
A CONJUGATE GRADIENT METHOD FOR SOLVING MATRIX ALGEBRAIC RICCATI

EQUATIONS

' Liin Liu

B.Sc., Beijing Normal University, 1985

THESIS SUBMI'ITED IN PARTIAL FUIJILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE *

in the Department

of

Mathematics and Statistics

@ Lixin Liu 1988

SIMON FRASER UNIVERSITY

September 1988

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

APPROVAL

Name: Lixin Liu

Degree: Master of Science

Title of thesis: A CONJUGATE GRADIENT METHOD FOR SOLVING MATRIX ALGEBRAIC

RICCATI EQUATIONS

Examining Committee:

Chairman: Dr. G. Bojadziev

- - - /A&

Dr. R. D. Russell
Senior Supervisor

Dr. R. Lardner

Dr. B. ~hdttachar~a
External Examiner
Department of Computing Science
Simon Fraser University

PARTIAL COPYRIGHT LlCtNSE
. \

I hereby g r a n t t o Simon Fraser U n i v e r s i t y the r i g h t t o lend

my t hes i s , p r o j e c t o r extended essay (t h e t i t l e o f which i s shown below)

t o users o f t he Simon Fraser U n i v e r s i t y L i b ra r y , and t o make p a r t i a l o r

s i n g l e cop ies o n l y f o r such users o r i n response t o a reques t f rom t h e

l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r educa t iona l i n s t i t u t i o n , on

i t s own behal f o r f o r one o f i t s users. I f u r t h e r agree t h a t permiss ion

f o r m u l t i p l e copy ing o f t h i s work f o r s c h o l a r l y purposes may be g ran ted

by me o r t he Dean o f Graduate S tud ies . I t i s understood t h a t copy ing

o r pub1 l c a t i o n o f t h i s work f o r f i n a n c i a l ga in shal l n o t be at lowed

w i t hou t my w r i t t e n permiss ion.

Author: -
(s i g n a t u r e)

(name 1

(da te)

ABSTRACT

Recently, algebraic Riccati equations (AREs) have been widely solved in many fields. In

this thesis, some applications will be discussed. These applications include computing ill-

conditioned eigenproblems (relining invariant subspaces); solving optimal control problems

(computing optimal control functions for both continuous and discrete time systems, and solving

singular perturbation problems of dynamic systems); and decoupling boundary value problems

for ordinary differential equations.

Several numerical methods for solving AREs have been developed in the past 20 years.

These methods can be divided into two classes, direct methods (the Schur method and the syrn-

plectic method) and iterative methods (linear iterative methods, Newton's method and the gen-

eralized secant method). We will review these methods with some comparisons and implementa-

tions. In the case of large sparse AREs, these methods will lose their efficiency because matrix

factorizations (LU-decomposition or QR-factorization) are needed. A "new" method for solving

AREs which may be particularly suitable for solving large sparse problems, the conjugate gra-

dient method, will be suggested in this thesis. We will compare this method to the other methods

(the Schur method, the generalized secant method and Newton's method) in terms of conver-

gence, cost and storage requirements.

iii

DEDICATION

To my parents and my sister

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor, Dr. R. D. Russell, for his

suggestion and guidance about the research of this thesis.

I would also like to thank Dr. L. Dieci and Dr. M. Tnunmer for their help and cooperation.

And finally, thank Simon Fraser University and Department of Mathematics & Statistics for giv-

ing me the opportunity to study here, especially thank Mrs. S. Holmes for her help.

Financial support for the research of this thesis received from Dr. Russell's research grant is

also appreciated.

TABLE OF CONTENTS

Approval ... ii
Abstract .. iii

Dedication .. iv

Acknowledgements ... v

.. 1 . Introduction 1

2 . Applications of Solving Algebraic Riccati Equations ... 7

2.1 Computing Invariant Subspaces ... 7

2.1.1 Methods for Computing Invariant Subspaces ... 9

2.1.2 The Gap between Invariant Subspaces .. 11
.. 2.2 Optimal Control Problems 12

2.2.1 Continuous-time Optimal Control Problems 12

... 2.2.2 Discrete-time Optimal Control Problems 13

............................... 2.2.3 Time-optimal Control Systems with Slow and Fast Modes 14

... 2.3 Decoupling Boundary Value Problems 17

.. 3 . Methods for Solving Algebraic Riccati Equations 20

3.1 Direct Methods for Solving Algebraic Riccati Equations ... 20
3.U Schu Method ... 20

.. 3.1.2 Symplectic Method 22

3.2 Iterative Methods for Solving Alegbraic Riccati Equations .. 23

3.2.1 Kokotovic's Linear Iterative Method ... 23

3.2.2 Stewart's Linear Iterative Method ... 24

... 3.2.3 Newton's Method 25

3.2.4 Generalized Secant Method ... 27

... 3.3 Conditioning of Algebraic Riccati Equations 29

3.4' Implementations .. 30

... 3.4.1 Iterative Refinement Method 31

3.4.2 Steepest Descent Technique ... 31

3.4.3 Reordering Eigenvalues .. 32

.. 4 . Conjugate Gradient Method for Solving ARES 34

...................... 4.1 Conjugate Gradient Method for Solving Nonlinear Optimization problems 34

4.1.1 Quadratic Case .. 34

4.1.2 General Cases ... 36

4.1.3 Implementations for Conjugate Gradient Method .. 38

................................. 4.2 Conjugate Gradient Method for Solving Algebraic Riccati Equations 40

4.2.1 Conjugate Gradient Algorithm .. 40

4.2.2 Line Search Algorithm ... 42

4.2.3 Comparisons and Implementations ... 45

5 . Numerical Examples ... 50

6 . Conclusions ... 58

References ; 60

vii

CHAPTER 1

INTRODUCTION

Consider the matrix quadratic equation

where A l l E Rnxn, A 2 2 e Rmxm, AZ1 E Rmxn, A 1 2 e Rnxm, and X 1 l E Rmxn. The equation

(1.1) is called a matrix algebraic Riccati equation (ARE). Particularly, if

where m=n , L12 and L2l are nxn positive semi-definite matrices, then (1.2) is called a sym-

metric algebraic Riccati equation.

The purpose of this thesis is to discuss some numerical methods for solving algebraic Ric-

cati equations. In this chapter, we will review some important concepts and results. Some appli-

cations for solving AREs will be discussed in the next chapter. These applications include solving

ill-conditioned eigenproblems or computing invariant subspaces, solving optimal control prob-

lems, and decoupling boundary value problems (BVPs) for ordinary differential equations

(ODES). In chapter 3, we will review several numerical methods (both direct methods and itera-

tive methods) for solving AREs. These methods include the Schur method, linear iterative

methods, the generalized secant method, and Newton's method. Some important theorems which

are associated with these methods will be stated in this chapter as well as comparibns and imple-

mentations. A "new" method for solving AREs, the conjugate gradient (C-G) method, will be

proposed and discussed in chapter 4, with the comparisons of some methods in chapter 3 (most

comparisons are among Newton's method, the generalized secant method, the Schur method and

the conjugate gradient method). Numerical examples and results will be given in chapter 5, and

finally, the conclusions are in chapter 6.

Definition 1.1 Let the matrix A = [aij] E Rnxn .

(1) A is called symmetric if A = A .

(2) A is called upper (lower) triangular if aij = 0 for all l l j <i I n (l l i < j<n).

(3) A is called upper Hessenberg if aij = 0 for all lSj <i -191 -1 .

(4) A is called orthogonal if A TA =I .

(5) If there exists h E C and x E Cn , x # 0 such that A x = hx, then h is called an eigenvalue of

A and x is called an eigenvector of A comsponding to the eigenvalue h. The pair (h , x) is

called an eigenpair. The set of all eigenvalues of the matrix A is denoted by A(A).

(6) If A is symmetric and xTA x > 0 (1 0) for any x E Rn , x # 0, then A is called positive

(semi-)definite.

Definition 1 2

(1) Let x E Rn . The Euclidean norm (1 2-norm) of the vector x is defined by /q2 = =xTx .

(2) Let A E Rmxn . The spectral norm (1 2-norm) of the matrix A is defined by

The Frobenius norm (F-norm) of A is defined by

Theorem 1.3 (QR-Factorization) [I91 Let A eRmxn, m 2 n Then there exist an orthogo-

nal matrix Q E Rmxm and upper triangular matrix R E RnX" such that

Theorem 1.4 (Singular Value Decomposition) [19] Let A E RmXn and k = min (m , n) .

Then there exist two orthogonal matrices U E Rmm and V E RnXn such that

Definition 15 The oi (i = 1.2, - - J c) in (1.3) are called the singular values of A .

