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ABSTRACT |

1

Iterative methods for ‘computing invariant Subsp!ces and their various applica-

"lions, which appear in many fields, are considered. Three iterative schemes which have

Ej
2

been suggested are those by Dongarra—Molei‘—Wilkinson, Stewart and Chatelin.

‘Recemly, Demmel has shown that they all eventually reduce to solving the same edua¥
tion, the al"gei)raic‘Riccati equation, which has been deeply studied in mathematics and

engineering. This lea:'. us to directly consider numerical methods for solving Riccati

equations as methods for the invariant subspace problem.

A few numerical- methods for solvin'g Riccati equations -have been Apropoie'c_i:
Kokotovic's iterative method, the Schur method. the linear convergence\melhod." the
generalized secant method and Ne\#ton"s method. In this thesis. we analyze and imple- -
ment these methods. We give numerical details of the various algorithms and rigordus
oper;mon counts for each of them. Our comparison shows th;t the genefa]ized secant
and Newton's methods are 'compeiiti\é with bath Kokotovic's and the Schur methods.
even iﬁ situations where the latter methods are knowni 1o be efficient-and reliable. as in
solving Riccaliﬂ equations afising from singu_iar perturbation and ‘c<.)mr'ol problems,
resbegtively. Our anatvsis also shoéxs that the genera]ized secant method is generally

more efficient than the other two iterative methods.

The potential drawback of iterative methods is the need of a good initial guess.
While showing that. in practice, the convergence regions predicted by the theory are

rather restrictive. we have also discussed and implemented matrix algotithms of

-

steepest descenl type. which when used $h conjunction with the generalized secant

method and Newton's method produce very appealing results.

iii -
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that all three methods eventually amount to solving the s{?ﬁe'equation; the algebraic

N

INTRODUCTION

P

"~ Let __ k i

4 _'Au Ay
B Az Az

w here A;; € R™™ and A,y € R™*™ A subspace X C R™™ with the properiy phz;t

xeEX — Ax€eX
s called an invariant*subspace of A. We now have two basic questions: How can we .
compute invariant subspaces? Why do we need 10 compute invariant subspaces?

The main purposes of this thesis a;e to analyze and implenient methods for com

~_puling invariant subspaces, especially iteralive methods which are motivated from the

PR P

Riccati equation: -
- ) . . AzzR - R.411 = _AZI + RAlzR. - (12)
and to show their various applications., A
In this chapter, we briefly state two important theorems which are often used

through this ‘thesis. In chaptef 2, we describe three iterative méthods for computing

“invariant subspaces which are suggested by Dongarra-Moler-Wilkinson [1], Stewart [2]

— " . \

- and Chatelin [3). artd then.we briefly discuss Demmel's recent paper [4] which shows

s ey ) FY
=

Riccati equation (1.2). ¢

It is well-known that one cannot expect to compute the accurate eigenvectors

when their correspohding eigenvalues‘belong to a cluster of poorly separated eigen-



\

~ant subspace? In chapter 3

. 4
onal the ‘computed elgenvectors correspondmg to Lh.e relevant engenvalues W1ll be

-almost linearly dependent. ’However, the invariant subspace associated with an ill~

£

conditioned ei%hproblém-whjch has close eigénvalues,ahd/or almost parallel eigenvec-

tors is well deterfained provided the cluster is well separated from the remaining eigen-

vectors. Thus it is advisable to group.some eigénvalués and o coinpute a basis of the

corresponding invariant subspace instead of computing eigenvectors. This is the well-

known and important role of an invariant subspace. Naturally. we have a general ques- -

tion: Even if eigenproblem is well-conditioned. is it sufficient to only coyspute an invari-

oY

which appear in singular perturbation and control problems and boundary value p’rob~‘ .

lems for ordinary differential equations.

’Tn"chlapter 4, we consider the Schur method_ [14). This ‘is 1h,evone of methods for

solvmg algebralc Rlccatl equatlons arlsmg from control problems

-

In chapter 5, we consider three iterative methods, namely, the linear convergence
{ -

method, Newton's method and the generalized secant method, which are called l,(‘,."\1,

e

NEM and SEM, respéctively. We give numerical details of the various algorithms and

rigorous operation counts for each of them. We also state the rate of convergence, condi-
! .. ’ ) ' -
tion number, advantages and disadvantages for each mettod. We choose several exam-

ples to compare these three methods th kokotowc S 1Lerat1ve method and the Schur

method (we call KIM and SCM, respectively). which are known 10 be rehab)e and

_efficient methods for solving Riccati - equatlons in smguldr perturbdtlon and contro}

1

problems, respecuver presem some numerncal results of interest, and make comparis-

ons.

S

we dlscuss the various applications of invariant subspa‘Ces

by . . % -
. > . & < 8
- ’ : 9&’\ K
= - e S e i - N T,
values @o when A is defectwe that is, the Jordan canomcal fofm is not strictly dmg- B



k2

— .

The main advaniage of SEM and NEM for solving Riccati equations is their speed

.,of convergence once a sufficiently accurate approximation is known. In chapter 6, we

implement matrix algorithms of steepest descent type which give a good starting value.

" Conclusions drawn from the research and suggestions for the further study are .

giveh, in chapter 7.

i
o ¥

Theorem: Real Schur Decomposition ([22])

If A € R™ then there exists an orthogonal U € R™ such that UTAU is quasi-
upper-triangular. Futhermore, U can be chosen so that 2 X2 and 1 X 1 diagonal blocks

dppear in any desired order.

Theorem ([4]) . %

letA €R™and X = (X,:Xg) € R™!and define

A A
Ay Ay

X lAX =

~ where X,réfR’x”._A'” € R0, A'5, € R™™ and [ = n+m . The range of X; denoted by

R{X,) is an invariant subspace if and only if A'>; = 0. -

#



~ CHAPTER 2

THE ITERATIVE METHODS FOR COMPUTING INVARIANT SUBSPACES

In this chapter, we will descril;e methods fo?‘reﬁning eélim@tes of an iﬁvariaAr}L
subspace which have been deviséd‘by Dongarra-Moler-Wilkinson [11. Stewart [2] an'd:'
MChatelin [3]. These- three methods‘(héncéfortlws and. C. respectively), dll
solve app‘arently diﬁergnt equations,‘ ‘sinc'e they represent‘ ihe desired invariant surb'spuc‘e
slightly differently. However, by a simple"changé of basis Demmel [4] shows that all -

- .

three methods are attempting to solve the same eqhalion, the Riccati equation, which is

our méin concern. Thus this chapter shows h‘ov;f computing invariant suﬁsfaces is

" related to solving algebraic Riccati equyalions‘ and gives us 1‘hé idea that numerical

methods for solving algebraic Ri_dcaﬁ e_quation’s may be considered as mel»h’(;ds ‘for com-

puting invariant subspaces. The @tails of iterative methods for solving Riccati equa-
Ve

tions will be presented in chapter 5.
2.1 The method DMW : .-

The method DMW which is devised by Dongarra, Maler and Wilkison is a compu-
tational method for improving the numerical accuracy of matrix eigenval.ues and eigen-’

vectors. They extend this method 1o determine invariant subspaces.

2.1.1 When A is nondefective

First consider two initial approximate eigenpairs Ay x; and A, X, where
IAj—A,l/HAl is small and x; and x; are linearlv independent.” Although x; and.x, may
have substantial errors, they should belong to the appropriate two-space. Hence we

have



.A(x2+§2) = ﬂ12(11+51) + (A2+/‘L22)(x2+.;2)

~ where y;, §2 and u,; are expected to be small. Because (2.1) implies that
L SRI ST IT

Alx Fy Xty =bertyy xotys] a1 Atz

’

" the veclors x;+y; . X,+y, span the exact invariant subspace of A, the corresponding

eigenvalues being those of the 2 X 2 matrix on the right.

z

The procedure for computing )?1 . }72 and u;; is as follows:

We assume- that-tixli, = llxll, = 1. To select spégiﬁc vectors:i the space, we must
prescribe some form of normalization of x,+y; and x,+y,. We shall require y, and y,
such that flp = )72,, ?«.;1q = _qu = 0, where p and ¢(p=¢) are such that
ey, = maxlxyl = llxyll,,
and
’lxlp.tzq‘_xquzpl = maxlxlp.fzi—x“x;_)pl. . ) Co
I'rom (2.1) we obtain - o )
R L VY )\ TV SR PIE S S IO TS | (2.2)
(A=AD)y2 = ppaxy = popXs = 1y ¥ fyovy + ooy

wherer, = Ay, — Ax, i=1.2. Define vy and ¥, by

,Wﬁélj’#uep + uze,

Y2 =yt upoe, + e,
so that y,,‘giv\é‘s the full information on both M;; and .. Where the p-th component of e,
and the g-th component of e, are 1 and the rest of them are all zero. - Then (2.2)

becomes -

By . =r + }“P}_.l + }',9).’3, =12 : (2.3)

CAlxty)) = (Mﬁlu)(xﬁ’_}a) +’#2‘§12+§2)' ,r 2.1



\
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where B, is A—A;J with c;dlumns p and g replaced with —xp and —x>. Now (2.3) can be
solved by the iterative procedure

Byi*l=r; + yép;lk + }'fq}.'zk- =12, (2.4)

. Y=o

This is the case for two simple eigenvalues. The iterative method (2.4) extends 10 a

set of s(s=3.4, --- .I) close eigenvalues. To see this, cohsider{the initial approximate
values Ay, X;...., A,. X,, where x;, X,...., x; are linearly independent. Then we haye
Alxy 4y, oxty ] =gty oo x4y ldiag(h )+ M) (2.5)

where m;; = p;; and y; and i, are expected to be small. We know that [x,+¥,....x+y,]

span the exact invariant subspace of A.

To find y; and ;. we first describe how to determine the s elements of y, that are
Lo.be zero. Let X be the s X [ matrix with rows x,. Let this be reduced to upper triangu-

lar form using Gaussian elimination with column pivoting. If the pivotal elements are

in columns p,, p,. ..: . p, respectively then lhe:: elements arevl"o‘be zero in )—’, Define ¥,
by -

yi=yit Higp + o #‘uep; i=1-~---; .
Then (2,5) becomes

By, =ritysm+t oy i=1..s (2.6)
whé_re B, is A—A 1 with s of ité columns replaced by —x,. ... . =x,. (2.6) ﬁow can be
sclved béf the iterative procedure

By l=r + '\.'fr,,l_\..';A + +«yfpr}_',". i=1,..5.
yi =0

3



2.1.2 When A is defective.

~We know that if A is defective then the computed eigenvectors to the relevant

eigenvalues will be almost linearly dependent. So consider two well separated approxi-

mate generators x;, X, of the invariant subspace instead of the eigenvectorsand a 2 X 2 .

matrix M. Then

i

mpy My

\ - .
: ~.R[«’Cl .x2] = [xl , xz]M = [xf.xz]m

21 Mo

We now attempt to determine ,\71. y—2‘ and u;; such that

w

Alx+y, . X2+;é] = [x1+y, . xz+§g]

A much more effective algorithm for computing y1. y» and Mj; can be produced if
Mo = 0. The task -of'detenm"ning generators x; and x; co_rrespdnding to a zero value of
m,, can be done using the QR algorithm (see [1]).

