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ABSTRACT 

The interaction of three nonlinearly coupled differential equations modelling the 
co-evolution of three natural electrostatic waves in a plasma is studied. The 
equilibria of the dynamical system are investigated qualitatively in the phase 
space. The dynamics is governed by certain parameters related to the growth and 
decay rates of the interacting waves and the phase mismatch. I t  is shown that the 
saturation of the interacting waves is possible for certain values of the 
parameters. The bifurcations of the equilibrium points to periodic orbits,period 
doubling bifurcations and chaotic solutions characteristic of a strange attractor 
are established for different values of the same parameters. 

It is shown that the tangent bifurcations from chaotic to periodic solutions 
can be explained on the one-dimensional map derivable from the original set of 
ordinary differential equations. An analytical derivation of the map substantiating 
the numerical study is presented. 

iii 



ACKNOWLEDGEMENTS 

I wish to thank my senior supervisor Dr. G.N.Bojadziev for his constant encouragement 

and his guidance in writing of this thesis. 

I wish to thank Dr.Y.S.Satya for his help and support in the earlier stages of this work. 

I thank Prof.S.K.Malik for his ever helping nature shown towards me and Prof. S.K.Trehan for 

his valuable comments.1 also wish to thank the staff members of the Department of Mathematics 

and Statistics for their help; especially Ms.Maggie Fankboner and Ms.Sylvia Holmes for 

arranging my teaching assistantship. 

Finally I would like to thank Mr. Ranabir Gupta for his help with the numerical 

integration. 



TABLE OF CONTENTS 

CHAPTER 1. 

CHAPTER 2 

CHAPTER 3. 

PRELIMINARIES 



CHAPTER 4 

4.1 

4.1.1 

4.1.2 

4.1.3 

4.2 

4.3 

4.4 

4.5 

4.5.1 

4.5.2 

NUMERICAL SOLUTIONS AND ANALYTICAL JUSTIFICATION---46 

Numerical Investigation in the case 6=2 of (2.29)---------------------------- 50 

Analytical Investigation of the dissipative System---------------------------- 54 



LIST OF FIGURES 

FIGURE PAGE 

3.1  Phase portrait of the system (2.31) in the case of exact synchronism. 4 1 

3.2 Phase portraits of the integral planes: a) Y = 0 ; b) Z = 0. 42 

3.3 Schematic form of the mappings of narrow strips on the X = 0 plane 43 

into each other: a) onset of "simple horseshoe" 

b) onset of double horseshoe 

3.4 Mapping of a vertical strip on the X = 0 plane into itself by mapping 44 

of points with identical Z and close values of Y. 

3.5 Phase portrait of integral plane Z = 0 at 6 > 0. 45 

4.1 The three regions in (6,v) space . 60 

4.2 Observed attractors in region III . 61 

I 4.3 Successive bifurcations for 6 = 5 . 

4.4 Sections of the attractor. (a) for v = 10,6 = 2; (b) for v = 21.6,6 = 5 . 63 

4.5 Poincare maps . (a) for v = 13.2,6 = 3; (b) for v = 2 1.625,6 = 5 . 64 

4.6 Second iterate of the Poincare map at v = 21.625,6 = 5 . 65 

4.7 The square of N, the largest number of cycles vs. the distance from 66 
(vc-v) the threshold- . 

vc 



4.9 .rM = .\I- vs time for 6 = 2,v = 9. 68 

4.10 Time plot of Y,,(t),i.e.,the minimal values of a for 6 = 2,v = 16.82. 69 

4.1 1 Section of the attractor for 6 = 2,v = 14. 

'4.12 The points of Y,,(n+l) vs Yh(n). 

4.13 The phase space (8,z). 72 

4.14 h(u) vs. u. 73 

4.15 Graph of the attractor Y'(xt) for 6 = 2,v = 14.8. 74 

4.16 The curve Y'(xt) from eq.(2.29). 75 

4.17 The recurrence Yn+l vs. Yn from eq.(2.29). 76 

4.18 The recurrence Yn+l vs. Yn from the mapping. 77 

4.1 9 The strange attractor. 78 

viii 



INTRODUCTION 

Deterministic equations for systems with few degrees of freedom whose solutions may ex- 

hibit chaotic behaviour have been the subject of considerable attention in recent years.Such equa- 

tions are not only intrinsically interesting from a mathematical viewpoint but also because of the 

striking similarity between the evolution of their solutions and turbulent events in nature. In other 

words, the randomness of solutions is reminiscent of the behaviour of turbulence in fluids and 

atmosphere. 

Here we refer to a set of equations which gives the evolution of the amplitudes and phases 

of three nonlinearly coupled waves. It was introduced by Wersinger, Finn and Ott [I] who anal- 

ysed a model of nonlinear system consisting of resonant three-wave coupling equations. The 

modelling equations have the form 

where 8 = a 1 - q - ~  is the phase mismatch in frequencies ~i)k, k=1,2,3 ; M is the coupling coeffi- 

cient, and the constants give the temporal behavior of the waves on the long time scale 

(instability or damping depending on the sign of ~n, ). The model (1) was applied to the case where 

the high frequency wave (k=l) is unstable (yl>O) and the low frequency waves (k=2,3) are lin- 

early damped (~2,3 > 0). This case represents a physical state for the nonlinear saturation where 

the temporal increase of energy of wave 1 (due to instability ) can be diverted by nonlinear 



coupling to the damped low frequency waves (waves 2 and 3) and captured in their vicinity. 

Using the study of Wersinger, Finn and Ott [I] as a base we analyse the interaction of two 

Langmuir [2] (longitudinal ) waves with an ion-acoustic wave (longitudinal). One of the Langmuir 

wave here is considered as the growing wave and both, the other Langmuir and the ion-acoustic 

wave as damped waves. 

The use of physical model makes the study more natural and substantiates the earlier work 

done on (l).The main objective of this thesis is to investigate the equilibria of the model (1) as 

pertaining to a real world situation and the emergence of chaotic behavior in the light of develop- 

ments of nonlinear dynamics. 

In chapter 1 we present a survey of the earlier work done on model (1) and relevant to the 

thesis recent work on nonlinear dynamics. 

In chapter 2 we introduce the basic equations which govern the phenomenon of the interac- 

tion of the two Langmuir waves with the ion-acoustic wave and show that under appropriate con- 

ditions , these can be reduced to a set of three nonlinearly coupled first-order ordinary differential 

equations. We also discuss the assumptions under which the derived set of equations represent the 

actual physical phenomenon. 

Chapter 3 deals with qualitative study of the model. Conditions for the existence of equilib- 

rium points are found and their nature and stability property discussed. Also phase portraits in R3 

are given. 

In chapter 4 we study numerically the bifurcation of the equilibrium points to periodic or- 

bits, period doubling bifurcations and chaotic behavior characteristic of a strange attractor. We 

show that the tangent bifurcations from chaotic to periodic solutions can be explained on the one 

dimensional map derivable from the original set of ordinary differential equations. In addition we 

give the analytic expression for the one-dimensional map. 

In the conclusion a short discussion of the results obtained is presented. 



PRELIMINARIES 

In this chapter we summarize in brief some results on the three wave interaction.We also 

give a short survey of the research done on this topic in various fields. We introduce the basic 

assumptions of the model (1). 



1.1 GENERAL DERIVATION OF THE MODEL EOUATIONS 

In this section using the work of Sagdeev and Galeev [3] we derive the model (1) from the 

following equations representing the interaction between three harmonic oscillators, 

d 2 ~  dY 2 3 + 2 ~ 2 ~  + w2Y = MZX, 

d2z dz 2 g+ 2 ~ 3 ~ +  03Z = MXY, 

where X , Y and Z are the amplitudes of the three coupled oscillators, vk , k=1,2,3 are the 

damping coefficients,wk , k=1,2,3 the natural frequencies of the oscillators and M is the coupling 

constant.To derive the model (1) we use the averaging principle which is described briefly (see 

Stix [4] ). Suppose we have two vector quantities A and B and we are interested in the product 

The asterisk indicates the complex conjugate. If e&iOr is periodic in space or time where 

4 = Qr + i$i , we may average over a single period to obtain 

provided ei is constant over the same interval . If ch. is almost periodic in space or time, or if 

Ao,Bo, or @i are slowly varying functions of space or time, eq.(1.2) is still correct in some mean 

value sense.With this physical interpretation in mind, we write for the amplitudes of each of the 

oscillators 



where Cj(t) , j = 1,2,3, are the slowly varying parts of the amplitudes and C.C. represents the 

complex conjugate part . In the following formulation we will also assume that the coupling is 

small, which justifies the use of the oscillator co-ordinates as the product of a slowly varying 

amplitude and rapidly oscillating exponential as in (1.3). 