Theorem 1.6 (Real Schur Decomposition) [I91 Let A be an nxn real matrix. Then there

exists an orthogonal matrix Q E RnX" such that

where each diagonal block Aii is either a 1x1 real matrix or a 2x2 real matrix having complex

conjugate eigenvalues. Moreover, these diagonal block matrices can appear in 'any desired order

on the diagonal.

Definition 1.7 The nxn matrix A in (1.3) is called an upper-Schur form matrix or quasi-

upper-triangular form matrix. 1

To compute an upper-Schur form matrix A from a matrix A , one can use the QR-algorithm

(that is, use Householder transformations to transform A to an upper Hessenberg form and repeat

Francis' QR-steps to obtain the upper-Schur form A). The total cost of the QR-algorithm is

about ion3 flops.

Definition 1.8 The linear matrix equation

A Lower-Schur form matrix can be defined accordingly.

is called the Sylvester equation where C E Rmm, D E RnM andX, F E RmM.

Lemma 1.9 The Sylvester equation (1.5) has a unique solution for any F if and only if

In order to solve the ARES, it is important to understand the methods for solving the Sylves-

ter equations. Bartels and Stewart [3] gave the following method

Algorithm 1.10 (B-S Algorithm) [3]

(1) Transform C to upper-Schur form matrix c and D to lower-Schur form matrix d by using

the Schur decomposition: 6 = u C U , d = v D V ;

(2) Solve the transformed system: cz - fd = uT F V ;

(3) Transform back to the solution: X = U 2 vT .

5 2 The operation count of the B-S algorithm is lO(m)+n)) + p(m n +mn 2, flops and the

storage requirements are 2(m 2+n 2+mn). If C and D are already in required Schur form, then the

cost of the B-S algorithm is only 0 (m 2n +mn 2).

Golub, Nash and vanLoan [I 81 developed another method for solving this equation. In their

method, C is only required to be transformed to upper Hessenberg form instead of upper Schur

5 5 form. The operation count of their algorithm is ~m + 5m 2n + ~ m n + 10n flops, but an extra

m storage locations are required.

We will only use the B-S algorithm in this thesis, since the operation counts for both

methods are 0 (m)+n 3, and the storage requirements are 0 (m 2+n 2).

Definition 1.11 Let T be a linear operator T : X + CX -XD , where

C E Rmm , D E RnX" , and X E RmX" . The norm of the operator T is defined by

The separation of the matrices C and D is defined by

Property 1.12 [33] Let C E Rmm and D E RnX". The separation sep (C , D) has the follow-

ing properties:

(3) IfM €Rmxm andN E Rnm ,then

If the Frobenius norm is used in (1.5) and (1.6) , one can show that /T/ and sep (C, D) are

the largest and the smallest singular values of the mn xmn matrix in@ c - D T @ ~ m , respectively.

Definition 1.13

(1) { an } is said to converge to a if lim /an+ = 0 ;
n -

(2) { a, } is said to be q-linearly convergent to a if there exist c E [0, 1) and an integer i 2 0

such that for ~I.I kd , / a k + l - a/ I c /ak - w ;

(3) { a, } is called q-superlinearly convergent to a if there exist { ck } + 0 such that

/ a k + l - (%! 5 ck/ak - C1/ ;

(4) { an } is said to converge to a with q-order at least p if there exist constants p > 1 , c >O

and l10 such that for all k2kA , /ak+* - S c / ~ - cc//p ; if p =2 , the convergence is said

to be q-quadratic.

Definition 1.14 [27] Let and Y be Smear subspaces of Rn . The angle between these two

subspaces is defined by

c o s L (a , v = max { f i w i q {luTv

where u and v are unit vectors.

Then the gap between two linear subspaces and Y is defined by

gap (a , Y) = sin 8

and the distance between two linear subspaces and Y is defined by

dist (a , Y) = ma$ gap (span (u) , Y)
U E

CHAPTER 2

APPLICATIONS OF SOLVING ALGEBRAIC RICCATI EQUATIONS

Solving algebraic Riccati equations has been used in many fields in the past 20 years and

plays an important role in engineering and scientific research We will discuss some of its appli-

cations in this chapter. These applications range from (1) solving ill-conditioned eigenproblems

(refining invariant subspaces), (2) solving optimal control problems for both continuous-time and

discrete-time cases (computing optimal control functions), and (3) decoupling boundary value

problems for ordinary differential equations.

2.1 Computing Invariant Subspaces

Definition 2.1 Let A E R1* and X G R!. If

then X is called an invariant subspace of A .

It is well-known that for ill-conditioned eigenproblems (some eigenvalues are close

together or some eigenvectors are almost parallel), it is more stable to compute the invariant sub-

spaces with respect to the eigenvalues which are close together or eigenvectors which are almost

parallel rather than compute each individual eigenvalue and eigenvector. Computing invariant

subspaces can be done by solving ARES. In this section, we will discuss several methods for

refining invariant subspaces. These methods are: (1) method [S] developed by Stewart [33], (2)

method [DMW] by Dongarra, Moler and Wilkinson [13], and (3) method [C] by Chatelin [6].

Demmel [8] shows that all of these methods are essentially solving the ARE (1.1) under certain

transformations. Also in this section, we will discuss some results about the angle and the gap

between invariant subspaces.

B e f o ~ discussing the methods of computing invariant subspaces, let us review the follow-

ing important theorems.

Theorem 2.2 Let

where Z=+n, A11 E Rnm, A.E Rmm, AZ1 E Rmm a n d A 1 2 ~ Rnxm, and suppose that the

nonsingular matrix

satisfies

where T1 E Rf X" and T2 E Rf . Then the columns of T span an invariant subspace of A if

and only ifA21 = o .

Theorem 2.3 Let A E R1* and T1 E Rlm . Then the columns of TI span an invariant sub-

space of A if and only if there exists B E Rnm such that

The above two theorems provide some basic ideas for computing invariant subspaces. We

can either use similarity transformations to obtain (2.2) or solve (2.3). If T is chosen to be the

Riccati transformation in (2.2), i.e.

we obtain

All A12 A 11 A 12

[i,, A,,] = I: !q [A2, A ,] [: 91
A 11 +A 12X

= [A ~ ~ + A ~ X - X A ~ I - X A , X A , - X A 1 2

A11+A12X A12

I
F (X) A 2 2 - X A 1 2 + I (2.4)

According to theorem 2.2, the columns of the matrix span an invariant subspace of A if and [' I
only if Anl = 0 which leads to the ARE (1.1). Moreover, if A is a Hamilronian matrix

then, (2.4) gives the symmetric ARE (1.2).

2.1.1 Methods of Computing Invariant Subspaces

Now let us review the following three methods for refining invariant subspaces.

(1) Method [S]

The method [S] was proposed by Stewart [34] who originally considered perturbation

theory for the invariant subspaces. In this method, Stewart assumed that R(T 1) be i& approximate

invariant subspace and Azl be merely small instead of zero in (2.2). By using the transformation

A Hamiltonian matrix will be defined in chapter 3.

- 9 -

where the orthogonal matrix

and letting Aal = 0 , he obtained the invariant subspace ~ (f l) of A . It is easy to show that X is a

solution of the ARE (1.1).

(2) Method [DMWI

The method [DMW] was suggested by Dongam, Moler and Wilkinson [13] who attempted

to solve (2.3) by using Gaussian elimination with partial pivoting where n rows of T 1 were fixed.

Demmel[8] shows that this method is also equivalent to solving the ARE (1.1) if T 1 is chosen by

(3) Method [Cl

The method [C] was proposed by Chatelin [6] who considered (2.3) in the form

where s E Rn* . Clearly, (2.9) is equivalent to the generalized decoupling equation

Demmel [8] shows that if T1 is given by (2.8) and ST = In , 0 , then (2.10) will become the [I
ARE (1.1).

Remark 2.4 [12] By taking S = T 1 , one can easily obtain the orthogonal iteration method

A Xk-l = Zk , Ak = QkRk , Xk = Qk k = 1 ,2 , ". ,

or the inverse orthogonal iteration method

A Z k = X k - l (f i n d Zk) , Zk = Q k R k (QR-factorization) k = 1,2,

2.12 The Gap between Invariant Subspaces

The angle and gap between two invariant subspaces have been discussed by many authors,

and some important results have been obtained. Let us suppose that X is an invariant subspace of

a matrix A E RnXn and let be its approximation generated by a certain method. What can we

say about L (X , 2) and gap (X , 2) ? Davis and Kahan [7] discussed this problem for the self-

adjoint matrix A (A = A H) and obtained the following result.

Theorem 2 5 [7] Let hi be an eigenvalue of the n xn real symmetric matrix A , and a; be an

approximation of hi . If

6 = min { laj -hi I }
l S i S p < j S n

then

Note: The right-hand side of (2.11) is the residual of the generalized decoupling equation (2.10).