When my; = 0, (2.7) becomes -

(A=my Dyy = pyixy = X2 =7+ pyy + koiys. )
(-4‘”1221)}-’3 = R12X) = HapX; = My = 7"2 + 115y + M2y
whevre ry =:m“.t1m - Ah and f_"g =mpx; + mzzxé — Ax, and both r; and r, are expected
to be small. These équations can be “e‘xpressed in the simpler form és in (2.3) using

notations B, and v;.. Thus wé have obtained the iterative prucedure
Biyit = r+ vt + Mt
Byt = mlz.)_'lul- =7 + }"ép.;lk + }’54372‘
M =0G=12).-

l.ike the nondefective case. we now consider a set of s approximate generators x,.

. ;o .
.. . x, of the'invariant subspace and a s X s matrix M such that

mufﬂu mytuy (2.7) '
Ma1t a1 Mozt i . R



4 ) 5
my my,
Alxyx] =[xy, x,M = [xl’,' o x,)
me) . m::
Then we have
mytpg o my
Alxytyy, o xgty) = [x+ynnox 4y S (2.8)
metugy o mtug \

Assume that M is triangular (which can be done by using a QR step). Then (2.8)

: : \,
becomes s sets of linear equations: {
- S i—1 _ I3 _ _ 4\ ——
(A~m; D)y, — Z.Ujixj - Zmﬂ)‘, =r;+ Z#,,yj. i=1,...5 (2.9)
. J=1 J=1 . J=1

wherer;, = ij,xj — Ax;. Now (2'.9) can be solved by the iterative procedure
=t

. 5
¢+1 w . ,
Imdf =t Lt st
J=1
i =
yi=0

where B, and y, are analogous to notations in (2.6).

Reémark

—

In both the nondéfective and defective cases. Dongarra, Moler and Wilkison try to

solve the equation

AX=XM ‘ (2.10)
simultaneously for the / X s matrix X and the s X s matrix M (s=1,....1). Since (2,10) is
Is equations in Is+s? unknowns, they fixed s? unknowns by using Gaussian elimination

.
of X with column pivoting [4].



; If the initial approximation of X has orthonormal columns, by an orthonormal .

/‘/ change of basis, X may be written - .

- -

and (2.10) yields the Riccati equation

AR — RA, = —A, + RALR

All AlZ

where A =
Az Azz‘

is now the new transformed matrix [4)].

>

2.2 The method S

" Actually'the method S which is-dévised by Stewarl is presented not as mwe
method for computing invariant subspaces but as a technique for obtaining error
bounds and perturbation bounds fof invari:amvsubspaces associated with the eigenvalue
problem. However, it works as an iterative method and gives the approximate invariant
subs'pace.

Consider A € R™ and an orthorgonalr matrix X =(X,.X,) € k”“ where X, € R‘f‘".
X. € R [ =nim, ‘Then |

A A

T —
KAX= |4,

. !
where A'; = XTAX, i,j=12.

We know that R{X)) is an invariant subspace of A if and only if A’;; = 0. Now
suppose that A’). instead of being zero, is merely small then ,R(Xl) is an approximate
invariant subspace. To determine a more accurate invariant subspace of A, we shall

attempt to find an orthogonal matrix U such that the ﬁrslyn columns of ¥ = XU span

.



_ the exact invariant subspace of A. Take U in the form

o - U= 1
0  CI4RRT) ?

' -1
I, —R\(1+RTR) ? 0
R I,

.

where ,R‘E R Y = (Y,.Y;) and B; = Y,-TAYJ- then a necessary and sufficient >con*

dition for R(Y}) to be llge exact invariant subspace of A is that B3, = 0. Now from

72.11), we can express By, in terms of R, and then the equation B, = 0 gives

ApR—RA,; = —Ay + RA LR

or

TR = —A,; + ¢(R) S (2.12)

-

——

where the mappings 7, ¢ 7 R™® — R™" are defined by -

A, g

TR = AzzR - RAII
and

#(R) = RA,R.

Thus (2.12) may be solved by the iterative procédure (suppose that 7" is invertible)

R =T =4, + ¢(RY)), -
R'=0.
Remark
Recall that A(T) = )\(Agg)_— A(A;;). where A(T), A(A;,) and A(A,,) are the S(‘ls‘()i

eigenvalues of T, A,; and Ay, respectively. A consequence of this fact is that 7' is inver-

tible if and only if A(A;;) N AlA) =@ [2].

U an

~



Wrived the Newton iteration,

2.3 The method C o S o o

- "

The method C which is devised by Chatelin is a compytational scheme to refine an
approximate invariant subspace using Newton’s method.

She seeks'a I X n matrix X which satisfies

-—
P

. T AX=XB , YIX=1I, (2.13)
where A € R, B € R“"}”_ar(d, a fixed full rank matrix ¥ € R™. Since B = YTAX, the

equation (2.13) is equivalent to the qué'dratic equation : -

F(X)=AX - X(YTAX) = 0. (2.14)

Using the notation

ﬂJ(x)z = (I, - XYDAZ — Z0WYTAX),

~ X=Xt~ JUXOF(XY), XO=U. YU =1,
Now. change basis so that ¥ = [Z, OF. In the new basis ivgis eaE)} to see Y'X=1,

.1mplies X is of the form
Il

X=R

and then (2.14) becomes the Riccati equation

43R — RA;; = Ay + RAR
lAll ‘412
where A = Asy An

1

is the new transformed matrix [4].

\i
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Remarks

- The‘method C has been derived under the assumption that X is associated with a set’

of well separated eigenvalues of A so that_J‘I(X) is bounded {3].

- The method S and the method C were originally presented for A € C". However,

since we are interested in matrix problems which involve real data,  we considered

only a real case.

<=3



CHAPTER 3  — ° - -~

' THE APPLICATIONS OF INVARIANT SUBSPACES |

‘

We know that the sensitivity of an eigenvecio,r depends on eigenvalue sensitivity y

and on .the separation of its corresponding eigenvalue from the other eigenvalues. Thus

in il]—conditidned eigenproblem, it makes more sense to try to’obtain the invariant sub-

space than an eigenvector. But often it is sufficient to compute the invariant subspace

even thiough the eigenvalue problem is well-conditioned.

In this chapter, we discuss several cases which require the computation of invari-

——

ant subspaces. The various applicétions of invariant éubspaces are as follows: ‘The
separation of time scales in optimal control theory [5], [6]. [7). [8]; normal form of the

differential equations [9]; and decoupling [10], [11], [12], [13]. Throughout this chapter,

we can see how they. use invariant subspaces to achieve their desired aim. Moreover, it
is obvious that their methods of computing invariant subspaces have been considered by

looking at the Riccati equations corresponding to the relevant invariant subspaces.

e

31 The separation of time scales in singularly perturbed systems

First” we briefly review same of the theory of the singular perturbation systems

and the importance of the separation of time scales.

Time invariant systems with slow and fast modes (singuiarly pérturbed éysiémé) '

are stiff, and control problems for such systems are often ill-conditioned. These facts

have motivated a system simplification approach to get a Weli—‘ébﬁdiﬁoﬁéd system

which is equivalent to the origihal:"s"ys/tem. A well-known method is the sepération of

time modes.



"~ So if the system is in standard form then we can obtain a well-defined n—di;ne!gﬁ’al »

‘Consider the singular pertui'bati_on system of finite dimensional dynamical sys-

' tems, that ls

s R i=flx.z.u.€.t). x €R" ) - (3.1a)

€z=g(x Z,u,€t), z€R™ - . (3‘1b.)

where 1 = u(t) is the control vector and € represents a small positive parameter.

bl .
L

When we set € = 0, the diﬁ’éréniial equation (3.1b) becomes
, g(x.2,4,0,t)=0 : o (3.2)
v - — .
where the bar is used to indicate that the variables belong to a system with € = 0. We
will say that the singular perturbatioﬁ system is in stanidard' form if and only if (3.2)

has k21 distinct (isolated) real roots

z=¢fx. 7.t), i=12,..k.

reduced mcdel, that is,

= flx, 9% @), 7.0,1) .
and we can rewrite this form more compactly e '
x=f(z,at). - (3.3)

Thls model is called a quasi-steady-state model which is related to a slow mode.

The slow mode solution, or the quasi—steady—sfale. is.approximated by the reduced

model (3.3), while the discrepancy between the mode of the reduced model (3.3) and

that of the full model (3.1a)-(3.1b) is the fast mode. To see this, let us examine the

»

" variable z which has been excluded from the reduced miodel (3.3) and substituted by its

slow mode Z. There-may be a large discrepancy between z(¢;) and z(z,), where £, is the

initial point of 7. Thus Z cannot be a uniform approximation of z. The best that we can

expect is that the approximation z = #(z) + O(e) will hold for ¢ € [¢; . 7], where ¢,>¢,,.



o L | T

We now consider the behavior of z in an.initial (boundary layer) interval ¢, , £;].

Weset ' - o S L
| - ‘ : erdz_ - dz
B dt - dt’
hence :
T dr 1 o
o v 4[ € , S

anduse 7 =0 at¢ '-—:to.ﬂ ‘The new time variable is B

. 1 . a ) .

t—ty- ‘ {

T =

€

and 7.= 0 atz =t,. To describe the behavior of z as a function of_ 7, we use the boun-  _.

.dary layer system, o R -

g; = g(x% A1), u, 0, 1) L (3.4)

.

with z° as the initial condition for (7). and x°, ¢, as fixed parameters.

Using these two reduced order mo&ls (3.3) and {3.4). we can obtain the uniform

approximations of x(¢,€) and z(z.€).

x = x(¢) + O(e).

z=2(t) + 2(1) — #eo) + O(e), ¢ €[ty. 7]

Also many properties of the singular pélfturba'ti:on system such as cqntro]laﬁ“ﬂity
and stability can be deduced from the sameé properties of slow and fast subsystems.

Thus it is important to obtain the reduced order models. ,. .

We now describe methods for obtaining the reduced order models of linear con-
tinuous and discrete time systems which have been suggested by Kokotovic [5], [6] and
Phillips [7]. [8] respectively. In both cases, they use an invariant subspace'as the first n

columns of the similarity transformation.



