A CONJUGATE GRADIENT METHOD FOR SOLVING MATRIX ALGEBRAIC RICCATI
EQUATIONS

by

" Lixin Liu

B.Sc., Beijing Normal University, 1985

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE .
in the Department
of

Mathematics and Statistics

© Lixin Liu 1988
SIMON FRASER UNIVERSITY
September 1988
All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

‘Name: Lixin Liu

Degree; Master of Science

Title of thesis: A CONJUGATE GRADIENT MEIﬁOD FOR SOLVING MATRIX ALGEBRAIC
RICCATI EQUATIONS

Examining Committee:

Chairman: Dr. G. Bojadziev -

= VT2l S
Dr. R. D. Russell ‘
Senior Supervisor

, /Dr. M. Trummer

Dr. R. Lardner

Dr. B. Bhattacharya

External Examiner

Department of Computing Science
Simon Fraser University

Date Approved: September 26, 1988

ii

" PARTIAL COPYRIGHT LICENSE

| hereby grant to Simon Fraser University the right to lend

my thesis, project or extended eséay (the title of which is shown below)
to users of the Simon.Fraser University Library, and to make partial or
single copies only for such users or in fesponse to a request from the
library of any 6+her university, or dfher educational institution, on
"its own behalf or for one of its users. | further agree that permission
for multiple copying of this work for scholarly purposes may be granted
by me or the Dean of Graduate Studies. it is understood that copying

or publication of this work for financial gain shall not be allowed

without my written permission.

" Titie of Thesis/Project/Extended Essay

// /oM/ Qafg %7%@5//@@[el 06/ 74/
(0/1//% a/?ef/’alc ﬁcmf(/ é’%‘“fl”{f

Aufhor:_ -

(signature)

L 10 Z/(/

(name)

Nov. 22, 1958

(date)

ABSTRACT

Recently, algebraic Riccati equations (AREs) héve been widely solved in many fields. In
this thesis, some applications will be discussed; These applications include computing ill-
conditioned eigenproblems (refining invariant subspaces); solving optimal control problems
(computing optimal control functions for both continuous and discrete time systems, and solving
singular perturbation problems of dynamic systems); and decoupling boundary value problems

for ordinary differential equations.

Several numerical methods for solving AREs have been developed in the past 20 years.
These methods can be divided into two classes, direct methods (the Schur method and the sym-
plectic method) and iterative methods (linear iterative methods, Newton’s method and the gen-
eralized secant method). We will review these methods with some comparisons and implementa-
tions. In the case of large sparse AREs, these methods will lose their efficiency because matrix
factorizations (LU-decomposition or QR-factorization) are needed. A "new" method for solving
AREs which may be particularly suitable for solving large sparse- problems, the conjugate gra-
dient method, will be suggested in this thesis. We will compare this method to the other methods
(the Schur method, the generalized secant method and Newton’s method) in terms of conver-

gence, cost and storage requirements.

DEDICATION

To my parents and my sister

iv

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor, Dr. R. D. Russell, for his

suggestion and guidance about the research of this thesis.

I would also like to thank Dr. L. Dieci and Dr. M. Trummer for their help and cooperation.
And finally, thank Simon Fraser University and Department of Mathematics & Statistics for giv-

ing me the opportunity to study here, especially thank Mrs. S. Holmes for her help.

Financial support for the research of this thesis received from Dr. Russell’s research grant is

also appreciated.

TABLE OF CONTENTS

vi

: Approval ii
Abstract iii
Dedication iv
Acknowiedgements v
1. Introduction 1
2. Applications of Solving Algebraic Riccati Equations 7

21 Computing Invariant Subspaces 7
211 Methods for Computing Invariant Subspaces 9

21.2 The Gap between Invariant Subspaces 11

2.2 Optimal Control Problems 12
221 Continuous—-time Optimai Control Problems 12

222 Discrete-time Optimal Control Problems 13

2.2.3 Time-optimal Control Systems with Slow and Fast MOdescccveeusveusessecaene 14

23 Decoupling Boundary Value Problems 17
3. Methods for Solving Algebraic Riccati Equations 20
31 Direct Methods for Solving Algebraic Riccati Equations 20
311 Schur Method —0

312 Symplectic Method 22

32 Iterative Methods for Solving Alegbraic Riccati Equations 23
321 Kokotovic’s Linear Iterative Method 23

3.2.2 Stewart’s Linear Iterative Method 24

323 Newtor’s Method ‘ 25

3.24 Generalized Secant Method 27

33 Conditioning of Algebraic Riccati Equations 29
34 Implementations 30

341
342
3.43

4. Conjugate Gradient Method for Solving AREs

41 Conjugate Gradient Method for Solvi'ng Nonlinear Optimization problems

411
4.1.2
413

4.2 Conjugate Gradient Method for Solving Algebraic Riccati Equations

421
4.2.2
423
S. Numerical Examples

6. Conclusions

Iterative Refinement Method

Steepest Descent Technique

Reordering Eigenvalues

Quadratic Case

General Cases

Implementations for Conjugate Gradient Method

Conjugate Gradient Algorithm

Line Search Algorithm

Comparisons and Implementations

References

vii

31
31
3
34
34
34
36
38

42
45
50
58
60

CHAPTER 1

INTRODUCTION

Consider the matrix quadratic equation
FX) = A +AnX - XA - XApX =0 (1.1)

where A€ R», Azze Rmm, A21 e Rmx, Ape R"x'", and X11 e R™*, The equation

(1.1) is called a matrix algebraic Riccati equation (ARE). Particularly, if
FX) =Ay +AT1 X + XA, -XApX =0 1.2)

where m=n , A1, and A, are nxn positive semi-definite matrices, then (1.2) is called a sym-

metric algebraic Riccati equation.

The purpose of this thesis is to discuss some numerical methods for solving algebraic Ric-
cati equations. In this chapter, we will review some important concepts and results. Some appli-
cations for solving AREs will be discussed in the next chapter. These applications include solving
ill-conditiongd eigenproblems or computing invariant subspaces, solving optimal control prob-
lems, and decoupling boundary value problems (BVPs) for ordinary differential equations
(ODEs). In chapter 3, we will review several numerical methods (both direct methods and itera-
tive methods) for solving AREs. These methods include the Schur method, linear iterative
methods, the generalized secant method, and Newton’s method. Some important theorems which
are associated with these methods will be stated in this chapter as well as comparisons and imple-
mentations. A "new" method for solving AREs, the conjugate gradient (C-G) method, will be
proposed and discussed in chapter 4, with the comparisons of some methods in chapter 3 (most
comparisons are among Newton’'s method, the generalized secant method, the Schur method and
the conjugate gradient method). Numerical examples and results will be given in chapter 5, and

finally, the conclusions are in chapter 6.

Definition 1.1 Let the matrix A =[g;;] € R¥* .
| (1) A is called symmetricif AT=A .
(2) A iscalled upper (lower) triangular if a;; =0 forall 1<j<i<n (1<i<j<n).
(3 A iscalled upper Hessenberg if a;; = 0 for all 1Sj<i-1<n-1.
@ A iscalled orthogonal if ATA =1 .

(5) Ifthereexists Ae Cand x € C*, x # 0 such that Ax = Ax, then A is called an eigenvalue of
A and x is called an eigenvector of A corresponding to the eigenvalue A. The pair (A, x) is

called an eigenpair. The set of all eigenvalues of the matrix A is denoted by A(A).

6) If A is symmetric and xTAx>0(20) for any xe R* ,x %0, then A is called positive
(semi-)definite.

Definition 1.2

(1) LetxeR" . The Euclidean norm (1,-norm) of the vector x is defined by /x/; = Vx'x .

(2) LetA € R™ , The spectral norm (1 -norm) of the matrix A is defined by

— TAX[>
IAD = max { | "*"} :

The Frobenius norm (F-norm) of A is defined by

IAlr = \jz‘h: a; .

Theorem 1.3 (QR-Factorization) [19] Let A eR™* , m 2n . Then there exist an orthogo-

nal matrix Q@ € R™*" and upper triangular matrix R € R"> such that

ol

Theorem 1.4 (Singular Value Decomposition) [19] Let A eR™* and k =min(m,n).

Then there exist two orthogonal matrices U e R**™ and V € R®* such that

UTAV = diag (61,02, """ ,0k) (1.3)

where o1 20;2 --- 20, 20.

Definition 1.5 Theo; (i =12, --.,k) in(1.3) ‘are called the singular values of A .

Theorem 1.6 (Real Schur Decomposition) {19] Let A be an nxn real matrix. Then there

exists an orthogonal matrix 0 € R™** such that

A Az 0 A An
0 Ap '+ Azp A
A=0TAaQ=1|- - - - - : (1.4)
0 0 “* Ascipet Ancin
o 0 .- 0 Aun
L o

where each diagonal block Aj; is either a 1x1 real matrix or a 2x2 real matrix having complex
conjugate eigenvalues. Moreover, these diagonal block matrices can appear in any desired order

on the diagonal.

Definition 1.7 The nxn matrix A in (1.3) is called an upper-Schur form matrix or quasi-

upper-triangular form matrix, !

To compute an upper-Schur form matrix A from a matrix A, one can use the QR-algorithm
(that is, use Householder transformations to transform A to an upper Hessenberg form and repeat
Francis’ QR-steps to obtain the upper-Schur form A). The total cost of the QR-algorithm is
about 10n3 flops. |

Definition 1.8 The linear matrix equation

! A Lower-Schur form matrix can be defined accordingly.

CX-XD=F (1.5)

is called the Sylvester equation where C € R D € R*™" and X, F € R™*,

Lemma 1.9 The Sylvester equation (1.5) has a unique solution for any F if and only if

ACYNAD) =D .

In order to solve the AREs, it is important to understand the methods for solving the Sylves-

ter equations. Bartels and Stewart [3] gave the following method

Algorithm 1.10 (B-S Algorithm) [3]

(1) Transform C to upper-Schur form matrix € and D to lower-Schur form matrix D by using
the Schur decomposition: € = UTCU , D =VTDV ;

(2) Solve the transformed system: CX — XD = UTF V ;

(3) Transform back to the solution: X = U X VT .

The operation count of the B-S algorithm is 10(m3+n3)+ -g-(m 2n+mn?) flops and the

storage requirements are 2(m2+n2+mn). If C and D are already in required Schur form, then the

cost of the B-S algorithm is only O (m2n+mn?2).

