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Iterative methods for computing invariant subsp k' ces and their various applica- 

- 
uons, which appear in many fields, are considered. Three iterative schemes which have 

been suggested are those by Dongarra-Moler-Wilkinson. Stewart and Chatelin. 

Recently. Demmel has shown that they all eventually reduce to solving the same equa- 
? 

tion, the alg&raic Riccati equation, which has been deeply studied in mathematics and 
- -- 

engmeermg. This leal:- us to directly conside&umerical methods for solving Riccati 

equations as methods for the invariant subspace problem. 

'4 few numerical- mkhods  for solving Riccati equations have been proposed: - 
hokotovic's iterative method, the Schur method. the linear convergence method, the 

generalized secant method and Newton's method. In this thesis, we analyze and imple- 

'& 

ment these methods. We grve nurncrtat details of the various algorithms and  r & t m  

operation counts for each of them. Our comparison shows that  the generalized secant 

anti \eh*ton's merhod5 are compei i l i~e  \x.ith lx i t11  Kokotovic's and the Sshur methods. 

eyen in situations where the latter methods are known to be efficient and reliable, as in 

s o l ~ i n g  Rlccati equations arising from singular perturbation and control problems. 

r e ~ p ~ t i v e l y .  Our an-is also shows that the generalized secant method is generally 

more e f i i ~ e n t  thdn the other two iterative methods. 

'I'he Foteitial drab back of i t e r a t i ~ e  m e ~ h o d s  is the need of a good initial guess. 

IYhile shouing that. In ' ~ r a c t ~ c e .  the convergence regions predisted by lhe t h w y  are 

rather restrictive. we have also discussed and implemented matrix algo'iithms of 

s reepst  descent type. N hich when used conjunction with the generalized secant FY - - 
rnrrhvJ and Seb.ton's method produce L'er? appealing results. 
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Let 

u here A l l  E RnXn and A= € Rmxm. A subspace X C Rn? with -the p roperq  that 

ih ~ a l l e d  an i n v a r i a ~ ~ ~ u b s p u c e  of A. We now have two basic questions: How can z e  
w ,  -+ 

compute Invariant subspaces? Why do we need to  compute invariant subspaces? 

The main purposes of this thesis afe to analyze and implement methods for corn 

' 
putlng invariant subspaces, espffially iteratibe methods which are motivated from the 

Riccati equcgion: 

and to show bheir various applications. 2 

In this chapter. we briefly state two important theorems which are often used 

through this thesis. In chapter 2: we describe three iterative methods for computing 

invanant subspaces urhich are suggested by ~ o n g a r r a - ~ o l e r - ~ i ~ k i n s o n  [I]. Stewart [2] - - - 
\ 

and ('hdteiin [3], aifd then we briefly d~scuss  Demmel's recent paper [4] which shov..s 
- -< & 

that all three methods eventually amount to solving the s e equation. the algebraic 9 
'.; - 

Rxcati equation (1.2). P 

' 
It is well-known that one cannot expect to compute the accurate eigenvectors 

u,hcn lheir corresponding eigcnvalurs~belong to a cluster qf poorly separated eigen- 



* 
o when A is defective, that is, the Jordan canonical f6Tm is not strictly diag- 

&i 

onal. the computed eigenvectors corresponding to tlre relevant eigenvalues will be * -  - 

\ almost linearly dependent, However, the invariant subspace associated with an ill- 
% 

GLp 
i ,conditioned ei n roblem which has close eigenvalues and/or almost parallel eigenvec- 

3 
tors is well d e t d n e d  provided the cluster is well separated from the remaining eigen- 

5.- r 
vectors. Thus i t  is advisable to group 'some eigenvalues and to compute a basis of the 

- corresponding invariant subspace instead of computing eigenvectors. This is the wer -  

known and important role of an invariant subspace. Naturally. we have a genera1,ques- . 

tion: Even if eigenproblem is well-conditioned, is it sufficient to  only co Ute an invari- 
r. 

F 
- ant subspace? In chapter 3,-ye discuss the various applications of invariant subspaies - 

which appear in singular perturbation and control problems and boundary value prob - 
z' 

lems for ordinary differential equations. 
@ 

%chapter 4, we consider €he Schur method [f4]. This is lhe one of methods for 
4 

C 

solving algebraic Riccati equations arising from control problems. 
- - - - - - 

In chapter 5 ,  we consider three iterative methods, namely. the linear cmvergence 
l 

method. Kewton's method and the generalized secant method. which are  q l l r d  I ('\I. - 
UEhl and SEM, respe&ively. We give numerical details of the various algorithms ilnd 

rigorous operation counts for  each of them. We also state the rate of c&vergence, condl 
I 

tion number, advantages and disadvantages for each method. We choose several exam 
. - - - 

pies to compaie these three methods with Kokotovic's iterative method and the ~ c h u r  - - 

method (we call KIM and SCM, respectively), which a i r  known to be reblablr and 
--- 

.efficient methods for solving Riccati equations in singular perturbat~on and control % 

- 
- 

-- - - - - - 

problems, respectively, present some numerical results of interest, and make comparw 

ons. 



> 

- - 

The main advantage of SEM and ZEM for solving Riccati equations is their speed 
- - 

-4' 
,of convergence once a sufficiently accurate approximation is known. In' chapter 6 .  we 

implement matrix a l g o r i t h ~ o f  steepest descent type which give a good starGng value. 
3 

Conclusions drawn from the research and suggestions for the further study are 

given in chapter 7. 
I , 

~heor&w Rbl Schur Decomposition ([22]) 
. . 

If A E RIX' then there exists an orthogonal U € RIX1 such that U*AU is quasi- 

upper-triangular. Puthermore. U can be chosen so that 2 X 2 and 1 x 1 diagonal blocks - -, - - 

.appear Jn any  desired order. 

Theorem ( [4]) 
+ 

I el A E RJX' and X = ~ x , . x ~ )  E RtX1 and define 

The range of X ;  denoted b ~ ,  

R ! S ,  is a n  invariant subspace if and only if A'zl = 0 . ;& 
a. 



THE ITERATIVEMETHODS FOR COMPUTING INVARIANT SUBSPACES 

In this chapter, we will describe methods forarefining estimates of an invariant 
+ 

/ 
<- 

subqpace which have k e n  devised by Dongarra-hloler-Wllkinson [I],  Stewart [2] and 

Ip Chatelin [3]. These three methods (henceforth- hjW. S and. (1. respc l~ve ly) .  r i l l  

solve apparently different equations, since they represent the  desired in\,ariant sutkpace .., 

slightly differently. However, by a simple change of basis Demmel [4] shows thar all 
* 

three methods are attempting to solve the same equation, the Riccati eqqurion, w b ~ c h  IS 

- our main concern. Thus this chapter shows how computing invariant subspaces IS 

related to solving algebraic Riccati equations and gives us the' idea that numerical 

methods for solving algebraic Rip%ati equations may be considered as mepods for L o r n -  

puting invariant subspaces. The w a l l s  of iterative methods 
,' 

tions will be presented in chapter 5. 

2.1 The method DMW - - 

The method D3im' which is devised by Dongarra, Moler and Wilklson IS a ~ o m p u  

tational method for improving the numerical accuiaci of matrix eigenvai'ues and eiqrn- 

vectors. They extend this method to determine invariant subspaces. 

2. I .  1 When A is nondefective 

First consider two initial approximate eigenpairs A , .  x l  and A*,  x2 where 

IAI-A21/11AIi is small and xl and x2 are linearly independent. .Although x l  and +z may C 

have substantial errors, they should belong to the appropriate two-space flencc we 



- - 
where y, .  y2 and p,, are expected to small. Because ( 2 . 1 )  implies that 

the vectors xl+yl  . x2+YZ2 span the exact invariant subspace of A. the corresponding 

e~genvaiues being those of the 2 X 2 matrix on the right. 

i - - 
The procedur: for computing y1 . y2 and p ,  is as follows: 

w e  assumr that-llx,II, = 1lxZllrr = 1. TO select s w i f i c  bectors;ip;$ii. space, we must 
, - . * !  - t ,  -' 

prescribe some form of normalization of x l + ~ l  and x2+$. We shall require $ and y2 
- 

1 
- - - - - such that yl, = y,, -_y,, - yzq = 0. where p and q(p*q) are such that 

and 

f'r6m (2.1  ) we obtain , . . 

sc that g i v q  the full information on both p ,  and F,. where the p t h  component of e, 
\ 

and rhe q - l h  component of e, are 1 and the r e d  of them are all zero.. Then (2.2) 



where B, is A-A,I with columns p and q replaced with -.I, -- and -,I:. Now (2 .3)  ran b 

- ,  
solved by the iterative procedure 

This is the case for  two  simple eigenvalues. The iterative method f 2.4) extends to a 
I 

set of s(s=3.4. . . - .1) close eigenvalues. To see this, consider the initla1 approximate ii * 

values A 1 ,  x l  ..... A,. x,, where xl, x2  ..... X, are linearly independent. Then we haye 

- 
where m,, = a,, and and p ,  are expected to be small. We know thaL [A,+?,.. ..x,+q,] 

span the exact invariant subspace of A. - 

To find $ and p,].  we first describe how to determine the s elements of )., that are 

t o b e  zero. Let X be the s X 1 matrix with rows x, .  Let this be reduced to upper triangu- 

lar form using Gausslan elimination with column plvoring. I f  the pvotal  elements are 
% - 

in columns p , ,  p2. ..: , pI respectively then these elements are to be zero In y ,  Ilefine v, 

Then (2.5) becomes 

LL here B, is A-X,I with s of its columns replaced by -xl. ... . - x , .  (2.6) now can  he 

solved by the i terat~ve procedure 

- 1. B L $ T 1 = r t + > $ , , y l ' +  . .  + & > 3 ,  i=l *...* 5 .  



