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ABS;!'RACT
The'purpcse'of this paper is to presént three céﬁmon models
of analyzing polyghotomous (either nominal or ordinal scaled)
response data..Thesevthreé\models,‘rbughly speaking, cgnﬁbe
classified as logit modéls.IEach'modél is illustréfed:ggih a
common dafa set énd_computétionai methods for.obtainihé?the
‘maximum likelihood estimates of the relevant parameters are

discussed. Finally, these three models-are linked to

discriminant analysis.
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- CHAPTER ZERO. 7

% L .
- PRELIMINARIES - S -
{ R ) ~y | |

INTRODUCT ION

SpectorAand»Mazzeo (1980)»reported that during_the spring
éemesters ofw19f; ;nd 1975 they had conducted.experimental
sessions‘of;a begining level economics course, Principles of
,Maéroeconomics, using the personalized system of instructions
(PSI),_The§ found that PSI s;udénté scored ﬁigper in the exams
thaﬁf% control group of students who took the course via the
traditional iecturé‘méthod. Their study indicated that PSI was a

- very effective method of teachiﬁé that céurse. To look at the’
long-run effects, they were-inteéestéd in the performance of
studenté, who had taken part in the sthwdy, in Intermediate
Macgoeéonomics, the course subseguent to Principles of
'Mégfoeéonomics. The questién was whether students eXposed'to the
method did better on the sequel. After four years, thirty-two of -

Y

~the original PSI and control students had taken Intermediate

]

Macroeconomics were colledted. These data are reproduced as

Appendix AO and include for each of 32 ;tudents thé entering
grade point average (GPa), the score on the Test of |
Understgndipg'of College Economics (TUCE) given at ;He beginning
of the ter to test entering knowledge of the material';4a’dummy

variable (PSI) indicating teaching method and the final grade

(GRADE) on Intermediate MacroeConomics recorded as A, B arnd C.

k]




GRADE is considered here as the dependent variable, and of
particular interest is whether PSI.still has a significant

ihfluehceron GRADE. i ) = S ¥t

It is wor-hwhile to point out here that th1s follow-up. study,
is essentlally an observatzonal type of study The eﬁ?ect of PSI<
could be confounded with other factors such as whether the
student had other economicskcourses_priof'tortéking Intermediate
Macroeconomics. Thus, all the findingS‘presented'in this paper
may not be interpreted as strongly as those found under a
deSignéd stu?y, |

= \ )
SM (Spector and Mazzeo) in their paper stressed the point

that; due to the dlscré%eness of the dependent varlable, it 15
inappropriate to-use a generalﬁlitear'model (GLM) to model a
relationship,bétweeh the dependentrénd the independent
variables. They discussed in detail the various problems and
con%éqﬁen&eé when GLM had béen used. They theni based on the

a

assumption that each student'siability and performance were

-

independeht to one another, suggested that eath student‘s
 outcomes on Ihterheaiate Macroetonomics should follow a -
multinomial distribution. To corféct thé above mentionedt
‘problemftthey suggéstedvmodelling the data with a 'multinomial
probit'/§odei, which would ;équire“fhat’the,data be regrouped

into three Bernoulli variates. That is, they let grades A=1, B=2




r\']\:

and C=3 and defined

s R
. " - ; ' S
1 1f the ith individual received grade j, and "
Y.. = < N : ' “
13 : , o .
| o, - |
o 0 otherwlse.
,\‘;g* -

NI
T

Thus the students .were partitionediinto three dﬁstinct‘
groups. For #he 'A' students, SM proposed to use a univariate

cumulative standard normal function

* x5, -
(x18,) = 7 1/V(2m)exp(-t?/2)dt ,
—-c
‘e\‘\‘v ®! ‘ ) .'.
where %! = (1,GPA,TUCE,PSI) , toO represent the probability of

géttihg a gradéAless than A. Maximum likelihood estimates were
then derived from the likelihhood function'(ignbfihg the
constant factor)
) ‘ A. . 1._ »
L, = 0 [1-&(xip,) 1" [e(xip,0] Ti0.
i

1

e

After obtaining the ml estimates, B, , a t-test was performed to

)

the coefficient of PSI to determine whether PSI was still
statistically signifiqé@tly related to GRADE. Moreover, the

- estimqted probabilities of getting an A for each student were

then found by 1-#(x}3,).

[

To obtain each student's chance of getting a B, SM again =

used a univariate cumulative normal function




e

. function for the.B students was formed by

N

L %ifs
“”(.".iﬁz) = f 1/V{ Zw)exp 2/2)dt

4

to represent the prdbablllty of gett1ng a grade of less than B
for the ith student Thus, d(x! 51) - @(x 62) would be the

probablllty of the ith individual gettlng a B. The- llkellhOOd
.

.. o . ’ ’. 71_ .
L, = T [&(x{6,) - &(xip,) 1732 [1+a(xp,) - d(xip,)] Y12
and maximum likelihood estlmatlon was agaln used to estlmate sz oo

¥ 4
and hence the probabllltles. The probab111ty of gettlng a C was

“~

’determ1ned in a similar manner.

'Sﬁ;s anprdsch, although clear snd simple, did{not treat
GRADE as a trinomial oUtedme, but’rather as three seperate‘sets
of Bernoulli data, one fdr-each grade. For each level of X,
they considered onlj'the'marginalddata; whether the ith
individual did or adid not get an A, whether- the ith individual
did or did not get a B, whether the ith individual did or.did

not get a C. Since the data were not fitted in their entirety,

it is-impossible to make a goodness-of-fit test of adequacy;

~eveén when the sample size becomes larger or even'with‘grouped

data. ‘In—féct SM did not mention anyth1ng on goodness of-fit

~about their model nor did theyf/ive a completn analysis to the//A\g%Xg

data. They were more concerned about the introduction of

discrete models for econometric application.



ALTERNAT IVE MODELS | N R

Daganzo (1980) and Maddala (1983) in fhewr resp€7t1ve books

define a multlnom*al prob t model as //

P, = Pr{the ith individual falls into the/fﬁrst category)

c/
X!(B,-82) x1(8,-B3) . x}/ ‘
=.f.; | {; ’ fltyy,tay) dt/zdty | {0.1)

~ & o/
e e ) /

. where toy=€2"€y, Loy=€3-¢€, andm(e,,ez,e3}“is a trivariate normal

| , . 7 .
with mean vector zero and covariance matrix given by

-y ' , /
, F 0% 0yg 043 om0 /
| | /
| oy 03 0z3 -
- -
L 03y 037 0% 4 / s ,
/ / v

The probabilities of P, and P, /are similarly defined. It could

/

. - : . ‘
be shown that equation (0.1)/would reduce tc the ordinary

: /
(binary) probit model when/ﬁerhave only twoc possible outcomes
for the response variablg/with the assumption that t,, hes
; v
. / .
univariate standard normal distribution. The likelihood function

- //

for SM's data under oy

[

trinomial probit model is

where P,, , Py and P.. are defined above. Thus the chief

. £
difference between our trinomial probit model and SM's is that
we consider the response variable as a multivariate random

variable while SM models the marginal univariate responses,

($1]



-
£

’

The rationale beﬁind'the develoﬁﬁént of ﬁﬁi£§5omia£kprobit
émﬁdel is very complex and interested readers are referred to
DaganzoiIQEO). However, 1t 1s easy‘enéugh to see thét we end up
with trivariate integrals when tﬁe number of categories grows to
four; Although special techniques are aééilable; fhe
‘computations are almost impractical with four or more’
categdries. Therefore, unless one has st;ong\belief that\probit
model is the appfopriate choicg, one Vbuld‘normally choose the
.logit (loéisgic) médels to analyze this type of'data. It is the
én;entioﬁ of this paper to re-analyze SM's data with different

forms of logit models.

*

DATA TYPE -

A

- Perhaps it is appropriate here to clarify our data types
before we move to the discussions of our models. By and lafge,
we can categorizé classes of multivariate pfoblems by thq}type
of response and explanatory variables inveolved, as in the |

crcss-classification of Table 1 presented below.



. 7

Table 1 : Classes of Statistical Problems

explanatory variables

categorical continous ~ mixed
categorical a b ' c
response : _
variables C§ht1nous ‘ : d e f
mixed ? ? - ?

. ——

As pointedggpt by Fienbe?g(lQBO), ghg cells in the bottom
row of this tablé all conta}nrques;ion marks’ih 6rdér to
indicate the lack of gedéf@?fg‘accepted‘classes 6f'multiVariate
models and methodé“designed to deal with situations involving

el

mixtures of -continuous and discrete response variables. The
- . .

cells in-the middle rowrc rrespond to problems dealt with by

standard multivariate analysis, involving. techniques such iﬁ\\\\\

{(d) analysis of variance,
(e) regression analysis,

(f) analysis of covariance. o -

Cur present data fall into cell (c). However, we will also
illustrate the situation of cell (a) by categorizing the - . - |
explanatory variables. In particular, our further discussions

will be divided into four chaptérs‘as follows:



e
considering the data to have.come from cell (a).

In chéptgr two, multinomial logit models are'fitfed,by
con51der1ng the data to have come from cell (c) |

In chapter thF@Q, a dlfferent loglt model is used by

considering the data not only to have come from cell (c)

but also incorporating the fact that the response variable

possesses order.
In the fourth and final chapter, we will finish the
discussions after the introduction of some further

application of these models.



_ - . CHAPTER ONE -

ANALYSIS I - -

INTRODUCTION - o » | 55{ 
' A . L o ,
Casual inspection of the data revea%s a high correlation
btheethSI and GRADE; eight of the 14 students taught by the .
PSI method‘earned A's while only‘three of 18 non-PSi students
received A's. A 2x3.contingency table , shown as Table 1.1 , is
produced below to cross-cléssify each student by GRADE and PSI.

@

— Pre. .

TABLE 1.1 : GRADE DISTRIBUTION BY. TEACHING METHOD -

GRADE
A B C )
YES 8 3| 3 14

PST | e
NO | 3 10 |- 5 18
R 8 32

It is clear that we could assume we have a multinomial'_w
sample with six possible buécomes on Table 1.1. One bf the p?}me‘
interests in-this table is to test whethef grade anq_teaching
method are inéependent. The classical way to dé thié is via the

Pearson chi-sguare test. In this case, the Pearson chi-sguare



séatistvic is girven by ,,,,,,,,,,,

3
L. (x{457%4, +]/32)2/(xl+ +J/32) = 6.14

(R _
~ 2 ‘

o3
where x;, =j§1 Xi 3 and X4 =i§1 Xjqe Comparing this value w1th a
table for the x? distribution with 2 degree of freedom, one may

" conclude that the probability of getting each gréde is different
for the two groups. However, it is deceiving to conclude at this

stage that PSI is an effective teaching method since PSI in this

follow-up study is highly confounded with many uncontrolled

factors. - - B ' ‘ ' B

—_—

Nv?wae we;élto examine the data mofe closely, we would find
that TUCEFand GPA are also posigively related té GRADE; Students
earning an A had an average GPA/cf'3.43, whilé»othei‘i;pdénts
average only'zjéé, for example. Agd thése téught by PSI method
had, on average, slightly higher GPAs and TUCE scores. A
mult1var1ate analysis is requ1red to ascertain whether ﬁhe
PSI-GRADE relationship is independent of or in-addition to other
faétdfs, or whether the apparent positive relation is,sphr&ogs.

It is.a fundamental proposition of data analysisﬁ?hat'apbéreht
relationships bet;een two variables can disappear completély if
we con£r01 for the influence of o€E§r variabféé. Thus, GPA and

TUCE should be included in the analysis to control ability and

background.