Golub, Nash and vanLoan [18] developed another method for solving this equation. In their

method, C is only required to be transformed to upper Hessenberg form instead of upper Schur

form. The operation count of their algorithm is Sm3+5m2n + —g-mn 2 + 10n3 flops, but an extra

3

m? storage locations are required.

We will only use the B-S algorithm in this thesis, since the operation counts for both

methods are O (m3+n3) and the storage requirements are O (m2+n2).

Definition 1.11 Let T be a linecar operator T: X - CX -XD , where
C e Rmxm , D e R and X € R™* | The norm of the operator T is defined by

IT/ = pax %li : (1.6)

The separation of the matrices C and D is defined by

r

it =g L e nM)=2 .,

sep(C,D) =] .7

0 otherwise.

Property 1.12 [33] LetC € R™™ and D € R***, The separation sep (C, D) has the follow-
ing properties:

(1) sep(C,D) =s5ep(D,C) ;
2 sep(C,D) < min {m—ull AeA(C), p.ek(D)} :

() IfM eR™™ and N € RV | then

sep(C+M,D+N) 2 sep(C,D)—[M]|—IN] .

If the Frobenius nom is used in (1.5) and (1.6) , one can. show that [T/ and sep (C, D) are

the largest and the smallest singular values of the mn xXmn matrix i,,®C - DT®I,,, respectively.

Definition 1.13

O {on } is said to converge to o if }131“ Jo,—of =0 ;

@) { o, } is said to be g-linearly convergent to . if there exist c [0, 1) and an integer k>0
such that for all k2k o —of Sclog —of 5

3) { o, } is called g-superlinearly convergent to o if there exist { ¢, } — 0 such that

[0%+1—of S crfo — o ;

@) { o, } is said to converge to o with g-order at least p if there exist constants p>1, ¢>0
and £=0 such that for all k2K , Joes — O S ¢ Jow — P ; if p=2 , the convergence is said

to be g-quadratic.

Definition 1.14 [27] Let @ and ‘¥ be linear subspaces of R* . The angle between these two

subspaces is defined by

cos L (®@,¥) = max {umeaé&i{l, {luTvI }, may, min, {IuTvI }‘}

where u and v are unit vectors.

Let 8¢ [0, Jz‘-] such that

cos9 = max may {IuTvI | [u[:l./v/:l}.

Then the gap between two linear subspaces ® and ¥ is defined by

gap (®,Y) = sind

and the distance between two linear subspaces ® and ¥ is defined by

dist (®,¥) = max { gap (span(u) ,'?) } .

CHAPTER 2

APPLICATIONS OF SOLVING ALGEBRAIC RICCATI EQUATIONS

Solving algebraic Riccati equations has been used in many fields in the past 20 years and
plays an important role in engineering and scientific research. We will discuss some of its appli-
cations in this chapter. These applications range from (1) solving ill-conditioned eigenproblems
(refining invariant subspaces), (2) solving optimal control problems for both continuous-time and
discrete-time cases (computing optimal control functions), and (3) decoupling boundary value

problems for ordinary differential equations.

2.1 Computing Invariant Subspaces

Definition2.1 LetA e R andX c R/ If
xe X =—=>Axe X

then X is called an invariant subspace of A.

It is well-known that for ill-conditioned eigenproblems (some eigenvalues are close
together or some eigenvectors are almost parallel), it is more stable to compute the invariant sub-
spaces with respect to the eigenvalues which are close together or eigenvectors which are almost
parallel rather than compute each individual eigenvalue and eigenvector. Computing invariant
subspaces can be done by solving AREs. In this section, we will discuss several methods for
refining invariant subspaces. These methods are: (1) method [S] developed by Stewart [33], (2)
method [DMW] by Dongarra, Moler and Wilkinson [13], and (3) method [C] by Chatelin [6].
Demmel [8] shows that all of these methods are essentially solving the ARE (1.1) under certain
transformations. Also in this section, we will discuss some results about the angle and the gap

between invariant subspaces.

. Before discussing the methods of computing invariant subspaces, let us review the follow-

ing important theorems.

Theorem 2.2 Let

An Ap| -
= [Am A&] e RIM 2.1
where [=m+n, A € R*¥*, Appe R™™ A, e R™** and A, € R*™™, and suppose that the

nonsingular matrix
T = [Tl,Tz] € RIXI
satisfies

An An

- 2.2
A An @2)

T1AT =

where T) € R"** and T € R”™ . Then the columns of T, span an invariant subspace of A if

and only if A2, =0.

Theorem 2.3 Let A € R and T € R** , Then the columns of T, span an invariant sub-

space of A if and only if there exists B € R*** such that
AT, =T,B. 2.3)
The above two theorems provide some basic ideas for computing invariant subspaces. We

can either use similarity transformations to obtain (2.2) or solve (2.3). If T is chosen to be the

Riccati transformation in (2.2), i.e.

10 .
X I » TT =

I 0
X I

we obtain

A:u A:lz |1 0|]|An An 10
Ay Ap |~ |X 1| |Aan An | (X]
Apn+ApX A

T |An+AnX -XA|1-XAnX An-XApn

24

Apn+ApX A
- FX) An-XAn

According to theorem 2.2, the columns of the matrix [}1(] span an invariant subspace of A if and

only if A 2; = 0 which leads to the ARE (1.1). Moreover, if A is a Hamiltonian matrix 1

AA 1 —AA 12
A= |0 R 2.5
-Ay AT 25

then, (2.4) gives the symmetric ARE (1.2).

2.1.1 Methods of Computing Invariant Subspaces

Now let us review the following three methods for refining invariant subspaces.

(1) Method [S]

The method [S] was proposed by Stewart [34] who originally considered perturbation
theory for the invariant subspaces. In this method, Stewart assumed that R(T" 1) be an approximate

invariant subspace and A 51 be merely small instead of zero in (2.2). By using the transformation

T = [TI,T2]=TU, (2.6)

! A Hamiltonian matrix will be defined in chapter 3.

where the orthogonal matrix

U = . @7

1
L =XT ||(1+xTx) 2 0
X In | 1
0 (I+xxD

and letting A 5; =0, he obtained the invariant subspace R(T)ofA . It is easy to show that X is a

solution of the ARE (1.1).

(2) Method [DMW]

The method [DMW] was suggested by Dongarra, Moler and Wilkinson [13] who attempted
to solve (2.3) by using Gaussian elimination with partial pivoting where n rows of T were fixed.

Demmel [8] shows that this method is also equivalent to solving the ARE (1.1) if T'; is chosen by

T1=

1
X] . | @8

(3) Method [C]
The method [C] was proposed by Chatelin [6] who considered (2.3) in the form

AT, =TB , STT; =1, 2.9)

where ST € R*¥ | Clearly, (2.9) is equivalent to the generalized decoupling equation

AT, -T,STAT)=0. (2.10)

Demmel [8] shows that if T, is given by (2.8) and ST = [1,, , 0] , then (2.10) will become the

ARE (1.1).
Remark 2.4 [12] By taking S =T, one can easily obtain the orthogonal iteration method

-10-

AXe 1=2Z, Ax=QRe, Xe=Qr k=12, ,

or the inverse orthogonal iteration method

AZy =Xy (find Zp) , Zy = Qr R (QR—factorization) k =1,2, -

2.1.2 The Gap between Invariant Subspaces

The angle and gap between two invariant subspaces have been discussed by many authors,
and some important results have been obtained. Let us suppose that X is an invariant subspace of
amatrix A € R and let X be its approximation generated by a certain method. What can we
say about L (X X) and gap (X, X) ? Davis and Kahan [7] discussed this problem for the self-

adjoint matrix A (A =A#) and obtained the following result.

Theorem 2.5 [7] Let A; be an eigenvalue of the nxn real symmetric matrix A, and o; be an

= min = A
8 15i5p1<j5n{|a1 ;‘"}

Slsint(X ,X) | < /AX‘—X‘(X’TAX')/ . .11

approximation of A; . If

then

Note: The right-hand side of (2.11) is the residual of the generalized decoupling equation (2.10).

But when A is a nonsymmetric matrix, this problem becomes much more difficult. Kahan,
Parlett and Jiang [22] give an example which shows that (2.11) may not hold for some nonsym-

metric A. Stewart [33] uses the transformation (2.6) and (2.7) to approximate the invariant sub-

space by using his iterative method for solving the ARE (1.1) 2. He also proves the convergence

2 Stewart’s method for solving AREs will be discussed in chapter 3.

-11-

property of his method .

2.2 Optimal Control Problems

Riccati equations have been widely used for solving optimal control problems. We will dis-
cuss its applications for seeking an optimal control function for both continuous-time and

discrete-time problems, and for solving singular perturbation optimal control problems.

2.2.1 Continuous-time Optimal Control Problems [26]

Consider the linear-quadratic (Gaussian) optimal control problem

x(t) = '44? x(t) = A x(t) + B u(t) , x(0) = Xo . (2.12)

We seek the solution as the optimal control function

u(t) = H x(t)

which minimizes the quadratic constraint

J() = l [xT(¢)K x(¢) + uT(t) R u(t)] dt

where K =CTC € R and R € R*** are positive semi-definite matrices. Assume that the pair

(A, B) is stabilizable 4 and the pair (C , A) is detectable 5, Then

u(t) = -R1B X x(t)

is the optimal control function where X is the unique positive semi-definite solution of the

3 See theorem 3.9 in chapter 3.

4 (A, B) is called to be stabilizable if there exists a constant matrix M € R*** such that all the real parts of
the eigenvalues of A — BM are negative.

5(C ,A)iscalled detectable if (AT , CT) is stabilizable.

-12-

continuous-time ARE
~X(BR'BT)X +XA +ATX +K =0 . (2.13)

Clearly, (2.13) is a symmetric ARE.

2.2.2 Discrete-time Control Problems [26]

Consider the linear-quadratic discrete-time optimal control problem

Xl = A X + By 2.14)

where A € R*** B € R¥™ | x, € R” and u, € R™, and the associated performance index

L= 3 Xexy + 4 5 (FQx +ulRw) @.15)

where Q ,Xy € R*¥*, R € R™™ ,and Q , R are positive semi-definite matrices.

