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. ABSTRACT

; \Dynamicai chiral symmetry bregking in 2+1 dimensional qﬁantum
éléctrodynamics with N fermibn\flavors is studied by using a
modified effective potentiai progosed recently by Haymaker, T
Matgﬁbi and Cooper. This effective po;ential contains the same
phy§ics as the original effective potential fdrmﬁiation due to

Cornwall, Jackiw and Tomboulis as far as the Schwinger-Dyson

”équétion is concerned and remedies the defects of the;CJT

effeétive potential.
Theichiral symmetry breaking solutions are found by solving
the Séhwinger—Dyson equation numerically for N=05,1.0,12,.., 28.
It is suggested that the chiral symmetry breaking solutions exist
for ény finite value of N. | LU
,The local stability of the vacuum configurations
corresﬁonding to thevchiraL symmetryvbreaking solﬁtionS‘is
analyzed bofh ahalytically and numerically. It is shown that the
chir;lli‘symmétfic vacuum may be unstable and that the symmétry—

breaking solutions correspond to the locally stable vacuum

configurations and are then preferred energetically by the vacuum

¢ *

of this model. For comparison itfgs also shown that the same

symmetry—breaking solutions are the

-

célly 9ﬁstablelpoints,

namely, saddle points in the gwﬁﬂformalism.

- m\
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CHAPTER 1

INTRODUCTION

Systems of fermions coubied by gauge forces)héve a very rich
structure of global symmetriés called "chiral symmetries". The
realization of chiral symmetries and theJcauses and the
consequences of their spontaneous breaking have always beeﬂ a
very important and interesting research area in high-energy

hd

particle physi¥cs.

In the theories of fundamental'interactions, the quark model
is wideiy‘accepted. The basic ideas of the quark modelﬁare that )
quarks are the fundamental constituents of all hadrons and that
./all the baryons consist of three quarks while all tpe m%§§ps are
formed by;quark and antiquark. Quarks carry colbur "charges" as .

well as electric charges and éxperience both strong and
electromagnetic forces, as well as the more feeble, weak and
gravitational interactidns. As far as the strohg interaction 1is
concerned, the &oLour "charges" of the quarks aét as the source
of the strong force between quarks just aé electric charge acts

as source of the electromagnetic force between electrically

charged particles.

There is considerable evidence that the underlying theory of
the strong interaction possesses a near chiral symmetry,
SUR)xSU2)xU(l) because of the approximate masslessness of the up

and down quarEs. This symmetry must then break spontaneously in



order to explain the effective 300 MeV masses these quarks o
possess as the constituents of hadfons. The GoldSténe theorem
requires that the spontanégus'breaking ofvany Qontinﬁous symmétrY"
necessarily leads to the existenceprof massless'Goidstone bosons.
In the case of chiral symmetry,itegg bélieved‘t;at the pions play
the role of Goldstone bésons. It is a'majof goai of.particle

physicists té understand why this chiral symmetry should be

spontaneously broken and in what pattefn. o

The dynamical treatment ofrthe chiral symmetry bf‘the strong
interaction wé§ first brought up‘by Nambu and Jona—Lasinio ([i]).
They suggested that the nuqléon_ mass arisesv largely .as
; self-energy of some ‘p:imary fermion field throuéh the saméd
mechanism as the appearance of theveneréy gap in:the theory bf’

superconductiyity. Much of therprbgress pf théoré;}cai\particle

physics in the 1960'3 occured -through exploratign of the ‘

phenomenoiogical co;sequepces of this spontaheous qhiral symmetgxlﬂxﬁ
: B T

breaking ([2] [3]). Our understanding.of the undgglying méchanism

of chiral symmetry breaking, however, has’ﬁot adv;nced very much. ‘

In the 1970'3, the great success of electromagnetic and weak
interaction gauge' theories proved that gauge theories_(Yang and
Mills [4]) are powerful theories in describing the fundamental.
interactions. The gauge theory of strong interactions’'is Quantum
Chrémodynamics (éCD)'which is based on three basic ideas:»

(1). All hadrons consist of fundamental constituents called

quark??

\
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(2) . There exists a quantum humber\for.the quarks called

“ncolour". Each quark can have three different colours, called

red, green,‘andab}ue_and the corresponding symmetry is the'éxact
symmetry of nature‘( in other words, it is an unbf&ken
symﬁetry.). The statistics of the hadrons come out'right with
thé%é threetcolours;

(3). The transformations of the "colour" symmetry may-be position,,

‘depehdent. This fundamental concept of Yang-Mills gauge theories

introduces a set of massless vector fields which couple to

fermions (quarksf} In fact, the only choice of the colour

' symmetry'group is SUQB3)---special unitary group formed by 3 X3

unf?EEy matrices with determinant 1.
. : >
Reflecting the success of gauge theories, a renewed interest
inﬁtheﬁstudyiOf the fermionic symmetries has been seen during
these past few yearg for three reasons. First, numerical

treatment of the strong interaction gauge theorié%g especially in

their lattice formulation, has been approaching a quantitative

#Z1culation of"the‘hadron spectrum. Thefe is, then, a ﬂeed for
physical ideas about'quark dynamics to match these numerical -
calculations. Secondly, the gauge theoretic descriptions of tﬂel
weak interactiéns have focused attention on theiproblem of |
éxplaining the gquark and lepton spectra. From the perspective of

the gauge theories, the quark and lepton masses'are'simply the

<

parameters of chiral symmetry breaking in the interactions which
determine the structures of these particles. Dynamical theories

of the fermion mass matrix thus require an understanding of

™
AN

\
s Y
3~



chiral symmetries in systems different from the uéual strong
interactions; such theories,often require that Ch;ral Syﬁmetry is
realized in aggunfémiliar way. Finally, the viéwpbint per;ded by
gauge theories has led to'some striking‘quélitative conclusions

about chiral symmetry,which might form the basis of a more

detailed‘theory.

To get‘a-good understanding“of the problem’of this fermionic
symmetry, it is necessary to describe some basic ele@entsof the
physics concerning égzg problem.

~Chi§al éymmetries.aré normaliy introduced as formal
symmétriéé of ﬁhé massless'theory of Dirac par;icles ¢tfermions) .
The Lagrangian of £his theory in four dimensional spacé-time V
including the inté;action betﬁeen fermions“and an Abelian gauge
field-(i.e the .group transformations related to the'gaﬁge_fieldAl
commute withrgichiother) takes the form |

L=§i7“(au-igAu)9 ;o TS 2 | | (1.1)
where the Dirac field W(x) represents the spin 1/2 fermions and
has four components and ?‘(u=O,L2,3j‘iS a set of .4 X 4 matrices
_satisfying thenfollowing algebra

{v*, YV}EY“YV+YVY“=29“V4 | . (1.2)
The metric tensor of the four dimensional space-time g“vis,-inl
our convention, - (g*) =diag (+1, -1, -1, -1). |
There 1s an obvious symmetry of the Lagrangian

\{’-—)\{"zexp[ia]‘flw \. G-—);’=;6Xp[ia] (1.3)-



which corresponds to fermion-number conservation.

B;t the massless particlé theory has another symmetrx;'using Y@

Yo% izexpliayS]¥ . ¥ ¥ =WexpliayS] . (1.4

The exponentials cancel because fhe.matrix‘f antiédmmﬁtes with
the other fouf gamma hatrices, i.e.

{?5,7‘*};0 : , (1.5)

To understand these symmetries physically, let us choose the -

following representation of the Dirac matrices:

0 I 0 o . -
O— 1— . .
= , Y = 1=1,2,3
v I 0 .0 ( 2, 3)
(1.6)
5. -0 i i o' 0
VEiylyly?y3= o a'=y%yi= .
0 I 0 o'
where o' (i=1,2,3) are 2x2 Pauli matrices.
In this representatioﬁ, the Dirac Hamiltonian is
) H=J.d3x‘P+(x)[a.(f>+g-A')—gA0]‘P(x) ' (1.7)
If we write ' ',
¥ ot |
= (1.8)
Y ' u

Tnen,
. 3 = - - i = - - 0 R
Pi:ﬁjx{W;[o¢p+gA)—gMﬂWR+?T[&0y(p+gA)—gA]?&} (1.9)

wnere Wp and ¥ describe, respectively, right and left-handed’

6]
h
0
Hy
5
H.
O
=
1))
o
D
N
]
n
o
0
t+h
t
=3
o
t+h
m B
0
1
o+
jo
sV}
ct

masszless fermions becaus



: - (1.10)
5 =—
Yy ¥ =-TL
It is easily seen then that the fermion numbers of q& and qﬁ’are

(formally) separately conserved. In fact, this is the origin‘of

the extra Y symmetry. ' « .
The two pieCes\if (1.9) are not actually of different form.
We can write W as a second form of ¥| by applying charge

conjugation

¥ (x)=02 ¥, (x) o | (1.11)
the first term of (1.9) becomeé
'de'x‘ P Ge(p+gh) - gA’] ¥ =J-d3x \PEZ‘[(-::).(E ~gA)+ gA’] Y, (1.12)
This 1is nothing eLée but a éﬁ’Hamiltonian with the opposite sign

h 4
of charge g. o ' -

“This construction is readily generalized to non-Abelian gauge
thecries. In the non-Abelian case, the Lagrangian 1is built as
L=¥i¥D ¥=¥"i¢ (D) ¥° (1.13)
: M M
where a and b are "colour" indices.
The covariant derivative D“‘is defined as
.. a a
D =0 -igA t (1.14)
P H- poT ' , ‘
wnere the index a runs over the generators of the gauge group and

ne matrices ga represent these generators in the representation r

[}

Z the gauge group to wnich the fermions are assigned.



Representation matrices for the complex conjugate

representation I are related by v .

a

E=-(t ) =(t)T o (1.15)

r

where T stands for the transpose operation.

This notation allows us to recast the Hamiltonian for a 9}

-

as that of ql in the complex conjugate representation T:
3 - - -t 0 3 . - -» - * 0 *
J:d xPrlo-(p+gA-D)—gA 1] ¥, = [dx ¥}, [(-0)-(p+gA-(-L )+ gA-L 1Y,
S , _ (1.16)
In this notation, the most general Hamiltonian coupling to gauge

fields may be written compactly in the'following form

n .
H=3Y jd3x P [(~0) (p+gArt )-gAt ]F, 1.17)
@‘ri’l ' "

where the index 1 refers to "flavour" and cérrespoﬁds to observed
degrees of freedom of existing hadrons. At present six flavours
are known. The gauge theory §f strong interaction is diagonal in
flavour index, i.e. the flavour index plays.no dynamical role

here.

once H has been cast into this form, it is easy to read off

{
the global symmetries of this system concerning "flavours": for
each representation I, this Hamiltonian is (formally) invariant

under general unitary transformations

Y. = UYL (1.18)

The full global symmetry group 1is, therefore,



~——

G=[nmun)]/ uct) 19

G is called the group of chiral symmtries of such a theory.

As an example of this notation, consider the case of the
étrong interactions which are described by a set of two almost
massless Dirac fermions (quarks) coupled in the triplet
(corresponding to three colours) representation to an non-Abelian
gauge group SU(3). These almost massless fermions may be written
as left-handed fermions, two in thg 3 and two in thé 3
representations of the colour g:éup SU@B). In the limit of zero

quark masses, the chiral symmetry of this theory is SU(@Q). x SU@Q)g

% U(l).

It is believed that the full group G=SU@2) xSUQR)z x U(1) is a
symmetry of the strong interactions; however, hadrons do not form
the multiplets classified by G in the real’world but only by SUQ)
x U(l) (isospin and baryon number). A part of G must, then, be
spontaneously broken. Although the elucidation of this mechanism
is, to a great extent, still an open problem in the theory of
strong interactions, we present a rather simple intuitive
argument due to Nambu and Jona-Lasinio ([11). Its‘basic idea 1is
thét the condensation of fermion-antifermion pairs in the wvacuum .
state of the theory causes this chiral symmetry to break down.
The gauge coupling of the colour group SU@3) becomes arbitrarily
large in the infrared regime. Let us observe the change in the

structure of the vacuum state of this theory as the coupling g is



increased from zero. Imagine that we can integrate over the
quantum fluctuations of the gauge field; then H takes the form
(1.20)

H=Hcl + Ho-d

where Hd is diagonal in the number of quark~-antiquark pairs and
Hbd changes the number of such pairs. Payd is of order of gzrand is
a small perturbation when g is small. In this regime it makes
sense to approximate H by H;. Diagonalizing H; yields a ground
state close to the free field vacuum. Now, slowly increase g. If
the fermions have zero mass and experience attractive
interactions, Pﬁldecreéses as g increases. H@d’ of course,
increasés. At some value of g it becomes appropriate to treat Hdd
as our zeroth order problem and Hﬁ as a perturbation. But.H&d
changes the number of quark-antiquark pairs, so its ground state
has an indefinite number of fermion bairs. We would still expect
the ground state to be invariant under Lorentz transformations;
hence these pairs' must have vacuum quantum numbers---zero total
momentum and angular momentum. The only pairs one can form from 3
ahd 3 iéft-handed fermions and their (right-handed)
anti-particles whichAsatisfy this conditién are those of the form

of Fig. (1) and the corresponding pairs of anti-fermions.

AN A
\ N

Figure 1. Fermion bilinear with vacuum gquantum numbers.

The pair shown in Fig.(l) carries a net charge under the

9
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transformations:

¥ —oexplia]¥ o ‘I’B.i—-nexp[-im]‘I’L:?)i

L3
| (1.21)
¥ .—anj‘I’,L:,)j \PLBi——)Vij\PLBj '

(The indicies i,j=1,2,3, are isospin labels.)