 MULTI-WAY CONTINGENCY TABLE | S

one such multivariate ahalysis is called malti-way
contingency table anal&sis. Therpurpose of analysis of a-
multi-way tab}e is"to obtain a'descriptien of’the relationships
between the factors of the table, either by formlng a model for
the data or by testing and orderlng the 1mportance of the
interactions betyeen the factors. The analysis is baSed on
fitting a (hierarchical) log4linear'$odel to the cell
frequencies; that is the logarithm of each expected cell
freﬁuencyfis written as an addit}ye‘funct}oh bf main effects and
iﬁteractions in a manner similar to the usual analysis of

variance model,

For instance, consider a four—way IxJxKxL contingency table,
‘. where the,four,indices.pertain to categorical variables 1, 2’,3
and 4, respectively. Let m; i3kl be the- expected cell frequency ‘
for cell (i,j,k,1). Then, following notation of Fienberg(\980)[

the loglinear model may be written as
1n mijkl‘=, Ut oup(q) tua(d) tus(k) tus()
Yi2¢i3) T M3k T Yiain) T Y23(9k)
+

U24(31) T Y34k 7 “123(13k) Y Y24(i91)

Y134(ik1) T Y234(3k1) T Y1234(i5k1) BERARER
and the u's satisfy the constraints - ‘ , i

I ' I
,Z ’ =O,"' Z :0'./0-1
1oy Y1(i) k 12y Y12(i5) 355 U12(1] ‘



1 g . K

GE Y2303k T5E) Yi2scige) TE) Mi2scigk) <0
1 J K

(5 Yi234(i3k1) =4Ey Yi23a(iskl) TeEy Y1234(i3k1)

Lo
1E) Yi234(igk1) - O

The u's (parameters) are usually called the effects. The
iog—linear model written above is also called the saturated
model since it has as many parameters as the number of cells.

, setting someé of the effects to zero, different unsaturated

models are formed. An unsaturated model is said to be -

hierachical model if a higher order effect cannot be present
unless all lower order effects whose indices are subsets of
higher order effects are also included in the model : if

U123(ijk) is included in the model, it means u, uy(j), U2(j51‘

_By; |

L3 (k) U12(13)' U13(1k)' u23(3k) must also present in the model.

The interpretation of the parameters is well documented 1in many

excellent textbooks(e.g. Fienberg,1980). We do not attempt to

duplicate them here. .

ESTIMAT 1ON METHOD

2

For our present use, we w1ll assume data coming from a

multlnomlal sample of fixed size N, which is then'

cross-classified in to a four“way table. The log-likelihood is

given by



{ = constant + Z Z Z Z n, | 1
F T STk ijkl nml]kl

where hljk

lvis a realizatioh of the i:ndom variablesNigkl
representing the number of observatiohs falling into cell

(i,9,k,1).

.In,estimatiog log-linear models we shall ehploy‘maximum
likelihood methodology Within this method, there are usually
two dlfferent approaches, commonly c1a551f1ed as direct and
1nd1rect methods.‘The direct method getg its name because iﬁ
straightforwardly maxiﬁizes the likelihood function>with respect
to the model paramete;s. Thé Newton-Raphson algorithm (program
P3R in BMDP can be forced to do‘this) is usually employed in |
such an approach., One advantage of directiy\maximizing)the |
likelihood with respect to the parameters is that asymptotic
‘standard erfors may be obtained in the usual manner from: the
information'matrix. Forbcompufotional purposes, we could assume
that the'data within each cell come from Po.sson distribution.
The easiestQ;af to verify this equivalence is to write down the
likelihood equatiohg for the two different sampling methods.
This will show that fhey are solviog the>sameisetrof.equaéions.
Thio is why we could use the 'ERROR PdISSON' Statement in GLIM
(Generalized Linear Interactive Modelling) to fit log-linear
modéls. Another fact is ;;at the Néwton-RaphsOn method used in
.log—linear modelling can)be converted into the iteratively

reweighted least square estimation process which is available in

~

13




' GLIM. For the details see Baker and Nelder (1978).

An indirect but generally computationally vantageoqs‘
approach'fs first to find the maximum-likelihood /estimates of
the expected frequencies and, from these, to compute the
estimates of the model. For example in model (1.1), we would 7

have

u = z (1n m;:pq)/13KL ,
i,5,k,1 13kl |

“ ‘ U1(1) = j'E'1<Tln mllk

l/JKL) - u,

.etc. itﬂis uafortunatelyAthe‘case that for tables with dimension

three org higher, the estimated expected frequencies for certain ;

lgg-linear models carnot be written in closed form. Eishop,

: Fiénberg.and Holland (J975)Adescribed,a general schéme for
détermining the existence of‘directvor~élosed-formédbgstiﬁates.
Fienberg (1980,page 75) gi\'/és»a table éhovging whether each
log-linear model for four-dimension table would have direct
estimates or reqﬁire.indirect estimates.'There is, fortunately,
an algorithm known as iterative proportional fitting

(Fiénberg,1980), which determines the estimatedkexpectedA

frequencies to a prespecified degree of acqq;acy qurany
hierachical log-linear model. A typical statistical software

using this algorithm is piogfam P4F in BMDP.

14
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HYPOTHESIS TESTING AND GOODNESS-OF<FIT - — —— :

s . . . v . . AN

The standard goodness of- f1t test in log- llnear modelllng is

the llkellhood ratio approach (analy51s of deviance),

contrasting an unsaturated ‘model to‘the saturated (Maximal)

3 . ’ -
model. Let L, represent the likelihood under the unsaturated

model and L, for the saturated model, Then, the log-likelihood

‘ratio statistic has the form

G?

[}

-2 (In Lo - 1n L,)

2 Zoln(o/e) ,

where o and‘e denote the observed. and estimated—expected (i.e.
fitted) cell freguencies, respectively, and‘summation is over
all celk’s in the table. Although_in‘small samples the
distribution of G2 is very eomplicatéd,‘inilarge samples G?;is

approximately distributed as chi-square with degrees of freedom

'given by the number of céfls minus the number. of ihdependehb,

non-zero parameters in the unsaturated model.

The likelihood-ratio test may also be used to test any
hypotheses about the model, for example, the hypothesis of
independence. In general, the likelihood ratio, A, is the ratio
of the value of the likélihood function_maximized.under whatever -
constraints are embodied in the hypothesis being tested to_the

value maximized under no constraints except, of course, those



-

as Chi square with as*manyldeérees of freedom as there are
~ independent restricticns embodied in the-hypoiﬂesis;being

tested, relative to its alternative.

"APPLICATION OF LOG‘L]NEAR MODELS TO PRESENT DATA

_ Iﬁ our present data;'GRADE and PSI are true categorical

5;& *Variables;but GPA and TUCE aré'continuous-Qariables. Therefo:é;
we have to categorize the latter two variables to form a
four-way conﬁingenéy téb}e;”One way to form the table is shown
in Table 1;%2 For both variakies GPA and TUCE, we f?rm two
categories representing theirvhigh'ahd low—values. Prior to ’
fittiqg any model to the data, it is worth noting the existence
of zeros in the table. They occur because the sample size, 32,
is not sufficienfly large to provide an estiﬁate ofher than zerd
of the unknoyn, but.possibly small, poSitiQe theoretical
frequencyfdf these cells., Sémpling ierds present techqicél
difficulties in estiméting thé expected frequencies (or
parameters). In thistanticulaf case, the ﬁresencevof zefog”
ﬁakes‘it impossible to estimate the parametérs of the saturatéd
‘models(see above section) sincéﬁ;hey are functions of‘ln hijkl
ahd‘ln(O) = », Fienberg (1980) and Reynold (1977) in their:
reépective books both'discussed possible problems under sampling
zéros situations. interested readers are refefred to these books

and many other papers to understand the problem. However, the

general remedies to the problem could be summarized as:

\ . 16
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< 1. Add a small value to every cell in the body of the table,'

k]

’1ncludlng those w1th non-zeros frequenc1es A value of 0. 5

is often suggested.

-

2. Arbitrariiy define zero divided by zero to be zero. In this:,

second alternative, if/any entry 1in a marginal table to be

fitted in the model 'is zero, then all entries glv1ng rise’
to this zero w1ll necessarlly remain zero durtng 1terat10n
3. Increase the sample 51ze snff1c1ently large tofremove»all
zero cells. | o ' |

' -t [ i o ;
4. Combine the categories until the sample zeros vanish.
A ’ . ) '

The last alternative is easiest to accomplish but would lose a

great deal of information., The third alternative is infeasible

unless another l;rge-scale experiment is to be repeated. The
secondvalternative, recommended by_Fienberg'(1980,chapter 8),
would'invoive the modification of estimation procedures and

adjustment of degrees of freedom, which is.sometimes tricky-
Besides, nelther GLIM nor BMDP4F provide this alternatlve. Thus

we will follow the flrst approach and add 0.5 to each cell.

‘For a four-dimensional table, there are 113 different )
hierachical log-linear models, all of which include the
main-effect-u-terms Therefore it is a tremendously difficult
task to go through all these models to search for any
appropriate ones for data, Fortunately, BMDP4F of BMDP is so
well designed that it can help to screen the importance of each

r ~
¥ —

it
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/

But as expected, we/COUIG not get any COncrusfvelevidenees
frqm'Table 1.2 since here are,tOO»many sampling aeros; One way
to eliminate‘the sampling zerosvim our,preSgnt situation-is.to

~collapse the'table over either»variable GPA or variable TUCE. We
shall pick the latter one and form a new three-way dontingency
table which is shown in Table 1.3. The reason for this choice
will becnme evident after reading the next section and chabter

e
two. L

Table 4 éxhibits the G* statistics for various log-linear
model f1ts to fable 1.3, In the symbols for the models, G
represents student s GPA, P represents student's assigned class,
and F represents student's~final GRADE The G? StatlStICS and
associated p-values_ln Table .4 1nd1cate all displayed models
glve adequate fit to the data. To select an appropriate model in
this case,vwe will follow. the idea’ of partitioning chi- square

:(seerFlenbera, chapter 4, for detalls). At each stage of
partitioning Qe_shoula/look‘at‘two things: the value of the
appropriate component, and the cnmulative value of the ,
components examined. For our present data, we begin by looking
at the component due to model (11), whose wvalue 1.12/has-a.very
high descriptive level of significance when referred to a.tablek
of the x% distribution with 2 8.f. This model fits the gata

fairly well, and we proceed to the next eqmponent; GZ(IO)‘-

G*(11) = 5.48, wh}ch is considered significant under 0.1 lgvel
LA
18 . . ’ F 3



fof’significance when referred to the x* distfibuti0ﬂ~v%th?¢“d;fr -

This tells us to retain model (11). We will get similar

conclusion when we look at the component G2(8) - G2(11).

]

However, when we further look at théJEompOﬂent G*(9) - G*(11)

-

0 which sffongly indicates that the assumption of partial

/association between GPA and teaching method is not needed. .

1"

' Moreover the cUmulative value of the.components so far,'G2(9)
.12, showe that model (9) fits the data well. I.flrwé go on to .
the next components, G2(5) - G*(9) . and G%(6) - G*(9), we‘shall
find both of them showiﬁg significant improvements under 0.1
1e§e1 of éignificance‘and’therefbre‘we stop,pa;titioning'here.