The boundary conditions for the physical problem are based on the fact that the first 

oscillator has already been excited to a much larger amplitude than the other two oscillators. 

Substituting the expression (1.3) into (1.1) yields the equations 

Since Ci(t) is a slowly varying function of time,we may neglect the second derivative terms 
d2C.(t) dC.(t) 

(i.e. dt; ) compared with wJ-&-, being of order WjT which is <<I. 

Hence we have the equations, 



Equations (1.5) have a complicated structure and can be simplified using the averaging principle 

which allows one to average over the fast time scale associated with the oscillator frequencies 

since the amplitudes Cj may be considered constant . In general the averaging procedure will make 

all the terms on the right hand side of (1.5) vanish and will yield C1,C2,C3 =constant. 

However, when the oscillator frequencies aj , j=1,2,3, satisfy a resonance condition that 

reduces the oscillation rate of one of the exponentials on the right hand side of (1.5) to the time 

scale associated with the amplitudes, this particular exponential will remain unaffected by the 

averaging process.This can be seen when the frequencies satisfy the resonance condition 

ol=02+co3,then averaging of (1.5) yields 

where C1 is considered to be a constant. 

We seek a solution of (1.6) in the form of Cj = Cj eivt , j =2,3. Working only to lowest 

order by making a small parameter expansion around v/uj, we get the dispersion relation 

v=rt ICl IIMI 



From the above result we see that C2 and C3 may have growing solutions only when the product 

~ ~ 1 ) 3  is negative. The resonance condition 01=~02+~03 combined with the condition that cl>.t~1)3 be 

negative gives an equivalent condition that lull > 1~1,I~i)31 and also (1.5) reduces to the model (1). 

This analysis leads to the conclusion that if one of the oscillators is initially excited to a 

much larger energy than the other two oscillators, then it can transfer energy to the other two 

oscillators if and only if it has a higher frequency than the other two oscillators. We may also 

conclude that the three-wave interaction is the lowest order nonlinear effect (expanding in the 

wave amplitudes). The interaction is coherent if the spectral widths in k and o of the interacting 

wave packets are small,respectively,compared to the inverse spatial scale length and the inverse of 

the interaction time (see Tsytovich [5]). 

1.2 REVIEW OF THE PREVIOUS WORK 

Nonlinear three-wave interactions have been studied in various areas: in the context of 

parametric amplifiers ( Cullen 161; Louise11 [7]), nonlinear optics ( Armstrong et.a1.[8]), . 

interactions of water waves ( Bretherton [9]; McGoldrick [lo]; Benney and Newell [l I]), and 

interactions of bulk acoustic waves ( Shiren [12]) and surface acoustic waves (Svaasand [13]; 

Newhouse et.al.[l4]; Davis and Newhouse [15]).We are usually concerned with three wave 

interactions in which one of the waves is externally excited, for example, in laser-plasma 

interactions or in lower hybrid heating of a tokamak plasma. The other two waves initially have 

their amplitudes at the noise level. Hence,the wave externally excited has a much larger amplitude 

than that of the other two waves. The externally excited wave is called the "pump" and the other 

two interacting waves,the "daughternwaves. In order to describe the initial development of the 

interaction we discard terms involving products of the arnplitudes(assumed initially small). We 

obtain a pair of linear relations describing the evolution of the initially small amplitude waves and 

the amplitude of the pump is taken to be time independent. In the course of the interaction , if the 

amplitude of the low-frequency waves becomes comparable to the amplitude of the pump,then the 



linear approximation breaks down and the subsequent evolution must be described by the full set 

of nonlinear equations. 

In reality,an externally excited wave will interact with the whole spectrum of pairs of 

plasma waves. Up to the time the linear approximation remains valid,each such pair evolves 

independently of the others. The assumption is that the unstable spectrum is sufficiently narrow 

for the subsequent nonlinear interaction to be described by the coherent three wave equations. 

Essentially, the nonlinear evolution of the pump is determined by its interaction with the first pair 

of waves to grow to a large amplitude. 

The nonlinear coupling of three waves is typically encountered in the description of any 

conservative nonlinear medium where:(a) The nonlinear dynamics can be considered as a 

perturbation of the linear wave solutions;(b) The lowest order nonlinearity is quadratic in the field 

amplitudes;(c) The three-wave resonance conditions (1.2) can be satisfied. Benney and Newel1 

[I 11 showed that the nonlinearly coupled three-wave equations can be obtained from an 

appropriate nonlinear model. 

1.3 ELECTRODYNAMICS OF THE THREE-WAVE IN'IERACTION 

Here we discuss the derivation of the basic equations in the context of the electrodynamics 

of weakly nonlinear media. We follow Bers,Reiman and Kaup [16]. 

The linear dynamics of a medium can be represented in general by a linear(space-time 

integral) dependence of the electric current density J(r,t) upon the electric field E(r,t). For a 

homogeneous medium using complex Fourier transforms for the fields {ei(k-r-mt) dependence}, 

this relationship can be written as 

Ji(k,CO) = CFij(k,CO)Ej(k,CO) , k = (k1,k2,k~)~. 

Substituting (1.8) into Maxwell's equations gives the homogeneous set of equations 

Dij(k,CO)Ej(k,CO) = 0 , 



where the dispersion tensor (MKS units) is 

The field equations are thus constrained by the dispersion relation 

D(k,o) = detDij(k,o) = 0 , 

giving o(k) = The linear field solutions can therefore be written in general as 

h 
For weakly dissipative media ( Ioijl cc l$l,where the superscript h stands for the Hermitian part 

and the superscript a stands for the anti-Hermitian part) we take these fields to be the weakly 

damped (or growing) propagating waves,i.e.,for k real Ivl I IIm~lcclRecqJ = lo1 and thus from 

(1.1 1) with lDil r ImlD(k,o)IccIReD(k,o)l E ID,! one obtains 

Dr(k,o) = 0 giving ~ ( k )  (1.13) 

and 

Consider now the nonlinear electrodynamics of the medium as a perturbation. The 

nonlinear electric current density to second order in the electric field will be given by 

where for brevity the superscripts m and n stand for the dependence upon (km,%) and 

(k,,~),respectively,of the field variables and the third rank tensor. We now assume that this 

second-rank current will produce a slowly varying space-time amplitude variation in the linear 

field solutions, so that (1.12) now becomes 



where the r = xi and t variation in uk is slow compared to,respectively,~' and a-1. In genera1,the 

perturbation will produce a slowly varying amplitude and polarization(i.e.,orientation) of the 

electric field vector. It can,however,be shown to second-order that the dynamic equations for the 

amplitude are decoupled from those for the polarization. Here we consider only the amplitude 

equations. When (1.15) and (1.16) are substituted in Maxwell equations and the nonlinearity is 

considered with slow variation,we obtain an infinite set of coupled partial differential equations 

for the slowly varying amplitudes. From the structure of (1.15) it is clear that the simplest 

coupling will consist of a resonant triplet of linear waves satisfying 

and 

We shall write down the resulting coupled equations for the slowly varying amplitudes of 

the three waves which one obtains when the nonlinearity is conservative. We will normalize the 

slowly varying amplitude u(r,t) so that its magnitude square is the action density of the wave. Let 

this normalized,slowly varying amplitude be ak(r,t) = akouk(r,t), 

where we have set Ek = eEko and 

Then the three coupled equations are: 

( $ + v ~ . v  + v l  a l=plKa2a) ,  



where,assuming o>O, pk = sgn(m0) = &l is the energy pwity , 

is the group velocity , and K is given by 

In eq(1.22) the subscripts on the second-order current indicate the wave amplitudes on which it 

depends ( i.e.,superscripts on the right-hand side of eq(1.15)). Eq.(1.20) with all v=O and each 
a v.V = v , ~  are just the equations 
X 

for the one-dimensional space and time evolution of the three-wave resonant interaction. 
a a Also,with all v=O ,all = 0 , and each v.V = v, a;; + vy - dy , eq.(1.20) describe the two 

dimensional steady state resonant interaction of three waves. 