We will seek the solution of control sequences u; ,u;+;, - - , Uy—1 to minimize the qua-

dratic functions J;. Substituting
U, = ~R'BT zk-i;l
into (2.14) and (2.15), we obtain the Hamiltonian system

—BR-'BT
[x;:l] - [g BRI } l:ztil} . (2.162)

or

-1pT
[(1) ts] [’Ziﬁ] = [—'22 (1)} [’Z] - (2.16b)

-13-

It can be shown that the solution of this system is

W =—Kexk . X1 = (A-BKy)xi

where

Ke = BT Xerd B +R) BT Xiy A

Xe = AT [Xp41 — Xes1 B BT Xes1 B+R) BT X1 1A + Q

If the system is steady, that is, }1_1& X, =X , we obtain the discrete-time ARE

X =ATXA -ATXB@BTXB+B)'+Q (2.17a)

or
ATXA -X ~-ATXB®BTXB+R)'+Q =0. (2.17b)

The unique positive semi-definite solution X of (2.17) will give the optimal control function uy .

2.2.3 Time-optimal Control Systems with Slow and Fast Modes [23]

Consider the singular perturbation system

x=f(x,z,u,e,t) (2.18a)

ez =g(x,z,u,e,t) (2.18b)

where u=u(z) is a control input function, 0 <e <1 and ¢ € [to,T]. The initial conditions

arc

x(to) = X0 , Z(to) = zo . (2.18¢)

By using a two-time singular perturbation method (slow-time scale ¢ and and fast-time
scale T= _{_;_t_o_), we obtain the solution of this system

-14 -

x =Xx(t) + 0()

z=2Z() + (1) — z(tg) + O(¢)

where X and Z satisfy

and 2 is the solution of

%%. = g(x(tg),#(t),u,0,20) , 20) = z(zg) .

Now we specify our system (2.18) to be a linear system

XxX=AX+Bz (2.19a)
ez=Cx+Dz (2.19b)

and the initial conditions remain unchanged. Introducing the fast variable

nt=z-D1Cx , 1= — ,

we get the solution

X =X(t) + 0O(g)
z=2Z(¢) + NI + 0()

where X , Z satisfy

]
i

>
»|
+

-]
Ni

9!
»|
+
v
Nj
I
[~

and n satisfies

-15-

%%:Dn , N0) =2 +D1Cxq .

Therefore our solution is

Dt
£

Z2=-D"1C ¢@BD7C)t x5 4+ ¢ & (2g+D"1C xp) + OC(e) . (2.20)

Let us focus on the fast variable n(t). Substituting 1 = z — X x into (2.19), our system

becomes
x=A+BX)x +Dn (2.21a)

e‘l:| = (C+DX ~eXA -eXBX)x + (D —eXB)n . (2.21b)

Now let X be a solution of the ARE

C+DX -¢eXA -¢XBX =0, ' (222)

and introduce another variable £ = x — Y7 . We obtain
E = (A+BX) &+ [€(A+BX)Y - Y(D—€XB) +B In (2.23a)
en = (D -eXB)7 . (2.23b)

By solving the Sylvester equation

€A +BX)Y —Y (D —eXB) = —B 2.24)

for Y , our system (2.19) will be decoupled into two systems: the fast-time system

en=@O-eXB)N , NO0)=z—-XxXg (2.25)
and the slow-time system

E=A+BX)§ , Eto=%-Yn() . (2.26)

-16 -

2.3 Decoupling Boundary Value Problems [2]

Let us consider the boundary value problem (BVP) for ordinary differential equations

%} =A@t)x(t) O<t<l (2.272)
B, 0
o |XO + 8, x(1) = B (2.27b)

A Ap nxa mxm !
where A(¢) = Ay Aoy and A;;e R , AneR , d=m+n) , x@t)e R' |,

Bie R | B,e R*™

Definition 2.7 A nonsingular matrix X € R/¥ is called a fundamental solution of the dif-

ferential equation (2.27) if X satisfies
dX _
Tt— =AX .

Definition 2.8 Suppose X is a fundamental solution of (2.27) which satisfies

| I, 0
0 = [%I]X(O)+ [302 X()=1 , P = Q—l.[%l}X(O) = {0 0] .

If there exist constants K and A, p such that

JX(@) P X71(t)] < Ke M~ | 0<s<t<1 (2.28a)
JX@)UI =P)XY(t)] < Ke™ ™) | 0<t<s<1 (2.28b)

then X is called a conditioning constant for the BVP (2.27). The BVP is called well-conditioned
if K is moderate, and the dichotomic structure for the fundamental solution matrix X is given by

(2.28).

-17-

The solution space (column space of the fundamental solution matrix) can be written as a

| direct sum of two subspaces, the nonincreasing subspace S1={ ¢=X () Pc , ce R* } and the
nondecreasing subspace S;={¢é=X()(—-P)c , ce R* }. Our purpose is to decouple the

solution space into two subspaces S =S ;@S 3, or to decouple the variables into two groups, the

nonincreasing variables and the nondecreasing variables. To do this, we introduce the new vari-

abie y=T"!x where the matrix T () € R”¢ and the new fundamental solution Y has the struc-

" Yu'Ype
ture Y(¢) = [0 Y; 2] such that Y ;1 and Y », characterize the nonincreasing and nondecreasing

dynamics of the original problems. If there exists T (¢) such that

Ap A
dy _ ~ _ 11 _12
4 -dey . Ao= o an|

and moreover, if, say, for every A; € A(A11) and Ay € A(A22) , A > A, holds and they are well-
separated, then the above form for Y (¢) becomes possible and the matrices A , T , A have the

relation

A = T1AT -T-1 %Tt-) (2.29)

The equation (2.29) is called a decoupling equation of the BVP (2.27). Assume that

T@) =[T1,T3] , T7i(e) = ST

where T1 e R and ST € R™¥ | 1t is easy to show that the decoupling equation can also be

written as

dT - - daT
—- =AT1-T1dy , Au=5T@T-—3h) . (2.30)

If we again use the Riccati transformation

-18-

I, 0 By I, 0
TO= RO Iw| » T7O= RO In |

our decoupling equation (2.29) will become the Riccati differential equation (RDE)

%R;_ =An+AnR-RAp-RApR , RO)=Ro. (2.31)

If R is a constant matrix, (2.31) is identical to the ARE (1.1).

-19.

CHAPTER 3

METHODS FOR SOLVING ALGEBRAIC RICCATI EQUATIONS

Methods of solving AREs have been studied for a.long time and several successful methods
have been developed in the past 20 years. These methods can be divided into two classes: direct
methods and iterative methods. In this chapter, several important methods for solving AREs will

be discussed as well as their implementations and the concept of conditioning of AREs..

3.1 Direct Methods for Solving Algebraic Riccati Equations

The direct methods are based upon a matrix factorizations (QR-factorization or LU-

decomposition). The principle behind these methods is given in

Theorem 3.1 Let A be givenin (2.1) and

Ty Ty
T = [TZI T22 . (31)
If T satisfies
{; A
AT = g n (3.2)

and T 1; is nonsingular, then X =T Tii is a solution of the ARE (1.1).

3.1.1 Schur Method

The Schur method was introduced by Laub [25] who considered solving linear-quadratic-

Gaussian control problems for both the continuous-time and the discrete-time cases. This method

-20-

is based on applying the QR-factorization to A, i.e., T in (3.1) is chosen to be an orthogonal

matrix.

(1) Continuous-time AREs
Consider the continuous-time ARE (2.13) and let

A -N
Z= e R»2n (3.3)
K AT

where N =BR-1B T If the orthogonal matrix U € R2*<* gatisfies

UTZU =

Su Sz
0 Sy

where Re A(S11) <0,Re A(S22) >0, then X =U Ui is the unique positive semi-definite
solution of ARE (2.13).

Theorem 3.2 [25] With respect to the notation and assumptions above,

@ Uy isnonsingularand X =U, Ul is a symmetric positive semi-definite solution of the

ARE (2.13).
i) A(S11) =A@ -NX) = the closed-loop spectrum.
(2) Discrete-time AREs

Consider the discrete-time ARE (2.17) and let

A+BRBTYA-TQ —BR-BT)AT
Z = 34
-A —TQ AT

and let U € R2*2» be an orthogonal matrix such that

-21.-

Su S
uTZU = [6‘ SZ}

where [AS 1)l <1, A2 >1. Then X =UnU i1 is the unique positive semi-definite
solution of (2.17).

Theorem 3.3 [25] With respect to the notation and assumptions above,

(@) U is nonsingular and X = U Ui is a symmetric positive semi-definite solution of the -

ARE (2.17).

) AS11)=AA-BR+BTXB)YBTXA)= the closed-lbop spectrum.

Remark 3.4 For both continuous-time AREs and discrete-time AREs, Laub uses the
EISPACK subroutines BALANC, ORTHES, ORTRAN, BALBAK and Stewart’s software
HQR3, EXCHNG to get the 2nX2n orthogonal matrices U, and uses the LINPACK subroutines
DECOMP and SOLVE to obtain U 5 U ii.

For both continuous-time AREs and discrete-time AREs, the cost of the Schur method is
about 81n3 flops because the QR-algorithm is applied to a 2nx2n matrix. The storage require-

ments are at least a 2n>2n array.

3.1.2 Symplectic Method

The symplectic method was discussed by vanLoan [34], Bunse-Gerstner and Mehrmann [4]

and Bunse-Gerstner, Mehrmann and Watkins [5] for Hamiltonian systems.

Definition 3.5 Let A be given by (2.1) withm=n and

-22.

() A iscalled symplectic if A TJA =7 ;

(2) A is called Hamiltonian if JA = ({JA)T ;

(3) A iscalled J-Hessenberg if A 11, A 21, A 22 are upper triangular and A 1 is upper Hessenberg;

@ A is called J-triangular if A 11, A 12, A2 and Ay, are upper triangular and A,; has a zero
diagonal; |

(5) A is called J-tridiagonal if A 11, A 21, A 2, are diagonal and A 13 is tridiagonal.

Definition 3.6 Let A € R2*2%, A decomposition A = SR is called an SR-decomposition if S

is symplectic and R is J-triangular.

The symplectic method is particularly suitable for solving continuous-time AREs where an
SR-decomposition is performed on the Hamiltonian matrix instead of using a QR-factorization.
Bunse-Gerstner, Mehrmann and Watkins [5] gave a method for computing the SR-decomposition
by using the Gaussian elimination method. The cost of their method is only about 66n3 flops.

But as with the Schur method, the storage requirements are also at least a 2nx2n array.