But when A is a nonsymmetric matrix, this problem becomes much more difficult. Kahan,

Parlett and Jiang [22] give an example which shows that (2.1 1) may not hold for some nonsym-

metric A . Stewart [33] uses the transformation (2.6) and (2.7) to approximate the invariant sub-

space by using his iterative method for solving the ARE (1 . 1) 2; He also proves the convergence

Stewart's method for solving ARES will be discussed in chapter 3.

- 11 -

property of his method 3.

2.2 Optimal Control Problems

Riccati equations have been widely used for solving optimal control problems. We will dis-

cuss its applications for seeking 9 optimal control function for both continuous-time and

discrete-time problems, and for solving singular perturbation optimal control problems.

2.2.1 Continuous-time Optimal Control Problems [26]

Consider the linear-quadratic (Gaussian) optimal control problem

d i (t) = x ~ (t) = A ~ (t) + B u(t) , x(0) = . (2.12)

We seek the solution as the optimal control function

which minimizes the quadratic constraint

where K = C TC E Rnm and R E Rn" are positive semi-definite matrices. Assume that the pair

(A, B) is stabilizable 4, and the pair (C , A) is detectable 5. Then

~ (t) = - R - 1 B x ~ (t)

is the optimal control function where X is the unique positive semi-definite solution of the

See theorem 3.9 in chapter 3.

(A, B) is called to be stabilizable if there exists a constant matrix M E RnXn such that all the real parts of
the eigenvalues of A - BM are negative.

(C , A) is called detectable if (AT , CT) is stabilizable.

continuous-time ARE

- X (B R - ~ B T) x + X A + A ~ X + K = O .

Clearly, (2.13) is a symmetric ARE.

2-22 Discrete-time Control Problems [26]

Consider the linear-quadratic discrete-time optimal control problem

xk+l = A xk + B uk (2.14)

where A E RnX" , B E Rnm , xk E Rn and uk E Rm, and the associated performance index

where Q , XN E Rnm, R E Rmm , and Q , R are positive semi-definite matrices.

We will seek the solution of control sequences ui , ui+l , . . . , U N - ~ to minimize the qua-

dratic functions Ji . Substituting

uk = - R - 1 B T z ~ + ~

into (2.14) and (2. IS), we obtain the Harniltonian system

It can be shown that the solution of this system is

where

If the system is steady, that is, lim Xk =X , we obtain the discrete-time ARE +-

A ~ X A - X - A T X B (B T X B + R) - I + Q = o . (2.17b)

The unique positive semi-definite solution X of (2.17) will give the optimal control function uk .

2.23 Time-optimal Control Systems with Slow and Fast Modes [23]

Consider the singular perturbation system

&i = g (x , z , u , & , t) (2.18b)

where u = u(t) is a control input function, 0 < E << 1 and t E [to , TI . The initial conditions

are

By using a two-time singular perturbation method (slow-time scale t and and fast-time

t-to scale z = -), we obtain the solution of this system
E

- 14-

where rand Zsatisfj

and 2 is the solution of

Now we specify our system (2.18) to be a linear system

and the initial conditions remain unchanged. Introducing the fast variable

we get the solution

where X , Z satisfy

and q satisfies

% = ~ q , q (o) = z , , + D - l C X g .

Therefore our solution is

Let us focus on the fast variable q(z). Substituting q = z - X x into (2.19), our system

becomes

Now let X be a solution of the ARE

C + D X - E X A - E X B X = O ,

and introduce another variable 5 = x - Y q . We obtain

By solving the Sylvester equation

for Y , our system (2.19) will be decoupled into two systems: the fast-time system

and the slow-time system

2.3 Decoupling Boundary Value Problems [2]

Let us consider the boundary value problem (BVP) for ordinary differential equations

Definition 2.7 A nonsingular matrix X E R1* is called a fundamental solution of the dif-

ferential equation (2.27) if X satisfies

Definition 2.8 Suppose X is a fundamental solution of (2.27) which satisfies

If there exist constants K and h , p such that

l X (t) P X-'(t)/ I ~ e - v ' ") , O l s S t S l (2.28a)

/X (t) (I -P)x- ' (t) / I K ~ - P (S - ') , O l t I s I 1 (2.28b)

then K is called a conditioning constant for the BVP (2.27). The BVP is called well-conditioned

if K is moderate, and the dichotomic structure for the fundamental solution matrix X is given by

(2.28).

The solution space (column space of the fundamental solution matrix) can be written as a

direct sum of two subspaces, the nonincreasing subspace S 1 = (4 = X(t) P c , c E Rn) and the

nondecreasing subspace S 2 = { 6 = X (t) (I-P)C , c E Rn) . Our purpose is to decouple the

solution space into two subspaces S = S 10s 2 , or to decouple the variables into two groups, the

nonincreasing variables and the nondecreasing variables. To do this, we introduce the new vari-

able y = T-lx where the matrix T (t) E R1* and the new fundamental solution Y has the struc-

such that Y 11 and Y 22 characterize the nonincreasing and nondecreasing

dynamics of the original problems. If there exists T (t) such that

and moreover, if, say, for every hl E h(All) and h2 E h(d22) , hl > holds and they are well-

separated, then the above form for Y (t) becomes possible and the matrices A , T , d have the

relation

The equation (2.29) is called a decoupling equation of the BVP (2.27). Assume that

where T I E RIX" and ST E Rm* . It is easy to show that the decoupling equation can also be

written as

If we again use the Riccati transformation

our decoupling equation (2.29) will become the Riccati differential equation (RDE)

dR = A21+A22R - M i 2 - M 1 2 R , R(O) = Ro . 75

If R is a constant matrix, (2.3 1) is identical to the ARE (1.1).

CHAPTER 3

METHODS FOR SOLVING ALGEBRAIC RICCATI EQUATIONS

Methods of solving AREs have been studied for a long time and several successful methods

have been developed in the past 20 years. These methods can be divided into two classes: direct

methods and iterative methods. In this chapter, several important methods for solving AREs will

be discussed as well as their implementations and the concept of conditioning of AREs..

3.1 Direct Methods for Solving Algebraic Riccati Equations

The direct methods are based upon a matrix factorizations (QR-factorization or LU-

decomposition). The principle behind these methods is given in

Theorem 3.1 Let A be given in (2.1) and

If T satisfies

and T 11 is nonsingular, then X = TZ1 T i # is a solution of the ARE (1.1).

3.1.1 Schur Method

The Schur method was introduced by Laub [25] who considered solving linear-quadratic-

Gaussian control problems for both the continuous-time and the discrete-time cases. This method

is based on applying the QR-factorization to A , i.e., T in (3.1) is chosen to be an orthogonal

matrix.

(1) Continuous-time AREs

Consider the continuous-time ARE (2.13) and let

where N = BR-lB T. If the orthogonal matrix U E R2"& satisfies

where Re A(S < 0 , Re A(S 22) > 0 , then X = UzlU if is the unique positive semi-definite

solution of ARE (2.13).

Theorem 3.2 [25] With respect to the notation and assumptions above,

(i) U 1 1 is nonsingular and X = U 21U fil is a symmetric positive semi-definite solution of the

ARE (2.13).

(ii) A(S = A(A-NX) = the closed-loop spectrum.

(2) Discrete-time AREs

Consider the discrete-time ARE (2.17) and let

and let U E R2"* be an orthogonal matrix such that

s11 s 1 2
U T = [o s ,]

where I A(S 1 1) 1 < 1 , I A(S 2z) l > 1 . Then X = U 21U it is the unique positive semi-definite

solution of (2.17).

Theorem 3 3 [25] With respect to the notation and assumptions above,

(i) U 1 1 is nonsingular and X = UzlU if is a symmetric positive semi-definite solution of the .

ARE (2.17).

(ii) A(S = A(A -B (R +B T ~ B)-I B TXA) = the closed-loop spectrum.

Remark 3.4 For both continuous-time AREs and discrete-time AREs, Laub uses the

EISPACK subroutines BALANC, ORTHES, ORTRAN, BALBAK and Stewart's software

HQR3, EXCHNG to get the 2n x2n orthogonal matrices U , and uses the LINPACK subroutines

DECOMP and SOLVE to obtain U 21U if.

For both continuous-time AREs and discrete-time AREs, the cost of the Schur method is

about 81n3 flops because the QR-algorithm is applied to a 2nx2n matrix. The storage require-

ments are at least a 2n x2n array.

3.1.2 Symplectic Method

The symplectic method was discussed by vanLoan [34], Bunse-Gersmer and Mehrmann [4]

and Bunse-Gerstner, Mehrmann and Watkins [5] for Hamiltonian systems.

Definition 3 5 Let A be given by (2.1) with m =n and

(1) A is called symplectic if A TJA = J ;

(2) A is called Hamiltonian if J A = (JA)T ;

(3) A is called J-Hessenberg if A 11, A 21, A 22 are upper triangular and A 12 is upper Hessenberg;

(4) A is called J-triangular if A 11, A 12, A 21 and A 22 are upper triangular and A 21 has a zero

diagonat,

(5) A is called J-rridiagonal if A 11, A 21, A 22 are diagonal and A 12 is tridiagonal.

