.f. This model fits the &ta 

fairly well, and we proceed to the next component, ~'(10),- 

G7 ( 1 1  ) = 5.48, whjch is considered significant under 0.1 level 
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- 
EFFECTS OF SAMPLE S I Z E  

In this analysis we performed all steps as i f  the sample was 

large enough. However, there is no doubt that our samfiize' is 

too small. This is evident from the presence of zero and low 

frequency cells in the contingency tables. The effects of sample 

size are most influential on the choice of a modei through 

goodness-of-fit tests. A population association or interaction 

that is strong will likely be detected even i f  the sample size 

is small. However, very weak associations have a strong 

likelihood of being detected only with larger samples. As a 

consequence with large sample sizes we may need more complex 

models to pass goodness-of-fit -tests than with small sample 

sizes. Thus, the trye pict.ure in our present case may be more 

complicat-ed than what we have suggested. 



TABLE 1 * 2  : 

PSI 

A FOUR WAY CLASSIFICATION OF PSI 
1 

DATA 

, " TUCE GPA 

2.00 3.00 
- 2.99 - 4.00 TOTAL 

TOTAL 

YES 

YES 

TOTAL 4 5 

TOTAL 2 I 1 .  3 ' 



TABLE 1 . 3 :  A THREE 

GRADE PSI 
I ------ ------ 

A 

WAY CLASSIFICATION OF PSI DATA 

TOTAL 

YES 4 5 
NO 2 

YES 1 2 "A 3 

TOTAL 6 

NO 6 4 
.......................... 
TOTAL 7 6 

" 1  0 
- - - - - ----  

1 3  



. 
TABLE 1.4: VARIOUS LOG-LINEAR MODEL FITS 

PF 6 
G,PF 5 
P,GF 5 
F,GP 6 
GP, GI? 4 
GF PF 3 

0 

PF ,GP 4 
GP,GF,PF 2 

. - 

PARAMETER ESTIMATE J 



CHAPTER TWO 

ANALYSIS I 1  

In the>revious analysis, we categorized continuous 

variables &A and TUCE in order to form a four-way contingency 

table to find a relationship among the four response variables 

to determine any dependence of GRADE on the-teaching method. 

However, our sample size was too small to justif the 
I S 

\ v 

reliability of log-linear model. In this analysis, we will keep 

the original measurement scale of variables GPA and TUCE and 

consider a quantitative, regression-like model, which could be 

applied to-both grouped and ungrouped data, between GRADE and 

the independent-variables. 

Let Yij = 1 2 , , n i  be a nominal polyc.hotomous dependent 

(response) variable which takes on the values a , ,  a,. a, . 
Furthermore, let xif = (1,xillxi2, . . . l x i p  ) be the observed 

6 
independent (explanatory) variables associated with yij.. Now, if. 

-- -- 
we let 

' L 0 otherwise 
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Equations (2.5) do not have explicit solutiofis and numerical 

.+ methods, such as Fisher scoring or Newton-Raphson algorithms, 
P _ I  

could be employed to search for the estimates of the parameters. . 
Whether it is preferable to solve (,2.5) or maximize (2.4) 

directly depends upon the particular computer software 

available. In fact, numerous papers (e.g. Bunch,1987) discussing 

various efficient algorit3ms for finding MLE from (2.4) have 

been published over many yea&. McCullagh and Nelder (chapter 8 ?  
! 

attempted to apply quasi-likelihood estimation methods to'this 

problem. However, a useful, but not widely known, fact (see 

Appendix A51 is that under the parameterization in (2.21, the 

Fisher-Scaring (and the Newton-Raphson) algorithm in solving , 

(2.5) can be carried out by using the Gauss-Newton algorithm for 

solving the non-linear univariate regression model 

where i runs from 1  to'^ , k from 1 to m and with the -usual 

assumption E(eij)=O. Hence, we could solve the system (2.5) via 

any  on-linear regression program which uses the (Quasi), 

Gauss-Newton algori thrn. Furthermore, it is apparent that the - 
error term, c i k ,  has non-constant variance (see Appendix A 3 1  

a n d ,  therefore, we need a weight function wik=l/Pip in running 

the regression. However, we k-now that most programs doing 



non-linear regression are designed to minimize the residual sum 
\ -/ 

of squares. Their default stopping rule ishthus based on the 

change of the residual sum of squares. However, because the 

weights vary from step to step, the maximum l'ikelihood estimate 
A 

- 

6 generally does not correspond to the smallest possibl@ value 

of the residual sum of squares. Therefore, we must tell the 

prog;ams not to monitor the residual sum of squares to decide 
m 

when to stop iterating.  on-linear regression program BMDP3R 

provides this alternative to meet our needs'by setting 

convergence to minus one (see BMDP3R documentation for the 
- - 

meaning of it) and specifying the number of iterations desired. 

For the same reason any partial step.modifications, known as 

halvings, which monitor-the residual sum-of squares should be 

turned off. In BMDP3R, this is done - by setting the maximum . . 

number of halvings to zero. Furthermore, by setting the mean ' 
. . 

residual sum of squares to 1 ,  the estimated variance-covarriance 
i - 

matrix of the coefficients obtained indirectly from P3R can be 
f 

used to estimate the inverse of the Fisher information matrix 
i 

der ibed below. 

Now, suppose we let Pk=(fikOf . . . ,Pkp), then it is easy to 
show that 

and 



\, 
for k#l. Thus, the matrix of secondx*derivatives is easily seen 

\ \ to be neg&tive definite. Hence, the log- elihood function, 

(2.4 )', - is globally concave and bnique rnaxirnu%s. 