{Thus, it leads us to accept that (GF,PF) is the best model in\
this case. This model suggests that GPA and final éradevare
conditionally/depeﬁdent in..a similaf,manner for each teaching
method. Furthermore, iﬁralso suggests that the teachingvmethod
and final grade are conditionq}ly dependent;in a similar ménner

fo

"

each given GPA. Table 1.5 displays the maximum likelihood

estimates of the u's,

—

: ' AN
. LOG-LINEAR MODELS AND LOGIT-MODELS
How dc we interpret this fitted model? Since we are
interested in the effects of PSI and GPA on the student's

performance ir Intermediate Macroeconomics, it is reasonable for

11
-

to look at the odds of obtaining A or C relative tc B for

ur

each combination of GPA and TUCE, that is (if we agree to use 1,

2 and 3 to represent GPA, PSI and GRADE ; i, 3 and k to index

15
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their repective levels) mij1 192"

model says that o -

U23 (k) S -

Thus, with the default data coding scheme in PAF, it follows

that 4 | A i
Inlmggp/misp) = (ugoymuzey) * Wisain™sa) 7
(u3(51) Y23 (52)) | (n.2)

and

o (mggg/misy) = (ug(q)m2u3(p)) * (8i3(51)7203(52))

+ ('U23(J1)"2U23(32)) . g (1.3) N

Hence, eguations (!.2) and (1.35 show how the dependent-variable -
log-odds depend upon the GPA and teaching method. It is often
Said that there are additive effects on the log-odds duerto.GPA
and PSI, This result will agfee with the-modei to be dévelopéd

in the next chapter,

20
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EFFECTS OF SAMPLE SIZE

In_this analysis we berformea all stéps as 1f the sémple:wés
largé‘enough. However, thefé is no doubt that our samﬁfgfgfée/is
too small. This is evident-f:dm the p:eéence of;ze;o and ioQ
frequency cells in the contingency tables. The‘effééts of Sample |
size are most influential on the choice of a model through |
goodness-pof-fit tests. A population association or'interaqfioﬁ
that is strong will likely be deteéted even if the sample size
is small. However, very weak associations have a strong
likelihood of being detected onlvaith larger samples. As a
conseqﬁence with large samﬁle sizes we may need more.compiex
models to pass goodness-of-fit'tests than with sméll'sampie
sizes. Thus, ﬁhe true picture in our present case méy be more

complicated than what we have suggested.

”
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TABLE 1.2.: A FOUR WAY CLASSIFICATIO

-——— e —— ) — . - ———

I3

N OF PSI DATA

A YES
NO
e YES
S
NO
c YES
NO

2.00 3.00
- 2.99 - 4,00
< 20 1 1
20-30 1 5
TOTAL 2 6
< 20 0 0
20-30 ‘0 3
TOTAL 0 3
< 20 0 \ 0
20-30 1 2
TOTAL 1 2&
< 20 4 0
20-30 B 2 4
TOTAL | 6 4
< 20 2 0
20-30 2 1
TOTAL 4 )
< 20 0 0
20-30 2 1
TOTAL 2 1

22
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GRADE PSI GPA
2.00 . 3.00
e .__.T2.99  74.00 TOTAL
A YES 2 6 8
NO 0 3 3
TOTAL 2 9 SRR
B YES | 2 ““/ 3
NO 6 4 | 10
TOTAL 7 6 13
C YES 4 1 5
NO 2 1 3
TOTAL 6 2 8
$



o

—
—

\y TABLE 1.5:

W @O0 Ve W N —

MODEL DF G?

P-LEVEL
G,P,F 7 12.48 0.0858
GP 8 13.40 0.0989
GF 6 6.90 0.3304 .
PF 6 6.81 0.3385
G,PF 5 " 6.717 . 0.2433
P,GF 5 6.90 0.2284
F,GP 6 12,38 ~0.0541
GP,GF 4 6.79 0.1473
GF ,PF 3 .12 0 T 00,7712
PF,GP 4 6.60 0.1585
GP,GF, PF 2 1.12 0.5713

ESTIMATED PARAMETER VALUES

OF MODEL (GF,PF)

PARAMETER ’ - ESTIMATE

V3(1) ~0..050
Y13(12) 0.104
Y23(12) ~0.540
/
24



CHAPTER TWO

ANALYSIS IT1

INTRODUCTION -

In_th€ pfevious‘analysis, we categofizéd continuous

“variables GPA and TUCE in order to form a four-way contihgenéy

table to find a relatiénship}among'the four response Variables

to determine any dependence of GRADE on the’téaching method;

However, our samble size was too small to ?us;jf the

reliability of loé—linear model. In this analysis, we will keep

the original measurement scale of variabies GPA and TUCE.énd

consiaér a guantitative, regression-like model; which could be
‘ appliedvtg,both grouped and hngrouped daté, between GRADE and

the independent variables.

= /MULTINOMI AL LOGIT MODEL

Let Y.. (j=1,2,+-+,n;) be a nominal polychotomous dependent

. i
(response) variable which takes on the values a,, a,, +--, am

) be the observéd

Furthermore, let xi‘ = (1,xi1,xi2, R
independent (explanatory) variables associated with Yij; Now, if,
we let o
/ i. 1 1f Y"lj = ak
Z‘~k= <l .
L 0 otherwise
25



for i=1,2,%.+,N, j=1,2,--i,n1*and'k=1,2~---,mi, then it is

' ) : ' .ony

obvious to check that for a given x;” the vector (_Z1 Zij1'
nj . | : 3= o
,21 2. ,.;?},zl Z;:p) follows a multinomial distribution with

Aj:]‘ 132 J=1 JA : » .

index n; and prpbability vectOr.(Pi1, Piz,---,Pim);~Mantél

~{(1966) suggestea-relating the response probabilitieé to

explanatory variables by
: C

pik = Pr[Zijk=1 l xi]

D m P
exp[lz;l1 ﬁklfl(xi)-]<£1 exp[lz;;1 ﬁklflfxi)] : (2.0)

Model (2.1) corresponds to model (5.4) in McCullagh and Nelder.
Mantel called 12;15 the generalized logistic moaelvbecéuse of
ité relationship with the multivariate\lOgistic c.d.f. Withouf
loss of gemerality,'our discussion assumes that f,(x;) = xil_and
equétion (2.0) beéomes

Pik é Pr[Zijk=1 l Xi]

P m p : ‘
exp(12='1_1 Bklxil)/kl;l1 e){p(lg1 ﬁglxil) S (2.1)
We can immediately observe in (2.1) that the parameters are

b | ; ,
unidentified. The usual restriction to bring it=to be
identifiable is by imposing the condition Bpi=:"*= ﬁmp=0. Thus
we could rewrite (2.1) és o

' m-1 ‘ p
pim=1/(1+k§f exp(l§1 Bklxil))

o T

26




P

Pi jzpimoéxp( lE] ﬁjlxil) . 3.‘:1 prre ’m? 1.‘ - ,<(2 .,,2 },- B

It could be easily shown that under (2.2)

'ln(Pij/Pim) =lg1 ﬁjlxil j i,...’m—] (2.3y

i

_ Thus, we could arrive at the same model if we let the -1

canonical pargmeters ln(Pi1/?im), "f’ln(Pi,m-1/Pim) of a
multinomial distribution be parameterized as in (2.3). We shall

name (2.3) the multinomial logit model.

-Furthermore, it could be shoWh when m=2 oUrAmultinomiél
logit model reduces té the usual logit model for}dgchotomOUS
response data, which is'usually represented as

1n[Pr(Yi=1)/pr(Yi%0)] = a + § %585
Here, we may view model (2.2) or (2.3) as an extension of the
logit model for dichotomous case where we also‘conéider the
natural parameter log-odds. In (2.3), outcome m can be thought
“of as"analogous to outcome zero in the binary case. The outcome
‘m serves asthe baseline for-comparison>with other altiénativgs.
In our discussion we arbitrarily picked outcome m as our

baselihe, we could have picked any other outcome and obtained a

comparable_result.

27
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PARAMETER INTERPRETATION IN MULT INOMIAL LOGIT MODEL .# S

v

In'the logit model for binary response data, the coefficienfak
C

f: has the meaning of a multiplicative ‘factor and in fact 1t o T

means the odds increase multiplicatively by exp(ﬁ ) for every

unit 1ncrease 1n X: Thus, the sign_of ﬁj uniquely determines

ij |
the_direction of the corresponding change in the odds and hence

the probabilities of the two possible outcomes.

For the multinomial logit model, we also focus on the ratio
Lz:ds of the event relative to

of the the probabilities
another). From (2,1) and‘02.2),'we may write the odds as

P]/P]' = exp{lé]’ (le-ﬁjvl)xl}.

We are interested»in the behavior of these odds as the
explanatory variables change. Since the function exp(- )
1ncreases as the arguement 1ncreases, the sign of the difference
of two coeff1c1ents alone will determine_the change in odds as

~ the exbianatory variables change.

The result above provides an éasy and straightforward methed

for interpreting the parameters of a multinomial logit model. . /
i /
/

Consider two outcomes, say j and j', and a change in one of the ///
explanatory variable, say Xy o If the difference in the two
relevant coefficients, B]k 63 K is p051t1ve, thenfan increas

in the variable Xk will increase the likelihood of observing

28 .



oﬁtcomé j rather than outcome j Note that we are speak1ng here
only of relative probability. Both probab111t1es may rlse, so

long as Pj

Py falls }es?/ﬁ than p-j‘, .

rises by more than P.

jreor both may fall as long as

While,simple and straightforward, this method of comparison..
has two‘liﬁitationg.'Eirst, it tells bnly;of relative changes;
if infbrmation is required .on the probabilities themselvéﬁ,/
there is no alternative but to compute éhe probabilities at
selected values 6f the variables. Second, it prévides oniy for

comparing outcomes one pair at a time.

.

" ESTIMATION METHOD

Under model (2.2), the log-likelihood is given by-(iggoring

the constant term)

| = ? niln(Pim) + ? Z\? zijkln(pik/Pim)~

= L nilq(Pim) + Lz zijk X110k (2.4)
1 1 k3 1 v

It is well known that the multinomial distribution belongs to
the exponential family , and model (2.2) retains the likelihood
in the exponential family. It follows that Z Z Z.

| i3
minimal sufficient statistic for the new canonicalyparameters

13k 11 15 a

Ski' Thus, the mle can be obtained by solving

28
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Equations‘(2;5) dbinqt have explicit:sqlutioﬁs and numerical -
methods, such as Fisher scoring or Newtbn-Raphson algorithms,

: could;be employed_to se;fch for the estimates 6f'£he parametefs._,;
Whéther it is preférable to solve (2.5) or maximizé {2.4) |
directly depends upon the particular COmputervsoftware

available. In fact, numerous papers (e.g.ABunch,1987) discussing

v vafious'efficient algorithms for finding MLE from (2.4) have

been published over many years. McCullagh and Nelder (chapter 8)
~attempted to apply quasiQIikelihbod estimation methods tof%his
problem. However, a useful,‘but not widely known, fact (éee |
Appendix A5) is_that under the parameterization in (2.2), the
Fisher-Scoring (and the Newton-Raphson) algorithm in solving

(2.5) can be carried out by u;ing the_GauSs4Neﬁt§n‘algorithmﬁfor

solving the non-linear univariate regression model

njy ..