Definition 3.6 Let A E Rhx2". A decomposition A = SR is called an SR-decomposition if S

is symplectic and R is J-triangular.

The symplectic method is particularly suitable for solving continuous-time AREs where an

SR-decomposition is performed on the Hamiltonian matrix instead of using a QR-factorization.

Bunse-Gersmer, Mehrmann and Watkins [5] gave a method for computing the SR-decomposition

by using the Gaussian elimination method. The cost of their method is only about 66n3 flops.

But as with the Schur method, the storage requirements are also at least a 2n x2n m y .

3.2 Iterative Methods for Solving Algebraic Riccati Equations

Let us consider the Taylor expansion of the ARE (1.1) around Xi

F (X) = F (Xi) + [A22(X-Xi) - (X-Xi)A i2Xi -XiA 12(X-Xi)]

Several iterative methods for solving AREs can be considered as arising from appropriate approx-

imations of (3.5).

3.2.1 Kokotovic's Linear Iterative Method

Kokotovic [23] considered solving the singular perturbation system (2.19). In order to

decouple the fast and slow variables, the ARE (2.22) has to be solved. He suggests that the fol-

lowing linear iterative method can be used for solving the ARE (1.1):

Algorithm 3.7 (Kokotovic's Linear Iterative Method) Given Xo =-A 21A if ;

Kokotovic shows that the order of convergence of this method is linear and the convergence

1 contraction constant is 0 (E) , 0 c E << 1 if A 2 is 0 (E). The cost of each iteration of this

method is very cheap (only 2m 2n+mn2 flops) and the storage requirements are also minimal.

This method can be considered as the approximation of the Taylor expansion

- F (Xi) + A 22(Xi+l - Xi) = 0 .

An alternative choice of Kokotovic's linear method is: Given Xo = A 21A if r

Xi+l = (A21+A22Xi-XiA12Xi)~if , i = 0 , 1 , 2 , * - . ,

which is the approximation of the Taylor expansion

F(Xi)-(Xi+l-Xi)A1l = 0

3.2.2 Stewart's Linear Iterative Method

Stewart [33] discussed the error bound for refining the invariant subspaces and obtained the

ARE (1.1). He proposes that one can use another linear iterative method to solve the ARE (1.1).

Algorithm 3.8 (Stewart's Linear Iterative Method) Given Xo = 0 ; for i = 0 , l , 2 , - . . ,
solve the Sylvester equation .

by using algorithm 1.10.

Stewart also proved

Theorem 3.9 [33] Let

If K < $, then the iteration (3.7) converges linearly to the unique solution X of the equation

(1.1) inside the ball

and the convergence contraction constant is no more than 1 - G .

9 5 The cost of Stewart's linear iterative method is only T m 2 n + -mn flops after the fim 2

9 2 5 iteration, which costs 10(m l+n3) + ~m n + -Tmn2 flops. since the coefficient matrices of the

Sylvester equations have already been transformed to the required form for all i > 0. The

storage requirements are 2(m +n)2 .

It is easy to show that the approximation of the Taylor expansion (3.5)

F (Xi) + A 22(Xi+l - X i) - (Xi+l -Xi)A 1 1 = 0

yields Stewart's linear iterative method.

3.22 Newton's Method

Chatelin [6] studied Newton's method for refining the invariant subspaces. She applied

Newton's method directly to the generalized decoupling equations (2.10): given T fO)

~ f ~ + l) = Tik) - [DF(T{~))]-~ F(Tfk))

where the Frechet derivative

By choosing T 1 = and ST = [I,, , 0] , Demrnel[8] obtains Newton's method for solving ti1
the ARE (1.1).

Algorithm 3.10 (Newton's Method) Given Xo = 0 ; for i = 0 , 1 , 2 , . . - , do

(1) C o r n p ~ t e C ~ = A ~ ~ - X ~ A ~ ~ , Di=A11+A12Xi and Fi=-A21-XiA12Xi;

(2) Solve the Sylvester equation

Demmel also shows that Newton's method converges quadratically to the solution.

Theorem 3.11 [8] Let K be given by theorem 3.9. If "&-, then Newton's iteration (3.1 1)

converges quadratically to the unique solution X inside the ball given by (3.9), and

Each Newton iteration is very expensive because a different Sylvester equation has to be

solved at each iteration; therefore, the coefficient matrices must be transformed to the required

(Schur or Hessenberg) forms. The operation count for each Newton iteration is

11 2 7 lO(m 3+n 3, + ~m n + ~ m n and the storage requirements are 2(m +n)2 + (m 2+n 2). For sym-

metric ARES, because Ci = -D?, only half the work and half the storage of the general case are

required.

It is easy to show that Newton's method is the approximation

to the Taylor expansion (3.5).

3.2.4 Generalized Secant Method

The generalized secant method was proposed by Dieci and Russell [12] who considered the

approximation of the Frechet derivative

Substituting it into the Newton iteration (3.1 I), we obtain

Alternatively, if our approximation is made by

we get another secant iteration

Dieci and Russell suggest that one can use the following generalized secant method to solve

the ARE (1.1):

Algorithm 3.12 (Generalized Secant Method)

(1) Given Xo = 0, solve X 1 by using Stewart's linear iterative method.

(2) For i = 1 , 3 , 5 , . - , solve the Sylvester equations

Theorem 3.13 1121 Let x be given by theorem 3.9 and KC-&. Then the generalized secant

method (3.16) converges superlinearly to a unique solution X inside the ball given by (3.9).

Moreover,

1+Js wherep = - .
The operation count for each iteration of the generalized secant method is only about half

7 work of each Newton iteration - 10n3 + ;m 2n + -Zmn2 flops if i is an even number and

10m3 + q m 2 n + mn2 flops if i is an odd number - because only one matrix needs to be Z

transformed to the required (upper Schur or Hessenberg) form, but extra mn stoI$ge locations are

required (2(m +n)2 + (m 2+n 2+mn)) compared to Newton's method.

It seems that the generalized secant method is often more efficient than Newton's method

although its order of convergence is smaller. Dieci and Russell use an efficiency index to analyze

the efficiency of these two methods. In their results, the efficiency index of the generalized secant

1 + 6 method is .-, = 1.6 while the efficiency index of Newton's method is fi= 1.4.

However, this method is not suitable for solving symmetric ARES since the same amount of

work per iteration is needed compared to the nonsymmetric case.

3.3 Conditioning of Algebraic Riccati Equations

The conditioning of the algebraic Riccati equations has been discussed by several authors.

We have already seen earlier in this chapter that K and sep (A 11 , A 22) play important roles in the

convergence properties for most iterative methods (Stewart's method, Newton's method, and the

generalized secant method). An important result for the conditioning of the ARE (1.1) is given by

Dieci [lo].

Let us consider the perturbed ARE

(A 2 1 + E B 2 1) + (A 2 2 + ~ 2 2) X (~) - X (~) (A 1 1 + ~ 1 1) - X (~) (A 1 2 + ~ 1 2) X (~) = 0 (3.14)

where 0 < E <c 1 and the initial condition

X (0) = x .

We suppose the solution of the perturbed ARE (3.14) to be

X(E) = x +&(0)+0(&2) .

By differentiating (3.14) with respect to E and letting E = 0 , we obtain

where

If the Sylvester operator $(X) is nonsingular, then

Therefore, the relative error is

where

is called the condition number of the ARE (1.1). If the Frobenius nonn is used, the condition

number of the ARE (1.1) is

where om= and o- are the largest and smallest singular values of the matrix

(A22-m lz)@Im -1, @(A 11+A 12x1 -

It is clear that the relative error strictly depends upon the size of the condition number or

sep (A 22-XA 12 , A l+A 12X). If A(A ll+A 12X) and A(A 2zXA 12) are close enough together, one

can hardly solve the ARE (1 . l) numerically.

3.4 Implementations

We have already introduced several important methods for solving AREs in the first two

sections of this chapter, and discussed the conditioning of AREs in the last section. In this sec-

tion, we will discuss their implementations in more detail.

3.4.1 Iterative Refinement Method

In order to estimate the condition number cond(@(X)) and to correct the solution for the

ill-conditioned ARE (1.1), Dieci [lo] uses the iterative refinement method for refining the solu-

tion of the Sylvester equation (1.5).

Algorithm 3.14 (Iterative Rejinement)

(1) Solve the Sylvester equation (1.5) in t-digit arithmetic by using algorithm 1.10;

(2) Compute the residual matrix R = F - (CX - XD) in 2t-digit arithmetic;

(3) Solve the Sylvester equation CX - XD = R in t-digit arithmetic;

(4) Estimate the condition number

cond (4a 1) = &#j
where EPS is the machine precision for t-digit arithmetic.