- - 7 -- - -- - 
rn 

- 

2.1.2 When A is defective. 

-. 

We know that if A is defective then the computed eigenvectors to the relevant 

eigenvalues will be almost linearly dependent. % consider two well separated approxi- 

mate generators x l .  .t2 of the invariant subspace instead of the eigenvectors and a 2 X 2 

matrix M. Then 

- - 
We now attempt to determine yl.  y2 and p,, such that  

- - 
A much more effective algorithm for  computing yl.  y2 and plJ can be produced if 

f 
m,, = 0. The task of determining generators xl and x2 corresponding to a zera Value of - 

m 2 ,  can be doi-te using the QR algorithm (see [I]). 

When mzl = 0. (2.7) becomes 

where r1 = mllxl_ - -Axl and rl = mlzx ,  + m22x2 - Axz and both rl and r2 are expected 

10 be small. These equations can be expressed in the simpler form as in (2.3) using 

notatinns R, and y,. Thus we'hive obtained the iterative prucedure 

1 ike the nondefective case, we now consider a set of s approximate generators x l .  
rJ"c 

..- . s, of h e  i n ~ a r i a n t  subspace Bnd a s x s matrix M such that 



Then we have 

: - 

Assume that M is triangular (whidh can be done by using a QK step). Then ' ( 2 . 8 )  

l 
', 

becomes s sets of linear equations: 

where r, = LmJlxJ  - Ax,. \'ow (2.9) ran be solved by Lhe iterative procedure 
J=l  

s:' = 0 

where B, and y, are analogous to notations in (2.6). 

Remark 
9 

In both the n o n d e m v e  and defective cases. Dongarra. Moler and W~lk i son  t ry  to 

solve the equation 

I 
simultaneously for the l X s matrix X and the r X s matrix M ( ~ = 1  , . . . . I ) .  Since (2.10) is 

Is equations in ls+s2 unknowns, they fixed r2 unknowns by using Gaussran elrmrnatron 

;a 
of X w ~ t h  column pivoting [4]. 



I' 

, If the initial approximation 
1 
/ change of basis, ,X may be written 

of X has orthonormhl columns, by an orthonormal 

,/ 

and (2.10) yields the Riccati equation 

All A12 
where A = I 1:s now the new transformed matrix w. 

A21A22 _ _ -  

2.2 The method S 

.4ctuallyLthe method S which is devised by Stewart is presented not as a i v e  

method for computing invariant subspaces but as a technique for  obtaining error 

bounds and perturbation bounds for invariant subspaces associated with the eigenvalue 

problem. How-ever. it works as an iterative method and gives the approximate invariant 

subspace. - - 

Consider A E RIX' and an orthogonal matrix X = (XI . X2) E RIX1 where XI E RIXn. 

.Y2 E R'Xnl,  I = n+m. Then 

We know that R(X,) is an invariant subspace of A if and only if At2] = 0. NOW 
6 

suppose that A'21. instead of being zero, is merely small then R(Xl) is an  approximate 

invariant s u b v c e .  To determine a more accurate invariant subspace of A ,  we shall 

artemFt to find an orthogonal matrix Li such that the first n columns of 1' = XU span 

. . 



-. 
the exact_ invariant subspace of A. Take U in the form 

- 

where R E RmXn. If Y = (Y1 . Y2) and B,, = YfAl; then a necessary and sufficient con- 
- - 

dition for R(Yl) to be the exact in%>iant subspace of A is that = 0. Now from --. 

a 1'2.1 1) .  we can express B2, in terms of R. and then the equation = 0 gives 

,- 

where the mappings T, q5 :'RmXn -* Rmxn are defined by 
C 

'* i 

-- TR = A2zR - RAll 

and 
F 

Thus (2 .12)  may be solvzd by the iterative procedure (suppose tha t  7' is ~nvertclble) 
+ 

Remark 

# 
eigcnvalues of T .  Az and A l l ,  respeczively. A consequence of t h i s  fact is tha t  7' i\ tnver 

. . 
tible if and only if X(All)  fl X(A2,) = 0 [2]- - - \ -- 

C 



2.3 The method C - 
> 

i 

-/ 

The method C which is devised by Chatelin is a compu,tational scheme to  refine an - - 
approximate invariant subspace using ~ e w t o n ' s  method. r"r 

She seeks a I X n matrix X which satisfies 

- / where A E R'", B E RnXn and. a fixed ful l  rank matrix Y E RIXn. Since B = FAX, the -* 

- - )  equation (2.13) is equivalent to the quadratic equation -- 

F(X) = AX - X(Y~AX) = 0. ' 

Usmg the notation \ 

- w e r i v e d  the Newton iteration. 

Now change basis so that I -=  [I, 0Ir. In the new basis i t @ -  eG$ to see YFx=In 

~rnp l~eq  X 1s of the form 

and then ( 2 . 1 4 )  becomes the Riccati equation , 



Remarks 

- The method C has been derived under the assumption that X is associated with a set* 

o i  well separated eigenvalues of A so that J-'(XI is bounded [31. , 

- The method S and the method C were originally presented for A E CH. However. 

since we are interested in matrix problems which involve real data, we considered 
- -- 

only a real case. 



THE APPLICATIONS OF INVARIANT SUBSPACES 

We know that the sensitivity of an eigenvector depends on eigenvalue sensitivity 

and on .,he separation of its corresponding eigenvalue from the other eigenvalues. Thus 

in ill-conditioned eigenproblem. it makes more sense to t ry  to'obtain the invariant sub- 
- 

space than an eigenvector. Bm often - it is sufficient to compute the invariant subspace 
- - 

even EHough the eigenvalue problem is well-conditioned. 

In this chapter, we discuss several cases which require the computation of invari- 
- - 

A- 

ant subspaces. The various applications of invariant subspaces are as follows: The 

separation of time scales in optimal control theory [5 ] .  [6] .  [7]. [S]: noimal form of the 

differential equations [91; and decoupling [10]. [I  11. E.121, [i3]. Throughout this chapter, 
- - - 

we can see how they. use invariant subspaces to achieve their desired aim. Moreover, it 

is obvious that their methods of computing invariant subspaces have been considered by 

looking at the Riccati equations corresponding to the relevant invariant subspaces. 

cdy 
3.1 The separation of time scales in singularly perturbed systems 

First we briefly review same of the theory of the singular pertuibation systems ' 
-. 

and the importance of the separation of time scales. 

Time invariant systems with slow and f a t  modes (singularly perturbed systems) 
-- 

are stiff, and control problems for such systems are often ill-conditiined. These facts 

have motivated a system simplification approach to get a well-conditioned system 

which is equivalent to the original system. -4 well-known method is the separation of 

time modes. 



-- Consider the singular perturbation system of finite dimensional dynamical sys- 
fl 

terns, that is. 
- 

,' 

* 
x = f i x ,  Z. u. E, t ) ,  x E Rn (3 . la )  , 

EZ = g(x,  z, u. 6. t ) ,  z E R~ (3 . lb)  

where u = u(t )  is the control vector and € represents a small positive parameter. 
1 

L 

When we set e = 0, the dserential  equation j 3 . l  b) becomes 

g(x, z* ii, 0. t )  = 0 
i - (3.2) 

where the bar is used to indicate that the variables belong to a system with E = 0. We 

\ will say that the singular perturbation system is in standard'form if and only if (3.2) - - 

- 

has k>/ 1 distinct (isolated) real roots 

So if the system is in standard form then we can obtain a well-defined n - d i m e e l  

reduced mcdel. that is, 

- - 
and we can rewrite this form more compactly 

- x'= fix, u, t ) .  
-- 

(3.3) 

  his model is called a quasi-steady-state model which is related to a slow mode. 

The slow mode solution. or the quasi-steady-state, is,approximated by the reduced . 
- 

model (3,3), while the discrepancy between the mode of the reduced model (3.3) and 

that of the full model (3.la)-(3.lb) is the fast mode. To see this, let us examine the 
. . "! 

variable z which has been excluded from the reduced dodel(3.3) and substituted by its 
fl -- 

slow mode 5. Thereaay  be a large discrepancy between ato) and d l ( , ) ,  where t(, is the 

initial point of t. Thus F cannot be a uniform approximation of z .  ~ h k  best that we can 
- 

- - 

expect is that the approximation z = 8 1 )  + O(E) will hold for t E [11 . f l ,where r l  > t,,. 



- - 
We now consider the behavior of z in an initial (boundary l a y d i n t g r v a l  [to , tll. .: 

hence I' 

and use 7 = 0 at t = to. The new time variable is -. 

and 7 = 0 a t  t = to. TO describe the behavior of z as a function of 7 .  we use the boun- - - 
- ,  

dary layer system. 

di - = g(xO. 3 7 ) .  U. 0. to) 
I 

d 7 
(3.4) 

with zoIas the initial condition for 871, and xO, to as fixed parameters. 

Using these two reduced order mo&s (3.3) and (3 .a .  we can obtain the uniform 

approximations of x( t .6 )  and z ( t .~ ) .  