The presence of an indefinite number of such pairs in the
. vacuum breaks these symmetries. More formaliy, we have found that
the ground state {Q2> of H has the property that an operator which

destroys a fermion pair has a non-zero vacuum expectation value.

Let us assume that |Q> gives the pair annihilation operator

the rather simple expectation value:
<Qly ;v 5 10>=48, (1.22)

(where A#0 corresponds to equal condensation of pairs of each

isospin) . This expression is preserved by the transformations:
lI"L3i—)eXp[la]‘PL3i | ‘I’Lii—-mxp[-10(]‘1’L§i
) , 1 (1.23)
lPLBi—)UiijLBj . ‘I’Iji—a \PijUi_i

These transformations are those of an SU(2) x U(l) group of unbroken
symmetries which corresponds precisely to isospin and baryon
number. The reméining three symmetry directions of SU(2) x SU(2) x

U(l) must be spontaneously broken symmetries.

This chiral symmetry breaking is easily realizedyby adding a

guark mass term to thg Lagrangian. This mass term takes the form

10



Ly=m¥ ® ¥ ® (1.24)
Obviously this term is not 75 invariant. It caﬂ be put in by hand
or genérated dynamically, and the latter is what we are
interested in..

The mass gehf?ation can be thoﬁght-of as result of the chiral
symmetry breaking. An intuitive argument could give ‘us a simplé,
picture of that ([15]). We have noted that there 1is a‘
condensation of fermion and antifermion pairs in the vacuum, Now{‘
let us consider a bound state a maséless quark and antiquark
pair. Because of the uncertainty principle, the energy of the

ground state will be given by Enz;x-gz/r=p(l—g% where p and r
-denote the relative momentum and coordinate, respectively. Iﬁ a
fully relativistic formulation, this‘relatibn may be replaced by
En2=p2 - g2/r2 =p?(1-g?). When the gauge coupling g exceeds order
one, there will be a tachyon bound state in the vacuum,
iAdicating instability of the vacuum configurationﬂ In order to
cure this instability, the vacuum rearranges itself and gives

mass to quarks. so as to eliminate the tachyons and kéep the bound

state massless.

The spontaneous chiral symmetry breaking and mass generation
are purely non-perturbative phenomena which cannot be easily seen
in the usual perturbation series. What is needed is an
approximation scheme that presefves some of the non-linear
features of the fieid theory, which presumably leads to these

cooperative and coherent effects. The effective potential

11



formalism due to Cornwall, Jackiw and Tomboulis ([5])'has been
developed to serve this role. We will dora self-consistent study
of dynamical chiral symmetry breaking using‘an improved effective

potential which is a variant of the Cornwall, Jackiw and

Tomboulis (CJT) effective potential.

In this-thésis, we are concerned‘with a gauge field theory
in which the problem of dynamical chiral symmetry breaking can be
systematically analyzed. This model is Quantum Electrodynamics in
three dimensional‘spaceftime. In this model, N (fermion fiaVour
number) fermions couple to a simple Abélian gauge field.

We have good reasons for choosing this model even  though it
is not QCD and not even four dimensional; This theory is'actuélly
a genuine gauge field theory and the first quantum field theory
we know of, above two space-time dimensions that permits a
systematic treatment of chiral symmetry breaking. This model,
furthermore, has properties réminisent of fourjdimensional
theories, which we‘will'see in the gollowing chapters. Another
reason is that four-dimensional realistic physical theories and
three-dimensional theories are not unrelated. In fact, when one
examines a four-dimensional field theory'at finite temperature,
one will find that at a temperature near the critical temperature
a three-dimensional field theory becomes effective in the’
description of the dynamics near the phase tranéition. Moreover,

at high temperatures---even away from the critical point, the

infrared behaviour of any theory is described by the same theory

12



. . {
in one less dimension ([6]). We certainly hopé that the study of
the chiral symmetry breaking in this model will shed some light

on the more' complicated problem c¢f the chiral symmetry breaking

in the four-dimensional theories like. QCD.

The majo£ tasks in studying the chirél symmetry breaking are
to es;abli§h thé Schwinger-Dyson equation for the fermion
self-energy, which takes into account the non-perturbative
features of ;he theory and thentoninvéstigatexwhefher this
equation admits a non-zero fermion mass as ansnlution. Along this

line some work has been done in the past few years.

Pisarski ([7]) studied thig model in the limitlof.large N
(fermion flavOur number) . He derived fhe Schwinger-Dyson inﬁegral
equation (S-D equation) of tneﬁfermfon éelffenergy Z(p) and
computed the ratio X (0)/a (« is‘a intrinsic eneréy séale of this

.particular model) by assuming that Z(p) was a constant (w.f.t.p)
and cutting the inteéral off at aumomentum of order ®. And for
large N, he obtained a solution for the fermion maés, 2O0)/a=c

exp[—nzNYSJ, whére ¢ is of order 1. He then concluded'that chiral

symmetry breaking solutions exist.

T. Appelquist, M. Bowick, E. Cohler and L.C.R. Wijewardhana
also did detailed analysis of chiral symmetry breaking within the
framework of the 1/N expansion. They set up the S-D equation of

the fermion self-energy by effectively summing over a selective

set of terms in the 1/N expansion. They analyzed this model and

13



~their results show that chiral symmetry in ;his model can be
"broken for any value of N. They also suggested that it shduld be
preferable for the theofy to dynamically generate masses for
fermions. The magnitude of the generated mass is roughly
exponentially suppressed in N from the fundamental dimensionfui‘
scale a=Ne? (e is the gauge coupling of this theory whose square

has the dimension of mass). S

We will start from the effective potentials and adopt the
same 1/N expansion as in Ref.[7] to derive the S-D equation for
the‘fermion seif-energy) We will solve this gquatibn numerically
* and show that the dynamical chiral symmetry breaking may be
possible for any value of the fermion flavour number.

o .

Foilowing the study Oftihe possibility of the chiral symmetry
breaking, an important question of whether the wvacuum
configurations corresponding to the non-zero solutions are stable
or not would naturaliy arise. We will do the stability analysis

which has not yet been done so far.

The CJT effective potential is, however, unbounded from
belbw, and hence the study of the global stability of a'chira;
symmetry breaking solution of the S-D equation in this
formulation becomes meaningless. Recently an improved effecglve
po£ential ([9]) was proposed to remedy the defect of the CJT

effective potential. This modified effective potential gives us

the same S-D equation as the CJT effective potential does.

14
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;However, its second derivative can be shown to be a mass squared
of the composite fermion-antifermion bound staté. This
Vexplanation helps us understahd the stability problem. 'That is,
if the mass squared -is positive, Syémetry is already broken aﬁd
the correspoqging,vacuum configuration is stable; if negative,
this symmetry broken vacuum then is unstable. Hence checking the

second derivative of this improved effective pctential answers

theuquestion of stability.

Wé will evaluate the improved effective potential for this
particular model to examine the stability of the_chiral&symmetry
breaking vacuum, namely, the eigenvalue equations for theﬁéecond
derivative opegator of this effective potential will be solved at
the stationary pointsf‘é g. chiral symmetry breaking solutions.
%é%h the analytical analysis and numerical evidence will show

" that the chiral symmetry breaking solutions are at locally stable
points. For comparison, similar calculations will be done for the
CJT potential and will show that the chiral symmetry breaking

solutions correspond to the saddle points of this potential.

15



CHAPTER 2

CHIRAL SYMMETRY IN. QED, AND:- THE EFFECTIVE PQTENTIALS

2

h ]

§2.lehe Model and jits Chiral Symmetries:

a

In this section we will define the model to be studied and
discuss its chiral symmetries and other properties and the use of
the 1/N expansion in analyzing chiral symmetry breaking.

o
o
The Lagrangian for massless quantum electrodynamics in three

space-time dimens;ons (QED,) is

L2 N5 .
== ZE s 2T (3 ~icA )Y, (2.1)

i=
where qﬁ»represents'massless fermions with flavour index i"Au is
the electromagnetic field (Abelian gauge field), € is the gauge

coupling describing the interaction strength between fermions and

the gauge field and

_}_FZ
T

P70 A0, A -2

v

is the Lagrangian of the Abelian gauge field.

~f

Chiral symmetries of this model are a bit unusual. A
spinqrial representation of the Lorentz group SO(2,1) in three
dimensions is provided by two-component Dirac spihoré qﬁ, with the
correspondiqg 2X2 representation of the Dirac algebra being given
by the Pauli matrices |

v0 =03, yl=iol, ¥ =ic? : (2.3)
Obviously, this theory which we refer to as a massless theory hag

16



“

s

the flavour symmetry U(N) because the Lagrangian is invariant

under the unitary transformations:

@

\I’i—> Uij ‘I’j . : . 3 (2. 4)"

Considering the change of ¥(x unggg‘ihe unltary transformatlon
‘I’—)‘P-(‘I’*)yo—(U ‘I’) yO ‘I’*YOU -‘I’U (2.5)

we see that

L—)’L'f='——'< i‘l’ iy (8 -ieA )‘I’

N N N ‘
l 2 w o1t o ok .
F V+ZZZ‘PiUU17 (3, -ieA YUY,

i=l  ju=l jal]

4>I~

N N N __. " . .
ZZ WY (9 —ieA YU UV,
e i BN o s v

=L
For two-component spincdrs, however, the flavour symmetry is the
same whether the fermions W massless or not, énd so it is not
the chrial symmetry. In fact, there is no other 2 X2 matrix
anticommuting with all of the Y“._There is, therefore, nothing to
generate a chiral symmetry that would be broken by a mass termc{
mPY¥, whether it is explicitly or dynamically generated.

- N ‘

Consider therefore the basic fermion field to be a

four;Component spinér. The f?ree 4x4 y-matrices can be taken to

\

be

Y = Y = Yy = . (26)



ey

-

’In contrast to twé—component épinors, four-component spinors have
“symmetries which are chiral. Massless fermions then have a
'!éreater §Ymmetry than massive ones. Simplyprt, there are two 4x4
" matrices 73 and 75 that anticommute with 70, yl‘énd 72{ The

. massless theory will be invariant under the "chiral”

transformations: , o
¥ > expliay,]¥ (2.72)
- § '!;‘\ |
j ¥ - expliBy 1% S (2.7b)
where f’r ' 7 S -
I =i o 28

1 0

For each four-component spinor, these will be a global symmetry

g

f

- UR) with ée@erators

I, ¥, ¥, ana w.v1 & @)

v

and the full symmetry is then U(2ZN). The algebra.of U(ZN) is the
direct product of the algebra of U(N) and that of U(2). A mass
termlnqhy would break this stmetry to the subgroup

SUN) x SUN) x U(1) x U(1).

This would be understood more easily if we discuss this

symmetry using two-component spinors.

Choosing four-component spinors actually doubles the fermion
species. Essentially, we have 2N varieties of two-component
'spinors. Without fermionAmass, we would have a flavour symmetry

URN). a four-component spinor mass term m¥W can be written in
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terms of two-component spinors. Writing

| ‘PZ (2.10)

(¥, and ¥, are two-component spinors.), m¥¥ becomes.

U — + - + LR w _ o .
m??-m?l%?ltm%cyﬂ m?ﬁﬂ+(®%}?z (2.11)

It is then easily seen that this is just the situation in which
among 2N fermions N fermions have equal:positive mass and the
~other N fermions have equal negétive mass.'The flavour symmetry
with this .mass term preseat ié, thereere; LKN)XfJ@Q, or.more

specifically SU(N)x SU(N) x U(1)x UQ).

-~ Although the four—componenﬁ mass term violates the chiral
symmetries, it 1s parity conserving. The two-component mass term .
is, Eowever, odd under the parity transformation. In 2+1 |
dimensions, the parity'transformation corresponds to invérting
one axis, since inversion of both axes could be uhdone by a

n~rotation. Thus

PI (xy) > (xy), =(xy) | e

The corresponding operation on the two-component spinor is
-—y -1 -
P¥Y (x,t) P =0'1‘P(xp,t) (2.13)

The parity operation on the two-component mass term is then,

19



P[m¥&Xn Y&y 1P =mP¥&E P PE&HP

= m P¥*(X,0)P ' 63 P¥(X,0P ' = m ¥ X oloel E{68)

_ - 3 - - — - -
=—m ‘{“(xp,t) o ‘P(xp,t) m (xp,t) ‘P(xp,t)

“

(2.14)
This shows that the two-component mass term is parity violating.

In the four-component formalism,

- ‘Pl(;;,t)
¥ , = - : ‘
(x,t) ‘{‘2~(x,t) | _ | (2.15)

The\ parity transformation becomes

P: ¥ (X,t) o ol (xX,t)
b 2 ® (2.16)
‘Pz(x,t)-+ c qa(xp,t)
The four-component mass term
mE‘P=m‘PTG3‘{‘1—m‘{‘; A 2.17)

~

transforms in the following way under the parity transformation:
- - -1 . .- - - - - -
PmPENYE0]P =P [m¥Ix00% ¥ (X) - m¥(E05> ¥ (%0 P
=m\y+"’ 163 6% (% 1) - mP*(x 1 &3 <l >
| 2(xpt)0' oadie] 2(‘cp,) 1(xp,t)cr c°c ‘{’l(xp,t)

=m¥ (0¥ @0 -mP R 0Y,E 0 =mPE HYE D (2.18)

E

Th

3

erefore, this mass term is even under the parity

I

ransformation.

