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ABSTRACT 

Recently, algebraic Riccati equations (AREs) have been widely solved in many fields. In 

this thesis, some applications will be discussed. These applications include computing ill- 

conditioned eigenproblems (relining invariant subspaces); solving optimal control problems 

(computing optimal control functions for both continuous and discrete time systems, and solving 

singular perturbation problems of dynamic systems); and decoupling boundary value problems 

for ordinary differential equations. 

Several numerical methods for solving AREs have been developed in the past 20 years. 

These methods can be divided into two classes, direct methods (the Schur method and the syrn- 

plectic method) and iterative methods (linear iterative methods, Newton's method and the gen- 

eralized secant method). We will review these methods with some comparisons and implementa- 

tions. In the case of large sparse AREs, these methods will lose their efficiency because matrix 

factorizations (LU-decomposition or QR-factorization) are needed. A "new" method for solving 

AREs which may be particularly suitable for solving large sparse problems, the conjugate gra- 

dient method, will be suggested in this thesis. We will compare this method to the other methods 

(the Schur method, the generalized secant method and Newton's method) in terms of conver- 

gence, cost and storage requirements. 
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CHAPTER 1 

INTRODUCTION 

Consider the matrix quadratic equation 

where A l l  E Rnxn, A 2 2 e  Rmxm, AZ1 E Rmxn, A 1 2 e  Rnxm, and X 1 l  E Rmxn. The equation 

(1.1) is called a matrix algebraic Riccati equation (ARE). Particularly, if 

where m=n , L12 and L2l are nxn positive semi-definite matrices, then (1.2) is called a sym- 

metric algebraic Riccati equation. 

The purpose of this thesis is to discuss some numerical methods for solving algebraic Ric- 

cati equations. In this chapter, we will review some important concepts and results. Some appli- 

cations for solving AREs will be discussed in the next chapter. These applications include solving 

ill-conditioned eigenproblems or computing invariant subspaces, solving optimal control prob- 

lems, and decoupling boundary value problems (BVPs) for ordinary differential equations 

(ODES). In chapter 3, we will review several numerical methods (both direct methods and itera- 

tive methods) for solving AREs. These methods include the Schur method, linear iterative 

methods, the generalized secant method, and Newton's method. Some important theorems which 

are associated with these methods will be stated in this chapter as well as comparibns and imple- 

mentations. A "new" method for solving AREs, the conjugate gradient (C-G) method, will be 

proposed and discussed in chapter 4, with the comparisons of some methods in chapter 3 (most 

comparisons are among Newton's method, the generalized secant method, the Schur method and 

the conjugate gradient method). Numerical examples and results will be given in chapter 5, and 

finally, the conclusions are in chapter 6. 



Definition 1.1 Let the matrix A = [aij] E Rnxn . 

(1) A is called symmetric if A = A . 

(2) A is called upper (lower) triangular if aij = 0 for all l l j  <i I n  ( l l i  < j<n ). 

(3) A is called upper Hessenberg if aij = 0 for all lSj <i -191 -1 . 

(4) A is called orthogonal if A TA =I . 

(5) If there exists h E C and x E Cn , x # 0 such that A x  = hx, then h is called an eigenvalue of 

A and x is called an eigenvector of A comsponding to the eigenvalue h. The pair ( h , x ) is 

called an eigenpair. The set of all eigenvalues of the matrix A is denoted by A(A ). 

(6) If A is symmetric and xTA x > 0 ( 1 0 ) for any x E Rn , x # 0, then A is called positive 

(semi-)definite. 

Definition 1 2  

(1) Let x E Rn . The Euclidean norm ( 1  2-norm) of the vector x is defined by /q2 = =xTx . 

(2) Let A E Rmxn . The spectral norm ( 1  2-norm) of the matrix A is defined by 

The Frobenius norm (F-norm) of A is defined by 

Theorem 1.3 ( QR-Factorization ) [I91 Let A eRmxn, m 2 n Then there exist an orthogo- 

nal matrix Q E Rmxm and upper triangular matrix R E RnX" such that 

Theorem 1.4 ( Singular Value Decomposition ) [19] Let A E RmXn and k = min (m , n )  . 

Then there exist two orthogonal matrices U E Rmm and V E RnXn such that 



Definition 15 The oi ( i = 1.2, - - J c )  in (1.3) are called the singular values of A .  

Theorem 1.6 ( Real Schur Decomposition ) [I91 Let A be an nxn real matrix. Then there 

exists an orthogonal matrix Q E RnX" such that 

where each diagonal block Aii is either a 1x1 real matrix or a 2x2 real matrix having complex 

conjugate eigenvalues. Moreover, these diagonal block matrices can appear in 'any desired order 

on the diagonal. 

Definition 1.7 The nxn matrix A in (1.3) is called an upper-Schur form matrix or quasi- 

upper-triangular form matrix. 1 

To compute an upper-Schur form matrix A from a matrix A ,  one can use the QR-algorithm 

(that is, use Householder transformations to transform A to an upper Hessenberg form and repeat 

Francis' QR-steps to obtain the upper-Schur form A ). The total cost of the QR-algorithm is 

about ion3 flops. 

Definition 1.8 The linear matrix equation 

A Lower-Schur form matrix can be defined accordingly. 



is called the Sylvester equation where C E Rmm, D E RnM andX, F E RmM. 

Lemma 1.9 The Sylvester equation (1.5) has a unique solution for any F if and only if 

In order to solve the ARES, it is important to understand the methods for solving the Sylves- 

ter equations. Bartels and Stewart [3] gave the following method 

Algorithm 1.10 ( B-S Algorithm ) [3] 

( 1 )  Transform C to upper-Schur form matrix c and D to lower-Schur form matrix d by using 

the Schur decomposition: 6 = u C U , d = v D V ; 

(2) Solve the transformed system: cz - fd = uT F V ; 

(3) Transform back to the solution: X = U 2 vT  . 

5 2 The operation count of the B-S algorithm is lO(m )+n )) + p(m n +mn 2, flops and the 

storage requirements are 2(m 2+n 2+mn). If C and D are already in required Schur form, then the 

cost of the B-S algorithm is only 0 (m 2n +mn 2). 

Golub, Nash and vanLoan [I 81 developed another method for solving this equation. In their 

method, C is only required to be transformed to upper Hessenberg form instead of upper Schur 

5 5 form. The operation count of their algorithm is ~m + 5m 2n + ~ m n  + 10n flops, but an extra 

m storage locations are required. 

We will only use the B-S algorithm in this thesis, since the operation counts for both 

methods are 0 (m )+n 3, and the storage requirements are 0 (m 2+n 2).  



Definition 1.11 Let T be a linear operator T : X + CX -XD , where 

C E Rmm , D E RnX" , and X E RmX" . The norm of the operator T is defined by 

The separation of the matrices C and D is defined by 

Property 1.12 [33] Let C E Rmm and D E RnX". The separation sep (C , D ) has the follow- 

ing properties: 

(3) IfM €Rmxm andN E Rnm ,then 

If the Frobenius norm is used in (1.5) and (1.6) , one can show that /T/ and sep (C, D )  are 

the largest and the smallest singular values of the mn xmn matrix in@ c - D T @ ~ m ,  respectively. 

Definition 1.13 

(1) { an } is said to converge to a if lim /an+ = 0 ; 
n -  

(2) { a, } is said to be q-linearly convergent to a if there exist c E [0, 1) and an integer i 2 0  

such that for ~I.I kd , / a k + l  - a/ I c /ak  - w ; 

(3) { a, } is called q-superlinearly convergent to a if there exist { ck } + 0 such that 

/ a k + l -  (%! 5 ck/ak - C1/ ; 



(4) { an } is said to converge to a with q-order at least p if there exist constants p > 1 , c >O 

and l10 such that for all k2kA , /ak+* - S c / ~  - cc//p ; if p =2 , the convergence is said 

to be q-quadratic. 

Definition 1.14 [27] Let and Y be Smear subspaces of Rn . The angle between these two 

subspaces is defined by 

c o s L ( a , v  = max { f i w i q  {luTv 

where u and v are unit vectors. 