1]

where irruns from 1 to'N , k from 1 to m and with the:u§Ual
assumption E(e;:)=0. Hence, we could solve the system (2.5) via

any non~liheaf regression program which uses the (Quasi) / -
Gauss-Newton algorithm. Furthermore, it is apparent that the
error term, €,y has non-constant variénce (see Appendix A3)
and, therefbfe, we need a weight function wik=1/Pik in running

the regression. However, we know that most programs doing

30
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non-linéar regression are designéd to minimize‘iggfresidual'sﬁm
‘of squares. Their default Stopping rule is:thus based}bﬁ the AV
change Qf‘the :esidualAsum"bf squares. However,'bécausé'thé
‘weights vary frbm step to step, the max imum likelihooa estimété 
B-generally does not ;érrespond tQ £he smallest‘possibié value
Qf the residual sum Qf squares. Therefére, ﬁe must tell £he
programs not t6 monitor'th¢ residual sum oﬁ)squares to decide
when to stop iterating. Non-linear regression program BMDP3R
‘provides-this alternative to'méet our needs by setting

convergence to minus one (see BMDP3R documentation for the

meaninquf it) and specifying the number of-itefations desired.
For the same reason any partial step.modifications, known as
halvings, which monitor‘fhe'residual sum- of squares should be
turned 6ffl In BMDP3R, this is done by setting the maximum
number of halvings tovzero. Furthermore, by setting the meanf
residual s;m of squares to i, the estimatéd variance-coyaniéhce
‘matrix of the coefficients obtained indirecflf from P3R can be
used to estimate the inverse of the Fisher informatibn matrix

derived below. b

Now, suppose we let Bkz(ﬁkO* -f-,ﬁkp), then it is easy to

show that : , | - o
221 /3,38 = -L T Py (1-P; )x,x] (2.7)
i -

and
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0%1/8pydby = L L PyyPiyx;x; - s
4 1] : - : ‘ . .

| . S o . .
for k#1. Thus, the matrix of second.derivatives is easily seen

to be negative definite. Hence, the log:*" elihood function,

(2.4)>;is.globally concave and unigue maximum e
. Furthermore, it.is apparent thgt the Hessian matrix is—
equivalent to the Fisher information matfﬁx, I(B), which has the
main diagonal blocks given by (2.7)land off-diagonal blocks by

(2.8). In the case of ungrouped data (hi=1), it could be prerd

.that Vn(é—ﬂ)'-9>- N(0,nI-"(B)), where n=Zn;, B'z(BY,---, By) and
g i

g -is the mle of g. This asyhptotic result may be used to \\\\\\‘\\\
construct large sample -normal-distribution test and coefficient
confidence intervals for the coefficients.

Vad

APPLICATION TO PRESENT DATA
. - ' |

In our present daté, the dgpehdent variable, GRADE, is a ~
trichotomous variable thch takes on the value A, B, C. The
indepenaent variables are (1, GPA, TUCE,'PSI); In order to
search for an apprdpriat; model, various multinomiaL>ldgit model
are fitted to the data and theif verbal explahations are given
in Table 2.1. Table 2.2 gives the maximﬁm likelihood estimate§
and their associafed standard error (based onfthe inverse of the
matrix of the becond derivative of log—likelihood)bof;thé
paramete:s in Tgble 2.1. Table 2.3 showé thé LR-statistics for

: e
the goodness-of-fit of each model fitted.



A quick survey of eiisting statistiCal software at S.F.U.

reveals that only TROLL has a specilal program which éanvbe used - B

without any'ﬁbdification to estimate the parameters for all the
models listed in Table 2.1. This fact could be explained as due
to the rare use of multinomial logiﬁbmodels ét S.F.U. We decided
to use BMDP3R to compute our estimates. Since this is a
non-standéfd use of BMDP3R, a source listingﬁofrtheFBMDP
statements and the codiﬁg of the data of model 5 afe.rebroducéd

in Appendices a7 and A9, respectively.

Of course, there are some drawbacks about BMDP3R in such an
applicationf One major problem is to provide a reasonable guess
rof the:initial parameter values. This could become a heada¢he
even when the number of parameﬁers is moderate. However, with an
acceptable guess, convergence could bg acheived within several
iterations. Another minor pfoblem‘is that BMDP3R does not =
provide any relevant goocdness-of-fit test statistics, such as
likelihood chi-sguare. But this could be soclved easily once the

rameter estimates are available by writing a small program

0
v

wizh the formula prcvided in the Appendix 6. Degrees of freedom
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COMPARISON OF ALTERNATIVE MODELS

The various models we have fitted are only a few of the
unlimited number that could have b&en fitted to the data. We

will make statistical determinationf of the adeqdacy.of each

fitted model, via use of likelihood’chi-square. These
chi-squareé are -shown 1in the.bottom row of Table 2.3, such
chi-squares being,the’imp:OVment in £fit which would result if
the data were perfectly fitted; i.e..model 6. We may note that

the likelihood chi-squares are remarkably/§imilar in instances

el

where Endependent variables are included in the models. If we
compare all the ‘five likelihood.chi—squ re statistics at the
bottom row of Table 2.3 with a x? table .4t 0.05 a-level, we
would accept.- all these models to have fitted the data
adequateiy. Hence, we have to tést for model adequacy noﬁ by
considering how‘weli or-badlj the model and data corréspondJ but
rather by tonsidering if some alterna;ive'model, differing in
some way from the null model, pfdvides a sufficiently }mproved
fit when account ié taken of the number of added’pavametérs.
This approaéh 1s appropriate w null model can be

congidered a special case ©f the more general cases. In Table

™~ A
- :

2.3, ¢ fit of each pS6del, considered as a null model, 'is

considered as a special case. Where two models do ‘not stand in

this relationship, the likelihood chi-square-is indicated as

seing nocn-applicable (NA},

3é



Since models 1 to-4 are nesteé iﬁ-quel sfit iskeésié; fqr,
us to consider modél 5 as ah-aiternative model éndxmodels'T to ; -
as’nuli models one at a time. If we follow this, we Qould find,
when considering mode1_4 as null model, that TUCE doés not seem
important in;p;edicting the course grade since &155% X3 ,0.0; =
>5.991.7For thé teaching format, it strongly indicates from model
3 that PSI does have effect on determinating an‘individual}s
final,érade on the course. If we compare modél 2 with model 5,
we have a'l}ﬁelihood chi-square imp;ovement of 6.72.with 4
degree of freedom, which naturally indicates'that PSI and TUCE
together do helprto predict the course grade. Ail these
comparisons suggeét that we*could'use model 4 as the new
aiternative model. Thus when we‘consider model 2 being nested
into model 4,‘itishows that the coeffiéients of PSI are
significantiy different from zero, Thqrefofe, in considering all
these, we would choose model 4 as oﬁr model and the estimated

log-odds are given are given by

e

1n(P,/Py) = -9.135 + 2,402%GPA + 2.378%PSI (2.9)

1n(§c/§8) 7.113 - 2.641*GPA + (.251*PSI (2.10)

The positive coefficient GPA in (2.9) indicates that the

of
Vs

chance of earning an A increases, relative to receivingia B, as

GPA increases. Likewise, the negative coefficient of GPA in



(2.?0) 1nd1cates that a student become less llkely to earn aC
than a B as GPA increases. Noté that both PSI CO&fflClthS are
p051t1ve, 1nd1cat1ng that taklng the new teaching foxmat makes
it more llkely to earn either a C or an A. However, the ;
coefficient of (2.,10) is so small and not 51gn1f1cantly

different from zeto, whilé the A_versus B comparison is larger
and significant. Thus,’the'smell positive effect of PSI ip

2.10) is offset by the large and negative effect .of GPA as GPA

increases. This is.clearly depicted in Figure 2.1
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: TABLE 2.3 :

LIRKELIHOOD CHI-SQUARE FQR VARIOQUS NULL MODELS;

EACH CHI-SQUARE IS BASED ON A COMPARISON WITH
SOME -APPROPRIATE ALTERNATIVE MODEL

A 1 7] I H ‘ """"""""""""
L 2 | 12.81
T o2 4
B o ____.
R
LN 3| 13.26 0.45 )
A 4 2
S T USSR B
I
\Y 4 18.98 6.17 NA
E 4 2
w 17 ] R Rl L
0 5 | 19.53 6.72 6.27 0.55
D * 6 4 2 2
B bl ] o]
L
S | 6 | 69.10 | 56.29 | 55.84 | 50.12 | 49.57
' 62 60 58 58 56
............. U S S §

Here, model 6 is just the maximal model (observed data).

Key : each cell consists c¢f

sizelihood chi-sguare

degree of freedom

Yy in a cell is O, the null model fitted

th
~ -

If the observed ejuenc
Ireguency is £., and the alternative model fitted freguency is
E., then likelihood chi-sguare is given by 2L O(lnE,-1nE,).

(@)
A

L

N




FIGURE 2.1: PREDICTED PROBABILITIES UNDER MODEL FQUR-
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: CHAPTER THREE
"j : - ANALYSIS IIT

eINTRODUCTION

In the prev1ous two analyses, we con51dered our dependent
varlable, GRADE, only as.an unordered varlable, or belng
measured on a neminal scale. However, many people would not
agree that GRADE itself has no rank1ng at all Thefefore, in
this final analysis, we will bring 1n this extra 1nformatlon and
formulate a model in which we can 1ncorporate,the order inherent

in the.variable GRADE.

POLYCHOTOMOUS ORDERED RESPONSE MODEL

In many cases of data analysis, we bgve the resﬁonse
variable measured as ordered categories. Some examples are the1
following: less than high school, high school, college

education; dead, severely affected, unaffeeted.‘Suppose we have

m ordered categories and, for convenience sake\ we name them as.

1,2,3,4,+ +-+,m., Furthermore, let Ylj 1. (0 other

individual falls into the jth category and P P3= Pr[Yij=1]. To

reflect the order in the response variable, one postulated model

ise) if the 'ith

is
Pr{the ith individual will fall into the

f~

"M =
0
1]

first k categories]
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- - ° - = F(a‘k-xiﬁ) 7 .?7 7* - ‘ - - : o S e e i’f”i’gffi

-

vhere xiiis a vector of independent variables associated with .

the ith:individUal and F is some c.d.f. To undersﬁénd‘the logiél
~behind this model, it is eéasier té explain with‘é'bioaééay |
~example. Let x; be ihe dosagé'level of»an insecticide given'to
the ith insect. The dependent wvariable Y, is defined to take on
values 1, 2, or ﬁ depending on whether thé ith insect is alive,
moribund, or dead. We assume that there exists an unobserved
éugntixy Yi* (can be interbréted-as the tolerance level of

insect 1i) th'observe Y, instéad. We deginq Yi%3 if Yi* < a;~x8

.. * @ N
and Yi=1 if Y. > a,+7-xiﬁ, where a,,y,and B are unknown
_ . , .

i
'paraﬁeters. The model is illustrated in Figure 3.1 below.

5

Figure 3.1: Three Reponses of Insects

*
DENSTTY O Y e
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Mathgmatically, this model is spécified bylfhéﬂféifgking

equations:

Pig = Priy;” < a;-gig-] = Fla,-x;6)

and

* 7 -
pi3 + piZ = Pr[Yl < ay t 7y - Xlﬁ] = F(az-xlﬁ)

where a,=a,+y and F is the c¢.d.f. of Yi*'

The generalization from this example to the case of more
than three ordered response and two or more independent
variables is stréightforward, but tﬁe computation will be much
more complex and almost impossible when F is chosen to be a
normal diétributionllThérefore, &n our'subsequent discussion we

will confine ourselves to logistic c.d.f.

It is obvious to see that for the general case of m
categozi;s P: =Fla -x:B) - Fla,_,-x!f). Equivalently, we could

also wrFte our model as

k k R o |

where k=1, ..., m-1, Equations (3.0) are usually called the

cumulative logits.

o
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PARAMETER INTERPRETATION IN CUMULATIVE LOGIT MODEL

For the convenience of discussion, we write (3.0) as

, | - o o
F(aj°§'ﬁ)/[1—p(aj'xfﬁ)] = exp(aj"k§1 XpBp)e o

Our‘odds ih this quel are iepresentea in‘terms of the ratios of
the'probabilitiéé of falling into categories 1 through j to‘thev 
probabiliﬁies of falling'into categories j+1 throﬁgh m. Thus,the
ratio will increase multﬁ?licativelyby exp(—ﬁj) for every unit
increase in X, . Even though this factor is independent of the
outcéme»catégory,vit’ié obvious that the maghitude of the new
ratio depends on the outcome be;ause our model assumes that

'a,<a2<---<am_1.

Thus, a negative By will'mean'that increasing a unit in»xk
- will have the outcome more likely to fall into categories j+t
through m than the first j categories. A similar interpretationv‘

can be obtained for a positive .

ESTIMATION METHOD

Under thevassumption of logistic q.d.f;; the likelihood

function will be given by
m ' ‘ A yl, "
§1 {F(“j'xi B)-F(aj-1—xiﬁ)} 15 o {3.1)

anéd its natural logarithm is given by
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Z 'Yijln{F(aj‘xiﬁ)‘F(arj_wr-xiﬁ)} | (3.»27).