\ 
, Furthermore, it is apparent that the Hessian matrix IS- 

equivalent to the Fisher information matrix, I(P), which has the 

main diagonal blocks given by (2.7) and off-diagonal blocks by 

(2.8). In the case of ungrouped data (ni=l), it could be poied 

0 is the mle of p .  This asymptotic result may be used to 1. 
\ construct large sample normal-distribution test and coefficient 

confidence intervals for the coefficients: 

APPLICATION TO PRESENT DATA - - 

9 In our'present data, the dependent variable, GRADE, is a -a 

trichotomous variable which takcs on the value A, B, C. The 

independent variables are ( 1 ,  GPA, TUCE, PSI). In order to 

search for an appropriate model, various multinomial logit model 

are fitted t o  t h e  data and their verbal explanations are given 

in Table 2.1. Table 2.2 gives the maximum likelihood estimates 

and their associated standard error (based ond the inverse of the 

matrix of the kecond derivative of log-likelihood) o f ;  the 

parameters in Tgble 2.1. Table 2.3 shows the LR-statistics for 

the goodness-of-f2it of each model fitted. 



A quick survey of e x i s t i n g  s t a t i s t i c a l  so f tware  a t  STF.U.- 
- - 

r e v e a l s  c h a t  only TROLL h a s  a s p e c i a l  program which can be used 

without  any (edification t o  e s t i m a t e  t h e  parameters  f o r  a l l  t h e  

models l i s t e d  i n  Table  2 . 1 .  T h i s  f a c t  could be expla ined  a s  due 
4 

t o  t h e  r a r e  use of mult inomial  l o 3 i t  models a t  S .F .U.  We decided 

t o  use BMDP3R t o  compute our e s t i m a t e s .  S ince  t h i s  i s  a 

non-standard use of BMDP3R, a  source  l i s t i n g  of t h e  BMDP 
- 

s t a t e m e n t s  and t h e  coding of t h e  d a t a  o f  model 5 a r e  reproduced 

i n  Appendices A7 and A9, re 'spectively.  

7 

Of c o u r s e ,  t h e r e  a r e  some drawbacks about BMDP3R i n  such an 

a p p l i c a t i o n .  One major problem i s  t o  provide a  reasonable  g u e s s  

of t h e  i n i t i a l  parameter  v a l u e s .  This  could become a headache 

even when t h e  number of parameters  i s  moderate. However, with an 

a c c e p t a b l e  g u e s s ,  convergence could  be acheived wi th in  s e v e r a l  

i t e r a t i o n s .  Another h i n o r  problem i s  t h a t  BMDP3R does not ' -  

provide  any r e l e v a n t  goodness -o f - f i t  t e s t  ' s t a t i s t i c s ,  such a s  

i i k e i i h o o d  ch i - square .  Bu: this could be solved e a s i l y  once t h e  

p a r m e t e r  e s t i m a t e s  a r e  a v a i l a b l e  by w r i t i n g  a  small  program 

. . w:rz :he formula p r c v i d e 5  i n  t h e  kppendix P . 6 .  Degrees of freedom 

- w 3 ~ . , -  ,, ddLed f r o r  t h e  ? 3 R  a r e  a l s c  i p c o r r e c t .  we g r e s e n t  t h e  r u l e  t o  

P - a l c z l a t e  z h e  degrees  cf i r e e d s r  i n  Appendix R 6 .  



The war'ious models we have fitted are only a few of the 
1 -- 

unlimited number that could have b&en fitted to the data. We 

will make statistical determination of the adequacy of each 4 
fitted model, via use of likelihood chi-square'. These 

chi-squares are *shown in the bottom row of Table 2.3, such 

chi-squares being the irnprovment in fit which would result if 

the data were perfectly fitted; i.e. model 6. We may note that 

the likelihood chi-squares are remarkably imilar in instances 3 _yr 

where independent variables are included in the models. Ifiwe 

compare all the'five likelihood chi-squ re statistics at the 4 
bottom row of Table 2.3 with a x 2  table/t 0.05 a-level, we 

would accept. all theqe models to have iitted the data 

adequately. Hence, we have to test far model adequacy not by 

considering how well or- badly the model and data correspond, but 

rather by eonsidering i f  some alternative model, differing in 
\ 

.\,some way from the null model, piovides a sufficiently improved 

fit when account is taken of the number of added'pa~ameters. 

? h i s  approach is appropriate w y e  n,ull model can be 

C h *  +,,.s-i3ered a special case,-of / the more general cases. In Table 

2. I ,  >- of ea'3-mddl, considered as a null model, is 

z ~ > s : S e r e d  as a specia: case. Where two models do not stand in 

+ -,.,s .- . relatio~ship, t h e  likelihood chi-square is indicated as 



-- - - -  

Since models 1 to 4 are nested in model 5,> it is easier for 

us to consider rriodel 5 as an alternative model and models 1 to 4 

as null models one at a time. I f  we follow this, we would find. 

when considering model 4 as null model, that TUCE does not seem 

important in predicting the course grade since &55< x i  ,,.,, = 

5.991. For the teaching format, it strongly indicates from model 

1 3 that PSI does have effect on determinating an individual s 

final grade on the course. If we compare model 2 with model 5 ,  

we ha.ve a lykelihood chi-square improvemect of 6.72.with 4 

degree of freedqm, which naturally indicates that PSI and TUCE 

together do help to predict the course grade. All these 

comparisons suggest that we could use model 4 as the new 

alternative model. Thus when we consider model 2 being nested 

into model 4, it shows that the coefficients of PSI are 

significantly different from zero. Therefore, in considering all 

these., we woGld choose model 4 as our nodel and the estimated 

log-odds are given are given by 

J' 