(5) Correct the solution X := X + Y.

The iterative refinement scheme is very cheap because C , D have already been transformed to

the desired forms.

3.42 Steepest Descent Technique

It is well-known that Newton's method and the secant method converge only locally. It is

very important to obtain a good initial approximation by using some global methods. Dieci, Lee

and Russell [ll] suggest that one can use the steepest descent technique to get a good initial

approximation for the solution of the ARE (1.1). The framework for this method is to minimize

the function

by using the steepest descent method.

Algorithm 3.15 (Steepest Descent Technique) Given Xo , for i = 0 , 1 , 2 , . - -

(1) Compute the gradient

Hi = VG (Xi) = (A 22 - X ~ A 1 2) T ~ (xi) - F (Xi)(A + A 1 2 ~ i) T ;

(2) Compute ai > 0 such that

G(Xi -aiHi) = mi G Xi-CLH;) ; .>F (

(3) Let Xi+, = Xi - aiHi .

The local convergence property of the steepest descent method is linear and the contraction

constant is no more than LcL where &, and L are the largest and smallest eigenvalues, Z z G Z

respectively, of the matrix V2G (X) . Therefore, the convergence of the steepest descent method

can be very slow if << L, .

The cost of each steepest descent iteration strongly depends on the efficiency of the line

search method in step (2) where the function G (Xi) must be evaluated several times. The cost of

each function evaluation is 2m 2n + mn flops. For the case m=n , this is about of each New-

ton iteration.

For symmetric AREs, it is easy to show that if Xo is symmetric, then each Hi = HT and

F (Xi) = [F (xi)lT is too; therefore, the cost is only about half of the nonsymmetric case.

3.43 Reordering Eigenvalues

It often happens that our numerical solutions of the AREs via iterative methods are not the

ones we need. Can one obtain the desired solution from another known solution? It is not easy in

general. Dieci [lo] discussed this problem. Since some solutions are known, one usually can

easily obtain the eigenvalues from the solutions. These eigenvalues can be reordered by using

EISPACK subroutines; therefore, we can obtain our desired solutions after reordering eigen-

values. To be more specific let X be a solution of the ARE (1.1) satisfying

Suppose we seek the solution X* satisfying

Let Q be an orthogonal matrix such that

where Re (~(,!f~~)) > Re (~(fd) . It can be shown that the desired solution is

where H = TQQ .

CHAPTER 4

CONJUGATE GRADIENT METHOD FOR SOLVING ARE'S

The conjugate gradient method was first introduced by Hestenes and Stiefel [20] for solving

systems of linear equations, or equivalently, solving quadratic unconstrained optimization prob-

lems. Fletcher and Reeves [15], and Polak and Ribiere [30] developed conjugate gradient

methods for solving generalized nonlinear optimization problems.

The conjugate gradient method has been studied by many authors and it is considered as

one of the best methods for solving large sparse linear systems of equations, nonlinear systems of

equations and nonlinear optimization problems because other methods need matrix factorizations

where storage resources may not be available.

In this chapter, we will introduce this method for solving algebraic Riccati equations. But

first of all, let us review the conjugate gradient method for solving nonlinear unconstrained

optimization problems.

4.1 Conjugate Gradient Method for Solving Nonlinear Optimization Problems

Originally, the conjugate gradient method was applied to solve quadratic unconstrained

optimization problems or linear systems of equations [20]. Several conjugate gradient methods

have been developed for solving generalized nonlinear optimization problems (the Fletcher-

Reeves method, the Polak-Ribiere method). Also, many implementation aspects have been stu-

died, such as the line search method, the Hessian matrix update, and the preconditioning tech-

nique. We will begin our discussion from quadratic functions.

4.1.1 Quadratic Case

Consider the quadratic unconstrained optimization problem

Min f (x) f (x) := T l x T ~ x - b T x + c (4.1)

where A is an nxn positive definite matrix and x , b E Rn. It is not difficult to show that solving

(4.1) is equivalent to solving the linear system of equations

Algorithm 4.1 (Conjugate Gradient Method) Let f (x) be given by (4.1). Given any initial

guess%€ RR:

(I) If go = V f (w) = 0 , then the solution of (4.1) is x* = xo ; otherwise, compute do = - go .

(2) F o r k = O , 1 , 2 , ,n-1,let

where

and

gk+l= V f (xk+l) .

If g k + l = 0 ,then xk+l is the solution; otherwise, let

dk+l = - gk+l+ Pk dk

where

An advantage of the Algorithm 4.1 is that the solution can be found within n iterations. In

fact, one can show that the conjugate gradient method for solving the optimization problem (4.1)

is equivalent to the Gaussian elimination method for solving the linear system of equations (4.2).

Alternatively, instead of using (4.3), one can use a line search method to obtain % such that

Theoretically, this method will also terminate within n iterations if all line searches are exact.

Another advantage of the conjugate gradient method is that there is no matrix factorization

performed. Therefore, when the matrix A is large and sparse, we do not need to store any full

matrix.

4.1.2 General Cases

For generalized nonlinear unconstrained optimization problems, we can still use the conju-

gate gradient algorithm 4.1 where the matrix A is replaced by the Hessian matrix V2f (xk) at each

iteration, or a k is determined by a line search. There are two important conjugate gradient

methods for solving generalized nonlinear optimization problems: one is developed by Fletcher

and Reeves [15] , and the other is by Pol& and Ribiere [30] . They m slightly different.

Algorithm 4 2 (Generalized Conjugate Gradient Method) Let f (x) E C 2 (~) for all

X E D S R " :

(1) Given an initial approximation 5, let k = 0 and do = - V f (xo).

(2) Repeat (i) - (iv)

(i) stop if V f (xk) = 0; otherwise,

(ii) compute

(iv) let k := k + 1 .

In algorithm 4.2, ak is determined either by

or by a lime search method

while Pk can be chosen by the Fletcher-Reeves conjugate gradient method

or by the Polak-Ribiere conjugate gradient method

Remark 4.3 Iff (x) is a quadratic function, (4.5) and (4.6) are identical and the algorithm

will terminate within n iterations when all of the line searches are exact or (4.1) is used.

Both of the above methods have been discussed and implemented by many authors. In gen-

eral, since the n-step termination property will no longer hold, the convergence properties of the

conjugate gradient method become a major issue. From our numerical experience, the Polak-

Ribiere method seems much more efficient than the Fletcher-Reeves method in terms of conver-

gence. But only the Fletcher-Reeves method has been shown to converge if a line search method

is used.

Powell [31] discusses the convergence properties for both methods and gives a clear expla-

nation. In his work, he shows that the Algorithm 4.2 will converge to a local stationary point

when Pk 1 0. This is always true for the Fletcher-Reeves method but may not hold for the Polak-

Ribiere method. Therefore, he suggests that one can use

instead of using the Polak-Ribiere method.

Remark 4.4 In (4.7), when Pk > 0, it is the Polak-Ribiere metho8; when Pk = 0, it is the

steepest descent method.

4.13 Implementations for Conjugate Gradient Method

Because the conjugate gradient method has its advantages for solving large sparse prob-

lems, it has been recognized as one of the best methods for solving large sparse problems. The

implementation aspects include line search methods, the Hessian matrix approximations and the

convergence property improvements or preconditioning technique.

(1) Line Search Method

When a line search conjugate gradient method is used to solve a nonlinear optimization

problem, the efficiency of the method is strongly dependent upon the efficiency of the line search,

because this step may be very expensive. The method of line search is not only applied to the

conjugate gradient method, but also to the other optimization methods such as Newton's method,

the secant method and the steepest descent method.

Let us suppose that p E Rn is a descent direction of the function f (x), that is, p satisfies

Vf (~) ~ p < 0. Then there exists a > 0 such that, when 0 < z < 1 and z < o < 1 , the following

two conditions hold:

where ~ k + ~ = xk + a p . A small o gives a relatively inexact line search while a bigger o (close to

1) provides a fairly exact line search.

Most authors agree that the strategy of the line search is either the condition (4.8) or both

conditions (4.8) and (4.9). The practical method for line search can be any one dimensional

optimization method, such as the golden section search method, Newton's method or the secant

method. However, these methods may be very expensive (some of them may be even impossible)

because we need to evaluate the function and its derivative many times.

A successful line search method is the backtracking line search method incorporating cubic

interpolations (For more detail, see Dennis and Schnabel [9]).

(2) Update Hessian Matrix

The conjugate gradient method without line search needs to evaluate the Hessian matrix at

each iteration and this work may be very expensive or even impossible. Instead of this, one can

use some Hessian matrix update methods to approximate the Hessian matrix. For example, the

positive definite secant update (the BFGS update) method can be used, i.e.

where sk = xk+l- xk and yk = gk+l- gk . This method needs 0 (n 2, storage locations in general.