1.4 RELEVANCE OF THE PROBLEM TO OUR PRESENT WORK 

In plasma physics, and especially for high-temperature plasmas in a magnetic field, the 

linear dynamics of plasmas involves a very rich variety of waves. Nonlinear dynamics of plasmas 

. can involve both wave-particle interactions and wave-wave interactions. The latter, in its simplest 

form, is described by (1.20). Such interactions are of importance in ionospheric propagation,in 

the evolution of various plasma instabilities, and more recently in problems of plasma heating with 

high-power electromagnetic sources,eg., with lasers for pellet fusion, and with radio-frequency to 

microwave and millimeter sources for magnetically confined fusion plasmas. In all cases where 



the nonlinear interactions were solved for pump depletion, only their evolution in time was 

considered . 

Until recently, in discussing the problem of the onset of turbulence, the question of 

specific methods of eliminating an instability developing in a viscous nonlinear medium and the 

question of the mechanisms leading to the appearance of disordered random motion were, as a 

rule, considered independently. The elimination of an instability was generally attributed to 

systematic intraspectral transfer of the energy of diversely-scaled perturbations into the region of 

strongly damped small scales. On the other hand, the onset of chaos was associated either with the 

excitation of a large number of independent perturbations, or with some "conservative" 

mechanisms. It has become clear in recent years as a result of investigations of stochastic auto- 

oscillations in a dynamical system with a small number of modes that, in principle , the possibility 

of the onset of chaos in dissipative systems can itself be related to the mechanism underlying the 

limitation of the instability. In particular, the onset of stationary disordered motions in systems, in 

which the stabilization of linearly amplifiable modes is affected by the decay or parametric 

mechanism of energy transfer to damped perturbations of multiple scales, has now been 

investigated in detail. 

Natural interest attaches to the observation of stochasticity within the framework of models 

in which stabilization is affected through the transfer of energy to neighbouring(near1y unstable) 

scales. The simplest model of this sort can be obtained by generalizing the well-known Landau 

model by allowing for the broadening of the spectrum in the course of the self-modulation(or self- 

focussing) of the wave packet, i.e.,for the excitation of close modes. 



Derivation of the model eauations from the couplinrr eauations of the three plasma waves 

, In this chapter we present the actual equations representing the coupling of the two high- 

frequency Langrnuir (longitudinal) waves with the low-frequency ion-acoustic (longitudinal) wave 

in the presence of collisions which constitute the damping of the waves. We also present the 

conditions under which these equations can be reduced to the model (1). 



2.1 MOTIVATION OF THE STUDY 

Until quite recently, it was thought that turbulence,i.e.,stochastic self-oscillations of a 

continuous medium,was related exclusively to the excitation of an exceedingly large number of 

degrees of freedom. Although fully developed turbulence may be a problem with infinitely many 

relevant degrees of freedom, it is now widely believed that near the onset, a finite number of 

modes should be enough for a qualitative description of the system. 

When a system is controlled by one heat reservoir it is known that the symmetry of the 

system may be lowered in a co-operative way through a definite critical temperature. This is 

known as the phase transition in thermodynamic equilibrium. Any ordered state which emerges 

as a result of such a transition is generally restricted to a regular spatial structure or pattern. In 

other words it always belongs to the fixed points of the motion. This restriction is due to the time 

reversal symmetry which is characteristic of thermodynamic equilibrium. 

When the system is controlled by more than one independent external reservoir the state of 

the system generally deviates from thermal equilibrium ( G. Nicolis and 1.Prigogine [17]). 

Namely, in addition to the fixed points (of lower symmetry) which are familiar in thermal 

equilibrium, there may appear recurring orbital motions which are structurally stable, thus forming 

new phases. In particular there appear periodic orbits which are known as limit cycles. This kind 

of nonlinear oscillation exhibits much less amplitude response than a linear oscillator, and the 

dynamic stability of various kind of biorhythms may be understood from this point of view. 

Recently, however, a third phase, different either from fixed points or from periodic 

orbits, has come under serious consideration . This is associated with the appearance of a 

recurrent aperiodic orbit( Rabinovich [18] ). Although the existence of such solutions is known 

for some time, the recognition of the structural stability of such a "phase' belongs to relatively 

recent years. In fact the turbulence phenomenon in hydrodynamic has been reinterpreted from this 



point of view. This third variety is generally called a "chaotic phase" in contrast to "spatial pattern" 

or "temporal rhythm" and is one of the topical subjects of nonlinear dynamics. 

Investigations of turbulence in dissipative media are called for in many problems of 

physics, such as Langmuir turbulence in a collision dominated plasma, acoustic turbulence in 

solids, investigations of thermal conduction, of the boundary layer,etc. In the majority of cases, 

turbulence in dissipative media is not similar to the most thoroughly investigated turbulence in 

media characterized by the presence of a wide inertia interval in which both the instability and 

damping can be neglected. The turbulence that is established within the inertia interval usually has 

a universal spectrum k, ( Tsytovich [3]), is fully described by the energy flux over the spectrum, 

and is essentially independent of the cause of its excitation be it the intrinsic instability outside the 

inertia interval, the action of electric fields, etc. In the case of a weak nonlinearity, such a 

turbulence is described by the kinetic equation for the waves (Tsytovich [3]), which can be 

obtained by using the random phase approximation. On the other hand, if the inertia interval is 

either small or nonexistent, then the phases of the individual modes can no longer be regarded as 

independent even in the case of a weak nonlinearity, and the random-phase approximation cannot 

be used. This situation, wherein the phases of the individual waves are interconnected in the case 

of multiwave interaction, is customarily called strong wave turbulence. 

2.2 Model of the turbulence with spectrallv narrow excitation region 

If an unstable mode exists in a nonlinear dissipative medium with dispersion, it is 

neccesary in the general case to take into account the following nonlinear processes: 

1) Generalization of harmonics of the growing mode and the resultant synchronization of the 

phases of the nonlinear periodic waves whose waveform depends on the magnitude for the given 

type of waves. 

2) Decay of the growing wave (co~,ko) into pairs of low-frequency waves (ol,kl) and 

( c o ~ - o ~ , k ~ - k ~ )  with synchronized phases , where the waves in each pair can be of different types. 

3) The interaction between the different nonlinear waves and the decay pairs. 



If the medium has a sufficiently strong dispersion for all the wave types that participate in 

the interaction, then no harmonics can be produced and the principal elementary process in the 

general picture of the turbulence is the decay of the growing mode into pairs that are parametrically 

coupled with it. 

2.3 Coupled mode eauations 

In the study of the dynamics of plasma systems, two descriptions are generally used. 

These are the hydrodynamical fluid description and the more detailed kinetic description. In the 

first case the Navier-Stokes equation is used in conjunction with the Lorentz force term and in the 

second case the Boltzmann equations are used. Both these sets of equations are nonlinear. In 

order to avoid complexities of the nonlinear treatment one considers only small variations in time 

and space of the quantities studied. In the linear approximation products of the oscillating 

quantities are neglected and therefore, the disturbance of the medium due to one wave does not 

influence other waves and thus the waves become uncoupled in this approximation. In the 

nonlinear theory we also take into account the influence of the waves upon each other and thus the 

waves become coupled. To be able to treat this situation mathematically we must assume that the 

interaction is in some sense weak so that the influence of the contributions will decrease rapidly 

with increasing the order. To first nonlinear order, called the second order approximation, we 

only include contributions to the interaction which are proportional to products between two 

oscillating quantities. If the second order oscillating quantities satisfy the dispersion relation of the 

medium they may produce a third wave, and we thus obtain a system of three interacting waves . 

We follow Sjolund and Stenflo[l9] to derive the coupled mode equations for the 

interaction between two Langmuir waves and one ion-acoustic wave. 