The positive coefficient of GPA in ( 2 . 9 )  indicate-s that the 
d 

cha -ce  of e a r n i n g  a- .k increases, relativk tc r e c e i v i n g  a B, a s  i 
G?A increases. Li~exise, the negative coefficient of GPk in 



-- - -- 

. (2.10) indicates that a student " b e ~ o m e  less likely to earn a C 

tha,n a B as GPA increases. ~ o t e  that both PSI coefficients are 

positive, indicating that taking the new teaching Fat makes 
it more likely to earn either a C or an A .  However, the 

coefficient of (2.10) is so small and not significantly 

different from zero, while the A versus B comparison is larger 
- 

and significant. Thus, the 'small positive effect of PSI in 

(2.10) is offset by the large and negative effect of GPA as GPA 

increases. This is.clearly depicted in Figure' 2.1. 
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FIGURE 2,1: PREDICTED PROBABILITLES UNDER MODEL EOUR ----- -- - - -- 
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- - = ~ h * - x i s )  / 9 - - - - - - - - - - - - - - 

- 
I 

where x i  is a vector of independent variables associated with 

the ith individual and F is some c .d. f . To understand the logic 
behind this model, it is easier to explain with a bioassay 

example. Let xi be the dosage level of an insecticide given to 

the ith insect. The dependent variable Yi is defined to take on 

values 1 ,  2, or 3 depending on whether the ith insect is alive, 

moribund, or dead. G e  assume that there exists an unobserved 
* 

quanti-ty Yi (can be interpreted as the tolerance level of 
* 

insect i )  but observe Yi instead. We define* Pi=3 if Yi < al-xiP 
3, * 

and Yi=l if Yi > a,+-y-xip, where a1,~,and B are unknown 
i 

parameters. The model is illustrated in Figure 3.1 below. 

Figure 3.1: Three Reponses of Insects 



B 
- - - - -- -- 

Mathematically, this model is specified by the following 

equations: 

and 

* 
where a,=at+y and F is the c.d.f. of Yi . 

The generalization from this example to the case of more 
9 

than three ordered response and two or more independent 

variables is straightforward, but the computation will be much 

more complex and almost impossible when F is chosen to be a 

normal distribution. Therefore, in our subsequent discussion we 

- 
will confine ourselves to logistic c.d.f. 

It is obvious to see that for the ge'neral case of m 

Pik=F(ak-xiP) - F(ak-,-xi@). Equivalently, we could 

our model as 

where k=l, m-I. Equations ( 3 . 0 )  are usually called the 

cumulative logits. 



PARAMETER IhTERPRETATION IN CUMULATIVE UK;IT MIDEL 

For the convenience of discussion, we write (3.0) as 

Our odds in this model are represented in terms of the ratios of 

the probabilities of falling into categories 1 through j to the 

probabilities of falling into categories j + 1  through m. Thus,the 

ratio will increase mult-iplicati,vely by exp(-P.1 for every unit 
3 

increase in xk. Eve,n though~this factor is independent of the 

outcome category, it is obviouk that the magnitude of the new 
- ,  

ratio depends on the outcome because our model assumes that 

Thus, a negative P k  will mean that increasing a unit in xk 

will have the outcome more likely to fall into categories j + l .  

th-rough m than the first j categories. A similar interpretation 

can be obtained for a 

EST I h f A T f  ON METHOD 

L, 

Under the assumpt 

positive Bi. 

ion of logist'ic c.c 

function will be given by 

3.f.'; the 1 

1 

ikelihood . 

and its natural logarithm is given by 
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and  

and P3n = 7 - P I h  

it snouid be ~ ~ v ; o s s  zhac the weight matrix for 

-EST-diagonal and Is nct v e r y  suirabie for 

' p z r p c s e s ,  especially whez the number of ouzcomes i s  mor than \ 
i ' r r  . - . , l e e .  Hence,  we w s u i d  iise ( 3 . 5 )  to g e t  our es t imates  f - - 

p r a m e t e r s .  Once a s a i z  v e  w i l l  ,same a s  the way i n  a n a l  sis 1 1 ,  

zadify program 3M3P3R tc carry o.ut the estimation proces , I. Z>wever, as indicated from eqxations (3.5) to ( 3 . 7 ) ,  our 

Ga~ss-Newton a i c j c r i t h ~ .  i s  j u s t  equivalent t o  the Fisher-S 
4 

P-cs~ncered ic r h : s ' c a s e  6 l ; r i n ~  S W P ~ R  are essentially the same L 

% .  . . t:ve;free n:>n--:near r e g r e s s i o n  program, i s  e a s i e r  t o  
L 
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f very simi ar. In' fact, the* rnagnikude of the likelihood 

chi-squares are very close td the corresponding ones (in the 

sense of having the same independent variable's in-the fitted 

model) in Table 2.3, except in this case we have fewer 

parameters (or higher degrees of freedom) for all the models 

other than model 1 .  If we compare these five x 2  values to a x 2  

table, we would again agree tfiat all of them fit the.data 

adequately. Therefore, we would repeat the strategy we developed 

in analysis 11 to determine an appropriate'model. In other 

w ~ r d s ,  we will ccmpare each of models 1 to 4 to model 5.' 

Comparing modal 4 cb-model 5, we eajn>n improvement of 

chi-square of 0.002 with one degree of freedom. I t  indicates an 

i~significant improvement which means TUCE does not help in 

predicting GRADE wnen GPA and PSI are included in the model. 