3.2 Iterative Methods for Solving Algebraic Riccati Equations

Let us consider the Taylor expansion of the ARE (1.1) around X;

FX) = FXi) +[An(X-Xi) - X XA oXi —Xid pX X))]

+[2(X-XDA X -X))] = 0 . (3.5)

Several iterative methods for solving AREs can be considered as arising from appropriate approx-

imations of (3.5).
3.2.1 Kokotovic’s Linear Iterative Method

-23-

Kokotovic [23] considered solving the singular perturbation system (2.19). In order to
decouple the fast and slow variables, the ARE (2.22) has to be solved. He suggests that the fol-

lowing linear iterative method can be used for solving the ARE (1.1):

Algorithm 3.7 (Kokotovic’s Linear Iterative Method) = Given Xo=-A21A it

Xip = -A7 (An-XAn-XiApX;) , i=0,1,2,---. (3.6)

Kokotovic shows that the order of convergence of this method is linear and the convergence
contraction constant is O(g),0<e <1 if Ap is O (%). The cost of each iteration of this
method is very cheap (only 2m 2n+mn? flops) and the storage requirements are also minimal.

This method can be considered as the approximation of the Taylor expansion

- FX)+ApXiv—X;) =0 .

An altemative choice of Kokotovic’s linear method is: Given Xg=AA it)

Xis1 = A1 +A2X; - X;ApX)) AR , i=0,1,2, -+,

which is the approximation of the Taylor expansion

FX)-&Xiv1—Xi)An =0 .

3.2.2 Stewart’s Linear Iterative Method

Stewart {33] discussed the error bound for refining the invariant subspaces and obtained the

ARE (1.1). He proposes that one can use another linear iterative method to solve the ARE (1.1).

Algorithm 3.8 (Stewart’s Linear Iterative Method) Given Xo=0;for i =0,1,2, ---,

solve the Sylvester equation

-24.

AnXin—-XinAn =-Au+X; ApX; 3.7

by using algorithm 1.10.

Stewart also proved

Theorem 3.9 [33] Let

1A 12lr [AulF
= St ST - 3.
sep“An,Axn) 38
Ifx< % , then the iteration (3.7) converges linearly to the unique solution X of the equation
(1.1) inside the ball
1-V14x. JAnlr 1A 2fF
Xlr < —— ep@n. 42 <255 @n, A - G9

and the convergence contraction constant is no more than 1-V1—4x.

9

The cost of Stewart’s linear iterative method is only -2—m2n +3

7—mn2 flops after the first

iteration, which costs 10(m3+n3) + -%m 2n + %mn2 flops, since the coefficient matrices of the

Sylvester equations have already been transformed to the réquired form for all i >0. The

storage requirements are 2(m+n)? .

It is easy to show that the approximation of the Taylor expansion (3.5)
FX)+AnXKin~-X) - Xiqg=X)A1 =0

yields Stewart’s linear iterative method.

3.2.2 Newton’s Method

-25-

Chatelin [6] studied Newton’s method for refining the invariant subspaces. She applied

Newton’s method directly to the generalized decoupling equations (2.10): given T {0

T{+) = T{O) ~ [DF (T {fNHILF (T §%)) (3.10a)

where the Frechet derivative

DF(T)Y = (I -TST)AY-Y (STAT)) . (3.10b)

By choosing T; = [;I(] and ST =[I, , 0], Demmel [8] obtains Newton’s method for solving

the ARE (1.1).

Algorithm 3.10 (Newton’s Method) GivenXy = 0;fori=0,1,2, ---, do
(1) Compute C;=An—-X;A12 , Di=An+ApX; and F;=-A2—-X;A12Xi;

(2) Solve the Sylvester equation

CiXix1=XiD; = F; ' (3.11)

for X; ;1.

Demmel also shows that Newton’s method converges quadratiéally to the solution.
Theorem 3.11 [8] Let x be given by theorem 3.9. If K<—117—, then Newton’s iteration (3.11)

converges quadratically to the unique solution X inside the ball given by (3.9), and

Pin=XIr € sl o3 -X1p .

Each Newton iteration is very expensive because a different Sylvester equation has to be
solved at each iteration; therefore, the coefficient matrices must be transformed to the required

(Schur or Hessenberg) forms. The operation count for each Newton iteration is

-26-

10(m3+n3) + —121—m 2n + %—mnz and the storage requirements are 2(m+n)?+ (m2+n?2). For sym-

metric AREs, because C; =-D/, only half the work and half the storage of the general case are

required.

It is easy to show that Newton’s method is the approximation

F(Xi) + A 20(Xi41=Xi) — Kis1=X)A 11 =~ Kis1=X)A 12Xi = XiA 2Xi1—Xi) = 0

to the Taylor expansion (3.5).

3.2.4 Generalized Secant Method

The generalized secant method was proposed by Dieci and Russell [12] who considered the

approximation of the Frechet derivative

DF (X;) Xi=Xi-1) = F(X;) -F(X;1)

= ApXi—Xia) - Xi—Xi-DA 11 - XiA 2Xi=X;-1) - (X;'-Xi—l)A 12Xi-1 .

Substituting it into the Newton iteration (3.11), we obtain
(A2-XiA 19X —Xin(A11+A 12Xi—) = =A21 —XiA 12X - (3.12a)
Alternatively, if our approximation is made by

DF (X;)(X;—Xi-1) = F(X;) -F X;1)

= Ap(Xi—Xi_1) — Ki=Xi—1)A 11 = XiiA 12i=Xi—1) — i=Xi-DA 12X;
‘'we get another secant iteration

(A2Xi1A 12)Xi1 — XA n+A 12X0) = —A1 —XiiA 12X . (3.12b)

-27-

Dieci and Russell suggest that one can use the following generalized secant method to solve

the ARE (1.1):

Algorithm 3.12 (Generalized Secant Method)

(1) GivenX =0, solve X ; by using Stewart’s linear iterative method.

2 Fori=1,3,5, --- ,solve the Sylvester eQuations
AxnXi-1A 12X ~Xinf(A1+A 12X0) = A1 - X;1A 12X (3.13a)
(A22-Xi11A 12)Xi12 = Xio(A 11+A 12Xi) = A 21—~ XA 12X . (3.13b)

Theorem 3.13 [12] Let x be given by theorem 3.9 and K<—112—. Then the generalized secant

method (3.16) converges superlinearly to a unique solution X inside the ball given by (3.9).

Moreover,

jim LXix = X[

[lXi e /p = constant

1+V5
-2

where p =

The operation count for each iteration of the generalizéd secant method is only about half
work of each Newton iteration — 10n3 + -;-m 2n + -Z-mn2 flops if i is an even number and

5

10m3 + —IZI-m 2n + -2-mn2 flops if i is an odd number — because only one matrix needs to be

transformed to the required (upper Schur or Hessenberg) form, but extra mn storage locations are

required (2(m+n)? + (m2+n%+mn)) compared to Newton’s method.

It seems that the generalized secant method is often more efficient than Newton’s method
although its order of convergence is smaller. Dieci and Russell use an efficiency index to analyze
the efficiency of these two methods. In their results, the efficiency index of the generalized secant
method is hg/—g = 1.6 while the efficiency index of Newton’s method is V2 =14. |

-28-

However, this method is not suitable for solving symmetric AREs since the same amount of

work per iteration is needed compared to the nonsymmetric case.

3.3 Conditioning of Algebraic Riccati Equations

The conditioning of the algebraic Riccati equatiohs has been discussed by several authors.
We have already seen earlier in this chapter that k and sep (A 11 , A22) play important roles in the
convergence properties for most iterative methods (Stewart’s method, Newton’s method, and the
generalized secant method). An important result for the conditioning of the ARE (1.1) is given by
Dieci [10].

Let us consider the perturbed ARE

(A21+8B2))+(An+eBn)X(e)-X(e)A11 +eB1)-X(€)A12+€B 19X () = 0 (3.14)

where 0 < £ << 1 and the initial condition

X0O=X.

We suppose the solution of the perturbed ARE (3.14) to be

XE) =X+eX0)+0(d .

By differentiating (3.14) with respect to € and letting € =0, we obtain

0X)X(0) = R

where

¢X)Y = An~XA1)Y -Y (An+A12X)

R =-(Bn+BpX-XB1-XB1X) .

If the Sylvester operator ¢(X) is nonsingular, then

-29.

X©) = ¢"'COR .

Therefore, the relative error is

X@oX] - ej%%
se%%ﬂiho@)_

< & cond (G(X)) Qfﬁiwmwxnwu//w&z/ ey 319

where

cond @X)) = [oX)[¢7(X)]

is called the condition number of the ARE (1.1). If the Frobenius norm is used, the condition
number of the ARE (1.1) is |

_ _ Omax Omax .
cond (@X)) = [OX W F 167 X)F = O SPFA ALK A XAD

where Opnyx and Opg, are the largest and smallest singular values of the matrix

(A—XA 1)@ - [, @A 11+A 12X) .

It is clear that the relative error strictly depends upon the size of the condition number or
sep (Ax—XA 12, A n+A pX). If A(A 11#+4 12X) and A(A 22-XA 1) are close enough together, one

can hardly solve the ARE (1.1) numerically.

3.4 Implementations

We have already introduced several important methods for solving AREs in the first two
sections of this chapter, and discussed the conditioning of AREs in the last section. In this séc-

tion, we will discuss their implementations in more detail.

-30-

3.4.1 Iterative Refinement Method

In order to estimate the condition number cond (¢(X)) and to correct the solution for the
ill-conditioned ARE (1.1), Dieci [10] uses the iterative refinement method for refining the solu-

tion of the Sylvester equation (1.5).

Algorithm 3.14 (Iterative Refinement)

(1) Solve the Sylves;ter equation (1.5) in t-digit arithmetic by using algorithm 1.10;
(2> Compute the residual matrix R = F — (CX — XD) in 2t-digit arithmetic;

(3) Solve the Sylvester equation CX —~ XD = R in t-digit arithmetic;

4) Estimate the condition number

cond @)= pps It

where EPS is the machine precision for t-digit arithmetic.

(5) Correct the solutionX = X +7Y.

The iterative refinement scheme is very cheap because C , D have already been transformed to

the desired forms.

3.4.2 Steepest Descent Technique

It is well-known that Newton’s method and the secant method converge only locally. It is
very important to obtain a good initial approximation by using some global meﬂ}ods. Dieci, Lee
and Russell [11] suggest that one can use the steepest descent technique to get a good initial
approximation for the solution of the ARE (1.1). The framework for this method is to minimize

the function

G(X) = LIF X = g}gf.-}

-31-

by using the steepest descent method.