Then the gap between two linear subspaces and Y is defined by 

gap ( a  , Y) = sin 8 

and the distance between two linear subspaces and Y is defined by 

dist ( a  , Y) = ma$ gap (span (u) , Y) 
U E 



CHAPTER 2 

APPLICATIONS OF SOLVING ALGEBRAIC RICCATI EQUATIONS 

Solving algebraic Riccati equations has been used in many fields in the past 20 years and 

plays an important role in engineering and scientific research We will discuss some of its appli- 

cations in this chapter. These applications range from (1) solving ill-conditioned eigenproblems 

(refining invariant subspaces), (2) solving optimal control problems for both continuous-time and 

discrete-time cases (computing optimal control functions), and (3) decoupling boundary value 

problems for ordinary differential equations. 

2.1 Computing Invariant Subspaces 

Definition 2.1 Let A E R1* and X G R!. If 

then X is called an invariant subspace of A .  

It is well-known that for ill-conditioned eigenproblems (some eigenvalues are close 

together or some eigenvectors are almost parallel), it is more stable to compute the invariant sub- 

spaces with respect to the eigenvalues which are close together or eigenvectors which are almost 

parallel rather than compute each individual eigenvalue and eigenvector. Computing invariant 

subspaces can be done by solving ARES. In this section, we will discuss several methods for 

refining invariant subspaces. These methods are: (1) method [S] developed by Stewart [33], (2) 

method [DMW] by Dongarra, Moler and Wilkinson [13], and (3) method [C] by Chatelin [6]. 

Demmel [8] shows that all of these methods are essentially solving the ARE (1.1) under certain 

transformations. Also in this section, we will discuss some results about the angle and the gap 

between invariant subspaces. 



B e f o ~  discussing the methods of computing invariant subspaces, let us review the follow- 

ing important theorems. 

Theorem 2.2 Let 

where Z=+n, A11 E Rnm, A.E Rmm, AZ1 E Rmm a n d A 1 2 ~  Rnxm, and suppose that the 

nonsingular matrix 

satisfies 

where T1 E Rf X" and T2 E Rf . Then the columns of T span an invariant subspace of A if 

and only ifA21 = o . 

Theorem 2.3 Let A E R1* and T1 E Rlm . Then the columns of TI span an invariant sub- 

space of A if and only if there exists B E Rnm such that 

The above two theorems provide some basic ideas for computing invariant subspaces. We 

can either use similarity transformations to obtain (2.2) or solve (2.3). If T is chosen to be the 

Riccati transformation in (2.2), i.e. 



we obtain 

All A12 A 11 A 12 

[i,, A,,] = I: !q [A2, A , ]  [: 91 
A 11 +A 12X 

= [ A ~ ~ + A ~ X - X A ~ I - X A , X  A , - X A 1 2  

A11+A12X A12 

I 
F ( X )  A 2 2 - X A 1 2  + I (2.4) 

According to theorem 2.2, the columns of the matrix span an invariant subspace of A if and [' I 
only if Anl = 0 which leads to the ARE (1.1). Moreover, if A is a Hamilronian matrix 

then, (2.4) gives the symmetric ARE (1.2). 

2.1.1 Methods of Computing Invariant Subspaces 

Now let us review the following three methods for refining invariant subspaces. 

(1) Method [S] 

The method [S] was proposed by Stewart [34] who originally considered perturbation 

theory for the invariant subspaces. In this method, Stewart assumed that R(T 1) be i& approximate 

invariant subspace and Azl be merely small instead of zero in (2.2). By using the transformation 

A Hamiltonian matrix will be defined in chapter 3. 

- 9 -  



where the orthogonal matrix 

and letting Aal = 0 , he obtained the invariant subspace ~ ( f l )  of A . It is easy to show that X is a 

solution of the ARE (1.1). 

(2) Method [DMWI 

The method [DMW] was suggested by Dongam, Moler and Wilkinson [13] who attempted 

to solve (2.3) by using Gaussian elimination with partial pivoting where n rows of T 1 were fixed. 

Demmel[8] shows that this method is also equivalent to solving the ARE (1.1) if T 1 is chosen by 

(3) Method [Cl 

The method [C] was proposed by Chatelin [6] who considered (2.3) in the form 

where s E Rn* . Clearly, (2.9) is equivalent to the generalized decoupling equation 

Demmel [8] shows that if T1 is given by (2.8) and ST = In , 0 , then (2.10) will become the [ I 
ARE (1.1). 

Remark 2.4 [12] By taking S = T 1 , one can easily obtain the orthogonal iteration method 



A Xk-l = Zk , Ak = QkRk , Xk = Qk k = 1 ,2 ,  ". , 

or the inverse orthogonal iteration method 

A Z k  = X k - l  ( f i n d  Zk) , Zk = Q k R k  (QR-factorization) k = 1,2, 

2.12 The Gap between Invariant Subspaces 

The angle and gap between two invariant subspaces have been discussed by many authors, 

and some important results have been obtained. Let us suppose that X is an invariant subspace of 

a matrix A E RnXn and let be its approximation generated by a certain method. What can we 

say about L (X , 2)  and gap (X , 2 )  ? Davis and Kahan [7] discussed this problem for the self- 

adjoint matrix A (A = A H )  and obtained the following result. 

Theorem 2 5  [7] Let hi be an eigenvalue of the n xn real symmetric matrix A ,  and a; be an 

approximation of hi . If 

6 = min { laj -hi I } 
l S i S p < j S n  

then 

Note: The right-hand side of (2.11) is the residual of the generalized decoupling equation (2.10). 

But when A is a nonsymmetric matrix, this problem becomes much more difficult. Kahan, 

Parlett and Jiang [22] give an example which shows that (2.1 1) may not hold for some nonsym- 

metric A .  Stewart [33] uses the transformation (2.6) and (2.7) to approximate the invariant sub- 

space by using his iterative method for solving the ARE ( 1 . 1 )  2; He also proves the convergence 

Stewart's method for solving ARES will be discussed in chapter 3. 

- 11 - 



property of his method 3. 

2.2 Optimal Control Problems 

Riccati equations have been widely used for solving optimal control problems. We will dis- 

cuss its applications for seeking 9 optimal control function for both continuous-time and 

discrete-time problems, and for solving singular perturbation optimal control problems. 

2.2.1 Continuous-time Optimal Control Problems [26] 

Consider the linear-quadratic (Gaussian) optimal control problem 

d i ( t )  = x ~ ( t )  = A ~ ( t )  + B u(t) , x(0) = . (2.12) 

We seek the solution as the optimal control function 

which minimizes the quadratic constraint 

where K = C TC E Rnm and R E Rn" are positive semi-definite matrices. Assume that the pair 

(A, B ) is stabilizable 4, and the pair (C , A )  is detectable 5. Then 

~ ( t )  = - R - 1  B x ~ ( t )  

is the optimal control function where X is the unique positive semi-definite solution of the 

See theorem 3.9 in chapter 3. 

(A, B )  is called to be stabilizable if there exists a constant matrix M  E RnXn such that all the real parts of 
the eigenvalues of A - BM are negative. 

(C , A ) is called detectable if (AT , CT) is stabilizable. 



continuous-time ARE 

- X ( B R - ~ B T ) x  + X A  + A ~ X  + K  = O  . 

Clearly, (2.13) is a symmetric ARE. 

2-22 Discrete-time Control Problems [26] 

Consider the linear-quadratic discrete-time optimal control problem 

xk+l = A xk + B uk (2.14) 

where A E RnX" , B E Rnm , xk E Rn and uk E Rm, and the associated performance index 

where Q , XN E Rnm, R E Rmm , and Q , R are positive semi-definite matrices. 