We consider a plasma of electrons and ions, and the unperturbed plasma is assumed to be 

quasi-neutral and homogeneous in space. The following notation are used: 



m = electron mass 

M = ion mass 

-e = electron charge 

No = unperturbed electron and ion density 

n, = perturbation in electron density 

ni = perturbation in the ion density 

ve = electron fluid velocity 

vi = ion fluid velocity 

E and B = electric field and magnetic induction 

Vthe = electron fluid velocity 

vthi = ion thermal velocity 

c, = ion acoustic velocity. 

The dynamic equations for the plasma will then be: 

where the nonlinear terms have been written on the right hand side. 

We will now consider the interaction between waves. In the linear approximation the 

dynamic quantities of one wave may be presented in the form 



where Aj is a constant vector and the propagation is taken to be in the x-direction. 

If we take all the perturbed quantities in eq.(2.1) to vary in the form (2.2) and we neglect 

the nonlinear terms, we obtain the condition for a nontrivial solution 

where ci+ = .\I5 is the plasma frequency . The frequency w and the wave number k are thus 

related by one of the dispersion relations 

representing a Langmuir wave and 

2 w; = kZq, 

representing an ion-acoustic wave. 

In the presence of the nonlinear terms in (2. I), the solution will no longer be in the form 

(2.2). We will choose a Fourier component in space and study its evolution in time. We will now 

use the coupled-mode method. Instead of studying a particular oscillating component a linear 

combination is chosen which is the normal mode a. It may be found by substitution of a linear 

combination, a, with unknown coefficients, of the dynamic variables n,E, ..... into the relation 

The time derivatives are eliminated with the help of the linearized hydrodynamic equations where a 
a harmonic variation in space ( a;= - ik ) is assumed. By making use of the dispersion relation and 

equating the coefficient for each of the dynamic variables to zero the unknown coefficients may be 

found. This implies that linearly the relation(2.5) is valid for arbitrary and independent variations 

in time of the dynamic variables. In (2.5) o is the solution to the dispersion relation corresponding 

to the k-th Fourier component which we study. The advantage of introducing the normal mode a 
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is that we obtain the relation(2.5) without using any linear relation between the oscillating 

quantities which implies a harmonic time-dependence. 

First we study a Langmuir wave. Assuming the propagation in the x-direction the 

equations governing the Langmuir (longitudinal) mode are obtained Erom 

where 

The linear equations for this mode are given by 

Let us now define the longitudinal normal mode as 

and 

Substituting (2.7) in (2.8) gives 

- 
a1 =- [ I+-  

Vthe 



and 

a1 - =- 
2 Vthe ' 

Substituting 7 from (2.9) into (2.7) gives - 

Now, including the nonlinear terms in (2.6) we obtain 

1 - e - 'the - - _- -  (v,v +- E +-ikln )-- Nvo 
Vthe m NO 

klvre ( 4; + i k 1 )  
w1 No 

or with (2.7) and (2.8) we have 

We use the averaging principle to calculate the value of Nvo, according to which 



since a o = o l + ~ ,  an assumption made for the interaction not to be averaged out due to rapid 

harmonic oscillator of the driving terms. However, due to the nonlinear interaction the Fourier 

components in space are not Fourier components in time and thus the relation coo=wlm need not - - -  
be exactly fulfiiled. In fact the dynamic quantities v , n , E may be written in the form of (here 

we present only T )  

where the condition for the weak interaction is 

This means that vti) consists only of frequencies close to coj . 
Y 

Therefore, we have 
-- 

aal -ve N* vo - = -a1 - icolal - iol 
dt 2 NOV the 

since 

Now we do a similar analysis for the Langmuir pump wave. The governing equations can 

again be written as 



We define the pump wave normal mode as 

and differentiating, we get 

2 iWp2 i&ie v imp - 
aao ao i Nv -&- =-y[- +- +-+-I-- 1 + w 2 ) -  , 

00 00 Coo 00 00 ( kvthe P NOvthe 

which can be written as 

Again we obtain, 

Averaging out under the assumption COO=(I)~+@ , gives 



with which (2.11) becomes 

Introducing the growth term the above can be written as 

where the first term on the right hand side is the growth term. 

Now, we derive the equation for the ion-acoustic mode. This is again a longitudinal mode. 

In this case the nonlinearity comes through the beating of the Langmuir mode, but the ions 

itself are linear. Therefore the equations for the linear ions are 

a N  av 
= - N o =  , 

The contribution of the nonlinear electrons comes through 



Using (2.13), we obtain for (2.12) the equations 

Let us define the ion acoustical normal mode as 

where 

Now, we write 

Differentiating (2.14), we have 



Using the averaging principle we get 

Again, averaging out, using the relation oo=ol+(i)z,we have 

Therefore, 

and since - V0 - - 3, with (2.9) we obtain 
Vthe 

Hence, we have the following three coupled nonlinear ordinary differential equations 

representing the three coupled harmonic oscillators : 

Further, let us define 

as = As(t) e-'@,f, s=0,1,2 . 

Substituting (2.18) into (2.17) gives 
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where 6 = o o - o l - ~ .  

Substituting 

into (2.19),(2.20) and (2.21), and separating the real and imaginary part of the equations, gives 

~ U O  ioo + i u o ~  = yuo - 7 u 1 u2 ei(Ql +@2+6t-@0) , 

We define $ = $0 - $1 - - 6t and separate the real and imaginary parts of eqs.(2.23). 

Then the real parts are 

and the imaginary parts are 



Differentiating $ we have 

Consider the set of four coupled ordinary differential equations given by (2.24) and 
4 n: (2.26). We normalize by - and change @ + $ - - . 
0 0  2 

Then we have for (2.25) and (2.26) 

We define 

which transforms (2.27) to 



Further, assuming that v=vl=v2 and U1=U2=U, which is a special case.of (2.28), we get 

Finally, the substitution 

X=Uocos@ , Y=Uosin@ , Z=U2 , 

transforms (2.29) into 

ax au, - -  -- a@ cos@ - Uo sin@ - az a% a~ 



Note the substitution 

scales the system (2.31) to 

which is given in the paper [I] by Wersinger ,Finn and Ott (according to their notation C=X , 
6 V1 

q=Y , c=Z , - = A , - = I? ). They investigated the system (2.34) numerically .In the thesis we 
Y Y 

study the equivalent system (2.32) and besides results similar to [I] we show numerically the 

presence of a strange attractor. 



Eauilibria of the three-wave interaction model and its stability propertities 

In this chapter we study the equlibria of the three wave interaction model as given by the 

three coupled nonlinear ordinary differential equations (2.32). We show by qualitative reasoning 

the existence of chaotic solutions. 



3.1 Nature and stabilitv of the equlibria of the svstem 

Consider the system of ordinary differential equations given by (2.32). We find the equi- 

librium points of the system (2.32) by equating each of the equations to zero. The equilibrium 

points are 

and 

where it is assumed that 2v - y > 0. We investigate the nature and stability of each of the equilibria 

by computing the Jacobian matrix J of (2.32) at an equlibrium E ( xo , yo , q ) : 

The determinant of J0 is 

It is known (Hirsh and Smale 1201) that if detJO(xo,yo,~) + 0 then E(xo,yoY~o) is a simple 

equilibrium and there is no other equilibrium state in its neighbourhood. 

For the equilibrium point E1(O , 0 , O), the value of the determinant (3.4) is 

which shows that the equlibrium is a simple one. For the other equilibrium point E2(see (3.2)), 

the value of the determinant is 



and, hence, this is also a simple equilibrium point. 