Similar compari-son between models 3 and 5 indicates that PSI is 

not ;helpful elther in predicting the students' ,final grade when. . 

S P A  and TUCE are included. The most interesting result comes 

u k e ~  we l o ~ k  at the column corresponding to model 2 of the 

find : ab le .  Here we t LTUCE and PSI togeth<er do not improve 
I 

the prediction whet alone is included in the model. Further 

congarison also at nelther TUCE nor PSI would each help 

G?k t o  better prediction. i f  we compare model 1 to model 2, we 

k z v e  an improvemen: of chi-square of 13 .39  with one degree of 

i r ~ e . 3 ~ ~ ~  wnick i s  a very significant improvement. 1 n  other 

- . - - A  G P A  a i ~ n e  ;rcvides sufficient information to predict each 

rn' sr;5enris final g r a d e .  .ncs, we will accept model 2 to be an 



model this analysis. Hen '\&our 

logit model is given by 

Here, the positive coefficient of GPA in (3.?O),suggesG that 
+ 

the likelihood of getting an A relative to the likelihood of 

getting a B or C increases as the GPA increases. Thus for a 

student with 2.5 G ? k ,  his odds  of obtaining an A is exp(-11.01 + 

3 , 2 2 9 * 2 . 5 ) ,  i.4. one in 20. Increasing his GPA to 3,5 would 
< 

increase his odd by a factor sf exp(3.229) 25, so that the new 

~ G d s  will be iri  favour of getting an A ,  Likewise, t h e  likelihood 

of getting an A o r  a 3 r e l a t i v e  to the likelihood'of getting a C 

increases as the GPA increases. As expected, t h e  l i k e l i h o o d  in 

( ' 3 . ' : )  is greater t h a ~  the c n e  obtained ifi ! 3 . : C ) .  Figure 3.2 

shows the probability ~f gettin5 A or C f o r  various GPA v a l u e s .  







TABLE 3.3 
LIKELIHOOD CHI-SQUARE FOR VARIOUS NULL MODELS; 

E K H  & H Z - W A R E  I S  BASED Ohl A COWARISON WITH 

S e r e ,  model 6 is just t h e  maxima? model (cbserved data). 

Key : each cell consists of 

l:keiihood c h i - s q u a r e  

degree of freedom 

:f t h e  observe3 freqxercy in a c e l l  is 0, the null model fitted 
6 t p -  - - _ y x ~ n ~ y  E o ,  a n 5  t h e  alternative.mode1 fitted frequency E l ,  
the? t h e  l i k e i i h o d  cki-square is given by 2Z OflnE,-lnE,). 



FIGURE 3.2: PREDICTED PROBABILITIES UNDER MODEL TWO 
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measured response. In many situations, more general models are 

required to indicate 'how' and 'to what extent' a response is 

related to a set of independent variables. Thus, the purpose of 

building quantitative models in analyses I1  and I 1 1  is to 

formulate a relationship between grade and teaching method as 

well as students' per'Eormances in other courses. Both models 
/ 

measure t-he likelihood of an individual Palling into a - - 

particular category or categories relative to some baseline 

outcome. Therefore, by allowing changes in the independent 

variables one at a time while holding others constant, we could 

estimate the magnitude of the effect of each variable upon the 

_relative likelihoods. In our analyses,'we found that both models 

suggest that variable GPA is signi•’icant in determining a 

student's performance. In' the multinomial logit' model, it even 

suggests that PSI is also helpful 'in predicting studenf's grade. 

To determine which approach is better in describing the data 

set, goodness-of-fit tests cannot tell us very much since the' 

two models are noilonger nested. One way to differentiate the 

two choices is via the use of the so-called Cox test of separate 

families of hypotheses, which would usually require a very large 

sample size. However, by using intuition and careful inspection 

of the data, we would agree that the multinomial logit model in 

( 2 . 9 )  and ( 2 . 1 0 )  is capable of describing the data far more ' 

better than model 2 in the cumulative logit approach. Our 
6 

argument can best be supported by Figure .2.1 which shows that 



I 

8 

/-' 
/ 

i 
b - 

- -- -- - - - - - - - 

the probability of obtaining A ( C )  increases (decreases) as GPA 

goes up. This figure also.depicts that PSI is more effective for. 

high GPA students than low GPA students to obtain an A in the 

course. This agrees not only with what we have found earlier at 

the beginning of analysis I but also the characteristics exhibit 

in the scatter plot in Figure 4.0. On the other hand, both 

figures show that the chances of getting a C grade are hardly \ 
influenced by the teaching format. This is intuitively 'true 

since it is supposingly easier to ai.m at a pass than to be in 

the upper percentile of the class and thus PSI may only 

minimally effect on this group. Overall, this model is able to 

f i t  the patterns in our data. 

Although in the cumulative logit model we used the 

additional information about the order of the variable 

closer examination of the c-ode1 will reveal that it assumes 

c o n s t m  ef•’ect4(coeff icient) for each independent variable to 

each outcome. In other words, the effect of being under PSI 

method is the same in; obtaining each grade. This is obviously 

contradictory to our present data and it is the main reason why 

?SI explains less well under under the cumulative logit model 
9 

approach. In fact McCullagh and ~elder(1983) points out that the 

choice between these rwo models depends on whether the model is 

invariant under grouping of adjacent response categories or not. 

I n  many applications, s u c h  as taste testing, the definition of 

the response categories is entirely arbitrary 2nd often 
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-- 

subjective. Thus, it appears reasonable to insist that the form 

of the concLusion should not depend on the particular choice of - 

repmse categories. In other words, i f  a new category is formed 
P 

by combining adjacent categories on the old scale, the form of 

the conclusions should be unaffected. Thus, the interpretati.on 

of 0 in model (3.0) does not depend on the particular choice of 

the categ.ories used for recording the data.  his very 

fundamental fact could be used to explain why (3.0) is no& 

suitable 'to describe our present data set. 