Also many properties of the singular pekurba&on system such as controllabTlity 

and stability can be deduced from the same properties of slow and fast subsystems. 

Thus it is important to obtain the reduced order models. 
- 

We now describe methods for obtaining the reduced order models of' linear con- 

tinuous and discrete time systems which have been suggested by Kokotovic [51. [61 and 

Phillips [7]. (81 respectively. Iri both cases, they use an invariant subspace as the first n 

columns of the ~imilarit~transformation. 



3.1.1 Continuous time case 
- 

A~model of a linear time-invariant continuous system with slow and fast modes is 
- 

, 
where x E Rn , z E Rm . u E Rn+m and E represents small time constdt,. 

,% 
\ ""-Ma, , 

urn,. , 
Now using the ~iccat i~transfo~mation,  we will transform (3.5)  into m"ahh-a*i.., .,a, 

-* bdM-4a*l& .*>: -*=, 

where 6 and 7 are related to a slow mode and a'fast mode. respectively. . 

First. to get a fast mode 7. set E &. Then AZ1x + A 2 2 ~  + B2u = 0. 'Thus i f  A;; 

exists then the steady-state of z is Z =  -A;;A2].x for u = 0. SO TJ can be deli-ned as 

-4 = z + A ~ A ~ ~ X  + EGX = z + (A?;A2, + EGIx. Then 

\ 

where R = A : ~ A ~ ~  + EG. and 

- 
where 

To transform (3.5) into (3.7), we have to find the solution of (3.8). I.et 

R = Ro + D. Ro = AFiA21. D = EG and A. = A l l  - AI2Ro. Then D is a real root of 



- - 
Setting €A,, = A. and €Al2 = A12 then (3.9) becomes 

Dho - ( A ~ ~ + R ~ ~ ~ ) D  - D ~ , ~ D  + R S o  = 0. (3.JO) 

The foll'owing theorem gives a sufficient condition for the existence and uniqueness 

of a real root D and establishes a bound for its norm 11D11. It also formulates a ccmver- 

gent iterative method for computing D. 

The Kokotovic theorem I 

I f  A2* is nonsingular and if - 

then a unique real root of (3.10) exists satisfying 

r .  I his root is an asymptotically stable equilibrium of thedifference equation 

In prnctice..we usually use the simpler form of the iterative method which is directly 

obtrt~ned from (3.6):  - 

5 K L k l  = - 4 ~ $ ( R ~ ( € - 4 ~ ~ )  - Rk(€A12)RL + Azl) ,  

R, = AF~A, , .  

- After k iterations the relative error is 

IIDI-DU 
llDll 

< [ 3 1 ~ 4 ~ ~ ~ 1 ~ & 1 1  + l l ~ 1 2 1 1 1 1 ~ o ~  = ~~[31k4~~ll~llAOll + llA12111ROll~~~. 

Thus the convergence rate of Kokotovic's iterative method depends on E. 



S o w  consider a slow mode 5. Let 6 = .I - €(-4,IA$ t +)r). i.e 
I 

- -- 

where M = ~ ~ ~ ~ 5 2  + +- 'Then 

where - " 

The Kokotovic theorem II 

Cndef the conditions of theorem I. the solution M of equatlon (3.1 1 ) IS t he  asyrnp- 
- 

totically stable equdibrium of the difference equation 

Surnrnaril!., if we consider the simpler form of (3.5) as 

then under th; condhans  of ~ o l i d t o v i c  theorem I.  

transforms A into a block diagonal form (= T1A7' ) ,  where 



( A 1 ,  - A I 2 R ) M  - M(A22 + + A12 = 0. 
- - - 3 

~oreo-i th is  similarity transformation preserves a two time scale property, i.e. 

the transfarmed system ( 3 . 6 )  has n small eigenvalues and m large eigenvalues like the 

origrnal system ( 3 . 5 ) .  

3.1.2 Discrete time case 

- 
.4 model af a linear tlme-invariant discrete system is 

-where x ( k )  E R n ,  d k )  E Rn' and u ( k )  E Rn+m. & in the-continuous case, there will 
I 

exist a bass  such that ( 3 . 1 2 )  takes the form 
a 

u here 5 a n d  r)  represent a slow mode and a fast mode. respectively. 
C -  

'1'0 find such a basis w h ~ c h  transforms ( 3 . 1 2 )  into ( 3 . 1 3 )  and preserves the two 

t ime x c d l e  propert),, first consider the Riccati transformation 

where 



Then 

To completely t ransform (3.14) into a block diagonal form.  let 

where 

l y e  remarksthat  Ph l l l~ps  derlved basxal ly the same equahons (3 .14)- (3  15) such 
, - 

a\ h a l o t o \  IC'S equations (3.8)-(3.11) Actually to obtain the reduced order model A f  a 

h e a r  discrete tlme system. Philllps used Kokotv~c ' s  ileratlve method [ 6 ]  ' ' 

l ' s ing a similariry transformation 
7- 

-4' = A l l  - A I 2 P .  A' z A,, + PA I, , 



In 60th linear continuous and discrete time cases. Kokotovic and Phillips t r y  to 

transform the original systems into block diagonal forms by similarity transformation. 

Whenever the similarity transformation brings an original system to  a block diagonal 

form, the two sets of columns of a similarity transformation constitute bases of the 

- - eigenspaces represented by the blocks. This means that thefirst  n columns of T (or V) 

ase a basis- for the slow eigenspace of (3.5) (or (3.12) ) and the remaining m columns are 

a basis for the fast eigenspace of (3.5) (or (3.12) ), i.e. the first n columns of T (or V) 

span the invariant subspace of (3.5) (or (3.12) ) w ich is correspending to the the slow S 
modes and the remaining m columns of T (or V )  span the invarlant subspace of (3.51 (or 

d 

(3 .12)  ) which 1s corresponding to the fast modes. - 

1 
3.2 Normal form for the differmtial equations 

h r e ~ s s .  Nichols and Brown [9] consider the two-point boundary problem for stiff , 

systems ;l ordinary differential-equations (ODES). To obtain accurate numerical solu- '-- 

tlms of such problems, they try to transform an original system into a block diagonal 
, 

lorn1 h~ uwng a smooth s~milari ty transformation. During the process of obtaining a 

ei 
ctrs~rrd lransl orma~ion.  they need to compute an invariant subspace and moreover need 

LO kt\l\e the K ~ c c a t l  equation. 

To xee the details of the procedure, consider the two-point boundary value prob- - 
lenr t o r  '3 lme~ir y,wm of n ordinary differential equations 

subject ro n linearly independent boundary conditions 

\.here ?; = (y,. 
- 

is a vector function with n components and Bo, B1 and 
*- 

- A ~ ( . ~ )  E Gp 0.e.  the elements of A ( x )  are p times continuously differentiable) are all 
-. 

k 



n X n matrices and the veclor f(x) E 0. We now divide the x-axis into subintervals of 

1=1-1 
variable length h, with xo=O. X ,  = h,. i = 2 ,  . - . ,N and xA7=c. U s q  h = maxh,. . 

Kreiss. Nichols and Brown define that  ;he system (3.16a)-(3.16b) is stiff if hIMII >> 1. 
- - 

To transform (3.16a)-(3.16b) into a desired block diagonal form, they first calcu- 5 i 

late the eigenvalues of A ( x )  and divide them into sets MJ containing eigenvalues which 

are of the same order of magnitude. Since the number of sets MJ depends on .r. the block 

structure can be a function of x .  The next step is to determine a transformation S(.I) 

such that  

is in block diagonal form. Here the'eigenvalues of every A,(.r)  are exactly the e , p  

values contained in MJ. 

To construct S ( x ) ,  fim start with the interval O <  x- <el .  A t  x = O ,  w e  k n o w  that 
' i  

there exists a unitary transformation U ( 0 )  such that 

is in block upper triangular form. 'Then we determine 



such that  

has the desired block form, where S(O) = u ( o ) ~ ( o ) .  

Yow consider the transformed matrix 

where 

Hy as\umpLion the eigenvalues of each block are well separated from the eigen- 

values ut dl1 other blocks. Therefore in the neighborhmd of x=O, there exists an f ( x >  

such I h a l  

anti so S(x) = s(O)~(.T).  



To discuss this transformation S%;) in detail. they considered a couple of lem&. 
-- 

Lemma 1 

Let 
J 

where A l l  E RnXn and A22 E Rmxm. Assume that the eigenvalues of A l l  are disjoint -. 

from the eigenvalues of A2?. Then the matrix equation 

_ A l l X  - XAZ2 = C 

has a-unique solution. 

Lemma 2 

-- Assume that  the eigenvalues of A l l  are disjoint from those of A,, and llAlzll and . . 

liA,,ll are sufficiently small. Then there exist R and M such that 
A 

and 

where 



These results above can be used to construct a transformation ~ ( X I  which 

transforms 

9 

into a block diagonal form. 

- 
If the matrix A(x) satisfies the conditions-of lemma 2, then there exists a unique 

transformat ion 

-7 

such that 

Lsing ;I2-, - PEI2 as )%I). the same process ran be applied to it and so $(x) = S,S, -,...So. 