This point is being stressed because there 1is an alternative

20



possibility in three-dimensions. Another acceptable candidate for

- a mass term 1is

m@% (¥, Y1¥=m¥ Y + m¥ od ¥ (2.19)

-This term is invariant under tﬁé chiral transformations (2.7) but
not invariant under the parity transformation (2.16). Such a
parity-violating mass is in fact the only possibility in the
two-component forhalism. It is known that it will induce a
Chern-Simons mass term for the gauge field via one-loop vacuum
polarization ([92]). That such a fermion mass and the
corresponding'Chern-Simons mass could arise spontaneously,
leading to the spéntaneous violation of parity in QEDJ, ié an’
infe?esting and imporfant possibility (([10]). In this thesis,
however, attention will be restricted to the possible spontaneous
appearance ofra parity-conserving chiral-symmetry violating mass.

- We now turn to the perturbative properties of this theory and
‘introduce the 1/N expansion. From the Lagrangian (2.1), it is
eaéily seen that the gauée coupling constant € is dimensionful and
its sguare has the dimension of mass. This theory then is
completely ultraviolet (large—momentum regime) finite.

N
Since the coupling constant (0=Ne?) has dimension of mass

this maésless theory is plagued with infrared divergences. The
effective loop expansion parameter is a/k, leading to infrared
divergent Green's functions already at the two-loop level

({31, {11]). One scheme which leads to infrared finite results 1is

21



an expansion iﬁ the dimensionless parameter 1/N with the coupling
constant a fixed---1/N expansion. In this noﬁ—perturbative Scheme
it can be shown that this theory stays infrared finite to any
ofder in 1/N ([11)). Whether this finite theory:admits the

spontaneous chiral symmetry breaking is the central problem of

this thesis.

Now we pay some attention to the 1/N expansion. Each orde;_in
the 1/N expansion sums an infinite class of Feynman graphs which
in turn leads to infrared finite amplitudes at the next level of
approximation. For example, to leading (zeroth) order in 1/N,
only those graphs are included which contain one closed fermion
looé for every additional coupling factor of a/N. The oniy
possibility is the correction to the gauge boson propagator shown

in Fig.2.
NNANNAN == NN L ru«xu{iz:}vmxun + nu\qu(j:>mfvm4:j;>\ﬂdvﬁ + -

Figure.2: The leading correction to the photon propagator
in the 1/N expansion.

The Feynman rules can be read off from the Lagrangian (2.1).

and all computations are performed in the Landau gauge.

Bare gauge boson propagator:

p

2
g - /
NARNANAA =iDuv(p)=—i v pgpv p

2
P

(2.20a)
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Bare'fermion propagator:
p . . ;
. 1
—eees =1Sf(p)= T ‘ . (ﬁ= pu'Yu) (220b)

Bare vertex:
—iey | (2.20C)

Let us denote the corrected gauge boson propagator by iD'qu).

The series expansion shown in Fig.2 can then be written down in a

compact form:

iD @)=iD ()+iD @Il @)D ) (2:21)
where ill, (p) is given by the closed fermion loop
k
P P
iHuv(p)=
—(-ie)’N J' pye [ — ¥ ﬁ ' (2.22)

1

A straightforward computation gives the corrected gauge boson

]

propagator (see appendix:A)

. g ~pp
D (p=-—5"— _ : (2.23)
: p 1+ n(p)] :

where (p) is given by
T(p)=a/8p (2.24)

The Euclidean momentum is represented by p. To the leading order,
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it is not necessary to consider the fermion self-energy and

vertex corrections since these enter only at next level in 1/N

expansion.

The propétiés of QED, make it clear that spontaneous chiral
symmetry.breakdéwn will not take place to any finite order in the
1/N expansion. To investigate this non-perturbative phehomenon,
therefore, we have to go beyond the finite orders. In doing this,
we will derive the effective potentials within the framework of
1/N expansion, to.give the Schwingér—Dyson equation which sums a
selective set of terms in the 1/N expansion. This is .the major

task of the following section.
§2.2 The Effective Potential Formalism

The dynamical generation of fermion masses in gauge theories
can be studied in continuum space-time using the efféctive
potential formalisms. These technigques lead to systematic
resummation of graphs which is capable of describing
non-perturbative phenomena such as chiral symmetry breaking in a

systematic seguence of approximations.

The effective potential V(@) for an elementary éield D (x)---a
possible vacuum expectation value of the quantum field P (x)---has
a simple interpretation as the energy density subject to the
constraint that ®(x) has some definite vacuum expectation value

@(x). One can compute this effective potential and minimize it
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with respect to @(x) to determine the vacuﬁm value of the field
d(x) ([12]1). In our study of chiral symﬁetry breaking, we need to
know how to test whether the energy of the vacuum is lowered if
the fermion bilinear qxxf§00 acquires a nonzero vacuum
expectation’value. An effective potential formalism similar to
the effective potential for single elementary field was proposed
by Cornwall, JackoQ and Tombulis ([4]). This effective potential
depends on S(x,y)---a possible vacuum expectation value of the
composite field opefators such as fermion bilinear. Physical

solutions require

dV(S)
3S

=0 (2.25)

Hence this formalism is especiaily appropriate for the study of
dynamical chiral-symmetry breaking, which is characterized by the
fact that non-zero solutions could exist for (2.25). This object
has a simple interpégggtion only at the stationary points
(referred to (2.25)) where it equals to the vacuum energy

density.

Now we go through the sketch of the CJT (referring to
Cornwall, Jackiw, Tomboulis) effective potential for fermi
fields. To produce a vacuum expectation value of a fermion
bilinear operator, we must, in principle, turn on ste,external
field (analogous to a magnetic field orienting a potentially
ferromagnetic system), construct the ordered vacuum in the
presence of this externai field, and then see if the order in

this vacuum survives when we turn off the external field.
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Ir. doing this, one introduces sources coupled to the fermion
bilinear q%xf?QO, Legendre transform the vacuum energy functional
to an effective action which can be given as a two-particle
irreducible loop expansion in terms‘of the full fermion
pfépagator S(xy)ff-a'Vacuum;expectation value of the fermion
bilf;ear:iA graph is said to be_two—partiélé'irreducible if it

doesn't become disconnected upon opening two lines.

Consider the generating functiohal of the theory governed by
a Lagrangian L(x) such as (2.1)

iW ] _ W(L-¥JI¥) |
e - J'[ Q¥ A¥dA 1€ (2.26)

where the exponential is a supressed form
L-¥1¥= [@ L~ @@ ¥, 00 09 ¥ (2:27a)
and injthree—dimensional space-time
J' (dx) = J' d’x | (2.27b)
and Jaﬂ(x,y) is én arbitrary bilocal matrix function; We willvomit

the spinor indices o and P later on.

For the case of QED, in which the Lagrangian is given by
(2.1), the path integral over the gauge field can actually be
done as indicated giving a non-local four-point interaction term

I (Fig.3)

nt
ﬂ ‘Wi WS D ¥
e = j[ AV dy] e ) (2.28)

where Sa* is the inverse of the free fermion propagator and
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fine = [ @0 @) (¥y#¥), D, ) (FYV¥), (2.29)

here DM (x-y) represents the gauge boson propagator.

= \p WVix — v - 4
(¥, V), D=y (¥, ¥, f

. \\

Figure 3. Non-local four-point interaction term.

Defining the Legendre-transform in the usual way gives:

dW [J]

_s | 2.30
57 (2.502)

F(S]=W[J] - TrJS ‘ : | (2.30b)

8T S ' —
| oSy | (2.30¢)
5 | ,

here the trace operation denoted by Tr is taken both in the matrix
sense and functional sense and the Legendre variable S conjugate
to J is the full fermion propagator <W¥(Xx)W¥(y) > as can be seen

from Eg. (2.28).

Since physical proifsses correspond to vanishing sources
J(x,y), equation (2.30c) 'provides a derivation of the stationary

requirement

§T[S]

=0 2.31
5S (23D
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To compute the effect;ve actions, CJT prdposed a loopvexpahsion
for I'. To exhibit this, it is useful to work‘backwards ffom the.
answers, defining a quahtity Fz which has a more transparent
functional integral representation and actually as we will see,
is the sum of two-partiéle irreducible vacuumvgraphs of the

theory with fermion propagator S.

Decompose I' in the following way
. -1 -1 . o
[=-iTr(LnS +SOS)+F2 o (2.32)
Taking a variation of I' with respect to § gives:

’ :L 8F

L  _ _y_oi(st - sty4 2 | 2.33

Express the path integral (the generating functional) (2.28) in

terms of I, elimijéting W with the help'of Egs. (2.30b) and

(2.32)
W (IS )WL
i [T,-TrS(iS, ~1)] j[d‘Pd‘P]é
e = . - (2.34)
TrLnS™)
e
Finally,
6T
[« —Tr(S—2—)
2 8S - o= o
I[PES )W+ I+ 882 v
| J[d?d@]e :
=-1 Ln( — n . )y T (2.35)
- iw@EshHy o
[d¥d¥] € I- i

where Eg.(2.33) 1s used to eliminate J.
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Eg. (2.35) 1s an expression for I,. The right hand side clearly
generates the sum of all connected vacuum graphs with lines

representing the full fermion propagator S and interactions given

by
) — O, |
Lol + ¥ Y (2.36)

It is not obvicus, however, that the second term on the right
hand side of (2.36) will, on expansion itself, cancel all
two—particlevreducible graphs, leaving all two-particle
irreducible (2PI) graphs. Indirect arguments are given fbr this
in Ref.[4],[13]. To further clarify this, I will give in Appendix
B an illustration of how the two-particle-reducible graphs are
cancelled. Hence,

F2}8]= sum of all 2PI vacuum graphs with propagator denoting S

and interactions given by L

In the lowest non-trivial order (two-loop) approximation; the
following diagram contributes to f&, where all internal lines

represent full propagators.

S(k)

S(p)

Figure.4: Two-loop approximation in deriving effective
action. The solid line represents the exact
fermion propagator S(p), the wavy line represents
the full gauge boson propagator DHY(p-k).
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we then evaluate the effective action in the lowestvorder>and

the first two derivatives for later reference.

[pplS1=-iTr(LnS ' +87S)+Tr(SDS) (2.37a)
Ty S a1 ;
e 0] =-J=i(s'-8;)+iDS (2.37b)
85

&L oy [S] 2 | o
Ser® _.is?+iD (2.37¢)

85 85 | . -
: o - i y |
WepJ] = —iTr(LaS™) - TrS (i8S’ ~7)+—Tr (SDS) (2.37d)

where D(p-k) has the definition
D(p-k)=ie’*I"D (p-k) (2.38)

As I mentioned in the first chapter iIntroduction), the CJT
effective potential has a defect that it is unbounded from below.
This makes the study of the stability of.chiral symmetry breaking
vacuum meaningless. An alternative was then proposed tdﬂremedy
this defect ([%]). This new formalism is the auxiliary field'(AF)
forma;ism in which one ingroduces the auxiliary field TKXJ)vés a
composite field directly into the path-integral of the theory and
couples sources to)iﬁ. In this case, a loop expansion in TTXQO can
be developed. I will go through the derivation of this ‘effective

potential formalism. ’ «}

We can alter the functional integral without changing the

physics by inserting:
—;-Tr(T—‘P-‘_I-‘)G(T—‘PQ) o
Const .= J‘[dT] € (2.39)

30



This introduces an auxiliary composite field T(x,y). G(x,y) is an

arbitrary function to be chosen later.

Consider then the generating functional with the auxiliary

field introduced:
.ol o1 = —=
iWAF[K] _ i [‘PlSO ¥ + Iim - 7 Tr (T -YY¥) G (T -WY¥) + Tr KT]
c = J.[d‘I‘d‘I‘dT] € S~
(2.40)
where K(x,y) is the source coupled to auxiliary field T(X,y). In the
case of QED where the interaction term is given by (2.29), one
can choose the arbitrary function G(x,y) to be D(x-y) to cancel the
interaction term in the path integral. Then the exponential in
(2.40) becomes bilinear in the fermions. After integrating out

the fermions, Eg.(2.40) becomes:

i[~iTrLa(S, - DT) - -%- Tr (TDT) + Tr (KT) ]

iV{uJK]
€ =iﬁdT]e
(2.41)
We can Legendre transform this Jjust as before:
dW ., - [K] )
AF - = T, (2.42a)
oK
FAF ['I'C ]= WI[K] - Tr( KTC) (2.42b)
or, [T-.]1. :
AL C - K (2.42c)
5T,

where TC is the vacuum expectation value of the auxiliary field
T(x,y). If we do a tree approximation in the field T(x,y), we can get

the effective action I analogous to (2.37). Expanding (2.41)
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o

around TH(xy) gives:

i W, [K]

e

= J[dT]'e

i[-iTrLn (SOI—DTC)—T.Tr(TCDTC)'*'Tr(KTC,)]

=C

“~ i A
i [-iTrLn (S(;I—DTC_)—?Tr (T¢DTe)+Tr(KT))

=e

iD (S, -DT
R -1 5

or —.K—1D(S0 —DTCQ —1DTC

Therefore under the tree approximation, we have

[ [TC] =W

or
oT

[T.] . . '
AP C = _g =iD(so1 -DT,.) 1—iDTC

C

P i
=—"iTan(SOI—DTC)—TTr(TCDTC)

T

i

c

i[;—-iTan(S;)l—”DTC)—T Tr (T DT, )+ Tr(KT)]

AF

c)

[K}-Tr (KT,)

~

i {(T-T)liD(S;' -DT.) ' -iDT +K1}
-,J'[dT]"e |

where the stationary phase condition is applied

1, _
—1DTC +K=20
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(2.44a)

(2.44b)

(2.45a)

(2.45b)

i[04 (T=T)X(=D) (8] = DT ), +i (T- T, ) DT+ (T-To ) K+ ]



80 ¢ [Tc]
8T, 8T,

= iD (S, -DT.)?D -iD | © (2.450)

_ i |
WAF[K]=-—iTan(SO‘I—DTC)'T?Tr(TCDTC)+Tr(KTC) (2.45d)

where To=T-(K) is given by tha statienary phase condition (2.44).

s

.