¢

R

3.1.1 Continuous time case’ - . .

A.model of a linear time-invariant continuous system with slow and fast modesis = -

Ay Ap

X X 1 E
1= + 1, (3.5)
‘ ezl  [Aa Axnlz| " |B: _ ‘
: . - .
wherex €ER" ,z € R® ,u € R™Mand e represents small time consté,?fg. ‘
- . <an' B

. s e 3\

. N . 33 U e

Now using the Riccatitransformation, we will transform (3.5) into - T, N
h , enl [0 A?n| . |B? , ’

where £ and 7 are related 10 a slow mode and a fast mode, respectively. -.
First, to get a fast mode 7). set € QO'. Then A, x + Agyz + Byu =0. Thus if A3}
exists then the steady-state of z is Z = —Az_zlAz_l‘x. for u=0. So 1 can be défined as

wf=z+ A7JA,x + €Gx = z + (A7}A,, + €G)x. Then

x| _ 1 0Ol ] ) I
= b TRz
_ B =
where R = AZ—ZIAZI + EG. and
. x
e‘n S s N\
10A11'A1210x I OjB,| - . )
=i - + u v e
eR 1 AZI A22 -R I T €R 1 BZ ’ TTre——
_ AII_A12R Ay x| B, - y (3.7)
0 A22+€RA12 T Bz+€RBl B
wherév B
AR — R(€A;,) + R(€A)R — Ay, = 0. : (38) N

To transform (3:5) into (3.7), we have to find the solution of (3.5). let

R= RO + D, RO = A521A21, D =€G and A{) = Al-l - AJZRO’ Then D is a real root of



. i ‘ ) \ - ‘, U : TTVW?
D(EA(,) - (A22+R0(6A 12))D - D(eAlz)D + Ro(er) =O ‘ (3.9)
» Setting €A, = /iv(, and €A, = 1512 then (3.9) becomes |

DAy — (Ay+RyA1,)D — DA D + RyA, = 0. , (3.10) .
The following theorem gives a sufficient condition for the existence and uniqueness -

of a real root D and establishes a bound for its norm IDH. It also formulates a conver-

gent iterative method for computing D.

The Kokotovic theorem I

If A,, is nonsingular and if ' ; o o
nAg;u < %(n,iou + 1A IR )™
then a unique real root of (3.10)’exists satisfying
0 S DI S 2NAMNR / [IAG + 1A SIIRI] .
This foot is an asyrﬁptotica]ly stableA equilibrium o.f the difference equation

D= Ale(Rofiu + Dk"a(’) - ROAI.?DL‘_ DH‘LZDA»)- Dy=0.

e [

Remarks ([6])

- In practice. we usually use the simpler form of the iterative method which is directly

oblained from (3.8):

P

- AAfte'r k iterations the relative error is

WD =DI . .
~%DT; S [3iASHICAN + A IR = e [31AZINUAN + LA LIRIDIE.

Thus the convergence rate of Kokotovic's iterative method depends on €.



Now consider a slow mode £. Let £ = x — €(A4,,437} + .eH)T). ie.

_ |1 —eM|f,
- T 1 n
where M = A,A3} + €H. Then
3
€Nl ’
I —M||[Au—AR A 1 eMg I — 'Bl
=l 1 0  Ap+eRApl0 Il Tlo 1 |B+erB [
N |
N An—ApR 0 B,=~M(B,+€RBy)
o T 0 A22+€RA12 n Bz+€RBl
where
E(A;IFQTZR)M — M(A22+GRA12) + AlZ = (). \ (3] l) :
N\ ‘

[

The Kokotovic theorem II

Undef the conditions of theorem I, the solution M of equation (3.11) is the asymp-

totically stable equilibrium of the difference equation

ML+1 = [e(Al\]'-R:Alz)Mk - ML(eRAlz)]AEQI'F AIZAZ—:‘I

Summarily. if we consider the simpler form of (3.5) as

‘411 '412

._ B
s A?.l A22

J€+B2

u;Ax+Bu

then under the conditions of Kokotovic theorem I,

I-MR ~M
' : =T x

¥ =

R 1

. transforms A into a block diagonal form (= 771A7'), where



N AzzR—RA“ + RA12R _A21 = O._ .

(Au‘Alzk)M-_M(Azé+RA12)+A12=0- . . /\)

————

‘Moreoverk this similarity transformation preserves a two time scale property, i.e.
, y p property

the transformed system (3.6) has n small eigenvalues and m large eigenvalues like the

origihal system (3.5).

3.1.2 Discréte time case

A model of a linear time-invariant discrete system is

k) [ A
Z(k+1) A2l A22

x(k)

‘where x(k) € R*, z(k) € R™ and u(k) € R“*m. érs in the-eontinuous case, there will

exist a basis such that (3.12) takes the form
Al
0. A?

0 llecr)

1€Ce+1)] _
'r)(k)

nx+1)] = u(i (3.13)

where £ and 7 represent a slow mode and a fast mode, respectively.

Mo

" To find such a basis which transforms (3.12) into (3.13) and preserves the two

lime scale property. first congider the Riccati transformation

)| T Oflxi) -
Nk = (P I|jz(k)| '
\
Then
alk+1)
nik+1)
|4 ojAn Al 1 Ol (%) 1 O Bl
=P 1|4y, Asl—P im0 ”(")
. .‘111_.4121);, 4412 Bl
= i , + U(k)
O .433+PAIQ T)(]L) B:+PBI
where ‘ '

A
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> ) .A:;zP'— PA“ + PA];;P ;“421 = O v A (314)

To completely transform (3.14) into a block d’naéonal form. let

3

) _ 1 9)lx(k)
€9 (VIR | 103 R
Then o ' » .
O ER+D)|
n(k+1)
_ [ oA A 1 Qg 1 Q| B
lo,248 0 Antraylo 1| 1 {|B+PB, 10
_ Au—Apf 0 £(k)| | [B1—Q(Bo+PB,) )
where
(AII-AI'QP)Q_ Q(Ag{)"‘PA[z) + AIZ = (). (3]5)

We remark.that Phillips derived basically the same equations (3.14)-(3.15) such _

as hokotovic's equations (3.8)-(3.11). Actually to obtain the reduced order model 6f a

linear discrete time system. Phillips used Kokotvic's iterative method [6]. ' .

Using d similarity transformation -

0P =Q
P

V-l =

the system (3.12) is transformed into

. —
4

Ek+1)] _ Ole)l 1B,
Ak+ | = o Azl sk
where )
.41=/111"A12P, AEIAzz"‘PAK!.

B' =B, — Q(B,+PB,) . B = B, + PB,.



In Both linear continuous and discrete time cases, Kokotovic and Phillips try to
transform the original systems into block diagonal forms by similarity transformation.
Whenever the similarity transformation brings an original system to a block diagonal

form, the two sets of columns of a similarity transformation constitute bases of the

eigenspaces represented by the blocks. This means that the first n columns of T (Qr 2]

are a basis for the slow eigenspace of (3.5) (or (3.12) ) and the remaining m columns are

a basis for the fast eigenspace of (3.5) (or-(3.12) ).-i.e. the first n columns of T (or V)

span the invariant subspace of (3.5) (or (3.12) ) which is correspending to the the slow _

modes and the remaining m columns of T (or V) span the invariant subspace of (3.5) (or

(3.12) ) which is corresponding to the fast modes.

4

/
3.2 Normal form for the differsntial equations

-

Kreiss. Nichols and Brown [9] consider the two-point boundary problem for stiff =,

systems of ordinary differential equations (ODEs). To obtain accurate numerical solu-
tions of such problems, they try to transform an original system into a block diagonal

form hy using a smooth similarity iransformation. During the process of obtaining a

- : . ﬁ . .
desired transformation, they need to compute an invariant subspace and moreover need

to solve the Riceati equation.
To see the details of the procedure, consider the twoﬂpoiht boundary value prob-
lem for alinear system of n ordinary differential equations

d

subjectton Iinearl‘\"independent boundary conditions

Bw(0) + Byy(c) = ¢ (3.16b)

where = (vi. - .v.) is a vector function with n components and B, B, and

"A(x) € C* (ie. the elements of A(x) are p times continuously differentiable) are all
= .

;j% = Alx)y + f(x). 0€ x €c (5,163) :

\‘Vk



n X n matrices and the vector f(x) € Cf. We now divide the x-axis into subintervals of
' =izl :
variable length h; with x,=0, x; = }_ h;. i=2, --+ N and xpy=c. Using h = maxh,,
: j=0 ) J
Kreiss. Nichols and Brown define that the system (3.:16a)-(3.16b) is stiff if AlAII>> 1,
~To transform (3.16a)-(3.16b) into a desired block diagonal form,\hey first calcu-
late the eigenvalues of A(x) and divide them into sets M’ containing eigenvalues which

are of the same order of magnitude. Since the number of sets M’ depends on x, the block

structure can be a function of x. The next step is to determine a transformation S(x)

such that
A,(x) 0 0
) 0 Ar..j(x) 0
Alx) = SHx)A)S(x) = \
0 0 A

is in block diagonal form. Here the ‘eigenvalues of every Aj(x) are exactly the eigen- ’

values contained in M.

To construct S(x), first start with the interval 0< x $c,. At x=0. we know that
there exists a unitary transformation U(0) such that -

~Ar Ar,lﬂ—l Ar',() 7
. 0 A,,_l A,—llu » .
UR(0)A(0)U(0) = '
) 0 0 A,

is in block upper triangular form. Then we-determine



such that

_] Sr,r—l
0 7
5(0) =
0 0
\

A(0) = 510)A(0)S(0) =

Sr,O

Sr:-l,O

7
A, O 0
0 A,_, 0
0 O AO

has the desired block foxr‘m,'wher'e 5(0) = U(0)S(0).

Now consider the transformed matrix

w here

B(x) = STHONA(x)—A(0))S(0) =

B

rr

Br—l - Br—l =1 -

Br,r—l

‘ BO,r BOJ‘-—.I

- Bgp

Alx) = $M0)A()S(0) = A(0) + B(x), B(0) =0

Br,O
Br—l,O

23

T
P27

By assumption the eigerivalues of each block are well separated from the eigen-

values of all other blocks. Therefore in Lhe'neighborhoUd of x=0, there exi

such that

'and S(') S(x) = S(0)S(x).

FUGOAMSE = S A =

A (x)
N

0
AI‘.—I(x)

0

‘ A()(I)

sts an S(x)



To discuss this transformation S{x) in detail, they considered a couple of lemma.

o

' Lemma 1

Let -

All A12

A=
A21 A22

where A;, € R™® and A,, € R™*™_ Assume that the eigenvalues of A, are disjoint
11 g 1 ]

from the eigenvalues of A,,. Then the matrix equation

A“X_ XA22 =C

has a unique solution.

~Lemma 2

Assume that the eigenvalues of Aj, are disjoint from those of A5, and IlA !l and

A5l are sufﬁcientiy small. Then there exist K and M such that

I OlAn Al 0 [AntARK Az
_R 1 .421 ,422 R 1 - O ) AZZ-RAIE
and
I =M|[AntARR Ap I M [Antdpk 0
(.) 1 () ‘422_RA12 O 1 - Q AQZ—'RA 12

where

‘ AzzR - RA]I = —AZI + RAIZR' -

(A11+A12R)M - M(_lq\z_?—RAlz) = _AIZ‘
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These results above can be used 10 construct a transformation S(x) which -
transforms
A4B, B,

_ N . Bf—l,r Ar—l+Br—lJ;1
A(x) = A(0) + B(x) = |

By, By,

into a block diagonal form. .