Furthermore, we should say that-we could n,ot place too much 

reliance on-the statistical properties of the estimates since 
/ 

the sample sizd is a bit small. The small sample size has most I 
impact on the evaluation on the goodness-of-fit o 

t 

fcaur :mOdilsO 
McCullagh and Nelder (chapter 5 )  only discuss goodness-of-fit 

tests for grouped data. They simply use the Pearson chi-square 

test in their examples which all have large indies. 
B 

Fienberg(chapter 6,1980) points out that for logistic type . 
+ 

. . 

regression models there is no omnibus goodness-of-fit test for a 

model as long as some of the predictors are not categorical. He 

suggests that one should categorize the continous variables from 

a logistic regression $0 a logit model whose fit can be 

assessed. This is part of the reason why log-linear model 

analyses are included in this paper. However, i f  we take 
$. Fienberg's advice here, we wlll again run into the problem ' 

,encountered in Analysis I ,  which has many zero and small 
i 

\ 



@% 
P 

observed counts. Fienberg (page 172, 1980) pointed outthat Gr2- 

does not behave well under .this situati;n : p-value tends to be 

underestimated, However, he further pointed out that the 

standard &equacy rul,e such as "the minimal expected cell size 

should exceed five." i's somewhat conservative. Based on Larntz's 

resul't , he suggested that sample sizes equal to four or five 

ti'mes the number of cells are adequate for the use of the 

asymptotic x 2  result. In our present case, this may suggest that 

a sample size around 200 (six times the present size) ,would be 

sufficient to assess the fit of our models under consideration. 
, . 

d 

Fox (chapter 5 )  also cautions the reader that the present 
r 

/--. diagnostic methods for logit models are Jess than perfect. He 

expects the existing crude method will likely be7?mpoved and 

extended in the future. ~ h u &  our analyses in this report could 

serve as the result of a pilot study of the residual effect of 
I ',;/ 

PSI method in teaching Principles of ~acroecobomics. Of course, 
I 

the real effect of PSI can never be assessed bntil a i,, 

1, 
, 

* '  
well-&signed experiment has' been conducted; $he apparent;, effect 

, 

of PSI on high GPA students could just be due to chance 
, 

variation. Though i ay not be easy to design an exper'imeht to Y 
suit this case, we feel that we have accomplished the goal to 

present plausible statistical models for future work on this . 

problem, 

Another point is that one should not abuse the discrete 

mdels in the previous chapters. In all three analyses, we have 
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/ 
stressed that we treat the response variable either as a nominal 

( a s  in the first two analyses) or an ordinal (in the f.inaL 

analysis) variable and turn the problem into anslyzing of 

performance on the course were available. Had we obtained these 

numerical (interval scaled) values of the response variable, we 

frequent-ies. These rriodels are remarkably helpful in cases where 
rB 

might simply have been able to run an OLS (or WLS) regression 

the rneas~~rements of the respon~se variable are not reliable on' 

_ the interval scale and we have to settle on some lower level 

model and the analysis might have been more straightforward. 

. 

EXTENSION 
a 

f measurement scale. However, in the case of SM1s study these 
L/+-' 

formidable models could have been avoided if the original raw 
'\ 

scores, upon which letter grades were based, of each student's 

In this section we want to give some suggestions to provikie / 
I 

initial guesses to the value of the coefficients of the models 1 
discussed in analyses I 1  and 111 and finally w will extend bur 1 7 

I 
modelsJ to applications in discriminant ana1ys.i~. 

d 

We have mentioned  hat the iterative algorithm we used to 

find the ml estimates in both the multinomial logit and I 
cumulative logit models requires the initial specifications of 1 
the parameter values which are not easily obtained in any case. I 
Thus, it is desirable to have some alternative estimation 1 
methods which do ro t  need this requirement. One-such method is 



called the minimum chi-square estimation when grou~ed 
9 

observations are available. For example in model ( 2 . 3 ) ,  the \ 
'true' logits are given by ln(Pij/Pim) = ! xilfljl. Thus under 

1= 1 
the case  of replicated.(grouped) data, when there are a number 

er - 
of observations on the response variable for each observation on 

l 

a set of explanatory variables x ,  we kay calculate the rn i 
relative frequencies 8,  : 

These N(m-1) observed iogits are then served as the dependent 

variables in the N f m - 1 1  regression equations 

waere uik represents the error, the difference between the true 

logits and the observed logits. This error term, which is taken 

tc be t h e  first-order term of the Taylor expansion of the 

osserved logits at the (Pik,Pim), is given by Pik/Pik - Pim/Pim. 
/'- 

OLS e~tim~ates of the Nfm-I) equations in ( 4 . 2 )  yield 

xibiased but inefficient parameter estimates due to hon-c~nstant 
" -. 

variance of che errcr term. One could use standard weighted 

least square (WiS) weighting procedures. However, there is also 

a e s r r e l a t2o r ,  af e r r c r  term between 



Uik and uij for all k , j = l ,  ..., m-1.  The reason-for the latter 

correlation is that, for each i ,  the m-1 observed logits are 

based on m response proportions and.- these must sum. to one by 

definition. Therefore, if  one proportion is large then the other 

must be small. In turn, abnormally large value of an observed 

Yogit must be compensated for by ather abnormally small values 
n i i 

of in( , z  Zijk / zijm). In fact, the variance of u i k  is given 
3'1 3'1 

and the covariance of uij and uikby 

An estimation procedure tnat takes this correlation into 

account is using more information, and it will yield estimates 

1 with better sampling properties. The procedure for correcting 
\ 
r' 

for heteroscedasticity and 'for correlation across logits would 

require geperalized least square technique, which is-- -- - 

computationally not economical. Nevertheiess, this alternative 

method is useful i~ another aspect. One may use the uncorrected 

estimates obtained from OLS or WLS as initial guesses to the 

aarameter values when using maximum likelihood apprcach, since 

\ providing initial estimates is often a major headache in ML &. 