The relation of TC to‘ﬁhe fermion propagator at this level
will be‘clarified. Equation (2.41) tells us that the seéond
derivative giveﬁ?by Eg.(2.45c) is the inverse of the T free
propagator. Hence when we set the momentum equal to zero in that
expréssioh, Whicﬁ corresponds to taking a translation invariant
part of T(x,y), this second derivative gives us minus [mass]? of

the field T(x,y).

The essential difference between the CJT and AF formalisms is
~in the coupling of the source to Y(X)¥(y) or to T(x,y) respectively.

We can get an expression for Wcp[J] analogous to W,([K] by doing
the same thing as we did in the AF formalism, namely, inserting
Eq.(2.39) into the path integral Eq(2.28) and integrating out the
fermion field without changing the physics:
L -1 : 1
iWCIr[ﬂ 1[—1Tr Ln(SO ——DT+1J)——2—TT (TDT) | .
e - J' [dT] € (2.46)

If we use the invar&ance of the volume element under translations

we can change the integration variable T to T+iD'!J and hence

find
| i | |
Wenl 1= W el 11+ — Tr(JD'J) | (2.47)
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-The whole effect of introducing the auxiliary field and coupling
a source to it is to add a term with quadratic J dependence to

W%nn This term is responsible for changing the boundedness

properties of V. <\
. .
£

Eg. (2.37) and Eg. (2.45) describe the same Lagrangian but wifh
different sources. That 1is, they describe the different composite
fields to which the sources are linearly attached. The |
relationship between the Ewo different composite fields, namely,

Q%ngbo and T(x,y), can bevciarified as follows. Let us define SC:'
L1
SC=TC+1D vK , , (2.48)
Then, the stationary condition in AF formalism, Eg. (2.45b)

becomes:

iSZ =iS, ~K-iDS ’ | (2.49)
This is identified with the CJT staﬁionary condition (2.37b) if
we equate S (the full fermion propagator) to SC and J (the CJT
source) to K in this equation. This means that the tree
approximation in T fields in the AF formalism is equivalent to

the lowest non-trivial (two-loop) order approximation in the CJT

formalism, up to the first derivative of the effective actions I.

Taking sources J and K=-iD!J for CJT and AF cases

respectively, we can summarize the results here:

W

_ i
ep 1= —iTanS'l—TrS(iSOI—J)+-E-Tr(SDS) — (2.502)

W

1
Ap LK1= -—iTanS'l——iTrSS(;1+7Tr(S+K)D(S+K) (2.50b)
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‘The fermion self-energy 2 is defined as

C a1 -1 '

T=-i(ST -S,) (2.51)
‘Then the Legendre transform variables are the fermion propagator

S and the fermion self-energy 2 for CJT and AF formalisms

respectively:

Wepr .
=5 | (2.522)
5)
W,
SKAF =iD@Es+K)=-is'+is'=3 (2.52b)

b

Finally the corresponding effective actions can be obtained by

doing Legendre transforms:

| _ ) i
Fep[S1=~iTr(LnS '+ SOIS)+7Tr(SDS) (2.53a)

I“AF[Z]T-—iTan(i561—2)+—;-'1‘r(2D'12) (2.53b)

Having obtained the effective actions, it is an easy matter to
derive the effective potentials from the effective actions. Since
we are interested in translation invariant solutions, we let S(x,y)
and the source J(x,y) be functions only of the relative coordinate
(x-y). For this case, the effective potential may be defined in

the standard way:

F[S(X’Y]I translation invariant = —-QV[S(x-y)] (2.54)

where §2=j(dx) is the volume of space-time.

For example, the series for effective potential VCH{S)can be

obtained from the effective action given by Eq. (2.53a) by Fourier
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transforming the propagators:

3 -
d ip(x-y)
p e |

S<x—y>=_[ S(p)

. d&p _ip(x-y) |

So(x—y)—-j o € So (P - (2.55)
K ,,3‘ .
‘ d ip(x-y)

83(x-y)=J' e

(2r)?

Substituting (2.55) into (2.53a) gives:

~Verr J.d3x =-i J-d3x d3y Tr {LnS'l(x— y) 83(x —y) + s;,l(x -y) S(y — x)}

+ % J.d3x d3y Tr{S(x -y)D(x -y) S(y - x)}

lp(x-y) iq(y-x
c

— -1 -1
IJ'd x d’ J' e (2n)3 Tr {LnS™'(p) + S, (P) S, (@) }

£ iPG-y) iqx-y) ik(y-x
+—J.dxd j c € e Tr [S(p)D(q)S(k)]
2m)? (21t)3 (2m)? - ,
3
d’k
={ Tr[LnS()+S()S()+— Tr [ S(p) D(p-k)S(k
{ f P)+S, () S j(w o7 FIS® DERsto]}

. J &x | » (2.56)

and finally we have
3

P L+ ) SE) ]
2m)3 °

VCH[S]=iJ.

"9 J(zn)g, (21} Tr [ S(p) D(p - k) S(k)] " (2.57a)
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Similarly,

V,[Z]=i ar TrLn (¥ 2)
e r n . —
AF IJ. (21t)3 P

Tr[Z(p) D '(p- k) ()] (2.57b)

2 j (2m) (211c)3

With these two equations;*we end our sketch of the effective

potential formalism.

Now we come to evaluating the effective potentials for our

particular ﬁ%del———QED3 with N fermion flavours. We recall here

the Feynman rules of this theory:

(1) . -Gauge boson propagator corrected to‘the»leading drder of 1/N
expansion:
pov, 2 )
g ~p p/p -
‘2“’ (2.58a)
pll+II(p]

iD ()= ~i

where Il(p)=a/8p.

(2). Free fermion propagator:

1
1S,(p) = —— : ,
p - | (2.58b)

(3). Full fermion propagator:

: T (2.58¢)
P (1+A(P))-2Z ()

iS,(p=

where A(p) is the wave-function renormalization factor.

(4) . Vertex corrected to the leading order of 1/N expansion:

—iel# = —jeyH ) (2.58d)

To make the Schwinger-Dyson equation, which is determined by the

tationary condition of the effective potentials, tractable,‘we

6]
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use some certain approximation in deriving the specific formsqof
the.efféctive potentials for our model. That is, in (2.57), the
full gauge boson propagator'[%w is‘replaced>by (2.58a)~--the
propagator corrected to the leading order of 1/N expansion, the
full vertex [* appearing in the definition of D(p) (2.38) is
approximated b§ (2.58d)---the leading behaviour in 1/N ekpansion
and the wave-function renormalization factor A(p) in the full

fermion propagator (2.58c) is neglected.

Making the above approximations in (2.57) and doing a

straightforward computation, we obtain: (see Appendix C)

2 : 2
Ver (1= [ prp [—=B— = Lin(1e 2]
p +2(p) p
——;' f p'dp j q°dq 22(9)2 M(p,q) ZZ(q)z ~ (2.5%)
p +2(p) q+2(@
1) . 2
V(2] =—%' Jpzdp Ln(1l+ —Z—(zli- )
p
+-;- jpzdp jqqu SPM ' (p,q) Q) (2.59b)
where
: o,
p+q+-——
M(p.q)=— 2; Ln ( 8 ) (2.60)
. TAP4 lp-q|+%

ard Nfquq) is defined by the following

fdr PM i p ) M(r,q)= 8(p-q) | (2.61)

38



here p,q,r are Euclidean momenta.

In the above derivation an assumption has been made to the

fermion self-energy:

EGB:: 26043 , o and B are indices of internal symmetry

(2.62)

since we are only lookihg for a singlet solution of the S~D gap
equation in the internal and Lorentz spaces, and a spherical
symmetry in the momentum space for the mass function Y is also

assumed.

I3
b
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CHAPTER 3.
SCHWINGER-DYSON EQUATION AND DYNAMICAL CHIRAL SYMMETRY

BREAKING SOLUTIONS

Having obtained the explicit forms of the CJT and AF
effective potentials, we can pursue our study of dynamical chiral
symmetry breaking by analyzing the S-D equation which results
from requiring the effective potentials to be stationary against
variations of fermion self-energy X(p). Whether this equation
admits non-zero fermion self-energy solutions corresponding to

dynamical chiral symmetry breaking is the central problem to be

explored in this chapter.

Recall from last chapter that:

2 2
Vcn-[z]szzdp{ 22(p2) —';—Ln(1+_2(2—p)-)]
p +2X(p) p
-L J' p dp f q dq ‘ Z(pi M(p,q) 22(62 (2.59a)
p +Zp) - q+Z
AF[E]——'l-jp dan(1+ Z(p) )
p’

+*;-Jp2dp j q*dq 3(p) M '(p,q) Z(q) (2.59b)

and
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prq+-L

M(p,q)=——%—— La ( -8 ) | (2.60)
2n Npq Ip—q'-f"& ‘
‘ 8
fdr pzM'l(p,r)r2 M(1,q)= &(p-q) . (2.61)

Taking the first derivatives of the effective potentials given by

(2.59) with respect to X(p) gives:

8

Ve [Z]
32(p)
‘ ()
=2 {2 e P+ e -20) 1 P’ 1
(p°+ )1 ()
. . p2
2 2 2 ‘
-2
~p J'qqu [p +22(p) : Zz(p)] M (p, ) 22((11
[p"+ 2P ] : q+2(p
2. 2 2 - .
= _P [2p 2>:(p)2] 3o - J‘qqu M (p, Q) 22((11 (3.12)
[p"+2°(P] | q+2@
2(p)
OV,p [X] L 2
~ =-p’ p2 + sz'qqu M (¢ 9 2@
(P) X () |
2
P
| X0 | 2 [ 2 1
=- ="+ jq dqg M '(p,9) 2(@)
p+2(p)
=9 {[daamp o0 - 22 ) (3.1b)
p+2(p) |

We can see from (3.1) that the stationary condition
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v

= O - N .- .
8% o
implies that | &
2(p) = J.qqu M (p, 9 22@2 - ‘ ‘ (3.2a)
: qQ+2(@ -
jqqu M (g S = 22(p; o (3.2b)
p+2 (p)_

Eq. (3.2b) is equivalent to Eq.(3.2a). In fact, applying (2.61) to
Eg. (3.2b) and performing the integration jﬁbde1ﬁJﬂ on both

sides of Eq.(3.2b) give:

[dda [pPa Mep Moo Z0= [ Map —T0— 63
a p+2(p
Thus, .
jqqu —15- 8(r-q) 2(@ = Ipzdp M, p) ZZ(I); 39
T o p+2(p)

Eq. (3.4) is actually (3.2a).

Eq. (3.2a) or Eg.(3.4) 1is the Schwinéer-Dyson equat%on which
we will utilize to study chiral symmetry breaking. Both Veor and
VAF yield the same S-D equation. Tﬁis further clarifies the point
that these two effective potentials are eqﬁivaient up to the

stationary condition.

Eq. (3.2a) (S~D equation) is an integral equation that is
7

presumably impossible to be solved analytically. The pract%;al\
. . . y }\

way to study this equation quantitatively is to solve it~

numerically. However, it would be helpful to do some simple

analytical analysis and get qualitative ideas about how the
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solutions of the equation may behave in the asymptotic regime
(large and small momentum p regime). To do this, it is convenient
to break the momentum integratibn in Eqg. (3.2a) into two regions

and expand the logarithm appropriately for each region:

.‘oc ’ . -g-—
Kk STk p+k+
)= — ac—20 py ot
2n°Np K*+ 2K ‘Ip—k|+—‘§-
0.3
— o p k (k) p+k+
2n2 N p J-dk 2 2 Ln )
: K+ XK) p—k+ &
0.5
o k (k) k+p+
* 212 N j 2, 2 Ln ) - 3D
and
. Ln(p+k+'OL)=Ln(p+'l)-}-——zlL-p+0(—k-)2 (3.6) -
8 8 p+'l{ p+ &
8 8
hence,
.
p+k+ ‘
~ Ln ( 8 = _2k Lok (3.7a)
ke L Lo Lo
PTET g P™ 3 P* g
k+p+ =
Ln (—m 8 )= 2P, o(—P ¥ (3.7b)
k-p+ % k+--§L “-;k+..§L

Eg.(3.5) then becomes:

o KIW p 2k kK 3
— (——)
27 N p J K2+ 2k) ;

2(p) =



[ kIW 2p P .3 :
+—-—2G'——jdk — { +o(——-—)-} (3.8)

2nc Np K"+ Xk) K+ =2 K+ - :

8 8
For both large p and small p (relative to ®/8 since « provides an
intrinsic scale), asymptotic forms of X(p) may be found by\

retaining only the first term in the expansion of the logarithm. . .

In this approximation, the integral equation may be converted to’

a more manageable second order non-linear differential equation:

P
di(p) — 29; 2 [ 1 ] 1 dk 2Z(k)2\ =
P N ¢ p(p+ 2) 0 K+ 27k
‘ 8
2p+-ﬁL o ‘ .
- g pr——) (3.9)
‘N pz(p+_%)2 5 k+z(k) o

\,

therefore, A <i?