We will seek the solution of control sequences ui , ui+l , . . . , U N - ~  to minimize the qua- 

dratic functions Ji . Substituting 

uk = - R - 1  B T  z ~ + ~  

into (2.14) and (2. IS), we obtain the Harniltonian system 



It can be shown that the solution of this system is 

where 

If the system is steady, that is, lim Xk =X , we obtain the discrete-time ARE +- 

A ~ X A  - X  - A T X B ( B T X B + R ) - I  + Q = o .  (2.17b) 

The unique positive semi-definite solution X of (2.17) will give the optimal control function uk . 

2.23 Time-optimal Control Systems with Slow and Fast Modes [23] 

Consider the singular perturbation system 

&i = g ( x , z , u , & , t )  (2.18b) 

where u = u(t ) is a control input function, 0 < E << 1 and t E [to , TI . The initial conditions 

are 

By using a two-time singular perturbation method (slow-time scale t and and fast-time 

t-to scale z = - ), we obtain the solution of this system 
E 

- 14- 



where rand Zsatisfj 

and 2 is the solution of 

Now we specify our system (2.18) to be a linear system 

and the initial conditions remain unchanged. Introducing the fast variable 

we get the solution 

where X , Z satisfy 

and q satisfies 



% = ~ q  , q ( o ) = z , , + D - l C X g .  

Therefore our solution is 

Let us focus on the fast variable q(z). Substituting q = z - X x into (2.19), our system 

becomes 

Now let X be a solution of the ARE 

C + D X - E X A - E X B X = O ,  

and introduce another variable 5 = x - Y q . We obtain 

By solving the Sylvester equation 

for Y , our system (2.19) will be decoupled into two systems: the fast-time system 

and the slow-time system 



2.3 Decoupling Boundary Value Problems [2] 

Let us consider the boundary value problem (BVP) for ordinary differential equations 

Definition 2.7 A nonsingular matrix X E R1* is called a fundamental solution of the dif- 

ferential equation (2.27) if X satisfies 

Definition 2.8 Suppose X is a fundamental solution of (2.27) which satisfies 

If there exist constants K and h , p such that 

l X ( t )  P X-'(t)/ I ~ e - v ' " )  , O l s S t S l  (2.28a) 

/X ( t ) ( I  -P)x- ' ( t ) /  I K ~ - P ( S - ' )  , O l t  I s  I 1  (2.28b) 

then K is called a conditioning constant for the BVP (2.27). The BVP is called well-conditioned 

if K is moderate, and the dichotomic structure for the fundamental solution matrix X is given by 

(2.28). 



The solution space (column space of the fundamental solution matrix) can be written as a 

direct sum of two subspaces, the nonincreasing subspace S 1 = ( 4 = X(t) P c , c E Rn ) and the 

nondecreasing subspace S 2 = { 6 = X (t ) (I-P )C , c E Rn ) . Our purpose is to decouple the 

solution space into two subspaces S = S 10s 2 ,  or to decouple the variables into two groups, the 

nonincreasing variables and the nondecreasing variables. To do this, we introduce the new vari- 

able y = T-lx where the matrix T (t) E R1* and the new fundamental solution Y has the struc- 

such that Y 11 and Y 22 characterize the nonincreasing and nondecreasing 

dynamics of the original problems. If there exists T (t ) such that 

and moreover, if, say, for every hl E h(All) and h2 E h(d22) , hl > holds and they are well- 

separated, then the above form for Y (t) becomes possible and the matrices A , T , d have the 

relation 

The equation (2.29) is called a decoupling equation of the BVP (2.27). Assume that 

where T I  E RIX" and ST E Rm* . It is easy to show that the decoupling equation can also be 

written as 

If we again use the Riccati transformation 



our decoupling equation (2.29) will become the Riccati differential equation (RDE) 

dR = A21+A22R - M i 2 - M 1 2 R  , R(O) = Ro . 75 

If R is a constant matrix, (2.3 1) is identical to the ARE (1.1). 



CHAPTER 3 

METHODS FOR SOLVING ALGEBRAIC RICCATI EQUATIONS 

Methods of solving AREs have been studied for a long time and several successful methods 

have been developed in the past 20 years. These methods can be divided into two classes: direct 

methods and iterative methods. In this chapter, several important methods for solving AREs will 

be discussed as well as their implementations and the concept of conditioning of AREs.. 

3.1 Direct Methods for Solving Algebraic Riccati Equations 

The direct methods are based upon a matrix factorizations (QR-factorization or LU- 

decomposition). The principle behind these methods is given in 

Theorem 3.1 Let A be given in (2.1) and 

If T satisfies 

and T 11 is nonsingular, then X = TZ1 T i #  is a solution of the ARE (1.1). 

3.1.1 Schur Method 

The Schur method was introduced by Laub [25] who considered solving linear-quadratic- 

Gaussian control problems for both the continuous-time and the discrete-time cases. This method 



is based on applying the QR-factorization to A ,  i.e., T in (3.1) is chosen to be an orthogonal 

matrix. 

(1) Continuous-time AREs 

Consider the continuous-time ARE (2.13) and let 

where N = BR-lB T. If the orthogonal matrix U E R2"& satisfies 

where Re A(S < 0 , Re A(S 22) > 0 , then X = UzlU if is the unique positive semi-definite 

solution of ARE (2.13). 

Theorem 3.2 [25] With respect to the notation and assumptions above, 

(i) U 1 1  is nonsingular and X = U 21U fil is a symmetric positive semi-definite solution of the 

ARE (2.13). 

(ii) A(S = A(A-NX) = the closed-loop spectrum. 

(2) Discrete-time AREs 

Consider the discrete-time ARE (2.17) and let 

and let U E R2"* be an orthogonal matrix such that 



s11 s 1 2  
U T  = [ o  s , ]  

where I A(S 1 1 )  1 < 1 , I A(S 2z) l > 1 . Then X = U 21U it is the unique positive semi-definite 

solution of (2.17). 

Theorem 3 3  [25] With respect to the notation and assumptions above, 

(i) U 1 1  is nonsingular and X = UzlU if is a symmetric positive semi-definite solution of the . 

ARE (2.17). 

(ii) A(S = A(A -B (R  +B T ~ B  )-I B TXA ) = the closed-loop spectrum. 

Remark 3.4 For both continuous-time AREs and discrete-time AREs, Laub uses the 

EISPACK subroutines BALANC, ORTHES, ORTRAN, BALBAK and Stewart's software 

HQR3, EXCHNG to get the 2n x2n orthogonal matrices U ,  and uses the LINPACK subroutines 

DECOMP and SOLVE to obtain U 21U if. 

For both continuous-time AREs and discrete-time AREs, the cost of the Schur method is 

about 81n3 flops because the QR-algorithm is applied to a 2nx2n matrix. The storage require- 

ments are at least a 2n x2n array. 

3.1.2 Symplectic Method 

The symplectic method was discussed by vanLoan [34], Bunse-Gersmer and Mehrmann [4] 

and Bunse-Gerstner, Mehrmann and Watkins [5] for Hamiltonian systems. 

Definition 3 5  Let A be given by (2.1) with m =n and 



(1) A is called symplectic if A TJA = J ; 

(2) A is called Hamiltonian if J A  = (JA )T ; 

(3) A is called J-Hessenberg if A 11, A 21, A 22 are upper triangular and A 12 is upper Hessenberg; 

(4) A is called J-triangular if A 11, A 12, A 21 and A 22 are upper triangular and A 21 has a zero 

diagonat, 

(5) A is called J-rridiagonal if A 11, A 21, A 22 are diagonal and A 12 is tridiagonal. 

Definition 3.6 Let A E Rhx2". A decomposition A = SR is called an SR-decomposition if S 

is symplectic and R is J-triangular. 

The symplectic method is particularly suitable for solving continuous-time AREs where an 

SR-decomposition is performed on the Hamiltonian matrix instead of using a QR-factorization. 

Bunse-Gersmer, Mehrmann and Watkins [5] gave a method for computing the SR-decomposition 

by using the Gaussian elimination method. The cost of their method is only about 66n3 flops. 

But as with the Schur method, the storage requirements are also at least a 2n x2n m y .  