If the matrix A(x) satisfies the conditions of lemma 2, then there exists a unique

A

transformation

10
P11

I Q0
P I+PQ

1Q_'
01|~

r._.

such that

- |Ay+BpP - O - S
\ 1 = — :
S7AGS. 0 Ax—PByo|

Using A.» — PB), as A(x). the same process can be applied to it and so S(x) = S,S,_,...S,.

Remarks

X

- In practice, before making the transformations of lemma 2, the matrix A(x) is scaled
* so that B, and.B,, are of the samé order of magnitude [9].

- To find S{x). it is important whether the eigenvalues sets M/ are well separated or

not.

Now cne could use Sley) as the starting transformation for ¢; < x <¢, and repeat

the above procedure to obtain S(x). By continuing this brocedure. Kreiss, Nichols and

Brown determine S(x) for 0 x c and use it to transform the system (3.16a) into

dv

AY = A(x)y + HGx)y + G(x)
dax



*

with N

A (x) 0
- 0. A,_l(x)
A(x) =
0 0
_ _gdS
s dx

on every blocking subinterval ¢;$ x Sc¢jyy.

As in section 3.1, they seek a smooth similarity transformation such

corresponding to a diagonal block span an invariant subspace.

3.3 Decoupling

«

. Ao(x)

G=5Tf.y=57

26

that the

' transformed system has a block digonal form. It follows that each set of columns

It is well-known that if initial value problems (IVPs) have increasing fundamen-

tal solutions then IVPs are unstable in general. Many people [10], [11]. [12] solve boun- -

dary value problems (BVPs) having increasing and decreasing modes by decoupling, S0

that we can split BVPs into two stable 1VPs and compute the increasing modes for

decreasing time and the decreasing modes for increasing time.

" In this section, we consider the general case and the particular case which have.

been suggested by Dieci-Osborne-Russell [10] and Wilde-Kokotovic [12], respectively.

Dieci, Osborne and Russell consider linear two-point boundary value problems for

ODEs. By using the Riccati transformation, they formulate BVPs as three IVDPs, one of

&

them the Riccati equation. Wilde and Kokotovic consider particular BVPs which appear

in optimal control systems. They. try to transform BVPs into IVPs by the dichotomy

transformation. In both cases, they use the Riccati transformatioh and the dichotomy

transformation as the similarity transformations and the first n columns span the



a7

invariant'subspace. )
3.3.1 The general case | 7 : e i j:
Consider the ODE with constant coefficients = | I - e
¥(6) = Ay(t) +q.  0<t <1 eI
where : ,
A Ap ;
91 . Y1
= . . = N t’ - 1,
A Az Az 7 . |42 ¥e) 2
All G‘Rnxn R Azz € Rmxm R ql'yl € R" . Q2.¥2 6 Rm
Using the Riccati transformation - - .
(1) := Wl(t) _ 10 1(1)
w Wz(t) - —R [ z(t) ’
the original system (3.17) is transformed into
o [AntApR A S |
‘f’l(f) _ [T 12 wil | o . (3.18)
w,(2) 0 A2—RA|wal 92— Rg, :

where
ApR = RA; — RAR + Ay = 0.

By the fundamental decoupling theorem (see [11]), if (3.17) has an exponential -
dichotomy. i.e. there exist a projection matrix P, a moderétq constant K>0, and A,u20

—

sgch that

(e )PY - (sNE Ke™ =), o<s<z<1
WOU-PF NS K D), 0<r<s<1
‘where Y(z) is a fﬁﬁdamental solution for (3.17). then we cén stably comiaute the
increasihg ;nodes for decréasing time aﬁd the decreasing modes for increasing time iﬁ the

transformed- system (3.18). This means that well-conditioned BVPs with separated



by Wonham [13).

boundary conditions (BCs) can be solved by solving two stable vector IVPs and the Ric-

cati equation.

3.3.2 The particular case

Consider a 2n-dimensional system with constant coefficient

A =G
—-H —A

where all matrices A , G and H are in R™" and'G and H are symmetric positive definite

x(t)
z(¢)

_ )| ’ '
= ch(f)]‘ (3.19)

matrices.
To transform (3.19) into the block diagonal form, Wilde and Kokot\)'vic use the

dichotomy transformation. The dichotomy transformation

117
PN

x(t)
z(t)

(1)
7(t)

(3.20)

is constructed using the symmetric positive definite solution P and the symmetric nega-

tive definite solution N oft\he algebraic Riccati equation

ATX+XA-—XGX+H=Q.‘

To anﬂyze this, we need to review some definitions and a theorem. which is presented

Definition

1. The pair (A, B) is controllable if the rank of T is n, . where
I'(A.B) =[BAB, - A"1B].
2. The pair (A, B) is stabilizable if there exists a constant matrix X such that A — BK is

stable (i.e. all its eigeﬁvalues have negative real parts).

3. The pair (C ., A) is detectable if (AT . CT) is stabilizable.



Theorem -

29

Using above definitions,. Wonham shows' necessary conditions for existence and

uniqueness of P and N. _

Wonham theofem

Ccnsider the algebraic Riccati equation

ATX+XA—-XGX+H=0 . ‘ (3.21)
where all matrices are in R®"*? and G and H are symmetric positi\'/e\diﬁnite rmatrices. If

(A, B) is a stabilizable pair, where B is a full-rank factqrization of G (i.e. BB" = G and

rank (B) = rank (G) ) and (C. A) isa detectable pair where C is a full-rank factoriza-

-~ _tion of H (i.e. C'C'=H and rank (C) = rank (#) ). then (3.21) has unique symmetric

»

positive and negative definite solutions.

- . Under the assumptions of Wonham's theorem, there exists a dichotomy transfor-

mation (3.20) Wjich transforms (3.19) into

A~-GP 0

=l o A-GN (3.22)

@)
()

M

k'\

The following theorem shows the stability of the transformation of (3.22). The
proof is based on the proof of a stability theorem in [10].
If (3.19) has an exponentizfiGichotomy then the dichotomy transformation (3.20)

transforms (3.19) into (3.22) which has two n-dimensional systems, one asymptoti-

cally stable in‘forward time and the other asymptotically stable in reverse time.



Proof | e
Let Y be the fundame‘htal solution for (3.19) such that

)/'11([) ’Yiz([)
YO =y, (6) ¥ylt)

o 11 Wi 0 -
satisfying Y(0) = I. T = | N and let W(t) =10 Wyr)| be the fundam'erjtgl solu-
-tion for (3.22) satisfying W(0) = 1. —
Using ki
WO [+ =pp —(N-P)
Y()=TW(k) and T != —(N=P)'P  (N-P)L|"
we can obtain
[7+(N—P)7LPYY ;1 (6)—(N—P)1Y 5, (1) 0 .
W(t) - 0 . ‘ :‘(N—E)—IP)’IQ(Q+(N‘"P)~I)"zz(f)

— R 4
- .

where

Wy, = UH(N=P)7'PIY (1) — (N=P)7'Y 5, (¢)
and
Wiy = —(N=P)"1PY ,(2) + (N=P)1Y o(F)
. are invertible.
* Writing
CY(O)I-Q)Y\(s) -

YaOWHOUHN=PI P =1, (OWF()N=P)
- T (OWTHOUIH(N=P) P =Y, () WTk(s)(N=P)Y)

where Q is a projection with rankn,



. ~ )
— S
3
Iw; ( )w—l( = Wyt ! - ' : :
WO = wEea | -
< “n1+('N'—P)’11{1mY,1(:—)W;}(;_)}|| + I(N=P)~ MY, ()W
B R N R N : ’ L
' K [WHN=P) 1Pl +I(N=P) U ]Ke 0, t<5.
Also
Y()QY~(s)
=Y 1 (OWH(s)N=P) 1P Y ,(t)W33(5)(N=P)!
T Yo (OWSE(SHN=P) P Yo ()W (s )(N~P)7Y[
. Thus
IW,,(¢)d|
W5, 540 =
|W2__(I)W2‘_ (S) ggw
) ‘ S ) _
. . ' < IN=P)LPIY | (W3O + I(N—=P)HIY () W32 ()l
< [IN=P)1P + W(N=P) H]Ke™ =), (25,
¢ i
Now consider the BVP consisling of (3.19) and the BCs
t)=xy . (D) =x; . 1,€1 <T. (3.23)

To solve the BVP using the dichotomy transformation (3.20), £(¢y) and 7(7") are deter-

mined {rom

I V)
Vio(2) T

(¢0)

X (
N

.x]-

where V(z) and V,(r) are the fundamental solutions of m(t) = (A—GN)n and

v

£(t) = (A—GP)E. respectively. However, if (3.19) has an exponential dichotomy (see

[12]) and if [z, . F] is sufficiently large then




P

b o Vel <<, V() << 1

and

. §(t0) = xor . 'T)(T) % xr.

Using these BCs, the approximation £(¢) and m(z) are obtained from the independent ini-

,®

tial value problems -

£ = (A—GPRO: &) = x0.
M) = (A—GNIN@). 7D = x7.

Thus the approximation solution of the BVP: (3.99), (3.23) is

x(2) = @Y + n(2). - , .
L 10y = PE() + Nn(o). '
In a general case. if the BVPs are well-conditioned and have an exponential dicho- - «
tomy, then solution vectors can be obtained from two IVPs which have asymptotically

stable solution vectors, and from the Riccati equation.
il

4
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CHAPTER 4

THE SCHUR METHOD

-~

The Schur method for solving algebraic Riccati equations which arise from control
problems (both continuous and discrete time cases) is devised by Laub [15]. In both

_cases, he seeks the unique (under suitable assumptions) symmetric nonegative definite
rd ' R . . . ‘

solution by using an orthogonal similarity transformation.

4.1 Continuous time case

Consider the continuous time algebraic Riccati equation .

ATX + XA—-XBX+C=0 (4.1)

where all matrices are in R™® and B and C are symmetric nonnegative definite matrices.

4

Under the assumptions of Wonham’s theorem, the equation (4.1) is known to have a

1

unique symmetric nonnegative definite solution. Of course there can be other solutions

to (4.1). but the Schur method tries 10 find the symmetric nonnegative definite one.

- - ~

. Consider

—C ___4]' € Rznx2n_

Then the equation (4.1) can be solved by finding an orthogonal matrix U such thdt -

UTZU =
where
Un Uy
. v= Uszp Uss U, € R
and \
\~*¢</
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Moreover, it is possible to arrange that the real parts of the spectrum of S;; are nega-
tive, while the real parts of the spectrum of S, are?positi,ve. The solution of (4.1) is

»

-given by X = U, U7}l
4.2 Discrete time case

’ 4
Consider the discrete time algebraic Riccati equation

ATXA — X — ATXB,(B,+B{XB,))'BIXA + C = 0 o (42)
. ¢ - .
where A, C, X € R™", B; € R™™, B, € R™™ and m<n. Also C and B, are symmetric,

’

nonnegative definite matrices.

To have the unique symmetric nonnegative definite solution to (4.2), we need
- some assumptions which are slightly different from the continuous time case. If (A , B))
is a stabilizable pair and (H , A) is a dectable pair where H is a full-rank factorization

of C (i.e. HTH = C and rank(#) = rank(C) ) and A is invertible then (4.2) has a unigue

symmetric nonnegative definite solution (which the Schur method attempts to com- -

pute).