Remarks 
/ 

\ 
li 

- In practice. before making the transformations of lemma 2,  the matrix A h )  is scaled 

so that El-, and E2, are of the samg order of magnitude 191. 
1 

- 7'0 find $( I ). 11 IS Important n hether the eigenvalues sets MJ are well separated or 

So\\. one could use S(cl as t h e  starting transformation for cld x bc2 and repeat 
- 

the a b o ~ ~ e  procedure to obtain S(s) .  By continuing this procedure. Kreiss. Nichols and 

8rou.n determine S(s) for 06 .I- <c and use ir to transform the system (3.16a) into 



with 

on e v k y  blocking subinterval ci < x <c i i1 .  

- 

As in section 3.1, they seek a smooth similarity transformation such that the 

transformed system has a block digonal form. It follows that each set of columns 

corresponding to a diagonal block span an invariant subspace. 

3.3 Decoupling 

It is well-known that  if initial value problems (IVPs) have increasing fundamen- 

tal solutions then IVPs are unstable in general. Many people [lo]. [I  11. [12] solve boun- - 

dary value problems (BVPs) having increasing and decreasing modes by decoupling. so 

that  we can split BVPs into two stable IVPs and compute  he r n c r e d s ~ m o d  for 

decreasing time and the decreasing modes for increasing time. 

-- - 
In this section, we consider the general case and the particular case which have, 

been suggested by Dieci-Osborne-Russell [I 01 and Wilde-Kokotovic [ 121. respec ti,vel y 

'Dieci. Osborne and Russell consider linear two-point boundary value problems for 

ODES. By using the.Riccati transformation, they formulate BVl's as three IVl's. one of 
1 X I  

them the ~ i c c a t i  equation. Wilde and Kokotovic consider particular RVl's which appear 

in optimal c ~ n t r o l  systems. They t r y  to transform BVPs into IVPs by the dichotomy 

transformation. In both cases, they use the Riccati ttansformatioh and the dichotomy 

transformation as the similarity transformatidns and the first' n columns span the 



invariant subspace. 
- 

3.3.1 The general case 

Consider the ODE with constant coefficients , - - 

y ( t ) = A y ( t ) + q .  O < t  <1 (3.17) 

Using the Riccati transformation . 

the original system (3.1 7 )  is transformed into 

where 

By the fundamental decoupling theorem (see [ l l ] ) ,  if (3.17) has an exponential 

dichotomy. i.e. there exist a projection m,atrix P, a moderate constant K>O, and A,p2O 
A- 

s ~ c h  that 

where l'(t) is a fundamental solution for (3.17). then we can stably compute the 

increasing modes for decreasing time and the decreasing modes for increasing time in the 

trandormed system (3.18). This means that well-conditioned BVPs with separated 



boundary conditions (BCs) can be solved by solving two stable vector IVPs and the Ric- 

cati equation. 

3.3.2 The particular case .- - 
. 

Consider a 2n-dimensional system with constant coefficient , 

where all matrices A . G and H  are in RnXn and G - - and H are symmetric positive definite 

matrices. 

To transform (3.19) into the block diagonal form. Wilde and Kokotjvic use the 

% dichotomy transformation. The dichotomy transformation 

is constructed using the symmetric positive definite solutior! P and the symmetric nega- 

tivP definite solution N of the $lgebraic Riccati equation 
5 

A ~ X + X A - X G X + H = O .  

To analyze this, we need to review some definitions and a theorem. w h ~ c h  is presented 
k - - 

by Wonham [13]. 2 

Definition 

I .  The pair ( A . B )  is controllable if the rank of r is n. where 

T(A.3) = [3,43. . . . 4"-'B]. 
-4 

2. The pair 4A . B )  is stabilizabh if thkre exists a constant matrix K such that A - RK is 

stable (i.e. all its eigenvalues have negative real parts). 

3. The pair (C , A )  is detectuble if (AT . C7) is stabilizable. 
-. 



- - 

-- 
Using above definitions, Wonham shows necessary conditions fo r  existence and 

-. 

uniqueness of P - and N ,  

Wonham theorem 

Ccnsider the algebraic Riccati equation 
d 

A ~ X + X A - X G X + H = O  (3.21) -- 
where all  matrices are in RnXn and G  and H are symmetric positive difinite matrices. If 

(A , B) is a stabilizable pair. where B is a full-rank factqrization of G (i.e. BBT = G  and 

rank ( B )  = rank ( G )  ) and (C . A )  is a detectable pair wheke C is a full-rank factoriza- 

tion of H (i.e. CrC = H and rank (C.) = rank ( H )  ), then (3.21) has unique symmetric 

9C 
posit~ve and negative definite solutions. - 

- - 
Under the assumptions of Wonham's theorem, there exists a dichotomy transfor- 

mation (3.20) w ich transforms (3.19) into P 

The following theorem shows the stability of the transformation of (3.22). The 

proof is based'on the proof of a stability thedrem in [lo]. 

. - -  
Theorem ' 

+I 

-.-- 
I 

If (3.19) has an exponentiil%ichotorny then the dichotomy transformation (3.20) 

transforms (3.19) into (3.22). which h%s two n-dimensional systems. one asymptoti- 

callg stable in forward time and the other asymptotically stable in reverse time. 
+z 



Proof 

Let Y be the fundamektal solution for (3.19) such that 

satisfying Y ( 0 )  = T.  T = and let W ( t )  = rtt' w2()(tll be the fundamental soiu- 

IP 
+% 

t i o n  for  (3.22) satisfying W ( 0 )  = I .  

Using 

- - 
I+(N-PFIP -(N-P)-' 

Y( t> = TW(t )  and T1 
-(N-P)-'P (N-PI-'- ' I 

we can obtain 

where 

and 

= are invertible. 
0 '  

Writing 1 

where Q is a projection with r a n k n .  - .  



. Thus 

Now consider the Bi'P consisiing of (3.19) and the BCs 

'1'0 s o l ~ e  the HVP using the dichotomy transformation (3.20). f ( to)  and q(T)  are deter- 
* 

rn tned f rom 

' . ' 
u.herr i r , ( t )  and V 2 ( r )  are the fundamental solutions of ?$t) = ( A - G N ) y  and 

* 
&r ) = ( d - G P ) f ,  respectively. Howkver. if (3.19) has an eaponential dichotomy' (see 

[12]) and if [to . TI is sufficiently large then 



32 
,-- * 

1 l ~ , ( t ) l  << 1 , lV,(t)l << 1 

and 

[ ( to )  X ,  . XT. 

tial value problems - 

Thus the approximation solution of the B V P . ( ~ . $ ~ ) .  (3.23) is 

In a general case. if the BVPs are well-conditioned and have an exponentlal dicho- , 

tomy, then solution vectors can be obtained.from two IVPs which have asymptotically 

stable solution vectors, and fcom the Riccati equation. 
Y 



CHAPTER 4 

THE SCHUR METHOD 

The Schur method for solving algebraic Riccati equations which arise from control 

prciblerns (both continuous and discfete time cases) is devised by Laub [15]. In both 
- 

cases, he seeks the unique (under suitable assumptions) symmetricc nonegative definite 
I 

sol unon by using an orthogonal similarity transformation. 

4.1 Continuous time case 

Consider the continuous time algebraic Riccati equation 

> 

A ~ X + X A - X B X + C = O  (4.1) 

where all matrices are in RnXn and B and C are symmetric nonnegative definite matrices. 

L'nder the assumptions of U70nham's theorem, the equation (4.1) is known to have a 
1 

unique symmetric nonnegative definite solution. Of course there can be other solutions 

t o  ( 4 . 1  1, but the Schur method tries to find the symmetric nonnegative definite one. 

?%hen 1 he eq ~lalion ( 4 . 1  can be so l j  ed by finding an orthogonal matrix U such th& 

and 



Moreover, i t  is possible to arrange that the real parts of the spectrum of SI1 are negn- 

tive. while the real parts of the spectrum of S2* aregositive. The solution of (4.1) is 

4.2 Discrete time case 

1 
Consider the discrete time algebraic Riccati equation - 

A'XA - .Y - A ~ x B ~ ( B ~ + B : x B ~ ) - ~ B ~ x A  + C = 0 , - (4.2) 
e 

where A.  C, X E RnXn. B1 E RnXm. B2 E Rmxm and m<n. Also C and R2 are symmetric 

nonnegative definite matrices. 

To have the unique symmetric nonnegative defini~e solution to (4.2). we need 

some assumptions which are slightly different from the continuous time case. If ( A  . H I )  . 
- 

is a stabilizable pair and ( H  . A )  is a dectizble pair where EI is a full-rank factorization 

of C (i.e. HTH = C and rank(H) = rank(C) ) and A is mvertlble then ( 3  2 )  ha.; a unlque 

symmetric nonnegative definite solution (which t h e  Schur  method dlternpt4 1 0  corn- - 

pute). 

'I_ Setting B = BlB2'B(, we consider 

Then the equation 14.2) can be solved by computing an orthogonal rnalrlx l /  s u ~ h  that 



' *  

and 
ir * 

It is possible to arrange, moreover, that the spectrum of Sll lies inside the unit circle 
-* 

and that the spectrum of S2* lies outside the unit circle. Again the solutim is given by 

X = U21Uif. 
\ 

- In the discrete time case. the Schur method has required an explicit inversion of A. If 
, . 

this matrix is ill-conditioned, numerical difficulties arise (recently, the new method 

has been derived by considering the generalized eigenvalue problem. see [all). 

- %is method has the storage requirement of a t  least two 2n X 2n arrays. ' 

- For the computed X=U21Uil. there is no guarantee of symmetry. 