(3) Convergence Properties and Preconditioning Technique

The convergence properties of the conjugate gradient method still remain poorly understood

although n-step termination is true for quadratic functions. Our numerical examples show that

this method seems linearly convergent, and works poorly sometimes. Furthermore, if a restarting

technique (reset the line search direction to be the steepest descent direction every n iterations) is

used, one can show that the Fletcher-Reeves conjugate gradient method is n-step q-superlinearly

convergent when the line search is exact. But when n is large enough, the order of convergence is

essentially only linear.

However, it is well-known that the conjugate gradient method is at least as good as the

steepest descent method. In fact, just as the steepest descent method, the rate of convergence of

the conjugate gradient method depends on how separate the eigenvalues of the Hessian matrix

axe. When a l l these eigenvalues are close together, the conjugate gradient method can be surpris-

ingly efficient. In another word, if the Hessian matrix is close to a unit matrix, this method can

converge very fast to a solution.

In order to improve convergence properties, a preconditioning technique can be used. The

idea of preconditioning originated in partial differential equation research, but it has been applied

to solve both quadratic and nonquadratic optimization problems.

When we consider solving a linear system of equations, or a quadratic optimization prob-

lem, the Hessian matrix remains unchanged everywhere. This matrix can be modified so that all

its eigenvalues are close together (or the Hessian matrix is close to a unit matrix) and the method

will often be much more efficient than without using it. For the general nonlinear functions, some

type of Hessian matrix approximations can be used. For example, we can use the preconditioned

BFGS method

where gk = Hk-l gk and Hk is given by the BFGS formula. Since the Hessian matrices are

needed, 0 (n 2, storage locations are required in general.

4.2 Conjugate Gradient Method for Solving Algebraic Riccati Equations

We now introduce a "new" method, the conjugate gradient method, for solving algebraic

Riccati equations.

4.2.1 Conjugate Gradient Algorithm

Let us still consider the ARE (1.1)

F(X) = [F i j (X)] = A2i+A22X -XA12-XAI2X

and let

Then the gradient of the function G is [I 11

Since the gradient of the function G is easy to compute from (4.11), we can use a line

search conjugate gradient method to locate a local minimal point of the function G , which is usu-

ally (not always) a solution of the ARE (1.1).

Algorithm 4 5 (Conjugate Gradient Method for Solving ARES)

(1) Give an initial guess X (O) E RmX" , let k = 0

(2) Repeat (i) - (iv)

(i) Stop if some stopping criterion is satisfied; otherwise, do (ii) - (iv)

(ii) Determine a(k) such that

Remark 4.6

/X - x Q)lF
(1) Our stopping criterion is IF (X(k))/F < E or < E .

IX Ck)n~
(2) a(k) is determined by a line search method.

(3) fl(k) is chosen according to Powell's suggestion (4.7)

4.2.2 Line Search Algorithm

The efficiency of each conjugate gradient iteration is critically dependent upon the cost of

the line search method, where the function G has to be evaluated several times. The exact line

search conjugate gradient method is n-step q-superlinearly convergent, but in practice, it is

impossible to do the exact line search within a finite number of iterations. Instead, we use an

inexact line search method. It can be shown that an inexact line search conjugate gradient method

is globally convergent (Al-Baali, [I]), and the order of the convergence is linear. -
The strategy of the line search has been discussed in the last section. Although a more exact

line search gives the faster convergence for the conjugate gradient method, this may not be very

efficient because more function evaluations are required for a more exact line search. Therefore,

our line search algorithm should do a fairly exact line search and meanwhile, keep the number of

function evaluations as small as possible. Obviously, the condition (4.8) needs more function

evaluations to satisfy. So our line search strategy is only the condition (4.7) rather then both con-

ditions. One of the best choices for the line search is still the backtracking line search with cubic

interpolation.

Because V G(x(~)) is already known, it is easy to do l i e search by minimizing the cubic

approximation of the function G . If we let

then

It is reasonable to use

as a cubic approximation of the function g (a), where the coefficients a , b are determined by

choosing two different value of a , namely a* and az, so

Therefore, the minimal point of the function g (a),

is our approximate a (k) .

In the line search algorithm suggested in [9], initially, a1 = 1 and &(k) is determined by

minimizing a quadratic fit. If &(k) does not satisfy the condition

then successive backtracking is used: let a2 := a1 , a1 := d k) , and minimize the cubic interpolant

to obtain a new &(k) . A disadvantage of this method is that the initial a1 may be too small and,

consequently, the line search may not be exact enough. This disadvantage will definitely affect

the convergence of the conjugate gradient method. On the other hand, if we choose a large initial

a1 , then the procedure of locating the acceptable &(k) may require many function evaluations and

the cost of each conjugate gradient iteration can be very expensive.

In order to overcome this disadvantage, we would rather use "foreuacking" than backtrack-

ing when the above case happens, that is, we increase the value of a1 so that we can find another

&(k) which is more accurate than the old one. We summarize the whole procedure in the Algo-

rithm 4.7.

Algorithm 4.7 (Line Search Algorithm)

(2) Choose 0 < a1 < a2 such that

g l < go < g2

where g l = G (X (k) + a l ~ (~ 1) and g 2 = G (X (k) + a 2 ~ (k)) ;

(3) Compute the cubic approximation

g(a) = a a 3 + b a 2 + c a + g o

where

(4) Determine dk): if a

Remark 4.8

, otherwise ak) =
= O * a(k)=--2b

-b +db2-3ac
3a

(1) Other one dimensional minimization techniques (such as Newton's method and the secant

method) can also be used to evaluate dk). but it would be more expensive because both

g (a) and g' (a) (or its approximation) are needed at each point.

(2) The existence of al and a2 is guaranteed because D (k) is a descent direction and g (a) is

bounded below.

The cost of this line search method is strictly dependent on the number evaluations of the

function G . Each function evaluation needs m zn + 2mn flops. When m = n , this is about A of

the cost of a Newton iteration. Therefore, reducing the number of function eva$ations is the

major work of our algorithm.

In practice, we use a 2 = 1 at the beginning. If g (a2) l g (0) , then a1 := a2 and

a 2 := 10a2 ; otherwise, let a1 = 0.1a2 . We keep doing this procedure until the requirement is

met. Our numerical experience shows that the average number of function evaluations for this

method is about three (this is good, because we need at least two function evaluations in each line

search) and the line search is fairly exact.

4.23 Comparisons and Implementations

In this section, we will compare our conjugate gradient method to some other methods

(Newton's method, the secant method and the Schur method) in terms of operation counts,

storage requirements and convergence properties.

(1) Operation Counts

As we know, the cost of the conjugate gradient method is critically dependent upon the line

search efficiency or the average number of function evaluations. Because one gradient value is

required, if we save A21 -XA 11 , the total cost of our conjugate gradient iteration is

(m 2n +2mn 2, + k (2m 2n +mn 2, flops where k is the number of function evaluations. In our line

search method, the average number of function evaluations is assumed to be 3 (this is from

numerical experience); therefore, the cost of each iteration is 7m2n +5mn2 flops. Table 4.1

gives the comparison of the cost among Newton's method, the generalized secant method, and

the conjugate gradient method.

I Table 4.1 : Operation Counts for Solving ARE (1.1)

Particularly, when the Riccati equation is the symmetric ARE (1.2)

where m = n and A 12, d21 are symmetric positive semi-definite matrices, then the matrix F (2)

will also be symmetric if the solution 2 is symmetric. Therefore, the gradient matrix VG (A?) will

be symmetric as well:

Iteration i Secant Newton C-G

In practice, we seek a symmetric positive semi-definite solution of the ARE (1.2). Begin-

ning with a symmetric initial guess $(O), al l of our will also be symmetric. Then the cost of

each conjugate gradient iteration is only (2k + l)n3 flops. When k = 3, tkis is about half the work

of Newton's method.

Table 4.2: Operation Counts for Solving ARE (1.2)

Iterationi I Newton I Secant I C-G

In the case of m >> n (or m << n), the cost of one conjugate gradient iteration is only

0 (m 2, (or 0 (n 2,) flops where Newton's method needs 0 (m 3, (or 0 (n 3)) flops.

I Table 4.3: Operation Counts for Solving ARE (1.1) (m >> n) I
I Iterationi I Newton I Secant I C G I

(2) Storage Consideration

On the aspect of storage requirements, the conjugate gradient method needs only 5mn addi-

tional storage locations since we do not perform any matrix factorization. The comparisons of the

storage requirements among Newton's method, the secant method, the Schur method and the con-

jugate gradient method are in table 4.4 for the nonsymmetric case and table 4.5 for the symmetric

case.