3.2 Iterative Methods for Solving Algebraic Riccati Equations 

Let us consider the Taylor expansion of the ARE (1.1) around Xi 

F (X) = F (Xi) + [A22(X-Xi) - (X-Xi)A i2Xi -XiA 12(X-Xi) ] 

Several iterative methods for solving AREs can be considered as arising from appropriate approx- 

imations of (3.5). 

3.2.1 Kokotovic's Linear Iterative Method 



Kokotovic [23] considered solving the singular perturbation system (2.19). In order to 

decouple the fast and slow variables, the ARE (2.22) has to be solved. He suggests that the fol- 

lowing linear iterative method can be used for solving the ARE (1.1): 

Algorithm 3.7 ( Kokotovic's Linear Iterative Method ) Given Xo =-A 21A if ; 

Kokotovic shows that the order of convergence of this method is linear and the convergence 

1 contraction constant is 0 (E) , 0 c E << 1 if A 2 is 0 (E). The cost of each iteration of this 

method is very cheap ( only 2m 2n+mn2 flops ) and the storage requirements are also minimal. 

This method can be considered as the approximation of the Taylor expansion 

- F (Xi) + A 22(Xi+l - Xi) = 0 . 

An alternative choice of Kokotovic's linear method is: Given Xo = A 21A if r 

Xi+l = (A21+A22Xi-XiA12Xi)~if , i = 0 , 1 , 2 ,  * - .  , 

which is the approximation of the Taylor expansion 

F(Xi)-(Xi+l-Xi)A1l = 0 

3.2.2 Stewart's Linear Iterative Method 

Stewart [33] discussed the error bound for refining the invariant subspaces and obtained the 

ARE (1.1). He proposes that one can use another linear iterative method to solve the ARE (1.1). 

Algorithm 3.8 ( Stewart's Linear Iterative Method ) Given Xo = 0 ; for i = 0 , l  , 2  , - . . , 
solve the Sylvester equation . 



by using algorithm 1.10. 

Stewart also proved 

Theorem 3.9 [33] Let 

If K < $ , then the iteration (3.7) converges linearly to the unique solution X of the equation 

(1.1) inside the ball 

and the convergence contraction constant is no more than 1 - G .  

9  5 The cost of Stewart's linear iterative method is only T m 2 n  + -mn flops after the fim 2 

9 2  5 iteration, which costs 10(m l+n3) + ~m n + -Tmn2 flops. since the coefficient matrices of the 

Sylvester equations have already been transformed to the required form for all i > 0. The 

storage requirements are 2(m +n )2 . 

It is easy to show that the approximation of the Taylor expansion (3.5) 

F (Xi) + A  22(Xi+l - X i )  - (Xi+l -Xi)A 1 1  = 0 

yields Stewart's linear iterative method. 

3.22 Newton's Method 



Chatelin [6] studied Newton's method for refining the invariant subspaces. She applied 

Newton's method directly to the generalized decoupling equations (2.10): given T fO) 

~ f ~ + l )  = Tik) - [DF(T{~))]-~ F(Tfk)) 

where the Frechet derivative 

By choosing T 1 = and ST = [I,, , 0] , Demrnel[8] obtains Newton's method for solving ti1 
the ARE (1.1). 

Algorithm 3.10 ( Newton's Method ) Given Xo = 0 ; for i = 0 , 1 , 2  , . . - , do 

(1) C o r n p ~ t e C ~ = A ~ ~ - X ~ A ~ ~  , Di=A11+A12Xi and Fi=-A21-XiA12Xi; 

(2) Solve the Sylvester equation 

Demmel also shows that Newton's method converges quadratically to the solution. 

Theorem 3.11 [8] Let K be given by theorem 3.9. If "&-, then Newton's iteration (3.1 1) 

converges quadratically to the unique solution X inside the ball given by (3.9), and 

Each Newton iteration is very expensive because a different Sylvester equation has to be 

solved at each iteration; therefore, the coefficient matrices must be transformed to the required 

(Schur or Hessenberg) forms. The operation count for each Newton iteration is 



11 2 7 lO(m 3+n 3, + ~m n + ~ m n  and the storage requirements are 2(m +n )2 + (m 2+n 2). For sym- 

metric ARES, because Ci = -D?, only half the work and half the storage of the general case are 

required. 

It is easy to show that Newton's method is the approximation 

to the Taylor expansion (3.5). 

3.2.4 Generalized Secant Method 

The generalized secant method was proposed by Dieci and Russell [12] who considered the 

approximation of the Frechet derivative 

Substituting it into the Newton iteration (3.1 I), we obtain 

Alternatively, if our approximation is made by 

we get another secant iteration 



Dieci and Russell suggest that one can use the following generalized secant method to solve 

the ARE (1.1): 

Algorithm 3.12 ( Generalized Secant Method ) 

(1) Given Xo = 0, solve X 1 by using Stewart's linear iterative method. 

(2) For i = 1 , 3  , 5 , . - , solve the Sylvester equations 

Theorem 3.13 1121 Let x be given by theorem 3.9 and KC-&. Then the generalized secant 

method (3.16) converges superlinearly to a unique solution X inside the ball given by (3.9). 

Moreover, 

1+Js wherep = - . 
The operation count for each iteration of the generalized secant method is only about half 

7 work of each Newton iteration - 10n3 + ;m 2n + -Zmn2 flops if i is an even number and 

10m3 + q m 2 n  + mn2 flops if i is an odd number - because only one matrix needs to be Z 

transformed to the required (upper Schur or Hessenberg) form, but extra mn stoI$ge locations are 

required ( 2(m +n )2 + (m 2+n 2+mn ) ) compared to Newton's method. 

It seems that the generalized secant method is often more efficient than Newton's method 

although its order of convergence is smaller. Dieci and Russell use an efficiency index to analyze 

the efficiency of these two methods. In their results, the efficiency index of the generalized secant 

1 + 6  method is .-, = 1.6 while the efficiency index of Newton's method is fi= 1.4. 



However, this method is not suitable for solving symmetric ARES since the same amount of 

work per iteration is needed compared to the nonsymmetric case. 

3.3 Conditioning of Algebraic Riccati Equations 

The conditioning of the algebraic Riccati equations has been discussed by several authors. 

We have already seen earlier in this chapter that K and sep (A 11 , A 22) play important roles in the 

convergence properties for most iterative methods (Stewart's method, Newton's method, and the 

generalized secant method). An important result for the conditioning of the ARE (1.1) is given by 

Dieci [lo]. 

Let us consider the perturbed ARE 

( A 2 1 + E B 2 1 ) + ( A 2 2 + ~ 2 2 ) X ( ~ ) - X ( ~ ) ( A 1 1 + ~ 1 1 ) - X ( ~ ) ( A 1 2 + ~ 1 2 ) X ( ~ )  = 0 (3.14) 

where 0 < E <c 1 and the initial condition 

X ( 0 )  = x . 

We suppose the solution of the perturbed ARE (3.14) to be 

X(E) = x +&(0)+0(&2) . 

By differentiating (3.14) with respect to E and letting E = 0 , we obtain 

where 

If the Sylvester operator $(X) is nonsingular, then 



Therefore, the relative error is 

where 

is called the condition number of the ARE (1.1). If the Frobenius nonn is used, the condition 

number of the ARE (1.1) is 

where om= and o- are the largest and smallest singular values of the matrix 

(A22-m lz)@Im -1, @(A 11+A 12x1 - 

It is clear that the relative error strictly depends upon the size of the condition number or 

sep (A 22-XA 12 , A l+A 12X). If A(A ll+A 12X) and A(A 2zXA 12) are close enough together, one 

can hardly solve the ARE (1 . l )  numerically. 

3.4 Implementations 

We have already introduced several important methods for solving AREs in the first two 

sections of this chapter, and discussed the conditioning of AREs in the last section. In this sec- 

tion, we will discuss their implementations in more detail. 



3.4.1 Iterative Refinement Method 

In order to estimate the condition number cond(@(X)) and to correct the solution for the 

ill-conditioned ARE (1.1), Dieci [lo] uses the iterative refinement method for refining the solu- 

tion of the Sylvester equation (1.5). 