- Obviously the first n columns of an orthogonal matrix U span the invariant subspace 



CHAPTER 5 

As w e  have seen.the Riccati equation 

which corresponds to the matrix system 

has been extensively studied in mathematics and engineering. It appears in a rrch 

variety of situations and is used in many fields. for example, in singular perturbation 

systems, control theory and in general for boundary value problems for ordinary 
I 

differential equations. 

b - 
One aspect of Riccati equations that has always been significant and whlch has 

- 

received increasing attention is effective algorithms for their reliable numer~cal wlutlon 

in the finite\ arithmetic environment of a digltal computer. HelraBle numcr~ci i  ,ilgo 

rithms and software now exist for the solution of many problems in linear algebra, 1 ( 1 r  

example, for the singular value decomposition. linear least squares prublrm, , ~ n d  I)ollt 

standard and generalized eigenvalue problems. But this has not been the i a w  u n t ~ l  

recently for solving Riccati equadons and so i t  is important to2on1prr  ;117(i arni~l:i/r t h v  

fairly recent numerical methods which have been proposed. 
- / 

s 
In this chapter we consider three iterative methods. which are as follow 



The linear convergence method (1411 

-- 

Given Ro, 

Newton's method ([4]) 

Given R(,, 

The generalized secant method ([201) - 

Since these three methods (called LCM. NEM and SEM. respectively), a11 require 

the solution of the equation of same type which is called the Sylvester equation 

the algorithm for each method has been implemented by using Sylvester equation algo- 

rithms. 

Syl\eester equation algorithms have been devised by Bartels-Stewart [16] and 

(hlub-Sash-\ 'an Loan [ I  71. Both algorithms are based on the equivalence between (5.1 1 

u'here L1.  \ '  are orthogonal matrices and involve five steps : 
. i 



I .  For the Bartels-Stewart algorithm, transform A into upper real Schur form 

A' = U ~ A U  by an orthogonal similarity transformation U. For the Golub-Nash-Van 

Loan algorithm, transform A into upper Hessenberg form A'  = Clr~iJ by an orthogo- 

nal similarity transformation U. 

2. Transform B into lower. real Schur form B' = VTBV b y  an orthogonal similarity -- 

3. Compute C' = UTCV. -- 
4. Solve the transformed system A'X' + X'B' = C' for X'. 

5. Compute X = UX'V'. 

Moreover, solving the Riccati equation in control problems 

where all matrices are in RnXn and A12 and AZI are symmetric nonnegative definite - - 
matrices. LCM and NEM (in this case. we assume that we have a symmetric initial 

guess) require the solution of same type which is the symmetric case of the Sylvester 

equation 
k 

A ~ X + X A = C  

where all mairices are in RGXn and C is syrnmetrlc. In this case. the lliir1t.1s-Stewar1 

algorithm involves only four steps, which are as follows: 

1. Transform A into upper real Schur form A' = Zl'Ali b) a n  orrhogondl <~m~ldrrr! 

transformat~on Ci. 
- 

2. Compute C' = UTct' .  

3. Solve the transformed system A"X' + X'A' = C' for X'. 

4.  Compute X = UX'C" 



5.1 Algor i thm and operation counts - 

We describe the algorithms for the linear convergence method, Newton's method 

and the generalized secant method: 

1C 

Algori thm I f o r  t h e  linear convergence method (general case) 
. ' 

1. Choose initial guess R. 

2. Transform A = A22 into upper real Schur form (or Hessenberg form). Transform 

B = -A1 ,  into lower Schur form. 

3. Obtain C = -A21 + RAI2R. 

4 .  PerformSylvester equation algorithm steps 3. 4. 5 ,  update R and return to 3. 

* 

Algori thm I1 f o r  t h e  linear convergence method (symmetric case) 

I .  Choose symmetric initial guess R. 

2 .  'Transform A = A l l  into upper real Schur form. 

3. Obtain C = --Ail + RA12R 

4. Perform the symmetric version of Sylvester equarlon algorithm steps 2 .  3 .  4, update 
< - 

R and return to 3. 

Algorithm I f o r  Newton's method (general case) 

1 .  Pfhoose initial guess R. 

1. Cibwin A = A2? - R,412. 

Obtain B = - ( A 1 ,  + A,,R). 

Obtain C = -Azl - RA,,R. 

3. Perform Sylvester equation algorithm steps I .  2. 3. 4.  '5. update R and return to 2. 



Algorithm II for Newton's method (symmetric case) 

1. Choose symmetric initial guess R. 
, 

2% Obtain A = A i l  - AI2R. 

Obtain C = -A21 - RAIZR. 

3. Perform the symmetric version of Sylvester equation algorithm steps 1. 2.  3 .  4. 

update R and return to 2. 
. 

Algorithm for the generalized secant,method 

1. Choose initial guess R. 
--  

2. Obtain A = AZ2 - RA12. 

Obtain B = -(Al1 + A12R). 

Obtain C = -A21 - RA12R." 

3. Perform Sylvester equation algorithm steps 1. 2. 3 .  4,  5 and update R. 

4. Save A. 

Obtain B = -(All + A12R). 

Save RA and obtain C = -Azl - RA ,.R. 
, 

5.  Perform Sylvester equation algorithm steps 2,  3 .  4.  5 and update I\'. 

6 .  Save B. 

Obtain A = A22 - RA12. 

Obtain C = -A21 - RAIZR. 

7. Perform Sylvester equation algorithm steps 1. 3.  4,  5 ,  update K and return Lo 4. 

- - J 
\Ye no* give rigorous operation counts of each iterative method lor solving the 

general Riccati equation. Since all three algorithms are based on Sylvester equatmn algo- 

r ~ r h m s .  we first need to check operation counts fo r  the Bartek-Stewart and the Goluh-  
L 

Sash-Van Loan algorithms. 



Operation counts are summarized in the following table ([17]). 

1 

Table 1 

Operation counts for the Bartels-Stewart and the Golub-Nash-Van Loan algorithms 

We require m2n operations for obtaining A = A22 - RA12, mn2 operations for 
- - 

obtaining B = - (AI l  + AI2R)  and 2m2n operations for obtaining ?= -Az1 - RAI2R (in 

\ 

&P 1 
step 2 
step 3 
step 4 
step 5 

SEM step 4. wi! only need mzn operations since we save RAI2). B r o m  this. we can now 

construct operation counts tables for the three iterative methods. 

Bartels-Stewart 
1 om3 
1 on3 

m2n+mn2 
1/2(m2n+m2) 

m2n+mn2 

The operation counts using the Bartels-Stewart algorithm are as follows: - 
Li - 

Golub-Nash-Van Loan 
5/3m3 
1 on3 

m2n+mn2 
3m2n+ 1/2mn2 

m2n+mn2 

Table 2 

Operatton counts for LCM. SEhl  and SE31 using the Ilartsls-S~ewart algorithm . 

Method - -  i=l 
LCM 1 0(m3+n3)+9/2m2n+5/h2 I 



The counts using the Golub-Nash-Van Loan algorithm are as follows: 

Table 3 

Operation counts for  LCM; NEM and  SEM using the Golub-Nash-Van Loan algorithm 

r 

0 

Generally, the Golub-Nash-Van Loan algorithm is faster than the Rartels-Stewart 

Method 
LCM 
NEM 

algorithm. Since both algorithms have the same accuracy. iLis a good idea to use tile 

Golub-Nash-Van Loan algorithm for  solving nonsymmetric Riccati equal ions (espe- 

cially when m >> n ) .  

i=even. 1 0n3+6m2n+ 7/2mrr2 
i=odd, 5,3ml+8m2n+5/2nm2 SEM 

- In the symmetric case. the Bartels-Stewart algorithm onlyrequires 13.5n3 instead. 

i= 1 
5/3rn3+10n3+7m2n+5/2m2 
5/3m3+ 10n3 +8m2n + 7/2mn2 

5/3m3+10n3+8mzn+ 7/2mn2, 

, 
of 25n3 operations. Thus NEM is as fast as SEM. The details of operation counts are 

i 2 2  
7m2n+5/2mn2 

5/3r;13 + +on3 +8m2n + 7/2mn2 

summarized in the following table. 

Table 4 

Operation counts for LCM. NEhl and SEM in the symme~ric case 

Remarks 

- Since the Golub-'Cash-Van Loan algorithm requires only upper llessenberg form, a bitf  

more operations (when compare w ~ t h  the Bartels-Stewart algorithm) are needed for 



I 

solving the transformed system A'X' + X'B' = C' (see the step 4 of a table 1 and the 

counts for LCM of tables 2. 3). However. when we consider the entire process a% 
'i 

m 2 n  the Golub-Nash-Van Loan algorithm is more efficient than the Bartels-Stewart 
- / 

algorithm (in the nonsymmetric case). This can also be assured, for if m<n, we 

merely apply to the transposed problem 

- In the symmetric case, after the first iteration, the average operation counts for SEM 

a t  each iteration is 16n3, while NEW requires 16.5ni operations. 