The characteristic equation for the Jacobian matrix (3.3) is 

- det IJO - hII = h3 + alh2 + a2h + a3 = 0 ,  

where I is the unit matrix, 

It is well known that the stability property of an equilibrium point E(xo,yo,zo) is deter- 

mined by the signs of the real parts of the eigenvalues of the Jacobian matrix (3.3), i.e., the roots 

of (3.5). From (3.4) and the third eq.(3.6) it follows that a3& for both equilibrium points, 

and hence the characteristic eq.(3.5) has no zero root. The roots of (3.5) can be distinct or 

repeated. An equilibrium of a system of autonomous ordinary differential equations is called 

hyperbolic if its characteristic equation has no roots with zero real parts,i.e.,no zero roots and 

purely imaginary roots; otherwise, the equilibrium is nonhyperbolic (see for example Hirsh and 

Smale [20]). A hyperbolic equilibrium is structurally stable.Here it is possible for both cases to 

exist, a hyperbolic equilibrium (if (3.5) has only nonzero real roots or a nonzero real root and a 

pair of complex roots with nonzero real part) or a nonhyperbolic equilibrium (if (3.5) has a pair of 

purely imaginary roots). Reyn [21] presented a detailed classification of the nature and stability of 

the equilibrium points of a three dimensional linear differential system. For a nonlinear system in 

R3 see Bojadziev and Sattar [22]. 

Let us study the nature of the equilibrium E1(O , 0 , 0). This equilibrium implies (using 

(2.30)) that 



The first eq(3.7) shows that there are no decay waves and the second and the third equa- 

tion (3.7) imply that there is an absence of the pump wave. This is a typical physical situation in 

which the absence of the pump wave implies that the daughter waves do not existh our case this 

means that in the absence of the growing Langmuir wave (the pump wave), the damped Langmuir 

wave and the damped ion-acoustic wave do not exist. Therefore, it is natural that 

E1(O , 0 , 0) is a fixed point. The eigenvalues of the Jacobian matrix (3.3) i.e.,the roots of (3.5) 

corresponding to El are 

h l = - 2 v ,  h 2 = y + i 6  and h 3 = y - i 6  (3.8) 

This equilibrium point is a saddle-focus and hence, unstable. Let us interpret this 

physically. 

We can find the eigenfunctions corresponding to the above eigenvalues by solving the 

system of equations 

Let r = ro implying that ntO or, h = -2v, which conforms with our result (3.8). Then 

solving the fwst equations (3.9) gives the values of p and q as, 

and 

q = - 6 
62 + (h - y)2 

' 

The above analysis shows that Uo, or the pump Langmuir wave grows linearly and hence, 

the equilibrium point is unstable. 



With regard to the second equilibrium point, E2 using (2.30) and (3.21, we have 

From equations (3.10) we get the relations 

Therefore, we have 

and 

Using (2.30), (3.11) and (3.12) 

we get 

which implies that at the equilibrium E2, U >O and hence, saturation of the instability is possible. 



Following closely [1] we get equivalent results which are here expressed in our notations. 

The divergence of the flow of the system (2.32) in the phase space is calculated as 

From the above the time evolution of the phase-space volume turns out to be 

For p v  the volume expands and for the other limit it contracts.The former case implies that when 

the growth rate of the high-frequency wave is high and the decay rates of the low-frequency 

waves are too low the phase space trajectory is unbounded and saturation fails. Interest lies in the 

study of the latter case for which there is a possibility of saturation. 

Also, if we add the second eq(2.32) multiplied by Z and the third by Y, we get 

For 6=0 , we obtain 

d -VZ) = -  (2v-y)YZ. 
dz 

The above result shows that the trajectories approach the planes Y=O or Z=O as z->O if v > @. 

The stability of E2 can be determined by finding the roots of the characteristic equation 

(3.5) corresponding to E2. The coefficients al,a2,a3 are 



Since we are only interested in the case v > y ( contraction of volume in phase space), al- 

ways al,a2,a3 >0. For a3 > ala2, there are two roots with positive real part which implies that Eq 

is unstable. For a3 < ala2 all roots of (3.5) have negative real parts, hence the equilibrium E2 is 

asymptotically stable general node.For more detailed study concerning the stability (instability) 

nature of E2 one can use the paper [22] by Bojadziev and Sattar . 

At the critical case a.j=alaz, which according to (3.14) can be written as 

the characteristic equation (3.5) has a pair of imaginary roots hl,2 = f i j3, where j3+2. The 

third root is h3= - a1 c 0. Then the equilibrium E2 is nonhyperbolic and stable, a divergent vortex 

focus (see [22]), but structurally unstable& is of interest to investigate the roots of (3.5) near the 

critical case. They are of the type a rt i P and with some algebraic calculations and using (3.15) 

we find that a >O for 6 c 60 and a < 0 for 6 > 80; of course a = 0 for 6 = 60. Therefore E2 is 

Y asymptotically stable if 6 > 60 ; we require 4(v - ~ ) 2  > 3 (see (3.15)) in order 6 to be real. For 

Y 6<So the equilibrium E2 is unstable. For 4(v - 2)2 > 3 , whenever 6 decreases through 60, two 

complex conjugate roots hl and h2 have a real part going through zero fiom negative to positive. 

The third root h3 is real and negative at that time. (This is characteristic of a Hopf bifurcation). 

3.2 Phase Plane Analvsis 

Here we investigate the behavior of the trajectories in phase space of the dynarnical system 

(2.32) assuming y to be small. The phase space is devided into two regions "fast" and "slow". 

The regions of slow motions, which correspond to the amplitudes of the low-frequency modes 
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6 
staying near zero, are located near the line YT and Z=0, and are defmed by the inequalities 

IZISyIXI, 12Y2-GYl~ylXl. 

3.2.1 Exact svnchronism (6 - - 0) 

In this case the equilibrium point at the origin is a saddle node corresponding to the eigen- 

values given by (3.8) as XI= - 2v and h2,3 = y ; the equilibrium point is unstable. 

We already saw in (3.13) that the phase space of the dynarnical system contains two inte- 

gral surfaces Y=O and Z=0 which are approached closely by the trajectories as z -> .o but cannot 

be intersected. 

The cones of slow motions are located at the intersection of the two planes . Consider the 

two planes separately. On the plane Z=0, the system (2.32) reduces to 

Its equilibrium point is (0,O). A stability analysis shows that (0,O) is an unstable node. A 
ax phase portrait for the plane Z=0 is given in fig.3.1. The curve on which -4 is given by the 
& 

a Y Y parabola 2p=yX and the curve on which -0 is given by Y=O and X=? Therefore we can 
aT 

say that on the plane Z=0 the region of slow motions is bounded by the parabola 2Y2=yX and at 

. X>O it is the isocline of the horizontal tangents. Outside this region the trajectories resemble the 

circles X2+Y2=const,on which the energy is conserved implying that the influence of the small 

growth rate is negligible. The motions on this plane is asymptotically stable with respect to Z in 

the region X > - v. 



We will, further, investigate the qualitative features of the motion, such as the existence of 

periodic regimes and the onset of stochasticity with the help of point transformation 

(Rabinovich [18]).We will ascertain in which manner the points of the narrow vertical strip 

0<YI<Y<Y2<<1 on the plane X=O are mapped by the phase trajectories at X>O into the points of 

the horizontal strip O<Z1<Z<&<<l of the same plane, and then, how they are mapped for the 

trajectories at X<O again into the points of the vertical strip. This mapping of the motion co-ordi- 

nates Z and Y at the end of the period on the values of Z and Y at the start of the period makes the 

study clear. 

In fig.3.3, we show the mapping of the vertical plane into the horizontal one, and again 

into the vertical one, qualitatively. This illustrates the successive transformations of a certain line 

in the vertical strip for two different cases, depending on the closeness of this to the z-axis. 

Let us consider the fig.(3.3b). Considering the system (2.32) we find that the larger the 

value of Z at which the phase trajectory crosses the vertical strip, the farther from the X-axis it 

drops on the plane Z=0. The trajectory that begins on the plane X=O at sufficiently large Z,instead 

of falling in the region of slow motions, moves immediately on the circle s+YLR2,  after drop- 

ping to the plane Z=O.Close to this circle there is another trajectory, which, after passing through 

the vertical strip at small Z, drops on the plane Z=O in the region of slow motions and emerges 

from that region, intersecting the parabola, at s # R 2 .  Thus, trajectories cross the vertical strip far 

from each other.After crossing the horizontal strip they are along-side each other.This behavior 

explains the appearance of "horseshoes" in the mapping picture. 

A similar analysis applies to the X<O trajectories starting from the plane Z=0 and in the 

vicinity of the plane Y=O.The parabola of the earlier case is replaced by the straight line Z= - yX. 