Algorithm 3.14 ( Iterative Rejinement ) 

(1) Solve the Sylvester equation (1.5) in t-digit arithmetic by using algorithm 1.10; 

(2) Compute the residual matrix R = F - (CX - XD ) in 2t-digit arithmetic; 

(3) Solve the Sylvester equation CX - XD = R in t-digit arithmetic; 

(4) Estimate the condition number 

cond (4a 1) = &#j 
where EPS is the machine precision for t-digit arithmetic. 

(5) Correct the solution X := X + Y. 

The iterative refinement scheme is very cheap because C , D have already been transformed to 

the desired forms. 

3.42 Steepest Descent Technique 

It is well-known that Newton's method and the secant method converge only locally. It is 

very important to obtain a good initial approximation by using some global methods. Dieci, Lee 

and Russell [ll] suggest that one can use the steepest descent technique to get a good initial 

approximation for the solution of the ARE (1.1). The framework for this method is to minimize 

the function 



by using the steepest descent method. 

Algorithm 3.15 ( Steepest Descent Technique ) Given Xo , for i = 0 , 1 , 2  , . - - 

(1) Compute the gradient 

Hi = VG (Xi) = (A 22 - X ~ A  1 2 ) T ~  (xi) - F (Xi)(A + A 1 2 ~ i ) T  ; 

(2) Compute ai > 0 such that 

G(Xi -aiHi) = mi G Xi-CLH;) ; .>F ( 

(3) Let Xi+, = Xi - aiHi . 

The local convergence property of the steepest descent method is linear and the contraction 

constant is no more than LcL where &, and L are the largest and smallest eigenvalues, Z z G Z  

respectively, of the matrix V2G (X) . Therefore, the convergence of the steepest descent method 

can be very slow if << L, . 

The cost of each steepest descent iteration strongly depends on the efficiency of the line 

search method in step (2) where the function G (Xi) must be evaluated several times. The cost of 

each function evaluation is 2m 2n + mn flops. For the case m=n , this is about of each New- 

ton iteration. 

For symmetric AREs, it is easy to show that if Xo is symmetric, then each Hi = HT and 

F (Xi) = [F (xi)lT is too; therefore, the cost is only about half of the nonsymmetric case. 

3.43 Reordering Eigenvalues 

It often happens that our numerical solutions of the AREs via iterative methods are not the 

ones we need. Can one obtain the desired solution from another known solution? It is not easy in 

general. Dieci [lo] discussed this problem. Since some solutions are known, one usually can 



easily obtain the eigenvalues from the solutions. These eigenvalues can be reordered by using 

EISPACK subroutines; therefore, we can obtain our desired solutions after reordering eigen- 

values. To be more specific let X be a solution of the ARE (1.1) satisfying 

Suppose we seek the solution X* satisfying 

Let Q be an orthogonal matrix such that 

where Re (~(,!f~~)) > Re (~(fd) . It can be shown that the desired solution is 

where H =  TQQ . 



CHAPTER 4 

CONJUGATE GRADIENT METHOD FOR SOLVING ARE'S 

The conjugate gradient method was first introduced by Hestenes and Stiefel [20] for solving 

systems of linear equations, or equivalently, solving quadratic unconstrained optimization prob- 

lems. Fletcher and Reeves [15], and Polak and Ribiere [30] developed conjugate gradient 

methods for solving generalized nonlinear optimization problems. 

The conjugate gradient method has been studied by many authors and it is considered as 

one of the best methods for solving large sparse linear systems of equations, nonlinear systems of 

equations and nonlinear optimization problems because other methods need matrix factorizations 

where storage resources may not be available. 

In this chapter, we will introduce this method for solving algebraic Riccati equations. But 

first of all, let us review the conjugate gradient method for solving nonlinear unconstrained 

optimization problems. 

4.1 Conjugate Gradient Method for Solving Nonlinear Optimization Problems 

Originally, the conjugate gradient method was applied to solve quadratic unconstrained 

optimization problems or linear systems of equations [20]. Several conjugate gradient methods 

have been developed for solving generalized nonlinear optimization problems (the Fletcher- 

Reeves method, the Polak-Ribiere method). Also, many implementation aspects have been stu- 

died, such as the line search method, the Hessian matrix update, and the preconditioning tech- 

nique. We will begin our discussion from quadratic functions. 

4.1.1 Quadratic Case 



Consider the quadratic unconstrained optimization problem 

Min f ( x )  f ( x )  := T l x T ~ x - b T x + c  (4.1) 

where A is an nxn positive definite matrix and x , b E Rn. It is not difficult to show that solving 

(4.1) is equivalent to solving the linear system of equations 

Algorithm 4.1 ( Conjugate Gradient Method ) Let f (x )  be given by (4.1). Given any initial 

guess%€ RR: 

(I) If go = V f  (w) = 0 , then the solution of (4.1) is x* = xo ; otherwise, compute do = - go . 

(2) F o r k = O , 1 , 2 ,  ,n-1,let 

where 

and 

gk+l= V f  (xk+l) . 

If g k + l =  0 ,then xk+l is the solution; otherwise, let 

dk+l = - gk+l+  Pk dk 

where 

An advantage of the Algorithm 4.1 is that the solution can be found within n iterations. In 

fact, one can show that the conjugate gradient method for solving the optimization problem (4.1) 

is equivalent to the Gaussian elimination method for solving the linear system of equations (4.2). 



Alternatively, instead of using (4.3), one can use a line search method to obtain % such that 

Theoretically, this method will also terminate within n iterations if all line searches are exact. 

Another advantage of the conjugate gradient method is that there is no matrix factorization 

performed. Therefore, when the matrix A is large and sparse, we do not need to store any full 

matrix. 

4.1.2 General Cases 

For generalized nonlinear unconstrained optimization problems, we can still use the conju- 

gate gradient algorithm 4.1 where the matrix A is replaced by the Hessian matrix V2f (xk) at each 

iteration, or a k  is determined by a line search. There are two important conjugate gradient 

methods for solving generalized nonlinear optimization problems: one is developed by Fletcher 

and Reeves [15] , and the other is by Pol& and Ribiere [30] . They m slightly different. 

Algorithm 4 2  ( Generalized Conjugate Gradient Method ) Let f (x) E C 2 ( ~ )  for all 

X E D S R " :  

(1) Given an initial approximation 5, let k = 0 and do = - V f (xo). 

(2) Repeat (i) - (iv) 

(i) stop if V f (xk) = 0; otherwise, 

(ii) compute 

(iv) let k := k + 1 . 



In algorithm 4.2, ak is determined either by 

or by a lime search method 

while Pk can be chosen by the Fletcher-Reeves conjugate gradient method 

or by the Polak-Ribiere conjugate gradient method 

Remark 4.3 Iff (x) is a quadratic function, (4.5) and (4.6) are identical and the algorithm 

will terminate within n iterations when all of the line searches are exact or (4.1) is used. 

Both of the above methods have been discussed and implemented by many authors. In gen- 

eral, since the n-step termination property will no longer hold, the convergence properties of the 

conjugate gradient method become a major issue. From our numerical experience, the Polak- 

Ribiere method seems much more efficient than the Fletcher-Reeves method in terms of conver- 

gence. But only the Fletcher-Reeves method has been shown to converge if a line search method 

is used. 

Powell [31] discusses the convergence properties for both methods and gives a clear expla- 

nation. In his work, he shows that the Algorithm 4.2 will converge to a local stationary point 

when Pk 1 0. This is always true for the Fletcher-Reeves method but may not hold for the Polak- 

Ribiere method. Therefore, he suggests that one can use 



instead of using the Polak-Ribiere method. 

Remark 4.4 In (4.7), when Pk > 0, it is the Polak-Ribiere metho8; when Pk = 0, it is the 

steepest descent method. 

4.13 Implementations for Conjugate Gradient Method 

Because the conjugate gradient method has its advantages for solving large sparse prob- 

lems, it has been recognized as one of the best methods for solving large sparse problems. The 

implementation aspects include line search methods, the Hessian matrix approximations and the 

convergence property improvements or preconditioning technique. 