I Table 4.5: Storage requirements for Solving ARE (1.2) I

Table 4.4: Storage requirements for Solving ARE (1.1)

I Newton 1 Secant I Schur I C-G I

Also in the case of m >> n , al l the other methods require 0 (m2) extra storage locations

Newton

3m 2+3n U m n

because some matrix factorizations (QR-factorization or LU-decomposition) must be carried out.

But the conjugate gradient method requires only 0 (m) extra storage.spaces (the steepest descent

Schur

2m 2+2n %mn

Secant

3m 2+3n 2+5mn

method can be considered as a special case of the conjugate gradient method, i.e., Pk = 0).

C-G

m 2+n 2+7mn

I Table 4.6: Additional storage requirements for Solving ARE (I . 1) (m >> n) I
I Newton I Secant I Schur I C-G I

(3) Convergence Properties

We have already discussed the convergence properties of the conjugate gradient method for

solving general nonlinear unconstrained optimization problems in Section 4.1. These properties

will also hold for our conjugate gradient method for solving ARES.

Since for each iteration, we do not increase the function value G(X), the global conver-

gence property can be guaranteed for any initial value X(O). In fact, as we already know, the con-

jugate gradient method is at least as good as the steepest descent method. This suggests using the

conjugate gradient method instead of the steepest descent technique to obtain a good initial

approximation for Newton's method or the secant method [I 11.

The local convergence properties are not very clear so far. Although with a restarting pro-

cedure the n-step q-superlinear convergence property can be proved, it is almost impossible to tell

the difference between it and linear convergence when n is large. Our numerical experience

shows that the conjugate gradient method converges only linearly in general and it can be very

slow.

(4) Conditioning We have already discuss the conditioning of the ARE (1.1) in Section 3.3. We

know that a Sylvester equation has to be solved at each Newton iteration or each secant iteration.

When the condition number cond (4(X)) is large, one can hardly solve these Sylvester equations.

But when we use the conjugate gradient method to solve the ARE (1.1). the condition number

will no longer be the major factor. This is because we do not solve Sylvester equations any more.

Moreover, since the ARE (1.1) has been transformed to be an optimization problem, keeping the

Hessian matrix to be positive definite becomes the conditioning of the conjugate gradient method

for solving the ARE (1.1). In practice, since we use a line search method instead of the Hessian

matrix, the function value will be decreasing after each line search and the method will always

work. Numerical examples tell us that the conjugate gradient method is not suitable for solving

regular well-conditioned problems because Newton's method and the secant method are usually

more efficient, but the conjugate gradient method may be suitable for solving ill-conditioned

problems.

(5) Large Sparse Systems

When solving large sparse systems, matrix factorizations (LU-decomposition and QR-

factorization) are very expensive, also storage requirements are potentially full matrices

(0 (m2 + n2)) which may not be available in practice. The conjugate gradient method has the

advantage of only doing matrix additions and multiplications, where the cost is considerably less

than doing the matrix factorizations and there is no W matrix storage required. This is probably

the only realistic method for solving large sparse problems.

(6) Other Implementations

In practice, if the line search direction D (~) is not a descent direction, i.e.,

8 & [H ~ Y) - D ~ J ~)] > 0, we reset the direction to be the steepest descent direction
L= J

D (k) = -H (k) = -VG (X (k)) . This is called a restarting technique.

As we have mentioned, instead of performing a line search, the Hessian matrix can be used

to obtain a(k) at each iteration. In general, 0 (m 2n 2, storage requirements are needed. A draw-

back of using the Hessian matrix is that the the global convergence property may not hold

because the Hessian matrix can be singular or not positive definite. Since the conjugate gradient

method may only be suitable for solving large problems, if we want use the Hessian matrix or

some of its approximations, we must avoid using (m2n2) storage locations. This aspect needs

further studies. An advantage of having the Hessian matrix is that the preconditioning technique

can be applied so that the speed of convergence can be improved and the method can be much

more efficient.

The process of reordering is not difficult for the conjugate gradient method because the

matrices A 1 1 + A 12X and A 22 - x (k)A 12 are easy to obtain. One Newton iteration can be per-

formed on them so that we can do automatic reordering as before. But for large sparse systems,

this may be impossible due to storage limitations.

CHAPTER 5

NUMERICAL EXAMPLES

We have already discussed several numerical methods for solving ARES, and comparisons

among Newton's method, the secant method, the Schur method and the conjugate gradient

method in terms of convergence, operation counts and storage requirements have been given in

chapter 4. In this chapter, we will give some numerical examples and results (all of our computa-

tions are done on an IBM 3081 machine using VS FORTRAN on the MTS operating system at

Simon Fraser University). Our stopping criterion is either j'F (Xk)nF < E or /&-I - X~UF <
/Xk/F

Examples 1-4 arise from solving control problems and all of them require solving a well-

conditioned nonsyrnrnetric ARE (1.1). We will use Newton's method, the generalized secant

method, and the conjugate gradient method to solve these problems. For all the methods in these

four examples, the initial guesses are Xo = I .

Example 1 : Kokotovic [24]

Consider the continuous model

All of our methods give the same solution

Example 2 : Phillips [28]

Consider the discrete model

whereAlle RX , A 2 2 ~ R3* , X E R2 , Z E R3 and

[t:: t:] =

The solution of the ARE (1.1) is

Example 3 : Phillips [28]

Let us also consider the discrete model (5.2) where A 11 E R4x4 , A 2 E R4x4 , ~ (k) E R4 ,

z(k) E R4 and

The solution of this ARE is

Example 4 : Phillips [29]

Consider the continuous model (5.1) where A 11 E R4x4 , A 22 E R4x4 , x E R4 , z E R4 and

b

The solution is

X =

We compare our numerical results in table 5.1, where E = 1 v .

I Table 5.1 : Numerical Results for Examples 1-4

Remark 5.1:

(1) K is the condition number given by theorem (3.9);

(2) N indicates the number of iterations for 6-digit accuracy;

(3) r is the residual of F (X), i.e.

r = UF(XN)UF = UA21+A&N - X N A ~ ~ - X N A ~ ~ X N ~ F ;

(4) Time is the CPU time in seconds.

Example Newton / K I N Time r

The numerical results in examples 1-4 show that Newton's method and the secant method

are comparable while the conjugate gradient method is less efficient for solving well-conditioned

problems.

Examples 5-6 arise from solving continuous optimal control problems. As' we know from

chapter 2, a symmetric ARE (1.2) has to be solved. We apply the Schur method, Newton's

method and the conjugate gradient method to solve these two problems (since we know that the

secant method is not as good as Newton's method for solving symmetric ARES, we will not use

it). For Newton's method and the conjugate gradient method, because we seek the symmetric

positive semi-definite solution, we choose a symmetric positive semi-delinit. initial guesses,

Secant

N Time r

C-G

N Time r

X 0 = 0 , for both problems.

Example 5 : Laub [25]

Let

Table 5.2 gives the numerical results for n = 50. In this example, the Schur method works

very well; Newton's method converges to the solution which is not the desired one and one can-

not expect this solution to be more accurate; the conjugate gradient method wosrks fairly well, and

it converges to the correct solution.

Example 6 : Laub [25]

Let

The numerical results are in table 5.2 for n = 21. In this example, the Schur method and

Newton's method fail, but the conjugate gradient method still works.

I Table 5.2 : Numerical Results for Examples 5-6 I
Example

5

The results in table 5.2 show that: the Schur method can have difficulty because of ill-

conditioning; Newton's method may not converge to the required solution when the initial guess

is not close enough to the solution; the conjugate gradient method converges to a solution after

many iterations. In addition, both the Schur method and Newton's method need a lot of storage

locations (full matrix).

6

These results also show that, for Newton's method, one may not obtain a more accurate

solution (see example 5) and the method may even fail to converge (example 6;Newton's method

overflows) without going through some kind of descent techniques (such as a steepest descent

technique) to obtain a good initial approximation. For the conjugate gradient method, the conver-

gence may be very slow, but because of the sparsity, the function evaluations can be done in a

cheaper way (not necessary to perform the matrix multiplications in 0 (n3) flops), such that the

cost of each iteration is very cheap (for example, in our results, the cost of each conjugate gra-

dient iteration is only about 10% to 15% of the cost of each Newton iteration).

Schur

Time r

18.2 0.58E-10

Examples 7-8 are coming from computing invariant subspaces.

1.62 0.45E+3

Example 7 : Golub [I91

Newton

N Time r

5 35.4 0.81E-1

Consider the problem of computing an invariant subspace E RSx2 of the Hessenberg 11

C-G

N Time r

49 81.4 0.99E-6

fails

matrix

365 35.3 0.18E-5

With the initial guess Xo = 0 , Newton's method and the secant method converge to the

solution of the ARE (1.1)

while the conjugate gradient method converges to the solution

The results are in table 5.3.

I Table 5.3 : Numerical Results for Example 7

I secant I Newton I C-G I

Example 8 : Varah [35]

N Time r

8 0.012 0.19E-13

Also consider the 1 xl upper Hessenberg matrix

P

N Time r .