The characteristics of the mapping of the horizontal strip into a vertical one stays the same, thus 

explaining the possibility of the appearance of a "double horseshoe". 



In order to carry out further investigation, we use a model in which the relation between 

points having equal Z in the vertical strip with points having equal Y in the horizontal strip.We 

map the line Z into itself establishing the dependence Y(Z)  of the consecutive points Y on the 

initial points Z (fig.3.4).There are either a single stable single-period regime (fig.3.4a), or a set of 

regimes with modulation-multiperiod regimes at different positions of Z ( Z )  relative to the strai- 

hgt line Z=Z corresponding to the closed cycles on the ( 7 , ~ ) .  

From Sharkovskii [23] we know that if in a system described by the mapping Y(z)  there 

are periodic motion with an odd number of periods then regardless of its stability there exists in 

the system one more denumerable set of unstable multiperiodic motions and a finite or denumer- 

able number of stable motions.From fig.3.4b we see that such odd (say three-period) motions 

exists in our robust model described by the mapping Y(z), and hence,a denumerable set of un- 

stable periodic motions exists in this system. 

For sufficiently small y the existence of this set in a bounded region of phase space is ex- 

pected in the initial system. If the stable motions did not exist in this bounded phase-space re- 

gion,to which the neighbouring trajectories tend, then it would imply the onset of chaos(Kiyashko 

and Rabinovich [24])). For the case 6=0 these stable motions do exist and correspond to cycles 

supported on one of the vertices at the "bottom" of the function Y(Z). 

3.2.2 Influence of the detuning on the dynamics of the triplet 

For finite values of 6 the integral surface Y=O is destroyed and the equilibrium point 

E1(O , 0 , 0 )  is transformed from a saddle node to a saddle focus (fig.3.5).At 6>0 the stable sepa- 
6 

ratrix of this equilibrium state enters the half space YT, which becomes twisted around the point 

X= - v, Z= in the case 6=0 as t ->-. We assume 6 to be small since the qualitative analysis is 

impossible due to the increased complicated behavior of the trajectories. We disregard the 

destruction of the integral surface Y=O and therefore the finiteness of 6 only hinders the exchange 



of energy between the waves or to a decrease of the maximum attainable values of Z at X= - v. 

This leads to the the division of the mapping under consideration into two classes of motion by a 

separatrix that enters into the equilibrium point E1(O , 0 , O).The trajectories that enter in the 

vicinity of the plane Y=O, outside the unwinding separatrix (fig.3.1) cross the plane X=O and 

move farther in a direction of increasing X. The trajectories falling inside the separatrix turn 

towards the decreased values of X before they cross the plane X=O, after several revolutions in 

the region of XcO and at larger Z. Fig.3.4~ gives the "robust" mapping of a line into a line and the 

discontinuties near small Z explains the existence of two classes of motion. 

Thus, in the presence of phase-mismatch ,the stability regime of the unstable high-fre- 

quency wave due to the decay into the low-frequency damped waves can be chaotic. 













CHAPTER 4 

Numerical solutions and analvtical justification 

In this chapter we present the results of the numerical investigations carried out on the 

system (2.29) and the system (2.31). In both cases we show the existence of periodic 

regimes,bifurcation points and the chaotic transitions. 

Subsequently we present the analytical derivation of the one-dimensional mapping and 

show its similarity with the numerical solutions. 



Now, we turn to the numerical integration of the system of eqs.(2.31) and also (2.29).Let 

us discuss the evolution of phase-space volumes as governed by the system(2.3 1). That is, we 

consider the volume(V) enclosed by some closed surface S in the X,Y,Z phase space, and let the 

surface evolve by having each point on the surface follow an orbit generated by (2.31). 

We already saw in section (3.1) that the system (2.31) yields, 

V(z) = V(0) e2(Y-"N 

For the case vry, the phase-space volume contracts exponentially in time. The special case of 

three ordinary autonomous differential equations with negative phase-space flow divergence 

presents a very clear case for the possible existence of a strange attractor. Since phase-space 

volume contracts to zero in the limit of large time, it follows that any attractor must have zero 

volume. A natural assumption might then be that the attractor would have to be a surface (two 

dimensional), a curve(one dimensional), or a point (zero dimensional). However, none of these 

allows chaotic motion. In particular, not even the highest dimension (two) of the above three 

possibilities allows chaos. For example, for orbits within a finite section of a plane, the Poincare- 

Bendixson theorem shows that the only possible attractor for the orbit must be either a point, a 

simple closed curve, or a self-intersecting closed curve, which looks like a character eight (see 

Hirsch and Smale [20]). Thus if one observes chaotic motion in the system(2.3 I), which has 

negative phase-space flow divergence as we already saw, then one is faced with something like a 

paradox. One way out is to realize that attractors with zero volume may have not only zero, one, 

or two, but can, in fact, have noninteger dimension. In particular, chaotic motion is possible if 

(2.3 1) has an attractor of dimension greater than two but less than three (so that the volume of the 

attractor is zero),i.e., a strange attractor. 

In the numerical integration of our system (2.31) and also, (2.29) we observe the existence 

of periodic oscillations, limit cycles, bifurcations and chaotic solutions. We also demonstrate the 



existence of a strange attractor. We have not determined the dimension of the strange attractor, 

which will be the topic of further work. 

We have already seen in the previous chapter that the system (2.3 1) has two fixed points. 

Features of interest have been numerically investigated for the second fixed point E2 given by 

(3.2).This point remains asymptotically stable for 161 where 

I+*. E2 loses stability by either 602 = 4 (~-;)2[4(~4)2+ 1][4(~ -;)2-3]-' for a11 values of v > 7 

subcritical or supercritical Hopf bifurcation [I], when the representative point of the system in the 

parameter space crosses the critical curve 6=&(v). 

We follow the work of Meunier,Bussac and Laval[25],closelyYto carry out the numerical 

investigation of (2.3 l).Hence, three regions in the (y,6) plane are distinguished which have been 
( 1 + 0  extensively studied by numerical methods for the parameter values O<S<10, 7 < v < 50. 

According to fig.4.1 we discuss the following regions : 

4.1.1 - region 1 : fie locally stable region 
I 

E2 is locally stable, which implies that the linearly growing high-frequency wave saturates 

at a constant amplitude. 

4.1.2 - region 2 : w i a b a t i c  r u  

In this region, the system loses stability by subcritical bifurcation. The variables X(T),Y(T) 

and Z(T) oscillate with exponentially growing amplitudes and frequencies and hence, bounded 

solutions do not exist.The linear instability is not efficiently saturated by the decay process. 

4.1.3 -  eon 3 : periodic and a~eriodic re~imes : 

The equilibrium point E2 loses stability by supercritical bifurcation. There is a complicated 

bifurcation sequence with alternating periodic (multilooped cycles) and non-periodic attractors 



(fig 4.2). These attracting sets do not achieve global stability and they have large attraction 

basins . 

Depending on parameter values the transition between limit cycles and strange attractors 

follow two different schemes : 

(i) In the fxst one, the cycles are generated by consecutive subharmonic bifurcations. 

Fiegenbaum [25], May [26] and Coullet and Tresser [27] showed similar bifurcation sequences in 

iterations of single-hump functions,e.g.,logistic equation. 

(ii) In the second, a simple periodic attractor appears instead of an aperiodic one. Intermittency 

occurs at that transition in the case of period 2 and period 3 cycles. It is found that transitions with 

intermittency effectively occur at certain tangent bifurcations. It was shown by Tritton [29] that 

such a phenomenon occurs in fluid experiments, where turbulence appears as random bursts. The 

Lorentz system shows such a behavior. Our dynarnical system is different from the Lorentz 

system. Namely, it does not have either symmetry or Liapounov functions ensuring the 

boundedness of solutions. 

From the time series X(2),Y(2) and Z(z), we generate a "surface of section" which is used 

as a diagnostic tool.The plane X= v is chosen as the section surface, together with the condition 
dX - < O.The section of the attractor by that plane consists of a finite set of points, which shows the 
dz 

presence of limit cycles or of arcs of curves(strange attractors,fig.4.4).Noting that Z takes its 

largest values in the plane X=v and the reduced Poincare map f, yields the recurrence scheme for 

Z maxima,i.e.,the maximal values of the low-frequency wave energy, we parametrize the position 

- of a point by its Z-co-ordinate,since the curves exhibit no singularity. 