Algorithm 3.15 (Steepest Descent Technique) GivenXgo,fori =0,1,2, ---
(1) Compute the gradient

H; =V6(X;)) = An-XATFX) - FX)An+ApX)' ;

() Compute o; > 0 such that

GX: —oH;) = gl)ig GX; —od;)

(3) Let X;q = X; —ouH; .

The local convergence property of the steepest descent method is linear and the contraction

constant is no more than ;'“‘“j"“’:“ where Amax and Amiy are the largest and smallest eigenvalues,
axX

respectively, of the matrix V2G (X) . Therefore, the convergence of the steepest descent method

can be very slow if Aypin << Amax -

The cost of each steepest descent iteration strongly depends on the efficiency of the line
search method in step (2) where the function G (X;) must be evaluated several timés. The cost of

each function evaluation is 2m2n + mn? flops. For the case m=n, this is about _llT of each New-

ton iteration.

For symmetric AREs, it is easy to show that if X is symmetric, then each H; = H and

F (X;) = [F (X)]7 is too; therefore, the cost is only about half of the nonsymmetric case.

3.4.3 Reordering Eigenvalues

It often happens that our numerical solutions of the AREs via iterative methods are not the
ones we need. Can one obtain the desired solution from another known solution? It is not easy in

general. Dieci [10] discussed this problem. Since some solutions are known, one usually can

-32.

easily obtain the eigenvalues from the solutions. These eigenvalues can be reordered by using
EISPACK subroutines; therefore, we can obtain our desired solutions after reordering eigen-

values. To be more specific let X be a solution of the ARE (1.1) satisfying

Su Sn2
QTT—IATQ =S5 = [0 322]

Suppose we seek the solution X* satisfying

Re (A(A11+A12X*)) > Re(A(An—X*A12) .

Let O be an orthogonal matrix such that

e res _ |S1 S
S =07Tsg = S

where Re (A(S 11)) > Re (A(S 1) . It can be shown that the desired solution is

X* = Hy Hyy!

where H =TQQ .

-33-

CHAPTER 4

CONJUGATE GRADIENT METHOD FOR SOLVING ARE’S

The conjugate gradient method was first introduced by Hestenes and Stiefel [20] for solving
systems of linear equations, or equivalently, solving quadratic unconstrained optimization prob-
lems. Fletcher and Reeves [15], and Polak and Ribiere [30] developed conjugate gradient

. methods for solving generalized nonlinear optimization problems.

The conjugate gradient method has been studied by many authors and it is considered as
one of the best methods for solving large sparse linear systems of equations, nonlinear systems of
equations and nonlinear optimization problems because other methods need matrix factorizations

where storage resources may not be available.

In this chapter, we will introduce this method for solving algebraic Riccati equations. But
first of all, let us review the conjugate gradient method for solving nonlinear unconstrained

optimization problems.

4.1 Conjugate Gradient Method for Solving Nonlinear Optimization Problems

Originally, the conjugate gradient method was applied to solve quadratic unconstrained
optimization problems or linear systems of equations [20]. Several conjugate gradient methods
have been developed for solving generalized nonlinear optimization problems (the Fletcher-
Reeves method, the Polak-Ribiere method). Also, many implementation aspects have been stu-
died, such as the line search method, the Hessian matrix update, and the preconditioning tech-

nique. We will begin our discussion from quadratic functions.

4.1.1 Quadratic Case

-34-

Consider the quadratic unconstrained optimization problem

Minf(x), f@& = Il-xTAx—bT X+c (@.1)

where A is an nxn positive definite matrix and x, b € R*. It is not difficult to show that solving

(4.1) is equivalent to solving the linear system of equations

Ax=b . “4.2)
Algorithm 4.1 (Conjugate Gradient Method) Let f (x) be given by (4.1). Given any initial
guess xg € R*:
(1) Ifgg=Vf (xg) =0, then the solution of (4.1) is x* =xq ; otherwise, compute dg=—go .
) Fork=0,1,2,---,n-1,let

Xpel = Xg + 0 dy

where
__&le '
'3 AT A d, 4.3)
and

8i+1 = Vf (Xia1) .

If gi41 =0 ,then x4 is the solution; otherwise, let

dest = — 81 +Pr di
where
g[+l i+l :
= . 4.4
B gZ £k @4

An advantage of the Algorithm 4.1 is that the solution can be found within »n iterations. In
fact, one can show that the conjugate gradient method for solving the optimization problem (4.1)

is equivalent to the Gaussian elimination method for solving the linear system of equatioris 4.2).

-35.-

Alternatively, instead of using (4.3), one can use a line search method to obtain o, such that

FXe+oxde) = &ni%f(xk"'adk) .

Theoretically, this method will also terminate within # iterations if all line searches are exact.

Another advantage of the conjugate gradient method is that there is no matrix factorization
-performed. Therefore, when the matrix A is large and sparse, we do not need to store any full

matrix.

4.1.2 General Cases

For generalized nonlinear unconstrained optimization problems, we can still use the conju-
gate gradient algorithm 4.1 where the matrix A is replaced by the Hessian matrix V2f (x;) at each
iteration, or o is determined by a line search. There are two important conjugate gmdiem
methods for solving generalized nonlinear optimization probiems: one is developed by Fletcher

and Reeves [15] , and the other is by Polak and Ribiere [30] . They are slightly different.
Algorithm 4.2 (Generalized Conjugate Gradient Method) Let f(x) e C%D) for all
xe D cR*:

(1) Given an initial approximation xp, let k =0 and dp=-V f (xp).

(2) Repeat (i) — (iv)
@) stopif V f (xx) = O; otherwise,

(ii) compute
Xp+l = X +04dg,
(iii) let
dis1 = =V f Kea) + Pede

v) let k ==k +1.

-36 -

- In algorithm 4.2, o, is determined either by

o = VPRI VF ()
k d7 VZf (x;)dy

or by a line search method

f @i+ ondy) = min £ (xi + 0dy)

~ while B, can be chosen by the Fletcher-Reeves conjugate gradient method

B, = [Vf KD Vf Kiert)

IV (o7 V7 (xe) “3)
or by the Polak-Ribiere conjugate gradient method
B, = [Vf ®ee))” [Vf Re) = VAT @.6)

[Vf x1" VF (xe)

Remark 4.3 If f (x) is a quadratic function, (4.5) and (4.6) are identical and the algorithm

will terminate within n iterations when all of the line searches are exact or (4.1) is used.

Both of the above methods have been discussed and implemehted by many authors. In gen-
eral, since the n-step termination property will no longer hold, the convergence properties of the
conjugate gradient method become a major issue. From our numerical experience, the Polak-
Ribiere method seems much more efficient than the Fletcher-Reeves method in terms of conver-
gence. But only the Fletcher-Reeves method has been shown to converge if a line search method

is used.

Powell [31] discusses the convergence properties for both methods and gives a clear expla-
nation. In his work, he shows that the Algorithm 4.2 will converge to a local stationary point
when B 2 0. This is always true for the Fletcher-Reeves method but may not hold for the Polak-

Ribiere method. Therefore, he suggests that one can use

-37.

_ [VF &ia)IT [Vf a1 = Vf (x0)]
P = max { o VF GOV Vf o) } @

instead of using the Polak-Ribiere method.

Remark 4.4 In (4.7), when B, > 0, it is the Polak-Ribiere method; when B, =0, it is the

steepest descent method.

4.1.3 Implementations for Conjugate Gradient Method

Because the conjugate gradient method has its advantages for solving large sparse prob-
lems, it has been recognized as one of the best methods for solving large sparse problems. The
implementation aspects include line search methods, the Hessian matrix approximations and the

convergence property improvements or preconditioning technique.

(1) Line Search Method

When a line search conjugate gradient method is used to solve a nonlinear optimization
problem, the efficiency of the method is strongly dependent upon the efficiency of the line search,
because this step may be very expensive. The method of line search is not only applied to the
conjugate gradient method, but also to the other optimization methods such as Newton’s method,

the secant method and the steepest descent method.

Let us suppose that p € R” is a descent direction of the function f (x), that is, p satisfies
Vf x)Tp < 0. Then there exists ¢ > 0 such that, when 0 <7 < 1 and T < 6 < 1, the following

two conditions hold:

f Xea1) S F &) +7T VF &) (Xga1 —Xi) (4.8)
Vf (Xk+1)Tp 2 oV &x)p , 4.9

where x4+ =x; + 0 p . A small ¢ gives a relatively inexact line search while a bigger ¢ (close to

1) provides a fairly exact line search.

-38-

Most authors agree that the strategy of the line search is either the condition (4.8) or both
‘conditions (4.8) and (4.9). The practical method for line search can be any one dimensional
optimization method, such as the golden section search method, Newton’s method or the secant
method. However, these methods may be very expensive (some of them may be even impossible)

because we need to evaluate the function and its derivative many times.

A successful line search method is the backtracking line search method incorporating cubic

interpolations (For more detail, see Dennis and Schnabel [9]).

(2) Update Hessian Matrix

The conjugate gradient method without line search needs to evaluate the Hessian matrix at
each iteration and this work may be very expensive or even impossible. Instead of this, one can
use some Hessian matrix update methods to approximate the Hessian matrix. For example, the

positive definite secant update (the BFGS update) method can be used, i.e.

yeYi HpsisfH,
H, = H, +
k+ kTS s¢H s,

where s; =Xz — X; and yg = ge41 — g . This method needs O (n 2)' storage locations in general.

(3) Convergence Properties and Preconditioning Technique

The convergence properties of the conjugate gradient method still remain poorly understood
although n-step termination is true for quadratic'functions. Our numerical examples show that
this method seems linearly convergent, and works poorly sometimes. Furthermore, if a restarting
technique (reset the line search direction to be the steepest descent direction every n iterations) is
used, one can show that the Fletcher-Reeves conjugate gradient method is n-step q-superlinearly
convergent when the line search is exact. But when n is large enough, the order of convergence is

essentially only linear.

However, it is well-known that the conjugate gradient method is at least as good as the
steepest descent method. In fact, just as the steepest descent method, the rate of convergence of

the conjugate gradient method depends on how separate the eigenvalues of the Hessian matrix

-39.

are. When all these eigenvalues are close together, the conjugate gradient method can be surpris-
ingly efficient. In another word, if the Hessian matrix is close to a unit matrix, this method can

converge very fast to a solution.