~ N ~

The ml estimators'a1,a2,5-3an,§ aée defined as the values of
@zt ay,B that maximize elther 3. 1) or (3.2); Unlike in
the case of multlnomlal loglt model we can no longer retain
thlS reparameterlzed multinomial dlstriﬁution w@thin theb

exponential family.

Assuming logistic c;d.f. and differentiating | with respect

to column vector f yields a column vector of derivatives
. n m .
3l /af =.Z L - /P { (a:-x! )-f(a-_1—x§ﬁ)}xi- (3.3).
1=173=1 _

and similarly

. 6]"‘1,}( f(aj_1-xiﬁ)v}7xi 7 (3.4)

1]
- ? * e ) . .
Furthermore, the .second partial derivatives are given by

where §:. is the kronecker delta anq f is the derivative of F,

- n o m
52 - 2 - N - ..
92l /(3pag' )= § 351 ylj/p {plj[flj(l 2?1])

-f.

I’j_1(1—2F

i ],1)] #(fij-fi;j_1){}xixi (3i5)

0 | ,
-y../P?. . o f. L (1-2F: ) -
51 ylj/plj {p [6]kf1](172F1])

N
821/(868ak) =,§1 i3

6'_1’kfi'j_1( 2F1 ]_1)]

45




*

-

g’ ' . - - - — e - - — ,

and
48 "ﬁ. ~ ) ) ,
N ) n- m ,
24 = . . ¢, -
3 1/(§alaak) -1513‘5 ¥i5/Piy '{? sl85t lj(1 2F ,3)
- ‘5j—1,f<f1,3—1( 2F1 3—1)] - e

g ‘ "%k i3 785-1,kf1,5-00 (85085978500 18 -0
. . - - ' (3.7)

where Fiji F(a’-tjﬁ)rand fij isfthe derivative of Fij'

Agaln equatlons (3 4) and (3.5) are both highly nonllnear in
the parameters. Numerlcal algorlthmshsuch as Newton- Raphson or’
Fisher-Scdring methods,‘which would involve the use of (3.3) to
(3.7);,can:beaapplied to'solvg the estimates .teratively.

Special computer programs have al:eadyibeen written for this

model but none of them are available at S.F.U.

However, we could reuse the estimation method used in
analysis 11 again in here., This tlme we have to run another

non-linear regression model:

T

with weight matrix {wij} = Bij/Pij' where i=ﬂ,2, +++,n and
j:"rzr"'lm- |
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Equation (3.8) i1s not the only non-liné:?\regression model
appf}cablg in this case. Walker and .Duncan (1967) proposed -
another non-linear regression model for trichotomous situation

which could be modifiz2d to extend for any polychotomous cases.

Their model was

J

plﬂ = f‘(a“ﬁ,x) - E}n
J : : (3.9)
. )
p,\n + p2p f(ﬂz,y,X) + f'2n\ .
e \v; id

where n runs from © to N (the total number cf c¢bservations) and

th
Q

bservation n falls irto category !

stherwise

r 1 :f observation n falls intoc category 2 K
;—L_,zr. = <’
i 0 otherwise ) - .
and -
s
flay,é,%) =1/¢t + expla,~x"§)]} (i=1,2)

ors are correlated in pairs and in fact

B S

[
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o
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PinQin Pin@s3n -

L p1nQ3n p3nQ3n

1

Varle ) = Varle._ , e, )

- [
and A .
[
: ! Q3n/p1n -
Var (e ) = /Py
|-~ /j' Q1nP3p |
where P, = E(pin) v Yyp = P 7 Pyp and Pyp = 1 7' Pin 2n*

It should be‘obvioué that the weight matrix for }3 9) is
non-~diagonal and is nct very suitable for computational
purpcses, especiaily when the number of outcomes is mqi than
three. Hence, we would use (3.8) to get our estimates for the
carameters, Oncé again we will ,Same as thé way in anai sis II,
Todify progfam BMDP3R :¢ carry out the estimation pﬁoces

-~

However, as indicate

(o7

from eguations (3.5) to (3.7), our

Gauss-Newton algerithm is. just eqguivalent to the Fisher-s oring
5

alzcrithm, but nct tc¢ =he NewtonsRaphson met hod. D1 ff:cul

T the new design matrix at each iterati¢ns Thi
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feature is especially helpfulxauring the proceps;of seafthihg

for an appfopriate model. .

APPLICATION OF MODELS fO PRESENT DATA

a3

X

In our present data, the dependent variable, GRADE, will be
treatgd as an ordinal variable with three ranked categories A, B

and C. We ‘will name A, B and C respectively as 1, Z and 3. The

inﬁépéndent variables will remain the same as {(1,GPA,TUCE,PSI),

For the purpose of comparison, various models are fitted and

they are displayed in Table 3.1!. Our data codiqg in- this

analysis, is the same as in the multinomial logit models. Only
. . -

~he BMDP program statements are modified to adapt the new model.

a-

gain, we list the program for model 5 in Table 3.1 in Appepdix"
> !

for reference. Z%

o

A

‘Table 3.2 gives the maximum likelihood estimates of the
relevant parameters alcng with their eStimated_standard errors.
ALthough our mOdelsﬂexplﬁcitly reguire the.order rescrictions on
che a's, our estimation method does not require us to impose
-hese conditions. The maximum likelihood estimates usually yield
ordered estima:eé for these parameters, as reflected from Table
2.2, 1f not, ther we can assume that thgre is some specification
error in the model. This is the reason why .ikelihood-ratic test

is s=ill valigd in cumulative logit models. Table 3.3 displays

o8

[
2
]
L
ey
w
(t
oY
(T
y
w
ct
+
)

s fnr -he goodness-of-fit for 2ach model fitre

2 may note that the numbers irn +the bottom row of Table 2.2 are




rvery simif:;. In%fact,»th€ magniéude of theilikelihood
chi-squares are very close to the_torrespohding‘pnes (in fhé
sense éf having the same indépendent vériqblés in.the fitted
model) in Table‘2.3,_e;cep£ in this case we have fewer
parametérs (or higher degrees of freedom) for allathe ﬁbdels
other than model 1. If we compare these five x? values to a x?
_table, we wduld again agree that all of them fit the .data
adequately. ThErefore,‘we would repeatvthe strategy we deVgloped’
in ana;ysis 1T to détermine‘an appropriate ‘model. In other

words, we will compare eécﬁ'of models 1| to 4 to model 5.
Comparing model ¢ tOxmodél 5, we éa}ij;n improvement of
chi-square of (.002 wi;h‘one degree of freedom. It ihdicates'an
insignificant improvement which means TUCE does hot help in
predicting GﬁADE when GPA and PSI are included in the model.
Similar comparison between models 3 and 5 indi;ateé that PSI is
not -helpful either in predicting the sfudents"final grade whem,_p
GP2. and TUCE are included. The most interesting result comés. |
when we look at the cclumn corresponding to model 2 of the
table; Here we find TRat -TUCE and PSI together do noﬁ imprové
the prediction when GPAjalone is included in the model. Further

v

comparison also shows tHat ne:ither TUCE nor PSI would each help

>

GPA to better prediction. If we compare model 1 to model 2, we
have an improvement of chi-sguare of 13,39 with one degree of
ireedom, which is a2 very significant improvement. In other

_words, GPA alone prevides sufficient information to predict each

student's final grade. Thus, we will accept model 2 to be an

=

n
o



. _— N R
appropriate model in this analysis.,Hené;:>%ur final cumulative

logit model is given by

ey}
—
~
1
25 )
g
f

exp(-11.01 + 3,229%GPA) (3.10)

13
—
[\
™~
' |
*ry
fon
38 ]
1}

exp(-8.602 + 3.229%GPa) , (3.11)

Here, the positive coefficient of GPA in (3.&0)'suggés€§ that
the likelihood of,gettihg an A relative to the»likeliﬁood of
getting a’B,or C increases as the GPA increases; Thus for a
student with 2.5 GPA, his odds of obtaining an A is exp(—11f01 +
3.229%2.5), i.e. one in 20. Increasing his GPA to 3,5 would
increase his odd by a faztor cf exp(3.229) = 25, se that the new
oadds will be in favour of getting an A, Likewise, the likelihood
cf getting‘an A or a B relative to the likelihoodiof'gettiﬁg acC
increases as .the GPA increases. As expécted, the likelihood'in“
(3.v4) 1is greaier g“an the one obtained in (3.10). Figure 3.2

~
i

snows the probability of getting A or C for various GPA values.
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TABLE 3.3
LIKELIHOOD CHI-SQUARE FOR VARIOUS NULL MODELS;
EACH CHI-SQUARE IS BASED ON A COMPARISON WITH
SOME APPROPRIATE ALTERNATIVE MODEL

1 2 I 3 j 4 I 5
R R et R 1
L | 2 | 13.387
T !
E ———————————————————————————
’ R
N | 3 ] 13.444 0.058
A 2 1
SRS S S [ )
! ! 3
Vol 4 16,766 | 3.379 | Na ‘
E | P2 ] 1 )
|
e, ————— L e s Shaaba e A et
M i : !
O | 5| 16.768 3.381 3.324 0.002
D 3 2 1 1
E ,...__i_..._.__.._._.........__...._._..___,____.._______-...__‘_v. ______ L
L ;
S | 6 ! 65.094 | 55.707 | 55.649 | 52.328 | 52.326
62 61 .| 60 60 59
S | R S SR | B, ]

Here, model 6 Is Jjustc the maximal model (cbserved data).

Key : each cell consists of

ikelihood chi-square
degree of freedom
the observed fr°QJerby in a cell is O, the null model fitted

eq 4ency Eo, and the alternative .model fitted freguency E;,
hen the likelihood chi-square is given by 2Z O(1nE, -lnE,).

L R (AR AR ]
Wt on



FIGURE 3.2? PREDICTED PROBABILITIES UNDER MODEL TWO

PREDICTED PROBRABILITY

1.0
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CHAPTER FOUR
SUMMARY AND EXTENSIONS e
I NTRODUCT ION | , .

We have®wo tasks in this chapter. The first is to review

and emphasize ‘the high2ights of the materlals covered in the

.'r:‘

preceedlng four chapters. The second is to g1ve some exten51ons
that are possible and relationships of the technigues to other

£l

statistical methods.
SUMMARY

The purpose of this summary is to emphasizé the points we

left out in prévious chapters but deserve discussion here.

Aﬁ the outset of this réport, we pointed out that our major
goal was to determine whether PSI still had a statistically
significant relationship with GRADE in,Intermediéte |
Macroeconomics. We did not usé the tfaditional linear }egression
model partly due to its awkward parameter interpretations.
Instead we converted the problem into the analysis”of
frequenéies (probabilities) and postulated three modelé to cope

7

7

/

log-linear modeling in Analysis I can only tell us whether PSI

with the nature of the data. Analogous to ANOVA models,

still has an association with student performance in the segyel.
They are, however, deficient in the sense that they do not

indicate exactly how the variables of interest affect the
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measured response. In many situatidns; more general models are
required to indicate.'how' and 'to>wha£ extent' a responsé is
-related~to a ‘set of .independent variables. Thus, the purpose of
building‘quantitative models in analyses Ii and 111 is to
formulate a relationship between grade and teaching method as
well as'Students' pefﬁormances,in other courses. Both modelé
measure the likelihood of an individual Palling into a -
particular category or categories relative to some baseline
outcome. Therefore, by allowihg changes in‘the indepeﬁdent'
‘variables one at a time while holding others constant; we could
estimate the magnitude of the effect of each variable upon the
\*\_;elative likelihoods. In ouf analyses, we found'that both models
5uggést that variable GPA is significant in determining é,
student's performance. In‘thé multiﬁomial logit model, 1t even

suggests that PSI is also helpful'inﬂpredicting student's grade.