2 a 2 ‘
a_ p(p+ =) @) j=_ p’ 3(p)

(3.10)
2 ‘ 2 2 :
dp 2p+ & dp N p"+Zp)
8
In the limit p<<®/8, this equation can be simplified as
. N 2
d 2 dX(p) 7 _8 p_2(p) |
— [P —=—1=- 3 @.11)
p p N p+Zp)

If we further assume that p>>XY(p) (this comes from the assumption

that there exists a hierarchy between generated mass 2(p) and the
. .

intrinsic scale &), Eqg.(3.11) may be linearized to the follwing
form:

‘ 2
d d p 2(p)
o2 2(p) ]=-—8

(3.12)
dp dp N  p’+34p)

One thing that has to be made clear here is that the use of this
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T e

linear differential equation is self-consistent only if the

hierarchy X(p)<<0./8 emerges from the full non-linear integral

equation---the S-D equation. This will be checked shortly using a

numerical analysis of the S~-D equation.

It is then not difficult to see that the linear differential

equatidn (3.12) has solutions of the form

Sp)=Cp

a=L(-14

i

32

2N

(3.13)

1

For large N, the two solutions in the asymptotic regime are

1

o~

2,0

3

8/mIN

and

2, ~

1

1- 8/m2N.

~ ;

(3.14)

v

ZqQQ barely falls asymptotically while 2,(p) is roughly of order

1/p. For N<32/%? (=3.2), the solutions fall like 1/Vp times a

function that oscillates in Ln(p). Whether the oscillatdry

behaviour is seen in the solutions of the full integral equation

depends on the range (hierarchy) avéilable between X(p) and q.

EQ.

We now turn to the other regime p>>a/8

(3.10) becomes:

d 3 dX(p)
dp (o ap

~

]=-

2
—=—=— 3
N (p)

Eg. (3.15) admits two ‘possible asymptotic solutions:

A
2, Pm=

P

ZB(p)=B{1+b4

o
—+

......

......

45

In this limit,

(3.15)
where a=-——£L—-
3n2 N
where b= (3.16)
' N

-
\¥Jff



It can be seen, however, that the solutibn ZBQﬂ}.corrsponding to
é\Pare mass, is not compatible with the'homogéneous
equation(3.2). A bage mass has simply been banished from the
theory by not including an inhomogenebus term in this equatién.
Tﬁerefore, in the ;arge momentum (p>>0/8) regime, one would.

ekpect that X(p) exhibits approximately 1/p? behaviour.

In the above apalytical dis¢ussion, we.have made the
aésumption tﬁat the dynamically generated mas§ is much smallef
than the intrinsic écale a=Ne2. The consistency-of this
assumption must be~checked'byisolving the S-D equation
completely. Yet, the expl;cit solutions we have discussed so far
are only ésymptoﬁic and quaiitative, in otﬂer words, their
behaviour over all momenta. regime and their magnitudes are not
determined until the non-linearities are takeﬁﬁinto account. A
nuherical analysis 1s, therefore, necessafy to be pérformed for a
complete study 6f the non-linear SchwingerLDyson integral

equation (3.2). Written down explicitly, Eg(3.2) is .

oo (04
p+q+ —/ :
)= —2%— [dq Ln ( 8 ) 129 (32
2nNp lp—ql+ & . 9d+Z@ ‘
” ,_

Recalling that both Z}p)and O here have dimensibns of mass, we

define
P ;. q
X= — | ys —
o o
2(p) o 2z »
B(x) = P , B(y)= @ : (3.17)
o . o



to be dimensionless variables and functions for the convenience

of doing numerical analysis.

Thus, Eg.(3.2) becomes: -

| ¢ “Y*‘é' y B(y)
B(x) = ———— J.dy Ln ( — ) T, (3.18)
2nNx {x_y»|+_flg_ y +B(y)

The fermion flavour number N is now the only parameter in this

«

integral equation. The right hand side of this equation'contains

{ i

an explicit factor of 1/N. A solution 2(p) will then clearly have

to exhibit some N dependence.

We further rescale the function EOO
B(x) = CB(x) | B | 319

where C is an adjustable constant.

-

. Substituting (3.19) into (3.18), we have an ‘'integral eqﬁatipn

o B):

i oo N 1 a— )
X+y+ = y B(y)
B(x)= — }J’dy Ln ( 8 ) ——25 (3.20)
214 N x : : lx—y|+— y+"CB(y)

" With the existence of this scaling parameter C, we may achieve

'reasonable sensitivity to ‘the shape of the solutions.

To make Eqg.(3.20) more manageable, we use an ultraviolet .
cutoff A>>0/8 to the incegral. A reasonable cutoff will be the

one to which the sclutions are quite insensitive.
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The numerical method we have used for solving this integral
‘equation is the "quadrature method” in which an appropriate
quadrature rule may be used to approximate the integration in the

integral equation. Here repeated Simpson's quadrature rule has

been used and the numerical procedures are as follows:

S I = c=
B~ ZO = { £y, x B+ £y, % B(y,,)) ) (3.21)

where the integration is approximated by Simpson's summation. M
is the number of intervals to which the integration range is
divided and h is the step size. {y,i=0,...... ,M} are the mesh

‘points.

- y yi+x+-1— -
£y, % Bly)) = ————————1Ln( 8 )By) (3.22)
AHCBWT y-xle

Eq. (3.21) should hold for x=y_,m=0,1,2,...... M.

Let Z,=B(y,,i=0,1,2,...... ,M, we have a set of non-linear

algebraic equations approximating the original integral equation:

1 N L \ |
2= o go (50 { £y ¥ Z SESCARSAEAD ) (3.23)

where m runs over (,1,2,...... , M.

In~principle, we may get solutions {Z_} or {BQQQ}—-—the
numerical solutions of the S-D equation---by solving this set of
algebraic equations. Eqg.(3.23) is, however, non-linear and |
therefore not easily solved. P:acticéily, we have employed

" Newton's method to linearize Eq.(3.23), that is, Newton's .
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iterative procedure has been used.

In Newton's method a set of non-linear algebraic equations

F((Z))=0  ij=l,....un (3.24)

can be reduced to a linear one by using the following iterative

procedure:
m+1y _ (m) 0 ‘
(™ >+2< z")=—F(zH| =0 (3.25)
Z 7 z=7
S
m=0,1,2,...... ,K indicates the order of iterating steps. Eq. (3.25)
can be written in a more transparent form: : -

i B 2y cmﬂ) =-F+ Z (F)th") (3.26)

where
) ‘ : |
N 57 F (z)) Izj g | (3.27)
and B
F,=F((Z") ~ (3.28)

If we start from one appropriate initial set of numerical values
'{me}, the linear equations for the iterates [Zf“] can be easily
solved. Once‘[Zf”}‘iﬁ obtained, we can solve (3.27) again for
[Zfa} and so-on until the iterates converge to some [Z?”}. [Zf”]
will then be the solution of the nQn—linear‘equations (3.24).
Newton's method simplifies the problem since solving linear

- algebraic equations is not difficult.

from (3.23), we have the non-linear equations
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M M-1 |

] 1

Fm({zi}) =Z 5m.Zi - Z (=-h) {f(yi, Yo Zl)+f(yi+1, Yo Zm)}-'—'o - (3.29)
izo ¢ 22N =6 2 B

To linearize (3.29) following (3.27), we need to compute the

matrix elements (F)_ , defined by (3.27).

S i v 2 2o [ 2 L ey %
=~ y’y ’ : E. n
o i’ “/m’ "i o 2 2 y
9%, 2+ CZh ' ly. -y, |+
2 2 L
vy (y*-C%Z%) y+Y + |
S B T Y UL B Y (3.30)
2,02 Y 10
\ G+ CZ)T Tm gy e
hence ‘
1 2
11 Yot Ymt o ¥oo—-C
(F)_ =8 -—t— () — Ln(———8 )00 % (3.31a)
mO om0 omIN 2 Y 1 2 Dt
m 'yo—ym|+? o+
L 2 ﬁ
1 Yt ¥t Y, ¥, - CZ)
(F)mk=5mk——212—N(h)y—Ln(_ e ZZ‘z 3.31b)
m m |yk-ym|+.';‘ ya+CZn* -
k=1,2,...... M- 1
L 2 22
, 11 YmtYM+ T Yp Oy = Cyy)
(F)py = 8,y = —— (5-h) — Ln (— 8 MM "M (3.31¢)

2 2 2 T2
272N Yon ly,- Yﬂ*% (vo + CZyy)

inally, we come to a set of linear equations which takes the

form
2 )
> ®_, 70V =G_ . m=0,1,2 ..M (3.32)
k=0 .
where Gﬂmk are given by (3.31) and
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G,=2 ®_, 7" -F (Z") - (33
k=0 .

For solving Eg.(3.32), SFU MTS computer system was used and a
Fortran subroutine was called. Practically, the number of mesh
points was taken to be 700. The 700 points were not egqually
spaced because of the consideration of the possible rapidly
changing behaviour of the solutions in the infrared region as

suggested by the previous analysis of the S-D equation.

Computations wére‘perfomed for different value of the fermion
flavour numbér N. In fact, for N=05,10,12,14,......... ,2.6,2.8, the
S-D integral equation was numerically solved following the
procedures stated above and the non-zero solutions 2(p) are found.
The numerical results X(p)/& vs p/a for N=0.510,12,24 are
plotted in Fig.5, Fig.6, Fig.7 and Fig.8.

The éame computations were also done for larger N values.
However, the numerical round-off error became problematic because

the magnitudes of the solutions are very small when N increases.

2

rherefore no numerically stable solutions were found for larger N

values.

For checking the reliability of the solutions found, several
ifferent sets of initial values {me} were used. Different
initial‘values, however, only resulted in the difference -0of the
computing time taken and the final resuits from different initial

vzlues all converge to same solutiorn.
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in order to check the numerical method we algo adopted the
simple, self-consistent iterative procedure, naiz}y, the
"repeated substitution", to so{ve the non-linear algebréic
equations (3.23). Although this iterative method was more
time-consuming than the Newton's iterative method, it élso’
provided the convergent results---the numerical solutions which

are the same as those obtained by using Newton's method.

The numerical solutions, as shown in Fig.5, 6, 7, énd Fig.8,
have the qualitative behavior we discussed before. The hierarchy
between the fermion generated mass 2(0) and the intrinsic scale a
does emerge from the non-linear S-D equation since X(0)/a for each
value N is much smaller than l. And as the value of N increades,
the hierarchy becomes larger. The appearance of such hierarchy is
very interesting but not surprising since a hierarchy between the
fermion generated mass and the intrinsic scale appears in some
‘models of four dimensional theories where a small dimensionless
parameter, like 1/N in our model, exists. Recalling the
asymptotic solutions of the S-D equation within the region
2(p)<<p<<a for N<3.2, one may notice that the numerical solutions
do not exhibit the oscill;tory behaviour which is suggested by
the analytical asymptotic solutions. This is, however,

' uncerstandable. Although there is a hierarchy between X(0) and «,
this gap may not be so large that the oscillatory solutions found
will obviously play a role in the region XY(p)<<p<<o/8. When it
comes to the ultraviolet (large momentum) asymptotic region, one

can see that the numerical solutions go to zero following
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N=0.5
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Figure 5: Solution of the S-D eguation for fermion flavor number

N=0.5.
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Figure 6: Solution of the S-D egquation for fermion flavor number

N=1.0.
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N=1.2

*10°°

8.0 Z(p)/&

Figure 7: Solution of the S-D equation for fermion flavor number

N=1.2.
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N=2.4
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Figure 8: Solution of the S-D equation for fermion flavor number

N=2.4.
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approximately the 1/p* behaviour which is given by the analytical

analysis.

What we can conclude from the above analysis 1is as follows.
fUp to the stage of approximations we have made, we found non-zero
numerical solutiohs of the Schwingege-Dyson equation for the
values of N from 0.5 to 2.8. This i£:;cates that the chiral
~symmetry of this model may possibly be broken at least for these
valﬁes of fermion flavourrnumber. Although we have the practical
ifficﬁlty in finding solutions for larger values of N as we
xplained above, it seems to us that there is no reason why one
/should not expect non-trivial solutions for large N values.

’

Dynamical chiral symmetry breaking may take place for all values

L4

of the fermion flavour number N.

Whether or not these non-trivial solutions which indicate the
possibility of dynamical symmetry breaking actually corréspond to
the stable vacuum configuration of the theory is the question to

be answered in the next chapter.
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CHAPTER 4

STABILITY ANALYSIS
§4.1 Stability of The Chiral Symmetry Breaking Solutions:

Given the solutions obtained in the last chapter, we are left
with the question of whether or not these chiral symmetry
breaking solutions are stable. That is, under small arbitrary
variations about the stationary points, do the solutions diverge
from or return to the stationary points, or in othef words; do
the stationary points correspond to the local minima of the
effective potentials? To see this feature, we expand the

effective potential V[X] about the statiénary point 2(p):

BV[E] 82V[S) .
V[S485] = V[z]+_[d 55(p) —=m- + —- [ dg 85 )

1

At the(¥tationary point, the first derivative satisfies:

dV[X]
3X(p)

=0

Eg.(4.1) then becomes :"

_IVIE s 42)

VIE+BE] = VIE] + - [dp da 52(p)
32.(p)dZ(q) .