7 0.016 0.473-11

N Time r

108 0.080 0.85E-6

We compute an eigenvector . Again, we use the secant method, Newton's method and the i:l
conjugate gradient method. All of our methods converge to the same solution for both

Xo=[O,O, , O I T andXo=[1 , O , ... ,O]T.Forexample,whenl =8,thesolutionis

The results are given in table 5.4 for 1 =8', 12, and 20 with the initial guess

X o = [l ,O, - . - ,O]T .

Table 5.4 : Numerical Results for Example 8

1 Secant Newton C-G

N T i e r N Time r N Time r

8 8 0.035 0.39E-9 6 0.048 0.21E-10 21 0.020 0.43E-6

12 16 0.170 0.71E-6 6 0.117 0.30E-8 23 0.035 0.86E-6

20 10 0.430 0.92E-12 7 0.554 0.65E-8 86 0.287 0.92E-6

The numerical results of example 8 verify our claim in chapter 4, i.e., when m >> n (here

n = 1 and m = 1-1), the conjugate gradient method can be more efficient.

CHAPTER 6

CONCLUSIONS

In this thesis, we have reviewed the applications and the methods for solving matrix alge-

braic Riccati equations. These applications are refining invariant subspaces, solving optimal con-

trol problems (computing optimal control functions for both continuous and discrete problems,

solving singular perturbation control systems), and decoupling boundary value problems for ordi-

nary differential equations. The methods we have reviewed include direct methods (the Schur

method and the syrnplectic method), iterative methods (Kokotovic's linear iterative methods,

Stewart's linear iterative method, Newton's method and the generalized secant method). We have

also discussed the conditioning of AREs as well as some implementation issues (the iterative

refinement method, the steepest descent technique and the eigenvalues reordering). Furthermore,

we have proposed and applied the conjugate gradient method to solve AREs (only a line search

conjugate gradient method is used in this thesis). Theoretical comparisons in chapter 4 and

numerical results in chapter 5 indicate that this method is not suitable for solving regular well-

conditioned problems (Newton's method, the secant method and the Schur method are usually

more efficient). However, for large sparse problems, the conjugate gradient method has advan-

tages. Since no matrix factorization is required, this method can be more efficient for solving

large sparse problems and also more stable for solving ill-conditioned problems. The efficiency of

the line search conjugate gradient method is critically dependent upon the efficiency of the line

search algorithm, since it determines the number of function evaluations. Also, we have shown

from both theory and practice that the conjugate gradient method can be more efficient if m >> n .

It is well-known that for the local convergence methods (such as Newton's method and the

secant method), it is very important to have a good initial approximation of the solution.

Although this work can be done by using the steepest descent technique it can also be done by

using the conjugate gradient method, which is at least as good as the steepest descent technique.

Actually, the steepest descent technique is a special case of the conjugate gradient method

(p k = o) .

The conjugate gradient method without line search, particularly, the preconditioned conju-

gate gradient method, needs to be investigated further. The difficulties are how to find the Hes-

sian matrix without storing full mn xmn matrices, and how much we can improve the method in

tenns of cost vs. convergence.

Another question is, whether we can use the conjugate gradient method to solve the general-

ized (system of) algebraic Riccati equations

and, if possible, how efficient it will be (Newton's method and the secant method can easily be

applied to this case [I 11).

Finally, improving the bound for the angle and gap between two invariant subspaces is still

one of our considerations, particularly for nonsymmetric matrices.

REFERENCES

MA-Baali; "Descent property and global convergence of the Fletcher-Reeves method with

inexact line search, M A J. Numer. Anal. 5 (1985), pp. 121-124.

U.M.Ascher, R.M.M.Mattheij, R.D.Russel1; Numerical Solution of Boundary Value Prob-

l e m for Ordinary Differential Equations, Prentice-Hall(1988).

R.H.Bartels, G.W.Stewart; "Solution of the matrix equation AX +XB = C ", CACM 15

(1972), p ~ . 820-826.

A.Bunse-Gerstner, V.Mehann; "A symplectic QR-like algorithm for the solution of the

real algebraic Riccati equation", IEEE Trans. Auto. Control AC-3 1 (1986)- pp. 1 104- 1 1 13.

A.Bunse-Gerstner, V.Mehrmann, D.Watkins; "An SR algorithm for Hamiltonian matrices

based on Gaussian elimination", manuscript (1987).

EChatelin; "Simultaneous Newton's iteration for the eigenproblem", Computing Suppl. 5

(1984), p ~ . 67-74.

C.Davis, W.Kahan; "The rotation of eigenvectors by a perturbation, HI", SIAM J. Numer.

Anal., 7 (1970), pp. 1-46.

J.W.Demme1; "Three methods for relining estimates of invariant subspaces", Computing 38

(1987), p ~ . 43-57,

J.E.Dennis, R.B.Schnabe1; Numerical Methodr for Unconstrained Optimization and Non-

linear Equations, Prentice-Hall(1983).

[lo] L.Dieci; "Some numerical considerations and a new approach for the solution of algebraic

Riccati equations", manuscript (1988).

[ll] L.Dieci, Y.M.Lee, R.D.Russel1; "Iterative methods for solving algebraic Riccati equations"

manuscript (1987).

1121 L.Dieci, R.D.Russel1; "On the computation of invariant subspaces", manuscript (1987).

J.J.Dongarra, C.B.Moler, J.H.Wilkinson; "Improving the accuracy of computed eqgen-

values and eigenvectoss", SIAM J. Numer. Anal. 20 (1983). pp. 23-45.

R-Fletcher, Practical Methsdr of Optimization, second edition, John Wiley, (1987).

R.Fletcher, C.M.Revees; "Function minimization by conjugate gradients", Comput. J., 7

(1964), pp. 149-154.

B.S.Garbow, J.M.Boyle, J.J.Dongarra, C.B.Moler, Matrix Eigensystem Routines: EISPACK

Guide Extension, Springer-Verlag (1977).

P.E.Gill, W.Murray, M.H.Wright; Practical Optimization, Academic Press (1981).

G.H.Golub, S.Nash, C.F.vanLoan; "A Hessenberg-Schur method for the problem

AX + XB = C", IEEE Trans. Auto. Control, AC-24 (1979), pp. 909-913.

G.H.Golub, C.F.vanLoan; Matrix Computations, The Johns Hopkins Univ. Press (1983).

M.R.Hestenes, E.L.Stiefe1; "Methods of conjugate gradients for solving linear systems", J.

Res. Nat. Bur. Standards, Section B, 49 (1952), pp. 409-436.

M.R.Hestenes; Conjugate-Direction Methods in Optimization, Springer-Verlag, (1980).

W.Kahan, B.N.Parlett, E.Jiang; "Residual bounds on approximate eigensystems of nonnor-

ma1 matrices", SIAM J. Numer. Anal., 19 (1982), pp.470-484.

P.V.Kokotovic; "Applications of singular perturbation techniques to control problems",

SIAM Review, 26 (1986), pp. 501-550.

P.V.Kokotovic; "A Riccati equation for block-diagonalization of ill-conditioned systems",

IEEE Trans. Auto. Control AC-20 (1975), pp. 8 12-8 14.

A.J.Laub; "A Schur method for solving algebraic Riccati equations", IEEE Trans. Auto.

Conml AC-24 (1979), pp. 913-921.

F.L.Lewis; Optimal Control, Wiley, (1986).

B.Parlett; The Symmetric Eigenvalue Problem, Prentice-HaU(1980).

R.G.Phillips; "Reduced order modelling and control of two-time-scale discrete systems", Int

J. Control. 31 (1980). DD. 756-780.

[29] R.G.Phillips; "A two-stage design of linear feedback controk", IEEE Trans. Auto. Control

AC-25 (1980), pp. 1220-1223. ip [30] EPolak; Computational Methods in Optimization: A

Unified Approach, Academic Press (1971).

[3 11 D.J.M.Powel1; "Convergence properties of algorithms for nonlinear optimization", SIAM

Review 28 (1986), pp. 487-500.

[32] G.W.Stewart; "HQR3 and EXCHANG: Fortran subroutines for calculating and ordering the

eigenvalues of a real upper Hessenberg matrix", ACM Trans. Math. Software 2 (1970), pp.

275-280.

[33] G.W.Stewart; "Emr and perturbation bounds for subspaces associated with certain eigen-

value problems", SIAM Review, 15 (1973), pp. 727-764.

[34] C.vanLoan; "A syrnplectic method for approximating all the eigenvalues of a Harniltonian

matrix", Lin. Alg. Appl. 61 (1984), pp. 233-251.

[35] J.W.Varah; "The calculation of the eigenvectors of a general complex matrix by inverse

iteration", Math. Comp. 22 (1968), pp.785-791.