(1) Line Search Method 

When a line search conjugate gradient method is used to solve a nonlinear optimization 

problem, the efficiency of the method is strongly dependent upon the efficiency of the line search, 

because this step may be very expensive. The method of line search is not only applied to the 

conjugate gradient method, but also to the other optimization methods such as Newton's method, 

the secant method and the steepest descent method. 

Let us suppose that p E Rn is a descent direction of the function f (x), that is, p satisfies 

Vf ( ~ ) ~ p  < 0. Then there exists a > 0 such that, when 0 < z < 1 and z < o < 1 , the following 

two conditions hold: 

where ~ k + ~  = xk + a p . A small o gives a relatively inexact line search while a bigger o (close to 

1) provides a fairly exact line search. 



Most authors agree that the strategy of the line search is either the condition (4.8) or both 

conditions (4.8) and (4.9). The practical method for line search can be any one dimensional 

optimization method, such as the golden section search method, Newton's method or the secant 

method. However, these methods may be very expensive (some of them may be even impossible) 

because we need to evaluate the function and its derivative many times. 

A successful line search method is the backtracking line search method incorporating cubic 

interpolations (For more detail, see Dennis and Schnabel [9]). 

(2) Update Hessian Matrix 

The conjugate gradient method without line search needs to evaluate the Hessian matrix at 

each iteration and this work may be very expensive or even impossible. Instead of this, one can 

use some Hessian matrix update methods to approximate the Hessian matrix. For example, the 

positive definite secant update (the BFGS update) method can be used, i.e. 

where sk = xk+l- xk and yk = gk+l- gk . This method needs 0 (n 2, storage locations in general. 

(3) Convergence Properties and Preconditioning Technique 

The convergence properties of the conjugate gradient method still remain poorly understood 

although n-step termination is true for quadratic functions. Our numerical examples show that 

this method seems linearly convergent, and works poorly sometimes. Furthermore, if a restarting 

technique (reset the line search direction to be the steepest descent direction every n iterations) is 

used, one can show that the Fletcher-Reeves conjugate gradient method is n-step q-superlinearly 

convergent when the line search is exact. But when n is large enough, the order of convergence is 

essentially only linear. 

However, it is well-known that the conjugate gradient method is at least as good as the 

steepest descent method. In fact, just as the steepest descent method, the rate of convergence of 

the conjugate gradient method depends on how separate the eigenvalues of the Hessian matrix 



axe. When a l l  these eigenvalues are close together, the conjugate gradient method can be surpris- 

ingly efficient. In another word, if the Hessian matrix is close to a unit matrix, this method can 

converge very fast to a solution. 

In order to improve convergence properties, a preconditioning technique can be used. The 

idea of preconditioning originated in partial differential equation research, but it has been applied 

to solve both quadratic and nonquadratic optimization problems. 

When we consider solving a linear system of equations, or a quadratic optimization prob- 

lem, the Hessian matrix remains unchanged everywhere. This matrix can be modified so that all 

its eigenvalues are close together (or the Hessian matrix is close to a unit matrix) and the method 

will often be much more efficient than without using it. For the general nonlinear functions, some 

type of Hessian matrix approximations can be used. For example, we can use the preconditioned 

BFGS method 

where gk = Hk-l gk and Hk is given by the BFGS formula. Since the Hessian matrices are 

needed, 0 (n 2, storage locations are required in general. 

4.2 Conjugate Gradient Method for Solving Algebraic Riccati Equations 

We now introduce a "new" method, the conjugate gradient method, for solving algebraic 

Riccati equations. 

4.2.1 Conjugate Gradient Algorithm 

Let us still consider the ARE (1.1) 

F(X) = [ F i j  (X)] = A2i+A22X -XA12-XAI2X 

and let 



Then the gradient of the function G is [I 11 

Since the gradient of the function G is easy to compute from (4.11), we can use a line 

search conjugate gradient method to locate a local minimal point of the function G , which is usu- 

ally (not always) a solution of the ARE (1.1). 

Algorithm 4 5  ( Conjugate Gradient Method for Solving ARES ) 

(1) Give an initial guess X (O) E RmX" , let k = 0 

(2) Repeat (i) - (iv) 

(i) Stop if some stopping criterion is satisfied; otherwise, do (ii) - (iv) 

(ii) Determine a(k) such that 

Remark 4.6 

/X - x Q)lF 
(1) Our stopping criterion is IF (X(k))/F < E or < E .  

IX Ck)n~ 
(2) a(k) is determined by a line search method. 

(3) fl(k) is chosen according to Powell's suggestion (4.7) 



4.2.2 Line Search Algorithm 

The efficiency of each conjugate gradient iteration is critically dependent upon the cost of 

the line search method, where the function G has to be evaluated several times. The exact line 

search conjugate gradient method is n-step q-superlinearly convergent, but in practice, it is 

impossible to do the exact line search within a finite number of iterations. Instead, we use an 

inexact line search method. It can be shown that an inexact line search conjugate gradient method 

is globally convergent (Al-Baali, [I]), and the order of the convergence is linear. - 
The strategy of the line search has been discussed in the last section. Although a more exact 

line search gives the faster convergence for the conjugate gradient method, this may not be very 

efficient because more function evaluations are required for a more exact line search. Therefore, 

our line search algorithm should do a fairly exact line search and meanwhile, keep the number of 

function evaluations as small as possible. Obviously, the condition (4.8) needs more function 

evaluations to satisfy. So our line search strategy is only the condition (4.7) rather then both con- 

ditions. One of the best choices for the line search is still the backtracking line search with cubic 

interpolation. 

Because V G(x(~)) is already known, it is easy to do l i e  search by minimizing the cubic 

approximation of the function G . If we let 

then 

It is reasonable to use 

as a cubic approximation of the function g (a), where the coefficients a , b are determined by 

choosing two different value of a ,  namely a* and az, so 



Therefore, the minimal point of the function g (a), 

is our approximate a ( k ) .  

In the line search algorithm suggested in [9], initially, a1 = 1 and &(k) is determined by 

minimizing a quadratic fit. If &(k) does not satisfy the condition 

then successive backtracking is used: let a2 := a1 , a1 := d k )  , and minimize the cubic interpolant 

to obtain a new &(k) .  A disadvantage of this method is that the initial a1 may be too small and, 

consequently, the line search may not be exact enough. This disadvantage will definitely affect 

the convergence of the conjugate gradient method. On the other hand, if we choose a large initial 

a1 , then the procedure of locating the acceptable &(k) may require many function evaluations and 

the cost of each conjugate gradient iteration can be very expensive. 

In order to overcome this disadvantage, we would rather use "foreuacking" than backtrack- 

ing when the above case happens, that is, we increase the value of a1 so that we can find another 

&(k) which is more accurate than the old one. We summarize the whole procedure in the Algo- 

rithm 4.7. 

Algorithm 4.7 ( Line Search Algorithm ) 

(2) Choose 0 < a1 < a2 such that 



g l  < go < g2 

where g l = G ( X ( k ) + a l  ~ ( ~ 1 )  and g 2 = G ( X ( k ) + a 2 ~ ( k ) )  ; 

(3) Compute the cubic approximation 

g(a) = a a 3 + b  a 2 + c  a + g o  

where 

(4) Determine dk): if a 

Remark 4.8 

, otherwise ak) = 
= O  * a(k)=--2b 

-b +db2-3ac 
3a 

(1) Other one dimensional minimization techniques (such as Newton's method and the secant 

method) can also be used to evaluate dk). but it would be more expensive because both 

g (a) and g' (a) (or its approximation) are needed at each point. 

(2) The existence of al and a2 is guaranteed because D (k) is a descent direction and g (a) is 

bounded below. 

The cost of this line search method is strictly dependent on the number evaluations of the 

function G . Each function evaluation needs m zn + 2mn flops. When m = n , this is about A of 

the cost of a Newton iteration. Therefore, reducing the number of function eva$ations is the 

major work of our algorithm. 