Setting B = B,B3'BI, we consider \,

_.A-TC A—I

A+BATTC -BA™T}. ‘ ‘
A r] € Ran?_h_

Then the equation (4.2} can be solved by computing an orthogonal matrix {/ such that

-

Uz = §
where ' R
7 < 7 U” Ulz 7 nXn
S v= Uy Uz v, €R




and ) £ 3

S11 Si2

S; € R0,

It is possible to arrange, moreover, that the spectrum of S;; lies inside the unit circle

and that the spectrum of S;, lies outside the unit circle. Again the solution is given by

X=UyU1. . .

Remarks ([15))

-

In the discrete time case, the Schur method has required an explicit inversion of A. If

this matrix is ill-conditioned. numerical difficulties arise (recently, the new method

has been derived by considering the generalized eigenvalue problem. see [21]).

This method has the storage requirement of at least two 2n X 2n arrays. '

For the computed X=U,,U7}. there is no guarantee of symmetry.

1

Obviously the first n columns of an orthogonal matrix U span the invariant subspace

of Z.



: '~ CHAPTER 5

THE ITERATIVE METHODS FOR SOLVING ALGEBRAIC R:ICCA'I‘I’E‘QUATIONS
/,\
As we have seen,the Riccati equation

A22R - RAll = _AZI + RA]QR

which corresponds to the matrix system

A= 11 AIZ
B AZI A22

has been extensively studied in mathematics and engineering. It appears in a rich

s A]] E Rnxn‘ A22 E Rme

variety of situations and is used in many fields, for example, in singular perturbation

systems, control theory and in general for boundary value problems for ordinary

P N

differential equations.

‘One aspect of Riccati equalidné that has always been significant- and which has
received increasiﬁg al‘temion is effective algorithms for their reliable numerical solution
in the ﬁnite\ arithmetic environment of a digital computer. Reliallle numerical algo
rithms and software now exist for the solution of many prob]ebms in linear algebra, for
example;: fnor the singular value decorﬁposition. linear least squares problem, and hoth
staﬂdard and generalized eigenvalue problems. But this has not heen the case until
recently for solving Riccati equax—ioné and so it is important to compare and analvze the

fairlv recent numerical methods which have been proposed.

- - . . N N

In this chapter we consider three iterative methods. which are as follow:

36
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The linear convergence method ([4]) -

. Given R().

A22Ri - R,A 11/ = ’_AZIV + Ri—lAIZRi‘-l:' i=1,2 .....
Newton’s method ([4])

Given R,

(Agz — R AR, — R(Ay + ApR._y) = —Axn — R AR =12,
The generalized secant method ([20])

Given R(), R_.] x

(Azz - Ri-iAiz)Ri - Ri_(All + A12R;’-2) = —Az — Ri AR5,

(Azs = Ri1A 1Ry — Riyy(Ay + ApR) = —Ay — R AR, i=135..

Since these three methods (called LCM, NEM and SEM, respective]y); all require -
the solution (;i the equélion of same type Which is called the Sylvester eq.uatioﬁ
AX+ XB=C, . | (5.l)r
the algorithm for each methqd has been imp.lemen‘ted by using Sylvester equétion algo-
rithms,
Sylvester equation algorithms have been devised by Barlels—’Stgwarl [16] and

Golub~Nash-Van Loan [17]. Both algorithms are based on the equivalence between (5.1)
and ,\\>

where {/. V" are orthogonal matrices and involve five steps :

EFAUTXV) + (UTXVIVIBY) = UICcV
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1. For the Ba'rtels-S'tewart algorithm, lfansform A | into upper teal_ Schur formr
A' =UTAU by an 'orthogonal similérity Lransformatio.n U. For the Golub-Nash-Van
Loan algorithm, Fransforin A into upper Hessenberg form A’ = UTAU by an orthogo-
nal similarity transformation U.

2. Transform B into lower. real Schur form B'= %1% byﬁan orthogonal similarity
transf ormati&n V.. | ’

3. C(')rr)pu_te C’_ = UICv. -

4. Solve the trénsformed system A'X'+ X'B'=C for X'.

5. Compute X = UX'V7.

Moreover, solving the Riccati equation in control problems

A, R+RA,, = —A,, + RA 2R

where all matrices are in R™" and A;; and A, are symmetric nonnegative definite
matrices, LCM and NEM (in this case; we as;ume that we have a symmel{'ic initial
guess) require the solution of same type which is the symmetric case ol the S_vl\-/esle-r
equation
ATX+XA=C

where all matrices are in R™" and C is symmetric. In this case. the Bartels-Stewart
algorithm involves only four steps, which are as follows:
1. Transform A into upper real Schur form A’ = U’AU by an orthogonal similumk\l

transformation . |
2. Compute C' = UTCU.
3. Solve the transformed system A“X' + X'A' = C for X'

4. Compute X = UX'UT.



5.1 Algorithu'i and operation counts

We describe the algorithms for the linear éonvergence method, Newton's method -

‘and the genefalized secant method:

_ Algorithm I for the linear convergence method (general case)
1. Choose initial guess X.
2. Transform A = A,y into upper real Schur form (or Hessenberg form). Transform
B=+Ay into lower Schur form.
3. Obtain C = —A,, + RA,R.

4. Perform Sylvester equéti'on algorithm steps 3, 4. 5, update R and return to 3.

Algorithm II for the linear convergence method (symmetric case)

1. Choose symmetric initial guess R. -
2. Transform A = A, into upper real Schur form. | ' v

3.0btainC = —A?.l + RAIQR »

—_—

. 4. Perform the symmetric version of Sylvester equation algorithm steps 2, 3, 4, update

R and return to 3.
Algofithm I for Newton’s method (general case)

1: Choose initial guess R.

IS

.Obtain A = .423 — RA 12-
R Oblaln B = "(‘411 + AIQR).
Oblhln C = ‘Azl - R.4 IZR'

3. Perform Sylvester equation algorithm steps 1, 2, 3, 4, 5, update R and return to 2.




Algorithm I for Newton’s method (symmetric case)

1. Choose symmetric initial guess R.
2~.YObtain‘A ;All —A12R' V -
Obtain C= _AZI - RAlzR.

3. Perform the symmetric version of Sylvester equation algorithm steps 1, 2, 3, 4,

update R and return to 2.
Algorithm for the generalized secant method

1. Choose initial guess R.
2. Obtain A = A, — Rfil,z
Obtain B = ~(A; + A,R).
Obtain C = —A,; — RA LR’
3. Perform Sylvester equation algorithm steps 1. 2, 3, 4, 5 and update R.
4. Save A. |
_Obtain B = —(A;, + A;3R).

Save RA and obtain C = —A,; — RA:R.

|
[}

5. Perform Sylvester equation algorithm steps 2, 3, 4, 5 and U};date R.
6. Save B.
Obtain A = Azé — RA .
. Obtain C = —A,;, — RA|,R.

7. Perform Sylvester equatioﬁ algorithm steps 1, 3. 4, 5, update K and return to 4.

We now give rigorous operation counts of each iterative method for solving the
general Riccati equation. Since all three algorithms are based on Sylvester equation algo- -
rithms, we first need to check operation counts for the Bartels-Stewart and the Golub-

v

" Nash-Van Loan algorithms.
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* Operation counts are summarized in the following table Q7.

1

Table 1

Operation counts for the B@rtel_s-Stewart and the Golub—Nash—Vlz'in Loan algorithms,

N Bartels-Stewart | Golub-Nash-Van Loan
Hep 1 10m3 ‘ 5/3m3 '
step 2 10n3 o “10n3
step3 |  m?n+mn? m2n+mn?
step4 | 1/2(m%n+mn?) 3m?n+1/2mn?
step 5 mn+mn? m°n+mn?

We require m?n operations for obtaining A = A,, — RA;,., mn? operations for
obtaining B = ~(A;, + A},R) and 2m?n operations for obtaining/Z/= —A,; — RA LR (in
rom this, we can now

SEM step 4. we only need m?n operations' since we save RA}5). |

construct operation counts tables for the three iterative methods.

~The operation counts using the Bartels-Stewart algorithm are as follows:

Tabl_e 2

Operation counts for LCM. NEM and SEM using the Bartels-Stewart algorithm

Method -~ =1 ‘ {22
LCM | 10(m3+n)+9/2m?n+5/2mn? 9/2r:*n+5/2mn?
NEM 10(m3*+r3)+11/2m2n+7/2mn? | 10(m3+n3)+11/2m3n+7/2mn>

N\ 3.3 s 2 i=even, 10n3+7/2(m?n+mn?)
SEM 10(m3+n ‘)+1 1/2m*n+7/2mn i=odd. 10m3+11/2m2n+5/2mn?
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The counts using the Golub-Nash-Van Loan algorithm aré as follows:

Table 3

Operation counts for LEM; NEM and SEM using the Golub-Nash-Van Loan algorithm .

o

Method

i=1

i 22

LCM 5/3m3+10n3+Tm?n+5/2mn? ‘
NEM 5/3m3+10n3+8m3n+7/2mn? | 5/3m3+10n3+8m?n+7/2mn?

SEM. | 5/3m3+ 10n3+8m2n+ 7/2mn?

Tm2n+5/2mn?

i=even, 10n3+6m®n+7/2nin?
i=odd, 5/3m3+8m°n+5/2mn?

-

Generally. the Golub-Nash-Van Loan algorithm is faster than the Bartels-Stewart

‘algorithm. Since both algorithms have the same accuracy, it_is a good idea 10 use the

N 3 . ’
Golub-Nash-Van Loan algorithm for solving nonsymmetric Riccati equations (espe-

cially when m >> n).

In the symmetric case, the Bartels-Stewart algorithm only requires 13.5n% instead,

of 25n3 operations. Thus NEM is as fast as SEM. The details of operation counts. are

summarized in the following table.

Table 4

Operation counts for LCM, NEM and SEM in the symmetric case

Remarks

Method i=1

—

i 22

LCM " | 15.5n3
NEM 16.5n3

SEM 23nd

5.5n° : »
1652 ¥
i=even, 19.5n°
i=odd, 12n3

- Since the Golub-Nash-Van Loan algorithm requires only upper Hessenberg form, a bit: .

more operations (when compare with the Bartels-Stewart algorithm) are needed for

3
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' soiving ihe lransfo;n’ledvsystem A'X' + X'B' = C' (see t‘he step 4 of a table 1 a}ad_ the
counts for LCM of tables 2, 3). However, when we consider the entire process and
m?n the Golub-Nash-Van Loan algorithm is more efficient than the Bartels-Stewart
algorithm (in the nonsymmetric -case). This can also be assured, for if m<n. we

merely apply to the transposed problem

BTXT + XTAT =CT.
. - ' ¢
- In the symmetric case, after the first iteration, the average operation counts for SEM

at each iteration is 16n3, while NEW requires 16.5n3 operations.