The answer to the stability question lies then in the second

quadratic term of Eg.(4.2). This term actually is the expectation .

value of the functional second derivative operator 82V[X]/8Z(p)SX(q)

---the so-called stability operator or éurvature operator at |

non-vanishing solution X(p). If the expectation value is always

positive for every physically allowable variation 8X(p), the

™~
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icorrespondlng statlona!D point (chiral symmetry breaklng
*solution) is stable; 1f the expectation value can be either

- positive or negative, the corresponding chiral symmetry breaking
solution is then an unstable saddle point. The term "physically
allowable 8X(p)" means the set of . functions SZQ»"which keeps the
effective potentials continueus and satisfies certain boundary
conditions, namely, the conditions that 82“» should preserve the

finiteness of %(p) as p—0 and the 1/p? behavior of X(p) as p —>co.

For the CJT and AF effective potentials given by (2.59):

2 2
Vm[21=fp2dp[ 22("2) » —%Ln(u——-—z?) )]
p +Z(p) P
J p’dp j dq Z(pi M(p,q) 22(‘2 (2.59)
Y (P - q+2(Q
VplZi == fop a1+ 22 2(") )+——f ap jqdqz@)M AL (2.590)

P
taking the funétional second derivatives of the effective
potentials with respect to 2(p), we have, the two stability

operators respectively:

8V o rlZ] | ,
=D(p) [ 3(p ~ q) - M(p.9)D(q) ] (4.3)
d2(p)dX(q)
82V, 3] . ' '
— A =M (p.q)d’ - D) - q) (4.4)
32 (p)6X(q) ~ ,

where D(p) is defined as
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2.2 2 - '
D(p) =P == B @

e’

§4.2 Stability Analysis Of The Non-Symmetry-Breaking Solution

2(p)=0

Since X2(p)=0 is always a "trivial" solution of the S-D
~equation which corresponds tQ‘the vacuum configuration with no
chiral symmetry breaking, it is gquite interesting and non-trivial
to study the'local stability of this vécuum configuration. In the
modéi of four;dimensiénal QED, the local stability of the vacuum
" of unbroken symmetry was studied ({17]) and a criticai value for

‘the dimensionlégs parameterf——coupling constant g——-wés |

" determined such that when the coupiing constant is lafger than
this critical value, 'the vacuum with unbroken symmetryvis
‘unstéblé‘and_when the coupling constant is smaller than the
Eriticai value, this vacuum is stable. In our model there also is
a dimensionlgss parameter---1/N. Our aim‘here, theﬁéfore, is to

 see whether or not a critical value for this parameter can be

found in the same sense as in the four-dimensional model.

For the solution 2(p)=0---the origin of the functional space
---the.two stability operators given by (4.3) and (4.4) take the
simpler forms as follows

82V (2]

_ =38(p - @) ~ M(p,9) E (4.6)
dX(p)8X(q)
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82V (2]
- 3X(p)SL(@)

where the definition of the inverse Ml(p,q) is given by

= p’ M (p,q) q2 -d(p-q) , (4.7)

C o Jao'™M o0 PMeg =809 e
The major purpose of doing stability analysis here is then fo
justify whether or not the expéctation values of ;he above -
stability operétors are alwéys‘positive for any physically
allowable departures &X(p) f?om.EXp)=p when the parameﬁger -

/

varies.

Since at .the origin, the two effective potentials should
provide the same information about the local stability and the
CJT stability operator (4.6) looks easier to deal with, we now
concentrate on this operator denoted. by H:
82V yrlZ]

H ,
02(p)dX(q)

=8(p - q) - M(p.9) | | (4.8)

§4.2.1 Functional Analysis

It is well-known that phe vector space L2(0,) which contains
éll the équare-integrable functions is a Hilbert space. However,
physical conditions on variations d2(p) as stated above require us
.to start from a subspace of L?(Opﬂ—on which the operator H can be

physically well-defined. This subspace is called the domain of

definition of H.



Let us consider a dense subspace D included in domain [XpJﬂ)
(the domain of functions which, multiplied by pJQ, are sqgquare-
integrable) in which the operators H and,b4p are well-defined and

7/ . .

symmetric, that is, for aqy fEDCD(p‘“Z),

\:g,

_Hfe L2(0,) = or more specifically - Mfe L2 (0,0)
and X ‘

(1/p)fe LZ(0,%).

In reference [16], A. Amér, A. Le Yaouané, L. Oliver, O. Péne

and J-C Raynal\proved that the kernel

1 + 1
K,(p,q) = —=La(-E)

ool S
defines a bounded symmetric operator in delqo with a finite

norm: . Y ) . .

‘ _”d +1 ' i
Ik, I =By = [ 2 Lo £ “9)
o P lp~1] " :

Borrowing this result and obserbing that the kernel

: |
1 Pra+= 1
K (p.a) = Ln (

) .
r lp'—ql+-8L Ja S

relevant to our problem is always less than the kernel Kgp;b, one
sees that K,(p,q) also defines a bounded operator in L2(0,00) with

finite norm

Mk l=cslx =B R | @)

For any feD, the expectation value of H is
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(f. Hf) = (£, ) - (f, Mf)

=fd o) - 1 ."»dfd\ﬂ’)[—l—r_n( Praty ) 1£@
REARRR PN A A . g7
lp-ql+—
8
- (f,MfH)
=f,Nll-———"] , S (4.11)
‘ N :

Defining

1
f(p) = —= f(p)

I
where fi(p) e L2 (0, =)

one has

o : 1
M, 1 K e K ik

&H  mN G H EH N G D
‘ A

The expectation value (4.11) then becomes

1
- (f, K,f) (f,E#S

A TE T D

] o (412)

Since it is shown that K,(p,q) is a bounded operator on L?(0,) with
finité norm C, it is then true that (f,K,f)/(f,f) is always
finite. However if one analyzes the factor Uﬂlhxﬂ/(f“ﬂ,\one finds
that even though (f,1/p f) is'finite, this factor is not bounded
from above. That is, given ahy positive vélue A, one éan find

some feD such that

¢, =P
P 4 . o ' 4.13
e (4.13)

An example of this kind of f is

f (=P exp-ap) | >0 (4.14)
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which yields

Fomf)

apa

I S, ) ‘ 4.15
('fa’ fa) (o4 ‘ (4.15)

Therefqré, one can always choose a to make (4.15) arbitrarily

large.

Following this fact, one observes'that,-given any finite

value N, it is possible that there exists fyeD so that

1
L Uy Ky Yoo

>1

™~ 2N oo £o) (o £
Hence
(fy Hfp <0 _ | (4.16)
(4.16) then indicates that the expectation value of the operator H
may not be positive ‘definite for any given finite value of the

fermion flavour number N.

We then suggest that the chiral symmetry-preserving solution
2(p)=0 may correspond to the locally unstable~§oint.of the
-effective potentials for any given fermion number N, which means
there may nét exist 5ﬁcritical value of the fermion flavour

number in the sense we stated at the beginning of this section.
§4.2.2 Numerical Analysis

The numerical ahalysis of the stability operator defined in

(4.8) provides support to the suggestion drawn from the functional
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analysis in the previous section.

In doing the numerical analysis, we study the following

integral eigenvalue equation of the stability operator .-
H(Dn = J.dq [d(p-q) - M(p.q) ] (Dn(q) = kn(bn(p) 4.17)

that is, we solve this equation numerically and determine the

possible eigenvalues %r The equivalent form of Eg.(4.17) is
Mo = J. dq M(p.9)® (@) = p. @ (P) (4.183a)
where =1-A -~ (4.18b)

For solving an integral equation like.MJBaL the simplest and the
most recommended numerical method is based on quadrature rulesf
The quadrature rule we use here is that of Gauss-Laguerre. |
Noticing the discontinuity of the first derivative of the kernel,
we adopt a modified quadrature method to remedy the possible
.defect due to this discontinuity. Applying the ﬁauss—Laguerré
quadrature rule and the modified method to Eg.(4.18) and going‘
through‘the procedures similar to those perform?d in solving the
S-D eéuation, we have an algebraic eigenvalue problem which

approximates the integral eigenvalue equation (4.18)

hol ‘ _
> AzP=p 7" _ (4.19)
: ij7] n i
_’=1 . —
where {p,} are the approximate eigenvalues and
- -] ) n -
Jay Mo, -3 Moy w, i |
=48 k=i : (4.20a)
1j .
12 12 .
Wl My, y) [w]™ 1#]
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ZV=d (y) (4.200)

In (420) {w,,i=1,2,..,n } are Gauss-Laguerre weight factors and
{yLi=1;2W”n] ére Gauss-Laguerre abscissae which are chosen not
to be zero. This is understandable if one notices the singularity
of the;kernel NKqugs ;—90, q— 0 and remembers the fact that we

, ~
are only working with the domain D of functions defined

previously.

The algebraic eigenvalue equation (4.20) is solved and the
approximate eigenvalues are determined for the integral
eigenvalue equation 4.17) by.using a 64-point Gauss-Laguerre
quadrature rule and calling a subroutine in the NAG Fortran
Library. This numerical procedure is’performed for different
PGaués— Laguerre abscissae {y;] and different values of fefmion
flavor number N=10,12, 14, ...,28,3.0,.... Some of the numerical
results are listed in Table 1 (see page 79). The numerical
calculations show that, for each value N given above, by
-carefully choosing>thé abscissae {x] which may correspond to the
possible eigenfunctions with important infrared behavior, one can
get some Qggative approximate eigenvalues for the integral
eigenvalue equation. This fact seems' to indicate that the
eigenvalue spectrum of the stability operator H has a negative
pért for any finite value N.‘The numerical analysis therefore

matches with the result (4.16) obtained in the previous functional

analysis.
AN

™~

-

What we may be able to conclude from above analysis of the
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local stabiiity of the solution X(p)=0 is that the vacuum
configuration with ﬁnb:oken chiral symmetry is unstable and the
chiral symmetryfbreaking solutions may be eﬁergeticall§ preferred
by the vacuum of this theory. This is to be verified by the work

to be explained in the next section.
§4.3 Stability BAnalysis Of The Chiral Symmetry Breaking Solutions

With ﬁhe non-tri&ial chiral symmetry breaking solutions X (P)=0
obtained by solving the S-D equation numerically, the local
stability of these non-trivial solutions can be analyzed by
studying the expectation values of the stability operators (4.3)
and (4.4) at the stationary péints. Since this expectation value
" can be expressed in terms of the eigenvalues of the stability
opefators, the problem is reduced to finding the eigenvalués of

the stability operators.

In fact, the eigenvalue problem is:

I 82V[X]
dq
X (p)OZ(q)

Expanding the arbitrary variation 0Y of the fermion generated
. hil

(q) =1, O (p) ’ (4.21)

Y

mass in terms of the eigenfunctions [¢%} , one has

5Z(p) =2, C @ (p) | | (4.22)

Therefore, the expectation value of the stability operator is

given as
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_[dpd _VE s o
82 (p)dX(q) ,

1 8%V(X]
=—|dpdq [, C @ _(p)] ——=—[2 C D (9]
2 J. Em: 3X(p)6Z(q) En:

1 1 2. ‘
= _2— 2 Can }'n fdp (Dm(p)q)n(p) = —i_ 2 Cn }'n (4.23)
mn n

where the orthogonality relation of the eigenfunctions [®_ } has
been used

fdp @ (PP () =8 (4.24)
Consequently, as we can see from (4.23), if all the eigenvalues are
positive, then the stationary point X(p)#0 corresponds to a local,

stable minimum of the effective potential; if at least one

eigenvalue is negative, the point is then unstable.

For the two stability opefators given by (4.3) and (44), the

corresponding eigenvalue problems are

qu D(p)d(p - q) -Mp.aD@] f (@ =Af () (4.25)
and » |
| -1 2 3 v
qu [PM '(p.a)g" - D(P)S(p - @)} 9@ =p.9,.(P) « (4.26)

In‘érinciple, these two eigenvalue problems can be solved for
each nan-trivial symmetry breaking solution. However, we find
significant difficulty in attempting to solvebthese two equations
directly whereas the folﬁowing eigenvalue problem is much easier. »

to deal with.
Jaa 30 - 0 - M @D@} 0,0 = A,2,®) | (4.27)

It is possible to extract the stability information from this
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latter equation as we will show in the following steps.

The orthogonality relation of the eigenfunctions {®_ } is given by

Jap da o, @PEMEOD@O @ =3, 4 (4.28)
Actually, from (4.27), one has

j dq {8(p-q) - M(p,q)D(q)]' 2@ =A,D () | - (4.29a)

Jap 30 - - M(q,p)D@fﬁ OP=AD@ | (420)
Multiplying SR

Jaa' @ @D@M(@PDE)
to (4.29a) and integraﬁng over p gives:
Jdp dq dq' <Dn(q')D(q')M(q',p)D(p) [8(p — q) - M(p,q)D(q)] <D,;,(q)
=-AmJ’dp dq' @ (q)D(@IM(q.p)D(P)P_(p) | X (4.30)a) |
Multiplying |
f dq' @_(q)D(qM(q,q)D(q)
to (429b) and integrating over q gives:

~ [dp da dq' @ (@)D@M@.D@ [ 3¢ - ) - M@PIDG) ] ©,(p)
. i : :

=A, jdq dq' ®_(3)D(q)M(q,9)D@P (@) _, (4300)
Substracting (4.30b) frc‘am'i (4.30a), we have

(A -A) jdp dq @ (9)D(g)M(q,p)D(P)P_(p) =0 | (431D

which implies (4.28).

Now we evaluate the expressions of the expectgtion values fdf 

the AF and CJT stability operators in terms of the eigenvalues
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{A,} satisfying Eq.@d.27).