TQ determine which approach is better in descfibing the data
set, goodness;of-fit tests cannot tell us very much since the *
two models are no, longer nested. One way to differentiate the
two choices is via the use of the so-called Cox test of separate
families of hypdtheses, which would usually reguire a very large
sample size. However, by using intuition and careful inspection
of the data, we would agree that the multinomial logit model 1in
(2.9) and (2.10) is capable'of describing the data far more
better than model 2 in the cumulative logit approach. Our

§

argument can best be supported By Figure 2.! which shows that
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the probébility of obtaining A (C) ing;éasééw(aééfeases)7astPA
goes up. This figure alsoldepicts that PSI is more effective for
high GPA students than low GPA students to obtain an A in the
course. This agrees not only with what we have fouhd earliér at
the beginning of analysis I but also the characteristics ekhibit
in the scatter plot in Figure 4.0. On the other hand, both
figures shOw\Eﬁat the chances of getting a C grade are hardly
influenced by the teaching format. This is intuitively ‘true
since it is suppesingly easier to aim at a pass fhan to be in
the uppér percentile of the class and thus PSI may only
minimally effect on this groub. Overall, this model is able to

fit the patterns in our data.

~

Although in the cumulative logit model we used the
additiénal information about -the order of the variable DE, a
closer_examination éf the r.odel will reveal that it assumes
constant effect (coefficient) for each independent variable to
each outcome. In other words, the effect of being under'PSI
method is the same'in obtaining each grade. This is obviously
cohtradictory to our present data and it is the main reason why
PSI explains less well under under the cumulative logit model
approach. In'fact McCullagh and Nelder(1983) points'out tﬁat the
choice between these two models depends on whether the model is
invariant ﬁnder grouping of adjacent response categories or not..
In many applications, such as taste testing, the definition of |

the response categories 1is entirely arbitrary and often
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subjective. Thus; itlabpearsreasonable ﬁo insiséhghat the fbrm‘
of the cdncLuSion should not depend on the particular ChofCe of
reponse categoriéS;-In other words,»if’a“new category is forméd
by combining adjacent categories on the old scale, therform of
the conclusions shdUld be'unafgééted. Thus, the interpretation
of B in model (3.0) does nét dépend on the particular choice of
the categories used for rgcording.the data. This very
fundamental fact could be used to explain\why (3.0’ is not

suitable to describe our present data set.

‘jAFurthermore,'we should say that’we could.not place too mdch
reliance on -the statistical properties of the estimates since
the sample sizé(is'a bit small. The small sample size has most
impact on»the'evaluation on the goodness-of-fit 3}écu;:modéls;
McCullagh and Nelder (chapter 5) only d%scuss goodnesé-of-fit
tests for grouped data. Thef simply use the Pearson chi-square
test in their examples which all have large indies.
Fienberg(chapter 6,1980) points out that for logistic Eype
regressionbmodels there 1is no omnibus goodness-of-fit test for.a
model as long as some of the predictors are not categorical. He
suggests that one should categorize the continous variables from
a logis£ic regression to & logit model whose fit can be
assessed. This is part of the reason why log-linear model
analyses are included in this-péper. However, 1if we take
Fienberg's advice here, we will again run into the problem

-

_encountered in Analysis I, which has many zero and small :

S
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o~
observed counts. Fienberg (page 172, 1980)‘pointea_éﬁE”EBEEfé?"
does not behave well under -this 51tuat10n ¢ p- -value tends to be
underestlmated However, he further pointed out that the
standatdi&dequacy rule such as "the minimal expected cell size
should exceed five." i's somewhat conservative. Based on Larntz's
r-result; he suggested that sample'sizes equalrto four or five
‘times the number of cells are adeguate for theruse of the .
asymptoticx2 result. In our present case, this:may‘sugoest.that
a sample size.around 200 (six tines the present size)  would be

sufficient to assess the fit of our models under consideration.

{

Fox (chapter 5) also cautions the reader that the present'
diagnostic methods for logit models are léss‘than perfect. He
~expects the existing crude method will likely bea}mpgoved and
extended in the future Thus, our analyses in this report could

serve as the result of a pilot study of the residual effect of
_ ] B NS

PSI method 1n teaching Principles of Macroecomom1cs. Of course,
the real effect of PSI can never be assessed bntll a \
well- uc51gned experiment has been conducted; the apparent effect
of PSI on high GPA students could just be due‘to chance d
variation. Th0ugh 1b\€ay not be easy to de51gn an experlmeht to
suit this case, we feel that we have accompllshed the goal ' to

present plausible statistical models for future work on thls.

problem.

Another point is that one should not abuse the discrete

models in the previous chapters. In all three‘analyses, we have
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stressed that we-tfeat the responsé variable either géﬁgmﬁdminal
(as in the first two analyses) or an ordinal (in the final
aﬁalysis) variéble and turn the problem iﬁté anaiyzing of
frequencies. These models are remarkably heipful in cases where
;the measurements of the‘response variable are not réliable on
the iﬁterval~scalé ahd we have to.settlé on sbme lower level
measurement scale. However, in the case qitfy's study these
for;idable quels could have been avoided4if the original_raw
scores, upon which letter grades were based, of each studegt's
performancé on the course were availabie. Had we obtained these
'nﬁmerical (interval scaled) values of the_respoﬁse variable, we
“might simply have been able to run an.OLS {or WLS) regression |
model and the analfsis might have been more straightforward.
EXTENSION
&
‘In this section we want to give some suggestions to provide

initial guesses to the value of the coefficients of the models

discussed in analyses II and III and finally w? will extend our

models.to applications in discriminant analysis.

-

}Wé have mentioned that the iperétive algorithm we used to
find the ml estimates in both the multinomialVIOgit and
cumulative logit models'requireé the initial specifications of
the paraméter valueé which are not easily obtained in any case.
Thus, it is desirable to have some alternative estimation

methods which do not need this requirement. One such method 1is
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called the@minimum chi-square estimation when grouped

observations are available. For example in model (2.3), the

= gy x:1B::. Thus under
1=1 115311 ‘ ©
‘the case of replicated (grouped) data, when there are a number
of observations on the response variable for each observation on
\

a set of explanatofy variables x, we ﬁay calculate the m |

‘true' logits are given by ln(Pij/Pim)

<

relative frequencies -

n. : @
- RISV - . oi=1
plk =§1 zl]k/nl k-i,....,m ’ l—],,,.,N
j_
~and these may be used to compute the 'observed' logits
] i ;i z ) ' k=1 m ; i=! N
ln(jé] zle /le l:}m roes ey ’ 7o e sy
These N(m-1) observed logits are then served as the dependent
variables in the N(m-1) regression eguations &
n; %nn nj -
1 i 1 T o ]
In( L 2Zj5 /j§1 lem) _j§1 xilﬁjl_*wufk (4.2)

where U;x represents the error, the difference between the true
togits and the observed logits. This error term, which is taken
tc be the first-order term of the Taylor expansion of the

~

ccserved logits at the (P, ,P ), is given by pik/Pik =~ Pin/Pime

/

oLS estgmétes of the N(m-1) eguations in (4.2) yield
unbiased but ineffiéient parameter es£imates'due to hon-constant
variance of the errcr term. One could use standard weighted”gk\’ﬁe
least sguare (WLS) weighting procedures. However, there is also

a correlation of errcr term between
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. - Ll ;,,,,,7,,,, P

uyg and uj; for all k,j=1,...,m-1. The reason .for the latter

correlation is that, for each i, the m-1 observed logits are

based on m responée_proportions and -these must sum to one by' 

definition. Therefore, 1f one proportidn is large then the other

"~ must be small. In turn, abnormally large value of én observed

£

logit must be compensated for by ather abndrmally small values_

i ; nj RIS . : o
Of'ln(j§1 Z; 4k /]E1 zijm)‘ In fact, the variance of u;, 1s.glven4

by “ | o , -

and the covariance of uijiand uj by

-p. VY/P. Y /n. '
1+ (1 le)/le},nl. .

An estimation procedure that»tékes this correlation into
ccount 1§ using,more information, and it will yield estimates

Qith-better sampling properties. The procedure for correcting
for heteroscedasticity and for correlation across loéits.would‘

require generalized least square technigue, which is_ ~

compﬁtationally not economical. NevertheleSé, this alternative
method is useful in another aspect. One may use the uqcorrected
estimates obtained from OLS or WLS as initial guesses to¢ the
parameter values when using maximuﬁ_likeiihood apprcach, sincg
providing initial estimates is often a major headache in ML
method. Simillar tactics could be developed by using cumulative

observaztions tc mocdel (3.0).



7% N - - _» . i ’_,"‘ ‘-‘
Fox(1984,page 313-314) used another approach to find the

o

estimates in (2.3) by using eduation A3.2 in'Appendixk§3. Heij
suggested to fit éeperate (binary) logit models’to eachjdf the
k-1 binomial disfributions. He argued’that the resulting
maximum-likelihobq.eétimate; afe‘identiﬁal to those that would .
be producea by maximizing the likeliﬁgod simultaneously’with
respect to the combined parameters in all tbe models. MoreoVer,
since the log, of the likelihood for combined model is the spm of

the log.likelihoods~for the seperate models, likelihood=ratio

i1 ~sguare 'statistics may be summed to produce tests for model

(3 é whole., Fox's argument 1s not entirely correct (see chaptér
~ 5 of McCullagh and Nelder) because he was acfually fitting |
" another different model, commonly known as the continuation
‘ratio model (Fienberg,1980,page 110-516) or sequential-feponses
hodel(Maddala,lQBB,page 49-50)hHowever, he was right to point 
out that this, approach would usually~yield similar result. Thus,
we may use the result from the continuation ratio modeljas thé
‘initial input of parameter values to our multinomial l&git
mcdels., To get the estimates for;our cumulative logit model, we
would have to assume identiéai slope coefficiénts_in all of thé .

above k-1 separate logits and stack them up to form one single

logit regression (McCullagh and Nelder,page 115-116).
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CONNECTIONS WITH OTHER TECHNIQUES

4

All the three models discussed in this paper have a strong
relationship with another statistizal technique: discriminant
analysis. Before we disguss this relationship further, we will

first'give a brief intrpduction to discriminant analysis.
DISCRIMINANT ANALY SIS

Suppose that sample points y’ = (y1,---,fm) are availablé ’ \
from ﬁopuiation Gg and that the likelihood of y g{ven Gg is
fs(y) (8=1,2,+++,kJ. All_elemgnts of y are real but some are
continuoﬁs and some are pclychotomous. The discriminat{on
problem is to find a rule for allocating furtheg éointé y of
unknown origin to populations. If'itkis\known éhat points to be

allocated are from a mixture of populations G1,G2,F--,Gk in the

proportion 1 = (my,%;,+++,m ), where

chern the simplest optimizing method c¢f discriminaticn is to

=

maximize the probability of correct classification (Hand

$81,chapter !'). This can be achieved by allocating the sample

O

~
e

D s i . _
int y to Gg £

~

~lG vl TG vl ' |
PriGg.ly) 2 PriG, |ly] (4.3)

O
L}



1S£s(yJZrtft(y)

where t = 1,2,+--,kand s = 1,2,--:,k and t # s.