5.2 The rate of convergenceé and condition number

~ In chapter 2, we mentioned that the Stewart method for computing the invariant
subspace was originally prese'ntedk not as an algorithm but as a technique for doing per-

turbation theory for invariant sub ough it works as an algorithm as' well.

Using “this perlurﬁation theory/ convergence criteria for all three methods has been
derived. To state these results, we need to define the separation of two matrices
sep(.du.Ag:). By using Sle\.\‘url deﬂn’ilion, we can dendte sep(4;.4,,) by sep (A4,;.45,)
= minlZ(A,,)-L(A,,)l where £(4,,) and 2(‘43.2) represent the sets of singular values of

Aj) and A,; respectively.
Let

“441211‘:‘“4421”[
7 sepQ(A“.Agg) .
and £; = R, — R. If K<1/4 then LCM converges to a solution R which is the unique

solution inside the ball

LA, ll S
sep(A11.42,) ' —

so that IEH; € Cllt_Ei;,llF. where the constant C; depends on K (see [4]). 1f K<1/12

IRl < 2
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then NEM converges to a solution R inside the ball given in the linear case so that

LE|ir € CyIE;_;)i2, where the constant Cy depends on K (see [4]). Also if K<1/12 then

SEM converges to a solutionﬁR inside. the ball given in the linear case so, lhal~
ENz < CSIlE i—11AE; 5, where the constant Cg depends on K (sn [20D. Accordm;> to

these results, the order of convergence for LCM. NEM and SEM are 1, 2 and 1+2\/— .

respeciively.

Since we have considered 1terat1ve; methods for solvmg Rlccau equations as itera-
vtlve methods for computing invariant subspaces Lhe parameter A can be mteréreled as
- follows: A 5lIFlA5ll; measures the quality of the initial approximate invariant sub-
space, and moreover |L421l|p will be zero if and only if the initial apprommduon is in
fact the exact invariant subspace. The quantity sep(An .A3) measures the separation of

. the spectra of A;; and A,,. If sep is small it means that the invariant subspuces belong-

ing to the two parts of the spectrum are urrrlstarble'and hard to compute. If we denote the

jle" then K will be small if we start with

invariant subspace corresponding to A;; by

good initial guess to R and if the eigenvalues associated with A, are well separated

from the spectrum of ‘A,,.

5.3 Advantages and disadvantages

®

‘We have seen the algorithms, operation counts and the rate ol convergence for

A

each method. Here, we give their advantages and disadvantages.
5 . 2 -

From the operation counts tables, it is obvious that LCM [4] is much cheaper than

NEM and SEM at each iteration. Especially when m >> n, because this hmethod then

only needs O(m?) operations after the first iteration.



45

%
In all three methods, it is important.to _choose a good initial guess R,. We cannot

guarantee that LCM always converges, even if we give an apparently accurate initial

. -

~ approximation (see Example 6,7 ). ‘
Consider nonsymmetric Riccati equation AR — RA;; = —A,; + RA»R. For NEM

[4]. the coefficient matrices (A, — Ri1A;2) and (A;; + A1,R,_;) vary from step to step,

+

making il necessary to preprocess at each step. Thus each step could take O(m3) opera-

Lions, which is quite expensive.
L 3 ] ) o
SEM [20] consider this cost problem and moreover the ord_g;:;,of convérgence

1+V5 |

( 7 ~ 1.6) is between LCM and NEM so SEM ‘Ié;sup‘erlinear convergence proper-

ties as NEM.
+ To compare the relative cost of SEM and NEM, we now construct arnther table

(for when m >> n).

Table 5

()perafion counts for NEM and SEM (when m >> n)

Method | i=1 | = i22 |
NEM | O(m3) O(m?)

N 3y | i=even, O(m?)
SEM O(m?) i=odd, O(m*)

Fr'om tables 2, 3 and 5, it is obvious that the cost for SEM is less than the cost for NEM
at each iLeratioﬁ.

Solving the symfnelric Riecati equgnion AR + RA|; = —A,, + RA,R which
arises in control problems. NEM is as fast as SEM at each iteration provided a sym;

metric starting value is known. Since NEM converges faster than SEM, NEM is more

efficient than SEM. However. if we get the initial guess from a QR-tvpe process, such as

i
Al

—
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the Schur method, then btl')_erve is no guarantee of symmetry. Thus in tﬁis case SEM is
still ;:ompetitiVe with NEM.

 We know that LCM NEM én(;l SAEM“have been devised by using Sylvester equa-
tion algo'ritlvlms.' The Barteié—Ste\?art and the Golub-Nash;Van Loan algorithms are

derived under the assumption that the Sylvester equation

) AX+XB=C
- \J
has a unique solution. that is, A\(A)NA(=B) = @, where A(A) and A(—B) are the set of
eigenvalues of A and —38, respectivély. Thus if_there is a c‘oavleégence among the eigen-
" values of A and —B then Sylvester eQualion rithms are unstable. It means that if
MA,)NA(A};) = @ then LCM is unstable, since LCM is trying to solve the Sylvester
equation
‘ . AR+ R(—=A;) = —A, + RALR .

Also, SEM and NEMare unstable if A(A'2,)NA(A'};) # @, because the Sylvester equa-
tion which they are trying to solve becomes

CA'RR A+ RA' = =4, + RARK
where A’ = Az, — RA1z Ay = —(Ay, + AR (for SEML Ay = =(4,, + AR

5.4 Numerical examples and coﬁlparisons

We now preseht a numbe/r/ of examples to iliu}s‘lrale various points discussed in
previous sections and 1o c‘ompz;ref' the iterative methods with kokotovic's iterative
method and £he Schur method (called KiM and SCM. respectively). which are known: Lo
be reliable and efficient methods for sol\iing Riccati equations in singular perlurbatlion
and control problems, respeétiyely. All computations have been performed using Lhe
FORTRAN-G compiler and double precision:on aﬁ IBM 3081 (our machine precisinon;s

near 10719).



5.4.1 ‘Examples f_fom singular perturbation problems. . . ’ )

Consider the simple example of a singularly perturbed system with m large and n

- small eigenvalues

x| = u Ay Aj; € RP"A,, € RTXM
ezl Az Axn|zf U 2z

and Kokotovic's iterative method [6]:

"R, = AR AN — RjApRR + Ay, i=12..,
(If a Singulr perturbation system has n large and m small eigenvalues then we user

R, = (AZZRJ—I + RI—IAIZR{—J —AZJ)ATII, L=1,2,) We know that KIM is efficient, in

solving Riccati equations arising from singular perturbation problems, since the rate of

: . &
convergence is proportional to €. and after inversion., we need only 3mZn+mn? opera-

. . N
tions at each iteration.

We now choose several examples from singular perturbation systems to compare
the three iterative methods with KIM. All computation have been perfdrmed by using
both the Bartels;Stewart and the Golub-Nash-Van Loan algorithms with the initial

guess R, = 0. Moreover, 1o get 7 digils accuracy. we use the relative error as the stop

Ry — Ry,
criterion, je if ——"— """} < 1077 then N is the final number of iterations.
’ Ay F

‘/ These following examples show that SEN and NEM are very competitive with

KIM. First each example and a computed solution are presented.

,47,



Example 1 :Kokotovic [6] 7

Consider the continuous model of a power system

_ Ay A‘l2
T 1Ay Ap

z

I]

where All € R_2X2’ Azz € R3X3' x € R‘Z' z € R3 and

All All’
‘421 A22

=011 002 003 00 002
0.0 —0.17 00 00 017

=1 0.0 2.0 —-4.0 00 0.0.

—4.0 00 0.0 =20 0.0
0.0 0.0 0.0 4.75 =50

KIM and the three iterative methods, by using both the Bartels-Stewart algorithm

and the Golub-Nash-Van Loan algorithm, all give the same solution

R=

Example 2 :Phillips [7]

Consider the discrete model of & steam po

where A;; € R**2, A,, € R¥3 x(k) € R°, 2(k) € R* and

0.9014

= [—0.0071
—-0.75

x(k+1)
2(k+1)

—0.04840394 . —0.5203825
2.154609  —0.04306733].

2106174  —0.05827145

Wwer syslem

(k)
(k)

An Ap
Az A

0.1179  (.0525 00167  (.02104
—0.0196 0.5743 0.0 0025 002934

0.7342. 020175 0.013 021067 |
—0.0557 —0.032 0.19357 —0.014076
| —0.306 —0.01694 —0.011 0.1427% 0.013217_
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. All methods give the same solution

009316662 —'1.’140467'.,
R'=|1.083789 —0.1514285|.
0.5308208 —0.1025373,

Example 3 :Phillips [7]
‘Consider the discrete model of a power system

x(k)
z(k)

Ay Ap
A21 A22

x(k+1)| _
z(k+1) T

where All' Ap_z € Rdxa, X(k) Z(k) ERq and

0.835 0.0 G.0 00 00 00 00 00
0.096 0.861 . 0.0 00 00 00 0.0  0.029
—0.002 —0.005 0.882 —0.253 0.041 —0.003 —0.025 —0.001
0.007 0.014 —0.029 0.928 0.0 0.006 0.059 0.002
—0.03 —0.061* 2.028 ~—2.303 0.088 —0.021 —0.224 —0.008|
0.048 '0.758 0.0 00 0.0 0165 0.0 0.023
—0.012 =0.027 1.209 =14 0.161 40.013 0.156 0.006
0815 00 = 0.0 00 00 0 00 0011

'411 Al2
Az Ap|

All methods give the same solution

0.01451242  0.03516997 -2.079860 1.813171

0.09707658 —1.089080 0.0 0.0
T —0.02188941 —0.01141115 —2.255242 1.524221}
—0.9890777 0.0 0.0 0.0

Example 4 :Phillips [14]

Consider the continuous model of a power svsiem

where A, As» € Ry - ¢ li and



—50 00 00 00 475 00 00 00
00 =20 00 00. 00 =20 00 0.0
—0.08 —0.11 —3.99 —0.93 0.0 —0.07 10.0 —9.1
00 00 - 132 -139 00 00 00 —028
00. 00 00 00 =02 00 00 00|
017 00 00 00 00 —017 00 0.0
00 00 02 00 00 00 =05 00
0.01 001 —0.06 0.12 00 001 00 =-0.11

A A
Az Al

" All methods give the same solution

0.0 0.0 0.0 0.0
0.03519669 0.0 0.0 0.0
R = 100006385651 —0.001647461 0.05102651 —0.002348209|
0.001882734  0.004962614 0.01556921 0.09525143

To compare each method, we construct a table Whiéhmow many iterations

N we need to get 7 digits accuracy and which gives the condition number

LA 15! HALA Sl :
K= #—H—F and the residual r.
Sep"(All, A22)

Table 6

-

Numerical fesults I for examples 1,2, 3 and 4

Ex K KIN 1 LCM SEM NEM
- N r | N r N r N r
1 1008604 | 9 10-7; 7 107 |5 1014 4 1.0-14
2 102224 15 10-7 10 10815 1013 | 4 10-14
13 112552 116 1.0-7 (11 1.0-7 | 6 1.0-14 | 4 1.0-14
4 135253 115 10-5 13 10817 1.0-15 |5 10-15

A The number of iterations for 7 digits accuracy

r= £‘4 :,.?R‘n;—R‘\',A 11 +R_-".4 ]QRA-\*’.'A_:) 1 ”f

f



From table 6, we see that SEM and NEM solutions have much better accuracy.
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It is not easy to give general results for the actual cost, since this depends on the

number of iterations and the size of matrix. But if we need very accurate solutions of ~

Riccati equations then SEM and NEM are generally a bit cheaper here than KIM (but if

€ is very small then they are not. see example 5). In each example, we also determine

. the number of iterations i‘equired to make the residual less than 107!% and then com- .

pute operation counts and CPU time when using the Golub-Nash-Van Loan algorithm.