In order to improve convergence properties, a’ preconditioning technique can be used. The
idea of precondiu’oning originated in partial differential equation research, but it has been applied
to solve both quadratic and nonquadratic optimization problems.

When we consider solving a linear system of equations, or a quadratic optimization prob-
lem, the Hessian matrix remains unchanged everywhere. This matrix can be modified so that all
its eigenvalues are close together (or the Hessian matrix is close to a unit matrix) and the method
will often be much more efficient than without using it. For the general nonlinear functions, some
type of Hessian matrix approximations can be used. For example, we can use the preconditioned

BFGS method

de = -8

+ S[—l_&k}'k-l"‘)’l;r—lgksk—l _ Sir—lgk_ 1+ YA_1¥k-1 St
Yi-1 Sk-1 Yé-15k-1 Yi-15k—1

where g, =H;!g, and H; is given by the BFGS formula. Since the Hessian matrices are

needed, O (n2) storage locations are required in general.

4.2 Conjugate Gradient Method for Solving Algebraic Riccati Equations

We now introduce a "new" method, the conjugate gradient method, for solving algebraic

Riccati equations.

4.2.1 Conjugate Gradient Algorithm

Let us still consider the ARE (1.1)

FX)=I[F;jX)]=An+AnX -XA2-XA 12X

and let

m n

Gx)=LIFOR =535 TP . 4.10)

-

=] j=

Then the gradient of the function G is [11]

VGX)=[D FX)IFX) = An-XAp FX) - FEX)Au+AX)T . @11

Since the gradient of the function G is easy to compute from (4.11), we can use a line
search conjugate gradient method to locate a local minimal point of the function G, which is usu-

ally (not always) a solution of the ARE (1.1).

Algorithm 4.5 (Conjugate Gradient Method for Solving AREs)
(1) Give an initial guess X @ e R™* [letk =0

(2) Repeat (i) — (iv)
(i) Stop if some stopping criterion is satisfied; otherwise, do (ii) — (iv)

(i) Determine o*) such that
G(X®+0®D®) = min {G(X(")+aD("))]r ‘
a> v J

(iii) Let X®*D=X® 4+ ¢®D® and HE+D=V G (X *+D)

(iv) Compute the new conjugate gradient direction

D@+ = _F D) 4 OV D®)

Remark 4.6

[X E+1) - X 0
IX®fr

(1) Our stopping criterion is /F (X ®))fr <€ or

@ o) is determined by a line search method.

(3) PB® is chosen according to Powell’s suggestion (4.7)

*) = 0 22 D @D - Hy))
B*®) = max . e

-41-

4.22 Line Search Algorithm

The efficiency of each conjugate gradient iteration is critically dependent upon the cost of
the line search method, where the function G has to be evaluated several times. The exact line
search conjugate gradient method is n-step g-superlinearly convergent, but in practice, it is
impossible to do the'exact line search within a ﬁnite.number of iterations. Instead, we use an
inexact line search method. It can be shown that an inexact line search conjugate gradient method

is globally convergent (Al-Baali, [1]), and the order of the convergence is linear.

The strategy of the line search has been discussed in the last section. Although a more exact
line search gives the faster convergence for the conjugate gradient method, this may not be very
efficient because more function evaluations are required for a more exact line search. Therefore,
our line search algorithm should do a fairly exact line search and meanwhile, keep the number of
function evaluations as small as possible. Obviously, the condition (4.8) needs more function
evaluations to satisfy. So our line search strategy is only the condition (4.7) rather then Bbm con-
ditions. One of the best choices for the line search is still the backtracking line search with cubic

interpolation.

Because V G (X %)) is already known, it is easy to do line search by minimizing the cubic

approximation of the function G . If we let

2(0) = G(X® 40 D®) |

then

2(0) = G(X®) , 2O = ;Jg [HH-D] .

It is reasonable to use

g0 =aocd+bot+g (0)a+g(0)

as a cubic approximation of the function g (o), where the coefficients a , b are determined by

choosing two different value of ¢, namely o and o, so

-42-

_ 1 [g(al)—g(O)—g'(O)al _ 2@ —g()~g Oy] ,

o — 02 of of
p=_1 o (g(02) —g(0) - g (O)p) _ o2 (g () — g (0) — g’ (O)ory)
T o —0g of of)

Therefore, the minimal point of the function £(c),

G® = =b + “b;43ag’(0) ,
a

~ is our approximate o%),

In the line search algorithm suggested in [9], initially, ¢y =1 and a®) is determined by

minimizing a quadratic fit. If a®) does not satisfy the condition

g@®) < g ,

then successive backtracking is used: let o := a1 , oy := &®) , and minimize the cubic interpolant
to obtain a new &) . A disadvantage of this method is that the initial &; may be too small and,
consequently, the line search may not be exact enough. This disadvantage will definitely affect
the convergence of the conjugate gradient method. On the other hand, if we choose a large initial
04 , then the procédure of locating the acceptable o) may require many function evaluations and

the cost of each conjugate gradient iteration can be very expensive.

In order to overcome this disadvantage, we would rather use "foretracking" than backtrack-
ing when the above case happens, that is, we increase the value of ¢ so that we can find another
a®) which is more accurate than the old one. We summarize the whole procedure in the Algo-

rithm 4.7.

Algorithm 4.7 (Line Search Algorithm)
(1) Compute ¢ = i i‘i [H{-DP] and letgo=G(X®);
=] j=)

(2) Choose 0 < o1 < op such that

-43-

81 <80 <382
where g1=G(X® +0,D®) and g,=G(X®+0, D®) ;
(3) Compute the cubic approximation

@) =aoc3+bo?+c a+gy

where
1 _1
al 1 of E;. 81—80—C
b M=% | g o ||82-80—ck
of of

—b + Vb2 —3ac
3a ’

@ Determine a®): ifa =0 , a(")=—-2%- , otherwise o) =

Remark 4.8

(1). Other one dimensional minimization techniques (such as Newton’s method and the secant
method) can also be used to evaluate o), but it would be more expensive because both

g(o) and g’ (o) (orits approximation) are needed at each point.

(2) The existence of oy and 0, is guaranteed because D ®) is a descent direction and g () is

bounded below.

The cost of this line search method is strictly dependent on the number evaluations of the

function G . Each function evaluation needs m2n +2mn2 flops. When m = n, this is about -111- of

the cost of a Newton iteration. Therefore, reducing the number of function evaluations is the

major work of our algorithm.

In practice, we use op=1 at the beginning. If g(0p)<g(0), then «;:=0p and
oz := 100y ; otherwise, let oy =0.10, . We keep doing this procedure until the requirement is
met. Our numerical experience shows that the average number of function evaluations for this
method is about three (this is good, because we need at least two function evaluations in each line

search) and the line search is fairly exact.

4.2.3 Comparisons and Implementations

In this section, we will compare our conjugate gradient method to some other methods
(Newton’s method, the secant method and the Schur method) in terms of operation counts,

storage requirements and convergence properties.

(1) Operation Counts

As we know, the cost of the conjugate gradient method is critically dependent upon the line
search efficiency or the average number of function evaluations. Because one gradient value is
required, if we save Az —XAq, the total cost of our conjugate gradient iteration is
(m2n+2mn?) + k(2m3n+mn?) flops where k is the number of function evaluations. In our line
search method, the average number of function evaluations is assumed to be 3 (this is from
numerical experience); therefore, the cost of each iteration is 7m2n +5mn?2 flops. Table 4.1
gives the comparison of the cost among Newton’s method, the generalized secant method, and

the conjugate gradient method.

Table 4.1: Operation Counts for Solving ARE (1.1)

Iterationi Newton Secant C-G

i=odd 10(m3+n 3)-l--lzl-m 3n +%mn 2| 10m 3+-121-m 2y +-§-mn 2| Tm2n+5mn?

i=even 10(m3+n 3)-l--lzl-m 3n +%mn 2| 10n 3+-;-m 2n +-%mn 2 Tm2n+5mn?

Particularly, when the Riccati equation is the symmetric ARE (1.2)

FX)=An+Ai X +XA 1 -X412X =0

where m =n and A 13, A 5; are symmetric positive semi-definite matrices, then the matrix F (X)
will also be symmetric if the solution X is symmetric. Therefore, the gradient matrix VG) will
be symmetric as well:

-45-

VX)) = AT - XA FE)+FE) A1 -4 X)) = [VGX)T .

In practice, we seek a symmetric positive semi-definite solution of the ARE (1.2). Begin-
ning with a symmetric initial guess X, all of our X ®) will also be symmetric. Then the cost of
each conjugate gradient iteration is only (2k + 1)a3 flops. When k = 3, this is about half the work

of Newton’s method.

Table 4.2: Operation Counts for Solving ARE (1.2)
Iteration i Newton Secant C-G
i=odd 16.5n3 19.5n3 Tn3
i=even 16.5n3 12n3 Tn3

In the case of m > n (or m < n), the cost of one conjugate gradient iteration is only

0 (m?) (or O (n?)) flops where Newton’s method needs O (m3) (or O (n3)) flops.

Tabl.e 4.3: Operation Counts for Solving ARE (1.1) (m > n)
Iteration i Newton Secant CG

i=odd 0(m3) o(m3 0(m?

i=even o(m?) O(m?2) O (m?

(2) Storage Consideration

On the aspect of storage requirements, the conjugate gradient method needs only Smn addi-
tional storage locations since we do not perform any matrix factorization. The comparisons of the
storage requirements among Newton’s method, the secant method, the Schur method and the con-

jugate gradient method are in table 4.4 for the nonsymmetric case and table 4.5 for the symmetric

case.

because some matrix factorizations (QR-factorization or LU-decomposition) must be carried out.

But the conjugate gradient method requires 6nly O (m) extra storage spaces (the steepest descent

Table 4.4: Storage requirements for Solving ARE (1.1)

Newton

Secant

Schur

C-G

3m24+3n244mn

3m243n24+5mn

2m242n24+4mn

m2+n2+Tmn

Table 4.5: Storage requirements for Solving ARE (1.2)

Newton

Secant

Schur

CG

n?

8n2

8n2

5n2

Also in the case of m >> n, all the other methods require O (m?) extra storage locations

method can be considered as a special case of the conjugate gradient method, i.e., Br =0).

Table 4.6: Additional storage requirements for Solving ARE (1.1) (m > n)

Newton

Secant

Schur

C-G

Om?)