A straightforward calculation using (4.27),(4.28) and (2.61) gives:

-0

fdp @_(p)D(P)P (p) = A (4.32)
and
[aapM ' @.010" 0,00 = DEI2,P) 433)
therefore,
1 | 8V, (2]
-~ —|dpdq 8%(p) ————32(q)
2 j | AGIIAC)
= —é' fdp dq Y, C o I pZM' 1(p,q)q2 -D(p)dp - 1C P (@)
mmn
o ) ‘ A
=LY ccl m_ - ]»:J-Eci_“_z_
2 mn (1~ A) 1-A_ 2 5 (1-A)
and
1 3v__[¥]
- _fdp dq 5Z(p) i 3Z(q)
32(p)d2(q)
= % Jdp dq ), C @ _(p) [8(p-q) - M(p.9D@]C,P (9
ma
1 | Smn 1 2 An
=== CC [ -9 ] = - C
2m2.nmn I—An mn 2§'n I—An
Finally, we have
1 8V, (2] ‘ A |
= _[dp dq 8X(p) AL sL@=2Y c - (4.34)
2 SZ(P)SZ(q) 2% 7 (-A)
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52

-
e -;— 2 (4.35)

s |
— |dp dq 3X(p)
2 j 2(p)52(Q)

(1- An)

It was established ({15,9]) that in the model of four-dimensional
QCD with aﬁrunning coupling constant, the solutipns of the
Schwinger-Dyson equation corresp?nd to the locally stable minima
in the'AF'formalism while the éame solutiohs are the saddle !
points in the CJT formalism. With (4.34) and (4.35) having beeﬁ

t

obtained, we will show, by solving the eigenvalue equation (4.27),

that the similar results hold in our model---QED,.

Before doing any numerical computations, we establish an
interesting argument to see why the chiral symmetry breaking

solutions correspond to the saddle points of the CJT effecti?e -

poﬁential.

Recall from (4.2) and (4.3) that the expectation value of the CJT

stability operator has the form

5V . (3]
fdp dq 8Z(p) o
32 (p)dX(q)

= fdp 32 (p)D(P)SL(p) - jdp dq 8Z(p)D(PYM(p,q)D(q)SZ(q) (4.36)

)
We shall show that this expectation value of the CJT étability
operator can be either negative or positivegby choosing

appropriate variations 8X(p).

The solutions 2(p) of the Schwinger-Dyson equation obtained in
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the third chapter have the following asymptotic behaviors:

>(p) — finite constant ‘ asp—0
437)
1 . ‘
2(p) — - 7 asp — oo
P

therefore, the asymptotic behavior of the function D(p) defined as

- —

(4.5) is obtained as

D(py - -ng/ 340) | asp—o 0
‘ (4.38)

D(p) =1 ' ' asp — oo
Since the sign of D(p) is diffeMnt in the two asympﬁotic regions,
there is at least one vanishing point for the function D(p) in

momentum Space. Suppose there is only one vanishing point p=p;.

It is possible for us to take a positive variation 8X(p) which
contributes mainly in the infrared momentum region p<pg,.
Therefore, |

JdP SZ(p)D(p)d2(p) - JdP_ dq 8Z(p)D(p)M(p,.9)D(q)8Z(q)

po‘ po po
= fdp 82(p)D(p)dX(p) — fdp jdq 82(p)D(P)M(p.9)D(q) 8Z(q) < 0 . (439)
0 0 0 ' : : 7

for this particular variation: That is, along this particular

direction in the functional space, the symmetry breaking solution-

corresponds to the locally unstable point of the CJT effective

potential.

We can also show that there are variations that give positive
expectation value to the CJT stability operator. Since the

operator D(p)M(p,Q)D(q) is bounded from above, by taking

"
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é‘
8%(p) =8,(p - p) I (4.40)
where 8, is a smeared delta function of width E; We can make the

first term ip (4.36) dominate over the second term by choosing

width € appropriately. Theh, if f):>pO
82V (5} B

A R o
J'dp dq 55(p) 55(q) >0 @A
02(p)d2(q) |
Having proven that the'exPectation‘value of the CJT stahility
operator can be either positive or negative along- -different

directions in the functional space, we'conclpde{that{chiral
— Y

. : , . /
symmetry breaking s$olutions correspond torthe saddl%}points of
(.
the CJT effective potentlal This argument will be supported by

the numerical results to be presented later.

\/

Numerical. analy51s is performed te 'solve the elgenvalue
equation @LZD’and determlne these elgenvalues from which we can
get the stability information.

Substituting intO‘(45) the‘numerical solutions of the S-D
equation, one gets the numerlcal data for the charactertf Sth
function D(p). DQﬂ for N=0.5, 1.0, 12 are plotted in Fig.9, "Fig.10,
and Fig.1ll. As we can see from the plots, D(p) doeslhave~s |
negati&e value regioh although this negative value'tegion‘is very,
small because of the small magnitude of the solutlon Eqn Khowihg_
the behav1or of the function D(p), we now solve the characterlstlc:

- eigenvalue problen1(427L

Naturally the quadrature method is used here since only the
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Figure 10: Characteristic functionlD(p) for N=1.0.
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Figure 11: Characteristic function'D(p) for N=1.2.
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numerical data for D(p) wae obtained. Noticing that the negative
Qalue region of D(p) is very small, we use a much smaller
integration grid for this region than the grid size used for
positive value region/in order to achievera sensitivity for the
infrared bahaviours_of D(p) and eigenfunctions. Considering the
boundary condition thet has ro be setisfied in the ultraviolet

region by the variatiohs, we use an ultraviolet cutoff for the

integral appearing in Eq.(4.27). The eigenvalue equation (4.27) is

solved using the numerical ‘techniques stated above for all those
non-trivial solutions of rﬁe»S—D equation. The approximate
eigenvalues for N€=05,L0,L2:ZO are listed in Table 2.

We note from Table 2 that all the eigenvalues A are positive
end some of them are even greater than 1. Referring to the
expressions given by (4.34) andﬁ(435), we see that all the

eigenvalues of the AF stability operator are positive. Therefore

the expectation value of this operator is positive definite

whereas the expectation value of the CJT stability operator is
indefinite since some of its eigenvalues are positive and some of

them are negative.

We now conclhde that the chiral symmetry broken vacuum
configurations afe stable according to the impfoved AF effective
potential and preferred energetically by the vacuum of this
theory. However[ in theiCJT effective potential formalism, as we
have discussed before, the same vacuum configurations correspond

to the saddle points of this effective potential. This is only

[y
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given for cbmparison since the CJT effective potential does'not‘

provide the correct stability information.
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Table‘1} ‘Some of the eigenvalues of the stability operator
(4.8) at ZXP)50. Negative eigénvalues are responsible

for the local instability.

A, (N=10) A, (N=14 A, N =2.0) A, (N=2.4)

- 1.61 087 -0.30 - 0.09

-0.58 013 021 0.34
0.44 035 0.54 0.62
0.63 0.60 0.72 077
0.74 0.73 0.87 0.84
0.86 0.81 0.9 0.89

Table 2. Some of the eigenvalues of (4.27). All eigenvalues are

positive and some are even greater than 1.

A

A, (N=0.5) A, (N=1.0) A, (N=12) A, (N=2.0)
0.29 0.24 018 006
0.75 0.74 0.71 - 0.59
0.87 0.86 0.85 0.78
1910 1.006 1.008 0.96
1.022 1.014 1.018 ~1.006
1.110 1.076 1.077 1.035.
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' CHAPTER 5

SUMMARY

In this thesis we study the dynamical chiral symmetry

breakinghin,quantum electrodynamics with N fermion flavors in 2+1

dimensions.

This work was moti&ated by observing that the underlying
theories of the strong interaétion must undergo dynamical chiral
symmetry breakiﬁq and the phyéical world resulting from the QCD
Laérangian is thén non-perturbative. Since the QED, model is
simgle and genuine so that we may pursue a systematic treatmént
to the non-perturbative feature of dynamical chiral symmetry

\

breaking, we hope that this will shed some light on the more -~
“ "L

complicated cases such as the gauge theories of the strong

interaction.

For systematic.study of the chiral symmetry breaking, the
effective potential formalism proposed by Cornwall, Jackiw and
Tomboulis, which i% capable of describing the non-perturbative
features of field theories, was used. However, since this
effeqtive potential h;é certain defects so that it can not be
used to test the stability of the vacuum configurations with
broken symmetry; we é&opted an improved effective potential. Up
to the stationary condition, namely, the condition that the first
funétional derivgfives 6£ the effective potentials with respect

to the fermion self-energy are zero as required by the physical

v
7
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L 3 .
processes, these two effective potentials are equivalent and give

AN

same physics: Schwinger—byson'KS-Dl equation.

In fact, there isfanother choice of the effective potential.
This effective potential is originally due to Casalbuoni, De
Curits,nDoanici)and‘@atto‘(CbDG) ([l8]) ahd contains the ‘same
physics'aa the original(CJT formulation. It is shown in the work
done by J. Otu and K.é. Viswanathan ([19]) that this modified
effebtive potentialdis‘alsdlbounded from below and.is stable

against fluctuations to the stationary conditon; namely,

Schwinger;Dyson equation for the QCD-like gauge theories.

In chapter 3 the possibility of dynamical chiral symmetry
breaking in this model treated~w1thin the framework of 1/N
expansion was explored by analyZing the S-D. equation analytically
and numerically The non-triVial chiral symmetry breaking
solutions With expected hierarchy between the generated fermlon
mass ZQﬂ and ‘the intrinSic énergy scale o were found numerically
for fermion flavor number N=0. ,L@,Ll""26,28.hlthough we had
practical difficulty in fimdiggipon—trivial sclutions for larder
errmion flavour'number N becansewof the very small(magnitudevofv
A‘ 20/ a, we suggested that non-trivial solutions existkfor any
finite value 6f N. The dynamical chiraL symmetry breaking may
then occur in this model Further work can be done to find
solutions for large N by USlng a moreasophisticated numerical
technique to deal with the d%fficulty. Co

/
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.In'chapter 4, we studied the local stability of the chirally
syThetrié vacuum corresponding to the Solution 2(()=0 and that of
. the vacuum configura%ions with broken symmetry corresponding to
the non-vanishing X(p)#0. It is suggested by the functional
;nalySis and the numerical analysis that the vacuum configuration
with perfect chiral symmetry is unstable for any finite number of
fermion fla&ours N and the vacuum of this theory may then prefer
other locally stable configurations which may correspond to the
symmetry breaking solutions. It iS‘also shown, by studying the
stabiliﬁy operator resulting from the modified effective
l:potential which is believed to provide correct stability
‘information, that the non-trivial solutions obtained in chapteg 3

are the locally stable points for the effective potential.

~In conclusion, we have found that the chiral symmetry of our
model tréated within the framerrk of 1/N expansion may be brokeﬁ
for any ﬁumber of fermion flavours N and the configurations with
broken chiral symmetry are locally stable and preferred

energetically by the vacuum of this model.

7
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APPENDIX A ‘ 7 o

The leading order correction to photon propagator in 1/N expansion.

Photon vacuum polarization is given by the following Feynman

graph:

_ ) i i
=(-1) (~ie) NJ.(dk)Tr[--——-my v ]
A y.k *  y(k+p) V¥
SN
Tr[(y-k)y (Yok + y-p)y_ ]
=—af<dk> . — (A1
k“(k+p)” .
Using the well-known formula
= . - M
Tr(YkYpYBYV) 4nmn&,+4np5nkv 4nwnw (A.2)
and noticing
1
1
> > = Jdx = ! - (A.3)
k" (k+p) 0 [k2+2xp.k+xp2]

we can write (A.l)

- (AD

f J‘ 4[k (k+p) +k (k+p) -0 k. (k+ p) ]
=- (dk) }dx

h +2xp+k+xp ]
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(A4)

1 ‘
4[k &k+p) +k k+p) -n k-(k+p)]
=-o |(dk) | dx = — e

2
2 2
[(k+xp)-x(x-1)p°]
Note that the volume element is invariant under the translation

k—k+xp, (A.4) therefore becomes:

(A.4) )

! 7
2
0

: 2
o [*-x(x-1p?]

2 2 .
= K'n_-2x(1-xp p -n [k*=x(1-0p"] }
—-——4aJ.(dk)J-dx D H , H H

2
[k*-x(x-1) p*]

{__k n, -2x('1—x)pupv-T] v[kz-xcl—X)pZ]}
=-4 « (dk)J;x — u‘
o 2 2 ’
0 [ * -H]
(A.5)
where H=-x(1-x)p? ] L ’ A

and D is the dimension of the space-time, D=3 here.