The numerical results are summarized in the following table.

Table 7

Numerical results II for examples 1, 2, 3 and 4

| Ex KIM : LcM - SEM - NEM
: N Op Time | N Op ~Time |[N Op Time { N Op Time
1 | 16 1083 0.0054 | 13 2153 0013 | 5 1209 0.0065 | 4 1244 0.0073
2 29 1922 0.01 18 2933 0023 | 6 1439 . 0.009 | 4 1244 0.0068
3 32 8265 0.027 22 14112 0.063 | 6 6764 0.022 4 5888 0.016
4 26 6729  0.021 25 15936, 0.07 7 7538 0.024 5 7360 0.022

N: The number of iterations satisfying r < 1074
r = ARV —RyAHRyA Ry—AsliF
Op: Operation counts

Time: CPU time (sec)

We now construct tables 1o show the rate of convergence for each method, where

4 llRi—R,’_lll‘r )
WR M

relerr =




Table §

The rate of converge;rlce for KIM

relerr (Ex1) | relerr (Fx2) relerr (Ex3) | relerr (Ex4‘)

i

1 141 141 d+1 1+1

2 .84-1 - 2140 11940 1940
3 .65-2 62-1 S1-1 .76-1
4 .Zl-3 o 21-1 1541 .22-1
5 - .16-3 71-2 .48-2 S50-2
6 .23-4 .0.23=2 .16-2 ' 11-2
7 23-5 .75-3 .62-3 .48-3
8 15-6 - 23-3 ©.24-3 .21-3
9 .14-7 o 67-4 94-4 .71-4
10 .19-4 35-4 .18-4
11 ~.54-5 - .12-4 36-5°
12 .16-5 - .41-5 ' .99-6
13 50-6 .13-5 49-6 -
14 .17-6 .43-6 .19-6
15 -.61-7 .15-6 .59-7
16 S56-7

Table 9

The rate of convergence for 1.CM

-
—

WK = SOV b WK =

— ek hed

relerr (Ex1) | relerr (Ex2) | relerr (Ex3) | relerr (F'x4)

d+1 d+1 d+1 41

29-1 .82-1 63-1 .38+0
.20-2 d1-1 .93-2 21-1
.22-3 1&-2 : 17-2 .20-1

64-5 27-3 .52-3 33-2
§5-6- | .37-4 13-3 .90-3

53-7 | 63-5 .24-4 .35-3

836 455 | 254

4.6 135 | 244

S 21-7 34-6 | 42-5

f 61-7 1 10-5

: ; 43-6

L 307




The rate of convergence for SEM

Table 10

i | relerr (Ex1) | relerr (Ex2) | relerr (Ex3) | relerr (Ex4)
1 d+1 141 BES) d+1°
2 .28-1 .84-1 .63-1- 53+0 -
3 .66-3 .59-2 .92-2 .21+0
4 13-5 .38-4 .11-3 .16-1
5 .77-10 .15-7 .11-6 .95-3
6- ’ .13-11 .54-5
17 : .16-8
‘Table 11
v The rate of convergence for NEM
‘i | relerr (Ex1) | relerr (Ex2) | relerr (Ex3) | relerr (Ex4)
1 141 SES) 141 1+1
2 28-1 © 86-1 70-1 4040
3 62-4 .55-3 27-3 .24-1
4 27-9 .20-7 .16-7 .15-3
5 .72-8

>

\

The next example illustrates the fact that KINM is extremely useful for singulariv

perturbed systems with small €.

Example 5 :Allemong. Kokotovic [19]

‘.{-

where A, € R 4, e RS x € RL - €R%. ¢=0.1and

An Az
1/6.‘421 1/€A47,




~0.58 0.0 0.0 —027 00 02 00
. 00 —-1.0 00 00 00 1.0 00
Ay Ap 00° 00 =50 21 00 00 00
L1 =100 00 00 00 377 00 00
|g42 ¢4 |-0.14 00 014 —02 -028 00 00

|00 00 00 00 00 008 20 :
—173 66.7 —116 409 - 0.0 —66.7 —16.7| o

By simple multiplication, we can also contruct examples for €<0.1. The results

.are in the table below.

Table 12 o
Numerical results for example 5 .
. K; KIM LCM SEM NEM
N r N r N r N r
1.0-1 | 2464 | 11 1.0-8 |13 1.0-7 [ 6 1.0-12 |5 1.0-13
1.0-2 | 58338 | 6 10-10| 6 10-8 |4 1.0-11 [ 4 1.0-11 N
1.0-4 352 ] 3 10-11 ] 3 1073 10-10 | 3 1.0-10
N: The number of iterations for 7 digits accuracy - )
r = lApRy—RyA | +RyApRy=Aply, ‘ f

s

The above table shows that KIM needs the same number of iterations to get 7
digits accruracy as the other three methods provided €€107% Thus. in this case (i.e. a
'singulary perturbated system with small € ), KIM is-the best method for solving Riccati

equations. Futhermore, the iterative methods work fine, even though A is pretty big.

We have performed all computations for the three iteralive methods by using both -
the Bartels-Stewart and the Golub—f\'a‘sh—'\'an Loan algorithms. As expected. computed
solutions for both algorithms are identical. Since if we use the (io]ub—.\'ash-Van Loan
algorithm then we can save some operalior counts {see Table A2, Table 3 ). itisa g&;d

idea to use it for solving Riccati equations in singular perturbation problems.
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" 5.4.2 Fxamples from control problems

Consider the continuous time algebraic Riccati equation arising from control prob-
lems

ATR+ RA—RBR+C=0

where all matrices are in R"*" and B and C are symmetric ionnegative definite matrices.

We know that the Schur method considers

€ R2nx2n )

p A —-B
T -C AT

and reduces Z to the real Schur form such that
Un Uy

S11 Si2 U
* Y T Uy Uy

T i = o =
UZU=8= 0 S,

The solution is given by R = U Ut}

To transform Z into the real Schur form, we generally need 10(2n)* operations -

' 4 v .. -1
and moreover we need inlfor obtaining R = U,,U7}. We see that the total number of
operationg required is at least 81n®. Should the ordering of the real Schur form require,
sdn . 25 percent muore operations than the unordered real Schur form, we have about

101n* for the entire process.

Remark ‘

Recall that SEM and NEM require approximalelsf 16n® and 16.5n° at each itera-

tion, respectively (al the first iteration, SEM requires 23n%). If SEM and NEM need’

~about 5 1terations to get the solution which has the same accuracy as that of SCM. then

we can sav both methods are competitive with SCM (for the case that any particular

‘ordering of the real Schur form is not needed).



56

We now consider a few éxamples to compare the three iterative methods.to SCM.
We know that the Bartels-Stewart algorithm is more efficient than the Golub-Nash-Van
Loan algorithm for LCM and NEM. Thus all computations for them have been per-

formed by using the Bartels-Stewart algorithm. However, we use the Golub-Nash-Van -

Loan algorithm for SEM.

The following simple continuous-time example is used to iilusirate the effect of an
ill-conditioned problem (problems where the data can be perturbed slightly but the

resulting.change in the solution is large) and an initial guess.

Example 6 :Arnold. Laub [14] &
,

1 0
- €
o -2/ %o

u .

y=(1,1)x
minimize f(yry+ufu)dt. j
9]
The a.p\plicable algebraic Riccati equation is |

ATR+ RA—RBR+C =0 ) (5.2)

~

where € = 107 ahd

» -

€0
0.0

1 0
0 —=2r

11
11

When we solve the algebraic Riccati equation (5.2) with an initial guess R,=0,

LCM, NEM and SEM give the same stable solution. The numerical results are summar-

ized in the following Lable‘g
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Table 13

Numerical results I for example 6

LCM | SEM NEM

m N r N r N r

036 10-12 | 8§ 10-15 | 6  1.0-15
2 5 1016 | 4 1016 | 3  1.0-16
41 3 1016 | 3 1.0-16.{ 3 1.0-16
-6 3 101613 1.0-16 { 3 1.0-16
10 2 1.0-16 | 2 1016 | 2 .1.0-16

N: The number of iterations for 13 digits accuracy

“r = lATRy+RyA—RyBRy+Cly

Recall that SCM has been devised to get the unique symmetric nonnegative definite

solution, and a symmetric matrix is nonnegative definite if and only if all eigenvalues
are ncanegative. Our computed solutions which are derived by iterative schemes with a
zero initial guess are symmetric, but since some of the eigenvalues are negative, we

know that these stable solutions are not the desired solutions.

The true symmetric nonnegative definite solution for R can be hand-calculated as

62
. R=1. 1_ €’ |
- 2+V1+e 4 4Q+V1+€)

Note that as € = 0, the (1,1) elemeﬁ; of R tends to infinity. It suggests that we need

another initial guess with a large (1.1) element.

Ry(1.1) 1.0
1.0 1.0

[ N .
We solve the Riccati equation (5.2) with R, ="

SEM and NEM give

the unique symmetric nonnegative definite solution (as does SCM). Since the unique
‘svmmetric nonnegative definite solution to this example is unstable as € — 0, the solu-

tion accuracy is degenerating. When €=1.0. the problem is well-conditioned and we

™

1+V/1+€2 1) I"\\
2+V1+€? :

f



.1

have an accurate initial appro®imation. but LCM gives overflow. The numerical results

of interest are summarized in the fgllowing tabfe.

Table 14

Numerical results I1 for example 6

: LCM SEM NEM SCM
m | Ro(1,1) 1 N r N r ro-
O | 1.0+1 | overflow | 10 ~1.0-14 [ 7 1.0-14 | 1014 )
2 1.0+5 overflow | 11 1.0-11 8 1.0-11 1.0-11
4 1.0+9 overflow 11 1.0-6 8 1.0-7 1.0-6
6:| 1.0+13 overflow 11 1.0-3 8 1.0-3 1.0-3
8 1.0+17 overflow 1.0+1 1.0+1 1.0+1

N: The number of iterations satisfying r
r= ”.ATR]V"'RNA'—RNBRN“'CHF :
We can see that SEM and NEM have the same accuracy as SCM. The execution

times of both methods are greater than for SCM. However, we expect more careful

implementations of the two iterative methods to be faster than the current versions.

The following example illustrates the effect of ill-conditioning of Az with respect

1o inversion. Recall that A, measures the quality of the initial approximation.