In practice, we use a 2  = 1 at the beginning. If g (a2) l g (0) , then a1 := a2 and 

a 2  := 10a2 ; otherwise, let a1 = 0.1a2 . We keep doing this procedure until the requirement is 

met. Our numerical experience shows that the average number of function evaluations for this 

method is about three (this is good, because we need at least two function evaluations in each line 

search) and the line search is fairly exact. 



4.23 Comparisons and Implementations 

In this section, we will compare our conjugate gradient method to some other methods 

(Newton's method, the secant method and the Schur method) in terms of operation counts, 

storage requirements and convergence properties. 

(1) Operation Counts 

As we know, the cost of the conjugate gradient method is critically dependent upon the line 

search efficiency or the average number of function evaluations. Because one gradient value is 

required, if we save A21 -XA 11 , the total cost of our conjugate gradient iteration is 

(m 2n +2mn 2, + k (2m 2n +mn 2, flops where k is the number of function evaluations. In our line 

search method, the average number of function evaluations is assumed to be 3 (this is from 

numerical experience); therefore, the cost of each iteration is 7m2n +5mn2 flops. Table 4.1 

gives the comparison of the cost among Newton's method, the generalized secant method, and 

the conjugate gradient method. 

I Table 4.1 : Operation Counts for Solving ARE (1.1) 

Particularly, when the Riccati equation is the symmetric ARE (1.2) 

where m = n and A 12, d21 are symmetric positive semi-definite matrices, then the matrix F (2) 

will also be symmetric if the solution 2 is symmetric. Therefore, the gradient matrix VG (A?) will 

be symmetric as well: 

Iteration i Secant Newton C-G 



In practice, we seek a symmetric positive semi-definite solution of the ARE (1.2). Begin- 

ning with a symmetric initial guess $(O), al l  of our will also be symmetric. Then the cost of 

each conjugate gradient iteration is only (2k + l)n3 flops. When k = 3, tkis is about half the work 

of Newton's method. 

Table 4.2: Operation Counts for Solving ARE (1.2) 

Iterationi I Newton I Secant I C-G 

In the case of m >> n (or m << n), the cost of one conjugate gradient iteration is only 

0 (m 2, (or 0 (n 2, ) flops where Newton's method needs 0 (m 3, (or 0 (n 3)) flops. 

I Table 4.3: Operation Counts for Solving ARE (1.1) (m >> n) I 
I Iterationi I Newton I Secant I C G  I 

(2) Storage Consideration 

On the aspect of storage requirements, the conjugate gradient method needs only 5mn addi- 

tional storage locations since we do not perform any matrix factorization. The comparisons of the 

storage requirements among Newton's method, the secant method, the Schur method and the con- 

jugate gradient method are in table 4.4 for the nonsymmetric case and table 4.5 for the symmetric 



case. 

I Table 4.5: Storage requirements for Solving ARE (1.2) I 

Table 4.4: Storage requirements for Solving ARE (1.1) 

I Newton 1 Secant I Schur I C-G I 

Also in the case of m >> n ,  al l  the other methods require 0 (m2) extra storage locations 

Newton 

3m 2+3n U m n  

because some matrix factorizations (QR-factorization or LU-decomposition) must be carried out. 

But the conjugate gradient method requires only 0 (m) extra storage.spaces (the steepest descent 

Schur 

2m 2+2n %mn 

Secant 

3m 2+3n 2+5mn 

method can be considered as a special case of the conjugate gradient method, i.e., Pk = 0). 

C-G 

m 2+n 2+7mn 

I Table 4.6: Additional storage requirements for Solving ARE ( I .  1) (m >> n ) I 
I Newton I Secant I Schur I C-G I 

(3) Convergence Properties 

We have already discussed the convergence properties of the conjugate gradient method for 

solving general nonlinear unconstrained optimization problems in Section 4.1. These properties 

will also hold for our conjugate gradient method for solving ARES. 



Since for each iteration, we do not increase the function value G(X), the global conver- 

gence property can be guaranteed for any initial value X(O). In fact, as we already know, the con- 

jugate gradient method is at least as good as the steepest descent method. This suggests using the 

conjugate gradient method instead of the steepest descent technique to obtain a good initial 

approximation for Newton's method or the secant method [I 11. 

The local convergence properties are not very clear so far. Although with a restarting pro- 

cedure the n-step q-superlinear convergence property can be proved, it is almost impossible to tell 

the difference between it and linear convergence when n is large. Our numerical experience 

shows that the conjugate gradient method converges only linearly in general and it can be very 

slow. 

(4) Conditioning We have already discuss the conditioning of the ARE (1.1) in Section 3.3. We 

know that a Sylvester equation has to be solved at each Newton iteration or each secant iteration. 

When the condition number cond (4(X)) is large, one can hardly solve these Sylvester equations. 

But when we use the conjugate gradient method to solve the ARE (1.1). the condition number 

will no longer be the major factor. This is because we do not solve Sylvester equations any more. 

Moreover, since the ARE (1.1) has been transformed to be an optimization problem, keeping the 

Hessian matrix to be positive definite becomes the conditioning of the conjugate gradient method 

for solving the ARE (1.1). In practice, since we use a line search method instead of the Hessian 

matrix, the function value will be decreasing after each line search and the method will always 

work. Numerical examples tell us that the conjugate gradient method is not suitable for solving 

regular well-conditioned problems because Newton's method and the secant method are usually 

more efficient, but the conjugate gradient method may be suitable for solving ill-conditioned 

problems. 

(5) Large Sparse Systems 

When solving large sparse systems, matrix factorizations (LU-decomposition and QR- 

factorization) are very expensive, also storage requirements are potentially full matrices 

(0 (m2 + n2)) which may not be available in practice. The conjugate gradient method has the 



advantage of only doing matrix additions and multiplications, where the cost is considerably less 

than doing the matrix factorizations and there is no W matrix storage required. This is probably 

the only realistic method for solving large sparse problems. 

(6) Other Implementations 

In practice, if the line search direction D ( ~ )  is not a descent direction, i.e., 

8 &  [ H ~ Y ) - D ~ J ~ ) ]  > 0, we reset the direction to be the steepest descent direction 
L= J 

D ( k )  = -H ( k )  = -VG (X  (k) )  . This is called a restarting technique. 

As we have mentioned, instead of performing a line search, the Hessian matrix can be used 

to obtain a(k) at each iteration. In general, 0 (m 2n 2, storage requirements are needed. A draw- 

back of using the Hessian matrix is that the the global convergence property may not hold 

because the Hessian matrix can be singular or not positive definite. Since the conjugate gradient 

method may only be suitable for solving large problems, if we want use the Hessian matrix or 

some of its approximations, we must avoid using (m2n2) storage locations. This aspect needs 

further studies. An advantage of having the Hessian matrix is that the preconditioning technique 

can be applied so that the speed of convergence can be improved and the method can be much 

more efficient. 

The process of reordering is not difficult for the conjugate gradient method because the 

matrices A 1 1  + A 12X and A 22 - x (k)A 12 are easy to obtain. One Newton iteration can be per- 

formed on them so that we can do automatic reordering as before. But for large sparse systems, 

this may be impossible due to storage limitations. 



CHAPTER 5 

NUMERICAL EXAMPLES 

We have already discussed several numerical methods for solving ARES, and comparisons 

among Newton's method, the secant method, the Schur method and the conjugate gradient 

method in terms of convergence, operation counts and storage requirements have been given in 

chapter 4. In this chapter, we will give some numerical examples and results (all of our computa- 

tions are done on an IBM 3081 machine using VS FORTRAN on the MTS operating system at 

Simon Fraser University). Our stopping criterion is either j'F (Xk)nF < E or /&-I - X~UF < 
/Xk/F 

Examples 1-4 arise from solving control problems and all of them require solving a well- 

conditioned nonsyrnrnetric ARE (1.1). We will use Newton's method, the generalized secant 

method, and the conjugate gradient method to solve these problems. For all the methods in these 

four examples, the initial guesses are Xo = I . 