Our following discussions will be based on this allocation rule

since it has been widely accepted.
CASE ONE: DISCRETE INDEPENDENT VARIABLES

In this case, we examine the situation yhere‘(y,,o--,ym) is
a vector of polychotomous variables..Thus for each individual,
we have a sequence of variables y,,--+, ¥, each of which can

take a finite number of possible values. Let c. be the number of

3
categories for variable yj, and suppose we have a sample of n

7

L =
randomly selected individuals-from the population. For .the

sample we also know which of the & populations the individual
_belongs to. It is easy to see now that we can form the data into
a (®+!)—way contingency table. We may visualize this contingency

table as follows:

var var var populiations - e
m m- ! - ) G, s G R G
I R - S
1 1 1 x x . X
11 1 21 Lt . - kY i1
- ...\-»""’»)N»
x x
Ao BN LY ] 1t
x o
2c, ... . Cm ke, . vc_‘_%:m‘




"Eeréﬁ§;;

Now,

Pijj...1t

then,

if P
- it

according to

a1t

categﬁxy 3 on. yaLlahle 1, ees,

number of 1ndlv1duals belongzng to populatxon

ﬁarpoorv ]

on variable m-1 and category t on variable m,

if we let

= Pr| a random individual belongs to»population Gi1

"he’belongs to categories j,...

'm variables ]

(4.3)f

~

1t > Pyyg,, .1 for every it=1,2,.

..,k and

-

,1,t on the

we would assign. this individual to G,

it i. If

nothing‘ié known about -the prgpabffgéies, the whole procedure 1is

-
e

trivial since we then weuld estimate the probabilities by their

! o ' . o . .
respective relative frequencies.

to classi
_ categerie
sample in
Pis. 1

cell (1,3

Hence,

Y

O
1
¢

e, 1,80,

e
-

fy an observation into G,

p1,t

s j:"'

population G;

; than in other populations.

2

we have °?

1t/ Z Pis

it :ij... ] 13...1t

L.t i9...187/Piv50 001

67

The classification rule

we have found more individuals

Thus,

18 then

if for a given combination of

in the

=

1 f

£ is the probability of a'rande\individual fal}ing'into

the classification rule may also be written as




-

— : > . .
InlPyyy, . 1e/Piv .. 1ed7 0Py e/Pivg e 0

}

so that we need the ratio of the cell probabilities in order to
determine the classification rule. ‘Let us now assume that we are

working with a logflineaf model such that

1n mi&--nlt = fi(u)

where fi(u) is a function of the overall mean, main effects and

>

rhe interactions as described in analysis I. Thus, our

classification rule would become

I[P /Py o= Inlmyy /My e ]

] J ) ]

-

£ (W) /E (W)

and a given individual will be assigned td“Gi i€ £, (u)/f,, (u) >
0 for'every i's i. In particular when k=2, we will assign a
subject to G,(G,) ln{sz".lt/sz'..lt] >(<) 0. Thus given an
observation characterized by yg=j,---, ym_1=l and y =t, our

samﬁléd pased rule would be: class into G,(G;) if

InlPys L 1¢/P23. . 1) >0<) 0.

3c:h Goldstein and Dillon{(1978) and Hand(1981) advocate this
parametric approach for discrete discriminant analysis. They
c.aim that the big @dvanrtege to thls approach 1is that we do not

a priori eliminate particular interaction terms but utilize
A .
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\

A

o , A\ ' , . . ,,";L R
goodness-of-fit statistics\as a tool of model_building;
‘ ) . \\ ~ . .
CASE TWO: CONTINUQUS INDEPENDENT V ARIABLES
\ ;

\

In the?discussioh of analfSis 11, our discussions were»based
upon the:assumptioﬁ thaﬁ the probability of an individual with‘a
" given éharééteristic falling‘intd‘each‘category follows a
mul?ivariate logistié distribution. However, the application of
(2.2) does not require any probability distribution assumption

about the independent variables.

Now suppose that the sample points y = (yj,--~}ym) are

sampled from normal distributions N(u Zj), j=1,2,---,k, and the

j '
covariance matrices satisfy Z,%; L, = <+« = L, = L. Hence, the
denéity of y in Gj is

£ily) = (2n>“m/2;z|"/2exp{-<y-uj>'z"<y—g§>/2}
- \\ .

N

\
\

It follows that the posterior probability that y égmes from Gj4

Es

' k
Pr(jly) = n:f.(y)/ Z 7w £.(y)

2] i=1 il

\ \ V) j\k\\'
= exp{ln(wj/nk) - (“j+“k’ z (“j_“k)/z + .,\\
'y'Z"(uj-uk)}-Pr(k!y) \
where 3=1,2,.--,k-' and _
k-1 -

Prikjy) = 1/t + L expllnin /7))

1
i

[
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D

(U1+Uk)'z-1(Ui'-Uk)/2}‘] - ) (4.6) .
which can easily be seen to have the form of multivariate

- logistic distribution as in (2.2). In the two populations case,

1t can be shown that
Pri2]|y] = 1/(1 +expla*+y'f)) ~ (4.7)

where f = Z"'(u,-u,) and «a = ;n(w,/wz)‘- B'(u,-uz)/2. Thus, the
decision rﬁle (4.3) could be translated as to classify y'into G,

if a+y'B > 0 and G, otherwise. .

e

The vector § in (&T#) is usuaily caléed the discriminant
séore'in élassicaliapprdach. However under the classical
approach, we would‘have to estimate the covariance matfices, thé‘
- population meansﬂaﬁd.sometimes the prior probabilities =, 's.
Thus, (2.2) provides us another way to formulate'our
discriminant rules Qnder the normal assumption and it is uSuall}
called the logistic discrimination. However, the relative
performance of the two estimatofs wiil‘critically depend on the
true distribution for y. If normality withiequél govariance
matrices is assumed, the classical apprpgch will give the
génqine ML estimator and thé:efore should ge asymptotically more
efficient than the logistic ML estimatpr. On the other hand, if
- the normality or eqgual covariances is not true, the claééical

approach will generally give inconsistent estimators, whereas .

the logistic estimator retains ith,consistency. Thus, one would
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~expect that the logistic ML estimatcr is more robust.

e

_ CASE THREE: MIXED INDEPENDENT V ARIABLES

When the assumption of normality fails, we are in a
difficult situation. However, Day and Kerridge (1967) observed

that (2.2) holds for a widebvarﬁety of situations, which

i
{

includes. , \\\

(1) multivariate normal with egqual variance,'

(2) independeét Bérnoulli variables,

(3) Bernoulli variables followihg a log-linear model with equal
second- and higher-order effects,

(4) a mixture of situations (1) and (3).

Press and Wiléon(j978) calculated the probability of correct
ciassification for two estimétors in a gouple of real data |
éxamples in w‘ich many of- the independent variables are binary
and theref6?gytlearly violate the normal assumption, In both

~examples, the logit model did slightly better than the classical
discfiminant. The criterion of the goodness of prediction in
their study was the probability of correct classification

defined by Pria+y'f 2 0] Gyimy + Pr(a¥y’5 < 0} Gy (r-my)

However, we feel that the application of logistic

‘discriminant analysis with mixture independent variables should.

]

o

[

e

—~
o

imited to the above four %leial sityations. We. could

use mode. building technigues to justify the validity of model



N

(2.2) for the cases of mixed‘indépéndent_variablés.In{iffv
there has been an increasing uee of (2.2) for, discrimination
probiems; For instance, the logistic‘tegresstn progfam in BMDP,‘
APLR , has an optional output designed for‘24p0pulation

discrimination problems,

The application of cumulative logit model, (3.0), to .
cléssification problems has:hot'appeared in the literature
partly because we usually consider the aependent variabﬂe as

-being a nominal variable in discrimination problems.

AN EMPIRICAL EXAMPLE

'?ér the purpose of iliustration; we will use our models
built in analyses II and III to demonstrate prediction’ability
with :hé above classification rule. And, for obvioﬁs reasons, we
will use oniy the 'full’ (i;e. model 5) and the'chosen;ﬁodels in
each caée. Tables 4.1 and 4.2 respectively display the observed
grades versus thé predicted grades for the sampled students by
models 5»ahd 3 in analysis I1. Likewise, Tables 4.3 and 4.4

respectively display the observed grades versus the predicted

L

grades for the sampled student§’by models 5 and 2 in analysis.
:II. These tables indicate that multinomial,logitimodels are
more superior in terms of prediction ability than the cumulétive
logit models. Of course, our obsérved error rate cannot be a
good estimate of the true error rate since we-use the entire
sample as the training (design) set. In fact, the estimated.

N



errorlrates frém such a meﬁhbd'ate over-optimistic because the

decision rules are 6ptimized on the’training set — their 9,5'
parameters'are estimated to minimiz§ Ehe training set
ﬁisclassification rate. In actual practices, it is better.to

}/require a lérger sample which is then Split'into E;aiﬁing and
yélidating sets. These tables, hevertﬁeless,dprovide more

e

evidence that multinomial logit model is more suitable than
\ . A _
cumulative logit model in the present case.

T —
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Figure 4.0: A scatter plot of GRADE vs GPA by teaching methods

GRADE
| .
A+ P P P T P P2 /T 2
T
"
B + p 2 3T P TT 2T
. ; .
c + p- ™ T TP T P
————— tem e ——— e ——— Fm———————— e —————— e
2.00 2.40 2.80 3.20 3.60° 4.00
GPA 7

‘Here, P and T are respectively r-epr'esenting‘ the PSI and v
traditional teaching methods. If several points fall on the same '
spot, a count is given instead. ‘ '

Fl
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TABLE 4.1: PREDICTED GRADES BY MODEL 5 IN ANALYSIS II

P - PREDICTED -
o S GRADE TN
A B C *
A S 1 1
OBSERVED B | 2 | 10 1
GRADE ' — e | e e | e ——
'TABLE 4.2: PREDICTED GRADES BY MODEL' 3 IN ANALYSIS 11 |
PREDICTED - o
' _ GRADE . - B .
7 A B C
. A 8 12 !
OBSERVED: B’ |, 2 10
GRADE =~ |Z-—e|mmmemfommee k
- C 1 3 4 ’ \
J A
. . .\!
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TABLE 4.3: PREDICTED GRADES BY MODEL 5 IN ANALYSIS IIT .

" PREDICTED
. ’ GRADE
- \\\\\mﬁm B C
A 7 3 1 -
OBSERVED B | 3 8 2 .

"~ GRADE B R e e Bt

' - C 0 5 3
\'\—ﬁ,,

L SRR
'TABLE 4.4: PREDICTED GRADES BY MODEL 2 IN ANALYSIS III

' PREDICTED - -
GRADE
o
A B C
A | T 3 1
OBSERVED B | 3 | 9 |
GRADE. A PSS PRGNS FR
. : C O 5 3 ~5
‘ —
) P
v i
2 [ 3
e
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\ APPENDIX A0 - Sy
\\ } \ .

DATA ON THE EFFECTS OF PSI ON COURSE GRADES

. ' ' . s

N e o o o o e - - A an = - —_— = — = o~ e h - - - — -
o \\ STUDENT GPA \ - TUCE = PSI COURSE
\wpaz\ \ - N GRADE
| N T T e
\ AN v
| 2.66 20 0 C
|2 2.89 22, 0 B
\; 3.28 24~ 0 B
4 2.92 12 0 B
5\\ 4.00 21 0 A
6 2.86 17 0 B
7 2.76 17 0 B
8 2.87 D2 0 B
9 \ 3.03 25 c C //
10 Voo 3.92 29 U7 A }
1 \ 2.63 20 0 C
12 \3.32 23 0 B
13 '3.57 23 0 CON S |
14 3,26 25 0 A ’
15 3.53 26 0 B
16 2.74 19 0 B
17 2.75 25 0 C
18 2.83 19 - 0 C
19 . 3.12 23 1 B
20 3.16 25 1 C oA
21 2.06 ¢ 22 o e
22 - 3.62 N 28 1 A {
23 2.89 . 14 | ¢
24 \ 3.8 26 1 B -
25, 3.54 24\ 1 A
26 '2.83 27 1 A «
27 3.39 17 1 A
28 2.67 24 1 B
29: 3.65 21 1 A <
30 4.00 23 1 A
31 3.10 21 1\x,;f*c
/f“‘ 2 B i Q{
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APPENDIX A1

ANALYSIS I -- LOG-LINEAR MODEL VIA BMDP4F

/PROBLEM  TITLEZ' THREE-WAY TABLE'.
/INPUT VARIABLES=3.CASES=32.