7
§

Example 7 :Arnold; Laub [14]

=01 0] o1 o
=10 —0.02 o001 0.011
y = (10, 100)x
o 1+€ 1}
minimize f(yry+u7 | (de e=10""
( :

FZ';.!
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The applicable alyebraic Riccati equation is -

- ATR+ RA—RBD'BTR+C=0

where’ .
. ‘\
01 O . 100 1000
=l 0o —0.02] ©=|1000 10000/
- J "
' -1
o _[01- o )f1+e 1] (0.1 0.001
BD®B =13001 001/l 1 1| |0 o001

We solve this problem by using the identity matrix / as an initial guess. SEM and :

NEM generate the unique'symmetric nonnegative definite solution, even though LCM
gets overflow. all the time, The numerical results of interest are summarized in the fol-
lovving table.

Table 15

3

. Numerical results for example 7

-

| SEM NEM sdM
N r N r r
0114 1.0-11 | 13 1.0-11 | 1.0-10
21 9 1.0-10 | 12 1.0-10 | 1.0-9
4112 108 |11 1.0-8 | 1.0-7
6116 107 |11 106 | 1.0-5
8§20 1.0-4-|14 .1.0-4 | 1.0-3
10 | 25 "1.0-2 17 1.0-3 | 1.0-1

N: The number of iterations satisfying r. . /

r = IATR\+RyA—R\BD BT R +Cll;

SEM and NEM give the same accurate solution as SCM. But we have difficulty -in

obtaining:a good initial guess as € —.0.
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\/_ - CHAPTER 6

STEEPEST DESCENT TECHNIQUES

4

-

[

- - -7 v A
- We have seen that SEM and NEM are competitive with well-known KIM and

SCM. Their weakness is the usual requirement that an accurate initial approximation to
the solution is needed to ensure convergence. This leads us 1o consider the steepest des-

cent method which is used to find sufficiently accurate starting approximations for

" iterative ;eﬁhods. .

6.1 The matrix algorithms of steepest descent type

Consider the Riccati equation ,

F(R)iAQQR;RA,,—RA,2R+A21 =0 (6.1)
The Riccati equation (6.1) will have a solution precisely when lhe‘funcLi(m G:RVv™ = R
defined by G(R) = IF(R)I} has the minimal value zero. To minimize ;. we use the
: 'mgthod of steepest descent \yhich delefmines a lotal minimum for a lluncl.(m ol ll}w

form G:R" —= R.

The basis of this mor finding a local mi.nirr-xum for a function (;‘ le the
natural idea of choosing K to be i‘n the direction of the grealgﬁt‘decrguse in the value of
G. namely, —VG(x) wheré VG(x) denéles the gradieht of GOx). direction of the gra -
dient. The numerical details of a matrix algorithm of steepest descent type are as ol
lows:

Algorithm I
. -

1. Given an initial approximation R, evaluate G(R,,) = IF(R I and VG(R, ).
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2. Make VG(R(;)’a unit vector.

3. Choose af, such that G(Ry) ZG(Ry—a3;VG(Ry)).

4. Set ay=0, a,=a3/2 and determine the quadratic polynomial that interpolates
G(R;—aVG(Ry)) at a=ay, a, and a3.-

5. Determine a critical poiht ag of thfquadrafic.

6. Define o to be the number that minimizes this quadratic.

7 Return to 1 with R replaced by R=R;—aVG(R).

Since we need 3m?n+mn? operations to get G(R) = IF(R)IZ, steps 4 and 5 which

give us an optimum value of a can be 100 costly. so we use a modified algorithm.

Algorithm II

1. Given an initial approximation Ry. evaluate G(R,) =1F(Ry)liF and VG(Ry).
2. Make VG(R,) a unit vector.
3. Choose a such that G(R,)ZG(R—aTG(Ry)).

4. Returnto 1 with R, replaced by R=R,—aVG(R,).

The steepest descent method generallv converges only linearly to the solution. but
1ts convergence is global in nature. As a consequence, we use these steepest descent tvpe

algorithms to find sufficiently accurate initial guesses for SEM and NEM.

6.2 Numerical examples

We present a few examples which need an accurate initial guess. Actually. we
failed to get the solutions of these examples using the iterative methods without using
algorithms of steepest descent type. To get a solution set, first we perform the matrix

algorithm of steepest descent type with R.=1, toléranc\e=10“l and the maximum
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number of iterations=5 and then we use iterative methods. Since the problems below

are of control problems. we again use the Bartels-Stewart algorithm for LCM and Nlil\g f

and the Golub—’Nash-VanlLoar‘i algorithm for SEM.

Example 8 :Laub [15]

o

Consider higher order Riccati equations arising {rom position and velocity control
for a string of high-speed vehicles. For a string of N vehicles, it is necessary 1o solve the
Riccatli equation

44 R’R‘\' + R.\'.A _\‘ - R<\'B.\DA_\‘13A]\IR‘\' + C‘\' = ()

where all matrices are of order n=2N—1 and are given by

Ay A
A Ans

A."\"'J,’\'—Z A‘\":’,,’\'-l

0
Axoiaag _{._ }l

where

=

-1 0 ; 0 0
A= 1o Aun = -1 0

and

B\ DBy = diag(1,0,1,0, .. 0. 1), :

C. = diag(0, 10, 0. 10, .., 10, 0).
For the cases of 5, 10 and 20 vehicles, we 1ry both aigorilhms I and 11 of steepest
descent type. In both cz;ses. SEM and NEM give the same solution which 1s identical 1o

-

the solution of SCM, and moreover this solution has the same accuracy as SCM. The



numerical results of interest are summarized in-the following table.

Table 16

Numerical results’ I for example 8 "

&

SEM NEM | SCM

L r. r r

L
5 8 1012 |6 1.0-12 | 1.0-12
8
9

N

10 | 10 1.0-12 1.0-12 | 1.0-12
20 1 10 1.0-11 1.0-11 | 1.0-12

L:The number of iterations satisfying

r = N.ATRL + RJ_A - RLBD-IBTRL + C”F

We also check the CPU time of the matrix algorithms of sieepest descent type. The

numerical results are summarized in the following table.

Table 17

Numerical results II for example 8

N0 Algorithm 1 | Algorithm Il |

S| 037 . 015
10 0 3m2 1S
120 |

26 | 102,

Algerithm 1 save approximately 60 percent of the CPU time of algorithm 1. To com-
pare w il SOM e check the CPU time of the iterative methods and add to CPU time of

sigerithm 11 The total CPL time of each method is summarized in the following table.



Table 18

Numerical results 1 for example 8

N | SEM | NEM | SCM

5 061 | 056 | 028
10| 560 505 | 2.0
20 | 446 | 432 13.9

Example 9 :Laub {14]

This example involves circulant matrices. Consider

ATR+RA—RBR+C=0 2

where all matrices are of order n=64 and are given by

-2 1 0 0 1
1 =210 0]
0 1 '
0
A=
N § |
o S
1 0 01 =2

and B =J. C=1] The matrices A, B and C are all circulant so the RK‘C&.U solution

R € R** is known 1o be circulant of the form

Y 7“”_1 71
7] Y, 72

K=
Pact Trc2 o 0 1y

~ We perform both alg‘ornhms I and Il of steepest descent type.-In both cases, SEM

and NEM give the same circulant solution which is identical to the solution of SCM and

-

morenver the solution for both methods is as accurate as fo1 SCM. As in example ¥, we

A
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\

compute the residual and check the CPU time for both algorithms of steepest descent

o

( type. The\?numericallxjesultsr;ar'ersummarized in the following tables.

Table 19

Numerical results | for example 9

SEM NEM SCM
N r N r r

5 1.0-11 | 4 1.0-12 | 1.0-12

N: The number ofiterations satis{ying r

r =H1ATRy + RyA — RyBRy + Clip

Table 20

\

Numerical results Il for example 9

Algorithm I | Algorithm Il [
1138 445 |

- Using table 20, we also check CPU time for SEM and NEM. SEM and NEM required
approximately 108s of CPU time and 101s of CPU time respectively. SCM required

approximately 57s of CPU uime.
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CONCLUSIONS

In this thesis, we have implemented numerical methods for solving algebraic Ric-

cat® eqﬁatib_ns. The numerical results in the previous chapters indicate that SEM and

NEM are comparable to KIM and SCM. In fact. with a m:Jdiﬁed matrix algorithm of
steepest descent type which is used to find a sufficiently accurate starting value, SEM

and NEM‘perform as well as SCM for solving Riccati equations of large order.

If we want to get very accurate solutions of Riccati equations arising from singu-
lar perturbation problems then both iterative methods are faster than ‘KIM ex_ce‘pl for
the case in which € is very small. Th‘e> execution times of SEM and NEM are greater
than SCM. However, we expect rﬁorg careful impl'emenlalion; of both methods to be

much faster than the current versions.

The new iterative method, namely SEM, works as well as NEM. Solving nonsym-
' ";metric Riccali equations. SEM is considerably faster than NEM at each teration. How

ever. in the symmetric case. NEM is at least as fast as SEM provided a symmetric initial

value is known.

We know that a modified matrix algorithm ol steepest descent type (algorithm II)
Al . .
is relativelv expensive. although this merhod in theory always converges. A way 10

improve the efficiency of iterative methods is to find a reliable and efficient method to

give a good initial approximation.” This fact requires further research.

L ‘ s
As a final consideration and research. we have also considered the gensralized Ric-

call éguation



67

ApR = LA, = =4y + LApR,

- ' ByR — L.?: —By; + LBy;R
. corresponding to the generalized eigenproOblem o T

' Ay Ap
. ‘ 21 Az

" where A, By, € R™, Ay, By, € R™™and R, L € R™".

Bll Blz
By By

As for the standard Riccati equation, LCM. NEM and SEM can be used (see [4] and
[20]). These three iterative methods require the solution of the equation of same type,
say, the generalized Sylvester equation: ' . o
AR—LB, =C,, - (1)
AzR - LBZ = Cz'

where A;, A, € R™™, B, B, € R™ and R, L. C,.C, ER™.

In order to solve the generalized Sylvester equation, We also implemented the new

[ W e e e

- algorithm called the generalized Bartels-Stewart algorithm (in short, GBS). The main
7 idea' of GBS is based on the equivalence belween the problems (7.1} and

QAL NLRL ) = (L Q3B Zy) = QICy 2, (7.2)
(QTA,Z,(ZRZ,) — (QTLO,XQ3B:Z,) = QiCyZ-

where (0,. 7Z,) and(Q;y, Z,) are orthogonal matrices which are’ found from the QZ algo-

rithm for the ﬁ.vo pencils, A, — and B, — AB; respectively. Now A, and B, are

reduced to upper real Schur forms 14,7, and Q3B Z,. respectively and also A, and. B,

rithm.

hv3



to these of SCM. However. further study is needéd to prove the efﬁciency of SEM and
NEM for solving generalized Riccali equations. Allrthings considered. it séems that

SEM and NEM have the potential to solve a large class of problems.
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