Example 1 : Kokotovic [24] 

Consider the continuous model 



All of our methods give the same solution 

Example 2 : Phillips [28] 

Consider the discrete model 

whereAlle RX , A 2 2 ~  R3* , X E  R2 , Z E  R3 and 

[t:: t:] = 

The solution of the ARE (1.1) is 

Example 3 : Phillips [28] 

Let us also consider the discrete model (5.2) where A 11 E R4x4 , A 2 E R4x4 , ~ ( k )  E R4 , 

z(k) E R4 and 



The solution of this ARE is 

Example 4 : Phillips [29] 

Consider the continuous model (5.1) where A 11 E R4x4 , A 22 E R4x4 , x E R4 , z E R4 and 

b 

The solution is 

X = 

We compare our numerical results in table 5.1, where E = 1 v .  



I Table 5.1 : Numerical Results for Examples 1-4 

Remark 5.1: 

(1) K is the condition number given by theorem (3.9); 

(2) N indicates the number of iterations for 6-digit accuracy; 

(3) r is the residual of F (X), i.e. 

r = UF(XN)UF = UA21+A&N - X N A ~ ~ - X N A ~ ~ X N ~ F  ; 

(4) Time is the CPU time in seconds. 

Example Newton / K I N Time r 

The numerical results in examples 1-4 show that Newton's method and the secant method 

are comparable while the conjugate gradient method is less efficient for solving well-conditioned 

problems. 

Examples 5-6 arise from solving continuous optimal control problems. As' we know from 

chapter 2, a symmetric ARE (1.2) has to be solved. We apply the Schur method, Newton's 

method and the conjugate gradient method to solve these two problems (since we know that the 

secant method is not as good as Newton's method for solving symmetric ARES, we will not use 

it). For Newton's method and the conjugate gradient method, because we seek the symmetric 

positive semi-definite solution, we choose a symmetric positive semi-delinit. initial guesses, 

Secant 

N Time r 

C-G 

N Time r 



X 0 = 0 , for both problems. 

Example 5 : Laub [25] 

Let 

Table 5.2 gives the numerical results for n = 50. In this example, the Schur method works 

very well; Newton's method converges to the solution which is not the desired one and one can- 

not expect this solution to be more accurate; the conjugate gradient method wosrks fairly well, and 

it converges to the correct solution. 

Example 6 : Laub [25] 

Let 

The numerical results are in table 5.2 for n = 21. In this example, the Schur method and 

Newton's method fail, but the conjugate gradient method still works. 



I Table 5.2 : Numerical Results for Examples 5-6 I 
Example 

5 

The results in table 5.2 show that: the Schur method can have difficulty because of ill- 

conditioning; Newton's method may not converge to the required solution when the initial guess 

is not close enough to the solution; the conjugate gradient method converges to a solution after 

many iterations. In addition, both the Schur method and Newton's method need a lot of storage 

locations (full matrix). 

6 

These results also show that, for Newton's method, one may not obtain a more accurate 

solution (see example 5) and the method may even fail to converge (example 6;Newton's method 

overflows) without going through some kind of descent techniques (such as a steepest descent 

technique) to obtain a good initial approximation. For the conjugate gradient method, the conver- 

gence may be very slow, but because of the sparsity, the function evaluations can be done in a 

cheaper way (not necessary to perform the matrix multiplications in 0 (n3) flops), such that the 

cost of each iteration is very cheap (for example, in our results, the cost of each conjugate gra- 

dient iteration is only about 10% to 15% of the cost of each Newton iteration). 

Schur 

Time r 

18.2 0.58E-10 

Examples 7-8 are coming from computing invariant subspaces. 

1.62 0.45E+3 

Example 7 : Golub [I91 

Newton 

N Time r 

5 35.4 0.81E-1 

Consider the problem of computing an invariant subspace E RSx2 of the Hessenberg 11 

C-G 

N Time r 

49 81.4 0.99E-6 

fails 

matrix 

365 35.3 0.18E-5 



With the initial guess Xo = 0 ,  Newton's method and the secant method converge to the 

solution of the ARE (1.1) 

while the conjugate gradient method converges to the solution 

The results are in table 5.3. 

I Table 5.3 : Numerical Results for Example 7 

I secant I Newton I C-G I 

Example 8 : Varah [35] 

N Time r 

8 0.012 0.19E-13 

Also consider the 1 xl upper Hessenberg matrix 

P 

N Time r . 

7 0.016 0.473-11 

N Time r 

108 0.080 0.85E-6 



We compute an eigenvector . Again, we use the secant method, Newton's method and the i:l 
conjugate gradient method. All of our methods converge to the same solution for both 

Xo=[O,O, , O I T  andXo=[ 1 , O ,  ... ,O]T.Forexample,whenl =8,thesolutionis 

The results are given in table 5.4 for 1 =8', 12, and 20 with the initial guess 

X o = [ l  ,O, - . -  ,O]T .  

Table 5.4 : Numerical Results for Example 8 

1 Secant Newton C-G 

N T i e  r N Time r N Time r 

8 8 0.035 0.39E-9 6 0.048 0.21E-10 21 0.020 0.43E-6 

12 16 0.170 0.71E-6 6 0.117 0.30E-8 23 0.035 0.86E-6 

20 10 0.430 0.92E-12 7 0.554 0.65E-8 86 0.287 0.92E-6 

The numerical results of example 8 verify our claim in chapter 4, i.e., when m >> n ( here 

n = 1 and m = 1-1 ), the conjugate gradient method can be more efficient. 



CHAPTER 6 

CONCLUSIONS 

In this thesis, we have reviewed the applications and the methods for solving matrix alge- 

braic Riccati equations. These applications are refining invariant subspaces, solving optimal con- 

trol problems (computing optimal control functions for both continuous and discrete problems, 

solving singular perturbation control systems), and decoupling boundary value problems for ordi- 

nary differential equations. The methods we have reviewed include direct methods (the Schur 

method and the syrnplectic method), iterative methods (Kokotovic's linear iterative methods, 

Stewart's linear iterative method, Newton's method and the generalized secant method). We have 

also discussed the conditioning of AREs as well as some implementation issues (the iterative 

refinement method, the steepest descent technique and the eigenvalues reordering). Furthermore, 

we have proposed and applied the conjugate gradient method to solve AREs (only a line search 

conjugate gradient method is used in this thesis). Theoretical comparisons in chapter 4 and 

numerical results in chapter 5 indicate that this method is not suitable for solving regular well- 

conditioned problems (Newton's method, the secant method and the Schur method are usually 

more efficient). However, for large sparse problems, the conjugate gradient method has advan- 

tages. Since no matrix factorization is required, this method can be more efficient for solving 

large sparse problems and also more stable for solving ill-conditioned problems. The efficiency of 

the line search conjugate gradient method is critically dependent upon the efficiency of the line 

search algorithm, since it determines the number of function evaluations. Also, we have shown 

from both theory and practice that the conjugate gradient method can be more efficient if m >> n . 

It is well-known that for the local convergence methods (such as Newton's method and the 

secant method), it is very important to have a good initial approximation of the solution. 

Although this work can be done by using the steepest descent technique it can also be done by 

using the conjugate gradient method, which is at least as good as the steepest descent technique. 

Actually, the steepest descent technique is a special case of the conjugate gradient method 



( p k = o ) .  

The conjugate gradient method without line search, particularly, the preconditioned conju- 

gate gradient method, needs to be investigated further. The difficulties are how to find the Hes- 

sian matrix without storing full mn xmn matrices, and how much we can improve the method in 

tenns of cost vs. convergence. 

Another question is, whether we can use the conjugate gradient method to solve the general- 

ized (system of) algebraic Riccati equations 

and, if possible, how efficient it will be (Newton's method and the secant method can easily be 

applied to this case [I  11). 

Finally, improving the bound for the angle and gap between two invariant subspaces is still 

one of our considerations, particularly for nonsymmetric matrices. 
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