' FORMAT="'(F4.2,3X,2F2.0)'
/VARIABLES NAMES;GQ%%GSI,GRADE. ,
/CATEGORY CUTPOIMTS(1)=2,99, - )
" NAMES(1)='2,00-2.99','3.00-4,00".

'CODES(2)=1,2.NAMES{(2)=YES,NO. ',
CODES(3)=1,2,3.NAMES(3)=A,B,C.

/TABLE INDICES=GPA,PSI,GRADE. SYMB=G,P,F.

DELTA=(.5. :
- /FIT  ALL.

/END
.66 20
.89 22
.28 24
.92 12
.00 21
.86 17
.76 17
.87 21
.03 25
.92 2%
.63 20
32 23
.57 23
.26 25
.53 26
.74 19
.75 25
83 19
L1223
.10 25
.06 22
.62 28
.89 14
.51 26
.54 24
.83 27
.39 17
.67 24
.65 21
.00 23
.10 21
2.39 19
/END

—‘—‘—‘—‘—‘-—'«——'—-‘——'—“-—“—‘—‘—‘—‘—"NNNMI\)NI\)NNI\)MI\)NM»MN
f

WIBWNWNWWRNWRNWWRNRNRNWHRWWNWWR KRR SR WR R
) .
W= SN = S NW AW NWWRON =N W—=WRNRNN = NN R W
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s % | . APPENDIX A2 A

\'thgﬁfTION : A random variéble X is séid to be (standard)
logistic distributed if iﬁs c.d.f. F(x) = éx/(1}gx). Sometimes ‘X

is‘séid to have the hyperbolic-secant-square (sech?)

N

d;stribut}on.

The following are some propertie;rof logistic distributea'random

variables repeatedly used iﬁ this paper : |
(1) £(x) = F'(x) = F(x)[1-F(x)]

1 - F(x)

S
Y
e I
',4
bt
l

- ~
(3) £'(x) = F(x)(1=F(x))? = (F(x))2(1-F(x))
= (0 (1-2F(x)

DEFINITION : The standardiied multivariate logistic cumulative

distribution function is defined by:

F(t1r"'rtn) 1/(1 +j§1 exp("tj?)

R

for == < ty < =,

It can be proved that

aF(t,,--'-,t*n)/atj’ = [F(ty, --o ) ) Pexpl-ty)




¥
?

APPENDIX A3

DEFINITION : Consider n repeated independent trials, each of
which has possible outcomes };---;k.'Lét Pj
"probability of outcome j on a particular trial, and let Xj

denote the

denote the numeer of n trials resulting in outcome 3, j=1,---,k.7{§

Then, (X1,;--,Xk),is said to have a'multinomial-distribhtion

& i .

‘with density function

[ 3= Ini/.m j: ®i (A3.1)
PriX,=x,,+++,%X, =X = (n!/ 11 x:!]1. 11 P. ~ A3. 1.
arT t k™ 7k j=1 1 J1=1 1 _ ‘

The covariahce matrix of X,,.«-, Xy is given by kxk matrix*Z

 :where Uij/ﬁvn(aijpi—Pin)' 6ij beihglthe K;onécker.delﬁa. It is

obvious that I is singular in-this casé. Let Z  be the
genéralizgd.inyersg of Z such that ZZ L = Z ., then Z_ is a

~diagonal matrix with (i,i)th entry being 1/(nP;). . L

Now, 1if we let

L

p1=Py, P2=pz$(1'P\)7 ) pk—1=Pk—1/(15P‘_i;.;Pk-2)
then (A3.1) can be factored as ‘o

bLn,x};p,)an;x,,xz;pz)--~b(n-x,1---—xk_2,xk;1;ﬁk_1) (A3.2).

wheie b(n,x;p) represents the binomial probability of x
successes in n trials when success probability is p on each

trial,
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APPENDIX A4

~

Let [ be some log—likelihood function which is non-linear 'in

' . o 2 . - ‘
parameter vector f. /Given an 1initial éstimate j3,, the second

rou;}’estimate of 8 Bz, is defined as follows:

NEWTON-RAPHSON

B: = 8y - H[Bl,08); : (Ag.1)
METHOD OF SCORING :
B2 = B, - [E(H)) '3l 080, | a2

B

where H in (A4.1) is the second ordgr'partiél derivative of /

with respéct to B and E(H) in (A4.2) is the expectation of H,

both being evaluated at 51

-

The third round estimator f; is obtained by substituting f, for.

B, in the right-hand side of (A4.1) and (A4.2). This procédure

is repeated until the iteration converges.
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APPENDIX A5

Let Y¥,,-.-,¥, be a random sample of multinomial vectors where

each'Yi a'(Yi1,---,Yim) ié‘m—nomialﬁdistributed with likelihood.

P

given by

. n i ¥ii Yim -
L; = P{y tPip

Y39 Yim

n

Ci'exE:Yi1lnpi1+"'yimlnpim}

The joint likelihood of the sample as a whole is given by

, | c m
| = L. = ¢ Y £ v.. 1nP..
1Ly c exp{i=1 j=1vy13 n 13}

-~

where c is the product of the cls.

Now, 1if pij is reparameterized into parameters pr =

(Bo, By, ,B y), then the score vector is given by

p-

-

- -

3l /36,

© 3l /By

. -

31 /36,
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.-

> (Yij/Pij7(3Pij/aﬁd)

i3
L (y{</P;:)(3P;./3B,) o
iy cron o | =yaw/as o (as.1)

ZZ (y:./P::)(8P:./38._ )
i3 137713777137 7p 1

. A -

where 9n/3B8 is a km by p matrix given by

. r

V/P (8B /066) <+ - 1/Py, (88, /30, ))

1/P12(aP1z/aﬁo)"'1/P‘2(39,2/aﬁp_1)
1/Pim(3P pn/3Bo) e+ 1 /Py (8P /38 )

1/pk1(a?k1/aao)---1/pk1(apk1{aﬁp_1)

1/Pym (3P /8B0) + + + 1/Pyp (3P 1 /868, ) -

- 4

.and Y'=(Y11,Y1z,"',y1m,"?,Yk1,;"rykm)-

Since E[S(g)] = 0 , we have

fgni(agij/aﬁo)

TZn: (3P /38 _.)
EET RS S S

Hence, together with (A5.1), we rive S(f) equal ta
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zz(ylj/P n;) (3P 4/08,)
1] . i
1 ZE(ylj/P )(apij/aﬁp_T) ]
\1;\ . | .
- , ]
§§<y13 #i3)/Py5(0P;5/060)
i ??(ylj;ﬁ\ij)/Pij(apij/aﬁp_1) J
(an/08) (y-u) (A5.2)
where “y5= =E[Y. ]] -vn-.ij and u ~(u11,u12,_-4:--, Hymr®* " rlgys

.,ukm).“Furgbgzﬁg;e,'lt can be shown that 3u/3p eqguals to

e

L

where I 1is the variance-

the generallzed inverse

g

(8?11/aﬁ0)~"-n

n, (3P, /36o)

e

(aP«;/gak;1)
o Z(3n/238)

nk(aPkm/éﬁpix?

ke .
/

covariance matrix of Y Let Z//denote

of L defined as in Append&x A3

Thus, the sco;e vector in (A5.,2) becomes
S(8) = (an/aﬁ5‘22_(y-u) T
= (&u/aﬁ (y- u)
.Therefore, the Fisher ;ﬁformation matrix is
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1(8) = Cov(S(B)) = (au/a8) "L (du/38)
and,théwFishér scoring algorithm
A8 = 1-1(p)S(p) .

=[(3u/38) "L (Bu/38) )" " (3u/3B) 'L (y-u)

is an iterative reweighted Gauss-Newton algorithm for fitting a

‘mean vector u to observations y with weight ™.
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' APPENDIX A6

THEOREM : Let Y,,-- Yk be a sample of multlnomlal vectors ‘where
each Y, = kYi1"“ﬂ'Yim) is a m-nomial dlstrlbuted with index nl‘
~and probhability vector (Piyy e/ Pip ) which is reparameterized in’
‘terms of unknown parameterglﬁ = (Bo,ﬂ‘,--~, ﬁb_1).’Then, the
likelihood-ratio test for the goodness of-fit for models (2.1)

and (3.1) is given by

-~

. Yijtln Yij—ln nipij(ﬁ)J

N
([ ae B- o
LN k=t

which is asymptotically x? distributed with k(m-1>-p,degree of
freedom. |

- Proof : See chapters, three and four in Andersen for a solid

proof.
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APPENDIX A7

BMDP STATEMENTS FOR MODEL FIVE IN ANALYSIS I1

™~
col 1

/FUN G1=EXP(P1+P2*GPA+P3*TUCE+P4*PSI) .
' G2=EXP(P5+P6*GPA+P7*TUCE+P8*PSI) .

NUMER= (C*G1+A*G2+B) .
DEMON=1+G1+G2, '
- F=NUMER/DEMON.

DF 1=G1* (DEMON*C-NUMER) /(DEMON**Z)
DF2=G1*GPA* (DEMON*C-NUMER) / (DEMON**2) ,
DF3=G1*TUCE* (DEMON*C-NUMER) /(DEMON**2) ,
DF4=G1*PSI * (DEMON*C-NUMER) /(DEMON**2) ,
DF5=G2* (DEMON*A-NUMER) / (DEMON**2) ,

" DF6=G2*GPA* (DEMON*A-NUMER) /(DEMON*#*2) ,

7=G2*TUCE* (DEMON*A~NUMER) / (DEMON**2) ,

ggg GZ*PSI*(DEMON*A NUMER)/(DEMON**2)
CA :

WT=1/F.
/PROBLEM ITLE='SPECTOR DATA',
/INPUT VARIABLES=8.
FORMAT='(F4.2,F3.0,6F2.0)"'.
UNIT=8.

/VARIABLE NAMES ARE GPA TUCE,PSI ,A,B,C, FREQ CASEWT.

/REGRESS DEPENDENT=FREQ.
PARAMETERS=8.
WEIGHT=CASEWT.

 ITERATIONS=10.
HALVING=0.
CONVERGENCE=-1,
MEANSQUARE=1:
/PARAMETER INITIAL=6.5,-2.5,.02,.2

~8.5,2.0,0.1,2.0.

'/END



APPENDIX A8

iﬂ)‘? FST‘ATEMERTS FOR MODEL FIVE IN #NA{S"IG?S I

col

=EXP(P1-P3*GPA-P4*TUCE-P5*PSI )/
(1+EXP(P1-P3*GPA-P4*TUCE-P5*PSI)).
G2=EXP(P2-P3*GPA~-P4*TUCE-P5*PSI )/
(1+EXP(P2-P3*GPA-P4*TUCE~-P5*PSI1)).
FRX*G1+B* (G2~ GT)+C*(1-G2)
DF1={A-B)*G1*(1-G1).
DF2=(B-C)*G2*(1-G2).
DF3=-GPA*(DF1+DF2) .-
DF4=-TUCE*{(DF1+DF2).
DF5=-PSI*(DF1+DF2).
CASEWT—1/F
. /PROBLEM TITLE='CUMULATIVE LOGITS MODEL' .
- /INPUT .VARIABLE=8, ‘
FORMAT='(F4.2,F3.0,6F2. 0)
UNIT=8.

/VARIABLE NAMES ARE GPA,TUCE,PSI,A,B,C,FREQ, CASEWT.
/REGRESS DEPENDENT=FREQ. _ ~

PARAMETERS=5..:

WEIGHT=CASEWT,.

ITERATIONS=20.

HALVINGS=0.

CONVERGENCE=-1,

, - MEANSQUARE=1,

- /PARAM INITIAL=0.0,0.5,0.0,0. 0 0.0.
/END

/FUN
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