The representative curve f,, depends on the values of the parameters(fig 4.5). For low v 

values, we obtain a smooth parabolic curve (fig 4.5a) for higher v values , the curve presents a 

hump(fig.4.5b). The system displays the transition from a strange attractor to a double looped 



cycle in the latter case. We observe an intermittent behavior near the bifurcation point. 

4.2 Intermittency 

For 6=5, the transition occurs at v=21.685(fig.4.3). Since the limit cycle has two loops, 

we consider the second-return map,i.e.,we plot Zn+2 vs Zn [I]. 

The representative curve intersects the first bisectrix four times, giving rise to two pairs of 

fixed points for v > 21.6. Each pair corresponds to a stable fixed point (section of one loop of the 

cycle) and an unstable one. Each pair merges to a single point at vc = 21.685. The curve is then 

! tangent to the bisectrix in two points. For v slightly smaller than 21.685, the curve does not cross 

the bisectrix but remains close to it (fig.4.6). The change in the behavior of the curve resembles 

the translation of parabolic curve, accompanied by a change of its second derivative. 

Pomeau and Manneville [30] have studied these bifurcations naming such phenomenon as 

type 1 intermittency. We do the same for our study. 

We have observed the expected behavior in the variation of successive values of Z with 

time. For v slightly smaller than vc, laminar periods (no loss of correlations) are interrupted by 

random turbulent bursts(loss of correlations). There is an upper bound to the duration of laminar 

periods. 

The upper bound depends on the distance to the bifurcation threshold. We have 
vc-v 

accordingly plotted the maximal duration as a function of E = -. As predicted by Pomeau and 
vc 

Manneville [30], we have then obtained a law with a good accuracy (fig.4.7). Similar 

features are obtained at the intermittent onset of turbulence following a period 3 cycle. 

4.3 Numerical investigation in the case 6=2 of (2.29) 

Following [I] , we choose 6=2 in describing the properties of numerical solutions for a 

range ofv, 2 S v  I18.  



For v < 3 the evolution of the system is unbounded for almost all initial conditions. 

For 3 5 v 5 8.5 the instability saturates and a periodic oscillation is observed for wave 

amplitudes and phase $ (fig 4.8). In the phase space the asymptotic motion takes place on a simple 

limit cycle. 

1 For v = 8.5 the simple period 1 limit cycle bifurcates to a period 2 limit cycle. The graphs 

of the wave amplitudes versus time become a periodic function with two alternating maxima 

For 8.5 < v < 13.2, as v is increased the period 2 cycle splits in a period 4 cycle (v = 12), 

which splits in a period 8 cycle ( v = 13) and so on till v = 13.2 where a non-periodic solution is 

observed. 

For 13.2 < v < 16.85, increasing v furthermore, one observes chaotic regimes interrupted 

by stable periodic regime for some narrow windows in the parameter v. 

For v = 16.85 the widest such window is for the stable period 3 cycle. It sets in at v = 

16.85 and then undergoes a sequence of bifurcations 3 x 2*, creating stable period 6 cycle at v = 

17.4 and so on till v = 18.5 where chaotic behavior again resumes. 

The transition from a stable limit cycle ( v > 16.85) to an aperiodic attractor v < 16.85 is an 

intermittent transition to turbulence. At v 5 16.85 stable period 3 oscillations of wave amplitudes 

are randomly interrupted by random bursts(fig.4.10). Decreasing v further, the duration of the 

laminar periods decreases more and more until the system reaches chaotic regime. If the 

intermittent signal is recorded long enough, it appears that the number of oscillations between two 
1 bursts varies as - , where v, = 16.85. This feature is characteristic of type 1 intermittency 
6 

(Pomeau and Manneville [30] ). 



4.4 Correspondence with the auadratic map of the interval 

For the 6 value, 6=2, the behavior is the same as depicted by Feigenbaum [26] for the quadratic 

map, P,(x), defined as 

The map P,(x) shows an infinite sequence of period doubling bifurcations of stable 

periodic orbits at definite values of the parameter r,such as rl (period 1 to period 2), r2(period 2 -> 

period 4),r3---rc as r is increased from r=O to ~ 3 . 5 7 .  An aperiodic attractor appears at r=r,. 

Beyond the critical bifurcation point rc,upto which there is a cascade of period doublings, an 

inverse cascade of "noisy cycles" of periodicity 2" -> 2"-l ->----2 -> 1.At r = 3.678 (Eckrnan 

[3 11) the two sequences merge into one band.It is found that the parameter values rn scale as 

kc-rnl = a-n, where a = 4.699 is a universal scaling factor for both period-doubling and band 

merging and depends on the quadratic nature of the maximum of the map. We have found that 

there exist periodic solutions for certain narrow windows in r. The widest such window of 

stability beginning at r = q = 3.838 and ends at r = 3.849, is for 3 x 2" cycles. This corresponds 

to a tangent bifurcation, whereby a periodic orbit occurs (r > ry) after a region of chaotic motion 

( r < ry ) and the mapping xn+3 = pkpkf(x4 has three stable and three unstable fixed points 

which merge into one as r is decreased. With further decrement in the value of the parameter r, 

intermittent turbulent behavior of random duration is observed, with the appearance of laminar 
1 
1 

phase in between of mean duration - 
If we consider the results from numerically generated section of the attractor on which the 

motion takes place for v=15 (fig.4.1 l),the points generated in the surface of section appear to lie 

on an arc. The plot of yn+l = 4- vs. yn = 4 ui+u2(td where tn is the nth time 

when the phase space trajectory pierces the surface of section, is given by the curve yn+l = f(yn) 

in fig.4.12. The rounded maximum makes it resemble the simple quadratic map very closely and 



1 
hence, yield a good qualitative model for behavior in ordinary differential equations. 

4.5 Analytical investirration of nonlinear states 

We give a qualitative analysis of the asymptotic solutions of the three wave system in the 

section.The method uses techniques originally due to Melnikov [32] and the results are similar to 

that of Bussac [33].In order to clarify the effects of dissipative terms,we first examine the 

solutions for the conservative system. 

4.5.1 When there is no dissipation or mismatch in frequencies,eq.(2.29) reduces to 

The system (4.2) is an example of a harniltonian system and has two integrals of motion. 
u2 Introducing the following variables: M + @, the total wave energy ; z x ,  the normalized 

energy of the low-frequency wave; and the "time" u= 4 M(t) dt , we try to obtain an analytical I'- 
solution in terms of elliptic integrals. 

The quantities M,z are positive and 02 z el. Then (4.2) writes, 

where h=2z.\J1Tzsin$ is the time - independent harniltonian and (z,$) evolve independently of the 

energy M(u) = constant which enters in the solutions z(u),$(u) only as a time scale. Therefore, the 



phase space reduces to the plane ($,z), = constant. The trajectories in phase space 

for Q E [0,2n] are plotted in fig.4.13 showing the periodicity in $. Stable fixed points are located 
2 R 311: at $ = O . ~ , Z = ~  and the hyperbolic fixed points are located at z = 0 , $ ~  ,T . The separamx, h=O, 

11: 37c 
consists of 2-0, z=1, $7 (OSzSl), $=T, the hamiltonian h is negative, 

-- ShSOand the solutions z(u),@(u) are periodic. The solution of (4.2) is ( Whittaker and 
343 

Watson [34]), 

z = a - (a-b) sn2[K - fi - c(u-u,)] (4.4) 

h2 
where e b 2 c  are the roots of (l-z)z2 =0 ; K = ~(d(a-b>o) is the complete elliptic integral 

of first kind; sn(0) is the sine-amplitude Jacobian elliptic function, and the time origin u=uo has 

2K .We will been taken at z=b. The solutions z(u),$(u) are periodic in u, with a period TU- .la-c 
refer to this solution as zJu,h), 0,(u,h) and have assumed that yeel. 