\ method. Similar tactics ,could be developed by using ~umufat~ive 



Ci 

- - 
- 
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% 
Fox(l984,page 313-314) used another approach to find the 

estimates in ( 2 . 3 )  by using equation A 3 . 2  in Appendix Y3* He 
suggested to fit seperate (binary) logit models to each of the 

k-1 binomial distributions. He argued that the resulting 

maximum-likelihood estimates are identical to those that would _ 
1 

be produced by maxiinizing the likelihood simultaneously with 

respect to the combined parameters in a-11 the models. Moreover, 

since the log,of the likelihood for combined model is the sum of . 

the log likelihoods for the seperate models, likelihoodAratio 

- s q ~ a r e  statistics way be summed to produce tests for model 

s a whole. Fox's argument is not entirely correct (see chapter 

5 of McCullagh and ~elderf because he was actually fitting 

another different model, commonly known as the continuat 

r a z i o  model (~ien&r~, 1980,page 110-1 16) or sequential- 

model(Maddala11983,page 49-50) However, he was right to 'point 
I 

o c t  that this,approach would u s ~ ~ a l l ~ i e l d  similar result. Thus, 
8 

w e  may use the result from the continuation ratio model; as the 
I 

'initial input of parameter values to our multinomial logit 

/ rnc3e:s. To get rhe estimates for our cumulative logit model, we 

w - ~ .  have to assume idenrical slope coefficients in all of the 

above - se%rate logics and stack them up to for; one single 

lsqit regression (McCuilagh and Nelder,page 1 1 5 - 1 1 6 ) .  



CON.+'ECTIONS FITH M H E R  TECHNf ?LIES 

All the three models discussed in this paper have a strong 

reiationship wi,th another statistizal technique: discriminant 

analysis. Before we uss this relationship further, we will 

first give a brief duction to discriminant analysis, 

Df SCRIMINANT ANALYSIS 
D 

I 

Suppose that sample points y' = (y,,400,y,) are available ' , 

from popuiation Gs and that the iikelihood of y g;'ven, G s  i s  

i y j  ( ~ = 1 , 2 , * * ~ , k j .  A l l  elements of y are real but some are - S 
ccntinuous and some are pclychotomous. The discrimination 

problem is to find a rule for allocating further points y of - .  

unknown origin to populations. I f  it is, known tnat points to be 

allocated a-re from a mixture of populations G,,G,,-..,Gk in the 

proportion fI = , ,  where 

z h e t  the simplest op~imizing method cf discrlm:na::cn is tc 

zaxizize :he probabili~y of correct classification (Hand 

'961,chapter 1 ) .  This c a z  be achieved by allocating rhe sample 



r h e r e  t P 1 , 2 , * = ~ , k  and s = f , Z r . - : , k  and t # s. 

Our following discussions will be based on this allocation rule 

since i t  has been widely accepted. 

CASE ONE: DJ SCRETE INDEPENDENT VARIABLES i 

4 

In this c a s e ,  we examine the situation where (y,,e--,y,) is 

a vector of polychotomous'variables.,Thus for each individual, 

each of which can we have a sequence of variables yl,**w,y,, 

take a finite number of possible v a l u e s .  Let c j  be the number of 

categories for variable y and suppose we have a sample of n , 

/ 
J- 

j ' 
randomly selected individuals From the population, For the 

,, 

sample we also k 3 o . s  which of'the k populations the individual 
B 

. 
belongs to. I t  is easy to see now that we can form the data into 

a (m+? )-way contingency table. We may visualize this contingency 

*,,,-.. -"" 
,/'" 

va r vat- va r populat ions. . ,-.- 
rn m -  1 1 G I  - G 1 . . .  G 

k 
, " 

1 1 1 X X ..." 
1 1 . .  . l l  *2t...11 .-. - k t . .  . f t  
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which can easily be seen to have the form of multivariate 
rn 

logistic distribution as in ( 2 . 2 ) .  In the two populations case, 

it can be shown that 

decisiofi rule (4.3) could be translated as to classify y into G, 

i f  a+ypp > 0 and G, otherwise. 

The vector p ins (kfii) is usually called the discriminant 
Q 

d 

score. in classical approach. However under the classical 

approach, we would have to estimate the, covariance matrices, the. 
X - 

population means and sometimes the prior probabilities sips. 

Thus, ( 2 . 2 )  provides us another way to formulate our 

discriminant rules under ths normal assumption and it is usually 

c a l i e d  the logistic discrimination. However, the relative 
J 

performance of the two estimators will critically depend on the 
m 

true distribution for y .  I f  normality with-equal covariance 

matrices is assumed, the classical apprgach will give the 

genuine ML estimator and therefore should be asymptotically more 

e f f i c i e n t  than the logistic ML estimator. On the other' hand, if 

the normality cr equal covariances is nottrue, the chssicaf 

approach will g e n e r a l l y  give inconsistent estimators, whereas 

t h e  ioglstic estimator retains Thus, one would 
-- - 



expect that the logistic ML estimatcr is more robust. 