5.2 The rate of convergen* and condition number @% 

In chapter 2. we mentioned that the Stewart method for computing the invariant 

subspace was originally presented not as an algorithm but as a technique for  doing per- 

turbation theory for invariant su-ugh it works as an algorithm as well. 
i 

Using 'this perturbation theorx convergence criteria for all three methods has bhen 

derived. To state these results, we need to define the separation of two  matrices 

sep(:I,,.A,,). 13) - u l n g  Sreuarl c le f in l~~on.  we can denvte by sep (All.A22) 

= minlE(A ll)-E(A9)1 where E(All)  and E(.4??) represent the sets of singular values of 

A, ,  and .4_32 respectively. 

and I..', = R, - R. If A ' < l l l  then LC31 eonverges to a solution R which is the unique 
P 

solution inside the ball 

so that I & I I F  CLIE,-~IIF. where the constant CL depends on K dsee 141)- If K<1/12  
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then NEM converges to a solution R inside the: ball given in the linear case so thnr 

IIE,IIF 6 C&?$-~II$, where the constant Ch- depends on K (see [4]). Also if A'< 1/12 then 
-. 

SEM converges t o  a solutiod R inside the ball given in the linear case so. that 

P, 

lE,II& 6 CsIIE,-III~IE,-211F, where the constant Cs depends on K (w [20]). According to 

. . 
1 4  these results, the order of convergence for LCM. NEM and SEM are 1 . 2  and -, 

2 

respectively 

Since w e  have considered iterative methods for solving Riccati equations as itera- 

tive methods for computing invariant subspaces. the parameterdK can be interpreted as 

follows: IIA1211&4,,IIF measures the quality of the initial approximate invariant sub- 
Z 

space, and moreover lMzlllF will be zero if and only if the initial approximation is in 

fact the exact invariant subspace. The quantity sep(A li .A2,) measures the separation of 

- the spectra of All and AZ2. If sep is small it means that  the mvariant subspaces belong- 

ing to the two parts of the spectrum are unstable and hard to compute,. I f  we denote the 
- 

invariant subspace corresponding to A , ,  by . then K will be small if  we start with I4 
good initial guess to R and i f  the eigenvalues associated with A l l  are well separated 

from the spectrum of AZ2.  

5.3 Advantages and disadvantages 

We have seen the algorithms, operation counts and the rate of convergence for 

each m e t h ~ d .  Here, we give their advantages and disadvantases. 
0 

From the operation cobnts tables, it is obvious that 1.C.II [4]  is much cheaper than 

\ 1 

NEM and SEM at each iteration. Especially when rn >> n. because this hethod then 

only needs 0 ( m 2 )  operations after the first iteration. 



In all three methods, i t  is important to, choose a good initial guess Ro. We cannot 

guarantee that  LC& always converges. even if we gi;e an apparently accurate initial 

- 
approximation (see Example 6.7 ). . 

Consider nonsymmetric Riccati equation A22R - RAll = -Azl + RAIZR. F O ~  NEM 

[4]. the coefficient matrices (A22 - Ri-1A12) and (All  + A12R,-1) vary from step to step. 
* 

making it necessary to preprocess a t  each step. Thus each step could take 0(m3)  opera- 

tions, which is quite expensive. 

* 
SEM [20] consider this cost problem and moreover the ord-&@f convergence 

* 1+& 
(------ a 1.6) is between LCM and NEM so SEM convergence proper- 

2 

ties as NEM. 

To compare the relative cost of SEM and NEM, we now c o n s t r x t  ar.3ther t a b k  

(for when m >> n). 
-. 

Table 5 

Operation counts for NEM and SEM (when nz >> n) 

From tables 2 .  3 and 5 ,  it is obvious that the cost for SEhl is less t-han the cost for NEhl 

Method 
NEM 

at each iteration. 

2 Solving the symmetric Rfccati equation .4:,~ + RA,, = -A21 + RA& which 

i=l 

0 ( ~ 3 )  

arises In control problems. SE.11 is as fast as SEM at ea'ch iteration provided a sym- 

i 2 2 
oh3)  

- 
metric starting value is known. Since SEM converges faster than SEM. NEM is more 

efficient than SE.21. However, if we get the initial guess from a QR-type process, such as 
\ 



theSchur  method, then there is no guarantee of symmetry. Thus in this case SEM is 

still competitive with NEM. 

We know that LCM. \'EM and SEM have been devised by using Sylvester q u a -  , , 

tion algorithms. The Bartels-Stewart and the Golub-Nash-Van Loan algorithms are 
2 

derived under the assumption that the Sylvester equation 
h 

\ 

L 
A X + X B = C  

has a unique solution, that is. X(A)nA(-B) = 0, where A(A) and A ( - H )  are the set of 

eigenvalues of A and -B, res~cctively.  Thu re is a coale3ence among the elgen- 

' values of A and -B then Sylvester equation lthms are unstable. It means that ~f 

A ( A ~ ~ ) ~ X ( ' A ~ ~ )  f 0 then LCM is unstable, since LC31 is trylng to  solve the Sylvester 

equat Ion 

i -  A2,R + R(-All)  = -A2] t RAr2R 

Also, SEM and KE re unstable if A(A'22)nX(A'll) f 0, because the Sylvester equa- 

tion which they are trylng to solve becomes 
4 - 

.A -' 
A'22R + R.4'11 = + RACK 

We now preseht a number of examples to illustrate various points discussed in 

previous sections and to compare the ~ t e r a t ~ v e  method: u ~ t h  h o L o r n i / i c ' \  lterdtlvt. 

m e t h ~ d  and the Schur method (called K i M  and ST\!. respect~vel)) v. hlch dre known 2) 

. r' &'.reliable and efficient methods for solving Riccari eq uarions i n  smgular perturhLtion 

and control problems. respectively. All computations have been performed using the 

FORTR-45-G compiler and double precision~on an IBM 3081 (our machine prec~s~on 5 

near 10-16). f 



5.4.1 Examples from singular perturbation problems. 

Consider the simple example of a singularly perturbed system with m large and n 

small eigenvalues 

and  Kokotovic's iterative method 161: 

R, = A ~ ~ ( R , - ~ A ~ ~  - R,-lA,2R,-l + A 2 1 ) .  i=1.2 ...... 
, 

( I f  a i inguhr  perturbation system has n large and m small eigenvahes then we us t f  

R, = (A22R,-1  + R,- ,A,2R,-I  - A z I ) A i , ' ,  i=1,2 ..... ). We know that  KIM is efficient. in - 
solving Kiccati equations arising from singular perturbation problems. since the rate of 

cAnvergence is proportional. to a ,  and after inversion. we need only 3m2n+rnn2 opera- 

r 
lions at  each iteration. 

We now choose several examples from singular perturbation systems to compare 

the three iterative methods with KIM. All computation have been performed by using 

both the Rartels- tewart and the Golub-Sash-\'an Loan algorithms with the initial P 

R,v - 
criterion. 1.e if  II I! < 10-' then A' 1s the final number of iterations 

RS iE 

These following examples show that SE91 and NEM are very competitive With 

);I l l .  First each example and a comyuted solution are presented. 



Example 1 : ~ 6 k o t b v i c  [6] 

Consider the continuous model of a power system 

e e  A H  4412 [;I = A2# 

where A l l  E RZxz, A22 E R3x3, x E It2, z E R3 and 

KI%l and the three iterative methods. by using both the Dartels-Stewart algorrthnr 

and the  Golub-Sash-Van Loan algorithm, all  give the same solutton 
6 

Consider the  dlscrere model of \ream pi ~ r r  y \ ~ c n i  
I 

R = 

u.here A l l  E R"'. A,? E R ~ ~ ~ ,  ~ ( k )  E R2.  d k )  E R 7  and  

' 4 . 0 4 8 4 0 3 9 4  -0.5203625 
2.154609 -0.04306733 

4 

2.1061 74 -0.05827145, 

Example 2 :Phillips [7]  



All methods give the same solution 

Example 3 Phillips [7] 

Consider the discrete model of a power system 

, x ( k + l )  A l l  A12 x ( k )  
, @ + I  11 = [A2; A24[.dk11 

.411 met hods give the same solution 

Example 4 . P h ~ l i ~ p  [ 1 h! 



All methods give the same solution 

To compare each method, we cons~ruct  a table whic'h b 7 s - h  sho ow many iterations 

N we need to get 7 digits accuracy and which gives the condition number 

K = ~ ' ~ 1 2 ~ ~ ~ ~ 2 1 ~ ~ F  
and the residual r. 

sep2(-4 A2?) 

Table G 
-? 

T ~ i m e i i i o l  ~&sulls I for  examples 1 .  2 .  3 and 4 



- - 
From table 6.  we see that SEM and NEM solutions have much better accuracy. 

. J- 

I t  is not easy to give general results for the actual cost, since this depends on the 

number of iterations and the size of matrix. But if we need very accurate solutions of 
' 

Riccati equations then $EM and NEM are generally a bit cheaper here than KIM (but if 

E IS very small then they are not. see example 5) .  In each example. we also determine 

the number of iterations required to make the residual less than 10-l4 and then com- ., 

pute operation counts and CPU time when using the Golub-Nash-Van Loan algorithm. 

The numerical results are summarized in the following table. 