O (m?)

0(m?

O(m)

(3) Convergence Properties

solving general nonlinear unconstrained optimization problems in Section 4.1. These properties

will also hold for our conjugate gradient method for solving AREs.

-47 -

We have already discussed the convergence properties of the conjugate gradient method for

Since for each iteration, we do not increase the function value G (X), the global conver-
| gence property can be guaranteed for any initial value X @. In fact, as we already know, the con-
jugate gradient method is at least as good as the steepest descent method. This suggests using the
conjugate gradient method instead of the steepest descent technique to obtain a good initial

approximation for Newton'’s method or the secant method [111.

The local convergence properties are not very clear so far. Although with a restarting pro-
cedure the n-step g-superlinear convergence property can be proved, it is almost impossible to tell
the difference between it and linear convergence when n is large. Our numerical experience
shows that the conjugate gradient method converges only linearly in general and it can be very

slow.

(4) Conditioning We have already discuss the conditioning of the ARE (1.1) in Section 3.3. We
know that a Sylvester equation has to be solved at each Newton iteration or each secant iteration.
When the condition number cond ($(X)) is large, one can hardly solve these Sylvester equations.
But when we use the conjugate gradient method to solve the ARE (1.1), the condition number
will no longer be the major factor. This is because we do not solve Sylvester equations any more.
Moreover, since the ARE (1.1) has been transformed to be an optiﬁization problem, keeping the
Hessian matrix to be positive definite becomes the conditioning of the conjugate gradient method
for solving the ARE (1.1). In practice, since we use a line search method instead of the Hessian
matrix, the function value will be decreasing after each line search and the method will always
work. Numerical examples tell us that the conjugate gradient method is not suitable for solving
regular well-conditioned problems because Newton’s method and the secant method are usually
more efficient, but the conjugate gradient method may be suitable for solving ill-conditioned

problems.

(5) Large Sparse Systems

When solving large sparse systems, matrix factorizations (LU-decomposition and QR-
factorization) are very expensive, also storage requirements are potentially full matrices

(O (m?+ n?)) which may not be available in practice. The conjugate gradient method has the

advantage of only doing matrix additions and multiplications, where the cost is considerably less
than doing the matrix factorizations and there is no full matrix storage required. This is probably

the only realistic method for solving large sparse problems.

(6) Other Implementations

In practice, if the line search direction D® is not a descent direction, i.e.,
‘g ,g [H{D1>0, we reset the direction to be the steepest descent direction
D® =_H® =_VG(X®) . This is called a restarting technique.

As we have mentioned, instead of performing a line search, the Hessian matrix can be used
to obtain o®) at each iteration. In general, O (m2n?) storage requirements are needed. A draw-
back of using the Hessian matrix is that the the global convergence property may not hold
because the Hessian matrix can be singular or not positive definite. Since the conjugate gradient
method may only be suitable for solving large problems, if we want use the Hessian matrix or
some of its approximations, we must avoid using (m2n2) storage locations. This aspect needs
further studies. An advantage of having the Hessian matrix is that the preconditior?ing technique
can be applied so that the speed of convergence can be improved and the method can be much

more efficient.

The process of reordering is not difficult for the conjugate gradient method because the
matrices A 11 + A 12X ®) and A 5 — X ®)A |, are easy to obtain. One Newton iteration can be per-
formed on them so that we can do automatic reordering as before. But for large sparse systems,

this may be impossible due to storage limitations.

-49-

CHAPTER 5§

NUMERICAL EXAMPLES

We have already discussed several numerical methods for solving AREs, and comparisons
among Newton’s method, the secant method, the Schur method and the conjugate gradient
method in terms of convergence, operation counts and storage requirements have been given in
chapter 4. In this chapter, we will give some numerical examples and results (all of our computa-
tions are done on an IBM 3081 machine using VS FORTRAN on the MTS operating system at

1Xi—1 — X/

Simon Fraser University). Our stopping criterion is either /F (X)/r <€ or TXiTr <E.

Examples 1-4 arise from solving control problems and all of them require solving a well-
conditioned nonsymmetric ARE (1.1). We will use Newton’s method, the generalized secant
method, and the conjugate gradient method to solve these problems. For all the methods in these

four examples, the initial guesses are Xo=1 .

Example 1 : Kokotovic [24]

Consider the continuous model

x| _ [An Az x]
z| |AnzAxn | |2
where A e R?2 |, Ape R | xeR?, ze R3 and

-0.11 0.02 0.03 00 0.02
Ay Ap 00 -0.17 00 00 0.17
Ag Ay | = |00 20 —40 00 00

—4.0 00 00 -2.0 00
Lo.o 00 0.0 4.75 -5.0

-50-

All of our methods give the same solution

0.048403%4 0.5203825
X = |-2.154609 0.04306733
-2.106174 0.05827145

Example 2 : Phillips [28]

Consider the discrete model

IR IE) o

whereAj;€ R®2 , A»e R |, xeR?, ze R? and

09014 01179 00525 00164 0.02014
Ay A -0.0196 08743 00 0025 0.02934
Ap Ay | = [F00071 07342 020175 0013 021067

-0.75 -00557 -0.032 0.019357 -0.014076
-0306 -0.01694 0011 0.14278 0.013217

- 4

The solution of the ARE (1.1) is

-0.0931666 1.140467
X = |-1.083789 0.1514285
-0.5308208 0.1025373

Example 3 : Phillips [28]

Let us also consider the discrete model (5.2) where A 1; € R4, Ape R¥™, x(k) e R?,

z(k) € R* and

-51-

0.835 0.0 0.0 0.0 00 00 0.0 0.0

0.096 0.861 0.0 00 0.0 0.0 0.0 0.029
—0.002 -0.005 0.882 —-0.253 0.041 -0.003 —0.025 —0.001

[Au AIZ:I 0.007 0.014 -0.029 0928 0.0 0.006 0.059 0.002
Ay Ap —0.03 -0.061 2.028 -2.303 0.088 —0.021 -0.224 -0.008

: 0.048 0758 0.0 00 00 0.165 00 0.023

—0.012 -0.027 1209 -14 0.161 -0.013 0.156 0.006

0.815 0.0 0.0 00 00 00 0.0 0.011

The solution of this ARE is

—0.01451242 —0.03516997 2.079860 1.813171
-0.09707658 1.089080 0.0 0.0

X = 10.02188941 0.01141115 2.255242 —1.524221
0.9890777 0.0 0.0 0.0

Example 4 : Phillips [29]

Consider the continuous model (5.1) where A;; € R¥4, A, e R*4 xe R*,ze R* and

r 7

-50 00 00 00 475 00 00 00
00 =20 00 00 00 -20 00 00

—0.08 -0.11 -3.99 -0.93 0.0 -0.07 100 -9.1
Ay Ap 00 00 132 -139 00 00 0.0 -0.28
Ag Ap 00 00 00 00 -02 00 00 00

017 00 00 00 00 -017 0.0 00
00 00 02 00 00 00 -05 00
001 001 -006 012 0.0 001 0.0 -0.11

-

The solution is

0.0 0.0 0.0 0.0
—0.03519669 0.0 0.0 0.0
X = 10.000638565 0.001647461 —0.05102651 0.002348209
—0.001882734 —0.004962614 —0.01556921 —0.009525143

We compare our numerical results in table 5.1, where £ = 1075,

-52.

Table 5.1 : Numerical Results for Examples 1-4
Example Newton Secant C-G
X N Time r N Time r N Time r
1 008 | 3 00050 O0.16E-8 | 4 00047 0.52E9 | 20 0.016' 0.47E-6
2 0222 | 3 00067 0.20E-7 | 4 0.0061 0.17E-7 | 10 0.0078 0.50E-6
3 1255 | 3 0.016 045E-7 | 4 0016 026E-6 | 13 0022 045E-5
4 3525 | 4 0015 0.12E-8 | 6 0.018 0.25E9 | 34 0058 0.80E-6
Remark 5.1:

(1) «xis the condition number given by theorem (3.9);
(2) N indicates the number of iterations for 6-digit accuracy;

(3) r is the residual of F (X), i.e.
r =fFXnIr = JA2+A2XN —XNA11 —XNA 2XNIF 5

4) Time is the CPU time in seconds.

The numerical results in examples 1-4 show that Newton’s method and the secant method
are comparable while the conjugate gradient method is less efficient for solving well-conditioned

problems.

Examples 5-6 arise from solving continuous optimal control problems. As’ we know from
chapter 2, a symmetric ARE (1.2) has to be solved. We apply the Schur method, Newton’s
method and the conjugate gradient method-to solve these two problems (since we know that the
secant method is not as good as Newton’s method for solving symmetric AREs, we will not use
it). For Newton’s method and the conjugate gradient method, because we seek the symmetric

positive semi-definite solution, we choose a symmetric positive semi-definite initial guesses,

-53-

X =0, for both problems.

Example 5 : Laub [25]

Let
i -
210 01
1 210 0
01
" 0
Ay =)
.. 0
0 L1
1 0 012

andA'21=A'12=I .

Table 5.2 gives the numerical results for n =50. In this example, the Schur method works
very well; Newton’s method converges to the solution which is not the desired one and one can-
not expect this solution to be more accurate; the conjugate gradient method works fairly well, and

it converges to the correct solution.

Example 6 : Laub [25]

Let

) 1, i=j+1
A1 =
A1y {0, otherwise

and A ; =diag (1,0, - - 0) , Ag =diag(0,---,0,1).

The numerical results are in table 5.2 for n = 21. In this example, the Schur method and

Newton’s method fail, but the conjugate gradient method still works.

-54.

Table 5.2 : Numerical Results for Examples 5-6
Example | Schur Newton C-G
Time r N Time r N Time r
5 182 058E-10 | 5 354 OS81E-1 | 49 814 099E-6
6 162 0.45E+3 fails o 365 353 0.18E-5

The results in table 5.2 show that; the Schur method can have difficulty because of ill-
conditioning; Newton’s method may not converge to the required solution when the initial guess
is not close enough to the solution; the conjugate gradient method converges to a solution after
many iterations. In addition, both the Schur method and Newton’s method need a lot of storage

locations (full matrix).