4.5.2 Analvtical investi~tion of the dissipative svstem 

Introduction of dissipation and the frequency mismatch destroys the constancy of the energy 

M(u), and the hamiltonian h(u). The equations for (z,$,<M) are then given as 

where u = dM(t) dt .When only dissipative terms are present , one recovers the linear 

instability,~ - > O , m  -> + as u+-. As long as the wave energy ( fi ) is small, the 

dissipative terms in eqs.(4.4aY4.4b) are in average larger than the nonlinear terms, making the 

average energy to grow. Consequently the dissipative terms in eqs.(4.4a,4.4b) decrease, till they 

become of same order or smaller than the nonlinear one. If instability does not saturate, or saturate 
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v 6 
at an energy level such as .I'G - E <<I, dissipative and frequency mismatch terms in 

eqs.(4Sa,b) remain small in the asymptotic regime. The equation for the harniltonian is given as 

dh (l+v)(3~-2)h 26 
a i i=  z l ~  + ZCZ COS$ . (4.6) 

1. 
v 6 

From(4.6), the right hand side of which is of order .\(M'E 
-E ,we see that at the lowest order in 

E the motion is given by (4.2). On the other hand, the variation of is of order 0. Therefore, 

in the asymptotic regime, the trajectory ($,z,m) departs from the surface h=constant, only by 
v 6 

terms of order G'G7 but on this surface the variation of the energy d k  is finite. At saturation 

eq.(4.5c) gives the average value of z(u) as 

E 
At lowest order z(u) = zs(u,h), and <z> is approximately given by <z> = c + ( a - c ) ~  = <z(h)>. 

Then, the surface h=constant around which the asymptotic motion takes place is determined by the 
h 

dissipation.If 2(v+l) >>I, Log-r-2(l+v)  , and the trajectory remains close to t!!e separatrix 

surface of the conservative system. For 6>0, hsO in the asymptotic regime. 

In order to determine the average wave energy , and to describe the dynarnical behavior of 

the system, we now compute how far the trajectory in phase space, departed from the surface 

h= - 16 e-2(1+~) 

The state of the system completely described by the variables h , m  is recorded at 

d$ moments crossing the surface $ = E , ~  < 0. The equations of motion determine the relation 

between values d m ,  h(0) at one crossing of the plane 8-, and dM'(0),ht(O) at the next 

crossing, or a mapping of the plane dM(O) ,h(O) onto itself used in discussing the numerical 

investigation. However for a theoretical analysis,the variable h(0) is not very convenient. We 

found in numerical and analytical investigation of the system (2.29) , the main change in h 

happens just near the plane 8=a, for which z is close to its maximum value z11 , while over the 



rest of the trajectory h-csnst<<l(fig.4.13). The trajectory spends a very long "time" u near the 
n 3n 

hyperbolic points z=0,bTT since it remains close to the separatrix surface. The time duration 

between two successive crossings is essentially determined by the values of h, corresponding to 

z=zmin - 0, and this value of h between successive crossings of the plane 8*, 211 is chosen as 
1 h 

the dynamical variable. In the following we shall denote by h and x= - $ ~ g ( - ~ ) ,  the values of 

h(u) and X(U) before the crossing of the plane $=x(z=zmax) with a value y of the energy dhl(u) , 

and by h',x' for that after this crossing or before the next one with y' value of . Notice that 

2x' is the time duration between two successive crossings of the plane 8=z, y -> y' and that y 

acts as an initial phase for and h(u). ' 

We turn now to the evaluation of an explicit form for the mapping (x,y) -> (x',yl) and note 

that 

for small values of h(u),where u=o is the time at which z, is maximum (8=n). Then eq.(4.5c) 

yields 

where y is the energy for u=O. The energy change between two crossings is approximately equal 

to , 

h ' This change depends on the value of the time duration between crossings 2x' = -log--. To get 
16 

the change in h(or x), we integrate eq(4.5) from u=-x to u=+xt, having substituted in its right 

side , the expressions (4.7) and (4.8) for z(u) and dM(u) deduced for h=const-0. For analytical 

evaluation of the integral it is conv&ient to introduce the quantity 



obtaining 

In order to evaluate the integrals, we approximate as 

~ ~ = y + u + ( v + l )  -x<u<-1.5 , 

Then we get 

In the case of no mismatch in frequencies, 6=0, eq.(4.15) yields x'>x. there fore,^, and 

consequently the average wave energy, increase indefinitely as iteration proceeds. This result is in 

agreement with the numerical solution of the three wave system and the qualitative analysis . The 

instability does not saturate for 6=0. 

To compare the analytical analysis to the numerical solution , we discuss now the case 

6=2,5 < v < 18. 

From eq.(4.15), we deduce 



Then for finite 6 values, we expect the quantity e -2~ to be much smaller than 
6 

providing that y does not increase too much. Hence, we neglect 
8(y2 - (V - 0.5)') 

the term e-2~ in eq.(4.14) and retain only the 6 term. This assumption has been cheked for the 

parameter range 5 c v I 20. Then for 6=2, the mapping (4.14) reduces to a one-dimensional map. 

Substituting y in terms of (y',xl) in eq.(4.14), we get the explicit equation of the attractor, 

' 8 x' = (l+v) log + 0.510g- (Yt-2x1+2v +2) +OS(Y'-2Xt+4v+l) , (4.16) { Yt-2x8+2v+2 6 

where the variable Y' = y1+1.5-(v+l) <M (u=1.5) has been introduced in order to simplify the 

expression of xl(Y). The dynamic of the motion on the attractor is described by the one 

dimensional map YW1 = f(Yn), or 

where x'(Y) is the solution of 

The map (4.17) has two fixed points of which one is always unstable, given by x=v+l, 
6 

y - e'(Vf1). For this value of Y, the approximation e-%c fails.The other one xo=v+l, 

Yo=Yo(v) is stable if vc8.6. For v=8.6,Yo=8.92 this simple stable fixed point corresponds to a 

stable limit cycle for the three wave system(2.29). In the asymptotic regime, the average energy 

M= y;Uo2+U2 oscillates with a period 

where = Yo +u -(v+l)tanhu-0.5+v; -(v+l)<uc(v+l). From the definition of 

t =rA one may deduce the expression of M(t) = yZlo2+U2 and -- 
mij 

",'$I - z(t) as 



(i) For v=8.6, the fixed point loses its stability through a pitchfork bifurcation as 

a f v )  7 lye - 1. A stable period two cycle is observed. 

(ii) For 8.6 a c 1 3 ,  as v is increased the cascade of period doubling is observed till v=13. 

(iii) For 1 3 ~ ~ 4 6 . 5  chaotic motion is observed. In fig.4.14, the one-dimensional attractor on 

which the motion takes place, has been plotted. In order to compare numerical and analytical 

constructed maps, we have plotted in fig.4.15 the minimum value of versus the "time 

interval" 2x = 1 ; ~ )  dt between two minimas for v=l4.8,8=2. In the same way, we have 

recorded the successive minima o f m )  , ,= .......,. Fig. 4.16 shows the numerical 

computed map d m  ;is . On the other hand we have plotted in fig.4.17, the graph of Yn+l 

vs YII as generated by the mapping 4.17 for v=l4.8,6=2. Within the approximation for , 

4.12, Y= -represents the minimum value of . 

From this analysis, we conclude that the critical v-values for which the attractor changes its 

topology are in good agreement with those deduced from the numerical investigation of the system 

(2.29). 









































CONCLUSION 

We have studied the interaction of three electrostatic waves in a plasma which is 

represented by three first order nonlinear ordinary differential equations. The system has two 

equilibrium points both being unstable. They involve critical parameters which depend on the 

growth rate of the high-frequency wave and the decay rates of the two low-frequency waves. The 

second nontrivial critical point changes from an unstable saddle-node to a saddle focus as the 

parameter 6 changes its value from zero to a fmite quantity. 

We have studied the system (2.31) numerically and found that there is a presence of 

intermittency which causes turbulence. We have explained the results of the numerical work with 

the help of a one-dimensional map. We have reproduced the results of the previous work of 

Wersinger,Finn and On [I] and also,found an analytical expression for the map from the original 

set of equations(2.31).The analytical results are in accordance the numerical results. 

Further we establish numerically the presence of a strange attractor(fig.4.18). 
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