Table 7 

Numerical results 11 for examples 1. 2. 3 and 4 

,IT: The number of iterations satisfying r <  10-l4 

Op Tlme 
1083 0.0054 

2'1 1922 0.01 
8265 0.027 

- 
i 2 6729 0.021 

Op: Operation counts 

Time: CPC time (sec) 

- 

LCM 
N Op ' Time 

13 2153 0.013 
18 2933 0.023 
22 14112 0.063 
25 15936,. 0.07 

!Ye now tonsrrucr tables to  show the rate of convergence for each method. wherZ 

SEhl 
N Op Time 
5 1209 0.0065 
6 1439 0.009 
6 6764 0.022 
7 7538 0.024 

NEM 
N Op Time 
4 ' 1 2 4 4  0.0073 
4 1244 0.0068 
4 5888 0.016 
5 7360 0.022 



Table 8 

The rate of converggnce for K I M  

relerr (Ex11 
.1+1 
.84-1 
.65-2 
.:I-3 
.16-3 
.23-4 
.23-5 
, 1 5 4  - 

.14-7 

relerr (Ex21 
.1+1 
.21+0 
.62-1 
.21-1 
.71-2 
.23-2 
.75-3 
.23-3 
.67-4 
.19-4 
.54-5 
.16-5 
.50-6 
.17-6 
.61-7 

- -  

Table 9 

relerr (Ex3: 
.1+1 
. l9+O 
.51-1 
.15-1 
.48-2 
.16-2 
.62-3 
.24-3 
.94-4 
.35-4 
.12-4 
.43 -5 
.13-5 
.43-6 
.15-6 
.56-7 

The rate of convergence for ICX! 

relerr (Ex4) 
.1+1 
.19+0 
.76-1 
.22-1 
SO-2 
.11-2 
.48-3 
.2 1-3 
.71-4 
.IS-4 
.36-5 ' 
.99-6 
.49-6 
.19-6 
.59-7 

relerr (13x3 J ; .relerr ( 1  x 4 )  1 
.1+1 / . I + ]  i 

' I 1 relerr (Ex1 1 relerr (Fx2)  
1 1 1  .1+1 .1+ 1 



L 

Table 10 

The rate of convergence fo r  SEM 
- 

i relerr   EX^) relerr (Ex21 relerr (Ex3) relerr (Ex4) 
1 . I t 1  .1+1 .1+I 
2 

.1+1 
.28-1 .84-1 .63-1- .53+0 

3 .66-3 .59-2 .92 -2 .21+0 
4 .13-5 .38-4 .11-3 
5 

.16-1 
.77-10 -15-7 .11-6 .95-3 

6 
t 

. T3-11 S4-5 

Table 1 1  

The rate of convergence fo r  KEM . 

L i 

The ner l  example i l l u s~ ra t ez  t h e  f a c t  t h a t  hJSl is ex~rmmrl: i i ~ z i : ~ l  fi?r singlliarli, . . 

perturbed syslerns with small E .  

Example 5 :Xllemong. K o k o t o ~  ic f 191 

u here .q l l  € R"'. E R ~ ~ ~ .  x € R'.,- E R', E = 0.1 and 



By simple multiplication. w e  can also contruct egamples for  €<() . I .  'The results 

'1 b 

are in the table below. 

- - 

Table 12 

-0.58 0.0 0.0 -0.27 0.0 0.2 0.0 
0.0 -1.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 -5:o 2.1 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 377 0.0 0.0 

-0.14 0.0 0.14 -4.2 -0.28 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.08 2.0 

-173 66.7 -116 40.9 0.0 -66.7 -16.7 

I 

A l l  A,2 
1 1 

-*?I -A22 

Numerical results for  example 5 

= 

1.0-1 246.4 
1.0-2 ' 5833.8 
1 .O-4 It, 

E E 

t 

N: The number of iterations for  7 digits accuracy 

The above table shows that  K I M  needs the same number ol Irerarlonh to gel 7 

digits accuracy a s  the other- three methods provided € 5  lo-? 'Thus, in this case (i .e.  a 

slngulary perturbated system wi th  small E ), K l \ l  1s the best method for  w11 lng R I L C ~ L I  
- 

equations. Futhermore, the i ~ e r ~ t i v e  methods work fine, even though A' rs pretty hrg 

JVe have performed all  computations for  the three Iterittlve merhocis b : ~  using b o t h  

the Bartels-Stewart and the Golub-Nash-i'an Loan algorithms. A s  expectetl. ccimpuLrd 

solutions for  both algorithms are  identical. Since if we use the Chlub-Sash-Van I.oan 

algorithm then we can save some operatloc counts (see Table 2, Table 3 1. it 1s a good 

idea t o  use it for solving Riccati equations in singular perturbation problems. 



' 5.4.2 Examples from control problems 

Consider the continuous time algebraic Riccati equation arising from control prob- 
- - 

lems 

where al l  matrices are in RnXn and B and C are symmetric nonnegative definite matrices. 

We - know that  the Schur method considers 

and reduces Z to the real Schur form such that 

The solution is given by R = U 2 , L ~ i ~ .  

To transform Z into the real Schur form, we generally need 1 0 ( 2 d 3  operations 

4 
and moreover we need -n3 for obtaining R = U,,U;;'. W e  see tha t  the total number of 

3 '. 

1\, 
operation2 requ~red is a t  least 81n3.  Should the ordering of the real Schur form require, 

I 7 pr ' r~t 'nt  1110:.e u p r - d t l o n \  than the unordered real Schur form, we have about 

1 0 1 n 3  for the entire process. 

Remark 

Hecall t ha t  SF11 and SEX1 requlre approximately 16n3 and 16.5n3 at each itera- 

titm, r e s p x ~ ~ v e I \ ~  (at  the  first iteration. SEM requires 23n3). If SEX1 and XEM need' 

d h u t  5 ~ ~ e r a t i o n s  to get the solution which has the same accuracy as that of SCM. then 

u e  can say both methods are competitive with SCM ffor the case that any particular 

' ~ r d e r i n g  o f  the real S c h u r  form is not needed). 
, 



We now consider a few examples to  compare the three iterative methods-to SCM. 

We know that the Bartels-Stewart algorithm is more efficient than the Golub-Nash-lJan 

9 Loan algorithm for LCM and NEM. Thus all computations for them have been per- 
# 

formed by using the Bartels-Stewart algorithm. However. we use the Golub-Nash-Van 
' 

Loan algorithm for SEM. 

The following simple continuous-time example is used to iilusTrate the effect of an 

ill-conditioned problem ( ~ r o b l e m s  where the data can be perturbed slightly but the 

resulting.change in the solution is large) and an initial guess. 

Example 6 :Arnold. Laub [14] .? 

The applicable algebraic Riccati equatlon is 

A'R + RA - RBK + C = 0 

where E = lo-"' and 

When we solve the algebraic Kiccati equation ( 5 . 2 )  with an initial guess K, ,=O.  

LClI. NEXI and SEhI give the same stable solution. 'I'he numerical results are sunimar- 

ized in the following table., 



Numerical results I for example 6 

N: The number of iterations for 13 digits accuracy 
. . 

Recall that SCM has been devised to get the unique symmetric nonnegative definite 

NEM 
N r 

solution, and a symmetric matrix is nonnegative definite if and only if all eigenvalues 9 

SEM 
N r m 

are n ~ ~ ~ n e g a t i v e .  Our computed solutions which are derived by iterative schemes with a 

zero initial guess are symmetric, but since some of the eigenvalues are negative, we 

know that these stable solutions are not the desired solutions. 

LCM 
N r 

The true symmetric nonnegative definite solution for R can be hand-calculated as 

.- 12t\/l+r' a - 4 ( 2 + ~ l + r 2 ) L l  
\ate I hat a5 E - 0, the (1  -1) element of R tends to infinity. It suggests that we need 

anorher m~t ia l  guess w ~ t h  a large (1.1) element. 

L RJl.1) 1.0 
We so l i~ r  the Riccau equation (5.;)  with R,, = 1 SEM and REI l  give 

- 
the unique symmetric nonnegative definite solution (as does SCM). Since the unique 

symmetric nonnegative definite solution to this example is unstable as E + 0, the solu- 

tton accuracy is degenerating. When r=1.0. the problem is well-conditioned and we 



have an accurate initial appro 

of interest are summarized in 

Table 14 
\ 

Numerical results I1 for example 6 

N: The number of iterations satisfying r 

m 

We can see that SEM and NEM have the same accuracy as SCM. The execution 

times of both methods are greater than for SCM. However. we expect more careful 

Ro(l , l )  

implementations of the two iterative methods to be faster than the current versions. . , 

The fnllou,ing example illustrates the effect of ill-conditioning of A12 with respect 

to inversion. Recall that A I Z  measures the quality of the initial approximation. . 

LCM 

Example 7 :,4rriold; Laub [14] 

w I + €  1 
i n i i e  / ( f y + u T [  ( I  I , l u~d i ,  E = 

SEM 
N r 

NEM 
N r 

SCM 
r 



The ayjplicable a b r a i c  Riccati equation is 

where 1 

We solve this problem by using the identity matrix I as an initial guess. SEM and b 
NEM generate the unique,symmetric nonnegative definite solution, even though LCM 

gets overflow. all the time, The numerical results of interest are summarized in the fol- 

lov~ing table. e 

Table 15 

Numerical results for e ~ a m p l e  7 

1 

SEA1 NEM 
N r N r r 

N: The number of iterations satisfying r 

I- = IL-~~K~~+R,..~-R,-BD-'~R,~+CII~ 

SEX! and NEM give t& same accumte solution as SCh!. But 6 e  have difficultyin 

obtaining'a good initial guess as E -+ 0. 