Further computation of (A.6) gives

n _ _ 2
K 6)—4aj(dk)jd [ D It [n,, 20D 5551}
K H) (K2-H)? D Y

84



.
\

_4alfdQIdXJ'Dl {DZ Tluv
emP 2

k"+H

x (1= ) 2D-1p° |
’ (1<2+H)’2 [nuv D 2‘pupv]}'

=]

4oi kD'l
J‘ jdx (—-——n )[J-dk — ]
- onP S [k +H] |
2D -1 &
#x(-n[n, —(—-—l-)-)—‘-’-——z p ](jdk———;)}
Y [K+H]
(A7) -
Recalling the formula:
“ tm—l o m ’ m .
jdt : =,lp °® B(——,xn+n~£l).(aXLuﬂ) (A.8)
: (1+b¢")™"" a a .,
and
, I'(p)I'( : _
B(p,q)=B(q,p)= x D , : (A9)
I'(p+q)
we get .
oo | D D
D-1 D2 () r(1-—)
J.dk k™3 ::_l; H 2 _ 2 2
d Kki+ 2 (1)
1 | ,
=-Xu’ (=3 - (A.10)
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oo ' ) D D
D-1 L., F(5)T@2-—)

k 1 2 » -
dk = — H’ — (A.11) 4
j (k2+H): %2 r(2) , s

0

Substituting (A.10) and (A.1l) into (A.7) and setting D=3:
_ o 1 2 [ iy
am=-—{eph P o p ) Jax x a1 )
ooz SR

—. —d | 2 | '
=i 1 [?wp—%m]’ ’ (A.12)

8(=p?)2
The leading order correction to the photon propagator in 1/N

expansion is given by the sum of the following Feynman graphs.
VNVANANAN = NANARNNAN 4 nﬁgv{j:>v¥ﬂﬁ + nJux4i:>\nxv<::>vunn'+ ce

Symbblically/ tﬁis can be written in a compact form:
2 20 rin, 2 i 2 a6, 2 ’ L
iD (p")=iD (p)+[iD*(p)ILI (p)I[iD, (p7)] (A.13)
here iDpv'QQ) represents the corrected photon propagator and it
takes the form
iD (pH=A(pHHn + B(p?) - »‘ (A.14)
LNP p Tluv p PMPv o 7 t .

Rep'lacing iI'IM( p2) with (A.12) and using (A.l4), we obtain

D (ph)=- S (n -—ub )y (2.23)
. 2 o HV 2
P [1+-.__.__.] p
, _pz _
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" APPENDIX B

- The Cancellation of Two-Particle-Reducible Diagrams

In this appendix we will'show how the two-particle reducible
diagrams are cancelled in the CJT épproach at the non-trivial

order for the real scalar model for the sake of simplicity:

8
| S |
L=s2—CD1GO CD+Iim - (B.1)
with the interaction given by
L [P(x) Dy)] =1 D2x) Ax - y) @2x) (82
in 2 d A

The connected Green functional for the composite operator OX)D(y)
is given by
D G 1
d+1_ + o
W 1[74) 1GO o —2—<DJ ]
c = |[dD] € (B.3)

' \
Defining the Legendre transform in. the usual way gives:

W -Lg (B.da) -
8J 2
Gl =W ——;-Tr IG (B.4b).
LN (S7 B (B.4c)
e 2

The Legendre variable G conjugate touJ is the full scalar

‘propagator <Pd> as can be seen from Eq.(B.3). The correspondingv‘

expressions to EqJ2:32) and (2.35) for the scalar case are given
by

1 a0 -1 ‘
F—TTanG +TTrGO‘G+I'2 . - (B.5)

~
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o1 -1 oI
i[5 @G -2—2)D+1 ]
&G
5T [iwore

r-TrG 2 =—iLn 1 (B.6)
6G iTCDiG'lcb
f[dcb]e
Theyright hand side of Eq.(B.6) is further simplified as
g o5 o
. J—
iL_[-28/8G (x.y) ] 2 !
e j[dcb]e
—-iLn T
iTCDiG'1<1>
J.[dCD]e ,
—- 1
i Iim[—28/BG (x,y)] y
e ., exp (-—Z-Tanﬁ )
=—iLn— 1 (B.7)
exp(—-i- Tr LnG’ 1)
where
_ N or B oI I
G=(G +2i—=2) =(1+21G—%)'G - (B.8)
. 0G 8G

We will check consistency of Eqg.(B.6) given the lowest order of I,

;

(see iig.lZ). To do this, we need to expand exp(il; ) up to second

order I® A and keep terms of second order in A in Eq.(B.7). That

is, we will see that 2PI diagrams in Fig.l13.a remain and the

of

t

wo-particle reducible diagrams in Fig.I3.b are cancelled. We

i h

urther assume that tadpole diagrams like Fig.13.c vanish arnd
nence such a term is rnot included in szrom the outset even

a 2PI diagram. The lowest order [, is given by

. e
trough it i

W

1) =
V=4 6G6.G, . . (B.9)
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where notations are self-consistent. We give‘the results in the
order of A for the expansion exp(anl) after performing the

8
functional differentiation and expanding the inside of the

logarithmic function in Eq.(B.7) as

. 1
—iLnf[(1+ilst+i2nd+...... )em”‘]=0m+1st+2nd—7(1st)2+... (B.10)
5
Each term is given by
rm
mhz———T}LMGG )=—TrG————-+41A A (k G C} G (B.11a)
) 5G y yz w X
Ist=T-8iA A G G GG, , | ~ (B.11b)
1 2 .
2nd=T(T'(21)) +1AxyA (4nyGyzG G x+2zeGzyGwawx 2 szyw Wy)
(B.11¢)
(B.11d)
Hence the totél sum of all these terms is
s
M + 1M - Tr G (B.12)
2 2
“ oG
where
M=ia A (2G6,G G G, +G G G G ) (B.13)
) Xy XZ Zy Yyw wX XZ ZX YW Wy

This completes the consistency checking of (B.6) at the lowest

order. Generalization to fermions is straightforward.
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Figure 12: Lowest order

E c

Figure 13.a: Examples of two-particle irreducible diagrams.
\“\
Figure 13.b: Example of two-particle reducible diagrams.
¢
rigure 13.c: Example of tad-pole diagrams.

(



APPENDIX C

g

1. Evaluation of the CJT effective potential:

- , 3
g\‘\\ (2.57a) gives the general form of the CJT effective
potential:
VL [TISiTr [Las '+ s's]- L Trsps) (2.57a)
T 0o - 2 -
Then, after a constant renormalization,
v [z]z—iTr[Lns“s—s“S+1];—i- Tr (SDS ) (CL.1)
cIr 0 0 5 :

Vo= —iTr[ Lns;'s- s;'s +1]

=-i| @ Tr[Lns;'s-s;'s+1]

=i .(dP)Tr[Lh( F )-—i— +1]
o lﬁ—z lﬁ‘z «’
. ‘ 2 2 | ,
=i [(ap) T [Ln p2+r‘22<p> - z<p>2<#+22<p>> ]
. p -2 p - Z(p)
- 2 2 .
T =-i]@P) Tr[Ln(-——p +52 ) + Ln( > P 5 ) — E(p)z(fg+22(p)) N
' ' P p-2(p) - p=2p)

(C1.2)

R

here and later on, P represents the momentum vector and p

represents the magnitude of P.
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Ln( > ) = Ln(1+
p P p
< 1 3 2 1 S(px)”
=- ( ) + 2
nz;l 2n 2n nz_-_’l on+ 1 ( 2)2n+1
SR USRI )™
2 7o) on pz n=1 2rL1+1 ( 2)2"+1
| 3 = ] T(pT)” |
= —-=1ILn(1~- Cl3
2 " p’ ) nz='1 2n+1 g (p2)nt! (2

Substituting (Cl1.3) into (Cl.2) and noticing that

Tr f =0
one has
¥ 2
VO=4iJ‘(dP)[—;-Ln(l— — )+ 22("2) ]
. ' P p-27p)
. 5 2 2
=-41J e [%Ln(l— 22 ) + 22(‘;) ]
(2m)? p p-Z7(p)

Doing a Wick rotation, the above eguation can be written in terms

of the integration over the Euclidean momentum space:

2 22
v, = —22- pldp [ 22,("2) A —'—ip)— ] (C1.4)
T p+Ip 2 P

in (C1.4) p now is Euclidean momentum.

\/’1[2]=—% Tr (SDS )

= TJ‘«iP)(dK)(—n:) e[ isey sk ] [ip ®-K)]

s
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i 1

¥
B - 3(p) K-S (k)

#—%:L@Mm>ewfﬁ[w

' (P-K) (P-K) 1
il R - 2 o s
- (P-K)*[1+ ]
SJ—(P-Kf)
1
= - | @r) — = ———— Tr[# (BTN ¥ (K 200) ]
pP-3%p) K -ZW

P-K) ®-K)
°{["w" "

] :
(P-K)? ®-K)°[1+ = 1
8- (P -K)’

(C1.5)
Tr[y* (B +Z@)v¥ (K+ZK)] ,
=4PFKY + 4PYK* + 4n¥ I(p) I(k) - 4nHVP-K (C1.6)

A simple calculation also shows that |
! (P-K) (P-K)
Tr[y* (B+Z(p) v¥ (K+Z®) ] [n - —
o (P-K)"

=8 3(p) (k) - 3(P-(P-K)] [K-(P-R)] (C1.7)

(P-K)’

with the second term in (C1.7), V4[Z] is a constant at £=0. For

implicity, we reguire L\\
. ,

V,(51=0 at =0

w

93



Therefore, we substract that constant from V1 and get .

e J‘ @) (@) — 2P > (k)

p2 _ 22(p) k2 _ 22(k)

VIZ]=-

A —)
®-K) [1+ < ]

8- (P-K)’

. 2 2
_ _ 4a J‘i pdpdQ, Ji K dked2 30 (k)
N (2m)’ am® P+ K+ T
1 |
- , - }
(P-K) [1+ ]

8/ (P =K)’

—__da__ J.pz ip Kk 2(p) 2(k)

(2m)°eN

p+3ip)  KHZi

s
1
de J.dcp sing a g
0

D¢ ]
a. A

(04
(p+k’™=2p .k cos) "2 [+ (p+ k™=2p . k cos9) ]

2 /;,, : ptk+ &
— §‘2g6n J’pz i i 2Z(pz) 2Z(k2) lk Ln 8 |
(@m°N p+p) K+Z P

| —k|+—oi-
P 3

2

-
e

k
-;— pZdp k'dk f“’] 22‘ 2) M(p.q)
p+27(p) k+X(k)

(C1.8)
s

where
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p+k+—a'
M(p.k) =——2—Ln ( 8 ) (C1.9)
2n“Npk lp—kl+'g‘ ’
8

- From (Cl.4) and (Cl1.8), we finally have

Ver E1= Vot Y

At

= ;22‘ {Jpzdp [ b
_L jpzdp Rk —22 M) —=  } (C1.10)
2 p+Xp) K43 %K)

£

Except for the constant 2/m2, (C1.10) is exactly (2.59a).
2. Evaluation of the AF effective potential:

Following from (2.57b), one has the AF effective potential:

/ VlE1= i TrLn (S, S) =~ Tr[ Z(p) D (P-K) 30)

=-i J‘(dP) TrLn (S, (P) S(P) ] —’% J-(dP)J.(dK) Tr [ Z(p) D (P-K) T(k)

%, (C2.1)

Simply,

VEl=-i j(dP) Tr La (S, (P) S(P) ]

2
= ——12— pzdp Ln (1+ z (ZP)

T p

) (C2.2)
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We now compute

V[EI=- % f (dP) f(dK) Tr [ 2(p) D" (P-K) T(k) ] (C2.3)
where D!(P-K) is the inverse of D -K), that is,
-1 - —-0) = §3)(p-
J(dK) DGBZY&(P K) DBB,&B(K Q) =38P Q)SaB 675 - . (C2.4)
and the definition of D(P-K) is given by (2.38), explicitly,
‘ (K-Q) (K-Q 1
FEEQ =i (1) [ =]
- &Q (K-Q) (14 e ]

8 ~(K-Q)°

(C2.5)

Since we are only looking for a singlet fermion self-energy

T,P=I@8,, 7

the photon propagator given in (C2.4) can be replaced with

solution

[’

v .2 J 1
aé,yﬁ(K—Q)—le SaB 5‘{5 (C2.6)

2 a
L KQT+ ]
L 8-&Q’

-

therefore,

Daafs _Q)=D (K- Q38,8 (C2.7)

one then has, following (C2.4),

J- (dK) D 1(P—K) D(K-Q= 8§ (P-Q) : (C2.8)

Writing out the above eguation in terms of the Euclidean momenta

and performing the integration over the angular part yields:
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J‘ Kk 5 e J‘ 0 @i
k
B 3 :
(2m) —~(k+q"~2kqcos8, ) [1+ .
- ’ 8\/L2+q2—2chosek

04

]

04
. p+ Q+ —o=
= J.kzdk B (P=K) 0‘2 plq La( g )
. 2N pmq |+ 2
8
= szdk B-I(P"‘K) M(k,q) = 8@(P-Q) ' (C2.9)

Integrating over the angular part of both sides of (C2.9):

1dQ [, _. idQ ~
P |kdk D (P-K) M(k,q) = P.53)P-Q) (C2.10)
(2n)? @2n)® -
Define _
1 ‘ide i .
M (p.k) = J D (P-K) - (C2.11)
Qm? -

o>
s

The right hand side of (C2.10) is given as.

1dQ 1 |
J £ 33)(P-Q) =— 8(p—q) (C2.12)
(2K)3 ’ P2 .

here p and q on the right hand side of (C2.12) are all Euclidean

momenta.

(C2.12) comes from the fact that

J.(dP) 53)P-Q) = 1 | (C2.13)
Fence, we have from (C2.10) t@at
5
. ‘ 1 |
J.kzdk M p.k) M(k,q) = — 3(p—q) (C2.14)

p
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d dQ kdk
V[Z]———_[lp - jl X 436) S0D PK)
2n)? @2n)?

" fpdpJ.kde(p)E(k)_f P 5 (P-K)
(Zﬂ) 2r)3

% jpzdp J.kzdk SE M (pk) ) | | (C2.15)

where definition (C2.11) is used.

Finally, we obtain

V(21 =V +V,

=2 [ %J-p dp Lo(1+ =2 )4 ;—J‘pzdp szdk 2(p) M (pk) T(x) ]
0 ' 0 0

2
(C2.16)

This gives the potential (2.5%Db).
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