These results also show that, for Newton’s method, one may not obtain a more accurate
solution (see example 5) and the method may even fail to converge (example 6, Newton’s method
overflows) without going through some kind of descent techniques (such as a steepest descent
technique) to obtain a good initial approximétion. For the conjugate gradient method, the conver-
gence may be very slow, but because of the sparsity, the function evaluations can be done in a
cheaper way (not necessary to perform the matrix multiplicaﬁons in O (n3) flops), such that the
cost of each iteration is very cheap (for example, in our results, the cost of each cdnjugate gra-

dient iteration is only about 10% to 15% of the cost of each Newton iteration).

Examples 7-8 are coming from computing invariant subspaces.

Example 7 : Golub [19]

1y
Consider the problem of computing an invariant subspace € R52 of the Hessenberg

matrix

-58.

- -
23456
4456 17

A=1036738
0028 9
000110

With the initial guess X ¢=0, Newton’s method and the secant method converge to the
solution of the ARE (1.1)

—0.747269 -1.023547
X =]0.345380 0.348213 |,
—0.044609 -0.039395

while the conjugate gradient method converges to the solution

0.845147 -0.212120
X = [-0.699520 -0.184228 |.
0.127461 0.048286

The results are in table 5.3.

Table 5.3 : Numerical Results for Example 7

Secant Newton C-G
N Time r N Time r | N Time r

8 0012 0.19E-13 | 7 0.016 0.47E-11 | 108 0.080 0.85E-6

Example 8 : Varah [35]

Also consider the Ix! upper Hessenberg matrix

I +1-max(i,j), j2i-1
A = (a) =
@;) { 0 . otherwise

-56-

, 1
We compute an eigenvector [X} Again, we use the secant method, Newton’s method and the

conjugate gradient method. All of our methods converge to the same solution for both

X0=[0,0, --- 0T andXo=[1,0, --- ,0]. For example, when / = 8, the solution is
X = [0.947712,0.532145 , 0.206999 , 0.057052 , 0.010775 , 0.001263 , 0.000070 I .

The results are given in table 54 for /=8,12, and 20 with the initial guess
X0=[190:”'30]T'

Table 5.4 : Numerical Results for Example 8

{ Secant Newton C-G
N Time r N Time r | N Time r

8 8 0.035 039E-9 | 6 0.048 0.21E-10 | 21 0.020 O0.43E-6

12 16 0170 O0.71E-6 | 6 0.117 0.30E-8 | 23 0.035 0.86E-6

20 | 10 0430 092E-12 | 7 0.554 0.65E-8 | 86 0.287 0.92E-6

The numerical results of example 8 verify our claim in chapter 4, i.e., whenm >> n (here

n =1 and m = [-1), the conjugate gradient method can be more efficient.

-57.

CHAPTER 6

CONCLUSIONS

In this thesis, we have reviewed the applications and the methods for solving matrix alge-
braic Riccati equations. These applications are refining invariant subspaces, solving optimal con-
trol problems (computing optimal control functions for both continuous and discrete problems,
solving singular perturbation control systems), and decoupling boundary value problems for ordi-
nary differential equations. The methods we hzive reviewed include direct methods (the Schur
method and the symplectic method), iterative methods (Kokotovic’s linear iterative methods,
Stewart’s linear iterative method, Newton’s method and the generalized secant method). We have
also discussed the conditioning of AREs as well as some implementation issues (the iterative
refinement method, the steepest descent technique and the eigenvalues reordering). Fur;hennore,
we have proposed and applied the conjugate gradient method to solve AREs (only a line éearch
conjugate gradient method is used in this thesis). Theoretical comparisons in chapter 4 and
numerical results in chapter 5 indicate that this method is not suitable for sdlving regular well-
conditioned problems (Newton’s method, the secant method and the Schur method are usually
more efficient). However, for large sparse problems, the conjugate gradient method has advan-
tages. Since no matrix factorization is required, this method can be more efficient for solving
large sparse problems and also more stable for solving ili-conditioned problems. The efficiency of
the line search conjugate gradient method is critically dependent upon the efficiency of the line
search algorithm, since it determines the number of function evaluations. Also, we have shown

from both theory and practice that the conjugate gradient method can be more efficient if m > n.

It is well-known that for the local convergence methods (such as Newton’s method and the -
secant method), it is very important to have a good initial approximation of the solution.
Although this work can be done by using the steepest descent technique it can also be done by
using the conjugate gradient method, which is at least as good as the steepest descent technique.

Actually, the steepest descent technique is a special case of the conjugate gradient method

-58-

(B =0).

The conjugate gradient method without line search, particularly, the preconditioned conju-
gate gradient method, needs to be investigated further. The difficulties are how to find the Hes-
sian matrix without storing full mnxmn matrices, ‘and how much we can improve the method in

terms of cost vs. convergence.

Another question is, whether we can use the conjugate gradient method to solve the general-

ized (system of) algebraic Riccati equations

ApR -LAy = —A2]+LA12R

BpR —LB1y = =By +LB 2R

and, if possible, how efficient it will be (Newton’s method and the secant method can easily be

applied to this case [11]).

Finally, improving the bound for the anglé and gap between two invariant subspaces is still

one of our considerations, particularly for nonsymmetric matrices.

-59.

(1]

[2]

B3]

[“]

(5]

(6]

(7

(8]

(9]

[10]

(11]

(12]

REFERENCES

M.Al-Baali; "Descent property and global convergence of the Fletcher-Reeves method with
inexact line search”, IMA J. Numer. Anal. 5 (1985), pp. 121-124.

U.M.Ascher, RM.M.Mattheij, R.D.Russell; Numerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equations, Prentice-Hall (1988).

R.H.Bartels, G.W.Stewart; "Solution of the matrix equation AX +XB =C ", CACM 15
(1972), pp. 820-826.

A.Bunse-Gerstner, V.Mehrmann; "A symplectic QR-like algorithm for the solution of the
real algebraic Riccati equation”, IEEE Trans. Auto. Control AC-31 (1986), pp. 1104-1113,

A.Bunse-Gerstner, V.Mehrmmann, D.Watkins; "An SR algorithm for Hamiltonian matrices

based on Gaussian elimination", manuscript (1987).

F.Chatelin; "Simultaneous Newton’s iteration for the eigenproblem”, Computing Suppl. 5

(1984), pp. 67-74.

C.Davis, W.Kahan; "The rotation of eigenvectors by a perturbation, III", SIAM J. Numer.
Anal., 7 (1970), pp. 146.

J.W.Demmel; "Three methods for refining estimates of invariant subspaces”, Computing 38

(1987), pp. 43-57.

J.E.Dennis, R.B.Schnabel; Numerical Methods for Unconstrained Optimization and Non-
linear Equations, Prentice-Hall (1983).

L.Diéci; "Some numerical considerations and a new approach for the solution of algebraic

Riccati equations”, manuscript (1988).

L.Dieci, Y.M.Lee, R.D.Russell; "Iterative methods for solving algebraic Riccati equations”

manuscript (1987).

L.Dieci, R.D.Russell; "On the computation of invariant subspaces"”, manuscript (1987).

- 60 -

[13]

(14]

[15]

[16]

a7

[18]

[19]

[20]

[21])

[22]

(23]

[24]

[25]

[26]
27

[28]

J.J.Dongarra, C.B.Moler, J.H.Wilkinson; "Improving the accuracy of computed eqgen-
values and eigenvectors”, SIAM J. Numer. Anal. 20 (1983), pp. 23-45.

R.Fletcher; Practical Metheds of Optimization, second edition, John Wiley, (1987).

R.Fletcher, C.M.Revees; "Function minimization by conjugate gradients", Comput. J., 7

(1964), pp. 149-154.

B.S.Garbow, J.M.Boyle, J.J.Dongarra, C.B.Moler, Matrix Eigensystem Routines: EISPACK

Guide Extension, Springer-Verlag (1977).
P.E.Gill, W.Murray, M.H.Wright; Practical Optimization, Academic Press (1981).

G.H.Golub, S.Nash, CF.vanLoan; "A Hessenberg-Schur method for the problem
AX +XB = C", IEEE Trans. Auto. Control, AC-24 (1979), pp. 909-913.

G.H.Golub, C.F.vanLoan; Matrix Computations, The Johns Hopkins Univ. Press (1983).

M.R.Hestenes, E.L.Stiefel; "Methods of conjugate gradients for solving linear systems", J.

Res. Nat. Bur. Standards, Section B, 49 (1952), pp. 409-436.
M.R Hestenes; Conjugate-Direction Methods in Optimization, Springer-Verlag, (1980).

W.Kahan, B.N.Parlett, E.Jiang; "Residual bounds on approximate eigensystems of nonnor-

mal matrices", SIAM J. Numer. Anal., 19 (1982), pp.470-484.

P.V.Kokotovic; "Applications of singular perturbation techniques to control problems",

SIAM Review, 26 (1986), pp. 501-550.

P.V Kokotovic; "A Riccati equation for block-diagonalization of ill-conditioned systems”,

IEEE Trans. Auto. Control AC-20 (1975), pp. 812-814.

A.J.Laub; "A Schur method for solving algebraic Riccati equations”, IEEE Trans. Auto.
Control AC-24 (1979), pp. 913-921.

F.L.Lewis; Optimal Control, Wiley, (1986).
B.Parlett; The Symmetric Eigenvalue Problem, Prentice-Hall (1980).

R.G.Phillips; "Reduced order modelling and control of two-time-scale discrete systems", Int

J. Control, 31 (1980), pp. 756-780.

-61-

(291

311

32]

(33]

(341

[35]

R.G.Phillips; "A two-stége design of linear feedback controls”, IEEE Trans. Auto. Control
AC-25 (1980), pp. 1220-1223. ip [30] E.Polak; Computational Methods in Optimizdtion: A

. Unified Approach, Academic Press (1971).

D.J.M.Powell; "Convergence properties of élgorithms for nonlinear optimization", SIAM

Review 28 (1986), pp. 487-500.

G.W.Stewart; "HQR3 and EXCHANG: Fortran subroutines for calculating and ordering the
eigenvalues of a real upper Hessenberg matrix”, ACM Trans. Math. Software 2 (1970), pp.
275-280.

G.W.Stewart; "Error and perturbation bounds for subspaces associated with certain eigen-

value problems", SIAM Review, 15 (1973), pp. 727-764.

C.vanLoan; "A symplectic method for approximating all the eigenvalues of a Hamiltonian
matrix", Lin. Alg. Appl. 61 (1984), pp. 233-251.

J.W.Varah; "The calculation of the eigenvectors of a general complex matrix by inverse

iteration", Math, Comp. 22 (1968), pp.785-791.

-62-