STEEP$EST DESCENT TECHNIQUES 

I 

# 

We have seen that  SEM and NEM are cdmpetitive with well-known Klhl and 

- SCM. Their weakness is the, usual requirement that an accurate initial approximation to 

the solution is needed to  ensure convergence. This leads us to conslder the sleepest des- - 

cent rncthod which is used to find sufficiently accurate starting approsimat~onh tor 

iterative m hods. 2. 
6.1 The matrix algorithms of steepest descent type k 

Consider the Riccati equation 
/ 

. The Riccati equation (.6.1) will have a solution precisely when the function (;:R"'"' + R 

defined by. G(R) = IIF(R)II; has the minimal value zero. To rnmirnl~e G ,  we uw t h e  

'method of steepest descent whlch delermlnes a local mlnrrnum lor I LlncLlon ol t l  c t 
form G:Rr -* R. 

natural idea of choosing R to be in the direction of the <reatest rircrrdw In tlrr ~ a l u r  of 

dient. The numerical derails of a matrix algorrthm ol sLcepesl dt..sit.nt l i , p e  are i l L  lo1 

Algorithm I 
. 

1. Given an initial approximation Ro. evaluate C;(R(,) = IlF(R,)li; and VCXK,,). 



Make vG(R( , )  a unit vector. 

Choose such that G ( R o ) a G ( R o - a 3 ~ G ( R U ) ) .  ? 
Set a l = O ,  cu2=cu3/2 a ~ d  determine the quadratic polynomial that  interpolates 

G(R,-crvG(Ro)) a t  a=cu,, a* and CYJ. 

Determine a critical point a. of thsquadratic.  

Define CY to be the number that minimizes this quadratic. 

Return to 1 with Ro replaced by R=R,,-aVG(R0). 

Since we need 3m2n+mn2 operations to get G ( R )  = I IF(R)~I$.  steps 4 and 5 which 

give u s  an optimum value of cu can be too costly, so we use a modified algorithm. 

Algorithm I1 

1. Given an initial approximation Ro. evaluate G(Ro) ="IF(Ro)ll$ and v G ( R o ) .  

2 .  \lake V G ( R , , )  a unlt vector. 

3. ('hoose cr such that G(R,,) bG(R , -avG(  Ro)) .  

4.  Return to 1 w ~ t h  R,, replaced by R=R, l -~Vt i (Rt , ) .  

The steepest descent method generally converges only linearly to the solution, but 

_I- 11s convergence is global in nature. As a consequence, we use these steepest descent type 

algor~thms to find sufficiently accurate initial guesses for SEhl and NEV. 

6.2 Numerical  examples 

K e  present a few examples which need an accurate initial guess. Actually. we 

failed to get the solutions of these examples usipg the iterative methods without using 

algorithms of s teepst  descent type. TO get a solution set. first we perform the matrix 

iilgortthm of s teepst  descent type ~ i t h  R,,=l. tolerance=lO-' and the maximum 



number of i t e r a t i o n ~ 5  and then we use ~Iera t ive  methods. Since t h e ~ r o b l e m s  t>e lo~  
i_L 

a re  of control problems. we again use the Bartels-Stewart a l g ~ r i t h m  for I-Chl and X I 3  

and the ~o lub -Wish -van-~oa r i  algorithm for  SEM. 

Example 8 :Laub [151 . . 

Consider higher order Riccati equations arising from positlon and velocity control 

fo r  a string of high-speed vehicles. For a string of N vehicles, it is necessary to  solve the 
* 

Riccati equation 

%,here all  matrices are of order n=2N-1 and are given by 

R,.D.;'B.; = diagi I .  0, 1 .  0. .... 0, 1 i .  

C:; = diag(0 .  10, 0,  10. ..., 1 0 ,  Oi. ' 

For t he  cases of 5 .  10 and 20 vehicles. \xe t ry  bo th  algorithm\ I and I1 of tteepe\t 

descent type In both cases. SEX! and ?rT3l glve the same solution w h ~ h  IS ~dent lca l  to . 
the solution of SCV. and moreover this so lu t~on  has the same accurdty as SCM 'I he 



numerical results of Interest are summarized in the following table. 

Table 16 

Numerical results I for example 8 

s 

I T  SEM NEM I SCM 1 

L:'I'he number of iterations satisfying r 

\Ye also iheck the (:PC time of the matrix algorithms of steepest descent type. The 

numerical results are summarized in the following table. 

Sumerlcal results I1 for example 8 

.-\igi\rirltni 11 ss\  t. appi-tls~rnarel>- 6 0  percent of the CPT time of algorithm I. To com- 

p r e '  a I;!: 51'11 i r  r. i l l ? \  h rbe ('I'L t ln le  of the iteratike methods and add to CPU time of 

,::si>rit hni  11, T h e  ti\ral ('IY rime of' eaih method is summarized In the iollowing table. 



Table 1 S 

Numerical results 111 for example 8 

Example 9 :Laub [ I  4 

This example involves circulant matrices. Consider 

ATR + RA - RBR + C = 0 

%.here all matrices are of order n=64 and are given by 

and B = I. C = l .  The matrices -4. R and C are all i 

R E R L X L  IS k n o u n  Lo be c~ rcu lan t  of the form 

r c u l a n ~  sci t he  Ktccatr s o l u t ~ o n  

I%-e perform both algorithms I and I1 of steepest descent type.- in both cases. SI:%1 

and SE31 give rhe same c~rcu ian t  solution xxhich is ldenttcal to the solutton of . X 3 1  and 
d 

mormver  the solut ion for h i h  methods is as accurate a s  fol Sell. As In example 8 ,  we 



compute the residua1 and check the CPU time for both' algorithms of steepest descent 

type. Thshumerical results are summarized in the following tables. 
I 

Table 19 

Numerical results I for example 9 

N: The number of. iterations satisfying r 

SEM 

Table 20 
\ 

Sumerical results I1 for example 9 

NEM I SCM 1 

I sing ~iil>it. L t i .  u e  a130 check C'PC tlme for  SE31 and NEhI. SEM and NE.11 required 

Algorithm 1 
113.8 

Algorithm I1 
44.5 



I 

- CHAPTER 7 

CONCLUSIONS 

In this thesis, we  have implemented numerical methods for  solving algebraic 'Hit- 
/- 

cat: equations. The numerical results in the previous chapters indicate that  SEM and 

NEM arecomparable  to K I M  and SCM. In fact. with a modified matrix algorithm of 

steepest descent type which is used to find a suficiently accurate starting value. S E M  

and XEIM perform as  well a s  SCXg for  sojving R~ccati equations of large order 

If we  want  t o  get very accurate solutions of Riccati equations arlsing from slngu- 

lar perturbation problems then both iterative methods are faster than KIM except for 

the case In which 6 IS very small. The execut~on times of SEM and Nf:M Ltre greater 

than SCM. However, w e  expect more careful implementation; of both method, to be 

mush faster than the current  versions. 

The neb  iterative method, name11 SF\! w o r k  as usell as  SF14 Solving non\ym 
d - \ 

e r t r i c  Kiccatl equailuni.  SL\l I; conb~derrbl)  laster ihnn \L11 at each lierruon flow 

ever, in the symmetric  case. SE3I is at least as  fast as Sfill provlded a s y m m e ~ r t r  initial - 
/ 

is r e l a t i b e 1  espensi\:e. a ! thou~h  th1.4 merhod In rheory a l ~ a > ~ s  converges. A way Lo 

iir;prp;e the  eficieni:L. of Itera:i\e rnerhodx IS to find a reliable and efficient method to 

gi\.e a good initial approximation.' This fact requires further  research 

#' 

As a final cons~deratlon and research, u e  have also considered the genrrallzed Ric- 

cati e q u a l ~ o n  



-BZl + LB12R 

corresponding to the generalized 

- 

where All .  BI1 E RnXn. A=. B22 E Bm- and R. L E RmXn. 

As for the standard Riccati equation. LCM. NEM and SEM can be used (see 141 and 

[ZO]). These three iterative methods require the solution of the equation of same type. 
- -- 

say,  the generalized Sylvester equation; 

AIR - LBI = C1. (7.1) 

A2R - LB2 = C2 
3 .  

where A l .  A2 € Rmxm. B1. B2 E RnXn and R.  L .  C1. C2 ERmXn. 

In order to solve the generalized Sylvester equation. We also implemented the new 
- - -  - - - - - - - - - - - 

algor~thm called the generailzed Barrels-Stewart algorithm (In short, GBS). The m a ~ n  

idea of GBS is based on the equivalence k tween  the problems (7 .1)  and 

u here (el. L 1 )  and (Q2, Z2)  are orthogonal matrxes which are found from the QZ algo- n 
rithm for the two pencils. -4, - h4 and B1 - A& respectively. Now A l  and B,  are ( 7  
reduced ro u p p r  real Qhur  fcvms ).4 Z, and Q@1Z2. respectively and also At and B2 F- 

- - - - 

are transformed info u f p r  rm3 &,4-,7, and @B,Z,, respectively. Thus  
-- - - - - - - - - -- - -- 

we can solve thls transfor if y ing the Bartels-Stewart algo- 

rlthrn. 

I - 

Using SEM and NEY wlth CBS, we solved a few discrete tlme algebraic Riccati 

tquatlons In control proble ([I51 and [21]) and obtained solutions whichrare identical k S 



to those of SClI. However. further study is needed to prove the efficiency of SEhl'and 

S E M  6or solving generalmd ~ i c c a i i  equations. -411 things considered. it seems that - 

SEM and S E M  have the potential to solve a large class of problems. 
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