_ CASE THPXE: MIXED INDEPENDENT VARIABLES 

When the assumption of normality fails, we are in a ' 

jdifficult situatim. However, Day and Kerridge ( 1 9 6 7 )  dbserved 

that (2.2) holds for a wide varfiety of situations, which 
I 
I 

includes L - 

( I )  multivariate normal with equal variance, 

(2) independent Bernoulli variables, 

( 3 )  Bernoulli variables followi,ng a lpg-linear model with equal 

second- and higher-order effects, 

( 4 )  a mixture of situations ( 1 )  and ( 3 ) .  

Press and Wilson(1978) calculated the probability of correct 

classification for two estimators in a couple of real data 

ich many o f  the independent variables are binary 

clearly violate the normal assumption, I n  both 

examples, the logit model did slightly better than the classical 

discriminant. The criterion of the goodness of prediction in 

their study was the probability of correct ciassification 

However, we feel that t h e  application of logistic 

3lscrimi~ant analysis with mixture independent variables should 

nst be linited to :be above f o d r  spe ial situations. we c o ~ l d  i 
z s e  node: bcilding techniques c o  justify the valrdity of model 



P P 
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( 2 . 2 )  %r the cases of mixed independent variables. In act., .F 
there has heen an increasing uee a•’ (2.21 f a r  discriminatinn 

4 
problems. For instance, the logistic regress& program in BMDP, 

PLR , has an optional output designed for 2-population 

discrimination problems. 
b 

The application of cumulative.logit model, (3.01, to 

classification problems has not appeared in the literature 

partly because we usually consider the dependent vsriabb as 

being a nominal variable in discrimination problems. 

AN E M ' /  RICAL EXAMPLE 

  or the purpose of illustration, we will use our models 

built i r  analyses !I and I 1 1  to demonstrate prediction ability 

with the above classification rule. And, for obvious reasons, we 

will use only the 'full' (i.e. model 5) and the'chosen models in 

each case. Tables 4.1 and 4.2 respectively display the observed 

grades versus the predicted grades for the sampled students by 

models 5 and 3 in analysis 11. Likewise, Tables 4.3 and 4.4 

respectively display the observed grades versus the predicted 
a/, 

;r.ades for the sampled students by models 5 and 2 in analysis 
L . - 

3 

11;. These tables indicate that multinomiai logit models are 

Tore superior in terms of l re diction ability than the cumulative 
Zogit models, Of course, our observed error rate cannot be a 

good estimate of the = r u e  error rate since xe use the entire 
. . 

sample as t h e  tra:n:ng {design) set. In fact, the estimated - 



-- -- 

error rates from such a method 'are over-optimist ic becauset;he 
I 

decision rules are optimized on the2training set - their 
+ 

parameters are estimated to minimize the training .- set 

misclassification rate. In actual practices, it is better to 

/require a larger sample which is then split into gaining and 

validating sets. These tables, "nevertheless, -'provide more 
(I 

evidence that multinomial logig model is more suitable than 

cumulative logit model in the present case.  

-1 



A scatter plot of GRADE vs methods GPA by _teaching 

GRADE 
I 

A + 

2.80 3 . 2 0 ,  
i 

3.60~ . 
GPA ' 

-Here, P and T aie regpectively representing the PSI and 
traditional teaching methods; I f  several points fall on 
s p o t ,  a count i s  given instead. 

the same ' 
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4 . 1 :  P R E D I C T E D  GRADES BY MODEL 5 I N  ANALYSIS  I 1  TABLE 

P R E D I C T E D  
GRADE 

OBSERVED B 
GRADE 

TABLE 4 . 2 :  P R E D I C T E D  GRADES BY MODEL. 3 

PRED-I CTED . 

GRADE 

OBSERVED B'- 
GRADE 

C 



-- --- 

4.3 : PREDICTED GRADES BY MODEL 5 IN ANALYSTS 1-11 -- 3 

PREDICTED 
GRADE 

A.  B 

OBSERVED 
GRADE 

'TABLE 4.4: PREDICTED GRADES BY MODEL 2 IN ANALYSIS I 1 1  

PREDI CTED 7 

GRADE 

OBSERVED B 
GRADE, 

C 
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APPENDIX A t  

ANALYSIS I -- LOG-LINEAR MODEL VIA BMDP4F 

I ,-- 

h /PROBLEM TI TL&' THREE-WAY TABLE . 
/ I N P ~  VARIABLES=3 .CASES=32. 

FORMAT= ' ( 
/VARIABLES NAMES 
/CATEGORY CUTPOI 3 h 

NAMES(1)='2.00-2.99','3.00-4.00'. 
CODES(2)=ll2.NAMES(2~=YEs,NO. " 1 

CODES(~)=~,~,~.NAMES(~)=A,B,C. 
/TABLE INDICES=GPk,PSI,GRADE. SYMB=G,P,F. 

DELTA=0.5. 
* /FIT  ALL. 

// 
/END 
2.66 20 2 3 
2.89 22 2 2 
3.28 24 2 2 
2.92 12 2 2 
4 . 0 0  21 2 1 
2.86 17 2 2 
2.76 17 2 2 
2.87 21 2 2 

L 

3.03 25 2 3 " ,  

3.92 29 2 1 
Y 

@ 2.63 20 2 3 1 
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APPENDIX A 4  

. 
.Let 1 be some log-likelihood function which is non-linear pin 

d 

parameter vector p.,&ven an initial estimate j,, the second ' 

roun 3 estimate of f l  is defined-as follows: - 

NEWTON-RAPHSON : 

METHOD OF SCORING : 

\ where H in ( A 4 . 1 )  is the second order partial derivative of I 

with respect to 0 and E(H) in ( A 4 . 2 )  is the expectation of H ,  .. 
both being evaluated at f l ,  

b 

* A 

The third round estimator P ,  is obtained by substituting 0, for. 

p ,  in the right-hand side of ( ~ 4 . 1 )  and ( ~ 4 ~ 2 ) .   his procedure . 

is repeated until the iteration converges. 



APPENDIX x5 

Let Y , , - = * , Y k  be a random sample of multinomial vectors-where 
I I - 

each Yi = t Y i l , * * - , Y i m )  i$4m-nomialp distributed with likelihood 
* - 

, given by 

Yil Yim 
'-i I - - p i m  

The joint likelihood of the sample as a whole is given by 

where c is the product of the c i s  

N O W ,  i f  P i j  is reparameterized into parameters P '  = 

( ? o , P I ~ * * ~ ~ P ~ - ~  ) ,  then the score vector is given by 



where aq /a f i  is a km by p m a t r i x  g i v e n  by 

:?ni ( a p  11 /ape ) i = 0 .  

Z Z n i ( i 3 P .  . / ap  ) . 
I i j  : 1 3  P-1 1 

Hence, together with ( A 5 . 1 ) ,  we P i x r e  ~ ( 0 )  equal f;?. 





- - 
a n d  the Fisher scoring algorithm 

is an iterative reweighted Gauss-Newton algorithm for f i t t i n g  a 
- 

mean vector v to observations y with weight E . 



APPENDIX A6 

THEOREM : Let Y ,  , - ,Yk be a sample of multinomial vectors where , 

each Yi = ( y i l p  = .Yim) is a m-nomial distributed with index ni 

and probability vector P i 1 , P i m  which is reparameterized in' 

terms of unknown parameter+P = (P,,P,,&'.*, Bp-,). Then, the 

likelihood-ratio test for the goodness-of-fit for models ( 2 . 1 )  

and (3.1) is given by 

which is asymptotically x 2  distributed with k(m-1)-p degree of 

freedom. 

. 
Proof : See chapters,three and four in Andersen for a solid 

proof. 



APPENDIX A 7  

BMDP STATEMENTS FOR MODEL FIVE IN ANALYSIS I 1  

/FUN G~=EXP(PI+P~*GPA+P~*TUCE+P~*PSI). 
G~=EXP(P~+P~*GPA+P~*TUCE+P~*PSI). 
NT.lM3R=(C*Gl+A*GZ+B). 
DEMON=I+GI+G2. 
I? =NUMER/DEMON . 
DF~,=G~*(DEMON*C~NUMER)/(DEMON**~). 
DF2=Gl*GPA*(DFMON*C-NUMER)/(DEMON**~). 
DF3=Gl*TUCE*(DEMON*C-NUMER)/(DEMON**~). 
DF4=Gl*PSI*(DEMON*C-NUMER)/(DEMON**~). 
DF5=G2*(DEMONRA-NUMER)/(DEMON**~). 
DF6=G2*GPA*(DEMON*A-NUMER)/(DEMONk*2). 

~=G~*TUCE*(DEMON*A-NuMER)/(DEMON**~). 
=G~*PSI*(DEMON*A-NUMER)/(DEMON**~), 

CA WT=I/F. 

/INPUT 

% 
/PROBLEM $1 TLE= ' SPECTOR DATA ' . 

WRIABLES=8. 
FORMAT='(F~.~,F~.O,~F~.O)'. 
UNI T=8. 

/VARIABLE NAMES ARE GPA,TUCEtPSI,A,B,C,FREQICASEWT. 
/REGRESS DEPENDENT=FREQ. 

PARAMETERS= 8,. 
WEIGHT=CASEWT. 
ITERATIONS= 10. 
HALVING=O. 
CONVERGENCE=-1. 
MEANSQUARE=l; 

/PARAMETER INITIAL=6.5,-2.5,.02,.2, 
-8.5,2.0,0.1,2.0. 

/END 



c o l  1 

\ 
/FUN 'G?=EXP(Pl-P~*GPA-P~*TUCE-P~*PSI)/ 

( I +EXP(P~'-P~*GPA-P~*TUCE-P~*PSI ) } .  
G2=EXP(P2-P3*GPA-P4*TUCE-P5*PSI)/ 

+ExP(P2-P3*GPA-P4*TUCE-P5'*PSI 1 ) .  
F= * G ~ + B * ( G ~ - G I ) + C * ( ~ - G ~ ~ .  4( 
DFWA-B)*GI*(I-GI). 
D F ~ = ~ B - C ) * G ~ * ( ~ - G ~ ) .  
DP~=-GPA*(DFI+DF~). 
DF~=-TUCE*(DFl+DF2). 
DF5=-PSI*(DFl+DF2). 
CASEWT=I/F. 

, /PROBLEM TITLE=~CUMULATIVE LOGITS MODEL'. 
' /I NPUT VARI ABLE=8. - % 

F O R M A T = ' ( F ~ . ~ , F ~ . O , ~ F ~ . O ) ' .  
UNI T=8. 

/VARIABLE NAMES ARE GPA , TUCE , PSI , A ,  B , C , FREQ , CASEWT. 
/REGRESS.DEPENUENT=FREQ. 

PARAMETERS=5. 
WEIGHT=CASEWT. 
ITERATIONS=20. 
HALVINGS=O. 
CONVERGENCE=-1. 
MEANSQUARE=t. 

/PARAM INITIAL=O.O,OS, O.O.O.O.O. O. 
/END 
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